WorldWideScience

Sample records for global tropical rainfall

  1. Tropical Rainfall Measuring Mission: Monitoring the Global Tropics for 3 Years and Beyond. 1.1

    Science.gov (United States)

    Shepherd, Marshall; Starr, David OC. (Technical Monitor)

    2001-01-01

    The Tropical Rainfall Measuring Mission (TRMM) was launched in November 1997 as a joint U.S.-Japanese mission to advance understanding of the global energy and water cycle by providing distributions of rainfall and latent heating over the global tropics. As a part of NASA's Earth System Enterprise, TRMM seeks to understand the mechanisms through which changes in tropical rainfall influence global circulation. Additionally, a goal is to improve the ability to model these processes in order to predict global circulations and rainfall variability at monthly and longer time scales. Such understanding has implications for assessing climate processes related to El Nino/La Nina and Global Warming. TRMM has also provided unexpected and exciting new knowledge and applications in areas related to hurricane monitoring, lightning, pollution, hydrology, and other areas. This CD-ROM includes a self-contained PowerPoint presentation that provides an overview of TRMM and significant science results; a set of data movies or animation; and listings of current TRMM-related publications in the literature.

  2. Contribution of tropical cyclones to global rainfall

    Science.gov (United States)

    Khouakhi, Abdou; Villarini, Gabriele; Vecchi, Gabriel; Smith, James

    2016-04-01

    Rainfall associated with tropical cyclones (TCs) can have both devastating and beneficial impacts in different parts of the world. In this work, daily precipitation and historical six-hour best track TC datasets are used to quantify the contribution of TCs to global rainfall. We select 18607 rain gauge stations with at least 25 complete (at least 330 measurements per year) years between 1970 and 2014. We consider rainfall associated with TCs if the center of circulation of the storm passed within a given distance from the rain gauge and within a given time window. Spatial and temporal sensitivity analyses are performed with varying time windows (same day, ±1 day) and buffer radii (400 km and 500 km) around each rain gauge. Results highlight regional differences in TC-induced rainfall. The highest TC-induced precipitation totals (400 to 600+ mm/year) are prevalent along eastern Asia, western and northeastern Australia, and in the western Pacific islands. Stations along the southeast of the U.S. coast and surrounding the Gulf of Mexico receive up to 200 mm/year of TC rainfall. The highest annual fractional contributions of TCs to total rainfall (from 35 to 50%) are recorded in stations located in northwestern Australia, southeastern China, the northern Philippines and the southern Mexico peninsula. Seasonally, the highest proportions (40 to 50%) are recorded along eastern Australia and Mauritius in winter, and in eastern Asia and Mexico in summer and autumn. Analyses of the relative contribution of TCs to extreme rainfall using annual maximum (AM) and peaks-over-threshold (POT) approaches indicate notable differences among regions. The highest TC-AM rainfall proportions (45 to 60%) are found in stations located in Japan, eastern China, the Philippines, eastern and western Australia. Substantial contributions (25 to 40% of extreme rainfall) are also recorded in stations located along the U.S. East Coast, the Gulf of Mexico, and the Mexico peninsula. We find similar

  3. Temperature and rainfall interact to control carbon cycling in tropical forests.

    Science.gov (United States)

    Taylor, Philip G; Cleveland, Cory C; Wieder, William R; Sullivan, Benjamin W; Doughty, Christopher E; Dobrowski, Solomon Z; Townsend, Alan R

    2017-06-01

    Tropical forests dominate global terrestrial carbon (C) exchange, and recent droughts in the Amazon Basin have contributed to short-term declines in terrestrial carbon dioxide uptake and storage. However, the effects of longer-term climate variability on tropical forest carbon dynamics are still not well understood. We synthesised field data from more than 150 tropical forest sites to explore how climate regulates tropical forest aboveground net primary productivity (ANPP) and organic matter decomposition, and combined those data with two existing databases to explore climate - C relationships globally. While previous analyses have focused on the effects of either temperature or rainfall on ANPP, our results highlight the importance of interactions between temperature and rainfall on the C cycle. In cool forests (forests (> 20 °C) it consistently enhanced both ANPP and decomposition. At the global scale, our analysis showed an increase in ANPP with rainfall in relatively warm sites, inconsistent with declines in ANPP with rainfall reported previously. Overall, our results alter our understanding of climate - C cycle relationships, with high precipitation accelerating rates of C exchange with the atmosphere in the most productive biome on earth. © 2017 John Wiley & Sons Ltd/CNRS.

  4. Vertical Profiles of Latent Heat Release over the Global Tropics using TRMM rainfall products from December 1997 to November 2001

    Science.gov (United States)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.

    2002-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2001. Rainfall, latent heating and radar reflectivity structures between El Nino (DE 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs. west Pacific, Africa vs. S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in strtaiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model.

  5. Large rainfall changes consistently projected over substantial areas of tropical land

    Science.gov (United States)

    Chadwick, Robin; Good, Peter; Martin, Gill; Rowell, David P.

    2016-02-01

    Many tropical countries are exceptionally vulnerable to changes in rainfall patterns, with floods or droughts often severely affecting human life and health, food and water supplies, ecosystems and infrastructure. There is widespread disagreement among climate model projections of how and where rainfall will change over tropical land at the regional scales relevant to impacts, with different models predicting the position of current tropical wet and dry regions to shift in different ways. Here we show that despite uncertainty in the location of future rainfall shifts, climate models consistently project that large rainfall changes will occur for a considerable proportion of tropical land over the twenty-first century. The area of semi-arid land affected by large changes under a higher emissions scenario is likely to be greater than during even the most extreme regional wet or dry periods of the twentieth century, such as the Sahel drought of the late 1960s to 1990s. Substantial changes are projected to occur by mid-century--earlier than previously expected--and to intensify in line with global temperature rise. Therefore, current climate projections contain quantitative, decision-relevant information on future regional rainfall changes, particularly with regard to climate change mitigation policy.

  6. Does internal variability change in response to global warming? A large ensemble modelling study of tropical rainfall

    Science.gov (United States)

    Milinski, S.; Bader, J.; Jungclaus, J. H.; Marotzke, J.

    2017-12-01

    There is some consensus on mean state changes of rainfall under global warming; changes of the internal variability, on the other hand, are more difficult to analyse and have not been discussed as much despite their importance for understanding changes in extreme events, such as droughts or floodings. We analyse changes in the rainfall variability in the tropical Atlantic region. We use a 100-member ensemble of historical (1850-2005) model simulations with the Max Planck Institute for Meteorology Earth System Model (MPI-ESM1) to identify changes of internal rainfall variability. To investigate the effects of global warming on the internal variability, we employ an additional ensemble of model simulations with stronger external forcing (1% CO2-increase per year, same integration length as the historical simulations) with 68 ensemble members. The focus of our study is on the oceanic Atlantic ITCZ. We find that the internal variability of rainfall over the tropical Atlantic does change due to global warming and that these changes in variability are larger than changes in the mean state in some regions. From splitting the total variance into patterns of variability, we see that the variability on the southern flank of the ITCZ becomes more dominant, i.e. explaining a larger fraction of the total variance in a warmer climate. In agreement with previous studies, we find that changes in the mean state show an increase and narrowing of the ITCZ. The large ensembles allow us to do a statistically robust differentiation between the changes in variability that can be explained by internal variability and those that can be attributed to the external forcing. Furthermore, we argue that internal variability in a transient climate is only well defined in the ensemble domain and not in the temporal domain, which requires the use of a large ensemble.

  7. Tropical influence on Euro-Asian autumn rainfall variability

    Energy Technology Data Exchange (ETDEWEB)

    Mariotti, A. [University of Maryland, College Park, MD (United States); ENEA, Rome (Italy); Ballabrera-Poy, J. [University of Maryland, ESSIC, College Park, MD (United States); Zeng, N. [University of Maryland, ESSIC, College Park, MD (United States); University of Maryland, Department of Meteorology,, College Park, MD (United States)

    2005-04-01

    The connection between autumn rainfall variability in the Euro-Asian domain and tropical climate is documented using state-of-the-art global observational datasets and re-analyses. Results suggest a robust statistical relationship between the El Nino Southern Oscillation (ENSO) and autumn rainfall in parts of southwest Europe, northern Africa and southwest Asia. The correlation between area-mean anomalies over this region (P{sub ea}) and the NINO3.4 index is 0.68, stationary over the last 50 years. Global ENSO-like tropical climate anomalies are observed in conjunction with P{sub ea} anomalies confirming the relationship found with the NINO3.4 index. Overall, the connection with Indo-Pacific variability is stronger than that with the eastern Pacific.While rainfall anomalies in southwest Europe and southwest Asia appear to largely co-vary as one pattern under the influence of ENSO, our results suggest that different mechanisms may be contributing to the observed anomalies. In the North Atlantic/European region, it is speculated that while a PNA-like mode maybe the prevailing teleconnection mechanism for high P{sub ea}, for low P{sub ea} tropical Atlantic ENSO related SST anomalies may be playing a more relevant role forcing northeastward propagating Rossby waves. Over southwest Asia, a more direct connection to the Indo-Pacific region is suggested by the upper air anomaly observed over southern Asia, possibly the Rossby wave response to enhanced heating in the Indian Ocean. (orig.)

  8. Detecting Climate Variability in Tropical Rainfall

    Science.gov (United States)

    Berg, W.

    2004-05-01

    A number of satellite and merged satellite/in-situ rainfall products have been developed extending as far back as 1979. While the availability of global rainfall data covering over two decades and encompassing two major El Niño events is a valuable resource for a variety of climate studies, significant differences exist between many of these products. Unfortunately, issues such as availability often determine the use of a product for a given application instead of an understanding of the strengths and weaknesses of the various products. Significant efforts have been made to address the impact of sparse sampling by satellite sensors of variable rainfall processes by merging various satellite and in-situ rainfall products. These combine high spatial and temporal frequency satellite infrared data with higher quality passive microwave observations and rain gauge observations. Combining such an approach with spatial and temporal averaging of the data can reduce the large random errors inherent in satellite rainfall estimates to very small levels. Unfortunately, systematic biases can and do result in artificial climate signals due to the underconstrained nature of the rainfall retrieval problem. Because all satellite retrieval algorithms make assumptions regarding the cloud structure and microphysical properties, systematic changes in these assumed parameters between regions and/or times results in regional and/or temporal biases in the rainfall estimates. These biases tend to be relatively small compared to random errors in the retrieval, however, when random errors are reduced through spatial and temporal averaging for climate applications, they become the dominant source of error. Whether or not such biases impact the results for climate studies is very much dependent on the application. For example, all of the existing satellite rainfall products capture the increased rainfall in the east Pacific associated with El Niño, however, the resulting tropical response to

  9. Vertical Profiles of Latent Heat Release over the Global Tropics using TRMM Rainfall Products from December 1997 to November 2002

    Science.gov (United States)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.

    2003-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs. S. America ) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in stratiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model. Review of other latent heating algorithms will be discussed in the workshop.

  10. Enhanced Orographic Tropical Rainfall: An Study of the Colombia's rainfall

    Science.gov (United States)

    Peñaranda, V. M.; Hoyos Ortiz, C. D.; Mesa, O. J.

    2015-12-01

    Convection in tropical regions may be enhanced by orographic barriers. The orographic enhancement is an intensification of rain rates caused by the forced lifting of air over a mountainous structure. Orographic heavy rainfall events, occasionally, comes along by flooding, debris flow and substantial amount of looses, either economics or human lives. Most of the heavy convective rainfall events, occurred in Colombia, have left a lot of victims and material damages by flash flooding. An urgent action is required by either scientific communities or society, helping to find preventive solutions against these kind of events. Various scientific literature reports address the feedback process between the convection and the local orographic structures. The orographic enhancement could arise by several physical mechanism: precipitation transport on leeward side, convection triggered by the forcing of air over topography, the seeder-feeder mechanism, among others. The identification of the physical mechanisms for orographic enhancement of rainfall has not been studied over Colombia. As far as we know, orographic convective tropical rainfall is just the main factor for the altitudinal belt of maximum precipitation, but the lack of detailed hydro-meteorological measurements have precluded a complete understanding of the tropical rainfall in Colombia and its complex terrain. The emergence of the multifractal theory for rainfall has opened a field of research which builds a framework for parsimonious modeling of physical process. Studies about the scaling behavior of orographic rainfall have found some modulating functions between the rainfall intensity probability distribution and the terrain elevation. The overall objective is to advance in the understanding of the orographic influence over the Colombian tropical rainfall based on observations and scaling-analysis techniques. We use rainfall maps, weather radars scans and ground-based rainfall data. The research strategy is

  11. On the Tropical Rainfall Measuring Mission (TRMM): Bringing NASA's Earth System Science Program to the Classroom

    Science.gov (United States)

    Shepherd, J. Marshall

    1998-01-01

    The Tropical Rainfall Measuring Mission is the first mission dedicated to measuring tropical and subtropical rainfall using a variety of remote sensing instrumentation, including the first spaceborne rain-measuring radar. Since the energy released when tropical rainfall occurs is a primary "fuel" supply for the weather and climate "engine"; improvements in computer models which predict future weather and climate states may depend on better measurements of global tropical rainfall and its energy. In support of the STANYS conference theme of Education and Space, this presentation focuses on one aspect of NASA's Earth Systems Science Program. We seek to present an overview of the TRMM mission. This overview will discuss the scientific motivation for TRMM, the TRMM instrument package, and recent images from tropical rainfall systems and hurricanes. The presentation also targets educational components of the TRMM mission in the areas of weather, mathematics, technology, and geography that can be used by secondary school/high school educators in the classroom.

  12. Tropical Rainfall Measuring Mission (TRMM) and the Future of Rainfall Estimation from Space

    Science.gov (United States)

    Kakar, Ramesh; Adler, Robert; Smith, Eric; Starr, David OC. (Technical Monitor)

    2001-01-01

    Tropical rainfall is important in the hydrological cycle and to the lives and welfare of humans. Three-fourths of the energy that drives the atmospheric wind circulation comes from the latent heat released by tropical precipitation. Recognizing the importance of rain in the tropics, NASA for the U.S.A. and NASDA for Japan have partnered in the design, construction and flight of a satellite mission to measure tropical rainfall and calculate the associated latent heat release. The Tropical Rainfall Measuring Mission (TRMM) satellite was launched on November 27, 1997, and data from all the instruments first became available approximately 30 days after launch. Since then, much progress has been made in the calibration of the sensors, the improvement of the rainfall algorithms and applications of these results to areas such as Data Assimilation and model initialization. TRMM has reduced the uncertainty of climatological rainfall in tropics by over a factor of two, therefore establishing a standard for comparison with previous data sets and climatologies. It has documented the diurnal variation of precipitation over the oceans, showing a distinct early morning peak and this satellite mission has shown the utility of precipitation information for the improvement of numerical weather forecasts and climate modeling. This paper discusses some promising applications using TRMM data and introduces a measurement concept being discussed by NASA/NASDA and ESA for the future of rainfall estimation from space.

  13. Tropical intraseasonal rainfall variability in the CFSR

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiande [I.M. System Group Inc. at NOAA/NCEP/EMC, Camp Springs, MD (United States); Wang, Wanqiu [NOAA/NCEP/CPC, Camp Springs, MD (United States); Fu, Xiouhua [University of Hawaii at Manoa, IPRC, SOEST, Honolulu, HI (United States); Seo, Kyong-Hwan [Pusan National University, Department of Atmospheric Sciences, Busan (Korea, Republic of)

    2012-06-15

    While large-scale circulation fields from atmospheric reanalyses have been widely used to study the tropical intraseasonal variability, rainfall variations from the reanalyses are less focused. Because of the sparseness of in situ observations available in the tropics and strong coupling between convection and large-scale circulation, the accuracy of tropical rainfall from the reanalyses not only measures the quality of reanalysis rainfall but is also to some extent indicative of the accuracy of the circulations fields. This study analyzes tropical intraseasonal rainfall variability in the recently completed NCEP Climate Forecast System Reanalysis (CFSR) and its comparison with the widely used NCEP/NCAR reanalysis (R1) and NCEP/DOE reanalysis (R2). The R1 produces too weak rainfall variability while the R2 generates too strong westward propagation. Compared with the R1 and R2, the CFSR produces greatly improved tropical intraseasonal rainfall variability with the dominance of eastward propagation and more realistic amplitude. An analysis of the relationship between rainfall and large-scale fields using composites based on Madden-Julian Oscillation (MJO) events shows that, in all three NCEP reanalyses, the moisture convergence leading the rainfall maximum is near the surface in the western Pacific but is above 925 hPa in the eastern Indian Ocean. However, the CFSR produces the strongest large-scale convergence and the rainfall from CFSR lags the column integrated precipitable water by 1 or 2 days while R1 and R2 rainfall tends to lead the respective precipitable water. Diabatic heating related to the MJO variability in the CFSR is analyzed and compared with that derived from large-scale fields. It is found that the amplitude of CFSR-produced total heating anomalies is smaller than that of the derived. Rainfall variability from the other two recently produced reanalyses, the ECMWF Re-Analysis Interim (ERAI), and the Modern Era Retrospective-analysis for Research and

  14. The Tropical Rainfall Measuring Mission and Vern Suomi 's Vital Role

    Science.gov (United States)

    Simpson, Joanne; Kummerow, Christian

    1999-01-01

    The Tropical Rainfall Measuring Mission was a new concept of measuring rainfall over the global tropics using a combination of instruments, including the first weather radar to be flown in space. An important objective of the mission was to obtain profiles of latent heat in order to initialize large-scale circulation models and to understand the relationship between short-term climate changes in relation to rainfall variability. The idea originated in the early 1980's from scientists at the Goddard Space Flight Center/NASA who had been involved with attempts to measure rain with a passive microwave instrument on Nimbus 5 and had compared its results with rain falling in the area covered by the GATE1 radar ships. Using an imaginary satellite flying over the GATE ships, scientists showed that a satellite with an inclined orbit of 30-35 degrees could obtain monthly rainfalls with a sampling error of less than 10 percent over 5 degree by 5 degree areas. The Japanese proposed that they could build a nadir-scanning rain radar for the satellite. Vern Suomi was excited by this mission from the outset, since he recognized the great importance of adequate rainfall measurements over the tropical oceans. He was a charter member of the Science Steering Team and prepared a large part of the Report. While the mission attracted strong support in the science community, it was opposed by some of the high-level NASA management who feared its competition for funds with some much larger Earth Science satellites. Vern was able to overcome this opposition and to generate Congressional support, so that the Project finally got underway on both sides of the Pacific in 1991. The paper will discuss the design of the satellite, its data system and ground validation program. TP.NM was successfully launched in late 1997. Early results will be described. 1 GATE stands for GARP Atlantic Tropical Experiment and GARP stands for Global Atmospheric Research Program.

  15. Contributions of Tropical Cyclones to the North Atlantic Climatological Rainfall as Observed from Satellites

    Science.gov (United States)

    Rodgers, Edward B.; Adler, Robert F.; Pierce, Harold F.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The tropical cyclone rainfall climatology study that was performed for the North Pacific was extended to the North Atlantic. Similar to the North Pacific tropical cyclone study, mean monthly rainfall within 444 km of the center of the North Atlantic tropical cyclones (i.e., that reached storm stage and greater) was estimated from passive microwave satellite observations during, an eleven year period. These satellite-observed rainfall estimates were used to assess the impact of tropical cyclone rainfall in altering the geographical, seasonal, and inter-annual distribution of the North Atlantic total rainfall during, June-November when tropical cyclones were most abundant. The main results from this study indicate: 1) that tropical cyclones contribute, respectively, 4%, 3%, and 4% to the western, eastern, and entire North Atlantic; 2) similar to that observed in the North Pacific, the maximum in North Atlantic tropical cyclone rainfall is approximately 5 - 10 deg poleward (depending on longitude) of the maximum non-tropical cyclone rainfall; 3) tropical cyclones contribute regionally a maximum of 30% of the total rainfall 'northeast of Puerto Rico, within a region near 15 deg N 55 deg W, and off the west coast of Africa; 4) there is no lag between the months with maximum tropical cyclone rainfall and non-tropical cyclone rainfall in the western North Atlantic, while in the eastern North Atlantic, maximum tropical cyclone rainfall precedes maximum non-tropical cyclone rainfall; 5) like the North Pacific, North Atlantic tropical cyclones Of hurricane intensity generate the greatest amount of rainfall in the higher latitudes; and 6) warm ENSO events inhibit tropical cyclone rainfall.

  16. Observation-Based Estimates of Surface Cooling Inhibition by Heavy Rainfall under Tropical Cyclones

    Digital Repository Service at National Institute of Oceanography (India)

    Jourdain, N; Lengaigne, M.; Vialard, J.; Madec, G.; Menkes, C.E.; Vincent, E.M.; Jullien, E.; Barnier, B.

    Tropical cyclones drive intense ocean vertical mixing that explains most of the surface cooling observed in their wake (the "cold wake"). The influence of cyclonic rainfall on the cold wake at a global scale over the 2002-09 period is investigated...

  17. Global Lightning Climatology from the Tropical Rainfall Measuring Mission (TRMM), Lightning Imaging Sensor (LIS) and the Optical Transient Detector (OTD)

    Science.gov (United States)

    Cecil, Daniel J.; Buechler, Dennis E.; Blakeslee, Richard J.

    2015-01-01

    The Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) has been collecting observations of total lightning in the global tropics and subtropics (roughly 38 deg S - 38 deg N) since December 1997. A similar instrument, the Optical Transient Detector, operated from 1995-2000 on another low earth orbit satellite that also saw high latitudes. Lightning data from these instruments have been used to create gridded climatologies and time series of lightning flash rate. These include a 0.5 deg resolution global annual climatology, and lower resolution products describing the annual cycle and the diurnal cycle. These products are updated annually. Results from the update through 2013 will be shown at the conference. The gridded products are publicly available for download. Descriptions of how each product can be used will be discussed, including strengths, weaknesses, and caveats about the smoothing and sampling used in various products.

  18. Contribution of Tropical Cyclones to the North Pacific Climatological Rainfall as Observed from Satellites.

    Science.gov (United States)

    Rodgers, Edward B.; Adler, Robert F.; Pierce, Harold F.

    2000-10-01

    Tropical cyclone monthly rainfall amounts are estimated from passive microwave satellite observations for an 11-yr period. These satellite-derived rainfall amounts are used to assess the impact of tropical cyclone rainfall in altering the geographical, seasonal, and interannual distribution of the North Pacific Ocean total rainfall during June-November when tropical cyclones are most important.To estimate these tropical cyclone rainfall amounts, mean monthly rain rates are derived from passive microwave satellite observations within 444-km radius of the center of those North Pacific tropical cyclones that reached storm stage and greater. These rain-rate observations are converted to monthly rainfall amounts and then compared with those for nontropical cyclone systems.The main results of this study indicate that 1) tropical cyclones contribute 7% of the rainfall to the entire domain of the North Pacific during the tropical cyclone season and 12%, 3%, and 4% when the study area is limited to, respectively, the western, central, and eastern third of the ocean; 2) the maximum tropical cyclone rainfall is poleward (5°-10° latitude depending on longitude) of the maximum nontropical cyclone rainfall; 3) tropical cyclones contribute a maximum of 30% northeast of the Philippine Islands and 40% off the lower Baja California coast; 4) in the western North Pacific, the tropical cyclone rainfall lags the total rainfall by approximately two months and shows seasonal latitudinal variation following the Intertropical Convergence Zone; and 5) in general, tropical cyclone rainfall is enhanced during the El Niño years by warm SSTs in the eastern North Pacific and by the monsoon trough in the western and central North Pacific.

  19. Assessing the Regional Frequency, Intensity, and Spatial Extent of Tropical Cyclone Rainfall

    Science.gov (United States)

    Bosma, C.; Wright, D.; Nguyen, P.

    2017-12-01

    While the strength of a hurricane is generally classified based on its wind speed, the unprecedented rainfall-driven flooding experienced in southeastern Texas during Hurricane Harvey clearly highlights the need for better understanding of the hazards associated with extreme rainfall from hurricanes and other tropical systems. In this study, we seek to develop a framework for describing the joint probabilistic and spatio-temporal properties of extreme rainfall from hurricanes and other tropical systems. Furthermore, we argue that commonly-used terminology - such as the "500-year storm" - fail to convey the true properties of tropical cyclone rainfall occurrences in the United States. To quantify the magnitude and spatial extent of these storms, a database consisting of hundreds of unique rainfall volumetric shapes (or "voxels") was created. Each voxel is a four-dimensional object, created by connecting, in both space and time, gridded rainfall observations from the daily, gauge-based NOAA CPC-Unified precipitation dataset. Individual voxels were then associated with concurrent tropical cyclone tracks from NOAA's HURDAT-2 archive, to create distinct representations of the rainfall associated with every Atlantic tropical system making landfall over (or passing near) the United States since 1948. Using these voxels, a series of threshold-excess extreme value models were created to estimate the recurrence intervals of extreme tropical cyclone rainfall, both nationally and locally, for single and multi-day timescales. This voxel database also allows for the "indexing" of past events, placing recent extremes - such as the 50+ inches of rain observed during Hurricane Harvey - into a national context and emphasizing how rainfall totals that are rare at the point scale may be more frequent from a regional perspective.

  20. Design and Performance of Tropical Rainfall Measuring Mission (TRMM) Super NiCd Batteries

    Science.gov (United States)

    Ahmad, Anisa J.; Rao, Gopalakrishna M.; Jallice, Doris E.; Moran Vickie E.

    1999-01-01

    The Tropical Rainfall Measuring Mission (TRMM) is a joint mission between NASA and the National Space Development Agency (NASDA) of Japan. The observatory is designed to monitor and study tropical rainfall and the associated release of energy that helps to power the global atmospheric circulation shaping both weather and climate around the globe. The spacecraft was launched from Japan on November 27,1997 via the NASDA H-2 launch vehicle. The TRMM Power Subsystem is a Peak Power Tracking system that can support the maximum TRMM load of 815 watts at the end of its three year life. The Power Subsystem consists of two 50 Ampere Hour Super NiCd batteries, Gallium Arsenide Solar Array and the Power System Electronics. This paper describes the TRMM Power Subsystem, battery design, cell and battery ground test performance, and in-orbit battery operations and performance.

  1. The Variation of Tropical Cyclone Rainfall within the North Atlantic and Pacific as Observed from Satellites

    Science.gov (United States)

    Rodgers, Edward; Pierce, Harold; Adler, Robert

    1999-01-01

    Tropical cyclone monthly rainfall amounts are estimated from passive microwave satellite observations in the North Atlantic and in three equal geographical regions of the North Pacific (i.e., Western, Central, and Eastern North Pacific). These satellite-derived rainfall amounts are used to assess the impact of tropical cyclone rainfall in altering the geographical, seasonal, and inter-annual distribution of the 1987-1989, 1991-1998 North Atlantic and Pacific rainfall during June-November when tropical cyclones are most abundant. To estimate these tropical cyclone rainfall amounts, mean monthly rain rates are derived from the Defence Meteorological Satellite Program (DMSP) Special Sensor Microwave/ Radiometer (SSM/I) observations within 444 km radius of the center of those North Atlantic and Pacific tropical cyclones that reached storm stage and greater. These rain rate observations are then multiplied by the number of hours in a given month. Mean monthly rainfall amounts are also constructed for all the other North Atlantic and Pacific raining systems during this eleven year period for the purpose of estimating the geographical distribution and intensity of rainfall contributed by non-tropical cyclone systems. Further, the combination of the non-tropical cyclone and tropical cyclone (i.e., total) rainfall is constructed to delineate the fractional amount that tropical cyclones contributed to the total North Pacific rainfall.

  2. Simulation of Tropical Rainfall Variability

    Science.gov (United States)

    Bader, J.; Latif, M.

    2002-12-01

    The impact of sea surface temperature (SST) - especially the role of the tropical Atlantic meridional SST gradient and the El Nino-Southern Oscillation - on precipitation is investigated with the atmospheric general circulation model ECHAM4/T42. Ensemble experiments - driven with observed SST - show that Atlantic SST has a significant influence on precipitation over West Africa and northeast Brazil. SST sensitivity experiments were performed in which the climatological SST was enhanced or decreased by one Kelvin in certain ocean areas. Changing SST in the eastern tropical Atlantic caused only significant changes along the Guinea Coast, with a positive anomaly (SSTA) increasing rainfall and a negative SSTA reducing it. The response was nearly linear. Changing SST in other ocean areas caused significant changes over West Africa, especially in the Sahel area. The response is found to be non linear, with only negative SSTA leading to significant reduction in Sahel rainfall. Also, the impact of the SSTAs from the different ocean regions was not additive with respect to the rainfall. The influence of SST on precipitation over northeast Brazil (Nordeste) was also investigated. Three experiments were performed in which the climatological SST was enhanced/decreased or decreased/enhanced by one Kelvin in the North/South Atlantic and increased by two Kelvin in the Nino3 ocean area. All experiments caused significant changes over Nordeste, with an enhanced/reduced SST gradient in the Atlantic increasing/reducing rainfall. The response was nearly linear. The main effect of the Atlantic SST gradient was a shift of the ITCZ, caused by trade wind changes. The ''El Nino'' event generates a significant reduction in Nordeste rainfall. A significant positive SLP anomaly occurs in northeast Brazil which may be associated with the descending branch of the Walker circulation. Also a significant positive SLP over the Atlantic from 30S to 10N north occurs. This results in a reduced SLP

  3. Rainfall and Extratropical Transition of Tropical Cyclones: Simulation, Prediction, and Projection

    Science.gov (United States)

    Liu, Maofeng

    Rainfall and associated flood hazards are one of the major threats of tropical cyclones (TCs) to coastal and inland regions. The interaction of TCs with extratropical systems can lead to enhanced precipitation over enlarged areas through extratropical transition (ET). To achieve a comprehensive understanding of rainfall and ET associated with TCs, this thesis conducts weather-scale analyses by focusing on individual storms and climate-scale analyses by focusing on seasonal predictability and changing properties of climatology under global warming. The temporal and spatial rainfall evolution of individual storms, including Hurricane Irene (2011), Hurricane Hanna (2008), and Hurricane Sandy (2012), is explored using the Weather Research and Forecast (WRF) model and a variety of hydrometeorological datasets. ET and Orographic mechanism are two key players in the rainfall distribution of Irene over regions experiencing most severe flooding. The change of TC rainfall under global warming is explored with the Forecast-oriented Low Ocean Resolution (FLOR) climate model under representative concentration pathway (RCP) 4.5 scenario. Despite decreased TC frequency, FLOR projects increased landfalling TC rainfall over most regions of eastern United States, highlighting the risk of increased flood hazards. Increased storm rain rate is an important player of increased landfalling TC rainfall. A higher atmospheric resolution version of FLOR (HiFLOR) model projects increased TC rainfall at global scales. The increase of TC intensity and environmental water vapor content scaled by the Clausius-Clapeyron relation are two key factors that explain the projected increase of TC rainfall. Analyses on the simulation, prediction, and projection of the ET activity with FLOR are conducted in the North Atlantic. FLOR model exhibits good skills in simulating many aspects of present-day ET climatology. The 21st-century-projection under RCP4.5 scenario demonstrates the dominant role of ET

  4. Variations and Trends in Global and Regional Precipitation Based on the 22-year GPCP (Global Precipitation Climatology Project) and Three-year TRMM (Tropical Rainfall Measuring Mission) Data Sets

    Science.gov (United States)

    Adler, R.; Curtis, S.; Huffman, G.; Bolvin, D.; Nelkin, E.

    2001-05-01

    This paper gives an overview of the analysis of global precipitation over the last few decades and the impact of the new TRMM precipitation observations. The 20+ year, monthly, globally complete precipitation analysis of the World Climate Research Program's (WCRP/GEWEX) Global Precipitation Climatology Project (GPCP) is used to study global and regional variations and trends and is compared to the much shorter TRMM(Tropical Rainfall Measuring Mission) tropical data set. The GPCP data set shows no significant trend in global precipitation over the twenty years, unlike the positive trend in global surface temperatures over the past century. The global trend analysis must be interpreted carefully, however, because the inhomogeneity of the data set makes detecting a small signal very difficult, especially over this relatively short period. The relation of global (and tropical) total precipitation and ENSO events is quantified with no significant signal when land and ocean are combined. Identifying regional trends in precipitation may be more practical. From 1979 to 2000 the tropics have pattern of regional rainfall trends that has an ENSO-like pattern with features of both the El Nino and La Nina. This feature is related to a possible trend in the frequency of ENSO events (either El Nino or La Nina) over the past 20 years. Monthly anomalies of precipitation are related to ENSO variations with clear signals extending into middle and high latitudes of both hemispheres. The El Nino and La Nina mean anomalies are near mirror images of each other and when combined produce an ENSO signal with significant spatial continuity over large distances. A number of the features are shown to extend into high latitudes. Positive anomalies extend in the Southern Hemisphere (S.H.) from the Pacific southeastward across Chile and Argentina into the south Atlantic Ocean. In the Northern Hemisphere (N.H.) the counterpart feature extends across the southern U.S. and Atlantic Ocean into Europe

  5. Does δ18O of O2 record meridional shifts in tropical rainfall?

    Science.gov (United States)

    Seltzer, Alan M.; Buizert, Christo; Baggenstos, Daniel; Brook, Edward J.; Ahn, Jinho; Yang, Ji-Woong; Severinghaus, Jeffrey P.

    2017-10-01

    Marine sediments, speleothems, paleo-lake elevations, and ice core methane and δ18O of O2 (δ18Oatm) records provide ample evidence for repeated abrupt meridional shifts in tropical rainfall belts throughout the last glacial cycle. To improve understanding of the impact of abrupt events on the global terrestrial biosphere, we present composite records of δ18Oatm and inferred changes in fractionation by the global terrestrial biosphere (ΔɛLAND) from discrete gas measurements in the WAIS Divide (WD) and Siple Dome (SD) Antarctic ice cores. On the common WD timescale, it is evident that maxima in ΔɛLAND are synchronous with or shortly follow small-amplitude WD CH4 peaks that occur within Heinrich stadials 1, 2, 4, and 5 - periods of low atmospheric CH4 concentrations. These local CH4 maxima have been suggested as markers of abrupt climate responses to Heinrich events. Based on our analysis of the modern seasonal cycle of gross primary productivity (GPP)-weighted δ18O of terrestrial precipitation (the source water for atmospheric O2 production), we propose a simple mechanism by which ΔɛLAND tracks the centroid latitude of terrestrial oxygen production. As intense rainfall and oxygen production migrate northward, ΔɛLAND should decrease due to the underlying meridional gradient in rainfall δ18O. A southward shift should increase ΔɛLAND. Monsoon intensity also influences δ18O of precipitation, and although we cannot determine the relative contributions of the two mechanisms, both act in the same direction. Therefore, we suggest that abrupt increases in ΔɛLAND unambiguously imply a southward shift of tropical rainfall. The exact magnitude of this shift, however, remains under-constrained by ΔɛLAND.

  6. Does δ18O of O2 record meridional shifts in tropical rainfall?

    Directory of Open Access Journals (Sweden)

    A. M. Seltzer

    2017-10-01

    Full Text Available Marine sediments, speleothems, paleo-lake elevations, and ice core methane and δ18O of O2 (δ18Oatm records provide ample evidence for repeated abrupt meridional shifts in tropical rainfall belts throughout the last glacial cycle. To improve understanding of the impact of abrupt events on the global terrestrial biosphere, we present composite records of δ18Oatm and inferred changes in fractionation by the global terrestrial biosphere (ΔεLAND from discrete gas measurements in the WAIS Divide (WD and Siple Dome (SD Antarctic ice cores. On the common WD timescale, it is evident that maxima in ΔεLAND are synchronous with or shortly follow small-amplitude WD CH4 peaks that occur within Heinrich stadials 1, 2, 4, and 5 – periods of low atmospheric CH4 concentrations. These local CH4 maxima have been suggested as markers of abrupt climate responses to Heinrich events. Based on our analysis of the modern seasonal cycle of gross primary productivity (GPP-weighted δ18O of terrestrial precipitation (the source water for atmospheric O2 production, we propose a simple mechanism by which ΔεLAND tracks the centroid latitude of terrestrial oxygen production. As intense rainfall and oxygen production migrate northward, ΔεLAND should decrease due to the underlying meridional gradient in rainfall δ18O. A southward shift should increase ΔεLAND. Monsoon intensity also influences δ18O of precipitation, and although we cannot determine the relative contributions of the two mechanisms, both act in the same direction. Therefore, we suggest that abrupt increases in ΔεLAND unambiguously imply a southward shift of tropical rainfall. The exact magnitude of this shift, however, remains under-constrained by ΔεLAND.

  7. On the relative role of fire and rainfall in determining vegetation patterns in tropical savannas: a simulation study

    Science.gov (United States)

    Spessa, Allan; Fisher, Rosie

    2010-05-01

    Tropical savannas cover 18% of the world's land surface and are amongst the most productive terrestrial systems in the world. They comprise 15% of the total terrestrial carbon stock, with an estimated mean net primary productivity (NPP) of 7.2 tCha-1yr-1 or two thirds of NPP in tropical forests. Tropical savannas are the most frequently burnt biome, with fire return intervals in highly productive areas being typically 1-2 years. Fires shape vegetation species composition, tree to grass ratios and nutrient redistribution, as well as the biosphere-atmosphere exchange of trace gases, momentum and radiative energy. Tropical savannas are a major source of emissions, contributing 38 % of total annual CO2 from biomass burning, 30% CO, 19 % CH4 and 59 % NOx. Climatically, they occur in regions subject to a strongly seasonal ‘wet-dry' regime, usually under monsoonal control from the movement of the inter-tropical convergence zone. In general, rainfall during the prior wet season(s) determines the amount of grass fuel available for burning while the length of the dry season influences fuel moisture content. Rainfall in tropical savannas exhibits high inter-annual variability, and under future climate change, is projected to change significantly in much of Africa, South America and northern Australia. Process-based simulation models of fire-vegetation dynamics and feedbacks are critical for determining the impacts of wildfires under projected future climate change on i) ecosystem structure and function, and ii) emissions of trace gases and aerosols from biomass burning. A new mechanistic global fire model SPITFIRE (SPread and InTensity of FIRE) has been designed to overcome many of the limitations in existing fire models set within Dynamic Global Vegetation Models (DGVMs). SPITFIRE has been applied in coupled mode globally and southern Africa, both as part of the LPJ DGVM. It has also been driven with MODIS burnt area data applied to sub-Saharan Africa, while coupled to the

  8. Linking Vital Rates of Landbirds on a Tropical Island to Rainfall and Vegetation Greenness.

    Directory of Open Access Journals (Sweden)

    James F Saracco

    Full Text Available Remote tropical oceanic islands are of high conservation priority, and they are exemplified by range-restricted species with small global populations. Spatial and temporal patterns in rainfall and plant productivity may be important in driving dynamics of these species. Yet, little is known about environmental influences on population dynamics for most islands and species. Here we leveraged avian capture-recapture, rainfall, and remote-sensed habitat data (enhanced vegetation index [EVI] to assess relationships between rainfall, vegetation greenness, and demographic rates (productivity, adult apparent survival of three native bird species on Saipan, Northern Mariana Islands: rufous fantail (Rhipidura rufifrons, bridled white-eye (Zosterops conspicillatus, and golden white-eye (Cleptornis marchei. Rainfall was positively related to vegetation greenness at all but the highest rainfall levels. Temporal variation in greenness affected the productivity of each bird species in unique ways. Predicted productivity of rufous fantail was highest when dry and wet season greenness values were high relative to site-specific 5-year seasonal mean values (i.e., relative greenness; while the white-eye species had highest predicted productivity when relative greenness contrasted between wet and dry seasons. Survival of rufous fantail and bridled white eye was positively related to relative dry-season greenness and negatively related to relative wet-season greenness. Bridled white-eye survival also showed evidence of a positive response to overall greenness. Our results highlight the potentially important role of rainfall regimes in affecting population dynamics of species on oceanic tropical islands. Understanding linkages between rainfall, vegetation, and animal population dynamics will be critical for developing effective conservation strategies in this and other regions where the seasonal timing, extent, and variability of rainfall is expected to change in the

  9. Rainfall interception from a lowland tropical rainforest in Brunei

    Science.gov (United States)

    Dykes, A. P.

    1997-12-01

    Results from a programme of throughfall measurements in a lowland tropical rainforest in Brunei, northwest Borneo, indicate that interception losses amount to 18% of the gross incident rainfall. The high annual rainfall experienced by the study area results in annual interception losses of around 800 mm, which may result in total annual evapotranspiration losses significantly higher than in other rainforest locations. An improved version of Gash's analytical interception model is tested on the available data using assumed values for the "forest" parameters, and is found to predict interception losses extremely well. The model predictions are based on an estimated evaporation rate during rainfall of 0.71 mm h -1. This is significantly higher than has been reported in other tropical studies. It is concluded that these results are distinctive when compared with previous results from rainforests, and that further, detailed work is required to establish whether the enhanced evaporation rate is due to advective effects associated with the maritime setting of the study area.

  10. Global warming and South Indian monsoon rainfall-lessons from the Mid-Miocene.

    Science.gov (United States)

    Reuter, Markus; Kern, Andrea K; Harzhauser, Mathias; Kroh, Andreas; Piller, Werner E

    2013-04-01

    Precipitation over India is driven by the Indian monsoon. Although changes in this atmospheric circulation are caused by the differential seasonal diabatic heating of Asia and the Indo-Pacific Ocean, it is so far unknown how global warming influences the monsoon rainfalls regionally. Herein, we present a Miocene pollen flora as the first direct proxy for monsoon over southern India during the Middle Miocene Climate Optimum. To identify climatic key parameters, such as mean annual temperature, warmest month temperature, coldest month temperature, mean annual precipitation, mean precipitation during the driest month, mean precipitation during the wettest month and mean precipitation during the warmest month the Coexistence Approach is applied. Irrespective of a ~ 3-4 °C higher global temperature during the Middle Miocene Climate Optimum, the results indicate a modern-like monsoonal precipitation pattern contrasting marine proxies which point to a strong decline of Indian monsoon in the Himalaya at this time. Therefore, the strength of monsoon rainfall in tropical India appears neither to be related to global warming nor to be linked with the atmospheric conditions over the Tibetan Plateau. For the future it implies that increased global warming does not necessarily entail changes in the South Indian monsoon rainfall.

  11. Remote sensing entropy to assess the sustainability of rainfall in tropical catchment

    Science.gov (United States)

    Mahmud, M. R.; Reba, M. N. M.; Wei, J. S.; Razak, N. H. Abdul

    2018-02-01

    This study demonstrated the utility of entropy computation using the satellite precipitation remote sensing data to assess the sustainability of rainfall in tropical catchments. There were two major issues need to be anticipated in monitoring the tropical catchments; first is the frequent monitoring of the rainfall and second is the appropriate indicator that sensitive to rainfall pattern changes or disorder. For the first issue, the use of satellite remote sensing precipitation data is suggested. Meanwhile for the second issue, the utilization of entropy concept in interpreting the disorder of temporal rainfall can be used to assess the sustain ability had been successfully adopted in some studies. Therefore, we hypothesized that the use of satellite precipitation as main data to compute entropy can be a novel tool in anticipating the above-mentioned conflict earlier. The remote sensing entropy results and in-situ river level showed good agreement indicating its reliability. 72% of the catchment has moderate to good rainfall supply during normal or non-drought condition. However, our result showed that the catchments were highly sensitive to drought especially in the west coast and southern part of the Peninsular Malaysia. High resiliency was identified in the east coast. We summarized that the proposed entropy-quantity scheme was a useful tool for cost-effective, quick, and operational sustainability assessment This study demonstrated the utility of entropy computation using the satellite precipitation remote sensing data to assess the sustainability of rainfall in tropical catchments.

  12. Impacts of the ENSO Modoki and other Tropical Indo-Pacific Climate-Drivers on African Rainfall.

    Science.gov (United States)

    Preethi, B; Sabin, T P; Adedoyin, J A; Ashok, K

    2015-11-16

    The study diagnoses the relative impacts of the four known tropical Indo-Pacific drivers, namely, El Niño Southern Oscillation (ENSO), ENSO Modoki, Indian Ocean Dipole (IOD), and Indian Ocean Basin-wide mode (IOBM) on African seasonal rainfall variability. The canonical El Niño and El Niño Modoki are in general associated with anomalous reduction (enhancement) of rainfall in southern (northern) hemispheric regions during March-May season. However, both the El Niño flavours anomalously reduce the northern hemispheric rainfall during June-September. Interestingly, during boreal spring and summer, in many regions, the Indian Ocean drivers have influences opposite to those from tropical Pacific drivers. On the other hand, during the October-December season, the canonical El Niño and/or positive IOD are associated with an anomalous enhancement of rainfall in the Eastern Africa, while the El Niño Modoki events are associated with an opposite impact. In addition to the Walker circulation changes, the Indo-Pacific drivers influence the African rainfall through modulating jet streams. During boreal summer, the El Niño Modoki and canonical El Niño (positive IOD) tend to weaken (strengthen) the tropical easterly jet, and result in strengthening (weakening) and southward shift of African easterly jet. This anomalously reduces (enhances) rainfall in the tropical north, including Sahelian Africa.

  13. An Updated TRMM Composite Climatology of Tropical Rainfall and Its Validation

    Science.gov (United States)

    Wang, Jian-Jian; Adler, Robert F.; Huffman, George; Bolvin, David

    2013-01-01

    An updated 15-yr Tropical Rainfall Measuring Mission (TRMM) composite climatology (TCC) is presented and evaluated. This climatology is based on a combination of individual rainfall estimates made with data from the primaryTRMMinstruments: theTRMM Microwave Imager (TMI) and the precipitation radar (PR). This combination climatology of passive microwave retrievals, radar-based retrievals, and an algorithm using both instruments simultaneously provides a consensus TRMM-based estimate of mean precipitation. The dispersion of the three estimates, as indicated by the standard deviation sigma among the estimates, is presented as a measure of confidence in the final estimate and as an estimate of the uncertainty thereof. The procedures utilized by the compositing technique, including adjustments and quality-control measures, are described. The results give a mean value of the TCC of 4.3mm day(exp -1) for the deep tropical ocean beltbetween 10 deg N and 10 deg S, with lower values outside that band. In general, the TCC values confirm ocean estimates from the Global Precipitation Climatology Project (GPCP) analysis, which is based on passive microwave results adjusted for sampling by infrared-based estimates. The pattern of uncertainty estimates shown by sigma is seen to be useful to indicate variations in confidence. Examples include differences between the eastern and western portions of the Pacific Ocean and high values in coastal and mountainous areas. Comparison of the TCC values (and the input products) to gauge analyses over land indicates the value of the radar-based estimates (small biases) and the limitations of the passive microwave algorithm (relatively large biases). Comparison with surface gauge information from western Pacific Ocean atolls shows a negative bias (16%) for all the TRMM products, although the representativeness of the atoll gauges of open-ocean rainfall is still in question.

  14. A Canonical Response in Rainfall Characteristics to Global Warming: Projections by IPCC CMIP5 Models

    Science.gov (United States)

    Lau, William K. M.; Wu, H. T.; Kim, K. M.

    2012-01-01

    Changes in rainfall characteristics induced by global warming are examined based on probability distribution function (PDF) analysis, from outputs of 14 IPCC (Intergovernmental Panel on Climate Change), CMIP (5th Coupled Model Intercomparison Project) models under various scenarios of increased CO2 emissions. Results show that collectively CMIP5 models project a robust and consistent global and regional rainfall response to CO2 warming. Globally, the models show a 1-3% increase in rainfall per degree rise in temperature, with a canonical response featuring large increase (100-250 %) in frequency of occurrence of very heavy rain, a reduction (5-10%) of moderate rain, and an increase (10-15%) of light rain events. Regionally, even though details vary among models, a majority of the models (>10 out of 14) project a consistent large scale response with more heavy rain events in climatologically wet regions, most pronounced in the Pacific ITCZ and the Asian monsoon. Moderate rain events are found to decrease over extensive regions of the subtropical and extratropical oceans, but increases over the extratropical land regions, and the Southern Oceans. The spatial distribution of light rain resembles that of moderate rain, but mostly with opposite polarity. The majority of the models also show increase in the number of dry events (absence or only trace amount of rain) over subtropical and tropical land regions in both hemispheres. These results suggest that rainfall characteristics are changing and that increased extreme rainfall events and droughts occurrences are connected, as a consequent of a global adjustment of the large scale circulation to global warming.

  15. Contribution of landfalling tropical system rainfall to the hydroclimate of the eastern U.S. Corn Belt 1981–2012

    Directory of Open Access Journals (Sweden)

    Olivia Kellner

    2016-09-01

    Landfalling tropical system rainfall accounts for approximately 20% of the observed monthly rainfall during the tropical storm season (June–November across the eastern U.S. Corn Belt (1981–2012. Correlation between the annual number of landfalling tropical systems and annual yield by state results in no relationship, but correlation of August monthly observed rainfall by climate division to crop reporting district annual yields has a weak to moderate, statistically significant correlation in Ohio districts 30–60 and Indiana CRD 90. ANOVA analysis suggests that landfalling tropical rainfall may actually reduce yields in some state's climate divisions/crop reporting districts while increasing yield in others. Results suggest that there is a balance between landfalling tropical storms providing sufficient rainfall or too much rainfall to be of benefit to crops. Findings aim to provide information to producers, crop advisers, risk managers and commodity groups so that seasonal hurricane forecasts can potentially be utilized in planning for above or below normal precipitation during phenologically important portions of the growing season.

  16. Soil water storage, rainfall and runoff relationships in a tropical dry forest catchment

    Science.gov (United States)

    Farrick, Kegan K.; Branfireun, Brian A.

    2014-12-01

    In forested catchments, the exceedance of rainfall and antecedent water storage thresholds is often required for runoff generation, yet to our knowledge these threshold relationships remain undescribed in tropical dry forest catchments. We, therefore, identified the controls of streamflow activation and the timing and magnitude of runoff in a tropical dry forest catchment near the Pacific coast of central Mexico. During a 52 day transition phase from the dry to wet season, soil water movement was dominated by vertical flow which continued until a threshold soil moisture content of 26% was reached at 100 cm below the surface. This satisfied a 162 mm storage deficit and activated streamflow, likely through lateral subsurface flow pathways. High antecedent soil water conditions were maintained during the wet phase but had a weak influence on stormflow. We identified a threshold value of 289 mm of summed rainfall and antecedent soil water needed to generate >4 mm of stormflow per event. Above this threshold, stormflow response and magnitude was almost entirely governed by rainfall event characteristics and not antecedent soil moisture conditions. Our results show that over the course of the wet season in tropical dry forests the dominant controls on runoff generation changed from antecedent soil water and storage to the depth of rainfall.

  17. Variability in rainfall over tropical Australia during summer and relationships with the Bilybara High

    Science.gov (United States)

    Reason, C. J. C.

    2018-04-01

    Variability in summer rainfall over tropical Australia, defined here as that part of the continent north of 25° S, and its linkages with regional circulation are examined. In particular, relationships with the mid-level anticyclone (termed the Bilybara High) that exists over the northwestern Australia/Timor Sea region between August and April are considered. This High forms to the southwest of the upper-level anticyclone via a balance between the upper-level divergence over the region of tropical precipitation maximum and planetary vorticity advection and moves south and strengthens during the spring and summer. It is shown that variations in the strength and position of the Bilybara High are related to anomalies in precipitation and temperature over large parts of tropical Australia as well as some areas in the south and southeast of the landmass. Some of the interannual variations in the High are related to ENSO, but there are also a number of neutral years with large anomalies in the High and hence in rainfall. On decadal time scales, a strong relationship exists between the leading mode of tropical Australian rainfall and the Bilybara High. On both interannual and decadal scales, the relationships between the High and the regional rainfall involve changes in the monsoonal northwesterlies blowing towards northern Australia, and further south, in the easterly trade winds over the region.

  18. GHRSST L2P Gridded Global Subskin Sea Surface Temperature from the Tropical Rainfall Mapping Mission (TRMM) Microwave Imager (TMI) (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) is a well calibrated passive microwave radiometer, similar to SSM/I, that contains lower...

  19. How temporal patterns in rainfall determine the geomorphology and carbon fluxes of tropical peatlands.

    Science.gov (United States)

    Cobb, Alexander R; Hoyt, Alison M; Gandois, Laure; Eri, Jangarun; Dommain, René; Abu Salim, Kamariah; Kai, Fuu Ming; Haji Su'ut, Nur Salihah; Harvey, Charles F

    2017-06-27

    Tropical peatlands now emit hundreds of megatons of carbon dioxide per year because of human disruption of the feedbacks that link peat accumulation and groundwater hydrology. However, no quantitative theory has existed for how patterns of carbon storage and release accompanying growth and subsidence of tropical peatlands are affected by climate and disturbance. Using comprehensive data from a pristine peatland in Brunei Darussalam, we show how rainfall and groundwater flow determine a shape parameter (the Laplacian of the peat surface elevation) that specifies, under a given rainfall regime, the ultimate, stable morphology, and hence carbon storage, of a tropical peatland within a network of rivers or canals. We find that peatlands reach their ultimate shape first at the edges of peat domes where they are bounded by rivers, so that the rate of carbon uptake accompanying their growth is proportional to the area of the still-growing dome interior. We use this model to study how tropical peatland carbon storage and fluxes are controlled by changes in climate, sea level, and drainage networks. We find that fluctuations in net precipitation on timescales from hours to years can reduce long-term peat accumulation. Our mathematical and numerical models can be used to predict long-term effects of changes in temporal rainfall patterns and drainage networks on tropical peatland geomorphology and carbon storage.

  20. How temporal patterns in rainfall determine the geomorphology and carbon fluxes of tropical peatlands

    Science.gov (United States)

    Hoyt, Alison M.; Gandois, Laure; Eri, Jangarun; Dommain, René; Abu Salim, Kamariah; Kai, Fuu Ming; Haji Su’ut, Nur Salihah; Harvey, Charles F.

    2017-01-01

    Tropical peatlands now emit hundreds of megatons of carbon dioxide per year because of human disruption of the feedbacks that link peat accumulation and groundwater hydrology. However, no quantitative theory has existed for how patterns of carbon storage and release accompanying growth and subsidence of tropical peatlands are affected by climate and disturbance. Using comprehensive data from a pristine peatland in Brunei Darussalam, we show how rainfall and groundwater flow determine a shape parameter (the Laplacian of the peat surface elevation) that specifies, under a given rainfall regime, the ultimate, stable morphology, and hence carbon storage, of a tropical peatland within a network of rivers or canals. We find that peatlands reach their ultimate shape first at the edges of peat domes where they are bounded by rivers, so that the rate of carbon uptake accompanying their growth is proportional to the area of the still-growing dome interior. We use this model to study how tropical peatland carbon storage and fluxes are controlled by changes in climate, sea level, and drainage networks. We find that fluctuations in net precipitation on timescales from hours to years can reduce long-term peat accumulation. Our mathematical and numerical models can be used to predict long-term effects of changes in temporal rainfall patterns and drainage networks on tropical peatland geomorphology and carbon storage. PMID:28607068

  1. Reassessing rainfall in the Luquillo Mountains, Puerto Rico: Local and global ecohydrological implications

    Science.gov (United States)

    Murphy, Sheila F.; Stallard, Robert F.; Scholl, Martha A.; Gonzalez, Grizelle; Torres-Sanchez, Angel J.

    2017-01-01

    Mountains receive a greater proportion of precipitation than other environments, and thus make a disproportionate contribution to the world’s water supply. The Luquillo Mountains receive the highest rainfall on the island of Puerto Rico and serve as a critical source of water to surrounding communities. The area’s role as a long-term research site has generated numerous hydrological, ecological, and geological investigations that have been included in regional and global overviews that compare tropical forests to other ecosystems. Most of the forest- and watershed-wide estimates of precipitation (and evapotranspiration, as inferred by a water balance) have assumed that precipitation increases consistently with elevation. However, in this new analysis of all known current and historical rain gages in the region, we find that similar to other mountainous islands in the trade wind latitudes, leeward (western) watersheds in the Luquillo Mountains receive lower mean annual precipitation than windward (eastern) watersheds. Previous studies in the Luquillo Mountains have therefore overestimated precipitation in leeward watersheds by up to 40%. The Icacos watershed, however, despite being located at elevations 200–400 m below the tallest peaks and to the lee of the first major orographic barrier, receives some of the highest precipitation. Such lee-side enhancement has been observed in other island mountains of similar height and width, and may be caused by several mechanisms. Thus, the long-reported discrepancy of unrealistically low rates of evapotranspiration in the Icacos watershed is likely caused by previous underestimation of precipitation, perhaps by as much as 20%. Rainfall/runoff ratios in several previous studies suggested either runoff excess or runoff deficiency in Luquillo watersheds, but this analysis suggests that in fact they are similar to other tropical watersheds. Because the Luquillo Mountains often serve as a wet tropical archetype in global

  2. Reassessing rainfall in the Luquillo Mountains, Puerto Rico: Local and global ecohydrological implications.

    Directory of Open Access Journals (Sweden)

    Sheila F Murphy

    Full Text Available Mountains receive a greater proportion of precipitation than other environments, and thus make a disproportionate contribution to the world's water supply. The Luquillo Mountains receive the highest rainfall on the island of Puerto Rico and serve as a critical source of water to surrounding communities. The area's role as a long-term research site has generated numerous hydrological, ecological, and geological investigations that have been included in regional and global overviews that compare tropical forests to other ecosystems. Most of the forest- and watershed-wide estimates of precipitation (and evapotranspiration, as inferred by a water balance have assumed that precipitation increases consistently with elevation. However, in this new analysis of all known current and historical rain gages in the region, we find that similar to other mountainous islands in the trade wind latitudes, leeward (western watersheds in the Luquillo Mountains receive lower mean annual precipitation than windward (eastern watersheds. Previous studies in the Luquillo Mountains have therefore overestimated precipitation in leeward watersheds by up to 40%. The Icacos watershed, however, despite being located at elevations 200-400 m below the tallest peaks and to the lee of the first major orographic barrier, receives some of the highest precipitation. Such lee-side enhancement has been observed in other island mountains of similar height and width, and may be caused by several mechanisms. Thus, the long-reported discrepancy of unrealistically low rates of evapotranspiration in the Icacos watershed is likely caused by previous underestimation of precipitation, perhaps by as much as 20%. Rainfall/runoff ratios in several previous studies suggested either runoff excess or runoff deficiency in Luquillo watersheds, but this analysis suggests that in fact they are similar to other tropical watersheds. Because the Luquillo Mountains often serve as a wet tropical archetype in

  3. Empirical studies of the microwave radiometric response to rainfall in the tropics and midlatitudes

    Science.gov (United States)

    Petty, Grant W.; Katsaros, Kristina B.

    1989-01-01

    Results are presented from quantitative comparisons between satellite microwave radiometer observations and digital radar observations of equatorial convective cloud clusters and midlatitude frontal precipitation. Simultaneous data from the Winter Monsoon Experiment digital radar and the SMMR for December 1978 are analyzed. It is found that the most important differences between the microwave response to rainfall in the equatorial tropics and to stratiform rain in oceanic midlatitude fronts is caused by the different spatial characteristics of stratiform and convective rainfall and by the different background brightness temperature fields associated with tropical and midlatitude levels of atmospheric water vapor.

  4. Validation of Satellite Estimates (Tropical Rainfall Measuring Mission, TRMM for Rainfall Variability over the Pacific Slope and Coast of Ecuador

    Directory of Open Access Journals (Sweden)

    Bolívar Erazo

    2018-02-01

    Full Text Available A dense rain-gauge network within continental Ecuador was used to evaluate the quality of various products of rainfall data over the Pacific slope and coast of Ecuador (EPSC. A cokriging interpolation method is applied to the rain-gauge data yielding a gridded product at 5-km resolution covering the period 1965–2015. This product is compared with the Global Precipitation Climatology Centre (GPCC dataset, the Climatic Research Unit–University of East Anglia (CRU dataset, the Tropical Rainfall Measuring Mission (TRMM/TMPA 3B43 Version 7 dataset and the ERA-Interim Reanalysis. The analysis reveals that TRMM data show the most realistic features. The relative bias index (Rbias indicates that TRMM data is closer to the observations, mainly over lowlands (mean Rbias of 7% but have more limitations in reproducing the rainfall variability over the Andes (mean Rbias of −28%. The average RMSE and Rbias of 68.7 and −2.8% of TRMM are comparable with the GPCC (69.8 and 5.7% and CRU (102.3 and −2.3% products. This study also focuses on the rainfall inter-annual variability over the study region which experiences floods that have caused high economic losses during extreme El Niño events. Finally, our analysis evaluates the ability of TRMM data to reproduce rainfall events during El Niño years over the study area and the large basins of Esmeraldas and Guayas rivers. The results show that TRMM estimates report reasonable levels of heavy rainfall detection (for the extreme 1998 El Niño event over the EPSC and specifically towards the center-south of the EPSC (Guayas basin but present underestimations for the moderate El Niño of 2002–2003 event and the weak 2009–2010 event. Generally, the rainfall seasonal features, quantity and long-term climatology patterns are relatively well estimated by TRMM.

  5. Fires in Seasonally Dry Tropical Forest: Testing the Varying Constraints Hypothesis across a Regional Rainfall Gradient.

    Science.gov (United States)

    Mondal, Nandita; Sukumar, Raman

    2016-01-01

    The "varying constraints hypothesis" of fire in natural ecosystems postulates that the extent of fire in an ecosystem would differ according to the relative contribution of fuel load and fuel moisture available, factors that vary globally along a spatial gradient of climatic conditions. We examined if the globally widespread seasonally dry tropical forests (SDTFs) can be placed as a single entity in this framework by analyzing environmental influences on fire extent in a structurally diverse SDTF landscape in the Western Ghats of southern India, representative of similar forests in monsoonal south and southeast Asia. We used logistic regression to model fire extent with factors that represent fuel load and fuel moisture at two levels-the overall landscape and within four defined moisture regimes (between 700 and1700 mm yr-1)-using a dataset of area burnt and seasonal rainfall from 1990 to 2010. The landscape scale model showed that the extent of fire in a given year within this SDTF is dependent on the combined interaction of seasonal rainfall and extent burnt the previous year. Within individual moisture regimes the relative contribution of these factors to the annual extent burnt varied-early dry season rainfall (i.e., fuel moisture) was the predominant factor in the wettest regime, while wet season rainfall (i.e., fuel load) had a large influence on fire extent in the driest regime. Thus, the diverse structural vegetation types associated with SDTFs across a wide range of rainfall regimes would have to be examined at finer regional or local scales to understand the specific environmental drivers of fire. Our results could be extended to investigating fire-climate relationships in STDFs of monsoonal Asia.

  6. Global Climatic Indices Influence on Rainfall Spatiotemporal Distribution : A Case Study from Morocco

    Science.gov (United States)

    Elkadiri, R.; Zemzami, M.; Phillips, J.

    2017-12-01

    The climate of Morocco is affected by the Mediterranean Sea, the Atlantic Ocean the Sahara and the Atlas mountains, creating a highly variable spatial and temporal distribution. In this study, we aim to decompose the rainfall in Morocco into global and local signals and understand the contribution of the climatic indices (CIs) on rainfall. These analyses will contribute in understanding the Moroccan climate that is typical of other Mediterranean and North African climatic zones. In addition, it will contribute in a long-term prediction of climate. The constructed database ranges from 1950 to 2013 and consists of monthly data from 147 rainfall stations and 37 CIs data provided mostly by the NOAA Climate Prediction Center. The next general steps were followed: (1) the study area was divided into 9 homogenous climatic regions and weighted precipitation was calculated for each region to reduce the local effects. (2) Each CI was decomposed into nine components of different frequencies (D1 to D9) using wavelet multiresolution analysis. The four lowest frequencies of each CI were selected. (3) Each of the original and resulting signals were shifted from one to six months to account for the effect of the global patterns. The application of steps two and three resulted in the creation of 1225 variables from the original 37 CIs. (4) The final 1225 variables were used to identify links between the global and regional CIs and precipitation in each of the nine homogenous regions using stepwise regression and decision tree. The preliminary analyses and results were focused on the north Atlantic zone and have shown that the North Atlantic Oscillation (PC-based) from NCAR (NAOPC), the Arctic Oscillation (AO), the North Atlantic Oscillation (NAO), the Western Mediterranean Oscillation (WMO) and the Extreme Eastern Tropical Pacific Sea Surface Temperature (NINO12) have the highest correlation with rainfall (33%, 30%, 27%, 21% and -20%, respectively). In addition the 4-months lagged

  7. Along the Rainfall-Runoff Chain: From Scaling of Greatest Point Rainfall to Global Change Attribution

    Science.gov (United States)

    Fraedrich, K.

    2014-12-01

    Processes along the continental rainfall-runoff chain cover a wide range of time and space scales which are presented here combining observations (ranging from minutes to decades) and minimalist concepts. (i) Rainfall, which can be simulated by a censored first-order autoregressive process (vertical moisture fluxes), exhibits 1/f-spectra if presented as binary events (tropics), while extrema world wide increase with duration according to Jennings' scaling law. (ii) Runoff volatility (Yangtze) shows data collapse which, linked to an intra-annual 1/f-spectrum, is represented by a single function not unlike physical systems at criticality and the short and long return times of extremes are Weibull-distributed. Atmospheric and soil moisture variabilities are also discussed. (iii) Soil moisture (in a bucket), whose variability is interpreted by a biased coinflip Ansatz for rainfall events, adds an equation of state to energy and water flux balances comprising Budyko's frame work for quasi-stationary watershed analysis. Eco-hydrologic state space presentations in terms of surface flux ratios of energy excess (loss by sensible heat over supply by net radiation) versus water excess (loss by discharge over gain by precipitation) allow attributions of state change to external (or climate) and internal (or anthropogenic) causes. Including the vegetation-greenness index (NDVI) as an active tracer extends the eco-hydrologic state space analysis to supplement the common geographical presentations. Two examples demonstrate the approach combining ERA and MODIS data sets: (a) global geobotanic classification by combining first and second moments of the dryness ratio (net radiation over precipitation) and (b) regional attributions (Tibetan Plateau) of vegetation changes.

  8. The Spatial Scaling of Global Rainfall Extremes

    Science.gov (United States)

    Devineni, N.; Xi, C.; Lall, U.; Rahill-Marier, B.

    2013-12-01

    Floods associated with severe storms are a significant source of risk for property, life and supply chains. These property losses tend to be determined as much by the duration of flooding as by the depth and velocity of inundation. High duration floods are typically induced by persistent rainfall (upto 30 day duration) as seen recently in Thailand, Pakistan, the Ohio and the Mississippi Rivers, France, and Germany. Events related to persistent and recurrent rainfall appear to correspond to the persistence of specific global climate patterns that may be identifiable from global, historical data fields, and also from climate models that project future conditions. A clear understanding of the space-time rainfall patterns for events or for a season will enable in assessing the spatial distribution of areas likely to have a high/low inundation potential for each type of rainfall forcing. In this paper, we investigate the statistical properties of the spatial manifestation of the rainfall exceedances. We also investigate the connection of persistent rainfall events at different latitudinal bands to large-scale climate phenomena such as ENSO. Finally, we present the scaling phenomena of contiguous flooded areas as a result of large scale organization of long duration rainfall events. This can be used for spatially distributed flood risk assessment conditional on a particular rainfall scenario. Statistical models for spatio-temporal loss simulation including model uncertainty to support regional and portfolio analysis can be developed.

  9. Spatial Scaling of Global Rainfall and Flood Extremes

    Science.gov (United States)

    Devineni, Naresh; Lall, Upmanu; Xi, Chen; Ward, Philip

    2014-05-01

    Floods associated with severe storms are a significant source of risk for property, life and supply chains. These property losses tend to be determined as much by the duration and spatial extent of flooding as by the depth and velocity of inundation. High duration floods are typically induced by persistent rainfall (up to 30 day duration) as seen recently in Thailand, Pakistan, the Ohio and the Mississippi Rivers, France, and Germany. Events related to persistent and recurrent rainfall appear to correspond to the persistence of specific global climate patterns that may be identifiable from global, historical data fields, and also from climate models that project future conditions. In this paper, we investigate the statistical properties of the spatial manifestation of the rainfall exceedances and floods. We present the first ever results on a global analysis of the scaling characteristics of extreme rainfall and flood event duration, volumes and contiguous flooded areas as a result of large scale organization of long duration rainfall events. Results are organized by latitude and with reference to the phases of ENSO, and reveal surprising invariance across latitude. Speculation as to the potential relation to the dynamical factors is presented

  10. SM2RAIN-CCI: a new global long-term rainfall data set derived from ESA CCI soil moisture

    Science.gov (United States)

    Ciabatta, Luca; Massari, Christian; Brocca, Luca; Gruber, Alexander; Reimer, Christoph; Hahn, Sebastian; Paulik, Christoph; Dorigo, Wouter; Kidd, Richard; Wagner, Wolfgang

    2018-02-01

    Accurate and long-term rainfall estimates are the main inputs for several applications, from crop modeling to climate analysis. In this study, we present a new rainfall data set (SM2RAIN-CCI) obtained from the inversion of the satellite soil moisture (SM) observations derived from the ESA Climate Change Initiative (CCI) via SM2RAIN (Brocca et al., 2014). Daily rainfall estimates are generated for an 18-year long period (1998-2015), with a spatial sampling of 0.25° on a global scale, and are based on the integration of the ACTIVE and the PASSIVE ESA CCI SM data sets.The quality of the SM2RAIN-CCI rainfall data set is evaluated by comparing it with two state-of-the-art rainfall satellite products, i.e. the Tropical Measurement Mission Multi-satellite Precipitation Analysis 3B42 real-time product (TMPA 3B42RT) and the Climate Prediction Center Morphing Technique (CMORPH), and one modeled data set (ERA-Interim). A quality check is carried out on a global scale at 1° of spatial sampling and 5 days of temporal sampling by comparing these products with the gauge-based Global Precipitation Climatology Centre Full Data Daily (GPCC-FDD) product. SM2RAIN-CCI shows relatively good results in terms of correlation coefficient (median value > 0.56), root mean square difference (RMSD, median value test the capabilities of the data set to correctly identify rainfall events under different climate and precipitation regimes.The SM2RAIN-CCI rainfall data set is freely available at https://doi.org/10.5281/zenodo.846259.

  11. GHRSST Level 2P Global Subskin Sea Surface Temperature from TRMM Microwave Imager (TMI) onboard Tropical Rainfall Measurement Mission (TRMM) satellite (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — GDS2 Version -The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) is a well calibrated passive microwave radiometer, similar to the Special Sensor...

  12. Interannual rainfall variability in the Amazon basin and sea-surface temperatures in the equatorial Pacific and the tropical Atlantic Oceans

    Science.gov (United States)

    Ronchail, Josyane; Cochonneau, Gérard; Molinier, Michel; Guyot, Jean-Loup; Chaves, Adriana Goretti De Miranda; Guimarães, Valdemar; de Oliveira, Eurides

    2002-11-01

    Rainfall variability in the Amazon basin is studied in relation to sea-surface temperatures (SSTs) in the equatorial Pacific and the northern and southern tropical Atlantic during the 1977-99 period, using the HiBAm original rainfall data set and complementary cluster and composite analyses.The northeastern part of the basin, north of 5 °S and east of 60 °W, is significantly related with tropical SSTs: a rainier wet season is observed when the equatorial Pacific and the northern (southern) tropical Atlantic are anomalously cold (warm). A shorter and drier wet season is observed during El Niño events and negative rainfall anomalies are also significantly associated with a warm northern Atlantic in the austral autumn and a cold southern Atlantic in the spring. The northeastern Amazon rainfall anomalies are closely related with El Niño-southern oscillation during the whole year, whereas the relationships with the tropical Atlantic SST anomalies are mainly observed during the autumn. A time-space continuity is observed between El Niño-related rainfall anomalies in the northeastern Amazon, those in the northern Amazon and south-eastern Amazon, and those in northern South America and in the Nordeste of Brazil.A reinforcement of certain rainfall anomalies is observed when specific oceanic events combine. For instance, when El Niño and cold SSTs in the southern Atlantic are associated, very strong negative anomalies are observed in the whole northern Amazon basin. Nonetheless, the comparison of the cluster and the composite analyses results shows that the rainfall anomalies in the northeastern Amazon are not always associated with tropical SST anomalies.In the southern and western Amazon, significant tropical SST-related rainfall anomalies are very few and spatially variable. The precipitation origins differ from those of the northeastern Amazon: land temperature variability, extratropical perturbations and moisture advection are important rainfall factors, as well

  13. Tropical Rainfall Analysis Using TRMM in Combination With Other Satellite Gauge Data: Comparison with Global Precipitation Climatology Project (GPCP) Results

    Science.gov (United States)

    Adler, Robert F.; Huffman, George J.; Bolvin, David; Nelkin, Eric; Curtis, Scott

    1999-01-01

    This paper describes recent results of using Tropical Rainfall Measuring Mission (TRMM) information as the key calibration tool in a merged analysis on a 1 deg x 1 deg latitude/longitude monthly scale based on multiple satellite sources and raingauge analysis. The procedure used to produce the GPCP data set is a stepwise approach which first combines the satellite low-orbit microwave and geosynchronous IR observations into a "multi-satellite" product and than merges that result with the raingauge analysis. Preliminary results produced with the still-stabilizing TRMM algorithms indicate that TRMM shows tighter spatial gradients in tropical rain maxima with higher peaks in the center of the maxima. The TRMM analyses will be used to evaluate the evolution of the 1998 ENSO variations, again in comparison with the GPCP analyses.

  14. Final Scientific Report for "The Interhemispheric Pattern in 20th Century and Future Abrupt Change in Regional Tropical Rainfall"

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, John C. H. [University of California, Berkeley, CA (United States); Wehner, Michael F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-10-29

    Convergence Zone (ITCZ) over the course of the 20th century prior to the 1980s. This is based on our detection and attribution analysis of 20th century simulations done by international modeling groups as part of the Coupled Model Intercomparison Project phase 3 (CMIP3). We repeated the same analysis with the current CMIP5 multimodel simulations, with essentially similar results. 3.Future projections of the global interhemispheric thermal gradient suggest a pronounced trend that well exceeds the 20th century range of behavior. The major cause of this trend is due to anthropogenic greenhouse gas emissions, acting in such a way as to warm the North more than the South. This result is based on our analysis of the CMIP3 and 5 simulations of future scenarios. The underlying suggestion is that tropical rainfall may concentrate more northwards in the future climate, though further research is required to more firmly establish that result.Taken together, our results shows the important role of the interhemispheric thermal gradient in determining tropical rainfall changes in the 20th century and future. Our analysis specifically highlights high-latitude North Atlantic sea surface temperature, and anthropogenic sulfate aerosols, as important drivers of the interhemispheric gradient over the 20th century; and anthropogenic greenhouse gases in the 21st. The PI has written a review paper in order to promote the awareness of the interhemispheric gradient amongst the climate science community.Our project was instrumental in developing the career of a postdoctoral scholar, as well as contributing to the research training of three Ph.D. candidates.

  15. A Stochastic Model of Space-Time Variability of Tropical Rainfall: I. Statistics of Spatial Averages

    Science.gov (United States)

    Kundu, Prasun K.; Bell, Thomas L.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Global maps of rainfall are of great importance in connection with modeling of the earth s climate. Comparison between the maps of rainfall predicted by computer-generated climate models with observation provides a sensitive test for these models. To make such a comparison, one typically needs the total precipitation amount over a large area, which could be hundreds of kilometers in size over extended periods of time of order days or months. This presents a difficult problem since rain varies greatly from place to place as well as in time. Remote sensing methods using ground radar or satellites detect rain over a large area by essentially taking a series of snapshots at infrequent intervals and indirectly deriving the average rain intensity within a collection of pixels , usually several kilometers in size. They measure area average of rain at a particular instant. Rain gauges, on the other hand, record rain accumulation continuously in time but only over a very small area tens of centimeters across, say, the size of a dinner plate. They measure only a time average at a single location. In making use of either method one needs to fill in the gaps in the observation - either the gaps in the area covered or the gaps in time of observation. This involves using statistical models to obtain information about the rain that is missed from what is actually detected. This paper investigates such a statistical model and validates it with rain data collected over the tropical Western Pacific from ship borne radars during TOGA COARE (Tropical Oceans Global Atmosphere Coupled Ocean-Atmosphere Response Experiment). The model incorporates a number of commonly observed features of rain. While rain varies rapidly with location and time, the variability diminishes when averaged over larger areas or longer periods of time. Moreover, rain is patchy in nature - at any instant on the average only a certain fraction of the observed pixels contain rain. The fraction of area covered by

  16. Natural and near natural tropical forest values

    Science.gov (United States)

    Daniel H. Henning

    2011-01-01

    This paper identifies and describes some of the values associated with tropical rain forests in their natural and near-natural conditions. Tropical rain forests are moist forests in the humid tropics where temperature and rainfall are high and the dry season is short. These closed (non-logged) and broad-leaved forests are a global resource. Located almost entirely in...

  17. Effects of Rainfall Intensity and Slope Angle on Splash Erosion in ...

    African Journals Online (AJOL)

    Soil erosion is a critical global environmental problem, especially in the developing countries including Nigeria. In the humid and sub-humid tropics, splash erosion resulting from intense rainfall and slope degree pose severe land degradation problems. The objective of this study is to assess the effects of some rainfall ...

  18. Effects of Rainfall Characteristics on the Stability of Tropical Residual Soil Slope

    OpenAIRE

    Rahardjo Harianto; Satyanaga Alfrendo; Leong Eng Choon

    2016-01-01

    Global climate change has a significant impact on rainfall characteristics, sea water level and groundwater table. Changes in rainfall characteristics may affect stability of slopes and have severe impacts on sustainable urban living. Information on the intensity, frequency and duration of rainfall is often required by geotechnical engineers for performing slope stability analyses. Many seepage analyses are commonly performed using the most extreme rainfall possible which is uneconomical in d...

  19. Modelling rainfall interception by a lowland tropical rain forest in northeastern Puerto Rico.

    NARCIS (Netherlands)

    Schellekens, J.; Scatena, F.N.; Bruijnzeel, L.A.; Wickel, A.J.

    1999-01-01

    Recent surveys of tropical forest water use suggest that rainfall interception by the canopy is largest in wet maritime locations. To investigate the underlying processes at one such location-the Luquillo Experimental Forest in eastern Puerto Rico-66 days of detailed throughfall and above-canopy

  20. Diurnal Variation of Rainfall Associated with Tropical Depression in South China and its Relationship to Land-Sea Contrast and Topography

    Directory of Open Access Journals (Sweden)

    Yuchun Zhao

    2013-12-01

    Full Text Available Convective precipitation associated with tropical depression (TD is one primary type of post-flooding season rainfall in South China (SC. Observations of the Tropical Rainfall Measuring Mission (TRMM satellite have shown specific diurnal features of convective rainfall in South China, which is somewhat different from that in other seasons or regions of China. Convective precipitation is usually organized into a rainfall band along the southeastern coast of South China in the early morning hours. The rainfall band develops and intensifies quickly in the morning, then moves inland in the afternoon and, finally, diminishes at night. The daily convective rainfall along the coast is much more than that in the inland region, and heavy rainfall is often found along the coast. A long-duration heavy rainfall event associated with tropical depression “Fitow” during the period from 28 August to 6 September 2001, is selected in this study to explore the diurnal feature of convective rainfall and its formation mechanism. Modeling results of the 10-day heavy rainfall event are compared with both rain-gauge observation and satellite-retrieved rainfall. Total precipitation and its spatial distribution, as well as diurnal variations are reasonably simulated and agree well with observations. Further analysis reveals that the development and movement of convective precipitation is mainly related to the land and sea breezes. The anomalous height-latitudinal circulation in the morning-to-noon hours is completely reversed in the afternoon-to-late-evening hours, with the convective rainfall swinging back and forth, following its updraft branch. Sensitivity experiments show that the afternoon convective rainfall in the inland region of SC is caused by the diurnal variation of solar radiation forcing. The mountain range along the coast and the complex topography in the inland region of SC plays a critical role in the enhancement of diurnal convective rainfall

  1. Tropical Atlantic Contributions to Strong Rainfall Variability Along the Northeast Brazilian Coast

    Directory of Open Access Journals (Sweden)

    G. A. Hounsou-gbo

    2015-01-01

    Full Text Available Tropical Atlantic (TA Ocean-atmosphere interactions and their contributions to strong variability of rainfall along the Northeast Brazilian (NEB coast were investigated for the years 1974–2008. The core rainy seasons of March-April and June-July were identified for Fortaleza (northern NEB; NNEB and Recife (eastern NEB; ENEB, respectively. Lagged linear regressions between sea surface temperature (SST and pseudo wind stress (PWS anomalies over the entire TA and strong rainfall anomalies at Fortaleza and Recife show that the rainfall variability of these regions is differentially influenced by the dynamics of the TA. When the Intertropical Convergence Zone is abnormally displaced southward a few months prior to the NNEB rainy season, the associated meridional mode increases humidity and precipitation during the rainy season. Additionally, this study shows predictive effect of SST, meridional PWS, and barrier layer thickness, in the Northwestern equatorial Atlantic, on the NNEB rainfall. The dynamical influence of the TA on the June-July ENEB rainfall variability shows a northwestward-propagating area of strong, positively correlated SST from the southeastern TA to the southwestern Atlantic warm pool (SAWP offshore of Brazil. Our results also show predictive effect of SST, zonal PWS, and mixed layer depth, in the SAWP, on the ENEB rainfall.

  2. Attribution of Extreme Rainfall from Landfalling Tropical Cyclones to Climate Change for the Eastern United States

    Science.gov (United States)

    Liu, M.; Yang, L.; Smith, J. A.; Vecchi, G. A.

    2017-12-01

    Extreme rainfall and flooding associated with landfalling tropical cyclones (TC) is responsible for vast socioeconomic losses and fatalities. Landfalling tropical cyclones are an important element of extreme rainfall and flood peak distributions in the eastern United States. Record floods for USGS stream gauging stations over the eastern US are closely tied to landfalling hurricanes. A small number of storms account for the largest record floods, most notably Hurricanes Diane (1955) and Agnes (1972). The question we address is: if the synoptic conditions accompanying those hurricanes were to be repeated in the future, how would the thermodynamic and dynamic storm properties and associated extreme rainfall differ in response to climate change? We examine three hurricanes: Diane (1955), Agnes (1972) and Irene (2011), due to the contrasts in structure/evolution properties and their important roles in dictating the upper tail properties of extreme rainfall and flood frequency over eastern US. Extreme rainfall from Diane is more localized as the storm maintains tropical characteristics, while synoptic-scale vertical motion associated with extratropical transition is a central feature for extreme rainfall induced by Agnes. Our analyses are based on ensemble simulations using the Weather Research and Forecasting (WRF) model, considering combinations of different physics options (i.e., microphysics, boundary layer schemes). The initial and boundary conditions of WRF simulations for the present-day climate are using the Twentieth Century Reanalysis (20thCR). A sub-selection of GCMs is used, as part of phase 5 of the Coupled Model Intercomparison Project (CMIP5), to provide future climate projections. For future simulations, changes in model fields (i.e., temperature, humidity, geopotential height) between present-day and future climate are first derived and then added to the same 20thCR initial and boundary data used for the present-day simulations, and the ensemble is

  3. First-year evaluation of GPM rainfall over the Netherlands

    NARCIS (Netherlands)

    Rios Gaona, M.F.; Overeem, A.; Leijnse, H.; Uijlenhoet, R.

    2016-01-01

    The Global Precipitation Measurement (GPM) mission is the successor to the Tropical Rainfall Measuring Mission (TRMM), which orbited Earth for ~17 years. With Core Observatory launched on 27 February 2014, GPM offers global precipitation estimates between 60°N and 60°S at 0.1° × 0.1° resolution

  4. Determination of Areas Susceptible to Landsliding Using Spatial Patterns of Rainfall from Tropical Rainfall Measuring Mission Data, Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Renato Fontes Guimarães

    2017-10-01

    Full Text Available Spatial patterns of shallow landslide initiation reflect both spatial patterns of heavy rainfall and areas susceptible to mass movements. We determine the areas most susceptible to shallow landslide occurrence through the calculation of critical soil cohesion and spatial patterns of rainfall derived from TRMM (Tropical Rainfall Measuring Mission data for Paraty County, State of Rio de Janeiro, Brazil. Our methodology involved: (a creating the digital elevation model (DEM and deriving attributes such as slope and contributing area; (b incorporating spatial patterns of rainfall derived from TRMM into the shallow slope stability model SHALSTAB; and (c quantitative assessment of the correspondence of mapped landslide scars to areas predicted to be most prone to shallow landsliding. We found that around 70% of the landslide scars occurred in less than 10% of the study area identified as potentially unstable. The greatest concentration of landslides occurred in areas where the root strength of vegetation is an important contribution to slope stability in regions of orographically-enhanced rainfall on the coastal topographic flank. This approach helps quantify landslide hazards in areas with similar geomorphological characteristics, but different spatial patterns of rainfall.

  5. Variations of Sea Surface Temperature, Wind Stress, and Rainfall over the Tropical Atlantic and South America.

    Science.gov (United States)

    Nobre, Paulo; Srukla, J.

