WorldWideScience

Sample records for global tropical rainfall

  1. Contribution of tropical cyclones to global rainfall

    Science.gov (United States)

    Khouakhi, Abdou; Villarini, Gabriele; Vecchi, Gabriel; Smith, James

    2016-04-01

    Rainfall associated with tropical cyclones (TCs) can have both devastating and beneficial impacts in different parts of the world. In this work, daily precipitation and historical six-hour best track TC datasets are used to quantify the contribution of TCs to global rainfall. We select 18607 rain gauge stations with at least 25 complete (at least 330 measurements per year) years between 1970 and 2014. We consider rainfall associated with TCs if the center of circulation of the storm passed within a given distance from the rain gauge and within a given time window. Spatial and temporal sensitivity analyses are performed with varying time windows (same day, ±1 day) and buffer radii (400 km and 500 km) around each rain gauge. Results highlight regional differences in TC-induced rainfall. The highest TC-induced precipitation totals (400 to 600+ mm/year) are prevalent along eastern Asia, western and northeastern Australia, and in the western Pacific islands. Stations along the southeast of the U.S. coast and surrounding the Gulf of Mexico receive up to 200 mm/year of TC rainfall. The highest annual fractional contributions of TCs to total rainfall (from 35 to 50%) are recorded in stations located in northwestern Australia, southeastern China, the northern Philippines and the southern Mexico peninsula. Seasonally, the highest proportions (40 to 50%) are recorded along eastern Australia and Mauritius in winter, and in eastern Asia and Mexico in summer and autumn. Analyses of the relative contribution of TCs to extreme rainfall using annual maximum (AM) and peaks-over-threshold (POT) approaches indicate notable differences among regions. The highest TC-AM rainfall proportions (45 to 60%) are found in stations located in Japan, eastern China, the Philippines, eastern and western Australia. Substantial contributions (25 to 40% of extreme rainfall) are also recorded in stations located along the U.S. East Coast, the Gulf of Mexico, and the Mexico peninsula. We find similar

  2. Tropical Rainfall Measuring Mission: Monitoring the Global Tropics for 3 Years and Beyond. 1.1

    Science.gov (United States)

    Shepherd, Marshall; Starr, David OC. (Technical Monitor)

    2001-01-01

    The Tropical Rainfall Measuring Mission (TRMM) was launched in November 1997 as a joint U.S.-Japanese mission to advance understanding of the global energy and water cycle by providing distributions of rainfall and latent heating over the global tropics. As a part of NASA's Earth System Enterprise, TRMM seeks to understand the mechanisms through which changes in tropical rainfall influence global circulation. Additionally, a goal is to improve the ability to model these processes in order to predict global circulations and rainfall variability at monthly and longer time scales. Such understanding has implications for assessing climate processes related to El Nino/La Nina and Global Warming. TRMM has also provided unexpected and exciting new knowledge and applications in areas related to hurricane monitoring, lightning, pollution, hydrology, and other areas. This CD-ROM includes a self-contained PowerPoint presentation that provides an overview of TRMM and significant science results; a set of data movies or animation; and listings of current TRMM-related publications in the literature.

  3. Vertical Profiles of Latent Heat Release over the Global Tropics using TRMM Rainfall Products from December 1997 to November 2002

    Science.gov (United States)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.

    2003-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs. S. America ) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in stratiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model. Review of other latent heating algorithms will be discussed in the workshop.

  4. Vertical Profiles of Latent Heat Release over the Global Tropics using TRMM rainfall products from December 1997 to November 2001

    Science.gov (United States)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.

    2002-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2001. Rainfall, latent heating and radar reflectivity structures between El Nino (DE 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs. west Pacific, Africa vs. S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in strtaiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model.

  5. Global Lightning Climatology from the Tropical Rainfall Measuring Mission (TRMM), Lightning Imaging Sensor (LIS) and the Optical Transient Detector (OTD)

    Science.gov (United States)

    Cecil, Daniel J.; Buechler, Dennis E.; Blakeslee, Richard J.

    2015-01-01

    The Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) has been collecting observations of total lightning in the global tropics and subtropics (roughly 38 deg S - 38 deg N) since December 1997. A similar instrument, the Optical Transient Detector, operated from 1995-2000 on another low earth orbit satellite that also saw high latitudes. Lightning data from these instruments have been used to create gridded climatologies and time series of lightning flash rate. These include a 0.5 deg resolution global annual climatology, and lower resolution products describing the annual cycle and the diurnal cycle. These products are updated annually. Results from the update through 2013 will be shown at the conference. The gridded products are publicly available for download. Descriptions of how each product can be used will be discussed, including strengths, weaknesses, and caveats about the smoothing and sampling used in various products.

  6. Does internal variability change in response to global warming? A large ensemble modelling study of tropical rainfall

    Science.gov (United States)

    Milinski, S.; Bader, J.; Jungclaus, J. H.; Marotzke, J.

    2017-12-01

    There is some consensus on mean state changes of rainfall under global warming; changes of the internal variability, on the other hand, are more difficult to analyse and have not been discussed as much despite their importance for understanding changes in extreme events, such as droughts or floodings. We analyse changes in the rainfall variability in the tropical Atlantic region. We use a 100-member ensemble of historical (1850-2005) model simulations with the Max Planck Institute for Meteorology Earth System Model (MPI-ESM1) to identify changes of internal rainfall variability. To investigate the effects of global warming on the internal variability, we employ an additional ensemble of model simulations with stronger external forcing (1% CO2-increase per year, same integration length as the historical simulations) with 68 ensemble members. The focus of our study is on the oceanic Atlantic ITCZ. We find that the internal variability of rainfall over the tropical Atlantic does change due to global warming and that these changes in variability are larger than changes in the mean state in some regions. From splitting the total variance into patterns of variability, we see that the variability on the southern flank of the ITCZ becomes more dominant, i.e. explaining a larger fraction of the total variance in a warmer climate. In agreement with previous studies, we find that changes in the mean state show an increase and narrowing of the ITCZ. The large ensembles allow us to do a statistically robust differentiation between the changes in variability that can be explained by internal variability and those that can be attributed to the external forcing. Furthermore, we argue that internal variability in a transient climate is only well defined in the ensemble domain and not in the temporal domain, which requires the use of a large ensemble.

  7. Skill of Global Raw and Postprocessed Ensemble Predictions of Rainfall over Northern Tropical Africa

    Science.gov (United States)

    Vogel, Peter; Knippertz, Peter; Fink, Andreas H.; Schlueter, Andreas; Gneiting, Tilmann

    2018-04-01

    Accumulated precipitation forecasts are of high socioeconomic importance for agriculturally dominated societies in northern tropical Africa. In this study, we analyze the performance of nine operational global ensemble prediction systems (EPSs) relative to climatology-based forecasts for 1 to 5-day accumulated precipitation based on the monsoon seasons 2007-2014 for three regions within northern tropical Africa. To assess the full potential of raw ensemble forecasts across spatial scales, we apply state-of-the-art statistical postprocessing methods in form of Bayesian Model Averaging (BMA) and Ensemble Model Output Statistics (EMOS), and verify against station and spatially aggregated, satellite-based gridded observations. Raw ensemble forecasts are uncalibrated, unreliable, and underperform relative to climatology, independently of region, accumulation time, monsoon season, and ensemble. Differences between raw ensemble and climatological forecasts are large, and partly stem from poor prediction for low precipitation amounts. BMA and EMOS postprocessed forecasts are calibrated, reliable, and strongly improve on the raw ensembles, but - somewhat disappointingly - typically do not outperform climatology. Most EPSs exhibit slight improvements over the period 2007-2014, but overall have little added value compared to climatology. We suspect that the parametrization of convection is a potential cause for the sobering lack of ensemble forecast skill in a region dominated by mesoscale convective systems.

  8. Detecting Climate Variability in Tropical Rainfall

    Science.gov (United States)

    Berg, W.

    2004-05-01

    A number of satellite and merged satellite/in-situ rainfall products have been developed extending as far back as 1979. While the availability of global rainfall data covering over two decades and encompassing two major El Niño events is a valuable resource for a variety of climate studies, significant differences exist between many of these products. Unfortunately, issues such as availability often determine the use of a product for a given application instead of an understanding of the strengths and weaknesses of the various products. Significant efforts have been made to address the impact of sparse sampling by satellite sensors of variable rainfall processes by merging various satellite and in-situ rainfall products. These combine high spatial and temporal frequency satellite infrared data with higher quality passive microwave observations and rain gauge observations. Combining such an approach with spatial and temporal averaging of the data can reduce the large random errors inherent in satellite rainfall estimates to very small levels. Unfortunately, systematic biases can and do result in artificial climate signals due to the underconstrained nature of the rainfall retrieval problem. Because all satellite retrieval algorithms make assumptions regarding the cloud structure and microphysical properties, systematic changes in these assumed parameters between regions and/or times results in regional and/or temporal biases in the rainfall estimates. These biases tend to be relatively small compared to random errors in the retrieval, however, when random errors are reduced through spatial and temporal averaging for climate applications, they become the dominant source of error. Whether or not such biases impact the results for climate studies is very much dependent on the application. For example, all of the existing satellite rainfall products capture the increased rainfall in the east Pacific associated with El Niño, however, the resulting tropical response to

  9. Simulation of Tropical Rainfall Variability

    Science.gov (United States)

    Bader, J.; Latif, M.

    2002-12-01

    The impact of sea surface temperature (SST) - especially the role of the tropical Atlantic meridional SST gradient and the El Nino-Southern Oscillation - on precipitation is investigated with the atmospheric general circulation model ECHAM4/T42. Ensemble experiments - driven with observed SST - show that Atlantic SST has a significant influence on precipitation over West Africa and northeast Brazil. SST sensitivity experiments were performed in which the climatological SST was enhanced or decreased by one Kelvin in certain ocean areas. Changing SST in the eastern tropical Atlantic caused only significant changes along the Guinea Coast, with a positive anomaly (SSTA) increasing rainfall and a negative SSTA reducing it. The response was nearly linear. Changing SST in other ocean areas caused significant changes over West Africa, especially in the Sahel area. The response is found to be non linear, with only negative SSTA leading to significant reduction in Sahel rainfall. Also, the impact of the SSTAs from the different ocean regions was not additive with respect to the rainfall. The influence of SST on precipitation over northeast Brazil (Nordeste) was also investigated. Three experiments were performed in which the climatological SST was enhanced/decreased or decreased/enhanced by one Kelvin in the North/South Atlantic and increased by two Kelvin in the Nino3 ocean area. All experiments caused significant changes over Nordeste, with an enhanced/reduced SST gradient in the Atlantic increasing/reducing rainfall. The response was nearly linear. The main effect of the Atlantic SST gradient was a shift of the ITCZ, caused by trade wind changes. The ''El Nino'' event generates a significant reduction in Nordeste rainfall. A significant positive SLP anomaly occurs in northeast Brazil which may be associated with the descending branch of the Walker circulation. Also a significant positive SLP over the Atlantic from 30S to 10N north occurs. This results in a reduced SLP

  10. Tropical Rainfall Analysis Using TRMM in Combination With Other Satellite Gauge Data: Comparison with Global Precipitation Climatology Project (GPCP) Results

    Science.gov (United States)

    Adler, Robert F.; Huffman, George J.; Bolvin, David; Nelkin, Eric; Curtis, Scott

    1999-01-01

    This paper describes recent results of using Tropical Rainfall Measuring Mission (TRMM) information as the key calibration tool in a merged analysis on a 1 deg x 1 deg latitude/longitude monthly scale based on multiple satellite sources and raingauge analysis. The procedure used to produce the GPCP data set is a stepwise approach which first combines the satellite low-orbit microwave and geosynchronous IR observations into a "multi-satellite" product and than merges that result with the raingauge analysis. Preliminary results produced with the still-stabilizing TRMM algorithms indicate that TRMM shows tighter spatial gradients in tropical rain maxima with higher peaks in the center of the maxima. The TRMM analyses will be used to evaluate the evolution of the 1998 ENSO variations, again in comparison with the GPCP analyses.

  11. Enhanced Orographic Tropical Rainfall: An Study of the Colombia's rainfall

    Science.gov (United States)

    Peñaranda, V. M.; Hoyos Ortiz, C. D.; Mesa, O. J.

    2015-12-01

    Convection in tropical regions may be enhanced by orographic barriers. The orographic enhancement is an intensification of rain rates caused by the forced lifting of air over a mountainous structure. Orographic heavy rainfall events, occasionally, comes along by flooding, debris flow and substantial amount of looses, either economics or human lives. Most of the heavy convective rainfall events, occurred in Colombia, have left a lot of victims and material damages by flash flooding. An urgent action is required by either scientific communities or society, helping to find preventive solutions against these kind of events. Various scientific literature reports address the feedback process between the convection and the local orographic structures. The orographic enhancement could arise by several physical mechanism: precipitation transport on leeward side, convection triggered by the forcing of air over topography, the seeder-feeder mechanism, among others. The identification of the physical mechanisms for orographic enhancement of rainfall has not been studied over Colombia. As far as we know, orographic convective tropical rainfall is just the main factor for the altitudinal belt of maximum precipitation, but the lack of detailed hydro-meteorological measurements have precluded a complete understanding of the tropical rainfall in Colombia and its complex terrain. The emergence of the multifractal theory for rainfall has opened a field of research which builds a framework for parsimonious modeling of physical process. Studies about the scaling behavior of orographic rainfall have found some modulating functions between the rainfall intensity probability distribution and the terrain elevation. The overall objective is to advance in the understanding of the orographic influence over the Colombian tropical rainfall based on observations and scaling-analysis techniques. We use rainfall maps, weather radars scans and ground-based rainfall data. The research strategy is

  12. GHRSST Level 2P Global Subskin Sea Surface Temperature from TRMM Microwave Imager (TMI) onboard Tropical Rainfall Measurement Mission (TRMM) satellite (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — GDS2 Version -The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) is a well calibrated passive microwave radiometer, similar to the Special Sensor...

  13. GHRSST L2P Gridded Global Subskin Sea Surface Temperature from the Tropical Rainfall Mapping Mission (TRMM) Microwave Imager (TMI) (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) is a well calibrated passive microwave radiometer, similar to SSM/I, that contains lower...

  14. Tropical intraseasonal rainfall variability in the CFSR

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiande [I.M. System Group Inc. at NOAA/NCEP/EMC, Camp Springs, MD (United States); Wang, Wanqiu [NOAA/NCEP/CPC, Camp Springs, MD (United States); Fu, Xiouhua [University of Hawaii at Manoa, IPRC, SOEST, Honolulu, HI (United States); Seo, Kyong-Hwan [Pusan National University, Department of Atmospheric Sciences, Busan (Korea, Republic of)

    2012-06-15

    While large-scale circulation fields from atmospheric reanalyses have been widely used to study the tropical intraseasonal variability, rainfall variations from the reanalyses are less focused. Because of the sparseness of in situ observations available in the tropics and strong coupling between convection and large-scale circulation, the accuracy of tropical rainfall from the reanalyses not only measures the quality of reanalysis rainfall but is also to some extent indicative of the accuracy of the circulations fields. This study analyzes tropical intraseasonal rainfall variability in the recently completed NCEP Climate Forecast System Reanalysis (CFSR) and its comparison with the widely used NCEP/NCAR reanalysis (R1) and NCEP/DOE reanalysis (R2). The R1 produces too weak rainfall variability while the R2 generates too strong westward propagation. Compared with the R1 and R2, the CFSR produces greatly improved tropical intraseasonal rainfall variability with the dominance of eastward propagation and more realistic amplitude. An analysis of the relationship between rainfall and large-scale fields using composites based on Madden-Julian Oscillation (MJO) events shows that, in all three NCEP reanalyses, the moisture convergence leading the rainfall maximum is near the surface in the western Pacific but is above 925 hPa in the eastern Indian Ocean. However, the CFSR produces the strongest large-scale convergence and the rainfall from CFSR lags the column integrated precipitable water by 1 or 2 days while R1 and R2 rainfall tends to lead the respective precipitable water. Diabatic heating related to the MJO variability in the CFSR is analyzed and compared with that derived from large-scale fields. It is found that the amplitude of CFSR-produced total heating anomalies is smaller than that of the derived. Rainfall variability from the other two recently produced reanalyses, the ECMWF Re-Analysis Interim (ERAI), and the Modern Era Retrospective-analysis for Research and

  15. On the Tropical Rainfall Measuring Mission (TRMM): Bringing NASA's Earth System Science Program to the Classroom

    Science.gov (United States)

    Shepherd, J. Marshall

    1998-01-01

    The Tropical Rainfall Measuring Mission is the first mission dedicated to measuring tropical and subtropical rainfall using a variety of remote sensing instrumentation, including the first spaceborne rain-measuring radar. Since the energy released when tropical rainfall occurs is a primary "fuel" supply for the weather and climate "engine"; improvements in computer models which predict future weather and climate states may depend on better measurements of global tropical rainfall and its energy. In support of the STANYS conference theme of Education and Space, this presentation focuses on one aspect of NASA's Earth Systems Science Program. We seek to present an overview of the TRMM mission. This overview will discuss the scientific motivation for TRMM, the TRMM instrument package, and recent images from tropical rainfall systems and hurricanes. The presentation also targets educational components of the TRMM mission in the areas of weather, mathematics, technology, and geography that can be used by secondary school/high school educators in the classroom.

  16. Variations and Trends in Global and Regional Precipitation Based on the 22-year GPCP (Global Precipitation Climatology Project) and Three-year TRMM (Tropical Rainfall Measuring Mission) Data Sets

    Science.gov (United States)

    Adler, R.; Curtis, S.; Huffman, G.; Bolvin, D.; Nelkin, E.

    2001-05-01

    This paper gives an overview of the analysis of global precipitation over the last few decades and the impact of the new TRMM precipitation observations. The 20+ year, monthly, globally complete precipitation analysis of the World Climate Research Program's (WCRP/GEWEX) Global Precipitation Climatology Project (GPCP) is used to study global and regional variations and trends and is compared to the much shorter TRMM(Tropical Rainfall Measuring Mission) tropical data set. The GPCP data set shows no significant trend in global precipitation over the twenty years, unlike the positive trend in global surface temperatures over the past century. The global trend analysis must be interpreted carefully, however, because the inhomogeneity of the data set makes detecting a small signal very difficult, especially over this relatively short period. The relation of global (and tropical) total precipitation and ENSO events is quantified with no significant signal when land and ocean are combined. Identifying regional trends in precipitation may be more practical. From 1979 to 2000 the tropics have pattern of regional rainfall trends that has an ENSO-like pattern with features of both the El Nino and La Nina. This feature is related to a possible trend in the frequency of ENSO events (either El Nino or La Nina) over the past 20 years. Monthly anomalies of precipitation are related to ENSO variations with clear signals extending into middle and high latitudes of both hemispheres. The El Nino and La Nina mean anomalies are near mirror images of each other and when combined produce an ENSO signal with significant spatial continuity over large distances. A number of the features are shown to extend into high latitudes. Positive anomalies extend in the Southern Hemisphere (S.H.) from the Pacific southeastward across Chile and Argentina into the south Atlantic Ocean. In the Northern Hemisphere (N.H.) the counterpart feature extends across the southern U.S. and Atlantic Ocean into Europe

  17. Tropical influence on Euro-Asian autumn rainfall variability

    Energy Technology Data Exchange (ETDEWEB)

    Mariotti, A. [University of Maryland, College Park, MD (United States); ENEA, Rome (Italy); Ballabrera-Poy, J. [University of Maryland, ESSIC, College Park, MD (United States); Zeng, N. [University of Maryland, ESSIC, College Park, MD (United States); University of Maryland, Department of Meteorology,, College Park, MD (United States)

    2005-04-01

    The connection between autumn rainfall variability in the Euro-Asian domain and tropical climate is documented using state-of-the-art global observational datasets and re-analyses. Results suggest a robust statistical relationship between the El Nino Southern Oscillation (ENSO) and autumn rainfall in parts of southwest Europe, northern Africa and southwest Asia. The correlation between area-mean anomalies over this region (P{sub ea}) and the NINO3.4 index is 0.68, stationary over the last 50 years. Global ENSO-like tropical climate anomalies are observed in conjunction with P{sub ea} anomalies confirming the relationship found with the NINO3.4 index. Overall, the connection with Indo-Pacific variability is stronger than that with the eastern Pacific.While rainfall anomalies in southwest Europe and southwest Asia appear to largely co-vary as one pattern under the influence of ENSO, our results suggest that different mechanisms may be contributing to the observed anomalies. In the North Atlantic/European region, it is speculated that while a PNA-like mode maybe the prevailing teleconnection mechanism for high P{sub ea}, for low P{sub ea} tropical Atlantic ENSO related SST anomalies may be playing a more relevant role forcing northeastward propagating Rossby waves. Over southwest Asia, a more direct connection to the Indo-Pacific region is suggested by the upper air anomaly observed over southern Asia, possibly the Rossby wave response to enhanced heating in the Indian Ocean. (orig.)

  18. Tropical Rainfall Measuring Mission (TRMM) and the Future of Rainfall Estimation from Space

    Science.gov (United States)

    Kakar, Ramesh; Adler, Robert; Smith, Eric; Starr, David OC. (Technical Monitor)

    2001-01-01

    Tropical rainfall is important in the hydrological cycle and to the lives and welfare of humans. Three-fourths of the energy that drives the atmospheric wind circulation comes from the latent heat released by tropical precipitation. Recognizing the importance of rain in the tropics, NASA for the U.S.A. and NASDA for Japan have partnered in the design, construction and flight of a satellite mission to measure tropical rainfall and calculate the associated latent heat release. The Tropical Rainfall Measuring Mission (TRMM) satellite was launched on November 27, 1997, and data from all the instruments first became available approximately 30 days after launch. Since then, much progress has been made in the calibration of the sensors, the improvement of the rainfall algorithms and applications of these results to areas such as Data Assimilation and model initialization. TRMM has reduced the uncertainty of climatological rainfall in tropics by over a factor of two, therefore establishing a standard for comparison with previous data sets and climatologies. It has documented the diurnal variation of precipitation over the oceans, showing a distinct early morning peak and this satellite mission has shown the utility of precipitation information for the improvement of numerical weather forecasts and climate modeling. This paper discusses some promising applications using TRMM data and introduces a measurement concept being discussed by NASA/NASDA and ESA for the future of rainfall estimation from space.

  19. Observation-Based Estimates of Surface Cooling Inhibition by Heavy Rainfall under Tropical Cyclones

    Digital Repository Service at National Institute of Oceanography (India)

    Jourdain, N; Lengaigne, M.; Vialard, J.; Madec, G.; Menkes, C.E.; Vincent, E.M.; Jullien, E.; Barnier, B.

    Tropical cyclones drive intense ocean vertical mixing that explains most of the surface cooling observed in their wake (the "cold wake"). The influence of cyclonic rainfall on the cold wake at a global scale over the 2002-09 period is investigated...

  20. The Spatial Scaling of Global Rainfall Extremes

    Science.gov (United States)

    Devineni, N.; Xi, C.; Lall, U.; Rahill-Marier, B.

    2013-12-01

    Floods associated with severe storms are a significant source of risk for property, life and supply chains. These property losses tend to be determined as much by the duration of flooding as by the depth and velocity of inundation. High duration floods are typically induced by persistent rainfall (upto 30 day duration) as seen recently in Thailand, Pakistan, the Ohio and the Mississippi Rivers, France, and Germany. Events related to persistent and recurrent rainfall appear to correspond to the persistence of specific global climate patterns that may be identifiable from global, historical data fields, and also from climate models that project future conditions. A clear understanding of the space-time rainfall patterns for events or for a season will enable in assessing the spatial distribution of areas likely to have a high/low inundation potential for each type of rainfall forcing. In this paper, we investigate the statistical properties of the spatial manifestation of the rainfall exceedances. We also investigate the connection of persistent rainfall events at different latitudinal bands to large-scale climate phenomena such as ENSO. Finally, we present the scaling phenomena of contiguous flooded areas as a result of large scale organization of long duration rainfall events. This can be used for spatially distributed flood risk assessment conditional on a particular rainfall scenario. Statistical models for spatio-temporal loss simulation including model uncertainty to support regional and portfolio analysis can be developed.

  1. Temperature and rainfall interact to control carbon cycling in tropical forests.

    Science.gov (United States)

    Taylor, Philip G; Cleveland, Cory C; Wieder, William R; Sullivan, Benjamin W; Doughty, Christopher E; Dobrowski, Solomon Z; Townsend, Alan R

    2017-06-01

    Tropical forests dominate global terrestrial carbon (C) exchange, and recent droughts in the Amazon Basin have contributed to short-term declines in terrestrial carbon dioxide uptake and storage. However, the effects of longer-term climate variability on tropical forest carbon dynamics are still not well understood. We synthesised field data from more than 150 tropical forest sites to explore how climate regulates tropical forest aboveground net primary productivity (ANPP) and organic matter decomposition, and combined those data with two existing databases to explore climate - C relationships globally. While previous analyses have focused on the effects of either temperature or rainfall on ANPP, our results highlight the importance of interactions between temperature and rainfall on the C cycle. In cool forests (forests (> 20 °C) it consistently enhanced both ANPP and decomposition. At the global scale, our analysis showed an increase in ANPP with rainfall in relatively warm sites, inconsistent with declines in ANPP with rainfall reported previously. Overall, our results alter our understanding of climate - C cycle relationships, with high precipitation accelerating rates of C exchange with the atmosphere in the most productive biome on earth. © 2017 John Wiley & Sons Ltd/CNRS.

  2. Large rainfall changes consistently projected over substantial areas of tropical land

    Science.gov (United States)

    Chadwick, Robin; Good, Peter; Martin, Gill; Rowell, David P.

    2016-02-01

    Many tropical countries are exceptionally vulnerable to changes in rainfall patterns, with floods or droughts often severely affecting human life and health, food and water supplies, ecosystems and infrastructure. There is widespread disagreement among climate model projections of how and where rainfall will change over tropical land at the regional scales relevant to impacts, with different models predicting the position of current tropical wet and dry regions to shift in different ways. Here we show that despite uncertainty in the location of future rainfall shifts, climate models consistently project that large rainfall changes will occur for a considerable proportion of tropical land over the twenty-first century. The area of semi-arid land affected by large changes under a higher emissions scenario is likely to be greater than during even the most extreme regional wet or dry periods of the twentieth century, such as the Sahel drought of the late 1960s to 1990s. Substantial changes are projected to occur by mid-century--earlier than previously expected--and to intensify in line with global temperature rise. Therefore, current climate projections contain quantitative, decision-relevant information on future regional rainfall changes, particularly with regard to climate change mitigation policy.

  3. Contributions of Tropical Cyclones to the North Atlantic Climatological Rainfall as Observed from Satellites

    Science.gov (United States)

    Rodgers, Edward B.; Adler, Robert F.; Pierce, Harold F.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The tropical cyclone rainfall climatology study that was performed for the North Pacific was extended to the North Atlantic. Similar to the North Pacific tropical cyclone study, mean monthly rainfall within 444 km of the center of the North Atlantic tropical cyclones (i.e., that reached storm stage and greater) was estimated from passive microwave satellite observations during, an eleven year period. These satellite-observed rainfall estimates were used to assess the impact of tropical cyclone rainfall in altering the geographical, seasonal, and inter-annual distribution of the North Atlantic total rainfall during, June-November when tropical cyclones were most abundant. The main results from this study indicate: 1) that tropical cyclones contribute, respectively, 4%, 3%, and 4% to the western, eastern, and entire North Atlantic; 2) similar to that observed in the North Pacific, the maximum in North Atlantic tropical cyclone rainfall is approximately 5 - 10 deg poleward (depending on longitude) of the maximum non-tropical cyclone rainfall; 3) tropical cyclones contribute regionally a maximum of 30% of the total rainfall 'northeast of Puerto Rico, within a region near 15 deg N 55 deg W, and off the west coast of Africa; 4) there is no lag between the months with maximum tropical cyclone rainfall and non-tropical cyclone rainfall in the western North Atlantic, while in the eastern North Atlantic, maximum tropical cyclone rainfall precedes maximum non-tropical cyclone rainfall; 5) like the North Pacific, North Atlantic tropical cyclones Of hurricane intensity generate the greatest amount of rainfall in the higher latitudes; and 6) warm ENSO events inhibit tropical cyclone rainfall.

  4. Validation of Satellite Estimates (Tropical Rainfall Measuring Mission, TRMM for Rainfall Variability over the Pacific Slope and Coast of Ecuador

    Directory of Open Access Journals (Sweden)

    Bolívar Erazo

    2018-02-01

    Full Text Available A dense rain-gauge network within continental Ecuador was used to evaluate the quality of various products of rainfall data over the Pacific slope and coast of Ecuador (EPSC. A cokriging interpolation method is applied to the rain-gauge data yielding a gridded product at 5-km resolution covering the period 1965–2015. This product is compared with the Global Precipitation Climatology Centre (GPCC dataset, the Climatic Research Unit–University of East Anglia (CRU dataset, the Tropical Rainfall Measuring Mission (TRMM/TMPA 3B43 Version 7 dataset and the ERA-Interim Reanalysis. The analysis reveals that TRMM data show the most realistic features. The relative bias index (Rbias indicates that TRMM data is closer to the observations, mainly over lowlands (mean Rbias of 7% but have more limitations in reproducing the rainfall variability over the Andes (mean Rbias of −28%. The average RMSE and Rbias of 68.7 and −2.8% of TRMM are comparable with the GPCC (69.8 and 5.7% and CRU (102.3 and −2.3% products. This study also focuses on the rainfall inter-annual variability over the study region which experiences floods that have caused high economic losses during extreme El Niño events. Finally, our analysis evaluates the ability of TRMM data to reproduce rainfall events during El Niño years over the study area and the large basins of Esmeraldas and Guayas rivers. The results show that TRMM estimates report reasonable levels of heavy rainfall detection (for the extreme 1998 El Niño event over the EPSC and specifically towards the center-south of the EPSC (Guayas basin but present underestimations for the moderate El Niño of 2002–2003 event and the weak 2009–2010 event. Generally, the rainfall seasonal features, quantity and long-term climatology patterns are relatively well estimated by TRMM.

  5. The Tropical Rainfall Measuring Mission and Vern Suomi 's Vital Role

    Science.gov (United States)

    Simpson, Joanne; Kummerow, Christian

    1999-01-01

    The Tropical Rainfall Measuring Mission was a new concept of measuring rainfall over the global tropics using a combination of instruments, including the first weather radar to be flown in space. An important objective of the mission was to obtain profiles of latent heat in order to initialize large-scale circulation models and to understand the relationship between short-term climate changes in relation to rainfall variability. The idea originated in the early 1980's from scientists at the Goddard Space Flight Center/NASA who had been involved with attempts to measure rain with a passive microwave instrument on Nimbus 5 and had compared its results with rain falling in the area covered by the GATE1 radar ships. Using an imaginary satellite flying over the GATE ships, scientists showed that a satellite with an inclined orbit of 30-35 degrees could obtain monthly rainfalls with a sampling error of less than 10 percent over 5 degree by 5 degree areas. The Japanese proposed that they could build a nadir-scanning rain radar for the satellite. Vern Suomi was excited by this mission from the outset, since he recognized the great importance of adequate rainfall measurements over the tropical oceans. He was a charter member of the Science Steering Team and prepared a large part of the Report. While the mission attracted strong support in the science community, it was opposed by some of the high-level NASA management who feared its competition for funds with some much larger Earth Science satellites. Vern was able to overcome this opposition and to generate Congressional support, so that the Project finally got underway on both sides of the Pacific in 1991. The paper will discuss the design of the satellite, its data system and ground validation program. TP.NM was successfully launched in late 1997. Early results will be described. 1 GATE stands for GARP Atlantic Tropical Experiment and GARP stands for Global Atmospheric Research Program.

  6. Linking Vital Rates of Landbirds on a Tropical Island to Rainfall and Vegetation Greenness.

    Directory of Open Access Journals (Sweden)

    James F Saracco

    Full Text Available Remote tropical oceanic islands are of high conservation priority, and they are exemplified by range-restricted species with small global populations. Spatial and temporal patterns in rainfall and plant productivity may be important in driving dynamics of these species. Yet, little is known about environmental influences on population dynamics for most islands and species. Here we leveraged avian capture-recapture, rainfall, and remote-sensed habitat data (enhanced vegetation index [EVI] to assess relationships between rainfall, vegetation greenness, and demographic rates (productivity, adult apparent survival of three native bird species on Saipan, Northern Mariana Islands: rufous fantail (Rhipidura rufifrons, bridled white-eye (Zosterops conspicillatus, and golden white-eye (Cleptornis marchei. Rainfall was positively related to vegetation greenness at all but the highest rainfall levels. Temporal variation in greenness affected the productivity of each bird species in unique ways. Predicted productivity of rufous fantail was highest when dry and wet season greenness values were high relative to site-specific 5-year seasonal mean values (i.e., relative greenness; while the white-eye species had highest predicted productivity when relative greenness contrasted between wet and dry seasons. Survival of rufous fantail and bridled white eye was positively related to relative dry-season greenness and negatively related to relative wet-season greenness. Bridled white-eye survival also showed evidence of a positive response to overall greenness. Our results highlight the potentially important role of rainfall regimes in affecting population dynamics of species on oceanic tropical islands. Understanding linkages between rainfall, vegetation, and animal population dynamics will be critical for developing effective conservation strategies in this and other regions where the seasonal timing, extent, and variability of rainfall is expected to change in the

  7. Rainfall interception from a lowland tropical rainforest in Brunei

    Science.gov (United States)

    Dykes, A. P.

    1997-12-01

    Results from a programme of throughfall measurements in a lowland tropical rainforest in Brunei, northwest Borneo, indicate that interception losses amount to 18% of the gross incident rainfall. The high annual rainfall experienced by the study area results in annual interception losses of around 800 mm, which may result in total annual evapotranspiration losses significantly higher than in other rainforest locations. An improved version of Gash's analytical interception model is tested on the available data using assumed values for the "forest" parameters, and is found to predict interception losses extremely well. The model predictions are based on an estimated evaporation rate during rainfall of 0.71 mm h -1. This is significantly higher than has been reported in other tropical studies. It is concluded that these results are distinctive when compared with previous results from rainforests, and that further, detailed work is required to establish whether the enhanced evaporation rate is due to advective effects associated with the maritime setting of the study area.

  8. Design and Performance of Tropical Rainfall Measuring Mission (TRMM) Super NiCd Batteries

    Science.gov (United States)

    Ahmad, Anisa J.; Rao, Gopalakrishna M.; Jallice, Doris E.; Moran Vickie E.

    1999-01-01

    The Tropical Rainfall Measuring Mission (TRMM) is a joint mission between NASA and the National Space Development Agency (NASDA) of Japan. The observatory is designed to monitor and study tropical rainfall and the associated release of energy that helps to power the global atmospheric circulation shaping both weather and climate around the globe. The spacecraft was launched from Japan on November 27,1997 via the NASDA H-2 launch vehicle. The TRMM Power Subsystem is a Peak Power Tracking system that can support the maximum TRMM load of 815 watts at the end of its three year life. The Power Subsystem consists of two 50 Ampere Hour Super NiCd batteries, Gallium Arsenide Solar Array and the Power System Electronics. This paper describes the TRMM Power Subsystem, battery design, cell and battery ground test performance, and in-orbit battery operations and performance.

  9. The Variation of Tropical Cyclone Rainfall within the North Atlantic and Pacific as Observed from Satellites

    Science.gov (United States)

    Rodgers, Edward; Pierce, Harold; Adler, Robert

    1999-01-01

    Tropical cyclone monthly rainfall amounts are estimated from passive microwave satellite observations in the North Atlantic and in three equal geographical regions of the North Pacific (i.e., Western, Central, and Eastern North Pacific). These satellite-derived rainfall amounts are used to assess the impact of tropical cyclone rainfall in altering the geographical, seasonal, and inter-annual distribution of the 1987-1989, 1991-1998 North Atlantic and Pacific rainfall during June-November when tropical cyclones are most abundant. To estimate these tropical cyclone rainfall amounts, mean monthly rain rates are derived from the Defence Meteorological Satellite Program (DMSP) Special Sensor Microwave/ Radiometer (SSM/I) observations within 444 km radius of the center of those North Atlantic and Pacific tropical cyclones that reached storm stage and greater. These rain rate observations are then multiplied by the number of hours in a given month. Mean monthly rainfall amounts are also constructed for all the other North Atlantic and Pacific raining systems during this eleven year period for the purpose of estimating the geographical distribution and intensity of rainfall contributed by non-tropical cyclone systems. Further, the combination of the non-tropical cyclone and tropical cyclone (i.e., total) rainfall is constructed to delineate the fractional amount that tropical cyclones contributed to the total North Pacific rainfall.

  10. Contribution of Tropical Cyclones to the North Pacific Climatological Rainfall as Observed from Satellites.

    Science.gov (United States)

    Rodgers, Edward B.; Adler, Robert F.; Pierce, Harold F.

    2000-10-01

    Tropical cyclone monthly rainfall amounts are estimated from passive microwave satellite observations for an 11-yr period. These satellite-derived rainfall amounts are used to assess the impact of tropical cyclone rainfall in altering the geographical, seasonal, and interannual distribution of the North Pacific Ocean total rainfall during June-November when tropical cyclones are most important.To estimate these tropical cyclone rainfall amounts, mean monthly rain rates are derived from passive microwave satellite observations within 444-km radius of the center of those North Pacific tropical cyclones that reached storm stage and greater. These rain-rate observations are converted to monthly rainfall amounts and then compared with those for nontropical cyclone systems.The main results of this study indicate that 1) tropical cyclones contribute 7% of the rainfall to the entire domain of the North Pacific during the tropical cyclone season and 12%, 3%, and 4% when the study area is limited to, respectively, the western, central, and eastern third of the ocean; 2) the maximum tropical cyclone rainfall is poleward (5°-10° latitude depending on longitude) of the maximum nontropical cyclone rainfall; 3) tropical cyclones contribute a maximum of 30% northeast of the Philippine Islands and 40% off the lower Baja California coast; 4) in the western North Pacific, the tropical cyclone rainfall lags the total rainfall by approximately two months and shows seasonal latitudinal variation following the Intertropical Convergence Zone; and 5) in general, tropical cyclone rainfall is enhanced during the El Niño years by warm SSTs in the eastern North Pacific and by the monsoon trough in the western and central North Pacific.

  11. Relationships between High Impact Tropical Rainfall Events and Environmental Conditions

    Science.gov (United States)

    Painter, C.; Varble, A.; Zipser, E. J.

    2017-12-01

    While rainfall increases as moisture and vertical motion increase, relationships between regional environmental conditions and rainfall event characteristics remain more uncertain. Of particular importance are long duration, heavy rain rate, and significant accumulation events that contribute sizable fractions of overall precipitation over short time periods. This study seeks to establish relationships between observed rainfall event properties and environmental conditions. Event duration, rain rate, and rainfall accumulation are derived using the Tropical Rainfall Measuring Mission (TRMM) 3B42 3-hourly, 0.25° resolution rainfall retrieval from 2002-2013 between 10°N and 10°S. Events are accumulated into 2.5° grid boxes and matched to monthly mean total column water vapor (TCWV) and 500-hPa vertical motion (omega) in each 2.5° grid box, retrieved from ERA-interim reanalysis. Only months with greater than 3 mm/day rainfall are included to ensure sufficient sampling. 90th and 99th percentile oceanic events last more than 20% longer and have rain rates more than 20% lower than those over land for a given TCWV-omega condition. Event duration and accumulation are more sensitive to omega than TCWV over oceans, but more sensitive to TCWV than omega over land, suggesting system size, propagation speed, and/or forcing mechanism differences for land and ocean regions. Sensitivities of duration, rain rate, and accumulation to TCWV and omega increase with increasing event extremity. For 3B42 and ERA-Interim relationships, the 90th percentile oceanic event accumulation increases by 0.93 mm for every 1 Pa/min change in rising motion, but this increases to 3.7 mm for every 1 Pa/min for the 99th percentile. Over land, the 90th percentile event accumulation increases by 0.55 mm for every 1 mm increase in TCWV, whereas the 99th percentile increases by 0.90 mm for every 1 mm increase in TCWV. These changes in event accumulation are highly correlated with changes in event

  12. Rainfall and Extratropical Transition of Tropical Cyclones: Simulation, Prediction, and Projection

    Science.gov (United States)

    Liu, Maofeng

    Rainfall and associated flood hazards are one of the major threats of tropical cyclones (TCs) to coastal and inland regions. The interaction of TCs with extratropical systems can lead to enhanced precipitation over enlarged areas through extratropical transition (ET). To achieve a comprehensive understanding of rainfall and ET associated with TCs, this thesis conducts weather-scale analyses by focusing on individual storms and climate-scale analyses by focusing on seasonal predictability and changing properties of climatology under global warming. The temporal and spatial rainfall evolution of individual storms, including Hurricane Irene (2011), Hurricane Hanna (2008), and Hurricane Sandy (2012), is explored using the Weather Research and Forecast (WRF) model and a variety of hydrometeorological datasets. ET and Orographic mechanism are two key players in the rainfall distribution of Irene over regions experiencing most severe flooding. The change of TC rainfall under global warming is explored with the Forecast-oriented Low Ocean Resolution (FLOR) climate model under representative concentration pathway (RCP) 4.5 scenario. Despite decreased TC frequency, FLOR projects increased landfalling TC rainfall over most regions of eastern United States, highlighting the risk of increased flood hazards. Increased storm rain rate is an important player of increased landfalling TC rainfall. A higher atmospheric resolution version of FLOR (HiFLOR) model projects increased TC rainfall at global scales. The increase of TC intensity and environmental water vapor content scaled by the Clausius-Clapeyron relation are two key factors that explain the projected increase of TC rainfall. Analyses on the simulation, prediction, and projection of the ET activity with FLOR are conducted in the North Atlantic. FLOR model exhibits good skills in simulating many aspects of present-day ET climatology. The 21st-century-projection under RCP4.5 scenario demonstrates the dominant role of ET

  13. Along the Rainfall-Runoff Chain: From Scaling of Greatest Point Rainfall to Global Change Attribution

    Science.gov (United States)

    Fraedrich, K.