    1996-10-01

    Empirical orthogonal functions (E0Fs) and composite analyses are used to investigate the development of sea surface temperature (SST) anomaly patterns over the tropical Atlantic. The evolution of large-scale rainfall anomaly patterns over the equatorial Atlantic and South America are also investigated. 71e EOF analyses revealed that a pattern of anomalous SST and wind stress asymmetric relative to the equator is the dominant mode of interannual and longer variability over the tropical Atlantic. The most important findings of this study are as follows.Atmospheric circulation anomalies precede the development of basinwide anomalous SST patterns over the tropical Atlantic. Anomalous SST originate off the African coast simultaneously with atmospheric circulation anomalies and expand westward afterward. The time lag between wind stress relaxation (strengthening) and maximum SST warming (cooling) is about two months.Anomalous atmospheric circulation patterns over northern tropical Atlantic are phase locked to the seasonal cycle. Composite fields of SLP and wind stress over northern tropical Atlantic can be distinguished from random only within a few months preceding the March-May (MAM) season. Observational evidence is presented to show that the El Niño-Southern Oscillation phenomenon in the Pacific influences atmospheric circulation and SST anomalies over northern tropical Atlantic through atmospheric teleconnection patterns into higher latitudes of the Northern Hemisphere.The well-known droughts over northeastern Brazil (Nordeste) are a local manifestation of a much larger-scale rainfall anomaly pattern encompassing the whole equatorial Atlantic and Amazon region. Negative rainfall anomalies to the south of the equator during MAM, which is the rainy season for the Nordeste region, are related to an early withdrawal of the intertropical convergence zone toward the warm SST anomalies over the northern tropical Atlantic. Also, it is shown that precipitation anomalies

  6. Improving rainfall representation for large-scale hydrological modelling of tropical mountain basins

    Science.gov (United States)

    Zulkafli, Zed; Buytaert, Wouter; Onof, Christian; Lavado, Waldo; Guyot, Jean-Loup

    2013-04-01

    Errors in the forcing data are sometimes overlooked in hydrological studies even when they could be the most important source of uncertainty. The latter particularly holds true in tropical countries with short historical records of rainfall monitoring and remote areas with sparse rain gauge network. In such instances, alternative data such as the remotely sensed precipitation from the TRMM (Tropical Rainfall Measuring Mission) satellite have been used. These provide a good spatial representation of rainfall processes but have been established in the literature to contain volumetric biases that may impair the results of hydrological modelling or worse, are compensated during model calibration. In this study, we analysed precipitation time series from the TMPA (TRMM Multiple Precipitation Algorithm, version 6) against measurements from over 300 gauges in the Andes and Amazon regions of Peru and Ecuador. We found moderately good monthly correlation between the pixel and gauge pairs but a severe underestimation of rainfall amounts and wet days. The discrepancy between the time series pairs is particularly visible over the east side of the Andes and may be attributed to localized and orographic-driven high intensity rainfall, which the satellite product may have limited skills at capturing due to technical and scale issues. This consequently results in a low bias in the simulated streamflow volumes further downstream. In comparison, with the recently released TMPA, version 7, the biases reduce. This work further explores several approaches to merge the two sources of rainfall measurements, each of a different spatial and temporal support, with the objective of improving the representation of rainfall in hydrological simulations. The methods used are (1) mean bias correction (2) data assimilation using Kalman filter Bayesian updating. The results are evaluated by means of (1) a comparison of runoff ratios (the ratio of the total runoff and the total precipitation over an

  7. Effect of Nock-Ten Tropical Cyclone on Atmospheric Condition and Distribution of Rainfall in Gorontalo, Ternate, and Sorong Regions

    Science.gov (United States)

    Lumbangaol, A.; Serhalawan, Y. R.; Endarwin

    2017-12-01

    Nock-Ten Tropical Cyclone is an atmospheric phenomenon that has claimed many lives in the Philippines. This super-typhoon cyclone grows in the Western Pacific Ocean, North of Papua. With the area directly contiguous to the trajectory of Nock-Ten Tropical Cyclone growth, it is necessary to study about the growth activity of this tropical cyclones in Indonesia, especially in 3 different areas, namely Gorontalo, Ternate, and Sorong. This study was able to determine the impact of Nock-Ten Tropical Cyclone on atmospheric dynamics and rainfall growth distribution based on the stages of tropical cyclone development. The data used in this study include Himawari-8 IR channel satellite data to see the development stage and movement track of Tropical Cyclone Nock-Ten, rainfall data from TRMM 3B42RT satellite product to know the rain distribution in Gorontalo, Ternate, and Sorong, and reanalysis data from ECMWF such as wind direction and speed, vertical velocity, and relative vorticity to determine atmospheric conditions at the time of development of the Nock-Ten Tropical Cyclone. The results of data analysis processed using GrADS application showed the development stage of Nock-Ten Tropical Cyclone has effect of changes in atmospheric dynamics condition and wind direction pattern. In addition, tropical cyclones also contribute to very light to moderate scale intensity during the cycle period of tropical cyclone development in all three regions.

  8. Monsoon rainfall over India in June and link with northwest tropical pacific - June ISMR and link with northwest tropical pacific

    Science.gov (United States)

    Surendran, Sajani; Gadgil, Sulochana; Rajendran, Kavirajan; Varghese, Stella Jes; Kitoh, Akio

    2018-03-01

    Recent years have witnessed large interannual variation of all-India rainfall (AIR) in June, with intermittent large deficits and excesses. Variability of June AIR is found to have the strongest link with variation of rainfall over northwest tropical Pacific (NWTP), with AIR deficit (excess) associated with enhancement (suppression) of NWTP rainfall. This association is investigated using high-resolution Meteorological Research Institute model which shows high skill in simulating important features of Asian summer monsoon, its variability and the inverse relationship between NWTP rainfall and AIR. Analysis of the variation of NWTP rainfall shows that it is associated with a change in the latitudinal position of subtropical westerly jet over the region stretching from West of Tibetan Plateau (WTP) to NWTP and the phase of Rossby wave steered in it with centres over NWTP and WTP. In years with large rainfall excess/deficit, the strong link between AIR and NWTP rainfall exists through differences in Rossby wave phase steered in the jet. The positive phase of the WTP-NWTP pattern, with troughs over WTP and west of NWTP, tends to be associated with increased rainfall over NWTP and decreased AIR. This scenario is reversed in the opposite phase. Thus, the teleconnection between NWTP rainfall and AIR is a manifestation of the difference in the phase of Rossby wave between excess and deficit years, with centres over WTP and NWTP. This brings out the importance of prediction of phase of Rossby waves over WTP and NWTP in advance, for prediction of June rainfall over India.

  9. Japanese Global Precipitation Measurement (GPM) mission status and application of satellite-based global rainfall map

    Science.gov (United States)

    Kachi, Misako; Shimizu, Shuji; Kubota, Takuji; Yoshida, Naofumi; Oki, Riko; Kojima, Masahiro; Iguchi, Toshio; Nakamura, Kenji

    2010-05-01

    As accuracy of satellite precipitation estimates improves and observation frequency increases, application of those data to societal benefit areas, such as weather forecasts and flood predictions, is expected, in addition to research of precipitation climatology to analyze precipitation systems. There is, however, limitation on single satellite observation in coverage and frequency. Currently, the Global Precipitation Measurement (GPM) mission is scheduled under international collaboration to fulfill various user requirements that cannot be achieved by the single satellite, like the Tropical Rainfall Measurement Mission (TRMM). The GPM mission is an international mission to achieve high-accurate and high-frequent rainfall observation over a global area. GPM is composed of a TRMM-like non-sun-synchronous orbit satellite (GPM core satellite) and constellation of satellites carrying microwave radiometer instruments. The GPM core satellite carries the Dual-frequency Precipitation Radar (DPR), which is being developed by the Japan Aerospace Exploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT), and microwave radiometer provided by the National Aeronautics and Space Administration (NASA). Development of DPR instrument is in good progress for scheduled launch in 2013, and DPR Critical Design Review has completed in July - September 2009. Constellation satellites, which carry a microwave imager and/or sounder, are planned to be launched around 2013 by each partner agency for its own purpose, and will contribute to extending coverage and increasing frequency. JAXA's future mission, the Global Change Observation Mission (GCOM) - Water (GCOM-W) satellite will be one of constellation satellites. The first generation of GCOM-W satellite is scheduled to be launched in 2011, and it carries the Advanced Microwave Scanning Radiometer 2 (AMSR2), which is being developed based on the experience of the AMSR-E on EOS Aqua satellite

  10. Effects of Rainfall Characteristics on the Stability of Tropical Residual Soil Slope

    Directory of Open Access Journals (Sweden)

    Rahardjo Harianto

    2016-01-01

    Full Text Available Global climate change has a significant impact on rainfall characteristics, sea water level and groundwater table. Changes in rainfall characteristics may affect stability of slopes and have severe impacts on sustainable urban living. Information on the intensity, frequency and duration of rainfall is often required by geotechnical engineers for performing slope stability analyses. Many seepage analyses are commonly performed using the most extreme rainfall possible which is uneconomical in designing a slope repair or slope failure preventive measure. In this study, the historical rainfall data were analyzed and investigated to understand the characteristics of rainfall in Singapore. The frequency distribution method was used to estimate future rainfall characteristics in Singapore. New intensity-duration-frequency (IDF curves for rainfall in Singapore were developed for six different durations (10, 20, 30 min and 1, 2 and 24 h and six frequencies (2, 5, 10, 25, 50 and 100 years. The new IDF curves were used in the seepage and slope stability analyses to determine the variation of factor of safety of residual soil slopes under different rainfall intensities in Singapore.

  11. Skill of Global Raw and Postprocessed Ensemble Predictions of Rainfall over Northern Tropical Africa

    Science.gov (United States)

    Vogel, Peter; Knippertz, Peter; Fink, Andreas H.; Schlueter, Andreas; Gneiting, Tilmann

    2018-04-01

    Accumulated precipitation forecasts are of high socioeconomic importance for agriculturally dominated societies in northern tropical Africa. In this study, we analyze the performance of nine operational global ensemble prediction systems (EPSs) relative to climatology-based forecasts for 1 to 5-day accumulated precipitation based on the monsoon seasons 2007-2014 for three regions within northern tropical Africa. To assess the full potential of raw ensemble forecasts across spatial scales, we apply state-of-the-art statistical postprocessing methods in form of Bayesian Model Averaging (BMA) and Ensemble Model Output Statistics (EMOS), and verify against station and spatially aggregated, satellite-based gridded observations. Raw ensemble forecasts are uncalibrated, unreliable, and underperform relative to climatology, independently of region, accumulation time, monsoon season, and ensemble. Differences between raw ensemble and climatological forecasts are large, and partly stem from poor prediction for low precipitation amounts. BMA and EMOS postprocessed forecasts are calibrated, reliable, and strongly improve on the raw ensembles, but - somewhat disappointingly - typically do not outperform climatology. Most EPSs exhibit slight improvements over the period 2007-2014, but overall have little added value compared to climatology. We suspect that the parametrization of convection is a potential cause for the sobering lack of ensemble forecast skill in a region dominated by mesoscale convective systems.

  12. Effects of interannual climate variability on tropical tree cover

    NARCIS (Netherlands)

    Holmgren, M.; Hirota, M.; Nes, van E.H.; Scheffer, M.

    2013-01-01

    Climatic warming is substantially intensifying the global water cycle1 and is projected to increase rainfall variability2. Using satellite data, we show that higher climatic variability is associated with reduced tree cover in the wet tropics globally. In contrast, interannual variability in

  13. Verification of the skill of numerical weather prediction models in forecasting rainfall from U.S. landfalling tropical cyclones

    Science.gov (United States)

    Luitel, Beda; Villarini, Gabriele; Vecchi, Gabriel A.

    2018-01-01

    The goal of this study is the evaluation of the skill of five state-of-the-art numerical weather prediction (NWP) systems [European Centre for Medium-Range Weather Forecasts (ECMWF), UK Met Office (UKMO), National Centers for Environmental Prediction (NCEP), China Meteorological Administration (CMA), and Canadian Meteorological Center (CMC)] in forecasting rainfall from North Atlantic tropical cyclones (TCs). Analyses focus on 15 North Atlantic TCs that made landfall along the U.S. coast over the 2007-2012 period. As reference data we use gridded rainfall provided by the Climate Prediction Center (CPC). We consider forecast lead-times up to five days. To benchmark the skill of these models, we consider rainfall estimates from one radar-based (Stage IV) and four satellite-based [Tropical Rainfall Measuring Mission - Multi-satellite Precipitation Analysis (TMPA, both real-time and research version); Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN); the CPC MORPHing Technique (CMORPH)] rainfall products. Daily and storm total rainfall fields from each of these remote sensing products are compared to the reference data to obtain information about the range of errors we can expect from "observational data." The skill of the NWP models is quantified: (1) by visual examination of the distribution of the errors in storm total rainfall for the different lead-times, and numerical examination of the first three moments of the error distribution; (2) relative to climatology at the daily scale. Considering these skill metrics, we conclude that the NWP models can provide skillful forecasts of TC rainfall with lead-times up to 48 h, without a consistently best or worst NWP model.

  14. Throughfall and temporal trends of rainfall redistribution in an open tropical rainforest, south-western Amazonia (Rondônia, Brazil

    Directory of Open Access Journals (Sweden)

    S. Germer

    2006-01-01

    Full Text Available Throughfall volumes and incident rainfall were measured between 23 August and 2 December 2004 as well as from 6 January to 15 April 2005 for individual rain events of differing intensities and magnitudes in an open tropical rainforest in Rondônia, Brazil. Temporal patterns of throughfall spatial variability were examined. Estimated interception was compared to modeled interception obtained by applying the revised Gash model in order to identify sources of throughfall variability in open tropical rainforests. Gross precipitation of 97 events amounted to 1309 mm, 89±5.6% (S.E. of which reached the forest floor as throughfall. The redistribution of water within the canopy was highly variable in time, which we attribute to the high density of babassu palms (Orbignya phalerata, their seasonal leaf growth, and their conducive morphology. We identified a 10-min rainfall intensity threshold of 30 mmh-1 above which interception was highly variable. This variability is amplified by funneling and shading effects of palms. This interaction between a rainfall variable and vegetation characteristics is relevant for understanding the hydrology of all tropical rainforests with a high palm density.

  15. The preconditioning role of Tropical Atlantic Variability in the development of the ENSO teleconnection: implications for the prediction of Nordeste rainfall

    Science.gov (United States)

    Giannini, A.; Saravanan, R.; Chang, P.

    A comparison of rainfall variability in the semi-arid Brazilian Nordeste in observations and in two sets of model simulations leads to the conclusion that the evolving interaction between Tropical Atlantic Variability (TAV) and the El Niño-Southern Oscillation (ENSO) phenomenon can explain two puzzling features of ENSO's impact on the Nordeste: (1) the event-to-event unpredictability of ENSO's impact; (2) the greater impact of cold rather than warm ENSO events during the past 50 years. The explanation is in the `preconditioning' role of Tropical Atlantic Variability. When, in seasons prior to the mature phase of ENSO, the tropical Atlantic happens to be evolving consistently with the development expected of the ENSO teleconnection, ENSO and TAV add up to force large anomalies in Nordeste rainfall. When it happens to be evolving in opposition to the canonical development of ENSO, then the net outcome is less obvious, but also less anomalous. The more frequent occurrence of tropical Atlantic conditions consistent with those that develop during a cold ENSO event, i.e. of a negative meridional sea surface temperature gradient, explains the weaker warm ENSO and stronger cold ENSO anomalies in Nordeste rainfall of the latter part of the twentieth century. Close monitoring of the evolution of the tropical Atlantic in seasons prior to the mature phase of ENSO should lead to an enhanced forecast potential.

  16. A global dataset of sub-daily rainfall indices

    Science.gov (United States)

    Fowler, H. J.; Lewis, E.; Blenkinsop, S.; Guerreiro, S.; Li, X.; Barbero, R.; Chan, S.; Lenderink, G.; Westra, S.

    2017-12-01

    It is still uncertain how hydrological extremes will change with global warming as we do not fully understand the processes that cause extreme precipitation under current climate variability. The INTENSE project is using a novel and fully-integrated data-modelling approach to provide a step-change in our understanding of the nature and drivers of global precipitation extremes and change on societally relevant timescales, leading to improved high-resolution climate model representation of extreme rainfall processes. The INTENSE project is in conjunction with the World Climate Research Programme (WCRP)'s Grand Challenge on 'Understanding and Predicting Weather and Climate Extremes' and the Global Water and Energy Exchanges Project (GEWEX) Science questions. A new global sub-daily precipitation dataset has been constructed (data collection is ongoing). Metadata for each station has been calculated, detailing record lengths, missing data, station locations. A set of global hydroclimatic indices have been produced based upon stakeholder recommendations including indices that describe maximum rainfall totals and timing, the intensity, duration and frequency of storms, frequency of storms above specific thresholds and information about the diurnal cycle. This will provide a unique global data resource on sub-daily precipitation whose derived indices will be freely available to the wider scientific community.

  17. Lightning and 85-GHz MCSs in the Global Tropics

    Science.gov (United States)

    Toracinta, E. Richard; Zipser, E. J.

    1999-01-01

    Numerous observations of tropical convection show that tropical continental mesoscale convective systems (MCSs) are much more prolific lightning producers than their oceanic counterparts. Satellite-based climatologies using 85-GHz passive microwave ice-scattering signatures from the Special Sensor Microwave/Imager (SSM/I) indicate that MCSs of various size and intensity are found throughout the global tropics. In contrast, global lightning distributions show a strong land bias with an order of magnitude difference between land and ocean lightning. This is somewhat puzzling, since 85-GHz ice-scattering and the charge separation processes that lead to lightning are both thought to depend upon the existence of large graupel particles. The fact that low 85-GHz brightness temperatures are observed in tropical oceanic MCSs containing virtually no lightning leads to the postulate that tropical oceanic and tropical continental MCSs have fundamentally different hydrometeor profiles through the mixed phase region of the cloud (0 C Lightning Imaging Sensor (LIS), and the first space-borne radar, facilitates high-resolution case studies of MCS structure throughout the global tropics. An important precursor, however, is to better understand the distribution of MCSs and lightning in the tropics. With that objective in mind, this research undertakes a systematic comparison of 85-GHz-defined MCSs and lightning over the global tropics for a full year, as an initial step toward quantifying differences between land and ocean convective systems.

  18. Forty years experience in developing and using rainfall simulators under tropical and Mediterranean conditions

    Science.gov (United States)

    Pla-Sentís, Ildefonso; Nacci, Silvana

    2010-05-01

    Rainfall simulation has been used as a practical tool for evaluating the interaction of falling water drops on the soil surface, to measure both stability of soil aggregates to drop impact and water infiltration rates. In both cases it is tried to simulate the effects of natural rainfall, which usually occurs at very different, variable and erratic rates and intensities. One of the main arguments against the use of rainfall simulators is the difficulty to reproduce the size, final velocity and kinetic energy of the drops in natural rainfall. Since the early 70´s we have been developing and using different kinds of rainfall simulators, both at laboratory and field levels, and under tropical and Mediterranean soil and climate conditions, in flat and sloping lands. They have been mainly used to evaluate the relative effects of different land use and management, including different cropping systems, tillage practices, surface soil conditioning, surface covers, etc. on soil water infiltration, on runoff and on erosion. Our experience is that in any case it is impossible to reproduce the variable size distribution and terminal velocity of raindrops, and the variable changes in intensity of natural storms, under a particular climate condition. In spite of this, with the use of rainfall simulators it is possible to obtain very good information, which if it is properly interpreted in relation to each particular condition (land and crop management, rainfall characteristics, measurement conditions, etc.) may be used as one of the parameters for deducing and modelling soil water balance and soil moisture regime under different land use and management and variable climate conditions. Due to the possibility for a better control of the intensity of simulated rainfall and of the size of water drops, and the possibility to make more repeated measurements under very variable soil and land conditions, both in the laboratory and specially in the field, the better results have been

  19. Observations of increased tropical rainfall preceded by air passage over forests.

    Science.gov (United States)

    Spracklen, D V; Arnold, S R; Taylor, C M

    2012-09-13

    Vegetation affects precipitation patterns by mediating moisture, energy and trace-gas fluxes between the surface and atmosphere. When forests are replaced by pasture or crops, evapotranspiration of moisture from soil and vegetation is often diminished, leading to reduced atmospheric humidity and potentially suppressing precipitation. Climate models predict that large-scale tropical deforestation causes reduced regional precipitation, although the magnitude of the effect is model and resolution dependent. In contrast, observational studies have linked deforestation to increased precipitation locally but have been unable to explore the impact of large-scale deforestation. Here we use satellite remote-sensing data of tropical precipitation and vegetation, combined with simulated atmospheric transport patterns, to assess the pan-tropical effect of forests on tropical rainfall. We find that for more than 60 per cent of the tropical land surface (latitudes 30 degrees south to 30 degrees north), air that has passed over extensive vegetation in the preceding few days produces at least twice as much rain as air that has passed over little vegetation. We demonstrate that this empirical correlation is consistent with evapotranspiration maintaining atmospheric moisture in air that passes over extensive vegetation. We combine these empirical relationships with current trends of Amazonian deforestation to estimate reductions of 12 and 21 per cent in wet-season and dry-season precipitation respectively across the Amazon basin by 2050, due to less-efficient moisture recycling. Our observation-based results complement similar estimates from climate models, in which the physical mechanisms and feedbacks at work could be explored in more detail.

  20. Climate Change and Tropical Total Lightning

    Science.gov (United States)

    Albrecht, R.; Petersen, W.; Buechler, D.; Goodman, S.; Blakeslee, R.; Christian, H.

    2009-01-01

    While global warming is regarded as a fact by many in the scientific community, its future impact remains a challenge to be determined and measured. The International Panel on Climate Change (IPCC) assessment report (IPCC, 2007) shows inconclusive answers on global rainfall trends and general agreement on a future drier climate with increased global warming. The relationship between temperature, humidity and convection is not linear and is strongly dependent on regional scale features, such as topography and land cover. Furthermore, the relationship between convective lightning production (thunderstorms) and temperature is even more complicated, being subjected to the cloud dynamics and microphysics. Total lightning (intracloud and cloud-to-ground) monitoring is a relatively new field of observation. Global and tropical total lightning began to be more extensively measured by satellites in the mid 90s. In this scope, the Lightning Imaging Sensor (LIS) onboard of the Tropical Rainfall Measurement Mission (TRMM) has been operational for over 11 years. Here we address total lightning trends observed by LIS from 1998 to 2008 in different temporal (annual and seasonal) and spatial (large and regional) scales. The observed 11-year trends are then associate to different predicted/hypothesized climate change scenarios.

  1. Relationships between High Impact Tropical Rainfall Events and Environmental Conditions

    Science.gov (United States)

    Painter, C.; Varble, A.; Zipser, E. J.

    2017-12-01

    While rainfall increases as moisture and vertical motion increase, relationships between regional environmental conditions and rainfall event characteristics remain more uncertain. Of particular importance are long duration, heavy rain rate, and significant accumulation events that contribute sizable fractions of overall precipitation over short time periods. This study seeks to establish relationships between observed rainfall event properties and environmental conditions. Event duration, rain rate, and rainfall accumulation are derived using the Tropical Rainfall Measuring Mission (TRMM) 3B42 3-hourly, 0.25° resolution rainfall retrieval from 2002-2013 between 10°N and 10°S. Events are accumulated into 2.5° grid boxes and matched to monthly mean total column water vapor (TCWV) and 500-hPa vertical motion (omega) in each 2.5° grid box, retrieved from ERA-interim reanalysis. Only months with greater than 3 mm/day rainfall are included to ensure sufficient sampling. 90th and 99th percentile oceanic events last more than 20% longer and have rain rates more than 20% lower than those over land for a given TCWV-omega condition. Event duration and accumulation are more sensitive to omega than TCWV over oceans, but more sensitive to TCWV than omega over land, suggesting system size, propagation speed, and/or forcing mechanism differences for land and ocean regions. Sensitivities of duration, rain rate, and accumulation to TCWV and omega increase with increasing event extremity. For 3B42 and ERA-Interim relationships, the 90th percentile oceanic event accumulation increases by 0.93 mm for every 1 Pa/min change in rising motion, but this increases to 3.7 mm for every 1 Pa/min for the 99th percentile. Over land, the 90th percentile event accumulation increases by 0.55 mm for every 1 mm increase in TCWV, whereas the 99th percentile increases by 0.90 mm for every 1 mm increase in TCWV. These changes in event accumulation are highly correlated with changes in event

  2. Multiscaling properties of tropical rainfall: Analysis of rain gauge datasets in Lesser Antilles island environment

    Science.gov (United States)

    Bernard, Didier C.; Pasquier, Raphaël; Cécé, Raphaël; Dorville, Jean-François

    2014-05-01

    Changes in rainfall seem to be the main impact of climate change in the Caribbean area. The last conclusions of IPCC (2013), indicate that the end of this century will be marked by a rise of extreme rainfalls in tropical areas, linked with increase of the mean surface temperature. Moreover, most of the Lesser Antilles islands are characterized by a complex topography which tends to enhance the rainfall from synoptic disturbances by orographic effects. In the past five years, out of hurricanes passage, several extreme rainy events (approx. 16 mm in 6 minutes), including fatal cases, occurred in the Lesser Antilles Arc: in Guadeloupe (January 2011, May 2012 and 2013), in Martinique (May 2009, April 2011 and 2013), in Saint-Lucia (December 2013). These phenomena inducing floods, loss of life and material damages (agriculture sector and public infrastructures), inhibit the development of the islands. At this time, numerical weather prediction models as WRF, which are based on the equations of the atmospheric physics, do not show great results in the focused area (Bernard et al., 2013). Statistical methods may be used to examine explicitly local rainy updrafts, thermally and orographically induced at micro-scale. The main goal of the present insular tropical study is to characterize the multifractal symmetries occurring in the 6-min rainfall time series, registered since 2006 by the French Met. Office network weather stations. The universal multifractal model (Schertzer and Lovejoy, 1991) is used to define the statistical properties of measured rainfalls at meso-scale and micro-scale. This model is parametrized by a fundamental exponents set (H,a,C1,q) which are determined and compared with values found in the literature. The first three parameters characterize the mean pattern and the last parameter q, the extreme pattern. The occurrence ranges of multifractal regime are examined. The suggested links between the internal variability of the tropical rainy events and the

  3. Shallow and Deep Latent Heating Modes Over Tropical Oceans Observed with TRMM PR Spectral Latent Heating Data

    Science.gov (United States)

    Takayabu, Yukari N.; Shige, Shoichi; Tao, Wei-Kuo; Hirota, Nagio

    2010-01-01

    The global hydrological cycle is central to the Earth's climate system, with rainfall and the physics of its formation acting as the key links in the cycle. Two-thirds of global rainfall occurs in the Tropics. Associated with this rainfall is a vast amount of heat, which is known as latent heat. It arises mainly due to the phase change of water vapor condensing into liquid droplets; three-fourths of the total heat energy available to the Earth's atmosphere comes from tropical rainfall. In addition, fresh water provided by tropical rainfall and its variability exerts a large impact upon the structure and motions of the upper ocean layer. Three-dimensional distributions of latent heating estimated from Tropical Rainfall Measuring Mission Precipitation Radar (TRMM PR)utilizing the Spectral Latent Heating (SLH) algorithm are analyzed. Mass-weighted and vertically integrated latent heating averaged over the tropical oceans is estimated as approx.72.6 J/s (approx.2.51 mm/day), and that over tropical land is approx.73.7 J/s (approx.2.55 mm/day), for 30degN-30degS. It is shown that non-drizzle precipitation over tropical and subtropical oceans consists of two dominant modes of rainfall systems, deep systems and congestus. A rough estimate of shallow mode contribution against the total heating is about 46.7 % for the average tropical oceans, which is substantially larger than 23.7 % over tropical land. While cumulus congestus heating linearly correlates with the SST, deep mode is dynamically bounded by large-scale subsidence. It is notable that substantial amount of rain, as large as 2.38 mm day-1 in average, is brought from congestus clouds under the large-scale subsiding circulation. It is also notable that even in the region with SST warmer than 28 oC, large-scale subsidence effectively suppresses the deep convection, remaining the heating by congestus clouds. Our results support that the entrainment of mid-to-lower-tropospheric dry air, which accompanies the large

  4. Effects of Drought, Pest Pressure and Light Availability on Seedling Establishment and Growth: Their Role for Distribution of Tree Species across a Tropical Rainfall Gradient

    Science.gov (United States)

    Gaviria, Julian; Engelbrecht, Bettina M. J.

    2015-01-01

    Tree species distributions associated with rainfall are among the most prominent patterns in tropical forests. Understanding the mechanisms shaping these patterns is important to project impacts of global climate change on tree distributions and diversity in the tropics. Beside direct effects of water availability, additional factors co-varying with rainfall have been hypothesized to play an important role, including pest pressure and light availability. While low water availability is expected to exclude drought-intolerant wet forest species from drier forests (physiological tolerance hypothesis), high pest pressure or low light availability are hypothesized to exclude dry forest species from wetter forests (pest pressure gradient and light availability hypothesis, respectively). To test these hypotheses at the seed-to-seedling transition, the potentially most critical stage for species discrimination, we conducted a reciprocal transplant experiment combined with a pest exclosure treatment at a wet and a dry forest site in Panama with seeds of 26 species with contrasting origin. Establishment success after one year did not reflect species distribution patterns. However, in the wet forest, wet origin species had a home advantage over dry forest species through higher growth rates. At the same time, drought limited survival of wet origin species in the dry forest, supporting the physiological tolerance hypothesis. Together these processes sort species over longer time frames, and exclude species outside their respective home range. Although we found pronounced effects of pests and some effects of light availability on the seedlings, they did not corroborate the pest pressure nor light availability hypotheses at the seed-to-seedling transition. Our results underline that changes in water availability due to climate change will have direct consequences on tree regeneration and distributions along tropical rainfall gradients, while indirect effects of light and pests

  5. The bi-decadal rainfall cycle, Southern Annular Mode and tropical cyclones over the Limpopo River Basin, southern Africa

    CSIR Research Space (South Africa)

    Malherbe, J

    2014-06-01

    Full Text Available contribution to rainfall by tropical cyclones and depressions. The findings suggest that a broadening of the Hadley circulation underpinned by an anomalous anticyclonic pattern to the east of southern Africa altered tropospheric steering flow, relative...

  6. Probabilistic Analysis of Cut-Slope Stability for Tropical Red Clay of Depok, West Java as an Effect of Rainfall Duration and Intensity

    Directory of Open Access Journals (Sweden)

    Hakim Sagitaningrum Fathiyah

    2018-01-01

    Full Text Available Landslide in Indonesia, specifically in Java island, occurs during rainy seasons. In Java island, it is known that the tropical red clay has the ability to stand at steep angles, while in stability analysis due to rainfall, practitioners only consider the rise of groundwater table. Previous studies states that one of the factor affecting factor of safety (FS for tropical red clay slopes is the formation of saturated zones due to matric suction. This research studies the effect of rainfall intensity and duration to FS of cut-slopes as parametric study with probabilistic analysis for different height of 10m, 20m, and 30m also slope angles of 27°, 45°, 55°, and 70°. Rainfall parameter are taken from FTUI rainfall station for advanced pattern and three-days duration of rain. Analysis of seepage uses SEEP/W and slope stability uses SLOPE/W. It is known that the significant increase of probability of failure due to the three-days rainfall is achieved at the 10m height and 70°-angled slope. Increase of the probability of failure is mainly due to rainfall infiltration which saturates the surface and pore water pressure increase until certain time where infiltration stops and turn into surface run-off.

  7. Micro-Physical characterisation of Convective & Stratiform Rainfall at Tropics

    Science.gov (United States)

    Sreekanth, T. S.

    Large Micro-Physical characterisation of Convective & Stratiform Rainfall at Tropics begin{center} begin{center} Sreekanth T S*, Suby Symon*, G. Mohan Kumar (1) , and V Sasi Kumar (2) *Centre for Earth Science Studies, Akkulam, Thiruvananthapuram (1) D-330, Swathi Nagar, West Fort, Thiruvananthapuram 695023 (2) 32. NCC Nagar, Peroorkada, Thiruvananthapuram ABSTRACT Micro-physical parameters of rainfall such as rain drop size & fall speed distribution, mass weighted mean diameter, Total no. of rain drops, Normalisation parameters for rain intensity, maximum & minimum drop diameter from different rain intensity ranges, from both stratiform and convective rain events were analysed. Convective -Stratiform classification was done by the method followed by Testud et al (2001) and as an additional information electrical behaviour of clouds from Atmospheric Electric Field Mill was also used. Events which cannot be included in both types are termed as 'mixed precipitation' and identified separately. For the three years 2011, 2012 & 2013, rain events from both convective & stratiform origin are identified from three seasons viz Pre-Monsoon (March-May), Monsoon (June-September) and Post-Monsoon (October-December). Micro-physical characterisation was done for each rain events and analysed. Ground based and radar observations were made and classification of stratiform and convective rainfall was done by the method followed by Testud et al (2001). Radar bright band and non bright band analysis was done for confimation of stratifom and convective rain respectievely. Atmospheric electric field data from electric field mill is also used for confirmation of convection during convective events. Statistical analyses revealed that the standard deviation of rain drop size in higher rain rates are higher than in lower rain rates. Normalised drop size distribution is ploted for selected events from both forms. Inter relations between various precipitation parameters were analysed in three

  8. A comparative study of mixed exponential and Weibull distributions in a stochastic model replicating a tropical rainfall process

    Science.gov (United States)

    Abas, Norzaida; Daud, Zalina M.; Yusof, Fadhilah

    2014-11-01

    A stochastic rainfall model is presented for the generation of hourly rainfall data in an urban area in Malaysia. In view of the high temporal and spatial variability of rainfall within the tropical rain belt, the Spatial-Temporal Neyman-Scott Rectangular Pulse model was used. The model, which is governed by the Neyman-Scott process, employs a reasonable number of parameters to represent the physical attributes of rainfall. A common approach is to attach each attribute to a mathematical distribution. With respect to rain cell intensity, this study proposes the use of a mixed exponential distribution. The performance of the proposed model was compared to a model that employs the Weibull distribution. Hourly and daily rainfall data from four stations in the Damansara River basin in Malaysia were used as input to the models, and simulations of hourly series were performed for an independent site within the basin. The performance of the models was assessed based on how closely the statistical characteristics of the simulated series resembled the statistics of the observed series. The findings obtained based on graphical representation revealed that the statistical characteristics of the simulated series for both models compared reasonably well with the observed series. However, a further assessment using the AIC, BIC and RMSE showed that the proposed model yields better results. The results of this study indicate that for tropical climates, the proposed model, using a mixed exponential distribution, is the best choice for generation of synthetic data for ungauged sites or for sites with insufficient data within the limit of the fitted region.

  9. An assessment of the performance of global rainfall estimates without ground-based observations

    Directory of Open Access Journals (Sweden)

    C. Massari

    2017-09-01

    Full Text Available Satellite-based rainfall estimates over land have great potential for a wide range of applications, but their validation is challenging due to the scarcity of ground-based observations of rainfall in many areas of the planet. Recent studies have suggested the use of triple collocation (TC to characterize uncertainties associated with rainfall estimates by using three collocated rainfall products. However, TC requires the simultaneous availability of three products with mutually uncorrelated errors, a requirement which is difficult to satisfy with current global precipitation data sets. In this study, a recently developed method for rainfall estimation from soil moisture observations, SM2RAIN, is demonstrated to facilitate the accurate application of TC within triplets containing two state-of-the-art satellite rainfall estimates and a reanalysis product. The validity of different TC assumptions are indirectly tested via a high-quality ground rainfall product over the contiguous United States (CONUS, showing that SM2RAIN can provide a truly independent source of rainfall accumulation information which uniquely satisfies the assumptions underlying TC. On this basis, TC is applied with SM2RAIN on a global scale in an optimal configuration to calculate, for the first time, reliable global correlations (vs. an unknown truth of the aforementioned products without using a ground benchmark data set. The analysis is carried out during the period 2007–2012 using daily rainfall accumulation products obtained at 1° × 1° spatial resolution. Results convey the relatively high performance of the satellite rainfall estimates in eastern North and South America, southern Africa, southern and eastern Asia, eastern Australia, and southern Europe, as well as complementary performances between the reanalysis product and SM2RAIN, with the first performing reasonably well in the Northern Hemisphere and the second providing very good performance in the Southern

  10. Global Warming Induced Changes in Rainfall Characteristics in IPCC AR5 Models

    Science.gov (United States)

    Lau, William K. M.; Wu, Jenny, H.-T.; Kim, Kyu-Myong

    2012-01-01

    Changes in rainfall characteristic induced by global warming are examined from outputs of IPCC AR5 models. Different scenarios of climate warming including a high emissions scenario (RCP 8.5), a medium mitigation scenario (RCP 4.5), and 1% per year CO2 increase are compared to 20th century simulations (historical). Results show that even though the spatial distribution of monthly rainfall anomalies vary greatly among models, the ensemble mean from a sizable sample (about 10) of AR5 models show a robust signal attributable to GHG warming featuring a shift in the global rainfall probability distribution function (PDF) with significant increase (>100%) in very heavy rain, reduction (10-20% ) in moderate rain and increase in light to very light rains. Changes in extreme rainfall as a function of seasons and latitudes are also examined, and are similar to the non-seasonal stratified data, but with more specific spatial dependence. These results are consistent from TRMM and GPCP rainfall observations suggesting that extreme rainfall events are occurring more frequently with wet areas getting wetter and dry-area-getting drier in a GHG induced warmer climate.

  11. A TRMM-Calibrated Infrared Rainfall Algorithm Applied Over Brazil

    Science.gov (United States)

    Negri, A. J.; Xu, L.; Adler, R. F.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The development of a satellite infrared technique for estimating convective and stratiform rainfall and its application in studying the diurnal variability of rainfall in Amazonia are presented. The Convective-Stratiform. Technique, calibrated by coincident, physically retrieved rain rates from the Tropical Rain Measuring Mission (TRMM) Microwave Imager (TMI), is applied during January to April 1999 over northern South America. The diurnal cycle of rainfall, as well as the division between convective and stratiform rainfall is presented. Results compare well (a one-hour lag) with the diurnal cycle derived from Tropical Ocean-Global Atmosphere (TOGA) radar-estimated rainfall in Rondonia. The satellite estimates reveal that the convective rain constitutes, in the mean, 24% of the rain area while accounting for 67% of the rain volume. The effects of geography (rivers, lakes, coasts) and topography on the diurnal cycle of convection are examined. In particular, the Amazon River, downstream of Manaus, is shown to both enhance early morning rainfall and inhibit afternoon convection. Monthly estimates from this technique, dubbed CST/TMI, are verified over a dense rain gage network in the state of Ceara, in northeast Brazil. The CST/TMI showed a high bias equal to +33% of the gage mean, indicating that possibly the TMI estimates alone are also high. The root mean square difference (after removal of the bias) equaled 36.6% of the gage mean. The correlation coefficient was 0.77 based on 72 station-months.

  12. Global Warming Attenuates the Tropical Atlantic-Pacific Teleconnection

    Science.gov (United States)

    Jia, Fan; Wu, Lixin; Gan, Bolan; Cai, Wenju

    2016-01-01

    Changes in global sea surface temperature (SST) since the end of last century display a pattern of widespread warming intercepted by cooling in the eastern equatorial Pacific and western coasts of the American continent. Studies have suggested that the cooling in the eastern equatorial Pacific may be partly induced by warming in the North Atlantic. However, it remains unknown how stable this inter-tropical teleconnection will be under global warming. Here we show that the inter-tropical teleconnection from the tropical Atlantic to Pacific weakens substantially as the CO2 concentration increases. This reduced impact is related to the El Niño-like warming of the tropical Pacific mean state, which leads to limited seasonal migration of the Pacific inter-tropical convergence zone (ITCZ) and weakened ocean heat transport. A fast decay of the tropical Atlantic SST anomalies in a warmer climate also contributes to the weakened teleconnection. Our study suggests that as greenhouse warming continues, the trend in the tropical Pacific as well as the development of ENSO will be less frequently interrupted by the Atlantic because of this attenuation. The weakened teleconnection is also supported by CMIP5 models, although only a few of these models can capture this inter-tropical teleconnection. PMID:26838053

  13. Global Warming Attenuates the Tropical Atlantic-Pacific Teleconnection.

    Science.gov (United States)

    Jia, Fan; Wu, Lixin; Gan, Bolan; Cai, Wenju

    2016-02-03

    Changes in global sea surface temperature (SST) since the end of last century display a pattern of widespread warming intercepted by cooling in the eastern equatorial Pacific and western coasts of the American continent. Studies have suggested that the cooling in the eastern equatorial Pacific may be partly induced by warming in the North Atlantic. However, it remains unknown how stable this inter-tropical teleconnection will be under global warming. Here we show that the inter-tropical teleconnection from the tropical Atlantic to Pacific weakens substantially as the CO2 concentration increases. This reduced impact is related to the El Niño-like warming of the tropical Pacific mean state, which leads to limited seasonal migration of the Pacific inter-tropical convergence zone (ITCZ) and weakened ocean heat transport. A fast decay of the tropical Atlantic SST anomalies in a warmer climate also contributes to the weakened teleconnection. Our study suggests that as greenhouse warming continues, the trend in the tropical Pacific as well as the development of ENSO will be less frequently interrupted by the Atlantic because of this attenuation. The weakened teleconnection is also supported by CMIP5 models, although only a few of these models can capture this inter-tropical teleconnection.

  14. Tropical forest policies for the global climate

    International Nuclear Information System (INIS)

    De Groot, W.T.; Kamminga, E.M.

    1995-01-01

    A summary is given of the approach and findings of the NRP project 'Local Actors and Global Tree Cover Policies'. The aim of this project was to identify the most effective and efficient options for global climate policies focusing on the tropical forest. Tropical deforestation is a process with very complex and variable causes. In the project's conclusions, therefore, much care has been given to arrive at a coherent image of what really counts most in the myriad of factors, actors, policy levels and policy options. 5 refs

  15. Mechanisms of northeastern Brazil rainfall anomalies due to Southern Tropical Atlantic variability

    Science.gov (United States)

    Neelin, J.; Su, H.

    2004-05-01

    Observational studies have shown that the rainfall anomalies in eastern equatorial South America, including Nordeste Brazil, have a positive correlation with tropical southern Atlantic sea surface temperature (SST) anomalies. Such relationships are reproduced in model simulations with the quasi-equilibrium tropical circulation model (QTCM), which includes a simple land model. A suite of model ensemble experiments is analysed using observed SST over the tropical oceans, the tropical Atlantic and the tropical southern Atlantic (30S-0), respectively (with climatological SST in the remainder of the oceans). Warm tropical south Atlantic SST anomalies yield positive precipitation anomalies over the Nordeste and the southern edge of the Atlantic marine intertropical convergence zone (ITCZ). Mechanisms associated with moisture variations are responsible for the land precipitation changes. Increases in moisture over the Atlantic cause positive anomalies in moisture advection, spreading increased moisture downwind. Where the basic state is far from the convective stability threshold, moisture changes have little effect, but the margins of the climatological convection zone are affected. The increased moisture supply due to advection is enhanced by increases in low-level convergence required by moist static energy balances. The moisture convergence term is several times larger, but experiments altering the moisture advection confirm that the feedback is initiated by wind acting on moisture gradient. This mechanism has several features in common with the recently published "upped-ante" mechanism for El Nino impacts on this region. In that case, the moisture gradient is initiated by warm free tropospheric temperature anomalies increasing the typical value of low-level moisture required to sustain convection in the convection zones. Both mechanisms suggest the usefulness of coordinating ocean and land in situ observations of boundary layer moisture.

  16. Sensitivity of Rainfall Extremes Under Warming Climate in Urban India

    Science.gov (United States)

    Ali, H.; Mishra, V.

    2017-12-01

    Extreme rainfall events in urban India halted transportation, damaged infrastructure, and affected human lives. Rainfall extremes are projected to increase under the future climate. We evaluated the relationship (scaling) between rainfall extremes at different temporal resolutions (daily, 3-hourly, and 30 minutes), daily dewpoint temperature (DPT) and daily air temperature at 850 hPa (T850) for 23 urban areas in India. Daily rainfall extremes obtained from Global Surface Summary of Day Data (GSOD) showed positive regression slopes for most of the cities with median of 14%/K for the period of 1979-2013 for DPT and T850, which is higher than Clausius-Clapeyron (C-C) rate ( 7%). Moreover, sub-daily rainfall extremes are more sensitive to both DPT and T850. For instance, 3-hourly rainfall extremes obtained from Tropical Rainfall Measurement Mission (TRMM 3B42 V7) showed regression slopes more than 16%/K aginst DPT and T850 for the period of 1998-2015. Half-hourly rainfall extremes from the Integrated Multi-satellitE Retrievals (IMERGE) of Global precipitation mission (GPM) also showed higher sensitivity against changes in DPT and T850. The super scaling of rainfall extremes against changes in DPT and T850 can be attributed to convective nature of precipitation in India. Our results show that urban India may witness non-stationary rainfall extremes, which, in turn will affect stromwater designs and frequency and magniture of urban flooding.

  17. The interaction rainfall vs. weight as determinant of total mercury concentration in fish from a tropical estuary

    International Nuclear Information System (INIS)

    Barletta, M.; Lucena, L.R.R.; Costa, M.F.; Barbosa-Cintra, S.C.T.; Cysneiros, F.J.A.

    2012-01-01

    Mercury loads in tropical estuaries are largely controlled by the rainfall regime that may cause biodilution due to increased amounts of organic matter (both live and non-living) in the system. Top predators, as Trichiurus lepturus, reflect the changing mercury bioavailability situations in their muscle tissues. In this work two variables [fish weight (g) and monthly total rainfall (mm)] are presented as being important predictors of total mercury concentration (T-Hg) in fish muscle. These important explanatory variables were identified by a Weibull Regression model, which best fit the dataset. A predictive model using readily available variables as rainfall is important, and can be applied for human and ecological health assessments and decisions. The main contribution will be to further protect vulnerable groups as pregnant women and children. Nature conservation directives could also improve by considering monitoring sample designs that include this hypothesis, helping to establish complete and detailed mercury contamination scenarios. - Highlights: ► Questions previous statistical approaches that used heterocedastic data after transformation. ► Corroborates other works that pointed seasonal variations of the mercury burden in fish muscle. ► Defines rainfall as a major driver of mercury in predatory fish at tropical latitudes. ► Progresses in environmental data analysis and steps forward from previous approaches to Hg in fish. ► Proposes a model to predict scenarios of Hg in fish as a function of biological and environmental variables. - The Weibull Regression model was the most appropriate fit for T-Hg in fish and therefore more ecological insights emerged from previous data.

  18. Sea surface temperature inter-hemispheric dipole and its relation to tropical precipitation

    International Nuclear Information System (INIS)

    Sun, Cheng; Li, Jianping; Ding, Ruiqiang; Jin, Fei-Fei

    2013-01-01

    Using different SST datasets, the variability of zonal mean SSTs is investigated. Besides the global warming mode, the variability is dominated by one equatorially symmetric mode and one antisymmetric mode. The former is most pronounced in the Pacific and dominated by interannual variability, corresponding to the ENSO signature. The latter features an inter-hemispheric dipole-like pattern and is referred to as the SST inter-hemispheric dipole (SSTID). The SSTID and Atlantic multidecadal oscillation are found to be related but distinct in the spatial pattern. Observational analysis shows that the SSTID significantly influences tropical rainfall and contributes to the north–south asymmetry of tropical precipitation on multidecadal timescales. The observed SSTID and its relation to the tropical rainfall are realistically reproduced in a control simulation with the UKMO-HadCM3 climate model. Results from the UKMO-HadCM3 simulation suggest that the SSTID is related to the variability of the global ocean northward cross-equatorial heat transport. (letter)

  19. Significant influences of global mean temperature and ENSO on extreme rainfall over Southeast Asia

    Science.gov (United States)

    Villafuerte, Marcelino, II; Matsumoto, Jun

    2014-05-01

    Along with the increasing concerns on the consequences of global warming, and the accumulating records of disaster related to heavy rainfall events in Southeast Asia, this study investigates whether a direct link can be detected between the rising global mean temperature, as well as the El Niño-Southern Oscillation (ENSO), and extreme rainfall over the region. The maximum likelihood modeling that allows incorporating covariates on the location parameter of the generalized extreme value (GEV) distribution is employed. The GEV model is fitted to annual and seasonal rainfall extremes, which were taken from a high-resolution gauge-based gridded daily precipitation data covering a span of 57 years (1951-2007). Nonstationarities in extreme rainfall are detected over the central parts of Indochina Peninsula, eastern coasts of central Vietnam, northwest of the Sumatra Island, inland portions of Borneo Island, and on the northeastern and southwestern coasts of the Philippines. These nonstationarities in extreme rainfall are directly linked to near-surface global mean temperature and ENSO. In particular, the study reveals that a kelvin increase in global mean temperature anomaly can lead to an increase of 30% to even greater than 45% in annual maximum 1-day rainfall, which were observed pronouncedly over central Vietnam, southern coast of Myanmar, northwestern sections of Thailand, northwestern tip of Sumatra, central portions of Malaysia, and the Visayas island in central Philippines. Furthermore, a pronounced ENSO influence manifested on the seasonal maximum 1-day rainfall; a northward progression of 10%-15% drier condition over Southeast Asia as the El Niño develops from summer to winter is revealed. It is important therefore, to consider the results obtained here for water resources management as well as for adaptation planning to minimize the potential adverse impact of global warming, particularly on extreme rainfall and its associated flood risk over the region

  20. Forecasting Global Rainfall for Points Using ECMWF's Global Ensemble and Its Applications in Flood Forecasting

    Science.gov (United States)

    Pillosu, F. M.; Hewson, T.; Mazzetti, C.

    2017-12-01

    Prediction of local extreme rainfall has historically been the remit of nowcasting and high resolution limited area modelling, which represent only limited areas, may not be spatially accurate, give reasonable results only for limited lead times (based statistical post-processing software ("ecPoint-Rainfall, ecPR", operational in 2017) that uses ECMWF Ensemble (ENS) output to deliver global probabilistic rainfall forecasts for points up to day 10. Firstly, ecPR applies a new notion of "remote calibration", which 1) allows us to replicate a multi-centennial training period using only one year of data, and 2) provides forecasts for anywhere in the world. Secondly, the software applies an understanding of how different rainfall generation mechanisms lead to different degrees of sub-grid variability in rainfall totals, and of where biases in the model can be improved upon. A long-term verification has shown that the post-processed rainfall has better reliability and resolution at every lead time if compared with ENS, and for large totals, ecPR outputs have the same skill at day 5 that the raw ENS has at day 1 (ROC area metric). ecPR could be used as input for hydrological models if its probabilistic output is modified accordingly to the inputs requirements for hydrological models. Indeed, ecPR does not provide information on where the highest total is likely to occur inside the gridbox, nor on the spatial distribution of rainfall values nearby. "Scenario forecasts" could be a solution. They are derived from locating the rainfall peak in sensitive positions (e.g. urban areas), and then redistributing the remaining quantities in the gridbox modifying traditional spatial correlation characterization methodologies (e.g. variogram analysis) in order to take account, for instance, of the type of rainfall forecast (stratiform, convective). Such an approach could be a turning point in the field of medium-range global real-time riverine flood forecasts. This presentation will

  1. Observed magnified runoff response to rainfall intensification under global warming

    International Nuclear Information System (INIS)

    Huang, Jr-Chuan; Lee, Tsung-Yu; Lee, Jun-Yi

    2014-01-01

    Runoff response to rainfall intensification under global warming is crucial, but is poorly discussed due to the limited data length and human alteration. Historical rainfall and runoff records in pristine catchments in Taiwan were investigated through trend analysis and cross temperature difference analysis. Trend analysis showed that both rainfall and runoff in the 99.9-percentile have been significantly increasing in terms of frequency and intensity over the past four decades. Cross temperature difference analysis quantified that the rainfall and runoff extremes (including the 99.0–99.9-percentiles) may increase by 69.5% and 99.8%, respectively, under a future scenario of 1  ° C increase in temperature. This increase in intensity resembles the increase in intensity observed between 1971–1990 and 1991–2010. The amplified runoff response can be related to the limited catchment storage capacity being preoccupied by rainfall extremes. The quantified temperature effect on rainfall and runoff intensification can be a strong basis for designing scenarios, confirming and fusing GCMs’ results. In addition, the runoff amplification should be a warning for other regions with significant rainfall intensification. Appropriate strategies are indispensable and urgently needed to maintain and protect the development of societies. (paper)

  2. Rethinking Indian monsoon rainfall prediction in the context of recent global warming

    Science.gov (United States)

    Wang, Bin; Xiang, Baoqiang; Li, Juan; Webster, Peter J.; Rajeevan, Madhavan N.; Liu, Jian; Ha, Kyung-Ja

    2015-01-01

    Prediction of Indian summer monsoon rainfall (ISMR) is at the heart of tropical climate prediction. Despite enormous progress having been made in predicting ISMR since 1886, the operational forecasts during recent decades (1989–2012) have little skill. Here we show, with both dynamical and physical–empirical models, that this recent failure is largely due to the models' inability to capture new predictability sources emerging during recent global warming, that is, the development of the central-Pacific El Nino-Southern Oscillation (CP–ENSO), the rapid deepening of the Asian Low and the strengthening of North and South Pacific Highs during boreal spring. A physical–empirical model that captures these new predictors can produce an independent forecast skill of 0.51 for 1989–2012 and a 92-year retrospective forecast skill of 0.64 for 1921–2012. The recent low skills of the dynamical models are attributed to deficiencies in capturing the developing CP–ENSO and anomalous Asian Low. The results reveal a considerable gap between ISMR prediction skill and predictability. PMID:25981180

  3. Strategies for global monitoring of tropical forests

    Science.gov (United States)

    Raymond L. Czaplewski

    1994-01-01

    The Food and Agricultural Organization (FAO) of the United Nations is conducting a global assessment of tropical forest resources, which will be accomplished by mid-1992. This assessment requires, in part, estimates of the total area of tropical forest cover in 1990 and the rate of change in forest cover between 1980 and 1990. The following are described here: (1) the...

  4. Mixed memory, (non) Hurst effect, and maximum entropy of rainfall in the tropical Andes

    Science.gov (United States)

    Poveda, Germán

    2011-02-01

    Diverse linear and nonlinear statistical parameters of rainfall under aggregation in time and the kind of temporal memory are investigated. Data sets from the Andes of Colombia at different resolutions (15 min and 1-h), and record lengths (21 months and 8-40 years) are used. A mixture of two timescales is found in the autocorrelation and autoinformation functions, with short-term memory holding for time lags less than 15-30 min, and long-term memory onwards. Consistently, rainfall variance exhibits different temporal scaling regimes separated at 15-30 min and 24 h. Tests for the Hurst effect evidence the frailty of the R/ S approach in discerning the kind of memory in high resolution rainfall, whereas rigorous statistical tests for short-memory processes do reject the existence of the Hurst effect. Rainfall information entropy grows as a power law of aggregation time, S( T) ˜ Tβ with = 0.51, up to a timescale, TMaxEnt (70-202 h), at which entropy saturates, with β = 0 onwards. Maximum entropy is reached through a dynamic Generalized Pareto distribution, consistently with the maximum information-entropy principle for heavy-tailed random variables, and with its asymptotically infinitely divisible property. The dynamics towards the limit distribution is quantified. Tsallis q-entropies also exhibit power laws with T, such that Sq( T) ˜ Tβ( q) , with β( q) ⩽ 0 for q ⩽ 0, and β( q) ≃ 0.5 for q ⩾ 1. No clear patterns are found in the geographic distribution within and among the statistical parameters studied, confirming the strong variability of tropical Andean rainfall.

  5. Interannual Variability of the Tropical Water Cycle: Capabilities in the TRMM Era and Challenges for GPM

    Science.gov (United States)

    Robertson, Franklin R.

    2003-01-01

    closely with the TMI time series, yet the PR rainfall interannual variability (and attenuation derived predominantly from reflectivity) differs even in sign. We will explore these apparent inconsistencies and detail their impact on estimates of how ENSO events perturb the tropical rainfall. We will place these results in perspective by considering requirements for precipitation accuracy for global climate variability and change studies involving ENSO, monsoon dynamics and variations, and climate model improvement and validation. The discussion will conclude with an assessment of the implications of these findings for Global Precipitation Mission (GPM) requirements.

  6. Congo Basin rainfall climatology: can we believe the climate models?

    Science.gov (United States)

    Washington, Richard; James, Rachel; Pearce, Helen; Pokam, Wilfried M; Moufouma-Okia, Wilfran

    2013-01-01

    The Congo Basin is one of three key convective regions on the planet which, during the transition seasons, dominates global tropical rainfall. There is little agreement as to the distribution and quantity of rainfall across the basin with datasets differing by an order of magnitude in some seasons. The location of maximum rainfall is in the far eastern sector of the basin in some datasets but the far western edge of the basin in others during March to May. There is no consistent pattern to this rainfall distribution in satellite or model datasets. Resolving these differences is difficult without ground-based data. Moisture flux nevertheless emerges as a useful variable with which to study these differences. Climate models with weak (strong) or even divergent moisture flux over the basin are dry (wet). The paper suggests an approach, via a targeted field campaign, for generating useful climate information with which to confront rainfall products and climate models.

  7. On the Characterization of Rainfall Associated with U.S. Landfalling North Atlantic Tropical Cyclones Based on Satellite Data and Numerical Weather Prediction Outputs

    Science.gov (United States)

    Luitel, B. N.; Villarini, G.; Vecchi, G. A.

    2014-12-01

    When we talk about tropical cyclones (TCs), the first things that come to mind are strong winds and storm surge affecting the coastal areas. However, according to the Federal Emergency Management Agency (FEMA) 59% of the deaths caused by TCs since 1970 is due to fresh water flooding. Heavy rainfall associated with TCs accounts for 13% of heavy rainfall events nationwide for the June-October months, with this percentage being much higher if the focus is on the eastern and southern United States. This study focuses on the evaluation of precipitation associated with the North Atlantic TCs that affected the continental United States over the period 2007 - 2012. We evaluate the rainfall associated with these TCs using four satellite based rainfall products: Tropical Rainfall Measuring Mission - Multi-satellite Precipitation Analysis (TMPA; both real-time and research version); Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN); Climate Prediction Center (CPC) MORPHing technique (CMORPH). As a reference data we use gridded rainfall provided by CPC (Daily US Unified Gauge-Based Analysis of Precipitation). Rainfall fields from each of these satellite products are compared to the reference data, providing valuable information about the realism of these products in reproducing the rainfall associated with TCs affecting the continental United States. In addition to the satellite products, we evaluate the forecasted rainfall produced by five state-of-the-art numerical weather prediction (NWP) models: European Centre for Medium-Range Weather Forecasts (ECMWF), UK Met Office (UKMO), National Centers for Environmental Prediction (NCEP), China Meteorological Administration (CMA), and Canadian Meteorological Center (CMC). The skill of these models in reproducing TC rainfall is quantified for different lead times, and discussed in light of the performance of the satellite products.

  8. Where do forests influence rainfall?

    Science.gov (United States)

    Wang-Erlandsson, Lan; van der Ent, Ruud; Fetzer, Ingo; Keys, Patrick; Savenije, Hubert; Gordon, Line

    2017-04-01

    Forests play a major role in hydrology. Not only by immediate control of soil moisture and streamflow, but also by regulating climate through evaporation (i.e., transpiration, interception, and soil evaporation). The process of evaporation travelling through the atmosphere and returning as precipitation on land is known as moisture recycling. Whether evaporation is recycled depends on wind direction and geography. Moisture recycling and forest change studies have primarily focused on either one region (e.g. the Amazon), or one biome type (e.g. tropical humid forests). We will advance this via a systematic global inter-comparison of forest change impacts on precipitation depending on both biome type and geographic location. The rainfall effects are studied for three contemporary forest changes: afforestation, deforestation, and replacement of mature forest by forest plantations. Furthermore, as there are indications in the literature that moisture recycling in some places intensifies during dry years, we will also compare the rainfall impacts of forest change between wet and dry years. We model forest change effects on evaporation using the global hydrological model STEAM and trace precipitation changes using the atmospheric moisture tracking scheme WAM-2layers. This research elucidates the role of geographical location of forest change driven modifications on rainfall as a function of the type of forest change and climatic conditions. These knowledge gains are important at a time of both rapid forest and climate change. Our conclusions nuance our understanding of how forests regulate climate and pinpoint hotspot regions for forest-rainfall coupling.

  9. Trends in total rainfall, heavy rain events, and number of dry days in San Juan, Puerto Rico, 1955-2009

    Directory of Open Access Journals (Sweden)

    Pablo A. Méndez-Lázaro

    2014-06-01

    Full Text Available Climate variability is a threat to water resources on a global scale and in tropical regions in particular. Rainfall events and patterns are associated worldwide with natural disasters like mudslides and landslides, meteorological phenomena like hurricanes, risks/hazards including severe storms and flooding, and health effects like vector-borne and waterborne diseases. Therefore, in the context of global change, research on rainfall patterns and their variations presents a challenge to the scientific community. The main objective of this research was to analyze recent trends in precipitation in the San Juan metropolitan area in Puerto Rico and their relationship with regional and global climate variations. The statistical trend analysis of precipitation was performed with the nonparametric Mann-Kendall test. All stations showed positive trends of increasing annual rainfall between 1955 and 2009. The winter months of January and February had an increase in monthly rainfall, although winter is normally a dry season on the island. Regarding dry days, we found an annual decreasing trend, also specifically in winter. In terms of numbers of severe rainfall events described as more than 78 mm in 24 hours, 63 episodes have occurred in the San Juan area in the last decade, specifically in the 2000-2009 time frame, with an average of 6 severe events per year. The majority of the episodes occurred in summer, more frequently in August and September. These results can be seen as a clear example of the complexity of spatial and temporal of rainfall distribution over a tropical city.

  10. Tropical Cyclones as a Driver of Global Sediment Flux

    Science.gov (United States)

    Leyland, J.; Darby, S. E.; Cohen, S.

    2017-12-01

    The world's rivers deliver 19 billion tonnes of sediment to the coastal zone annually. The sediment supplied to the coastal zone is of significant importance for a variety of reasons, for example in acting as a vector for nutrients as well as in supplying sediment to coastal landforms such as deltas and beaches that can buffer those landforms from erosion and flooding. A greater understanding of the factors governing sediment flux to the oceans is therefore a key research gap. The non-linear relationship between river discharge and sediment flux implies that the global sediment flux may be disproportionately driven by large floods. Indeed, in our recent empirical research we have demonstrated that changes in the track locations, frequency and intensity of tropical storms in recent decades exert a significant control on the sediment flux emanating from the Mekong River. Since other large rivers potentially affected by tropical storms are known to make a significant contribution to the global sediment flux, this raises the question of the extent to which such storms play a significant role in controlling sediment loads at the global scale. In this paper we address that question by employing a global hydrological model (WBMsed) in order to predict runoff and sediment load forced by recent historical climate scenarios `with' and `without' tropical cyclones. We compare the two scenarios to (i) make the first estimate of the global contribution of sediment load forced by tropical storms; (ii) evaluate how that contribution has varied in recent decades and to (iii) explore variations in tropical-storm driven sediment loads in selected major river basins that are significantly affected by such storms.

  11. Enhancement of seasonal prediction of East Asian summer rainfall related to the western tropical Pacific convection

    Science.gov (United States)

    Lee, D. Y.; Ahn, J. B.; Yoo, J. H.

    2014-12-01

    The prediction skills of climate model simulations in the western tropical Pacific (WTP) and East Asian region are assessed using the retrospective forecasts of seven state-of-the-art coupled models and their multi-model ensemble (MME) for boreal summers (June-August) during the period 1983-2005, along with corresponding observed and reanalyzed data. The prediction of summer rainfall anomalies in East Asia is difficult, while the WTP has a strong correlation between model prediction and observation. We focus on developing a new approach to further enhance the seasonal prediction skill for summer rainfall in East Asia and investigate the influence of convective activity in the WTP on East Asian summer rainfall. By analyzing the characteristics of the WTP convection, two distinct patterns associated with El Niño-Southern Oscillation (ENSO) developing and decaying modes are identified. Based on the multiple linear regression method, the East Asia Rainfall Index (EARI) is developed by using the interannual variability of the normalized Maritime continent-WTP indices (MPIs), as potentially useful predictors for rainfall prediction over East Asia, obtained from the above two main patterns. For East Asian summer rainfall, the EARI has superior performance to the East Asia summer monsoon index (EASMI) or each MP index (MPI). Therefore, the regressed rainfall from EARI also shows a strong relationship with the observed East Asian summer rainfall pattern. In addition, we evaluate the prediction skill of the East Asia reconstructed rainfall obtained by statistical-empirical approach using the cross-validated EARI from the individual models and their MME. The results show that the rainfalls reconstructed from simulations capture the general features of observed precipitation in East Asia quite well. This study convincingly demonstrates that rainfall prediction skill is considerably improved by using the statistical-empirical method compared to the dynamical models

  12. Air-sea interaction in the tropical Pacific Ocean

    Science.gov (United States)

    Allison, L. J.; Steranka, J.; Holub, R. J.; Hansen, J.; Godshall, F. A.; Prabhakara, C.

    1972-01-01

    Charts of 3-month sea surface temperature (SST) anomalies in the eastern tropical Pacific Ocean were produced for the period 1949 to 1970. The anomalies along the United States and South American west coasts and in the eastern tropical Pacific appeared to be oscillating in phase during this period. Similarly, the satellite-derived cloudiness for each of four quadrants of the Pacific Ocean (130 deg E to 100 deg W, 30 deg N to 25 deg S) appeared to be oscillating in phase. In addition, a global tropical cloudiness oscillation from 30 deg N to 30 deg S was noted from 1965 to 1970, by using monthly satellite television nephanalyses. The SST anomalies were found to have a good degree of correlation both positive and negative with the following monthly geophysical parameters: (1) satellite-derived cloudiness, (2) strength of the North and South Pacific semipermanent anticyclones, (3) tropical Pacific island rainfall, and (4) Darwin surface pressure. Several strong direct local and crossequatorial relationships were noted. In particular, the high degree of correlation between the tropical island rainfall and the SST anomalies (r = +0.93) permitted the derivation of SST's for the tropical Pacific back to 1905. The close occurrence of cold tropical SST and North Pacific 700-mb positive height anomalies with central United States drought conditions was noted.

  13. RAINFALL ANALYSIS IN KLANG RIVER BASIN USING CONTINUOUS WAVELET TRANSFORM

    Directory of Open Access Journals (Sweden)

    Celso A. G. Santos

    2016-01-01

    Full Text Available The rainfall characteristics within Klang River basin is analyzed by the continuous wavelet transform using monthly rainfall data (1997–2009 from a raingauge and also using daily rainfall data (1998–2013 from the Tropical Rainfall Measuring Mission (TRMM. The wavelet power spectrum showed that some frequency components were presented within the rainfall time series, but the observed time series is short to provide accurate information, thus the daily TRMM rainfall data were used. In such analysis, two main frequency components, i.e., 6 and 12 months, showed to be present during the entire period of 16 years. Such semiannual and annual frequencies were confirmed by the global wavelet power spectra. Finally, the modulation in the 8–16-month and 256– 512-day bands were examined by an average of all scales between 8 and 16 months, and 256 and 512 days, respectively, giving a measure of the average monthly/daily variance versus time, where the periods with low or high variance could be identified.

  14. Pre-exposure to drought increases the resistance of tropical forest soil bacterial communities to extended drought

    Science.gov (United States)

    Nicholas J. Bouskill; Hsiao Chien Lim; Sharon Borglin; Rohit Salve; Tana Wood; Whendee L. Silver; Eoin L. Brodie

    2013-01-01

    Global climate models project a decrease in the magnitude of precipitation in tropical regions. Changes in rainfall patterns have important implications for the moisture content and redox status of tropical soils, yet little is known about how these changes may affect microbial community structure. Specifically, does exposure to prior stress confer increased resistance...

  15. Warm Water Pools of the Western Caribbean and Eastern Tropical Pacific: Their Influence on Intraseasonal Rainfall Regimes and Tropical Storm Activity in Mexico

    Science.gov (United States)

    Douglas, A. V.; Englehart, P. J.

    2007-05-01

    A dipole in tropical cyclone development between the Caribbean and the eastern tropical Pacific will be examined relative to its affect on southern Mexican rainfall. With the change over in the AMO and PDO in 1994 and 1998, respectively, tropical storm genesis has been increasing in the Caribbean while declining in the tropical east Pacific. This dipole in tropical cyclone development appears to be related to changes in the pre storm season heat content of the two ocean basins (data Scripps Institution of Oceanography). Preliminary work indicates that if the Caribbean is warmer than the Pacific by late May the dipole will be accentuated with a pronounced decrease in tropical storms in the east Pacific with an early and prolonged season in the Caribbean. In recent years there appears to have been an increase in the intensity and duration of midsummer drought (Canicula) in Mexico associated with changes in the PDO and AMO. These long term ocean oscillations appear to control the dipole in the strength of the Caribbean and East Pacific warm pools. Mid summer drought is a normal occurrence in much of Mexico and Central America, but the intensified droughts of the recent period have stressed the agricultural community of the region. Based on preliminary work, it appears that the recent increased frequency of midsummer drought can be linked to a shift in the warmest pool from the East Pacific to the Caribbean.

  16. An aftereffect of global warming on tropical Pacific decadal variability

    Science.gov (United States)

    Zheng, Jian; Liu, Qinyu; Wang, Chuanyang

    2018-03-01

    Studies have shown that global warming over the past six decades can weaken the tropical Pacific Walker circulation and maintain the positive phase of the Interdecadal Pacific Oscillation (IPO). Based on observations and model simulations, another aftereffect of global warming on IPO is found. After removing linear trends (global warming signals) from observations, however, the tropical Pacific climate still exhibited some obvious differences between two IPO negative phases. The boreal winter (DJF) equatorial central-eastern Pacific sea surface temperature (SST) was colder during the 1999-2014 period (P2) than that during 1961-1976 (P1). This difference may have been a result of global warming nonlinear modulation of precipitation; i.e., in the climatological rainy region, the core area of the tropical Indo-western Pacific warm pool receives more precipitation through the "wet-get-wetter" mechanism. Positive precipitation anomalies in the warm pool during P2 are much stronger than those during P1, even after subtracting the linear trend. Corresponding to the differences of precipitation, the Pacific Walker circulation is stronger in P2 than in P1. Consequent easterly winds over the equatorial Pacific led to a colder equatorial eastern-central Pacific during P2. Therefore, tropical Pacific climate differences between the two negative IPO phases are aftereffects of global warming. These aftereffects are supported by the results of coupled climate model experiments, with and without global warming.

  17. Changes in hydro-meteorological conditions over tropical West Africa (1980-2015) and links to global climate

    Science.gov (United States)

    Ndehedehe, Christopher E.; Awange, Joseph L.; Agutu, Nathan O.; Okwuashi, Onuwa

    2018-03-01

    The role of global sea surface temperature (SST) anomalies in modulating rainfall in the African region has been widely studied and is now less debated. However, their impacts and links to terrestrial water storage (TWS) in general, have not been studied. This study presents the pioneer results of canonical correlation analysis (CCA) of TWS derived from both global reanalysis data (1980-2015) and GRACE (Gravity Recovery and Climate Experiment) (2002-2014) with SST fields. The main issues discussed include, (i) oceanic hot spots that impact on TWS over tropical West Africa (TWA) based on CCA, (ii) long term changes in model and global reanalysis data (soil moisture, TWS, and groundwater) and the influence of climate variability on these hydrological indicators, and (iii) the hydrological characteristics of the Equatorial region of Africa (i.e., the Congo basin) based on GRACE-derived TWS, river discharge, and precipitation. Results of the CCA diagnostics show that El-Niño Southern Oscillation related equatorial Pacific SST fluctuations is a major index of climate variability identified in the main portion of the CCA procedure that indicates a significant association with long term TWS reanalysis data over TWA (r = 0.50, ρ < 0.05). Based on Mann-Kendall's statistics, the study found fairly large long term declines (ρ < 0.05) in TWS and soil moisture (1982 - 2015), mostly over the Congo basin, which coincided with warming of the land surface and the surrounding oceans. Meanwhile, some parts of the Sahel show significant wetting (rainfall, soil moisture, groundwater, and TWS) trends during the same period (1982-2015) and aligns with the ongoing narratives of rainfall recovery in the region. Results of singular spectral analysis and regression confirm that multi-annual changes in the Congo River discharge explained a considerable proportion of variability in GRACE-hydrological signal over the Congo basin (r = 0.86 and R2 = 0.70, ρ < 0.05). Finally, leading

  18. Modelling rainfall interception by a lowland tropical rain forest in northeastern Puerto Rico

    Science.gov (United States)

    Schellekens, J.; Scatena, F. N.; Bruijnzeel, L. A.; Wickel, A. J.

    1999-12-01

    Recent surveys of tropical forest water use suggest that rainfall interception by the canopy is largest in wet maritime locations. To investigate the underlying processes at one such location—the Luquillo Experimental Forest in eastern Puerto Rico—66 days of detailed throughfall and above-canopy climatic data were collected in 1996 and analysed using the Rutter and Gash models of rainfall interception. Throughfall occurred on 80% of the days distributed over 80 rainfall events. Measured interception loss was 50% of gross precipitation. When Penman-Monteith based estimates for the wet canopy evaporation rate (0.11 mm h -1 on average) and a canopy storage of 1.15 mm were used, both models severely underestimated measured interception loss. A detailed analysis of four storms using the Rutter model showed that optimizing the model for the wet canopy evaporation component yielded much better results than increasing the canopy storage capacity. However, the Rutter model failed to properly estimate throughfall amounts during an exceptionally large event. The analytical model, on the other hand, was capable of representing interception during the extreme event, but once again optimizing wet canopy evaporation rates produced a much better fit than optimizing the canopy storage capacity. As such, the present results support the idea that it is primarily a high rate of evaporation from a wet canopy that is responsible for the observed high interception losses.

  19. A Robust Response of the Hadley Circulation to Global Warming

    Science.gov (United States)

    Lau, William K M.; Kim, Kyu-Myong

    2014-01-01

    Tropical rainfall is expected to increase in a warmer climate. Yet, recent studies have inferred that the Hadley Circulation (HC), which is primarily driven by latent heating from tropical rainfall, is weakened under global warming. Here, we show evidence of a robust intensification of the HC from analyses of 33 CMIP5 model projections under a scenario of 1 per year CO2 emission increase. The intensification is manifested in a deep-tropics squeeze, characterized by a pronounced increase in the zonal mean ascending motion in the mid and upper troposphere, a deepening and narrowing of the convective zone and enhanced rainfall in the deep tropics. These changes occur in conjunction with a rise in the region of maximum outflow of the HC, with accelerated meridional mass outflow in the uppermost branch of the HC away from the equator, coupled to a weakened inflow in the return branches of the HC in the lower troposphere.

  20. The Next-Generation Goddard Convective-Stratiform Heating Algorithm: New Retrievals for Tropical and Extra-tropical Environments

    Science.gov (United States)

    Lang, S. E.; Tao, W. K.; Iguchi, T.

    2017-12-01

    The Goddard Convective-Stratiform Heating (or CSH) algorithm has been used to estimate cloud heating over the global Tropics using TRMM rainfall data and a set of look-up-tables (LUTs) derived from a series of multi-week cloud-resolving model (CRM) simulations using the Goddard Cumulus Ensemble model (GCE). These simulations link satellite observables (i.e., surface rainfall and stratiform fraction) with cloud heating profiles, which are not directly observable. However, with the launch of GPM in 2014, the range over which such algorithms can be applied has been extended from the Tropics into higher latitudes, including cold season and synoptic weather systems. In response, the CSH algorithm and its LUTs have been revised both to improve the retrievals in the Tropics as well as expand retrievals to higher latitudes. For the Tropics, the GCE simulations used to build the LUTs were upgraded using larger 2D model domains (512 vs 256 km) and a new, improved Goddard 4-ice scheme as well as expanded with additional cases (4 land and 6 ocean in total). The new tropical LUTs are also re-built using additional metrics. Besides surface type, conditional rain intensity and stratiform fraction, the new LUTs incorporate echo top heights and low-level (0-2 km) vertical reflectivity gradients. CSH retrievals in the Tropics based on the new LUTs show significant differences from previous iterations using TRMM data or the old LUT metrics. For the Extra-tropics, 6 NU-WRF simulations of synoptic events (3 East Coast and 3 West Coast), including snow, were used to build new extra-tropical CSH LUTs. The LUT metrics for the extra-tropics are based on radar characteristics and freezing level height. The extra-tropical retrievals are evaluated with a self-consistency check approach using the model heating as `truth,' and freezing level height is used to transition CSH retrievals from the Tropics to Extra-tropics. Retrieved zonal average heating structures in the Extra-tropics are

  1. Statistical strategies for global monitoring of tropical forests

    Science.gov (United States)

    Raymond L. Czaplewski

    1991-01-01

    The Food and Agricultural Organization (FAO) of the United Nations is conducting a global assessment of tropical forest resources, which will be accomplished by mid-1992. This assessment requires, in part, estimates of the total area of tropical forest cover in 1990, and the rate of change in forest cover between 1980 and 1990. This paper describes: (1) the strategic...

  2. Rainfall variations over the Bay of Bengal and southern Tibetan Plateau and their connections with different tropical forcing during the early and middle summer

    Science.gov (United States)

    Wang, Z.; Yang, S.

    2016-12-01

    Strong rainfall always occurs in the South Asia region during the summer monsoon time (May-September), especially over the Bay of Bengal (BOB) and southern Tibetan Plateau (STP). The latent heating associated with such rainfall drives large-scale circulation and further influences weather and climate anomalies over the world. Few studies have focused on the intraseasonal difference of the rainfall interannual variations. Generally, two precipitation centers appear over the BOB and STP respectively, which are corresponding to the southern and northern upward branches of the South Asian summer monsoon. Our results indicate that the interannual variability of precipitation over the BOB is consistent with that over the STP during the early summer (May-June), but it is contrary during the midsummer (July-August). In early summer, precipitation over the BOB and STP is mainly regulated by the sea surface temperature (SST) anomalies in tropical eastern Pacific (corresponding to the ENSO). Warm SST anomalies in the eastern Pacific weaken upward motion and further precipitation over the BOB and STP through the modulation of zonal walker circulation. However, the tropical forcing exists over the western Maritime Continent (WMC) during midsummer, which induces the contrary variations of rainfall over the BOB and STP. Warm WMC SST anomalies lead to an anticyclone over the BOB, which is unfavourable to the BOB rainfall. While the southwesterlies at the northwest of that anticyclone favor moisture transport to the Tibetan Plateau and thus an enhancement in rainfall over the STP.

  3. a stochastic assessment of the effect of global warming on rainfall

    African Journals Online (AJOL)

    PROF EKWUEME

    KEYWORDS: Global Warming; Rainfall; Markov Process; Time Series; Agriculture. INTRODUCTION ... Central Region of Nigeria in the last three decades using .... r. Time. MSD: MAD: MAPE: Length: Moving Average. 68492.0. 229.3. 3806.2. 4.

  4. Rainfall and its seasonality over the Amazon in the 21st century as assessed by the coupled models for the IPCC AR4

    Science.gov (United States)

    Li, Wenhong; Fu, Rong; Dickinson, Robert E.

    2006-01-01

    The global climate models for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) predict very different changes of rainfall over the Amazon under the SRES A1B scenario for global climate change. Five of the eleven models predict an increase of annual rainfall, three models predict a decrease of rainfall, and the other three models predict no significant changes in the Amazon rainfall. We have further examined two models. The UKMO-HadCM3 model predicts an El Niño-like sea surface temperature (SST) change and warming in the northern tropical Atlantic which appear to enhance atmospheric subsidence and consequently reduce clouds over the Amazon. The resultant increase of surface solar absorption causes a stronger surface sensible heat flux and thus reduces relative humidity of the surface air. These changes decrease the rate and length of wet season rainfall and surface latent heat flux. This decreased wet season rainfall leads to drier soil during the subsequent dry season, which in turn can delay the transition from the dry to wet season. GISS-ER predicts a weaker SST warming in the western Pacific and the southern tropical Atlantic which increases moisture transport and hence rainfall in the Amazon. In the southern Amazon and Nordeste where the strongest rainfall increase occurs, the resultant higher soil moisture supports a higher surface latent heat flux during the dry and transition season and leads to an earlier wet season onset.

  5. A Robust Response of Precipitation to Global Warming from CMIP5 Models

    Science.gov (United States)

    Lau, K. -M.; Wu, H. -T.; Kim, K. -M.

    2012-01-01

    How precipitation responds to global warming is a major concern to society and a challenge to climate change research. Based on analyses of rainfall probability distribution functions of 14 state-of-the-art climate models, we find a robust, canonical global rainfall response to a triple CO2 warming scenario, featuring 100 250% more heavy rain, 5-10% less moderate rain, and 10-15% more very light or no-rain events. Regionally, a majority of the models project a consistent response with more heavy rain events over climatologically wet regions of the deep tropics, and more dry events over subtropical and tropical land areas. Results suggest that increased CO2 emissions induce basic structural changes in global rain systems, increasing risks of severe floods and droughts in preferred geographic locations worldwide.

  6. TRMM and Its Connection to the Global Water Cycle

    Science.gov (United States)

    Kummerow, Christian; Hong, Ye

    1999-01-01

    The importance of quantitative knowledge of tropical rainfall, its associated latent heating and variability is summarized in the context of the global hydrologic cycle. Much of the tropics is covered by oceans. What land exists, is covered largely by rainforests that are only thinly populated. The only way to adequately measure the global tropical rainfall for climate and general circulation models is from space. The TRMM orbit is inclined 35' leading to good sampling in the tropics and a rapid precession to study the diurnal cycle of precipitation. The precipitation instrument complement consists of the first rain radar to be flown in space (PR), a multi-channel passive microwave sensor (TMI) and a five-channel VIS/IR (VIRS) sensor. The precipitation radar operates at a frequency of 13.6 GHz. The swath width is 220 km, with a horizontal resolution of 4 km and the vertical resolution of 250 in. The minimum detectable signal from the precipitation radar has been measured at 17 dBZ. The TMI instrument is designed similar to the SSM/I with two important changes. The 22.235 GHz water vapor absorption channel of the SSM/I was moved to 21.3 GHz in order to avoid saturation in the tropics and 10.7 GHz V&H polarized channels were added to expand the dynamic range of rainfall estimates. The resolution of the TMI varies from 4.6 km at 85 GHz to 36 km at 10.7 GHz. The visible and infrared sensor (VIRS) measures radiation at 0.63, 1.6, 3.75, 10.8 and 12.0 microns. The spatial resolution of all five VIRS channels is 2 km at nadir. In addition to the three primary rainfall instruments, TRMM will also carry a Lightning Imaging Sensor (LIS) and a Clouds and the Earth's Radiant Energy System (CERES) instrument.

  7. Climate Prediction Center(CPC)Global Tropics Hazards and Benefits Assessment

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Tropics Hazards and Benefits Assessment (GTH) is an outlook product for the areas in the Tropics. Forecasts for the Week-1 and Week-2 period are given for...

  8. Tropical wetlands: A missing link in the global carbon cycle?

    Science.gov (United States)

    Sjögersten, Sofie; Black, Colin R; Evers, Stephanie; Hoyos-Santillan, Jorge; Wright, Emma L; Turner, Benjamin L

    2014-01-01

    Tropical wetlands are not included in Earth system models, despite being an important source of methane (CH4) and contributing a large fraction of carbon dioxide (CO2) emissions from land use, land use change, and forestry in the tropics. This review identifies a remarkable lack of data on the carbon balance and gas fluxes from undisturbed tropical wetlands, which limits the ability of global change models to make accurate predictions about future climate. We show that the available data on in situ carbon gas fluxes in undisturbed forested tropical wetlands indicate marked spatial and temporal variability in CO2 and CH4 emissions, with exceptionally large fluxes in Southeast Asia and the Neotropics. By upscaling short-term measurements, we calculate that approximately 90 ± 77 Tg CH4 year−1 and 4540 ± 1480 Tg CO2 year−1 are released from tropical wetlands globally. CH4 fluxes are greater from mineral than organic soils, whereas CO2 fluxes do not differ between soil types. The high CO2 and CH4 emissions are mirrored by high rates of net primary productivity and litter decay. Net ecosystem productivity was estimated to be greater in peat-forming wetlands than on mineral soils, but the available data are insufficient to construct reliable carbon balances or estimate gas fluxes at regional scales. We conclude that there is an urgent need for systematic data on carbon dynamics in tropical wetlands to provide a robust understanding of how they differ from well-studied northern wetlands and allow incorporation of tropical wetlands into global climate change models. PMID:26074666

  9. FROM RAINFALL DATA

    Directory of Open Access Journals (Sweden)

    Sisuru Sendanayake

    2015-01-01

    Full Text Available There are many correlations developed to predict incident solar radiation at a givenlocation developed based on geographical and meteorological parameters. However, allcorrelations depend on accurate measurement and availability of weather data such assunshine duration, cloud cover, relative humidity, maximum and minimumtemperatures etc, which essentially is a costly exercise in terms of equipment andlabour. Sri Lanka being a tropical island of latitudinal change of only 30 along thelength of the country, the meteorological factors govern the amount of incidentradiation. Considering the cloud formation and wind patterns over Sri Lanka as well asthe seasonal rainfall patterns, it can be observed that the mean number of rainy dayscan be used to predict the monthly average daily global radiation which can be used forcalculations in solar related activities conveniently.