    2014-12-01

    Processes along the continental rainfall-runoff chain cover a wide range of time and space scales which are presented here combining observations (ranging from minutes to decades) and minimalist concepts. (i) Rainfall, which can be simulated by a censored first-order autoregressive process (vertical moisture fluxes), exhibits 1/f-spectra if presented as binary events (tropics), while extrema world wide increase with duration according to Jennings' scaling law. (ii) Runoff volatility (Yangtze) shows data collapse which, linked to an intra-annual 1/f-spectrum, is represented by a single function not unlike physical systems at criticality and the short and long return times of extremes are Weibull-distributed. Atmospheric and soil moisture variabilities are also discussed. (iii) Soil moisture (in a bucket), whose variability is interpreted by a biased coinflip Ansatz for rainfall events, adds an equation of state to energy and water flux balances comprising Budyko's frame work for quasi-stationary watershed analysis. Eco-hydrologic state space presentations in terms of surface flux ratios of energy excess (loss by sensible heat over supply by net radiation) versus water excess (loss by discharge over gain by precipitation) allow attributions of state change to external (or climate) and internal (or anthropogenic) causes. Including the vegetation-greenness index (NDVI) as an active tracer extends the eco-hydrologic state space analysis to supplement the common geographical presentations. Two examples demonstrate the approach combining ERA and MODIS data sets: (a) global geobotanic classification by combining first and second moments of the dryness ratio (net radiation over precipitation) and (b) regional attributions (Tibetan Plateau) of vegetation changes.

  14. Micro-Physical characterisation of Convective & Stratiform Rainfall at Tropics

    Science.gov (United States)

    Sreekanth, T. S.

    Large Micro-Physical characterisation of Convective & Stratiform Rainfall at Tropics begin{center} begin{center} Sreekanth T S*, Suby Symon*, G. Mohan Kumar (1) , and V Sasi Kumar (2) *Centre for Earth Science Studies, Akkulam, Thiruvananthapuram (1) D-330, Swathi Nagar, West Fort, Thiruvananthapuram 695023 (2) 32. NCC Nagar, Peroorkada, Thiruvananthapuram ABSTRACT Micro-physical parameters of rainfall such as rain drop size & fall speed distribution, mass weighted mean diameter, Total no. of rain drops, Normalisation parameters for rain intensity, maximum & minimum drop diameter from different rain intensity ranges, from both stratiform and convective rain events were analysed. Convective -Stratiform classification was done by the method followed by Testud et al (2001) and as an additional information electrical behaviour of clouds from Atmospheric Electric Field Mill was also used. Events which cannot be included in both types are termed as 'mixed precipitation' and identified separately. For the three years 2011, 2012 & 2013, rain events from both convective & stratiform origin are identified from three seasons viz Pre-Monsoon (March-May), Monsoon (June-September) and Post-Monsoon (October-December). Micro-physical characterisation was done for each rain events and analysed. Ground based and radar observations were made and classification of stratiform and convective rainfall was done by the method followed by Testud et al (2001). Radar bright band and non bright band analysis was done for confimation of stratifom and convective rain respectievely. Atmospheric electric field data from electric field mill is also used for confirmation of convection during convective events. Statistical analyses revealed that the standard deviation of rain drop size in higher rain rates are higher than in lower rain rates. Normalised drop size distribution is ploted for selected events from both forms. Inter relations between various precipitation parameters were analysed in three

  15. Does δ18O of O2 record meridional shifts in tropical rainfall?

    Science.gov (United States)

    Seltzer, Alan M.; Buizert, Christo; Baggenstos, Daniel; Brook, Edward J.; Ahn, Jinho; Yang, Ji-Woong; Severinghaus, Jeffrey P.

    2017-10-01

    Marine sediments, speleothems, paleo-lake elevations, and ice core methane and δ18O of O2 (δ18Oatm) records provide ample evidence for repeated abrupt meridional shifts in tropical rainfall belts throughout the last glacial cycle. To improve understanding of the impact of abrupt events on the global terrestrial biosphere, we present composite records of δ18Oatm and inferred changes in fractionation by the global terrestrial biosphere (ΔɛLAND) from discrete gas measurements in the WAIS Divide (WD) and Siple Dome (SD) Antarctic ice cores. On the common WD timescale, it is evident that maxima in ΔɛLAND are synchronous with or shortly follow small-amplitude WD CH4 peaks that occur within Heinrich stadials 1, 2, 4, and 5 - periods of low atmospheric CH4 concentrations. These local CH4 maxima have been suggested as markers of abrupt climate responses to Heinrich events. Based on our analysis of the modern seasonal cycle of gross primary productivity (GPP)-weighted δ18O of terrestrial precipitation (the source water for atmospheric O2 production), we propose a simple mechanism by which ΔɛLAND tracks the centroid latitude of terrestrial oxygen production. As intense rainfall and oxygen production migrate northward, ΔɛLAND should decrease due to the underlying meridional gradient in rainfall δ18O. A southward shift should increase ΔɛLAND. Monsoon intensity also influences δ18O of precipitation, and although we cannot determine the relative contributions of the two mechanisms, both act in the same direction. Therefore, we suggest that abrupt increases in ΔɛLAND unambiguously imply a southward shift of tropical rainfall. The exact magnitude of this shift, however, remains under-constrained by ΔɛLAND.

  16. Does δ18O of O2 record meridional shifts in tropical rainfall?

    Directory of Open Access Journals (Sweden)

    A. M. Seltzer

    2017-10-01

    Full Text Available Marine sediments, speleothems, paleo-lake elevations, and ice core methane and δ18O of O2 (δ18Oatm records provide ample evidence for repeated abrupt meridional shifts in tropical rainfall belts throughout the last glacial cycle. To improve understanding of the impact of abrupt events on the global terrestrial biosphere, we present composite records of δ18Oatm and inferred changes in fractionation by the global terrestrial biosphere (ΔεLAND from discrete gas measurements in the WAIS Divide (WD and Siple Dome (SD Antarctic ice cores. On the common WD timescale, it is evident that maxima in ΔεLAND are synchronous with or shortly follow small-amplitude WD CH4 peaks that occur within Heinrich stadials 1, 2, 4, and 5 – periods of low atmospheric CH4 concentrations. These local CH4 maxima have been suggested as markers of abrupt climate responses to Heinrich events. Based on our analysis of the modern seasonal cycle of gross primary productivity (GPP-weighted δ18O of terrestrial precipitation (the source water for atmospheric O2 production, we propose a simple mechanism by which ΔεLAND tracks the centroid latitude of terrestrial oxygen production. As intense rainfall and oxygen production migrate northward, ΔεLAND should decrease due to the underlying meridional gradient in rainfall δ18O. A southward shift should increase ΔεLAND. Monsoon intensity also influences δ18O of precipitation, and although we cannot determine the relative contributions of the two mechanisms, both act in the same direction. Therefore, we suggest that abrupt increases in ΔεLAND unambiguously imply a southward shift of tropical rainfall. The exact magnitude of this shift, however, remains under-constrained by ΔεLAND.

  17. Fires in Seasonally Dry Tropical Forest: Testing the Varying Constraints Hypothesis across a Regional Rainfall Gradient.

    Science.gov (United States)

    Mondal, Nandita; Sukumar, Raman

    2016-01-01

    The "varying constraints hypothesis" of fire in natural ecosystems postulates that the extent of fire in an ecosystem would differ according to the relative contribution of fuel load and fuel moisture available, factors that vary globally along a spatial gradient of climatic conditions. We examined if the globally widespread seasonally dry tropical forests (SDTFs) can be placed as a single entity in this framework by analyzing environmental influences on fire extent in a structurally diverse SDTF landscape in the Western Ghats of southern India, representative of similar forests in monsoonal south and southeast Asia. We used logistic regression to model fire extent with factors that represent fuel load and fuel moisture at two levels-the overall landscape and within four defined moisture regimes (between 700 and1700 mm yr-1)-using a dataset of area burnt and seasonal rainfall from 1990 to 2010. The landscape scale model showed that the extent of fire in a given year within this SDTF is dependent on the combined interaction of seasonal rainfall and extent burnt the previous year. Within individual moisture regimes the relative contribution of these factors to the annual extent burnt varied-early dry season rainfall (i.e., fuel moisture) was the predominant factor in the wettest regime, while wet season rainfall (i.e., fuel load) had a large influence on fire extent in the driest regime. Thus, the diverse structural vegetation types associated with SDTFs across a wide range of rainfall regimes would have to be examined at finer regional or local scales to understand the specific environmental drivers of fire. Our results could be extended to investigating fire-climate relationships in STDFs of monsoonal Asia.

  18. Assessing the Regional Frequency, Intensity, and Spatial Extent of Tropical Cyclone Rainfall

    Science.gov (United States)

    Bosma, C.; Wright, D.; Nguyen, P.

    2017-12-01

    While the strength of a hurricane is generally classified based on its wind speed, the unprecedented rainfall-driven flooding experienced in southeastern Texas during Hurricane Harvey clearly highlights the need for better understanding of the hazards associated with extreme rainfall from hurricanes and other tropical systems. In this study, we seek to develop a framework for describing the joint probabilistic and spatio-temporal properties of extreme rainfall from hurricanes and other tropical systems. Furthermore, we argue that commonly-used terminology - such as the "500-year storm" - fail to convey the true properties of tropical cyclone rainfall occurrences in the United States. To quantify the magnitude and spatial extent of these storms, a database consisting of hundreds of unique rainfall volumetric shapes (or "voxels") was created. Each voxel is a four-dimensional object, created by connecting, in both space and time, gridded rainfall observations from the daily, gauge-based NOAA CPC-Unified precipitation dataset. Individual voxels were then associated with concurrent tropical cyclone tracks from NOAA's HURDAT-2 archive, to create distinct representations of the rainfall associated with every Atlantic tropical system making landfall over (or passing near) the United States since 1948. Using these voxels, a series of threshold-excess extreme value models were created to estimate the recurrence intervals of extreme tropical cyclone rainfall, both nationally and locally, for single and multi-day timescales. This voxel database also allows for the "indexing" of past events, placing recent extremes - such as the 50+ inches of rain observed during Hurricane Harvey - into a national context and emphasizing how rainfall totals that are rare at the point scale may be more frequent from a regional perspective.

  19. An Updated TRMM Composite Climatology of Tropical Rainfall and Its Validation

    Science.gov (United States)

    Wang, Jian-Jian; Adler, Robert F.; Huffman, George; Bolvin, David

    2013-01-01

    An updated 15-yr Tropical Rainfall Measuring Mission (TRMM) composite climatology (TCC) is presented and evaluated. This climatology is based on a combination of individual rainfall estimates made with data from the primaryTRMMinstruments: theTRMM Microwave Imager (TMI) and the precipitation radar (PR). This combination climatology of passive microwave retrievals, radar-based retrievals, and an algorithm using both instruments simultaneously provides a consensus TRMM-based estimate of mean precipitation. The dispersion of the three estimates, as indicated by the standard deviation sigma among the estimates, is presented as a measure of confidence in the final estimate and as an estimate of the uncertainty thereof. The procedures utilized by the compositing technique, including adjustments and quality-control measures, are described. The results give a mean value of the TCC of 4.3mm day(exp -1) for the deep tropical ocean beltbetween 10 deg N and 10 deg S, with lower values outside that band. In general, the TCC values confirm ocean estimates from the Global Precipitation Climatology Project (GPCP) analysis, which is based on passive microwave results adjusted for sampling by infrared-based estimates. The pattern of uncertainty estimates shown by sigma is seen to be useful to indicate variations in confidence. Examples include differences between the eastern and western portions of the Pacific Ocean and high values in coastal and mountainous areas. Comparison of the TCC values (and the input products) to gauge analyses over land indicates the value of the radar-based estimates (small biases) and the limitations of the passive microwave algorithm (relatively large biases). Comparison with surface gauge information from western Pacific Ocean atolls shows a negative bias (16%) for all the TRMM products, although the representativeness of the atoll gauges of open-ocean rainfall is still in question.

  20. Strategies for global monitoring of tropical forests

    Science.gov (United States)

    Raymond L. Czaplewski

    1994-01-01

    The Food and Agricultural Organization (FAO) of the United Nations is conducting a global assessment of tropical forest resources, which will be accomplished by mid-1992. This assessment requires, in part, estimates of the total area of tropical forest cover in 1990 and the rate of change in forest cover between 1980 and 1990. The following are described here: (1) the...

  1. A Stochastic Model of Space-Time Variability of Tropical Rainfall: I. Statistics of Spatial Averages

    Science.gov (United States)

    Kundu, Prasun K.; Bell, Thomas L.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Global maps of rainfall are of great importance in connection with modeling of the earth s climate. Comparison between the maps of rainfall predicted by computer-generated climate models with observation provides a sensitive test for these models. To make such a comparison, one typically needs the total precipitation amount over a large area, which could be hundreds of kilometers in size over extended periods of time of order days or months. This presents a difficult problem since rain varies greatly from place to place as well as in time. Remote sensing methods using ground radar or satellites detect rain over a large area by essentially taking a series of snapshots at infrequent intervals and indirectly deriving the average rain intensity within a collection of pixels , usually several kilometers in size. They measure area average of rain at a particular instant. Rain gauges, on the other hand, record rain accumulation continuously in time but only over a very small area tens of centimeters across, say, the size of a dinner plate. They measure only a time average at a single location. In making use of either method one needs to fill in the gaps in the observation - either the gaps in the area covered or the gaps in time of observation. This involves using statistical models to obtain information about the rain that is missed from what is actually detected. This paper investigates such a statistical model and validates it with rain data collected over the tropical Western Pacific from ship borne radars during TOGA COARE (Tropical Oceans Global Atmosphere Coupled Ocean-Atmosphere Response Experiment). The model incorporates a number of commonly observed features of rain. While rain varies rapidly with location and time, the variability diminishes when averaged over larger areas or longer periods of time. Moreover, rain is patchy in nature - at any instant on the average only a certain fraction of the observed pixels contain rain. The fraction of area covered by

  2. Effects of Rainfall Characteristics on the Stability of Tropical Residual Soil Slope

    OpenAIRE

    Rahardjo Harianto; Satyanaga Alfrendo; Leong Eng Choon

    2016-01-01

    Global climate change has a significant impact on rainfall characteristics, sea water level and groundwater table. Changes in rainfall characteristics may affect stability of slopes and have severe impacts on sustainable urban living. Information on the intensity, frequency and duration of rainfall is often required by geotechnical engineers for performing slope stability analyses. Many seepage analyses are commonly performed using the most extreme rainfall possible which is uneconomical in d...

  3. Multisite rainfall downscaling and disaggregation in a tropical urban area

    Science.gov (United States)

    Lu, Y.; Qin, X. S.

    2014-02-01

    A systematic downscaling-disaggregation study was conducted over Singapore Island, with an aim to generate high spatial and temporal resolution rainfall data under future climate-change conditions. The study consisted of two major components. The first part was to perform an inter-comparison of various alternatives of downscaling and disaggregation methods based on observed data. This included (i) single-site generalized linear model (GLM) plus K-nearest neighbor (KNN) (S-G-K) vs. multisite GLM (M-G) for spatial downscaling, (ii) HYETOS vs. KNN for single-site disaggregation, and (iii) KNN vs. MuDRain (Multivariate Rainfall Disaggregation tool) for multisite disaggregation. The results revealed that, for multisite downscaling, M-G performs better than S-G-K in covering the observed data with a lower RMSE value; for single-site disaggregation, KNN could better keep the basic statistics (i.e. standard deviation, lag-1 autocorrelation and probability of wet hour) than HYETOS; for multisite disaggregation, MuDRain outperformed KNN in fitting interstation correlations. In the second part of the study, an integrated downscaling-disaggregation framework based on M-G, KNN, and MuDRain was used to generate hourly rainfall at multiple sites. The results indicated that the downscaled and disaggregated rainfall data based on multiple ensembles from HadCM3 for the period from 1980 to 2010 could well cover the observed mean rainfall amount and extreme data, and also reasonably keep the spatial correlations both at daily and hourly timescales. The framework was also used to project future rainfall conditions under HadCM3 SRES A2 and B2 scenarios. It was indicated that the annual rainfall amount could reduce up to 5% at the end of this century, but the rainfall of wet season and extreme hourly rainfall could notably increase.

  4. Observed magnified runoff response to rainfall intensification under global warming

    International Nuclear Information System (INIS)

    Huang, Jr-Chuan; Lee, Tsung-Yu; Lee, Jun-Yi

    2014-01-01

    Runoff response to rainfall intensification under global warming is crucial, but is poorly discussed due to the limited data length and human alteration. Historical rainfall and runoff records in pristine catchments in Taiwan were investigated through trend analysis and cross temperature difference analysis. Trend analysis showed that both rainfall and runoff in the 99.9-percentile have been significantly increasing in terms of frequency and intensity over the past four decades. Cross temperature difference analysis quantified that the rainfall and runoff extremes (including the 99.0–99.9-percentiles) may increase by 69.5% and 99.8%, respectively, under a future scenario of 1  ° C increase in temperature. This increase in intensity resembles the increase in intensity observed between 1971–1990 and 1991–2010. The amplified runoff response can be related to the limited catchment storage capacity being preoccupied by rainfall extremes. The quantified temperature effect on rainfall and runoff intensification can be a strong basis for designing scenarios, confirming and fusing GCMs’ results. In addition, the runoff amplification should be a warning for other regions with significant rainfall intensification. Appropriate strategies are indispensable and urgently needed to maintain and protect the development of societies. (paper)

  5. Empirical studies of the microwave radiometric response to rainfall in the tropics and midlatitudes

    Science.gov (United States)

    Petty, Grant W.; Katsaros, Kristina B.

    1989-01-01

    Results are presented from quantitative comparisons between satellite microwave radiometer observations and digital radar observations of equatorial convective cloud clusters and midlatitude frontal precipitation. Simultaneous data from the Winter Monsoon Experiment digital radar and the SMMR for December 1978 are analyzed. It is found that the most important differences between the microwave response to rainfall in the equatorial tropics and to stratiform rain in oceanic midlatitude fronts is caused by the different spatial characteristics of stratiform and convective rainfall and by the different background brightness temperature fields associated with tropical and midlatitude levels of atmospheric water vapor.

  6. Remote sensing entropy to assess the sustainability of rainfall in tropical catchment

    Science.gov (United States)

    Mahmud, M. R.; Reba, M. N. M.; Wei, J. S.; Razak, N. H. Abdul

    2018-02-01

    This study demonstrated the utility of entropy computation using the satellite precipitation remote sensing data to assess the sustainability of rainfall in tropical catchments. There were two major issues need to be anticipated in monitoring the tropical catchments; first is the frequent monitoring of the rainfall and second is the appropriate indicator that sensitive to rainfall pattern changes or disorder. For the first issue, the use of satellite remote sensing precipitation data is suggested. Meanwhile for the second issue, the utilization of entropy concept in interpreting the disorder of temporal rainfall can be used to assess the sustain ability had been successfully adopted in some studies. Therefore, we hypothesized that the use of satellite precipitation as main data to compute entropy can be a novel tool in anticipating the above-mentioned conflict earlier. The remote sensing entropy results and in-situ river level showed good agreement indicating its reliability. 72% of the catchment has moderate to good rainfall supply during normal or non-drought condition. However, our result showed that the catchments were highly sensitive to drought especially in the west coast and southern part of the Peninsular Malaysia. High resiliency was identified in the east coast. We summarized that the proposed entropy-quantity scheme was a useful tool for cost-effective, quick, and operational sustainability assessment This study demonstrated the utility of entropy computation using the satellite precipitation remote sensing data to assess the sustainability of rainfall in tropical catchments.

  7. Spatial Scaling of Global Rainfall and Flood Extremes

    Science.gov (United States)

    Devineni, Naresh; Lall, Upmanu; Xi, Chen; Ward, Philip

    2014-05-01

    Floods associated with severe storms are a significant source of risk for property, life and supply chains. These property losses tend to be determined as much by the duration and spatial extent of flooding as by the depth and velocity of inundation. High duration floods are typically induced by persistent rainfall (up to 30 day duration) as seen recently in Thailand, Pakistan, the Ohio and the Mississippi Rivers, France, and Germany. Events related to persistent and recurrent rainfall appear to correspond to the persistence of specific global climate patterns that may be identifiable from global, historical data fields, and also from climate models that project future conditions. In this paper, we investigate the statistical properties of the spatial manifestation of the rainfall exceedances and floods. We present the first ever results on a global analysis of the scaling characteristics of extreme rainfall and flood event duration, volumes and contiguous flooded areas as a result of large scale organization of long duration rainfall events. Results are organized by latitude and with reference to the phases of ENSO, and reveal surprising invariance across latitude. Speculation as to the potential relation to the dynamical factors is presented

  8. Monsoon rainfall over India in June and link with northwest tropical pacific - June ISMR and link with northwest tropical pacific

    Science.gov (United States)

    Surendran, Sajani; Gadgil, Sulochana; Rajendran, Kavirajan; Varghese, Stella Jes; Kitoh, Akio

    2018-03-01

    Recent years have witnessed large interannual variation of all-India rainfall (AIR) in June, with intermittent large deficits and excesses. Variability of June AIR is found to have the strongest link with variation of rainfall over northwest tropical Pacific (NWTP), with AIR deficit (excess) associated with enhancement (suppression) of NWTP rainfall. This association is investigated using high-resolution Meteorological Research Institute model which shows high skill in simulating important features of Asian summer monsoon, its variability and the inverse relationship between NWTP rainfall and AIR. Analysis of the variation of NWTP rainfall shows that it is associated with a change in the latitudinal position of subtropical westerly jet over the region stretching from West of Tibetan Plateau (WTP) to NWTP and the phase of Rossby wave steered in it with centres over NWTP and WTP. In years with large rainfall excess/deficit, the strong link between AIR and NWTP rainfall exists through differences in Rossby wave phase steered in the jet. The positive phase of the WTP-NWTP pattern, with troughs over WTP and west of NWTP, tends to be associated with increased rainfall over NWTP and decreased AIR. This scenario is reversed in the opposite phase. Thus, the teleconnection between NWTP rainfall and AIR is a manifestation of the difference in the phase of Rossby wave between excess and deficit years, with centres over WTP and NWTP. This brings out the importance of prediction of phase of Rossby waves over WTP and NWTP in advance, for prediction of June rainfall over India.

  9. A Canonical Response in Rainfall Characteristics to Global Warming: Projections by IPCC CMIP5 Models

    Science.gov (United States)

    Lau, William K. M.; Wu, H. T.; Kim, K. M.

    2012-01-01

    Changes in rainfall characteristics induced by global warming are examined based on probability distribution function (PDF) analysis, from outputs of 14 IPCC (Intergovernmental Panel on Climate Change), CMIP (5th Coupled Model Intercomparison Project) models under various scenarios of increased CO2 emissions. Results show that collectively CMIP5 models project a robust and consistent global and regional rainfall response to CO2 warming. Globally, the models show a 1-3% increase in rainfall per degree rise in temperature, with a canonical response featuring large increase (100-250 %) in frequency of occurrence of very heavy rain, a reduction (5-10%) of moderate rain, and an increase (10-15%) of light rain events. Regionally, even though details vary among models, a majority of the models (>10 out of 14) project a consistent large scale response with more heavy rain events in climatologically wet regions, most pronounced in the Pacific ITCZ and the Asian monsoon. Moderate rain events are found to decrease over extensive regions of the subtropical and extratropical oceans, but increases over the extratropical land regions, and the Southern Oceans. The spatial distribution of light rain resembles that of moderate rain, but mostly with opposite polarity. The majority of the models also show increase in the number of dry events (absence or only trace amount of rain) over subtropical and tropical land regions in both hemispheres. These results suggest that rainfall characteristics are changing and that increased extreme rainfall events and droughts occurrences are connected, as a consequent of a global adjustment of the large scale circulation to global warming.

  10. Tropical forest policies for the global climate

    International Nuclear Information System (INIS)

    De Groot, W.T.; Kamminga, E.M.

    1995-01-01

    A summary is given of the approach and findings of the NRP project 'Local Actors and Global Tree Cover Policies'. The aim of this project was to identify the most effective and efficient options for global climate policies focusing on the tropical forest. Tropical deforestation is a process with very complex and variable causes. In the project's conclusions, therefore, much care has been given to arrive at a coherent image of what really counts most in the myriad of factors, actors, policy levels and policy options. 5 refs

  11. Modelling rainfall interception by a lowland tropical rain forest in northeastern Puerto Rico.

    NARCIS (Netherlands)

    Schellekens, J.; Scatena, F.N.; Bruijnzeel, L.A.; Wickel, A.J.

    1999-01-01

    Recent surveys of tropical forest water use suggest that rainfall interception by the canopy is largest in wet maritime locations. To investigate the underlying processes at one such location-the Luquillo Experimental Forest in eastern Puerto Rico-66 days of detailed throughfall and above-canopy

  12. Variability in rainfall over tropical Australia during summer and relationships with the Bilybara High

    Science.gov (United States)

    Reason, C. J. C.

    2018-04-01

    Variability in summer rainfall over tropical Australia, defined here as that part of the continent north of 25° S, and its linkages with regional circulation are examined. In particular, relationships with the mid-level anticyclone (termed the Bilybara High) that exists over the northwestern Australia/Timor Sea region between August and April are considered. This High forms to the southwest of the upper-level anticyclone via a balance between the upper-level divergence over the region of tropical precipitation maximum and planetary vorticity advection and moves south and strengthens during the spring and summer. It is shown that variations in the strength and position of the Bilybara High are related to anomalies in precipitation and temperature over large parts of tropical Australia as well as some areas in the south and southeast of the landmass. Some of the interannual variations in the High are related to ENSO, but there are also a number of neutral years with large anomalies in the High and hence in rainfall. On decadal time scales, a strong relationship exists between the leading mode of tropical Australian rainfall and the Bilybara High. On both interannual and decadal scales, the relationships between the High and the regional rainfall involve changes in the monsoonal northwesterlies blowing towards northern Australia, and further south, in the easterly trade winds over the region.

  13. Global warming and South Indian monsoon rainfall-lessons from the Mid-Miocene.

    Science.gov (United States)

    Reuter, Markus; Kern, Andrea K; Harzhauser, Mathias; Kroh, Andreas; Piller, Werner E

    2013-04-01

    Precipitation over India is driven by the Indian monsoon. Although changes in this atmospheric circulation are caused by the differential seasonal diabatic heating of Asia and the Indo-Pacific Ocean, it is so far unknown how global warming influences the monsoon rainfalls regionally. Herein, we present a Miocene pollen flora as the first direct proxy for monsoon over southern India during the Middle Miocene Climate Optimum. To identify climatic key parameters, such as mean annual temperature, warmest month temperature, coldest month temperature, mean annual precipitation, mean precipitation during the driest month, mean precipitation during the wettest month and mean precipitation during the warmest month the Coexistence Approach is applied. Irrespective of a ~ 3-4 °C higher global temperature during the Middle Miocene Climate Optimum, the results indicate a modern-like monsoonal precipitation pattern contrasting marine proxies which point to a strong decline of Indian monsoon in the Himalaya at this time. Therefore, the strength of monsoon rainfall in tropical India appears neither to be related to global warming nor to be linked with the atmospheric conditions over the Tibetan Plateau. For the future it implies that increased global warming does not necessarily entail changes in the South Indian monsoon rainfall.

  14. How temporal patterns in rainfall determine the geomorphology and carbon fluxes of tropical peatlands

    Science.gov (United States)

    Hoyt, Alison M.; Gandois, Laure; Eri, Jangarun; Dommain, René; Abu Salim, Kamariah; Kai, Fuu Ming; Haji Su’ut, Nur Salihah; Harvey, Charles F.

    2017-01-01

    Tropical peatlands now emit hundreds of megatons of carbon dioxide per year because of human disruption of the feedbacks that link peat accumulation and groundwater hydrology. However, no quantitative theory has existed for how patterns of carbon storage and release accompanying growth and subsidence of tropical peatlands are affected by climate and disturbance. Using comprehensive data from a pristine peatland in Brunei Darussalam, we show how rainfall and groundwater flow determine a shape parameter (the Laplacian of the peat surface elevation) that specifies, under a given rainfall regime, the ultimate, stable morphology, and hence carbon storage, of a tropical peatland within a network of rivers or canals. We find that peatlands reach their ultimate shape first at the edges of peat domes where they are bounded by rivers, so that the rate of carbon uptake accompanying their growth is proportional to the area of the still-growing dome interior. We use this model to study how tropical peatland carbon storage and fluxes are controlled by changes in climate, sea level, and drainage networks. We find that fluctuations in net precipitation on timescales from hours to years can reduce long-term peat accumulation. Our mathematical and numerical models can be used to predict long-term effects of changes in temporal rainfall patterns and drainage networks on tropical peatland geomorphology and carbon storage. PMID:28607068

  15. How temporal patterns in rainfall determine the geomorphology and carbon fluxes of tropical peatlands.

    Science.gov (United States)

    Cobb, Alexander R; Hoyt, Alison M; Gandois, Laure; Eri, Jangarun; Dommain, René; Abu Salim, Kamariah; Kai, Fuu Ming; Haji Su'ut, Nur Salihah; Harvey, Charles F

    2017-06-27

    Tropical peatlands now emit hundreds of megatons of carbon dioxide per year because of human disruption of the feedbacks that link peat accumulation and groundwater hydrology. However, no quantitative theory has existed for how patterns of carbon storage and release accompanying growth and subsidence of tropical peatlands are affected by climate and disturbance. Using comprehensive data from a pristine peatland in Brunei Darussalam, we show how rainfall and groundwater flow determine a shape parameter (the Laplacian of the peat surface elevation) that specifies, under a given rainfall regime, the ultimate, stable morphology, and hence carbon storage, of a tropical peatland within a network of rivers or canals. We find that peatlands reach their ultimate shape first at the edges of peat domes where they are bounded by rivers, so that the rate of carbon uptake accompanying their growth is proportional to the area of the still-growing dome interior. We use this model to study how tropical peatland carbon storage and fluxes are controlled by changes in climate, sea level, and drainage networks. We find that fluctuations in net precipitation on timescales from hours to years can reduce long-term peat accumulation. Our mathematical and numerical models can be used to predict long-term effects of changes in temporal rainfall patterns and drainage networks on tropical peatland geomorphology and carbon storage.

  16. Japanese Global Precipitation Measurement (GPM) mission status and application of satellite-based global rainfall map

    Science.gov (United States)

    Kachi, Misako; Shimizu, Shuji; Kubota, Takuji; Yoshida, Naofumi; Oki, Riko; Kojima, Masahiro; Iguchi, Toshio; Nakamura, Kenji

    2010-05-01

    As accuracy of satellite precipitation estimates improves and observation frequency increases, application of those data to societal benefit areas, such as weather forecasts and flood predictions, is expected, in addition to research of precipitation climatology to analyze precipitation systems. There is, however, limitation on single satellite observation in coverage and frequency. Currently, the Global Precipitation Measurement (GPM) mission is scheduled under international collaboration to fulfill various user requirements that cannot be achieved by the single satellite, like the Tropical Rainfall Measurement Mission (TRMM). The GPM mission is an international mission to achieve high-accurate and high-frequent rainfall observation over a global area. GPM is composed of a TRMM-like non-sun-synchronous orbit satellite (GPM core satellite) and constellation of satellites carrying microwave radiometer instruments. The GPM core satellite carries the Dual-frequency Precipitation Radar (DPR), which is being developed by the Japan Aerospace Exploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT), and microwave radiometer provided by the National Aeronautics and Space Administration (NASA). Development of DPR instrument is in good progress for scheduled launch in 2013, and DPR Critical Design Review has completed in July - September 2009. Constellation satellites, which carry a microwave imager and/or sounder, are planned to be launched around 2013 by each partner agency for its own purpose, and will contribute to extending coverage and increasing frequency. JAXA's future mission, the Global Change Observation Mission (GCOM) - Water (GCOM-W) satellite will be one of constellation satellites. The first generation of GCOM-W satellite is scheduled to be launched in 2011, and it carries the Advanced Microwave Scanning Radiometer 2 (AMSR2), which is being developed based on the experience of the AMSR-E on EOS Aqua satellite

  17. Variations of Sea Surface Temperature, Wind Stress, and Rainfall over the Tropical Atlantic and South America.

    Science.gov (United States)

    Nobre, Paulo; Srukla, J.

    1996-10-01

    Empirical orthogonal functions (E0Fs) and composite analyses are used to investigate the development of sea surface temperature (SST) anomaly patterns over the tropical Atlantic. The evolution of large-scale rainfall anomaly patterns over the equatorial Atlantic and South America are also investigated. 71e EOF analyses revealed that a pattern of anomalous SST and wind stress asymmetric relative to the equator is the dominant mode of interannual and longer variability over the tropical Atlantic. The most important findings of this study are as follows.Atmospheric circulation anomalies precede the development of basinwide anomalous SST patterns over the tropical Atlantic. Anomalous SST originate off the African coast simultaneously with atmospheric circulation anomalies and expand westward afterward. The time lag between wind stress relaxation (strengthening) and maximum SST warming (cooling) is about two months.Anomalous atmospheric circulation patterns over northern tropical Atlantic are phase locked to the seasonal cycle. Composite fields of SLP and wind stress over northern tropical Atlantic can be distinguished from random only within a few months preceding the March-May (MAM) season. Observational evidence is presented to show that the El Niño-Southern Oscillation phenomenon in the Pacific influences atmospheric circulation and SST anomalies over northern tropical Atlantic through atmospheric teleconnection patterns into higher latitudes of the Northern Hemisphere.The well-known droughts over northeastern Brazil (Nordeste) are a local manifestation of a much larger-scale rainfall anomaly pattern encompassing the whole equatorial Atlantic and Amazon region. Negative rainfall anomalies to the south of the equator during MAM, which is the rainy season for the Nordeste region, are related to an early withdrawal of the intertropical convergence zone toward the warm SST anomalies over the northern tropical Atlantic. Also, it is shown that precipitation anomalies

  18. Soil water storage, rainfall and runoff relationships in a tropical dry forest catchment

    Science.gov (United States)

    Farrick, Kegan K.; Branfireun, Brian A.

    2014-12-01

    In forested catchments, the exceedance of rainfall and antecedent water storage thresholds is often required for runoff generation, yet to our knowledge these threshold relationships remain undescribed in tropical dry forest catchments. We, therefore, identified the controls of streamflow activation and the timing and magnitude of runoff in a tropical dry forest catchment near the Pacific coast of central Mexico. During a 52 day transition phase from the dry to wet season, soil water movement was dominated by vertical flow which continued until a threshold soil moisture content of 26% was reached at 100 cm below the surface. This satisfied a 162 mm storage deficit and activated streamflow, likely through lateral subsurface flow pathways. High antecedent soil water conditions were maintained during the wet phase but had a weak influence on stormflow. We identified a threshold value of 289 mm of summed rainfall and antecedent soil water needed to generate >4 mm of stormflow per event. Above this threshold, stormflow response and magnitude was almost entirely governed by rainfall event characteristics and not antecedent soil moisture conditions. Our results show that over the course of the wet season in tropical dry forests the dominant controls on runoff generation changed from antecedent soil water and storage to the depth of rainfall.

  19. Final Scientific Report for "The Interhemispheric Pattern in 20th Century and Future Abrupt Change in Regional Tropical Rainfall"

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, John C. H. [University of California, Berkeley, CA (United States); Wehner, Michael F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-10-29

    Convergence Zone (ITCZ) over the course of the 20th century prior to the 1980s. This is based on our detection and attribution analysis of 20th century simulations done by international modeling groups as part of the Coupled Model Intercomparison Project phase 3 (CMIP3). We repeated the same analysis with the current CMIP5 multimodel simulations, with essentially similar results. 3.Future projections of the global interhemispheric thermal gradient suggest a pronounced trend that well exceeds the 20th century range of behavior. The major cause of this trend is due to anthropogenic greenhouse gas emissions, acting in such a way as to warm the North more than the South. This result is based on our analysis of the CMIP3 and 5 simulations of future scenarios. The underlying suggestion is that tropical rainfall may concentrate more northwards in the future climate, though further research is required to more firmly establish that result.Taken together, our results shows the important role of the interhemispheric thermal gradient in determining tropical rainfall changes in the 20th century and future. Our analysis specifically highlights high-latitude North Atlantic sea surface temperature, and anthropogenic sulfate aerosols, as important drivers of the interhemispheric gradient over the 20th century; and anthropogenic greenhouse gases in the 21st. The PI has written a review paper in order to promote the awareness of the interhemispheric gradient amongst the climate science community.Our project was instrumental in developing the career of a postdoctoral scholar, as well as contributing to the research training of three Ph.D. candidates.

  20. A global dataset of sub-daily rainfall indices

    Science.gov (United States)

    Fowler, H. J.; Lewis, E.; Blenkinsop, S.; Guerreiro, S.; Li, X.; Barbero, R.; Chan, S.; Lenderink, G.; Westra, S.

    2017-12-01

    It is still uncertain how hydrological extremes will change with global warming as we do not fully understand the processes that cause extreme precipitation under current climate variability. The INTENSE project is using a novel and fully-integrated data-modelling approach to provide a step-change in our understanding of the nature and drivers of global precipitation extremes and change on societally relevant timescales, leading to improved high-resolution climate model representation of extreme rainfall processes. The INTENSE project is in conjunction with the World Climate Research Programme (WCRP)'s Grand Challenge on 'Understanding and Predicting Weather and Climate Extremes' and the Global Water and Energy Exchanges Project (GEWEX) Science questions. A new global sub-daily precipitation dataset has been constructed (data collection is ongoing). Metadata for each station has been calculated, detailing record lengths, missing data, station locations. A set of global hydroclimatic indices have been produced based upon stakeholder recommendations including indices that describe maximum rainfall totals and timing, the intensity, duration and frequency of storms, frequency of storms above specific thresholds and information about the diurnal cycle. This will provide a unique global data resource on sub-daily precipitation whose derived indices will be freely available to the wider scientific community.

  1. Effects of Rainfall Characteristics on the Stability of Tropical Residual Soil Slope

    Directory of Open Access Journals (Sweden)

    Rahardjo Harianto

    2016-01-01

    Full Text Available Global climate change has a significant impact on rainfall characteristics, sea water level and groundwater table. Changes in rainfall characteristics may affect stability of slopes and have severe impacts on sustainable urban living. Information on the intensity, frequency and duration of rainfall is often required by geotechnical engineers for performing slope stability analyses. Many seepage analyses are commonly performed using the most extreme rainfall possible which is uneconomical in designing a slope repair or slope failure preventive measure. In this study, the historical rainfall data were analyzed and investigated to understand the characteristics of rainfall in Singapore. The frequency distribution method was used to estimate future rainfall characteristics in Singapore. New intensity-duration-frequency (IDF curves for rainfall in Singapore were developed for six different durations (10, 20, 30 min and 1, 2 and 24 h and six frequencies (2, 5, 10, 25, 50 and 100 years. The new IDF curves were used in the seepage and slope stability analyses to determine the variation of factor of safety of residual soil slopes under different rainfall intensities in Singapore.

  2. On the relative role of fire and rainfall in determining vegetation patterns in tropical savannas: a simulation study

    Science.gov (United States)

    Spessa, Allan; Fisher, Rosie

    2010-05-01

    Tropical savannas cover 18% of the world's land surface and are amongst the most productive terrestrial systems in the world. They comprise 15% of the total terrestrial carbon stock, with an estimated mean net primary productivity (NPP) of 7.2 tCha-1yr-1 or two thirds of NPP in tropical forests. Tropical savannas are the most frequently burnt biome, with fire return intervals in highly productive areas being typically 1-2 years. Fires shape vegetation species composition, tree to grass ratios and nutrient redistribution, as well as the biosphere-atmosphere exchange of trace gases, momentum and radiative energy. Tropical savannas are a major source of emissions, contributing 38 % of total annual CO2 from biomass burning, 30% CO, 19 % CH4 and 59 % NOx. Climatically, they occur in regions subject to a strongly seasonal ‘wet-dry' regime, usually under monsoonal control from the movement of the inter-tropical convergence zone. In general, rainfall during the prior wet season(s) determines the amount of grass fuel available for burning while the length of the dry season influences fuel moisture content. Rainfall in tropical savannas exhibits high inter-annual variability, and under future climate change, is projected to change significantly in much of Africa, South America and northern Australia. Process-based simulation models of fire-vegetation dynamics and feedbacks are critical for determining the impacts of wildfires under projected future climate change on i) ecosystem structure and function, and ii) emissions of trace gases and aerosols from biomass burning. A new mechanistic global fire model SPITFIRE (SPread and InTensity of FIRE) has been designed to overcome many of the limitations in existing fire models set within Dynamic Global Vegetation Models (DGVMs). SPITFIRE has been applied in coupled mode globally and southern Africa, both as part of the LPJ DGVM. It has also been driven with MODIS burnt area data applied to sub-Saharan Africa, while coupled to the

  3. Tropical Atlantic Contributions to Strong Rainfall Variability Along the Northeast Brazilian Coast

    Directory of Open Access Journals (Sweden)

    G. A. Hounsou-gbo

    2015-01-01

    Full Text Available Tropical Atlantic (TA Ocean-atmosphere interactions and their contributions to strong variability of rainfall along the Northeast Brazilian (NEB coast were investigated for the years 1974–2008. The core rainy seasons of March-April and June-July were identified for Fortaleza (northern NEB; NNEB and Recife (eastern NEB; ENEB, respectively. Lagged linear regressions between sea surface temperature (SST and pseudo wind stress (PWS anomalies over the entire TA and strong rainfall anomalies at Fortaleza and Recife show that the rainfall variability of these regions is differentially influenced by the dynamics of the TA. When the Intertropical Convergence Zone is abnormally displaced southward a few months prior to the NNEB rainy season, the associated meridional mode increases humidity and precipitation during the rainy season. Additionally, this study shows predictive effect of SST, meridional PWS, and barrier layer thickness, in the Northwestern equatorial Atlantic, on the NNEB rainfall. The dynamical influence of the TA on the June-July ENEB rainfall variability shows a northwestward-propagating area of strong, positively correlated SST from the southeastern TA to the southwestern Atlantic warm pool (SAWP offshore of Brazil. Our results also show predictive effect of SST, zonal PWS, and mixed layer depth, in the SAWP, on the ENEB rainfall.

  4. Reassessing rainfall in the Luquillo Mountains, Puerto Rico: Local and global ecohydrological implications

    Science.gov (United States)

    Murphy, Sheila F.; Stallard, Robert F.; Scholl, Martha A.; Gonzalez, Grizelle; Torres-Sanchez, Angel J.

    2017-01-01

    Mountains receive a greater proportion of precipitation than other environments, and thus make a disproportionate contribution to the world’s water supply. The Luquillo Mountains receive the highest rainfall on the island of Puerto Rico and serve as a critical source of water to surrounding communities. The area’s role as a long-term research site has generated numerous hydrological, ecological, and geological investigations that have been included in regional and global overviews that compare tropical forests to other ecosystems. Most of the forest- and watershed-wide estimates of precipitation (and evapotranspiration, as inferred by a water balance) have assumed that precipitation increases consistently with elevation. However, in this new analysis of all known current and historical rain gages in the region, we find that similar to other mountainous islands in the trade wind latitudes, leeward (western) watersheds in the Luquillo Mountains receive lower mean annual precipitation than windward (eastern) watersheds. Previous studies in the Luquillo Mountains have therefore overestimated precipitation in leeward watersheds by up to 40%. The Icacos watershed, however, despite being located at elevations 200–400 m below the tallest peaks and to the lee of the first major orographic barrier, receives some of the highest precipitation. Such lee-side enhancement has been observed in other island mountains of similar height and width, and may be caused by several mechanisms. Thus, the long-reported discrepancy of unrealistically low rates of evapotranspiration in the Icacos watershed is likely caused by previous underestimation of precipitation, perhaps by as much as 20%. Rainfall/runoff ratios in several previous studies suggested either runoff excess or runoff deficiency in Luquillo watersheds, but this analysis suggests that in fact they are similar to other tropical watersheds. Because the Luquillo Mountains often serve as a wet tropical archetype in global

  5. Reassessing rainfall in the Luquillo Mountains, Puerto Rico: Local and global ecohydrological implications.

    Directory of Open Access Journals (Sweden)

    Sheila F Murphy

    Full Text Available Mountains receive a greater proportion of precipitation than other environments, and thus make a disproportionate contribution to the world's water supply. The Luquillo Mountains receive the highest rainfall on the island of Puerto Rico and serve as a critical source of water to surrounding communities. The area's role as a long-term research site has generated numerous hydrological, ecological, and geological investigations that have been included in regional and global overviews that compare tropical forests to other ecosystems. Most of the forest- and watershed-wide estimates of precipitation (and evapotranspiration, as inferred by a water balance have assumed that precipitation increases consistently with elevation. However, in this new analysis of all known current and historical rain gages in the region, we find that similar to other mountainous islands in the trade wind latitudes, leeward (western watersheds in the Luquillo Mountains receive lower mean annual precipitation than windward (eastern watersheds. Previous studies in the Luquillo Mountains have therefore overestimated precipitation in leeward watersheds by up to 40%. The Icacos watershed, however, despite being located at elevations 200-400 m below the tallest peaks and to the lee of the first major orographic barrier, receives some of the highest precipitation. Such lee-side enhancement has been observed in other island mountains of similar height and width, and may be caused by several mechanisms. Thus, the long-reported discrepancy of unrealistically low rates of evapotranspiration in the Icacos watershed is likely caused by previous underestimation of precipitation, perhaps by as much as 20%. Rainfall/runoff ratios in several previous studies suggested either runoff excess or runoff deficiency in Luquillo watersheds, but this analysis suggests that in fact they are similar to other tropical watersheds. Because the Luquillo Mountains often serve as a wet tropical archetype in

  6. Global Climatic Indices Influence on Rainfall Spatiotemporal Distribution : A Case Study from Morocco

    Science.gov (United States)

    Elkadiri, R.; Zemzami, M.; Phillips, J.

    2017-12-01

    The climate of Morocco is affected by the Mediterranean Sea, the Atlantic Ocean the Sahara and the Atlas mountains, creating a highly variable spatial and temporal distribution. In this study, we aim to decompose the rainfall in Morocco into global and local signals and understand the contribution of the climatic indices (CIs) on rainfall. These analyses will contribute in understanding the Moroccan climate that is typical of other Mediterranean and North African climatic zones. In addition, it will contribute in a long-term prediction of climate. The constructed database ranges from 1950 to 2013 and consists of monthly data from 147 rainfall stations and 37 CIs data provided mostly by the NOAA Climate Prediction Center. The next general steps were followed: (1) the study area was divided into 9 homogenous climatic regions and weighted precipitation was calculated for each region to reduce the local effects. (2) Each CI was decomposed into nine components of different frequencies (D1 to D9) using wavelet multiresolution analysis. The four lowest frequencies of each CI were selected. (3) Each of the original and resulting signals were shifted from one to six months to account for the effect of the global patterns. The application of steps two and three resulted in the creation of 1225 variables from the original 37 CIs. (4) The final 1225 variables were used to identify links between the global and regional CIs and precipitation in each of the nine homogenous regions using stepwise regression and decision tree. The preliminary analyses and results were focused on the north Atlantic zone and have shown that the North Atlantic Oscillation (PC-based) from NCAR (NAOPC), the Arctic Oscillation (AO), the North Atlantic Oscillation (NAO), the Western Mediterranean Oscillation (WMO) and the Extreme Eastern Tropical Pacific Sea Surface Temperature (NINO12) have the highest correlation with rainfall (33%, 30%, 27%, 21% and -20%, respectively). In addition the 4-months lagged

  7. Attribution of Extreme Rainfall from Landfalling Tropical Cyclones to Climate Change for the Eastern United States

    Science.gov (United States)

    Liu, M.; Yang, L.; Smith, J. A.; Vecchi, G. A.

    2017-12-01

    Extreme rainfall and flooding associated with landfalling tropical cyclones (TC) is responsible for vast socioeconomic losses and fatalities. Landfalling tropical cyclones are an important element of extreme rainfall and flood peak distributions in the eastern United States. Record floods for USGS stream gauging stations over the eastern US are closely tied to landfalling hurricanes. A small number of storms account for the largest record floods, most notably Hurricanes Diane (1955) and Agnes (1972). The question we address is: if the synoptic conditions accompanying those hurricanes were to be repeated in the future, how would the thermodynamic and dynamic storm properties and associated extreme rainfall differ in response to climate change? We examine three hurricanes: Diane (1955), Agnes (1972) and Irene (2011), due to the contrasts in structure/evolution properties and their important roles in dictating the upper tail properties of extreme rainfall and flood frequency over eastern US. Extreme rainfall from Diane is more localized as the storm maintains tropical characteristics, while synoptic-scale vertical motion associated with extratropical transition is a central feature for extreme rainfall induced by Agnes. Our analyses are based on ensemble simulations using the Weather Research and Forecasting (WRF) model, considering combinations of different physics options (i.e., microphysics, boundary layer schemes). The initial and boundary conditions of WRF simulations for the present-day climate are using the Twentieth Century Reanalysis (20thCR). A sub-selection of GCMs is used, as part of phase 5 of the Coupled Model Intercomparison Project (CMIP5), to provide future climate projections. For future simulations, changes in model fields (i.e., temperature, humidity, geopotential height) between present-day and future climate are first derived and then added to the same 20thCR initial and boundary data used for the present-day simulations, and the ensemble is

  8. The bi-decadal rainfall cycle, Southern Annular Mode and tropical cyclones over the Limpopo River Basin, southern Africa

    CSIR Research Space (South Africa)

    Malherbe, J

    2014-06-01

    Full Text Available contribution to rainfall by tropical cyclones and depressions. The findings suggest that a broadening of the Hadley circulation underpinned by an anomalous anticyclonic pattern to the east of southern Africa altered tropospheric steering flow, relative...

  9. Neglected Tropical Diseases: Epidemiology and Global Burden

    Directory of Open Access Journals (Sweden)

    Amal K. Mitra

    2017-08-01

    Full Text Available More than a billion people—one-sixth of the world’s population, mostly in developing countries—are infected with one or more of the neglected tropical diseases (NTDs. Several national and international programs (e.g., the World Health Organization’s Global NTD Programs, the Centers for Disease Control and Prevention’s Global NTD Program, the United States Global Health Initiative, the United States Agency for International Development’s NTD Program, and others are focusing on NTDs, and fighting to control or eliminate them. This review identifies the risk factors of major NTDs, and describes the global burden of the diseases in terms of disability-adjusted life years (DALYs.

  10. Enhancement of seasonal prediction of East Asian summer rainfall related to the western tropical Pacific convection

    Science.gov (United States)

    Lee, D. Y.; Ahn, J. B.; Yoo, J. H.

    2014-12-01

    The prediction skills of climate model simulations in the western tropical Pacific (WTP) and East Asian region are assessed using the retrospective forecasts of seven state-of-the-art coupled models and their multi-model ensemble (MME) for boreal summers (June-August) during the period 1983-2005, along with corresponding observed and reanalyzed data. The prediction of summer rainfall anomalies in East Asia is difficult, while the WTP has a strong correlation between model prediction and observation. We focus on developing a new approach to further enhance the seasonal prediction skill for summer rainfall in East Asia and investigate the influence of convective activity in the WTP on East Asian summer rainfall. By analyzing the characteristics of the WTP convection, two distinct patterns associated with El Niño-Southern Oscillation (ENSO) developing and decaying modes are identified. Based on the multiple linear regression method, the East Asia Rainfall Index (EARI) is developed by using the interannual variability of the normalized Maritime continent-WTP indices (MPIs), as potentially useful predictors for rainfall prediction over East Asia, obtained from the above two main patterns. For East Asian summer rainfall, the EARI has superior performance to the East Asia summer monsoon index (EASMI) or each MP index (MPI). Therefore, the regressed rainfall from EARI also shows a strong relationship with the observed East Asian summer rainfall pattern. In addition, we evaluate the prediction skill of the East Asia reconstructed rainfall obtained by statistical-empirical approach using the cross-validated EARI from the individual models and their MME. The results show that the rainfalls reconstructed from simulations capture the general features of observed precipitation in East Asia quite well. This study convincingly demonstrates that rainfall prediction skill is considerably improved by using the statistical-empirical method compared to the dynamical models

  11. Tropical Rainfall Measuring Mission (TRMM) Precipitation Data and Services for Research and Applications

    Science.gov (United States)

    Liu, Zhong; Ostrenga, Dana; Teng, William; Kempler, Steven

    2012-01-01

    Precipitation is a critical component of the Earth's hydrological cycle. Launched on 27 November 1997, TRMM is a joint U.S.-Japan satellite mission to provide the first detailed and comprehensive data set of the four-dimensional distribution of rainfall and latent heating over vastly under-sampled tropical and subtropical oceans and continents (40 S - 40 N). Over the past 14 years, TRMM has been a major data source for meteorological, hydrological and other research and application activities around the world. The purpose of this short article is to inform that the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) provides TRMM archive and near-real-time precipitation data sets and services for research and applications. TRMM data consist of orbital data from TRMM instruments at the sensor s resolution, gridded data at a range of spatial and temporal resolutions, subsets, ground-based instrument data, and ancillary data. Data analysis, display, and delivery are facilitated by the following services: (1) Mirador (data search and access); (2) TOVAS (TRMM Online Visualization and Analysis System); (3) OPeNDAP (Open-source Project for a Network Data Access Protocol); (4) GrADS Data Server (GDS); and (5) Open Geospatial Consortium (OGC) Web Map Service (WMS) for the GIS community. Precipitation data application services are available to support a wide variety of applications around the world. Future plans include enhanced and new services to address data related issues from the user community. Meanwhile, the GES DISC is preparing for the Global Precipitation Measurement (GPM) mission which is scheduled for launch in 2014.

  12. Contribution of landfalling tropical system rainfall to the hydroclimate of the eastern U.S. Corn Belt 1981–2012

    Directory of Open Access Journals (Sweden)

    Olivia Kellner

    2016-09-01

    Landfalling tropical system rainfall accounts for approximately 20% of the observed monthly rainfall during the tropical storm season (June–November across the eastern U.S. Corn Belt (1981–2012. Correlation between the annual number of landfalling tropical systems and annual yield by state results in no relationship, but correlation of August monthly observed rainfall by climate division to crop reporting district annual yields has a weak to moderate, statistically significant correlation in Ohio districts 30–60 and Indiana CRD 90. ANOVA analysis suggests that landfalling tropical rainfall may actually reduce yields in some state's climate divisions/crop reporting districts while increasing yield in others. Results suggest that there is a balance between landfalling tropical storms providing sufficient rainfall or too much rainfall to be of benefit to crops. Findings aim to provide information to producers, crop advisers, risk managers and commodity groups so that seasonal hurricane forecasts can potentially be utilized in planning for above or below normal precipitation during phenologically important portions of the growing season.

  13. AVHRR for monitoring global tropical deforestation

    Science.gov (United States)

    Malingreau, J. P.; Laporte, N.; Tucker, C. J.

    1989-01-01

    Advanced Very High Resolution Radiometer (AVHRR) data have been used to assess the dynamics of forest trnsformations in three parts of the tropical belt. A large portion of the Amazon Basin has been systematically covered by Local Area Coverage (LAC) data in the 1985-1987 period. The analysis of the vegetation index and thermal data led to the identification and measurement of large areas of active deforestation. The Kalimantan/Borneo forest fires were monitored and their impact was evaluated using the Global Area Coverage (GAC) 4 km resolution data. Finally, High Resolution Picture Transmission (HRPT) data have provided preliminary information on current activities taking place at the boundary between the savanna and the forest in the Southern part of West Africa. The AVHRR approach is found to be a highly valuable means for carrying out deforestation assessments in regional and global perspectives.

  14. Improving rainfall representation for large-scale hydrological modelling of tropical mountain basins

    Science.gov (United States)

    Zulkafli, Zed; Buytaert, Wouter; Onof, Christian; Lavado, Waldo; Guyot, Jean-Loup

    2013-04-01

    Errors in the forcing data are sometimes overlooked in hydrological studies even when they could be the most important source of uncertainty. The latter particularly holds true in tropical countries with short historical records of rainfall monitoring and remote areas with sparse rain gauge network. In such instances, alternative data such as the remotely sensed precipitation from the TRMM (Tropical Rainfall Measuring Mission) satellite have been used. These provide a good spatial representation of rainfall processes but have been established in the literature to contain volumetric biases that may impair the results of hydrological modelling or worse, are compensated during model calibration. In this study, we analysed precipitation time series from the TMPA (TRMM Multiple Precipitation Algorithm, version 6) against measurements from over 300 gauges in the Andes and Amazon regions of Peru and Ecuador. We found moderately good monthly correlation between the pixel and gauge pairs but a severe underestimation of rainfall amounts and wet days. The discrepancy between the time series pairs is particularly visible over the east side of the Andes and may be attributed to localized and orographic-driven high intensity rainfall, which the satellite product may have limited skills at capturing due to technical and scale issues. This consequently results in a low bias in the simulated streamflow volumes further downstream. In comparison, with the recently released TMPA, version 7, the biases reduce. This work further explores several approaches to merge the two sources of rainfall measurements, each of a different spatial and temporal support, with the objective of improving the representation of rainfall in hydrological simulations. The methods used are (1) mean bias correction (2) data assimilation using Kalman filter Bayesian updating. The results are evaluated by means of (1) a comparison of runoff ratios (the ratio of the total runoff and the total precipitation over an

  15. Hydro-meteorological evaluation of downscaled global ensemble rainfall forecasts

    Science.gov (United States)

    Gaborit, Étienne; Anctil, François; Fortin, Vincent; Pelletier, Geneviève

    2013-04-01

    Ensemble rainfall forecasts are of high interest for decision making, as they provide an explicit and dynamic assessment of the uncertainty in the forecast (Ruiz et al. 2009). However, for hydrological forecasting, their low resolution currently limits their use to large watersheds (Maraun et al. 2010). In order to bridge this gap, various implementations of the statistic-stochastic multi-fractal downscaling technique presented by Perica and Foufoula-Georgiou (1996) were compared, bringing Environment Canada's global ensemble rainfall forecasts from a 100 by 70-km resolution down to 6 by 4-km, while increasing each pixel's rainfall variance and preserving its original mean. For comparison purposes, simpler methods were also implemented such as the bi-linear interpolation, which disaggregates global forecasts without modifying their variance. The downscaled meteorological products were evaluated using different scores and diagrams, from both a meteorological and a hydrological view points. The meteorological evaluation was conducted comparing the forecasted rainfall depths against nine days of observed values taken from Québec City rain gauge database. These 9 days present strong precipitation events occurring during the summer of 2009. For the hydrologic evaluation, the hydrological models SWMM5 and (a modified version of) GR4J were implemented on a small 6 km2 urban catchment located in the Québec City region. Ensemble hydrologic forecasts with a time step of 3 hours were then performed over a 3-months period of the summer of 2010 using the original and downscaled ensemble rainfall forecasts. The most important conclusions of this work are that the overall quality of the forecasts was preserved during the disaggregation procedure and that the disaggregated products using this variance-enhancing method were of similar quality than bi-linear interpolation products. However, variance and dispersion of the different members were, of course, much improved for the

  16. SM2RAIN-CCI: a new global long-term rainfall data set derived from ESA CCI soil moisture

    Science.gov (United States)

    Ciabatta, Luca; Massari, Christian; Brocca, Luca; Gruber, Alexander; Reimer, Christoph; Hahn, Sebastian; Paulik, Christoph; Dorigo, Wouter; Kidd, Richard; Wagner, Wolfgang

    2018-02-01

    Accurate and long-term rainfall estimates are the main inputs for several applications, from crop modeling to climate analysis. In this study, we present a new rainfall data set (SM2RAIN-CCI) obtained from the inversion of the satellite soil moisture (SM) observations derived from the ESA Climate Change Initiative (CCI) via SM2RAIN (Brocca et al., 2014). Daily rainfall estimates are generated for an 18-year long period (1998-2015), with a spatial sampling of 0.25° on a global scale, and are based on the integration of the ACTIVE and the PASSIVE ESA CCI SM data sets.The quality of the SM2RAIN-CCI rainfall data set is evaluated by comparing it with two state-of-the-art rainfall satellite products, i.e. the Tropical Measurement Mission Multi-satellite Precipitation Analysis 3B42 real-time product (TMPA 3B42RT) and the Climate Prediction Center Morphing Technique (CMORPH), and one modeled data set (ERA-Interim). A quality check is carried out on a global scale at 1° of spatial sampling and 5 days of temporal sampling by comparing these products with the gauge-based Global Precipitation Climatology Centre Full Data Daily (GPCC-FDD) product. SM2RAIN-CCI shows relatively good results in terms of correlation coefficient (median value > 0.56), root mean square difference (RMSD, median value test the capabilities of the data set to correctly identify rainfall events under different climate and precipitation regimes.The SM2RAIN-CCI rainfall data set is freely available at https://doi.org/10.5281/zenodo.846259.

  17. Forty years experience in developing and using rainfall simulators under tropical and Mediterranean conditions

    Science.gov (United States)

    Pla-Sentís, Ildefonso; Nacci, Silvana

    2010-05-01

    Rainfall simulation has been used as a practical tool for evaluating the interaction of falling water drops on the soil surface, to measure both stability of soil aggregates to drop impact and water infiltration rates. In both cases it is tried to simulate the effects of natural rainfall, which usually occurs at very different, variable and erratic rates and intensities. One of the main arguments against the use of rainfall simulators is the difficulty to reproduce the size, final velocity and kinetic energy of the drops in natural rainfall. Since the early 70´s we have been developing and using different kinds of rainfall simulators, both at laboratory and field levels, and under tropical and Mediterranean soil and climate conditions, in flat and sloping lands. They have been mainly used to evaluate the relative effects of different land use and management, including different cropping systems, tillage practices, surface soil conditioning, surface covers, etc. on soil water infiltration, on runoff and on erosion. Our experience is that in any case it is impossible to reproduce the variable size distribution and terminal velocity of raindrops, and the variable changes in intensity of natural storms, under a particular climate condition. In spite of this, with the use of rainfall simulators it is possible to obtain very good information, which if it is properly interpreted in relation to each particular condition (land and crop management, rainfall characteristics, measurement conditions, etc.) may be used as one of the parameters for deducing and modelling soil water balance and soil moisture regime under different land use and management and variable climate conditions. Due to the possibility for a better control of the intensity of simulated rainfall and of the size of water drops, and the possibility to make more repeated measurements under very variable soil and land conditions, both in the laboratory and specially in the field, the better results have been

  18. Multiscaling properties of tropical rainfall: Analysis of rain gauge datasets in Lesser Antilles island environment

    Science.gov (United States)

    Bernard, Didier C.; Pasquier, Raphaël; Cécé, Raphaël; Dorville, Jean-François

    2014-05-01

    Changes in rainfall seem to be the main impact of climate change in the Caribbean area. The last conclusions of IPCC (2013), indicate that the end of this century will be marked by a rise of extreme rainfalls in tropical areas, linked with increase of the mean surface temperature. Moreover, most of the Lesser Antilles islands are characterized by a complex topography which tends to enhance the rainfall from synoptic disturbances by orographic effects. In the past five years, out of hurricanes passage, several extreme rainy events (approx. 16 mm in 6 minutes), including fatal cases, occurred in the Lesser Antilles Arc: in Guadeloupe (January 2011, May 2012 and 2013), in Martinique (May 2009, April 2011 and 2013), in Saint-Lucia (December 2013). These phenomena inducing floods, loss of life and material damages (agriculture sector and public infrastructures), inhibit the development of the islands. At this time, numerical weather prediction models as WRF, which are based on the equations of the atmospheric physics, do not show great results in the focused area (Bernard et al., 2013). Statistical methods may be used to examine explicitly local rainy updrafts, thermally and orographically induced at micro-scale. The main goal of the present insular tropical study is to characterize the multifractal symmetries occurring in the 6-min rainfall time series, registered since 2006 by the French Met. Office network weather stations. The universal multifractal model (Schertzer and Lovejoy, 1991) is used to define the statistical properties of measured rainfalls at meso-scale and micro-scale. This model is parametrized by a fundamental exponents set (H,a,C1,q) which are determined and compared with values found in the literature. The first three parameters characterize the mean pattern and the last parameter q, the extreme pattern. The occurrence ranges of multifractal regime are examined. The suggested links between the internal variability of the tropical rainy events and the

  19. Impacts of the ENSO Modoki and other Tropical Indo-Pacific Climate-Drivers on African Rainfall.

    Science.gov (United States)

    Preethi, B; Sabin, T P; Adedoyin, J A; Ashok, K

    2015-11-16

    The study diagnoses the relative impacts of the four known tropical Indo-Pacific drivers, namely, El Niño Southern Oscillation (ENSO), ENSO Modoki, Indian Ocean Dipole (IOD), and Indian Ocean Basin-wide mode (IOBM) on African seasonal rainfall variability. The canonical El Niño and El Niño Modoki are in general associated with anomalous reduction (enhancement) of rainfall in southern (northern) hemispheric regions during March-May season. However, both the El Niño flavours anomalously reduce the northern hemispheric rainfall during June-September. Interestingly, during boreal spring and summer, in many regions, the Indian Ocean drivers have influences opposite to those from tropical Pacific drivers. On the other hand, during the October-December season, the canonical El Niño and/or positive IOD are associated with an anomalous enhancement of rainfall in the Eastern Africa, while the El Niño Modoki events are associated with an opposite impact. In addition to the Walker circulation changes, the Indo-Pacific drivers influence the African rainfall through modulating jet streams. During boreal summer, the El Niño Modoki and canonical El Niño (positive IOD) tend to weaken (strengthen) the tropical easterly jet, and result in strengthening (weakening) and southward shift of African easterly jet. This anomalously reduces (enhances) rainfall in the tropical north, including Sahelian Africa.

  20. Global change integrating factors: Tropical tropopause trends

    International Nuclear Information System (INIS)

    Reck, R.A.

    1994-01-01

    This research proposes new criteria, shifts in the height and temperature of the tropical tropopause, as measures of global climate change. The search for signs of global warming in the temperature signal near the earth's surface is extremely difficult, largely because numerous factors contribute to surface temperature forcing with only a small signal-to-noise ratio relative to long-term effects. In the long term, no part of the atmosphere can be considered individually because the evolution will be a function of all states of all portions. A large surface greenhouse signal might ultimately be expected, but the analysis of surface temperature may not be particularly useful for early detection. What is suggested here is not an analysis of trends in the surface temperature field or any of its spatial averages, but rather an integrating factor or integrator, a single measure of global change that could be considered a test of significant change for the entire global system. Preferably, this global change integrator would vary slowly and would take into account many of the causes of climate change, with a relatively large signal-to-noise ratio. Such an integrator could be monitored, and abrupt or accelerated changes could serve as an early warning signal for policy makers and the public. Earlier work has suggested that temperature has much less short-term and small-scale noise in the lower stratosphere, and thus the global warming signal at that level might be more easily deconvoluted, because the cooling rate near the 200-mb level is almost constant with latitude. A study of the temperature signal at this pressure level might show a clearer trend due to increased levels of greenhouse gases, but it would yield information about the troposphere only by inference

  1. Mechanisms of northeastern Brazil rainfall anomalies due to Southern Tropical Atlantic variability

    Science.gov (United States)

    Neelin, J.; Su, H.

    2004-05-01

    Observational studies have shown that the rainfall anomalies in eastern equatorial South America, including Nordeste Brazil, have a positive correlation with tropical southern Atlantic sea surface temperature (SST) anomalies. Such relationships are reproduced in model simulations with the quasi-equilibrium tropical circulation model (QTCM), which includes a simple land model. A suite of model ensemble experiments is analysed using observed SST over the tropical oceans, the tropical Atlantic and the tropical southern Atlantic (30S-0), respectively (with climatological SST in the remainder of the oceans). Warm tropical south Atlantic SST anomalies yield positive precipitation anomalies over the Nordeste and the southern edge of the Atlantic marine intertropical convergence zone (ITCZ). Mechanisms associated with moisture variations are responsible for the land precipitation changes. Increases in moisture over the Atlantic cause positive anomalies in moisture advection, spreading increased moisture downwind. Where the basic state is far from the convective stability threshold, moisture changes have little effect, but the margins of the climatological convection zone are affected. The increased moisture supply due to advection is enhanced by increases in low-level convergence required by moist static energy balances. The moisture convergence term is several times larger, but experiments altering the moisture advection confirm that the feedback is initiated by wind acting on moisture gradient. This mechanism has several features in common with the recently published "upped-ante" mechanism for El Nino impacts on this region. In that case, the moisture gradient is initiated by warm free tropospheric temperature anomalies increasing the typical value of low-level moisture required to sustain convection in the convection zones. Both mechanisms suggest the usefulness of coordinating ocean and land in situ observations of boundary layer moisture.

  2. Effect of Nock-Ten Tropical Cyclone on Atmospheric Condition and Distribution of Rainfall in Gorontalo, Ternate, and Sorong Regions

    Science.gov (United States)

    Lumbangaol, A.; Serhalawan, Y. R.; Endarwin

    2017-12-01

    Nock-Ten Tropical Cyclone is an atmospheric phenomenon that has claimed many lives in the Philippines. This super-typhoon cyclone grows in the Western Pacific Ocean, North of Papua. With the area directly contiguous to the trajectory of Nock-Ten Tropical Cyclone growth, it is necessary to study about the growth activity of this tropical cyclones in Indonesia, especially in 3 different areas, namely Gorontalo, Ternate, and Sorong. This study was able to determine the impact of Nock-Ten Tropical Cyclone on atmospheric dynamics and rainfall growth distribution based on the stages of tropical cyclone development. The data used in this study include Himawari-8 IR channel satellite data to see the development stage and movement track of Tropical Cyclone Nock-Ten, rainfall data from TRMM 3B42RT satellite product to know the rain distribution in Gorontalo, Ternate, and Sorong, and reanalysis data from ECMWF such as wind direction and speed, vertical velocity, and relative vorticity to determine atmospheric conditions at the time of development of the Nock-Ten Tropical Cyclone. The results of data analysis processed using GrADS application showed the development stage of Nock-Ten Tropical Cyclone has effect of changes in atmospheric dynamics condition and wind direction pattern. In addition, tropical cyclones also contribute to very light to moderate scale intensity during the cycle period of tropical cyclone development in all three regions.

  3. Mixed memory, (non) Hurst effect, and maximum entropy of rainfall in the tropical Andes

    Science.gov (United States)

    Poveda, Germán

    2011-02-01

    Diverse linear and nonlinear statistical parameters of rainfall under aggregation in time and the kind of temporal memory are investigated. Data sets from the Andes of Colombia at different resolutions (15 min and 1-h), and record lengths (21 months and 8-40 years) are used. A mixture of two timescales is found in the autocorrelation and autoinformation functions, with short-term memory holding for time lags less than 15-30 min, and long-term memory onwards. Consistently, rainfall variance exhibits different temporal scaling regimes separated at 15-30 min and 24 h. Tests for the Hurst effect evidence the frailty of the R/ S approach in discerning the kind of memory in high resolution rainfall, whereas rigorous statistical tests for short-memory processes do reject the existence of the Hurst effect. Rainfall information entropy grows as a power law of aggregation time, S( T) ˜ Tβ with = 0.51, up to a timescale, TMaxEnt (70-202 h), at which entropy saturates, with β = 0 onwards. Maximum entropy is reached through a dynamic Generalized Pareto distribution, consistently with the maximum information-entropy principle for heavy-tailed random variables, and with its asymptotically infinitely divisible property. The dynamics towards the limit distribution is quantified. Tsallis q-entropies also exhibit power laws with T, such that Sq( T) ˜ Tβ( q) , with β( q) ⩽ 0 for q ⩽ 0, and β( q) ≃ 0.5 for q ⩾ 1. No clear patterns are found in the geographic distribution within and among the statistical parameters studied, confirming the strong variability of tropical Andean rainfall.

  4. Modelling rainfall interception by a lowland tropical rain forest in northeastern Puerto Rico

    Science.gov (United States)

    Schellekens, J.; Scatena, F. N.; Bruijnzeel, L. A.; Wickel, A. J.

    1999-12-01

    Recent surveys of tropical forest water use suggest that rainfall interception by the canopy is largest in wet maritime locations. To investigate the underlying processes at one such location—the Luquillo Experimental Forest in eastern Puerto Rico—66 days of detailed throughfall and above-canopy climatic data were collected in 1996 and analysed using the Rutter and Gash models of rainfall interception. Throughfall occurred on 80% of the days distributed over 80 rainfall events. Measured interception loss was 50% of gross precipitation. When Penman-Monteith based estimates for the wet canopy evaporation rate (0.11 mm h -1 on average) and a canopy storage of 1.15 mm were used, both models severely underestimated measured interception loss. A detailed analysis of four storms using the Rutter model showed that optimizing the model for the wet canopy evaporation component yielded much better results than increasing the canopy storage capacity. However, the Rutter model failed to properly estimate throughfall amounts during an exceptionally large event. The analytical model, on the other hand, was capable of representing interception during the extreme event, but once again optimizing wet canopy evaporation rates produced a much better fit than optimizing the canopy storage capacity. As such, the present results support the idea that it is primarily a high rate of evaporation from a wet canopy that is responsible for the observed high interception losses.

  5. Forecasting Global Rainfall for Points Using ECMWF's Global Ensemble and Its Applications in Flood Forecasting

    Science.gov (United States)

    Pillosu, F. M.; Hewson, T.; Mazzetti, C.

    2017-12-01

    Prediction of local extreme rainfall has historically been the remit of nowcasting and high resolution limited area modelling, which represent only limited areas, may not be spatially accurate, give reasonable results only for limited lead times (based statistical post-processing software ("ecPoint-Rainfall, ecPR", operational in 2017) that uses ECMWF Ensemble (ENS) output to deliver global probabilistic rainfall forecasts for points up to day 10. Firstly, ecPR applies a new notion of "remote calibration", which 1) allows us to replicate a multi-centennial training period using only one year of data, and 2) provides forecasts for anywhere in the world. Secondly, the software applies an understanding of how different rainfall generation mechanisms lead to different degrees of sub-grid variability in rainfall totals, and of where biases in the model can be improved upon. A long-term verification has shown that the post-processed rainfall has better reliability and resolution at every lead time if compared with ENS, and for large totals, ecPR outputs have the same skill at day 5 that the raw ENS has at day 1 (ROC area metric). ecPR could be used as input for hydrological models if its probabilistic output is modified accordingly to the inputs requirements for hydrological models. Indeed, ecPR does not provide information on where the highest total is likely to occur inside the gridbox, nor on the spatial distribution of rainfall values nearby. "Scenario forecasts" could be a solution. They are derived from locating the rainfall peak in sensitive positions (e.g. urban areas), and then redistributing the remaining quantities in the gridbox modifying traditional spatial correlation characterization methodologies (e.g. variogram analysis) in order to take account, for instance, of the type of rainfall forecast (stratiform, convective). Such an approach could be a turning point in the field of medium-range global real-time riverine flood forecasts. This presentation will

  6. Observations of increased tropical rainfall preceded by air passage over forests.

    Science.gov (United States)

    Spracklen, D V; Arnold, S R; Taylor, C M

    2012-09-13

    Vegetation affects precipitation patterns by mediating moisture, energy and trace-gas fluxes between the surface and atmosphere. When forests are replaced by pasture or crops, evapotranspiration of moisture from soil and vegetation is often diminished, leading to reduced atmospheric humidity and potentially suppressing precipitation. Climate models predict that large-scale tropical deforestation causes reduced regional precipitation, although the magnitude of the effect is model and resolution dependent. In contrast, observational studies have linked deforestation to increased precipitation locally but have been unable to explore the impact of large-scale deforestation. Here we use satellite remote-sensing data of tropical precipitation and vegetation, combined with simulated atmospheric transport patterns, to assess the pan-tropical effect of forests on tropical rainfall. We find that for more than 60 per cent of the tropical land surface (latitudes 30 degrees south to 30 degrees north), air that has passed over extensive vegetation in the preceding few days produces at least twice as much rain as air that has passed over little vegetation. We demonstrate that this empirical correlation is consistent with evapotranspiration maintaining atmospheric moisture in air that passes over extensive vegetation. We combine these empirical relationships with current trends of Amazonian deforestation to estimate reductions of 12 and 21 per cent in wet-season and dry-season precipitation respectively across the Amazon basin by 2050, due to less-efficient moisture recycling. Our observation-based results complement similar estimates from climate models, in which the physical mechanisms and feedbacks at work could be explored in more detail.

  7. Caribbean Sea rainfall variability during the rainy season and relationship to the equatorial Pacific and tropical Atlantic SST

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Renguang [Institute of Global Environment and Society, Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States); Kirtman, Ben P. [University of Miami, Rosenstiel School of Marine and Atmospheric Sciences, Miami, FL (United States)

    2011-10-15

    The present study investigates the Caribbean Sea rainfall variability during the early and late rainy seasons and its association with sea surface temperature (SST) and air-sea interaction based on observational estimates, the NCEP Climate Forecast System (CFS) and Global Forecast System (GFS) simulations, and the CFS retrospective forecasts. Analysis of the observational estimates indicates that air-sea interaction is important over the Caribbean Sea, whereas the atmospheric forcing of SST dominates over the Gulf of Mexico. The CFS simulation captures the basic elements of this observed air-sea relationship. The GFS simulation produces spurious SST forcing of the atmosphere over the Gulf of Mexico largely due to prescribing SST. The CFS forecasts capture the air-sea relationship in the late rainy season (August-October), but cannot reproduce the SST forcing of atmosphere over the Caribbean Sea in the early rainy season (May-July). An empirical orthogonal function (EOF) analysis indicates that the leading modes of percent anomalies of the rainy season precipitation have the largest loading in the southern Caribbean Sea in observations. The model simulations and forecasts skillfully reproduce the spatial pattern, but not the temporal evolution. The Caribbean Sea rainfall variability in the early rainy season is mainly due to the tropical North Atlantic (TNA) SST anomalies in observations, is contributed by both the TNA and eastern equatorial Pacific (EEP) SST anomalies in the CFS simulation, and has an overly large impact from the EEP SST anomalies in the GFS simulation and the CFS forecasts. The observed Caribbean Sea rainfall variability in the late rainy season has a leading impact from the EEP SST anomalies, with a secondary contribution from the TNA SST anomalies. In comparison, the model simulations and forecasts overestimate the impacts of the EEP SST anomalies due to an earlier development and longer duration of the El Nino-Southern Oscillation in the CFS

  8. Determination of Areas Susceptible to Landsliding Using Spatial Patterns of Rainfall from Tropical Rainfall Measuring Mission Data, Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Renato Fontes Guimarães

    2017-10-01

    Full Text Available Spatial patterns of shallow landslide initiation reflect both spatial patterns of heavy rainfall and areas susceptible to mass movements. We determine the areas most susceptible to shallow landslide occurrence through the calculation of critical soil cohesion and spatial patterns of rainfall derived from TRMM (Tropical Rainfall Measuring Mission data for Paraty County, State of Rio de Janeiro, Brazil. Our methodology involved: (a creating the digital elevation model (DEM and deriving attributes such as slope and contributing area; (b incorporating spatial patterns of rainfall derived from TRMM into the shallow slope stability model SHALSTAB; and (c quantitative assessment of the correspondence of mapped landslide scars to areas predicted to be most prone to shallow landsliding. We found that around 70% of the landslide scars occurred in less than 10% of the study area identified as potentially unstable. The greatest concentration of landslides occurred in areas where the root strength of vegetation is an important contribution to slope stability in regions of orographically-enhanced rainfall on the coastal topographic flank. This approach helps quantify landslide hazards in areas with similar geomorphological characteristics, but different spatial patterns of rainfall.

  9. Lightning and 85-GHz MCSs in the Global Tropics

    Science.gov (United States)

    Toracinta, E. Richard; Zipser, E. J.

    1999-01-01

    Numerous observations of tropical convection show that tropical continental mesoscale convective systems (MCSs) are much more prolific lightning producers than their oceanic counterparts. Satellite-based climatologies using 85-GHz passive microwave ice-scattering signatures from the Special Sensor Microwave/Imager (SSM/I) indicate that MCSs of various size and intensity are found throughout the global tropics. In contrast, global lightning distributions show a strong land bias with an order of magnitude difference between land and ocean lightning. This is somewhat puzzling, since 85-GHz ice-scattering and the charge separation processes that lead to lightning are both thought to depend upon the existence of large graupel particles. The fact that low 85-GHz brightness temperatures are observed in tropical oceanic MCSs containing virtually no lightning leads to the postulate that tropical oceanic and tropical continental MCSs have fundamentally different hydrometeor profiles through the mixed phase region of the cloud (0 C Lightning Imaging Sensor (LIS), and the first space-borne radar, facilitates high-resolution case studies of MCS structure throughout the global tropics. An important precursor, however, is to better understand the distribution of MCSs and lightning in the tropics. With that objective in mind, this research undertakes a systematic comparison of 85-GHz-defined MCSs and lightning over the global tropics for a full year, as an initial step toward quantifying differences between land and ocean convective systems.

  10. Temperature and rainfall strongly drive temporal growth variation in Asian tropical forest trees.

    Science.gov (United States)

    Vlam, Mart; Baker, Patrick J; Bunyavejchewin, Sarayudh; Zuidema, Pieter A

    2014-04-01

    Climate change effects on growth rates of tropical trees may lead to alterations in carbon cycling of carbon-rich tropical forests. However, climate sensitivity of broad-leaved lowland tropical trees is poorly understood. Dendrochronology (tree-ring analysis) provides a powerful tool to study the relationship between tropical tree growth and annual climate variability. We aimed to establish climate-growth relationships for five annual-ring forming tree species, using ring-width data from 459 canopy and understory trees from a seasonal tropical forest in western Thailand. Based on 183/459 trees, chronologies with total lengths between 29 and 62 years were produced for four out of five species. Bootstrapped correlation analysis revealed that climate-growth responses were similar among these four species. Growth was significantly negatively correlated with current-year maximum and minimum temperatures, and positively correlated with dry-season precipitation levels. Negative correlations between growth and temperature may be attributed to a positive relationship between temperature and autotrophic respiration rates. The positive relationship between growth and dry-season precipitation levels likely reflects the strong water demand during leaf flush. Mixed-effect models yielded results that were consistent across species: a negative effect of current wet-season maximum temperatures on growth, but also additive positive effects of, for example, prior dry-season maximum temperatures. Our analyses showed that annual growth variability in tropical trees is determined by a combination of both temperature and precipitation variability. With rising temperature, the predominantly negative relationship between temperature and growth may imply decreasing growth rates of tropical trees as a result of global warming.

  11. Statistical strategies for global monitoring of tropical forests

    Science.gov (United States)

    Raymond L. Czaplewski

    1991-01-01

    The Food and Agricultural Organization (FAO) of the United Nations is conducting a global assessment of tropical forest resources, which will be accomplished by mid-1992. This assessment requires, in part, estimates of the total area of tropical forest cover in 1990, and the rate of change in forest cover between 1980 and 1990. This paper describes: (1) the strategic...

  12. THE IMPACT OF SPATIAL AND TEMPORAL RESOLUTIONS IN TROPICAL SUMMER RAINFALL DISTRIBUTION: PRELIMINARY RESULTS

    Directory of Open Access Journals (Sweden)

    Q. Liu

    2017-10-01

    Full Text Available The abundance or lack of rainfall affects peoples’ life and activities. As a major component of the global hydrological cycle (Chokngamwong & Chiu, 2007, accurate representations at various spatial and temporal scales are crucial for a lot of decision making processes. Climate models show a warmer and wetter climate due to increases of Greenhouse Gases (GHG. However, the models’ resolutions are often too coarse to be directly applicable to local scales that are useful for mitigation purposes. Hence disaggregation (downscaling procedures are needed to transfer the coarse scale products to higher spatial and temporal resolutions. The aim of this paper is to examine the changes in the statistical parameters of rainfall at various spatial and temporal resolutions. The TRMM Multi-satellite Precipitation Analysis (TMPA at 0.25 degree, 3 hourly grid rainfall data for a summer is aggregated to 0.5,1.0, 2.0 and 2.5 degree and at 6, 12, 24 hourly, pentad (five days and monthly resolutions. The probability distributions (PDF and cumulative distribution functions(CDF of rain amount at these resolutions are computed and modeled as a mixed distribution. Parameters of the PDFs are compared using the Kolmogrov-Smironov (KS test, both for the mixed and the marginal distribution. These distributions are shown to be distinct. The marginal distributions are fitted with Lognormal and Gamma distributions and it is found that the Gamma distributions fit much better than the Lognormal.

  13. The Impact of Spatial and Temporal Resolutions in Tropical Summer Rainfall Distribution: Preliminary Results

    Science.gov (United States)

    Liu, Q.; Chiu, L. S.; Hao, X.