  10. Thermodynamic ocean-atmosphere Coupling and the Predictability of Nordeste rainfall

    Science.gov (United States)

    Chang, P.; Saravanan, R.; Giannini, A.

    2003-04-01

    The interannual variability of rainfall in the northeastern region of Brazil, or Nordeste, is known to be very strongly correlated with sea surface temperature (SST) variability, of Atlantic and Pacific origin. For this reason the potential predictability of Nordeste rainfall is high. The current generation of state-of-the-art atmospheric models can replicate the observed rainfall variability with high skill when forced with the observed record of SST variability. The correlation between observed and modeled indices of Nordeste rainfall, in the AMIP-style integrations with two such models (NSIPP and CCM3) analyzed here, is of the order of 0.8, i.e. the models explain about 2/3 of the observed variability. Assuming that thermodynamic, ocean-atmosphere heat exchange plays the dominant role in tropical Atlantic SST variability on the seasonal to interannual time scale, we analyze its role in Nordeste rainfall predictability using an atmospheric general circulation model coupled to a slab ocean model. Predictability experiments initialized with observed December SST show that thermodynamic coupling plays a significant role in enhancing the persistence of SST anomalies, both in the tropical Pacific and in the tropical Atlantic. We show that thermodynamic coupling is sufficient to provide fairly accurate forecasts of tropical Atlantic SST in the boreal spring that are significantly better than the persistence forecasts. The consequences for the prediction of Nordeste rainfall are analyzed.

  11. [Globalization, inequality, and transmission of tropical diseases in the Venezuelan Amazon].

    Science.gov (United States)

    Botto-Abella, Carlos; Graterol-Mendoza, Beatriz

    2007-01-01

    Economic globalization appears to be causing greater inequalities and increased vulnerability to tropical diseases around the world. The Venezuelan Amazon population, especially the rural indigenous population, displays among the worst health indicators in the Americas. High infant mortality rates in remote indigenous populations indicate that such communities have been affected by the globalization of disease, rather than favored by globalization of health. Globalization has also influenced public policies in the country, affecting the efficiency of control programs targeting tropical diseases. A new global pact for the sustainable development of the planet is needed, supported by the globalization of human values and rights. In Venezuela, new policies for the indigenous health sector, more resources, and greater autonomy could help reduce the inequities described here in the Venezuelan Amazon.

  12. Neglected Tropical Diseases: Epidemiology and Global Burden

    Directory of Open Access Journals (Sweden)

    Amal K. Mitra

    2017-08-01

    Full Text Available More than a billion people—one-sixth of the world’s population, mostly in developing countries—are infected with one or more of the neglected tropical diseases (NTDs. Several national and international programs (e.g., the World Health Organization’s Global NTD Programs, the Centers for Disease Control and Prevention’s Global NTD Program, the United States Global Health Initiative, the United States Agency for International Development’s NTD Program, and others are focusing on NTDs, and fighting to control or eliminate them. This review identifies the risk factors of major NTDs, and describes the global burden of the diseases in terms of disability-adjusted life years (DALYs.

  13. Error threshold inference from Global Precipitation Measurement (GPM) satellite rainfall data and interpolated ground-based rainfall measurements in Metro Manila

    Science.gov (United States)

    Ampil, L. J. Y.; Yao, J. G.; Lagrosas, N.; Lorenzo, G. R. H.; Simpas, J.

    2017-12-01

    The Global Precipitation Measurement (GPM) mission is a group of satellites that provides global observations of precipitation. Satellite-based observations act as an alternative if ground-based measurements are inadequate or unavailable. Data provided by satellites however must be validated for this data to be reliable and used effectively. In this study, the Integrated Multisatellite Retrievals for GPM (IMERG) Final Run v3 half-hourly product is validated by comparing against interpolated ground measurements derived from sixteen ground stations in Metro Manila. The area considered in this study is the region 14.4° - 14.8° latitude and 120.9° - 121.2° longitude, subdivided into twelve 0.1° x 0.1° grid squares. Satellite data from June 1 - August 31, 2014 with the data aggregated to 1-day temporal resolution are used in this study. The satellite data is directly compared to measurements from individual ground stations to determine the effect of the interpolation by contrast against the comparison of satellite data and interpolated measurements. The comparisons are calculated by taking a fractional root-mean-square error (F-RMSE) between two datasets. The results show that interpolation improves errors compared to using raw station data except during days with very small amounts of rainfall. F-RMSE reaches extreme values of up to 654 without a rainfall threshold. A rainfall threshold is inferred to remove extreme error values and make the distribution of F-RMSE more consistent. Results show that the rainfall threshold varies slightly per month. The threshold for June is inferred to be 0.5 mm, reducing the maximum F-RMSE to 9.78, while the threshold for July and August is inferred to be 0.1 mm, reducing the maximum F-RMSE to 4.8 and 10.7, respectively. The maximum F-RMSE is reduced further as the threshold is increased. Maximum F-RMSE is reduced to 3.06 when a rainfall threshold of 10 mm is applied over the entire duration of JJA. These results indicate that

  14. Influence of declining mean annual rainfall on the behavior and yield of sediment and particulate organic carbon from tropical watersheds

    Science.gov (United States)

    Strauch, Ayron M.; MacKenzie, Richard A.; Giardina, Christian P.; Bruland, Gregory L.

    2018-04-01

    The capacity to forecast climate and land-use driven changes to runoff, soil erosion and sediment transport in the tropics is hindered by a lack of long-term data sets and model study systems. To address these issues we utilized three watersheds characterized by similar shape, geology, soils, vegetation cover, and land use arranged across a 900 mm gradient in mean annual rainfall (MAR). Using this space-for-time design, we quantified suspended sediment (SS) and particulate organic carbon (POC) export over 18 months to examine how large-scale climate trends (MAR) affect sediment supply and delivery patterns (hysteresis) in tropical watersheds. Average daily SS yield ranged from 0.128 to 0.618 t km- 2 while average daily POC ranged from 0.002 to 0.018 t km- 2. For the largest storm events, we found that sediment delivery exhibited similar clockwise hysteresis patterns among the watersheds, with no significant differences in the similarity function between watershed pairs, indicating that: (1) in-stream and near-stream sediment sources drive sediment flux; and (2) the shape and timing of hysteresis is not affected by MAR. With declining MAR, the ratio of runoff to baseflow and inter-storm length between pulse events both increased. Despite increases in daily rainfall and the number of days with large rainfall events increasing with MAR, there was a decline in daily SS yield possibly due to the exhaustion of sediment supply by frequent runoff events in high MAR watersheds. By contrast, mean daily POC yield increased with increasing MAR, possibly as a result of increased soil organic matter decomposition, greater biomass, or increased carbon availability in higher MAR watersheds. We compared results to modeled values using the Load Estimator (LOADEST) FORTRAN model, confirming the negative relationship between MAR and sediment yield. However, because of its dependency on mean daily flow, LOADEST tended to under predict sediment yield, a result of its poor ability to

  15. Potential impacts of global warming on Australia's unique tropical biodiversity and implications for tropical biodiversity in general

    International Nuclear Information System (INIS)

    Hilbert, David W

    2007-01-01

    Full text: Full text: Globally, forest clearing is often thought to be the greatest threat to biodiversity in the tropics, and rates of clearing are certainly highest there, particularly in tropical South-East Asia. Climate change in the tropics has been less studied in tropical regions than in temperate, boreal or arctic ecosystems. However, modelling studies in Australian rainforests indicate that climate change may be a particularly significant threat to the long-term preservation of the biodiversity of tropical, rainforest biodiversity. Our research has shown that global warming can have a particularly strong impact on the biodiversity of mountainous tropical regions, including the Wet Tropics of north-east Queensland. Here, the mountain tops and higher tablelands are relatively cool islands in a sea of warmer climates. These species-rich islands, mostly limited in their biodiversity by warm interglacial periods, are separated from each other by the warmer valleys and form a scattered archipelago of habitat for organisms that are unable to survive and reproduce in warmer climates. Many of the endemic Australian Wet Tropics species live only in these cooler regions. Similar situations occur throughout south-east Asia and in the highlands of the Neotropics. Unfortunately, these upland and highland areas represent the majority of biodiversity conservation areas because they are less suitable for clearing for agriculture. This presentation will summarise research about the potential impacts of climate change on the biodiversity in Australia's rainforests, the potential implications for tropical biodiversity in general and discuss the limitations of these projections and the need for further research that could reduce uncertainties and inform effective adaptation strategies

  16. The Extratropical Transition of Tropical Storm Cindy From a GLM, ISS LIS and GPM Perspective

    Science.gov (United States)

    Heuscher, Lena; Gatlin, Patrick; Petersen, Walt; Liu, Chuntao; Cecil, Daniel J.

    2017-01-01

    The distribution of lightning with respect to tropical convective precipitation systems has been well established in previous studies and more recently by the successful Tropical Rainfall Measuring Mission (TRMM). However, TRMM did not provide information about precipitation features poleward of +/-38 deg latitude. Hence we focus on the evolution of lightning within extra-tropical cyclones traversing the mid-latitudes, especially its oceans. To facilitate such studies, lightning data from the Geostationary Lightning Mapper (GLM) onboard GOES-16 was combined with precipitation features obtained from the Global Precipitation Measurement (GPM) mission constellation of satellites.

  17. Rainfall Modification by Urban Areas: New Perspectives from TRMM

    Science.gov (United States)

    Shepherd, J. Marshall; Pierce, Harold F.; Negri, Andrew

    2002-01-01

    Data from the Tropical Rainfall Measuring Mission's (TRMM) Precipitation Radar (PR) were employed to identify warm season rainfall (1998-2000) patterns around Atlanta, Montgomery, Nashville, San Antonio, Waco, and Dallas. Results reveal an average increase of -28% in monthly rainfall rates within 30-60 kilometers downwind of the metropolis with a modest increase of 5.6% over the metropolis. Portions of the downwind area exhibit increases as high as 51%. The percentage changes are relative to an upwind control area. It was also found that maximum rainfall rates in the downwind impact area exceeded the mean value in the upwind control area by 48% - 116%. The maximum value was generally found at an average distance of 39 km from the edge of the urban center or 64 km from the center of the city. Results are consistent with METROMEX studies of St. Louis almost two decades ago and with more recent studies near Atlanta. Future work is extending the investigation to Phoenix, Arizona, an arid U.S. city, and several international cities like Mexico City, Johannesburg, and Brasilia. The study establishes the possibility of utilizing satellite-based rainfall estimates for examining rainfall modification by urban areas on global scales and over longer time periods. Such research has implications for weather forecasting, urban planning, water resource management, and understanding human impact on the environment and climate.

  18. Satellite-based Flood Modeling Using TRMM-based Rainfall Products

    Directory of Open Access Journals (Sweden)

    Greg Easson

    2007-12-01

    Full Text Available Increasingly available and a virtually uninterrupted supply of satellite-estimatedrainfall data is gradually becoming a cost-effective source of input for flood predictionunder a variety of circumstances. However, most real-time and quasi-global satelliterainfall products are currently available at spatial scales ranging from 0.25o to 0.50o andhence, are considered somewhat coarse for dynamic hydrologic modeling of basin-scaleflood events. This study assesses the question: what are the hydrologic implications ofuncertainty of satellite rainfall data at the coarse scale? We investigated this question onthe 970 km2 Upper Cumberland river basin of Kentucky. The satellite rainfall productassessed was NASA’s Tropical Rainfall Measuring Mission (TRMM Multi-satellitePrecipitation Analysis (TMPA product called 3B41RT that is available in pseudo real timewith a latency of 6-10 hours. We observed that bias adjustment of satellite rainfall data canimprove application in flood prediction to some extent with the trade-off of more falsealarms in peak flow. However, a more rational and regime-based adjustment procedureneeds to be identified before the use of satellite data can be institutionalized among floodmodelers.

  19. The response of tropical rainforests to drought-lessons from recent research and future prospects.

    Science.gov (United States)

    Bonal, Damien; Burban, Benoit; Stahl, Clément; Wagner, Fabien; Hérault, Bruno

    We review the recent findings on the influence of drought on tree mortality, growth or ecosystem functioning in tropical rainforests. Drought plays a major role in shaping tropical rainforests and the response mechanisms are highly diverse and complex. The numerous gaps identified here require the international scientific community to combine efforts in order to conduct comprehensive studies in tropical rainforests on the three continents. These results are essential to simulate the future of these ecosystems under diverse climate scenarios and to predict the future of the global earth carbon balance. Tropical rainforest ecosystems are characterized by high annual rainfall. Nevertheless, rainfall regularly fluctuates during the year and seasonal soil droughts do occur. Over the past decades, a number of extreme droughts have hit tropical rainforests, not only in Amazonia but also in Asia and Africa. The influence of drought events on tree mortality and growth or on ecosystem functioning (carbon and water fluxes) in tropical rainforest ecosystems has been studied intensively, but the response mechanisms are complex. Herein, we review the recent findings related to the response of tropical forest ecosystems to seasonal and extreme droughts and the current knowledge about the future of these ecosystems. This review emphasizes the progress made over recent years and the importance of the studies conducted under extreme drought conditions or in through-fall exclusion experiments in understanding the response of these ecosystems. It also points to the great diversity and complexity of the response of tropical rainforest ecosystems to drought. The numerous gaps identified here require the international scientific community to combine efforts in order to conduct comprehensive studies in tropical forest regions. These results are essential to simulate the future of these ecosystems under diverse climate scenarios and to predict the future of the global earth carbon balance.

  20. Trends and variation in monthly rainfall and temperature in Suriname

    International Nuclear Information System (INIS)

    Raid, Nurmohamed

    2004-01-01

    As Surinam lies within the equatorial trough zone, climate is mainly influenced by the movement and intensity of the Inter-tropical Convergence Zone and the El Nino Southern Oscillation. Scientist predict that global climate change will directly effect the hydrological cycle such as rainfall and temperature, and extreme events such as a El Nino and La Nina. The aim of this study is to analyze historical changes in monthly rainfall and temperature and to predict future changes, with respect to climate change (doubling of carbon dioxide (CO 2 ) by 2100) and variability. Linear extrapolation and five Global Circulations Models (GCMS) (HadCM2, ECHAM4, GFDL-TR, CSIRO2-EQ, CCSR-NIES) will be used. Results of GCMs have showed that under global climate change by 2100, the monthly rainfall is predicted to change with -82 to 66 mm during January and August, and -36 to 47 mm during September and November. The monthly temperature is predicted to increase with 1.3 to 4.3 C by 2100. El Nino events have showed that along the coastal zone and in the center of Surinam, most months (>50%) during the year are drier than normal (88 to 316 mm), while in the west part of Surinam, most months (>50%) are wetter than normal (110 to 220 mm). La Nina events have showed that over entire Surinam, most of the months are wetter than normal (19 to 122 mm), with respect to the minimum rainfall. It can be concluded that the changes in rainfall due to El Nino and La Nina events may have significant impacts on the design, planning and management of water resources systems in Surinam and should therefore be incorporated in future water resources planning. (Author)

  1. Rainfall-threshold conditions for landslides in a humid-tropical system

    Science.gov (United States)

    Larsen, Matthew C.; Simon, Andrew

    1993-01-01

    Landslides are triggered by factors such as heavy rainfall, seismic activity, and construction on hillslopes. The leading cause of landslides in Puerto Rico is intense and/or prolonged rainfall. A rainfall threshold for rainfall-triggered landsliding is delimited by 256 storms that occurred between 1959 and 1991 in the central mountains of Puerto Rico, where mean annual rainfall is close to or in excess of 2,000 mm. Forty one of the 256 storms produced intense and/or prolonged rainfall that resulted in tens to hundreds of landslides. A threshold fitted to the lower boundary of the field defined by landslide-triggering storms is expressed as

  2. Caribbean Sea rainfall variability during the rainy season and relationship to the equatorial Pacific and tropical Atlantic SST

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Renguang [Institute of Global Environment and Society, Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States); Kirtman, Ben P. [University of Miami, Rosenstiel School of Marine and Atmospheric Sciences, Miami, FL (United States)

    2011-10-15

    The present study investigates the Caribbean Sea rainfall variability during the early and late rainy seasons and its association with sea surface temperature (SST) and air-sea interaction based on observational estimates, the NCEP Climate Forecast System (CFS) and Global Forecast System (GFS) simulations, and the CFS retrospective forecasts. Analysis of the observational estimates indicates that air-sea interaction is important over the Caribbean Sea, whereas the atmospheric forcing of SST dominates over the Gulf of Mexico. The CFS simulation captures the basic elements of this observed air-sea relationship. The GFS simulation produces spurious SST forcing of the atmosphere over the Gulf of Mexico largely due to prescribing SST. The CFS forecasts capture the air-sea relationship in the late rainy season (August-October), but cannot reproduce the SST forcing of atmosphere over the Caribbean Sea in the early rainy season (May-July). An empirical orthogonal function (EOF) analysis indicates that the leading modes of percent anomalies of the rainy season precipitation have the largest loading in the southern Caribbean Sea in observations. The model simulations and forecasts skillfully reproduce the spatial pattern, but not the temporal evolution. The Caribbean Sea rainfall variability in the early rainy season is mainly due to the tropical North Atlantic (TNA) SST anomalies in observations, is contributed by both the TNA and eastern equatorial Pacific (EEP) SST anomalies in the CFS simulation, and has an overly large impact from the EEP SST anomalies in the GFS simulation and the CFS forecasts. The observed Caribbean Sea rainfall variability in the late rainy season has a leading impact from the EEP SST anomalies, with a secondary contribution from the TNA SST anomalies. In comparison, the model simulations and forecasts overestimate the impacts of the EEP SST anomalies due to an earlier development and longer duration of the El Nino-Southern Oscillation in the CFS

  3. GHRSST Level 2P Regional Subskin Sea Surface Temperature from the Tropical Rainfall Mapping Mission (TRMM) Microwave Imager (TMI) for the Atlantic Ocean (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) is a well calibrated passive microwave radiometer, similar to SSM/I, that contains lower...

  4. Temperature and rainfall strongly drive temporal growth variation in Asian tropical forest trees.

    Science.gov (United States)

    Vlam, Mart; Baker, Patrick J; Bunyavejchewin, Sarayudh; Zuidema, Pieter A

    2014-04-01

    Climate change effects on growth rates of tropical trees may lead to alterations in carbon cycling of carbon-rich tropical forests. However, climate sensitivity of broad-leaved lowland tropical trees is poorly understood. Dendrochronology (tree-ring analysis) provides a powerful tool to study the relationship between tropical tree growth and annual climate variability. We aimed to establish climate-growth relationships for five annual-ring forming tree species, using ring-width data from 459 canopy and understory trees from a seasonal tropical forest in western Thailand. Based on 183/459 trees, chronologies with total lengths between 29 and 62 years were produced for four out of five species. Bootstrapped correlation analysis revealed that climate-growth responses were similar among these four species. Growth was significantly negatively correlated with current-year maximum and minimum temperatures, and positively correlated with dry-season precipitation levels. Negative correlations between growth and temperature may be attributed to a positive relationship between temperature and autotrophic respiration rates. The positive relationship between growth and dry-season precipitation levels likely reflects the strong water demand during leaf flush. Mixed-effect models yielded results that were consistent across species: a negative effect of current wet-season maximum temperatures on growth, but also additive positive effects of, for example, prior dry-season maximum temperatures. Our analyses showed that annual growth variability in tropical trees is determined by a combination of both temperature and precipitation variability. With rising temperature, the predominantly negative relationship between temperature and growth may imply decreasing growth rates of tropical trees as a result of global warming.

  5. Tropical Rainfall Measuring Mission (TRMM) Precipitation Data and Services for Research and Applications

    Science.gov (United States)

    Liu, Zhong; Ostrenga, Dana; Teng, William; Kempler, Steven

    2012-01-01

    Precipitation is a critical component of the Earth's hydrological cycle. Launched on 27 November 1997, TRMM is a joint U.S.-Japan satellite mission to provide the first detailed and comprehensive data set of the four-dimensional distribution of rainfall and latent heating over vastly under-sampled tropical and subtropical oceans and continents (40 S - 40 N). Over the past 14 years, TRMM has been a major data source for meteorological, hydrological and other research and application activities around the world. The purpose of this short article is to inform that the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) provides TRMM archive and near-real-time precipitation data sets and services for research and applications. TRMM data consist of orbital data from TRMM instruments at the sensor s resolution, gridded data at a range of spatial and temporal resolutions, subsets, ground-based instrument data, and ancillary data. Data analysis, display, and delivery are facilitated by the following services: (1) Mirador (data search and access); (2) TOVAS (TRMM Online Visualization and Analysis System); (3) OPeNDAP (Open-source Project for a Network Data Access Protocol); (4) GrADS Data Server (GDS); and (5) Open Geospatial Consortium (OGC) Web Map Service (WMS) for the GIS community. Precipitation data application services are available to support a wide variety of applications around the world. Future plans include enhanced and new services to address data related issues from the user community. Meanwhile, the GES DISC is preparing for the Global Precipitation Measurement (GPM) mission which is scheduled for launch in 2014.

  6. Evaluation of rainfall simulations over West Africa in dynamically downscaled CMIP5 global circulation models

    Science.gov (United States)

    Akinsanola, A. A.; Ajayi, V. O.; Adejare, A. T.; Adeyeri, O. E.; Gbode, I. E.; Ogunjobi, K. O.; Nikulin, G.; Abolude, A. T.

    2018-04-01

    This study presents evaluation of the ability of Rossby Centre Regional Climate Model (RCA4) driven by nine global circulation models (GCMs), to skilfully reproduce the key features of rainfall climatology over West Africa for the period of 1980-2005. The seasonal climatology and annual cycle of the RCA4 simulations were assessed over three homogenous subregions of West Africa (Guinea coast, Savannah, and Sahel) and evaluated using observed precipitation data from the Global Precipitation Climatology Project (GPCP). Furthermore, the model output was evaluated using a wide range of statistical measures. The interseasonal and interannual variability of the RCA4 were further assessed over the subregions and the whole of the West Africa domain. Results indicate that the RCA4 captures the spatial and interseasonal rainfall pattern adequately but exhibits a weak performance over the Guinea coast. Findings from the interannual rainfall variability indicate that the model performance is better over the larger West Africa domain than the subregions. The largest difference across the RCA4 simulated annual rainfall was found in the Sahel. Result from the Mann-Kendall test showed no significant trend for the 1980-2005 period in annual rainfall either in GPCP observation data or in the model simulations over West Africa. In many aspects, the RCA4 simulation driven by the HadGEM2-ES perform best over the region. The use of the multimodel ensemble mean has resulted to the improved representation of rainfall characteristics over the study domain.

  7. Detecting the hydrological impacts of forest cover change in tropical mountain areas: need for detrending time series of rainfall and streamflow data.

    Science.gov (United States)

    Molina, A.; Vanacker, V.; Brisson, E.; Balthazar, V.

    2012-04-01

    Interactions between human activities and the physical environment have increasingly transformed the hydrological functioning of Andean ecosystems. In these human-modified landscapes, land use/-cover change may have a profound effect on riverine water and sediment fluxes. The hydrological impacts of land use/-cover change are diverse, as changes in vegetation affect the various components of the hydrological cycle including evapotranspiration, infiltration and surface runoff. Quantitative data for tropical mountain regions are scarce, as few long time series on rainfall, water discharge and land use are available. Furthermore, time series of rainfall and streamflow data in tropical mountains are often highly influenced by large inter- and intra-annual variability. In this paper, we analyse the hydrological response to complex forest cover change for a catchment of 280 km2 located in the Ecuadorian Andes. Forest cover change in the Pangor catchment was reconstructed based on airphotos (1963, 1977), LANDSAT TM (1991) and ETM+ data (2001, 2009). From 1963, natural vegetation was converted to agricultural land and pine plantations: forests decreased by a factor 2, and paramo decreased by 20 km2 between 1963 and 2009. For this catchment, there exists an exceptionally long record of rainfall and streamflow data that dates back from the '70s till now, but large variability in hydrometeorological data exists that is partly related to ENSO events. Given the nonstationary and nonlinear character of the ENSO-related changes in rainfall, we used the Hilbert-Huang transformation to detrend the time series of the river flow data from inter- and intra-annual fluctuations in rainfall. After applying adaptive data analysis based on empirical model decomposition techniques, it becomes apparent that the long-term trend in streamflow is different from the long-term trend in rainfall data. While the streamflow data show a long-term decrease in monthly flow, the rainfall data have a

  8. Maximum covariance analysis to identify intraseasonal oscillations over tropical Brazil

    Science.gov (United States)

    Barreto, Naurinete J. C.; Mesquita, Michel d. S.; Mendes, David; Spyrides, Maria H. C.; Pedra, George U.; Lucio, Paulo S.

    2017-09-01

    A reliable prognosis of extreme precipitation events in the tropics is arguably challenging to obtain due to the interaction of meteorological systems at various time scales. A pivotal component of the global climate variability is the so-called intraseasonal oscillations, phenomena that occur between 20 and 100 days. The Madden-Julian Oscillation (MJO), which is directly related to the modulation of convective precipitation in the equatorial belt, is considered the primary oscillation in the tropical region. The aim of this study is to diagnose the connection between the MJO signal and the regional intraseasonal rainfall variability over tropical Brazil. This is achieved through the development of an index called Multivariate Intraseasonal Index for Tropical Brazil (MITB). This index is based on Maximum Covariance Analysis (MCA) applied to the filtered daily anomalies of rainfall data over tropical Brazil against a group of covariates consisting of: outgoing longwave radiation and the zonal component u of the wind at 850 and 200 hPa. The first two MCA modes, which were used to create the { MITB}_1 and { MITB}_2 indices, represent 65 and 16 % of the explained variance, respectively. The combined multivariate index was able to satisfactorily represent the pattern of intraseasonal variability over tropical Brazil, showing that there are periods of activation and inhibition of precipitation connected with the pattern of MJO propagation. The MITB index could potentially be used as a diagnostic tool for intraseasonal forecasting.

  9. Spatiotemporal Interpolation of Rainfall by Combining BME Theory and Satellite Rainfall Estimates

    Directory of Open Access Journals (Sweden)

    Tingting Shi

    2015-09-01

    Full Text Available The accurate assessment of spatiotemporal rainfall variability is a crucial and challenging task in many hydrological applications, mainly due to the lack of a sufficient number of rain gauges. The purpose of the present study is to investigate the spatiotemporal variations of annual and monthly rainfall over Fujian province in China by combining the Bayesian maximum entropy (BME method and satellite rainfall estimates. Specifically, based on annual and monthly rainfall data at 20 meteorological stations from 2000 to 2012, (1 the BME method with Tropical Rainfall Measuring Mission (TRMM estimates considered as soft data, (2 ordinary kriging (OK and (3 cokriging (CK were employed to model the spatiotemporal variations of rainfall in Fujian province. Subsequently, the performance of these methods was evaluated using cross-validation statistics. The results demonstrated that BME with TRMM as soft data (BME-TRMM performed better than the other two methods, generating rainfall maps that represented the local rainfall disparities in a more realistic manner. Of the three interpolation (mapping methods, the mean absolute error (MAE and root mean square error (RMSE values of the BME-TRMM method were the smallest. In conclusion, the BME-TRMM method improved spatiotemporal rainfall modeling and mapping by integrating hard data and soft information. Lastly, the study identified new opportunities concerning the application of TRMM rainfall estimates.

  10. Regions Subject to Rainfall Oscillation in the 5–10 Year Band

    Directory of Open Access Journals (Sweden)

    Jean-Louis Pinault

    2018-01-01

    Full Text Available The decadal oscillation of rainfall in Europe that has been observed since the end of the 20th century is a phenomenon well known to climatologists. Consequences are considerable because the succession of wet or dry years produces floods or, inversely, droughts. Moreover, much research has tried to answer the question about the possible link between the frequency and the intensity of extra-tropical cyclones, which are particularly devastating, and global warming. This work aims at providing an exhaustive description of the rainfall oscillation in the 5–10 year band during one century on a planetary scale. It is shown that the rainfall oscillation results from baroclinic instabilities over the oceans. For that, a joint analysis of the amplitude and the phase of sea surface temperature anomalies and rainfall anomalies is performed, which discloses the mechanisms leading to the alternation of high and low atmospheric pressure systems. For a prospective purpose, some milestones are suggested on a possible link with very long-period Rossby waves in the oceans.

  11. An Assessment of Satellite-Derived Rainfall Products Relative to Ground Observations over East Africa

    Directory of Open Access Journals (Sweden)

    Margaret Wambui Kimani

    2017-05-01

    Full Text Available Accurate and consistent rainfall observations are vital for climatological studies in support of better agricultural and water management decision-making and planning. In East Africa, accurate rainfall estimation with an adequate spatial distribution is limited due to sparse rain gauge networks. Satellite rainfall products can potentially play a role in increasing the spatial coverage of rainfall estimates; however, their performance needs to be understood across space–time scales and factors relating to their errors. This study assesses the performance of seven satellite products: Tropical Applications of Meteorology using Satellite and ground-based observations (TAMSAT, African Rainfall Climatology And Time series (TARCAT, Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS, Tropical Rainfall Measuring Mission (TRMM-3B43, Climate Prediction Centre (CPC Morphing technique (CMORPH, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks Climate Data Record (PERSIANN-CDR, CPC Merged Analysis of Precipitation (CMAP, and Global Precipitation Climatology Project (GPCP, using locally developed gridded (0.05° rainfall data for 15 years (1998–2012 over East Africa. The products’ assessments were done at monthly and yearly timescales and were remapped to the gridded rain gauge data spatial scale during the March to May (MAM and October to December (OND rainy seasons. A grid-based statistical comparison between the two datasets was used, but only pixel values located at the rainfall stations were considered for validation. Additionally, the impact of topography on the performance of the products was assessed by analyzing the pixels in areas of highest negative bias. All the products could substantially replicate rainfall patterns, but their differences are mainly based on retrieving high rainfall amounts, especially of localized orographic types. The products exhibited systematic errors, which

  12. Hydro-meteorological evaluation of downscaled global ensemble rainfall forecasts

    Science.gov (United States)

    Gaborit, Étienne; Anctil, François; Fortin, Vincent; Pelletier, Geneviève

    2013-04-01

    Ensemble rainfall forecasts are of high interest for decision making, as they provide an explicit and dynamic assessment of the uncertainty in the forecast (Ruiz et al. 2009). However, for hydrological forecasting, their low resolution currently limits their use to large watersheds (Maraun et al. 2010). In order to bridge this gap, various implementations of the statistic-stochastic multi-fractal downscaling technique presented by Perica and Foufoula-Georgiou (1996) were compared, bringing Environment Canada's global ensemble rainfall forecasts from a 100 by 70-km resolution down to 6 by 4-km, while increasing each pixel's rainfall variance and preserving its original mean. For comparison purposes, simpler methods were also implemented such as the bi-linear interpolation, which disaggregates global forecasts without modifying their variance. The downscaled meteorological products were evaluated using different scores and diagrams, from both a meteorological and a hydrological view points. The meteorological evaluation was conducted comparing the forecasted rainfall depths against nine days of observed values taken from Québec City rain gauge database. These 9 days present strong precipitation events occurring during the summer of 2009. For the hydrologic evaluation, the hydrological models SWMM5 and (a modified version of) GR4J were implemented on a small 6 km2 urban catchment located in the Québec City region. Ensemble hydrologic forecasts with a time step of 3 hours were then performed over a 3-months period of the summer of 2010 using the original and downscaled ensemble rainfall forecasts. The most important conclusions of this work are that the overall quality of the forecasts was preserved during the disaggregation procedure and that the disaggregated products using this variance-enhancing method were of similar quality than bi-linear interpolation products. However, variance and dispersion of the different members were, of course, much improved for the

  13. Tropical/Subtropical Peatland Development and Global CH4 during the Last Glaciation.

    Science.gov (United States)

    Xu, Hai; Lan, Jianghu; Sheng, Enguo; Liu, Yong; Liu, Bin; Yu, Keke; Ye, Yuanda; Cheng, Peng; Qiang, Xiaoke; Lu, Fengyan; Wang, Xulong

    2016-07-28

    Knowledge of peatland development over the tropical/subtropical zone during the last glaciation is critical for understanding the glacial global methane cycle. Here we present a well-dated 'peat deposit-lake sediment' alternate sequence at Tengchong, southwestern China, and discuss the peatland development and its linkage to the global glacial methane cycle. Peat layers were formed during the cold Marine Isotope Stage (MIS)-2 and -4, whereas lake sediments coincided with the relatively warm MIS-3, which is possibly related to the orbital/suborbital variations in both temperature and Asian summer monsoon intensity. The Tengchong peatland formation pattern is broadly synchronous with those over subtropical southern China and other tropical/subtropical areas, but it is clearly in contrast to those over the mid-high Northern Hemisphere. The results of this work suggest that the shifts of peatland development between the tropical/subtropical zone and mid-high Northern Hemisphere may have played important roles in the glacial/interglacial global atmospheric CH4 cycles.

  14. Multisite rainfall downscaling and disaggregation in a tropical urban area

    Science.gov (United States)

    Lu, Y.; Qin, X. S.

    2014-02-01

    A systematic downscaling-disaggregation study was conducted over Singapore Island, with an aim to generate high spatial and temporal resolution rainfall data under future climate-change conditions. The study consisted of two major components. The first part was to perform an inter-comparison of various alternatives of downscaling and disaggregation methods based on observed data. This included (i) single-site generalized linear model (GLM) plus K-nearest neighbor (KNN) (S-G-K) vs. multisite GLM (M-G) for spatial downscaling, (ii) HYETOS vs. KNN for single-site disaggregation, and (iii) KNN vs. MuDRain (Multivariate Rainfall Disaggregation tool) for multisite disaggregation. The results revealed that, for multisite downscaling, M-G performs better than S-G-K in covering the observed data with a lower RMSE value; for single-site disaggregation, KNN could better keep the basic statistics (i.e. standard deviation, lag-1 autocorrelation and probability of wet hour) than HYETOS; for multisite disaggregation, MuDRain outperformed KNN in fitting interstation correlations. In the second part of the study, an integrated downscaling-disaggregation framework based on M-G, KNN, and MuDRain was used to generate hourly rainfall at multiple sites. The results indicated that the downscaled and disaggregated rainfall data based on multiple ensembles from HadCM3 for the period from 1980 to 2010 could well cover the observed mean rainfall amount and extreme data, and also reasonably keep the spatial correlations both at daily and hourly timescales. The framework was also used to project future rainfall conditions under HadCM3 SRES A2 and B2 scenarios. It was indicated that the annual rainfall amount could reduce up to 5% at the end of this century, but the rainfall of wet season and extreme hourly rainfall could notably increase.

  15. Process-Oriented Diagnostics of Tropical Cyclones in Global Climate Models

    Science.gov (United States)

    Moon, Y.; Kim, D.; Camargo, S. J.; Wing, A. A.; Sobel, A. H.; Bosilovich, M. G.; Murakami, H.; Reed, K. A.; Vecchi, G. A.; Wehner, M. F.; Zarzycki, C. M.; Zhao, M.

    2017-12-01

    Simulating tropical cyclone (TC) activity with global climate models (GCMs) remains a challenging problem. While some GCMs are able to simulate TC activity that is in good agreement with the observations, many other models exhibit strong biases. Decreasing horizontal grid spacing of the GCM simulations tends to improve the characteristics of simulated TCs, but this enhancement alone does not necessarily lead to greater skill in simulating TC activity. This study uses process-based diagnostics to identify model characteristics that could explain why some GCM simulations are able to produce more realistic TC activity than others. The diagnostics examine how convection, moisture, clouds and related processes are coupled at individual grid points, which yields useful information into how convective parameterizations interact with resolved model dynamics. These diagnostics share similarities with those originally developed to examine the Madden-Julian Oscillations in climate models. This study will examine TCs in eight different GCM simulations performed at NOAA/GFDL, NCAR and NASA that have different horizontal resolutions and ocean coupling. Preliminary results suggest that stronger TCs are closely associated with greater rainfall - thus greater diabatic heating - in the inner-core regions of the storms, which is consistent with previous theoretical studies. Other storm characteristics that can be used to infer why GCM simulations with comparable horizontal grid spacings produce different TC activity will be examined.

  16. Species biogeography predicts drought responses in a seasonally dry tropical forest

    Science.gov (United States)

    Schwartz, N.; Powers, J. S.; Vargas, G.; Xu, X.; Smith, C. M.; Brodribb, T.; Werden, L. K.; Becknell, J.; Medvigy, D.

    2017-12-01

    The timing, distribution, and amount of rainfall in the seasonal tropics have shifted in recent years, with consequences for seasonally dry tropical forests (SDTF). SDTF are sensitive to changing rainfall regimes and drought conditions, but sensitivity to drought varies substantially across species. One potential explanation of species differences is that species that experience dry conditions more frequently throughout their range will be better able to cope with drought than species from wetter climates, because species from drier climates will be better adapted to drought. An El-Niño induced drought in 2015 presented an opportunity to assess species-level differences in mortality in SDTF, and to ask whether the ranges of rainfall conditions species experience and the average rainfall regimes in species' ranges predict differences in mortality rates in Costa Rican SDTF. We used field plot data from northwest Costa Rica to determine species' level mortality rates. Mortality rates ranged substantially across species, with some species having no dead individuals to as high as 50% mortality. To quantify rainfall conditions across species' ranges, we used species occurrence data from the Global Biodiversity Information Facility, and rainfall data from the Chelsa climate dataset. We found that while the average and range of mean annual rainfall across species ranges did not predict drought-induced mortality in the field plots, across-range averages of the seasonality index, a measure of rainfall seasonality, was strongly correlated with species-level drought mortality (r = -0.62, p < 0.05), with species from more strongly seasonal climates experiencing less severe drought mortality. Furthermore, we found that the seasonality index was a stronger predictor of mortality than any individual functional trait we considered. This result shows that species' biogeography may be an important factor for how species will respond to future drought, and may be a more integrative

  17. Validation Of TRMM For Hazard Assessment In The Remote Context Of Tropical Africa

    Science.gov (United States)

    Monsieurs, E.; Kirschbaum, D.; Tan, J.; Jacobs, L.; Kervyn, M.; Demoulin, A.; Dewitte, O.

    2017-12-01

    Accurate rainfall data is fundamental for understanding and mitigating the disastrous effects of many rainfall-triggered hazards, especially when one considers the challenges arising from climate change and rainfall variability. In tropical Africa in particular, the sparse operational rainfall gauging network hampers the ability to understand these hazards. Satellite rainfall estimates (SRE) can therefore be of great value. Yet, rigorous validation is required to identify the uncertainties when using SRE for hazard applications. We evaluated the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42 Research Derived Daily Product from 1998 to 2017, at 0.25° x 0.25° spatial and 24 h temporal resolution. The validation was done over the western branch of the East African Rift, with the perspective of regional landslide hazard assessment in mind. Even though we collected an unprecedented dataset of 47 gauges with a minimum temporal resolution of 24 h, the sparse and heterogeneous temporal coverage in a region with high rainfall variability poses challenges for validation. In addition, the discrepancy between local-scale gauge data and spatially averaged ( 775 km²) TMPA data in the context of local convective storms and orographic rainfall is a crucial source of uncertainty. We adopted a flexible framework for SRE validation that fosters explorative research in a remote context. Results show that TMPA performs reasonably well during the rainy seasons for rainfall intensities controls on, and uncertainties of, TMPA revealed in this study. Moreover, it is found relevant in mapping regional-scale rainfall-triggered hazards that are in any case poorly covered by the sparse available gauges. We anticipate validation of TMPA's successor (Integrated Multi-satellitE Retrievals for Global Precipitation Measurement; 10 km × 10 km, half-hourly) using the proposed framework, as soon as this product will be available in early 2018 for the

  18. Vegetation Dynamics and Rainfall Sensitivity of the Amazon

    Science.gov (United States)

    Hilker, Thomas; Lyapustin, Alexei I.; Tucker, Compton J.; Hall, Forrest G.; Myneni, Ranga B.; Wang, Yujie; Bi, Jian; Mendes de Moura, Yhasmin; Sellers, Piers J.

    2014-01-01

    We show that the vegetation canopy of the Amazon rainforest is highly sensitive to changes in precipitation patterns and that reduction in rainfall since 2000 has diminished vegetation greenness across large parts of Amazonia. Large-scale directional declines in vegetation greenness may indicate decreases in carbon uptake and substantial changes in the energy balance of the Amazon. We use improved estimates of surface reflectance from satellite data to show a close link between reductions in annual precipitation, El Nino southern oscillation events, and photosynthetic activity across tropical and subtropical Amazonia. We report that, since the year 2000, precipitation has declined across 69% of the tropical evergreen forest (5.4 million sq km) and across 80% of the subtropical grasslands (3.3 million sq km). These reductions, which coincided with a decline in terrestrial water storage, account for about 55% of a satellite-observed widespread decline in the normalized difference vegetation index (NDVI). During El Nino events, NDVI was reduced about 16.6% across an area of up to 1.6 million sq km compared with average conditions. Several global circulation models suggest that a rise in equatorial sea surface temperature and related displacement of the intertropical convergence zone could lead to considerable drying of tropical forests in the 21st century. Our results provide evidence that persistent drying could degrade Amazonian forest canopies, which would have cascading effects on global carbon and climate dynamics.

  19. Tree rings and rainfall in the equatorial Amazon

    Science.gov (United States)

    Granato-Souza, Daniela; Stahle, David W.; Barbosa, Ana Carolina; Feng, Song; Torbenson, Max C. A.; de Assis Pereira, Gabriel; Schöngart, Jochen; Barbosa, Joao Paulo; Griffin, Daniel

    2018-05-01

    The Amazon basin is a global center of hydroclimatic variability and biodiversity, but there are only eight instrumental rainfall stations with continuous records longer than 80 years in the entire basin, an area nearly the size of the coterminous US. The first long moisture-sensitive tree-ring chronology has been developed in the eastern equatorial Amazon of Brazil based on dendrochronological analysis of Cedrela cross sections cut during sustainable logging operations near the Rio Paru. The Rio Paru chronology dates from 1786 to 2016 and is significantly correlated with instrumental precipitation observations from 1939 to 2016. The strength and spatial scale of the precipitation signal vary during the instrumental period, but the Rio Paru chronology has been used to develop a preliminary reconstruction of February to November rainfall totals from 1786 to 2016. The reconstruction is related to SSTs in the Atlantic and especially the tropical Pacific, similar to the stronger pattern of association computed for the instrumental rainfall data from the eastern Amazon. The tree-ring data estimate extended drought and wet episodes in the mid- to late-nineteenth century, providing a valuable, long-term perspective on the moisture changes expected to emerge over the Amazon in the coming century due to deforestation and anthropogenic climate change.

  20. The assessment of Global Precipitation Measurement estimates over the Indian subcontinent

    Science.gov (United States)

    Murali Krishna, U. V.; Das, Subrata Kumar; Deshpande, Sachin M.; Doiphode, S. L.; Pandithurai, G.

    2017-08-01

    Accurate and real-time precipitation estimation is a challenging task for current and future spaceborne measurements, which is essential to understand the global hydrological cycle. Recently, the Global Precipitation Measurement (GPM) satellites were launched as a next-generation rainfall mission for observing the global precipitation characteristics. The purpose of the GPM is to enhance the spatiotemporal resolution of global precipitation. The main objective of the present study is to assess the rainfall products from the GPM, especially the Integrated Multi-satellitE Retrievals for the GPM (IMERG) data by comparing with the ground-based observations. The multitemporal scale evaluations of rainfall involving subdaily, diurnal, monthly, and seasonal scales were performed over the Indian subcontinent. The comparison shows that the IMERG performed better than the Tropical Rainfall Measuring Mission (TRMM)-3B42, although both rainfall products underestimated the observed rainfall compared to the ground-based measurements. The analyses also reveal that the TRMM-3B42 and IMERG data sets are able to represent the large-scale monsoon rainfall spatial features but are having region-specific biases. The IMERG shows significant improvement in low rainfall estimates compared to the TRMM-3B42 for selected regions. In the spatial distribution, the IMERG shows higher rain rates compared to the TRMM-3B42, due to its enhanced spatial and temporal resolutions. Apart from this, the characteristics of raindrop size distribution (DSD) obtained from the GPM mission dual-frequency precipitation radar is assessed over the complex mountain terrain site in the Western Ghats, India, using the DSD measured by a Joss-Waldvogel disdrometer.

  1. Long-term Increases in Flower Production by Growth Forms in Response to Anthropogenic Change in a Tropical Forest

    Science.gov (United States)

    Pau, S.; Wright, S. J.

    2016-12-01

    There is mounting evidence that anthropogenic global change is altering the ecology of tropical forests. A limited number of studies have focused on long-term trends in tropical reproductive activity, yet differences in reproductive activity should have consequences for demography and ultimately forest carbon, water, and energy balance. Here we analyze a 28-year record of tropical flower production in response to anthropogenic climate change. We show that a multi-decadal increase in flower production is most strongly driven by rising atmospheric CO2, which had approximately 8x the effect of the Multivariate ENSO Index and approximately 13x the effect of rainfall or solar radiation. Interannual peaks in flower production were associated with greater solar radiation and low rainfall during El Niño years. Observed changes in solar radiation explained flower production better than rainfall (models including solar radiation accounted for 94% of cumulative AICc weight compared to 87% for rainfall). All growth forms (lianas, canopy trees, midstory trees, and shrubs) produced more flowers with increasing CO2 except for understory treelets. The increase in flower production was matched by a lengthening of flowering duration for canopy trees and midstory trees; duration was also longer for understory treelets. Given that anthropogenic CO2 emissions will continue to climb over the next century, the long-term increase in flower production may persist unless offset by increasing cloudiness in the tropics, or until rising CO2 and/or warming temperatures associated with the greenhouse effect pass critical thresholds for plant reproduction.

  2. Tropical rainforests dominate multi-decadal variability of the global carbon cycle

    Science.gov (United States)

    Zhang, X.; Wang, Y. P.; Peng, S.; Rayner, P. J.; Silver, J.; Ciais, P.; Piao, S.; Zhu, Z.; Lu, X.; Zheng, X.

    2017-12-01

    Recent studies find that inter-annual variability of global atmosphere-to-land CO2 uptake (NBP) is dominated by semi-arid ecosystems. However, the NBP variations at decadal to multi-decadal timescales are still not known. By developing a basic theory for the role of net primary production (NPP) and heterotrophic respiration (Rh) on NBP and applying it to 100-year simulations of terrestrial ecosystem models forced by observational climate, we find that tropical rainforests dominate the multi-decadal variability of global NBP (48%) rather than the semi-arid lands (35%). The NBP variation at inter-annual timescales is almost 90% contributed by NPP, but across longer timescales is progressively controlled by Rh that constitutes the response from the NPP-derived soil carbon input (40%) and the response of soil carbon turnover rates to climate variability (60%). The NBP variations of tropical rainforests is modulated by the ENSO and the PDO through their significant influences on temperature and precipitation at timescales of 2.5-7 and 25-50 years, respectively. This study highlights the importance of tropical rainforests on the multi-decadal variability of global carbon cycle, suggesting that we need to carefully differentiate the effect of NBP long-term fluctuations associated with ocean-related climate modes on the long-term trend in land sink.

  3. AVHRR for monitoring global tropical deforestation

    Science.gov (United States)

    Malingreau, J. P.; Laporte, N.; Tucker, C. J.

    1989-01-01

    Advanced Very High Resolution Radiometer (AVHRR) data have been used to assess the dynamics of forest trnsformations in three parts of the tropical belt. A large portion of the Amazon Basin has been systematically covered by Local Area Coverage (LAC) data in the 1985-1987 period. The analysis of the vegetation index and thermal data led to the identification and measurement of large areas of active deforestation. The Kalimantan/Borneo forest fires were monitored and their impact was evaluated using the Global Area Coverage (GAC) 4 km resolution data. Finally, High Resolution Picture Transmission (HRPT) data have provided preliminary information on current activities taking place at the boundary between the savanna and the forest in the Southern part of West Africa. The AVHRR approach is found to be a highly valuable means for carrying out deforestation assessments in regional and global perspectives.

  4. Indian summer monsoon rainfall variability during 2014 and 2015 and associated Indo-Pacific upper ocean temperature patterns

    Science.gov (United States)

    Kakatkar, Rashmi; Gnanaseelan, C.; Chowdary, J. S.; Parekh, Anant; Deepa, J. S.

    2018-02-01

    In this study, factors responsible for the deficit Indian Summer Monsoon (ISM) rainfall in 2014 and 2015 and the ability of Indian Institute of Tropical Meteorology-Global Ocean Data Assimilation System (IITM-GODAS) in representing the oceanic features are examined. IITM-GODAS has been used to provide initial conditions for seasonal forecast in India during 2014 and 2015. The years 2014 and 2015 witnessed deficit ISM rainfall but were evolved from two entirely different preconditions over Pacific. This raises concern over the present understanding of the role of Pacific Ocean on ISM variability. Analysis reveals that the mechanisms associated with the rainfall deficit over the Indian Subcontinent are different in the two years. It is found that remote forcing in summer of 2015 due to El Niño is mostly responsible for the deficit monsoon rainfall through changes in Walker circulation and large-scale subsidence. In the case of the summer of 2014, both local circulation with anomalous anticyclone over central India and intrusion of mid-latitude dry winds from north have contributed for the deficit rainfall. In addition to the above, Tropical Indian Ocean (TIO) sea surface temperature (SST) and remote forcing from Pacific Ocean also modulated the ISM rainfall. It is observed that Pacific SST warming has extended westward in 2014, making it a basin scale warming unlike the strong El Niño year 2015. The eastern equatorial Indian Ocean is anomalously warmer than west in summer of 2014, and vice versa in 2015. These differences in SST in both tropical Pacific and TIO have considerable impact on ISM rainfall in 2014 and 2015. The study reveals that initializing coupled forecast models with proper upper ocean temperature over the Indo-Pacific is therefore essential for improved model forecast. It is important to note that the IITM-GODAS which assimilates only array for real-time geostrophic oceanography (ARGO) temperature and salinity profiles could capture most of the

  5. A Machine Learning-based Rainfall System for GPM Dual-frequency Radar

    Science.gov (United States)

    Tan, H.; Chandrasekar, V.; Chen, H.

    2017-12-01

    Precipitation measurement produced by the Global Precipitation Measurement (GPM) Dual-frequency Precipitation Radar (DPR) plays an important role in researching the water circle and forecasting extreme weather event. Compare with its predecessor - Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR), GRM DPR measures precipitation in two different frequencies (i.e., Ku and Ka band), which can provide detailed information on the microphysical properties of precipitation particles, quantify particle size distribution and quantitatively measure light rain and falling snow. This paper presents a novel Machine Learning system for ground-based and space borne radar rainfall estimation. The system first trains ground radar data for rainfall estimation using rainfall measurements from gauges and subsequently uses the ground radar based rainfall estimates to train GPM DPR data in order to get space based rainfall product. Therein, data alignment between space DPR and ground radar is conducted using the methodology proposed by Bolen and Chandrasekar (2013), which can minimize the effects of potential geometric distortion of GPM DPR observations. For demonstration purposes, rainfall measurements from three rain gauge networks near Melbourne, Florida, are used for training and validation purposes. These three gauge networks, which are located in Kennedy Space Center (KSC), South Florida Water Management District (SFL), and St. Johns Water Management District (STJ), include 33, 46, and 99 rain gauge stations, respectively. Collocated ground radar observations from the National Weather Service (NWS) Weather Surveillance Radar - 1988 Doppler (WSR-88D) in Melbourne (i.e., KMLB radar) are trained with the gauge measurements. The trained model is then used to derive KMLB radar based rainfall product, which is used to train GPM DPR data collected from coincident overpasses events. The machine learning based rainfall product is compared against the GPM standard products

  6. Disaggregating Tropical Disease Prevalence by Climatic and Vegetative Zones within Tropical West Africa.

    Science.gov (United States)

    Beckley, Carl S; Shaban, Salisu; Palmer, Guy H; Hudak, Andrew T; Noh, Susan M; Futse, James E

    2016-01-01

    Tropical infectious disease prevalence is dependent on many socio-cultural determinants. However, rainfall and temperature frequently underlie overall prevalence, particularly for vector-borne diseases. As a result these diseases have increased prevalence in tropical as compared to temperate regions. Specific to tropical Africa, the tendency to incorrectly infer that tropical diseases are uniformly prevalent has been partially overcome with solid epidemiologic data. This finer resolution data is important in multiple contexts, including understanding risk, predictive value in disease diagnosis, and population immunity. We hypothesized that within the context of a tropical climate, vector-borne pathogen prevalence would significantly differ according to zonal differences in rainfall, temperature, relative humidity and vegetation condition. We then determined if these environmental data were predictive of pathogen prevalence. First we determined the prevalence of three major pathogens of cattle, Anaplasma marginale, Babesia bigemina and Theileria spp, in the three vegetation zones where cattle are predominantly raised in Ghana: Guinea savannah, semi-deciduous forest, and coastal savannah. The prevalence of A. marginale was 63%, 26% for Theileria spp and 2% for B. bigemina. A. marginale and Theileria spp. were significantly more prevalent in the coastal savannah as compared to either the Guinea savanna or the semi-deciduous forest, supporting acceptance of the first hypothesis. To test the predictive power of environmental variables, the data over a three year period were considered in best subsets multiple linear regression models predicting prevalence of each pathogen. Corrected Akaike Information Criteria (AICc) were assigned to the alternative models to compare their utility. Competitive models for each response were averaged using AICc weights. Rainfall was most predictive of pathogen prevalence, and EVI also contributed to A. marginale and B. bigemina prevalence

  7. Disaggregating Tropical Disease Prevalence by Climatic and Vegetative Zones within Tropical West Africa.

    Directory of Open Access Journals (Sweden)

    Carl S Beckley

    Full Text Available Tropical infectious disease prevalence is dependent on many socio-cultural determinants. However, rainfall and temperature frequently underlie overall prevalence, particularly for vector-borne diseases. As a result these diseases have increased prevalence in tropical as compared to temperate regions. Specific to tropical Africa, the tendency to incorrectly infer that tropical diseases are uniformly prevalent has been partially overcome with solid epidemiologic data. This finer resolution data is important in multiple contexts, including understanding risk, predictive value in disease diagnosis, and population immunity. We hypothesized that within the context of a tropical climate, vector-borne pathogen prevalence would significantly differ according to zonal differences in rainfall, temperature, relative humidity and vegetation condition. We then determined if these environmental data were predictive of pathogen prevalence. First we determined the prevalence of three major pathogens of cattle, Anaplasma marginale, Babesia bigemina and Theileria spp, in the three vegetation zones where cattle are predominantly raised in Ghana: Guinea savannah, semi-deciduous forest, and coastal savannah. The prevalence of A. marginale was 63%, 26% for Theileria spp and 2% for B. bigemina. A. marginale and Theileria spp. were significantly more prevalent in the coastal savannah as compared to either the Guinea savanna or the semi-deciduous forest, supporting acceptance of the first hypothesis. To test the predictive power of environmental variables, the data over a three year period were considered in best subsets multiple linear regression models predicting prevalence of each pathogen. Corrected Akaike Information Criteria (AICc were assigned to the alternative models to compare their utility. Competitive models for each response were averaged using AICc weights. Rainfall was most predictive of pathogen prevalence, and EVI also contributed to A. marginale and B

  8. Impact of Tropical Volcanic Eruptions on Hadley Circulation Using a High-Resolution AGCM

    KAUST Repository

    Dogar, Muhammad Mubashar

    2018-03-31

    The direct radiative effects of volcanic eruptions resulting in solar dimming, stratospheric warming, global surface cooling and reduction in rainfall are well documented. However, eruptions also cause indirect climatic impacts that are not well understood. For example, solar dimming induced by volcanic aerosols could cause changes in tropical Hadley circulation that in turn largely affect evaporation and precipitation patterns. Therefore, understanding the sensitivity of HC to volcanism is essential, as this circulation is directly related to precipitation changes in the tropics and with other large-scale circulations. Hence, to better understand the post-eruption sensitivity of HC and associated changes in the hydrologic cycle, simulations for the El Chichón and Pinatubo tropical eruptions were conducted using a high-resolution atmospheric model (HIRAM), effectively at 25 and 50 km grid spacing. The model simulated results are then compared with observational and reanalysis products. Both the model and observational analysis show posteruption weakening, shrinking and equatorward displacement of the updraft branch of HC caused by the equatorward shift of midlatitude jets and hemispheric land-sea thermal gradient. The Intertropical Convergence Zone (ITCZ) is tightly coupled to the rising branch of HC, hence, post-eruption weakening and equatorward displacement of HC cause weakening of ITCZ that adversely affects rainfall distribution in the monsoon-fed regions, especially the South Asian and African tropical rain-belt regions. The modelproduced post-eruption distribution of cloud contents suggests a southward shift of ITCZ. The HIRAM results are largely in agreement with the reanalysis, observations and previous studies indicating that this model performs reasonably well in reproducing the global and regional-scale dynamic changes caused by volcanic radiative forcing.

  9. Impact of Tropical Volcanic Eruptions on Hadley Circulation Using a High-Resolution AGCM

    KAUST Repository

    Dogar, Muhammad Mubashar

    2018-01-01

    The direct radiative effects of volcanic eruptions resulting in solar dimming, stratospheric warming, global surface cooling and reduction in rainfall are well documented. However, eruptions also cause indirect climatic impacts that are not well understood. For example, solar dimming induced by volcanic aerosols could cause changes in tropical Hadley circulation that in turn largely affect evaporation and precipitation patterns. Therefore, understanding the sensitivity of HC to volcanism is essential, as this circulation is directly related to precipitation changes in the tropics and with other large-scale circulations. Hence, to better understand the post-eruption sensitivity of HC and associated changes in the hydrologic cycle, simulations for the El Chichón and Pinatubo tropical eruptions were conducted using a high-resolution atmospheric model (HIRAM), effectively at 25 and 50 km grid spacing. The model simulated results are then compared with observational and reanalysis products. Both the model and observational analysis show posteruption weakening, shrinking and equatorward displacement of the updraft branch of HC caused by the equatorward shift of midlatitude jets and hemispheric land-sea thermal gradient. The Intertropical Convergence Zone (ITCZ) is tightly coupled to the rising branch of HC, hence, post-eruption weakening and equatorward displacement of HC cause weakening of ITCZ that adversely affects rainfall distribution in the monsoon-fed regions, especially the South Asian and African tropical rain-belt regions. The modelproduced post-eruption distribution of cloud contents suggests a southward shift of ITCZ. The HIRAM results are largely in agreement with the reanalysis, observations and previous studies indicating that this model performs reasonably well in reproducing the global and regional-scale dynamic changes caused by volcanic radiative forcing.

  10. TRMM and Other Sources Rainfall Product (TRMM Product 3B43) V7

    Data.gov (United States)

    National Aeronautics and Space Administration — The Tropical Rainfall Measuring Mission (TRMM) is a joint U.S.-Japan satellite mission to monitor tropical and subtropical precipitation and to estimate its...

  11. Internationally coordinated multi-mission planning is now critical to sustain the space-based rainfall observations needed for managing floods globally

    International Nuclear Information System (INIS)

    Reed, Patrick M; Herman, Jonathan D; Chaney, Nathaniel W; Wood, Eric F; Ferringer, Matthew P

    2015-01-01

    At present 4 of 10 dedicated rainfall observing satellite systems have exceeded their design life, some by more than a decade. Here, we show operational implications for flood management of a ‘collapse’ of space-based rainfall observing infrastructure as well as the high-value opportunities for a globally coordinated portfolio of satellite missions and data services. Results show that the current portfolio of rainfall missions fails to meet operational data needs for flood management, even when assuming a perfectly coordinated data product from all current rainfall-focused missions (i.e., the full portfolio). In the full portfolio, satellite-based rainfall data deficits vary across the globe and may preclude climate adaptation in locations vulnerable to increasing flood risks. Moreover, removing satellites that are currently beyond their design life (i.e., the reduced portfolio) dramatically increases data deficits globally and could cause entire high intensity flood events to be unobserved. Recovery from the reduced portfolio is possible with internationally coordinated replenishment of as few as 2 of the 4 satellite systems beyond their design life, yielding rainfall data coverages that outperform the current full portfolio (i.e., an optimized portfolio of eight satellites can outperform ten satellites). This work demonstrates the potential for internationally coordinated satellite replenishment and data services to substantially enhance the cost-effectiveness, sustainability and operational value of space-based rainfall observations in managing evolving flood risks. (letter)

  12. Weakened tropical circulation and reduced precipitation in response to geoengineering

    International Nuclear Information System (INIS)

    Ferraro, Angus J; Highwood, Eleanor J; Charlton-Perez, Andrew J

    2014-01-01

    Geoengineering by injection of reflective aerosols into the stratosphere has been proposed as a way to counteract the warming effect of greenhouse gases by reducing the intensity of solar radiation reaching the surface. Here, climate model simulations are used to examine the effect of geoengineering on the tropical overturning circulation. The strength of the circulation is related to the atmospheric static stability and has implications for tropical rainfall. The tropical circulation is projected to weaken under anthropogenic global warming. Geoengineering with stratospheric sulfate aerosol does not mitigate this weakening of the circulation. This response is due to a fast adjustment of the troposphere to radiative heating from the aerosol layer. This effect is not captured when geoengineering is modelled as a reduction in total solar irradiance, suggesting caution is required when interpreting model results from solar dimming experiments as analogues for stratospheric aerosol geoengineering. (letter)

  13. Large-Scale Processes Associated with Inter-Decadal and Inter-Annual Early Spring Rainfall Variability in Taiwan

    Directory of Open Access Journals (Sweden)

    Jau-Ming Chen

    2016-02-01

    Full Text Available Early spring (March - April rainfall in Taiwan exhibits evident and distinct inter-annual and inter-decadal variability. The inter-annual varibility has a positive correlation with the El Niño/Southern Oscillation while the inter-decadal variability features a phase change beginning in the late 1970s, coherent with the major phase change in the Pacific decadal oscillation. Rainfall variability in both timescales is regulated by large-scale processes showing consistent dynamic features. Rainfall increases are associated with positive sea surface temperature (SST anomalies in the tropical eastern Pacific and negative SST anomalies in the tropical central Pacific. An anomalous lower-level divergent center appears in the tropical central Pacific. Via a Rossby-wave-like response, an anomalous lower-level anticyclone appears to the southeast of Taiwan over the Philippine Sea-tropical western Pacific region, which is accompanied by an anomalous cyclone to the north-northeast of Taiwan. Both circulation anomalies induce anomalous southwesterly flows to enhance moisture flux from the South China Sea onto Taiwan, resulting in significant moisture convergence nearby Taiwan. With enhanced moisture supplied by anomalous southwesterly flows, significant rainfall increases occur in both inter-annual and inter-decadal timescales in early spring rainfall on Taiwan.

  14. Agro-Science Journal of Tropical Agriculture, Food, Environment ...

    African Journals Online (AJOL)

    OLUWOLE AKINNAGBE

    2009-09-03

    Sep 3, 2009 ... Agro-Science Journal of Tropical Agriculture, Food, Environment and Extension. Volume 8 ... 3 International Institute of Tropical Agriculture, High Rainfall Station,. Onne, Rivers State ...... Biosciences proceedings. 6: 444-454.

  15. Will surface winds weaken in response to global warming?

    Science.gov (United States)

    Ma, Jian; Foltz, Gregory R.; Soden, Brian J.; Huang, Gang; He, Jie; Dong, Changming

    2016-12-01

    The surface Walker and tropical tropospheric circulations have been inferred to slow down from historical observations and model projections, yet analysis of large-scale surface wind predictions is lacking. Satellite measurements of surface wind speed indicate strengthening trends averaged over the global and tropical oceans that are supported by precipitation and evaporation changes. Here we use corrected anemometer-based observations to show that the surface wind speed has not decreased in the averaged tropical oceans, despite its reduction in the region of the Walker circulation. Historical simulations and future projections for climate change also suggest a near-zero wind speed trend averaged in space, regardless of the Walker cell change. In the tropics, the sea surface temperature pattern effect acts against the large-scale circulation slow-down. For higher latitudes, the surface winds shift poleward along with the eddy-driven mid-latitude westerlies, resulting in a very small contribution to the global change in surface wind speed. Despite its importance for surface wind speed change, the influence of the SST pattern change on global-mean rainfall is insignificant since it cannot substantially alter the global energy balance. As a result, the precipitation response to global warming remains ‘muted’ relative to atmospheric moisture increase. Our results therefore show consistency between projections and observations of surface winds and precipitation.

  16. Nitrogen transformations in response to temperature and rainfall manipulation in oak savanna: A global change experiment

    Science.gov (United States)

    Wellman, R. L.; Boutton, T. W.; Tjoelker, M. G.; Volder, A.; Briske, D. D.

    2013-12-01

    Increasing concentrations of greenhouse gases are projected to elevate global surface air temperatures by 1.1 to 6.4°C by the end of the century, and potentially magnify the intensity and variability of seasonal precipitation distribution. The mid-latitude grasslands of North America are predicted to experience substantial modification in precipitation regimes, with a shift towards drier summers and wetter spring and fall seasons. Despite these predictions, little is known concerning the effects of these global climate change drivers or their potential interactive effects on nitrogen (N) cycling processes. The purpose of this study is to quantify seasonal variation in rates of N-mineralization, nitrification, and N-losses via leaching in soil subjected to experimental warming and rainfall manipulation. Research was conducted at the Texas A&M Warming and Rainfall Manipulation (WaRM) Site in College Station where eight 9x18m rainout shelters and two unsheltered controls were established in post oak savanna in 2003. Replicate annual rainfall redistribution treatments (n = 4) are applied at the shelter level (long term mean vs. 40% of summer redistributed to fall and spring with same annual total). Warming treatments (ambient vs. 24-hr IR canopy warming of 1-3°C) were applied to planted monocultures of juniper and little bluestem, and a juniper-grass combination. Both juniper and little bluestem are key species within the post oak savanna region. Plots were sampled from the full factorial design during years six and seven of the WaRM experiment. Soil N-mineralization, nitrification, and N-losses via leaching were assessed quarterly for two years using the resin core incubation method. Rainfall, species composition, and time interacted significantly to influence both ammonification and nitrification. Highest rates of ammonification (0.115 mg NH4+ -N/ kg soil/day) occurred in grass monocultures during summer in the control rainfall plots, whereas highest rates of

  17. Human-induced changes in the distribution of rainfall.

    Science.gov (United States)

    Putnam, Aaron E; Broecker, Wallace S

    2017-05-01

    A likely consequence of global warming will be the redistribution of Earth's rain belts, affecting water availability for many of Earth's inhabitants. We consider three ways in which planetary warming might influence the global distribution of precipitation. The first possibility is that rainfall in the tropics will increase and that the subtropics and mid-latitudes will become more arid. A second possibility is that Earth's thermal equator, around which the planet's rain belts and dry zones are organized, will migrate northward. This northward shift will be a consequence of the Northern Hemisphere, with its large continental area, warming faster than the Southern Hemisphere, with its large oceanic area. A third possibility is that both of these scenarios will play out simultaneously. We review paleoclimate evidence suggesting that (i) the middle latitudes were wetter during the last glacial maximum, (ii) a northward shift of the thermal equator attended the abrupt Bølling-Allerød climatic transition ~14.6 thousand years ago, and (iii) a southward shift occurred during the more recent Little Ice Age. We also inspect trends in seasonal surface heating between the hemispheres over the past several decades. From these clues, we predict that there will be a seasonally dependent response in rainfall patterns to global warming. During boreal summer, in which the rate of recent warming has been relatively uniform between the hemispheres, wet areas will get wetter and dry regions will become drier. During boreal winter, rain belts and drylands will expand northward in response to differential heating between the hemispheres.

  18. The Predictability of Dry-Season Precipitation in Tropical West Africa

    Science.gov (United States)

    Knippertz, P.; Davis, J.; Fink, A. H.

    2012-04-01

    Precipitation during the boreal winter dry season in tropical West Africa is rare but occasionally connected to high-impacts for the local population. Previous work has shown that these events are usually connected to a trough over northwestern Africa, an extensive cloud plume on its eastern side, unusual precipitation at the northern and western fringes of the Sahara, and reduced surface pressure over the southern Sahara and Sahel, which allows an inflow of moist southerlies from the Gulf of Guinea to feed the unusual dry-season rainfalls. These results also suggest that the extratropical influence enhances the predictability of these events on the synoptic timescale. Here we further investigate this question for the 11 dry seasons (November-March) 1998/99-2008/09 using rainfall estimates from TRMM (Tropical Rainfall Measuring Mission) and GPCP (Global Precipitation Climatology Project), and operational ensemble predictions from the European Centre for Medium-Range Forecasts (ECMWF). All fields are averaged over the study area 7.5-15°N, 10°W-10°E that spans most of southern West Africa. For each 0000 UTC analysis time, the daily precipitation estimates are accumulated to pentads and compared with 120-hour predictions starting at the same time. Compared to TRMM, the ensemble mean shows a weak positive bias, whereas there is a substantial negative bias with regard to GPCP. Temporal correlations reach a high value of 0.8 for both datasets, showing similar synoptic variability despite the differences in total amount. Standard probabilistic evaluation methods such as relative operating characteristic (ROC) diagrams indicate remarkably good reliability, resolution and skill, particularly for lower precipitation thresholds. Not surprisingly, forecasts cluster at low probabilities for higher thresholds, but the reliability and ROC score are still reasonably high. The results show that global ensemble prediction systems are capable to predict dry-season rainfall events

  19. The response of land-falling tropical cyclone characteristics to projected climate change in northeast Australia

    Science.gov (United States)

    Parker, Chelsea L.; Bruyère, Cindy L.; Mooney, Priscilla A.; Lynch, Amanda H.

    2018-01-01

    Land-falling tropical cyclones along the Queensland coastline can result in serious and widespread damage. However, the effects of climate change on cyclone characteristics such as intensity, trajectory, rainfall, and especially translation speed and size are not well-understood. This study explores the relative change in the characteristics of three case studies by comparing the simulated tropical cyclones under current climate conditions with simulations of the same systems under future climate conditions. Simulations are performed with the Weather Research and Forecasting Model and environmental conditions for the future climate are obtained from the Community Earth System Model using a pseudo global warming technique. Results demonstrate a consistent response of increasing intensity through reduced central pressure (by up to 11 hPa), increased wind speeds (by 5-10% on average), and increased rainfall (by up to 27% for average hourly rainfall rates). The responses of other characteristics were variable and governed by either the location and trajectory of the current climate cyclone or the change in the steering flow. The cyclone that traveled furthest poleward encountered a larger climate perturbation, resulting in a larger proportional increase in size, rainfall rate, and wind speeds. The projected monthly average change in the 500 mb winds with climate change governed the alteration in the both the trajectory and translation speed for each case. The simulated changes have serious implications for damage to coastal settlements, infrastructure, and ecosystems through increased wind speeds, storm surge, rainfall, and potentially increased size of some systems.

  20. Daily TRMM and Others Rainfall Estimate (3B42 V7 derived) V7

    Data.gov (United States)

    National Aeronautics and Space Administration — The Tropical Rainfall Measuring Mission (TRMM) is a joint U.S.-Japan satellite mission to monitor tropical and subtropical precipitation and to estimate its...

  1. Performance of High Resolution Satellite Rainfall Products over Data Scarce Parts of Eastern Ethiopia

    Directory of Open Access Journals (Sweden)

    Shimelis B. Gebere

    2015-09-01

    Full Text Available Accurate estimation of rainfall in mountainous areas is necessary for various water resource-related applications. Though rain gauges accurately measure rainfall, they are rarely found in mountainous regions and satellite rainfall data can be used as an alternative source over these regions. This study evaluated the performance of three high-resolution satellite rainfall products, the Tropical Rainfall Measuring Mission (TRMM 3B42, the Global Satellite Mapping of Precipitation (GSMaP_MVK+, and the Precipitation Estimation from Remotely-Sensed Information using Artificial Neural Networks (PERSIANN at daily, monthly, and seasonal time scales against rain gauge records over data-scarce parts of Eastern Ethiopia. TRMM 3B42 rain products show relatively better performance at the three time scales, while PERSIANN did much better than GSMaP. At the daily time scale, TRMM correctly detected 88% of the rainfall from the rain gauge. The correlation at the monthly time scale also revealed that the TRMM has captured the observed rainfall better than the other two. For Belg (short rain and Kiremt (long rain seasons, the TRMM did better than the others by far. However, during Bega (dry season, PERSIANN showed a relatively good estimate. At all-time scales, noticing the bias, TRMM tends to overestimate, while PERSIANN and GSMaP tend to underestimate the rainfall. The overall result suggests that monthly and seasonal TRMM rainfall performed better than daily rainfall. It has also been found that both GSMaP and PERSIANN performed better in relatively flat areas than mountainous areas. Before the practical use of TRMM, the RMSE value needs to be improved by considering the topography of the study area or adjusting the bias.

  2. Proxies of Tropical Cyclone Isotope Spikes in Precipitation: Landfall Site Selection

    Science.gov (United States)

    Lawrence, J. R.; Maddocks, R.

    2011-12-01

    The human experience of climate change is not one of gradual changes in seasonal or yearly changes in temperature or rainfall. Despite that most paleoclimatic reconstructions attempt to provide just such information. Humans experience climate change on much shorter time scales. We remember hurricanes, weeks of drought or overwhelming rainy periods. Tropical cyclones produce very low isotope ratios in both rainfall and in atmospheric water vapor. Thus, climate proxies that potentially record these low isotope ratios offer the most concrete record of climate change to which humans can relate. The oxygen isotopic composition of tropical cyclone rainfall has the potential to be recorded in fresh water carbonate fossil material, cave deposits and corals. The hydrogen isotopic composition of tropical cyclone rainfall has the potential to be recorded in tree ring cellulose and organic matter in fresh water bodies. The Class of carbonate organisms known as Ostracoda form their carapaces very rapidly. Thus fresh water ephemeral ponds in the subtropics are ideal locations for isotopic studies because they commonly are totally dry when tropical cyclones make landfall. The other proxies suffer primarily from a dilution effect. The water from tropical cyclones is mixed with pre-existing water. In cave deposits tropical cyclone rains mix with soil and ground waters. In the near shore coral environment the rain mixes with seawater. For tree rings there are three sources of water: soil water, atmospheric water vapor that exchanges with leaf water and tropical cyclone rain. In lakes because of their large size rainfall runoff mixes with ground water and preexisting water in the lake. A region that shows considerable promise is Texas / Northeast Mexico. In a study of surface waters that developed from the passage of Tropical Storm Allison (2001) in SE Texas both the pond water and Ostracoda that bloomed recorded the low oxygen isotope signal of that storm (Lawrence et al, 2008). In

  3. Observations of cloud and rainfall enhancement over irrigated agriculture in an arid environment

    Science.gov (United States)

    Garcia-Carreras, Luis; Marsham, John H.; Spracklen, Dominick V.

    2017-04-01

    The impact of irrigated agriculture on clouds and rainfall remains uncertain, particularly in less studied arid regions. Irrigated crops account for 20% of global cropland area, and non-renewable groundwater accounts for 20% of global irrigation water demand. Quantifying the feedbacks between agriculture and the atmosphere are therefore not only necessary to better understand the climate impacts of land-use change, but are also crucial for predicting long-term water use in water-scarce regions. Here we use high spatial-resolution satellite data to show the impact of irrigated crops in the arid environment of northern Saudi Arabia on cloud cover and rainfall patterns. Land surface temperatures over the crops are 5-10 K lower than their surroundings, linked to evapotranspiration rates of up to 20 mm/ month. Daytime cloud cover is up to 30% higher over the cropland compared to its immediate surroundings, and this enhancement is highly correlated with the seasonal variability in leaf area index. The cloud enhancement is associated with a much more rapid cloud cloud development during the morning. Afternoon rainfall is 85% higher over, and just downwind, of the cropland during the growing season, although rainfall remains very low in absolute terms. The feedback sign we find is the opposite to what has been observed in tropical and semiarid regions, where temperature gradients promote convergence and clouds on the warmer side of land-surface type discontinuities. This suggests that different processes are responsible for the land-atmosphere feedback in very dry environments, where lack of moisture may be a stronger constraint. Increased cloud and rainfall, and associated increases in diffuse radiation and reductions in temperature, can affect vegetation growth thus producing an internal feedback. These effects will therefore need to be taken into account to properly assess the impact of climate change on crop productivity and water use, as well as how global land

  4. Classic Maya civilization collapse associated with reduction in tropical cyclone activity

    Science.gov (United States)

    Medina, M. A.; Polanco-Martinez, J. M.; Lases-Hernández, F.; Bradley, R. S.; Burns, S. J.

    2013-12-01

    In light of the increased destructiveness of tropical cyclones observed over recent decades one might assume that an increase and not a decrease in tropical cyclone activity would lead to societal stress and perhaps collapse of ancient cultures. In this study we present evidence that a reduction in the frequency and intensity of tropical Atlantic cyclones could have contributed to the collapse of the Maya civilization during the Terminal Classic Period (TCP, AD. 800-950). Statistical comparisons of a quantitative precipitation record from the Yucatan Peninsula (YP) Maya lowlands, based on the stalagmite known as Chaac (after the Mayan God of rain and agriculture), relative to environmental proxy records of El Niño/Southern Oscillation (ENSO), tropical Atlantic sea surface temperatures (SSTs), and tropical Atlantic cyclone counts, suggest that these records share significant coherent variability during the TCP and that summer rainfall reductions between 30 and 50% in the Maya lowlands occurred in association with decreased Atlantic tropical cyclones. Analysis of modern instrumental hydrological data suggests cyclone rainfall contributions to the YP equivalent to the range of rainfall deficits associated with decreased tropical cyclone activity during the collapse of the Maya civilization. Cyclone driven precipitation variability during the TCP, implies that climate change may have triggered Maya civilization collapse via freshwater scarcity for domestic use without significant detriment to agriculture. Pyramid in Tikal, the most prominent Maya Kingdom that collapsed during the Terminal Classic Period (circa C.E. 800-950) Rainfall feeding stalagmites inside Rio Secreto cave system, Yucatan, Mexico.

  5. Assessing the simulation and prediction of rainfall associated with the MJO in the POAMA seasonal forecast system

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Andrew G. [Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research, Hobart, (Australia); Hudson, Debra; Wheeler, Matthew C.; Hendon, Harry H.; Alves, Oscar [Centre for Australian Weather and Climate Research, Bureau of Meteorology, Melbourne (Australia)

    2011-12-15

    We assess the ability of the Predictive Ocean Atmosphere Model for Australia (POAMA) to simulate and predict weekly rainfall associated with the MJO using a 27-year hindcast dataset. After an initial 2-week atmospheric adjustment, the POAMA model is shown to simulate well, both in pattern and in intensity, the weekly-mean rainfall variation associated with the evolution of the MJO over the tropical Indo-Pacific. The simulation is most realistic in December-February (austral summer) and least realistic in March-May (austral autumn). Regionally, the most problematic area is the Maritime Continent, which is a common problem area in other models. Coupled with our previous demonstration of the ability of POAMA to predict the evolution of the large-scale structure of the MJO for up to about 3 weeks, this ability to simulate the regional rainfall evolution associated with the MJO translates to enhanced predictability of rainfall regionally throughout much of the tropical Indo-Pacific when the MJO is present in the initial conditions during October-March. We also demonstrate enhanced prediction skill of rainfall at up to 3 weeks lead time over the north-east Pacific and north Atlantic, which are areas of pronounced teleconnections excited by the MJO-modulation of tropical Indo-Pacific rainfall. Failure to simulate and predict the modulation of rainfall in such places as the Maritime Continent and tropical Australia by the MJO indicates, however, there is still much room for improvement of the prediction of the MJO and its teleconnections. (orig.)

  6. THE IMPACT OF SPATIAL AND TEMPORAL RESOLUTIONS IN TROPICAL SUMMER RAINFALL DISTRIBUTION: PRELIMINARY RESULTS

    Directory of Open Access Journals (Sweden)

    Q. Liu

    2017-10-01

    Full Text Available The abundance or lack of rainfall affects peoples’ life and activities. As a major component of the global hydrological cycle (Chokngamwong & Chiu, 2007, accurate representations at various spatial and temporal scales are crucial for a lot of decision making processes. Climate models show a warmer and wetter climate due to increases of Greenhouse Gases (GHG. However, the models’ resolutions are often too coarse to be directly applicable to local scales that are useful for mitigation purposes. Hence disaggregation (downscaling procedures are needed to transfer the coarse scale products to higher spatial and temporal resolutions. The aim of this paper is to examine the changes in the statistical parameters of rainfall at various spatial and temporal resolutions. The TRMM Multi-satellite Precipitation Analysis (TMPA at 0.25 degree, 3 hourly grid rainfall data for a summer is aggregated to 0.5,1.0, 2.0 and 2.5 degree and at 6, 12, 24 hourly, pentad (five days and monthly resolutions. The probability distributions (PDF and cumulative distribution functions(CDF of rain amount at these resolutions are computed and modeled as a mixed distribution. Parameters of the PDFs are compared using the Kolmogrov-Smironov (KS test, both for the mixed and the marginal distribution. These distributions are shown to be distinct. The marginal distributions are fitted with Lognormal and Gamma distributions and it is found that the Gamma distributions fit much better than the Lognormal.

  7. The Impact of Spatial and Temporal Resolutions in Tropical Summer Rainfall Distribution: Preliminary Results

    Science.gov (United States)

    Liu, Q.; Chiu, L. S.; Hao, X.

    2017-10-01

    The abundance or lack of rainfall affects peoples' life and activities. As a major component of the global hydrological cycle (Chokngamwong & Chiu, 2007), accurate representations at various spatial and temporal scales are crucial for a lot of decision making processes. Climate models show a warmer and wetter climate due to increases of Greenhouse Gases (GHG). However, the models' resolutions are often too coarse to be directly applicable to local scales that are useful for mitigation purposes. Hence disaggregation (downscaling) procedures are needed to transfer the coarse scale products to higher spatial and temporal resolutions. The aim of this paper is to examine the changes in the statistical parameters of rainfall at various spatial and temporal resolutions. The TRMM Multi-satellite Precipitation Analysis (TMPA) at 0.25 degree, 3 hourly grid rainfall data for a summer is aggregated to 0.5,1.0, 2.0 and 2.5 degree and at 6, 12, 24 hourly, pentad (five days) and monthly resolutions. The probability distributions (PDF) and cumulative distribution functions(CDF) of rain amount at these resolutions are computed and modeled as a mixed distribution. Parameters of the PDFs are compared using the Kolmogrov-Smironov (KS) test, both for the mixed and the marginal distribution. These distributions are shown to be distinct. The marginal distributions are fitted with Lognormal and Gamma distributions and it is found that the Gamma distributions fit much better than the Lognormal.

  8. Two decades of climate driving the dynamics of functional and taxonomic diversity of a tropical small mammal community in western Mexico.

    Science.gov (United States)

    Mason-Romo, Edgard David; Farías, Ariel A; Ceballos, Gerardo

    2017-01-01

    Understanding the effects of global climate disruption on biodiversity is important to future conservation efforts. While taxonomic diversity is widely studied, functional diversity of plants, and recently animals, is receiving increasing attention. Most studies of mammals are short-term, focus on temperate habitats, and rely on traits described in the literature rather than generating traits from observations. Unlike previous studies, this long-term field study assessed the factors driving the functional and taxonomic diversity of small-mammal assemblages in dry tropical forests using both traits recorded from literature and a demographic database. We assessed the drivers (abundance and biomass, temperature and rainfall) of taxonomic richness and functional diversity for two rain-driven seasons in two adjacent but distinct forests-upland and lowland (arroyo or riparian) forests. Our analysis found that rainfall, both seasonal and atypical, was the primary factor driving functional and taxonomic diversity of small-mammal assemblages. Functional responses differed between the two types of forests, however, with effects being stronger in the harsher conditions of the upland forests than in the less severe conditions prevailing in the arroyo (riparian) forest. The latter also supports a richer, more diverse, and more stable small-mammal assemblage. These findings highlight the importance of climate to tropical biological diversity, as extreme climate events (hurricanes, droughts and floods) and disruption of rainfall patterns were shown to decrease biodiversity. They also support the need to preserve these habitats, as their high taxonomic diversity and functional redundancy makes them resilient against global climate disruption and local extreme events. Tropical dry forests constitute a potential reservoir for biodiversity and the ecosystem services they provide. Unfortunately, these forests are among the most endangered terrestrial ecosystems because of

  9. Two decades of climate driving the dynamics of functional and taxonomic diversity of a tropical small mammal community in western Mexico.

    Directory of Open Access Journals (Sweden)

    Edgard David Mason-Romo

    Full Text Available Understanding the effects of global climate disruption on biodiversity is important to future conservation efforts. While taxonomic diversity is widely studied, functional diversity of plants, and recently animals, is receiving increasing attention. Most studies of mammals are short-term, focus on temperate habitats, and rely on traits described in the literature rather than generating traits from observations. Unlike previous studies, this long-term field study assessed the factors driving the functional and taxonomic diversity of small-mammal assemblages in dry tropical forests using both traits recorded from literature and a demographic database. We assessed the drivers (abundance and biomass, temperature and rainfall of taxonomic richness and functional diversity for two rain-driven seasons in two adjacent but distinct forests-upland and lowland (arroyo or riparian forests. Our analysis found that rainfall, both seasonal and atypical, was the primary factor driving functional and taxonomic diversity of small-mammal assemblages. Functional responses differed between the two types of forests, however, with effects being stronger in the harsher conditions of the upland forests than in the less severe conditions prevailing in the arroyo (riparian forest. The latter also supports a richer, more diverse, and more stable small-mammal assemblage. These findings highlight the importance of climate to tropical biological diversity, as extreme climate events (hurricanes, droughts and floods and disruption of rainfall patterns were shown to decrease biodiversity. They also support the need to preserve these habitats, as their high taxonomic diversity and functional redundancy makes them resilient against global climate disruption and local extreme events. Tropical dry forests constitute a potential reservoir for biodiversity and the ecosystem services they provide. Unfortunately, these forests are among the most endangered terrestrial ecosystems because

  10. TRMM 3-Hourly 0.25 deg. TRMM and Other-GPI Calibration Rainfall Data V7

    Data.gov (United States)

    National Aeronautics and Space Administration — The Tropical Rainfall Measuring Mission (TRMM) is a joint U.S.-Japan satellite mission to monitor tropical and subtropical precipitation and to estimate its...

  11. AIRS Impact on Analysis and Forecast of an Extreme Rainfall Event (Indus River Valley 2010) with a Global Data Assimilation and Forecast System

    Science.gov (United States)

    Reale, O.; Lau, W. K.; Susskind, J.; Rosenberg, R.

    2011-01-01

    A set of data assimilation and forecast experiments are performed with the NASA Global data assimilation and forecast system GEOS-5, to compare the impact of different approaches towards assimilation of Advanced Infrared Spectrometer (AIRS) data on the precipitation analysis and forecast skill. The event chosen is an extreme rainfall episode which occurred in late July 11 2010 in Pakistan, causing massive floods along the Indus River Valley. Results show that the assimilation of quality-controlled AIRS temperature retrievals obtained under partly cloudy conditions produce better precipitation analyses, and substantially better 7-day forecasts, than assimilation of clear-sky radiances. The improvement of precipitation forecast skill up to 7 day is very significant in the tropics, and is caused by an improved representation, attributed to cloudy retrieval assimilation, of two contributing mechanisms: the low-level moisture advection, and the concentration of moisture over the area in the days preceding the precipitation peak.

  12. An Atlantic influence on Amazon rainfall

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jin-Ho [University of Maryland, Department of Atmospheric and Oceanic Science, College Park, MD (United States); Zeng, Ning [University of Maryland, Earth System Science Interdisciplinary Center, College Park, MD (United States); University of Maryland, Department of Atmospheric and Oceanic Science, College Park, MD (United States)

    2010-02-15

    Rainfall variability over the Amazon basin has often been linked to variations in Pacific sea surface temperature (SST), and in particular, to the El Nino/Southern Oscillation (ENSO). However, only a fraction of Amazon rainfall variability can be explained by ENSO. Building upon the recent work of Zeng (Environ Res Lett 3:014002, 2008), here we provide further evidence for an influence on Amazon rainfall from the tropical Atlantic Ocean. The strength of the North Atlantic influence is found to be comparable to the better-known Pacific ENSO connection. The tropical South Atlantic Ocean also shows some influence during the wet-to-dry season transition period. The Atlantic influence is through changes in the north-south divergent circulation and the movement of the ITCZ following warm SST. Therefore, it is strongest in the southern part of the Amazon basin during the Amazon's dry season (July-October). In contrast, the ENSO related teleconnection is through anomalous east-west Walker circulation with largely concentrated in the eastern (lower) Amazon. This ENSO connection is seasonally locked to boreal winter. A complication due to the influence of ENSO on Atlantic SST causes an apparent North Atlantic SST lag of Amazon rainfall. Removing ENSO from North Atlantic SST via linear regression resolves this causality problem in that the residual Atlantic variability correlates well and is in phase with the Amazon rainfall. A strong Atlantic influence during boreal summer and autumn is particularly significant in terms of the impact on the hydro-ecosystem which is most vulnerable during the dry season, as highlighted by the severe 2005 Amazon drought. Such findings have implications for both seasonal-interannual climate prediction and understanding the longer-term changes of the Amazon rainforest. (orig.)

  13. Rainfall model investigation and scenario analyses of the effect of government reforestation policy on seasonal rainfalls: A case study from Northern Thailand

    Science.gov (United States)

    Duangdai, Eakkapong; Likasiri, Chulin

    2017-03-01

    In this work, 4 models for predicting rainfall amounts are investigated and compared using Northern Thailand's seasonal rainfall data for 1973-2008. Two models, global temperature, forest area and seasonal rainfall (TFR) and modified TFR based on a system of differential equations, give the relationships between global temperature, Northern Thailand's forest cover and seasonal rainfalls in the region. The other two models studied are time series and Autoregressive Moving Average (ARMA) models. All models are validated using the k-fold cross validation method with the resulting errors being 0.971233, 0.740891, 2.376415 and 2.430891 for time series, ARMA, TFR and modified TFR models, respectively. Under Business as Usual (BaU) scenario, seasonal rainfalls in Northern Thailand are projected through the year 2020 using all 4 models. TFR and modified TFR models are also used to further analyze how global temperature rise and government reforestation policy affect seasonal rainfalls in the region. Rainfall projections obtained via the two models are also compared with those from the International Panel on Climate Change (IPCC) under IS92a scenario. Results obtained through a mathematical model for global temperature, forest area and seasonal rainfall show that the higher the forest cover, the less fluctuation there is between rainy-season and summer rainfalls. Moreover, growth in forest cover also correlates with an increase in summer rainfalls. An investigation into the relationship between main crop productions and rainfalls in dry and rainy seasons indicates that if the rainy-season rainfall is high, that year's main-crop rice production will decrease but the second-crop rice, maize, sugarcane and soybean productions will increase in the following year.

  14. Tropical Peatland Geomorphology and Hydrology

    Science.gov (United States)

    Cobb, A.; Harvey, C. F.

    2017-12-01

    Tropical peatlands cover many low-lying areas in the tropics. In tropical peatlands, a feedback between hydrology, landscape morphology, and carbon storage causes waterlogged organic matter to accumulate into gently mounded land forms called peat domes over thousands of years. Peat domes have a stable morphology in which peat production is balanced by loss and net precipitation is balanced by lateral flow, creating a link between peatland morphology, rainfall patterns and drainage networks. We show how landscape morphology can be used to make inferences about hydrologic processes in tropical peatlands. In particular, we show that approaches using simple storage-discharge relationships for catchments are especially well suited to tropical peatlands, allowing river forecasting based on peatland morphology in catchments with tropical peatland subcatchments.

  15. Quantitative Assessment on Anthropogenic Contributions to the Rainfall Extremes Associated with Typhoon Morakot (2009)

    Science.gov (United States)

    Chen, C. T.; Lo, S. H.; Wang, C. C.; Tsuboki, K.

    2017-12-01

    More than 2000 mm rainfall occurred over southern Taiwan when a category 1 Typhoon Morakot pass through Taiwan in early August 2009. Entire village and hundred of people were buried by massive mudslides induced by record-breaking precipitation. Whether the past anthropogenic warming played a significant role in such extreme event remained very controversial. On one hand, people argue it's nearly impossible to attribute an individual extreme event to global warming. On the other hand, the increase of heavy rainfall is consistent with the expected effects of climate change on tropical cyclone. To diagnose possible anthropogenic contributions to the odds of such heavy rainfall associated with Typhoon Morakot, we adapt an existing probabilistic event attribution framework to simulate a `world that was' and compare it with an alternative condition, 'world that might have been' that removed the historical anthropogenic drivers of climate. One limitation for applying such approach to high-impact weather system is that it will require models capable of capturing the essential processes lead to the studied extremes. Using a cloud system resolving model that can properly simulate the complicated interactions between tropical cyclone, large-scale background, topography, we first perform the ensemble `world that was' simulations using high resolution ECMWF YOTC analysis. We then re-simulate, having adjusted the analysis to `world that might have been conditions' by removing the regional atmospheric and oceanic forcing due to human influences estimated from the CMIP5 model ensemble mean conditions between all forcing and natural forcing only historical runs. Thus our findings are highly conditional on the driving analysis and adjustments therein, but the setup allows us to elucidate possible contribution of anthropogenic forcing to changes in the likelihood of heavy rainfall associated Typhoon Morakot in early August 2009.

  16. Calculation of Individual Tree Water Use in a Bornean Tropical Rain Forest Using Individual-Based Dynamic Vegetation Model SEIB-DGVM

    Science.gov (United States)

    Nakai, T.; Kumagai, T.; Saito, T.; Matsumoto, K.; Kume, T.; Nakagawa, M.; Sato, H.

    2015-12-01

    Bornean tropical rain forests are among the moistest biomes of the world with abundant rainfall throughout the year, and considered to be vulnerable to a change in the rainfall regime; e.g., high tree mortality was reported in such forests induced by a severe drought associated with the ENSO event in 1997-1998. In order to assess the effect (risk) of future climate change on eco-hydrology in such tropical rain forests, it is important to understand the water use of trees individually, because the vulnerability or mortality of trees against climate change can depend on the size of trees. Therefore, we refined the Spatially Explicit Individual-Based Dynamic Global Vegetation Model (SEIB-DGVM) so that the transpiration and its control by stomata are calculated for each individual tree. By using this model, we simulated the transpiration of each tree and its DBH-size dependency, and successfully reproduced the measured data of sap flow of trees and eddy covariance flux data obtained in a Bornean lowland tropical rain forest in Lambir Hills National Park, Sarawak, Malaysia.

  17. Unprecedented drought over tropical South America in 2016: significantly under-predicted by tropical SST.

    Science.gov (United States)

    Erfanian, Amir; Wang, Guiling; Fomenko, Lori

    2017-07-19

    Tropical and sub-tropical South America are highly susceptible to extreme droughts. Recent events include two droughts (2005 and 2010) exceeding the 100-year return value in the Amazon and recurrent extreme droughts in the Nordeste region, with profound eco-hydrological and socioeconomic impacts. In 2015-2016, both regions were hit by another drought. Here, we show that the severity of the 2015-2016 drought ("2016 drought" hereafter) is unprecedented based on multiple precipitation products (since 1900), satellite-derived data on terrestrial water storage (since 2002) and two vegetation indices (since 2004). The ecohydrological consequences from the 2016 drought are more severe and extensive than the 2005 and 2010 droughts. Empirical relationships between rainfall and sea surface temperatures (SSTs) over the tropical Pacific and Atlantic are used to assess the role of tropical oceanic variability in the observed precipitation anomalies. Our results indicate that warmer-than-usual SSTs in the Tropical Pacific (including El Niño events) and Atlantic were the main drivers of extreme droughts in South America, but are unable to explain the severity of the 2016 observed rainfall deficits for a substantial portion of the Amazonia and Nordeste regions. This strongly suggests potential contribution of non-oceanic factors (e.g., land cover change and CO2-induced warming) to the 2016 drought.

  18. Effects of climate change on agriculture particularly in semi-arid tropics of the world with some examples of Ethiopian condition

    International Nuclear Information System (INIS)

    Demessie, Almaz

    2004-01-01

    Today climate change is a burning issue all over the world because of its global nature. Fears have arisen that, climate may be changing for the worse and its impact may be felt on agricultural production, which will reduce the supply of food to growing population, especially in developing countries. Climate change would affect various human activities. Agriculture is one of the activities, which can be seriously affected by climate change. Due to high inter-annual variability and uneven distribution of rainfall during the rainy season, recurrent droughts have been observed in semi-arid tropics of the world over the last three decades. As White (1996) pointed out rain fed agriculture in the semi-arid tropics is limited mostly by high climatic variability with principal limiting factor being rainfall. The main crops of traditional rain fed agriculture are sorghum, millet, maize, cowpea, pulses and sesame. There is a suggestion that increased CO 2 will benefit temperate and humid tropical agriculture more than that in the semi-arid tropics. During the process of photosynthesis plant species with the C 3 photosynthetic pathway tend to respond positively to increased CO 2 while the C 4 have a poor response. Since C 4 plants are mostly tropical crops, the situation will be worst over the areas (Parry, 1990). Climate change will alter the nature of occurrence of agricultural pests in terms of area. Warmer temperatures shorten the generation time; increase the development rate of epidemic. For example, assessment of the effect of global warming on the distribution of livestock disease suggests that pests at present limited to tropical countries may spread into other parts of the world, which have different climatic condition (ibid).(Author)

  19. Susceptibility of coarse-textured soils to soil erosion by water in the tropics

    International Nuclear Information System (INIS)

    Salako, F.K.

    2004-01-01

    The application of soil physics for the evaluation of factors of soil erosion in the tropics received considerable attention in the last four decades. In Nigeria, physical characteristics of rainfall such as drop size and drop-size distribution, rainfall intensity at short intervals and kinetic energy of rainfall were evaluated using different methods. Thus, compound erosivity indices were evaluated which showed a similar trend in annual rainfall erosivity with annual rainfall amounts. Attempts have also been made to use geostatistical tools and fractal theory to describe temporal variability in rainfall erosivity. High erosivity aggravates the vulnerability of coarse-textured soils to erosion. These soils, high in sand content were poorly aggregated and structurally weak. Thus, they were easily detached and transported by runoff. Long-term data are needed to describe factors of soil erosion in the tropics but quite often, equipment are not available or poorly maintained where available such that useful data are not collected. A greater cooperation of pure physicists, soil physicists and engineers in the developing nations is needed to improve or design equipment and methods for the characterization of factors of soil erosion in the tropics. (author)

  20. Understanding the Global Water and Energy Cycle Through Assimilation of Precipitation-Related Observations: Lessons from TRMM and Prospects for GPM

    Science.gov (United States)

    Hou, Arthur; Zhang, Sara; daSilva, Arlindo; Li, Frank; Atlas, Robert (Technical Monitor)

    2002-01-01

    Understanding the Earth's climate and how it responds to climate perturbations relies on what we know about how atmospheric moisture, clouds, latent heating, and the large-scale circulation vary with changing climatic conditions. The physical process that links these key climate elements is precipitation. Improving the fidelity of precipitation-related fields in global analyses is essential for gaining a better understanding of the global water and energy cycle. In recent years, research and operational use of precipitation observations derived from microwave sensors such as the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager and Special Sensor Microwave/Imager (SSM/I) have shown the tremendous potential of using these data to improve global modeling, data assimilation, and numerical weather prediction. We will give an overview of the benefits of assimilating TRMM and SSM/I rain rates and discuss developmental strategies for using space-based rainfall and rainfall-related observations to improve forecast models and climate datasets in preparation for the proposed multi-national Global Precipitation Mission (GPM).

  1. Engineering of an Extreme Rainfall Detection System using Grid Computing

    Directory of Open Access Journals (Sweden)

    Olivier Terzo

    2012-10-01

    Full Text Available This paper describes a new approach for intensive rainfall data analysis. ITHACA's Extreme Rainfall Detection System (ERDS is conceived to provide near real-time alerts related to potential exceptional rainfalls worldwide, which can be used by WFP or other humanitarian assistance organizations to evaluate the event and understand the potentially floodable areas where their assistance is needed. This system is based on precipitation analysis and it uses rainfall data from satellite at worldwide extent. This project uses the Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis dataset, a NASA-delivered near real-time product for current rainfall condition monitoring over the world. Considering the great deal of data to process, this paper presents an architectural solution based on Grid Computing techniques. Our focus is on the advantages of using a distributed architecture in terms of performances for this specific purpose.

  2. The influence of tropical wind data on the analysis and forecasts of the GLAS GCM for the Global Weather Experiment

    Science.gov (United States)

    Paegle, J.; Baker, W. E.

    1985-01-01

    Several densities of tropical divergent wind data were included in a fourth-order GCM to examine the effects on the accuracy of the model predictions. The experiments covered assimilation of all available tropical wind data, no tropical wind data between 20 deg N and 20 deg S, only westerly tropical wind data and only easterly tropical wind data. The predictions were all made for the 200 mb upper troposphere. Elimination of tropical data produced excessively strong upper tropospheric westerlies which in turn amplified the globally integrated rotational flow kinetic energy by around 10 percent and doubled the global divergent flow kinetic energy. Retaining only easterly wind data, ameliorated most of the error. Inclusion of all the tropical wind data however, did not lead to overall positive effects, as the data were linked to tropical wave energetics and ageostrophic winds which were already assimilated in the model.

  3. Recent reversal in loss of global terrestrial biomass

    KAUST Repository

    Liu, Yi Y.; Van Dijk, Albert I J M; De Jeu, Richard A M; Canadell., Josep G.; McCabe, Matthew; Evans, Jason P.; Wang, Guojie

    2015-01-01

    Vegetation change plays a critical role in the Earth's carbon (C) budget and its associated radiative forcing in response to anthropogenic and natural climate change. Existing global estimates of aboveground biomass carbon (ABC) based on field survey data provide brief snapshots that are mainly limited to forest ecosystems. Here we use an entirely new remote sensing approach to derive global ABC estimates for both forest and non-forest biomes during the past two decades from satellite passive microwave observations. We estimate a global average ABC of 362 PgC over the period 1998-2002, of which 65% is in forests and 17% in savannahs. Over the period 1993-2012, an estimated '0.07 PgC yr '1 ABC was lost globally, mostly resulting from the loss of tropical forests ('0.26 PgC yr '1) and net gains in mixed forests over boreal and temperate regions (+0.13 PgC yr '1) and tropical savannahs and shrublands (+0.05 PgC yr '1). Interannual ABC patterns are greatly influenced by the strong response of water-limited ecosystems to rainfall variability, particularly savannahs. From 2003 onwards, forest in Russia and China expanded and tropical deforestation declined. Increased ABC associated with wetter conditions in the savannahs of northern Australia and southern Africa reversed global ABC loss, leading to an overall gain, consistent with trends in the global carbon sink reported in recent studies. © 2015 Macmillan Publishers Limited. All rights reserved.

  4. Recent reversal in loss of global terrestrial biomass

    KAUST Repository

    Liu, Yi Y.

    2015-03-30

    Vegetation change plays a critical role in the Earth\\'s carbon (C) budget and its associated radiative forcing in response to anthropogenic and natural climate change. Existing global estimates of aboveground biomass carbon (ABC) based on field survey data provide brief snapshots that are mainly limited to forest ecosystems. Here we use an entirely new remote sensing approach to derive global ABC estimates for both forest and non-forest biomes during the past two decades from satellite passive microwave observations. We estimate a global average ABC of 362 PgC over the period 1998-2002, of which 65% is in forests and 17% in savannahs. Over the period 1993-2012, an estimated \\'0.07 PgC yr \\'1 ABC was lost globally, mostly resulting from the loss of tropical forests (\\'0.26 PgC yr \\'1) and net gains in mixed forests over boreal and temperate regions (+0.13 PgC yr \\'1) and tropical savannahs and shrublands (+0.05 PgC yr \\'1). Interannual ABC patterns are greatly influenced by the strong response of water-limited ecosystems to rainfall variability, particularly savannahs. From 2003 onwards, forest in Russia and China expanded and tropical deforestation declined. Increased ABC associated with wetter conditions in the savannahs of northern Australia and southern Africa reversed global ABC loss, leading to an overall gain, consistent with trends in the global carbon sink reported in recent studies. © 2015 Macmillan Publishers Limited. All rights reserved.

  5. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle

    Science.gov (United States)

    Brinck, Katharina; Fischer, Rico; Groeneveld, Jürgen; Lehmann, Sebastian; Dantas de Paula, Mateus; Pütz, Sandro; Sexton, Joseph O.; Song, Danxia; Huth, Andreas

    2017-03-01

    Deforestation in the tropics is not only responsible for direct carbon emissions but also extends the forest edge wherein trees suffer increased mortality. Here we combine high-resolution (30 m) satellite maps of forest cover with estimates of the edge effect and show that 19% of the remaining area of tropical forests lies within 100 m of a forest edge. The tropics house around 50 million forest fragments and the length of the world's tropical forest edges sums to nearly 50 million km. Edge effects in tropical forests have caused an additional 10.3 Gt (2.1-14.4 Gt) of carbon emissions, which translates into 0.34 Gt per year and represents 31% of the currently estimated annual carbon releases due to tropical deforestation. Fragmentation substantially augments carbon emissions from tropical forests and must be taken into account when analysing the role of vegetation in the global carbon cycle.

  6. Using naive Bayes classifier for classification of convective rainfall ...

    Indian Academy of Sciences (India)

    the rainfall intensity in the convective clouds is evaluated using weather radar over the northern Algeria. The results indicate an ... tropical and extratropical regions, are dominated .... MSG is a new series of European geostationary satellites ...

  7. The deep human prehistory of global tropical forests and its relevance for modern conservation.

    Science.gov (United States)

    Roberts, Patrick; Hunt, Chris; Arroyo-Kalin, Manuel; Evans, Damian; Boivin, Nicole

    2017-08-03

    Significant human impacts on tropical forests have been considered the preserve of recent societies, linked to large-scale deforestation, extensive and intensive agriculture, resource mining, livestock grazing and urban settlement. Cumulative archaeological evidence now demonstrates, however, that Homo sapiens has actively manipulated tropical forest ecologies for at least 45,000 years. It is clear that these millennia of impacts need to be taken into account when studying and conserving tropical forest ecosystems today. Nevertheless, archaeology has so far provided only limited practical insight into contemporary human-tropical forest interactions. Here, we review significant archaeological evidence for the impacts of past hunter-gatherers, agriculturalists and urban settlements on global tropical forests. We compare the challenges faced, as well as the solutions adopted, by these groups with those confronting present-day societies, which also rely on tropical forests for a variety of ecosystem services. We emphasize archaeology's importance not only in promoting natural and cultural heritage in tropical forests, but also in taking an active role to inform modern conservation and policy-making.

  8. Validation of the CHIRPS Satellite Rainfall Estimates over Eastern of Africa

    Science.gov (United States)

    Dinku, T.; Funk, C. C.; Tadesse, T.; Ceccato, P.

    2017-12-01

    Long and temporally consistent rainfall time series are essential in climate analyses and applications. Rainfall data from station observations are inadequate over many parts of the world due to sparse or non-existent observation networks, or limited reporting of gauge observations. As a result, satellite rainfall estimates have been used as an alternative or as a supplement to station observations. However, many satellite-based rainfall products with long time series suffer from coarse spatial and temporal resolutions and inhomogeneities caused by variations in satellite inputs. There are some satellite rainfall products with reasonably consistent time series, but they are often limited to specific geographic areas. The Climate Hazards Group Infrared Precipitation (CHIRP) and CHIRP combined with station observations (CHIRPS) are recently produced satellite-based rainfall products with relatively high spatial and temporal resolutions and quasi-global coverage. In this study, CHIRP and CHIRPS were evaluated over East Africa at daily, dekadal (10-day) and monthly time scales. The evaluation was done by comparing the satellite products with rain gauge data from about 1200 stations. The is unprecedented number of validation stations for this region covering. The results provide a unique region-wide understanding of how satellite products perform over different climatic/geographic (low lands, mountainous regions, and coastal) regions. The CHIRP and CHIRPS products were also compared with two similar satellite rainfall products: the African Rainfall Climatology version 2 (ARC2) and the latest release of the Tropical Applications of Meteorology using Satellite data (TAMSAT). The results show that both CHIRP and CHIRPS products are significantly better than ARC2 with higher skill and low or no bias. These products were also found to be slightly better than the latest version of the TAMSAT product. A comparison was also done between the latest release of the TAMSAT product

  9. Compendium of NASA Data Base for the Global Tropospheric Experiment's Pacific Exploratory Mission-Tropics B (PEM-Tropics B). Volume 1; DC-8

    Science.gov (United States)

    Scott, A. Donald, Jr.; Kleb, Mary M.; Raper, James L.

    2000-01-01

    This report provides a compendium of NASA aircraft data that are available from NASA's Global Tropospheric Experiment's (GTE) Pacific Exploratory Mission-Tropics B (PEM-Tropics B) conducted in March and April 1999. PEM-Tropics B was conducted during the southern-tropical wet season when the influence from biomass burning observed in PEM-Tropics A was minimal. Major deployment sites were Hawaii, Kiritimati (Christmas Island), Tahiti, Fiji, and Easter Island. The broad goals of PEM-Tropics B were to improved understanding of the oxidizing power of the atmosphere and the processes controlling sulfur aerosol formation and to establish baseline values for chemical species that are directly coupled to the oxidizing power and aerosol loading of the troposphere. The purpose of this document is to provide a representation of aircraft data that will be available in archived format via NASA Langley's Distributed Active Archive Center (DAAC) or are available through the GTE Project Office archive. The data format is not intended to support original research/analysis, but to assist the reader in identifying data that are of interest.

  10. Interannual Rainfall Variability in North-East Brazil: Observation and Model Simulation

    Science.gov (United States)

    Harzallah, A.; Rocha de Aragão, J. O.; Sadourny, R.

    1996-08-01

    The relationship between interannual variability of rainfall in north-east Brazil and tropical sea-surface temperature is studied using observations and model simulations. The simulated precipitation is the average of seven independent realizations performed using the Laboratoire de Météorologie Dynamique atmospheric general model forced by the 1970-1988 observed sea-surface temperature. The model reproduces very well the rainfall anomalies (correlation of 091 between observed and modelled anomalies). The study confirms that precipitation in north-east Brazil is highly correlated to the sea-surface temperature in the tropical Atlantic and Pacific oceans. Using the singular value decomposition method, we find that Nordeste rainfall is modulated by two independent oscillations, both governed by the Atlantic dipole, but one involving only the Pacific, the other one having a period of about 10 years. Correlations between precipitation in north-east Brazil during February-May and the sea-surface temperature 6 months earlier indicate that both modes are essential to estimate the quality of the rainy season.

  11. Variations in tropical convection as an amplifier of global climate change at the millennial scale

    NARCIS (Netherlands)

    Ivanochkoa, T.S.; Ganeshram, R.S.; Brummer, G.J.A.; Ganssen, G.M.; Jung, S.J.A.; Moreton, S.G.; Kroon, D.

    2005-01-01

    The global expression of millennial-scale climatic change during the glacial period and the persistence of this signal in Holocene records point to atmospheric teleconnections as the mechanism propagating rapid climate variations. We suggest rearrangements in the tropical convection system globally

  12. Global economic trade-offs between wild nature and tropical agriculture.

    Science.gov (United States)

    Carrasco, Luis R; Webb, Edward L; Symes, William S; Koh, Lian P; Sodhi, Navjot S

    2017-07-01

    Global demands for agricultural and forestry products provide economic incentives for deforestation across the tropics. Much of this deforestation occurs with a lack of information on the spatial distribution of benefits and costs of deforestation. To inform global sustainable land-use policies, we combine geographic information systems (GIS) with a meta-analysis of ecosystem services (ES) studies to perform a spatially explicit analysis of the trade-offs between agricultural benefits, carbon emissions, and losses of multiple ecosystem services because of tropical deforestation from 2000 to 2012. Even though the value of ecosystem services presents large inherent uncertainties, we find a pattern supporting the argument that the externalities of destroying tropical forests are greater than the current direct economic benefits derived from agriculture in all cases bar one: when yield and rent potentials of high-value crops could be realized in the future. Our analysis identifies the Atlantic Forest, areas around the Gulf of Guinea, and Thailand as areas where agricultural conversion appears economically efficient, indicating a major impediment to the long-term financial sustainability of Reducing Emissions from Deforestation and forest Degradation (REDD+) schemes in those countries. By contrast, Latin America, insular Southeast Asia, and Madagascar present areas with low agricultural rents (ARs) and high values in carbon stocks and ES, suggesting that they are economically viable conservation targets. Our study helps identify optimal areas for conservation and agriculture together with their associated uncertainties, which could enhance the efficiency and sustainability of pantropical land-use policies and help direct future research efforts.

  13. Simulated sensitivity of African terrestrial ecosystem photosynthesis to rainfall frequency, intensity, and rainy season length

    Science.gov (United States)

    Guan, Kaiyu; Good, Stephen P.; Caylor, Kelly K.; Medvigy, David; Pan, Ming; Wood, Eric F.; Sato, Hisashi; Biasutti, Michela; Chen, Min; Ahlström, Anders; Xu, Xiangtao

    2018-02-01

    There is growing evidence of ongoing changes in the statistics of intra-seasonal rainfall variability over large parts of the world. Changes in annual total rainfall may arise from shifts, either singly or in a combination, of distinctive intra-seasonal characteristics -i.e. rainfall frequency, rainfall intensity, and rainfall seasonality. Understanding how various ecosystems respond to the changes in intra-seasonal rainfall characteristics is critical for predictions of future biome shifts and ecosystem services under climate change, especially for arid and semi-arid ecosystems. Here, we use an advanced dynamic vegetation model (SEIB-DGVM) coupled with a stochastic rainfall/weather simulator to answer the following question: how does the productivity of ecosystems respond to a given percentage change in the total seasonal rainfall that is realized by varying only one of the three rainfall characteristics (rainfall frequency, intensity, and rainy season length)? We conducted ensemble simulations for continental Africa for a realistic range of changes (-20% ~ +20%) in total rainfall amount. We find that the simulated ecosystem productivity (measured by gross primary production, GPP) shows distinctive responses to the intra-seasonal rainfall characteristics. Specifically, increase in rainfall frequency can lead to 28% more GPP increase than the same percentage increase in rainfall intensity; in tropical woodlands, GPP sensitivity to changes in rainy season length is ~4 times larger than to the same percentage changes in rainfall frequency or intensity. In contrast, shifts in the simulated biome distribution are much less sensitive to intra-seasonal rainfall characteristics than they are to total rainfall amount. Our results reveal three major distinctive productivity responses to seasonal rainfall variability—‘chronic water stress’, ‘acute water stress’ and ‘minimum water stress’ - which are respectively associated with three broad spatial patterns of

  14. Characterisation of Seasonal Rainfall for Cropping Schedules ...

    African Journals Online (AJOL)

    El Nino-South Oscillation (ENSO) phenomenon occurs in the Equatorial Eastern Pacific Ocean and has been noted to account significantly for rainfall variability in many parts of the world, particularly tropical regions. This variability is very important in rainfed crop production and needs to be well understood. Thirty years of ...

  15. A Two-year Record of Daily Rainfall Isotopes from Fiji: Implications for Reconstructing Precipitation from Speleothem δ18O

    Science.gov (United States)

    Brett, M.; Mattey, D.; Stephens, M.

    2015-12-01

    Oxygen isotopes in speleothem provide opportunities to construct precisely dated records of palaeoclimate variability, underpinned by an understanding of both the regional climate and local controls on isotopes in rainfall and groundwater. For tropical islands, a potential means to reconstruct past rainfall variability is to exploit the generally high correlation between rainfall amount and δ18O: the 'amount effect'. The GNIP program provides δ18O data at monthly resolution for several tropical Pacific islands but there are few data for precipitation isotopes at daily resolution, for investigating the amount effect over different timescales in a tropical maritime setting. Timescales are important since meteoric water feeding a speleothem has undergone storage and mixing in the aquifer system and understanding how the isotope amount effect is preserved in aquifer recharge has fundamental implications on the interpretation of speleothem δ18O in terms of palaeo-precipitation. The islands of Fiji host speleothem caves. Seasonal precipitation is related to the movement of the South Pacific Convergence Zone, and interannual variations in rainfall are coupled to ENSO behaviour. Individual rainfall events are stratiform or convective, with proximal moisture sources. We have daily resolution isotope data for rainfall collected at the University of the South Pacific in Suva, covering every rain event in 2012 and 2013. δ18O varies between -18‰ and +3‰ with the annual weighted averages at -7.6‰ and -6.8‰ respectively, while total recorded rainfall amount is similar in both years. We shall present analysis of our data compared with GNIP, meteorological data and back trajectory analyses to demonstrate the nature of the relationship between rainfall amount and isotopic signatures over this short timescale. Comparison with GNIP data for 2012-13 will shed light on the origin of the amount effect at monthly and seasonal timescales in convective, maritime, tropical

  16. Origins and interrelationship of Intraseasonal rainfall variations around the Maritime Continent during boreal winter

    Science.gov (United States)

    Cao, Xi; Wu, Renguang

    2018-04-01

    Large intraseasonal rainfall variations are identified over the southern South China Sea (SSCS), tropical southeastern Indian Ocean (SEIO), and east coast of the Philippines (EPHI) in boreal winter. The present study contrasts origins and propagations and investigates interrelations of intraseasonal rainfall variations on the 10-20- and 30-60-day time scales in these regions. Different origins are identified for intraseasonal rainfall anomalies over the SSCS, SEIO, and EPHI on both time scales. On the 10-20-day time scale, strong northerly or northeasterly wind anomalies related to the East Asian winter monsoon (EAWM) play a major role in intraseasonal rainfall variations over the SSCS and EPHI. On the 30-60-day time scale, both the intraseasonal signal from the tropical Indian Ocean and the EAWM-related wind anomalies contribute to intraseasonal rainfall variations over the SSCS, whereas the EAWM-related wind anomalies have a major contribution to the intraseasonal rainfall variations over the EPHI. No relation is detected between the intraseasonal rainfall variations over the SEIO and the EAWM on both the 10-20-day and 30-60-day time scales. The anomalies associated with intraseasonal rainfall variations over the SSCS and EPHI propagate northwestward and northeastward, respectively, on the 10-20- and 30-60-day time scales. The intraseasonal rainfall anomalies display northwestward and northward propagation over the Bay of Bengal, respectively, on the 10-20- and 30-60-day time scales.

  17. Rainfall Effects on the Kuroshio Current East of Taiwan

    Science.gov (United States)

    Hsu, Po-Chun; Lin, Chen-Chih; Ho, Chung-Ru

    2017-04-01

    Changes of sea surface salinity (SSS) in the open oceans are related to precipitation and evaporation. SSS has been an indicator of water cycle. It may be related to the global change. The Kuroshio Current, a western boundary current originating from the North Equatorial Current, transfers warm and higher salinity to higher latitudes. It flows northward along the east coasts of Luzon Island and Taiwan Island to Japan. In this study, effects of heavy rainfall on the Kuroshio surface salinity east of Taiwan are investigated. Sea surface salinity (SSS) data taken by conductivity temperature depth (CTD) sensor on R/V Ocean Researcher I cruises, conductivity sensor on eight glider cruises, and Aquarius satellite data are used in this study. The rain rate data derived from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) are also employed. A glider is a kind of autonomous underwater vehicle, which uses small changes in its buoyancy in conjunction with wings to convert vertical motion to horizontal in the underwater without requiring input from an operator. It can take sensors to measure salinity, temperature, and pressure. The TRMM/TMI data from remote sensing system are daily and are mapped to 0.25-degree grid. The results show a good correlation between the rain rate and SSS with a correlation coefficient of 0.86. The rainfall causes SSS of the Kuroshio surface water drops 0.176 PSU per 1 mm/hr rain rate.

  18. Comparison of Explicitly Simulated and Downscaled Tropical Cyclone Activity in a High-Resolution Global Climate Model

    Directory of Open Access Journals (Sweden)

    Hirofumi Tomita

    2010-01-01

    Full Text Available The response of tropical cyclone activity to climate change is a matter of great inherent interest and practical importance. Most current global climate models are not, however, capable of adequately resolving tropical cyclones; this has led to the development of downscaling techniques designed to infer tropical cyclone activity from the large-scale fields produced by climate models. Here we compare the statistics of tropical cyclones simulated explicitly in a very high resolution (~14 km grid mesh global climate model to the results of one such downscaling technique driven by the same global model. This is done for a simulation of the current climate and also for a simulation of a climate warmed by the addition of carbon dioxide. The explicitly simulated and downscaled storms are similarly distributed in space, but the intensity distribution of the downscaled events has a somewhat longer high-intensity tail, owing to the higher resolution of the downscaling model. Both explicitly simulated and downscaled events show large increases in the frequency of events at the high-intensity ends of their respective intensity distributions, but the downscaled storms also show increases in low-intensity events, whereas the explicitly simulated weaker events decline in number. On the regional scale, there are large differences in the responses of the explicitly simulated and downscaled events to global warming. In particular, the power dissipation of downscaled events shows a 175% increase in the Atlantic, while the power dissipation of explicitly simulated events declines there.

  19. The Research of Dr. Joanne Simpson: Fifty Years Investigating Hurricanes, Tropical Clouds and Cloud Systems

    Science.gov (United States)

    Tao, W. -K.; Halverson, J.; Adler, R.; Garstang, M.; Houze, R., Jr.; LeMone, M.; Pielke, R., Sr.; Woodley, W.; O'C.Starr, David (Technical Monitor)

    2001-01-01

    This AMS Meteorological Monographs is dedicated to Dr. Joanne Simpson for her many pioneering research efforts in tropical meteorology during her fifty-year career. Dr. Simpson's major areas of scientific research involved the "hot tower" hypothesis and its role in hurricanes, structure and maintenance of trade winds, air-sea interaction, and observations and the mechanism for hurricanes and waterspouts. She was also a pioneer in cloud modeling with the first one-dimensional model and had the first cumulus model on a computer. She also played a major role in planning and leading observational experiments on convective cloud systems. The launch of the Tropical Rainfall Measuring Mission (TRMM) satellite, a joint U.S.-Japan project, in November of 1997 made it possible for quantitative measurements of tropical rainfall to be obtained on a continuous basis over the entire global tropics. Dr. Simpson was the TRAM Project Scientist from 1986 until its launch in 1997. Her efforts during this crucial period ensured that the mission was both well planned scientifically and well engineered as well as within budget. In this paper, Dr. J. Simpson's nine specific accomplishments during her fifty-year career: (1) hot tower hypothesis, (2) hurricanes, (3) airflow and clouds over heated islands, (4) cloud models, (5) trade winds and their role in cumulus development, (6) air-sea interaction, (7) cloud-cloud interactions and mergers, (8) waterspouts, and (9) TRMM science, will be described and discussed.

  20. The role of climatic and terrain attributes in estimating baseflow recession in tropical catchments

    Directory of Open Access Journals (Sweden)

    J. L. Peña-Arancibia

    2010-11-01

    Full Text Available The understanding of low flows in rivers is paramount more than ever as demand for water increases on a global scale. At the same time, limited streamflow data to investigate this phenomenon, particularly in the tropics, makes the provision of accurate estimations in ungauged areas an ongoing research need. This paper analysed the potential of climatic and terrain attributes of 167 tropical and sub-tropical unregulated catchments to predict baseflow recession rates. Daily streamflow data (m3 s–1 from the Global River Discharge Center (GRDC and a linear reservoir model were used to obtain baseflow recession coefficients (kbf for these catchments. Climatic attributes included annual and seasonal indicators of rainfall and potential evapotranspiration. Terrain attributes included indicators of catchment shape, morphology, land cover, soils and geology. Stepwise regression was used to identify the best predictors for baseflow recession coefficients. Mean annual rainfall (MAR and aridity index (AI were found to explain 49% of the spatial variation of kbf. The rest of climatic indices and the terrain indices average catchment slope (SLO and tree cover were also good predictors, but co-correlated with MAR. Catchment elongation (CE, a measure of catchment shape, was also found to be statistically significant, although weakly correlated. An analysis of clusters of catchments of smaller size, showed that in these areas, presumably with some similarity of soils and geology due to proximity, residuals of the regression could be explained by SLO and CE. The approach used provides a potential alternative for kbf parameterisation in ungauged catchments.

  1. Impacts of the Tropical Pacific Cold Tongue Mode on ENSO Diversity Under Global Warming

    Science.gov (United States)

    Li, Yang; Li, Jianping; Zhang, Wenjun; Chen, Quanliang; Feng, Juan; Zheng, Fei; Wang, Wei; Zhou, Xin

    2017-11-01

    The causes of ENSO diversity, although being of great interest in recent research, do not have a consistent explanation. This study provides a possible mechanism focused on the background change of the tropical Pacific as a response to global warming. The second empirical orthogonal function mode of the sea surface temperature anomalies (SSTA) in the tropical Pacific, namely the cold tongue mode (CTM), represents the background change of the tropical Pacific under global warming. Using composite analysis with surface observations and subsurface ocean assimilation data sets, we find ENSO spatial structure diversity is closely associated with the CTM. A positive CTM tends to cool the SST in the eastern equatorial Pacific and warm the SST outside, as well as widen (narrow) zonal and meridional scales for El Niño (La Niña), and vice versa. Particularly in the positive CTM phase, the air-sea action center of El Niño moves west, resembling the spatial pattern of CP-El Niño. This westward shift of center is related to the weakened Bjerknes feedback (BF) intensity by the CTM. By suppressing the SSTA growth of El Niño in the eastern equatorial Pacific, the CTM contributes to more frequent occurrence of CP-El Niño under global warming.

  2. Global demand for gold is another threat for tropical forests

    International Nuclear Information System (INIS)

    Alvarez-Berríos, Nora L; Mitchell Aide, T

    2015-01-01

    The current global gold rush, driven by increasing consumption in developing countries and uncertainty in financial markets, is an increasing threat for tropical ecosystems. Gold mining causes significant alteration to the environment, yet mining is often overlooked in deforestation analyses because it occupies relatively small areas. As a result, we lack a comprehensive assessment of the spatial extent of gold mining impacts on tropical forests. In this study, we provide a regional assessment of gold mining deforestation in the tropical moist forest biome of South America. Specifically, we analyzed the patterns of forest change in gold mining sites between 2001 and 2013, and evaluated the proximity of gold mining deforestation to protected areas (PAs). The forest cover maps were produced using the Land Mapper web application and images from the MODIS satellite MOD13Q1 vegetation indices 250 m product. Annual maps of forest cover were used to model the incremental change in forest in ∼1600 potential gold mining sites between 2001–2006 and 2007–2013. Approximately 1680 km 2 of tropical moist forest was lost in these mining sites between 2001 and 2013. Deforestation was significantly higher during the 2007–2013 period, and this was associated with the increase in global demand for gold after the international financial crisis. More than 90% of the deforestation occurred in four major hotspots: Guianan moist forest ecoregion (41%), Southwest Amazon moist forest ecoregion (28%), Tapajós–Xingú moist forest ecoregion (11%), and Magdalena Valley montane forest and Magdalena–Urabá moist forest ecoregions (9%). In addition, some of the more active zones of gold mining deforestation occurred inside or within 10 km of ∼32 PAs. There is an urgent need to understand the ecological and social impacts of gold mining because it is an important cause of deforestation in the most remote forests in South America, and the impacts, particularly in aquatic systems

  3. Critical Phenomena of Rainfall in Ecuador

    Science.gov (United States)

    Serrano, Sh.; Vasquez, N.; Jacome, P.; Basile, L.

    2014-02-01

    Self-organized criticality (SOC) is characterized by a power law behavior over complex systems like earthquakes and avalanches. We study rainfall using data of one day, 3 hours and 10 min temporal resolution from INAMHI (Instituto Nacional de Meteorologia e Hidrologia) station at Izobamba, DMQ (Metropolitan District of Quito), satellite data over Ecuador from Tropical Rainfall Measure Mission (TRMM,) and REMMAQ (Red Metropolitana de Monitoreo Atmosferico de Quito) meteorological stations over, respectively. Our results show a power law behavior of the number of rain events versus mm of rainfall measured for the high resolution case (10 min), and as the resolution decreases this behavior gets lost. This statistical property is the fingerprint of a self-organized critical process (Peter and Christensen, 2002) and may serve as a benchmark for models of precipitation based in phase transitions between water vapor and precipitation (Peter and Neeling, 2006).

  4. Woody encroachment over 70 years in South African savannahs: overgrazing, global change or extinction aftershock?

    Science.gov (United States)

    Stevens, Nicola; Erasmus, B F N; Archibald, S; Bond, W J

    2016-09-19

    Woody encroachment in 'open' biomes like grasslands and savannahs is occurring globally. Both local and global drivers, including elevated CO2, have been implicated in these increases. The relative importance of different processes is unresolved as there are few multi-site, multi-land-use evaluations of woody plant encroachment. We measured 70 years of woody cover changes over a 1020 km(2) area covering four land uses (commercial ranching, conservation with elephants, conservation without elephants and communal rangelands) across a rainfall gradient in South African savannahs. Different directions of woody cover change would be expected for each different land use, unless a global factor is causing the increases. Woody cover change was measured between 1940 and 2010 using the aerial photo record. Detection of woody cover from each aerial photograph was automated using eCognitions' Object-based image analysis (OBIA). Woody cover doubled in all land uses across the rainfall gradient, except in conservation areas with elephants in low-rainfall savannahs. Woody cover in 2010 in low-rainfall savannahs frequently exceeded the maximum woody cover threshold predicted for African savannahs. The results indicate that a global factor, of which elevated CO2 is the likely candidate, may be driving encroachment. Elephants in low-rainfall savannahs prevent encroachment and localized megafaunal extinction is a probable additional cause of encroachment.This article is part of the themed issue 'Tropical grassy biomes: linking ecology, human use and conservation'. © 2016 The Author(s).

  5. Nondestructive examination of the Tropical Rainfall Measuring Mission (TRMM) reaction control subsystem (RCS) propellant tanks

    Science.gov (United States)

    Free, James M.

    1993-01-01

    This paper assesses the feasibility of using eddy current nondestructive examination to determine flaw sizes in completely assembled hydrazine propellant tanks. The study was performed by the NASA Goddard Space Flight Center for the Tropical Rainfall Measuring Mission (TRMM) project to help determine whether existing propellant tanks could meet the fracture analysis requirements of the current pressure vessel specification, MIL-STD-1522A and, therefore be used on the TRMM spacecraft. After evaluating several nondestructive test methods, eddy current testing was selected as the most promising method for determining flaw sizes on external and internal surfaces of completely assembled tanks. Tests were conducted to confirm the detection capability of the eddy current NDE, procedures were developed to inspect two candidate tanks, and the test support equipment was designed. The non-spherical tank eddy current NDE test program was terminated when the decision was made to procure new tanks for the TRMM propulsion subsystem. The information on the development phase of this test program is presented in this paper as a reference for future investigation on the subject.

  6. Tropical interannual variability in a global coupled GCM: Sensitivity to mean climate state

    Energy Technology Data Exchange (ETDEWEB)

    Moore, A.M. [Bureau of Meterology Research Centre, Melbourne, Victoria (Australia)

    1995-04-01

    A global coupled ocean-atmosphere-sea ice general circulation model is used to study interannual variability in the Tropics. Flux correction is used to control the mean climate of the coupled system, and in one configuration of the coupled model, interannual variability in the tropical Pacific is dominated by westward moving anomalies. Through a series of experiments in which the equatorial ocean wave speeds and ocean-atmosphere coupling strength are varied, it is demonstrated that these westward moving disturbances are probably some manifestation of what Neelin describes as an {open_quotes}SST mode.{close_quotes} By modifying the flux correction procedure, the mean climate of the coupled model can be changed. A fairly modest change in the mean climate is all that is required to excite eastward moving anomalies in place of the westward moving SST modes found previously. The apparent sensitivity of the nature of tropical interannual variability to the mean climate state in a coupled general circulation model such as that used here suggests that caution is advisable if we try to use such models to answer questions relating to changes in ENSO-like variability associated with global climate change. 41 refs., 23 figs., 1 tab.

  7. Compendium of NASA Data Base for the Global Tropospheric Experiment's Pacific Exploratory Mission - Tropics B (PEM-Tropics B). Volume 2; P-3B

    Science.gov (United States)

    Scott, A. Donald, Jr.; Kleb, Mary M.; Raper, James L.

    2000-01-01

    This report provides a compendium of NASA aircraft data that are available from NASA's Global Tropospheric Experiment's (GTE) Pacific Exploratory Mission-Tropics B (PEM-Tropics B) conducted in March and April 1999. PEM-Tropics B was conducted during the southern-tropical wet season when the influence from biomass burning observed in PEM-Tropics A was minimal. Major deployment sites were Hawaii, Kiritimati (Christmas Island), Tahiti, Fiji, and Easter Island. The broad goals of PEM-Tropics B were to improved understanding of the oxidizing power of the atmosphere and the processes controlling sulfur aerosol formation and to establish baseline values for chemical species that are directly coupled to the oxidizing power and aerosol loading of the troposphere. The purpose of this document is to provide a representation of aircraft data that will be available in archived format via NASA Langley's Distributed Active Archive Center (DAAC) or are available through the GTE Project Office archive. The data format is not intended to support original research/analysis, but to assist the reader in identifying data that are of interest.

  8. Influence of Tropical South Atlantic Sea Surface Temperatures on the Indian Summer monsoon in CMIP5 models

    Science.gov (United States)

    Kucharski, Fred; Joshi, Manish K.

    2017-04-01

    In this study the teleconnection from the tropical south Atlantic to the Indian monsoon has been assessed in observations and in 32 models from the World Climate Research Program (WCRP) Coupled Model Intercomparison Project Phase 5 (CMIP5). All models show that the regression pattern of tropics-wide Atlantic sea surface temperature (SST) anomalies onto the tropical south Atlantic index correlates well with that in observations, even though with varying spatial standard deviations. However, only about half of the 32 models considered show the correct sign of rainfall response over India to a warm anomaly in the south tropical Atlantic, which is a reduction of rainfall. On the other hand, models generally do show large-scale responses broadly consistent with the observations, and the signal over India depends on relatively subtle changes in the response. This response to a tropical south Atlantic warm (cold) anomaly is a low-level quadrupole in streamfunction with an anticyclonic (cyclonic) anomaly over the Arabian Sea and India. This anticyclonic (cyclonic) anomaly leads to a weakening (strengthening) of the Somali jet and low-level divergence (convergence) over India, both inducing a reduction (increase) of Indian rainfall. The models which do not show the correct rainfall response over India also show a response similar to the one indicated above, but with maximum of the anticyclonic (cyclonic) response shifted to the western Pacific. The large-scale Walker circulation adjustment to the tropical south Atlantic SST anomalies is identified as one of the factors which account for the differences in the low-level streamfunction response. Models (and the observations) with the correct sign of the rainfall signal over India show the dominant upper-level convergence (divergence) as response to a warm (cold) tropical south Atlantic in the western Pacific region, whereas models with the wrong sign of the rainfall signal show it predominantly in the central-eastern Pacific

  9. Frequency and distribution of forest, savanna, and crop fires over tropical regions during PEM-Tropics A

    Science.gov (United States)

    Olson, Jennifer R.; Baum, Bryan A.; Cahoon, Donald R.; Crawford, James H.

    1999-03-01

    Advanced very high resolution radiometer 1.1 km resolution satellite radiance data were used to locate active fires throughout much of the tropical region during NASA's Global Tropospheric Experiment (GTE) Pacific Exploratory Mission-Tropics (PEM-Tropics A) aircraft campaign, held in September and October 1996. The spatial and temporal distributions of the fires in Australia, southern Africa, and South America are presented here. The number of fires over northern Australia, central Africa, and South America appeared to decrease toward the end of the mission period. Fire over eastern Australia was widespread, and temporal patterns showed a somewhat consistent amount of burning with periodic episodes of enhanced fire counts observed. At least one episode of enhanced fire counts corresponded to the passage of a frontal system which brought conditions conducive to fire to the region, with strong westerlies originating over the hot, dry interior continent. Regions that were affected by lower than normal rainfall during the previous wet season (e.g., northern Australia and southwestern Africa) showed relatively few fires during this period. This is consistent with a drought-induced decrease in vegetation and therefore a decreased availability of fuel for burning. Alternatively, a heavier than normal previous wet season along the southeastern coast of South Africa may have contributed to high fuel loading and an associated relatively heavy amount of burning compared to data from previous years.

  10. The Next-Generation Goddard Convective-Stratiform Heating Algorithm: New Model Simulations for Tropical and Continental Summertime Environments

    Science.gov (United States)

    Lang, S. E.; Tao, W. K.; Wu, D.

    2016-12-01

    The Goddard Convective-Stratiform Heating (or CSH) algorithm is used to retrieve estimates of cloud heating over the global Tropics using TRMM rainfall data and a set of look-up-tables (LUTs) derived from a series of multi-week cloud-resolving model (CRM) simulations using the Goddard Cumulus Ensemble model (or GCE). These simulations link satellite observables (i.e., surface rainfall and stratiform fraction) with cloud heating profiles, which are not directly observable. The strength of the algorithm relies in part on the representativeness of the simulations; more realistic simulations provide a stronger link between the observables and simulated heating profiles. The current "TRMM" version of the CSH algorithm relies on 2D GCE simulations using an improved version of the Goddard 3-class ice scheme (3ICE), a moderate-sized domain, and 1-km horizontal resolution. Updating the LUTs, which are suitable for tropical and continental summertime environments requires new, more realistic GCE simulations. New simulations are performed using a new, improved 4-class ice scheme, which has been shown to outperform the 3ICE scheme, especially for intense convection. Additional grid configurations are also tested and evaluated to find the best overall setup to for re-deriving and updating the CSH tropical/summertime LUTs.

  11. Model simulations of rainfall over southern Africa and its eastern ...

    African Journals Online (AJOL)

    2016-01-01

    Jan 1, 2016 ... Rainfall simulations over southern and tropical Africa in the form of low-resolution Atmospheric Model ..... provision of sea-surface temperatures and sea-ice fields of a host ...... with variability of the Atlantic Ocean. Bull.

  12. Water vapor stable isotope observations from tropical Australia

    KAUST Repository

    Parkes, Stephen

    2015-04-01

    The response of the tropical hydrological cycle to anthropogenically induced changes in radiative forcing is one of the largest discrepancies between climate models. Paleoclimate archives of the stable isotopic composition of precipitation in the tropics indicate a relationship with precipitation amount that could be exploited to study past hydroclimate and improve our knowledge of how this region responds to changes in climate forcing. Recently modelling studies of convective parameterizations fitted with water isotopes and remote sensing of water vapor isotopes in the tropics have illustrated uncertainty in the assumed relationship with rainfall amount. Therefore there is a need to collect water isotope data in the tropics that can be used to evaluate these models and help identify the relationships between the isotopic composition of meteoric waters and rainfall intensity. However, data in this region is almost non-existent. Here we present in-situ water vapor isotopic measurements and the HDO retrievals from the co-located Total Column Carbon Observing Network (TCCON) site at Darwin in Tropical Australia. The Darwin site is interestingly placed within the tropical western pacific region and is impacted upon by a clear monsoonal climate, and key climate cycles including ENSO and Madden Julian Oscillations. The analysis of the data illustrated relationships between water vapor isotopes and humidity which demonstrated the role of precipitation processes in the wet season and air mass mixing during the dry season. Further the wet season observations show complex relationships between humidity and isotopes. A simple Rayleigh distillation model was not obeyed, instead the importance of rainfall re-evaporation in generating the highly depleted signatures was demonstrated. These data potentially provide a useful tool for evaluating model parameterizations in monsoonal regions as they demonstrate relationships with precipitation processes that cannot be observed with

  13. Trait Acclimation Mitigates Mortality Risks of Tropical Canopy Trees under Global Warming

    NARCIS (Netherlands)

    Sterck, Frank; Anten, Niels P.R.; Schieving, Feike; Zuidema, Pieter A.

    2016-01-01

    There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and – the notoriously unknown – physiological trait acclimation of trees. In this opinion article we provided

  14. Rainfall Prediction of Indian Peninsula: Comparison of Time Series Based Approach and Predictor Based Approach using Machine Learning Techniques

    Science.gov (United States)

    Dash, Y.; Mishra, S. K.; Panigrahi, B. K.

    2017-12-01

    Prediction of northeast/post monsoon rainfall which occur during October, November and December (OND) over Indian peninsula is a challenging task due to the dynamic nature of uncertain chaotic climate. It is imperative to elucidate this issue by examining performance of different machine leaning (ML) approaches. The prime objective of this research is to compare between a) statistical prediction using historical rainfall observations and global atmosphere-ocean predictors like Sea Surface Temperature (SST) and Sea Level Pressure (SLP) and b) empirical prediction based on a time series analysis of past rainfall data without using any other predictors. Initially, ML techniques have been applied on SST and SLP data (1948-2014) obtained from NCEP/NCAR reanalysis monthly mean provided by the NOAA ESRL PSD. Later, this study investigated the applicability of ML methods using OND rainfall time series for 1948-2014 and forecasted up to 2018. The predicted values of aforementioned methods were verified using observed time series data collected from Indian Institute of Tropical Meteorology and the result revealed good performance of ML algorithms with minimal error scores. Thus, it is found that both statistical and empirical methods are useful for long range climatic projections.

  15. Global change integrating factors: Tropical tropopause trends

    International Nuclear Information System (INIS)

    Reck, R.A.

    1994-01-01

    This research proposes new criteria, shifts in the height and temperature of the tropical tropopause, as measures of global climate change. The search for signs of global warming in the temperature signal near the earth's surface is extremely difficult, largely because numerous factors contribute to surface temperature forcing with only a small signal-to-noise ratio relative to long-term effects. In the long term, no part of the atmosphere can be considered individually because the evolution will be a function of all states of all portions. A large surface greenhouse signal might ultimately be expected, but the analysis of surface temperature may not be particularly useful for early detection. What is suggested here is not an analysis of trends in the surface temperature field or any of its spatial averages, but rather an integrating factor or integrator, a single measure of global change that could be considered a test of significant change for the entire global system. Preferably, this global change integrator would vary slowly and would take into account many of the causes of climate change, with a relatively large signal-to-noise ratio. Such an integrator could be monitored, and abrupt or accelerated changes could serve as an early warning signal for policy makers and the public. Earlier work has suggested that temperature has much less short-term and small-scale noise in the lower stratosphere, and thus the global warming signal at that level might be more easily deconvoluted, because the cooling rate near the 200-mb level is almost constant with latitude. A study of the temperature signal at this pressure level might show a clearer trend due to increased levels of greenhouse gases, but it would yield information about the troposphere only by inference

  16. Reducing Production Basis Risk through Rainfall Intensity Frequency (RIF) Indexes: Global Sensitivity Analysis' Implication on Policy Design

    Science.gov (United States)

    Muneepeerakul, Chitsomanus; Huffaker, Ray; Munoz-Carpena, Rafael

    2016-04-01

    The weather index insurance promises financial resilience to farmers struck by harsh weather conditions with swift compensation at affordable premium thanks to its minimal adverse selection and moral hazard. Despite these advantages, the very nature of indexing causes the presence of "production basis risk" that the selected weather indexes and their thresholds do not correspond to actual damages. To reduce basis risk without additional data collection cost, we propose the use of rain intensity and frequency as indexes as it could offer better protection at the lower premium by avoiding basis risk-strike trade-off inherent in the total rainfall index. We present empirical evidences and modeling results that even under the similar cumulative rainfall and temperature environment, yield can significantly differ especially for drought sensitive crops. We further show that deriving the trigger level and payoff function from regression between historical yield and total rainfall data may pose significant basis risk owing to their non-unique relationship in the insured range of rainfall. Lastly, we discuss the design of index insurance in terms of contract specifications based on the results from global sensitivity analysis.

  17. Tropical forest soil microbial communities couple iron and carbon biogeochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Dubinsky, E.A.; Silver, W.L.; Firestone, M.K.

    2009-10-15

    We report that iron-reducing bacteria are primary mediators of anaerobic carbon oxidation in upland tropical soils spanning a rainfall gradient (3500 - 5000 mm yr-1) in northeast Puerto Rico. The abundant rainfall and high net primary productivity of these tropical forests provide optimal soil habitat for iron-reducing and iron-oxidizing bacteria. Spatially and temporally dynamic redox conditions make iron-transforming microbial communities central to the belowground carbon cycle in these wet tropical forests. The exceedingly high abundance of iron-reducing bacteria (up to 1.2 x 10{sup 9} cells per gram soil) indicated that they possess extensive metabolic capacity to catalyze the reduction of iron minerals. In soils from the higher rainfall sites, measured rates of ferric iron reduction could account for up to 44 % of organic carbon oxidation. Iron reducers appeared to compete with methanogens when labile carbon availability was limited. We found large numbers of bacteria that oxidize reduced iron at sites with high rates of iron reduction and large numbers of iron-reducers. the coexistence of large populations of ironreducing and iron-oxidizing bacteria is evidence for rapid iron cycling between its reduced and oxidized states, and suggests that mutualistic interactions among these bacteria ultimately fuel organic carbon oxidation and inhibit CH4 production in these upland tropical forests.

  18. Variability in tropical tropospheric ozone: analysis with GOME observations and a global model

    NARCIS (Netherlands)

    Valks, P.J.M.; Koelemeijer, R.B.A.; Weele, van M.; Velthoven, van P.F.J.; Fortuin, J.P.F.; Kelder, H.M.

    2003-01-01

    Tropical tropospheric ozone columns (TTOCs) have been determined with a convective-cloud-differential (CCD) method, using ozone column and cloud measurements from the Global Ozone Monitoring Experiment (GOME) instrument. GOME cloud top pressures, derived with the Fast Retrieval Scheme for Clouds

  19. Assessment of the Weather Research and Forecasting (WRF) model for simulation of extreme rainfall events in the upper Ganga Basin

    Science.gov (United States)

    Chawla, Ila; Osuri, Krishna K.; Mujumdar, Pradeep P.; Niyogi, Dev

    2018-02-01

    Reliable estimates of extreme rainfall events are necessary for an accurate prediction of floods. Most of the global rainfall products are available at a coarse resolution, rendering them less desirable for extreme rainfall analysis. Therefore, regional mesoscale models such as the advanced research version of the Weather Research and Forecasting (WRF) model are often used to provide rainfall estimates at fine grid spacing. Modelling heavy rainfall events is an enduring challenge, as such events depend on multi-scale interactions, and the model configurations such as grid spacing, physical parameterization and initialization. With this background, the WRF model is implemented in this study to investigate the impact of different processes on extreme rainfall simulation, by considering a representative event that occurred during 15-18 June 2013 over the Ganga Basin in India, which is located at the foothills of the Himalayas. This event is simulated with ensembles involving four different microphysics (MP), two cumulus (CU) parameterizations, two planetary boundary layers (PBLs) and two land surface physics options, as well as different resolutions (grid spacing) within the WRF model. The simulated rainfall is evaluated against the observations from 18 rain gauges and the Tropical Rainfall Measuring Mission Multi-Satellite Precipitation Analysis (TMPA) 3B42RT version 7 data. From the analysis, it should be noted that the choice of MP scheme influences the spatial pattern of rainfall, while the choice of PBL and CU parameterizations influences the magnitude of rainfall in the model simulations. Further, the WRF run with Goddard MP, Mellor-Yamada-Janjic PBL and Betts-Miller-Janjic CU scheme is found to perform best in simulating this heavy rain event. The selected configuration is evaluated for several heavy to extremely heavy rainfall events that occurred across different months of the monsoon season in the region. The model performance improved through incorporation

  20. A model for calculating hourly global solar radiation from satellite data in the tropics

    International Nuclear Information System (INIS)

    Janjai, S.; Pankaew, P.; Laksanaboonsong, J.

    2009-01-01

    A model for calculating global solar radiation from geostationary satellite data is presented. The model is designed to calculate the monthly average hourly global radiation in the tropics with high aerosol load. This model represents a physical relation between the earth-atmospheric albedo derived from GMS5 satellite data and the absorption and scattering coefficients of various atmospheric constituents. The absorption of solar radiation by water vapour which is important for the tropics, was calculated from ambient temperature and relative humidity. The relationship between the visibility and solar radiation depletion due to aerosols was developed for a high aerosol load environment. This relationship was used to calculate solar radiation depletion by aerosols in the model. The total column ozone from TOMS/EP satellite was employed for the determination of solar radiation absorbed by ozone. Solar radiation from four pyranometer stations was used to formulate the relationship between the satellite band earth-atmospheric albedo and broadband earth-atmospheric albedo required by the model. To test its performance, the model was used to compute the monthly average hourly global radiation at 25 solar radiation monitoring stations in tropical areas in Thailand. It was found that the values of monthly average of hourly global radiations calculated from the model were in good agreement with those obtained from the measurements, with the root mean square difference of 10%. After the validation the model was employed to generate hourly solar radiation maps of Thailand. These maps reveal the diurnal and season variation of solar radiation over the country.

  1. A model for calculating hourly global solar radiation from satellite data in the tropics

    Energy Technology Data Exchange (ETDEWEB)

    Janjai, S.; Pankaew, P.; Laksanaboonsong, J. [Solar Energy Research Laboratory, Department of Physics, Faculty of Science, Silpakorn University, Nakhon Pathom 73000 (Thailand)

    2009-09-15

    A model for calculating global solar radiation from geostationary satellite data is presented. The model is designed to calculate the monthly average hourly global radiation in the tropics with high aerosol load. This model represents a physical relation between the earth-atmospheric albedo derived from GMS5 satellite data and the absorption and scattering coefficients of various atmospheric constituents. The absorption of solar radiation by water vapour which is important for the tropics, was calculated from ambient temperature and relative humidity. The relationship between the visibility and solar radiation depletion due to aerosols was developed for a high aerosol load environment. This relationship was used to calculate solar radiation depletion by aerosols in the model. The total column ozone from TOMS/EP satellite was employed for the determination of solar radiation absorbed by ozone. Solar radiation from four pyranometer stations was used to formulate the relationship between the satellite band earth-atmospheric albedo and broadband earth-atmospheric albedo required by the model. To test its performance, the model was used to compute the monthly average hourly global radiation at 25 solar radiation monitoring stations in tropical areas in Thailand. It was found that the values of monthly average of hourly global radiations calculated from the model were in good agreement with those obtained from the measurements, with the root mean square difference of 10%. After the validation the model was employed to generate hourly solar radiation maps of Thailand. These maps reveal the diurnal and season variation of solar radiation over the country. (author)

  2. Interpretation of TOMS Observations of Tropical Tropospheric Ozone with a Global Model and In Situ Observations

    Science.gov (United States)

    Martin, Randall V.; Jacob, Daniel J.; Logan, Jennifer A.; Bey, Isabelle; Yantosca, Robert M.; Staudt, Amanda C.; Fiore, Arlene M.; Duncan, Bryan N.; Liu, Hongyu; Ginoux, Paul

    2004-01-01

    We interpret the distribution of tropical tropospheric ozone columns (TTOCs) from the Total Ozone Mapping Spectrometer (TOMS) by using a global three-dimensional model of tropospheric chemistry (GEOS-CHEM) and additional information from in situ observations. The GEOS-CHEM TTOCs capture 44% of the variance of monthly mean TOMS TTOCs from the convective cloud differential method (CCD) with no global bias. Major discrepancies are found over northern Africa and south Asia where the TOMS TTOCs do not capture the seasonal enhancements from biomass burning found in the model and in aircraft observations. A characteristic feature of these northern topical enhancements, in contrast to southern tropical enhancements, is that they are driven by the lower troposphere where the sensitivity of TOMS is poor due to Rayleigh scattering. We develop an efficiency correction to the TOMS retrieval algorithm that accounts for the variability of ozone in the lower troposphere. This efficiency correction increases TTOC's over biomass burning regions by 3-5 Dobson units (DU) and decreases them by 2-5 DU over oceanic regions, improving the agreement between CCD TTOCs and in situ observations. Applying the correction to CCD TTOCs reduces by approximately DU the magnitude of the "tropical Atlantic paradox" [Thompson et al, 2000], i.e. the presence of a TTOC enhancement over the southern tropical Atlantic during the northern African biomass burning season in December-February. We reproduce the remainder of the paradox in the model and explain it by the combination of upper tropospheric ozone production from lightning NOx, peristent subsidence over the southern tropical Atlantic as part of the Walker circulation, and cross-equatorial transport of upper tropospheric ozone from northern midlatitudes in the African "westerly duct." These processes in the model can also account for the observed 13-17 DU persistent wave-1 pattern in TTOCs with a maximum above the tropical Atlantic and a minimum

  3. The influence of biogenic emissions from Africa on tropical tropospheric ozone during 2006: a global modeling study

    Directory of Open Access Journals (Sweden)

    J. E. Williams

    2009-08-01

    Full Text Available We have performed simulations using a 3-D global chemistry-transport model to investigate the influence that biogenic emissions from the African continent exert on the composition of the troposphere in the tropical region. For this purpose we have applied two recently developed biogenic emission inventories provided for use in large-scale global models (Granier et al., 2005; Lathière et al., 2006 whose seasonality and temporal distribution for biogenic emissions of isoprene, other volatile organic compounds and NO is markedly different. The use of the 12 year average values for biogenic emissions provided by Lathière et al. (2006 results in an increase in the amount of nitrogen sequestrated into longer lived reservoir compounds which contributes to the reduction in the tropospheric ozone burden in the tropics. The associated re-partitioning of nitrogen between PAN, HNO3 and organic nitrates also results in a ~5% increase in the loss of nitrogen by wet deposition. At a global scale there is a reduction in the oxidizing capacity of the model atmosphere which increases the atmospheric lifetimes of CH4 and CO by ~1.5% and ~4%, respectively. Comparisons against a range of different measurements indicate that applying the 12 year average of Lathière et al. (2006 improves the performance of TM4_AMMA for 2006 in the tropics. By the use of sensitivity studies we show that the release of NO from soils in Africa accounts for between ~2–45% of tropospheric ozone in the African troposphere, ~10% in the upper troposphere and between ~5–20% of the tropical tropospheric ozone column over the tropical Atlantic Ocean. The subsequent reduction in OH over the source regions allows enhanced transport of CO out of the region. For biogenic volatile organic C1 to C3 species released from Africa, the effects on tropical tropospheric ozone are rather limited, although this source contributes to the global burden of VOC by between ~2–4% and

  4. Prediction of Monthly Summer Monsoon Rainfall Using Global Climate Models Through Artificial Neural Network Technique

    Science.gov (United States)

    Nair, Archana; Singh, Gurjeet; Mohanty, U. C.

    2018-01-01

    The monthly prediction of summer monsoon rainfall is very challenging because of its complex and chaotic nature. In this study, a non-linear technique known as Artificial Neural Network (ANN) has been employed on the outputs of Global Climate Models (GCMs) to bring out the vagaries inherent in monthly rainfall prediction. The GCMs that are considered in the study are from the International Research Institute (IRI) (2-tier CCM3v6) and the National Centre for Environmental Prediction (Coupled-CFSv2). The ANN technique is applied on different ensemble members of the individual GCMs to obtain monthly scale prediction over India as a whole and over its spatial grid points. In the present study, a double-cross-validation and simple randomization technique was used to avoid the over-fitting during training process of the ANN model. The performance of the ANN-predicted rainfall from GCMs is judged by analysing the absolute error, box plots, percentile and difference in linear error in probability space. Results suggest that there is significant improvement in prediction skill of these GCMs after applying the ANN technique. The performance analysis reveals that the ANN model is able to capture the year to year variations in monsoon months with fairly good accuracy in extreme years as well. ANN model is also able to simulate the correct signs of rainfall anomalies over different spatial points of the Indian domain.

  5. Estimating impact of rainfall change on hydrological processes in Jianfengling rainforest watershed, China using BASINS-HSPF-CAT modeling system

    Science.gov (United States)

    Zhang Zhou; Ying Ouyang; Yide Li; Zhijun Qiu; Matt Moran

    2017-01-01

    Climate change over the past several decades has resulted in shifting rainfall pattern and modifying rain-fall intensity, which has exacerbated hydrological processes and added the uncertainty and instability tothese processes. This study ascertained impacts of potential future rainfall change on hydrological pro-cesses at the Jianfengling (JFL) tropical mountain...

  6. The Role of Temperature and Humidity on Seasonal Influenza in Tropical Areas: Guatemala, El Salvador and Panama, 2008-2013

    Science.gov (United States)

    Soebiyanto, Radina P.; Clara, Wilfrido; Jara, Jorge; Castillo, Leticia; Sorto, Oscar Rene; Marinero, Sidia; Antinori, Maria E. Barnett de; McCracken, John P.; Widdowson, Marc-Alain; Azziz-Baumgartner, Eduardo; hide

    2014-01-01

    Background: The role of meteorological factors on influenza transmission in the tropics is less defined than in the temperate regions. We assessed the association between influenza activity and temperature, specific humidity and rainfall in 6 study areas that included 11 departments or provinces within 3 tropical Central American countries: Guatemala, El Salvador and Panama. Method/ Findings: Logistic regression was used to model the weekly proportion of laboratory-confirmed influenza positive samples during 2008 to 2013 (excluding pandemic year 2009). Meteorological data was obtained from the Tropical Rainfall Measuring Mission satellite and the Global Land Data Assimilation System. We found that specific humidity was positively associated with influenza activity in El Salvador (Odds Ratio (OR) and 95% Confidence Interval of 1.18 (1.07-1.31) and 1.32 (1.08-1.63)) and Panama (OR = 1.44 (1.08-1.93) and 1.97 (1.34-2.93)), but negatively associated with influenza activity in Guatemala (OR = 0.72 (0.6-0.86) and 0.79 (0.69-0.91)). Temperature was negatively associated with influenza in El Salvador's west-central departments (OR = 0.80 (0.7-0.91)) whilst rainfall was positively associated with influenza in Guatemala's central departments (OR = 1.05 (1.01-1.09)) and Panama province (OR = 1.10 (1.05-1.14)). In 4 out of the 6 locations, specific humidity had the highest contribution to the model as compared to temperature and rainfall. The model performed best in estimating 2013 influenza activity in Panama and west-central El Salvador departments (correlation coefficients: 0.5-0.9). Conclusions/Significance: The findings highlighted the association between influenza activity and specific humidity in these 3 tropical countries. Positive association with humidity was found in El Salvador and Panama. Negative association was found in the more subtropical Guatemala, similar to temperate regions. Of all the study locations, Guatemala had annual mean temperature and specific

  7. Mechanism of ENSO influence on the South Asian monsoon rainfall in global model simulations

    Science.gov (United States)

    Joshi, Sneh; Kar, Sarat C.

    2018-02-01

    Coupled ocean atmosphere global climate models are increasingly being used for seasonal scale simulation of the South Asian monsoon. In these models, sea surface temperatures (SSTs) evolve as coupled air-sea interaction process. However, sensitivity experiments with various SST forcing can only be done in an atmosphere-only model. In this study, the Global Forecast System (GFS) model at T126 horizontal resolution has been used to examine the mechanism of El Niño-Southern Oscillation (ENSO) forcing on the monsoon circulation and rainfall. The model has been integrated (ensemble) with observed, climatological and ENSO SST forcing to document the mechanism on how the South Asian monsoon responds to basin-wide SST variations in the Indian and Pacific Oceans. The model simulations indicate that the internal variability gets modulated by the SSTs with warming in the Pacific enhancing the ensemble spread over the monsoon region as compared to cooling conditions. Anomalous easterly wind anomalies cover the Indian region both at 850 and 200 hPa levels during El Niño years. The locations and intensity of Walker and Hadley circulations are altered due to ENSO SST forcing. These lead to reduction of monsoon rainfall over most parts of India during El Niño events compared to La Niña conditions. However, internally generated variability is a major source of uncertainty in the model-simulated climate.

  8. WMO statement on the status of the global climate in 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The brochure gives a summary of global climate during 1996, from information provided by the Climate Prediction Center in the United States with inputs from other climate centres around the world. The 1997 global mean surface temperature anomaly, 0.43{degree}C above the 1961-90 base-period mean temperature, was the highest since records began in 1860. One major contributing factor was the El Nino Southern Oscillation (ENSO) episode with temperatures in the tropical belt being the second highest in the historical record. ENSO resulted in increased rainfall in the central and eastern aquatorical pacific. In Indonesia, low rainfall from March to December and drought conditions by July and August contributed to uncontrolled wildfires in rainforests of Sumatra and Borneo resulting in widespread smoke pollution. The booklet is provided through the Climate Change Detection Project of the World Climate Data and Monitoring Programme (WCDMP). 10 figs.

  9. Evaluation of short-period rainfall estimates from Kalpana-1 satellite

    Indian Academy of Sciences (India)

    The INSAT Multispectral Rainfall Algorithm (IMSRA) technique for rainfall estimation, has recently been developed to meet the shortcomings of the Global Precipitation Index (GPI) technique of rainfall estimation from the data of geostationary satellites; especially for accurate short period rainfall estimates. This study ...

  10. Adapting an existing visualization application for browser-based deployment: A case study from the Tropical Rainfall Measuring Mission

    Science.gov (United States)

    Kelley, Owen A.

    2013-02-01

    THOR, the Tool for High-resolution Observation Review, is a data viewer for the Tropical Rainfall Measuring Mission (TRMM) and the upcoming Global Precipitation Measurement (GPM) mission. THOR began as a desktop application, but now it can be accessed with a web browser, making THOR one of the first online tools for visualizing TRMM satellite data (http://pps.gsfc.nasa.gov/thor). In this effort, the reuse of the existing visualization code was maximized and the complexity of new code was minimized by avoiding unnecessary functionality, frameworks, or libraries. The simplicity of this approach makes it potentially attractive to researchers wishing to adapt their visualization applications for online deployment. To enable THOR to run within a web browser, three new pieces of code are written. First, the graphical user interface (GUI) of the desktop application is translated into HTML, JavaScript, and CSS. Second, a simple communication mechanism is developed over HTTP. Third, a virtual GUI is created on the server that interfaces with the image-generating routines of the existing desktop application so that these routines do not need to be modified for online use. While the basic functionality of THOR is now available online, prototyping is ongoing for enhanced 3D imaging and other aspects of both THOR Desktop and THOR Online. Because TRMM data products are complex and periodically reprocessed with improved algorithms, having a tool such as THOR is important to analysts at the Precipitation Processing System where the algorithms are tested and the products generated, stored, and distributed. Researchers also have found THOR useful for taking a first look at individual files before writing their own software to perform specialized calculations and analyses.

  11. Enhancement of vegetation-rainfall feedbacks on the Australian summer monsoon by the Madden-Julian Oscillation

    Science.gov (United States)

    Notaro, Michael

    2018-01-01

    A regional climate modeling analysis of the Australian monsoon system reveals a substantial modulation of vegetation-rainfall feedbacks by the Madden Julian Oscillation (MJO), both of which operate at similar sub-seasonal time scales, as evidence that the intensity of land-atmosphere interactions is sensitive to the background atmospheric state. Based on ensemble experiments with imposed modification of northern Australian leaf area index (LAI), the atmospheric responses to LAI anomalies are composited for negative and positive modes of the propagating MJO. In the regional climate model (RCM), northern Australian vegetation feedbacks are characterized by evapotranspiration (ET)-driven rainfall responses, with the moisture feedback mechanism dominating over albedo and roughness feedback mechanisms. During November-April, both Tropical Rainfall Measuring Mission and RCM data reveal MJO's pronounced influence on rainfall patterns across northern Australia, tropical Indian Ocean, Timor Sea, Arafura Sea, and Gulf of Carpentaria, with the MJO dominating over vegetation feedbacks in terms of regulating monsoon rainfall variability. Convectively-active MJO phases support an enhancement of positive vegetation feedbacks on monsoon rainfall. While the MJO imposes minimal regulation of ET responses to LAI anomalies, the vegetation feedback-induced responses in precipitable water, cloud water, and rainfall are greatly enhanced during convectively-active MJO phases over northern Australia, which are characterized by intense low-level convergence and efficient precipitable water conversion. The sub-seasonal response of vegetation-rainfall feedback intensity to the MJO is complex, with significant enhancement of rainfall responses to LAI anomalies in February during convectively-active MJO phases compared to minimal modulation by the MJO during prior and subsequent calendar months.

  12. Synchrony, compensatory dynamics, and the functional trait basis of phenological diversity in a tropical dry forest tree community: effects of rainfall seasonality

    Science.gov (United States)

    Lasky, Jesse R.; Uriarte, María; Muscarella, Robert

    2016-11-01

    Interspecific variation in phenology is a key axis of functional diversity, potentially mediating how communities respond to climate change. The diverse drivers of phenology act across multiple temporal scales. For example, abiotic constraints favor synchronous reproduction (positive covariance among species), while biotic interactions can favor synchrony or compensatory dynamics (negative covariance). We used wavelet analyses to examine phenology of community flower and seed production for 45 tree species across multiple temporal scales in a tropical dry forest in Puerto Rico with marked rainfall seasonality. We asked three questions: (1) do species exhibit synchronous or compensatory temporal dynamics in reproduction, (2) do interspecific differences in phenology reflect variable responses to rainfall, and (3) is interspecific variation in phenology and response to a major drought associated with functional traits that mediate responses to moisture? Community-level flowering was synchronized at seasonal scales (˜5-6 mo) and at short scales (˜1 mo, following rainfall). However, seed rain exhibited significant compensatory dynamics at intraseasonal scales (˜3 mo), suggesting interspecific variation in temporal niches. Species with large leaves (associated with sensitivity to water deficit) peaked in reproduction synchronously with the peak of seasonal rainfall (˜5 mo scale). By contrast, species with high wood specific gravity (associated with drought resistance) tended to flower in drier periods. Flowering of tall species and those with large leaves was most tightly linked to intraseasonal (˜2 mo scale) rainfall fluctuations. Although the 2015 drought dramatically reduced community-wide reproduction, functional traits were not associated with the magnitude of species-specific declines. Our results suggest opposing drivers of synchronous versus compensatory dynamics at different temporal scales. Phenology associations with functional traits indicated that

  13. The Impact of Amazonian Deforestation on Dry-Season Rainfall

    Science.gov (United States)

    Negri, Andrew J.; Adler, Robert F.; Xu, Li-Ming; Surratt, Jason; Starr, David OC. (Technical Monitor)

    2002-01-01

    Many modeling studies have concluded that widespread deforestation of Amazonia would lead to decreased rainfall. We analyze geosynchronous infrared satellite data with respect percent cloudiness, and analyze rain estimates from microwave sensors aboard the Tropical Rainfall Measuring Mission satellite. We conclude that in the dry-season, when the effects of the surface are not overwhelmed by synoptic-scale weather disturbances, deep convective cloudiness, as well as rainfall occurrence, all increase over the deforested and non-forested (savanna) regions. This is in response to a local circulation initiated by the differential heating of the region's varying forestation. Analysis of the diurnal cycle of cloudiness reveals a shift toward afternoon hours in the deforested and savanna regions, compared to the forested regions. Analysis of 14 years of data from the Special Sensor Microwave/Imager data revealed that only in August did rainfall amounts increase over the deforested region.

  14. Sensitivity of South American tropical climate to Last Glacial Maximum boundary conditions: focus on teleconnections with tropics and extratropics (Invited)

    Science.gov (United States)

    Khodri, M.; Kageyama, M.; Roche, D. M.

    2009-12-01

    Proxy data over tropical latitudes for the Last Glacial Maximum (LGM) has been interpreted as a southward shift of the Inter Tropical Convergence Zone (ITCZ) and so far linked to a mechanism analogous to the modern day “meridional-mode” in the Atlantic Ocean. Here we have explored alternative mechanisms, related to the direct impact of the LGM global changes in the dry static stability on tropical moist deep convection. We have used a coupled ocean-atmosphere model capable of capturing the thermodynamical structure of the atmosphere and the tropical component of the Hadley and Walker circulations. In each experiment, we have applied either all the LGM forcings, or the individual contributions of greenhouse gases (GHG) concentrations, ice sheet topography and/or albedo to explore the hydrological response over tropical latitudes with a focus on South America. The dominant forcing for the LGM tropical temperature and precipitation changes is found to be due to the reduced GHG, through the direct effect of reduced radiative heating (Clausius-Clapeyron relationship). The LGM GHG is also responsible for increased extra-tropical static stability which strengthens the Hadley Cell. Stronger subsidence over northern tropics then produces an amplification of the northern tropics drying initially due to the direct cooling effect. The land ice sheet is also able to promote the Hadley cell feedback mostly via the topographic effect on the extra-tropical dry static stability and on the position of the subtropical jets. Our results therefore suggest that the communication between the extratropics and the tropics is tighter during LGM and does not necessarily rely on the “meridional-mode” mechanism. The Hadley cell response is constrained by the requirement that diabatic heating in the tropics balances cooling in subtropics. We show that such extratropics-tropics dependence is stronger at the LGM because of the stronger perturbation of northern extra tropical thermal and

  15. Applying Spatially Distributed Rainfall to a Hydrological Model in a Tropical Watershed, Manoa Watershed, in Hawaii

    Science.gov (United States)

    Huang, Y. F.; Tsang, Y. P.