    2017-10-01

    The abundance or lack of rainfall affects peoples' life and activities. As a major component of the global hydrological cycle (Chokngamwong & Chiu, 2007), accurate representations at various spatial and temporal scales are crucial for a lot of decision making processes. Climate models show a warmer and wetter climate due to increases of Greenhouse Gases (GHG). However, the models' resolutions are often too coarse to be directly applicable to local scales that are useful for mitigation purposes. Hence disaggregation (downscaling) procedures are needed to transfer the coarse scale products to higher spatial and temporal resolutions. The aim of this paper is to examine the changes in the statistical parameters of rainfall at various spatial and temporal resolutions. The TRMM Multi-satellite Precipitation Analysis (TMPA) at 0.25 degree, 3 hourly grid rainfall data for a summer is aggregated to 0.5,1.0, 2.0 and 2.5 degree and at 6, 12, 24 hourly, pentad (five days) and monthly resolutions. The probability distributions (PDF) and cumulative distribution functions(CDF) of rain amount at these resolutions are computed and modeled as a mixed distribution. Parameters of the PDFs are compared using the Kolmogrov-Smironov (KS) test, both for the mixed and the marginal distribution. These distributions are shown to be distinct. The marginal distributions are fitted with Lognormal and Gamma distributions and it is found that the Gamma distributions fit much better than the Lognormal.

  14. Verification of the skill of numerical weather prediction models in forecasting rainfall from U.S. landfalling tropical cyclones

    Science.gov (United States)

    Luitel, Beda; Villarini, Gabriele; Vecchi, Gabriel A.

    2018-01-01

    The goal of this study is the evaluation of the skill of five state-of-the-art numerical weather prediction (NWP) systems [European Centre for Medium-Range Weather Forecasts (ECMWF), UK Met Office (UKMO), National Centers for Environmental Prediction (NCEP), China Meteorological Administration (CMA), and Canadian Meteorological Center (CMC)] in forecasting rainfall from North Atlantic tropical cyclones (TCs). Analyses focus on 15 North Atlantic TCs that made landfall along the U.S. coast over the 2007-2012 period. As reference data we use gridded rainfall provided by the Climate Prediction Center (CPC). We consider forecast lead-times up to five days. To benchmark the skill of these models, we consider rainfall estimates from one radar-based (Stage IV) and four satellite-based [Tropical Rainfall Measuring Mission - Multi-satellite Precipitation Analysis (TMPA, both real-time and research version); Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN); the CPC MORPHing Technique (CMORPH)] rainfall products. Daily and storm total rainfall fields from each of these remote sensing products are compared to the reference data to obtain information about the range of errors we can expect from "observational data." The skill of the NWP models is quantified: (1) by visual examination of the distribution of the errors in storm total rainfall for the different lead-times, and numerical examination of the first three moments of the error distribution; (2) relative to climatology at the daily scale. Considering these skill metrics, we conclude that the NWP models can provide skillful forecasts of TC rainfall with lead-times up to 48 h, without a consistently best or worst NWP model.

  15. a stochastic assessment of the effect of global warming on rainfall

    African Journals Online (AJOL)

    PROF EKWUEME

    KEYWORDS: Global Warming; Rainfall; Markov Process; Time Series; Agriculture. INTRODUCTION ... Central Region of Nigeria in the last three decades using .... r. Time. MSD: MAD: MAPE: Length: Moving Average. 68492.0. 229.3. 3806.2. 4.

  16. Global Warming Attenuates the Tropical Atlantic-Pacific Teleconnection

    Science.gov (United States)

    Jia, Fan; Wu, Lixin; Gan, Bolan; Cai, Wenju

    2016-01-01

    Changes in global sea surface temperature (SST) since the end of last century display a pattern of widespread warming intercepted by cooling in the eastern equatorial Pacific and western coasts of the American continent. Studies have suggested that the cooling in the eastern equatorial Pacific may be partly induced by warming in the North Atlantic. However, it remains unknown how stable this inter-tropical teleconnection will be under global warming. Here we show that the inter-tropical teleconnection from the tropical Atlantic to Pacific weakens substantially as the CO2 concentration increases. This reduced impact is related to the El Niño-like warming of the tropical Pacific mean state, which leads to limited seasonal migration of the Pacific inter-tropical convergence zone (ITCZ) and weakened ocean heat transport. A fast decay of the tropical Atlantic SST anomalies in a warmer climate also contributes to the weakened teleconnection. Our study suggests that as greenhouse warming continues, the trend in the tropical Pacific as well as the development of ENSO will be less frequently interrupted by the Atlantic because of this attenuation. The weakened teleconnection is also supported by CMIP5 models, although only a few of these models can capture this inter-tropical teleconnection. PMID:26838053

  17. Global Warming Attenuates the Tropical Atlantic-Pacific Teleconnection.

    Science.gov (United States)

    Jia, Fan; Wu, Lixin; Gan, Bolan; Cai, Wenju

    2016-02-03

    Changes in global sea surface temperature (SST) since the end of last century display a pattern of widespread warming intercepted by cooling in the eastern equatorial Pacific and western coasts of the American continent. Studies have suggested that the cooling in the eastern equatorial Pacific may be partly induced by warming in the North Atlantic. However, it remains unknown how stable this inter-tropical teleconnection will be under global warming. Here we show that the inter-tropical teleconnection from the tropical Atlantic to Pacific weakens substantially as the CO2 concentration increases. This reduced impact is related to the El Niño-like warming of the tropical Pacific mean state, which leads to limited seasonal migration of the Pacific inter-tropical convergence zone (ITCZ) and weakened ocean heat transport. A fast decay of the tropical Atlantic SST anomalies in a warmer climate also contributes to the weakened teleconnection. Our study suggests that as greenhouse warming continues, the trend in the tropical Pacific as well as the development of ENSO will be less frequently interrupted by the Atlantic because of this attenuation. The weakened teleconnection is also supported by CMIP5 models, although only a few of these models can capture this inter-tropical teleconnection.

  18. Effects of Drought, Pest Pressure and Light Availability on Seedling Establishment and Growth: Their Role for Distribution of Tree Species across a Tropical Rainfall Gradient

    Science.gov (United States)

    Gaviria, Julian; Engelbrecht, Bettina M. J.

    2015-01-01

    Tree species distributions associated with rainfall are among the most prominent patterns in tropical forests. Understanding the mechanisms shaping these patterns is important to project impacts of global climate change on tree distributions and diversity in the tropics. Beside direct effects of water availability, additional factors co-varying with rainfall have been hypothesized to play an important role, including pest pressure and light availability. While low water availability is expected to exclude drought-intolerant wet forest species from drier forests (physiological tolerance hypothesis), high pest pressure or low light availability are hypothesized to exclude dry forest species from wetter forests (pest pressure gradient and light availability hypothesis, respectively). To test these hypotheses at the seed-to-seedling transition, the potentially most critical stage for species discrimination, we conducted a reciprocal transplant experiment combined with a pest exclosure treatment at a wet and a dry forest site in Panama with seeds of 26 species with contrasting origin. Establishment success after one year did not reflect species distribution patterns. However, in the wet forest, wet origin species had a home advantage over dry forest species through higher growth rates. At the same time, drought limited survival of wet origin species in the dry forest, supporting the physiological tolerance hypothesis. Together these processes sort species over longer time frames, and exclude species outside their respective home range. Although we found pronounced effects of pests and some effects of light availability on the seedlings, they did not corroborate the pest pressure nor light availability hypotheses at the seed-to-seedling transition. Our results underline that changes in water availability due to climate change will have direct consequences on tree regeneration and distributions along tropical rainfall gradients, while indirect effects of light and pests

  19. Rethinking Indian monsoon rainfall prediction in the context of recent global warming

    Science.gov (United States)

    Wang, Bin; Xiang, Baoqiang; Li, Juan; Webster, Peter J.; Rajeevan, Madhavan N.; Liu, Jian; Ha, Kyung-Ja

    2015-01-01

    Prediction of Indian summer monsoon rainfall (ISMR) is at the heart of tropical climate prediction. Despite enormous progress having been made in predicting ISMR since 1886, the operational forecasts during recent decades (1989–2012) have little skill. Here we show, with both dynamical and physical–empirical models, that this recent failure is largely due to the models' inability to capture new predictability sources emerging during recent global warming, that is, the development of the central-Pacific El Nino-Southern Oscillation (CP–ENSO), the rapid deepening of the Asian Low and the strengthening of North and South Pacific Highs during boreal spring. A physical–empirical model that captures these new predictors can produce an independent forecast skill of 0.51 for 1989–2012 and a 92-year retrospective forecast skill of 0.64 for 1921–2012. The recent low skills of the dynamical models are attributed to deficiencies in capturing the developing CP–ENSO and anomalous Asian Low. The results reveal a considerable gap between ISMR prediction skill and predictability. PMID:25981180

  20. Nondestructive examination of the Tropical Rainfall Measuring Mission (TRMM) reaction control subsystem (RCS) propellant tanks

    Science.gov (United States)

    Free, James M.

    1993-01-01

    This paper assesses the feasibility of using eddy current nondestructive examination to determine flaw sizes in completely assembled hydrazine propellant tanks. The study was performed by the NASA Goddard Space Flight Center for the Tropical Rainfall Measuring Mission (TRMM) project to help determine whether existing propellant tanks could meet the fracture analysis requirements of the current pressure vessel specification, MIL-STD-1522A and, therefore be used on the TRMM spacecraft. After evaluating several nondestructive test methods, eddy current testing was selected as the most promising method for determining flaw sizes on external and internal surfaces of completely assembled tanks. Tests were conducted to confirm the detection capability of the eddy current NDE, procedures were developed to inspect two candidate tanks, and the test support equipment was designed. The non-spherical tank eddy current NDE test program was terminated when the decision was made to procure new tanks for the TRMM propulsion subsystem. The information on the development phase of this test program is presented in this paper as a reference for future investigation on the subject.

  1. Rainfall-threshold conditions for landslides in a humid-tropical system

    Science.gov (United States)

    Larsen, Matthew C.; Simon, Andrew

    1993-01-01

    Landslides are triggered by factors such as heavy rainfall, seismic activity, and construction on hillslopes. The leading cause of landslides in Puerto Rico is intense and/or prolonged rainfall. A rainfall threshold for rainfall-triggered landsliding is delimited by 256 storms that occurred between 1959 and 1991 in the central mountains of Puerto Rico, where mean annual rainfall is close to or in excess of 2,000 mm. Forty one of the 256 storms produced intense and/or prolonged rainfall that resulted in tens to hundreds of landslides. A threshold fitted to the lower boundary of the field defined by landslide-triggering storms is expressed as

  2. GHRSST Level 2P Regional Subskin Sea Surface Temperature from the Tropical Rainfall Mapping Mission (TRMM) Microwave Imager (TMI) for the Atlantic Ocean (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) is a well calibrated passive microwave radiometer, similar to SSM/I, that contains lower...

  3. Significant influences of global mean temperature and ENSO on extreme rainfall over Southeast Asia

    Science.gov (United States)

    Villafuerte, Marcelino, II; Matsumoto, Jun

    2014-05-01

    Along with the increasing concerns on the consequences of global warming, and the accumulating records of disaster related to heavy rainfall events in Southeast Asia, this study investigates whether a direct link can be detected between the rising global mean temperature, as well as the El Niño-Southern Oscillation (ENSO), and extreme rainfall over the region. The maximum likelihood modeling that allows incorporating covariates on the location parameter of the generalized extreme value (GEV) distribution is employed. The GEV model is fitted to annual and seasonal rainfall extremes, which were taken from a high-resolution gauge-based gridded daily precipitation data covering a span of 57 years (1951-2007). Nonstationarities in extreme rainfall are detected over the central parts of Indochina Peninsula, eastern coasts of central Vietnam, northwest of the Sumatra Island, inland portions of Borneo Island, and on the northeastern and southwestern coasts of the Philippines. These nonstationarities in extreme rainfall are directly linked to near-surface global mean temperature and ENSO. In particular, the study reveals that a kelvin increase in global mean temperature anomaly can lead to an increase of 30% to even greater than 45% in annual maximum 1-day rainfall, which were observed pronouncedly over central Vietnam, southern coast of Myanmar, northwestern sections of Thailand, northwestern tip of Sumatra, central portions of Malaysia, and the Visayas island in central Philippines. Furthermore, a pronounced ENSO influence manifested on the seasonal maximum 1-day rainfall; a northward progression of 10%-15% drier condition over Southeast Asia as the El Niño develops from summer to winter is revealed. It is important therefore, to consider the results obtained here for water resources management as well as for adaptation planning to minimize the potential adverse impact of global warming, particularly on extreme rainfall and its associated flood risk over the region

  4. Warm Water Pools of the Western Caribbean and Eastern Tropical Pacific: Their Influence on Intraseasonal Rainfall Regimes and Tropical Storm Activity in Mexico

    Science.gov (United States)

    Douglas, A. V.; Englehart, P. J.

    2007-05-01

    A dipole in tropical cyclone development between the Caribbean and the eastern tropical Pacific will be examined relative to its affect on southern Mexican rainfall. With the change over in the AMO and PDO in 1994 and 1998, respectively, tropical storm genesis has been increasing in the Caribbean while declining in the tropical east Pacific. This dipole in tropical cyclone development appears to be related to changes in the pre storm season heat content of the two ocean basins (data Scripps Institution of Oceanography). Preliminary work indicates that if the Caribbean is warmer than the Pacific by late May the dipole will be accentuated with a pronounced decrease in tropical storms in the east Pacific with an early and prolonged season in the Caribbean. In recent years there appears to have been an increase in the intensity and duration of midsummer drought (Canicula) in Mexico associated with changes in the PDO and AMO. These long term ocean oscillations appear to control the dipole in the strength of the Caribbean and East Pacific warm pools. Mid summer drought is a normal occurrence in much of Mexico and Central America, but the intensified droughts of the recent period have stressed the agricultural community of the region. Based on preliminary work, it appears that the recent increased frequency of midsummer drought can be linked to a shift in the warmest pool from the East Pacific to the Caribbean.

  5. An aftereffect of global warming on tropical Pacific decadal variability

    Science.gov (United States)

    Zheng, Jian; Liu, Qinyu; Wang, Chuanyang

    2018-03-01

    Studies have shown that global warming over the past six decades can weaken the tropical Pacific Walker circulation and maintain the positive phase of the Interdecadal Pacific Oscillation (IPO). Based on observations and model simulations, another aftereffect of global warming on IPO is found. After removing linear trends (global warming signals) from observations, however, the tropical Pacific climate still exhibited some obvious differences between two IPO negative phases. The boreal winter (DJF) equatorial central-eastern Pacific sea surface temperature (SST) was colder during the 1999-2014 period (P2) than that during 1961-1976 (P1). This difference may have been a result of global warming nonlinear modulation of precipitation; i.e., in the climatological rainy region, the core area of the tropical Indo-western Pacific warm pool receives more precipitation through the "wet-get-wetter" mechanism. Positive precipitation anomalies in the warm pool during P2 are much stronger than those during P1, even after subtracting the linear trend. Corresponding to the differences of precipitation, the Pacific Walker circulation is stronger in P2 than in P1. Consequent easterly winds over the equatorial Pacific led to a colder equatorial eastern-central Pacific during P2. Therefore, tropical Pacific climate differences between the two negative IPO phases are aftereffects of global warming. These aftereffects are supported by the results of coupled climate model experiments, with and without global warming.

  6. Tropical wetlands: A missing link in the global carbon cycle?

    Science.gov (United States)

    Sjögersten, Sofie; Black, Colin R; Evers, Stephanie; Hoyos-Santillan, Jorge; Wright, Emma L; Turner, Benjamin L

    2014-01-01

    Tropical wetlands are not included in Earth system models, despite being an important source of methane (CH4) and contributing a large fraction of carbon dioxide (CO2) emissions from land use, land use change, and forestry in the tropics. This review identifies a remarkable lack of data on the carbon balance and gas fluxes from undisturbed tropical wetlands, which limits the ability of global change models to make accurate predictions about future climate. We show that the available data on in situ carbon gas fluxes in undisturbed forested tropical wetlands indicate marked spatial and temporal variability in CO2 and CH4 emissions, with exceptionally large fluxes in Southeast Asia and the Neotropics. By upscaling short-term measurements, we calculate that approximately 90 ± 77 Tg CH4 year−1 and 4540 ± 1480 Tg CO2 year−1 are released from tropical wetlands globally. CH4 fluxes are greater from mineral than organic soils, whereas CO2 fluxes do not differ between soil types. The high CO2 and CH4 emissions are mirrored by high rates of net primary productivity and litter decay. Net ecosystem productivity was estimated to be greater in peat-forming wetlands than on mineral soils, but the available data are insufficient to construct reliable carbon balances or estimate gas fluxes at regional scales. We conclude that there is an urgent need for systematic data on carbon dynamics in tropical wetlands to provide a robust understanding of how they differ from well-studied northern wetlands and allow incorporation of tropical wetlands into global climate change models. PMID:26074666

  7. An assessment of the performance of global rainfall estimates without ground-based observations

    Directory of Open Access Journals (Sweden)

    C. Massari

    2017-09-01

    Full Text Available Satellite-based rainfall estimates over land have great potential for a wide range of applications, but their validation is challenging due to the scarcity of ground-based observations of rainfall in many areas of the planet. Recent studies have suggested the use of triple collocation (TC to characterize uncertainties associated with rainfall estimates by using three collocated rainfall products. However, TC requires the simultaneous availability of three products with mutually uncorrelated errors, a requirement which is difficult to satisfy with current global precipitation data sets. In this study, a recently developed method for rainfall estimation from soil moisture observations, SM2RAIN, is demonstrated to facilitate the accurate application of TC within triplets containing two state-of-the-art satellite rainfall estimates and a reanalysis product. The validity of different TC assumptions are indirectly tested via a high-quality ground rainfall product over the contiguous United States (CONUS, showing that SM2RAIN can provide a truly independent source of rainfall accumulation information which uniquely satisfies the assumptions underlying TC. On this basis, TC is applied with SM2RAIN on a global scale in an optimal configuration to calculate, for the first time, reliable global correlations (vs. an unknown truth of the aforementioned products without using a ground benchmark data set. The analysis is carried out during the period 2007–2012 using daily rainfall accumulation products obtained at 1° × 1° spatial resolution. Results convey the relatively high performance of the satellite rainfall estimates in eastern North and South America, southern Africa, southern and eastern Asia, eastern Australia, and southern Europe, as well as complementary performances between the reanalysis product and SM2RAIN, with the first performing reasonably well in the Northern Hemisphere and the second providing very good performance in the Southern

  8. Applying Spatially Distributed Rainfall to a Hydrological Model in a Tropical Watershed, Manoa Watershed, in Hawaii

    Science.gov (United States)

    Huang, Y. F.; Tsang, Y. P.

    2017-12-01

    Rainfall in Hawaii is characterized with high spatial and temporal variability. In the south side of Oahu, the Manoa watershed, with an area of 11 km2, has the annual maximum rainfall of 3900mm and the minimum rainfall of 1000 mm. Despite this high spatial heterogeneity, the rain gage network seems insufficiently capture this pattern. When simulating stream flow and predicting floods with hydrological models in Hawaii, the model performance is often unsatisfactory because of inadequate representation of rainfall data. Longman et al. (in prep.) have developed the spatially distributed daily rainfall across the Hawaiian Islands by applying ordinary kriging, yet these data have not been applied to hydrological models. In this study, we used the Soil and Water Assessment Tool (SWAT) model to assess the streamflow simulation by applying spatially-distributed rainfall in the Manoa watershed. We first used point daily-rainfall at Lyon Arboretum from National Center of Environmental Information (NCEI) as the uniform rainfall input. Secondly, we summarized sub-watershed mean rainfall from the daily spatial-statistical rainfall. Both rainfall data are available from 1999 to 2014. The SWAT was set up for five-year warm-up, nine-year calibration, and two-year validation. The model parameters were calibrated and validated with four U.S. Geological Survey stream gages. We compared the calibrated watershed parameters, characteristics, and assess the streamflow hydrographs from these two rainfall inputs. The differences and improvement of using spatially distributed rainfall input in SWAT were discussed. In addition to improving the model by the representation of rainfall, this study helped us having a better understanding of the watershed hydrological response in Hawaii.

  9. A comparative study of mixed exponential and Weibull distributions in a stochastic model replicating a tropical rainfall process

    Science.gov (United States)

    Abas, Norzaida; Daud, Zalina M.; Yusof, Fadhilah

    2014-11-01

    A stochastic rainfall model is presented for the generation of hourly rainfall data in an urban area in Malaysia. In view of the high temporal and spatial variability of rainfall within the tropical rain belt, the Spatial-Temporal Neyman-Scott Rectangular Pulse model was used. The model, which is governed by the Neyman-Scott process, employs a reasonable number of parameters to represent the physical attributes of rainfall. A common approach is to attach each attribute to a mathematical distribution. With respect to rain cell intensity, this study proposes the use of a mixed exponential distribution. The performance of the proposed model was compared to a model that employs the Weibull distribution. Hourly and daily rainfall data from four stations in the Damansara River basin in Malaysia were used as input to the models, and simulations of hourly series were performed for an independent site within the basin. The performance of the models was assessed based on how closely the statistical characteristics of the simulated series resembled the statistics of the observed series. The findings obtained based on graphical representation revealed that the statistical characteristics of the simulated series for both models compared reasonably well with the observed series. However, a further assessment using the AIC, BIC and RMSE showed that the proposed model yields better results. The results of this study indicate that for tropical climates, the proposed model, using a mixed exponential distribution, is the best choice for generation of synthetic data for ungauged sites or for sites with insufficient data within the limit of the fitted region.

  10. Adapting an existing visualization application for browser-based deployment: A case study from the Tropical Rainfall Measuring Mission

    Science.gov (United States)

    Kelley, Owen A.

    2013-02-01

    THOR, the Tool for High-resolution Observation Review, is a data viewer for the Tropical Rainfall Measuring Mission (TRMM) and the upcoming Global Precipitation Measurement (GPM) mission. THOR began as a desktop application, but now it can be accessed with a web browser, making THOR one of the first online tools for visualizing TRMM satellite data (http://pps.gsfc.nasa.gov/thor). In this effort, the reuse of the existing visualization code was maximized and the complexity of new code was minimized by avoiding unnecessary functionality, frameworks, or libraries. The simplicity of this approach makes it potentially attractive to researchers wishing to adapt their visualization applications for online deployment. To enable THOR to run within a web browser, three new pieces of code are written. First, the graphical user interface (GUI) of the desktop application is translated into HTML, JavaScript, and CSS. Second, a simple communication mechanism is developed over HTTP. Third, a virtual GUI is created on the server that interfaces with the image-generating routines of the existing desktop application so that these routines do not need to be modified for online use. While the basic functionality of THOR is now available online, prototyping is ongoing for enhanced 3D imaging and other aspects of both THOR Desktop and THOR Online. Because TRMM data products are complex and periodically reprocessed with improved algorithms, having a tool such as THOR is important to analysts at the Precipitation Processing System where the algorithms are tested and the products generated, stored, and distributed. Researchers also have found THOR useful for taking a first look at individual files before writing their own software to perform specialized calculations and analyses.

  11. Evaluation of rainfall simulations over West Africa in dynamically downscaled CMIP5 global circulation models

    Science.gov (United States)

    Akinsanola, A. A.; Ajayi, V. O.; Adejare, A. T.; Adeyeri, O. E.; Gbode, I. E.; Ogunjobi, K. O.; Nikulin, G.; Abolude, A. T.

    2018-04-01

    This study presents evaluation of the ability of Rossby Centre Regional Climate Model (RCA4) driven by nine global circulation models (GCMs), to skilfully reproduce the key features of rainfall climatology over West Africa for the period of 1980-2005. The seasonal climatology and annual cycle of the RCA4 simulations were assessed over three homogenous subregions of West Africa (Guinea coast, Savannah, and Sahel) and evaluated using observed precipitation data from the Global Precipitation Climatology Project (GPCP). Furthermore, the model output was evaluated using a wide range of statistical measures. The interseasonal and interannual variability of the RCA4 were further assessed over the subregions and the whole of the West Africa domain. Results indicate that the RCA4 captures the spatial and interseasonal rainfall pattern adequately but exhibits a weak performance over the Guinea coast. Findings from the interannual rainfall variability indicate that the model performance is better over the larger West Africa domain than the subregions. The largest difference across the RCA4 simulated annual rainfall was found in the Sahel. Result from the Mann-Kendall test showed no significant trend for the 1980-2005 period in annual rainfall either in GPCP observation data or in the model simulations over West Africa. In many aspects, the RCA4 simulation driven by the HadGEM2-ES perform best over the region. The use of the multimodel ensemble mean has resulted to the improved representation of rainfall characteristics over the study domain.

  12. Global Warming Induced Changes in Rainfall Characteristics in IPCC AR5 Models

    Science.gov (United States)

    Lau, William K. M.; Wu, Jenny, H.-T.; Kim, Kyu-Myong

    2012-01-01

    Changes in rainfall characteristic induced by global warming are examined from outputs of IPCC AR5 models. Different scenarios of climate warming including a high emissions scenario (RCP 8.5), a medium mitigation scenario (RCP 4.5), and 1% per year CO2 increase are compared to 20th century simulations (historical). Results show that even though the spatial distribution of monthly rainfall anomalies vary greatly among models, the ensemble mean from a sizable sample (about 10) of AR5 models show a robust signal attributable to GHG warming featuring a shift in the global rainfall probability distribution function (PDF) with significant increase (>100%) in very heavy rain, reduction (10-20% ) in moderate rain and increase in light to very light rains. Changes in extreme rainfall as a function of seasons and latitudes are also examined, and are similar to the non-seasonal stratified data, but with more specific spatial dependence. These results are consistent from TRMM and GPCP rainfall observations suggesting that extreme rainfall events are occurring more frequently with wet areas getting wetter and dry-area-getting drier in a GHG induced warmer climate.

  13. Tropical Cyclones as a Driver of Global Sediment Flux

    Science.gov (United States)

    Leyland, J.; Darby, S. E.; Cohen, S.

    2017-12-01

    The world's rivers deliver 19 billion tonnes of sediment to the coastal zone annually. The sediment supplied to the coastal zone is of significant importance for a variety of reasons, for example in acting as a vector for nutrients as well as in supplying sediment to coastal landforms such as deltas and beaches that can buffer those landforms from erosion and flooding. A greater understanding of the factors governing sediment flux to the oceans is therefore a key research gap. The non-linear relationship between river discharge and sediment flux implies that the global sediment flux may be disproportionately driven by large floods. Indeed, in our recent empirical research we have demonstrated that changes in the track locations, frequency and intensity of tropical storms in recent decades exert a significant control on the sediment flux emanating from the Mekong River. Since other large rivers potentially affected by tropical storms are known to make a significant contribution to the global sediment flux, this raises the question of the extent to which such storms play a significant role in controlling sediment loads at the global scale. In this paper we address that question by employing a global hydrological model (WBMsed) in order to predict runoff and sediment load forced by recent historical climate scenarios `with' and `without' tropical cyclones. We compare the two scenarios to (i) make the first estimate of the global contribution of sediment load forced by tropical storms; (ii) evaluate how that contribution has varied in recent decades and to (iii) explore variations in tropical-storm driven sediment loads in selected major river basins that are significantly affected by such storms.

  14. Enhanced marine sulphur emissions offset global warming and impact rainfall.

    Science.gov (United States)

    Grandey, B S; Wang, C

    2015-08-21

    Artificial fertilisation of the ocean has been proposed as a possible geoengineering method for removing carbon dioxide from the atmosphere. The associated increase in marine primary productivity may lead to an increase in emissions of dimethyl sulphide (DMS), the primary source of sulphate aerosol over remote ocean regions, potentially causing direct and cloud-related indirect aerosol effects on climate. This pathway from ocean fertilisation to aerosol induced cooling of the climate may provide a basis for solar radiation management (SRM) geoengineering. In this study, we investigate the transient climate impacts of two emissions scenarios: an RCP4.5 (Representative Concentration Pathway 4.5) control; and an idealised scenario, based on RCP4.5, in which DMS emissions are substantially enhanced over ocean areas. We use mini-ensembles of a coupled atmosphere-ocean configuration of CESM1(CAM5) (Community Earth System Model version 1, with the Community Atmosphere Model version 5). We find that the cooling effect associated with enhanced DMS emissions beneficially offsets greenhouse gas induced warming across most of the world. However, the rainfall response may adversely affect water resources, potentially impacting human livelihoods. These results demonstrate that changes in marine phytoplankton activity may lead to a mixture of positive and negative impacts on the climate.

  15. Polarimetric rainfall retrieval from a C-Band weather radar in a tropical environment (The Philippines)

    Science.gov (United States)

    Crisologo, I.; Vulpiani, G.; Abon, C. C.; David, C. P. C.; Bronstert, A.; Heistermann, Maik

    2014-11-01

    We evaluated the potential of polarimetric rainfall retrieval methods for the Tagaytay C-Band weather radar in the Philippines. For this purpose, we combined a method for fuzzy echo classification, an approach to extract and reconstruct the differential propagation phase, Φ DP , and a polarimetric self-consistency approach to calibrate horizontal and differential reflectivity. The reconstructed Φ DP was used to estimate path-integrated attenuation and to retrieve the specific differential phase, K DP . All related algorithms were transparently implemented in the Open Source radar processing software wradlib. Rainfall was then estimated from different variables: from re-calibrated reflectivity, from re-calibrated reflectivity that has been corrected for path-integrated attenuation, from the specific differential phase, and from a combination of reflectivity and specific differential phase. As an additional benchmark, rainfall was estimated by interpolating the rainfall observed by rain gauges. We evaluated the rainfall products for daily and hourly accumulations. For this purpose, we used observations of 16 rain gauges from a five-month period in the 2012 wet season. It turned out that the retrieval of rainfall from K DP substantially improved the rainfall estimation at both daily and hourly time scales. The measurement of reflectivity apparently was impaired by severe miscalibration while K DP was immune to such effects. Daily accumulations of rainfall retrieved from K DP showed a very low estimation bias and small random errors. Random scatter was, though, strongly present in hourly accumulations.

  16. The interaction rainfall vs. weight as determinant of total mercury concentration in fish from a tropical estuary

    International Nuclear Information System (INIS)

    Barletta, M.; Lucena, L.R.R.; Costa, M.F.; Barbosa-Cintra, S.C.T.; Cysneiros, F.J.A.

    2012-01-01

    Mercury loads in tropical estuaries are largely controlled by the rainfall regime that may cause biodilution due to increased amounts of organic matter (both live and non-living) in the system. Top predators, as Trichiurus lepturus, reflect the changing mercury bioavailability situations in their muscle tissues. In this work two variables [fish weight (g) and monthly total rainfall (mm)] are presented as being important predictors of total mercury concentration (T-Hg) in fish muscle. These important explanatory variables were identified by a Weibull Regression model, which best fit the dataset. A predictive model using readily available variables as rainfall is important, and can be applied for human and ecological health assessments and decisions. The main contribution will be to further protect vulnerable groups as pregnant women and children. Nature conservation directives could also improve by considering monitoring sample designs that include this hypothesis, helping to establish complete and detailed mercury contamination scenarios. - Highlights: ► Questions previous statistical approaches that used heterocedastic data after transformation. ► Corroborates other works that pointed seasonal variations of the mercury burden in fish muscle. ► Defines rainfall as a major driver of mercury in predatory fish at tropical latitudes. ► Progresses in environmental data analysis and steps forward from previous approaches to Hg in fish. ► Proposes a model to predict scenarios of Hg in fish as a function of biological and environmental variables. - The Weibull Regression model was the most appropriate fit for T-Hg in fish and therefore more ecological insights emerged from previous data.

  17. Diurnal Variation of Rainfall Associated with Tropical Depression in South China and its Relationship to Land-Sea Contrast and Topography

    Directory of Open Access Journals (Sweden)

    Yuchun Zhao

    2013-12-01

    Full Text Available Convective precipitation associated with tropical depression (TD is one primary type of post-flooding season rainfall in South China (SC. Observations of the Tropical Rainfall Measuring Mission (TRMM satellite have shown specific diurnal features of convective rainfall in South China, which is somewhat different from that in other seasons or regions of China. Convective precipitation is usually organized into a rainfall band along the southeastern coast of South China in the early morning hours. The rainfall band develops and intensifies quickly in the morning, then moves inland in the afternoon and, finally, diminishes at night. The daily convective rainfall along the coast is much more than that in the inland region, and heavy rainfall is often found along the coast. A long-duration heavy rainfall event associated with tropical depression “Fitow” during the period from 28 August to 6 September 2001, is selected in this study to explore the diurnal feature of convective rainfall and its formation mechanism. Modeling results of the 10-day heavy rainfall event are compared with both rain-gauge observation and satellite-retrieved rainfall. Total precipitation and its spatial distribution, as well as diurnal variations are reasonably simulated and agree well with observations. Further analysis reveals that the development and movement of convective precipitation is mainly related to the land and sea breezes. The anomalous height-latitudinal circulation in the morning-to-noon hours is completely reversed in the afternoon-to-late-evening hours, with the convective rainfall swinging back and forth, following its updraft branch. Sensitivity experiments show that the afternoon convective rainfall in the inland region of SC is caused by the diurnal variation of solar radiation forcing. The mountain range along the coast and the complex topography in the inland region of SC plays a critical role in the enhancement of diurnal convective rainfall

  18. The Use of Satellite Microwave Rainfall Measurements to Predict Eastern North Pacific Tropical Cyclone Intensity

    National Research Council Canada - National Science Library

    West, Derek

    1998-01-01

    .... Relationships between parameters obtained from an operational SSM/I based rainfall measuring algorithm and current intensity and ensuing 12, 24, 36, 48, 60, and 72 hour intensity changes from best...

  19. Interannual Tropical Rainfall Variability in General Circulation Model Simulations Associated with the Atmospheric Model Intercomparison Project.

    Science.gov (United States)

    Sperber, K. R.; Palmer, T. N.

    1996-11-01

    The interannual variability of rainfall over the Indian subcontinent, the African Sahel, and the Nordeste region of Brazil have been evaluated in 32 models for the period 1979-88 as part of the Atmospheric Model Intercomparison Project (AMIP). The interannual variations of Nordeste rainfall are the most readily captured, owing to the intimate link with Pacific and Atlantic sea surface temperatures. The precipitation variations over India and the Sahel are less well simulated. Additionally, an Indian monsoon wind shear index was calculated for each model. Evaluation of the interannual variability of a wind shear index over the summer monsoon region indicates that the models exhibit greater fidelity in capturing the large-scale dynamic fluctuations than the regional-scale rainfall variations. A rainfall/SST teleconnection quality control was used to objectively stratify model performance. Skill scores improved for those models that qualitatively simulated the observed rainfall/El Niño- Southern Oscillation SST correlation pattern. This subset of models also had a rainfall climatology that was in better agreement with observations, indicating a link between systematic model error and the ability to simulate interannual variations.A suite of six European Centre for Medium-Range Weather Forecasts (ECMWF) AMIP runs (differing only in their initial conditions) have also been examined. As observed, all-India rainfall was enhanced in 1988 relative to 1987 in each of these realizations. All-India rainfall variability during other years showed little or no predictability, possibly due to internal chaotic dynamics associated with intraseasonal monsoon fluctuations and/or unpredictable land surface process interactions. The interannual variations of Nordeste rainfall were best represented. The State University of New York at Albany/National Center for Atmospheric Research Genesis model was run in five initial condition realizations. In this model, the Nordeste rainfall

  20. Influence of declining mean annual rainfall on the behavior and yield of sediment and particulate organic carbon from tropical watersheds

    Science.gov (United States)

    Strauch, Ayron M.; MacKenzie, Richard A.; Giardina, Christian P.; Bruland, Gregory L.

    2018-04-01

    The capacity to forecast climate and land-use driven changes to runoff, soil erosion and sediment transport in the tropics is hindered by a lack of long-term data sets and model study systems. To address these issues we utilized three watersheds characterized by similar shape, geology, soils, vegetation cover, and land use arranged across a 900 mm gradient in mean annual rainfall (MAR). Using this space-for-time design, we quantified suspended sediment (SS) and particulate organic carbon (POC) export over 18 months to examine how large-scale climate trends (MAR) affect sediment supply and delivery patterns (hysteresis) in tropical watersheds. Average daily SS yield ranged from 0.128 to 0.618 t km- 2 while average daily POC ranged from 0.002 to 0.018 t km- 2. For the largest storm events, we found that sediment delivery exhibited similar clockwise hysteresis patterns among the watersheds, with no significant differences in the similarity function between watershed pairs, indicating that: (1) in-stream and near-stream sediment sources drive sediment flux; and (2) the shape and timing of hysteresis is not affected by MAR. With declining MAR, the ratio of runoff to baseflow and inter-storm length between pulse events both increased. Despite increases in daily rainfall and the number of days with large rainfall events increasing with MAR, there was a decline in daily SS yield possibly due to the exhaustion of sediment supply by frequent runoff events in high MAR watersheds. By contrast, mean daily POC yield increased with increasing MAR, possibly as a result of increased soil organic matter decomposition, greater biomass, or increased carbon availability in higher MAR watersheds. We compared results to modeled values using the Load Estimator (LOADEST) FORTRAN model, confirming the negative relationship between MAR and sediment yield. However, because of its dependency on mean daily flow, LOADEST tended to under predict sediment yield, a result of its poor ability to

  1. Interannual rainfall variability in the Amazon basin and sea-surface temperatures in the equatorial Pacific and the tropical Atlantic Oceans

    Science.gov (United States)

    Ronchail, Josyane; Cochonneau, Gérard; Molinier, Michel; Guyot, Jean-Loup; Chaves, Adriana Goretti De Miranda; Guimarães, Valdemar; de Oliveira, Eurides

    2002-11-01

    Rainfall variability in the Amazon basin is studied in relation to sea-surface temperatures (SSTs) in the equatorial Pacific and the northern and southern tropical Atlantic during the 1977-99 period, using the HiBAm original rainfall data set and complementary cluster and composite analyses.The northeastern part of the basin, north of 5 °S and east of 60 °W, is significantly related with tropical SSTs: a rainier wet season is observed when the equatorial Pacific and the northern (southern) tropical Atlantic are anomalously cold (warm). A shorter and drier wet season is observed during El Niño events and negative rainfall anomalies are also significantly associated with a warm northern Atlantic in the austral autumn and a cold southern Atlantic in the spring. The northeastern Amazon rainfall anomalies are closely related with El Niño-southern oscillation during the whole year, whereas the relationships with the tropical Atlantic SST anomalies are mainly observed during the autumn. A time-space continuity is observed between El Niño-related rainfall anomalies in the northeastern Amazon, those in the northern Amazon and south-eastern Amazon, and those in northern South America and in the Nordeste of Brazil.A reinforcement of certain rainfall anomalies is observed when specific oceanic events combine. For instance, when El Niño and cold SSTs in the southern Atlantic are associated, very strong negative anomalies are observed in the whole northern Amazon basin. Nonetheless, the comparison of the cluster and the composite analyses results shows that the rainfall anomalies in the northeastern Amazon are not always associated with tropical SST anomalies.In the southern and western Amazon, significant tropical SST-related rainfall anomalies are very few and spatially variable. The precipitation origins differ from those of the northeastern Amazon: land temperature variability, extratropical perturbations and moisture advection are important rainfall factors, as well

  2. Climatic Variations in Tropical West African Rainfall and the Implications for Military Planners

    National Research Council Canada - National Science Library

    Montgomery, Christi S

    2008-01-01

    ...) and El Nino/La Nina (ENLN) events in the tropical Pacific. Our primary data sets were the National Centers for Environmental Prediction / National Center for Atmospheric Research reanalysis fields and the Multivariate ENSO Index (MEI...

  3. Forest response to rising CO2 drives zonally asymmetric rainfall change over tropical land

    Science.gov (United States)

    Kooperman, Gabriel J.; Chen, Yang; Hoffman, Forrest M.; Koven, Charles D.; Lindsay, Keith; Pritchard, Michael S.; Swann, Abigail L. S.; Randerson, James T.

    2018-05-01

    Understanding how anthropogenic CO2 emissions will influence future precipitation is critical for sustainably managing ecosystems, particularly for drought-sensitive tropical forests. Although tropical precipitation change remains uncertain, nearly all models from the Coupled Model Intercomparison Project Phase 5 predict a strengthening zonal precipitation asymmetry by 2100, with relative increases over Asian and African tropical forests and decreases over South American forests. Here we show that the plant physiological response to increasing CO2 is a primary mechanism responsible for this pattern. Applying a simulation design in the Community Earth System Model in which CO2 increases are isolated over individual continents, we demonstrate that different circulation, moisture and stability changes arise over each continent due to declines in stomatal conductance and transpiration. The sum of local atmospheric responses over individual continents explains the pan-tropical precipitation asymmetry. Our analysis suggests that South American forests may be more vulnerable to rising CO2 than Asian or African forests.

  4. Natural and near natural tropical forest values

    Science.gov (United States)

    Daniel H. Henning

    2011-01-01

    This paper identifies and describes some of the values associated with tropical rain forests in their natural and near-natural conditions. Tropical rain forests are moist forests in the humid tropics where temperature and rainfall are high and the dry season is short. These closed (non-logged) and broad-leaved forests are a global resource. Located almost entirely in...

  5. Climate Prediction Center(CPC)Global Tropics Hazards and Benefits Assessment

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Tropics Hazards and Benefits Assessment (GTH) is an outlook product for the areas in the Tropics. Forecasts for the Week-1 and Week-2 period are given for...

  6. Global demand for gold is another threat for tropical forests

    International Nuclear Information System (INIS)

    Alvarez-Berríos, Nora L; Mitchell Aide, T

    2015-01-01

    The current global gold rush, driven by increasing consumption in developing countries and uncertainty in financial markets, is an increasing threat for tropical ecosystems. Gold mining causes significant alteration to the environment, yet mining is often overlooked in deforestation analyses because it occupies relatively small areas. As a result, we lack a comprehensive assessment of the spatial extent of gold mining impacts on tropical forests. In this study, we provide a regional assessment of gold mining deforestation in the tropical moist forest biome of South America. Specifically, we analyzed the patterns of forest change in gold mining sites between 2001 and 2013, and evaluated the proximity of gold mining deforestation to protected areas (PAs). The forest cover maps were produced using the Land Mapper web application and images from the MODIS satellite MOD13Q1 vegetation indices 250 m product. Annual maps of forest cover were used to model the incremental change in forest in ∼1600 potential gold mining sites between 2001–2006 and 2007–2013. Approximately 1680 km 2 of tropical moist forest was lost in these mining sites between 2001 and 2013. Deforestation was significantly higher during the 2007–2013 period, and this was associated with the increase in global demand for gold after the international financial crisis. More than 90% of the deforestation occurred in four major hotspots: Guianan moist forest ecoregion (41%), Southwest Amazon moist forest ecoregion (28%), Tapajós–Xingú moist forest ecoregion (11%), and Magdalena Valley montane forest and Magdalena–Urabá moist forest ecoregions (9%). In addition, some of the more active zones of gold mining deforestation occurred inside or within 10 km of ∼32 PAs. There is an urgent need to understand the ecological and social impacts of gold mining because it is an important cause of deforestation in the most remote forests in South America, and the impacts, particularly in aquatic systems

  7. Dynamics of changing impacts of tropical Indo-Pacific variability on Indian and Australian rainfall

    Science.gov (United States)

    Li, Ziguang; Cai, Wenju; Lin, Xiaopei

    2016-08-01

    A positive Indian Ocean Dipole (IOD) and a warm phase of the El Niño-Southern Oscillation (ENSO) reduce rainfall over the Indian subcontinent and southern Australia. However, since the 1980s, El Niño’s influence has been decreasing, accompanied by a strengthening in the IOD’s influence on southern Australia but a reversal in the IOD’s influence on the Indian subcontinent. The dynamics are not fully understood. Here we show that a post-1980 weakening in the ENSO-IOD coherence plays a key role. During the pre-1980 high coherence, ENSO drives both the IOD and regional rainfall, and the IOD’s influence cannot manifest itself. During the post-1980 weak coherence, a positive IOD leads to increased Indian rainfall, offsetting the impact from El Niño. Likewise, the post-1980 weak ENSO-IOD coherence means that El Niño’s pathway for influencing southern Australia cannot fully operate, and as positive IOD becomes more independent and more frequent during this period, its influence on southern Australia rainfall strengthens. There is no evidence to support that greenhouse warming plays a part in these decadal fluctuations.

  8. Validation and Analysis of Microwave-Derived Rainfall Over the Tropics

    Science.gov (United States)

    1993-01-01

    Intraseasonal Oscillations In addition to the biennial signals identified by Meehl (1987), Lau and col- laborators (Peng 1987; Shen 1987) expound on...temporally integrated, over a 50 x 50 area for a minimum of one month, to create clima - tological rainfall composites. Validation of the ESMR-derived

  9. On the Characterization of Rainfall Associated with U.S. Landfalling North Atlantic Tropical Cyclones Based on Satellite Data and Numerical Weather Prediction Outputs

    Science.gov (United States)

    Luitel, B. N.; Villarini, G.; Vecchi, G. A.

    2014-12-01

    When we talk about tropical cyclones (TCs), the first things that come to mind are strong winds and storm surge affecting the coastal areas. However, according to the Federal Emergency Management Agency (FEMA) 59% of the deaths caused by TCs since 1970 is due to fresh water flooding. Heavy rainfall associated with TCs accounts for 13% of heavy rainfall events nationwide for the June-October months, with this percentage being much higher if the focus is on the eastern and southern United States. This study focuses on the evaluation of precipitation associated with the North Atlantic TCs that affected the continental United States over the period 2007 - 2012. We evaluate the rainfall associated with these TCs using four satellite based rainfall products: Tropical Rainfall Measuring Mission - Multi-satellite Precipitation Analysis (TMPA; both real-time and research version); Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN); Climate Prediction Center (CPC) MORPHing technique (CMORPH). As a reference data we use gridded rainfall provided by CPC (Daily US Unified Gauge-Based Analysis of Precipitation). Rainfall fields from each of these satellite products are compared to the reference data, providing valuable information about the realism of these products in reproducing the rainfall associated with TCs affecting the continental United States. In addition to the satellite products, we evaluate the forecasted rainfall produced by five state-of-the-art numerical weather prediction (NWP) models: European Centre for Medium-Range Weather Forecasts (ECMWF), UK Met Office (UKMO), National Centers for Environmental Prediction (NCEP), China Meteorological Administration (CMA), and Canadian Meteorological Center (CMC). The skill of these models in reproducing TC rainfall is quantified for different lead times, and discussed in light of the performance of the satellite products.

  10. Prediction of Monthly Summer Monsoon Rainfall Using Global Climate Models Through Artificial Neural Network Technique

    Science.gov (United States)

    Nair, Archana; Singh, Gurjeet; Mohanty, U. C.

    2018-01-01

    The monthly prediction of summer monsoon rainfall is very challenging because of its complex and chaotic nature. In this study, a non-linear technique known as Artificial Neural Network (ANN) has been employed on the outputs of Global Climate Models (GCMs) to bring out the vagaries inherent in monthly rainfall prediction. The GCMs that are considered in the study are from the International Research Institute (IRI) (2-tier CCM3v6) and the National Centre for Environmental Prediction (Coupled-CFSv2). The ANN technique is applied on different ensemble members of the individual GCMs to obtain monthly scale prediction over India as a whole and over its spatial grid points. In the present study, a double-cross-validation and simple randomization technique was used to avoid the over-fitting during training process of the ANN model. The performance of the ANN-predicted rainfall from GCMs is judged by analysing the absolute error, box plots, percentile and difference in linear error in probability space. Results suggest that there is significant improvement in prediction skill of these GCMs after applying the ANN technique. The performance analysis reveals that the ANN model is able to capture the year to year variations in monsoon months with fairly good accuracy in extreme years as well. ANN model is also able to simulate the correct signs of rainfall anomalies over different spatial points of the Indian domain.

  11. Base flow-driven shifts in tropical stream temperature regimes across a mean annual rainfall gradient

    Science.gov (United States)

    Ayron M. Strauch; Richard A. MacKenzie; Ralph W. Tingley

    2017-01-01

    Climate change is expected to affect air temperature and watershed hydrology, but the degree to which these concurrent changes affect stream temperature is not well documented in the tropics. How stream temperature varies over time under changing hydrologic conditions is difficult to isolate from seasonal changes in air temperature. Groundwater and bank storage...

  12. Nitrogen transformations in response to temperature and rainfall manipulation in oak savanna: A global change experiment

    Science.gov (United States)

    Wellman, R. L.; Boutton, T. W.; Tjoelker, M. G.; Volder, A.; Briske, D. D.

    2013-12-01

    Increasing concentrations of greenhouse gases are projected to elevate global surface air temperatures by 1.1 to 6.4°C by the end of the century, and potentially magnify the intensity and variability of seasonal precipitation distribution. The mid-latitude grasslands of North America are predicted to experience substantial modification in precipitation regimes, with a shift towards drier summers and wetter spring and fall seasons. Despite these predictions, little is known concerning the effects of these global climate change drivers or their potential interactive effects on nitrogen (N) cycling processes. The purpose of this study is to quantify seasonal variation in rates of N-mineralization, nitrification, and N-losses via leaching in soil subjected to experimental warming and rainfall manipulation. Research was conducted at the Texas A&M Warming and Rainfall Manipulation (WaRM) Site in College Station where eight 9x18m rainout shelters and two unsheltered controls were established in post oak savanna in 2003. Replicate annual rainfall redistribution treatments (n = 4) are applied at the shelter level (long term mean vs. 40% of summer redistributed to fall and spring with same annual total). Warming treatments (ambient vs. 24-hr IR canopy warming of 1-3°C) were applied to planted monocultures of juniper and little bluestem, and a juniper-grass combination. Both juniper and little bluestem are key species within the post oak savanna region. Plots were sampled from the full factorial design during years six and seven of the WaRM experiment. Soil N-mineralization, nitrification, and N-losses via leaching were assessed quarterly for two years using the resin core incubation method. Rainfall, species composition, and time interacted significantly to influence both ammonification and nitrification. Highest rates of ammonification (0.115 mg NH4+ -N/ kg soil/day) occurred in grass monocultures during summer in the control rainfall plots, whereas highest rates of

  13. Probabilistic Analysis of Cut-Slope Stability for Tropical Red Clay of Depok, West Java as an Effect of Rainfall Duration and Intensity

    Directory of Open Access Journals (Sweden)

    Hakim Sagitaningrum Fathiyah

    2018-01-01

    Full Text Available Landslide in Indonesia, specifically in Java island, occurs during rainy seasons. In Java island, it is known that the tropical red clay has the ability to stand at steep angles, while in stability analysis due to rainfall, practitioners only consider the rise of groundwater table. Previous studies states that one of the factor affecting factor of safety (FS for tropical red clay slopes is the formation of saturated zones due to matric suction. This research studies the effect of rainfall intensity and duration to FS of cut-slopes as parametric study with probabilistic analysis for different height of 10m, 20m, and 30m also slope angles of 27°, 45°, 55°, and 70°. Rainfall parameter are taken from FTUI rainfall station for advanced pattern and three-days duration of rain. Analysis of seepage uses SEEP/W and slope stability uses SLOPE/W. It is known that the significant increase of probability of failure due to the three-days rainfall is achieved at the 10m height and 70°-angled slope. Increase of the probability of failure is mainly due to rainfall infiltration which saturates the surface and pore water pressure increase until certain time where infiltration stops and turn into surface run-off.

  14. Rainfall variations over the Bay of Bengal and southern Tibetan Plateau and their connections with different tropical forcing during the early and middle summer

    Science.gov (United States)

    Wang, Z.; Yang, S.

    2016-12-01

    Strong rainfall always occurs in the South Asia region during the summer monsoon time (May-September), especially over the Bay of Bengal (BOB) and southern Tibetan Plateau (STP). The latent heating associated with such rainfall drives large-scale circulation and further influences weather and climate anomalies over the world. Few studies have focused on the intraseasonal difference of the rainfall interannual variations. Generally, two precipitation centers appear over the BOB and STP respectively, which are corresponding to the southern and northern upward branches of the South Asian summer monsoon. Our results indicate that the interannual variability of precipitation over the BOB is consistent with that over the STP during the early summer (May-June), but it is contrary during the midsummer (July-August). In early summer, precipitation over the BOB and STP is mainly regulated by the sea surface temperature (SST) anomalies in tropical eastern Pacific (corresponding to the ENSO). Warm SST anomalies in the eastern Pacific weaken upward motion and further precipitation over the BOB and STP through the modulation of zonal walker circulation. However, the tropical forcing exists over the western Maritime Continent (WMC) during midsummer, which induces the contrary variations of rainfall over the BOB and STP. Warm WMC SST anomalies lead to an anticyclone over the BOB, which is unfavourable to the BOB rainfall. While the southwesterlies at the northwest of that anticyclone favor moisture transport to the Tibetan Plateau and thus an enhancement in rainfall over the STP.

  15. The preconditioning role of Tropical Atlantic Variability in the development of the ENSO teleconnection: implications for the prediction of Nordeste rainfall

    Science.gov (United States)

    Giannini, A.; Saravanan, R.; Chang, P.

    A comparison of rainfall variability in the semi-arid Brazilian Nordeste in observations and in two sets of model simulations leads to the conclusion that the evolving interaction between Tropical Atlantic Variability (TAV) and the El Niño-Southern Oscillation (ENSO) phenomenon can explain two puzzling features of ENSO's impact on the Nordeste: (1) the event-to-event unpredictability of ENSO's impact; (2) the greater impact of cold rather than warm ENSO events during the past 50 years. The explanation is in the `preconditioning' role of Tropical Atlantic Variability. When, in seasons prior to the mature phase of ENSO, the tropical Atlantic happens to be evolving consistently with the development expected of the ENSO teleconnection, ENSO and TAV add up to force large anomalies in Nordeste rainfall. When it happens to be evolving in opposition to the canonical development of ENSO, then the net outcome is less obvious, but also less anomalous. The more frequent occurrence of tropical Atlantic conditions consistent with those that develop during a cold ENSO event, i.e. of a negative meridional sea surface temperature gradient, explains the weaker warm ENSO and stronger cold ENSO anomalies in Nordeste rainfall of the latter part of the twentieth century. Close monitoring of the evolution of the tropical Atlantic in seasons prior to the mature phase of ENSO should lead to an enhanced forecast potential.

  16. Upper temperature limits of tropical marine ectotherms: global warming implications.

    Directory of Open Access Journals (Sweden)

    Khanh Dung T Nguyen

    Full Text Available Animal physiology, ecology and evolution are affected by temperature and it is expected that community structure will be strongly influenced by global warming. This is particularly relevant in the tropics, where organisms are already living close to their upper temperature limits and hence are highly vulnerable to rising temperature. Here we present data on upper temperature limits of 34 tropical marine ectotherm species from seven phyla living in intertidal and subtidal habitats. Short term thermal tolerances and vertical distributions were correlated, i.e., upper shore animals have higher thermal tolerance than lower shore and subtidal animals; however, animals, despite their respective tidal height, were susceptible to the same temperature in the long term. When temperatures were raised by 1°C hour(-1, the upper lethal temperature range of intertidal ectotherms was 41-52°C, but this range was narrower and reduced to 37-41°C in subtidal animals. The rate of temperature change, however, affected intertidal and subtidal animals differently. In chronic heating experiments when temperature was raised weekly or monthly instead of every hour, upper temperature limits of subtidal species decreased from 40°C to 35.4°C, while the decrease was more than 10°C in high shore organisms. Hence in the long term, activity and survival of tropical marine organisms could be compromised just 2-3°C above present seawater temperatures. Differences between animals from environments that experience different levels of temperature variability suggest that the physiological mechanisms underlying thermal sensitivity may vary at different rates of warming.

  17. Tropical deforestation: balancing regional development demands and global environmental concerns

    Energy Technology Data Exchange (ETDEWEB)

    Wood, A B [US Dept. of State, Washington, DC (USA)

    1990-01-01

    Over half of the world's tropical closed forests, which contain the greatest biodiversity, are found in just three countries: Brazil, Indonesia, and Zaire. Accelerated conversion of tropical forests is occurring because of several interlocking socio-economic and political factors: inequitable land distribution, entrenched rural poverty, and rapidly growing populations which push landless and near-landless peasants on to forest lands that are often infertile. If rates instead of absolute numbers are used to measure the severity of deforestation, Nigeria, Argentina, India, Thailand, Myanmar (Burma), Ecquador, and above all Ivory Coast stand out as countries facing an immediate deforestation crisis. Local management of forest resources, however, can be very contentious and complicated, with overlapping government agencies, competing economic interests, and ambiguous regulations. Without capital investment and entrepreneurial initiatives, residents of forest regions may have no alternative but to farm increasingly infertile soils. Non-governmental organizations, such as the World Wildlife Fund are playing leading roles in innovative debt-for-nature swaps and other forest conservation efforts. International development agencies, such as the World Bank, may play the leading role in conservation and reforestation efforts through their financial assistance programmes. The media, as a global information network, has become a powerful influence on the debate over deforestation. The Third World, bearing an increasingly heavy burden of payments to lending institutions that in 1988 surpassed 50 billion US dollars, will make a strong case that it cannot afford widespread forest conservation.

  18. Forestry and fiber crop production in the higher rainfall areas of tropical Australia

    Energy Technology Data Exchange (ETDEWEB)

    Wood, I.M.; Volck, H.E.; Cameron, D.M.; Thomson, N.J.

    1981-01-01

    An analysis of the nearly 1 million square km of higher rainfall area shows that less than 4% has potential for arable agriculture or commercial forestry. Except for rain forest on the eastern Queensland coast (now largely protected), native forest has little potential for timber or pulp. Plantations of Pinus caribaea var. hondurensis offer the best potential for forest production in Queensland and Northern Territory. The most promising agricultural fiber crops for paper pulp are bagasse, which could be upgraded by mixing with pine mill wastes, and kenaf (Hibiscus cannabinus). The freight costs involved in a forestry and fiber project in northern Australia are analyzed and the possibility of some local processing is considered. (Refs. 33).

  19. Error threshold inference from Global Precipitation Measurement (GPM) satellite rainfall data and interpolated ground-based rainfall measurements in Metro Manila

    Science.gov (United States)

    Ampil, L. J. Y.; Yao, J. G.; Lagrosas, N.; Lorenzo, G. R. H.; Simpas, J.

    2017-12-01

    The Global Precipitation Measurement (GPM) mission is a group of satellites that provides global observations of precipitation. Satellite-based observations act as an alternative if ground-based measurements are inadequate or unavailable. Data provided by satellites however must be validated for this data to be reliable and used effectively. In this study, the Integrated Multisatellite Retrievals for GPM (IMERG) Final Run v3 half-hourly product is validated by comparing against interpolated ground measurements derived from sixteen ground stations in Metro Manila. The area considered in this study is the region 14.4° - 14.8° latitude and 120.9° - 121.2° longitude, subdivided into twelve 0.1° x 0.1° grid squares. Satellite data from June 1 - August 31, 2014 with the data aggregated to 1-day temporal resolution are used in this study. The satellite data is directly compared to measurements from individual ground stations to determine the effect of the interpolation by contrast against the comparison of satellite data and interpolated measurements. The comparisons are calculated by taking a fractional root-mean-square error (F-RMSE) between two datasets. The results show that interpolation improves errors compared to using raw station data except during days with very small amounts of rainfall. F-RMSE reaches extreme values of up to 654 without a rainfall threshold. A rainfall threshold is inferred to remove extreme error values and make the distribution of F-RMSE more consistent. Results show that the rainfall threshold varies slightly per month. The threshold for June is inferred to be 0.5 mm, reducing the maximum F-RMSE to 9.78, while the threshold for July and August is inferred to be 0.1 mm, reducing the maximum F-RMSE to 4.8 and 10.7, respectively. The maximum F-RMSE is reduced further as the threshold is increased. Maximum F-RMSE is reduced to 3.06 when a rainfall threshold of 10 mm is applied over the entire duration of JJA. These results indicate that

  20. Perfluoroalkylated substances in the global tropical and subtropical surface oceans.

    Science.gov (United States)

    González-Gaya, Belén; Dachs, Jordi; Roscales, Jose L; Caballero, Gemma; Jiménez, Begoña

    2014-11-18

    In this study, perfluoroalkylated substances (PFASs) were analyzed in 92 surface seawater samples taken during the Malaspina 2010 expedition which covered all the tropical and subtropical Atlantic, Pacific and Indian oceans. Nine ionic PFASs including C6-C10 perfluoroalkyl carboxylic acids (PFCAs), C4 and C6-C8 perfluoroalkyl sulfonic acids (PFSAs) and two neutral precursors perfluoroalkyl sulfonamides (PFASAs), were identified and quantified. The Atlantic Ocean presented the broader range in concentrations of total PFASs (131-10900 pg/L, median 645 pg/L, n = 45) compared to the other oceanic basins, probably due to a better spatial coverage. Total concentrations in the Pacific ranged from 344 to 2500 pg/L (median = 527 pg/L, n = 27) and in the Indian Ocean from 176 to 1976 pg/L (median = 329, n = 18). Perfluorooctanesulfonic acid (PFOS) was the most abundant compound, accounting for 33% of the total PFASs globally, followed by perfluorodecanoic acid (PFDA, 22%) and perfluorohexanoic acid (PFHxA, 12%), being the rest of the individual congeners under 10% of total PFASs, even for perfluorooctane carboxylic acid (PFOA, 6%). PFASAs accounted for less than 1% of the total PFASs concentration. This study reports the ubiquitous occurrence of PFCAs, PFSAs, and PFASAs in the global ocean, being the first attempt, to our knowledge, to show a comprehensive assessment in surface water samples collected in a single oceanic expedition covering tropical and subtropical oceans. The potential factors affecting their distribution patterns were assessed including the distance to coastal regions, oceanic subtropical gyres, currents and biogeochemical processes. Field evidence of biogeochemical controls on the occurrence of PFASs was tentatively assessed considering environmental variables (solar radiation, temperature, chlorophyll a concentrations among others), and these showed significant correlations with some PFASs, but explaining small to moderate percentages of variability

  1. Roles of tropical SST patterns during two types of ENSO in modulating wintertime rainfall over southern China

    Science.gov (United States)

    Xu, Kang; Huang, Qing-Lan; Tam, Chi-Yung; Wang, Weiqiang; Chen, Sheng; Zhu, Congwen

    2018-03-01

    The impacts of the eastern-Pacific (EP) and central-Pacific (CP) El Niño-Southern Oscillation (ENSO) on the southern China wintertime rainfall (SCWR) have been investigated. Results show that wintertime rainfall over most stations in southern China is enhanced (suppressed) during the EP (CP) El Niño, which are attributed to different atmospheric responses in the western North Pacific (WNP) and South China Sea (SCS) during two types of ENSO. When EP El Niño occurs, an anomalous low-level anticyclone is present over WNP/the Philippines region, resulting in stronger-than-normal southwesterlies over SCS. Such a wind branch acts to suppress East Asian winter monsoon (EAWM) and enhance moisture supply, implying surplus SCWR. During CP El Niño, however, anomalous sinking and low-level anticyclonic flow are found to cover a broad region in SCS. These circulation features are associated with moisture divergence over the northern part of SCS and suppressed SCWR. General circulation model experiments have also been conducted to study influence of various tropical sea surface temperature (SST) patterns on the EAWM atmospheric circulation. For EP El Niño, formation of anomalous low-level WNP anticyclone is jointly attributed to positive/negative SST anomalies (SSTA) over the central-to-eastern/ western equatorial Pacific. However, both positive and negative CP Niño-related-SSTA, located respectively over the central Pacific and WNP/SCS, offset each other and contribute a weak but broad-scale anticyclone centered at SCS. These results suggest that, besides the vital role of SST warming, SST cooling over SCS/WNP during two types of El Niño should be considered carefully for understanding the El Niño-EAWM relationship.

  2. Mechanism of ENSO influence on the South Asian monsoon rainfall in global model simulations

    Science.gov (United States)

    Joshi, Sneh; Kar, Sarat C.

    2018-02-01

    Coupled ocean atmosphere global climate models are increasingly being used for seasonal scale simulation of the South Asian monsoon. In these models, sea surface temperatures (SSTs) evolve as coupled air-sea interaction process. However, sensitivity experiments with various SST forcing can only be done in an atmosphere-only model. In this study, the Global Forecast System (GFS) model at T126 horizontal resolution has been used to examine the mechanism of El Niño-Southern Oscillation (ENSO) forcing on the monsoon circulation and rainfall. The model has been integrated (ensemble) with observed, climatological and ENSO SST forcing to document the mechanism on how the South Asian monsoon responds to basin-wide SST variations in the Indian and Pacific Oceans. The model simulations indicate that the internal variability gets modulated by the SSTs with warming in the Pacific enhancing the ensemble spread over the monsoon region as compared to cooling conditions. Anomalous easterly wind anomalies cover the Indian region both at 850 and 200 hPa levels during El Niño years. The locations and intensity of Walker and Hadley circulations are altered due to ENSO SST forcing. These lead to reduction of monsoon rainfall over most parts of India during El Niño events compared to La Niña conditions. However, internally generated variability is a major source of uncertainty in the model-simulated climate.

  3. Scaling future tropical cyclone damage with global mean temperature

    Science.gov (United States)

    Geiger, T.; Bresch, D.; Frieler, K.

    2017-12-01

    Tropical cyclones (TC) are one of the most damaging natural hazards and severely affectmany countries around the globe each year. Their nominal impact is projected to increasesubstantially as the exposed coastal population grows, per capita income increases, andanthropogenic climate change manifests. The magnitude of this increase, however, variesacross regions and is obscured by the stochastic behaviour of TCs, so far impeding arigorous quantification of trends in TC damage with global mean temperature (GMT) rise. Here, we build on the large sample of spatially explicit TCs simulations generated withinISIMIP(2b) for 1) pre-industrial conditions, 2) the historical period, and 3) future projectionsunder RCP2.6 and RCP6.0 to estimate future TC damage assuming fixed present-daysocio-economic conditions or SSP-based future projections of population patterns andincome. Damage estimates will be based on region-specific empirical damage modelsderived from reported damages and accounting for regional characteristics of vulnerability.Different combinations of 1) socio-economic drivers with pre-industrial climate or 2) changingclimate with fixed socio-economic conditions will be used to derive functional relationshipsbetween regionally aggregated changes in damages on one hand and global meantemperature and socio-economic predictors on the other hand. The obtained region-specific scaling of future TC damage with GMT provides valuable inputfor IPCC's special report on the impacts of global warming of 1.5°C by quantifying theincremental changes in impact with global warming. The approach allows for an update ofdamage functions used in integrated assessment models, and contributes to assessing theadequateness of climate mitigation and adaptation strategies.

  4. Petascale Diagnostic Assessment of the Global Portfolio Rainfall Space Missions' Ability to Support Flood Forecasting

    Science.gov (United States)

    Reed, P. M.; Chaney, N.; Herman, J. D.; Wood, E. F.; Ferringer, M. P.

    2015-12-01

    This research represents a multi-institutional collaboration between Cornell University, The Aerospace Corporation, and Princeton University that has completed a Petascale diagnostic assessment of the current 10 satellite missions providing rainfall observations. Our diagnostic assessment has required four core tasks: (1) formally linking high-resolution astrodynamics design and coordination of space assets with their global hydrological impacts within a Petascale "many-objective" global optimization framework, (2) developing a baseline diagnostic evaluation of a 1-degree resolution global implementation of the Variable Infiltration Capacity (VIC) model to establish the required satellite observation frequencies and coverage to maintain acceptable global flood forecasts, (3) evaluating the limitations and vulnerabilities of the full suite of current satellite precipitation missions including the recently approved Global Precipitation Measurement (GPM) mission, and (4) conceptualizing the next generation spaced-based platforms for water cycle observation. Our team exploited over 100 Million hours of computing access on the 700,000+ core Blue Waters machine to radically advance our ability to discover and visualize key system tradeoffs and sensitivities. This project represents to our knowledge the first attempt to develop a 10,000 member Monte Carlo global hydrologic simulation at one degree resolution that characterizes the uncertain effects of changing the available frequencies of satellite precipitation on drought and flood forecasts. The simulation—optimization components of the work have set a theoretical baseline for the best possible frequencies and coverages for global precipitation given unlimited investment, broad international coordination in reconfiguring existing assets, and new satellite constellation design objectives informed directly by key global hydrologic forecasting requirements. Our research poses a step towards realizing the integrated

  5. Potential impacts of global warming on Australia's unique tropical biodiversity and implications for tropical biodiversity in general

    International Nuclear Information System (INIS)

    Hilbert, David W

    2007-01-01

    Full text: Full text: Globally, forest clearing is often thought to be the greatest threat to biodiversity in the tropics, and rates of clearing are certainly highest there, particularly in tropical South-East Asia. Climate change in the tropics has been less studied in tropical regions than in temperate, boreal or arctic ecosystems. However, modelling studies in Australian rainforests indicate that climate change may be a particularly significant threat to the long-term preservation of the biodiversity of tropical, rainforest biodiversity. Our research has shown that global warming can have a particularly strong impact on the biodiversity of mountainous tropical regions, including the Wet Tropics of north-east Queensland. Here, the mountain tops and higher tablelands are relatively cool islands in a sea of warmer climates. These species-rich islands, mostly limited in their biodiversity by warm interglacial periods, are separated from each other by the warmer valleys and form a scattered archipelago of habitat for organisms that are unable to survive and reproduce in warmer climates. Many of the endemic Australian Wet Tropics species live only in these cooler regions. Similar situations occur throughout south-east Asia and in the highlands of the Neotropics. Unfortunately, these upland and highland areas represent the majority of biodiversity conservation areas because they are less suitable for clearing for agriculture. This presentation will summarise research about the potential impacts of climate change on the biodiversity in Australia's rainforests, the potential implications for tropical biodiversity in general and discuss the limitations of these projections and the need for further research that could reduce uncertainties and inform effective adaptation strategies

  6. Simulation skill of APCC set of global climate models for Asian summer monsoon rainfall variability

    Science.gov (United States)

    Singh, U. K.; Singh, G. P.; Singh, Vikas

    2015-04-01

    The performance of 11 Asia-Pacific Economic Cooperation Climate Center (APCC) global climate models (coupled and uncoupled both) in simulating the seasonal summer (June-August) monsoon rainfall variability over Asia (especially over India and East Asia) has been evaluated in detail using hind-cast data (3 months advance) generated from APCC which provides the regional climate information product services based on multi-model ensemble dynamical seasonal prediction systems. The skill of each global climate model over Asia was tested separately in detail for the period of 21 years (1983-2003), and simulated Asian summer monsoon rainfall (ASMR) has been verified using various statistical measures for Indian and East Asian land masses separately. The analysis found a large variation in spatial ASMR simulated with uncoupled model compared to coupled models (like Predictive Ocean Atmosphere Model for Australia, National Centers for Environmental Prediction and Japan Meteorological Agency). The simulated ASMR in coupled model was closer to Climate Prediction Centre Merged Analysis of Precipitation (CMAP) compared to uncoupled models although the amount of ASMR was underestimated in both models. Analysis also found a high spread in simulated ASMR among the ensemble members (suggesting that the model's performance is highly dependent on its initial conditions). The correlation analysis between sea surface temperature (SST) and ASMR shows that that the coupled models are strongly associated with ASMR compared to the uncoupled models (suggesting that air-sea interaction is well cared in coupled models). The analysis of rainfall using various statistical measures suggests that the multi-model ensemble (MME) performed better compared to individual model and also separate study indicate that Indian and East Asian land masses are more useful compared to Asia monsoon rainfall as a whole. The results of various statistical measures like skill of multi-model ensemble, large spread

  7. Throughfall and temporal trends of rainfall redistribution in an open tropical rainforest, south-western Amazonia (Rondônia, Brazil

    Directory of Open Access Journals (Sweden)

    S. Germer

    2006-01-01

    Full Text Available Throughfall volumes and incident rainfall were measured between 23 August and 2 December 2004 as well as from 6 January to 15 April 2005 for individual rain events of differing intensities and magnitudes in an open tropical rainforest in Rondônia, Brazil. Temporal patterns of throughfall spatial variability were examined. Estimated interception was compared to modeled interception obtained by applying the revised Gash model in order to identify sources of throughfall variability in open tropical rainforests. Gross precipitation of 97 events amounted to 1309 mm, 89±5.6% (S.E. of which reached the forest floor as throughfall. The redistribution of water within the canopy was highly variable in time, which we attribute to the high density of babassu palms (Orbignya phalerata, their seasonal leaf growth, and their conducive morphology. We identified a 10-min rainfall intensity threshold of 30 mmh-1 above which interception was highly variable. This variability is amplified by funneling and shading effects of palms. This interaction between a rainfall variable and vegetation characteristics is relevant for understanding the hydrology of all tropical rainforests with a high palm density.

  8. Process-Oriented Diagnostics of Tropical Cyclones in Global Climate Models

    Science.gov (United States)

    Moon, Y.; Kim, D.; Camargo, S. J.; Wing, A. A.; Sobel, A. H.; Bosilovich, M. G.; Murakami, H.; Reed, K. A.; Vecchi, G. A.; Wehner, M. F.; Zarzycki, C. M.; Zhao, M.

    2017-12-01

    Simulating tropical cyclone (TC) activity with global climate models (GCMs) remains a challenging problem. While some GCMs are able to simulate TC activity that is in good agreement with the observations, many other models exhibit strong biases. Decreasing horizontal grid spacing of the GCM simulations tends to improve the characteristics of simulated TCs, but this enhancement alone does not necessarily lead to greater skill in simulating TC activity. This study uses process-based diagnostics to identify model characteristics that could explain why some GCM simulations are able to produce more realistic TC activity than others. The diagnostics examine how convection, moisture, clouds and related processes are coupled at individual grid points, which yields useful information into how convective parameterizations interact with resolved model dynamics. These diagnostics share similarities with those originally developed to examine the Madden-Julian Oscillations in climate models. This study will examine TCs in eight different GCM simulations performed at NOAA/GFDL, NCAR and NASA that have different horizontal resolutions and ocean coupling. Preliminary results suggest that stronger TCs are closely associated with greater rainfall - thus greater diabatic heating - in the inner-core regions of the storms, which is consistent with previous theoretical studies. Other storm characteristics that can be used to infer why GCM simulations with comparable horizontal grid spacings produce different TC activity will be examined.

  9. AIRS Impact on Analysis and Forecast of an Extreme Rainfall Event (Indus River Valley 2010) with a Global Data Assimilation and Forecast System

    Science.gov (United States)

    Reale, O.; Lau, W. K.; Susskind, J.; Rosenberg, R.

    2011-01-01

    A set of data assimilation and forecast experiments are performed with the NASA Global data assimilation and forecast system GEOS-5, to compare the impact of different approaches towards assimilation of Advanced Infrared Spectrometer (AIRS) data on the precipitation analysis and forecast skill. The event chosen is an extreme rainfall episode which occurred in late July 11 2010 in Pakistan, causing massive floods along the Indus River Valley. Results show that the assimilation of quality-controlled AIRS temperature retrievals obtained under partly cloudy conditions produce better precipitation analyses, and substantially better 7-day forecasts, than assimilation of clear-sky radiances. The improvement of precipitation forecast skill up to 7 day is very significant in the tropics, and is caused by an improved representation, attributed to cloudy retrieval assimilation, of two contributing mechanisms: the low-level moisture advection, and the concentration of moisture over the area in the days preceding the precipitation peak.

  10. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle

    Science.gov (United States)

    Brinck, Katharina; Fischer, Rico; Groeneveld, Jürgen; Lehmann, Sebastian; Dantas de Paula, Mateus; Pütz, Sandro; Sexton, Joseph O.; Song, Danxia; Huth, Andreas

    2017-03-01

    Deforestation in the tropics is not only responsible for direct carbon emissions but also extends the forest edge wherein trees suffer increased mortality. Here we combine high-resolution (30 m) satellite maps of forest cover with estimates of the edge effect and show that 19% of the remaining area of tropical forests lies within 100 m of a forest edge. The tropics house around 50 million forest fragments and the length of the world's tropical forest edges sums to nearly 50 million km. Edge effects in tropical forests have caused an additional 10.3 Gt (2.1-14.4 Gt) of carbon emissions, which translates into 0.34 Gt per year and represents 31% of the currently estimated annual carbon releases due to tropical deforestation. Fragmentation substantially augments carbon emissions from tropical forests and must be taken into account when analysing the role of vegetation in the global carbon cycle.

  11. A stochastic assessment of the effect of global warming on rainfall ...

    African Journals Online (AJOL)

    Crop production depends on rainfall, and rainfall is affected by extreme weather conditions. Markov chain and time series model are adapted for the study of the pattern of rainfall in the North Central Region of Nigeria. Results reveal the long run distributions of the dry and wet days to be 0.7841, and 0.2159 respectively.

  12. First-year evaluation of GPM rainfall over the Netherlands

    NARCIS (Netherlands)

    Rios Gaona, M.F.; Overeem, A.; Leijnse, H.; Uijlenhoet, R.

    2016-01-01

    The Global Precipitation Measurement (GPM) mission is the successor to the Tropical Rainfall Measuring Mission (TRMM), which orbited Earth for ~17 years. With Core Observatory launched on 27 February 2014, GPM offers global precipitation estimates between 60°N and 60°S at 0.1° × 0.1° resolution

  13. Detecting the hydrological impacts of forest cover change in tropical mountain areas: need for detrending time series of rainfall and streamflow data.

    Science.gov (United States)

    Molina, A.; Vanacker, V.; Brisson, E.; Balthazar, V.

    2012-04-01

    Interactions between human activities and the physical environment have increasingly transformed the hydrological functioning of Andean ecosystems. In these human-modified landscapes, land use/-cover change may have a profound effect on riverine water and sediment fluxes. The hydrological impacts of land use/-cover change are diverse, as changes in vegetation affect the various components of the hydrological cycle including evapotranspiration, infiltration and surface runoff. Quantitative data for tropical mountain regions are scarce, as few long time series on rainfall, water discharge and land use are available. Furthermore, time series of rainfall and streamflow data in tropical mountains are often highly influenced by large inter- and intra-annual variability. In this paper, we analyse the hydrological response to complex forest cover change for a catchment of 280 km2 located in the Ecuadorian Andes. Forest cover change in the Pangor catchment was reconstructed based on airphotos (1963, 1977), LANDSAT TM (1991) and ETM+ data (2001, 2009). From 1963, natural vegetation was converted to agricultural land and pine plantations: forests decreased by a factor 2, and paramo decreased by 20 km2 between 1963 and 2009. For this catchment, there exists an exceptionally long record of rainfall and streamflow data that dates back from the '70s till now, but large variability in hydrometeorological data exists that is partly related to ENSO events. Given the nonstationary and nonlinear character of the ENSO-related changes in rainfall, we used the Hilbert-Huang transformation to detrend the time series of the river flow data from inter- and intra-annual fluctuations in rainfall. After applying adaptive data analysis based on empirical model decomposition techniques, it becomes apparent that the long-term trend in streamflow is different from the long-term trend in rainfall data. While the streamflow data show a long-term decrease in monthly flow, the rainfall data have a

  14. Evaluation of rainfall structure on hydrograph simulation: Comparison of radar and interpolated methods, a study case in a tropical catchment

    Science.gov (United States)

    Velasquez, N.; Ochoa, A.; Castillo, S.; Hoyos Ortiz, C. D.

    2017-12-01

    The skill of river discharge simulation using hydrological models strongly depends on the quality and spatio-temporal representativeness of precipitation during storm events. All precipitation measurement strategies have their own strengths and weaknesses that translate into discharge simulation uncertainties. Distributed hydrological models are based on evolving rainfall fields in the same time scale as the hydrological simulation. In general, rainfall measurements from a dense and well maintained rain gauge network provide a very good estimation of the total volume for each rainfall event, however, the spatial structure relies on interpolation strategies introducing considerable uncertainty in the simulation process. On the other hand, rainfall retrievals from radar reflectivity achieve a better spatial structure representation but with higher uncertainty in the surface precipitation intensity and volume depending on the vertical rainfall characteristics and radar scan strategy. To assess the impact of both rainfall measurement methodologies on hydrological simulations, and in particular the effects of the rainfall spatio-temporal variability, a numerical modeling experiment is proposed including the use of a novel QPE (Quantitative Precipitation Estimation) method based on disdrometer data in order to estimate surface rainfall from radar reflectivity. The experiment is based on the simulation of 84 storms, the hydrological simulations are carried out using radar QPE and two different interpolation methods (IDW and TIN), and the assessment of simulated peak flow. Results show significant rainfall differences between radar QPE and the interpolated fields, evidencing a poor representation of storms in the interpolated fields, which tend to miss the precise location of the intense precipitation cores, and to artificially generate rainfall in some areas of the catchment. Regarding streamflow modelling, the potential improvement achieved by using radar QPE depends on

  15. Effects of Rainfall Intensity and Slope Angle on Splash Erosion in ...

    African Journals Online (AJOL)

    Soil erosion is a critical global environmental problem, especially in the developing countries including Nigeria. In the humid and sub-humid tropics, splash erosion resulting from intense rainfall and slope degree pose severe land degradation problems. The objective of this study is to assess the effects of some rainfall ...

  16. Variations in tropical convection as an amplifier of global climate change at the millennial scale

    NARCIS (Netherlands)

    Ivanochkoa, T.S.; Ganeshram, R.S.; Brummer, G.J.A.; Ganssen, G.M.; Jung, S.J.A.; Moreton, S.G.; Kroon, D.

    2005-01-01

    The global expression of millennial-scale climatic change during the glacial period and the persistence of this signal in Holocene records point to atmospheric teleconnections as the mechanism propagating rapid climate variations. We suggest rearrangements in the tropical convection system globally

  17. Synchrony, compensatory dynamics, and the functional trait basis of phenological diversity in a tropical dry forest tree community: effects of rainfall seasonality

    Science.gov (United States)

    Lasky, Jesse R.; Uriarte, María; Muscarella, Robert

    2016-11-01

    Interspecific variation in phenology is a key axis of functional diversity, potentially mediating how communities respond to climate change. The diverse drivers of phenology act across multiple temporal scales. For example, abiotic constraints favor synchronous reproduction (positive covariance among species), while biotic interactions can favor synchrony or compensatory dynamics (negative covariance). We used wavelet analyses to examine phenology of community flower and seed production for 45 tree species across multiple temporal scales in a tropical dry forest in Puerto Rico with marked rainfall seasonality. We asked three questions: (1) do species exhibit synchronous or compensatory temporal dynamics in reproduction, (2) do interspecific differences in phenology reflect variable responses to rainfall, and (3) is interspecific variation in phenology and response to a major drought associated with functional traits that mediate responses to moisture? Community-level flowering was synchronized at seasonal scales (˜5-6 mo) and at short scales (˜1 mo, following rainfall). However, seed rain exhibited significant compensatory dynamics at intraseasonal scales (˜3 mo), suggesting interspecific variation in temporal niches. Species with large leaves (associated with sensitivity to water deficit) peaked in reproduction synchronously with the peak of seasonal rainfall (˜5 mo scale). By contrast, species with high wood specific gravity (associated with drought resistance) tended to flower in drier periods. Flowering of tall species and those with large leaves was most tightly linked to intraseasonal (˜2 mo scale) rainfall fluctuations. Although the 2015 drought dramatically reduced community-wide reproduction, functional traits were not associated with the magnitude of species-specific declines. Our results suggest opposing drivers of synchronous versus compensatory dynamics at different temporal scales. Phenology associations with functional traits indicated that

  18. Frequency of Tropical Ocean Deep Convection and Global Warming

    Science.gov (United States)

    Aumann, H. H.; Behrangi, A.; Ruzmaikin, A.

    2017-12-01

    The average of 36 CMIP5 models predicts about 3K of warming and a 4.7% increase in precipitation for the tropical oceans with a doubling of the CO2 by the end of this century. For this scenario we evaluate the increase in the frequency of Deep Convective Clouds (DCC) in the tropical oceans. We select only DCC which reach or penetrate the tropopause in the 15 km AIRS footprint. The evaluation is based on Probability Distribution Functions (PDFs) of the current temperatures of the tropical oceans, those predicted by the mean of the CMIP5 models and the PDF of the DCC process. The PDF of the DCC process is derived from the Atmospheric Infrared Sounder (AIRS) between the years 2003 and 2016. During this time the variability due Enso years provided a 1 K p-p change in the mean tropical SST. The key parameter is the SST associated with the onset of the DCC process. This parameter shifts only 0.5 K for each K of warming of the oceans. As a result the frequency of DCC is expected to increases by the end of this century by about 50% above the current frequency.

  19. Experimental and model analysis of evapotranspiration and percolation losses in present and future rainfall scenarios in seasonally dry tropics

    Science.gov (United States)

    Lima, J. D.; Gondim, P. S.; Silva, R. A.; Gomes, C. A.; Souza, E. S.; Vico, G.; Soares, W. A.; Feng, X.; Montenegro, S. M.; Antonino, A. C.; Porporato, A.