    2017-12-01

    Rainfall in Hawaii is characterized with high spatial and temporal variability. In the south side of Oahu, the Manoa watershed, with an area of 11 km2, has the annual maximum rainfall of 3900mm and the minimum rainfall of 1000 mm. Despite this high spatial heterogeneity, the rain gage network seems insufficiently capture this pattern. When simulating stream flow and predicting floods with hydrological models in Hawaii, the model performance is often unsatisfactory because of inadequate representation of rainfall data. Longman et al. (in prep.) have developed the spatially distributed daily rainfall across the Hawaiian Islands by applying ordinary kriging, yet these data have not been applied to hydrological models. In this study, we used the Soil and Water Assessment Tool (SWAT) model to assess the streamflow simulation by applying spatially-distributed rainfall in the Manoa watershed. We first used point daily-rainfall at Lyon Arboretum from National Center of Environmental Information (NCEI) as the uniform rainfall input. Secondly, we summarized sub-watershed mean rainfall from the daily spatial-statistical rainfall. Both rainfall data are available from 1999 to 2014. The SWAT was set up for five-year warm-up, nine-year calibration, and two-year validation. The model parameters were calibrated and validated with four U.S. Geological Survey stream gages. We compared the calibrated watershed parameters, characteristics, and assess the streamflow hydrographs from these two rainfall inputs. The differences and improvement of using spatially distributed rainfall input in SWAT were discussed. In addition to improving the model by the representation of rainfall, this study helped us having a better understanding of the watershed hydrological response in Hawaii.

  16. A stochastic assessment of the effect of global warming on rainfall ...

    African Journals Online (AJOL)

    Crop production depends on rainfall, and rainfall is affected by extreme weather conditions. Markov chain and time series model are adapted for the study of the pattern of rainfall in the North Central Region of Nigeria. Results reveal the long run distributions of the dry and wet days to be 0.7841, and 0.2159 respectively.

  17. Climatology and Interannual Variability of Quasi-Global Intense Precipitation Using Satellite Observations

    Science.gov (United States)

    Ricko, Martina; Adler, Robert F.; Huffman, George J.

    2016-01-01

    Climatology and variations of recent mean and intense precipitation over a near-global (50 deg. S 50 deg. N) domain on a monthly and annual time scale are analyzed. Data used to derive daily precipitation to examine the effects of spatial and temporal coverage of intense precipitation are from the current Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42 version 7 precipitation product, with high spatial and temporal resolution during 1998 - 2013. Intense precipitation is defined by several different parameters, such as a 95th percentile threshold of daily precipitation, a mean precipitation that exceeds that percentile, or a fixed threshold of daily precipitation value [e.g., 25 and 50 mm day(exp -1)]. All parameters are used to identify the main characteristics of spatial and temporal variation of intense precipitation. High correlations between examined parameters are observed, especially between climatological monthly mean precipitation and intense precipitation, over both tropical land and ocean. Among the various parameters examined, the one best characterizing intense rainfall is a fraction of daily precipitation Great than or equal to 25 mm day(exp. -1), defined as a ratio between the intense precipitation above the used threshold and mean precipitation. Regions that experience an increase in mean precipitation likely experience a similar increase in intense precipitation, especially during the El Nino Southern Oscillation (ENSO) events. Improved knowledge of this intense precipitation regime and its strong connection to mean precipitation given by the fraction parameter can be used for monitoring of intense rainfall and its intensity on a global to regional scale.

  18. Prediction of monthly rainfall on homogeneous monsoon regions of India based on large scale circulation patterns using Genetic Programming

    Science.gov (United States)

    Kashid, Satishkumar S.; Maity, Rajib

    2012-08-01

    SummaryPrediction of Indian Summer Monsoon Rainfall (ISMR) is of vital importance for Indian economy, and it has been remained a great challenge for hydro-meteorologists due to inherent complexities in the climatic systems. The Large-scale atmospheric circulation patterns from tropical Pacific Ocean (ENSO) and those from tropical Indian Ocean (EQUINOO) are established to influence the Indian Summer Monsoon Rainfall. The information of these two large scale atmospheric circulation patterns in terms of their indices is used to model the complex relationship between Indian Summer Monsoon Rainfall and the ENSO as well as EQUINOO indices. However, extracting the signal from such large-scale indices for modeling such complex systems is significantly difficult. Rainfall predictions have been done for 'All India' as one unit, as well as for five 'homogeneous monsoon regions of India', defined by Indian Institute of Tropical Meteorology. Recent 'Artificial Intelligence' tool 'Genetic Programming' (GP) has been employed for modeling such problem. The Genetic Programming approach is found to capture the complex relationship between the monthly Indian Summer Monsoon Rainfall and large scale atmospheric circulation pattern indices - ENSO and EQUINOO. Research findings of this study indicate that GP-derived monthly rainfall forecasting models, that use large-scale atmospheric circulation information are successful in prediction of All India Summer Monsoon Rainfall with correlation coefficient as good as 0.866, which may appears attractive for such a complex system. A separate analysis is carried out for All India Summer Monsoon rainfall for India as one unit, and five homogeneous monsoon regions, based on ENSO and EQUINOO indices of months of March, April and May only, performed at end of month of May. In this case, All India Summer Monsoon Rainfall could be predicted with 0.70 as correlation coefficient with somewhat lesser Correlation Coefficient (C.C.) values for different

  19. Deforestation and rainfall recycling in Brazil: Is decreased forest cover connectivity associated with decreased rainfall connectivity?

    Science.gov (United States)

    Adera, S.; Larsen, L.; Levy, M. C.; Thompson, S. E.

    2017-12-01

    In the Brazilian rainforest-savanna transition zone, deforestation has the potential to significantly affect rainfall by disrupting rainfall recycling, the process by which regional evapotranspiration contributes to regional rainfall. Understanding rainfall recycling in this region is important not only for sustaining Amazon and Cerrado ecosystems, but also for cattle ranching, agriculture, hydropower generation, and drinking water management. Simulations in previous studies suggest complex, scale-dependent interactions between forest cover connectivity and rainfall. For example, the size and distribution of deforested patches has been found to affect rainfall quantity and spatial distribution. Here we take an empirical approach, using the spatial connectivity of rainfall as an indicator of rainfall recycling, to ask: as forest cover connectivity decreased from 1981 - 2015, how did the spatial connectivity of rainfall change in the Brazilian rainforest-savanna transition zone? We use satellite forest cover and rainfall data covering this period of intensive forest cover loss in the region (forest cover from the Hansen Global Forest Change dataset; rainfall from the Climate Hazards Infrared Precipitation with Stations dataset). Rainfall spatial connectivity is quantified using transfer entropy, a metric from information theory, and summarized using network statistics. Networks of connectivity are quantified for paired deforested and non-deforested regions before deforestation (1981-1995) and during/after deforestation (2001-2015). Analyses reveal a decline in spatial connectivity networks of rainfall following deforestation.

  20. Magnified Sediment Export of Small Mountainous Rivers in Taiwan: Chain Reactions from Increased Rainfall Intensity under Global Warming.

    Science.gov (United States)

    Lee, Tsung-Yu; Huang, Jr-Chuan; Lee, Jun-Yi; Jien, Shih-Hao; Zehetner, Franz; Kao, Shuh-Ji

    2015-01-01

    Fluvial sediment export from small mountainous rivers in Oceania has global biogeochemical significance affecting the turnover rate and export of terrestrial carbon, which might be speeding up at the recognized conditions of increased rainfall intensity. In this study, the historical runoff and sediment export from 16 major rivers in Taiwan are investigated and separated into an early stage (1970-1989) and a recent stage (1990-2010) to illustrate the changes of both runoff and sediment export. The mean daily sediment export from Taiwan Island in the recent stage significantly increased by >80% with subtle increase in daily runoff, indicating more sediment being delivered to the ocean per unit of runoff in the recent stage. The medians of the runoff depth and sediment yield extremes (99.0-99.9 percentiles) among the 16 rivers increased by 6.5%-37% and 62%-94%, respectively, reflecting the disproportionately magnified response of sediment export to the increased runoff. Taiwan is facing increasing event rainfall intensity which has resulted in chain reactions on magnified runoff and sediment export responses. As the globe is warming, rainfall extremes, which are proved to be temperature-dependent, very likely intensify runoff and trigger more sediment associated hazards. Such impacts might occur globally because significant increases of high-intensity precipitation have been observed not only in Taiwan but over most land areas of the globe.

  1. Simulation skill of APCC set of global climate models for Asian summer monsoon rainfall variability

    Science.gov (United States)

    Singh, U. K.; Singh, G. P.; Singh, Vikas

    2015-04-01

    The performance of 11 Asia-Pacific Economic Cooperation Climate Center (APCC) global climate models (coupled and uncoupled both) in simulating the seasonal summer (June-August) monsoon rainfall variability over Asia (especially over India and East Asia) has been evaluated in detail using hind-cast data (3 months advance) generated from APCC which provides the regional climate information product services based on multi-model ensemble dynamical seasonal prediction systems. The skill of each global climate model over Asia was tested separately in detail for the period of 21 years (1983-2003), and simulated Asian summer monsoon rainfall (ASMR) has been verified using various statistical measures for Indian and East Asian land masses separately. The analysis found a large variation in spatial ASMR simulated with uncoupled model compared to coupled models (like Predictive Ocean Atmosphere Model for Australia, National Centers for Environmental Prediction and Japan Meteorological Agency). The simulated ASMR in coupled model was closer to Climate Prediction Centre Merged Analysis of Precipitation (CMAP) compared to uncoupled models although the amount of ASMR was underestimated in both models. Analysis also found a high spread in simulated ASMR among the ensemble members (suggesting that the model's performance is highly dependent on its initial conditions). The correlation analysis between sea surface temperature (SST) and ASMR shows that that the coupled models are strongly associated with ASMR compared to the uncoupled models (suggesting that air-sea interaction is well cared in coupled models). The analysis of rainfall using various statistical measures suggests that the multi-model ensemble (MME) performed better compared to individual model and also separate study indicate that Indian and East Asian land masses are more useful compared to Asia monsoon rainfall as a whole. The results of various statistical measures like skill of multi-model ensemble, large spread

  2. Does the GPM mission improve the systematic error component in satellite rainfall estimates over TRMM? An evaluation at a pan-India scale

    Science.gov (United States)

    Beria, Harsh; Nanda, Trushnamayee; Singh Bisht, Deepak; Chatterjee, Chandranath

    2017-12-01

    The last couple of decades have seen the outburst of a number of satellite-based precipitation products with Tropical Rainfall Measuring Mission (TRMM) as the most widely used for hydrologic applications. Transition of TRMM into the Global Precipitation Measurement (GPM) promises enhanced spatio-temporal resolution along with upgrades to sensors and rainfall estimation techniques. The dependence of systematic error components in rainfall estimates of the Integrated Multi-satellitE Retrievals for GPM (IMERG), and their variation with climatology and topography, was evaluated over 86 basins in India for year 2014 and compared with the corresponding (2014) and retrospective (1998-2013) TRMM estimates. IMERG outperformed TRMM for all rainfall intensities across a majority of Indian basins, with significant improvement in low rainfall estimates showing smaller negative biases in 75 out of 86 basins. Low rainfall estimates in TRMM showed a systematic dependence on basin climatology, with significant overprediction in semi-arid basins, which gradually improved in the higher rainfall basins. Medium and high rainfall estimates of TRMM exhibited a strong dependence on basin topography, with declining skill in higher elevation basins. The systematic dependence of error components on basin climatology and topography was reduced in IMERG, especially in terms of topography. Rainfall-runoff modeling using the Variable Infiltration Capacity (VIC) model over two flood-prone basins (Mahanadi and Wainganga) revealed that improvement in rainfall estimates in IMERG did not translate into improvement in runoff simulations. More studies are required over basins in different hydroclimatic zones to evaluate the hydrologic significance of IMERG.

  3. Does the GPM mission improve the systematic error component in satellite rainfall estimates over TRMM? An evaluation at a pan-India scale

    Directory of Open Access Journals (Sweden)

    H. Beria

    2017-12-01

    Full Text Available The last couple of decades have seen the outburst of a number of satellite-based precipitation products with Tropical Rainfall Measuring Mission (TRMM as the most widely used for hydrologic applications. Transition of TRMM into the Global Precipitation Measurement (GPM promises enhanced spatio-temporal resolution along with upgrades to sensors and rainfall estimation techniques. The dependence of systematic error components in rainfall estimates of the Integrated Multi-satellitE Retrievals for GPM (IMERG, and their variation with climatology and topography, was evaluated over 86 basins in India for year 2014 and compared with the corresponding (2014 and retrospective (1998–2013 TRMM estimates. IMERG outperformed TRMM for all rainfall intensities across a majority of Indian basins, with significant improvement in low rainfall estimates showing smaller negative biases in 75 out of 86 basins. Low rainfall estimates in TRMM showed a systematic dependence on basin climatology, with significant overprediction in semi-arid basins, which gradually improved in the higher rainfall basins. Medium and high rainfall estimates of TRMM exhibited a strong dependence on basin topography, with declining skill in higher elevation basins. The systematic dependence of error components on basin climatology and topography was reduced in IMERG, especially in terms of topography. Rainfall-runoff modeling using the Variable Infiltration Capacity (VIC model over two flood-prone basins (Mahanadi and Wainganga revealed that improvement in rainfall estimates in IMERG did not translate into improvement in runoff simulations. More studies are required over basins in different hydroclimatic zones to evaluate the hydrologic significance of IMERG.

  4. Challenge and opportunities of space-based precipitation radar for spatio-temporal hydrology analysis in tropical maritime influenced catchment: Case study on the hilly tropical watershed of Peninsular Malaysia

    International Nuclear Information System (INIS)

    Mahmud, M R; Numata, S; Matsuyama, H; Hashim, M; Hosaka, T

    2014-01-01

    This paper highlights two critical issues regarding hilly watershed in Peninsular Malaysia; (1) current status of spatio-temporal condition of rain gauge based measurement, and (2) potential of space-based precipitation radar to study the rainfall dynamics. Two analyses were carried out represent each issue consecutively. First, the spatial distribution and efficiency of rain gauge in hilly watershed Peninsular Malaysia is evaluated with respect to the land use and elevation information using Geographical Information System (GIS) approach. Second, the spatial pattern of rainfall changes is analysed using the Tropical Rainfall Measuring Mission (TRMM) satellite information. The spatial analysis revealed that the rain gauge distribution had sparse coverage on hilly watershed and possessed inadequate efficiency for effective spatial based assessment. Significant monthly rainfall changes identified by TRMM satellite on the upper part of the watershed had occurred occasionally in 1999, 2000, 2001, 2006, and 2009 went undetected by conventional rain gauge. This study informed the potential and opportunities of space-based precipitation radar to fill the gaps of knowledge on spatio-temporal rainfall patterns for hydrology and related fields in tropical region

  5. Water security and societal impacts of tropical cyclones in northwestern Mexico, 1970-2010

    Science.gov (United States)

    Scott, C. A.; Farfan, L.

    2012-12-01

    Hydroclimatic variability is one of several potential threats to water security, defined as sustainable quantities and qualities of water for resilient societies and ecosystems in the face of uncertain global environmental change. Other threats can stem from human dimensions of global change, e.g., long-distance trade of water-intensive agricultural commodities or pollution resulting from industrial production and mining in response to rising global market demand. Drought and water scarcity are considered the principal, chronic, hydroclimatic drivers of water insecurity in arid and semi-arid regions. In these conditions, however, rainfall is both the water-supply lifeline and, in extreme events, the cause of flood hazard. In this study, we consider the monsoon-dominated Pacific coast of Mexico and assess the human impacts from tropical cyclone landfall over the past four decades (1970-2010). Storm data from the U.S. National Hurricane Center, rainfall reports from Mexico's National Meteorological Service, and indicators from an international disaster database at Belgium's Université Catholique de Louvain are used to assess the impacts of more than 30 landfall events. For the ten events with the greatest population impact, between 20,000 to 800,000 people were affected by each landfalling cyclone. Strong winds and heavy rainfall, particularly when sustained over periods of 1-3 days, result in significant property damage and loss of life. Results indicate that, in densely populated areas, excessive rainfall accumulations and high daily rates are important causes of cyclone disasters. Strengthening water security associated with extreme events requires planning via structured exchanges between scientists and decision-makers. Adaptive management that accounts for uncertainties, initiates responses, and iteratively assesses outcomes is the thrust of an emerging water-security initiative for the arid Americas that seeks to strengthen water security in northwestern

  6. Controls on the meridional extent of tropical precipitation and its contraction under global warming

    Science.gov (United States)

    Donohoe, A.

    2017-12-01

    A method for decomposing changes and variability in the spatial structure of tropical precipitation into shifting (meridional translation), contracting, and intensifying modes of variability is introduced. We demonstrate that the shifting mode of tropical precipitation explains very little (20%) more of the tropical precipitation changes and variability. Furthermore, the contraction of tropical precipitation is highly correlated (R2 > 0.95) with an intensification of the precipitation in both the observations and forced modeled simulations. These results suggest that the simultaneous contraction and intensification of tropical precipitation is the dominant mode of variability and changes under external forcing. We speculate that tropical surface temperature controls this concurrent variability. Indeed, models robustly predict that tropical precipitation increases and meridionally contracts in response to increased CO2 and is reduced and meridionally expanded under glacial forcing and boundary conditions. In contrast, the directionality of the tropical precipitation shift is both ambiguous and small in magnitude in response to increased CO2. Furthermore, the ratio of the contraction/expansion to intensification/reduction is consistent in the continuum of climate states from the glacial climate to a modern climate to a 4XCO2 climate suggesting that the intensification and contraction are linked together via a single mechanism. We examine two mechanisms responsible for the contraction of the precipitation under global warming : i. the reduction of the seasonal cycle of energy input to the atmosphere due to sea ice retreat that results in the tropical precipitation remaining closer to the equator during the solsticial seasons and; ii. the increased gross moist stability of the tropical atmosphere as the surface warms resulting in a weaker cross-equatorial Hadley circulation during the solsticial seasons.

  7. Comprehensive overview of FPL field testing conducted in the tropics (1945-2005)

    Science.gov (United States)

    Grant T. Kirker; Stan L. Lebow; Mark E. Mankowski

    2016-01-01

    Tropical exposure often represents a more severe environment for treated wood and wood based products. Accelerated tropical decay rates are typically attributed to higher mean rainfall and temperatures. The Forest Products Laboratory (FPL) in Madison, WI has been conducting tropical field tests in a variety of locations since the early 1940’s. This paper summarizes FPL...

  8. Future changes in rainfall associated with ENSO, IOD and changes in the mean state over Eastern Africa

    Science.gov (United States)

    Endris, Hussen Seid; Lennard, Christopher; Hewitson, Bruce; Dosio, Alessandro; Nikulin, Grigory; Artan, Guleid A.

    2018-05-01

    This study examines the projected changes in the characteristics of the El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) in terms of mean state, intensity and frequency, and associated rainfall anomalies over eastern Africa. Two regional climate models driven by the same four global climate models (GCMs) and the corresponding GCM simulations are used to investigate projected changes in teleconnection patterns and East African rainfall. The period 1976-2005 is taken as the reference for present climate and the far-future climate (2070-2099) under Representative Concentration Pathway 8.5 (RCP8.5) is analyzed for projected change. Analyses of projections based on GCMs indicate an El Niño-like (positive IOD-like) warming pattern over the tropical Pacific (Indian) Ocean. However, large uncertainties remain in the projected future changes in ENSO/IOD frequency and intensity with some GCMs show increase of ENSO/IOD frequency and intensity, and others a decrease or no/small change. Projected changes in mean rainfall over eastern Africa based on the GCM and RCM data indicate a decrease in rainfall over most parts of the region during JJAS and MAM seasons, and an increase in rainfall over equatorial and southern part of the region during OND, with the greatest changes in equatorial region. During ENSO and IOD years, important changes in the strength of the teleconnections are found. During JJAS, when ENSO is an important driver of rainfall variability over the region, both GCM and RCM projections show an enhanced La Niña-related rainfall anomaly compared to the present period. Although the long rains (MAM) have little association with ENSO in the reference period, both GCMs and RCMs project stronger ENSO teleconnections in the future. On the other hand, during the short rains (OND), a dipole future change in rainfall teleconnection associated with ENSO and IOD is found, with a stronger ENSO/IOD related rainfall anomaly over the eastern part of the domain

  9. Extension of the TAMSAT satellite-based rainfall monitoring over Africa and from 1983 to present

    OpenAIRE

    Tarnavsky, Elena; Grimes, David; Maidment, Ross; Black, Emily; Allan, Richard; Stringer, Marc; Chadwick, Robin; Kayitakire, Francois

    2014-01-01

    Tropical Applications of Meteorology Using Satellite Data and Ground-Based Observations (TAMSAT) rainfall monitoring products have been extended to provide spatially contiguous rainfall estimates across Africa. This has been achieved through a new, climatology-based calibration, which varies in both space and time. As a result, cumulative estimates of rainfall are now issued at the end of each 10-day period (dekad) at 4-km spatial resolution with pan-African coverage. The utility of the produ...

  10. A stable isotope-based approach to tropical dendroclimatology

    Science.gov (United States)

    Evans, Michael N.; Schrag, Daniel P.

    2004-08-01

    We describe a strategy for development of chronological control in tropical trees lacking demonstrably annual ring formation, using high resolution δ 18O measurements in tropical wood. The approach applies existing models of the oxygen isotopic composition of alpha-cellulose (Roden et al., 2000), a rapid method for cellulose extraction from raw wood (Brendel et al., 2000), and continuous flow isotope ratio mass spectrometry (Brenna et al., 1998) to develop proxy chronological, rainfall and growth rate estimates from tropical trees lacking visible annual ring structure. Consistent with model predictions, pilot datasets from the temperate US and Costa Rica having independent chronological control suggest that observed cyclic isotopic signatures of several permil (SMOW) represent the annual cycle of local rainfall and relative humidity. Additional data from a plantation tree of known age from ENSO-sensitive northwestern coastal Peru suggests that the 1997-8 ENSO warm phase event was recorded as an 8‰ anomaly in the δ 18O of α-cellulose. The results demonstrate reproducibility of the stable isotopic chronometer over decades, two different climatic zones, and three tropical tree genera, and point to future applications in paleoclimatology.

  11. Drought tolerance of tropical tree species : functional traits, trade-offs and species distribution

    NARCIS (Netherlands)

    Markesteijn, L.

    2010-01-01

    KEY-WORDS:
    Bolivia, drought tolerance, shade tolerance, functional traits, trade-offs, ecophysiology, species distribution
    Tropical forests occur under rainfall regimes that vary greatly in the rainfall pattern and frequency and intensity of drought. Consequently water availability is

  12. Coupled ocean-atmosphere surface variability and its climate impacts in the tropical Atlantic region

    Science.gov (United States)

    Fontaine, B.; Janicot, Serge; Roucou, P.

    This study examines time evolution and statistical relationships involving the two leading ocean-atmosphere coupled modes of variability in the tropical Atlantic and some climate anomalies over the tropical 120°W-60°W region using selected historical files (75-y near global SSTs and precipitation over land), more recent observed data (30-y SST and pseudo wind stress in the tropical Atlantic) and reanalyses from the US National Centers for Environmental Prediction (NCEP/NCAR) reanalysis System on the period 1968-1997: surface air temperature, sea level pressure, moist static energy content at 850 hPa, precipitable water and precipitation. The first coupled mode detected through singular value decomposition of the SST and pseudo wind-stress data over the tropical Atlantic (30°N-20°S) expresses a modulation in the thermal transequatorial gradient of SST anomalies conducted by one month leading wind-stress anomalies mainly in the tropical north Atlantic during northern winter and fall. It features a slight dipole structure in the meridional plane. Its time variability is dominated by a quasi-decadal signal well observed in the last 20-30 ys and, when projected over longer-term SST data, in the 1920s and 1930s but with shorter periods. The second coupled mode is more confined to the south-equatorial tropical Atlantic in the northern summer and explains considerably less wind-stress/SST cross-covariance. Its time series features an interannual variability dominated by shorter frequencies with increased variance in the 1960s and 1970s before 1977. Correlations between these modes and the ENSO-like Nino3 index lead to decreasing amplitude of thermal anomalies in the tropical Atlantic during warm episodes in the Pacific. This could explain the nonstationarity of meridional anomaly gradients on seasonal and interannual time scales. Overall the relationships between the oceanic component of the coupled modes and the climate anomaly patterns denote thermodynamical

  13. Precipitation isotopes link regional climate patterns to water supply in a tropical mountain forest, eastern Puerto Rico

    Science.gov (United States)

    Scholl, Martha A.; Murphy, Sheila F.

    2014-05-01

    Like many mountainous areas in the tropics, watersheds in the Luquillo Mountains of eastern Puerto Rico have abundant rainfall and stream discharge and provide much of the water supply for the densely populated metropolitan areas nearby. Projected changes in regional temperature and atmospheric dynamics as a result of global warming suggest that water availability will be affected by changes in rainfall patterns. It is essential to understand the relative importance of different weather systems to water supply to determine how changes in rainfall patterns, interacting with geology and vegetation, will affect the water balance. To help determine the links between climate and water availability, stable isotope signatures of precipitation from different weather systems were established to identify those that are most important in maintaining streamflow and groundwater recharge. Precipitation stable isotope values in the Luquillo Mountains had a large range, from fog/cloud water with δ2H, δ18O values as high as +12 ‰, -0.73 ‰ to tropical storm rain with values as low as -127 ‰, -16.8 ‰. Temporal isotope values exhibit a reverse seasonality from those observed in higher latitude continental watersheds, with higher isotopic values in the winter and lower values in the summer. Despite the higher volume of convective and low-pressure system rainfall, stable isotope analyses indicated that under the current rainfall regime, frequent trade -wind orographic showers contribute much of the groundwater recharge and stream base flow. Analysis of rain events using 20 years of 15 -minute resolution data at a mountain station (643 m) showed an increasing trend in rainfall amount, in agreement with increased precipitable water in the atmosphere, but differing from climate model projections of drying in the region. The mean intensity of rain events also showed an increasing trend. The determination of recharge sources from stable isotope tracers indicates that water supply

  14. River catchment rainfall series analysis using additive Holt-Winters method

    Science.gov (United States)

    Puah, Yan Jun; Huang, Yuk Feng; Chua, Kuan Chin; Lee, Teang Shui

    2016-03-01

    Climate change is receiving more attention from researchers as the frequency of occurrence of severe natural disasters is getting higher. Tropical countries like Malaysia have no distinct four seasons; rainfall has become the popular parameter to assess climate change. Conventional ways that determine rainfall trends can only provide a general result in single direction for the whole study period. In this study, rainfall series were modelled using additive Holt-Winters method to examine the rainfall pattern in Langat River Basin, Malaysia. Nine homogeneous series of more than 25 years data and less than 10% missing data were selected. Goodness of fit of the forecasted models was measured. It was found that seasonal rainfall model forecasts are generally better than the monthly rainfall model forecasts. Three stations in the western region exhibited increasing trend. Rainfall in southern region showed fluctuation. Increasing trends were discovered at stations in the south-eastern region except the seasonal analysis at station 45253. Decreasing trend was found at station 2818110 in the east, while increasing trend was shown at station 44320 that represents the north-eastern region. The accuracies of both rainfall model forecasts were tested using the recorded data of years 2010-2012. Most of the forecasts are acceptable.

  15. Automatic Type Recognition and Mapping of Global Tropical Cyclone Disaster Chains (TDC

    Directory of Open Access Journals (Sweden)

    Ran Wang

    2016-10-01

    Full Text Available The catastrophic events caused by meteorological disasters are becoming more severe in the context of global warming. The disaster chains triggered by Tropical Cyclones induce the serious losses of population and economy. It is necessary to make the regional type recognition of Tropical Cyclone Disaster Chain (TDC effective in order to make targeted preventions. This study mainly explores the method of automatic recognition and the mapping of TDC and designs a software system. We constructed an automatic recognition system in terms of the characteristics of a hazard-formative environment based on the theory of a natural disaster system. The ArcEngine components enable an intelligent software system to present results by the automatic mapping approach. The study data comes from global metadata such as Digital Elevation Model (DEM, terrain slope, population density and Gross Domestic Product (GDP. The result shows that: (1 according to the characteristic of geomorphology type, we establish a type of recognition system for global TDC; (2 based on the recognition principle, we design a software system with the functions of automatic recognition and mapping; and (3 we validate the type of distribution in terms of real cases of TDC. The result shows that the automatic recognition function has good reliability. The study can provide the basis for targeted regional disaster prevention strategy, as well as regional sustainable development.

  16. Study of Climate Change Impact to Local Rainfall Distribution in Lampung Provinces

    Directory of Open Access Journals (Sweden)

    Tumiar Katarina Manik

    2016-08-01

    Full Text Available Global warming which leads to climate change has potential affect to Indonesia agriculture activities and production. Analyzing rainfall pattern and distribution is important to investigate the impact of global climate change to local climate. This study using rainfall data from 1976-2010 from both lowland and upland area of Lampung Province. The results show that rainfall tends to decrease since the 1990s which related to the years with El Nino event. Monsoonal pattern- having rain and dry season- still excist in Lampung; however, since most rain fell below the average, it could not meet crops water need. Farmers conclude that dry seasons were longer and seasonal pattern has been changed. Global climate change might affect Lampung rainfall distribution through changes on sea surface temperature which could intensify the El Nino effect. Therefore, watching the El Nino phenomena and how global warming affects it, is important in predicting local climate especially the rainfall distribution in order to prevent significant loss in agriculture productivities.

  17. The Plight of Migrant Birds Wintering in the Caribbean: Rainfall Effects in the Annual Cycle

    Directory of Open Access Journals (Sweden)

    Joseph M. Wunderle, Jr.

    2017-04-01

    Full Text Available Here, we summarize results of migrant bird research in the Caribbean as part of a 75th Anniversary Symposium on research of the United States Department of Agriculture Forest Service, International Institute of Tropical Forestry (IITF. The fate of migratory birds has been a concern stimulating research over the past 40 years in response to population declines documented in long-term studies including those of the IITF and collaborators in Puerto Rico’s Guánica dry forest. Various studies indicate that in addition to forest loss or fragmentation, some migrant declines may be due to rainfall variation, the consequences of which may carry over from one stage of a migrant’s annual cycle to another. For example, the Guánica studies indicate that rainfall extremes on either the temperate breeding or tropical wintering grounds affect migrant abundance and survival differently depending on the species. In contrast, IITF’s collaborative studies of the migrant Kirtland’s Warbler (Setophaga kirtlandii in the Bahamas found that late winter droughts affect its annual survival and breeding success in Michigan. We review these IITF migrant studies and relate them to other studies, which have improved our understanding of migrant ecology of relevance to conservation. Particularly important is the advent of the full annual cycle (FAC approach. The FAC will facilitate future identification and mitigation of limiting factors contributing to migrant population declines, which for some species, may be exacerbated by global climate change.

  18. Polarimetric rainfall retrieval from a C-Band weather radar in a tropical environment (The Philippines)

    Science.gov (United States)

    Crisologo, I.; Vulpiani, G.; Abon, C. C.; David, C. P. C.; Bronstert, A.; Heistermann, Maik

    2014-11-01

    We evaluated the potential of polarimetric rainfall retrieval methods for the Tagaytay C-Band weather radar in the Philippines. For this purpose, we combined a method for fuzzy echo classification, an approach to extract and reconstruct the differential propagation phase, Φ DP , and a polarimetric self-consistency approach to calibrate horizontal and differential reflectivity. The reconstructed Φ DP was used to estimate path-integrated attenuation and to retrieve the specific differential phase, K DP . All related algorithms were transparently implemented in the Open Source radar processing software wradlib. Rainfall was then estimated from different variables: from re-calibrated reflectivity, from re-calibrated reflectivity that has been corrected for path-integrated attenuation, from the specific differential phase, and from a combination of reflectivity and specific differential phase. As an additional benchmark, rainfall was estimated by interpolating the rainfall observed by rain gauges. We evaluated the rainfall products for daily and hourly accumulations. For this purpose, we used observations of 16 rain gauges from a five-month period in the 2012 wet season. It turned out that the retrieval of rainfall from K DP substantially improved the rainfall estimation at both daily and hourly time scales. The measurement of reflectivity apparently was impaired by severe miscalibration while K DP was immune to such effects. Daily accumulations of rainfall retrieved from K DP showed a very low estimation bias and small random errors. Random scatter was, though, strongly present in hourly accumulations.

  19. An engine for global plant diversity: Highest evolutionary turnover and emigration in the American tropics

    Directory of Open Access Journals (Sweden)

    Alexandre eAntonelli

    2015-04-01

    Full Text Available Understanding the processes that have generated the latitudinal biodiversity gradient and the continental differences in tropical biodiversity remains a major goal of evolutionary biology. Here we estimate the timing and direction of range shifts of extant flowering plants (angiosperms between tropical and non-tropical zones, and into and out of the major tropical regions of the world. We then calculate rates of speciation and extinction taking into account incomplete taxonomic sampling. We use a recently published fossil calibrated phylogeny and apply novel bioinformatic tools to code species into user-defined polygons. We reconstruct biogeographic history using stochastic character mapping to compute relative numbers of range shifts in proportion to the number of available lineages through time. Our results, based on the analysis of c. 22,600 species and c. 20 million geo-referenced occurrence records, show no significant differences between the speciation and extinction of tropical and non-tropical angiosperms. This suggests that at least in plants, the tropical biodiversity gradient primarily derives from other factors than differential rates of diversification. In contrast, the outstanding species richness found today in the American tropics (the Neotropics, as compared to tropical Africa and tropical Asia, is associated with significantly higher speciation and extinction rates. This suggests an exceedingly rapid evolutionary turnover, i.e. Neotropical species being formed and replaced by one another at unparalleled rates. In addition, tropical America stands out from other continents by having ‘pumped out’ more species than it received through most of the last 66 million years. These results imply that the Neotropics have acted as an engine for global plant diversity.

  20. Tracking ENSO with tropical trees: Progress in stable isotope dendroclimatology

    Science.gov (United States)

    Evans, M. N.; Poussart, P. F.; Saleska, S. R.; Schrag, D. P.

    2002-12-01

    The terrestrial tropics remain an important gap in the growing proxy network used to characterize past ENSO behavior. Here we describe a strategy for development of proxy estimates of paleo-ENSO, via proxy rainfall estimates derived from stable isotope (δ18O) measurements made on tropical trees. The approach applies a new model of oxygen isotopic composition of alpha-cellulose (Roden et al., 2000), a rapid method for cellulose extraction from raw wood (Brendel et al., 2000), and continuous flow isotope ratio mass spectrometry (Brand, 1996) to develop proxy chronological, rainfall and growth rate estimates from tropical trees, even those lacking annual rings. The promise and pitfalls of the approach are illustrated in pilot datasets from the US, Costa Rica, Brazil, and Peru, which show isotopic cycles of 4-6 per mil, and interannual anomalies of up to 8 per mil. Together with the mature ENSO proxies (corals, extratropical tree-rings, varved sediments, and ice cores), replicated and well-dated stable isotope chronologies from tropical trees may eventually improve our understanding of ENSO history over the past several hundred years.

  1. Processes influencing rainfall features in the Amazonian region

    Science.gov (United States)

    Gerken, T.; Chamecki, M.; Fuentes, J. D.; Katul, G. G.; Fitzjarrald, D. R.; Manzi, A. O.; Nascimento dos Santos, R. M.; von Randow, C.; Stoy, P. C.; Tota, J.; Trowbridge, A.; Schumacher, C.; Machado, L.

    2014-12-01

    The Amazon is globally unique as it experiences the deepest atmospheric convection with important teleconnections to other parts of the Earth's climate system. In the Amazon Basin a large fraction of the local evapotranspiration is recycled through the formation of deep convective precipitating storms. Deep convection occurs due to moist thermodynamic conditions associated with elevated amounts of convective available potential energy. Aerosols invigorate the formation of convective storms in the Amazon via their unique concentrations, physical size, and chemical composition to activate into cloud condensation nuclei (CCN), but important aspects of aerosol/precipitation feedbacks remain unresolved. During the wet season, low atmospheric aerosol concentrations prevail in the pristine tropical air masses. These conditions have led to the Green Ocean hypothesis, which compares the clean tropical air to maritime air-masses and emphasizes biosphere-atmosphere feedbacks, to explain the features of the convective-type rainfall events in the Amazon. Field studies have been designed to investigate these relationships and the development of mesoscale convective systems through the Green Ocean Amazon project and the GOAmazon Boundary Layer Experiment. From March to October 2014 a field experiment was conducted at the Cuieiras Biological Reserve (2°51' S, 54°58' W), 80 km north of the city of Manaus, Brazil. This investigation spans the biological, chemical, and physical conditions influencing emissions and reactions of precursors (biogenic and anthropogenic volatile organic compounds, VOCs), formation of aerosols and CCNs and transport out of the ABL, and their role in cloud formation and precipitation triggers. In this presentation we will show results on the magnitude turbulent fluxes of latent and sensible heat, CCN concentrations, and rain droplet size distribution for both the wet and dry season. Such influencing factors on precipitation, will be contrasted with the

  2. The role of tropical cyclones in precipitation over the tropical and subtropical North America

    Science.gov (United States)

    Dominguez, Christian; Magaña, Victor

    2018-03-01

    Tropical cyclones (TCs) are essential elements of the hydrological cycle in tropical and subtropical regions. In the present study, the contribution of TCs to seasonal precipitation around the tropical and subtropical North America is examined. When TC activity over the tropical eastern Pacific (TEP) or the Intra Americas Seas (IAS) is below (above-normal), regional precipitation may be below (above-normal). However, it is not only the number of TCs what may change seasonal precipitation, but the trajectory of the systems. TCs induce intense precipitation over continental regions if they are close enough to shorelines, for instance, if the TC center is located, on average, less than 500 km-distant from the coast. However, if TCs are more remote than this threshold distance, the chances of rain over continental regions decrease, particularly in arid and semi-arid regions. In addition, a distant TC may induce subsidence or produce moisture divergence that inhibits, at least for a few days, convective activity farther away than the threshold distance. An analysis of interannual variability in the TCs that produce precipitation over the tropical and subtropical North America shows that some regions in northern Mexico, which mostly depend on this effect to undergo wet years, may experience seasonal negative anomalies in precipitation if TCs trajectories are remote. Therefore, TCs (activity and trajectories) are important modulators of climate variability on various time scales, either by producing intense rainfall or by inhibiting convection at distant regions from their trajectory. The impact of such variations on water availability in northern Mexico may be relevant, since water availability in dams recovers under the effects of TC rainfall. Seasonal precipitation forecasts or climate change scenarios for these regions should take into account the effect of TCs, if regional adaptation strategies are implemented.

  3. Tropical Cyclones Cause CaCO3 Undersaturation of Coral Reef Seawater in a High-CO2 World

    Science.gov (United States)

    Manzello, D.; Enochs, I.; Carlton, R.; Musielewicz, S.; Gledhill, D. K.

    2013-12-01

    Ocean acidification is the global decline in seawater pH and calcium carbonate (CaCO3) saturation state (Ω) due to the uptake of anthropogenic CO2 by the world's oceans. Acidification impairs CaCO3 shell and skeleton construction by marine organisms. Coral reefs are particularly vulnerable, as they are constructed by the CaCO3 skeletons of corals and other calcifiers. We understand relatively little about how coral reefs will respond to ocean acidification in combination with other disturbances, such as tropical cyclones. Seawater carbonate chemistry data collected from two reefs in the Florida Keys before, during, and after Tropical Storm Isaac provide the most thorough data to-date on how tropical cyclones affect the seawater CO2-system of coral reefs. Tropical Storm Isaac caused both an immediate and prolonged decline in seawater pH. Aragonite saturation state was depressed by 1.0 for a full week after the storm impact. Based on current 'business-as-usual' CO2 emissions scenarios, we show that tropical cyclones with high rainfall and runoff can cause periods of undersaturation (Ω negatively impact the structural persistence of coral reefs over this century.

  4. Importance of Rain Evaporation and Continental Convection in the Tropical Water Cycle

    Science.gov (United States)

    Worden, John; Noone, David; Bowman, Kevin; Beer, R.; Eldering, A.; Fisher, B.; Gunson, M.; Goldman, Aaron; Kulawik, S. S.; Lampel, Michael; hide

    2007-01-01

    Atmospheric moisture cycling is an important aspect of the Earth's climate system, yet the processes determining atmospheric humidity are poorly understood. For example, direct evaporation of rain contributes significantly to the heat and moisture budgets of clouds, but few observations of these processes are available. Similarly, the relative contributions to atmospheric moisture over land from local evaporation and humidity from oceanic sources are uncertain. Lighter isotopes of water vapour preferentially evaporate whereas heavier isotopes preferentially condense and the isotopic composition of ocean water is known. Here we use this information combined with global measurements of the isotopic composition of tropospheric water vapour from the Tropospheric Emission Spectrometer (TES) aboard the Aura spacecraft, to investigate aspects of the atmospheric hydrological cycle that are not well constrained by observations of precipitation or atmospheric vapour content. Our measurements of the isotopic composition of water vapour near tropical clouds suggest that rainfall evaporation contributes significantly to lower troposphere humidity, with typically 20% and up to 50% of rainfall evaporating near convective clouds. Over the tropical continents the isotopic signature of tropospheric water vapour differs significantly from that of precipitation, suggesting that convection of vapour from both oceanic sources and evapotranspiration are the dominant moisture sources. Our measurements allow an assessment of the intensity of the present hydrological cycle and will help identify any future changes as they occur.

  5. Some analysis on the diurnal variation of rainfall over the Atlantic Ocean

    Science.gov (United States)

    Gill, T.; Perng, S.; Hughes, A.

    1981-01-01

    Data collected from the GARP Atlantic Tropical Experiment (GATE) was examined. The data were collected from 10,000 grid points arranged as a 100 x 100 array; each grid covered a 4 square km area. The amount of rainfall was measured every 15 minutes during the experiment periods using c-band radars. Two types of analyses were performed on the data: analysis of diurnal variation was done on each of grid points based on the rainfall averages at noon and at midnight, and time series analysis on selected grid points based on the hourly averages of rainfall. Since there are no known distribution model which best describes the rainfall amount, nonparametric methods were used to examine the diurnal variation. Kolmogorov-Smirnov test was used to test if the rainfalls at noon and at midnight have the same statistical distribution. Wilcoxon signed-rank test was used to test if the noon rainfall is heavier than, equal to, or lighter than the midnight rainfall. These tests were done on each of the 10,000 grid points at which the data are available.

  6. Long-term trends of typhoon-induced rainfall over Taiwan: in situ evidence of poleward shift of typhoons in western North Pacific in recent decades

    Science.gov (United States)

    Liang, Ting-Yu; Oey, Leo; Huang, Shiming; Chou, Simon

    2017-04-01

    Tracks of tropical cyclones or typhoons in the western North Pacific have recently been shown to shift northward in the past several decades; the poleward shift has been attributed to the expansion of the tropics due to climate warming. Here we use 64-year, hourly rainfall observations around Taiwan, and take advantage of the unique terrain and geographic location of the island with respect to typhoon tracks, to show that since 1950 the typhoon-related rainfalls have been rising on the western side of the island, but decreasing on the eastern side. We show that these extraordinary rainfall patterns, despite the smallness of Taiwan, are indicative of a northward shift of typhoons related to the changes in the wind fields and surface warming over the Indian and Pacific tropical/subtropical regions.

  7. A Merging Framework for Rainfall Estimation at High Spatiotemporal Resolution for Distributed Hydrological Modeling in a Data-Scarce Area

    Directory of Open Access Journals (Sweden)

    Yinping Long

    2016-07-01

    Full Text Available Merging satellite and rain gauge data by combining accurate quantitative rainfall from stations with spatial continuous information from remote sensing observations provides a practical method of estimating rainfall. However, generating high spatiotemporal rainfall fields for catchment-distributed hydrological modeling is a problem when only a sparse rain gauge network and coarse spatial resolution of satellite data are available. The objective of the study is to present a satellite and rain gauge data-merging framework adapting for coarse resolution and data-sparse designs. In the framework, a statistical spatial downscaling method based on the relationships among precipitation, topographical features, and weather conditions was used to downscale the 0.25° daily rainfall field derived from the Tropical Rainfall Measuring Mission (TRMM Multisatellite Precipitation Analysis (TMPA precipitation product version 7. The nonparametric merging technique of double kernel smoothing, adapting for data-sparse design, was combined with the global optimization method of shuffled complex evolution, to merge the downscaled TRMM and gauged rainfall with minimum cross-validation error. An indicator field representing the presence and absence of rainfall was generated using the indicator kriging technique and applied to the previously merged result to consider the spatial intermittency of daily rainfall. The framework was applied to estimate daily precipitation at a 1 km resolution in the Qinghai Lake Basin, a data-scarce area in the northeast of the Qinghai-Tibet Plateau. The final estimates not only captured the spatial pattern of daily and annual precipitation with a relatively small estimation error, but also performed very well in stream flow simulation when applied to force the geomorphology-based hydrological model (GBHM. The proposed framework thus appears feasible for rainfall estimation at high spatiotemporal resolution in data-scarce areas.

  8. Oxygen Isotope Composition of Phytoliths From Australian Tropical Forests: Towards a New Paleoclimate Tool for the Tropical Pacific area

    Science.gov (United States)

    Alexandre, A.; Crespin, J.; Sonzogni, C.; Sylvestre, F.; Hilbert, D.

    2008-12-01

    Obtaining new continental δ18Ophytolith records from the tropical pacific area would help to further investigate 1) synchronicity between vegetation and climate changes, and 2) climate interactions between ocean and continent through comparison with oceanic reference δ18O records. In this aim, we produce a calibration of the thermo-dependant relationship between δ18Ophytolith and δ18Orainfall for present phytolith assemblages from Queensland rainforests (Australia). Phytoliths were extracted from soil humic horizons sampled along several elevation, temperature and rainfall gradients. Phytolith samples of 1.6mg were analyzed using a newly calibrated IR-laser fluorination technique, performed after a controlled isotopic exchanged procedure. The long term reproducibility on δ18O measurements is sap should equal to δ18Osoil water. Moreover, because relative humidity is close to 100%, soil evaporation is weak and δ18Osoil water is assumed to be similar to δ18Orainfall. The obtained thermo-dependant relationship between δ18Ophytolith and δ18O mean monthly rainfall of the wet season (r=0.68) is close to the equilibrium fractionation equations obtained for quartz and diatoms. Effects of forest fires on phytoliths dehydration and δ18Ophytolith are tested through heating experiments. Provided that phytolith assemblages present a morphological tropical forest pattern, δ18Ophytolith records from sediments can now be interpreted in term of δ18Osoil water, or δ18Orainfall (provided that no soil evaporation is assumed), and temperature changes. This is a first step in further investigating synchronicity between vegetation changes, global climate changes and ENSO activity in the West-Pacific area.

  9. A 507-year rainfall and runoff reconstruction for the Monsoonal North West, Australia derived from remote paleoclimate archives

    Science.gov (United States)

    Verdon-Kidd, Danielle C.; Hancock, Gregory R.; Lowry, John B.

    2017-11-01

    The Monsoonal North West (MNW) region of Australia faces a number of challenges adapting to anthropogenic climate change. These have the potential to impact on a range of industries, including agricultural, pastoral, mining and tourism. However future changes to rainfall regimes remain uncertain due to the inability of Global Climate Models to adequately capture the tropical weather/climate processes that are known to be important for this region. Compounding this is the brevity of the instrumental rainfall record for the MNW, which is unlikely to represent the full range of climatic variability. One avenue for addressing this issue (the focus of this paper) is to identify sources of paleoclimate information that can be used to reconstruct a plausible pre-instrumental rainfall history for the MNW. Adopting this approach we find that, even in the absence of local sources of paleoclimate data at a suitable temporal resolution, remote paleoclimate records can resolve 25% of the annual variability observed in the instrumental rainfall record. Importantly, the 507-year rainfall reconstruction developed using the remote proxies displays longer and more intense wet and dry periods than observed during the most recent 100 years. For example, the maximum number of consecutive years of below (above) average rainfall is 90% (40%) higher in the rainfall reconstruction than during the instrumental period. Further, implications for flood and drought risk are studied via a simple GR1A rainfall runoff model, which again highlights the likelihood of extremes greater than that observed in the limited instrumental record, consistent with previous paleoclimate studies elsewhere in Australia. Importantly, this research can assist in informing climate related risks to infrastructure, agriculture and mining, and the method can readily be applied to other regions in the MNW and beyond.

  10. Validation and Analysis of Microwave-Derived Rainfall Over the Tropics

    Science.gov (United States)

    1993-01-01

    Intraseasonal Oscillations In addition to the biennial signals identified by Meehl (1987), Lau and col- laborators (Peng 1987; Shen 1987) expound on...temporally integrated, over a 50 x 50 area for a minimum of one month, to create clima - tological rainfall composites. Validation of the ESMR-derived

  11. Potential Predictability and Prediction Skill for Southern Peru Summertime Rainfall

    Science.gov (United States)

    WU, S.; Notaro, M.; Vavrus, S. J.; Mortensen, E.; Block, P. J.; Montgomery, R. J.; De Pierola, J. N.; Sanchez, C.

    2016-12-01

    The central Andes receive over 50% of annual climatological rainfall during the short period of January-March. This summertime rainfall exhibits strong interannual and decadal variability, including severe drought events that incur devastating societal impacts and cause agricultural communities and mining facilities to compete for limited water resources. An improved seasonal prediction skill of summertime rainfall would aid in water resource planning and allocation across the water-limited southern Peru. While various underlying mechanisms have been proposed by past studies for the drivers of interannual variability in summertime rainfall across southern Peru, such as the El Niño-Southern Oscillation (ENSO), Madden Julian Oscillation (MJO), and extratropical forcings, operational forecasts continue to be largely based on rudimentary ENSO-based indices, such as NINO3.4, justifying further exploration of predictive skill. In order to bridge this gap between the understanding of driving mechanisms and the operational forecast, we performed systematic studies on the predictability and prediction skill of southern Peru summertime rainfall by constructing statistical forecast models using best available weather station and reanalysis datasets. At first, by assuming the first two empirical orthogonal functions (EOFs) of summertime rainfall are predictable, the potential predictability skill was evaluated for southern Peru. Then, we constructed a simple regression model, based on the time series of tropical Pacific sea-surface temperatures (SSTs), and a more advanced Linear Inverse Model (LIM), based on the EOFs of tropical ocean SSTs and large-scale atmosphere variables from reanalysis. Our results show that the LIM model consistently outperforms the more rudimentary regression models on the forecast skill of domain averaged precipitation index and individual station indices. The improvement of forecast correlation skill ranges from 10% to over 200% for different

  12. Declining Global Per Capita Agricultural Production and Warming Oceans Threaten Food Security

    Science.gov (United States)

    Funk, Chris C.; Brown, Molly E.

    2009-01-01

    Despite accelerating globalization, most people still eat food that was grown locally. Developing countries with weak purchasing power tend to import as little food as possible from global markets, suffering consumption deficits during times of high prices or production declines. Local agricultural production, therefore, is critical to both food security and economic development among the rural poor. The level of local agricultural production, in turn, will be controlled by the amount and quality of arable land, the amount and quality of agricultural inputs (fertilizer, seeds, pesticides, etc.), as well as farm-related technology, practices, and policies. In this paper we discuss several emerging threats to global and regional food security, including declining yield gains that are failing to keep up with population increases, and warming in the tropical Indian Ocean and its impact on rainfall. If yields continue to grow more slowly than per capita harvested area, parts of Africa, Asia, and Central and Southern America will experience substantial declines in per capita cereal production. Global per capita cereal production will potentially decline by 14 percent between 2008 and 2030. Climate change is likely to further affect food production, particularly in regions that have very low yields due to lack of technology. Drought, caused by anthropogenic warming in the Indian and Pacific Oceans, may also reduce 21 st century food availability by disrupting Indian Ocean moisture transports and tilting the 21 st century climate toward a more El Nino-like state. The impacts of these circulation changes over Asia remain uncertain. For Africa, however, Indian Ocean warming appears to have already reduced main growing season rainfall along the eastern edge of tropical Africa, from southern Somalia to northern parts of the Republic of South Africa. Through a combination of quantitative modeling of food balances and an examination of climate change, we present an analysis of

  13. Declining global per capita agricultural production and warming oceans threaten food security

    Science.gov (United States)

    Funk, Christopher C.; Brown, Molly E.

    2009-01-01

    Despite accelerating globalization, most people still eat food that is grown locally. Developing countries with weak purchasing power tend to import as little food as possible from global markets, suffering consumption deficits during times of high prices or production declines. Local agricultural production, therefore, is critical to both food security and economic development among the rural poor. The level of local agricultural production, in turn, will be determined by the amount and quality of arable land, the amount and quality of agricultural inputs (fertilizer, seeds, pesticides, etc.), as well as farm-related technology, practices and policies. This paper discusses several emerging threats to global and regional food security, including declining yield gains that are failing to keep up with population increases, and warming in the tropical Indian Ocean and its impact on rainfall. If yields continue to grow more slowly than per capita harvested area, parts of Africa, Asia and Central and Southern America will experience substantial declines in per capita cereal production. Global per capita cereal production will potentially decline by 14% between 2008 and 2030. Climate change is likely to further affect food production, particularly in regions that have very low yields due to lack of technology. Drought, caused by anthropogenic warming in the Indian and Pacific Oceans, may also reduce 21st century food availability in some countries by disrupting moisture transports and bringing down dry air over crop growing areas. The impacts of these circulation changes over Asia remain uncertain. For Africa, however, Indian Ocean warming appears to have already reduced rainfall during the main growing season along the eastern edge of tropical Africa, from southern Somalia to northern parts of the Republic of South Africa. Through a combination of quantitative modeling of food balances and an examination of climate change, this study presents an analysis of emerging

  14. Effect of rainfall infiltration into unsaturated soil using soil column

    Science.gov (United States)

    Ibrahim, A.; Mukhlisin, M.; Jaafar, O.

    2018-02-01

    Rainfall especially in tropical region caused infiltration to the soil slope. The infiltration may change pore water pressure or matric suction of the soil. The event of rainfall infiltration into soil is a complex mechanism. Therefore, the main objectives of this research paper is to study the influence of rainfall intensity and duration that changed pore water pressure to soil. There are two types of soils used in this study; forest soil and kaolin. Soil column apparatus is used for experiments. Rainfall were applied to the soil and result for 3, 6, 12, 24, 72, 120 and 168 hours were retrieved. Result shows that for the both types of soil, the negative pore water pressures were increased during wetting process and gradually decreased towards drying process. The results also show that pore water pressure at top part was increased greatly as the wetting process started compared to the middle and bottom part of the column.

  15. Assessment of satellite rainfall products over the Andean plateau

    Science.gov (United States)

    Satgé, Frédéric; Bonnet, Marie-Paule; Gosset, Marielle; Molina, Jorge; Hernan Yuque Lima, Wilson; Pillco Zolá, Ramiro; Timouk, Franck; Garnier, Jérémie

    2016-01-01

    Nine satellite rainfall estimations (SREs) were evaluated for the first time over the South American Andean plateau watershed by comparison with rain gauge data acquired between 2005 and 2007. The comparisons were carried out at the annual, monthly and daily time steps. All SREs reproduce the salient pattern of the annual rain field, with a marked north-south gradient and a lighter east-west gradient. However, the intensity of the gradient differs among SREs: it is well marked in the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis 3B42 (TMPA-3B42), Precipitation Estimation from remotely Sensed Information using Artificial Neural Networks (PERSIANN) and Global Satellite Mapping of Precipitation (GSMaP) products, and it is smoothed out in the Climate prediction center MORPHing (CMORPH) products. Another interesting difference among products is the contrast in rainfall amounts between the water surfaces (Lake Titicaca) and the surrounding land. Some products (TMPA-3B42, PERSIANN and GSMaP) show a contradictory rainfall deficit over Lake Titicaca, which may be due to the emissivity contrast between the lake and the surrounding lands and warm rain cloud processes. An analysis differentiating coastal Lake Titicaca from inland pixels confirmed this trend. The raw or Real Time (RT) products have strong biases over the study region. These biases are strongly positive for PERSIANN (above 90%), moderately positive for TMPA-3B42 (28%), strongly negative for CMORPH (- 42%) and moderately negative for GSMaP (- 18%). The biases are associated with a deformation of the rain rate frequency distribution: GSMaP underestimates the proportion of rainfall events for all rain rates; CMORPH overestimates the proportion of rain rates below 2 mm day- 1; and the other products tend to overestimate the proportion of moderate to high rain rates. These biases are greatly reduced by the gauge adjustment in the TMPA-3B42, PERSIANN and CMORPH products, whereas a

  16. Climate change and the impact of increased rainfall variability on sediment transport and catchment scale water quality

    Science.gov (United States)

    Hancock, G. R.; Willgoose, G. R.; Cohen, S.

    2009-12-01

    Recently there has been recognition that changing climate will affect rainfall and storm patterns with research directed to examine how the global hydrological cycle will respond to climate change. This study investigates the effect of different rainfall patterns on erosion and resultant water quality for a well studied tropical monsoonal catchment that is undisturbed by Europeans in the Northern Territory, Australia. Water quality has a large affect on a range of aquatic flora and fauna and a significant change in sediment could have impacts on the aquatic ecosystems. There have been several studies of the effect of climate change on rainfall patterns in the study area with projections indicating a significant increase in storm activity. Therefore it is important that the impact of this variability be assessed in terms of catchment hydrology, sediment transport and water quality. Here a numerical model of erosion and hydrology (CAESAR) is used to assess several different rainfall scenarios over a 1000 year modelled period. The results show that that increased rainfall amount and intensity increases sediment transport rates but predicted water quality was variable and non-linear but within the range of measured field data for the catchment and region. Therefore an assessment of sediment transport and water quality is a significant and complex issue that requires further understandings of the role of biophysical feedbacks such as vegetation as well as the role of humans in managing landscapes (i.e. controlled and uncontrolled fire). The study provides a robust methodology for assessing the impact of enhanced climate variability on sediment transport and water quality.

  17. Evaluation of TRMM 3B42 V7 Rainfall Product over the Oum Er Rbia Watershed in Morocco

    OpenAIRE

    Hamza Ouatiki; Abdelghani Boudhar; Yves Tramblay; Lionel Jarlan; Tarik Benabdelouhab; Lahoucine Hanich; M. Rachid El Meslouhi; Abdelghani Chehbouni

    2017-01-01

    In arid and semi-arid areas, rainfall is often characterized by a strong spatial and temporal variability. These environmental factors, combined with the sparsity of the measurement networks in developing countries, constitute real constraints for water resources management. In recent years, several spatial rainfall measurement sources have become available, such as TRMM data (Tropical Rainfall Measurement Mission). In this study, the TRMM 3B42 Version 7 product was evaluated using rain gauge...

  18. Effects of rainfall exclusion on leaf gas exchange traits and osmotic adjustment in mature canopy trees of Dryobalanops aromatica (Dipterocarpaceae) in a Malaysian tropical rain forest.

    Science.gov (United States)

    Inoue, Yuta; Ichie, Tomoaki; Kenzo, Tanaka; Yoneyama, Aogu; Kumagai, Tomo'omi; Nakashizuka, Tohru

    2017-10-01

    Climate change exposes vegetation to unusual levels of drought, risking a decline in productivity and an increase in mortality. It still remains unclear how trees and forests respond to such unusual drought, particularly Southeast Asian tropical rain forests. To understand leaf ecophysiological responses of tropical rain forest trees to soil drying, a rainfall exclusion experiment was conducted on mature canopy trees of Dryobalanops aromatica Gaertn.f. (Dipterocarpaceae) for 4 months in an aseasonal tropical rain forest in Sarawak, Malaysia. The rainfall was intercepted by using a soft vinyl chloride sheet. We compared the three control and three treatment trees with respect to leaf water use at the top of the crown, including stomatal conductance (gsmax), photosynthesis (Amax), leaf water potential (predawn: Ψpre; midday: Ψmid), leaf water potential at turgor loss point (πtlp), osmotic potential at full turgor (π100) and a bulk modulus of elasticity (ε). Measurements were taken using tree-tower and canopy-crane systems. During the experiment, the treatment trees suffered drought stress without evidence of canopy dieback in comparison with the control trees; e.g., Ψpre and Ψmid decreased with soil drying. Minimum values of Ψmid in the treatment trees decreased during the experiment, and were lower than πtlp in the control trees. However, the treatment trees also decreased their πtlp by osmotic adjustment, and the values were lower than the minimum values of their Ψmid. In addition, the treatment trees maintained gs and Amax especially in the morning, though at midday, values decreased to half those of the control trees. Decreasing leaf water potential by osmotic adjustment to maintain gs and Amax under soil drying in treatment trees was considered to represent anisohydric behavior. These results suggest that D. aromatica may have high leaf adaptability to drought by regulating leaf water consumption and maintaining turgor pressure to improve its leaf

  19. Global Precipitation Measurement. Report 7; Bridging from TRMM to GPM to 3-Hourly Precipitation Estimates

    Science.gov (United States)

    Shepherd, J. Marshall; Smith, Eric A.; Adams, W. James (Editor)

    2002-01-01

    Historically, multi-decadal measurements of precipitation from surface-based rain gauges have been available over continents. However oceans remained largely unobserved prior to the beginning of the satellite era. Only after the launch of the first Defense Meteorological Satellite Program (DMSP) satellite in 1987 carrying a well-calibrated and multi-frequency passive microwave radiometer called Special Sensor Microwave/Imager (SSM/I) have systematic and accurate precipitation measurements over oceans become available on a regular basis; see Smith et al. (1994, 1998). Recognizing that satellite-based data are a foremost tool for measuring precipitation, NASA initiated a new research program to measure precipitation from space under its Mission to Planet Earth program in the 1990s. As a result, the Tropical Rainfall Measuring Mission (TRMM), a collaborative mission between NASA and NASDA, was launched in 1997 to measure tropical and subtropical rain. See Simpson et al. (1996) and Kummerow et al. (2000). Motivated by the success of TRMM, and recognizing the need for more comprehensive global precipitation measurements, NASA and NASDA have now planned a new mission, i.e., the Global Precipitation Measurement (GPM) mission. The primary goal of GPM is to extend TRMM's rainfall time series while making substantial improvements in precipitation observations, specifically in terms of measurement accuracy, sampling frequency, Earth coverage, and spatial resolution. This report addresses four fundamental questions related to the transition from current to future global precipitation observations as denoted by the TRMM and GPM eras, respectively.

  20. Roles of tropical SST patterns during two types of ENSO in modulating wintertime rainfall over southern China

    Science.gov (United States)

    Xu, Kang; Huang, Qing-Lan; Tam, Chi-Yung; Wang, Weiqiang; Chen, Sheng; Zhu, Congwen

    2018-03-01

    The impacts of the eastern-Pacific (EP) and central-Pacific (CP) El Niño-Southern Oscillation (ENSO) on the southern China wintertime rainfall (SCWR) have been investigated. Results show that wintertime rainfall over most stations in southern China is enhanced (suppressed) during the EP (CP) El Niño, which are attributed to different atmospheric responses in the western North Pacific (WNP) and South China Sea (SCS) during two types of ENSO. When EP El Niño occurs, an anomalous low-level anticyclone is present over WNP/the Philippines region, resulting in stronger-than-normal southwesterlies over SCS. Such a wind branch acts to suppress East Asian winter monsoon (EAWM) and enhance moisture supply, implying surplus SCWR. During CP El Niño, however, anomalous sinking and low-level anticyclonic flow are found to cover a broad region in SCS. These circulation features are associated with moisture divergence over the northern part of SCS and suppressed SCWR. General circulation model experiments have also been conducted to study influence of various tropical sea surface temperature (SST) patterns on the EAWM atmospheric circulation. For EP El Niño, formation of anomalous low-level WNP anticyclone is jointly attributed to positive/negative SST anomalies (SSTA) over the central-to-eastern/ western equatorial Pacific. However, both positive and negative CP Niño-related-SSTA, located respectively over the central Pacific and WNP/SCS, offset each other and contribute a weak but broad-scale anticyclone centered at SCS. These results suggest that, besides the vital role of SST warming, SST cooling over SCS/WNP during two types of El Niño should be considered carefully for understanding the El Niño-EAWM relationship.

  1. Climatology and Spatio-Temporal Variability of Wintertime Total and Extreme Rainfall in Thailand during 1970-2012

    Directory of Open Access Journals (Sweden)

    Atsamon Limsakul

    2017-07-01

    Full Text Available This study aims at examining wintertime (December-January-February; DJF climatology and spatio-temporal variability of Thailand’s total and extreme rainfall during 1970-2012. Analysis showed that the area along the Gulf of Thailand’s eastern coast not only received much amount of rainfall but also underwent great extremes and variances during the northeast monsoon (NEM winters. Empirical Orthogonal Function (EOF analysis similarly revealed that the leading mode of each DJF total or extreme rainfall index was marked by maximum loadings concentrated at the stations located at the exposed area of the NEM flow. Correlation analysis indicated that the leading EOF mode of DJF total and extreme indices in Thailand tended to be higher (lower than normal during strong (weak East Asian Winter Monsoon (EAWM. On longer timescales, the recent decadal change observed in the leading EOF mode of all rainfall indices has been coincident with re-amplification of the EAWM taken place since the early/mid 2000. The leading EOF mode of DJF total and extreme rainfall indices in Thailand also exhibited strong correlations with the tropical-subtropical Pacific Ocean surface temperatures. It was characterized as the Pacific Decadal Oscillation (PDO/El Niño Southern Oscillation (ENSO-related boomerang-shaped spatial patterns, resembling the typical mature phases of the La Niña event and the PDO cool epoch. Based on our analysis, it is reasonable to believe that the anomalies of the NEM and other key EAWM-related circulations are likely to be the possible causes of DJF total and extreme rainfall variations in Thailand. In addition, the ENSO and PDO as the primary global atmospheric external forcing are likely to exert their influence on wintertime Thailand’s climate via modulating the EAWM/NEM-related circulations anomalies.

  2. Long term changes in flooding and heavy rainfall associated with North Atlantic tropical cyclones: Roles of the North Atlantic Oscillation and El Niño-Southern Oscillation

    Science.gov (United States)

    Aryal, Yog N.; Villarini, Gabriele; Zhang, Wei; Vecchi, Gabriel A.

    2018-04-01

    The aim of this study is to examine the contribution of North Atlantic tropical cyclones (TCs) to flooding and heavy rainfall across the continental United States. Analyses highlight the spatial variability in these hazards, their temporal changes in terms of frequency and magnitude, and their connection to large-scale climate, in particular to the North Atlantic Oscillation (NAO) and El Niño-Southern Oscillation (ENSO). We use long-term stream and rain gage measurements, and our analyses are based on annual maxima (AMs) and peaks-over-threshold (POTs). TCs contribute to ∼20-30% of AMs and POTs over Florida and coastal areas of the eastern United States, and the contribution decreases as we move inland. We do not detect statistically significant trends in the magnitude or frequency of TC floods. Regarding the role of climate, NAO and ENSO do not play a large role in controlling the frequency and magnitude of TC flooding. The connection between heavy rainfall and TCs is comparable to what observed in terms of flooding. Unlike flooding, NAO plays a significant role in TC-related extreme rainfall along the U.S. East Coast, while ENSO is most strongly linked to the TC precipitation in Texas.

  3. Assessment of water availability and its relationship with vegetation distribution over a tropical montane system

    Science.gov (United States)

    Streher, A. S.; Sobreiro, J. F. F.; Silva, T. S. F.

    2017-12-01

    Water availability is one of the main drivers of vegetation distribution, but assessing it over mountainous regions is difficult given the effects of rugged topography on hydroclimatic dynamics (orographic rainfall, soil water, and runoff). We assessed how water availability may influence the distribution of vegetation types in the Espinhaço Range, a South American tropical mountain landscape comprised of savannas, grasslands, rock outcrops, cloud forests, and semi-deciduous/deciduous forests. For precipitation, we used CHIRPS monthly and daily products (1981- 2016) and 112 rain gauge ground stations, and assessed potential evapotranspiration (PET) using the MODIS MOD16A3 (2000-2013) product. Vegetation types were classified according to the Global Ecoregions by WWF. We show that rainfall has well-defined rainy and dry seasons with a strong latitudinal pattern, there is evidence for local orographic effects. Dry forests (907 mm/yr; 8% cv) and caatinga vegetation (795 mm/yr; 7% cv) had the lowest average annual precipitation and low variance, whilst Atlantic tropical forest in the southeast (1267 mm/yr; 15% cv), cerrado savanna vegetation in the west (1086 mm/yr; 15% cv) and rupestrian grasslands above 800m (1261 mm/yr; 20% cv) received the highest annual precipitation, with the largest observed variance due to their wide latitudinal distribution. Forests and rupestrian grasslands in the windward side of the mountain had a higher frequency of intense rainfall events (> 20mm), accounting for 6% of the CHIRPS daily time series, suggesting orographic effects on precipitation. Annual average PET was highest for dry forests (2437 mm/yr) and caatinga (2461 mm/yr), intermediate for cerrado (2264 mm/yr) and lowest for Atlantic tropical forest (2083 mm/yr) and rupestrian grasslands (2136 mm/yr). All vegetation types received less rainfall than its PET capacity based on yearly data, emphasizing the need for ecophysiological adaptations to water use. Climate change threatens

  4. Dynamic Hydrological Modeling in Drylands with TRMM Based Rainfall

    Directory of Open Access Journals (Sweden)

    Elena Tarnavsky

    2013-12-01

    Full Text Available This paper introduces and evaluates DryMOD, a dynamic water balance model of the key hydrological process in drylands that is based on free, public-domain datasets. The rainfall model of DryMOD makes optimal use of spatially disaggregated Tropical Rainfall Measuring Mission (TRMM datasets to simulate hourly rainfall intensities at a spatial resolution of 1-km. Regional-scale applications of the model in seasonal catchments in Tunisia and Senegal characterize runoff and soil moisture distribution and dynamics in response to varying rainfall data inputs and soil properties. The results highlight the need for hourly-based rainfall simulation and for correcting TRMM 3B42 rainfall intensities for the fractional cover of rainfall (FCR. Without FCR correction and disaggregation to 1 km, TRMM 3B42 based rainfall intensities are too low to generate surface runoff and to induce substantial changes to soil moisture storage. The outcomes from the sensitivity analysis show that topsoil porosity is the most important soil property for simulation of runoff and soil moisture. Thus, we demonstrate the benefit of hydrological investigations at a scale, for which reliable information on soil profile characteristics exists and which is sufficiently fine to account for the heterogeneities of these. Where such information is available, application of DryMOD can assist in the spatial and temporal planning of water harvesting according to runoff-generating areas and the runoff ratio, as well as in the optimization of agricultural activities based on realistic representation of soil moisture conditions.

  5. Trait acclimation mitigates mortality risks of tropical canopy trees under global warming

    Directory of Open Access Journals (Sweden)

    Frank eSterck

    2016-05-01

    Full Text Available There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and – the notoriously unknown – physiological trait acclimation of trees. In this opinion article we provided a first quantification of the potential of trait acclimation to mitigate the negative effects of warming on tropical canopy tree growth and survival. We applied a physiological tree growth model that incorporates trait acclimation through an optimization approach. Our model estimated the maximum effect of acclimation when trees optimize traits that are strongly plastic on a week to annual time scale (leaf photosynthetic capacity, total leaf area, stem sapwood area to maximize carbon gain. We simulated tree carbon gain for temperatures (25-35ºC and ambient CO2 concentrations (390-800 ppm predicted for the 21st century. Full trait acclimation increased simulated carbon gain by up to 10-20% and the maximum tolerated temperature by up to 2ºC, thus reducing risks of tree death under predicted warming. Functional trait acclimation may thus increase the resilience of tropical trees to warming, but cannot prevent tree death during extremely hot and dry years at current CO2 levels. We call for incorporating trait acclimation in field and experimental studies of plant functional traits, and in models that predict responses of tropical forests to climate change.

  6. Trait Acclimation Mitigates Mortality Risks of Tropical Canopy Trees under Global Warming

    Science.gov (United States)

    Sterck, Frank; Anten, Niels P. R.; Schieving, Feike; Zuidema, Pieter A.

    2016-01-01

    There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and – the notoriously unknown – physiological trait acclimation of trees. In this opinion article we provided a first quantification of the potential of trait acclimation to mitigate the negative effects of warming on tropical canopy tree growth and survival. We applied a physiological tree growth model that incorporates trait acclimation through an optimization approach. Our model estimated the maximum effect of acclimation when trees optimize traits that are strongly plastic on a week to annual time scale (leaf photosynthetic capacity, total leaf area, stem sapwood area) to maximize carbon gain. We simulated tree carbon gain for temperatures (25–35°C) and ambient CO2 concentrations (390–800 ppm) predicted for the 21st century. Full trait acclimation increased simulated carbon gain by up to 10–20% and the maximum tolerated temperature by up to 2°C, thus reducing risks of tree death under predicted warming. Functional trait acclimation may thus increase the resilience of tropical trees to warming, but cannot prevent tree death during extremely hot and dry years at current CO2 levels. We call for incorporating trait acclimation in field and experimental studies of plant functional traits, and in models that predict responses of tropical forests to climate change. PMID:27242814

  7. Implication of Negative Entropy Flow for Local Rainfall

    Directory of Open Access Journals (Sweden)

    Zhaohui Li

    2013-08-01

    Full Text Available The relation between the atmospheric entropy flow field and local rainfall is examined in terms of the theory of dissipative structures. In this paper, the entropy balance equation in a form suitable for describing the entropy budget of the Earth’s atmosphere is derived starting from the Gibbs relation, and, as examples, the entropy flows of the two severe weather events associated with the development of an extratropical cyclone and a tropical storm are calculated, respectively. The results show that negative entropy flow (NEF has a significant effect on the precipitation intensity and scope with an apparent matching of the NEF’s pattern with the rainfall distribution revealed and, that the diagnosis of NEF is able to provide a good indicator for precipitation forecasting.

  8. Rainfall estimation with TFR model using Ensemble Kalman filter

    Science.gov (United States)

    Asyiqotur Rohmah, Nabila; Apriliani, Erna

    2018-03-01

    Rainfall fluctuation can affect condition of other environment, correlated with economic activity and public health. The increasing of global average temperature is influenced by the increasing of CO2 in the atmosphere, which caused climate change. Meanwhile, the forests as carbon sinks that help keep the carbon cycle and climate change mitigation. Climate change caused by rainfall intensity deviations can affect the economy of a region, and even countries. It encourages research on rainfall associated with an area of forest. In this study, the mathematics model that used is a model which describes the global temperatures, forest cover, and seasonal rainfall called the TFR (temperature, forest cover, and rainfall) model. The model will be discretized first, and then it will be estimated by the method of Ensemble Kalman Filter (EnKF). The result shows that the more ensembles used in estimation, the better the result is. Also, the accurateness of simulation result is influenced by measurement variable. If a variable is measurement data, the result of simulation is better.

  9. Tropical dendrochemistry: A novel approach to estimate age and growth from ringless trees

    International Nuclear Information System (INIS)

    Poussart, P.; Myneni, S.; Lanzirotti, A.

    2006-01-01

    Although tropical forests play an active role in the global carbon cycle and climate, their growth history remains poorly characterized compared to other ecosystems on the planet. Trees are prime candidates for the extraction of paleoclimate archives as they can be probed sub-annually, are widely distributed and can live for over 1400 years. However, dendrochronological techniques have found limited applications in the tropics because trees often lack visible growth rings. Alternative methods exist (dendrometry, radio- and stable isotopes), but the derived records are either of short-duration, lack seasonal resolution or are prohibitively labor intensive to produce. Here, we show the first X-ray microprobe synchrotron record of calcium (Ca) from a ringless Miliusa velutina tree from Thailand and use it to estimate the tree's age and growth history. The Ca age model agrees within (le)2 years of bomb-radiocarbon age estimates and confirms that the cycles are seasonal. The amplitude of the Ca annual cycle is correlated significantly with growth and annual Ca maxima correlate with the amount of dry season rainfall. Synchrotron measurements are fast and producing sufficient numbers of replicated multi-century tropical dendrochemical climate records now seems analytically feasible

  10. Interaction between Tropical Atlantic Variability and El Niño-Southern Oscillation.

    Science.gov (United States)

    Saravanan, R.; Chang, Ping

    2000-07-01

    The interaction between tropical Atlantic variability and El Niño-Southern Oscillation (ENSO) is investigated using three ensembles of atmospheric general circulation model integrations. The integrations are forced by specifying observed sea surface temperature (SST) variability over a forcing domain. The forcing domain is the global ocean for the first ensemble, limited to the tropical ocean for the second ensemble, and further limited to the tropical Atlantic region for the third ensemble. The ensemble integrations show that extratropical SST anomalies have little impact on tropical variability, but the effect of ENSO is pervasive in the Tropics. Consistent with previous studies, the most significant influence of ENSO is found during the boreal spring season and is associated with an anomalous Walker circulation. Two important aspects of ENSO's influence on tropical Atlantic variability are noted. First, the ENSO signal contributes significantly to the `dipole' correlation structure between tropical Atlantic SST and rainfall in the Nordeste Brazil region. In the absence of the ENSO signal, the correlations are dominated by SST variability in the southern tropical Atlantic, resulting in less of a dipole structure. Second, the remote influence of ENSO also contributes to positive correlations between SST anomalies and downward surface heat flux in the tropical Atlantic during the boreal spring season. However, even when ENSO forcing is absent, the model integrations provide evidence for a positive surface heat flux feedback in the deep Tropics, which is analyzed in a companion study by Chang et al. The analysis of model simulations shows that interannual atmospheric variability in the tropical Pacific-Atlantic system is dominated by the interaction between two distinct sources of tropical heating: (i) an equatorial heat source in the eastern Pacific associated with ENSO and (ii) an off-equatorial heat source associated with SST anomalies near the Caribbean

  11. Late Pleistocene and Holocene Hydroclimate Variability in the Tropical Andes from Alpine Lake Sediments, Cordillera de Mérida, Venezuela

    Science.gov (United States)

    Larsen, D. J.; Abbott, M. B.; Polissar, P. J.

    2014-12-01

    The tropics play a major role in the global hydrologic cycle and changes to tropical rainfall patterns have critical implications for water resources and ecosystem dynamics over large geographic scales. In tropical South America, late Pleistocene and Holocene precipitation variability has been documented in geologic records and associated with numerous external and internal variables, including changes in summer insolation, South American summer monsoon strength, Pacific Ocean sea surface temperatures, continental moisture recycling, and other climate processes. However, there are few records from the northern hemisphere tropical Americas, a key region for understanding interhemispheric linkages and the drivers of tropical hydroclimate variability. Here, we present a ~13 ka record of coupled hydroclimate and environmental changes from Laguna Brava, a small (~0.07 km2), hydrologically closed lake basin situated at 2400 m asl in the Cordillera de Mérida, Venezuela. Sediment cores collected from varying water depths and proximity to shore are placed in a chronologic framework using radiocarbon ages from terrestrial macrofossils, and analyzed for a suite of physical, bulk geochemical, and stable isotopic parameters. Compound specific hydrogen isotope (D/H) measurements of terrestrial plant waxes (long-chain n-alkanes) show a sharp increase in the late Pleistocene, followed by a long-term trend toward more negative values that suggest a ~20‰ decrease in the D/H ratios of South American tropical precipitation during the Holocene. This pattern is consistent in sign and magnitude to other South American precipitation reconstructions from both hemispheres, indicating interhemispheric similarities in tropical hydroclimate variability. Superimposed on this continent-scale trend are changes in moisture balance and environmental conditions in the Venezuelan Andes. We reconstruct these parameters at Laguna Brava at multidecadal and centennial resolution and evaluate this

  12. Possible climatic impact of tropical deforestation

    Energy Technology Data Exchange (ETDEWEB)

    Potter, G L; Ellsaesser, H W; MacCracken, M C; Luther, F M

    1975-12-25

    A computer model of climate changes resulting from removal of tropical rain forests to increase arable acreage is described. A chain of consequences is deduced from the model which begins with deforestation and ends with overall global cooling and a reduction in precipitation. A model of the global water budget shows that the reduction in precipitation is accompanied by cooling in the upper tropical troposphere, a lowering of the tropical tropopause, and a warming of the lower tropical stratosphere. (HLW)

  13. HYSOGs250m, global gridded hydrologic soil groups for curve-number-based runoff modeling.

    Science.gov (United States)

    Ross, C Wade; Prihodko, Lara; Anchang, Julius; Kumar, Sanath; Ji, Wenjie; Hanan, Niall P

    2018-05-15

    Hydrologic soil groups (HSGs) are a fundamental component of the USDA curve-number (CN) method for estimation of rainfall runoff; yet these data are not readily available in a format or spatial-resolution suitable for regional- and global-scale modeling applications. We developed a globally consistent, gridded dataset defining HSGs from soil texture, bedrock depth, and groundwater. The resulting data product-HYSOGs250m-represents runoff potential at 250 m spatial resolution. Our analysis indicates that the global distribution of soil is dominated by moderately high runoff potential, followed by moderately low, high, and low runoff potential. Low runoff potential, sandy soils are found primarily in parts of the Sahara and Arabian Deserts. High runoff potential soils occur predominantly within tropical and sub-tropical regions. No clear pattern could be discerned for moderately low runoff potential soils, as they occur in arid and humid environments and at both high and low elevations. Potential applications of this data include CN-based runoff modeling, flood risk assessment, and as a covariate for biogeographical analysis of vegetation distributions.

  14. Relating tree growth to rainfall in Bolivian rain forests: a test for six species using tree ring analysis.

    Science.gov (United States)

    Brienen, Roel J W; Zuidema, Pieter A

    2005-11-01

    Many tropical regions show one distinct dry season. Often, this seasonality induces cambial dormancy of trees, particularly if these belong to deciduous species. This will often lead to the formation of annual rings. The aim of this study was to determine whether tree species in the Bolivian Amazon region form annual rings and to study the influence of the total amount and seasonal distribution of rainfall on diameter growth. Ring widths were measured on stem discs of a total of 154 trees belonging to six rain forest species. By correlating ring width and monthly rainfall data we proved the annual character of the tree rings for four of our study species. For two other species the annual character was proved by counting rings on trees of known age and by radiocarbon dating. The results of the climate-growth analysis show a positive relationship between tree growth and rainfall in certain periods of the year, indicating that rainfall plays a major role in tree growth. Three species showed a strong relationship with rainfall at the beginning of the rainy season, while one species is most sensitive to the rainfall at the end of the previous growing season. These results clearly demonstrate that tree ring analysis can be successfully applied in the tropics and that it is a promising method for various research disciplines.

  15. Global analysis of threat status reveals higher extinction risk in tropical than in temperate bird sister species

    Directory of Open Access Journals (Sweden)

    Reif Jiří

    2016-06-01

    Full Text Available Given increasing pressures upon biodiversity, identification of species’ traits related to elevated extinction risk is useful for more efficient allocation of limited resources for nature conservation. Despite its need, such a global analysis was lacking in the case of birds. Therefore, we performed this exercise for avian sister species using information about their global extinction risk from IUCN Red List. We focused on 113 pairs of sister species, each containing a threatened and an unthreatened species to factor out the effects of common evolutionary history on the revealed relationship. We collected data on five traits with expected relationships to species’ extinction risk based on previous studies performed at regional or national levels: breeding habitat (recognizing forest, grassland, wetland and oceanic species, latitudinal range position (temperate and tropics species, migration strategy (migratory and resident species, diet (carnivorous, insectivorous, herbivorous and omnivorous species and body mass. We related the extinction risk using IUCN threat level categories to species’ traits using generalised linear mixed effects models expecting lower risk for forest, temperate, omnivorous and smaller-bodied species. Our expectation was confirmed only in the case of latitudinal range position, as we revealed higher threat level for tropical than for temperate species. This relationship was robust to different methods of threat level expression and cannot be explained by a simple association of high bird species richness with the tropical zone. Instead, it seems that tropical species are more threatened because of their intrinsic characteristics such as slow life histories, adaptations to stable environments and small geographic ranges. These characteristics are obviously disadvantageous in conditions of current human-induced environmental perturbations. Moreover, given the absence of habitat effects, our study indicates that such

  16. Upper temperature limits of tropical marine ectotherms: global warming implications.

    Directory of Open Access Journals (Sweden)

    Khanh Dung T Nguyen

    Full Text Available Animal physiology, ecology and evolution are affected by temperature and it is expected that community structure will be strongly influenced by global warming. This is particularly relevant in the tropics, where organisms are already living close to their upper temperature limits and hence are highly vulnerable to rising temperature. Here we present data on upper temperature limits of 34 tropical marine ectotherm species from seven phyla living in intertidal and subtidal habitats. Short term thermal tolerances and vertical distributions were correlated, i.e., upper shore animals have higher thermal tolerance than lower shore and subtidal animals; however, animals, despite their respective tidal height, were susceptible to the same temperature in the long term. When temperatures were raised by 1°C hour(-1, the upper lethal temperature range of intertidal ectotherms was 41-52°C, but this range was narrower and reduced to 37-41°C in subtidal animals. The rate of temperature change, however, affected intertidal and subtidal animals differently. In chronic heating experiments when temperature was raised weekly or monthly instead of every hour, upper temperature limits of subtidal species decreased from 40°C to 35.4°C, while the decrease was more than 10°C in high shore organisms. Hence in the long term, activity and survival of tropical marine organisms could be compromised just 2-3°C above present seawater temperatures. Differences between animals from environments that experience different levels of temperature variability suggest that the physiological mechanisms underlying thermal sensitivity may vary at different rates of warming.