    2013-12-01

    Evapotranspiration losses with their link to the surface energy balance are a major determinant of the ecohydrological conditions of vegetation, especially in semi-arid ecosystems and crops. Grassland ecosystems account for approximately 32% of global natural vegetation, and cover 170 million ha in Brazil, with 2.5 million ha in the Pernambuco State of the semiarid-NE Brazil. The water balance (WB) and Bowen ratio - energy balance (EB) methods were used in conjunction to lysimeters and eddy covariance methods to come up with reliable estimates for water fluxes in the conditions of extreme seasonal and interannual variability of NE Brazil. The SiSPAT (Simple Soil-Plant-Atmosphere Transfer Model) model was also used to help quantify the seasonal and diurnal variations in energy and water vapour exchanges over grasslands. The ET estimates were obtained with WB and EB methods during the wet and dry season in a grassland in NE Brazil, using a rain gauge, a pyranometer, a net radiometer and sensors for measuring air temperature and relative humidity at two levels, as well as automated sensors for measuring soil water content at depths of 0.10, 0.20, 0.30 and 0.40 m. During the dry period, the low stored soil water limited the grass production and LAI, and as a consequence most of the net radiation (62%) was consumed in sensible heat flux (H) compared to during the wet period (52%). In both seasons, the water flow in the lower limit of soil (z = 0.30 m) occurred only in the downward direction, losing 23.68 mm by drainage in wet period and only 0.19 mm in dry period. The best results for evapotranspiration were obtained with the EB method and the SiSPAT model. These results were then used to estimate the hydrologic partitioning in future climatic conditions where seasonal and interannual rainfall variability is predicted to increase.

  20. An engine for global plant diversity: Highest evolutionary turnover and emigration in the American tropics

    Directory of Open Access Journals (Sweden)

    Alexandre eAntonelli

    2015-04-01

    Full Text Available Understanding the processes that have generated the latitudinal biodiversity gradient and the continental differences in tropical biodiversity remains a major goal of evolutionary biology. Here we estimate the timing and direction of range shifts of extant flowering plants (angiosperms between tropical and non-tropical zones, and into and out of the major tropical regions of the world. We then calculate rates of speciation and extinction taking into account incomplete taxonomic sampling. We use a recently published fossil calibrated phylogeny and apply novel bioinformatic tools to code species into user-defined polygons. We reconstruct biogeographic history using stochastic character mapping to compute relative numbers of range shifts in proportion to the number of available lineages through time. Our results, based on the analysis of c. 22,600 species and c. 20 million geo-referenced occurrence records, show no significant differences between the speciation and extinction of tropical and non-tropical angiosperms. This suggests that at least in plants, the tropical biodiversity gradient primarily derives from other factors than differential rates of diversification. In contrast, the outstanding species richness found today in the American tropics (the Neotropics, as compared to tropical Africa and tropical Asia, is associated with significantly higher speciation and extinction rates. This suggests an exceedingly rapid evolutionary turnover, i.e. Neotropical species being formed and replaced by one another at unparalleled rates. In addition, tropical America stands out from other continents by having ‘pumped out’ more species than it received through most of the last 66 million years. These results imply that the Neotropics have acted as an engine for global plant diversity.

  1. [Globalization, inequality, and transmission of tropical diseases in the Venezuelan Amazon].

    Science.gov (United States)

    Botto-Abella, Carlos; Graterol-Mendoza, Beatriz

    2007-01-01

    Economic globalization appears to be causing greater inequalities and increased vulnerability to tropical diseases around the world. The Venezuelan Amazon population, especially the rural indigenous population, displays among the worst health indicators in the Americas. High infant mortality rates in remote indigenous populations indicate that such communities have been affected by the globalization of disease, rather than favored by globalization of health. Globalization has also influenced public policies in the country, affecting the efficiency of control programs targeting tropical diseases. A new global pact for the sustainable development of the planet is needed, supported by the globalization of human values and rights. In Venezuela, new policies for the indigenous health sector, more resources, and greater autonomy could help reduce the inequities described here in the Venezuelan Amazon.

  2. Changes in hydro-meteorological conditions over tropical West Africa (1980-2015) and links to global climate

    Science.gov (United States)

    Ndehedehe, Christopher E.; Awange, Joseph L.; Agutu, Nathan O.; Okwuashi, Onuwa

    2018-03-01

    The role of global sea surface temperature (SST) anomalies in modulating rainfall in the African region has been widely studied and is now less debated. However, their impacts and links to terrestrial water storage (TWS) in general, have not been studied. This study presents the pioneer results of canonical correlation analysis (CCA) of TWS derived from both global reanalysis data (1980-2015) and GRACE (Gravity Recovery and Climate Experiment) (2002-2014) with SST fields. The main issues discussed include, (i) oceanic hot spots that impact on TWS over tropical West Africa (TWA) based on CCA, (ii) long term changes in model and global reanalysis data (soil moisture, TWS, and groundwater) and the influence of climate variability on these hydrological indicators, and (iii) the hydrological characteristics of the Equatorial region of Africa (i.e., the Congo basin) based on GRACE-derived TWS, river discharge, and precipitation. Results of the CCA diagnostics show that El-Niño Southern Oscillation related equatorial Pacific SST fluctuations is a major index of climate variability identified in the main portion of the CCA procedure that indicates a significant association with long term TWS reanalysis data over TWA (r = 0.50, ρ < 0.05). Based on Mann-Kendall's statistics, the study found fairly large long term declines (ρ < 0.05) in TWS and soil moisture (1982 - 2015), mostly over the Congo basin, which coincided with warming of the land surface and the surrounding oceans. Meanwhile, some parts of the Sahel show significant wetting (rainfall, soil moisture, groundwater, and TWS) trends during the same period (1982-2015) and aligns with the ongoing narratives of rainfall recovery in the region. Results of singular spectral analysis and regression confirm that multi-annual changes in the Congo River discharge explained a considerable proportion of variability in GRACE-hydrological signal over the Congo basin (r = 0.86 and R2 = 0.70, ρ < 0.05). Finally, leading

  3. Long term changes in flooding and heavy rainfall associated with North Atlantic tropical cyclones: Roles of the North Atlantic Oscillation and El Niño-Southern Oscillation

    Science.gov (United States)

    Aryal, Yog N.; Villarini, Gabriele; Zhang, Wei; Vecchi, Gabriel A.

    2018-04-01

    The aim of this study is to examine the contribution of North Atlantic tropical cyclones (TCs) to flooding and heavy rainfall across the continental United States. Analyses highlight the spatial variability in these hazards, their temporal changes in terms of frequency and magnitude, and their connection to large-scale climate, in particular to the North Atlantic Oscillation (NAO) and El Niño-Southern Oscillation (ENSO). We use long-term stream and rain gage measurements, and our analyses are based on annual maxima (AMs) and peaks-over-threshold (POTs). TCs contribute to ∼20-30% of AMs and POTs over Florida and coastal areas of the eastern United States, and the contribution decreases as we move inland. We do not detect statistically significant trends in the magnitude or frequency of TC floods. Regarding the role of climate, NAO and ENSO do not play a large role in controlling the frequency and magnitude of TC flooding. The connection between heavy rainfall and TCs is comparable to what observed in terms of flooding. Unlike flooding, NAO plays a significant role in TC-related extreme rainfall along the U.S. East Coast, while ENSO is most strongly linked to the TC precipitation in Texas.

  4. Diagnostics of Rainfall Anomalies in the Nordeste During the Global Weather Experiment

    Science.gov (United States)

    Sikdar, D. M.

    1984-01-01

    The relationship of the daily variability of large-scale pressure, cloudiness and upper level wind patterns over the Brazil-Atlantic sector during March/April 1979 to rainfall anomalies in northern Nordeste was investigated. The experiment divides the rainy season (March/April) of 1979 into wet and dry days, then composites bright cloudiness, sea level pressure, and upper level wind fields with respect to persistent rainfall episodes. Wet and dry anomalies are analyzed along with seasonal mean conditions.

  5. The influence of tropical wind data on the analysis and forecasts of the GLAS GCM for the Global Weather Experiment

    Science.gov (United States)

    Paegle, J.; Baker, W. E.

    1985-01-01

    Several densities of tropical divergent wind data were included in a fourth-order GCM to examine the effects on the accuracy of the model predictions. The experiments covered assimilation of all available tropical wind data, no tropical wind data between 20 deg N and 20 deg S, only westerly tropical wind data and only easterly tropical wind data. The predictions were all made for the 200 mb upper troposphere. Elimination of tropical data produced excessively strong upper tropospheric westerlies which in turn amplified the globally integrated rotational flow kinetic energy by around 10 percent and doubled the global divergent flow kinetic energy. Retaining only easterly wind data, ameliorated most of the error. Inclusion of all the tropical wind data however, did not lead to overall positive effects, as the data were linked to tropical wave energetics and ageostrophic winds which were already assimilated in the model.

  6. Controls on the meridional extent of tropical precipitation and its contraction under global warming

    Science.gov (United States)

    Donohoe, A.

    2017-12-01

    A method for decomposing changes and variability in the spatial structure of tropical precipitation into shifting (meridional translation), contracting, and intensifying modes of variability is introduced. We demonstrate that the shifting mode of tropical precipitation explains very little (20%) more of the tropical precipitation changes and variability. Furthermore, the contraction of tropical precipitation is highly correlated (R2 > 0.95) with an intensification of the precipitation in both the observations and forced modeled simulations. These results suggest that the simultaneous contraction and intensification of tropical precipitation is the dominant mode of variability and changes under external forcing. We speculate that tropical surface temperature controls this concurrent variability. Indeed, models robustly predict that tropical precipitation increases and meridionally contracts in response to increased CO2 and is reduced and meridionally expanded under glacial forcing and boundary conditions. In contrast, the directionality of the tropical precipitation shift is both ambiguous and small in magnitude in response to increased CO2. Furthermore, the ratio of the contraction/expansion to intensification/reduction is consistent in the continuum of climate states from the glacial climate to a modern climate to a 4XCO2 climate suggesting that the intensification and contraction are linked together via a single mechanism. We examine two mechanisms responsible for the contraction of the precipitation under global warming : i. the reduction of the seasonal cycle of energy input to the atmosphere due to sea ice retreat that results in the tropical precipitation remaining closer to the equator during the solsticial seasons and; ii. the increased gross moist stability of the tropical atmosphere as the surface warms resulting in a weaker cross-equatorial Hadley circulation during the solsticial seasons.

  7. Reducing Production Basis Risk through Rainfall Intensity Frequency (RIF) Indexes: Global Sensitivity Analysis' Implication on Policy Design

    Science.gov (United States)

    Muneepeerakul, Chitsomanus; Huffaker, Ray; Munoz-Carpena, Rafael

    2016-04-01

    The weather index insurance promises financial resilience to farmers struck by harsh weather conditions with swift compensation at affordable premium thanks to its minimal adverse selection and moral hazard. Despite these advantages, the very nature of indexing causes the presence of "production basis risk" that the selected weather indexes and their thresholds do not correspond to actual damages. To reduce basis risk without additional data collection cost, we propose the use of rain intensity and frequency as indexes as it could offer better protection at the lower premium by avoiding basis risk-strike trade-off inherent in the total rainfall index. We present empirical evidences and modeling results that even under the similar cumulative rainfall and temperature environment, yield can significantly differ especially for drought sensitive crops. We further show that deriving the trigger level and payoff function from regression between historical yield and total rainfall data may pose significant basis risk owing to their non-unique relationship in the insured range of rainfall. Lastly, we discuss the design of index insurance in terms of contract specifications based on the results from global sensitivity analysis.

  8. Monitoring Multitemporal Soil Moisture, Rainfall, and ET in Lake Manatee Watershed, South Florida under Global Changes

    Science.gov (United States)

    Chang, N.

    2009-12-01

    Ni-Bin Chang1, Ammarin Daranpob 1, and Y. Jeffrey Yang2 1Civil, Environmental, and Construction Engineering Department, University of Central Florida, Orlando FL, USA 2Water Supply and Water Resources Division, National Risk Management Research Laboratory, U.S. EPA, Cincinnati, Ohio, USA ASBTRACT: Global climate change and its related impacts on water supply are universally recognized. The Atlantic Multidecadal Oscillation (AMO), which is based on long term changes in the temperature of the surface of the North Atlantic Ocean, is a source of changes in river flow patterns in Florida. The AMO has a multi-decadal frequency. Under its impact, several distinct types of river patterns were identified within Florida, including a Southern River Pattern (SRP), a Northern River Pattern (NRP), a Bimodal River Pattern (BRP), etc. (Kelley and Gore, 2008). Some SRPs are present in the South Florida Water Management District (SFWMD). Changes in river flows occur because significant sea surface temperature (SST) changes affect continental rainfall patterns. It had been observed that, between AMO warm (i.e., from 1939 to 1968) and cold phases (i.e., from 1969 to 1993), the average daily inflow to Lake Okeechobee varies by 40% in the transition from the warm to cold phases in South Florida. The Manatee County is located in the Southern Water Use Caution Area (SWUCA) due to the depletion of the Upper Floridian Aquifer and its entire western portion of the County is designated as part of the Most Impacted Area (MIA) within the Eastern Tampa Bay Water Use Caution Area relative to the SWUCA. Major source of Manatee County’s water is an 332 Km2 (82,000-acre) watershed (i.e., Lake Manatee Watershed) that drains into the man-made Lake Manatee Reservoir. The lake has a total volume of 0.21 billion m3 (7.5 billion gallons) and will cover 7.3 Km2 (1,800 acres) when full. The proper use of remote sensing images and sensor network technologies can provide information on both spatial and

  9. The deep human prehistory of global tropical forests and its relevance for modern conservation.

    Science.gov (United States)

    Roberts, Patrick; Hunt, Chris; Arroyo-Kalin, Manuel; Evans, Damian; Boivin, Nicole

    2017-08-03

    Significant human impacts on tropical forests have been considered the preserve of recent societies, linked to large-scale deforestation, extensive and intensive agriculture, resource mining, livestock grazing and urban settlement. Cumulative archaeological evidence now demonstrates, however, that Homo sapiens has actively manipulated tropical forest ecologies for at least 45,000 years. It is clear that these millennia of impacts need to be taken into account when studying and conserving tropical forest ecosystems today. Nevertheless, archaeology has so far provided only limited practical insight into contemporary human-tropical forest interactions. Here, we review significant archaeological evidence for the impacts of past hunter-gatherers, agriculturalists and urban settlements on global tropical forests. We compare the challenges faced, as well as the solutions adopted, by these groups with those confronting present-day societies, which also rely on tropical forests for a variety of ecosystem services. We emphasize archaeology's importance not only in promoting natural and cultural heritage in tropical forests, but also in taking an active role to inform modern conservation and policy-making.

  10. Sensitivity of Rainfall Extremes Under Warming Climate in Urban India

    Science.gov (United States)

    Ali, H.; Mishra, V.

    2017-12-01

    Extreme rainfall events in urban India halted transportation, damaged infrastructure, and affected human lives. Rainfall extremes are projected to increase under the future climate. We evaluated the relationship (scaling) between rainfall extremes at different temporal resolutions (daily, 3-hourly, and 30 minutes), daily dewpoint temperature (DPT) and daily air temperature at 850 hPa (T850) for 23 urban areas in India. Daily rainfall extremes obtained from Global Surface Summary of Day Data (GSOD) showed positive regression slopes for most of the cities with median of 14%/K for the period of 1979-2013 for DPT and T850, which is higher than Clausius-Clapeyron (C-C) rate ( 7%). Moreover, sub-daily rainfall extremes are more sensitive to both DPT and T850. For instance, 3-hourly rainfall extremes obtained from Tropical Rainfall Measurement Mission (TRMM 3B42 V7) showed regression slopes more than 16%/K aginst DPT and T850 for the period of 1998-2015. Half-hourly rainfall extremes from the Integrated Multi-satellitE Retrievals (IMERGE) of Global precipitation mission (GPM) also showed higher sensitivity against changes in DPT and T850. The super scaling of rainfall extremes against changes in DPT and T850 can be attributed to convective nature of precipitation in India. Our results show that urban India may witness non-stationary rainfall extremes, which, in turn will affect stromwater designs and frequency and magniture of urban flooding.

  11. Magnified Sediment Export of Small Mountainous Rivers in Taiwan: Chain Reactions from Increased Rainfall Intensity under Global Warming.

    Science.gov (United States)

    Lee, Tsung-Yu; Huang, Jr-Chuan; Lee, Jun-Yi; Jien, Shih-Hao; Zehetner, Franz; Kao, Shuh-Ji

    2015-01-01

    Fluvial sediment export from small mountainous rivers in Oceania has global biogeochemical significance affecting the turnover rate and export of terrestrial carbon, which might be speeding up at the recognized conditions of increased rainfall intensity. In this study, the historical runoff and sediment export from 16 major rivers in Taiwan are investigated and separated into an early stage (1970-1989) and a recent stage (1990-2010) to illustrate the changes of both runoff and sediment export. The mean daily sediment export from Taiwan Island in the recent stage significantly increased by >80% with subtle increase in daily runoff, indicating more sediment being delivered to the ocean per unit of runoff in the recent stage. The medians of the runoff depth and sediment yield extremes (99.0-99.9 percentiles) among the 16 rivers increased by 6.5%-37% and 62%-94%, respectively, reflecting the disproportionately magnified response of sediment export to the increased runoff. Taiwan is facing increasing event rainfall intensity which has resulted in chain reactions on magnified runoff and sediment export responses. As the globe is warming, rainfall extremes, which are proved to be temperature-dependent, very likely intensify runoff and trigger more sediment associated hazards. Such impacts might occur globally because significant increases of high-intensity precipitation have been observed not only in Taiwan but over most land areas of the globe.

  12. The potential negative impacts of global climate change on tropical montane cloud forests

    Science.gov (United States)

    Foster, Pru

    2001-10-01

    Nearly every aspect of the cloud forest is affected by regular cloud immersion, from the hydrological cycle to the species of plants and animals within the forest. Since the altitude band of cloud formation on tropical mountains is limited, the tropical montane cloud forest occurs in fragmented strips and has been likened to island archipelagoes. This isolation and uniqueness promotes explosive speciation, exceptionally high endemism, and a great sensitivity to climate. Global climate change threatens all ecosystems through temperature and rainfall changes, with a typical estimate for altitude shifts in the climatic optimum for mountain ecotones of hundreds of meters by the time of CO 2 doubling. This alone suggests complete replacement of many of the narrow altitude range cloud forests by lower altitude ecosystems, as well as the expulsion of peak residing cloud forests into extinction. However, the cloud forest will also be affected by other climate changes, in particular changes in cloud formation. A number of global climate models suggest a reduction in low level cloudiness with the coming climate changes, and one site in particular, Monteverde, Costa Rica, appears to already be experiencing a reduction in cloud immersion. The coming climate changes appear very likely to upset the current dynamic equilibrium of the cloud forest. Results will include biodiversity loss, altitude shifts in species' ranges and subsequent community reshuffling, and possibly forest death. Difficulties for cloud forest species to survive in climate-induced migrations include no remaining location with a suitable climate, no pristine location to colonize, migration rates or establishment rates that cannot keep up with climate change rates and new species interactions. We review previous cloud forest species redistributions in the paleo-record in light of the coming changes. The characteristic epiphytes of the cloud forest play an important role in the light, hydrological and nutrient

  13. Technical Report Series on Global Modeling and Data Assimilation. Volume 12; Comparison of Satellite Global Rainfall Algorithms

    Science.gov (United States)

    Suarez, Max J. (Editor); Chang, Alfred T. C.; Chiu, Long S.

    1997-01-01

    Seventeen months of rainfall data (August 1987-December 1988) from nine satellite rainfall algorithms (Adler, Chang, Kummerow, Prabhakara, Huffman, Spencer, Susskind, and Wu) were analyzed to examine the uncertainty of satellite-derived rainfall estimates. The variability among algorithms, measured as the standard deviation computed from the ensemble of algorithms, shows regions of high algorithm variability tend to coincide with regions of high rain rates. Histograms of pattern correlation (PC) between algorithms suggest a bimodal distribution, with separation at a PC-value of about 0.85. Applying this threshold as a criteria for similarity, our analyses show that algorithms using the same sensor or satellite input tend to be similar, suggesting the dominance of sampling errors in these satellite estimates.

  14. Variability in tropical tropospheric ozone: analysis with GOME observations and a global model

    NARCIS (Netherlands)

    Valks, P.J.M.; Koelemeijer, R.B.A.; Weele, van M.; Velthoven, van P.F.J.; Fortuin, J.P.F.; Kelder, H.M.

    2003-01-01

    Tropical tropospheric ozone columns (TTOCs) have been determined with a convective-cloud-differential (CCD) method, using ozone column and cloud measurements from the Global Ozone Monitoring Experiment (GOME) instrument. GOME cloud top pressures, derived with the Fast Retrieval Scheme for Clouds

  15. Can a sample of Landsat sensor scenes reliably estimate the global extent of tropical deforestation?

    Science.gov (United States)

    R. L. Czaplewski

    2003-01-01

    Tucker and Townshend (2000) conclude that wall-to-wall coverage is needed to avoid gross errors in estimations of deforestation rates' because tropical deforestation is concentrated along roads and rivers. They specifically question the reliability of the 10% sample of Landsat sensor scenes used in the global remote sensing survey conducted by the Food and...

  16. Trait Acclimation Mitigates Mortality Risks of Tropical Canopy Trees under Global Warming

    NARCIS (Netherlands)

    Sterck, Frank; Anten, Niels P.R.; Schieving, Feike; Zuidema, Pieter A.

    2016-01-01

    There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and – the notoriously unknown – physiological trait acclimation of trees. In this opinion article we provided

  17. Where do forests influence rainfall?

    Science.gov (United States)

    Wang-Erlandsson, Lan; van der Ent, Ruud; Fetzer, Ingo; Keys, Patrick; Savenije, Hubert; Gordon, Line

    2017-04-01

    Forests play a major role in hydrology. Not only by immediate control of soil moisture and streamflow, but also by regulating climate through evaporation (i.e., transpiration, interception, and soil evaporation). The process of evaporation travelling through the atmosphere and returning as precipitation on land is known as moisture recycling. Whether evaporation is recycled depends on wind direction and geography. Moisture recycling and forest change studies have primarily focused on either one region (e.g. the Amazon), or one biome type (e.g. tropical humid forests). We will advance this via a systematic global inter-comparison of forest change impacts on precipitation depending on both biome type and geographic location. The rainfall effects are studied for three contemporary forest changes: afforestation, deforestation, and replacement of mature forest by forest plantations. Furthermore, as there are indications in the literature that moisture recycling in some places intensifies during dry years, we will also compare the rainfall impacts of forest change between wet and dry years. We model forest change effects on evaporation using the global hydrological model STEAM and trace precipitation changes using the atmospheric moisture tracking scheme WAM-2layers. This research elucidates the role of geographical location of forest change driven modifications on rainfall as a function of the type of forest change and climatic conditions. These knowledge gains are important at a time of both rapid forest and climate change. Our conclusions nuance our understanding of how forests regulate climate and pinpoint hotspot regions for forest-rainfall coupling.

  18. An analysis of rainfall patterns in Nigeria | Odjugo | Global Journal of ...

    African Journals Online (AJOL)

    The rainfall pattern has also enhanced wind erosion/desertification, soil erosion and coastal flooding in the north, east and coastal areas of Nigeria respectively. With these impacts, the paper therefore recommends some adaptive and mitigation measures that could help to revert the current situation. Keywords: changing ...

  19. Flood modelling with global precipitation measurement (GPM) satellite rainfall data: a case study of Dehradun, Uttarakhand, India

    Science.gov (United States)

    Sai Krishna, V. V.; Dikshit, Anil Kumar; Pandey, Kamal

    2016-05-01

    Urban expansion, water bodies and climate change are inextricably linked with each other. The macro and micro level climate changes are leading to extreme precipitation events which have severe consequences on flooding in urban areas. Flood simulations shall be helpful in demarcation of flooded areas and effective flood planning and preparedness. The temporal availability of satellite rainfall data at varying spatial scale of 0.10 to 0.50 is helpful in near real time flood simulations. The present research aims at analysing stream flow and runoff to monitor flood condition using satellite rainfall data in a hydrologic model. The satellite rainfall data used in the research was NASA's Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG), which is available at 30 minutes temporal resolution. Landsat data was used for mapping the water bodies in the study area. Land use land cover (LULC) data was prepared using Landsat 8 data with maximum likelihood technique that was provided as an input to the HEC-HMS hydrological model. The research was applied to one of the urbanized cities of India, viz. Dehradun, which is the capital of Uttarakhand State. The research helped in identifying the flood vulnerability at the basin level on the basis of the runoff and various socio economic parameters using multi criteria analysis.

  20. FROM RAINFALL DATA

    Directory of Open Access Journals (Sweden)

    Sisuru Sendanayake

    2015-01-01

    Full Text Available There are many correlations developed to predict incident solar radiation at a givenlocation developed based on geographical and meteorological parameters. However, allcorrelations depend on accurate measurement and availability of weather data such assunshine duration, cloud cover, relative humidity, maximum and minimumtemperatures etc, which essentially is a costly exercise in terms of equipment andlabour. Sri Lanka being a tropical island of latitudinal change of only 30 along thelength of the country, the meteorological factors govern the amount of incidentradiation. Considering the cloud formation and wind patterns over Sri Lanka as well asthe seasonal rainfall patterns, it can be observed that the mean number of rainy dayscan be used to predict the monthly average daily global radiation which can be used forcalculations in solar related activities conveniently.

  1. Skill of Predicting Heavy Rainfall Over India: Improvement in Recent Years Using UKMO Global Model

    Science.gov (United States)

    Sharma, Kuldeep; Ashrit, Raghavendra; Bhatla, R.; Mitra, A. K.; Iyengar, G. R.; Rajagopal, E. N.

    2017-11-01

    The quantitative precipitation forecast (QPF) performance for heavy rains is still a challenge, even for the most advanced state-of-art high-resolution Numerical Weather Prediction (NWP) modeling systems. This study aims to evaluate the performance of UK Met Office Unified Model (UKMO) over India for prediction of high rainfall amounts (>2 and >5 cm/day) during the monsoon period (JJAS) from 2007 to 2015 in short range forecast up to Day 3. Among the various modeling upgrades and improvements in the parameterizations during this period, the model horizontal resolution has seen an improvement from 40 km in 2007 to 17 km in 2015. Skill of short range rainfall forecast has improved in UKMO model in recent years mainly due to increased horizontal and vertical resolution along with improved physics schemes. Categorical verification carried out using the four verification metrics, namely, probability of detection (POD), false alarm ratio (FAR), frequency bias (Bias) and Critical Success Index, indicates that QPF has improved by >29 and >24% in case of POD and FAR. Additionally, verification scores like EDS (Extreme Dependency Score), EDI (Extremal Dependence Index) and SEDI (Symmetric EDI) are used with special emphasis on verification of extreme and rare rainfall events. These scores also show an improvement by 60% (EDS) and >34% (EDI and SEDI) during the period of study, suggesting an improved skill of predicting heavy rains.

  2. Influence of declining mean annual rainfall on the behavior and yield of sediment and particulate organic carbon from tropical watersheds

    Science.gov (United States)

    Ayron M. Strauch; Richard A. MacKenzie; Christian P. Giardina; Gregory L. Bruland

    2018-01-01

    The capacity to forecast climate and land-use driven changes to runoff, soil erosion and sediment transport in the tropics is hindered by a lack of long-term data sets and model study systems. To address these issues we utilized three watersheds characterized by similar shape, geology, soils, vegetation cover, and land use arranged across a 900 mm gradient in mean...

  3. Dynamical linkage of tropical and subtropical weather systems to the intraseasonal oscillations of the Indian summer monsoon rainfall. Part II: Simulations in the ENSEMBLES project

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Shujie [Institut Catala de Ciencies del Clima (IC3), Barcelona, Catalonia (Spain); Rodo, Xavier [Institut Catala de Ciencies del Clima (IC3), Barcelona, Catalonia (Spain); Institut Catala de Recerca i Estudis Avancats (ICREA), Barcelona, Catalonia (Spain); Song, Yongjia [Georgia Institute of Technology, School of Earth and Atmospheric Sciences, Atlanta, GA (United States); Cash, Benjamin A. [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States)

    2012-09-15

    We assess the ability of individual models (single-model ensembles) and the multi-model ensemble (MME) in the European Union-funded ENSEMBLES project to simulate the intraseasonal oscillations (ISOs; specifically in 10-20-day and 30-50-day frequency bands) of the Indian summer monsoon rainfall (ISMR) over the Western Ghats (WG) and the Bay of Bengal (BoB), respectively. This assessment is made on the basis of the dynamical linkages identified from the analysis of observations in a companion study to this work. In general, all models show reasonable skill in simulating the active and break cycles of the 30-50-day ISOs over the Indian summer monsoon region. This skill is closely associated with the proper reproduction of both the northward propagation of the intertropical convergence zone (ITCZ) and the variations of monsoon circulation in this band. However, the models do not manage to correctly simulate the eastward propagation of the 30-50-day ISOs in the western/central tropical Pacific and the eastward extension of the ITCZ in a northwest to southeast tilt. This limitation is closely associated with a limited capacity of models to accurately reproduce the magnitudes of intraseasonal anomalies of both the ITCZ in the Asian tropical summer monsoon regions and trade winds in the tropical Pacific. Poor reproduction of the activity of the western Pacific subtropical high on intraseasonal time scales also amplify this limitation. Conversely, the models make good reproduction of the WG 10-20-day ISOs. This success is closely related to good performance of the models in the representation of the northward propagation of the ITCZ, which is partially promoted by local air-sea interactions in the Indian Ocean in this higher-frequency band. Although the feature of westward propagation is generally represented in the simulated BoB 10-20-day ISOs, the air-sea interactions in the Indian Ocean are spuriously active in the models. This leads to active WG rainfall, which is not

  4. Effects of rainfall exclusion on leaf gas exchange traits and osmotic adjustment in mature canopy trees of Dryobalanops aromatica (Dipterocarpaceae) in a Malaysian tropical rain forest.

    Science.gov (United States)

    Inoue, Yuta; Ichie, Tomoaki; Kenzo, Tanaka; Yoneyama, Aogu; Kumagai, Tomo'omi; Nakashizuka, Tohru

    2017-10-01

    Climate change exposes vegetation to unusual levels of drought, risking a decline in productivity and an increase in mortality. It still remains unclear how trees and forests respond to such unusual drought, particularly Southeast Asian tropical rain forests. To understand leaf ecophysiological responses of tropical rain forest trees to soil drying, a rainfall exclusion experiment was conducted on mature canopy trees of Dryobalanops aromatica Gaertn.f. (Dipterocarpaceae) for 4 months in an aseasonal tropical rain forest in Sarawak, Malaysia. The rainfall was intercepted by using a soft vinyl chloride sheet. We compared the three control and three treatment trees with respect to leaf water use at the top of the crown, including stomatal conductance (gsmax), photosynthesis (Amax), leaf water potential (predawn: Ψpre; midday: Ψmid), leaf water potential at turgor loss point (πtlp), osmotic potential at full turgor (π100) and a bulk modulus of elasticity (ε). Measurements were taken using tree-tower and canopy-crane systems. During the experiment, the treatment trees suffered drought stress without evidence of canopy dieback in comparison with the control trees; e.g., Ψpre and Ψmid decreased with soil drying. Minimum values of Ψmid in the treatment trees decreased during the experiment, and were lower than πtlp in the control trees. However, the treatment trees also decreased their πtlp by osmotic adjustment, and the values were lower than the minimum values of their Ψmid. In addition, the treatment trees maintained gs and Amax especially in the morning, though at midday, values decreased to half those of the control trees. Decreasing leaf water potential by osmotic adjustment to maintain gs and Amax under soil drying in treatment trees was considered to represent anisohydric behavior. These results suggest that D. aromatica may have high leaf adaptability to drought by regulating leaf water consumption and maintaining turgor pressure to improve its leaf

  5. Chagas. From Exotic Tropical Disease to Pathology Globalized

    Directory of Open Access Journals (Sweden)

    Beatriz BASSO

    2016-09-01

    Full Text Available Chagas disease, whose aetiological agent is Trypanosoma cruzi, is one of the main endemic diseases in Latin America, ranking fourth regarding the number of lost life years due to death or disability in the area; nevertheless, it is among the so-called “neglected diseases”. Despite its rural origin, where it is transmitted through vector insects belonging to the Reduviidae family, it has nowadays also become a problem in urbanized areas and is becoming globalized through inter-human transmission, above all congenital, but also through transfusions and transplants. Chagas, a Hidden Affliction (Chagas, Un mal escondido, a documentary by Ricardo Preve, focuses on both aspects of the disease: the rural and the global one, including interviews with North American doctors and European researchers. A significant part of the film takes place in the USA, showing the worst consequence of the evolution of the disease, which is death by chagasic cardiopathy which, being a reality that takes place during filming, increases the sense of drama. In this paper we approach specific topics related to Chagas disease from a biomedical point of view, including comments related to the highlights of the film that are connected with such aspects. Towards the end, there is mention of the film Houses of Fire (Casas de fuego and of certain illustrative aspects concerning the life of Dr Salvador Mazza and the Argentine Mission of Regional Pathology Studies (MEPRA, topics that have already been dealt with in this. 

  6. Relationships between copepod community structure, rainfall regimes, and hydrological variables in a tropical mangrove estuary (Amazon coast, Brazil)

    Science.gov (United States)

    Magalhães, André; Pereira, Luci Cajueiro Carneiro; da Costa, Rauquírio Marinho

    2015-03-01

    The influence of rainfall and hydrological variables on the abundance and diversity of the copepod community was investigated on a monthly basis over an annual cycle in the Taperaçu mangrove estuary. In general, the results show that there were no clear spatial or tidal patterns in any biological variables during the study period, which was related to the reduced horizontal gradient in abiotic parameters, determined mainly by the morphological and morphodynamic features of the estuary. Nevertheless, seasonal and monthly trends were recorded in both the hydrological data and the abundance of the dominant copepod species. In particular, Pseudodiaptomus marshi (6,004.6 ± 22,231.6 ind m-3; F = 5.0, p < 0.05) and Acartia tonsa (905.6 ± 2,400.9 ind m-3; F = 14.6, p < 0.001) predominated during the rainy season, whereas Acartia lilljeborgii (750.8 ± 808.3 ind m-3; U = 413.0, p < 0.01) was the most abundant species in the dry season. A distinct process of succession was observed in the relative abundance of these species, driven by the shift in the rainfall regime, which affected hydrological, in particular salinity, and consequently the abundance of copepod species. We suggest that this may be a general pattern governing the dynamics of copepod populations in the estuaries of the Brazilian Amazonian region.

  7. Interpretation of TOMS Observations of Tropical Tropospheric Ozone with a Global Model and In Situ Observations

    Science.gov (United States)

    Martin, Randall V.; Jacob, Daniel J.; Logan, Jennifer A.; Bey, Isabelle; Yantosca, Robert M.; Staudt, Amanda C.; Fiore, Arlene M.; Duncan, Bryan N.; Liu, Hongyu; Ginoux, Paul

    2004-01-01

    We interpret the distribution of tropical tropospheric ozone columns (TTOCs) from the Total Ozone Mapping Spectrometer (TOMS) by using a global three-dimensional model of tropospheric chemistry (GEOS-CHEM) and additional information from in situ observations. The GEOS-CHEM TTOCs capture 44% of the variance of monthly mean TOMS TTOCs from the convective cloud differential method (CCD) with no global bias. Major discrepancies are found over northern Africa and south Asia where the TOMS TTOCs do not capture the seasonal enhancements from biomass burning found in the model and in aircraft observations. A characteristic feature of these northern topical enhancements, in contrast to southern tropical enhancements, is that they are driven by the lower troposphere where the sensitivity of TOMS is poor due to Rayleigh scattering. We develop an efficiency correction to the TOMS retrieval algorithm that accounts for the variability of ozone in the lower troposphere. This efficiency correction increases TTOC's over biomass burning regions by 3-5 Dobson units (DU) and decreases them by 2-5 DU over oceanic regions, improving the agreement between CCD TTOCs and in situ observations. Applying the correction to CCD TTOCs reduces by approximately DU the magnitude of the "tropical Atlantic paradox" [Thompson et al, 2000], i.e. the presence of a TTOC enhancement over the southern tropical Atlantic during the northern African biomass burning season in December-February. We reproduce the remainder of the paradox in the model and explain it by the combination of upper tropospheric ozone production from lightning NOx, peristent subsidence over the southern tropical Atlantic as part of the Walker circulation, and cross-equatorial transport of upper tropospheric ozone from northern midlatitudes in the African "westerly duct." These processes in the model can also account for the observed 13-17 DU persistent wave-1 pattern in TTOCs with a maximum above the tropical Atlantic and a minimum

  8. Congo Basin rainfall climatology: can we believe the climate models?

    Science.gov (United States)

    Washington, Richard; James, Rachel; Pearce, Helen; Pokam, Wilfried M; Moufouma-Okia, Wilfran

    2013-01-01

    The Congo Basin is one of three key convective regions on the planet which, during the transition seasons, dominates global tropical rainfall. There is little agreement as to the distribution and quantity of rainfall across the basin with datasets differing by an order of magnitude in some seasons. The location of maximum rainfall is in the far eastern sector of the basin in some datasets but the far western edge of the basin in others during March to May. There is no consistent pattern to this rainfall distribution in satellite or model datasets. Resolving these differences is difficult without ground-based data. Moisture flux nevertheless emerges as a useful variable with which to study these differences. Climate models with weak (strong) or even divergent moisture flux over the basin are dry (wet). The paper suggests an approach, via a targeted field campaign, for generating useful climate information with which to confront rainfall products and climate models.

  9. Internationally coordinated multi-mission planning is now critical to sustain the space-based rainfall observations needed for managing floods globally

    International Nuclear Information System (INIS)

    Reed, Patrick M; Herman, Jonathan D; Chaney, Nathaniel W; Wood, Eric F; Ferringer, Matthew P

    2015-01-01

    At present 4 of 10 dedicated rainfall observing satellite systems have exceeded their design life, some by more than a decade. Here, we show operational implications for flood management of a ‘collapse’ of space-based rainfall observing infrastructure as well as the high-value opportunities for a globally coordinated portfolio of satellite missions and data services. Results show that the current portfolio of rainfall missions fails to meet operational data needs for flood management, even when assuming a perfectly coordinated data product from all current rainfall-focused missions (i.e., the full portfolio). In the full portfolio, satellite-based rainfall data deficits vary across the globe and may preclude climate adaptation in locations vulnerable to increasing flood risks. Moreover, removing satellites that are currently beyond their design life (i.e., the reduced portfolio) dramatically increases data deficits globally and could cause entire high intensity flood events to be unobserved. Recovery from the reduced portfolio is possible with internationally coordinated replenishment of as few as 2 of the 4 satellite systems beyond their design life, yielding rainfall data coverages that outperform the current full portfolio (i.e., an optimized portfolio of eight satellites can outperform ten satellites). This work demonstrates the potential for internationally coordinated satellite replenishment and data services to substantially enhance the cost-effectiveness, sustainability and operational value of space-based rainfall observations in managing evolving flood risks. (letter)

  10. Validation of a global satellite rainfall product for real time monitoring of meteorological extremes

    Science.gov (United States)

    Cánovas-García, Fulgencio; García-Galiano, Sandra; Karbalaee, Negar

    2017-10-01

    The real time monitoring of storms is important for the management and prevention of flood risks. However, in the southeast of Spain, it seems that the density of the rain gauge network may not be sufficient to adequately characterize the rainfall spatial distribution or the high rainfall intensities that are reached during storms. Satellite precipitation products such as PERSIANN-CCS (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks - Cloud Classification System) could be used to complement the automatic rain gauge networks and so help solve this problem. However, the PERSIANN-CCS product has only recently become available, so its operational validity for areas such as south-eastern Spain is not yet known. In this work, a methodology for the hourly validation of PERSIANN-CCS is presented. We used the rain gauge stations of the SIAM (Sistema de Información Agraria de Murcia) network to study three storms with a very high return period. These storms hit the east and southeast of the Iberian Peninsula and resulted in the loss of human life, major damage to agricultural crops and a strong impact on many different types of infrastructure. The study area is the province of Murcia (Region of Murcia), located in the southeast of the Iberian Peninsula, covering an area of more than 11,000 km2 and with a population of almost 1.5 million. In order to validate the PERSIANN-CCS product for these three storms, contrasts were made with the hyetographs registered by the automatic rain gauges, analyzing statistics such as bias, mean square difference and Pearson's correlation coefficient. Although in some cases the temporal distribution of rainfall was well captured by PERSIANN-CCS, in several rain gauges high intensities were not properly represented. The differences were strongly correlated with the rain gauge precipitation, but not with satellite-obtained rainfall. The main conclusion concerns the need for specific local calibration

  11. Sea level variability in the eastern tropical Pacific as observed by TOPEX and Tropical Ocean-Global Atmosphere Tropical Atmosphere-Ocean Experiment

    Science.gov (United States)

    Giese, Benjamin S.; Carton, James A.; Holl, Lydia J.

    1994-01-01

    Sea surface height measurements from the TOPEX altimeter and dynamic height from Tropical Ocean-Global Atmosphere Tropical Atmosphere-Ocean (TOGA TAO) moorings are used to explore sea level variability in the northeastern tropical Pacific Ocean. Afetr the annual harmonic is removed, there are two distinct bands of variability: one band is centered at 5 deg N to 7 deg N and extends from 165 deg W to 110 deg W, and the other band is centered at 10 deg N to 12 deg N and extends from 120 deg W to the coast of Central America. The correspondence between the two independent observation data sets at 5 deg N is excellent with correlations of about 90%. The variability at 5 deg-7 deg N is identified as instability waves formed just south of the North Equatorial Countercurrent during the months of July and March. Wave amplitudes are largest in the range of longitudes 160 deg-140 deg W, where they can exceed 10 cm. The waves disappear when the equatorial current system weakens, during the months of March and May. The variability at 11 deg N in 1993 has the form of anticyclone eddies. These eddies propagate westward at a speed of about 17 cm/s, consistent with the dispersion characteristics of free Rossby waves. The eddies are shown to have their origin near the coast of central America during northern fall and winter. Their formation seems to result from intense wind bursts across the Gulfs of Tehuantepec and Papagayo which generate strong anticyclonic ocean eddies. The disappearance of the eddies in the summer of 1993 coincidences with the seasonal intensification of equatorial currents. Thus the variability at 11 deg N has very little overlap in time with the variability at 5 deg N.

  12. Impacts of the Tropical Pacific Cold Tongue Mode on ENSO Diversity Under Global Warming

    Science.gov (United States)

    Li, Yang; Li, Jianping; Zhang, Wenjun; Chen, Quanliang; Feng, Juan; Zheng, Fei; Wang, Wei; Zhou, Xin

    2017-11-01

    The causes of ENSO diversity, although being of great interest in recent research, do not have a consistent explanation. This study provides a possible mechanism focused on the background change of the tropical Pacific as a response to global warming. The second empirical orthogonal function mode of the sea surface temperature anomalies (SSTA) in the tropical Pacific, namely the cold tongue mode (CTM), represents the background change of the tropical Pacific under global warming. Using composite analysis with surface observations and subsurface ocean assimilation data sets, we find ENSO spatial structure diversity is closely associated with the CTM. A positive CTM tends to cool the SST in the eastern equatorial Pacific and warm the SST outside, as well as widen (narrow) zonal and meridional scales for El Niño (La Niña), and vice versa. Particularly in the positive CTM phase, the air-sea action center of El Niño moves west, resembling the spatial pattern of CP-El Niño. This westward shift of center is related to the weakened Bjerknes feedback (BF) intensity by the CTM. By suppressing the SSTA growth of El Niño in the eastern equatorial Pacific, the CTM contributes to more frequent occurrence of CP-El Niño under global warming.

  13. Tropical rainforests dominate multi-decadal variability of the global carbon cycle

    Science.gov (United States)

    Zhang, X.; Wang, Y. P.; Peng, S.; Rayner, P. J.; Silver, J.; Ciais, P.; Piao, S.; Zhu, Z.; Lu, X.; Zheng, X.

    2017-12-01

    Recent studies find that inter-annual variability of global atmosphere-to-land CO2 uptake (NBP) is dominated by semi-arid ecosystems. However, the NBP variations at decadal to multi-decadal timescales are still not known. By developing a basic theory for the role of net primary production (NPP) and heterotrophic respiration (Rh) on NBP and applying it to 100-year simulations of terrestrial ecosystem models forced by observational climate, we find that tropical rainforests dominate the multi-decadal variability of global NBP (48%) rather than the semi-arid lands (35%). The NBP variation at inter-annual timescales is almost 90% contributed by NPP, but across longer timescales is progressively controlled by Rh that constitutes the response from the NPP-derived soil carbon input (40%) and the response of soil carbon turnover rates to climate variability (60%). The NBP variations of tropical rainforests is modulated by the ENSO and the PDO through their significant influences on temperature and precipitation at timescales of 2.5-7 and 25-50 years, respectively. This study highlights the importance of tropical rainforests on the multi-decadal variability of global carbon cycle, suggesting that we need to carefully differentiate the effect of NBP long-term fluctuations associated with ocean-related climate modes on the long-term trend in land sink.

  14. Tropical/Subtropical Peatland Development and Global CH4 during the Last Glaciation.

    Science.gov (United States)

    Xu, Hai; Lan, Jianghu; Sheng, Enguo; Liu, Yong; Liu, Bin; Yu, Keke; Ye, Yuanda; Cheng, Peng; Qiang, Xiaoke; Lu, Fengyan; Wang, Xulong

    2016-07-28

    Knowledge of peatland development over the tropical/subtropical zone during the last glaciation is critical for understanding the glacial global methane cycle. Here we present a well-dated 'peat deposit-lake sediment' alternate sequence at Tengchong, southwestern China, and discuss the peatland development and its linkage to the global glacial methane cycle. Peat layers were formed during the cold Marine Isotope Stage (MIS)-2 and -4, whereas lake sediments coincided with the relatively warm MIS-3, which is possibly related to the orbital/suborbital variations in both temperature and Asian summer monsoon intensity. The Tengchong peatland formation pattern is broadly synchronous with those over subtropical southern China and other tropical/subtropical areas, but it is clearly in contrast to those over the mid-high Northern Hemisphere. The results of this work suggest that the shifts of peatland development between the tropical/subtropical zone and mid-high Northern Hemisphere may have played important roles in the glacial/interglacial global atmospheric CH4 cycles.

  15. Effects of interannual climate variability on tropical tree cover

    NARCIS (Netherlands)

    Holmgren, M.; Hirota, M.; Nes, van E.H.; Scheffer, M.

    2013-01-01

    Climatic warming is substantially intensifying the global water cycle1 and is projected to increase rainfall variability2. Using satellite data, we show that higher climatic variability is associated with reduced tree cover in the wet tropics globally. In contrast, interannual variability in

  16. Hydrology and Soil Erosion in Tropical Rainforests and Pasture Lands on the Atherton Tablelands, North Queensland, Australia - a rainfall simulator study

    Science.gov (United States)

    Joanne, Joanne; Ciesiolka, Cyril

    2010-05-01

    The Barron and Johnstone Rivers rise in the basaltic Atherton Tableland, North Queensland, Australia, and flow into the Coral Sea and Great Barrier Reef World Heritage Area (GBRWHA). Natural rainforest in this region was cleared for settlement in the early 20th century. Rapid decline in soil fertility during the 1940's and 50's forced landholders to turn to pasture based industries from row crop agriculture. Since then, these pasture based industries have intensified. The intensified land use has been linked to increases in sediment and nutrient levels in terrestrial runoff and identified as a major environmental threat to the GBRWHA, which has raised alarm for the tourist industry and resource managers. Studies linking land-use to pollutant discharge are often based on measurements and modelling of end of catchment measurements of water quality. Whilst such measurements can be a reasonable indicator of the effects of land use on pollutant discharge to waterways, they are often a gross assessment. This project used rainfall simulations to investigate the relationship between land use and management with sources and sinks of runoff and soil erosion within the Barron and Johnstone Rivers catchments. Rainfall simulations were conducted and pollutant loads measured in natural rainforest, as well as dairy and beef farming systems. The dairy farming systems included an effluent fed pasture, a high mineral fertilizer and supplementary irrigation farm, and a rainfed organic pasture that relied on tropical legumes and introduced grasses and returned organic material to the soil. One of the beef farming systems used a 7-10 day rotation with a low fertilizer regime (kikuyu mostly), while the other, used a long period- two paddock-rotation with no fertiliser and paspalum pastures. The rainforests were generally small isolated enclaves with a well developed shrub layer (1-3 m), and a presence of scattered, deciduous trees. Simulations were carried out on sites which were

  17. Trait acclimation mitigates mortality risks of tropical canopy trees under global warming

    Directory of Open Access Journals (Sweden)

    Frank eSterck

    2016-05-01

    Full Text Available There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and – the notoriously unknown – physiological trait acclimation of trees. In this opinion article we provided a first quantification of the potential of trait acclimation to mitigate the negative effects of warming on tropical canopy tree growth and survival. We applied a physiological tree growth model that incorporates trait acclimation through an optimization approach. Our model estimated the maximum effect of acclimation when trees optimize traits that are strongly plastic on a week to annual time scale (leaf photosynthetic capacity, total leaf area, stem sapwood area to maximize carbon gain. We simulated tree carbon gain for temperatures (25-35ºC and ambient CO2 concentrations (390-800 ppm predicted for the 21st century. Full trait acclimation increased simulated carbon gain by up to 10-20% and the maximum tolerated temperature by up to 2ºC, thus reducing risks of tree death under predicted warming. Functional trait acclimation may thus increase the resilience of tropical trees to warming, but cannot prevent tree death during extremely hot and dry years at current CO2 levels. We call for incorporating trait acclimation in field and experimental studies of plant functional traits, and in models that predict responses of tropical forests to climate change.

  18. Trait Acclimation Mitigates Mortality Risks of Tropical Canopy Trees under Global Warming

    Science.gov (United States)

    Sterck, Frank; Anten, Niels P. R.; Schieving, Feike; Zuidema, Pieter A.

    2016-01-01

    There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and – the notoriously unknown – physiological trait acclimation of trees. In this opinion article we provided a first quantification of the potential of trait acclimation to mitigate the negative effects of warming on tropical canopy tree growth and survival. We applied a physiological tree growth model that incorporates trait acclimation through an optimization approach. Our model estimated the maximum effect of acclimation when trees optimize traits that are strongly plastic on a week to annual time scale (leaf photosynthetic capacity, total leaf area, stem sapwood area) to maximize carbon gain. We simulated tree carbon gain for temperatures (25–35°C) and ambient CO2 concentrations (390–800 ppm) predicted for the 21st century. Full trait acclimation increased simulated carbon gain by up to 10–20% and the maximum tolerated temperature by up to 2°C, thus reducing risks of tree death under predicted warming. Functional trait acclimation may thus increase the resilience of tropical trees to warming, but cannot prevent tree death during extremely hot and dry years at current CO2 levels. We call for incorporating trait acclimation in field and experimental studies of plant functional traits, and in models that predict responses of tropical forests to climate change. PMID:27242814

  19. Tropical interannual variability in a global coupled GCM: Sensitivity to mean climate state

    Energy Technology Data Exchange (ETDEWEB)

    Moore, A.M. [Bureau of Meterology Research Centre, Melbourne, Victoria (Australia)

    1995-04-01

    A global coupled ocean-atmosphere-sea ice general circulation model is used to study interannual variability in the Tropics. Flux correction is used to control the mean climate of the coupled system, and in one configuration of the coupled model, interannual variability in the tropical Pacific is dominated by westward moving anomalies. Through a series of experiments in which the equatorial ocean wave speeds and ocean-atmosphere coupling strength are varied, it is demonstrated that these westward moving disturbances are probably some manifestation of what Neelin describes as an {open_quotes}SST mode.{close_quotes} By modifying the flux correction procedure, the mean climate of the coupled model can be changed. A fairly modest change in the mean climate is all that is required to excite eastward moving anomalies in place of the westward moving SST modes found previously. The apparent sensitivity of the nature of tropical interannual variability to the mean climate state in a coupled general circulation model such as that used here suggests that caution is advisable if we try to use such models to answer questions relating to changes in ENSO-like variability associated with global climate change. 41 refs., 23 figs., 1 tab.

  20. A model for calculating hourly global solar radiation from satellite data in the tropics

    International Nuclear Information System (INIS)

    Janjai, S.; Pankaew, P.; Laksanaboonsong, J.

    2009-01-01

    A model for calculating global solar radiation from geostationary satellite data is presented. The model is designed to calculate the monthly average hourly global radiation in the tropics with high aerosol load. This model represents a physical relation between the earth-atmospheric albedo derived from GMS5 satellite data and the absorption and scattering coefficients of various atmospheric constituents. The absorption of solar radiation by water vapour which is important for the tropics, was calculated from ambient temperature and relative humidity. The relationship between the visibility and solar radiation depletion due to aerosols was developed for a high aerosol load environment. This relationship was used to calculate solar radiation depletion by aerosols in the model. The total column ozone from TOMS/EP satellite was employed for the determination of solar radiation absorbed by ozone. Solar radiation from four pyranometer stations was used to formulate the relationship between the satellite band earth-atmospheric albedo and broadband earth-atmospheric albedo required by the model. To test its performance, the model was used to compute the monthly average hourly global radiation at 25 solar radiation monitoring stations in tropical areas in Thailand. It was found that the values of monthly average of hourly global radiations calculated from the model were in good agreement with those obtained from the measurements, with the root mean square difference of 10%. After the validation the model was employed to generate hourly solar radiation maps of Thailand. These maps reveal the diurnal and season variation of solar radiation over the country.

  1. A model for calculating hourly global solar radiation from satellite data in the tropics

    Energy Technology Data Exchange (ETDEWEB)

    Janjai, S.; Pankaew, P.; Laksanaboonsong, J. [Solar Energy Research Laboratory, Department of Physics, Faculty of Science, Silpakorn University, Nakhon Pathom 73000 (Thailand)

    2009-09-15

    A model for calculating global solar radiation from geostationary satellite data is presented. The model is designed to calculate the monthly average hourly global radiation in the tropics with high aerosol load. This model represents a physical relation between the earth-atmospheric albedo derived from GMS5 satellite data and the absorption and scattering coefficients of various atmospheric constituents. The absorption of solar radiation by water vapour which is important for the tropics, was calculated from ambient temperature and relative humidity. The relationship between the visibility and solar radiation depletion due to aerosols was developed for a high aerosol load environment. This relationship was used to calculate solar radiation depletion by aerosols in the model. The total column ozone from TOMS/EP satellite was employed for the determination of solar radiation absorbed by ozone. Solar radiation from four pyranometer stations was used to formulate the relationship between the satellite band earth-atmospheric albedo and broadband earth-atmospheric albedo required by the model. To test its performance, the model was used to compute the monthly average hourly global radiation at 25 solar radiation monitoring stations in tropical areas in Thailand. It was found that the values of monthly average of hourly global radiations calculated from the model were in good agreement with those obtained from the measurements, with the root mean square difference of 10%. After the validation the model was employed to generate hourly solar radiation maps of Thailand. These maps reveal the diurnal and season variation of solar radiation over the country. (author)

  2. Compendium of NASA Data Base for the Global Tropospheric Experiment's Pacific Exploratory Mission - Tropics B (PEM-Tropics B). Volume 2; P-3B

    Science.gov (United States)

    Scott, A. Donald, Jr.; Kleb, Mary M.; Raper, James L.

    2000-01-01

    This report provides a compendium of NASA aircraft data that are available from NASA's Global Tropospheric Experiment's (GTE) Pacific Exploratory Mission-Tropics B (PEM-Tropics B) conducted in March and April 1999. PEM-Tropics B was conducted during the southern-tropical wet season when the influence from biomass burning observed in PEM-Tropics A was minimal. Major deployment sites were Hawaii, Kiritimati (Christmas Island), Tahiti, Fiji, and Easter Island. The broad goals of PEM-Tropics B were to improved understanding of the oxidizing power of the atmosphere and the processes controlling sulfur aerosol formation and to establish baseline values for chemical species that are directly coupled to the oxidizing power and aerosol loading of the troposphere. The purpose of this document is to provide a representation of aircraft data that will be available in archived format via NASA Langley's Distributed Active Archive Center (DAAC) or are available through the GTE Project Office archive. The data format is not intended to support original research/analysis, but to assist the reader in identifying data that are of interest.

  3. Compendium of NASA Data Base for the Global Tropospheric Experiment's Pacific Exploratory Mission-Tropics B (PEM-Tropics B). Volume 1; DC-8

    Science.gov (United States)

    Scott, A. Donald, Jr.; Kleb, Mary M.; Raper, James L.

    2000-01-01

    This report provides a compendium of NASA aircraft data that are available from NASA's Global Tropospheric Experiment's (GTE) Pacific Exploratory Mission-Tropics B (PEM-Tropics B) conducted in March and April 1999. PEM-Tropics B was conducted during the southern-tropical wet season when the influence from biomass burning observed in PEM-Tropics A was minimal. Major deployment sites were Hawaii, Kiritimati (Christmas Island), Tahiti, Fiji, and Easter Island. The broad goals of PEM-Tropics B were to improved understanding of the oxidizing power of the atmosphere and the processes controlling sulfur aerosol formation and to establish baseline values for chemical species that are directly coupled to the oxidizing power and aerosol loading of the troposphere. The purpose of this document is to provide a representation of aircraft data that will be available in archived format via NASA Langley's Distributed Active Archive Center (DAAC) or are available through the GTE Project Office archive. The data format is not intended to support original research/analysis, but to assist the reader in identifying data that are of interest.

  4. Automatic Type Recognition and Mapping of Global Tropical Cyclone Disaster Chains (TDC

    Directory of Open Access Journals (Sweden)

    Ran Wang

    2016-10-01

    Full Text Available The catastrophic events caused by meteorological disasters are becoming more severe in the context of global warming. The disaster chains triggered by Tropical Cyclones induce the serious losses of population and economy. It is necessary to make the regional type recognition of Tropical Cyclone Disaster Chain (TDC effective in order to make targeted preventions. This study mainly explores the method of automatic recognition and the mapping of TDC and designs a software system. We constructed an automatic recognition system in terms of the characteristics of a hazard-formative environment based on the theory of a natural disaster system. The ArcEngine components enable an intelligent software system to present results by the automatic mapping approach. The study data comes from global metadata such as Digital Elevation Model (DEM, terrain slope, population density and Gross Domestic Product (GDP. The result shows that: (1 according to the characteristic of geomorphology type, we establish a type of recognition system for global TDC; (2 based on the recognition principle, we design a software system with the functions of automatic recognition and mapping; and (3 we validate the type of distribution in terms of real cases of TDC. The result shows that the automatic recognition function has good reliability. The study can provide the basis for targeted regional disaster prevention strategy, as well as regional sustainable development.

  5. L’escalfament global i l’extinció de les plantes: un exemple tropical

    OpenAIRE

    Safont, Elisabet; Rull, Valentí; Vegas-Vilarrúbia, Teresa; Nogué, Sandra

    2011-01-01

    [EN]Global warminG and plant extinction: a tropical example. – Pantepui is a phytogeographical province made up of a group of approximately 50 tabular mountain summits or tepuis in southeast Venezuela. This region lies between 1500 and 3014 m a.s.l and covers an approximate area of 6000 km2. Its pristine state of conservation is remarkable. The summits of the tepuis contain an excep- tional level of vascular plant diversity, including 2446 known species, of which 771 are endemic t...

  6. A TRMM-Calibrated Infrared Rainfall Algorithm Applied Over Brazil

    Science.gov (United States)

    Negri, A. J.; Xu, L.; Adler, R. F.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The development of a satellite infrared technique for estimating convective and stratiform rainfall and its application in studying the diurnal variability of rainfall in Amazonia are presented. The Convective-Stratiform. Technique, calibrated by coincident, physically retrieved rain rates from the Tropical Rain Measuring Mission (TRMM) Microwave Imager (TMI), is applied during January to April 1999 over northern South America. The diurnal cycle of rainfall, as well as the division between convective and stratiform rainfall is presented. Results compare well (a one-hour lag) with the diurnal cycle derived from Tropical Ocean-Global Atmosphere (TOGA) radar-estimated rainfall in Rondonia. The satellite estimates reveal that the convective rain constitutes, in the mean, 24% of the rain area while accounting for 67% of the rain volume. The effects of geography (rivers, lakes, coasts) and topography on the diurnal cycle of convection are examined. In particular, the Amazon River, downstream of Manaus, is shown to both enhance early morning rainfall and inhibit afternoon convection. Monthly estimates from this technique, dubbed CST/TMI, are verified over a dense rain gage network in the state of Ceara, in northeast Brazil. The CST/TMI showed a high bias equal to +33% of the gage mean, indicating that possibly the TMI estimates alone are also high. The root mean square difference (after removal of the bias) equaled 36.6% of the gage mean. The correlation coefficient was 0.77 based on 72 station-months.

  7. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs.

    Science.gov (United States)

    Mouillot, David; Villéger, Sébastien; Parravicini, Valeriano; Kulbicki, Michel; Arias-González, Jesus Ernesto; Bender, Mariana; Chabanet, Pascale; Floeter, Sergio R; Friedlander, Alan; Vigliola, Laurent; Bellwood, David R

    2014-09-23

    When tropical systems lose species, they are often assumed to be buffered against declines in functional diversity by the ability of the species-rich biota to display high functional redundancy: i.e., a high number of species performing similar functions. We tested this hypothesis using a ninefold richness gradient in global fish faunas on tropical reefs encompassing 6,316 species distributed among 646 functional entities (FEs): i.e., unique combinations of functional traits. We found that the highest functional redundancy is located in the Central Indo-Pacific with a mean of 7.9 species per FE. However, this overall level of redundancy is disproportionately packed into few FEs, a pattern termed functional over-redundancy (FOR). For instance, the most speciose FE in the Central Indo-Pacific contains 222 species (out of 3,689) whereas 38% of FEs (180 out of 468) have no functional insurance with only one species. Surprisingly, the level of FOR is consistent across the six fish faunas, meaning that, whatever the richness, over a third of the species may still be in overrepresented FEs whereas more than one third of the FEs are left without insurance, these levels all being significantly higher than expected by chance. Thus, our study shows that, even in high-diversity systems, such as tropical reefs, functional diversity remains highly vulnerable to species loss. Although further investigations are needed to specifically address the influence of redundant vs. vulnerable FEs on ecosystem functioning, our results suggest that the promised benefits from tropical biodiversity may not be as strong as previously thought.

  8. Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming

    Science.gov (United States)

    Huang, Ping; Lin, I. -I; Chou, Chia; Huang, Rong-Hui

    2015-01-01

    Tropical cyclones (TCs) are hazardous natural disasters. Because TC intensification is significantly controlled by atmosphere and ocean environments, changes in these environments may cause changes in TC intensity. Changes in surface and subsurface ocean conditions can both influence a TC's intensification. Regarding global warming, minimal exploration of the subsurface ocean has been undertaken. Here we investigate future subsurface ocean environment changes projected by 22 state-of-the-art climate models and suggest a suppressive effect of subsurface oceans on the intensification of future TCs. Under global warming, the subsurface vertical temperature profile can be sharpened in important TC regions, which may contribute to a stronger ocean coupling (cooling) effect during the intensification of future TCs. Regarding a TC, future subsurface ocean environments may be more suppressive than the existing subsurface ocean environments. This suppressive effect is not spatially uniform and may be weak in certain local areas. PMID:25982028

  9. Global economic trade-offs between wild nature and tropical agriculture.

    Science.gov (United States)

    Carrasco, Luis R; Webb, Edward L; Symes, William S; Koh, Lian P; Sodhi, Navjot S

    2017-07-01

    Global demands for agricultural and forestry products provide economic incentives for deforestation across the tropics. Much of this deforestation occurs with a lack of information on the spatial distribution of benefits and costs of deforestation. To inform global sustainable land-use policies, we combine geographic information systems (GIS) with a meta-analysis of ecosystem services (ES) studies to perform a spatially explicit analysis of the trade-offs between agricultural benefits, carbon emissions, and losses of multiple ecosystem services because of tropical deforestation from 2000 to 2012. Even though the value of ecosystem services presents large inherent uncertainties, we find a pattern supporting the argument that the externalities of destroying tropical forests are greater than the current direct economic benefits derived from agriculture in all cases bar one: when yield and rent potentials of high-value crops could be realized in the future. Our analysis identifies the Atlantic Forest, areas around the Gulf of Guinea, and Thailand as areas where agricultural conversion appears economically efficient, indicating a major impediment to the long-term financial sustainability of Reducing Emissions from Deforestation and forest Degradation (REDD+) schemes in those countries. By contrast, Latin America, insular Southeast Asia, and Madagascar present areas with low agricultural rents (ARs) and high values in carbon stocks and ES, suggesting that they are economically viable conservation targets. Our study helps identify optimal areas for conservation and agriculture together with their associated uncertainties, which could enhance the efficiency and sustainability of pantropical land-use policies and help direct future research efforts.

  10. Pre-exposure to drought increases the resistance of tropical forest soil bacterial communities to extended drought

    Science.gov (United States)

    Nicholas J. Bouskill; Hsiao Chien Lim; Sharon Borglin; Rohit Salve; Tana Wood; Whendee L. Silver; Eoin L. Brodie

    2013-01-01

    Global climate models project a decrease in the magnitude of precipitation in tropical regions. Changes in rainfall patterns have important implications for the moisture content and redox status of tropical soils, yet little is known about how these changes may affect microbial community structure. Specifically, does exposure to prior stress confer increased resistance...

  11. Global-Scale Associations of Vegetation Phenology with Rainfall and Temperature at a High Spatio-Temporal Resolution

    Directory of Open Access Journals (Sweden)

    Nicholas Clinton

    2014-08-01

    Full Text Available Phenology response to climatic variables is a vital indicator for understanding changes in biosphere processes as related to possible climate change. We investigated global phenology relationships to precipitation and land surface temperature (LST at high spatial and temporal resolution for calendar years 2008–2011. We used cross-correlation between MODIS Enhanced Vegetation Index (EVI, MODIS LST and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN gridded rainfall to map phenology relationships at 1-km spatial resolution and weekly temporal resolution. We show these data to be rich in spatiotemporal information, illustrating distinct phenology patterns as a result of complex overlapping gradients of climate, ecosystem and land use/land cover. The data are consistent with broad-scale, coarse-resolution modeled ecosystem limitations to moisture, temperature and irradiance. We suggest that high-resolution phenology data are useful as both an input and complement to land use/land cover classifiers and for understanding climate change vulnerability in natural and anthropogenic landscapes.

  12. Global warming hiatus contributed to the increased occurrence of intense tropical cyclones in the coastal regions along East Asia.

    Science.gov (United States)

    Zhao, Jiuwei; Zhan, Ruifen; Wang, Yuqing

    2018-04-16

    The recent global warming hiatus (GWH) was characterized by a La Niña-like cooling in the tropical Eastern Pacific accompanied with the Indian Ocean and the tropical Atlantic Ocean warming. Here we show that the recent GWH contributed significantly to the increased occurrence of intense tropical cyclones in the coastal regions along East Asia since 1998. The GWH associated sea surface temperature anomalies triggered a pair of anomalous cyclonic and anticyclonic circulations and equatorial easterly anomalies over the Northwest Pacific, which favored TC genesis and intensification over the western Northwest Pacific but suppressed TC genesis and intensification over the southeastern Northwest Pacific due to increased vertical wind shear and anticyclonic circulation anomalies. Results from atmospheric general circulation model experiments demonstrate that the Pacific La Niña-like cooling dominated the Indian Ocean and the tropical Atlantic Ocean warming in contributing to the observed GWH-related anomalous atmospheric circulation over the Northwest Pacific.

  13. Ajustement statistique des simulations climatiques : l'exemple des précipitations saisonnières de l'Amérique tropicaleStatistical adjustment of simulated climate: example of seasonal rainfall of tropical America.

    Science.gov (United States)

    Moron, Vincent; Navarra, Antonio

    2000-05-01

    This study presents the skill of the seasonal rainfall of tropical America from an ensemble of three 34-year general circulation model (ECHAM 4) simulations forced with observed sea surface temperature between 1961 and 1994. The skill gives a first idea of the amount of potential predictability if the sea surface temperatures are perfectly known some time in advance. We use statistical post-processing based on the leading modes (extracted from Singular Value Decomposition of the covariance matrix between observed and simulated rainfall fields) to improve the raw skill obtained by simple comparison between observations and simulations. It is shown that 36-55 % of the observed seasonal variability is explained by the simulations on a regional basis. Skill is greatest for Brazilian Nordeste (March-May), but also for northern South America or the Caribbean basin in June-September or northern Amazonia in September-November for example.

  14. Response of the tropical Pacific Ocean to El Niño versus global warming

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fukai; Luo, Yiyong; Lu, Jian; Wan, Xiuquan

    2016-04-15

    Climate models project an El Niño-like SST response in the tropical Pacific Ocean to global warming (GW). By employing the Community Earth System Model (CESM) and applying an overriding technique to its ocean component, Parallel Ocean Program version 2 (POP2), this study investigates the similarity and difference of formation mechanism for the changes in the tropical Pacific Ocean under El Niño and GW. Results show that, despite sharing some similarities between the two scenarios, there are many significant distinctions between GW and El Niño: 1) the phase locking of the seasonal cycle reduction is more notable under GW compared with El Niño, implying more extreme El Niño events in the future; 2) in contrast to the penetration of the equatorial subsurface temperature anomaly that appears to propagate in the form of an oceanic equatorial upwelling Kelvin wave during El Niño, the GW-induced subsurface temperature anomaly manifest in the form of off-equatorial upwelling Rossby waves; 3) while significant across-equator northward heat transport (NHT) is induced by the wind stress anomalies associated with El Niño, little NHT is found at the equator due to a symmetric change in the shallow meridional overturning circulation that appears to be weakened in both North and South Pacific under GW; and 4) the maintaining mechanisms for the eastern equatorial Pacific warming are also substantially different.

  15. REDD and PINC: A new policy framework to fund tropical forests as global 'eco-utilities'

    International Nuclear Information System (INIS)

    Trivedi, M R; Mitchell, A W; Mardas, N; Parker, C; Watson, J E; Nobre, A D

    2009-01-01

    Tropical forests are 'eco-utilities' providing critical ecosystem services that underpin food, energy, water and climate security at local to global scales. Currently, these services are unrecognised and unrewarded in international policy and financial frameworks, causing forests to be worth more dead than alive. Much attention is currently focused on REDD (Reducing Emissions from Deforestation and forest Degradation) and A/R (Afforestation and Reforestation) as mitigation options. In this article we propose an additional mechanism - PINC (Proactive Investment in Natural Capital) - that recognises and rewards the value of ecosystem services provided by standing tropical forests, especially from a climate change adaptation perspective. Using Amazonian forests as a case study we show that PINC could improve the wellbeing of rural and forest-dependent populations, enabling them to cope with the impacts associated with climate change and deforestation. By investing pro-actively in areas where deforestation pressures are currently low, the long-term costs of mitigation and adaptation will be reduced. We suggest a number of ways in which funds could be raised through emerging financial mechanisms to provide positive incentives to maintain standing forests. To develop PINC, a new research and capacity-building agenda is needed that explores the interdependence between communities, the forest eco-utility and the wider economy.

  16. REDD and PINC: A new policy framework to fund tropical forests as global 'eco-utilities'

    Science.gov (United States)

    Trivedi, M. R.; Mitchell, A. W.; Mardas, N.; Parker, C.; Watson, J. E.; Nobre, A. D.

    2009-11-01

    Tropical forests are 'eco-utilities' providing critical ecosystem services that underpin food, energy, water and climate security at local to global scales. Currently, these services are unrecognised and unrewarded in international policy and financial frameworks, causing forests to be worth more dead than alive. Much attention is currently focused on REDD (Reducing Emissions from Deforestation and forest Degradation) and A/R (Afforestation and Reforestation) as mitigation options. In this article we propose an additional mechanism - PINC (Proactive Investment in Natural Capital) - that recognises and rewards the value of ecosystem services provided by standing tropical forests, especially from a climate change adaptation perspective. Using Amazonian forests as a case study we show that PINC could improve the wellbeing of rural and forest-dependent populations, enabling them to cope with the impacts associated with climate change and deforestation. By investing pro-actively in areas where deforestation pressures are currently low, the long-term costs of mitigation and adaptation will be reduced. We suggest a number of ways in which funds could be raised through emerging financial mechanisms to provide positive incentives to maintain standing forests. To develop PINC, a new research and capacity-building agenda is needed that explores the interdependence between communities, the forest eco-utility and the wider economy.

  17. Long-range transport of airborne microbes over the global tropical and subtropical ocean

    KAUST Repository

    Mayol, Eva; Arrieta, J M; Jimé nez, Maria A.; Martí nez-Asensio, Adriá n; Garcias Bonet, Neus; Dachs, Jordi; Gonzá lez-Gaya, Belé n; Royer, Sarah-J.; Bení tez-Barrios, Veró nica M.; Fraile-Nuez, Eugenio; Duarte, Carlos M.

    2017-01-01

    The atmosphere plays a fundamental role in the transport of microbes across the planet but it is often neglected as a microbial habitat. Although the ocean represents two thirds of the Earth's surface, there is little information on the atmospheric microbial load over the open ocean. Here we provide a global estimate of microbial loads and air-sea exchanges over the tropical and subtropical oceans based on the data collected along the Malaspina 2010 Circumnavigation Expedition. Total loads of airborne prokaryotes and eukaryotes were estimated at 2.2 × 1021 and 2.1 × 1021 cells, respectively. Overall 33-68% of these microorganisms could be traced to a marine origin, being transported thousands of kilometres before re-entering the ocean. Moreover, our results show a substantial load of terrestrial microbes transported over the oceans, with abundances declining exponentially with distance from land and indicate that islands may act as stepping stones facilitating the transoceanic transport of terrestrial microbes.The extent to which the ocean acts as a sink and source of airborne particles to the atmosphere is unresolved. Here, the authors report high microbial loads over the tropical Atlantic, Pacific and Indian oceans and propose islands as stepping stones for the transoceanic transport of terrestrial microbes..

  18. Long-range transport of airborne microbes over the global tropical and subtropical ocean

    KAUST Repository

    Mayol, Eva

    2017-07-28

    The atmosphere plays a fundamental role in the transport of microbes across the planet but it is often neglected as a microbial habitat. Although the ocean represents two thirds of the Earth\\'s surface, there is little information on the atmospheric microbial load over the open ocean. Here we provide a global estimate of microbial loads and air-sea exchanges over the tropical and subtropical oceans based on the data collected along the Malaspina 2010 Circumnavigation Expedition. Total loads of airborne prokaryotes and eukaryotes were estimated at 2.2 × 1021 and 2.1 × 1021 cells, respectively. Overall 33-68% of these microorganisms could be traced to a marine origin, being transported thousands of kilometres before re-entering the ocean. Moreover, our results show a substantial load of terrestrial microbes transported over the oceans, with abundances declining exponentially with distance from land and indicate that islands may act as stepping stones facilitating the transoceanic transport of terrestrial microbes.The extent to which the ocean acts as a sink and source of airborne particles to the atmosphere is unresolved. Here, the authors report high microbial loads over the tropical Atlantic, Pacific and Indian oceans and propose islands as stepping stones for the transoceanic transport of terrestrial microbes..

  19. Increasing potential for intense tropical and subtropical thunderstorms under global warming.

    Science.gov (United States)

    Singh, Martin S; Kuang, Zhiming; Maloney, Eric D; Hannah, Walter M; Wolding, Brandon O

    2017-10-31

    Intense thunderstorms produce rapid cloud updrafts and may be associated with a range of destructive weather events. An important ingredient in measures of the potential for intense thunderstorms is the convective available potential energy (CAPE). Climate models project increases in summertime mean CAPE in the tropics and subtropics in response to global warming, but the physical mechanisms responsible for such increases and the implications for future thunderstorm activity remain uncertain. Here, we show that high percentiles of the CAPE distribution (CAPE extremes) also increase robustly with warming across the tropics and subtropics in an ensemble of state-of-the-art climate models, implying strong increases in the frequency of occurrence of environments conducive to intense thunderstorms in future climate projections. The increase in CAPE extremes is consistent with a recently proposed theoretical model in which CAPE depends on the influence of convective entrainment on the tropospheric lapse rate, and we demonstrate the importance of this influence for simulated CAPE extremes using a climate model in which the convective entrainment rate is varied. We further show that the theoretical model is able to account for the climatological relationship between CAPE and a measure of lower-tropospheric humidity in simulations and in observations. Our results provide a physical basis on which to understand projected future increases in intense thunderstorm potential, and they suggest that an important mechanism that contributes to such increases may be present in Earth's atmosphere. Published under the PNAS license.

  20. A Global Analysis of Deforestation in Moist Tropical Forest Protected Areas.

    Science.gov (United States)

    Spracklen, B D; Kalamandeen, M; Galbraith, D; Gloor, E; Spracklen, D V

    2015-01-01

    Protected areas (PAs) have been established to conserve tropical forests, but their effectiveness at reducing deforestation is uncertain. To explore this issue, we combined high resolution data of global forest loss over the period 2000-2012 with data on PAs. For each PA we quantified forest loss within the PA, in buffer zones 1, 5, 10 and 15 km outside the PA boundary as well as a 1 km buffer within the PA boundary. We analysed 3376 tropical and subtropical moist forest PAs in 56 countries over 4 continents. We found that 73% of PAs experienced substantial deforestation pressure, with >0.1% a(-1) forest loss in the outer 1 km buffer. Forest loss within PAs was greatest in Asia (0.25% a(-1)) compared to Africa (0.1% a(-1)), the Neotropics (0.1% a(-1)) and Australasia (Australia and Papua New Guinea; 0.03% a(-1)). We defined performance (P) of a PA as the ratio of forest loss in the inner 1 km buffer compared to the loss that would have occurred in the absence of the PA, calculated as the loss in the outer 1 km buffer corrected for any difference in deforestation pressure between the two buffers. To remove the potential bias due to terrain, we analysed a subset of PAs (n = 1804) where slope and elevation in inner and outer 1 km buffers were similar (within 1° and 100 m, respectively). We found 41% of PAs in this subset reduced forest loss in the inner buffer by at least 25% compared to the expected inner buffer forest loss (P<0.75). Median performance (P) of subset reserves was 0.87, meaning a reduction in forest loss within the PA of 13%. We found PAs were most effective in Australasia (P = 0.16), moderately successful in the Neotropics (P = 0.72) and Africa (p = 0.83), but ineffective in Asia (P = 1). We found many countries have PAs that give little or no protection to forest loss, particularly in parts of Asia, west Africa and central America. Across the tropics, the median effectiveness of PAs at the national level improved with gross domestic product per

  1. Measuring the burden of neglected tropical diseases: the global burden of disease framework.

    Directory of Open Access Journals (Sweden)

    Colin D Mathers

    2007-11-01

    Full Text Available Reliable, comparable information about the main causes of disease and injury in populations, and how these are changing, is a critical input for debates about priorities in the health sector. Traditional sources of information about the descriptive epidemiology of diseases, injuries, and risk factors are generally incomplete, fragmented, and of uncertain reliability and comparability. The Global Burden of Disease (GBD study has provided a conceptual and methodological framework to quantify and compare the health of populations using a summary measure of both mortality and disability, the disability-adjusted life year (DALY.This paper describes key features of the Global Burden of Disease analytic approach, which provides a standardized measurement framework to permit comparisons across diseases and injuries, as well as risk factors, and a systematic approach to the evaluation of data. The paper describes the evolution of the GBD, starting from the first study for the year 1990, summarizes the methodological improvements incorporated into GBD revisions for the years 2000-2004 carried out by the World Health Organization, and examines priorities and issues for the next major GBD study, funded by the Bill & Melinda Gates Foundation, and commencing in 2007.The paper presents an overview of summary results from the Global Burden of Disease study 2002, with a particular focus on the neglected tropical diseases, and also an overview of the comparative risk assessment for 26 global risk factors. Taken together, trypanosomiasis, Chagas disease, schistosomiasis, leishmaniasis, lymphatic filariasis, onchocerciasis, intestinal nematode infections, Japanese encephalitis, dengue, and leprosy accounted for an estimated 177,000 deaths worldwide in 2002, mostly in sub-Saharan Africa, and about 20 million DALYs, or 1.3% of the global burden of disease and injuries. Further research is currently underway to revise and update these estimates.

  2. Comparison of Explicitly Simulated and Downscaled Tropical Cyclone Activity in a High-Resolution Global Climate Model

    Directory of Open Access Journals (Sweden)

    Hirofumi Tomita

    2010-01-01

    Full Text Available The response of tropical cyclone activity to climate change is a matter of great inherent interest and practical importance. Most current global climate models are not, however, capable of adequately resolving tropical cyclones; this has led to the development of downscaling techniques designed to infer tropical cyclone activity from the large-scale fields produced by climate models. Here we compare the statistics of tropical cyclones simulated explicitly in a very high resolution (~14 km grid mesh global climate model to the results of one such downscaling technique driven by the same global model. This is done for a simulation of the current climate and also for a simulation of a climate warmed by the addition of carbon dioxide. The explicitly simulated and downscaled storms are similarly distributed in space, but the intensity distribution of the downscaled events has a somewhat longer high-intensity tail, owing to the higher resolution of the downscaling model. Both explicitly simulated and downscaled events show large increases in the frequency of events at the high-intensity ends of their respective intensity distributions, but the downscaled storms also show increases in low-intensity events, whereas the explicitly simulated weaker events decline in number. On the regional scale, there are large differences in the responses of the explicitly simulated and downscaled events to global warming. In particular, the power dissipation of downscaled events shows a 175% increase in the Atlantic, while the power dissipation of explicitly simulated events declines there.

  3. A framework of integrated hydrological and hydrodynamic models using synthetic rainfall for flash flood hazard mapping of ungauged catchments in tropical zones

    Directory of Open Access Journals (Sweden)

    W. Lohpaisankrit

    2016-05-01

    Full Text Available Flash flood hazard maps provide a scientific support to mitigate flash flood risk. The present study develops a practical framework with the help of integrated hydrological and hydrodynamic modelling in order to estimate the potential flash floods. We selected a small pilot catchment which has already suffered from flash floods in the past. This catchment is located in the Nan River basin, northern Thailand. Reliable meteorological and hydrometric data are missing in the catchment. Consequently, the entire upper basin of the main river was modelled with the help of the hydrological modelling system PANTA RHEI. In this basin, three monitoring stations are located along the main river. PANTA RHEI was calibrated and validated with the extreme flood events in June 2011 and July 2008, respectively. The results show a good agreement with the observed discharge data. In order to create potential flash flood scenarios, synthetic rainfall series were derived from temporal rainfall patterns based on the radar-rainfall observation and different rainfall depths from regional rainfall frequency analysis. The temporal rainfall patterns were characterized by catchment-averaged rainfall series selected from 13 rainstorms in 2008 and 2011 within the region. For regional rainfall frequency analysis, the well-known L-moments approach and related criteria were used to examine extremely climatic homogeneity of the region. According to the L-moments approach, Generalized Pareto distribution was recognized as the regional frequency distribution. The synthetic rainfall series were fed into the PANTA RHEI model. The simulated results from PANTA RHEI were provided to a 2-D hydrodynamic model (MEADFLOW, and various simulations were performed. Results from the integrated modelling framework are used in the ongoing study to regionalize and map the spatial distribution of flash flood hazards with four levels of flood severities. As an overall outcome, the presented framework

  4. Variability in Global-Scale Circulations and Their Impacts on Atlantic Tropical Cyclone Activity

    National Research Council Canada - National Science Library

    Rosencrans, Matthew J

    2006-01-01

    ... favorable or unfavorable for tropical cyclone formation. Favorable impacts on tropical Atlantic circulation characteristics are defined by an increase in low-level relative vorticity, a decrease in westerly vertical wind shear, and increased convection...

  5. Ocean cleaning stations under a changing climate: biological responses of tropical and temperate fish-cleaner shrimp to global warming.

    Science.gov (United States)

    Rosa, Rui; Lopes, Ana Rita; Pimentel, Marta; Faleiro, Filipa; Baptista, Miguel; Trübenbach, Katja; Narciso, Luis; Dionísio, Gisela; Pegado, Maria Rita; Repolho, Tiago; Calado, Ricardo; Diniz, Mário

    2014-10-01

    Cleaning symbioses play an important role in the health of certain coastal marine communities. These interspecific associations often occur at specific sites (cleaning stations) where a cleaner organism (commonly a fish or shrimp) removes ectoparasites/damaged tissue from a 'client' (a larger cooperating fish). At present, the potential impact of climate change on the fitness of cleaner organisms remains unknown. This study investigated the physiological and biochemical responses of tropical (Lysmata amboinensis) and temperate (L. seticaudata) cleaner shrimp to global warming. Specifically, thermal limits (CTMax), metabolic rates, thermal sensitivity, heat shock response (HSR), lipid peroxidation [malondialdehyde (MDA) concentration], lactate levels, antioxidant (GST, SOD and catalase) and digestive enzyme activities (trypsin and alkaline phosphatase) at current and warming (+3 °C) temperature conditions. In contrast to the temperate species, CTMax values decreased significantly from current (24-27 °C) to warming temperature conditions (30 °C) for the tropical shrimp, where metabolic thermal sensitivity was affected and the HSR was significantly reduced. MDA levels in tropical shrimp increased dramatically, indicating extreme cellular lipid peroxidation, which was not observed in the temperate shrimp. Lactate levels, GST and SOD activities were significantly enhanced within the muscle tissue of the tropical species. Digestive enzyme activities in the hepatopancreas of both species were significantly decreased by warmer temperatures. Our data suggest that the tropical cleaner shrimp will be more vulnerable to global warming than the temperate Lysmata seticaudata; the latter evolved in a relatively unstable environment with seasonal thermal variations that may have conferred greater adaptive plasticity. Thus, tropical cleaning symbioses may be challenged at a greater degree by warming-related anthropogenic forcing, with potential cascading effects on the health

  6. Terrestrial Water Flux Responses to Global Warming in Tropical Rainforest Area

    Science.gov (United States)

    Lan, C. W.; Lo, M. H.; Kumar, S.