  17. Flood modelling with global precipitation measurement (GPM) satellite rainfall data: a case study of Dehradun, Uttarakhand, India

    Science.gov (United States)

    Sai Krishna, V. V.; Dikshit, Anil Kumar; Pandey, Kamal

    2016-05-01

    Urban expansion, water bodies and climate change are inextricably linked with each other. The macro and micro level climate changes are leading to extreme precipitation events which have severe consequences on flooding in urban areas. Flood simulations shall be helpful in demarcation of flooded areas and effective flood planning and preparedness. The temporal availability of satellite rainfall data at varying spatial scale of 0.10 to 0.50 is helpful in near real time flood simulations. The present research aims at analysing stream flow and runoff to monitor flood condition using satellite rainfall data in a hydrologic model. The satellite rainfall data used in the research was NASA's Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG), which is available at 30 minutes temporal resolution. Landsat data was used for mapping the water bodies in the study area. Land use land cover (LULC) data was prepared using Landsat 8 data with maximum likelihood technique that was provided as an input to the HEC-HMS hydrological model. The research was applied to one of the urbanized cities of India, viz. Dehradun, which is the capital of Uttarakhand State. The research helped in identifying the flood vulnerability at the basin level on the basis of the runoff and various socio economic parameters using multi criteria analysis.

  18. Interannual Tropical Rainfall Variability in General Circulation Model Simulations Associated with the Atmospheric Model Intercomparison Project.

    Science.gov (United States)

    Sperber, K. R.; Palmer, T. N.

    1996-11-01

    The interannual variability of rainfall over the Indian subcontinent, the African Sahel, and the Nordeste region of Brazil have been evaluated in 32 models for the period 1979-88 as part of the Atmospheric Model Intercomparison Project (AMIP). The interannual variations of Nordeste rainfall are the most readily captured, owing to the intimate link with Pacific and Atlantic sea surface temperatures. The precipitation variations over India and the Sahel are less well simulated. Additionally, an Indian monsoon wind shear index was calculated for each model. Evaluation of the interannual variability of a wind shear index over the summer monsoon region indicates that the models exhibit greater fidelity in capturing the large-scale dynamic fluctuations than the regional-scale rainfall variations. A rainfall/SST teleconnection quality control was used to objectively stratify model performance. Skill scores improved for those models that qualitatively simulated the observed rainfall/El Niño- Southern Oscillation SST correlation pattern. This subset of models also had a rainfall climatology that was in better agreement with observations, indicating a link between systematic model error and the ability to simulate interannual variations.A suite of six European Centre for Medium-Range Weather Forecasts (ECMWF) AMIP runs (differing only in their initial conditions) have also been examined. As observed, all-India rainfall was enhanced in 1988 relative to 1987 in each of these realizations. All-India rainfall variability during other years showed little or no predictability, possibly due to internal chaotic dynamics associated with intraseasonal monsoon fluctuations and/or unpredictable land surface process interactions. The interannual variations of Nordeste rainfall were best represented. The State University of New York at Albany/National Center for Atmospheric Research Genesis model was run in five initial condition realizations. In this model, the Nordeste rainfall

  19. Climatic significance of stable isotope characteristics of air-CO2 and rainfall in Delhi area water-plant-air system

    International Nuclear Information System (INIS)

    Datta, P.S.; Tyagi, S.K.

    2002-01-01

    In recent years, there is a global concern on the role of carbon dioxide in atmosphere in affecting the climate. The present models of global atmospheric circulation suggest that oceans sequester about one-third of the CO 2 released by anthropogenic activities, and biospheric productivity is the primary cause of the interannual fluctuations in the atmospheric CO 2 . However, most of the times, the excess of CO 2 in air is associated with the presence of anthropogenic pollutants from urbanised centres. Therefore, the studies on the pattern of local variations in the isotopic composition of air CO 2 and rainfall in urban areas are expected to provide important information on the atmospheric circulation processes which affect the climate on a regional scale. Internationally, aspects of climate change have been so far demonstrated using isotopic data mainly from temperate climates, and there is limited understanding of the factors controlling stable isotopic composition of air-CO 2 and rainfall in tropical regions. In this context, to assess the magnitude of the above mentioned effects, analysis of the data on the variations in the 13 C/ 12 C and 18 O/ 16 O signatures of air-CO 2 in Delhi area water-plant-air system is presented here

  20. From TRMM to GPM: How well can heavy rainfall be detected from space?

    Science.gov (United States)

    Prakash, Satya; Mitra, Ashis K.; Pai, D. S.; AghaKouchak, Amir

    2016-02-01

    In this study, we investigate the capabilities of the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) and the recently released Integrated Multi-satellitE Retrievals for GPM (IMERG) in detecting and estimating heavy rainfall across India. First, the study analyzes TMPA data products over a 17-year period (1998-2014). While TMPA and reference gauge-based observations show similar mean monthly variations of conditional heavy rainfall events, the multi-satellite product systematically overestimates its inter-annual variations. Categorical as well as volumetric skill scores reveal that TMPA over-detects heavy rainfall events (above 75th percentile of reference data), but it shows reasonable performance in capturing the volume of heavy rain across the country. An initial assessment of the GPM-based multi-satellite IMERG precipitation estimates for the southwest monsoon season shows notable improvements over TMPA in capturing heavy rainfall over India. The recently released IMERG shows promising results to help improve modeling of hydrological extremes (e.g., floods and landslides) using satellite observations.

  1. Climate change, allergy and asthma, and the role of tropical forests.

    Science.gov (United States)

    D'Amato, Gennaro; Vitale, Carolina; Rosario, Nelson; Neto, Herberto Josè Chong; Chong-Silva, Deborah Carla; Mendonça, Francisco; Perini, Josè; Landgraf, Loraine; Solé, Dirceu; Sánchez-Borges, Mario; Ansotegui, Ignacio; D'Amato, Maria

    2017-01-01

    Tropical forests cover less than 10 per cent of all land area (1.8 × 107 km 2 ) and over half of the tropical-forest area (1.1 × 107 Km 2 ) is represented by humid tropical forests (also called tropical rainforests). The Amazon basin contains the largest rainforest on Earth, almost 5.8 million km 2 , and occupies about 40% of South America; more than 60% of the basin is located in Brazil and the rest in Bolivia, Colombia, Ecuador, French Guiana, Guyana, Peru, Suriname and Venezuela. Over the past decade the positive role of tropical rainforests in capturing large amounts of atmospheric carbon dioxide (CO 2 ) has been demonstrated. In response to the increase in atmospheric CO 2 concentration, tropical forests act as a global carbon sink. Accumulation of carbon in the tropical terrestrial biosphere strongly contributes to slowing the rate of increase of CO 2 into the atmosphere, thus resulting in the reduction of greenhouse gas effect. Tropical rainforests have been estimated to account for 32-36% of terrestrial Net Primary Productivity (NPP) that is the difference between total forest photosynthesis and plant respiration. Tropical rainforests have been acting as a strong carbon sink in this way for decades. However, over the past years, increased concentrations of greenhouse gases, and especially CO 2 , in the atmosphere have significantly affected the net carbon balance of tropical rainforests, and have warmed the planet substantially driving climate changes through more severe and prolonged heat waves, variability in temperature, increased air pollution, forest fires, droughts, and floods. The role of tropical forests in mitigating climate change is therefore critical. Over the past 30 years almost 600,000 km 2 have been deforested in Brazil alone due to the rapid development of Amazonia, this is the reason why currently the region is one of the 'hotspots' of global environmental change on the planet. Deforestation represents the second largest

  2. Uganda rainfall variability and prediction

    Science.gov (United States)

    Jury, Mark R.

    2018-05-01

    This study analyzes large-scale controls on Uganda's rainfall. Unlike past work, here, a May-October season is used because of the year-round nature of agricultural production, vegetation sensitivity to rainfall, and disease transmission. The Uganda rainfall record exhibits steady oscillations of ˜3 and 6 years over 1950-2013. Correlation maps at two-season lead time resolve the subtropical ridge over global oceans as an important feature. Multi-variate environmental predictors include Dec-May south Indian Ocean sea surface temperature, east African upper zonal wind, and South Atlantic wind streamfunction, providing a 33% fit to May-Oct rainfall time series. Composite analysis indicates that cool-phase El Niño Southern Oscillation supports increased May-Oct Uganda rainfall via a zonal overturning lower westerly/upper easterly atmospheric circulation. Sea temperature anomalies are positive in the east Atlantic and negative in the west Indian Ocean in respect of wet seasons. The northern Hadley Cell plays a role in limiting the northward march of the equatorial trough from May to October. An analysis of early season floods found that moist inflow from the west Indian Ocean converges over Uganda, generating diurnal thunderstorm clusters that drift southwestward producing high runoff.

  3. The Impact of a Amazonian Deforestation on Dry-Season Rainfall

    Science.gov (United States)

    Negri, Andrew J.; Adler, Robert F.; Xu, Liming; Surratt, Jason

    2003-01-01

    Many modeling studies have concluded that widespread deforestation of Amazonia would lead to decreased rainfall. We analyze geosynchronous infrared satellite data with respect to percent cloudiness, and analyze rain estimates from microwave sensors aboard the Tropical Rainfall Measuring Mission satellite. We conclude that in the dry-season, when the effects of the surface are not overwhelmed by synoptic-scale weather disturbances, shallow cumulus cloudiness, deep convective cloudiness, and rainfall occurrence all are larger over the deforested and non-forested (savanna) regions than over areas of dense jungle. This difference is in response to a local circulation initiated by the differential heating of the region s varying forestation. Analysis of the diurnal cycle of cloudiness reveals a shift in the onset of convection toward afternoon hours in the deforested and towards the morning hours in the savanna regions when compared to the neighboring forested regions. Analysis of 14 years of monthly estimates from the Special Sensor Microwave/Imager data revealed that in only in August was there a pattern of higher monthly rainfall amounts over the deforested region.

  4. Dynamics of changing impacts of tropical Indo-Pacific variability on Indian and Australian rainfall

    Science.gov (United States)

    Li, Ziguang; Cai, Wenju; Lin, Xiaopei

    2016-08-01

    A positive Indian Ocean Dipole (IOD) and a warm phase of the El Niño-Southern Oscillation (ENSO) reduce rainfall over the Indian subcontinent and southern Australia. However, since the 1980s, El Niño’s influence has been decreasing, accompanied by a strengthening in the IOD’s influence on southern Australia but a reversal in the IOD’s influence on the Indian subcontinent. The dynamics are not fully understood. Here we show that a post-1980 weakening in the ENSO-IOD coherence plays a key role. During the pre-1980 high coherence, ENSO drives both the IOD and regional rainfall, and the IOD’s influence cannot manifest itself. During the post-1980 weak coherence, a positive IOD leads to increased Indian rainfall, offsetting the impact from El Niño. Likewise, the post-1980 weak ENSO-IOD coherence means that El Niño’s pathway for influencing southern Australia cannot fully operate, and as positive IOD becomes more independent and more frequent during this period, its influence on southern Australia rainfall strengthens. There is no evidence to support that greenhouse warming plays a part in these decadal fluctuations.

  5. An Experimental System for a Global Flood Prediction: From Satellite Precipitation Data to a Flood Inundation Map

    Science.gov (United States)

    Adler, Robert

    2007-01-01

    Floods impact more people globally than any other type of natural disaster. It has been established by experience that the most effective means to reduce the property damage and life loss caused by floods is the development of flood early warning systems. However, advances for such a system have been constrained by the difficulty in estimating rainfall continuously over space (catchment-. national-, continental-. or even global-scale areas) and time (hourly to daily). Particularly, insufficient in situ data, long delay in data transmission and absence of real-time data sharing agreements in many trans-boundary basins hamper the development of a real-time system at the regional to global scale. In many countries around the world, particularly in the tropics where rainfall and flooding co-exist in abundance, satellite-based precipitation estimation may be the best source of rainfall data for those data scarce (ungauged) areas and trans-boundary basins. Satellite remote sensing data acquired and processed in real time can now provide the space-time information on rainfall fluxes needed to monitor severe flood events around the world. This can be achieved by integrating the satellite-derived forcing data with hydrological models, which can be parameterized by a tailored geospatial database. An example that is a key to this progress is NASA's contribution to the Tropical Rainfall Measuring Mission (TRMM), launched in November 1997. Hence, in an effort to evolve toward a more hydrologically-relevant flood alert system, this talk articulates a module-structured framework for quasi-global flood potential naming, that is 'up to date' with the state of the art on satellite rainfall estimation and the improved geospatial datasets. The system is modular in design with the flexibility that permits changes in the model structure and in the choice of components. Four major components included in the system are: 1) multi-satellite precipitation estimation; 2) characterization of

  6. Sediment transport dynamics in steep, tropical volcanic catchments

    Science.gov (United States)

    Birkel, Christian; Solano Rivera, Vanessa; Granados Bolaños, Sebastian; Brenes Cambronero, Liz; Sánchez Murillo, Ricardo; Geris, Josie

    2017-04-01

    How volcanic landforms in tropical mountainous regions are eroded, and how eroded materials move through these mostly steep landscapes from the headwaters to affect sediment fluxes are critical to water resources management in their downstream rivers. Volcanic landscapes are of particular importance because of the short timescales (transform. Owing to volcanism and seismic activity, landslides and other mass movements frequently occur. These processes are amplified by high intensity precipitation inputs resulting in significant, but natural runoff, erosion and sediment fluxes. Sediment transport is also directly linked to carbon and solute export. However, knowledge on the sediment sources and transport dynamics in the humid tropics remains limited and their fluxes largely unquantified. In order to increase our understanding of the dominant erosion and sediment transport dynamics in humid tropical volcanic landscapes, we conducted an extensive monitoring effort in a pristine and protected (biological reserve Alberto Manuel Brenes, ReBAMB) tropical forest catchment (3.2 km2), located in the Central Volcanic Cordillera of Costa Rica (Figure 1A). Typical for tropical volcanic and montane regions, deeply incised V-form headwaters (Figure 1B) deliver the majority of water (>70%) and sediments to downstream rivers. At the catchment outlet (Figure 1C) of the San Lorencito stream, we established high temporal resolution (5min) water quantity and sediment monitoring (turbidity). We also surveyed the river network on various occasions to characterize fluvial geomorphology including material properties. We could show that the rainfall-runoff-sediment relationships and their characteristic hysteresis patterns are directly linked to variations in the climatic input (storm intensity and duration) and the size, form and mineralogy of the transported material. Such a relationship allowed us to gain the following insights: (i) periodic landslides contribute significant volumes of

  7. Functional traits, drought performance, and the distribution of tree species in tropical forests of Ghana

    NARCIS (Netherlands)

    Amissah, L.

    2014-01-01

    Tropical forests occur along a rainfall gradient where annual amount, the length and intensity of dry season vary and water availability shapes therefore strongly the distribution of tree species. Annual rainfall in West Africa has declined at a rate of 4% per decade, and climate change

  8. Small changes in climate can profoundly alter the dynamics and ecosystem services of tropical crater lakes.

    Science.gov (United States)

    Saulnier-Talbot, Émilie; Gregory-Eaves, Irene; Simpson, Kyle G; Efitre, Jackson; Nowlan, Tobias E; Taranu, Zofia E; Chapman, Lauren J

    2014-01-01

    African tropical lakes provide vital ecosystem services including food and water to some of the fastest growing human populations, yet they are among the most understudied ecosystems in the world. The consequences of climate change and other stressors on the tropical lakes of Africa have been informed by long-term analyses, but these studies have largely focused on the massive Great Rift Valley lakes. Our objective was to evaluate how recent climate change has altered the functioning and services of smaller tropical lakes, which are far more abundant on the landscape. Based on a paired analysis of 20 years of high-resolution water column data and a paleolimnological record from a small crater lake in western Uganda, we present evidence that even a modest warming of the air (∼0.9°C increase over 20 years) and changes in the timing and intensity of rainfall can have significant consequences on the dynamics of this common tropical lake type. For example, we observed a significant nonlinear increase (R(2) adj  = 0.23, e.d.f. = 7, pdeterioration of fish habitat and appears to have abated primary production; processes that may impair ecosystem services for a vulnerable human population. This study on a system representative of small tropical crater lakes highlights the far-reaching effects of global climatic change on tropical waters. Increased research efforts into tropical aquatic ecosystem health and the development of sound management practices are necessary in order to strengthen adaptive capabilities in tropical regions.

  9. Evaluation of remote-sensing-based rainfall products through predictive capability in hydrological runoff modelling

    DEFF Research Database (Denmark)

    Stisen, Simon; Sandholt, Inge

    2010-01-01

    SRFEs, Climate Prediction Center MORPHing technique (CMORPH), Tropical Rainfall Measuring Mission (TRMM) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN). The best performing SRFE, CPC-FEWS, produced good results with values of R2NS between 0...

  10. Sea level variability in the eastern tropical Pacific as observed by TOPEX and Tropical Ocean-Global Atmosphere Tropical Atmosphere-Ocean Experiment

    Science.gov (United States)

    Giese, Benjamin S.; Carton, James A.; Holl, Lydia J.

    1994-01-01

    Sea surface height measurements from the TOPEX altimeter and dynamic height from Tropical Ocean-Global Atmosphere Tropical Atmosphere-Ocean (TOGA TAO) moorings are used to explore sea level variability in the northeastern tropical Pacific Ocean. Afetr the annual harmonic is removed, there are two distinct bands of variability: one band is centered at 5 deg N to 7 deg N and extends from 165 deg W to 110 deg W, and the other band is centered at 10 deg N to 12 deg N and extends from 120 deg W to the coast of Central America. The correspondence between the two independent observation data sets at 5 deg N is excellent with correlations of about 90%. The variability at 5 deg-7 deg N is identified as instability waves formed just south of the North Equatorial Countercurrent during the months of July and March. Wave amplitudes are largest in the range of longitudes 160 deg-140 deg W, where they can exceed 10 cm. The waves disappear when the equatorial current system weakens, during the months of March and May. The variability at 11 deg N in 1993 has the form of anticyclone eddies. These eddies propagate westward at a speed of about 17 cm/s, consistent with the dispersion characteristics of free Rossby waves. The eddies are shown to have their origin near the coast of central America during northern fall and winter. Their formation seems to result from intense wind bursts across the Gulfs of Tehuantepec and Papagayo which generate strong anticyclonic ocean eddies. The disappearance of the eddies in the summer of 1993 coincidences with the seasonal intensification of equatorial currents. Thus the variability at 11 deg N has very little overlap in time with the variability at 5 deg N.

  11. A Metastatistical Approach to Satellite Estimates of Extreme Rainfall Events

    Science.gov (United States)

    Zorzetto, E.; Marani, M.

    2017-12-01

    The estimation of the average recurrence interval of intense rainfall events is a central issue for both hydrologic modeling and engineering design. These estimates require the inference of the properties of the right tail of the statistical distribution of precipitation, a task often performed using the Generalized Extreme Value (GEV) distribution, estimated either from a samples of annual maxima (AM) or with a peaks over threshold (POT) approach. However, these approaches require long and homogeneous rainfall records, which often are not available, especially in the case of remote-sensed rainfall datasets. We use here, and tailor it to remotely-sensed rainfall estimates, an alternative approach, based on the metastatistical extreme value distribution (MEVD), which produces estimates of rainfall extreme values based on the probability distribution function (pdf) of all measured `ordinary' rainfall event. This methodology also accounts for the interannual variations observed in the pdf of daily rainfall by integrating over the sample space of its random parameters. We illustrate the application of this framework to the TRMM Multi-satellite Precipitation Analysis rainfall dataset, where MEVD optimally exploits the relatively short datasets of satellite-sensed rainfall, while taking full advantage of its high spatial resolution and quasi-global coverage. Accuracy of TRMM precipitation estimates and scale issues are here investigated for a case study located in the Little Washita watershed, Oklahoma, using a dense network of rain gauges for independent ground validation. The methodology contributes to our understanding of the risk of extreme rainfall events, as it allows i) an optimal use of the TRMM datasets in estimating the tail of the probability distribution of daily rainfall, and ii) a global mapping of daily rainfall extremes and distributional tail properties, bridging the existing gaps in rain gauges networks.

  12. Scaling future tropical cyclone damage with global mean temperature

    Science.gov (United States)

    Geiger, T.; Bresch, D.; Frieler, K.

    2017-12-01

    Tropical cyclones (TC) are one of the most damaging natural hazards and severely affectmany countries around the globe each year. Their nominal impact is projected to increasesubstantially as the exposed coastal population grows, per capita income increases, andanthropogenic climate change manifests. The magnitude of this increase, however, variesacross regions and is obscured by the stochastic behaviour of TCs, so far impeding arigorous quantification of trends in TC damage with global mean temperature (GMT) rise. Here, we build on the large sample of spatially explicit TCs simulations generated withinISIMIP(2b) for 1) pre-industrial conditions, 2) the historical period, and 3) future projectionsunder RCP2.6 and RCP6.0 to estimate future TC damage assuming fixed present-daysocio-economic conditions or SSP-based future projections of population patterns andincome. Damage estimates will be based on region-specific empirical damage modelsderived from reported damages and accounting for regional characteristics of vulnerability.Different combinations of 1) socio-economic drivers with pre-industrial climate or 2) changingclimate with fixed socio-economic conditions will be used to derive functional relationshipsbetween regionally aggregated changes in damages on one hand and global meantemperature and socio-economic predictors on the other hand. The obtained region-specific scaling of future TC damage with GMT provides valuable inputfor IPCC's special report on the impacts of global warming of 1.5°C by quantifying theincremental changes in impact with global warming. The approach allows for an update ofdamage functions used in integrated assessment models, and contributes to assessing theadequateness of climate mitigation and adaptation strategies.

  13. The impact of Amazonian deforestation on Amazon basin rainfall

    Science.gov (United States)

    Spracklen, D. V.; Garcia-Carreras, L.

    2015-11-01

    We completed a meta-analysis of regional and global climate model simulations (n = 96) of the impact of Amazonian deforestation on Amazon basin rainfall. Across all simulations, mean (±1σ) change in annual mean Amazon basin rainfall was -12 ± 11%. Variability in simulated rainfall was not explained by differences in model resolution or surface parameters. Across all simulations we find a negative linear relationship between rainfall and deforestation extent, although individual studies often simulate a nonlinear response. Using the linear relationship, we estimate that deforestation in 2010 has reduced annual mean rainfall across the Amazon basin by 1.8 ± 0.3%, less than the interannual variability in observed rainfall. This may explain why a reduction in Amazon rainfall has not consistently been observed. We estimate that business-as-usual deforestation (based on deforestation rates prior to 2004) would lead to an 8.1 ± 1.4% reduction in annual mean Amazon basin rainfall by 2050, greater than natural variability.

  14. A comparison of methods for determining soil water availability in two sites in Panama with similar rainfall but distinct tree communities

    Science.gov (United States)

    Thomas A. Kursar; Bettina M. J. Engelbrecht; Melvin T. Tyree

    2005-01-01

    Plant productivity, distribution and diversity in tropical rain forests correlate with water availability. Water availability is determined by rainfall and also by the available water capacity of the soil. However, while rainfall is recognized as important, linkages between plant distribution and differences among soils in available water capacity have not been...

  15. The potential negative impacts of global climate change on tropical montane cloud forests

    Science.gov (United States)

    Foster, Pru

    2001-10-01

    Nearly every aspect of the cloud forest is affected by regular cloud immersion, from the hydrological cycle to the species of plants and animals within the forest. Since the altitude band of cloud formation on tropical mountains is limited, the tropical montane cloud forest occurs in fragmented strips and has been likened to island archipelagoes. This isolation and uniqueness promotes explosive speciation, exceptionally high endemism, and a great sensitivity to climate. Global climate change threatens all ecosystems through temperature and rainfall changes, with a typical estimate for altitude shifts in the climatic optimum for mountain ecotones of hundreds of meters by the time of CO 2 doubling. This alone suggests complete replacement of many of the narrow altitude range cloud forests by lower altitude ecosystems, as well as the expulsion of peak residing cloud forests into extinction. However, the cloud forest will also be affected by other climate changes, in particular changes in cloud formation. A number of global climate models suggest a reduction in low level cloudiness with the coming climate changes, and one site in particular, Monteverde, Costa Rica, appears to already be experiencing a reduction in cloud immersion. The coming climate changes appear very likely to upset the current dynamic equilibrium of the cloud forest. Results will include biodiversity loss, altitude shifts in species' ranges and subsequent community reshuffling, and possibly forest death. Difficulties for cloud forest species to survive in climate-induced migrations include no remaining location with a suitable climate, no pristine location to colonize, migration rates or establishment rates that cannot keep up with climate change rates and new species interactions. We review previous cloud forest species redistributions in the paleo-record in light of the coming changes. The characteristic epiphytes of the cloud forest play an important role in the light, hydrological and nutrient

  16. Indo-Pacific hydroclimate over the past millennium and links with global climate variabilty

    Science.gov (United States)

    Griffiths, M. L.; Drysdale, R.; Kimbrough, A. K.; Hua, Q.; Johnson, K. R.; Gagan, M. K.; Cole, J. E.; Cook, B. I.; Zhao, J. X.; Hellstrom, J. C.; Hantoro, W. S.

    2016-12-01

    The El Niño-Southern Oscillation (ENSO) and Interdecadal Pacific Oscillation (IPO) are the dominant modes of hydroclimate variability in the tropical Pacific and have far-reaching impacts on Earth's climate. Experiments combining instrumental records with climate-model simulations have highlighted the dominant role of the Pacific Walker circulation in shaping recent trends in global temperatures (Kosaka and Xie, 2013, 2016). However, the paucity of high-resolution terrestrial paleoclimate records of deep atmospheric convection over the Indo-Pacific Warm Pool (IPWP) precludes a comprehensive assessment as to role of the tropical Pacific in modulating radiative-forced shifts in global temperature on multidecadal to centennial timescales. Here we present a suite of new high-resolution oxygen-isotope records from Indo-Pacific speleothems, which, based on modern rainfall and cave drip-water monitoring studies, along with trace element (Mg/Ca, Sr/Ca) analyses, are interpreted to reflect changes in Australasian monsoon variability during the Common Era (C.E.). Our results reveal a protracted decline in southern Indonesian monsoon rainfall between 1000-1400 C.E. but stronger between 1500-1900 C.E. These centennial-scale patterns over southern Indonesia are consistent with other proxy records from the region but anti-phased with records from India and China, supporting the paradigm that Northern Hemisphere cooling increased the interhemispheric thermal gradient, displacing the Australasian ITCZ southward. However, our findings are also compatible with a recent synthesis of paleohydrologic records for the Australasian monsoon region, which, collectively, suggest that rather than moving southward during the LIA, the latitudinal range of monsoon-ITCZ migration probably contracted equatorward (Yan et al., 2015). This proposed LIA ITCZ contraction likely occurred in parallel with a strengthening of the Walker circulation (as indicated through comparison with our hydroclimate

  17. A High-Resolution ENSO-Driven Rainfall Record Derived From an Exceptionally Fast Growing Stalagmite From Niue Island (South Pacific)

    Science.gov (United States)

    Troy, S.; Aharon, P.; Lambert, W. J.

    2012-12-01

    El Niño-Southern Oscillation's (ENSO) dominant control over the present global climate and its unpredictable response to a global warming makes the study of paleo-ENSO important. So far corals, spanning the Tropical Pacific Ocean, are the most commonly used geological archives of paleo-ENSO. This is because corals typically exhibit high growth rates (>1 cm/yr), and reproduce reliably surface water temperatures at sub-annual resolution. However there are limitations to coral archives because their time span is relatively brief (in the order of centuries), thus far making a long and continuous ENSO record difficult to achieve. On the other hand stalagmites from island settings can offer long and continuous records of ENSO-driven rainfall. Niue Island caves offer an unusual opportunity to investigate ENSO-driven paleo-rainfall because the island is isolated from other large land masses, making it untainted by continental climate artifacts, and its geographical location is within the Tropical Pacific "rain pool" (South Pacific Convergence Zone; SPCZ) that makes the rainfall variability particularly sensitive to the ENSO phase switches. We present here a δ18O and δ13C time series from a stalagmite sampled on Niue Island (19°00' S, 169°50' W) that exhibits exceptionally high growth rates (~1.2 mm/yr) thus affording a resolution comparable to corals but for much longer time spans. A precise chronology, dating back to several millennia, was achieved by U/Th dating of the stalagmite. The stalagmite was sampled using a Computer Automated Mill (CAM) at 300 μm increments in order to receive sub-annual resolution (every 3 months) and calcite powders of 50-100 μg weight were analyzed for δ18O and δ13C using a Continuous Flow Isotope Ratio Mass Spectrometer (CF-IRMS). The isotope time series contains variable shifts at seasonal, inter-annual, and inter-decadal periodicities. The δ13C and δ18O yield ranges of -3.0 to -13.0 (‰ VPDB) and -3.2 to -6.2 (‰ VPDB

  18. Hydrological Evaluation of TRMM Rainfall over the Upper Senegal River Basin

    Directory of Open Access Journals (Sweden)

    Ansoumana Bodian

    2016-04-01

    Full Text Available The availability of climatic data, especially on a daily time step, has become very rare in West Africa over the last few years due to the high costs of climate data monitoring. This scarcity of climatic data is a huge obstacle to conduct hydrological studies over some watersheds. In this context, our study aimed to evaluate the capacity of Tropical Rainfall Measuring Mission (TRMM satellite data to simulate the observed runoffs over the Bafing (the main important tributary of the Senegal River before their potential integration in hydrological studies. The conceptual hydrological model GR4J (modèle du Génie Rural (Agricultural Engineering Model à 4 paramètres Journalier (4 parameters Daily has been used, calibrated and validated over the 1961–1997 period with rainfall and Potential Evapotranspiration (PET as inputs. Then, the parameters that best reflect the rainfall-runoff relation, obtained during the cross-calibration-validation phase, were used to simulate runoff over the 1998–2004 period using observed and TRMM rainfalls. The findings of this study show that there is a high consistency between satellite-based estimates and ground-based observations of rainfall. Over the 1998–2004 simulation period, the two rainfall data series show quite satisfactorily results. The output hydrographs from satellite-based estimates and ground-based observations of rainfall coincide quite well with the shape of observed hydrographs with Nash-Sutcliffe Efficiency coefficient (NSE of 0.88 and 0.80 for observed rainfalls and TRMM rainfalls, respectively.

  19. Ocean cleaning stations under a changing climate: biological responses of tropical and temperate fish-cleaner shrimp to global warming.

    Science.gov (United States)

    Rosa, Rui; Lopes, Ana Rita; Pimentel, Marta; Faleiro, Filipa; Baptista, Miguel; Trübenbach, Katja; Narciso, Luis; Dionísio, Gisela; Pegado, Maria Rita; Repolho, Tiago; Calado, Ricardo; Diniz, Mário

    2014-10-01

    Cleaning symbioses play an important role in the health of certain coastal marine communities. These interspecific associations often occur at specific sites (cleaning stations) where a cleaner organism (commonly a fish or shrimp) removes ectoparasites/damaged tissue from a 'client' (a larger cooperating fish). At present, the potential impact of climate change on the fitness of cleaner organisms remains unknown. This study investigated the physiological and biochemical responses of tropical (Lysmata amboinensis) and temperate (L. seticaudata) cleaner shrimp to global warming. Specifically, thermal limits (CTMax), metabolic rates, thermal sensitivity, heat shock response (HSR), lipid peroxidation [malondialdehyde (MDA) concentration], lactate levels, antioxidant (GST, SOD and catalase) and digestive enzyme activities (trypsin and alkaline phosphatase) at current and warming (+3 °C) temperature conditions. In contrast to the temperate species, CTMax values decreased significantly from current (24-27 °C) to warming temperature conditions (30 °C) for the tropical shrimp, where metabolic thermal sensitivity was affected and the HSR was significantly reduced. MDA levels in tropical shrimp increased dramatically, indicating extreme cellular lipid peroxidation, which was not observed in the temperate shrimp. Lactate levels, GST and SOD activities were significantly enhanced within the muscle tissue of the tropical species. Digestive enzyme activities in the hepatopancreas of both species were significantly decreased by warmer temperatures. Our data suggest that the tropical cleaner shrimp will be more vulnerable to global warming than the temperate Lysmata seticaudata; the latter evolved in a relatively unstable environment with seasonal thermal variations that may have conferred greater adaptive plasticity. Thus, tropical cleaning symbioses may be challenged at a greater degree by warming-related anthropogenic forcing, with potential cascading effects on the health

  20. Excess Rainfall Product for the Caribbean Region - Developed by The CCRIF and Swiss Re

    Science.gov (United States)

    Linkin, M. E.

    2014-12-01

    Small island states exposed to natural hazards are often in the worst position to absorb the financial impact of natural disasters. In a moment, they can lose a significant portion of their GDP and not have the resiliency to bounce back. Several leaders pushed to build their own resiliency after suffering from four hurricanes in just one year - Charley, Frances, Ivan and Jeanne, all swept through the region in 2004 and caused losses in excess of US 4 billion. This push to build their own resiliency resulted in the creation of the Caribbean Catastrophic Risk Insurance Facility ("CCRIF"), a facility providing parametric earthquake and tropical cyclone insurance coverage to 16 Caribbean countries. Working well for the past 7 years, the CCRIF has paid out 8 times for a total of more than US 32 million. This dual protection against earthquake and tropical cyclone has become a well-known success globally. However, all stakeholders realized that considerable damage in the region is also caused by rainfall and flooding. This consistent realization was felt most recently, in December 2013, when Saint Lucia, St. Vincent and Dominica were ravaged by a torrential rainstorm, leaving several people dead, and causing massive damage to roads, infrastructure buildings and property. Due to this additional exposure, the Caribbean sought out ways to further build their own resiliency by requesting coverage for this specific third peril. For the past 2 years, Swiss Re has worked closely with the CCRIF to create an xsr product that can benefit the region now and going forward, as the impacts of climate change are felt. Excess rainfall is perhaps the most difficult peril of weather and climate modeling and there exists no scientific consensus on a methodology to underpin excess rainfall coverage. Its nature, prolonged and frequent, causes significant damage to small island states and the costs are only predicted to rise as the population and asset values increase and the climate changes

  1. Can a sample of Landsat sensor scenes reliably estimate the global extent of tropical deforestation?

    Science.gov (United States)

    R. L. Czaplewski

    2003-01-01

    Tucker and Townshend (2000) conclude that wall-to-wall coverage is needed to avoid gross errors in estimations of deforestation rates' because tropical deforestation is concentrated along roads and rivers. They specifically question the reliability of the 10% sample of Landsat sensor scenes used in the global remote sensing survey conducted by the Food and...

  2. Technical Report Series on Global Modeling and Data Assimilation. Volume 12; Comparison of Satellite Global Rainfall Algorithms

    Science.gov (United States)

    Suarez, Max J. (Editor); Chang, Alfred T. C.; Chiu, Long S.

    1997-01-01

    Seventeen months of rainfall data (August 1987-December 1988) from nine satellite rainfall algorithms (Adler, Chang, Kummerow, Prabhakara, Huffman, Spencer, Susskind, and Wu) were analyzed to examine the uncertainty of satellite-derived rainfall estimates. The variability among algorithms, measured as the standard deviation computed from the ensemble of algorithms, shows regions of high algorithm variability tend to coincide with regions of high rain rates. Histograms of pattern correlation (PC) between algorithms suggest a bimodal distribution, with separation at a PC-value of about 0.85. Applying this threshold as a criteria for similarity, our analyses show that algorithms using the same sensor or satellite input tend to be similar, suggesting the dominance of sampling errors in these satellite estimates.

  3. Impact analysis of satellite rainfall products on flow simulations in the Magdalena River Basin, Colombia

    Directory of Open Access Journals (Sweden)

    Amr Elgamal

    2017-02-01

    Full Text Available The Magdalena River is the most important river in Colombia in terms of economic activities and is home to about 77% of the country’s population. The river faces water resources allocation challenges, which require reliable hydrological assessments. However, hydrological analysis and model simulations are hampered by insufficient and uncertain knowledge of the actual rainfall fields. In this research the reliability of groundbased measurements, different satellite products of rainfall and their combinations are tested for their impact on the discharge simulations of the Magdalena River. Two different satellite rainfall products from the Tropical Rainfall Measuring Mission (TRMM, have been compared and merged with the ground-based measurements and their impact on the Magdalena river flows quantified using the Representative Elementary Watershed (REW distributed hydrological model.

  4. Anoxic conditions drive phosphorus limitation in humid tropical forest soil microorganisms

    Science.gov (United States)

    Gross, A.; Pett-Ridge, J.; Weber, P. K.; Blazewicz, S.; Silver, W. L.

    2017-12-01

    The elemental stoichiometry of carbon (C), nitrogen (N) and phosphorus (P) of soil microorganisms (C:N:P ratios) regulates transfers of energy and nutrients to higher trophic levels. In humid tropical forests that grow on P-depleted soils, the ability of microbes to concentrate P from their surroundings likely plays a critical role in P-retention and ultimately in forest productivity. Models predict that climate change will cause dramatic changes in rainfall patterns in the humid tropics and field studies have shown these changes can affect the redox state of tropical forest soils, influencing soil respiration and biogeochemical cycling. However, the responses of soil microorganisms to changing environmental conditions are not well known. Here, we incubated humid tropical soils under oxic or anoxic conditions with substrates differing in both C:P stoichiometry and lability, to assess how soil microorganisms respond to different redox regimes. We found that under oxic conditions, microbial C:P ratios were similar to the global optimal ratio (55:1), indicating most microbial cells can adapt to persistent aerated conditions in these soils. However, under anoxic conditions, the ability of soil microbes to acquire soil P declined and their C:P ratios shifted away from the optimal ratio. NanoSIMS elemental imaging of single cells extracted from soil revealed that under anoxic conditions, C:P ratios were above the microbial optimal value in 83% of the cells, in comparison to 41% under oxic conditions. These data suggest microbial growth efficiency switched from being energy limited under oxic conditions to P-limited under anoxic conditions, indicating that, microbial growth in low P humid tropical forests soils may be most constrained by P-limitation when conditions are oxygen-limited. We suggest that differential microbial responses to soil redox states could have important implications for productivity of humid tropical forests under future climate scenarios.

  5. Recent Trends of the Tropical Hydrological Cycle Inferred from Global Precipitation Climatology Project and International Satellite Cloud Climatology Project data

    Science.gov (United States)

    Zhou, Y. P.; Xu, Kuan-Man; Sud, Y. C.; Betts, A. K.

    2011-01-01

    Scores of modeling studies have shown that increasing greenhouse gases in the atmosphere impact the global hydrologic cycle; however, disagreements on regional scales are large, and thus the simulated trends of such impacts, even for regions as large as the tropics, remain uncertain. The present investigation attempts to examine such trends in the observations using satellite data products comprising Global Precipitation Climatology Project precipitation and International Satellite Cloud Climatology Project cloud and radiation. Specifically, evolving trends of the tropical hydrological cycle over the last 20-30 years were identified and analyzed. The results show (1) intensification of tropical precipitation in the rising regions of the Walker and Hadley circulations and weakening over the sinking regions of the associated overturning circulation; (2) poleward shift of the subtropical dry zones (up to 2deg/decade in June-July-August (JJA) in the Northern Hemisphere and 0.3-0.7deg/decade in June-July-August and September-October-November in the Southern Hemisphere) consistent with an overall broadening of the Hadley circulation; and (3) significant poleward migration (0.9-1.7deg/decade) of cloud boundaries of Hadley cell and plausible narrowing of the high cloudiness in the Intertropical Convergence Zone region in some seasons. These results support findings of some of the previous studies that showed strengthening of the tropical hydrological cycle and expansion of the Hadley cell that are potentially related to the recent global warming trends.

  6. Tree Carbohydrate Dynamics Across a Rainfall Gradient in Panama During the 2016 ENSO

    Science.gov (United States)

    Dickman, L. T.; Xu, C.; Behar, H.; McDowell, N.

    2017-12-01

    Non-structural carbohydrates (NSC) provide a measure of the carbon supply available to support respiration, growth, and defense. Support for a role of carbon starvation - or depletion of NSC stores - in drought induced tree mortality is varied without consensus for the tropics. The 2016 ENSO drought provided a unique opportunity to capture drought impacts on tropical forest carbohydrate dynamics. To quantify these impacts, we collected monthly NSC samples across a rainfall gradient in Panama for the duration of the ENSO. We observed high variability in foliar NSC among species within sites. Foliage contained very little starch, indicating that total NSC dynamics are driven by soluble sugars. Foliar NSC depletion did not progress with drought duration as predicted, but showed little variation over course of the ENSO. Foliar NSC did, however, increase with rainfall, suggesting NSC depletion may occur with longer-term drought. These results suggest that, while short-term droughts like the 2016 ENSO may not have a significant impact on carbon dynamics, we may observe greater impacts as drought progresses over longer timescales. These results will be used to evaluate whether the current implementation of carbon starvation in climate models are capturing observed trends in tropical forest carbon allocation and mortality, and to tune model parameters for improved predictive capability.

  7. How El-Nino affects Ethiopian summer rainfall

    Science.gov (United States)

    Gleixner, Stephanie; Keenlyside, Noel; Viste, Ellen

    2016-04-01

    Ethiopian economy and society are strongly dependent on agriculture and therefore rainfall. Reliable forecasts for the rainy seasons are important to allow for agricultural planning and drought preparations. The operational seasonal forecasts for Ethiopia are based on analogue methods relying mainly on sea surface temperature (SST) indices. A better understanding of the physical links between Ethiopian rainfall and SST may help to improve forecasts. The highest rainfall rates are observed in the Kiremt season (defined as JJAS), which is the rainy season in Central and Northwestern Ethiopia. Kiremt rainfall shows clear negative correlation with Central Pacific SST, linking dry Ethiopian summers with ENSO-like warm SST anomalies. We use the atmosphere general circulation model Echam5.3 to investigate the physical link between Pacific SST anomalies and Kiremt rainfall. We compare a historical simulation with a T106 horizontal resolution (~ 1.125°), forced with reconstructed SST data, to gauge-based rainfall observations for the time period of 1961 to 2009. Composite analysis for model and observations show warm SST anomalies in the Central Pacific and a corresponding large-scale circulation anomaly with subsidence over Ethiopia in dry Kiremt seasons. Horizontal wind fields show a slow-down of the whole Indian monsoon system with a weaker Tropical Easterly Jet (TEJ) and a weaker East African Low-Level Jet (EALLJ) in these summers. We conducted a sensitivity experiment with El Nino like SST anomalies in the Central Pacific with the same Echam version. Its results show that warm Pacific SST anomalies cause dry summer conditions over Ethiopia. While the large-scale subsidence over East Africa is present in the experiment, there is no significant weakening of the Indian monsoon system. We rather find an anomalous circulation cell over Northern Africa with westerlies at 100-200 hPa and easterlies below 500 hPa. The anomalous easterly flow in the lower and middle

  8. Tropical Indian Ocean Variability Driving Southeast Australian Droughts

    Science.gov (United States)

    Ummenhofer, C. C.; England, M. H.; McIntosh, P. C.; Meyers, G. A.; Pook, M. J.; Risbey, J. S.; Sen Gupta, A.; Taschetto, A. S.

    2009-04-01

    Variability in the tropical Indian Ocean has widespread effects on rainfall in surrounding countries, including East Africa, India and Indonesia. The leading mode of tropical Indian Ocean variability, the Indian Ocean Dipole (IOD), is a coupled ocean-atmosphere mode characterized by sea surface temperature (SST) anomalies of opposite sign in the east and west of the basin with an associated large-scale atmospheric re-organisation. Earlier work has often focused on the positive phase of the IOD. However, we show here that the negative IOD phase is an important driver of regional rainfall variability and multi-year droughts. For southeastern Australia, we show that it is actually a lack of the negative IOD phase, rather than the positive IOD phase or Pacific variability, that provides the most robust explanation for recent drought conditions. Since 1995, a large region of Australia has been gripped by the most severe drought in living memory, the so-called "Big Dry". The ramifications for affected regions are dire, with acute water shortages for rural and metropolitan areas, record agricultural losses, the drying-out of two of Australia's major river systems and far-reaching ecosystem damage. Yet the drought's origins have remained elusive. For Southeast Australia, we show that the "Big Dry" and other iconic 20th Century droughts, including the Federation Drought (1895-1902) and World War II drought (1937-1945), are driven by tropical Indian Ocean variability, not Pacific Ocean conditions as traditionally assumed. Specifically, a conspicuous absence of characteristic Indian Ocean temperature conditions that are conducive to enhanced tropical moisture transport has deprived southeastern Australia of its normal rainfall quota. In the case of the "Big Dry", its unprecedented intensity is also related to recent above-average temperatures. Implications of recent non-uniform warming trends in the Indian Ocean and how that might affect ocean characteristics and climate in

  9. Raingauge-Based Rainfall Nowcasting with Artificial Neural Network

    Science.gov (United States)

    Liong, Shie-Yui; He, Shan

    2010-05-01

    Rainfall forecasting and nowcasting are of great importance, for instance, in real-time flood early warning systems. Long term rainfall forecasting demands global climate, land, and sea data, thus, large computing power and storage capacity are required. Rainfall nowcasting's computing requirement, on the other hand, is much less. Rainfall nowcasting may use data captured by radar and/or weather stations. This paper presents the application of Artificial Neural Network (ANN) on rainfall nowcasting using data observed at weather and/or rainfall stations. The study focuses on the North-East monsoon period (December, January and February) in Singapore. Rainfall and weather data from ten stations, between 2000 and 2006, were selected and divided into three groups for training, over-fitting test and validation of the ANN. Several neural network architectures were tried in the study. Two architectures, Backpropagation ANN and Group Method of Data Handling ANN, yielded better rainfall nowcasting, up to two hours, than the other architectures. The obtained rainfall nowcasts were then used by a catchment model to forecast catchment runoff. The results of runoff forecast are encouraging and promising.With ANN's high computational speed, the proposed approach may be deliverable for creating the real-time flood early warning system.

  10. Petascale Diagnostic Assessment of the Global Portfolio Rainfall Space Missions' Ability to Support Flood Forecasting

    Science.gov (United States)

    Reed, P. M.; Chaney, N.; Herman, J. D.; Wood, E. F.; Ferringer, M. P.

    2015-12-01

    This research represents a multi-institutional collaboration between Cornell University, The Aerospace Corporation, and Princeton University that has completed a Petascale diagnostic assessment of the current 10 satellite missions providing rainfall observations. Our diagnostic assessment has required four core tasks: (1) formally linking high-resolution astrodynamics design and coordination of space assets with their global hydrological impacts within a Petascale "many-objective" global optimization framework, (2) developing a baseline diagnostic evaluation of a 1-degree resolution global implementation of the Variable Infiltration Capacity (VIC) model to establish the required satellite observation frequencies and coverage to maintain acceptable global flood forecasts, (3) evaluating the limitations and vulnerabilities of the full suite of current satellite precipitation missions including the recently approved Global Precipitation Measurement (GPM) mission, and (4) conceptualizing the next generation spaced-based platforms for water cycle observation. Our team exploited over 100 Million hours of computing access on the 700,000+ core Blue Waters machine to radically advance our ability to discover and visualize key system tradeoffs and sensitivities. This project represents to our knowledge the first attempt to develop a 10,000 member Monte Carlo global hydrologic simulation at one degree resolution that characterizes the uncertain effects of changing the available frequencies of satellite precipitation on drought and flood forecasts. The simulation—optimization components of the work have set a theoretical baseline for the best possible frequencies and coverages for global precipitation given unlimited investment, broad international coordination in reconfiguring existing assets, and new satellite constellation design objectives informed directly by key global hydrologic forecasting requirements. Our research poses a step towards realizing the integrated

  11. Monthly variations of diurnal rainfall in north coast of West Java Indonesia during boreal winter periods

    Science.gov (United States)

    Yulihastin, E.; Trismidianto

    2018-05-01

    Diurnal rainfall during the active monsoon period is usually associated with the highest convective activity that often triggers extreme rainfall. Investigating diurnal rainfall behavior in the north coast of West Java is important to recognize the behavioral trends of data leading to such extreme events in strategic West Java because the city of Jakarta is located in this region. Variability of diurnal rainfall during the period of active monsoon on December-January-February (DJF) composite during the 2000-2016 period was investigated using hourly rainfall data from Tropical Rainfall Measuring Mission (TRMM) 3B41RT dataset. Through the Empirical Mode Decomposition method was appears that the diurnal rain cycle during February has increased significantly in its amplitude and frequency. It is simultaneously shows that the indication of extreme rainfall events is related to diurnal rain divergences during February shown through phase shifts. The diurnal, semidiurnal, and terdiurnal cycles appear on the characteristics of the DJF composite rainfall data during the 2000-2016 period.The significant increases in amplitude occurred during February are the diurnal (IMF 3) and terdiurnal (IMF 1) of rainfall cycles.

  12. Structural Changes and Convective Processes in Tropical Cyclones as Seen in Infrared and Water Vapor Satellite Data

    Science.gov (United States)

    2013-05-10

    tropical depression; yellow, a tropical storm ; red, a typhoon; and purple, an extratropical cyclone (after http://agora.ex.nii.ac.jp/digital- typhoon... storm (JTWC 2012). Tropical Storm Jelawat continued into the Sea of Japan, where it completed extratropical transition (JTWC 2012...including strong winds, storm surge, high waves, and heavy rainfall, threaten archipelagos, densely crowded coastlines, and naval forces ashore and

  13. Characteristic and Behavior of Rainfall Induced Landslides in Java Island, Indonesia : an Overview

    Science.gov (United States)

    Christanto, N.; Hadmoko, D. S.; Westen, C. J.; Lavigne, F.; Sartohadi, J.; Setiawan, M. A.

    2009-04-01

    Landslides are important natural hazards occurring on mountainous area situated in the wet tropical climate like in Java, Indonesia. As a central of economic and government activity, Java become the most populated island in Indonesia and is increasing every year. This condition create population more vulnerable to hazard. Java is populated by 120 million inhabitants or equivalent with 60% of Indonesian population in only 6,9% of the total surface of Indonesia. Due to its geological setting, its topographical characteristics, and its climatic characteristics, Java is the most exposed regions to landslide hazard and closely related to several factors: (1) located on a subduction zone, 60% of Java is mountainous, with volcano-tectonic mountain chains and 36 active volcanoes out of the 129 in Indonesia, and these volcanic materials are intensively weathered (2) Java is under a humid tropical climate associated with heavy rainfall during the rainy season from October to April. On top of these "natural" conditions, the human activity is an additional factor of landslide occurrence, driven by a high demographic density The purpose of this paper was to collect and analyze spatial and temporal data concerning landslide hazard for the period 1981-2007 and to evaluate and analyze the characteristic and the behavior of landslide in Java. The results provides a new insight into our understanding of landslide hazard and characteristic in the humid tropics, and a basis for predicting future landslides and assessing related hazards at a regional scale. An overview of characteristic and behavior of landslides in Java is given. The result of this work would be valuable for decision makers and communities in the frame of future landslide risk reduction programs. Landslide inventory data was collected from internal database at the different institutions. The result is then georefenced. The temporal changes of landslide activities was done by examining the changes in number and

  14. Pneumonia in the tropics.

    Science.gov (United States)

    Lim, Tow Keang; Siow, Wen Ting

    2018-01-01

    Pneumonia in the tropics poses a heavy disease burden. The complex interplay of climate change, human migration influences and socio-economic factors lead to changing patterns of respiratory infections in tropical climate but also increasingly in temperate countries. Tropical and poorer countries, especially South East Asia, also bear the brunt of the global tuberculosis (TB) pandemic, accounting for almost one-third of the burden. But, as human migration patterns evolve, we expect to see more TB cases in higher income as well as temperate countries, and rise in infections like scrub typhus from ecotourism activities. Fuelled by the ease of air travel, novel zoonotic infections originating from the tropics have led to global respiratory pandemics. As such, clinicians worldwide should be aware of these new conditions as well as classical tropical bacterial pneumonias such as melioidosis. Rarer entities such as co-infections of leptospirosis and chikungunya or dengue will need careful consideration as well. In this review, we highlight aetiologies of pneumonia seen more commonly in the tropics compared with temperate regions, their disease burden, variable clinical presentations as well as impact on healthcare delivery. © 2017 Asian Pacific Society of Respirology.

  15. Climate change and land use drivers of fecal bacteria in tropical Hawaiian rivers

    Science.gov (United States)

    Ayron M. Strauch; Richard A. Mackenzie; Gregory L. Bruland; Ralph Tingley; Christian P. Giardina

    2014-01-01

    Potential shifts in rainfall driven by climate change are anticipated to affect watershed processes (e.g., soil moisture, runoff, stream flow), yet few model systems exist in the tropics to test hypotheses about how these processes may respond to these shifts. We used a sequence of nine watersheds on Hawaii Island spanning 3000 mm (7500–4500 mm) of mean annual rainfall...

  16. Prediction of summer monsoon rainfall over India using the NCEP climate forecast system

    Energy Technology Data Exchange (ETDEWEB)

    Pattanaik, D.R. [India Meteorological Department (IMD), New Delhi (India); Kumar, Arun [Climate Prediction Center, National Centre for Environmental Prediction (NCEP)/NWS/NOAA, Camp Springs, MD (United States)

    2010-03-15

    The performance of a dynamical seasonal forecast system is evaluated for the prediction of summer monsoon rainfall over the Indian region during June to September (JJAS). The evaluation is based on the National Centre for Environmental Prediction's (NCEP) climate forecast system (CFS) initialized during March, April and May and integrated for a period of 9 months with a 15 ensemble members for 25 years period from 1981 to 2005. The CFS's hindcast climatology during JJAS of March (lag-3), April (lag-2) and May (lag-1) initial conditions show mostly an identical pattern of rainfall similar to that of verification climatology with the rainfall maxima (one over the west-coast of India and the other over the head Bay of Bengal region) well simulated. The pattern correlation between verification and forecast climatology over the global tropics and Indian monsoon region (IMR) bounded by 50 E-110 E and 10 S-35 N shows significant correlation coefficient (CCs). The skill of simulation of broad scale monsoon circulation index (Webster and Yang; WY index) is quite good in the CFS with highly significant CC between the observed and predicted by the CFS from the March, April and May forecasts. High skill in forecasting El Nino event is also noted for the CFS March, April and May initial conditions, whereas, the skill of the simulation of Indian Ocean Dipole is poor and is basically due to the poor skill of prediction of sea surface temperature (SST) anomalies over the eastern equatorial Indian Ocean. Over the IMR the skill of monsoon rainfall forecast during JJAS as measured by the spatial Anomaly CC between forecast rainfall anomaly and the observed rainfall anomaly during 1991, 1994, 1997 and 1998 is high (almost of the order of 0.6), whereas, during the year 1982, 1984, 1985, 1987 and 1989 the ACC is only around 0.3. By using lower and upper tropospheric forecast winds during JJAS over the regions of significant CCs as predictors for the All India Summer Monsoon

  17. Small changes in climate can profoundly alter the dynamics and ecosystem services of tropical crater lakes.

    Directory of Open Access Journals (Sweden)

    Émilie Saulnier-Talbot

    Full Text Available African tropical lakes provide vital ecosystem services including food and water to some of the fastest growing human populations, yet they are among the most understudied ecosystems in the world. The consequences of climate change and other stressors on the tropical lakes of Africa have been informed by long-term analyses, but these studies have largely focused on the massive Great Rift Valley lakes. Our objective was to evaluate how recent climate change has altered the functioning and services of smaller tropical lakes, which are far more abundant on the landscape. Based on a paired analysis of 20 years of high-resolution water column data and a paleolimnological record from a small crater lake in western Uganda, we present evidence that even a modest warming of the air (∼0.9°C increase over 20 years and changes in the timing and intensity of rainfall can have significant consequences on the dynamics of this common tropical lake type. For example, we observed a significant nonlinear increase (R(2 adj  = 0.23, e.d.f. = 7, p<0.0001 in thermal stability over the past 20 years. This resulted in the expansion of anoxic waters and consequent deterioration of fish habitat and appears to have abated primary production; processes that may impair ecosystem services for a vulnerable human population. This study on a system representative of small tropical crater lakes highlights the far-reaching effects of global climatic change on tropical waters. Increased research efforts into tropical aquatic ecosystem health and the development of sound management practices are necessary in order to strengthen adaptive capabilities in tropical regions.

  18. Precipitation characteristics in tropical Africa using satellite and in situ observations

    Science.gov (United States)

    Dezfuli, A. K.; Ichoku, I.; Huffman, G. J.; Mohr, K. I.

    2017-12-01

    Tropical Africa receives nearly all its precipitation as a result of convection. The characteristics of rain-producing systems in this region have not been well-understood, despite their crucial role in regional and global circulation. This is mainly due to the lack of in situ observations. Here, we have used precipitation records from the Trans-African Hydro-Meteorological Observatory (TAHMO) ground-based gauge network to improve our knowledge about the rainfall systems in the region, and to validate the recently-released IMERG precipitation product based on satellite observations from the Global Precipitation Measurement (GPM) constellation. The high temporal resolution of the gauge data has allowed us to identify three classes of rain events based on their duration and intensity. The contribution of each class to the total rainfall and the favorable surface atmospheric conditions for each class have been examined. As IMERG aims to continue the legacy of its predecessor, TRMM Multi-Satellite Precipitation Analysis (TMPA), and provide higher resolution data, continent-wide comparisons are made between these two products. Due to its improved temporal resolution, IMERG shows some advantages over TMPA in capturing the diurnal cycle and propagation of the meso-scale convective systems. However, the performance of the two satellite-based products varies by season, region and the evaluation statistics. The results of this study serve as a basis for our ongoing work on the impacts of biomass burning on precipitation processes in Africa.

  19. Improved simulation of precipitation in the tropics using a modified BMJ scheme in the WRF model

    Science.gov (United States)

    Fonseca, R. M.; Zhang, T.; Yong, K.-T.

    2015-09-01

    The successful modelling of the observed precipitation, a very important variable for a wide range of climate applications, continues to be one of the major challenges that climate scientists face today. When the Weather Research and Forecasting (WRF) model is used to dynamically downscale the Climate Forecast System Reanalysis (CFSR) over the Indo-Pacific region, with analysis (grid-point) nudging, it is found that the cumulus scheme used, Betts-Miller-Janjić (BMJ), produces excessive rainfall suggesting that it has to be modified for this region. Experimentation has shown that the cumulus precipitation is not very sensitive to changes in the cloud efficiency but varies greatly in response to modifications of the temperature and humidity reference profiles. A new version of the scheme, denoted "modified BMJ" scheme, where the humidity reference profile is more moist, was developed. In tropical belt simulations it was found to give a better estimate of the observed precipitation as given by the Tropical Rainfall Measuring Mission (TRMM) 3B42 data set than the default BMJ scheme for the whole tropics and both monsoon seasons. In fact, in some regions the model even outperforms CFSR. The advantage of modifying the BMJ scheme to produce better rainfall estimates lies in the final dynamical consistency of the rainfall with other dynamical and thermodynamical variables of the atmosphere.

  20. Application of Statistical Downscaling Techniques to Predict Rainfall and Its Spatial Analysis Over Subansiri River Basin of Assam, India

    Science.gov (United States)

    Barman, S.; Bhattacharjya, R. K.

    2017-12-01

    The River Subansiri is the major north bank tributary of river Brahmaputra. It originates from the range of Himalayas beyond the Great Himalayan range at an altitude of approximately 5340m. Subansiri basin extends from tropical to temperate zones and hence exhibits a great diversity in rainfall characteristics. In the Northern and Central Himalayan tracts, precipitation is scarce on account of high altitudes. On the other hand, Southeast part of the Subansiri basin comprising the sub-Himalayan and the plain tract in Arunachal Pradesh and Assam, lies in the tropics. Due to Northeast as well as Southwest monsoon, precipitation occurs in this region in abundant quantities. Particularly, Southwest monsoon causes very heavy precipitation in the entire Subansiri basin during May to October. In this study, the rainfall over Subansiri basin has been studied at 24 different locations by multiple linear and non-linear regression based statistical downscaling techniques and by Artificial Neural Network based model. APHRODITE's gridded rainfall data of 0.25˚ x 0.25˚ resolutions and climatic parameters of HadCM3 GCM of resolution 2.5˚ x 3.75˚ (latitude by longitude) have been used in this study. It has been found that multiple non-linear regression based statistical downscaling technique outperformed the other techniques. Using this method, the future rainfall pattern over the Subansiri basin has been analyzed up to the year 2099 for four different time periods, viz., 2020-39, 2040-59, 2060-79, and 2080-99 at all the 24 locations. On the basis of historical rainfall, the months have been categorized as wet months, months with moderate rainfall and dry months. The spatial changes in rainfall patterns for all these three types of months have also been analyzed over the basin. Potential decrease of rainfall in the wet months and months with moderate rainfall and increase of rainfall in the dry months are observed for the future rainfall pattern of the Subansiri basin.

  1. Comparison of TRMM and Global Precipitation Climatology Project (GPCP) Precipitation Analyses

    Science.gov (United States)

    Adler, Robert F.; Huffman, George J.; Bolvin, David; Nelkin, Eric; Curtis, Scott

    1999-01-01

    This paper describes recent results of using Tropical Rainfall Measuring Mission (TRMM) (launched in November 1997) information as the key calibration tool in a merged analysis on a 1 x 1' latitude/longitude monthly scale based on multiple satellite sources and raingauge analyses. The TRMM-based product is compared with the community-based Global Precipitation Climatology Project (GPCP) results. The long-term GPCP analysis is compared to the new TRMM-based analysis which uses the most accurate TRMM information to calibrate the estimates from the Special Sensor Microwave/Imager (SSM/I) and geosynchronous IR observations and merges those estimates together with the TRMM and gauge information to produce accurate rainfall estimates with the increased sampling provided by the combined satellite information. The comparison with TRMM results on a month-to-month basis should clarify the strengths and weaknesses of the long-term GPCP product in the tropics and point to how to improve the monitoring analysis. Preliminary results from the TRMM merged satellite analysis indicates fairly close agreement with the GPCP estimates. The GPCP analysis is done at 2.5 degree latitude/longitude resolution and interpolated to a 1 degree grid for comparison with the TRMM analysis. As expected the same features are evident in both panels, but there are subtle differences in the magnitudes. Focusing on the Pacific Ocean Inter-Tropical Convergence Zone (ITCZ) one can see the TRMM-based estimates having higher peak values and lower values in the ITCZ periphery. These attributes also show up in the statistics, where GPCP>TRMM at low values (below 10 mm/d) and TRMM>GPCP at high values (greater than 15 mm/d). The area in the Indian Ocean which shows consistently higher values of TRMM over GPCP needs to be examined carefully to determine if the lack of geosynchronous data has led to a difference in the two analyses. By the time of the meeting over a year of TRMM products will be available for

  2. Changes of cloudiness over tropical land during the past few decades and its link to global climate change

    Science.gov (United States)

    Arias, P.; Fu, R.; Li, W.

    2007-12-01

    Tropical forests play a key role in determining the global carbon-climate feedback in the 21st century. Changes in rainforest growth and mortality rates, especially in the deep and least perturbed forest areas, have been consistently observed across global tropics in recent years. Understanding the underlying causes of these changes, especially their links to the global climate change, is especially important in determining the future of the tropical rainforests in the 21st century. Previous studies have mostly focus on the potential influences from elevated atmospheric CO2 and increasing surface temperature. Because the rainforests in wet tropical region is often light limited, we explore whether cloudiness have changed, if so, whether it is consistent with that expected from changes in forest growth rate. We will report our observational analysis examining the trends in annual average shortwave (SW) downwelling radiation, total cloud cover, and cumulus cover over the tropical land regions and to link them with trends in convective available potencial energy (CAPE). ISCCP data and radiosonde records available from the Department of Atmospheric Sciences of the University of Wyoming (http://www.weather.uwyo.edu/upperair/sounding.html) are used to study the trends. The period for the trend analysis is 1984-2004 for the ISCCP data and 1980-2006 for the radiosondes. The results for the Amazon rainforest region suggest a decreasing trend in total cloud and convective cloud covers, which results in an increase in downwelling SW radiation at the surface. These changes of total and convective clouds are consistent with a trend of decreasing CAPE and an elevated Level of Free Convection (LFC) height, as obtained from the radiosondes. All the above mentioned trends are statistically significant based on the Mann-Kendall test with 95% of confidence. These results consistently suggest the downward surface solar radiation has been increasing since 1984, result from a decrease

  3. Revisiting the iris effect of tropical cirrus clouds with TRMM and A-Train satellite data

    Science.gov (United States)

    Choi, Yong-Sang; Kim, WonMoo; Yeh, Sang-Wook; Masunaga, Hirohiko; Kwon, Min-Jae; Jo, Hyun-Su; Huang, Lei

    2017-06-01

    Just as the iris of human eye controls the light influx (iris effect), tropical anvil cirrus clouds may regulate the Earth's surface warming by controlling outgoing longwave radiation. This study examines this possible effect with monthly satellite observations such as Tropical Rainfall Measuring Mission (TRMM) precipitation, Moderate Resolution Imaging Spectroradiometer cirrus fraction, and Clouds and the Earth's Radiant Energy System top-of-the-atmosphere radiative fluxes averaged over different tropical domains from March 2000 to October 2014. To confirm that high-level cirrus is relevant to this study, Cloud-Aerosol Lidar with Orthogonal Polarization high cloud observations were also analyzed from June 2006 to December 2015. Our analysis revealed that the increase in sea surface temperature in the tropical western Pacific tends to concentrate convective cloud systems. This concentration effect very likely induces the significant reduction of both stratiform rain rate and cirrus fraction, without appreciable change in the convective rain rate. This reduction of stratiform rain rate and cirrus fraction cannot be found over its subregion or the tropical eastern Pacific, where the concentration effect of anvil cirrus is weak. Consistently, over the tropical western Pacific, the higher ratio of convective rain rate to total rain rate (i.e., precipitation efficiency) significantly correlates with warmer sea surface temperature and lower cirrus fraction. The reduced cirrus eventually increased outgoing longwave radiation to a greater degree than absorbed solar radiation. Finally, the negative relationship between precipitation efficiency and cirrus fraction tends to correspond to a low global equilibrium climate sensitivity in the models in the Coupled Model Intercomparison Project Phase 5. This suggests that tropical anvil cirrus clouds exert a negative climate feedback in strong association with precipitation efficiency.

  4. Phylogenetic classification of the world’s tropical forests

    OpenAIRE

    Slik, J. W. Ferry; Franklin, Janet; Arroyo-Rodríguez, Víctor; Field, Richard; Aguilar, Salomon; Aguirre, Nikolay; Ahumada, Jorge; Aiba, Shin-Ichiro; Alves, Luciana F.; K, Anitha; Avella, Andres; Mora, Francisco; Aymard C., Gerardo A.; Báez, Selene; Balvanera, Patricia

    2018-01-01

    Identifying and explaining regional differences in tropical forest dynamics, structure, diversity, and composition are critical for anticipating region-specific responses to global environmental change. Floristic classifications are of fundamental importance for these efforts. Here we provide a global tropical forest classification that is explicitly based on community evolutionary similarity, resulting in identification of five major tropical forest regions and their relationships: (i) Indo-...

  5. L’escalfament global i l’extinció de les plantes: un exemple tropical

    OpenAIRE

    Safont, Elisabet; Rull, Valentí; Vegas-Vilarrúbia, Teresa; Nogué, Sandra

    2011-01-01

    [EN]Global warminG and plant extinction: a tropical example. – Pantepui is a phytogeographical province made up of a group of approximately 50 tabular mountain summits or tepuis in southeast Venezuela. This region lies between 1500 and 3014 m a.s.l and covers an approximate area of 6000 km2. Its pristine state of conservation is remarkable. The summits of the tepuis contain an excep- tional level of vascular plant diversity, including 2446 known species, of which 771 are endemic t...

  6. Ajustement statistique des simulations climatiques : l'exemple des précipitations saisonnières de l'Amérique tropicaleStatistical adjustment of simulated climate: example of seasonal rainfall of tropical America.

    Science.gov (United States)

    Moron, Vincent; Navarra, Antonio

    2000-05-01

    This study presents the skill of the seasonal rainfall of tropical America from an ensemble of three 34-year general circulation model (ECHAM 4) simulations forced with observed sea surface temperature between 1961 and 1994. The skill gives a first idea of the amount of potential predictability if the sea surface temperatures are perfectly known some time in advance. We use statistical post-processing based on the leading modes (extracted from Singular Value Decomposition of the covariance matrix between observed and simulated rainfall fields) to improve the raw skill obtained by simple comparison between observations and simulations. It is shown that 36-55 % of the observed seasonal variability is explained by the simulations on a regional basis. Skill is greatest for Brazilian Nordeste (March-May), but also for northern South America or the Caribbean basin in June-September or northern Amazonia in September-November for example.

  7. Relationships Between Tropical Deep Convection, Tropospheric Mean Temperature and Cloud-Induced Radiative Fluxes on Intraseasonal Time Scales

    Science.gov (United States)

    Ramey, Holly S.; Robertson, Franklin R.

    2010-01-01

    Intraseasonal variability of deep convection represents a fundamental mode of variability in the organization of tropical convection. While most studies of intraseasonal oscillations (ISOs) have focused on the spatial propagation and dynamics of convectively coupled circulations, we examine the projection of ISOs on the tropically-averaged temperature and energy budget. The area of interest is the global oceans between 20degN/S. Our analysis then focuses on these questions: (i) How is tropospheric temperature related to tropical deep convection and the associated ice cloud fractional amount (ICF) and ice water path (IWP)? (ii) What is the source of moisture sustaining the convection and what role does deep convection play in mediating the PBL - free atmospheric temperature equilibration? (iii) What affect do convectively generated upper-tropospheric clouds have on the TOA radiation budget? Our methodology is similar to that of Spencer et al., (2007) with some modifications and some additional diagnostics of both clouds and boundary layer thermodynamics. A composite ISO time series of cloud, precipitation and radiation quantities built from nearly 40 events during a six-year period is referenced to the atmospheric temperature signal. The increase of convective precipitation cannot be sustained by evaporation within the domain, implying strong moisture transports into the tropical ocean area. While there is a decrease in net TOA radiation that develops after the peak in deep convective rainfall, there seems little evidence that an "Infrared Iris"- like mechanism is dominant. Rather, the cloud-induced OLR increase seems largely produced by weakened convection with warmer cloud tops. Tropical ISO events offer an accessible target for studying ISOs not just in terms of propagation mechanisms, but on their global signals of heat, moisture and radiative flux feedback processes.

  8. Tropical Hydroclimate Change during Heinrich Stadial 1: An Integrative Proxy-Model Synthesis

    Science.gov (United States)

    Lawman, A. E.; Sun, T.; Shanahan, T. M.; Di Nezio, P. N.; Gomez, K.; Piatrunia, N.; Sun, C.; Wu, X.; Kageyama, M.; Merkel, U.; Otto-Bliesner, B. L.; Abe-Ouchi, A.; Lohmann, G.; Singarayer, J. S.

    2017-12-01

    We explore the response of tropical climate to abrupt cooling of the North Atlantic (NA) during Heinrich Stadial 1 (HS1) combining paleoclimate proxies with model simulations. A total of 146 published paleoclimate records from tropical locations are used to categorize whether HS1 was wetter, drier, or unchanged relative to a deglacial baseline state. Only records with sufficient resolution to resolve HS1 and sufficient length to characterize the deglacial trend are considered. This synthesis reveals large-scale patterns of hydroclimate change relative to glacial conditions, confirming previously reported weaker Indian summer monsoon, a wetter southern Africa, and drying over the Caribbean. Our synthesis also reveals large-scale drying over the Maritime continent as well as wetter conditions in northern Australia and southern tropical South America. Our reinterpretation of the available proxy data reveals far more complexity and uncertainties for equatorial East Africa, a region that appears to straddle a pattern of dryer conditions to the north and wetter conditions to the south. Overall, these patterns of hydroclimate change depart from a southward shift of the Inter Tropical Convergence Zone (ITCZ), particularly outside the tropical Atlantic. We explore mechanisms driving these changes using a multi-model ensemble of "hosing" simulations performed relative to glacial conditions. The models show robust weakening of the Afro-Asian Monsoon, which we attribute to ventilation of colder mid-latitude air. Not all models simulate the remaining patterns inferred from the proxy data. The best-agreeing models indicate that cooling over the tropical NA and the Caribbean may be essential to communicate the response to the global tropics. This response can induce warming over the tropical South Atlantic via the wind-evaporation-SST feedback, driving wetter conditions in South Africa and tropical South America. Cooling over the Caribbean is communicated to the Pacific over the

  9. Forest response to rising CO2 drives zonally asymmetric rainfall change over tropical land

    Science.gov (United States)

    Kooperman, Gabriel J.; Chen, Yang; Hoffman, Forrest M.; Koven, Charles D.; Lindsay, Keith; Pritchard, Michael S.; Swann, Abigail L. S.; Randerson, James T.

    2018-05-01

    Understanding how anthropogenic CO2 emissions will influence future precipitation is critical for sustainably managing ecosystems, particularly for drought-sensitive tropical forests. Although tropical precipitation change remains uncertain, nearly all models from the Coupled Model Intercomparison Project Phase 5 predict a strengthening zonal precipitation asymmetry by 2100, with relative increases over Asian and African tropical forests and decreases over South American forests. Here we show that the plant physiological response to increasing CO2 is a primary mechanism responsible for this pattern. Applying a simulation design in the Community Earth System Model in which CO2 increases are isolated over individual continents, we demonstrate that different circulation, moisture and stability changes arise over each continent due to declines in stomatal conductance and transpiration. The sum of local atmospheric responses over individual continents explains the pan-tropical precipitation asymmetry. Our analysis suggests that South American forests may be more vulnerable to rising CO2 than Asian or African forests.

  10. PENGARUH FREKUENSI SIKLON TROPIS TERHADAP CURAH HUJAN DI TIMOR-LESTE

    Directory of Open Access Journals (Sweden)

    Fernandes Flaviana Pinto

    2015-02-01

    Full Text Available This study aims to determine the impact of tropical cyclone frequency to the rainfall in Timor-Leste using monthly data for 30 years. The rainfall data obtained from tropical rainfall Measuring Mission (TRMM satellite and Global Precipitation Climatology Centre (GPCC. Daily rainfall In Situ data obtained from Direcção Nacional de Meteorologia e Geofisica (DNMG. Japan Aerospace Exploration Agency (JAXA and Bureau of Meteorology Australia (BOM provided for tropical cyclone data. The impact of tropical cyclone to the rainfall can be observed from the seasonal pattern of DJF, MAM, JJA and SON. The highest and the lowest correlation seasonal pattern of MAM and DJF are about r = 0.99 and r = -0.97, respectively. Correlation in the seasonal pattern of JJA and SON are about r = 0.0, it because no cyclone in this season. If we observed the daily condition between tropical cyclone frequency to rainfall, the highest correlation occurred in March 2004 and April 2011 with the resulting correlation are about r = 0.73 and r = 0.79, respectively. This is an overall correlation a week before, after and during cyclone. For along 30 years, we found the correlation in 2000 and 2006 is about r = 0.41. So that, the value of correlation coefficient obtained from 1983 to 2012 is about r = 0.19, there is not a significant impact to the rainfall when tropical cyclone doesn’t occur in Timor-Leste. Keywords: Tropical Cyclone Frequency, Rainfall, Anomaly, Correlation

  11. Spatial and temporal variation in rainfall erosivity in a Himalayan watershed

    NARCIS (Netherlands)

    Ma, X.; Noordwijk, van M.; Xu, J.; Lu, X.

    2014-01-01

    Global climate change can modify rainfall patterns, leading to more extremes with associated erosion events. Rainfall erosivity, or the R-factor based on the Revised Universal Soil Loss Equation (RUSLE), indicates the potential water erosion risk and it plays an important role in water and soil

  12. Effects of global warming on floods and droughts in the Caribbean

    International Nuclear Information System (INIS)

    Narayan, Kailas

    2004-01-01

    The Caribbean islands stretch in an arc from Cuba, south of Florida, to Trinidad and Tobago, north of the South American coast. The islands range in size from 100,000 square kilometers to 100 square kilometers, with populations ranging from ten million to less than ten thousand people. There is a wide range of rainfall in the region, occurring mainly from the Inter-Tropical convergence Zone, Tropical Waves and Hurricanes. There are also extended periods of droughts in the dry season. As a result the islands suffer from droughts as well as floods. These phenomena can have devastating results on the economies of the islands, resulting in extreme hardships for the population as well as forced shifting of population centers. Change of precipitation patterns as a result of Global warming can only worsen the situation. In this paper the author attempts an investigation into the effects of global warming and the resulting impacts in terms of droughts, floods on the Caribbean islands and on coastal areas of continental countries in the Caribbean. Vulnerability and risks are also investigated in terms of these phenomena. (Author)

  13. Eventos extremos de precipitação no estado do Ceará e suas relações com a temperatura dos oceanos tropicais Extreme rainfall events in Ceará state and its relationship with tropical oceans temperature

    Directory of Open Access Journals (Sweden)

    Carlos Antonio Costa dos Santos

    2011-03-01

    Full Text Available O principal objetivo deste trabalho é prover informações sobre as tendências recentes dos eventos extremos de precipitação sobre o Estado do Ceará, associando esses eventos extremos às anomalias de Temperatura da Superfície do Mar (TSM nos Oceanos Pacífico e Atlântico. Foram utilizados dados pluviométricos de 18 postos de 1971 a 2006 e o método de Mann-Kendall foi utilizado na obtenção das tendências. Os resultados mostram que existem características de aumento nas intensidades das secas e diminuição dos eventos de precipitação forte, e que o aumento nas anomalias de TSM no Pacífico e ao norte do equador, no Oceano Atlântico, acarreta em um aumento do número de dias consecutivos secos no norte do Ceará. Os índices extremos de precipitação mostraram correlações negativas com as anomalias de TSM nas regiões do Pacífico do Atlântico Tropical Norte e positivas com a região do Atlântico Tropical Sul. Entretanto, para a região sul do Ceará, o comportamento dos dias consecutivos chuvosos indica que o período chuvoso é governado por outros sistemas atmosféricos, necessitando assim, ser melhor estudado para o entendimento desse comportamento.The main objective of this study is to provide information about recent trends of extreme rainfall over Ceará State, associating these extreme events with Sea Surface Temperature (SST anomalies in the Pacific and Atlantic Oceans. Mann-Kendall method is applied to rainfall data of 18 rain gauges from 1971 to 2006 to obtain the trends. The results show that the drought intensity is increasing and the heavy precipitation events are decreasing and that the increase in the Pacific and north of equator Atlantic Ocean SST anomalies lead to an increase in the number of consecutive dry days in northern Ceará. Rainfall extreme indices have shown negative correlations with SST anomalies on Pacific and Tropical North Atlantic regions and positive with Tropical South Atlantic region

  14. A Remote Sensing-Based Tool for Assessing Rainfall-Driven Hazards

    Science.gov (United States)

    Wright, Daniel B.; Mantilla, Ricardo; Peters-Lidard, Christa D.

    2018-01-01

    RainyDay is a Python-based platform that couples rainfall remote sensing data with Stochastic Storm Transposition (SST) for modeling rainfall-driven hazards such as floods and landslides. SST effectively lengthens the extreme rainfall record through temporal resampling and spatial transposition of observed storms from the surrounding region to create many extreme rainfall scenarios. Intensity-Duration-Frequency (IDF) curves are often used for hazard modeling but require long records to describe the distribution of rainfall depth and duration and do not provide information regarding rainfall space-time structure, limiting their usefulness to small scales. In contrast, RainyDay can be used for many hazard applications with 1-2 decades of data, and output rainfall scenarios incorporate detailed space-time structure from remote sensing. Thanks to global satellite coverage, RainyDay can be used in inaccessible areas and developing countries lacking ground measurements, though results are impacted by remote sensing errors. RainyDay can be useful for hazard modeling under nonstationary conditions. PMID:29657544

  15. Sensitivity of point scale surface runoff predictions to rainfall resolution

    Directory of Open Access Journals (Sweden)

    A. J. Hearman

    2007-01-01

    averaged rainfall under these soil and rainfall conditions and predictions of larger scale phenomena such as hillslope runoff and runon. It offers insight into how rainfall resolution can affect predicted amounts of water entering the soil and thus soil water storage and drainage, possibly changing our understanding of the ecological functioning of the system or predictions of agri-chemical leaching. The application of this sensitivity analysis to different rainfall regions in Western Australia showed that locations in the tropics with higher intensity rainfalls are more likely to have differences in infiltration excess predictions with different rainfall resolutions and that a general understanding of the prevailing rainfall conditions and the soil's infiltration capacity can help in deciding whether high rainfall resolutions (below 1 h are required for accurate surface runoff predictions.

  16. Stalling Tropical Cyclones over the Atlantic Basin

    Science.gov (United States)

    Nielsen-Gammon, J. W.; Emanuel, K.

    2017-12-01

    Hurricane Harvey produced massive amounts of rain over southeast Texas and southwest Louisiana. Average storm total rainfall amounts over a 10,000 square mile (26,000 square km) area exceeded 30 inches (750 mm). An important aspect of the storm that contributed to the large rainfall totals was its unusual motion. The storm stalled shortly after making landfall, then moved back offshore before once again making landfall five days later. This storm motion permitted heavy rainfall to occur in the same general area for an extended period of time. The unusual nature of this event motivates an investigation into the characteristics and potential climate change influences on stalled tropical cyclones in the Atlantic basin using the HURDAT 2 storm track database for 1866-2016 and downscaled tropical cyclones driven by simulations of present and future climate. The motion of cyclones is quantified as the size of a circle circumscribing all storm locations during a given length of time. For a three-day period, Harvey remained inside a circle with a radius of 123 km. This ranks within the top 0.6% of slowest-moving historical storm instances. Among the 2% of slowest-moving storm instances prior to Harvey, only 13 involved storms that stalled near the continental United States coast, where they may have produced substantial rainfall onshore while tapping into marine moisture. Only two such storms stalled in the month of September, in contrast to 20 September stalls out of the 36 storms that stalled over the nearby open Atlantic. Just four of the stalled coastal storms were hurricanes, implying a return frequency for such storms of much less than once per decade. The synoptic setting of these storms is examined for common features, and historical and projected trends in occurrences of stalled storms near the coast and farther offshore are investigated.

  17. Deterministic Approach for Estimating Critical Rainfall Threshold of Rainfall-induced Landslide in Taiwan

    Science.gov (United States)

    Chung, Ming-Chien; Tan, Chih-Hao; Chen, Mien-Min; Su, Tai-Wei

    2013-04-01

    Taiwan is an active mountain belt created by the oblique collision between the northern Luzon arc and the Asian continental margin. The inherent complexities of geological nature create numerous discontinuities through rock masses and relatively steep hillside on the island. In recent years, the increase in the frequency and intensity of extreme natural events due to global warming or climate change brought significant landslides. The causes of landslides in these slopes are attributed to a number of factors. As is well known, rainfall is one of the most significant triggering factors for landslide occurrence. In general, the rainfall infiltration results in changing the suction and the moisture of soil, raising the unit weight of soil, and reducing the shear strength of soil in the colluvium of landslide. The stability of landslide is closely related to the groundwater pressure in response to rainfall infiltration, the geological and topographical conditions, and the physical and mechanical parameters. To assess the potential susceptibility to landslide, an effective modeling of rainfall-induced landslide is essential. In this paper, a deterministic approach is adopted to estimate the critical rainfall threshold of the rainfall-induced landslide. The critical rainfall threshold is defined as the accumulated rainfall while the safety factor of the slope is equal to 1.0. First, the process of deterministic approach establishes the hydrogeological conceptual model of the slope based on a series of in-situ investigations, including geological drilling, surface geological investigation, geophysical investigation, and borehole explorations. The material strength and hydraulic properties of the model were given by the field and laboratory tests. Second, the hydraulic and mechanical parameters of the model are calibrated with the long-term monitoring data. Furthermore, a two-dimensional numerical program, GeoStudio, was employed to perform the modelling practice. Finally

  18. A rainfall-based mechanism to regulate the release of water from Ranger uranium mine

    International Nuclear Information System (INIS)

    Carter, M.W.

    1989-01-01

    The far north of Australia (the Top End) has a monsoon-like climate. This wet-dry climate presents problems in water management for mining operations. These problems are exacerbated for the Ranger uranium mine at Jabiru due to the need to protect the environment of the surrounding Kakadu National Park, particularly the major wetland system downstream of the Ranger mine. An analysis of rainfall records for the wet-dry tropics of the far north of Australia is presented. A probability curve of the ratio between rainfall at a given date and rainfall at the year end, has been produced from actual data and can be used with a normalized curve to set levels of confidence of predicted rainfall being exceeded. The results of this analysis are used to develop a regulatory mechanism to limit release of waste water from a uranium mine to particularly wet years in accordance with the Australian Government's environmental protection policy. 19 refs., 11 tabs., 17 figs

  19. Rainfall Downscaling Conditional on Upper-air Variables: Assessing Rainfall Statistics in a Changing Climate

    Science.gov (United States)

    Langousis, Andreas; Deidda, Roberto; Marrocu, Marino; Kaleris, Vassilios

    2014-05-01

    Due to its intermittent and highly variable character, and the modeling parameterizations used, precipitation is one of the least well reproduced hydrologic variables by both Global Climate Models (GCMs) and Regional Climate Models (RCMs). This is especially the case at a regional level (where hydrologic risks are assessed) and at small temporal scales (e.g. daily) used to run hydrologic models. In an effort to remedy those shortcomings and assess the effect of climate change on rainfall statistics at hydrologically relevant scales, Langousis and Kaleris (2013) developed a statistical framework for simulation of daily rainfall intensities conditional on upper air variables. The developed downscaling scheme was tested using atmospheric data from the ERA-Interim archive (http://www.ecmwf.int/research/era/do/get/index), and daily rainfall measurements from western Greece, and was proved capable of reproducing several statistical properties of actual rainfall records, at both annual and seasonal levels. This was done solely by conditioning rainfall simulation on a vector of atmospheric predictors, properly selected to reflect the relative influence of upper-air variables on ground-level rainfall statistics. In this study, we apply the developed framework for conditional rainfall simulation using atmospheric data from different GCM/RCM combinations. This is done using atmospheric data from the ENSEMBLES project (http://ensembleseu.metoffice.com), and daily rainfall measurements for an intermediate-sized catchment in Italy; i.e. the Flumendosa catchment. Since GCM/RCM products are suited to reproduce the local climatology in a statistical sense (i.e. in terms of relative frequencies), rather than ensuring a one-to-one temporal correspondence between observed and simulated fields (i.e. as is the case for ERA-interim reanalysis data), we proceed in three steps: a) we use statistical tools to establish a linkage between ERA-Interim upper-air atmospheric forecasts and

  20. Perfluoroalkylated substances in the global tropical and subtropical surface oceans.

    Science.gov (United States)

    González-Gaya, Belén; Dachs, Jordi; Roscales, Jose L; Caballero, Gemma; Jiménez, Begoña

    2014-11-18

    In this study, perfluoroalkylated substances (PFASs) were analyzed in 92 surface seawater samples taken during the Malaspina 2010 expedition which covered all the tropical and subtropical Atlantic, Pacific and Indian oceans. Nine ionic PFASs including C6-C10 perfluoroalkyl carboxylic acids (PFCAs), C4 and C6-C8 perfluoroalkyl sulfonic acids (PFSAs) and two neutral precursors perfluoroalkyl sulfonamides (PFASAs), were identified and quantified. The Atlantic Ocean presented the broader range in concentrations of total PFASs (131-10900 pg/L, median 645 pg/L, n = 45) compared to the other oceanic basins, probably due to a better spatial coverage. Total concentrations in the Pacific ranged from 344 to 2500 pg/L (median = 527 pg/L, n = 27) and in the Indian Ocean from 176 to 1976 pg/L (median = 329, n = 18). Perfluorooctanesulfonic acid (PFOS) was the most abundant compound, accounting for 33% of the total PFASs globally, followed by perfluorodecanoic acid (PFDA, 22%) and perfluorohexanoic acid (PFHxA, 12%), being the rest of the individual congeners under 10% of total PFASs, even for perfluorooctane carboxylic acid (PFOA, 6%). PFASAs accounted for less than 1% of the total PFASs concentration. This study reports the ubiquitous occurrence of PFCAs, PFSAs, and PFASAs in the global ocean, being the first attempt, to our knowledge, to show a comprehensive assessment in surface water samples collected in a single oceanic expedition covering tropical and subtropical oceans. The potential factors affecting their distribution patterns were assessed including the distance to coastal regions, oceanic subtropical gyres, currents and biogeochemical processes. Field evidence of biogeochemical controls on the occurrence of PFASs was tentatively assessed considering environmental variables (solar radiation, temperature, chlorophyll a concentrations among others), and these showed significant correlations with some PFASs, but explaining small to moderate percentages of variability

  1. The IOD-ENSO precursory teleconnection over the tropical Indo-Pacific Ocean: dynamics and long-term trends under global warming

    Science.gov (United States)

    Yuan, Dongliang; Hu, Xiaoyue; Xu, Peng; Zhao, Xia; Masumoto, Yukio; Han, Weiqing

    2018-01-01

    The dynamics of the teleconnection between the Indian Ocean Dipole (IOD) in the tropical Indian Ocean and El Niño-Southern Oscillation (ENSO) in the tropical Pacific Ocean at the time lag of one year are investigated using lag correlations between the oceanic anomalies in the southeastern tropical Indian Ocean in fall and those in the tropical Indo-Pacific Ocean in the following winter-fall seasons in the observations and in high-resolution global ocean model simulations. The lag correlations suggest that the IOD-forced interannual transport anomalies of the Indonesian Throughflow generate thermocline anomalies in the western equatorial Pacific Ocean, which propagate to the east to induce ocean-atmosphere coupled evolution leading to ENSO. In comparison, lag correlations between the surface zonal wind anomalies over the western equatorial Pacific in fall and the Indo-Pacific oceanic anomalies at time lags longer than a season are all insignificant, suggesting the short memory of the atmospheric bridge. A linear continuously stratified model is used to investigate the dynamics of the oceanic connection between the tropical Indian and Pacific Oceans. The experiments suggest that interannual equatorial Kelvin waves from the Indian Ocean propagate into the equatorial Pacific Ocean through the Makassar Strait and the eastern Indonesian seas with a penetration rate of about 10%-15% depending on the baroclinic modes. The IOD-ENSO teleconnection is found to get stronger in the past century or so. Diagnoses of the CMIP5 model simulations suggest that the increased teleconnection is associated with decreased Indonesian Throughflow transports in the recent century, which is found sensitive to the global warming forcing.

  2. Lack of a response of the sub-tropical rodent (Saccostomus ...

    African Journals Online (AJOL)

    1998-03-09

    Mar 9, 1998 ... A potential strategy for southern African small mammals to maximise reproductive success is to cue breeding activity to rainfall and subsequent vegetative growth via a secondary plant compound such as 6-methoxyben- zoxazolinone (6MBOA). This study investigated whether the sub-tropical rodent ...

  3. The Soil Moisture Dependence of TRMM Microwave Imager Rainfall Estimates

    Science.gov (United States)

    Seyyedi, H.; Anagnostou, E. N.

    2011-12-01

    This study presents an in-depth analysis of the dependence of overland rainfall estimates from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) on the soil moisture conditions at the land surface. TMI retrievals are verified against rainfall fields derived from a high resolution rain-gauge network (MESONET) covering Oklahoma. Soil moisture (SOM) patterns are extracted based on recorded data from 2000-2007 with 30 minutes temporal resolution. The area is divided into wet and dry regions based on normalized SOM (Nsom) values. Statistical comparison between two groups is conducted based on recorded ground station measurements and the corresponding passive microwave retrievals from TMI overpasses at the respective MESONET station location and time. The zero order error statistics show that the Probability of Detection (POD) for the wet regions (higher Nsom values) is higher than the dry regions. The Falls Alarm Ratio (FAR) and volumetric FAR is lower for the wet regions. The volumetric missed rain for the wet region is lower than dry region. Analysis of the MESONET-to-TMI ratio values shows that TMI tends to overestimate for surface rainfall intensities less than 12 (mm/h), however the magnitude of the overestimation over the wet regions is lower than the dry regions.

  4. Climate Change or Climate Variability? History, Science and Politics in the Mesoamerican Climate

    Directory of Open Access Journals (Sweden)

    Daniel Poleo

    2016-08-01

    Full Text Available Climate variations in Mesoamerica have influenced the development and decay of populations from the earliest human settlements. The present time is no exception; there is no evidence that global warming will impact rainfall in the region, but rather there are important studies showing a response of rainfall to climate variability in the American tropics. Since our tropical region is vulnerable to climate variability, public policies must be congruent to avoid the mistakes of previous generations and achieve, with the help of science, a real progress in the fight against global warming.

  5. Spatial structure of monthly rainfall measurements average over 25 years and trends of the hourly variability of a current rainy day in Rwanda.

    Science.gov (United States)

    Nduwayezu, Emmanuel; Kanevski, Mikhail; Jaboyedoff, Michel

    2013-04-01

    Climate plays a vital role in a wide range of socio-economic activities of most nations particularly of developing countries. Climate (rainfall) plays a central role in agriculture which is the main stay of the Rwandan economy and community livelihood and activities. The majority of the Rwandan population (81,1% in 2010) relies on rain fed agriculture for their livelihoods, and the impacts of variability in climate patterns are already being felt. Climate-related events like heavy rainfall or too little rainfall are becoming more frequent and are impacting on human wellbeing.The torrential rainfall that occurs every year in Rwanda could disturb the circulation for many days, damages houses, infrastructures and causes heavy economic losses and deaths. Four rainfall seasons have been identified, corresponding to the four thermal Earth ones in the south hemisphere: the normal season (summer), the rainy season (autumn), the dry season (winter) and the normo-rainy season (spring). Globally, the spatial rainfall decreasing from West to East, especially in October (spring) and February (summer) suggests an «Atlantic monsoon influence» while the homogeneous spatial rainfall distribution suggests an «Inter-tropical front» mechanism. What is the hourly variability in this mountainous area? Is there any correlation with the identified zones of the monthly average series (from 1965 to 1990 established by the Rwandan meteorological services)? Where could we have hazards with several consecutive rainy days (using forecasted datas from the Norwegian Meteorological Institute)? Spatio-temporal analysis allows for identifying and explaining large-scale anomalies which are useful for understanding hydrological characteristics and subsequently predicting these hydrological events. The objective of our current research (Rainfall variability) is to proceed to an evaluation of the potential rainfall risk by applying advanced geospatial modelling tools in Rwanda: geostatistical

  6. A satellite observational and numerical study of precipitation characteristics in western North Atlantic tropical cyclones

    Science.gov (United States)

    Rodgers, Edward B.; Chang, Simon W.; Pierce, Harold F.

    1994-01-01

    Special Sensor Microwave/Imager (SSM/I) observations were used to examine the spatial and temporal changes of the precipitation characteristics of tropical cyclones. SSM/I observations were also combined with the results of a tropical cyclone numerical model to examine the role of inner-core diabatic heating in subsequent intensity changes of tropical cyclones. Included in the SSM/I observations were rainfall characteristics of 18 named western North Atlantic tropical cyclones between 1987 and 1989. The SSM/I rain-rate algorithm that employed the 85-GHz channel provided an analysis of the rain-rate distribution in greater detail. However, the SSM/I algorithm underestimated the rain rates when compared to in situ techniques but appeared to be comparable to the rain rates obtained from other satellite-borne passive microwave radiometers. The analysis of SSM/I observations found that more intense systems had higher rain rates, more latent heat release, and a greater contribution from heavier rain to the total tropical cyclone rainfall. In addition, regions with the heaviest rain rates were found near the center of the most intense tropical cyclones. Observational analysis from SSM/I also revealed that the greatest rain rates in the inner-core regions were found in the right half of fast-moving cyclones, while the heaviest rain rates in slow-moving tropical cyclones were found in the forward half. The combination of SSM/I observations and an interpretation of numerical model simulations revealed that the correlation between changes in the inner core diabetic heating and the subsequent intensity became greater as the tropical cyclones became more intense.

  7. Tropical tele-connections to the Mediterranean climate and weather

    Directory of Open Access Journals (Sweden)

    P. Alpert

    2005-01-01

    Full Text Available Some strong natural fluctuations of climate in the Eastern Mediterranean (EM region are shown to be connected to the major tropical systems. Potential relations between EM rainfall extremes to tropical systems, e.g. El Niño, Indian Monsoon and hurricanes, are demonstrated. For a specific event, high resolution modelling of the severe flood on 3-5 December 2001 in Israel suggests a relation to hurricane Olga. In order to understand the factors governing the EM climate variability in the summer season, the relationship between extreme summer temperatures and the Indian Monsoon was examined. Other tropical factors like the Red-Sea Trough system and the Saharan dust are also likely to contribute to the EM climate variability.

  8. Tropical wetlands, climate, and land-use change: adaptation and mitigation opportunities

    Science.gov (United States)

    Randy Kolka; D. Murdiyarso; J. B. Kauffman; Richard Birdsey

    2016-01-01

    Tropical wetland ecosystems, especially mangroves and peatlands, are carbon (C) rich ecosystems. Globally, tropical mangroves store about 20 PgC, however, deforestation has contributed 10 % of the total global emissions from tropical deforestation, even though mangroves account for only about 0.7 % of the world’s tropical forest area (Donato et al. 2011). Meanwhile,...

  9. On the Land-Ocean Contrast of Tropical Convection and Microphysics Statistics Derived from TRMM Satellite Signals and Global Storm-Resolving Models

    Science.gov (United States)

    Matsui, Toshihisa; Chern, Jiun-Dar; Tao, Wei-Kuo; Lang, Stephen E.; Satoh, Masaki; Hashino, Tempei; Kubota, Takuji

    2016-01-01

    A 14-year climatology of Tropical Rainfall Measuring Mission (TRMM) collocated multi-sensor signal statistics reveal a distinct land-ocean contrast as well as geographical variability of precipitation type, intensity, and microphysics. Microphysics information inferred from the TRMM precipitation radar and Microwave Imager (TMI) show a large land-ocean contrast for the deep category, suggesting continental convective vigor. Over land, TRMM shows higher echo-top heights and larger maximum echoes, suggesting taller storms and more intense precipitation, as well as larger microwave scattering, suggesting the presence of morelarger frozen convective hydrometeors. This strong land-ocean contrast in deep convection is invariant over seasonal and multi-year time-scales. Consequently, relatively short-term simulations from two global storm-resolving models can be evaluated in terms of their land-ocean statistics using the TRMM Triple-sensor Three-step Evaluation via a satellite simulator. The models evaluated are the NASA Multi-scale Modeling Framework (MMF) and the Non-hydrostatic Icosahedral Cloud Atmospheric Model (NICAM). While both simulations can represent convective land-ocean contrasts in warm precipitation to some extent, near-surface conditions over land are relatively moisture in NICAM than MMF, which appears to be the key driver in the divergent warm precipitation results between the two models. Both the MMF and NICAM produced similar frequencies of large CAPE between land and ocean. The dry MMF boundary layer enhanced microwave scattering signals over land, but only NICAM had an enhanced deep convection frequency over land. Neither model could reproduce a realistic land-ocean contrast in in deep convective precipitation microphysics. A realistic contrast between land and ocean remains an issue in global storm-resolving modeling.

  10. Characterization of the Sahelian-Sudan rainfall based on observations and regional climate models

    Science.gov (United States)

    Salih, Abubakr A. M.; Elagib, Nadir Ahmed; Tjernström, Michael; Zhang, Qiong

    2018-04-01

    The African Sahel region is known to be highly vulnerable to climate variability and change. We analyze rainfall in the Sahelian Sudan in terms of distribution of rain-days and amounts, and examine whether regional climate models can capture these rainfall features. Three regional models namely, Regional Model (REMO), Rossby Center Atmospheric Model (RCA) and Regional Climate Model (RegCM4), are evaluated against gridded observations (Climate Research Unit, Tropical Rainfall Measuring Mission, and ERA-interim reanalysis) and rain-gauge data from six arid and semi-arid weather stations across Sahelian Sudan over the period 1989 to 2008. Most of the observed rain-days are characterized by weak (0.1-1.0 mm/day) to moderate (> 1.0-10.0 mm/day) rainfall, with average frequencies of 18.5% and 48.0% of the total annual rain-days, respectively. Although very strong rainfall events (> 30.0 mm/day) occur rarely, they account for a large fraction of the total annual rainfall (28-42% across the stations). The performance of the models varies both spatially and temporally. RegCM4 most closely reproduces the observed annual rainfall cycle, especially for the more arid locations, but all of the three models fail to capture the strong rainfall events and hence underestimate its contribution to the total annual number of rain-days and rainfall amount. However, excessive moderate rainfall compensates this underestimation in the models in an annual average sense. The present study uncovers some of the models' limitations in skillfully reproducing the observed climate over dry regions, will aid model users in recognizing the uncertainties in the model output and will help climate and hydrological modeling communities in improving models.

  11. Oceanic influence on extreme rainfall trends in the north central coast of Venezuela: present and future climate assessments

    Directory of Open Access Journals (Sweden)

    Lelys Guenni

    2013-10-01

    Full Text Available Extreme events are an important part of climate variability and their intensity and persistence are often modulated by large scale climatic patterns which might act as forcing drivers affecting their probability of occurrence. When the North Tropical Atlantic (NTA and the Equatorial Pacific (Ni\\~no 3 region sea surface temperature (SST anomalies are of opposite signs and the first one is positive while the second one is negative, the rainfall response is stronger in the northern coast of Venezuela as well as in the Pacific coast of Central America during the Nov-Feb period. The difference between these two SST anomaly time series (NTA-Ni\\~no3 is used in this analysis and it is called the Atlantic-Pacific Index or API. By fitting a dynamic generalized extreme value (GEV model to station based daily rainfall at different locations and to the Xie and Arkin dataset for the Vargas state, we found the API index to be an adequate index to explain the probabilistic nature of rainfall extremes in the northern Venezuelan coast for the months Nov-Feb. Dependence between the Atlantic-Pacific index and the probabilistic behavior of extreme rainfall was also explored for simulations from two global coupled General Circulation Models for the 20th century climate (20C3M experiment and the 21st century climate (SRES A2 experiment: the Echam5 model and the HadCM3 model. A significant dependence of extreme rainfall on the Atlantic-Pacific index is well described by the GEV dynamic model for the Echam5 20C3M experiment model outputs. When looking at future climates under the SRES A2 experiment, the dependence of extreme rainfall from the API index is still significant for the middle part of the 21st century (2046-2064, while this dependence fades off for the latest part of the century (2081-2099

  12. Upper atmosphere tidal oscillations due to latent heat release in the tropical troposphere

    Directory of Open Access Journals (Sweden)

    J. M. Forbes

    1997-09-01

    Full Text Available Latent heat release associated with tropical deep convective activity is investigated as a source for migrating (sun-synchronous diurnal and semidiurnal tidal oscillations in the 80–150-km height region. Satellite-based cloud brightness temperature measurements made between 1988 and 1994 and averaged into 3-h bins are used to determine the annual- and longitude-average local-time distribution of rainfall rate, and hence latent heating, between ±40° latitude. Regional average rainfall rates are shown to be in good agreement with climatological values derived from surface rain gauge data. A global linearized wave model is used to estimate the corresponding atmospheric perturbations in the mesosphere/lower thermosphere (80–150 km resulting from upward-propagating tidal components excited by the latent heating. The annual-average migrating diurnal and semidiurnal components achieve velocity and temperature amplitudes of order 10–20 m s–1 and 5–10 K, respectively, which represent substantial contributions to the dynamics of the region. The latent heat forcing also shifts the phase (local solar time of maximum of the semidiurnal surface pressure oscillation from 0912 to 0936 h, much closer to the observed value of 0944 h.

  13. Variability of the Tropical Ocean Surface Temperatures at Decadal-Multidecadal Timescales. Part I: The Atlantic Ocean.

    Science.gov (United States)

    Mehta, Vikram M.

    1998-09-01

    Gridded time series from the Global Ocean Surface Temperature Atlas were analyzed with a variety of techniques to identify spatial structures and oscillation periods of the tropical Atlantic sea surface temperature (SST) variations at decadal timescales, and to develop physical interpretations of statistical patterns of decadal SST variations. Each time series was 110 yr (1882-1991) long. The tropical Atlantic SST variations were compared with decadal variations in a 74-yr-long (1912-85) north Nordeste Brazil rainfall time series and a 106-yr-long (1886-1991) tropical Atlantic cyclone activity index time series. The tropical Atlantic SST variations were also compared with decadal variations in the extratropical Atlantic SST.Multiyear to multidecadal variations in the cross-equatorial dipole pattern identified as a dominant empirical pattern of the tropical Atlantic SST variations in earlier and present studies are shown to be variations in the approximately north-south gradient of SST anomalies. It is also shown that there was no dynamical-thermodynamical, dipole mode of SST variations during the analysis period. There was a distinct decadal timescale (12-13 yr) of SST variations in the tropical South Atlantic, whereas no distinct decadal timescale was found in the tropical North Atlantic SST variations. Approximately 80% of the coherent decadal variance in the cross-equatorial SST gradient was `explained' by coherent decadal oscillations in the tropical South Atlantic SSTs. There were three, possibly physical, modes of decadal variations in the tropical Atlantic SSTs during the analysis period. In the more energetic mode of the North Atlantic decadal SST variations, anomalies traveled into the tropical North Atlantic from the extratropical North Atlantic along the eastern boundary of the basin. The anomalies strengthened and resided in the tropical North Atlantic for several years, then frequently traveled northward into the mid-high-latitude North Atlantic along

  14. Global warming hiatus contributed to the increased occurrence of intense tropical cyclones in the coastal regions along East Asia.

    Science.gov (United States)

    Zhao, Jiuwei; Zhan, Ruifen; Wang, Yuqing

    2018-04-16

    The recent global warming hiatus (GWH) was characterized by a La Niña-like cooling in the tropical Eastern Pacific accompanied with the Indian Ocean and the tropical Atlantic Ocean warming. Here we show that the recent GWH contributed significantly to the increased occurrence of intense tropical cyclones in the coastal regions along East Asia since 1998. The GWH associated sea surface temperature anomalies triggered a pair of anomalous cyclonic and anticyclonic circulations and equatorial easterly anomalies over the Northwest Pacific, which favored TC genesis and intensification over the western Northwest Pacific but suppressed TC genesis and intensification over the southeastern Northwest Pacific due to increased vertical wind shear and anticyclonic circulation anomalies. Results from atmospheric general circulation model experiments demonstrate that the Pacific La Niña-like cooling dominated the Indian Ocean and the tropical Atlantic Ocean warming in contributing to the observed GWH-related anomalous atmospheric circulation over the Northwest Pacific.

  15. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs.

    Science.gov (United States)

    Mouillot, David; Villéger, Sébastien; Parravicini, Valeriano; Kulbicki, Michel; Arias-González, Jesus Ernesto; Bender, Mariana; Chabanet, Pascale; Floeter, Sergio R; Friedlander, Alan; Vigliola, Laurent; Bellwood, David R

    2014-09-23

    When tropical systems lose species, they are often assumed to be buffered against declines in functional diversity by the ability of the species-rich biota to display high functional redundancy: i.e., a high number of species performing similar functions. We tested this hypothesis using a ninefold richness gradient in global fish faunas on tropical reefs encompassing 6,316 species distributed among 646 functional entities (FEs): i.e., unique combinations of functional traits. We found that the highest functional redundancy is located in the Central Indo-Pacific with a mean of 7.9 species per FE. However, this overall level of redundancy is disproportionately packed into few FEs, a pattern termed functional over-redundancy (FOR). For instance, the most speciose FE in the Central Indo-Pacific contains 222 species (out of 3,689) whereas 38% of FEs (180 out of 468) have no functional insurance with only one species. Surprisingly, the level of FOR is consistent across the six fish faunas, meaning that, whatever the richness, over a third of the species may still be in overrepresented FEs whereas more than one third of the FEs are left without insurance, these levels all being significantly higher than expected by chance. Thus, our study shows that, even in high-diversity systems, such as tropical reefs, functional diversity remains highly vulnerable to species loss. Although further investigations are needed to specifically address the influence of redundant vs. vulnerable FEs on ecosystem functioning, our results suggest that the promised benefits from tropical biodiversity may not be as strong as previously thought.

  16. Diagnostics of Rainfall Anomalies in the Nordeste During the Global Weather Experiment

    Science.gov (United States)

    Sikdar, D. M.

    1984-01-01

    The relationship of the daily variability of large-scale pressure, cloudiness and upper level wind patterns over the Brazil-Atlantic sector during March/April 1979 to rainfall anomalies in northern Nordeste was investigated. The experiment divides the rainy season (March/April) of 1979 into wet and dry days, then composites bright cloudiness, sea level pressure, and upper level wind fields with respect to persistent rainfall episodes. Wet and dry anomalies are analyzed along with seasonal mean conditions.

  17. Comparison of Satellite Rainfall Estimates and Rain Gauge Measurements in Italy, and Impact on Landslide Modeling

    Directory of Open Access Journals (Sweden)

    Mauro Rossi

    2017-12-01

    Full Text Available Landslides can be triggered by intense or prolonged rainfall. Rain gauge measurements are commonly used to predict landslides even if satellite rainfall estimates are available. Recent research focuses on the comparison of satellite estimates and gauge measurements. The rain gauge data from the Italian network (collected in the system database “Verifica Rischio Frana”, VRF are compared with the National Aeronautics and Space Administration (NASA Tropical Rainfall Measuring Mission (TRMM products. For the purpose, we couple point gauge and satellite rainfall estimates at individual grid cells, evaluating the correlation between gauge and satellite data in different morpho-climatological conditions. We then analyze the statistical distributions of both rainfall data types and the rainfall events derived from them. Results show that satellite data underestimates ground data, with the largest differences in mountainous areas. Power-law models, are more appropriate to correlate gauge and satellite data. The gauge and satellite-based products exhibit different statistical distributions and the rainfall events derived from them differ. In conclusion, satellite rainfall cannot be directly compared with ground data, requiring local investigation to account for specific morpho-climatological settings. Results suggest that satellite data can be used for forecasting landslides, only performing a local scaling between satellite and ground data.

  18. Analysis of climate change impact on rainfall pattern of Sambas district, West Kalimantan

    Science.gov (United States)

    Berliana Sipayung, Sinta; Nurlatifah, Amalia; Siswanto, Bambang; Slamet S, Lilik

    2018-05-01

    Climate change is one of the most important issues being discussed globally. It caused by global warming and indirectly affecting the world climate cycle. This research discussed the effect of climate change on rainfall pattern of Sambas District and predicted the future rainfall pattern due to climate change. CRU and TRMM were used and has been validated using in situ data. This research was used Climate Modelling and Prediction using CCAM (Conformal Cubic Atmospheric Model) which also validated by in situ data (correlation= 0.81). The results show that temperature trends in Sambas regency increased to 0.082°C/yr from 1991-2014 according to CRU data. High temperature trigger changes in rainfall patterns. Rainfall pattern in Sambas District has an equatorial type where the peak occurs when the sun is right on the equator. Rainfall in Sambas reaches the maximum in March and September when the equinox occurs. The CCAM model is used to project rainfall in Sambas District in the future. The model results show that rainfall in Sambas District is projected to increase to 0.018 mm/month until 2055 so the flow rate increase 0.006 m3/month and the water balance increase 0.009 mm/month.

  19. Rainfall Downscaling Conditional on Upper-air Atmospheric Predictors: Improved Assessment of Rainfall Statistics in a Changing Climate

    Science.gov (United States)

    Langousis, Andreas; Mamalakis, Antonis; Deidda, Roberto; Marrocu, Marino

    2015-04-01

    To improve the level skill of Global Climate Models (GCMs) and Regional Climate Models (RCMs) in reproducing the statistics of rainfall at a basin level and at hydrologically relevant temporal scales (e.g. daily), two types of statistical approaches have been suggested. One is the statistical correction of climate model rainfall outputs using historical series of precipitation. The other is the use of stochastic models of rainfall to conditionally simulate precipitation series, based on large-scale atmospheric predictors produced by climate models (e.g. geopotential height, relative vorticity, divergence, mean sea level pressure). The latter approach, usually referred to as statistical rainfall downscaling, aims at reproducing the statistical character of rainfall, while accounting for the effects of large-scale atmospheric circulation (and, therefore, climate forcing) on rainfall statistics. While promising, statistical rainfall downscaling has not attracted much attention in recent years, since the suggested approaches involved complex (i.e. subjective or computationally intense) identification procedures of the local weather, in addition to demonstrating limited success in reproducing several statistical features of rainfall, such as seasonal variations, the distributions of dry and wet spell lengths, the distribution of the mean rainfall intensity inside wet periods, and the distribution of rainfall extremes. In an effort to remedy those shortcomings, Langousis and Kaleris (2014) developed a statistical framework for simulation of daily rainfall intensities conditional on upper air variables, which accurately reproduces the statistical character of rainfall at multiple time-scales. Here, we study the relative performance of: a) quantile-quantile (Q-Q) correction of climate model rainfall products, and b) the statistical downscaling scheme of Langousis and Kaleris (2014), in reproducing the statistical structure of rainfall, as well as rainfall extremes, at a

  20. Tropical deforestation: balancing regional development demands and global environmental concerns

    Energy Technology Data Exchange (ETDEWEB)

    Wood, A B [US Dept. of State, Washington, DC (USA)

    1990-01-01

    Over half of the world's tropical closed forests, which contain the greatest biodiversity, are found in just three countries: Brazil, Indonesia, and Zaire. Accelerated conversion of tropical forests is occurring because of several interlocking socio-economic and political factors: inequitable land distribution, entrenched rural poverty, and rapidly growing populations which push landless and near-landless peasants on to forest lands that are often infertile. If rates instead of absolute numbers are used to measure the severity of deforestation, Nigeria, Argentina, India, Thailand, Myanmar (Burma), Ecquador, and above all Ivory Coast stand out as countries facing an immediate deforestation crisis. Local management of forest resources, however, can be very contentious and complicated, with overlapping government agencies, competing economic interests, and ambiguous regulations. Without capital investment and entrepreneurial initiatives, residents of forest regions may have no alternative but to farm increasingly infertile soils. Non-governmental organizations, such as the World Wildlife Fund are playing leading roles in innovative debt-for-nature swaps and other forest conservation efforts. International development agencies, such as the World Bank, may play the leading role in conservation and reforestation efforts through their financial assistance programmes. The media, as a global information network, has become a powerful influence on the debate over deforestation. The Third World, bearing an increasingly heavy burden of payments to lending institutions that in 1988 surpassed 50 billion US dollars, will make a strong case that it cannot afford widespread forest conservation.

  1. The influence of global warming on natural disasters and their public health outcomes.

    Science.gov (United States)

    Diaz, James H

    2007-01-01

    With a documented increase in average global surface temperatures of 0.6 degrees C since 1975, Earth now appears to be warming due to a variety of climatic effects, most notably the cascading effects of greenhouse gas emissions resulting from human activities. There remains, however, no universal agreement on how rapidly, regionally, or asymmetrically the planet will warm or on the true impact of global warming on natural disasters and public health outcomes. Most reports to date of the public health impact of global warming have been anecdotal and retrospective in design and have focused on the increase in heat-stroke deaths following heat waves and on outbreaks of airborne and arthropod-borne diseases following tropical rains and flooding that resulted from fluctuations in ocean temperatures. The effects of global warming on rainfall and drought, tropical cyclone and tsunami activity, and tectonic and volcanic activity will have far-reaching public health effects not only on environmentally associated disease outbreaks but also on global food supplies and population movements. As a result of these and other recognized associations between climate change and public health consequences, many of which have been confounded by deficiencies in public health infrastructure and scientific debates over whether climate changes are spawned by atmospheric cycles or anthropogenic influences, the active responses to progressive climate change must include combinations of economic, environmental, legal, regulatory, and, most importantly, public health measures.

  2. Dynamical linkage of tropical and subtropical weather systems to the intraseasonal oscillations of the Indian summer monsoon rainfall. Part II: Simulations in the ENSEMBLES project

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Shujie [Institut Catala de Ciencies del Clima (IC3), Barcelona, Catalonia (Spain); Rodo, Xavier [Institut Catala de Ciencies del Clima (IC3), Barcelona, Catalonia (Spain); Institut Catala de Recerca i Estudis Avancats (ICREA), Barcelona, Catalonia (Spain); Song, Yongjia [Georgia Institute of Technology, School of Earth and Atmospheric Sciences, Atlanta, GA (United States); Cash, Benjamin A. [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States)

    2012-09-15

    We assess the ability of individual models (single-model ensembles) and the multi-model ensemble (MME) in the European Union-funded ENSEMBLES project to simulate the intraseasonal oscillations (ISOs; specifically in 10-20-day and 30-50-day frequency bands) of the Indian summer monsoon rainfall (ISMR) over the Western Ghats (WG) and the Bay of Bengal (BoB), respectively. This assessment is made on the basis of the dynamical linkages identified from the analysis of observations in a companion study to this work. In general, all models show reasonable skill in simulating the active and break cycles of the 30-50-day ISOs over the Indian summer monsoon region. This skill is closely associated with the proper reproduction of both the northward propagation of the intertropical convergence zone (ITCZ) and the variations of monsoon circulation in this band. However, the models do not manage to correctly simulate the eastward propagation of the 30-50-day ISOs in the western/central tropical Pacific and the eastward extension of the ITCZ in a northwest to southeast tilt. This limitation is closely associated with a limited capacity of models to accurately reproduce the magnitudes of intraseasonal anomalies of both the ITCZ in the Asian tropical summer monsoon regions and trade winds in the tropical Pacific. Poor reproduction of the activity of the western Pacific subtropical high on intraseasonal time scales also amplify this limitation. Conversely, the models make good reproduction of the WG 10-20-day ISOs. This success is closely related to good performance of the models in the representation of the northward propagation of the ITCZ, which is partially promoted by local air-sea interactions in the Indian Ocean in this higher-frequency band. Although the feature of westward propagation is generally represented in the simulated BoB 10-20-day ISOs, the air-sea interactions in the Indian Ocean are spuriously active in the models. This leads to active WG rainfall, which is not

  3. Rapid upslope shifts in New Guinean birds illustrate strong distributional responses of tropical montane species to global warming

    Science.gov (United States)

    Freeman, Benjamin G.; Class Freeman, Alexandra M.

    2014-01-01

    Temperate-zone species have responded to warming temperatures by shifting their distributions poleward and upslope. Thermal tolerance data suggests that tropical species may respond to warming temperatures even more strongly than temperate-zone species, but this prediction has yet to be tested. We addressed this data gap by conducting resurveys to measure distributional responses to temperature increases in the elevational limits of the avifaunas of two geographically and faunally independent New Guinean mountains, Mt. Karimui and Karkar Island, 47 and 44 y after they were originally surveyed. Although species richness is roughly five times greater on mainland Mt. Karimui than oceanic Karkar Island, distributional shifts at both sites were similar: upslope shifts averaged 113 m (Mt. Karimui) and 152 m (Karkar Island) for upper limits and 95 m (Mt. Karimui) and 123 m (Karkar Island) for lower limits. We incorporated these results into a metaanalysis to compare distributional responses of tropical species with those of temperate-zone species, finding that average upslope shifts in tropical montane species match local temperature increases significantly more closely than in temperate-zone montane species. That tropical species appear to be strong responders has global conservation implications and provides empirical support to hitherto untested models that predict widespread extinctions in upper-elevation tropical endemics with small ranges. PMID:24550460

  4. Impacts of the leading modes of tropical Indian Ocean sea surface temperature anomaly on sub-seasonal evolution of the circulation and rainfall over East Asia during boreal spring and summer

    Science.gov (United States)

    Liu, Senfeng; Duan, Anmin

    2017-02-01

    The two leading modes of the interannual variability of the tropical Indian Ocean (TIO) sea surface temperature (SST) anomaly are the Indian Ocean basin mode (IOBM) and the Indian Ocean dipole mode (IODM) from March to August. In this paper, the relationship between the TIO SST anomaly and the sub-seasonal evolution of the circulation and rainfall over East Asia during boreal spring and summer is investigated by using correlation analysis and composite analysis based on multi-source observation data from 1979 to 2013, together with numerical simulations from an atmospheric general circulation model. The results indicate that the impacts of the IOBM on the circulation and rainfall over East Asia vary remarkably from spring to summer. The anomalous anticyclone over the tropical Northwest Pacific induced by the warm IOBM is closely linked with the Pacific-Japan or East Asia-Pacific teleconnection pattern, which persists from March to August. In the upper troposphere over East Asia, the warm phase of the IOBM generates a significant anticyclonic response from March to May. In June and July, however, the circulation response is characterized by enhanced subtropical westerly flow. A distinct anomalous cyclone is found in August. Overall, the IOBM can exert significant influence on the western North Pacific subtropical high, the South Asian high, and the East Asian jet, which collectively modulate the precipitation anomaly over East Asia. In contrast, the effects of the IODM on the climate anomaly over East Asia are relatively weak in boreal spring and summer. Therefore, studying the impacts of the TIO SST anomaly on the climate anomaly in East Asia should take full account of the different sub-seasonal response during boreal spring and summer.

  5. Monitoring temporal Vegetation changes in Lao tropical forests

    International Nuclear Information System (INIS)

    Phompila, Chittana; Lewis, Megan; Clarke, Kenneth; Ostendorf, Bertram

    2014-01-01

    Studies on changes in vegetation are essential for understanding the interaction between humans and the environment. These studies provide key information for land use assessment, terrestrial ecosystem monitoring, carbon flux modelling and impacts of global climate change. The primary purpose of this study was to detect temporal vegetation changes in tropical forests in the southern part of Lao PDR from 2001-2012. The study investigated the annual vegetation phenological response of dominant land cover types across the study area and relationships to seasonal precipitation and temperature. Improved understanding of intra-annual patterns of vegetation variation was useful to detect longer term changes in vegetation. The breaks for additive season and trend (BFAST) approach was implemented to detect changes in these land cover types throughout the 2001-2012 period. We used the enhanced vegetation index (EVI) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) (MOD13Q1 products) and monthly rainfall and temperature data obtained from the Meteorology and Hydrology Department, Ministry of Agriculture-Forestry, published by Lao National Statistical Centre in this research. EVI well documented the annual seasonal growth of vegetation and clearly distinguished the characteristic phenology of four different land use types; native forest, plantation, agriculture and mixed wooded/cleared area. Native forests maintained high EVI throughout the year, while plantations, wooded/cleared areas and agriculture showed greater inter-annual variation, with minimum EVI at the end of the dry season in April and maximum EVI in September-October, around two months after the wet season peak in rainfall. The BFAST analysis detected abrupt temporal changes in vegetation in the tropical forests, especially in a large conversion of mixed wooded/cleared area into plantation. Within the study area from 2001-2012 there has been an overall decreasing trend of vegetation cover for

  6. Evaluation of rainfall retrievals from SEVIRI reflectances over West Africa using TRMM-PR and CMORPH

    Science.gov (United States)

    Wolters, E. L. A.; van den Hurk, B. J. J. M.; Roebeling, R. A.

    2011-02-01

    This paper describes the evaluation of the KNMI Cloud Physical Properties - Precipitation Properties (CPP-PP) algorithm over West Africa. The algorithm combines condensed water path (CWP), cloud phase (CPH), cloud particle effective radius (re), and cloud-top temperature (CTT) retrievals from visible, near-infrared and thermal infrared observations of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the Meteosat Second Generation (MSG) satellites to estimate rain occurrence frequency and rain rate. For the 2005 and 2006 monsoon seasons, it is investigated whether the CPP-PP algorithm is capable of retrieving rain occurrence frequency and rain rate over West Africa with sufficient accuracy, using Tropical Monsoon Measurement Mission Precipitation Radar (TRMM-PR) as reference. As a second goal, it is assessed whether SEVIRI is capable of monitoring the seasonal and daytime evolution of rainfall during the West African monsoon (WAM), using Climate Prediction Center Morphing Technique (CMORPH) rainfall observations. The SEVIRI-detected rainfall area agrees well with TRMM-PR, with the areal extent of rainfall by SEVIRI being ~10% larger than from TRMM-PR. The mean retrieved rain rate from CPP-PP is about 8% higher than from TRMM-PR. Examination of the TRMM-PR and CPP-PP cumulative frequency distributions revealed that differences between CPP-PP and TRMM-PR are generally within +/-10%. Relative to the AMMA rain gauge observations, CPP-PP shows very good agreement up to 5 mm h-1. However, at higher rain rates (5-16 mm h-1) CPP-PP overestimates compared to the rain gauges. With respect to the second goal of this paper, it was shown that both the accumulated precipitation and the seasonal progression of rainfall throughout the WAM is in good agreement with CMORPH, although CPP-PP retrieves higher amounts in the coastal region of West Africa. Using latitudinal Hovmüller diagrams, a fair correspondence between CPP-PP and CMORPH was found, which is reflected

  7. Evaluation of rainfall retrievals from SEVIRI reflectances over West Africa using TRMM-PR and CMORPH

    Directory of Open Access Journals (Sweden)

    E. L. A. Wolters

    2011-02-01

    Full Text Available This paper describes the evaluation of the KNMI Cloud Physical Properties – Precipitation Properties (CPP-PP algorithm over West Africa. The algorithm combines condensed water path (CWP, cloud phase (CPH, cloud particle effective radius (re, and cloud-top temperature (CTT retrievals from visible, near-infrared and thermal infrared observations of the Spinning Enhanced Visible and Infrared Imager (SEVIRI onboard the Meteosat Second Generation (MSG satellites to estimate rain occurrence frequency and rain rate. For the 2005 and 2006 monsoon seasons, it is investigated whether the CPP-PP algorithm is capable of retrieving rain occurrence frequency and rain rate over West Africa with sufficient accuracy, using Tropical Monsoon Measurement Mission Precipitation Radar (TRMM-PR as reference. As a second goal, it is assessed whether SEVIRI is capable of monitoring the seasonal and daytime evolution of rainfall during the West African monsoon (WAM, using Climate Prediction Center Morphing Technique (CMORPH rainfall observations. The SEVIRI-detected rainfall area agrees well with TRMM-PR, with the areal extent of rainfall by SEVIRI being ~10% larger than from TRMM-PR. The mean retrieved rain rate from CPP-PP is about 8% higher than from TRMM-PR. Examination of the TRMM-PR and CPP-PP cumulative frequency distributions revealed that differences between CPP-PP and TRMM-PR are generally within +/−10%. Relative to the AMMA rain gauge observations, CPP-PP shows very good agreement up to 5 mm h−1. However, at higher rain rates (5–16 mm h−1 CPP-PP overestimates compared to the rain gauges. With respect to the second goal of this paper, it was shown that both the accumulated precipitation and the seasonal progression of rainfall throughout the WAM is in good agreement with CMORPH, although CPP-PP retrieves higher amounts in the coastal region of West Africa. Using latitudinal Hovmüller diagrams, a fair

  8. Mineralogical evidence of reduced East Asian summer monsoon rainfall on the Chinese loess plateau during the early Pleistocene interglacials

    Science.gov (United States)

    Meng, Xianqiang; Liu, Lianwen; Wang, Xingchen T.; Balsam, William; Chen, Jun; Ji, Junfeng

    2018-03-01

    The East Asian summer monsoon (EASM) is an important component of the global climate system. A better understanding of EASM rainfall variability in the past can help constrain climate models and better predict the response of EASM to ongoing global warming. The warm early Pleistocene, a potential analog of future climate, is an important period to study EASM dynamics. However, existing monsoon proxies for reconstruction of EASM rainfall during the early Pleistocene fail to disentangle monsoon rainfall changes from temperature variations, complicating the comparison of these monsoon records with climate models. Here, we present three 2.6 million-year-long EASM rainfall records from the Chinese Loess Plateau (CLP) based on carbonate dissolution, a novel proxy for rainfall intensity. These records show that the interglacial rainfall on the CLP was lower during the early Pleistocene and then gradually increased with global cooling during the middle and late Pleistocene. These results are contrary to previous suggestions that a warmer climate leads to higher monsoon rainfall on tectonic timescales. We propose that the lower interglacial EASM rainfall during the early Pleistocene was caused by reduced sea surface temperature gradients across the equatorial Pacific, providing a testable hypothesis for climate models.

  9. Seasonal Scale Convective-Stratiform Pricipitation Variabilities at Tropics

    Science.gov (United States)

    S, Sreekanth T.

    begin{center} Large Seasonal Scale Convective-Stratiform Pricipitation Variabilities at Tropics Sreekanth T S*, Suby Symon*, G. Mohan Kumar (1) and V Sasi Kumar (2) *Centre for Earth Science Studies, Akkulam, Thiruvananthapuram (1) D-330, Swathi Nagar, West Fort, Thiruvananthapuram 695023 (2) 32. NCC Nagar Peroorkada, Thiruvananthapuram ABSTRACT This study investigates the variabilities of convective and stratiform rainfall from 2011 to 2013 at a tropical coastal station in three seasons viz Pre-Monsoon (March-May), Monsoon (June-September) and Post-Monsoon (October-December). Understanding the climatological variability of these two dominant forms of precipitation and their implications in the total rainfall were the main objectives of this investigation. Variabilities in the frequency & duration of events, rain rate & total number of rain drops distribution in different events and the accumulated amount of rain water were analysed. Based on the ground & radar observations from optical & impact disdrometers, Micro Rain Radar and Atmospheric Electric Field Mill, precipitation events were classified into convective and stratiform in three seasons. Classification was done by the method followed by Testud et al (2001) and as an additional information electrical behaviour of clouds from Atmospheric Electric Field Mill is also used. Events which could not be included in both types were termed as 'mixed precipitation' and were included separately. Diurnal variability of the total rainfall in each seasons were also examined. For both convective and stratiform rainfall there exist distinct day-night differences. During nocturnal hours convective rain draged more attention. In all seasons almost 70% of rain duration and 60% of rain events of convective origin were confined to nocturnal hours. But stratiform rain was not affected by diurnal variations greatly because night time occurrences of stratiform duration and events were less than 50%. Also in Monsoon above 35% of

  10. Cloud structure evolution of heavy rain events from the East-West Pacific Ocean: a combined global observation analysis

    Science.gov (United States)

    Sekaranom, A. B.; Nurjani, E.; Pujiastuti, I.

    2018-04-01

    Heavy rain events are often associated with flood hazards as one of the most devastating events across the globe. It is therefore essential to identify the evolution of heavy rainfall cloud structures, primarily from global satellite observation, as a tool to provide better disaster early warning systems. To identify the mechanism of heavy rainfall systems and its relationship with cloud development, especially over The Pacific Ocean, we aim to study the westward evolution of the convective systems over this area. Several datasets from Tropical Rainfall Measuring Mission (TRMM), CloudSat GEOPROF product, and ECMWF-reanalysis (ERA) interim were utilized to characterize the evolution. Geolocation and orbital time-lag analysis of the three different datasets for more than 8 years (2006-2014) could provide information related to the evolution of cloud structures associated with heavy rain events. In the first step, a heavy rainfall database was generated from TRMM. The CloudSat coordinate and time position were then matched with TRMM coordinate and time position. All of the processes were programatically conducted in fortran programming language. The result shows a transition between East and West Pacific ocean for TMI data.

  11. Propagation of Satelite Rainfall Products uncertainties in hydrological applications : Examples in West-Africa in the framework of the Megha-Tropiques Satellite Mission

    Science.gov (United States)

    Casse, C.; Gosset, M.; Peugeot, C.; Boone, A.; Pedinotti, V.

    2013-12-01

    The use of satellite based rainfall in research or operational Hydrological application is becoming more and more frequent. This is specially true in the Tropics where ground based gauge (or radar) network are generally scarce and often degrading. Member of the GPM constellation, the new French-Indian satellite Mission Megha-Tropiques (MT) dedicated to the water and energy budget in the tropical atmosphere contributes to a better monitoring of rainfall in the inter-tropical zone. As part of this mission, research is developed on the use of MT rainfall products for hydrological research or operational application such as flood monitoring. A key issue for such applications is how to account for rainfall products biases and uncertainties, and how to propagate them in the end user models ? Another important question is how to choose the best space-time resolution for the rainfall forcing, given that both model performances and rain-product uncertainties are resolution dependent. This talk will present on going investigations and perspectives on this subject, with examples from the Megha_tropiques Ground validation sites in West Africa. The CNRM model Surfex-ISBA/TRIP has been set up to simulate the hydrological behavior of the Niger River. This modeling set up is being used to study the predictability of Niger Floods events in the city of Niamey and the performances of satellite rainfall products as forcing for such predictions. One of the interesting feature of the Niger outflow in Niamey is its double peak : a first peak attributed to 'local' rainfall falling in small to medium size basins situated in the region of Niamey, and a second peak linked to the rainfall falling in the upper par of the river, and slowly propagating through the river towards Niamey. The performances of rainfall products are found to differ between the wetter/upper part of the basin, and the local/sahelian areas. Both academic tests with artificially biased or 'perturbed' rainfield and actual

  12. Temperature Crosstalk Sensitivity of the Kummerow Rainfall Algorithm

    Science.gov (United States)

    Spencer, Roy W.; Petrenko, Boris

    1999-01-01

    Even though the signal source for passive microwave retrievals is thermal emission, retrievals of non-temperature geophysical parameters typically do not explicitly take into account the effects of temperature change on the retrievals. For global change research, changes in geophysical parameters (e.g. water vapor, rainfall, etc.) are referenced to the accompanying changes in temperature. If the retrieval of a certain parameter has a cross-talk response from temperature change alone, the retrievals might not be very useful for climate research. We investigated the sensitivity of the Kummerow rainfall retrieval algorithm to changes in air temperature. It was found that there was little net change in total rainfall with air temperature change. However, there were non-negligible changes within individual rain rate categories.

  13. RRR for NNN-a rapid research response for the Neglected Tropical Disease NGDO Network: a novel framework to challenges faced by the global programs targeting neglected tropical diseases.

    Science.gov (United States)

    Toledo, Chelsea E; Jacobson, Julie; Wainwright, Emily C; Ottesen, Eric A; Lammie, Patrick J

    2016-03-01

    While global programs targeting the control or elimination of five of the neglected tropical diseases (NTDs)-lymphatic filariasis, onchocerciasis, soil-transmitted helminthiasis, schistosomiasis and trachoma-are well underway, they still face many operational challenges. Because of the urgency of 2020 program targets, the Bill & Melinda Gates Foundation and the U.S. Agency for International Development devised a novel rapid research response (RRR) framework to engage national programs, researchers, implementers and WHO in a Coalition for Operational Research on NTDs. After 2 years, this effort has succeeded as an important basis for the research response to programmatic challenges facing NTD programs. © The Author 2016. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene.

  14. From Public to Private Standards for Tropical Commodities: A Century of Global Discourse on Land Governance on the Forest Frontier

    Directory of Open Access Journals (Sweden)

    Derek Byerlee

    2015-04-01

    Full Text Available Globalization and commodity exports have a long history in affecting land use changes and land rights on the tropical forest frontier. This paper reviews a century of social and environmental discourse around land issues for four commodities grown in the humid tropics—rubber, cocoa, oil palm and bananas. States have exercised sovereign rights over land and forest resources and the outcomes for deforestation and land rights of existing users have been quite varied depending on local institutional contexts and political economy. In the current period of globalization, as land use changes associated with tropical commodities have accelerated, land issues are now at center stage in the global discourse. However, efforts to protect forests and the rights of local communities and indigenous groups continue to be ad hoc and codification of minimum standards and their implementation remains a work in progress. Given a widespread failure of state directed policies and institutions to curb deforestation and protect land rights, the private sector, with the exception of the rubber industry, is emphasizing voluntary standards to certify sustainability of their products. This is an important step but expectations that they will effectively address concerns about the impact of tropical commodities expansion might be too high, given their voluntary nature, demand constraints, and the challenge of including smallholders. It is also doubtful that private standards can more than partially compensate for long standing weaknesses in land governance and institutions on the forest frontier.

  15. Global warming-induced upper-ocean freshening and the intensification of super typhoons.

    Science.gov (United States)

    Balaguru, Karthik; Foltz, Gregory R; Leung, L Ruby; Emanuel, Kerry A

    2016-11-25

    Super typhoons (STYs), intense tropical cyclones of the western North Pacific, rank among the most destructive natural hazards globally. The violent winds of these storms induce deep mixing of the upper ocean, resulting in strong sea surface cooling and making STYs highly sensitive to ocean density stratification. Although a few studies examined the potential impacts of changes in ocean thermal structure on future tropical cyclones, they did not take into account changes in near-surface salinity. Here, using a combination of observations and coupled climate model simulations, we show that freshening of the upper ocean, caused by greater rainfall in places where typhoons form, tends to intensify STYs by reducing their ability to cool the upper ocean. We further demonstrate that the strengthening effect of this freshening over the period 1961-2008 is ∼53% stronger than the suppressive effect of temperature, whereas under twenty-first century projections, the positive effect of salinity is about half of the negative effect of ocean temperature changes.

  16. Rainfall changes affect the algae dominance in tank bromeliad ecosystems

    Science.gov (United States)

    Pires, Aliny Patricia Flauzino; Leal, Juliana da Silva; Peeters, Edwin T. H. M.

    2017-01-01

    Climate change and biodiversity loss have been reported as major disturbances in the biosphere which can trigger changes in the structure and functioning of natural ecosystems. Nonetheless, empirical studies demonstrating how both factors interact to affect shifts in aquatic ecosystems are still unexplored. Here, we experimentally test how changes in rainfall distribution and litter diversity affect the occurrence of the algae-dominated condition in tank bromeliad ecosystems. Tank bromeliads are miniature aquatic ecosystems shaped by the rainwater and allochthonous detritus accumulated in the bases of their leaves. Here, we demonstrated that changes in the rainfall distribution were able to reduce the chlorophyll-a concentration in the water of bromeliad tanks affecting significantly the occurrence of algae-dominated conditions. On the other hand, litter diversity did not affect the algae dominance irrespective to the rainfall scenario. We suggest that rainfall changes may compromise important self-reinforcing mechanisms responsible for maintaining high levels of algae on tank bromeliads ecosystems. We summarized these results into a theoretical model which suggests that tank bromeliads may show two different regimes, determined by the bromeliad ability in taking up nutrients from the water and by the total amount of light entering the tank. We concluded that predicted climate changes might promote regime shifts in tropical aquatic ecosystems by shaping their structure and the relative importance of other regulating factors. PMID:28422988

  17. Is the poleward migration of tropical cyclone maximum intensity associated with a poleward migration of tropical cyclone genesis?

    Science.gov (United States)

    Daloz, Anne Sophie; Camargo, Suzana J.

    2018-01-01

    A recent study showed that the global average latitude where tropical cyclones achieve their lifetime-maximum intensity has been migrating poleward at a rate of about one-half degree of latitude per decade over the last 30 years in each hemisphere. However, it does not answer a critical question: is the poleward migration of tropical cyclone lifetime-maximum intensity associated with a poleward migration of tropical cyclone genesis? In this study we will examine this question. First we analyze changes in the environmental variables associated with tropical cyclone genesis, namely entropy deficit, potential intensity, vertical wind shear, vorticity, skin temperature and specific humidity at 500 hPa in reanalysis datasets between 1980 and 2013. Then, a selection of these variables is combined into two tropical cyclone genesis indices that empirically relate tropical cyclone genesis to large-scale variables. We find a shift toward greater (smaller) average potential number of genesis at higher (lower) latitudes over most regions of the Pacific Ocean, which is consistent with a migration of tropical cyclone genesis towards higher latitudes. We then examine the global best track archive and find coherent and significant poleward shifts in mean genesis position over the Pacific Ocean basins.

  18. Evaluation of rainfall structure on hydrograph simulation: Comparison of radar and interpolated methods, a study case in a tropical catchment

    Science.gov (United States)

    Velasquez, N.; Ochoa, A.; Castillo, S.; Hoyos Ortiz, C. D.

    2017-12-01

    The skill of river discharge simulation using hydrological models strongly depends on the quality and spatio-temporal representativeness of precipitation during storm events. All precipitation measurement strategies have their own strengths and weaknesses that translate into discharge simulation uncertainties. Distributed hydrological models are based on evolving rainfall fields in the same time scale as the hydrological simulation. In general, rainfall measurements from a dense and well maintained rain gauge network provide a very good estimation of the total volume for each rainfall event, however, the spatial structure relies on interpolation strategies introducing considerable uncertainty in the simulation process. On the other hand, rainfall retrievals from radar reflectivity achieve a better spatial structure representation but with higher uncertainty in the surface precipitation intensity and volume depending on the vertical rainfall characteristics and radar scan strategy. To assess the impact of both rainfall measurement methodologies on hydrological simulations, and in particular the effects of the rainfall spatio-temporal variability, a numerical modeling experiment is proposed including the use of a novel QPE (Quantitative Precipitation Estimation) method based on disdrometer data in order to estimate surface rainfall from radar reflectivity. The experiment is based on the simulation of 84 storms, the hydrological simulations are carried out using radar QPE and two different interpolation methods (IDW and TIN), and the assessment of simulated peak flow. Results show significant rainfall differences between radar QPE and the interpolated fields, evidencing a poor representation of storms in the interpolated fields, which tend to miss the precise location of the intense precipitation cores, and to artificially generate rainfall in some areas of the catchment. Regarding streamflow modelling, the potential improvement achieved by using radar QPE depends on

  19. Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming

    Science.gov (United States)

    Huang, Ping; Lin, I. -I; Chou, Chia; Huang, Rong-Hui

    2015-01-01

    Tropical cyclones (TCs) are hazardous natural disasters. Because TC intensification is significantly controlled by atmosphere and ocean environments, changes in these environments may cause changes in TC intensity. Changes in surface and subsurface ocean conditions can both influence a TC's intensification. Regarding global warming, minimal exploration of the subsurface ocean has been undertaken. Here we investigate future subsurface ocean environment changes projected by 22 state-of-the-art climate models and suggest a suppressive effect of subsurface oceans on the intensification of future TCs. Under global warming, the subsurface vertical temperature profile can be sharpened in important TC regions, which may contribute to a stronger ocean coupling (cooling) effect during the intensification of future TCs. Regarding a TC, future subsurface ocean environments may be more suppressive than the existing subsurface ocean environments. This suppressive effect is not spatially uniform and may be weak in certain local areas. PMID:25982028

  20. Atlantic Tropical Cyclogenetic Processes During SOP-3 NAMMA in the GEOS-5 Global Data Assimilation and Forecast System

    Science.gov (United States)

    Reale, Oreste; Lau, William K.; Kim, Kyu-Myong; Brin, Eugenia

    2009-01-01

    This article investigates the role of the Saharan air layer (SAL) in tropical cyclogenetic processes associated with a nondeveloping and a developing African easterly wave observed during the Special Observation Period (SOP-3) phase of the 2006 NASA African. Monsoon Multidisciplinary Analyses (NAMMA). The two waves are chosen because they both interact heavily with Saharan air. A glottal data assimilation and forecast system, the NASA Goddard Earth Observing System. version 5 (GEOS-5), is being run to produce a set of high-9 uality global analyses, inclusive of all observations used operationally but with additional satellite information. In particular, following previous works by the same authors, the duality-controlled data from the Atmospheric Infrared Sounder (AIRS) used to produce these analyses have a better coverage than the one adopted by operational centers. From these improved analyses, two sets of 31 five-day high-resolution forecasts, at horizontal resolutions of both half and quarter degrees, are produced. Results indicate that very steep moisture gradients are associated with the SAL in forecasts and analyses, even at great distances from their source over the Sahara. In addition, a thermal dipole in the vertiieat (warm above, cool below) is present in the nondeveloping case. The Moderate Resolution Imaging Spoctroradiometer (MODIS) aboard NASA's Terra and Aqua satellites shows that aerosol optical thickness, indicative of more dust as opposed to other factors, is higher in the nondeveloping case. Altogether, results suggest that the radiative effect of dust may play some role in producing a thermal structure less favorable to cyclogenesis. Results also indicate that only global horizontal resolutions on the order of 20-30 km can capture the large-scale transport and the tine thermal structure of the SAL, inclusive of the sharp moisture gradients, reproducing the effect of tropical cyclone suppression that has been hypothesized by previous authors

  1. Weekend Effect" in Summertime U.S. Rainfall: Evidence for Midweek Intensification of Storms by Pollution

    Science.gov (United States)

    Bell, Thomas L.; Rosenfeld, Daniel; Kim, Kyu-Myong; Hahnenberger, Maura

    2006-01-01

    Persistent and strong dependence of rain rate on the day of the week has been found in Tropical Rainfall Measuring Mission (TRMM) satellite estimates of summer afternoon rainfall over the southeast U.S. and the nearby Atlantic from 1998 to 2005. Midweek (Tue-Thu) rain rates and rain area appear to increase over land, and this increase is accompanied by a corresponding diminution of rainfall over nearby waters. Reanalysis data from atmospheric models, suggest that there is a corresponding weekly variation in atmospheric winds consistent with the changes in rainfall. These variations are almost certainly caused by weekly variations in human activity. The most likely cause of the observed changes in rainfall is the well documented weekly variation in atmospheric pollution. Particulate pollution is highest in the middle of the week. Considerable observational and modeling evidence has accumulated concerning the effects of aerosols on precipitation. Most of this evidence relates to the suppression of precipitation by aerosols, but it has been argued that storms in highly unstable moist environments can be invigorated by aerosols, and some modeling studies seem to confirm this. The strong weekly cycle in rainfall observed over the southeast U.S. along with what appears to be dynamical suppression of rainfall over the nearby Atlantic, and the lack of an observable cycle over the southwest U.S., are consistent with this theory.

  2. How will the impact of El Nino and La Nina on Australia change under global warming?

    International Nuclear Information System (INIS)

    Power, Scott; Morgan, Adam; Moise, Aurel; Grainger, Simon; Smith, Ian; Reeder, Michael

    2007-01-01

    Full text: The El Nino-Southern Oscillation (ENSO) has a profound influence on Australia. How will this influence change under global warming? Will El Nino droughts become more frequent or more intense? Will La Nina events tend to produce more or less rainfall over Australia than they have in the past? Has ENSO already changed? Has ENSO's impact on Australia already changed? Will global warming be 'El Nino-like'? How well do current models simulate ENSO and how reliable are their projections for ENSO? Here we will provide answers to these questions drawing on the IPCC (2007) report and recent research conducted here in Australia. We will see that: ENSO and its impact on Australia varied substantially on decadal and longer time-scales over the past century; The frequency of El Nino events appeared to increase; The Walker Circulation, which is one of the most prominent and important atmospheric circulations in the world, is centred in the Pacific Ocean and is strongly modulated by ENSO. The Southern Oscillation Index (SOI) - which is used to track ENSO and the strength of the Walker Circulation -has trended down over the past century. The tropical Pacific - the engine room for ENSO - has warmed to unprecedented levels. The Walker Circulation weakens in some models in response to global warming. The relationship between Australian rainfall, temperature and the SOI has changed. The IPCC WG1 Report (2007) concluded that'... there is no consistent indication at this time of discernable changes in ENSO amplitude or frequency in the 21st century'. Even if ENSO variability in the tropical Pacific does not change, ENSO's impact on Australia might. Evidence supporting this hypothesis will be provided. Finally, we will discuss what this all means for Australia

  3. Tree height and tropical forest biomass estimation

    Science.gov (United States)

    M.O. Hunter; M. Keller; D. Vitoria; D.C. Morton

    2013-01-01

    Tropical forests account for approximately half of above-ground carbon stored in global vegetation. However, uncertainties in tropical forest carbon stocks remain high because it is costly and laborious to quantify standing carbon stocks. Carbon stocks of tropical forests are determined using allometric relations between tree stem diameter and height and biomass....

  4. The relative contributions of tropical Pacific sea surface temperatures and atmospheric internal variability to the recent global warming hiatus

    Science.gov (United States)

    Deser, Clara; Guo, Ruixia; Lehner, Flavio

    2017-08-01

    The recent slowdown in global mean surface temperature (GMST) warming during boreal winter is examined from a regional perspective using 10-member initial-condition ensembles with two global coupled climate models in which observed tropical Pacific sea surface temperature anomalies (TPAC SSTAs) and radiative forcings are specified. Both models show considerable diversity in their surface air temperature (SAT) trend patterns across the members, attesting to the importance of internal variability beyond the tropical Pacific that is superimposed upon the response to TPAC SSTA and radiative forcing. Only one model shows a close relationship between the realism of its simulated GMST trends and SAT trend patterns. In this model, Eurasian cooling plays a dominant role in determining the GMST trend amplitude, just as in nature. In the most realistic member, intrinsic atmospheric dynamics and teleconnections forced by TPAC SSTA cause cooling over Eurasia (and North America), and contribute equally to its GMST trend.

  5. Disturbance Driven Rainfall in O`ahu, Hawai`i (1990-2010)

    Science.gov (United States)

    Longman, R. J.; Elison Timm, O.; Giambelluca, T. W.; Kaiser, L.; Newman, A. J.; Arnold, J.; Clark, M. P.

    2017-12-01

    Trade wind orographic rainfall is the most prevalent synoptic weather pattern in Hawai`i and provides a year-round source of moisture to the windward areas across the Island chain. Significant contributions to total and extreme precipitation have also been linked to one of four atmospheric disturbance situations that include: cold fronts, Kona storms, upper-tropospheric disturbances (upper level lows), and tropical systems. The primary objective of this research is to determine how these disturbance types contribute to total wet-season rainfall (RF) on the Island of O`ahu, Hawai`i and to identify any significant changes in the frequency of occurrence and or the intensity of these events. Atmospheric fronts that occurred in the Hawai`i region (17-26°N, 150-165°W) were extracted from a global dataset and combined with a Kona low and upper level low dataset to create a daily categorical weather classification time series (1990-2010). Mean rainfall was extracted from gridded daily O`ahu RF maps. Results show that the difference between a wet and dry year is predominantly explained by the RF contributions from disturbance events (r2 = 0.57, p cold fronts that cross the Island. During the wettest season on record, disturbances accounted for 48% of the total RF, while during the driest season they accounted for only 6% of the total RF. The event-based RF analysis also compared the RF intensity in the absence of disturbance events with the average RF intensity on days when atmospheric fronts are present but do not cross the island. The results show that non-crossing fronts reduce the average RF intensity. A possible explanation is that these events are too far away to produce RF, but close enough to disrupt normal trade wind flow, thus limiting orographic RF on the island. This new event-based RF analysis has important implications for the projection of regional climate change in Hawai`i. Our results suggest that if storm tracks were to shift poleward, O`ahu wet season

  6. Inverse relationship between present-day tropical precipitation and its sensitivity to greenhouse warming

    Science.gov (United States)

    Ham, Yoo-Geun; Kug, Jong-Seong; Choi, Jun-Young; Jin, Fei-Fei; Watanabe, Masahiro

    2018-01-01

    Future changes in rainfall have serious impacts on human adaptation to climate change, but quantification of these changes is subject to large uncertainties in climate model projections. To narrow these uncertainties, significant efforts have been made to understand the intermodel differences in future rainfall changes. Here, we show a strong inverse relationship between present-day precipitation and its future change to possibly calibrate future precipitation change by removing the present-day bias in climate models. The results of the models with less tropical (40° S-40° N) present-day precipitation are closely linked to the dryness over the equatorial central-eastern Pacific, and project weaker regional precipitation increase due to the anthropogenic greenhouse forcing1-6 with stronger zonal Walker circulation. This induces Indo-western Pacific warming through Bjerknes feedback, which reduces relative humidity by the enhanced atmospheric boundary-layer mixing in the future projection. This increases the air-sea humidity difference to enhance tropical evaporation and the resultant precipitation. Our estimation of the sensitivity of the tropical precipitation per 1 K warming, after removing a common bias in the present-day simulation, is about 50% greater than the original future multi-model projection.

  7. The time series variations of tritium concentration in precipitation and its relationships to the rainfall-inducing air mass

    International Nuclear Information System (INIS)

    Shimada, Jun

    1978-01-01

    The author measured the tritium concentration in precipitation of Tokyo for every ten-day period from August 1972 to May 1974. Judging from the daily synoptic weather chart, the rainfall-inducing air masses in Japan were classified into five types; polar maritime air mass (Pm), polar continental air mass (Pc), tropical maritime air mass (Tm), tropical continental air mass (Tc), and equatorial maritime air mass (Em). And the precipitation for every ten-day period sampled for tritium measurement were classified into these five types. Based on this classification, it is confirmed that there exist clear difference in the tritium concentration between the rainfall from the continental air mass and ones from the maritime air mass. It is characteristic that the tritium concentration in rainfall induced by equatorial maritime air mass such as typhoon in summer and early fall season is very low whereas the tritium concentration in rainfall and snowfall induced directly by the polar continental air mass in late winter season is very high. The regional difference of the tritium concentration in intermonthly precipitation could considerably be explained by this synoptic meteological classification of rainfall-inducing air mass. In spite of these regional difference of tritium concentration in precipitation, use of the tritium concentration of Tokyo as a representative value of Japan may be allowed because of the similarities of the changing pattern and annual mean tritium concentration. The time series variations of tritium concentration in precipitation of Tokyo from August 1972 to December 1977, Tsukuba from December 1976 to April 1978, and Nagaoka from April 1977 to March 1978 are listed. (author)

  8. Rainfall Product Evaluation for the TRMM Ground Validation Program

    Science.gov (United States)

    Amitai, E.; Wolff, D. B.; Robinson, M.; Silberstein, D. S.; Marks, D. A.; Kulie, M. S.; Fisher, B.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Evaluation of the Tropical Rainfall Measuring Mission (TRMM) satellite observations is conducted through a comprehensive Ground Validation (GV) Program. Standardized instantaneous and monthly rainfall products are routinely generated using quality-controlled ground based radar data from four primary GV sites. As part of the TRMM GV program, effort is being made to evaluate these GV products and to determine the uncertainties of the rainfall estimates. The evaluation effort is based on comparison to rain gauge data. The variance between the gauge measurement and the true averaged rain amount within the radar pixel is a limiting factor in the evaluation process. While monthly estimates are relatively simple to evaluate, the evaluation of the instantaneous products are much more of a challenge. Scattegrams of point comparisons between radar and rain gauges are extremely noisy for several reasons (e.g. sample volume discrepancies, timing and navigation mismatches, variability of Z(sub e)-R relationships), and therefore useless for evaluating the estimates. Several alternative methods, such as the analysis of the distribution of rain volume by rain rate as derived from gauge intensities and from reflectivities above the gauge network will be presented. Alternative procedures to increase the accuracy of the estimates and to reduce their uncertainties also will be discussed.

  9. A Global Analysis of Deforestation in Moist Tropical Forest Protected Areas.

    Science.gov (United States)

    Spracklen, B D; Kalamandeen, M; Galbraith, D; Gloor, E; Spracklen, D V

    2015-01-01

    Protected areas (PAs) have been established to conserve tropical forests, but their effectiveness at reducing deforestation is uncertain. To explore this issue, we combined high resolution data of global forest loss over the period 2000-2012 with data on PAs. For each PA we quantified forest loss within the PA, in buffer zones 1, 5, 10 and 15 km outside the PA boundary as well as a 1 km buffer within the PA boundary. We analysed 3376 tropical and subtropical moist forest PAs in 56 countries over 4 continents. We found that 73% of PAs experienced substantial deforestation pressure, with >0.1% a(-1) forest loss in the outer 1 km buffer. Forest loss within PAs was greatest in Asia (0.25% a(-1)) compared to Africa (0.1% a(-1)), the Neotropics (0.1% a(-1)) and Australasia (Australia and Papua New Guinea; 0.03% a(-1)). We defined performance (P) of a PA as the ratio of forest loss in the inner 1 km buffer compared to the loss that would have occurred in the absence of the PA, calculated as the loss in the outer 1 km buffer corrected for any difference in deforestation pressure between the two buffers. To remove the potential bias due to terrain, we analysed a subset of PAs (n = 1804) where slope and elevation in inner and outer 1 km buffers were similar (within 1° and 100 m, respectively). We found 41% of PAs in this subset reduced forest loss in the inner buffer by at least 25% compared to the expected inner buffer forest loss (P<0.75). Median performance (P) of subset reserves was 0.87, meaning a reduction in forest loss within the PA of 13%. We found PAs were most effective in Australasia (P = 0.16), moderately successful in the Neotropics (P = 0.72) and Africa (p = 0.83), but ineffective in Asia (P = 1). We found many countries have PAs that give little or no protection to forest loss, particularly in parts of Asia, west Africa and central America. Across the tropics, the median effectiveness of PAs at the national level improved with gross domestic product per

  10. Where are the tropical plants? A call for better inclusion of tropical plants in studies investigating and predicting the effects of climate change

    Directory of Open Access Journals (Sweden)

    Kenneth J Feeley

    2016-01-01

    Full Text Available Tropical plant species are systematically underrepresented in large-scale analyses or synthesis looking at the potential effects of global climate change.  The reason being that we simply don’t know enough about the distributions and ecologies of most tropical plant species to predict their fate under climate change. This gaping hole in our knowledge is extremely worrisome given the high diversity of tropical plants, the crucial roles that they play in supporting global diversity and ecosystem function, and the elevated threats that climate change may pose to tropical species in general.  

  11. Contrasting the co-variability of daytime cloud and precipitation over tropical land and ocean

    Science.gov (United States)

    Jin, Daeho; Oreopoulos, Lazaros; Lee, Dongmin; Cho, Nayeong; Tan, Jackson

    2018-03-01

    The co-variability of cloud and precipitation in the extended tropics (35° N-35° S) is investigated using contemporaneous data sets for a 13-year period. The goal is to quantify potential relationships between cloud type fractions and precipitation events of particular strength. Particular attention is paid to whether the relationships exhibit different characteristics over tropical land and ocean. A primary analysis metric is the correlation coefficient between fractions of individual cloud types and frequencies within precipitation histogram bins that have been matched in time and space. The cloud type fractions are derived from Moderate Resolution Imaging Spectroradiometer (MODIS) joint histograms of cloud top pressure and cloud optical thickness in 1° grid cells, and the precipitation frequencies come from the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) data set aggregated to the same grid.It is found that the strongest coupling (positive correlation) between clouds and precipitation occurs over ocean for cumulonimbus clouds and the heaviest rainfall. While the same cloud type and rainfall bin are also best correlated over land compared to other combinations, the correlation magnitude is weaker than over ocean. The difference is attributed to the greater size of convective systems over ocean. It is also found that both over ocean and land the anti-correlation of strong precipitation with weak (i.e., thin and/or low) cloud types is of greater absolute strength than positive correlations between weak cloud types and weak precipitation. Cloud type co-occurrence relationships explain some of the cloud-precipitation anti-correlations. Weak correlations between weaker rainfall and clouds indicate poor predictability for precipitation when cloud types are known, and this is even more true over land than over ocean.

  12. A modelling study of the event-based retention performance of green roof under the hot-humid tropical climate in Kuching.

    Science.gov (United States)

    Chai, C T; Putuhena, F J; Selaman, O S

    2017-12-01

    The influences of climate on the retention capability of green roof have been widely discussed in existing literature. However, knowledge on how the retention capability of green roof is affected by the tropical climate is limited. This paper highlights the retention performance of the green roof situated in Kuching under hot-humid tropical climatic conditions. Using the green roof water balance modelling approach, this study simulated the hourly runoff generated from a virtual green roof from November 2012 to October 2013 based on past meteorological data. The result showed that the overall retention performance was satisfactory with a mean retention rate of 72.5% from 380 analysed rainfall events but reduced to 12.0% only for the events that potentially trigger the occurrence of flash flood. By performing the Spearman rank's correlation analysis, it was found that the rainfall depth and mean rainfall intensity, individually, had a strong negative correlation with event retention rate, suggesting that the retention rate increases with decreased rainfall depth. The expected direct relationship between retention rate and antecedent dry weather period was found to be event size dependent.

  13. Evaluation of CMIP5 twentieth century rainfall simulation over the equatorial East Africa

    Science.gov (United States)

    Ongoma, Victor; Chen, Haishan; Gao, Chujie

    2018-02-01

    This study assesses the performance of 22 Coupled Model Intercomparison Project Phase 5 (CMIP5) historical simulations of rainfall over East Africa (EA) against reanalyzed datasets during 1951-2005. The datasets were sourced from Global Precipitation Climatology Centre (GPCC) and Climate Research Unit (CRU). The metrics used to rank CMIP5 Global Circulation Models (GCMs) based on their performance in reproducing the observed rainfall include correlation coefficient, standard deviation, bias, percentage bias, root mean square error, and trend. Performances of individual models vary widely. The overall performance of the models over EA is generally low. The models reproduce the observed bimodal rainfall over EA. However, majority of them overestimate and underestimate the October-December (OND) and March-May (MAM) rainfall, respectively. The monthly (inter-annual) correlation between model and reanalyzed is high (low). More than a third of the models show a positive bias of the annual rainfall. High standard deviation in rainfall is recorded in the Lake Victoria Basin, central Kenya, and eastern Tanzania. A number of models reproduce the spatial standard deviation of rainfall during MAM season as compared to OND. The top eight models that produce rainfall over EA relatively well are as follows: CanESM2, CESM1-CAM5, CMCC-CESM, CNRM-CM5, CSIRO-Mk3-6-0, EC-EARTH, INMCM4, and MICROC5. Although these results form a fairly good basis for selection of GCMs for carrying out climate projections and downscaling over EA, it is evident that there is still need for critical improvement in rainfall-related processes in the models assessed. Therefore, climate users are advised to use the projections of rainfall from CMIP5 models over EA cautiously when making decisions on adaptation to or mitigation of climate change.

  14. Does GPM-based multi-satellite precipitation enhance rainfall estimates over Pakistan and Bolivia arid regions?

    Science.gov (United States)

    Hussain, Y.; Satgé, F.; Bonnet, M. P.; Pillco, R.; Molina, J.; Timouk, F.; Roig, H.; Martinez-Carvajal, H., Sr.; Gulraiz, A.

    2016-12-01

    Arid regions are sensitive to rainfall variations which are expressed in the form of flooding and droughts. Unfortunately, those regions are poorly monitored and high quality rainfall estimates are still needed. The Global Precipitation Measurement (GPM) mission released two new satellite rainfall products named Integrated Multisatellite Retrievals GPM (IMERG) and Global Satellite Mapping of Precipitation version 6 (GSMaP-v6) bringing the possibility of accurate rainfall monitoring over these countries. This study assessed both products at monthly scale over Pakistan considering dry and wet season over the 4 main climatic zones from 2014 to 2016. With similar climatic conditions, the Altiplano region of Bolivia is considered to quantify the influence of big lakes (Titicaca and Poopó) in rainfall estimates. For comparison, the widely used TRMM-Multisatellite Precipitation Analysis 3B43 (TMPA-3B43) version 7 is also involved in the analysis to observe the potential enhancement in rainfall estimate brought by GPM products. Rainfall estimates derived from 110 rain-gauges are used as reference to compare IMERG, GSMaP-v6 and TMPA-3B43 at the 0.1° and 0.25° spatial resolution. Over both regions, IMERG and GSMaP-v6 capture the spatial pattern of precipitation as well as TMPA-3B43. All products tend to over estimates rainfall over very arid regions. This feature is even more marked during dry season. However, during this season, both reference and estimated rainfall remain very low and do not impact seasonal water budget computation. On a general way, IMERG slightly outperforms TMPA-3B43 and GSMaP-v6 which provides the less accurate rainfall estimate. The TMPA-3B43 rainfall underestimation previously found over Lake Titicaca is still observed in IMERG estimates. However, GSMaP-v6 considerably decreases the underestimation providing the most accurate rainfall estimate over the lake. MOD11C3 Land Surface Temperature (LST) and ASTER Global Emissivity Dataset reveal strong

  15. Progress in tropical isotope dendroclimatology

    Science.gov (United States)

    Evans, M. N.; Schrag, D. P.; Poussart, P. F.; Anchukaitis, K. J.

    2005-12-01

    The terrestrial tropics remain an important gap in the growing high resolution proxy network used to characterize the mean state and variability of the hydrological cycle. Here we review early efforts to develop a new class of proxy paleorainfall/humidity indicators using intraseasonal to interannual-resolution stable isotope data from tropical trees. The approach invokes a recently published model of oxygen isotopic composition of alpha-cellulose, rapid methods for cellulose extraction from raw wood, and continuous flow isotope ratio mass spectrometry to develop proxy chronological, rainfall and growth rate estimates from tropical trees, even those lacking annual rings. Isotopically-derived age models may be confirmed for modern intervals using trees of known age, radiocarbon measurements, direct measurements of tree diameter, and time series replication. Studies are now underway at a number of laboratories on samples from Costa Rica, northwestern coastal Peru, Indonesia, Thailand, New Guinea, Paraguay, Brazil, India, and the South American Altiplano. Improved sample extraction chemistry and online pyrolysis techniques should increase sample throughput, precision, and time series replication. Statistical calibration together with simple forward modeling based on the well-observed modern period can provide for objective interpretation of the data. Ultimately, replicated data series with well-defined uncertainties can be entered into multiproxy efforts to define aspects of tropical hydrological variability associated with ENSO, the meridional overturning circulation, and the monsoon systems.

  16. Seasonal prediction of East Asian summer rainfall using a multi-model ensemble system

    Science.gov (United States)

    Ahn, Joong-Bae; Lee, Doo-Young; Yoo, Jin‑Ho

    2015-04-01

    Using the retrospective forecasts of seven state-of-the-art coupled models and their multi-model ensemble (MME) for boreal summers, the prediction skills of climate models in the western tropical Pacific (WTP) and East Asian region are assessed. The prediction of summer rainfall anomalies in East Asia is difficult, while the WTP has a strong correlation between model prediction and observation. We focus on developing a new approach to further enhance the seasonal prediction skill for summer rainfall in East Asia and investigate the influence of convective activity in the WTP on East Asian summer rainfall. By analyzing the characteristics of the WTP convection, two distinct patterns associated with El Niño-Southern Oscillation developing and decaying modes are identified. Based on the multiple linear regression method, the East Asia Rainfall Index (EARI) is developed by using the interannual variability of the normalized Maritime continent-WTP Indices (MPIs), as potentially useful predictors for rainfall prediction over East Asia, obtained from the above two main patterns. For East Asian summer rainfall, the EARI has superior performance to the East Asia summer monsoon index or each MPI. Therefore, the regressed rainfall from EARI also shows a strong relationship with the observed East Asian summer rainfall pattern. In addition, we evaluate the prediction skill of the East Asia reconstructed rainfall obtained by hybrid dynamical-statistical approach using the cross-validated EARI from the individual models and their MME. The results show that the rainfalls reconstructed from simulations capture the general features of observed precipitation in East Asia quite well. This study convincingly demonstrates that rainfall prediction skill is considerably improved by using a hybrid dynamical-statistical approach compared to the dynamical forecast alone. Acknowledgements This work was carried out with the support of Rural Development Administration Cooperative Research

  17. Height-diameter allometry of tropical forest trees

    Science.gov (United States)

    T.R. Feldpausch; L. Banin; O.L. Phillips; T.R. Baker; S.L. Lewis; C.A. Quesada; K. Affum-Baffoe; E.J.M.M. Arets; N.J. Berry; M. Bird; E.S. Brondizio; P de Camargo; J. Chave; G. Djagbletey; T.F. Domingues; M. Drescher; P.M. Fearnside; M.B. Franca; N.M. Fyllas; G. Lopez-Gonzalez; A. Hladik; N. Higuchi; M.O. Hunter; Y. Iida; K.A. Salim; A.R. Kassim; M. Keller; J. Kemp; D.A. King; J.C. Lovett; B.S. Marimon; B.H. Marimon-Junior; E. Lenza; A.R. Marshall; D.J. Metcalfe; E.T.A. Mitchard; E.F. Moran; B.W. Nelson; R. Nilus; E.M. Nogueira; M. Palace; S. Patiño; K.S.-H. Peh; M.T. Raventos; J.M. Reitsma; G. Saiz; F. Schrodt; B. Sonke; H.E. Taedoumg; S. Tan; L. White; H. Woll; J. Lloyd

    2011-01-01

    Tropical tree height-diameter (H:D) relationships may vary by forest type and region making large-scale estimates of above-ground biomass subject to bias if they ignore these differences in stem allometry. We have therefore developed a new global tropical forest database consisting of 39 955 concurrent H and D measurements encompassing 283 sites in 22 tropical...

  18. Wet tropical climate in SE Tibet during the Late Eocene.

    Science.gov (United States)

    Sorrel, Philippe; Eymard, Ines; Leloup, Philippe-Herve; Maheo, Gweltaz; Olivier, Nicolas; Sterb, Mary; Gourbet, Loraine; Wang, Guocan; Jing, Wu; Lu, Haijian; Li, Haibing; Yadong, Xu; Zhang, Kexin; Cao, Kai; Chevalier, Marie-Luce; Replumaz, Anne

    2017-08-10

    Cenozoic climate cooling at the advent of the Eocene-Oligocene transition (EOT), ~33.7 Ma ago, was stamped in the ocean by a series of climatic events albeit the impact of this global climatic transition on terrestrial environments is still fragmentary. Yet archival constraints on Late Eocene atmospheric circulation are scarce in (tropical) monsoonal Asia, and the paucity of terrestrial records hampers a meaningful comparison of the long-term climatic trends between oceanic and continental realms. Here we report new sedimentological data from the Jianchuan basin (SE Tibet) arguing for wetter climatic conditions in monsoonal Asia at ~35.5 Ma almost coevally to the aridification recognized northwards in the Xining basin. We show that the occurrence of flash-flood events in semi-arid to sub-humid palustrine-sublacustrine settings preceded the development of coal-bearing deposits in swampy-like environments, thus paving the way to a more humid climate in SE Tibet ahead from the EOT. We suggest that this moisture redistribution possibly reflects more northern and intensified ITCZ-induced tropical rainfall in monsoonal Asia around 35.5 Ma, in accordance with recent sea-surface temperature reconstructions from equatorial oceanic records. Our findings thus highlight an important period of climatic upheaval in terrestrial Asian environments ~2-4 millions years prior to the EOT.

  19. Changes in precipitation extremes projected by a 20-km mesh global atmospheric model

    Directory of Open Access Journals (Sweden)

    Akio Kitoh

    2016-03-01

    Full Text Available High-resolution modeling is necessary to project weather and climate extremes and their future changes under global warming. A global high-resolution atmospheric general circulation model with grid size about 20 km is able to reproduce climate fields as well as regional-scale phenomena such as monsoonal rainfall, tropical and extratropical cyclones, and heavy precipitation. This 20-km mesh model is applied to project future changes in weather and climate extremes at the end of the 21st century with four different spatial patterns in sea surface temperature (SST changes: one with the mean SST changes by the 28 models of the Coupled Model Intercomparison Project Phase 5 (CMIP5 under the Representative Concentration Pathways (RCP-8.5 scenario, and the other three obtained from a cluster analysis, in which tropical SST anomalies derived from the 28 CMIP5 models were grouped. Here we focus on future changes in regional precipitation and its extremes. Various precipitation indices averaged over the Twenty-two regional land domains are calculated. Heavy precipitation indices (maximum 5-day precipitation total and maximum 1-day precipitation total increase in all regional domains, even where mean precipitation decrease (Southern Africa, South Europe/Mediterranean, Central America. South Asia is the domain of the largest extreme precipitation increase. In some domains, different SST patterns result in large precipitation changes, possibly related to changes in large-scale circulations in the tropical Pacific.

  20. Determination of mean rainfall from the Special Sensor Microwave/Imager (SSM/I) using a mixed lognormal distribution

    Science.gov (United States)

    Berg, Wesley; Chase, Robert

    1992-01-01

    Global estimates of monthly, seasonal, and annual oceanic rainfall are computed for a period of one year using data from the Special Sensor Microwave/Imager (SSM/I). Instantaneous rainfall estimates are derived from brightness temperature values obtained from the satellite data using the Hughes D-matrix algorithm. The instantaneous rainfall estimates are stored in 1 deg square bins over the global oceans for each month. A mixed probability distribution combining a lognormal distribution describing the positive rainfall values and a spike at zero describing the observations indicating no rainfall is used to compute mean values. The resulting data for the period of interest are fitted to a lognormal distribution by using a maximum-likelihood. Mean values are computed for the mixed distribution and qualitative comparisons with published historical results as well as quantitative comparisons with corresponding in situ raingage data are performed.

  1. Frequency of Tropical Ocean Deep Convection and Global Warming

    Science.gov (United States)

    Aumann, H. H.; Behrangi, A.; Ruzmaikin, A.

    2017-12-01

    The average of 36 CMIP5 models predicts about 3K of warming and a 4.7% increase in precipitation for the tropical oceans with a doubling of the CO2 by the end of this century. For this scenario we evaluate the increase in the frequency of Deep Convective Clouds (DCC) in the tropical oceans. We select only DCC which reach or penetrate the tropopause in the 15 km AIRS footprint. The evaluation is based on Probability Distribution Functions (PDFs) of the current temperatures of the tropical oceans, those predicted by the mean of the CMIP5 models and the PDF of the DCC process. The PDF of the DCC process is derived from the Atmospheric Infrared Sounder (AIRS) between the years 2003 and 2016. During this time the variability due Enso years provided a 1 K p-p change in the mean tropical SST. The key parameter is the SST associated with the onset of the DCC process. This parameter shifts only 0.5 K for each K of warming of the oceans. As a result the frequency of DCC is expected to increases by the end of this century by about 50% above the current frequency.

  2. Increasing potential for intense tropical and subtropical thunderstorms under global warming.

    Science.gov (United States)

    Singh, Martin S; Kuang, Zhiming; Maloney, Eric D; Hannah, Walter M; Wolding, Brandon O

    2017-10-31

    Intense thunderstorms produce rapid cloud updrafts and may be associated with a range of destructive weather events. An important ingredient in measures of the potential for intense thunderstorms is the convective available potential energy (CAPE). Climate models project increases in summertime mean CAPE in the tropics and subtropics in response to global warming, but the physical mechanisms responsible for such increases and the implications for future thunderstorm activity remain uncertain. Here, we show that high percentiles of the CAPE distribution (CAPE extremes) also increase robustly with warming across the tropics and subtropics in an ensemble of state-of-the-art climate models, implying strong increases in the frequency of occurrence of environments conducive to intense thunderstorms in future climate projections. The increase in CAPE extremes is consistent with a recently proposed theoretical model in which CAPE depends on the influence of convective entrainment on the tropospheric lapse rate, and we demonstrate the importance of this influence for simulated CAPE extremes using a climate model in which the convective entrainment rate is varied. We further show that the theoretical model is able to account for the climatological relationship between CAPE and a measure of lower-tropospheric humidity in simulations and in observations. Our results provide a physical basis on which to understand projected future increases in intense thunderstorm potential, and they suggest that an important mechanism that contributes to such increases may be present in Earth's atmosphere. Published under the PNAS license.

  3. On the Relationship of Rainfall and Temperature across Amazonia

    Science.gov (United States)

    Ribeiro Lima, C. H.; AghaKouchak, A.

    2017-12-01

    Extreme droughts in Amazonia seem to become more frequent and have been associated with local and global impacts on society and the ecosystem. The understanding of the dynamics and causes of Amazonia droughts have attracted some attention in the last years and pose several challenges for the scientific community. For instance, in previous work we have identified, based on empirical data, a compounding effect during Amazonia droughts: periods of low rainfall are always associated with positive anomalies of near surface air temperature. This inverse relationship of temperature and rainfall appears at multiple time scales and its intensity varies across Amazonia. To our knowledge, these findings have not been properly addressed in the literature, being not clear whether there is a causal relationship between these two variables, and in this case, which one leads the other one, or they are just responding to the same causal factor. Here we investigate the hypothesis that high temperatures during drought periods are a major response to an increase in the shortwave radiation (due to the lack of clouds) not compensating by an expected increase in the evapotranspiration from the rainforest. Our empirical analysis is based on observed series of daily temperature and rainfall over the Brazilian Amazonia and reanalysis data of cloud cover, outgoing longwave radiation (OLR) and moisture fluxes. The ability of Global Circulation Models (GCMs) to reproduce such compounding effect is also investigated for the historical period and for future RCP scenarios of global climate change. Preliminary results show that this is a plausible hypothesis, despite the complexity of land-atmosphere processes of mass and energy fluxes in Amazonia. This work is a step forward in better understanding the compounding effects of rainfall and temperature on Amazonia droughts, and what changes one might expect in a future warming climate.

  4. Precipitation Characteristics in Tropical Africa Using Satellite and In-Situ Observations

    Science.gov (United States)

    Dezfuli, Amin; Ichoku, Charles; Huffman, George; Mohr, Karen

    2017-01-01

    Tropical Africa receives nearly all its precipitation as a result of convection. The characteristics of rain-producing systems in this region, despite their crucial role in regional and global circulation, have not been well-understood. This is mainly due to the lack of in situ observations. Here, we have used precipitation records from the Trans-African Hydro-Meteorological Observatory (TAHMO) to improve our knowledge about the rainfall systems in the region, and to validate the recently-released IMERG precipitation product. The high temporal resolution of the gauge data has allowed us to identify three classes of rain events based on their duration and intensity. The contribution of each class to the total rainfall and the favorable surface atmospheric conditions for each class have been examined. As IMERG aims to continue the legacy of its predecessor, TMPA, and provide higher resolution data, continent-wide comparisons are made between these two products. IMERG, due to its improved temporal resolution, shows some advantages over TMPA in capturing the diurnal cycle and propagation of the meso-scale convective systems. However, the performance of the two satellite-based products varies by season, region and the evaluation statistics. The results of this study serve as a basis for our ongoing work on the impacts of biomass burning on precipitation processes in Africa.

  5. Comparing the urbanization and global warming impacts on extreme rainfall characteristics in Southern China Pearl River Delta megacity based on dynamical downscaling

    Science.gov (United States)

    Fung, K. Y.; Tam, C. Y.; Wang, Z.

    2017-12-01

    It is well known that urban land use can significantly influence the local temperature, precipitation and meteorology through altering land-atmosphere exchange of momentum, moisture and heat in urban areas. In recent decades, there has been a substantial increase ( 5-10%) on the intensity of extreme rainfall over Southeast China; it is projected to increase further according to the latest IPCC reports. In this study, we assess how urbanization and global warming together might impact on heavy precipitation characteristics over the highly urbanized Pearl River Delta (PRD) megacity, located in southern China. This is done by dynamically downscaling GFDL-ESM2M simulations for the present and future (RCP8.5) climate scenarios, using the Weather Research and Forecasting (WRF) model coupled with a single-layer urban canopy model (UCM). Over the PRD area, the WRF model is integrated at a resolution of 2km x 2km. To focus on extreme events, episodes covering daily rainfall intensity above the 99th percentile in Southeast China in the GFDL-ESM2M daily precipitation datasets were first identified. These extreme episodes were then dynamically downscaled in two parallel experiments with the following model designs: one with anthropogenic heat flux (AH) = 0 Wm-2 and the other with peak AH = 300 Wm-2 in the AH diurnal cycle over the urban domain. Results show that, with AH in urban area, the urban 2m-temperature can rise by about 2oC. This in turn leads to an increase of the mean as well as the extreme rain rates by 10-15% in urban domain. The latter is comparable to the impact of global warming alone, according to downscaling experiments for the RCP8.5 scenario. Implications of our results on urban effects on extreme rainfall under a warming background climate will be discussed.

  6. Rainfall Imprint on Sea Surface Salinity in the ITCZ: new satellite perspectives

    Science.gov (United States)

    Boutin, J.; Viltard, N.; Supply, A.; Martin, N.; Vergely, J. L.; Hénocq, C.; Reverdin, G. P.

    2016-02-01

    The European Soil Moisture and Ocean Salinity (SMOS) satellite mission monitors sea surface salinity (SSS) over the global ocean for more than 5 years since 2010. The MADRAS microwave radiometer carried by the French (CNES) Indian (ISRO) satellite mission Megha-Tropiques sampled the 30° N-30° S region end of 2011 and in 2012, very complementary to other Global Precipitation Measurement(GPM) missions. In tropical regions, SMOS SSS contains a large imprint of atmospheric rainfall, but is also likely affected by oceanographic processes (advection and diffusion). At local and short time scales, Boutin et al. (2013, 2014) have shown that the spatio-temporal variability of SSS is dominated by rainfall as detected by satellite microwave radiometers and have demonstrated a close to linear relationship between SMOS SSS freshening under rain cells and satellite rain rate. The order of magnitude is in remarkable agreement with the theoretical renewal model of Schlussel et al. (1997) and compatible with AQUARIUS SSS observations, as well as with in situ drifters observations although the latter are local and taken at 45cm depth while satellite L-band SSS roughly correspond to the top 1cm depth and are spatially integrated over 43-150km. It is thus expected that the combined information of satellite rain rates and satellite SSS brings new constraints on the precipitation budget. We first look at the consistency between the spatial structures of SMOS SSS decrease and of rain rates derived either from the MADRAS microwave radiometer or from the CMORPH combined products that do not use MADRAS rain rates. This provides an indirect validation of the rain rates estimates. We then investigate the impact of rain history and of wind speed on the observed SMOS freshening. Based on these results, we discuss the precision on various precipitation estimates over 2012 in the ITCZ region and the major sources of uncertainties that the SPURS2 campaign could help to resolve.

  7. Global change impacts on mangrove ecosystems

    Science.gov (United States)

    McKee, Karen L.

    2004-01-01

    Mangroves are tropical/subtropical communities of primarily tree species that grow in the intertidal zone. These tidal forests are important coastal ecosystems that are valued for a variety of ecological and societal goods and services. Major local threats to mangrove ecosystems worldwide include clearcutting and trimming of forests for urban, agricultural, or industrial expansion; hydrological alterations; toxic chemical spills; and eutrophication. In many countries with mangroves, much of the human population resides in the coastal zone, and their activities often negatively impact the integrity of mangrove forests. In addition, eutrophication, which is the process whereby nutrients build up to higher than normal levels in a natural system, is possibly one of the most serious threats to mangroves and associated ecosystems such as coral reefs. Scientists with the U.S. Geological Survey (USGS) at the National Wetlands Research Center are working to more fully understand global impacts on these significant ecosystems.Changes in climate and other factors may also affect mangroves, but in complex ways. Global warming may promote expansion of mangrove forests to higher latitudes and accelerate sea-level rise through melting of polar ice or steric expansion of oceans. Changes in sea level would alter flooding patterns and the structure and areal extent of mangroves. Climate change may also alter rainfall patterns, which would in turn change local salinity regimes and competitive interactions of mangroves with other wetland species. Increases in frequency or intensity of tropical storms and hurricanes in combination with sea-level rise may alter erosion and sedimentation rates in mangrove forests. Another global change factor that may directly affect mangrove growth is increased atmospheric carbon dioxide (CO2), caused by burning of fossil fuels and other factors. Elevated CO2 concentration may increase mangrove growth by stimulating photosynthesis or improving water use

  8. Regimes of Diurnal Variation of Summer Rainfall over Subtropical East Asia

    Energy Technology Data Exchange (ETDEWEB)

    Yuan W.; Lin W.; Yu, R.; Zhang, M.; Chen, H.; Li, J.

    2012-05-01

    Using hourly rain gauge records and Tropical Rainfall Measuring Mission 3B42 from 1998 to 2006, the authors present an analysis of the diurnal characteristics of summer rainfall over subtropical East Asia. The study shows that there are four different regimes of distinct diurnal variation of rainfall in both the rain gauge and the satellite data. They are located over the Tibetan Plateau with late-afternoon and midnight peaks, in the western China plain with midnight to early-morning peaks, in the eastern China plain with double peaks in late afternoon and early morning, and over the East China Sea with an early-morning peak. No propagation of diurnal phases is found from the land to the ocean across the coastlines. The different diurnal regimes are highly correlated with the inhomogeneous underlying surface, such as the plateau, plain, and ocean, with physical mechanisms consistent with the large-scale 'mountain-valley' and 'land-sea' breezes and convective instability. These diurnal characteristics over subtropical East Asia can be used as diagnostic metrics to evaluate the physical parameterization and hydrological cycle of climate models over East Asia.

  9. Prediction of Meiyu rainfall in Taiwan by multi-lead physical-empirical models

    Science.gov (United States)

    Yim, So-Young; Wang, Bin; Xing, Wen; Lu, Mong-Ming

    2015-06-01

    Taiwan is located at the dividing point of the tropical and subtropical monsoons over East Asia. Taiwan has double rainy seasons, the Meiyu in May-June and the Typhoon rains in August-September. To predict the amount of Meiyu rainfall is of profound importance to disaster preparedness and water resource management. The seasonal forecast of May-June Meiyu rainfall has been a challenge to current dynamical models and the factors controlling Taiwan Meiyu variability has eluded climate scientists for decades. Here we investigate the physical processes that are possibly important for leading to significant fluctuation of the Taiwan Meiyu rainfall. Based on this understanding, we develop a physical-empirical model to predict Taiwan Meiyu rainfall at a lead time of 0- (end of April), 1-, and 2-month, respectively. Three physically consequential and complementary predictors are used: (1) a contrasting sea surface temperature (SST) tendency in the Indo-Pacific warm pool, (2) the tripolar SST tendency in North Atlantic that is associated with North Atlantic Oscillation, and (3) a surface warming tendency in northeast Asia. These precursors foreshadow an enhanced Philippine Sea anticyclonic anomalies and the anomalous cyclone near the southeastern China in the ensuing summer, which together favor increasing Taiwan Meiyu rainfall. Note that the identified precursors at various lead-times represent essentially the same physical processes, suggesting the robustness of the predictors. The physical empirical model made by these predictors is capable of capturing the Taiwan rainfall variability with a significant cross-validated temporal correlation coefficient skill of 0.75, 0.64, and 0.61 for 1979-2012 at the 0-, 1-, and 2-month lead time, respectively. The physical-empirical model concept used here can be extended to summer monsoon rainfall prediction over the Southeast Asia and other regions.

  10. Evaluation of WRF Performance Driven by GISS-E2-R Global Model for the 2014 Rainy Season in Mexico

    Science.gov (United States)

    Almanza, V.; Zavala, M. A.; Lei, W.; Shindell, D. T.; Molina, L. T.

    2017-12-01

    Precipitation and cloud fields as well as the spatial distribution of emissions are important during the estimation of the radiative effects of atmospheric pollutants in future climate applications. In particular, landfalling hurricanes and tropical storms greatly affect the amount and distribution of annual precipitation, and thus have a direct impact on the wet deposition of pollutants and aerosol-cloud interactions. Therefore, long-term simulations in chemistry mode driven by the outputs of a global model need to consider the influence of these phenomena on the radiative effects, particularly for countries such as Mexico that have high number of landfalling hurricanes and tropical storms. In this work the NASA earth system GISS-E2-R global model is downscaled with the WRF model over a domain encompassing Mexico. We use the North American Regional Reanalysis (NARR) and Era-Interim reanalysis, along with available surface observations and data from the Tropical Rainfall Measuring Mission (TRMM) products to evaluate the contribution of spectral nudging, domain size and resolution in resolving the precipitation and cloud fraction fields for the rainy season in 2014. We focus on this year since 10 tropical cyclones made landfall in central Mexico. The results of the evaluation are useful to assess the performance of the model in representing the present conditions of precipitation and cloud fraction in Mexico. In addition, it provides guidelines for conducting the operational runs in chemistry mode for the future years.

  11. Convective and Stratiform Precipitation Processes and their Relationship to Latent Heating

    Science.gov (United States)

    Tao, Wei-Kuo; Lang, Steve; Zeng, Xiping; Shige, Shoichi; Takayabu, Yukari

    2009-01-01

    The global hydrological cycle is central to the Earth's climate system, with rainfall and the physics of its formation acting as the key links in the cycle. Two-thirds of global rainfall occurs in the Tropics. Associated with this rainfall is a vast amount of heat, which is known as latent heat. It arises mainly due to the phase change of water vapor condensing into liquid droplets; three-fourths of the total heat energy available to the Earth's atmosphere comes from tropical rainfall. In addition, fresh water provided by tropical rainfall and its variability exerts a large impact upon the structure and motions of the upper ocean layer. An improved convective -stratiform heating (CSH) algorithm has been developed to obtain the 3D structure of cloud heating over the Tropics based on two sources of information: 1) rainfall information, namely its amount and the fraction due to light rain intensity, observed directly from the Precipitation Radar (PR) on board the TRMM satellite and 2) synthetic cloud physics information obtained from cloud-resolving model (CRM) simulations of cloud systems. The cloud simulations provide details on cloud processes, specifically latent heating, eddy heat flux convergence and radiative heating/cooling, that. are not directly observable by satellite. The new CSH algorithm-derived heating has a noticeably different heating structure over both ocean and land regions compared to the previous CSH algorithm. One of the major differences between new and old algorithms is that the level of maximum cloud heating occurs 1 to 1.5 km lower in the atmosphere in the new algorithm. This can effect the structure of the implied air currents associated with the general circulation of the atmosphere in the Tropics. The new CSH algorithm will be used provide retrieved heating data to other heating algorithms to supplement their performance.

  12. Remote sensing-based characterization of rainfall during atmospheric rivers over the central United States

    Science.gov (United States)

    Nayak, Munir A.; Villarini, Gabriele

    2018-01-01

    Atmospheric rivers (ARs) play a central role in the hydrology and hydroclimatology of the central United States. More than 25% of the annual rainfall is associated with ARs over much of this region, with many large flood events tied to their occurrence. Despite the relevance of these storms for flood hydrology and water budget, the characteristics of rainfall associated with ARs over the central United has not been investigated thus far. This study fills this major scientific gap by describing the rainfall during ARs over the central United States using five remote sensing-based precipitation products over a 12-year study period. The products we consider are: Stage IV, Tropical Rainfall Measuring Mission - Multi-satellite Precipitation Analysis (TMPA, both real-time and research version); Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN); the CPC MORPHing Technique (CMORPH). As part of the study, we evaluate these products against a rain gauge-based dataset using both graphical- and metrics-based diagnostics. Based on our analyses, Stage IV is found to better reproduce the reference data. Hence, we use it for the characterization of rainfall in ARs. Most of the AR-rainfall is located in a narrow region within ∼150 km on both sides of the AR major axis. In this region, rainfall has a pronounced positive relationship with the magnitude of the water vapor transport. Moreover, we have also identified a consistent increase in rainfall intensity with duration (or persistence) of AR conditions. However, there is not a strong indication of diurnal variability in AR rainfall. These results can be directly used in developing flood protection strategies during ARs. Further, weather prediction agencies can benefit from the results of this study to achieve higher skill of resolving precipitation processes in their models.

  13. Relationships between southeastern Australian rainfall and sea surface temperatures examined using a climate model

    Science.gov (United States)

    Watterson, I. G.

    2010-05-01

    Rainfall in southeastern Australia has declined in recent years, particularly during austral autumn over the state of Victoria. A recent study suggests that sea surface temperature (SST) variations in both the Indonesian Throughflow (ITF) region and in a meridional dipole in the central Indian Ocean have influenced Victorian late autumn rainfall since 1950. However, it remains unclear to what extent SSTs in these and other regions force such a teleconnection. Analysis of a 1080 year simulation by the climate model CSIRO Mk3.5 shows that the model Victorian rainfall is correlated rather realistically with SSTs but that part of the above relationships is due to the model ENSO. Furthermore, the remote patterns of pressure, rainfall, and land temperature greatly diminish when the data are lagged by 1 month, suggesting that the true forcing by the persisting SSTs is weak. In a series of simulations of the atmospheric Mk3.5 with idealized SST anomalies, raised SSTs to the east of Indonesia lower the simulated Australian rainfall, while those to the west raise it. A positive ITF anomaly lowers pressure over Australia, but with little effect on Victorian rainfall. The meridional dipole and SSTs to the west and southeast of Australia have little direct effect on southeastern Australia in the model. The results suggest that tropical SSTs predominate as an influence on Victorian rainfall. However, the SST indices appear to explain only a fraction of the observed trend, which in the case of decadal means remains within the range of unforced variability simulated by Mk3.5.

  14. Changes in tropical cyclones under stabilized 1.5 and 2.0 °C global warming scenarios as simulated by the Community Atmospheric Model under the HAPPI protocols

    Science.gov (United States)

    Wehner, Michael F.; Reed, Kevin A.; Loring, Burlen; Stone, Dáithí; Krishnan, Harinarayan

    2018-02-01

    The United Nations Framework Convention on Climate Change (UNFCCC) invited the scientific community to explore the impacts of a world in which anthropogenic global warming is stabilized at only 1.5 °C above preindustrial average temperatures. We present a projection of future tropical cyclone statistics for both 1.5 and 2.0 °C stabilized warming scenarios with direct numerical simulation using a high-resolution global climate model. As in similar projections at higher warming levels, we find that even at these low warming levels the most intense tropical cyclones become more frequent and more intense, while simultaneously the frequency of weaker tropical storms is decreased. We also conclude that in the 1.5 °C stabilization, the effect of aerosol forcing changes complicates the interpretation of greenhouse gas forcing changes.

  15. Dry/Wet Conditions Monitoring Based on TRMM Rainfall Data and Its Reliability Validation over Poyang Lake Basin, China

    Directory of Open Access Journals (Sweden)

    Xianghu Li

    2013-11-01

    Full Text Available Local dry/wet conditions are of great concern in regional water resource and floods/droughts disaster risk management. Satellite-based precipitation products have greatly improved their accuracy and applicability and are expected to offer an alternative to ground rain gauges data. This paper investigated the capability of Tropical Rainfall Measuring Mission (TRMM rainfall data for monitoring the temporal and spatial variation of dry/wet conditions in Poyang Lake basin during 1998–2010, and validated its reliability with rain gauges data from 14 national meteorological stations in the basin. The results show that: (1 the daily TRMM rainfall data does not describe the occurrence and contribution rates of precipitation accurately, but monthly TRMM data have a good linear relationship with rain gauges rainfall data; (2 both the Z index and Standardized Precipitation Index (SPI based on monthly TRMM rainfall data oscillate around zero and show a consistent interannual variability as compared with rain gauges data; (3 the spatial pattern of moisture status, either in dry months or wet months, based on both the Z index and SPI using TRMM data, agree with the observed rainfall. In conclusion, the monthly TRMM rainfall data can be used for monitoring the variation and spatial distribution of dry/wet conditions in Poyang Lake basin.

  16. Seasonal variation and climate change impact in Rainfall Erosivity across Europe

    Science.gov (United States)

    Panagos, Panos; Borrelli, Pasquale; Meusburger, Katrin; Alewell, Christine; Ballabio, Cristiano

    2017-04-01

    residues, reduced tillage) in regions with high erosivity. Besides soil erosion mapping, the intra-annual analysis of rainfall erosivity is an important step towards flood prevention, hazard mitigation, ecosystem services, land use change and agricultural production. The application of REDES in combination with moderate climate change scenarios scenario (HadGEM RCP 4.5) resulted in predictions of erosivity in 2050. The overall increase of rainfall erosivity in Europe by 18% until 2050 are in line with projected increases of 17% for the U.S.A. The predicted mean rise of erosivity is also expected to increase the threat of soil erosion in Europe. The most noticeable increase of erosivity is projected for North-Central Europe, the English Channel, The Netherlands and Northern France. On the contrary, the Mediterranean basin show mixed trends. The success story with the compilation of REDES and first rainfall erosivity map of Europe was a driver to implement a Global Rainfall Erosivity Database (GloREDa). During the last 3 years, JRC was leading an effort to collect high temporal resolution rainfall data worldwide. In collaboration with 50 scientists worldwide and 100+ Meteorological and environmental Organisations, we have developed a Global Erosivity Database. In this database, we managed to include calculated erosivity values for 3,625 stations covering 63 countries worldwide.

  17. Implementing a Global Tool for Mercy Corps Based on Spatially Continuous Precipitation Analysis for Resiliency Monitoring and Measuring at the Community-Scale

    Science.gov (United States)

    Tomlin, J. N.; El-Behaedi, R.; McCartney, S.; Lingo, R.; Thieme, A.

    2017-12-01

    Global water resources are important for societies, economies, and the environment. In Niger, limited water resources restrict the expansion of agriculture and communities. Mercy Corps currently works in over 40 countries around the world to address a variety of stresses which include water resources and building long-term food resilience. As Mercy Corps seeks to integrate the use of Earth observations, NASA has established a partnership to help facilitate this effort incorporating Tropical Rainfall Measuring Mission (TRMM), Global Precipitation Measurement (GPM), and Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) data to create a standardized precipitation index that highlights low and high rainfall from 1981 - 2016. The team created a Google Earth Engine tool that combines precipitation data with other metrics of stress in Niger. The system is designed to be able to incorporate groundwater storage data as it becomes available. This tool allows for near real-time updates of trends in precipitation and improves Mercy Corps' ability to spatially evaluate changes in resiliency by monitoring shocks and stressors.

  18. The Use of Satellite Microwave Rainfall Measurements to Predict Eastern North Pacific Tropical Cyclone Intensity

    National Research Council Canada - National Science Library

    West, Derek

    1998-01-01

    .... Relationships between parameters obtained from an operational SSM/I based rainfall measuring algorithm and current intensity and ensuing 12, 24, 36, 48, 60, and 72 hour intensity changes from best...

  19. The interaction between deep convective clouds and their environment

    NARCIS (Netherlands)

    Böing, S.J.

    2014-01-01

    Deep convective clouds play a key role in tropical weather patterns, summertime rainfall, and the global transport of energy from the tropics to higher latitudes. Current weather and climate models struggle to realistically represent the development and behavior of these clouds. Both the timing of

  20. Climatic Variations in Tropical West African Rainfall and the Implications for Military Planners

    National Research Council Canada - National Science Library

    Montgomery, Christi S

    2008-01-01

    ...) and El Nino/La Nina (ENLN) events in the tropical Pacific. Our primary data sets were the National Centers for Environmental Prediction / National Center for Atmospheric Research reanalysis fields and the Multivariate ENSO Index (MEI...

  1. Estimating productivity of tropical forest plantations by climatic factors

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, D.

    1996-12-31

    This study presents an alternative method of estimating wood production at regional/global levels from tropical plantations based on climatic variables. A generic model for estimating potential yield in tropical plantations was formulated. The model was developed for teak (Tectona grandis L. F.) as a case study. Available data of teak sample plots from India, Myanmar, Indonesia, Nigeria and Ivory Coast, consisting of 153 plots distributed over 38 meteorological stations were used. A new base age invariant site index function was developed and the site index of each plot was estimated. The mean annual volume increment (MAI) of each plot from existing yield tables was then interpolated. Treating MAI at 50 years (rotation age) as potential yield of teak, a model was constructed which could explain about 59% variance of the potential yield. Models constructed for estimating the maximum MAI and the site index of teak explained the variability up to 61% and 57% respectively. The models underestimated the productivity of teak in Indonesia, Nigeria and Ivory Coast. The rainfall and the relative humidity have been identified as the most important climatic variables influencing the growth of teak. The length of the growing season and the temperature of the warmest month of the growing season were found significant in the models. The temperature and the day length (sunshine) have not been found to be the limiting factors for the growth of teak. However, the maximum temperature beyond a certain upper limit has a negative effect on growth. The study indicates that this upper limit is around 33 deg C for teak. The models could be used to forecast the potential yield of the existing as well as planned teak plantations in the tropical region. 109 refs, 15 figs, 11 tabs

  2. Forecasting and Warning of Tropical Cyclones in China

    Directory of Open Access Journals (Sweden)

    Bangzhong Wang

    2007-10-01

    Full Text Available With the development of the global economy, the impact of tropical cyclones has become far-reaching. Thus they are a fundamental issue to be addressed both nationally and globally. The socio-economic impact is particularly noticeable in developing countries, especially China. This paper begins with the effects of cyclones on regional and global economies. Then a brief introduction to the past and current situations and progress in cyclones forecasting and warning in China are presented. Finally the paper gives recommendations about improving and perfecting the tropical cyclone forecasting and warning systems.

  3. Long-range transport of airborne microbes over the global tropical and subtropical ocean

    KAUST Repository

    Mayol, Eva; Arrieta, J M; Jimé nez, Maria A.; Martí nez-Asensio, Adriá n; Garcias Bonet, Neus; Dachs, Jordi; Gonzá lez-Gaya, Belé n; Royer, Sarah-J.; Bení tez-Barrios, Veró nica M.; Fraile-Nuez, Eugenio; Duarte, Carlos M.

    2017-01-01

    The atmosphere plays a fundamental role in the transport of microbes across the planet but it is often neglected as a microbial habitat. Although the ocean represents two thirds of the Earth's surface, there is little information on the atmospheric microbial load over the open ocean. Here we provide a global estimate of microbial loads and air-sea exchanges over the tropical and subtropical oceans based on the data collected along the Malaspina 2010 Circumnavigation Expedition. Total loads of airborne prokaryotes and eukaryotes were estimated at 2.2 × 1021 and 2.1 × 1021 cells, respectively. Overall 33-68% of these microorganisms could be traced to a marine origin, being transported thousands of kilometres before re-entering the ocean. Moreover, our results show a substantial load of terrestrial microbes transported over the oceans, with abundances declining exponentially with distance from land and indicate that islands may act as stepping stones facilitating the transoceanic transport of terrestrial microbes.The extent to which the ocean acts as a sink and source of airborne particles to the atmosphere is unresolved. Here, the authors report high microbial loads over the tropical Atlantic, Pacific and Indian oceans and propose islands as stepping stones for the transoceanic transport of terrestrial microbes..

  4. Long-range transport of airborne microbes over the global tropical and subtropical ocean

    KAUST Repository

    Mayol, Eva

    2017-07-28

    The atmosphere plays a fundamental role in the transport of microbes across the planet but it is often neglected as a microbial habitat. Although the ocean represents two thirds of the Earth\\'s surface, there is little information on the atmospheric microbial load over the open ocean. Here we provide a global estimate of microbial loads and air-sea exchanges over the tropical and subtropical oceans based on the data collected along the Malaspina 2010 Circumnavigation Expedition. Total loads of airborne prokaryotes and eukaryotes were estimated at 2.2 × 1021 and 2.1 × 1021 cells, respectively. Overall 33-68% of these microorganisms could be traced to a marine origin, being transported thousands of kilometres before re-entering the ocean. Moreover, our results show a substantial load of terrestrial microbes transported over the oceans, with abundances declining exponentially with distance from land and indicate that islands may act as stepping stones facilitating the transoceanic transport of terrestrial microbes.The extent to which the ocean acts as a sink and source of airborne particles to the atmosphere is unresolved. Here, the authors report high microbial loads over the tropical Atlantic, Pacific and Indian oceans and propose islands as stepping stones for the transoceanic transport of terrestrial microbes..

  5. Relative Contributions of Electrified Shower Clouds and Thunderstorms to the Global Circuit: Can 10 Years of TRMM Data Help Solve an Old Puzzle? (Invited)

    Science.gov (United States)

    Zipser, E. J.; Liu, C.; Williams, E.; Burns, G. B.

    2010-12-01

    The long-standing mainstay of support for C.T.R. Wilson’s global circuit hypothesis is the similarity between the diurnal variation of thunderstorm days in universal time, and the Carnegie curve of electrical potential gradient (Whipple, 1929). This rough agreement has sustained the widespread view that thunderstorms are the “batteries” for the global electrical circuit. This study utilizes 10 years of Tropical Rainfall Measuring Mission (TRMM) observations to quantify the global occurrence of thunderstorms with much better accuracy and validate the comparison by Whipple 80 years ago. The results support Wilson’s (1920) original ideas that both thunderstorms and electrified shower clouds contribute to the DC global circuit by virtue of negative charge carried downward by precipitation. First, the precipitation features (PFs) are defined by grouping the pixels with rain using 10 years of TRMM observations. Thunderstorms are identified from these PFs with lightning flashes observed by the Lightning Imaging Sensor. PFs without lightning flashes but with the 30 dBZ radar echo top temperature below -10oC over land and -17 oC over ocean are selected as possibly electrified shower clouds. The universal diurnal variation of rainfall, raining area from the thunderstorms and possibly electrified shower clouds in different seasons are derived and compared with the diurnal variations of the electric field observed at Vostok, Antarctica. The result shows a substantially better match from the updated diurnal variations of the thunderstorm area to the Carnegie curve than Whipple showed. One reason for the improvement is that the TRMM data are able to distinguish the relatively larger contributions from electrified shower clouds than thunderstorms over tropical oceans and over the Amazon. Potential further refinements to the current algorithm defining electrified convective cells are discussed.

  6. Variability of radiatively forced diurnal cycle of intense convection in the tropical west pacific

    Energy Technology Data Exchange (ETDEWEB)

    Gray, W.M.; Sheaffer, J.D.; Thorson, W.B. [Colorado State Univ., Fort Collins, CO (United States)

    1996-04-01

    Strong differences occur in daytime versus nighttime (DVN) net radiative cooling in clear versus cloudy areas of the tropical atmosphere. Daytime average cooling is approximately -0.7{degrees}C/day, whereas nighttime net tropospheric cooling rates are about -1.5{degrees}C/day, an approximately two-to-one difference. The comparatively strong nocturnal cooling in clear areas gives rise to a diurnally varying vertical circulation and horizontal convergence cycle. Various manifestations of this cyclic process include the observed early morning heavy rainfall maxima over the tropical oceans. The radiatively driven DVN circulation appears to strongly modulate the resulting diurnal cycle of intense convection which creates the highest, coldest cloudiness over maritime tropical areas and is likely a fundamental mechanism governing both small and large scale dynamics over much of the tropical environment.

  7. Extent of Night Warming and Spatially Heterogeneous Cloudiness Differentiate Temporal Trend of Greenness in Mountainous Tropics in the New Century.

    Science.gov (United States)

    Yu, Mei; Gao, Qiong; Gao, Chunxiao; Wang, Chao

    2017-01-25

    Tropical forests have essential functions in global C dynamics but vulnerable to changes in land cover land use (LCLUC) and climate. The tropics of Caribbean are experiencing warming and drying climate and diverse LCLUC. However, large-scale studies to detect long-term trends of C and mechanisms behind are still rare. Using MODIS Enhanced Vegetation Index (EVI), we investigated greenness trend in the Greater Antilles Caribbean during 2000-2015, and analyzed trend of vegetation patches without LCLUC to give prominence to climate impacts. We hypothesized that night warming and heavy cloudiness would reduce EVI in this mountainous tropical region. Over the 15 years, EVI decreased significantly in Jamaica, Haiti, Dominican Republic, and Puerto Rico, but increased in Cuba partly due to its strong reforestation. Haiti had the largest decreasing trend because of continuous deforestation for charcoals. After LCLUC was excluded, EVI trend still varied greatly, decreasing in the windward but increasing in the leeward of Puerto Rico. Nighttime warming reinforced by spatially heterogeneous cloudiness was found to significantly and negatively correlate with EVI trend, and explained the spatial pattern of the latter. Although cooled daytime and increased rainfall might enhance EVI, nighttime warming dominated the climate impacts and differentiated the EVI trend.

  8. An analysis of rainfall patterns in Nigeria | Odjugo | Global Journal of ...

    African Journals Online (AJOL)

    The rainfall pattern has also enhanced wind erosion/desertification, soil erosion and coastal flooding in the north, east and coastal areas of Nigeria respectively. With these impacts, the paper therefore recommends some adaptive and mitigation measures that could help to revert the current situation. Keywords: changing ...

  9. Should seasonal rainfall forecasts be used for flood preparedness?

    Directory of Open Access Journals (Sweden)

    E. Coughlan de Perez

    2017-09-01

    Full Text Available In light of strong encouragement for disaster managers to use climate services for flood preparation, we question whether seasonal rainfall forecasts should indeed be used as indicators of the likelihood of flooding. Here, we investigate the primary indicators of flooding at the seasonal timescale across sub-Saharan Africa. Given the sparsity of hydrological observations, we input bias-corrected reanalysis rainfall into the Global Flood Awareness System to identify seasonal indicators of floodiness. Results demonstrate that in some regions of western, central, and eastern Africa with typically wet climates, even a perfect tercile forecast of seasonal total rainfall would provide little to no indication of the seasonal likelihood of flooding. The number of extreme events within a season shows the highest correlations with floodiness consistently across regions. Otherwise, results vary across climate regimes: floodiness in arid regions in southern and eastern Africa shows the strongest correlations with seasonal average soil moisture and seasonal total rainfall. Floodiness in wetter climates of western and central Africa and Madagascar shows the strongest relationship with measures of the intensity of seasonal rainfall. Measures of rainfall patterns, such as the length of dry spells, are least related to seasonal floodiness across the continent. Ultimately, identifying the drivers of seasonal flooding can be used to improve forecast information for flood preparedness and to avoid misleading decision-makers.

  10. Future climate change enhances rainfall seasonality in a regional model of western Maritime Continent

    Science.gov (United States)

    Kang, Suchul; Im, Eun-Soon; Eltahir, Elfatih A. B.

    2018-03-01

    In this study, future changes in rainfall due to global climate change are investigated over the western Maritime Continent based on dynamically downscaled climate projections using the MIT Regional Climate Model (MRCM) with 12 km horizontal resolution. A total of nine 30-year regional climate projections driven by multi-GCMs projections (CCSM4, MPI-ESM-MR and ACCESS1.0) under multi-scenarios of greenhouse gases emissions (Historical: 1976-2005, RCP4.5 and RCP8.5: 2071-2100) from phase 5 of the Coupled Model Inter-comparison Project (CMIP5) are analyzed. Focusing on dynamically downscaled rainfall fields, the associated systematic biases originating from GCM and MRCM are removed based on observations using Parametric Quantile Mapping method in order to enhance the reliability of future projections. The MRCM simulations with bias correction capture the spatial patterns of seasonal rainfall as well as the frequency distribution of daily rainfall. Based on projected rainfall changes under both RCP4.5 and RCP8.5 scenarios, the ensemble of MRCM simulations project a significant decrease in rainfall over the western Maritime Continent during the inter-monsoon periods while the change in rainfall is not relevant during wet season. The main mechanism behind the simulated decrease in rainfall is rooted in asymmetries of the projected changes in seasonal dynamics of the meridional circulation along different latitudes. The sinking motion, which is marginally positioned in the reference simulation, is enhanced and expanded under global climate change, particularly in RCP8.5 scenario during boreal fall season. The projected enhancement of rainfall seasonality over the western Maritime Continent suggests increased risk of water stress for natural ecosystems as well as man-made water resources reservoirs.

  11. Large scale atmospheric tropical circulation changes and consequences during global warming

    International Nuclear Information System (INIS)

    Gastineau, G.

    2008-01-01

    The changes of the tropical large scale circulation during climate change can have large impacts on human activities. In a first part, the meridional atmospheric tropical circulation was studied in the different coupled models. During climate change, we find, on the one hand, that the Hadley meridional circulation and the subtropical jet are significantly shifted poleward, and on the other hand, that the intensity of the tropical circulation weakens. The slow down of the atmospheric circulation results from the dry static stability changes affecting the tropical troposphere. Secondly, idealized simulations are used to explain the tropical circulation changes. Ensemble simulation using the model LMDZ4 are set up to study the results from the coupled model IPSLCM4. The weakening of the large scale tropical circulation and the poleward shift of the Hadley cells are explained by both the uniform change and the meridional gradient change of the sea surface temperature. Then, we used the atmospheric model LMDZ4 in an aqua-planet configuration. The Hadley circulation changes are explained in a simple framework by the required poleward energy transport. In a last part, we focus on the water vapor distribution and feedback in the climate models. The Hadley circulation changes were shown to have a significant impact on the water vapour feedback during climate change. (author)

  12. Soil losses from typic cambisols and red latosol as related to three erosive rainfall patterns

    Directory of Open Access Journals (Sweden)

    Regimeire Freitas Aquino

    2013-02-01

    Full Text Available Rainfall erosivity is one of the main factors related to water erosion in the tropics. This work focused on relating soil loss from a typic dystrophic Tb Haplic Cambisol (CXbd and a typic dystrophic Red Latosol (LVdf to different patterns of natural erosive rainfall. The experimental plots of approximately 26 m² (3 x 8.67 m consisted of a CXbd area with a 0.15 m m-1 slope and a LVdf area with 0.12 m m-1 slope, both delimited by galvanized plates. Drainpipes were installed at the lower part of these plots to collect runoff, interconnected with a Geib or multislot divisor. To calculate erosivity (EI30, rainfall data, recorded continuously at a weather station in Lavras, were used. The data of erosive rainfall events were measured (10 mm precipitation intervals, accuracy 0.2 mm, 24 h period, 20 min intervals, characterized as rainfall events with more than 10 mm precipitation, maximum intensity > 24 mm h-1 within 15 min, or kinetic energy > 3.6 MJ, which were used in this study to calculate the rainfall erosivity parameter, were classified according to the moment of peak precipitation intensity in advanced, intermediate and delayed patterns. Among the 139 erosive rainfall events with CXbd soil loss, 60 % were attributed to the advanced pattern, with a loss of 415.9 Mg ha-1, and total losses of 776.0 Mg ha-1. As for the LVdf, of the 93 erosive rainfall events with soil loss, 58 % were listed in the advanced pattern, with 37.8 Mg ha-1 soil loss and 50.9 Mg ha-1 of total soil loss. The greatest soil losses were observed in the advanced rain pattern, especially for the CXbd. From the Cambisol, the soil loss per rainfall event was greatest for the advanced pattern, being influenced by the low soil permeability.

  13. GARP Atlantic Tropical Experiment

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The GARP Atlantic Tropical Experiment (GATE) was the first major international experiment of the Global Atmospheric Research Program (GARP). It was conducted over...

  14. Resolving Tropical Cyclone Intensity in Models

    Science.gov (United States)

    Davis, C. A.

    2018-02-01

    In recent years, global weather forecast models and global climate models have begun to depict intense tropical cyclones, even up to category 5 on the Saffir-Simpson scale. In light of the limitation of horizontal resolution in such models, the author performs calculations, using the extended Best Track data for Atlantic tropical cyclones, to estimate the ability of models with differing grid spacing to represent Atlantic tropical cyclone intensity statistically. Results indicate that, under optimistic assumptions, models with horizontal grid spacing of one fourth degree or coarser should not produce a realistic number of category 4 and 5 storms unless there are errors in spatial attributes of the wind field. Furthermore, the case of Irma (2017) is used to demonstrate the importance of a realistic depiction of angular momentum and to motivate the use of angular momentum in model evaluation.

  15. Using satellite-based rainfall estimates for streamflow modelling: Bagmati Basin

    Science.gov (United States)

    Shrestha, M.S.; Artan, Guleid A.; Bajracharya, S.R.; Sharma, R. R.

    2008-01-01

    In this study, we have described a hydrologic modelling system that uses satellite-based rainfall estimates and weather forecast data for the Bagmati River Basin of Nepal. The hydrologic model described is the US Geological Survey (USGS) Geospatial Stream Flow Model (GeoSFM). The GeoSFM is a spatially semidistributed, physically based hydrologic model. We have used the GeoSFM to estimate the streamflow of the Bagmati Basin at Pandhera Dovan hydrometric station. To determine the hydrologic connectivity, we have used the USGS Hydro1k DEM dataset. The model was forced by daily estimates of rainfall and evapotranspiration derived from weather model data. The rainfall estimates used for the modelling are those produced by the National Oceanic and Atmospheric Administration Climate Prediction Centre and observed at ground rain gauge stations. The model parameters were estimated from globally available soil and land cover datasets – the Digital Soil Map of the World by FAO and the USGS Global Land Cover dataset. The model predicted the daily streamflow at Pandhera Dovan gauging station. The comparison of the simulated and observed flows at Pandhera Dovan showed that the GeoSFM model performed well in simulating the flows of the Bagmati Basin.

  16. Summer monsoon rainfall variability over North East regions of India and its association with Eurasian snow, Atlantic Sea Surface temperature and Arctic Oscillation

    Science.gov (United States)

    Prabhu, Amita; Oh, Jaiho; Kim, In-won; Kripalani, R. H.; Mitra, A. K.; Pandithurai, G.

    2017-10-01

    This observational study during the 29-year period from 1979 to 2007 evaluates the potential role of Eurasian snow in modulating the North East-Indian Summer Monsoon Rainfall with a lead time of almost 6 months. This link is manifested by the changes in high-latitude atmospheric winter snow variability over Eurasia associated with Arctic Oscillation (AO). Excessive wintertime Eurasian snow leads to an anomalous cooling of the overlying atmosphere and is associated with the negative mode of AO, inducing a meridional wave-train descending over the tropical north Atlantic and is associated with cooling of this region. Once the cold anomalies are established over the tropical Atlantic, it persists up to the following summer leading to an anomalous zonal wave-train further inducing a descending branch over NE-India resulting in weak summer monsoon rainfall.

  17. Global Precipitation Analyses at Time Scales of Monthly to 3-Hourly

    Science.gov (United States)

    Adler, Robert F.; Huffman, George; Curtis, Scott; Bolvin, David; Nelkin, Eric; Einaudi, Franco (Technical Monitor)

    2002-01-01

    Global precipitation analysis covering the last few decades and the impact of the new TRMM precipitation observations are discussed. The 20+ year, monthly, globally complete precipitation analysis of the World Climate Research Program's (WCRP/GEWEX) Global Precipitation Climatology Project (GPCP) is used to explore global and regional variations and trends and is compared to the much shorter TRMM (Tropical Rainfall Measuring Mission) tropical data set. The GPCP data set shows no significant trend in precipitation over the twenty years, unlike the positive trend in global surface temperatures over the past century. Regional trends are also analyzed. A trend pattern that is a combination of both El Nino and La Nina precipitation features is evident in the Goodyear data set. This pattern is related to an increase with time in the number of combined months of El Nino and La Nina during the Goodyear period. Monthly anomalies of precipitation are related to ENRON variations with clear signals extending into middle and high latitudes of both hemispheres. The GPCP daily, 1 degree latitude-longitude analysis, which is available from January 1997 to the present is described and the evolution of precipitation patterns on this time scale related to El Nino and La Nina is described. Finally, a TRMM-based Based analysis is described that uses TRMM to calibrate polar-orbit microwave observations from SSM/I and geosynchronous OR observations and merges the various calibrated observations into a final, Baehr resolution map. This TRMM standard product will be available for the entire TRMM period (January Represent). A real-time version of this merged product is being produced and is available at 0.25 degree latitude-longitude resolution over the latitude range from 50 deg. N -50 deg. S. Examples will be shown, including its use in monitoring flood conditions.

  18. Hydrological control of large hurricane-induced lahars: evidence from rainfall-runoff modeling, seismic and video monitoring

    Science.gov (United States)

    Capra, Lucia; Coviello, Velio; Borselli, Lorenzo; Márquez-Ramírez, Víctor-Hugo; Arámbula-Mendoza, Raul

    2018-03-01

    The Volcán de Colima, one of the most active volcanoes in Mexico, is commonly affected by tropical rains related to hurricanes that form over the Pacific Ocean. In 2011, 2013 and 2015 hurricanes Jova, Manuel and Patricia, respectively, triggered tropical storms that deposited up to 400 mm of rain in 36 h, with maximum intensities of 50 mm h -1. The effects were devastating, with the formation of multiple lahars along La Lumbre and Montegrande ravines, which are the most active channels in sediment delivery on the south-southwest flank of the volcano. Deep erosion along the river channels and several marginal landslides were observed, and the arrival of block-rich flow fronts resulted in damages to bridges and paved roads in the distal reaches of the ravines. The temporal sequence of these flow events is reconstructed and analyzed using monitoring data (including video images, seismic records and rainfall data) with respect to the rainfall characteristics and the hydrologic response of the watersheds based on rainfall-runoff numerical simulation. For the studied events, lahars occurred 5-6 h after the onset of rainfall, lasted several hours and were characterized by several pulses with block-rich fronts and a maximum flow discharge of 900 m3 s -1. Rainfall-runoff simulations were performer using the SCS-curve number and the Green-Ampt infiltration models, providing a similar result in the detection of simulated maximum watershed peaks discharge. Results show different behavior for the arrival times of the first lahar pulses that correlate with the simulated catchment's peak discharge for La Lumbre ravine and with the peaks in rainfall intensity for Montegrande ravine. This different behavior is related to the area and shape of the two watersheds. Nevertheless, in all analyzed cases, the largest lahar pulse always corresponds with the last one and correlates with the simulated maximum peak discharge of these catchments. Data presented here show that flow pulses

  19. Detecting Climate Signals in Precipitation Extremes from TRMM (1998-2013) - Increasing Contrast Between Wet and Dry Extremes During the "Global Warming Hiatus"

    Science.gov (United States)

    Wu, Huey-Tzu Jenny; Lau, William K.-M.

    2016-01-01

    We investigate changes in daily precipitation extremes using Tropical Rainfall Measuring Mission (TRMM) data (1998-2013), which coincides with the "global warming hiatus." Results show a change in probability distribution functions of local precipitation events (LPEs) during this period consistent with previous global warming studies, indicating increasing contrast between wet and dry extremes, with more intense LPE, less moderate LPE, and more dry (no rain) days globally. Analyses for land and ocean separately reveal more complex and nuanced changes over land, characterized by a strong positive trend (+12.0% per decade, 99% confidence level (c.l.)) in frequency of extreme LPEs over the Northern Hemisphere extratropics during the wet season but a negative global trend (-6.6% per decade, 95% c.l.) during the dry season. A significant global drying trend (3.2% per decade, 99% c.l.) over land is also found during the dry season. Regions of pronounced increased dry events include western and central U.S., northeastern Asia, and Southern Europe/Mediterranean.

  20. Terrestrial water flux responses to global warming in tropical rainforest areas

    Science.gov (United States)

    Lan, Chia-Wei; Lo, Min-Hui; Chou, Chia; Kumar, Sanjiv

    2016-05-01

    Precipitation extremes are expected to become more frequent in the changing global climate, which may considerably affect the terrestrial hydrological cycle. In this study, Coupled Model Intercomparison Project Phase 5 archives have been examined to explore the changes in normalized terrestrial water fluxes (precipitation minus evapotranspiration minus total runoff, divided by the precipitation climatology) in three tropical rainforest areas: Maritime Continent, Congo, and Amazon. Results show that a higher frequency of intense precipitation events is predicted for the Maritime Continent in the future climate than in the present climate, but not for the Amazon or Congo rainforests. Nonlinear responses to extreme precipitation lead to a reduced groundwater recharge and a proportionately greater amount of direct runoff, particularly for the Maritime Continent, where both the amount and intensity of precipitation increase under global warming. We suggest that the nonlinear response is related to the existence of a higher near-surface soil moisture over the Maritime Continent than that over the Amazon and Congo rainforests. The wetter soil over the Maritime Continent also leads to an increased subsurface runoff. Thus, increased precipitation extremes and concomitantly reduced terrestrial water fluxes lead to an intensified hydrological cycle for the Maritime Continent. This has the potential to result in a strong temporal heterogeneity in soil water distribution affecting the ecosystem of the rainforest region and increasing the risk of flooding and/or landslides.

  1. Heterogeneity of Dutch rainfall

    NARCIS (Netherlands)

    Witter, J.V.

    1984-01-01

    Rainfall data for the Netherlands have been used in this study to investigate aspects of heterogeneity of rainfall, in particular local differences in rainfall levels, time trends in rainfall, and local differences in rainfall trend. The possible effect of urbanization and industrialization on the

  2. Study of the global and regional climatic impacts of ENSO magnitude using SPEEDY AGCM

    KAUST Repository

    Dogar, Muhammad Mubashar; Kucharski, Fred; Azharuddin, Syed

    2017-01-01

    ENSO is considered as a strong atmospheric teleconnection that has pronounced global and regional circulation effects. It modifies global monsoon system, especially, Asian and African monsoons. Previous studies suggest that both the frequency and magnitude of ENSO events have increased over the last few decades resulting in a need to study climatic impacts of ENSO magnitude both at global and regional scales. Hence, to better understand the impact of ENSO amplitude over the tropical and extratropical regions focussing on the Asian and African domains, ENSO sensitivity experiments are conducted using ICTPAGCM (‘SPEEDY’). It is anticipated that the tropical Pacific SST forcing will be enough to produce ENSO-induced teleconnection patterns; therefore, the model is forced using NINO3.4 regressed SST anomalies over the tropical Pacific only. SPEEDY reproduces the impact of ENSO over the Pacific, North and South America and African regions very well. However, it underestimates ENSO teleconnection patterns and associated changes over South Asia, particularly in the Indian region, which suggests that the tropical Pacific SST forcing is not sufficient to represent ENSO-induced teleconnection patterns over South Asia. Therefore, SST forcing over the tropical Indian Ocean together with air–sea coupling is also required for better representation of ENSO-induced changes in these regions. Moreover, results obtained by this pacemaker experiment show that ENSO impacts are relatively stronger over the Inter-Tropical Convergence Zone (ITCZ) compared to extratropics and high latitude regions. The positive phase of ENSO causes weakening in rainfall activity over African tropical rain belt, parts of South and Southeast Asia, whereas, the La Niña phase produces more rain over these regions during the summer season. Model results further reveal that ENSO magnitude has a stronger impact over African Sahel and South Asia, especially over the Indian region because of its significant

  3. Study of the global and regional climatic impacts of ENSO magnitude using SPEEDY AGCM

    KAUST Repository

    Dogar, Muhammad Mubashar

    2017-03-09

    ENSO is considered as a strong atmospheric teleconnection that has pronounced global and regional circulation effects. It modifies global monsoon system, especially, Asian and African monsoons. Previous studies suggest that both the frequency and magnitude of ENSO events have increased over the last few decades resulting in a need to study climatic impacts of ENSO magnitude both at global and regional scales. Hence, to better understand the impact of ENSO amplitude over the tropical and extratropical regions focussing on the Asian and African domains, ENSO sensitivity experiments are conducted using ICTPAGCM (‘SPEEDY’). It is anticipated that the tropical Pacific SST forcing will be enough to produce ENSO-induced teleconnection patterns; therefore, the model is forced using NINO3.4 regressed SST anomalies over the tropical Pacific only. SPEEDY reproduces the impact of ENSO over the Pacific, North and South America and African regions very well. However, it underestimates ENSO teleconnection patterns and associated changes over South Asia, particularly in the Indian region, which suggests that the tropical Pacific SST forcing is not sufficient to represent ENSO-induced teleconnection patterns over South Asia. Therefore, SST forcing over the tropical Indian Ocean together with air–sea coupling is also required for better representation of ENSO-induced changes in these regions. Moreover, results obtained by this pacemaker experiment show that ENSO impacts are relatively stronger over the Inter-Tropical Convergence Zone (ITCZ) compared to extratropics and high latitude regions. The positive phase of ENSO causes weakening in rainfall activity over African tropical rain belt, parts of South and Southeast Asia, whereas, the La Niña phase produces more rain over these regions during the summer season. Model results further reveal that ENSO magnitude has a stronger impact over African Sahel and South Asia, especially over the Indian region because of its significant

  4. Forest structure in low-diversity tropical forests: a study of Hawaiian wet and dry forests.

    Science.gov (United States)

    Ostertag, Rebecca; Inman-Narahari, Faith; Cordell, Susan; Giardina, Christian P; Sack, Lawren

    2014-01-01

    The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS) methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai'i Island. We compared the species diversity, tree density, basal area, biomass, and size class distributions between the two forest types. We then examined these variables across tropical forests within the CTFS network. Consistent with other island forests, the Hawai'i forests were characterized by low species richness and very high relative dominance. The two Hawai'i forests were floristically distinct, yet similar in species richness (15 vs. 21 species) and stem density (3078 vs. 3486/ha). While these forests were selected for their low invasive species cover relative to surrounding forests, both forests averaged 5->50% invasive species cover; ongoing removal will be necessary to reduce or prevent competitive impacts, especially from woody species. The montane wet forest had much larger trees, resulting in eightfold higher basal area and above-ground biomass. Across the CTFS network, the Hawaiian montane wet forest was similar to other tropical forests with respect to diameter distributions, density, and aboveground biomass, while the Hawai'i lowland dry forest was similar in density to tropical forests with much higher diversity. These findings suggest that forest structural variables can be similar across tropical forests independently of species richness. The inclusion of low-diversity Pacific Island forests in the CTFS network provides an ∼80-fold range in species richness (15-1182 species), six-fold variation in mean annual rainfall (835-5272 mm yr(-1)) and 1.8-fold variation in mean annual temperature (16.0-28.4°C). Thus, the Hawaiian forest plots expand the global forest plot network to enable testing of ecological theory for

  5. Forest structure in low-diversity tropical forests: a study of Hawaiian wet and dry forests.

    Directory of Open Access Journals (Sweden)

    Rebecca Ostertag

    Full Text Available The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai'i Island. We compared the species diversity, tree density, basal area, biomass, and size class distributions between the two forest types. We then examined these variables across tropical forests within the CTFS network. Consistent with other island forests, the Hawai'i forests were characterized by low species richness and very high relative dominance. The two Hawai'i forests were floristically distinct, yet similar in species richness (15 vs. 21 species and stem density (3078 vs. 3486/ha. While these forests were selected for their low invasive species cover relative to surrounding forests, both forests averaged 5->50% invasive species cover; ongoing removal will be necessary to reduce or prevent competitive impacts, especially from woody species. The montane wet forest had much larger trees, resulting in eightfold higher basal area and above-ground biomass. Across the CTFS network, the Hawaiian montane wet forest was similar to other tropical forests with respect to diameter distributions, density, and aboveground biomass, while the Hawai'i lowland dry forest was similar in density to tropical forests with much higher diversity. These findings suggest that forest structural variables can be similar across tropical forests independently of species richness. The inclusion of low-diversity Pacific Island forests in the CTFS network provides an ∼80-fold range in species richness (15-1182 species, six-fold variation in mean annual rainfall (835-5272 mm yr(-1 and 1.8-fold variation in mean annual temperature (16.0-28.4°C. Thus, the Hawaiian forest plots expand the global forest plot network to enable testing of ecological

  6. Changes in tropical cyclones under stabilized 1.5 and 2.0 °C global warming scenarios as simulated by the Community Atmospheric Model under the HAPPI protocols

    Directory of Open Access Journals (Sweden)

    M. F. Wehner

    2018-02-01

    Full Text Available The United Nations Framework Convention on Climate Change (UNFCCC invited the scientific community to explore the impacts of a world in which anthropogenic global warming is stabilized at only 1.5 °C above preindustrial average temperatures. We present a projection of future tropical cyclone statistics for both 1.5 and 2.0 °C stabilized warming scenarios with direct numerical simulation using a high-resolution global climate model. As in similar projections at higher warming levels, we find that even at these low warming levels the most intense tropical cyclones become more frequent and more intense, while simultaneously the frequency of weaker tropical storms is decreased. We also conclude that in the 1.5 °C stabilization, the effect of aerosol forcing changes complicates the interpretation of greenhouse gas forcing changes.

  7. Projections of West African summer monsoon rainfall extremes from two CORDEX models

    Science.gov (United States)

    Akinsanola, A. A.; Zhou, Wen

    2018-05-01

    Global warming has a profound impact on the vulnerable environment of West Africa; hence, robust climate projection, especially of rainfall extremes, is quite important. Based on two representative concentration pathway (RCP) scenarios, projected changes in extreme summer rainfall events over West Africa were investigated using data from the Coordinated Regional Climate Downscaling Experiment models. Eight (8) extreme rainfall indices (CDD, CWD, r10mm, r20mm, PRCPTOT, R95pTOT, rx5day, and sdii) defined by the Expert Team on Climate Change Detection and Indices were used in the study. The performance of the regional climate model (RCM) simulations was validated by comparing with GPCP and TRMM observation data sets. Results show that the RCMs reasonably reproduced the observed pattern of extreme rainfall over the region and further added significant value to the driven GCMs over some grids. Compared to the baseline period 1976-2005, future changes (2070-2099) in summer rainfall extremes under the RCP4.5 and RCP8.5 scenarios show statistically significant decreasing total rainfall (PRCPTOT), while consecutive dry days and extreme rainfall events (R95pTOT) are projected to increase significantly. There are obvious indications that simple rainfall intensity (sdii) will increase in the future. This does not amount to an increase in total rainfall but suggests a likelihood of greater intensity of rainfall events. Overall, our results project that West Africa may suffer more natural disasters such as droughts and floods in the future.

  8. Rainfall Erosivity in Europe

    DEFF Research Database (Denmark)

    Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale

    2015-01-01

    Rainfall is one the main drivers of soil erosion. The erosive force of rainfall is expressed as rainfall erosivity. Rainfall erosivity considers the rainfall amount and intensity, and is most commonly expressed as the Rfactor in the USLE model and its revised version, RUSLE. At national...... and continental levels, the scarce availability of data obliges soil erosion modellers to estimate this factor based on rainfall data with only low temporal resolution (daily, monthly, annual averages). The purpose of this study is to assess rainfall erosivity in Europe in the form of the RUSLE R-factor, based...

  9. Which resilience of the continental rainfall-runoff chain?

    Science.gov (United States)

    Fraedrich, Klaus

    2015-04-01

    Processes along the continental rainfall-runoff chain are extremely variable over a wide range of time and space scales. A key societal question is the multiscale resilience of this chain. We argue that the adequate framework to tackle this question can be obtained by combining observations (ranging from minutes to decades) and minimalist concepts: (i) Rainfall exhibits 1/f-spectra if presented as binary events (tropics) and extrema world wide increase with duration according to Jennings' scaling law as simulated by a censored first-order autoregressive process representing vertical moisture fluxes. (ii) Runoff volatility (Yangtze) shows data collapse which, linked to an intra-annual 1/f-spectrum, is represented by a single function (Gumbel) not unlike physical systems at criticality, while short and long return times of extremes are Weibull-distributed. (iii) Soil moisture, interpreted by a biased coinflip Ansatz for rainfall events, provides an equation of state to the surface energy and water flux balances comprising Budyko's framework for quasi-stationary watershed analysis. (iv) Vegetation-greenness (NDVI), included as an active tracer extends Budyko's eco-hydrologic state space analysis, supplements the common geographical presentations, and it may be linked to a minimalist biodiversity concept. (v) Finally, attributions of change to external (or climate) and internal (or anthropogenic) causes are determined by eco-hydrologic state space trajectories using surface flux ratios of energy excess (loss by sensible heat over supply by net radiation) versus water excess (loss by discharge over gain by precipitation). Risk-estimates (by GCM-emulators) and possible policy advice mechanisms enter the outlook.

  10. The Green Ocean Amazon Experiment (GoAmazon2014/5) Observes Pollution Affecting Gases, Aerosols, Clouds, and Rainfall over the Rain Forest

    Energy Technology Data Exchange (ETDEWEB)

    Martin, S. T. [Harvard University, Cambridge, Massachusetts; Artaxo, P. [University of São Paulo, São Paulo, Brazil; Machado, L. [National Institute for Space Research, São José dos Campos, Brazil; Manzi, A. O. [National Institute of Amazonian Research, Manaus, Amazonas, Brazil; Souza, R. A. F. [Amazonas State University, Amazonas, Brazil; Schumacher, C. [Texas A& amp,M University, College Station, Texas; Wang, J. [Brookhaven National Laboratory, Upton, New York; Biscaro, T. [National Institute for Space Research, São José dos Campos, Brazil; Brito, J. [University of São Paulo, São Paulo, Brazil; Calheiros, A. [National Institute for Space Research, São José dos Campos, Brazil; Jardine, K. [Lawrence Berkeley National Lab, Berkeley, California; Medeiros, A. [Amazonas State University, Amazonas, Brazil; Portela, B. [National Institute of Amazonian Research, Manaus, Amazonas, Brazil; de Sá, S. S. [Harvard University, Cambridge, Massachusetts; Adachi, K. [Meteorological Research Institute, Tsukuba, Ibaraki, Japan; Aiken, A. C. [Los Alamos National Laboratory, Los Alamos, New Mexico; Albrecht, R. [University of São Paulo, São Paulo, Brazil; Alexander, L. [Pacific Northwest National Laboratory, Richland, Washington; Andreae, M. O. [Max Planck Institute for Chemistry, Mainz, Germany; Barbosa, H. M. J. [University of São Paulo, São Paulo, Brazil; Buseck, P. [Arizona State University, Tempe, Arizona; Chand, D. [Pacific Northwest National Laboratory, Richland, Washington; Comstock, J. M. [Pacific Northwest National Laboratory, Richland, Washington; Day, D. A. [University of Colorado Boulder, Boulder, Colorado; Dubey, M. [Los Alamos National Laboratory, Los Alamos, New Mexico; Fan, J. [Pacific Northwest National Laboratory, Richland, Washington; Fast, J. [Pacific Northwest National Laboratory, Richland, Washington; Fisch, G. [Aeronautic and Space Institute, São José dos Campos, Brazil; Fortner, E. [Aerodyne, Inc., Billerica, Massachusetts; Giangrande, S. [Brookhaven National Laboratory, Upton, New York; Gilles, M. [Lawrence Berkeley National Lab, Berkeley, California; Goldstein, A. H. [University of California, Berkeley, Berkeley, California; Guenther, A. [University of California, Irvine, Irvine, California; Hubbe, J. [Pacific Northwest National Laboratory, Richland, Washington; Jensen, M. [Brookhaven National Laboratory, Upton, New York; Jimenez, J. L. [University of Colorado Boulder, Boulder, Colorado; Keutsch, F. N. [Harvard University, Cambridge, Massachusetts; Kim, S. [University of California, Irvine, Irvine, California; Kuang, C. [Brookhaven National Laboratory, Upton, New York; Laskin, A. [Pacific Northwest National Laboratory, Richland, Washington; McKinney, K. [Harvard University, Cambridge, Massachusetts; Mei, F. [Pacific Northwest National Laboratory, Richland, Washington; Miller, M. [Rutgers, The State University of New Jersey, New Brunswick, New Jersey; Nascimento, R. [Amazonas State University, Amazonas, Brazil; Pauliquevis, T. [Federal University of São Paulo, São Paulo, Brazil; Pekour, M. [Pacific Northwest National Laboratory, Richland, Washington; Peres, J. [University of São Paulo, São Paulo, Brazil; Petäjä, T. [University of Helsinki, Helsinki, Finland; Pöhlker, C. [Max Planck Institute for Chemistry, Mainz, Germany; Pöschl, U. [Max Planck Institute for Chemistry, Mainz, Germany; Rizzo, L. [Federal University of São Paulo, São Paulo, Brazil; Schmid, B. [Pacific Northwest National Laboratory, Richland, Washington; Shilling, J. E. [Pacific Northwest National Laboratory, Richland, Washington; Dias, M. A. Silva [University of São Paulo, São Paulo, Brazil; Smith, J. N. [University of California, Irvine, Irvine, California; Tomlinson, J. M. [Pacific Northwest National Laboratory, Richland, Washington; Tóta, J. [Federal University of West Para, Santarém, Pará, Brazil; Wendisch, M. [University of Leipzig, Leipzig, Germany

    2017-05-01

    The Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) experiment took place around the urban region of Manaus in central Amazonia across two years. The urban pollution plume was used to study the susceptibility of gases, aerosols, clouds, and rainfall to human activities in a tropical environment. Many aspects of air quality, weather, terrestrial ecosystems, and climate work differently in the tropics than in the more thoroughly studied USA, employed an unparalleled suite of measurements at nine ground sites and onboard two aircraft to investigate the flow of background air into Manaus, the emissions into the air over the city, and the advection of the pollution downwind of the city. Herein, to visualize this train of processes and its effects, observations aboard a low-flying aircraft are presented. Comparative measurements within and adjacent to the plume followed the emissions of biogenic volatile organic carbon compounds (BVOCs) from the tropical forest, their transformations by the atmospheric oxidant cycle, alterations of this cycle by the influence of the pollutants, transformations of the chemical products into aerosol particles, the relationship of these particles to cloud condensation nuclei (CCN) activity, and the differences in cloud properties and rainfall for background compared to polluted conditions. The observations of the GoAmazon2014/5 experiment illustrate how the hydrologic cycle, radiation balance, and carbon recycling may be affected by present-day as well as future economic development and pollution over the Amazonian tropical forest.

  11. A framework of integrated hydrological and hydrodynamic models using synthetic rainfall for flash flood hazard mapping of ungauged catchments in tropical zones

    Directory of Open Access Journals (Sweden)

    W. Lohpaisankrit

    2016-05-01

    Full Text Available Flash flood hazard maps provide a scientific support to mitigate flash flood risk. The present study develops a practical framework with the help of integrated hydrological and hydrodynamic modelling in order to estimate the potential flash floods. We selected a small pilot catchment which has already suffered from flash floods in the past. This catchment is located in the Nan River basin, northern Thailand. Reliable meteorological and hydrometric data are missing in the catchment. Consequently, the entire upper basin of the main river was modelled with the help of the hydrological modelling system PANTA RHEI. In this basin, three monitoring stations are located along the main river. PANTA RHEI was calibrated and validated with the extreme flood events in June 2011 and July 2008, respectively. The results show a good agreement with the observed discharge data. In order to create potential flash flood scenarios, synthetic rainfall series were derived from temporal rainfall patterns based on the radar-rainfall observation and different rainfall depths from regional rainfall frequency analysis. The temporal rainfall patterns were characterized by catchment-averaged rainfall series selected from 13 rainstorms in 2008 and 2011 within the region. For regional rainfall frequency analysis, the well-known L-moments approach and related criteria were used to examine extremely climatic homogeneity of the region. According to the L-moments approach, Generalized Pareto distribution was recognized as the regional frequency distribution. The synthetic rainfall series were fed into the PANTA RHEI model. The simulated results from PANTA RHEI were provided to a 2-D hydrodynamic model (MEADFLOW, and various simulations were performed. Results from the integrated modelling framework are used in the ongoing study to regionalize and map the spatial distribution of flash flood hazards with four levels of flood severities. As an overall outcome, the presented framework

  12. The importance of precessional signals in the tropical climate

    Energy Technology Data Exchange (ETDEWEB)

    Clement, A C [Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149 (United States); Hall, A [UCLA, 7955 Math Sciences Building, 405 Hilgard Ave., Box 951565, Los Angeles, CA 90095 (United States); Broccoli, A J [Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901-8551 (United States)

    2004-04-01

    Past research on the climate response to orbital forcing has emphasized the glacial-interglacial variations in global ice volume, global-mean temperature, and the global hydrologic cycle. This emphasis may be inappropriate in the tropics, where the response to precessional forcing is likely to be somewhat independent of the glacial-interglacial variations, particularly in variables relating to the hydrologic cycle. To illustrate this point, we use an atmospheric general circulation model coupled to a slab ocean model, performing experiments that quantify the tropical climate's response to (1) opposite phases of precessional forcing, and (2) Last Glacial Maximum boundary conditions. While the glacially-forced tropical temperature changes are typically more than an order of magnitude larger than those arising from precessional forcing, the hydrologic signals stemming from the two forcings are comparable in magnitude. The mechanisms behind these signals are investigated and shown to be quite distinct for the precessional and glacial forcing. Because of strong dynamical linkages in the tropics, the model results illustrate the impossibility of predicting the local hydrologic response to external forcing without understanding the response at much larger spatial scales. Examples from the paleoclimate record are presented as additional evidence for the importance of precessional signals in past variations of the tropical climate. (orig.)

  13. The Benjamin H. Kean Travel Fellowship in Tropical Medicine: Assessment of Impact at 15 Years.

    Science.gov (United States)

    Carman, Aubri S; John, Chandy C

    2017-09-01

    The Benjamin H. Kean Fellowship in Tropical Medicine is an American Society of Tropical Medicine and Hygiene initiative that provides medical students with funding for international clinical or research experiences lasting at least 1 month. Of the 175 Kean fellows from 1998 to 2013, 140 had current available e-mails, and 70 of the 140 (50%) responded to a survey about their fellowship experience. Alumni indicated that the Kean Fellowship had a high impact on their career plans with regard to preparation for ( N = 65, 94.2%) and inspiration to pursue ( N = 59, 88.1%) a career in tropical medicine and global health. Continued involvement in tropical medicine and global health was common: 52 alumni (74.3%) were currently working in tropical medicine or global health, 49 (71.0%) had done so in the interim between the Kean fellowship and their current position; and 17 of 19 Kean fellows (89.4%) who had completed all medical training and were now in professional practice continued to work in tropical medicine and global health. Alumni had been highly productive academically, publishing a total of 831 PubMed-indexed manuscripts, almost all on tropical medicine or global health topics, in the period between their fellowship year and 2013. Alumni reported strengths of the fellowship including funding, networking, and flexibility, and suggested that more networking and career mentoring would enhance the program. The Benjamin H. Kean fellowship program has been highly successful at inspiring and fostering ongoing work by trainees in tropical medicine and global health.

  14. Trailblazing the Carbon Cycle of Tropical Forests from Puerto Rico

    Directory of Open Access Journals (Sweden)

    Sandra Brown

    2017-03-01

    Full Text Available We review the literature that led to clarifying the role of tropical forests in the global carbon cycle from a time when they were considered sources of atmospheric carbon to the time when they were found to be atmospheric carbon sinks. This literature originates from work conducted by US Forest Service scientists in Puerto Rico and their collaborators. It involves the classification of forests by life zones, estimation of carbon density by forest type, assessing carbon storage changes with ecological succession and land use/land cover type, describing the details of the carbon cycle of forests at stand and landscape levels, assessing global land cover by forest type and the complexity of land use change in tropical regions, and assessing the ecological fluxes and storages that contribute to net carbon accumulation in tropical forests. We also review recent work that couples field inventory data, remote sensing technology such as LIDAR, and GIS analysis in order to more accurately determine the role of tropical forests in the global carbon cycle and point out new avenues of carbon research that address the responses of tropical forests to environmental change.

  15. Global hotspots of river erosion under global warming

    Science.gov (United States)

    Plink-Bjorklund, P.; Reichler, T.

    2017-12-01

    Extreme precipitation plays a significant role for river hydrology, flood hazards and landscape response. For example, the September 2013 rainstorm in the Colorado Front Range evacuated the equivalent of hundreds to thousands of years of hillslope weathering products. Although promoted by steep topography, the Colorado event is clearly linked to rainfall intensity, since most of the 1100 debris flows occurred within the highest rainfall contour. Additional evidence for a strong link between extreme precipitation and river erosion comes from the sedimentary record, and especially from that of past greenhouse climates. The existence of such a link suggests that information about global rainfall patterns can be used to define regions of increased erosion potential. However, the question arises what rainfall criteria to use and how well the method works. A related question is how ongoing climate change and the corresponding shifts in rainfall might impact the results. Here, we use atmospheric reanalysis and output from a climate model to identify regions that are particularly susceptible to landscape change in response to extreme precipitation. In order to define the regions, we combine several hydroclimatological and geomorphological criteria into a single index of erosion potential. We show that for current climate, our criteria applied to atmospheric reanalysis or to climate model data successfully localize known areas of increased erosion potential, such as the Colorado region. We then apply our criteria to climate model data for future climate to document how the location, extent, and intensity of erosion hotspots are likely to change under global warming.

  16. Global patterns in post-dispersal seed removal by invertebrates and vertebrates.

    Science.gov (United States)

    Peco, Begoña; Laffan, Shawn W; Moles, Angela T

    2014-01-01

    It is commonly accepted that species interactions such as granivory are more intense in the tropics. However, this has rarely been tested. A global dataset of post-dispersal seed removal by invertebrates and vertebrates for 79 native plant species from semi-natural and natural terrestrial habitats ranging from 55° N to 45° S, was compiled from the global literature to test the hypothesis that post-dispersal seed removal by invertebrates and vertebrates is more intense at lower latitudes. We also quantified the relationship between post-dispersal seed removal by vertebrates and by invertebrates to global climatic features including temperature, actual evapotranspiration (AET) and rainfall seasonality. Linear mixed effect models were applied to describe the relationships between seed removal and latitude, hemisphere and climatic variables controlling for the effect of seed mass. Post-dispersal seed removal by invertebrates was negatively related to latitude. In contrast, post-dispersal seed removal by vertebrates was positively but weakly related to latitude. Mean annual temperature and actual evapotranspiration were positively related to post-dispersal seed removal by invertebrates, but not to post-dispersal seed removal by vertebrates, which was only marginally negatively related to rainfall seasonality. The inclusion of seed mass improved the fit of all models, but the term for seed mass was not significant in any model. Although a good climatic model for predicting post-dispersal seed predation by vertebrates at the global level was not found, our results suggest different and opposite latitudinal patterns of post-dispersal seed removal by invertebrates vs vertebrates. This is the first time that a negative relationship between post-dispersal seed removal by invertebrates and latitude, and a positive relationship with temperature and AET have been documented at a global-scale. These results have important implications for understanding global patterns in plant

  17. Compilation of a global N{sub 2}O emission inventory for tropical rainforest soils using a detailed biogeochemical model

    Energy Technology Data Exchange (ETDEWEB)

    Werner, C.

    2007-09-15

    Nitrous oxide (N{sub 2}O) is a potent trace gas contributing to approximately 6% to the observed anthropogenic global warming. Soils have been identified to be the major source of atmospheric N{sub 2}O and tropical rainforest soils are thought to account for the largest part. Furthermore, various studies have shown that the magnitude of N{sub 2}O emissions from tropical rainforest soil is highly variable on spatial and temporal scales. Detailed, process-based models coupled to Geographic Information Systems (GIS) are considered promising tools for the calculation of N{sub 2}O emission inventories. This methodology explicitly accounts for the governing microbial processes as well as the environmental controls. Moreover, mechanistic biogeochemical models operating in daily time-steps (e.g. ForestDNDC-tropica) have been shown to capture the observed intra- and inter-annual variations of N{sub 2}O emissions. However, detailed N{sub 2}O emission datasets are required for model calibration and testing, but are currently few in numbers. In this study an automated measurement system was used to derive detailed datasets of N{sub 2}O, methane (CH{sub 4}) and carbon dioxide (CO{sub 2}) soil-atmosphere exchange and important environmental parameters from tropical rainforest soils in Kenya and Southwest China. Distinct differences were identified in the magnitude of the C and N soil-atmosphere exchange at the investigated sites and forest types. However, common features such as N{sub 2}O pulse emissions after dry season or the pronounced soil moisture dependency of N{sub 2}O emissions were observed at both sites. The derived datasets are unique for these tropical regions as so far no information about the source strength of these regions was available and, for the first time, the N{sub 2}O, CH{sub 4} and CO{sub 2} soil-atmosphere exchange was recorded in sub-daily resolution. The datasets were utilized in conjunction with available high-resolution datasets from Australian

  18. Measuring the burden of neglected tropical diseases: the global burden of disease framework.

    Directory of Open Access Journals (Sweden)

    Colin D Mathers

    2007-11-01

    Full Text Available Reliable, comparable information about the main causes of disease and injury in populations, and how these are changing, is a critical input for debates about priorities in the health sector. Traditional sources of information about the descriptive epidemiology of diseases, injuries, and risk factors are generally incomplete, fragmented, and of uncertain reliability and comparability. The Global Burden of Disease (GBD study has provided a conceptual and methodological framework to quantify and compare the health of populations using a summary measure of both mortality and disability, the disability-adjusted life year (DALY.This paper describes key features of the Global Burden of Disease analytic approach, which provides a standardized measurement framework to permit comparisons across diseases and injuries, as well as risk factors, and a systematic approach to the evaluation of data. The paper describes the evolution of the GBD, starting from the first study for the year 1990, summarizes the methodological improvements incorporated into GBD revisions for the years 2000-2004 carried out by the World Health Organization, and examines priorities and issues for the next major GBD study, funded by the Bill & Melinda Gates Foundation, and commencing in 2007.The paper presents an overview of summary results from the Global Burden of Disease study 2002, with a particular focus on the neglected tropical diseases, and also an overview of the comparative risk assessment for 26 global risk factors. Taken together, trypanosomiasis, Chagas disease, schistosomiasis, leishmaniasis, lymphatic filariasis, onchocerciasis, intestinal nematode infections, Japanese encephalitis, dengue, and leprosy accounted for an estimated 177,000 deaths worldwide in 2002, mostly in sub-Saharan Africa, and about 20 million DALYs, or 1.3% of the global burden of disease and injuries. Further research is currently underway to revise and update these estimates.

  19. Hydrology and Soil Erosion in Tropical Rainforests and Pasture Lands on the Atherton Tablelands, North Queensland, Australia - a rainfall simulator study

    Science.gov (United States)

    Joanne, Joanne; Ciesiolka, Cyril

    2010-05-01

    The Barron and Johnstone Rivers rise in the basaltic Atherton Tableland, North Queensland, Australia, and flow into the Coral Sea and Great Barrier Reef World Heritage Area (GBRWHA). Natural rainforest in this region was cleared for settlement in the early 20th century. Rapid decline in soil fertility during the 1940's and 50's forced landholders to turn to pasture based industries from row crop agriculture. Since then, these pasture based industries have intensified. The intensified land use has been linked to increases in sediment and nutrient levels in terrestrial runoff and identified as a major environmental threat to the GBRWHA, which has raised alarm for the tourist industry and resource managers. Studies linking land-use to pollutant discharge are often based on measurements and modelling of end of catchment measurements of water quality. Whilst such measurements can be a reasonable indicator of the effects of land use on pollutant discharge to waterways, they are often a gross assessment. This project used rainfall simulations to investigate the relationship between land use and management with sources and sinks of runoff and soil erosion within the Barron and Johnstone Rivers catchments. Rainfall simulations were conducted and pollutant loads measured in natural rainforest, as well as dairy and beef farming systems. The dairy farming systems included an effluent fed pasture, a high mineral fertilizer and supplementary irrigation farm, and a rainfed organic pasture that relied on tropical legumes and introduced grasses and returned organic material to the soil. One of the beef farming systems used a 7-10 day rotation with a low fertilizer regime (kikuyu mostly), while the other, used a long period- two paddock-rotation with no fertiliser and paspalum pastures. The rainforests were generally small isolated enclaves with a well developed shrub layer (1-3 m), and a presence of scattered, deciduous trees. Simulations were carried out on sites which were

  20. Determining the precipitable water vapor thresholds under different rainfall strengths in Taiwan

    Science.gov (United States)

    Yeh, Ta-Kang; Shih, Hsuan-Chang; Wang, Chuan-Sheng; Choy, Suelynn; Chen, Chieh-Hung; Hong, Jing-Shan

    2018-02-01

    Precipitable Water Vapor (PWV) plays an important role for weather forecasting. It is helpful in evaluating the changes of the weather system via observing the distribution of water vapor. The ability of calculating PWV from Global Positioning System (GPS) signals is useful to understand the special weather phenomenon. In this study, 95 ground-based GPS and rainfall stations in Taiwan were utilized from 2006 to 2012 to analyze the relationship between PWV and rainfall. The PWV data were classified into four classes (no, light, moderate and heavy rainfall), and the vertical gradients of the PWV were obtained and the variations of the PWV were analyzed. The results indicated that as the GPS elevation increased every 100 m, the PWV values decreased by 9.5 mm, 11.0 mm, 12.2 mm and 12.3 mm during the no, light, moderate and heavy rainfall conditions, respectively. After applying correction using the vertical gradients mentioned above, the average PWV thresholds were 41.8 mm, 52.9 mm, 62.5 mm and 64.4 mm under the no, light, moderate and heavy rainfall conditions, respectively. This study offers another type of empirical threshold to assist the rainfall prediction and can be used to distinguish the rainfall features between different areas in Taiwan.