    2016-12-01

    Precipitation extremes are expected to become more frequent in the changing global climate, which may considerably affect the terrestrial hydrological cycle. In this study, Coupled Model Intercomparison Project Phase 5 (CMIP5) archives have been examined to explore the changes in normalized terrestrial water fluxes (TWFn) (precipitation minus evapotranspiration minus total runoff, divided by the precipitation climatology) in three tropical rainforest areas: Maritime Continent, Congo, and Amazon. Results reveal that a higher frequency of intense precipitation events is predicted for the Maritime Continent in the future climate than in the present climate, but not for the Amazon or Congo rainforests. Nonlinear responses to extreme precipitation lead to a reduced groundwater recharge and a proportionately greater amount of direct runoff, particularly for the Maritime Continent, where both the amount and intensity of precipitation increase under global warming. We suggest that the nonlinear response is related to the existence of a higher near-surface soil moisture over the Maritime Continent than that over the Amazon and Congo rainforests. The wetter soil over the Maritime Continent also leads to an increased subsurface runoff. Thus, increased precipitation extremes and concomitantly reduced terrestrial water fluxes (TWF) lead to an intensified hydrological cycle for the Maritime Continent. This has the potential to result in a strong temporal heterogeneity in soil water distribution affecting the ecosystem of the rainforest region and increasing the risk of flooding and/or landslides.

  7. Terrestrial water flux responses to global warming in tropical rainforest areas

    Science.gov (United States)

    Lan, Chia-Wei; Lo, Min-Hui; Chou, Chia; Kumar, Sanjiv

    2016-05-01

    Precipitation extremes are expected to become more frequent in the changing global climate, which may considerably affect the terrestrial hydrological cycle. In this study, Coupled Model Intercomparison Project Phase 5 archives have been examined to explore the changes in normalized terrestrial water fluxes (precipitation minus evapotranspiration minus total runoff, divided by the precipitation climatology) in three tropical rainforest areas: Maritime Continent, Congo, and Amazon. Results show that a higher frequency of intense precipitation events is predicted for the Maritime Continent in the future climate than in the present climate, but not for the Amazon or Congo rainforests. Nonlinear responses to extreme precipitation lead to a reduced groundwater recharge and a proportionately greater amount of direct runoff, particularly for the Maritime Continent, where both the amount and intensity of precipitation increase under global warming. We suggest that the nonlinear response is related to the existence of a higher near-surface soil moisture over the Maritime Continent than that over the Amazon and Congo rainforests. The wetter soil over the Maritime Continent also leads to an increased subsurface runoff. Thus, increased precipitation extremes and concomitantly reduced terrestrial water fluxes lead to an intensified hydrological cycle for the Maritime Continent. This has the potential to result in a strong temporal heterogeneity in soil water distribution affecting the ecosystem of the rainforest region and increasing the risk of flooding and/or landslides.

  8. Global aspirations, local realities: the role of social science research in controlling neglected tropical diseases.

    Science.gov (United States)

    Bardosh, Kevin

    2014-01-01

    Neglected Tropical Diseases (NTDs) are both drivers and manifestations of poverty and social inequality. Increased advocacy efforts since the mid-2000s have led to ambitious new control and elimination targets set for 2020 by the World Health Organisation. While these global aspirations represent significant policy momentum, there are multifaceted challenges in controlling infectious diseases in resource-poor local contexts that need to be acknowledged, understood and engaged. However a number of recent publications have emphasised the "neglected" status of applied social science research on NTDs. In light of the 2020 targets, this paper explores the social science/NTD literature and unpacks some of the ways in which social inquiry can help support effective and sustainable interventions. Five priority areas are discussed, including on policy processes, health systems capacity, compliance and resistance to interventions, education and behaviour change, and community participation. The paper shows that despite the multifaceted value of having anthropological and sociological perspectives integrated into NTD programmes, contemporary efforts underutilise this potential. This is reflective of the dominance of top-down information flows and technocratic approaches in global health. To counter this tendency, social research needs to be more than an afterthought; integrating social inquiry into the planning, monitoring and evaluating process will help ensure that flexibility and adaptability to local realities are built into interventions. More emphasis on social science perspectives can also help link NTD control to broader social determinants of health, especially important given the major social and economic inequalities that continue to underpin transmission in endemic countries.

  9. Recent Trends of the Tropical Hydrological Cycle Inferred from Global Precipitation Climatology Project and International Satellite Cloud Climatology Project data

    Science.gov (United States)

    Zhou, Y. P.; Xu, Kuan-Man; Sud, Y. C.; Betts, A. K.

    2011-01-01

    Scores of modeling studies have shown that increasing greenhouse gases in the atmosphere impact the global hydrologic cycle; however, disagreements on regional scales are large, and thus the simulated trends of such impacts, even for regions as large as the tropics, remain uncertain. The present investigation attempts to examine such trends in the observations using satellite data products comprising Global Precipitation Climatology Project precipitation and International Satellite Cloud Climatology Project cloud and radiation. Specifically, evolving trends of the tropical hydrological cycle over the last 20-30 years were identified and analyzed. The results show (1) intensification of tropical precipitation in the rising regions of the Walker and Hadley circulations and weakening over the sinking regions of the associated overturning circulation; (2) poleward shift of the subtropical dry zones (up to 2deg/decade in June-July-August (JJA) in the Northern Hemisphere and 0.3-0.7deg/decade in June-July-August and September-October-November in the Southern Hemisphere) consistent with an overall broadening of the Hadley circulation; and (3) significant poleward migration (0.9-1.7deg/decade) of cloud boundaries of Hadley cell and plausible narrowing of the high cloudiness in the Intertropical Convergence Zone region in some seasons. These results support findings of some of the previous studies that showed strengthening of the tropical hydrological cycle and expansion of the Hadley cell that are potentially related to the recent global warming trends.

  10. Toward an open-access global database for mapping, control, and surveillance of neglected tropical diseases.

    Directory of Open Access Journals (Sweden)

    Eveline Hürlimann

    2011-12-01

    Full Text Available BACKGROUND: After many years of general neglect, interest has grown and efforts came under way for the mapping, control, surveillance, and eventual elimination of neglected tropical diseases (NTDs. Disease risk estimates are a key feature to target control interventions, and serve as a benchmark for monitoring and evaluation. What is currently missing is a georeferenced global database for NTDs providing open-access to the available survey data that is constantly updated and can be utilized by researchers and disease control managers to support other relevant stakeholders. We describe the steps taken toward the development of such a database that can be employed for spatial disease risk modeling and control of NTDs. METHODOLOGY: With an emphasis on schistosomiasis in Africa, we systematically searched the literature (peer-reviewed journals and 'grey literature', contacted Ministries of Health and research institutions in schistosomiasis-endemic countries for location-specific prevalence data and survey details (e.g., study population, year of survey and diagnostic techniques. The data were extracted, georeferenced, and stored in a MySQL database with a web interface allowing free database access and data management. PRINCIPAL FINDINGS: At the beginning of 2011, our database contained more than 12,000 georeferenced schistosomiasis survey locations from 35 African countries available under http://www.gntd.org. Currently, the database is expanded to a global repository, including a host of other NTDs, e.g. soil-transmitted helminthiasis and leishmaniasis. CONCLUSIONS: An open-access, spatially explicit NTD database offers unique opportunities for disease risk modeling, targeting control interventions, disease monitoring, and surveillance. Moreover, it allows for detailed geostatistical analyses of disease distribution in space and time. With an initial focus on schistosomiasis in Africa, we demonstrate the proof-of-concept that the establishment

  11. Toward an Open-Access Global Database for Mapping, Control, and Surveillance of Neglected Tropical Diseases

    Science.gov (United States)

    Hürlimann, Eveline; Schur, Nadine; Boutsika, Konstantina; Stensgaard, Anna-Sofie; Laserna de Himpsl, Maiti; Ziegelbauer, Kathrin; Laizer, Nassor; Camenzind, Lukas; Di Pasquale, Aurelio; Ekpo, Uwem F.; Simoonga, Christopher; Mushinge, Gabriel; Saarnak, Christopher F. L.; Utzinger, Jürg; Kristensen, Thomas K.; Vounatsou, Penelope

    2011-01-01

    Background After many years of general neglect, interest has grown and efforts came under way for the mapping, control, surveillance, and eventual elimination of neglected tropical diseases (NTDs). Disease risk estimates are a key feature to target control interventions, and serve as a benchmark for monitoring and evaluation. What is currently missing is a georeferenced global database for NTDs providing open-access to the available survey data that is constantly updated and can be utilized by researchers and disease control managers to support other relevant stakeholders. We describe the steps taken toward the development of such a database that can be employed for spatial disease risk modeling and control of NTDs. Methodology With an emphasis on schistosomiasis in Africa, we systematically searched the literature (peer-reviewed journals and ‘grey literature’), contacted Ministries of Health and research institutions in schistosomiasis-endemic countries for location-specific prevalence data and survey details (e.g., study population, year of survey and diagnostic techniques). The data were extracted, georeferenced, and stored in a MySQL database with a web interface allowing free database access and data management. Principal Findings At the beginning of 2011, our database contained more than 12,000 georeferenced schistosomiasis survey locations from 35 African countries available under http://www.gntd.org. Currently, the database is expanded to a global repository, including a host of other NTDs, e.g. soil-transmitted helminthiasis and leishmaniasis. Conclusions An open-access, spatially explicit NTD database offers unique opportunities for disease risk modeling, targeting control interventions, disease monitoring, and surveillance. Moreover, it allows for detailed geostatistical analyses of disease distribution in space and time. With an initial focus on schistosomiasis in Africa, we demonstrate the proof-of-concept that the establishment and running of a

  12. Quantitative precipitation climatology over the Himalayas by using Precipitation Radar on Tropical Rainfall Measuring Mission (TRMM) and a dense network of rain-gauges

    Science.gov (United States)

    Yatagai, A.

    2010-09-01

    Quantified grid observation data at a reasonable resolution are indispensable for environmental monitoring as well as for predicting future change of mountain environment. However quantified datasets have not been available for the Himalayan region. Hence we evaluate climatological precipitation data around the Himalayas by using Precipitation Radar (PR) data acquired by the Tropical Rainfall Measuring Mission (TRMM) over 10 years of observation. To validate and adjust these patterns, we used a dense network of rain gauges collected by the Asian Precipitation—Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE Water Resources) project (http://www.chikyu.ac.jp/precip/). We used more than 2600 stations which have more than 10-year monthly precipitation over the Himalayan region (75E-105E, 20-36N) including country data of Nepal, Bangladesh, Bhutan, Pakistan, India, Myanmar, and China. The region we studied is so topographically complicated that horizontal patterns are not uniform. Therefore, every path data of PR2A25 (near-surface rain) was averaged in a 0.05-degree grid and a 10-year monthly average was computed (hereafter we call PR). On the other hand, for rain-gauge, we first computed cell averages if each 0.05-degree grid cell has 10 years observation or more. Here we refer to the 0.05-degree rain-gauge climatology data as RG data. On the basis of comparisons between the RG and PR composite values, we defined the parameters of the regressions to correct the monthly climatology value based on the rain gauge observations. Compared with the RG, the PR systematically underestimated precipitation by 28-38% in summer (July-September). Significant correlation between TRMM/PR and rain-gauge data was found for all months, but the correlation is relatively low in winter. The relationship is investigated for different elevation zones, and the PR was found to underestimate RG data in most zones, except for certain zones in

  13. Working to overcome the global impact of neglected tropical diseases: first WHO report on neglected tropical diseases

    National Research Council Canada - National Science Library

    Daumerie, Denis; Savioli, Lorenzo; Crompton, D. W. T

    2010-01-01

    ... more. These ancient companions of poverty weaken impoverished populations, frustrate the achievement of health in the Millennium Development Goals and impede global health and economies has convinced...

  14. RAINFALL ANALYSIS IN KLANG RIVER BASIN USING CONTINUOUS WAVELET TRANSFORM

    Directory of Open Access Journals (Sweden)

    Celso A. G. Santos

    2016-01-01

    Full Text Available The rainfall characteristics within Klang River basin is analyzed by the continuous wavelet transform using monthly rainfall data (1997–2009 from a raingauge and also using daily rainfall data (1998–2013 from the Tropical Rainfall Measuring Mission (TRMM. The wavelet power spectrum showed that some frequency components were presented within the rainfall time series, but the observed time series is short to provide accurate information, thus the daily TRMM rainfall data were used. In such analysis, two main frequency components, i.e., 6 and 12 months, showed to be present during the entire period of 16 years. Such semiannual and annual frequencies were confirmed by the global wavelet power spectra. Finally, the modulation in the 8–16-month and 256– 512-day bands were examined by an average of all scales between 8 and 16 months, and 256 and 512 days, respectively, giving a measure of the average monthly/daily variance versus time, where the periods with low or high variance could be identified.

  15. Rainfall Modification by Urban Areas: New Perspectives from TRMM

    Science.gov (United States)

    Shepherd, J. Marshall; Pierce, Harold F.; Negri, Andrew

    2002-01-01

    Data from the Tropical Rainfall Measuring Mission's (TRMM) Precipitation Radar (PR) were employed to identify warm season rainfall (1998-2000) patterns around Atlanta, Montgomery, Nashville, San Antonio, Waco, and Dallas. Results reveal an average increase of -28% in monthly rainfall rates within 30-60 kilometers downwind of the metropolis with a modest increase of 5.6% over the metropolis. Portions of the downwind area exhibit increases as high as 51%. The percentage changes are relative to an upwind control area. It was also found that maximum rainfall rates in the downwind impact area exceeded the mean value in the upwind control area by 48% - 116%. The maximum value was generally found at an average distance of 39 km from the edge of the urban center or 64 km from the center of the city. Results are consistent with METROMEX studies of St. Louis almost two decades ago and with more recent studies near Atlanta. Future work is extending the investigation to Phoenix, Arizona, an arid U.S. city, and several international cities like Mexico City, Johannesburg, and Brasilia. The study establishes the possibility of utilizing satellite-based rainfall estimates for examining rainfall modification by urban areas on global scales and over longer time periods. Such research has implications for weather forecasting, urban planning, water resource management, and understanding human impact on the environment and climate.

  16. Global analysis of threat status reveals higher extinction risk in tropical than in temperate bird sister species

    Directory of Open Access Journals (Sweden)

    Reif Jiří

    2016-06-01

    Full Text Available Given increasing pressures upon biodiversity, identification of species’ traits related to elevated extinction risk is useful for more efficient allocation of limited resources for nature conservation. Despite its need, such a global analysis was lacking in the case of birds. Therefore, we performed this exercise for avian sister species using information about their global extinction risk from IUCN Red List. We focused on 113 pairs of sister species, each containing a threatened and an unthreatened species to factor out the effects of common evolutionary history on the revealed relationship. We collected data on five traits with expected relationships to species’ extinction risk based on previous studies performed at regional or national levels: breeding habitat (recognizing forest, grassland, wetland and oceanic species, latitudinal range position (temperate and tropics species, migration strategy (migratory and resident species, diet (carnivorous, insectivorous, herbivorous and omnivorous species and body mass. We related the extinction risk using IUCN threat level categories to species’ traits using generalised linear mixed effects models expecting lower risk for forest, temperate, omnivorous and smaller-bodied species. Our expectation was confirmed only in the case of latitudinal range position, as we revealed higher threat level for tropical than for temperate species. This relationship was robust to different methods of threat level expression and cannot be explained by a simple association of high bird species richness with the tropical zone. Instead, it seems that tropical species are more threatened because of their intrinsic characteristics such as slow life histories, adaptations to stable environments and small geographic ranges. These characteristics are obviously disadvantageous in conditions of current human-induced environmental perturbations. Moreover, given the absence of habitat effects, our study indicates that such

  17. Rapid upslope shifts in New Guinean birds illustrate strong distributional responses of tropical montane species to global warming

    Science.gov (United States)

    Freeman, Benjamin G.; Class Freeman, Alexandra M.

    2014-01-01

    Temperate-zone species have responded to warming temperatures by shifting their distributions poleward and upslope. Thermal tolerance data suggests that tropical species may respond to warming temperatures even more strongly than temperate-zone species, but this prediction has yet to be tested. We addressed this data gap by conducting resurveys to measure distributional responses to temperature increases in the elevational limits of the avifaunas of two geographically and faunally independent New Guinean mountains, Mt. Karimui and Karkar Island, 47 and 44 y after they were originally surveyed. Although species richness is roughly five times greater on mainland Mt. Karimui than oceanic Karkar Island, distributional shifts at both sites were similar: upslope shifts averaged 113 m (Mt. Karimui) and 152 m (Karkar Island) for upper limits and 95 m (Mt. Karimui) and 123 m (Karkar Island) for lower limits. We incorporated these results into a metaanalysis to compare distributional responses of tropical species with those of temperate-zone species, finding that average upslope shifts in tropical montane species match local temperature increases significantly more closely than in temperate-zone montane species. That tropical species appear to be strong responders has global conservation implications and provides empirical support to hitherto untested models that predict widespread extinctions in upper-elevation tropical endemics with small ranges. PMID:24550460

  18. The influence of biogenic emissions from Africa on tropical tropospheric ozone during 2006: a global modeling study

    Directory of Open Access Journals (Sweden)

    J. E. Williams

    2009-08-01

    Full Text Available We have performed simulations using a 3-D global chemistry-transport model to investigate the influence that biogenic emissions from the African continent exert on the composition of the troposphere in the tropical region. For this purpose we have applied two recently developed biogenic emission inventories provided for use in large-scale global models (Granier et al., 2005; Lathière et al., 2006 whose seasonality and temporal distribution for biogenic emissions of isoprene, other volatile organic compounds and NO is markedly different. The use of the 12 year average values for biogenic emissions provided by Lathière et al. (2006 results in an increase in the amount of nitrogen sequestrated into longer lived reservoir compounds which contributes to the reduction in the tropospheric ozone burden in the tropics. The associated re-partitioning of nitrogen between PAN, HNO3 and organic nitrates also results in a ~5% increase in the loss of nitrogen by wet deposition. At a global scale there is a reduction in the oxidizing capacity of the model atmosphere which increases the atmospheric lifetimes of CH4 and CO by ~1.5% and ~4%, respectively. Comparisons against a range of different measurements indicate that applying the 12 year average of Lathière et al. (2006 improves the performance of TM4_AMMA for 2006 in the tropics. By the use of sensitivity studies we show that the release of NO from soils in Africa accounts for between ~2–45% of tropospheric ozone in the African troposphere, ~10% in the upper troposphere and between ~5–20% of the tropical tropospheric ozone column over the tropical Atlantic Ocean. The subsequent reduction in OH over the source regions allows enhanced transport of CO out of the region. For biogenic volatile organic C1 to C3 species released from Africa, the effects on tropical tropospheric ozone are rather limited, although this source contributes to the global burden of VOC by between ~2–4% and

  19. Global composites of surface wind speeds in tropical cyclones based on a 12 year scatterometer database

    Science.gov (United States)

    Klotz, Bradley W.; Jiang, Haiyan

    2016-10-01

    A 12 year global database of rain-corrected satellite scatterometer surface winds for tropical cyclones (TCs) is used to produce composites of TC surface wind speed distributions relative to vertical wind shear and storm motion directions in each TC-prone basin and various TC intensity stages. These composites corroborate ideas presented in earlier studies, where maxima are located right of motion in the Earth-relative framework. The entire TC surface wind asymmetry is down motion left for all basins and for lower strength TCs after removing the motion vector. Relative to the shear direction, the motion-removed composites indicate that the surface wind asymmetry is located down shear left for the outer region of all TCs, but for the inner-core region it varies from left of shear to down shear right for different basin and TC intensity groups. Quantification of the surface wind asymmetric structure in further stratifications is a necessary next step for this scatterometer data set.

  20. Asymmetries of poverty: why global burden of disease valuations underestimate the burden of neglected tropical diseases.

    Directory of Open Access Journals (Sweden)

    Charles H King

    2008-03-01

    Full Text Available The disability-adjusted life year (DALY initially appeared attractive as a health metric in the Global Burden of Disease (GBD program, as it purports to be a comprehensive health assessment that encompassed premature mortality, morbidity, impairment, and disability. It was originally thought that the DALY would be useful in policy settings, reflecting normative valuations as a standardized unit of ill health. However, the design of the DALY and its use in policy estimates contain inherent flaws that result in systematic undervaluation of the importance of chronic diseases, such as many of the neglected tropical diseases (NTDs, in world health. The conceptual design of the DALY comes out of a perspective largely focused on the individual risk rather than the ecology of disease, thus failing to acknowledge the implications of context on the burden of disease for the poor. It is nonrepresentative of the impact of poverty on disability, which results in the significant underestimation of disability weights for chronic diseases such as the NTDs. Finally, the application of the DALY in policy estimates does not account for the nonlinear effects of poverty in the cost-utility analysis of disease control, effectively discounting the utility of comprehensively treating NTDs. The present DALY framework needs to be substantially revised if the GBD is to become a valid and useful system for determining health priorities.

  1. Mitochondrial Phylogenomics Resolves the Global Spread of Higher Termites, Ecosystem Engineers of the Tropics.

    Science.gov (United States)

    Bourguignon, Thomas; Lo, Nathan; Šobotník, Jan; Ho, Simon Y W; Iqbal, Naeem; Coissac, Eric; Lee, Maria; Jendryka, Martin M; Sillam-Dussès, David; Krížková, Barbora; Roisin, Yves; Evans, Theodore A

    2017-03-01

    The higher termites (Termitidae) are keystone species and ecosystem engineers. They have exceptional biomass and play important roles in decomposition of dead plant matter, in soil manipulation, and as the primary food for many animals, especially in the tropics. Higher termites are most diverse in rainforests, with estimated origins in the late Eocene (∼54 Ma), postdating the breakup of Pangaea and Gondwana when most continents became separated. Since termites are poor fliers, their origin and spread across the globe requires alternative explanation. Here, we show that higher termites originated 42-54 Ma in Africa and subsequently underwent at least 24 dispersal events between the continents in two main periods. Using phylogenetic analyses of mitochondrial genomes from 415 species, including all higher termite taxonomic and feeding groups, we inferred 10 dispersal events to South America and Asia 35-23 Ma, coinciding with the sharp decrease in global temperature, sea level, and rainforest cover in the Oligocene. After global temperatures increased, 23-5 Ma, there was only one more dispersal to South America but 11 to Asia and Australia, and one dispersal back to Africa. Most of these dispersal events were transoceanic and might have occurred via floating logs. The spread of higher termites across oceans was helped by the novel ecological opportunities brought about by environmental and ecosystem change, and led termites to become one of the few insect groups with specialized mammal predators. This has parallels with modern invasive species that have been able to thrive in human-impacted ecosystems. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Global diversification of a tropical plant growth form: environmental correlates and historical contingencies in climbing palms.

    Science.gov (United States)

    Couvreur, Thomas L P; Kissling, W Daniel; Condamine, Fabien L; Svenning, Jens-Christian; Rowe, Nick P; Baker, William J

    2014-01-01

    Tropical rain forests (TRF) are the most diverse terrestrial biome on Earth, but the diversification dynamics of their constituent growth forms remain largely unexplored. Climbing plants contribute significantly to species diversity and ecosystem processes in TRF. We investigate the broad-scale patterns and drivers of species richness as well as the diversification history of climbing and non-climbing palms (Arecaceae). We quantify to what extent macroecological diversity patterns are related to contemporary climate, forest canopy height, and paleoclimatic changes. We test whether diversification rates are higher for climbing than non-climbing palms and estimate the origin of the climbing habit. Climbers account for 22% of global palm species diversity, mostly concentrated in Southeast Asia. Global variation in climbing palm species richness can be partly explained by past and present-day climate and rain forest canopy height, but regional differences in residual species richness after accounting for current and past differences in environment suggest a strong role of historical contingencies in climbing palm diversification. Climbing palms show a higher net diversification rate than non-climbers. Diversification analyses of palms detected a diversification rate increase along the branches leading to the most species-rich clade of climbers. Ancestral character reconstructions revealed that the climbing habit originated between early Eocene and Miocene. These results imply that changes from non-climbing to climbing habits may have played an important role in palm diversification, resulting in the origin of one fifth of all palm species. We suggest that, in addition to current climate and paleoclimatic changes after the late Neogene, present-day diversity of climbing palms can be explained by morpho-anatomical innovations, the biogeographic history of Southeast Asia, and/or ecological opportunities due to the diversification of high-stature dipterocarps in Asian TRFs.

  3. The relative contributions of tropical Pacific sea surface temperatures and atmospheric internal variability to the recent global warming hiatus

    Science.gov (United States)

    Deser, Clara; Guo, Ruixia; Lehner, Flavio

    2017-08-01

    The recent slowdown in global mean surface temperature (GMST) warming during boreal winter is examined from a regional perspective using 10-member initial-condition ensembles with two global coupled climate models in which observed tropical Pacific sea surface temperature anomalies (TPAC SSTAs) and radiative forcings are specified. Both models show considerable diversity in their surface air temperature (SAT) trend patterns across the members, attesting to the importance of internal variability beyond the tropical Pacific that is superimposed upon the response to TPAC SSTA and radiative forcing. Only one model shows a close relationship between the realism of its simulated GMST trends and SAT trend patterns. In this model, Eurasian cooling plays a dominant role in determining the GMST trend amplitude, just as in nature. In the most realistic member, intrinsic atmospheric dynamics and teleconnections forced by TPAC SSTA cause cooling over Eurasia (and North America), and contribute equally to its GMST trend.

  4. Heavy Rainfall Episodes in the Eastern Northeast Brazil Linked to Large-Scale Ocean-Atmosphere Conditions in the Tropical Atlantic

    Directory of Open Access Journals (Sweden)

    Yves K. Kouadio

    2012-01-01

    Full Text Available Relationships between simultaneous occurrences of distinctive atmospheric easterly wave (EW signatures that cross the south-equatorial Atlantic, intense mesoscale convective systems (lifespan > 2 hour that propagate westward over the western south-equatorial Atlantic, and subsequent strong rainfall episodes (anomaly > 10 mm·day−1 that occur in eastern Northeast Brazil (ENEB are investigated. Using a simple diagnostic analysis, twelve cases with EW lifespan ranging between 3 and 8 days and a mean velocity of 8 m·s−1 were selected and documented during each rainy season of 2004, 2005, and 2006. These cases, which represent 50% of the total number of strong rainfall episodes and 60% of the rainfall amount over the ENEB, were concomitant with an acceleration of the trade winds over the south-equatorial Atlantic, an excess of moisture transported westward from Africa to America, and a strengthening of the convective activity in the oceanic region close to Brazil. Most of these episodes occurred during positive sea surface temperature anomaly patterns over the entire south-equatorial Atlantic and low-frequency warm conditions within the oceanic mixing layer. A real-time monitoring and the simulation of this ocean-atmosphere relationship could help in forecasting such dramatic rainfall events.

  5. From Public to Private Standards for Tropical Commodities: A Century of Global Discourse on Land Governance on the Forest Frontier

    Directory of Open Access Journals (Sweden)

    Derek Byerlee

    2015-04-01

    Full Text Available Globalization and commodity exports have a long history in affecting land use changes and land rights on the tropical forest frontier. This paper reviews a century of social and environmental discourse around land issues for four commodities grown in the humid tropics—rubber, cocoa, oil palm and bananas. States have exercised sovereign rights over land and forest resources and the outcomes for deforestation and land rights of existing users have been quite varied depending on local institutional contexts and political economy. In the current period of globalization, as land use changes associated with tropical commodities have accelerated, land issues are now at center stage in the global discourse. However, efforts to protect forests and the rights of local communities and indigenous groups continue to be ad hoc and codification of minimum standards and their implementation remains a work in progress. Given a widespread failure of state directed policies and institutions to curb deforestation and protect land rights, the private sector, with the exception of the rubber industry, is emphasizing voluntary standards to certify sustainability of their products. This is an important step but expectations that they will effectively address concerns about the impact of tropical commodities expansion might be too high, given their voluntary nature, demand constraints, and the challenge of including smallholders. It is also doubtful that private standards can more than partially compensate for long standing weaknesses in land governance and institutions on the forest frontier.

  6. On the Land-Ocean Contrast of Tropical Convection and Microphysics Statistics Derived from TRMM Satellite Signals and Global Storm-Resolving Models

    Science.gov (United States)

    Matsui, Toshihisa; Chern, Jiun-Dar; Tao, Wei-Kuo; Lang, Stephen E.; Satoh, Masaki; Hashino, Tempei; Kubota, Takuji

    2016-01-01

    A 14-year climatology of Tropical Rainfall Measuring Mission (TRMM) collocated multi-sensor signal statistics reveal a distinct land-ocean contrast as well as geographical variability of precipitation type, intensity, and microphysics. Microphysics information inferred from the TRMM precipitation radar and Microwave Imager (TMI) show a large land-ocean contrast for the deep category, suggesting continental convective vigor. Over land, TRMM shows higher echo-top heights and larger maximum echoes, suggesting taller storms and more intense precipitation, as well as larger microwave scattering, suggesting the presence of morelarger frozen convective hydrometeors. This strong land-ocean contrast in deep convection is invariant over seasonal and multi-year time-scales. Consequently, relatively short-term simulations from two global storm-resolving models can be evaluated in terms of their land-ocean statistics using the TRMM Triple-sensor Three-step Evaluation via a satellite simulator. The models evaluated are the NASA Multi-scale Modeling Framework (MMF) and the Non-hydrostatic Icosahedral Cloud Atmospheric Model (NICAM). While both simulations can represent convective land-ocean contrasts in warm precipitation to some extent, near-surface conditions over land are relatively moisture in NICAM than MMF, which appears to be the key driver in the divergent warm precipitation results between the two models. Both the MMF and NICAM produced similar frequencies of large CAPE between land and ocean. The dry MMF boundary layer enhanced microwave scattering signals over land, but only NICAM had an enhanced deep convection frequency over land. Neither model could reproduce a realistic land-ocean contrast in in deep convective precipitation microphysics. A realistic contrast between land and ocean remains an issue in global storm-resolving modeling.

  7. Comparing the urbanization and global warming impacts on extreme rainfall characteristics in Southern China Pearl River Delta megacity based on dynamical downscaling

    Science.gov (United States)

    Fung, K. Y.; Tam, C. Y.; Wang, Z.

    2017-12-01

    It is well known that urban land use can significantly influence the local temperature, precipitation and meteorology through altering land-atmosphere exchange of momentum, moisture and heat in urban areas. In recent decades, there has been a substantial increase ( 5-10%) on the intensity of extreme rainfall over Southeast China; it is projected to increase further according to the latest IPCC reports. In this study, we assess how urbanization and global warming together might impact on heavy precipitation characteristics over the highly urbanized Pearl River Delta (PRD) megacity, located in southern China. This is done by dynamically downscaling GFDL-ESM2M simulations for the present and future (RCP8.5) climate scenarios, using the Weather Research and Forecasting (WRF) model coupled with a single-layer urban canopy model (UCM). Over the PRD area, the WRF model is integrated at a resolution of 2km x 2km. To focus on extreme events, episodes covering daily rainfall intensity above the 99th percentile in Southeast China in the GFDL-ESM2M daily precipitation datasets were first identified. These extreme episodes were then dynamically downscaled in two parallel experiments with the following model designs: one with anthropogenic heat flux (AH) = 0 Wm-2 and the other with peak AH = 300 Wm-2 in the AH diurnal cycle over the urban domain. Results show that, with AH in urban area, the urban 2m-temperature can rise by about 2oC. This in turn leads to an increase of the mean as well as the extreme rain rates by 10-15% in urban domain. The latter is comparable to the impact of global warming alone, according to downscaling experiments for the RCP8.5 scenario. Implications of our results on urban effects on extreme rainfall under a warming background climate will be discussed.

  8. Future Urban Climate Projection in A Tropical Megacity Based on Global and Regional Scenarios

    Science.gov (United States)

    Darmanto, N. S.; Varquez, A. C. G.; Kanda, M.

    2017-12-01

    Cities in Asian developing countries experience rapid transformation in urban morphology and energy consumption, which correspondingly affects urban climate. Weather Research and Forecasting (WRF) Model coupled with improved single-layer urban canopy model incorporating realistic distribution of urban parameters and anthropogenic heat emission (AHE) in the tropic Jakarta Greater Area was conducted. Simulation was conducted during the dry months from 2006 to 2015 and agreed well with point and satellite observation. The same technology coupled with pseudo global warming (PGW) method based on representative concentration pathways (RCP) scenario 2.6 and 8.5 was conducted to produce futuristic climate condition in 2050. Projected urban morphology and AHE in 2050s were constructed using regional urban growing model with shared socioeconomic pathways (SSP) among its inputs. Compact future urban configuration, based on SSP1, was coupled to RCP2.6. Unrestrained future urban configuration, based on SSP3, was coupled to RCP8.5. Results show that background warming from RCP 2.6 and 8.5 will increase background temperature by 0.55°C and 1.2°C throughout the region, respectively. Future projection of urban sprawl results to an additional 0.3°C and 0.5°C increase on average, with maximum increase of 1.1°C and 1.3°C due to urban effect for RCP2.6/compact and RCP8.5/unrestrained, respectively. Higher moisture content in urban area is indicated in the future due to higher evaporation. Change in urban roughness is likely affect slower wind velocity in urban area and sea breeze front inland penetration the future compare with current condition. Acknowledgement: This research was supported by the Environment Research and Technology Development Fund (S-14) of the Ministry of the Environment, Japan.

  9. Impacts of the leading modes of tropical Indian Ocean sea surface temperature anomaly on sub-seasonal evolution of the circulation and rainfall over East Asia during boreal spring and summer

    Science.gov (United States)

    Liu, Senfeng; Duan, Anmin

    2017-02-01

    The two leading modes of the interannual variability of the tropical Indian Ocean (TIO) sea surface temperature (SST) anomaly are the Indian Ocean basin mode (IOBM) and the Indian Ocean dipole mode (IODM) from March to August. In this paper, the relationship between the TIO SST anomaly and the sub-seasonal evolution of the circulation and rainfall over East Asia during boreal spring and summer is investigated by using correlation analysis and composite analysis based on multi-source observation data from 1979 to 2013, together with numerical simulations from an atmospheric general circulation model. The results indicate that the impacts of the IOBM on the circulation and rainfall over East Asia vary remarkably from spring to summer. The anomalous anticyclone over the tropical Northwest Pacific induced by the warm IOBM is closely linked with the Pacific-Japan or East Asia-Pacific teleconnection pattern, which persists from March to August. In the upper troposphere over East Asia, the warm phase of the IOBM generates a significant anticyclonic response from March to May. In June and July, however, the circulation response is characterized by enhanced subtropical westerly flow. A distinct anomalous cyclone is found in August. Overall, the IOBM can exert significant influence on the western North Pacific subtropical high, the South Asian high, and the East Asian jet, which collectively modulate the precipitation anomaly over East Asia. In contrast, the effects of the IODM on the climate anomaly over East Asia are relatively weak in boreal spring and summer. Therefore, studying the impacts of the TIO SST anomaly on the climate anomaly in East Asia should take full account of the different sub-seasonal response during boreal spring and summer.

  10. Changes of cloudiness over tropical land during the past few decades and its link to global climate change

    Science.gov (United States)

    Arias, P.; Fu, R.; Li, W.

    2007-12-01

    Tropical forests play a key role in determining the global carbon-climate feedback in the 21st century. Changes in rainforest growth and mortality rates, especially in the deep and least perturbed forest areas, have been consistently observed across global tropics in recent years. Understanding the underlying causes of these changes, especially their links to the global climate change, is especially important in determining the future of the tropical rainforests in the 21st century. Previous studies have mostly focus on the potential influences from elevated atmospheric CO2 and increasing surface temperature. Because the rainforests in wet tropical region is often light limited, we explore whether cloudiness have changed, if so, whether it is consistent with that expected from changes in forest growth rate. We will report our observational analysis examining the trends in annual average shortwave (SW) downwelling radiation, total cloud cover, and cumulus cover over the tropical land regions and to link them with trends in convective available potencial energy (CAPE). ISCCP data and radiosonde records available from the Department of Atmospheric Sciences of the University of Wyoming (http://www.weather.uwyo.edu/upperair/sounding.html) are used to study the trends. The period for the trend analysis is 1984-2004 for the ISCCP data and 1980-2006 for the radiosondes. The results for the Amazon rainforest region suggest a decreasing trend in total cloud and convective cloud covers, which results in an increase in downwelling SW radiation at the surface. These changes of total and convective clouds are consistent with a trend of decreasing CAPE and an elevated Level of Free Convection (LFC) height, as obtained from the radiosondes. All the above mentioned trends are statistically significant based on the Mann-Kendall test with 95% of confidence. These results consistently suggest the downward surface solar radiation has been increasing since 1984, result from a decrease

  11. Rainfall and its seasonality over the Amazon in the 21st century as assessed by the coupled models for the IPCC AR4

    Science.gov (United States)

    Li, Wenhong; Fu, Rong; Dickinson, Robert E.

    2006-01-01

    The global climate models for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) predict very different changes of rainfall over the Amazon under the SRES A1B scenario for global climate change. Five of the eleven models predict an increase of annual rainfall, three models predict a decrease of rainfall, and the other three models predict no significant changes in the Amazon rainfall. We have further examined two models. The UKMO-HadCM3 model predicts an El Niño-like sea surface temperature (SST) change and warming in the northern tropical Atlantic which appear to enhance atmospheric subsidence and consequently reduce clouds over the Amazon. The resultant increase of surface solar absorption causes a stronger surface sensible heat flux and thus reduces relative humidity of the surface air. These changes decrease the rate and length of wet season rainfall and surface latent heat flux. This decreased wet season rainfall leads to drier soil during the subsequent dry season, which in turn can delay the transition from the dry to wet season. GISS-ER predicts a weaker SST warming in the western Pacific and the southern tropical Atlantic which increases moisture transport and hence rainfall in the Amazon. In the southern Amazon and Nordeste where the strongest rainfall increase occurs, the resultant higher soil moisture supports a higher surface latent heat flux during the dry and transition season and leads to an earlier wet season onset.

  12. A Robust Response of the Hadley Circulation to Global Warming

    Science.gov (United States)

    Lau, William K M.; Kim, Kyu-Myong

    2014-01-01

    Tropical rainfall is expected to increase in a warmer climate. Yet, recent studies have inferred that the Hadley Circulation (HC), which is primarily driven by latent heating from tropical rainfall, is weakened under global warming. Here, we show evidence of a robust intensification of the HC from analyses of 33 CMIP5 model projections under a scenario of 1 per year CO2 emission increase. The intensification is manifested in a deep-tropics squeeze, characterized by a pronounced increase in the zonal mean ascending motion in the mid and upper troposphere, a deepening and narrowing of the convective zone and enhanced rainfall in the deep tropics. These changes occur in conjunction with a rise in the region of maximum outflow of the HC, with accelerated meridional mass outflow in the uppermost branch of the HC away from the equator, coupled to a weakened inflow in the return branches of the HC in the lower troposphere.

  13. Large scale atmospheric tropical circulation changes and consequences during global warming

    International Nuclear Information System (INIS)

    Gastineau, G.

    2008-01-01

    The changes of the tropical large scale circulation during climate change can have large impacts on human activities. In a first part, the meridional atmospheric tropical circulation was studied in the different coupled models. During climate change, we find, on the one hand, that the Hadley meridional circulation and the subtropical jet are significantly shifted poleward, and on the other hand, that the intensity of the tropical circulation weakens. The slow down of the atmospheric circulation results from the dry static stability changes affecting the tropical troposphere. Secondly, idealized simulations are used to explain the tropical circulation changes. Ensemble simulation using the model LMDZ4 are set up to study the results from the coupled model IPSLCM4. The weakening of the large scale tropical circulation and the poleward shift of the Hadley cells are explained by both the uniform change and the meridional gradient change of the sea surface temperature. Then, we used the atmospheric model LMDZ4 in an aqua-planet configuration. The Hadley circulation changes are explained in a simple framework by the required poleward energy transport. In a last part, we focus on the water vapor distribution and feedback in the climate models. The Hadley circulation changes were shown to have a significant impact on the water vapour feedback during climate change. (author)

  14. A binary genetic programing model for teleconnection identification between global sea surface temperature and local maximum monthly rainfall events

    Science.gov (United States)

    Danandeh Mehr, Ali; Nourani, Vahid; Hrnjica, Bahrudin; Molajou, Amir

    2017-12-01

    The effectiveness of genetic programming (GP) for solving regression problems in hydrology has been recognized in recent studies. However, its capability to solve classification problems has not been sufficiently explored so far. This study develops and applies a novel classification-forecasting model, namely Binary GP (BGP), for teleconnection studies between sea surface temperature (SST) variations and maximum monthly rainfall (MMR) events. The BGP integrates certain types of data pre-processing and post-processing methods with conventional GP engine to enhance its ability to solve both regression and classification problems simultaneously. The model was trained and tested using SST series of Black Sea, Mediterranean Sea, and Red Sea as potential predictors as well as classified MMR events at two locations in Iran as predictand. Skill of the model was measured in regard to different rainfall thresholds and SST lags and compared to that of the hybrid decision tree-association rule (DTAR) model available in the literature. The results indicated that the proposed model can identify potential teleconnection signals of surrounding seas beneficial to long-term forecasting of the occurrence of the classified MMR events.

  15. A Bayesian modelling method for post-processing daily sub-seasonal to seasonal rainfall forecasts from global climate models and evaluation for 12 Australian catchments

    Directory of Open Access Journals (Sweden)

    A. Schepen

    2018-03-01

    Full Text Available Rainfall forecasts are an integral part of hydrological forecasting systems at sub-seasonal to seasonal timescales. In seasonal forecasting, global climate models (GCMs are now the go-to source for rainfall forecasts. For hydrological applications however, GCM forecasts are often biased and unreliable in uncertainty spread, and calibration is therefore required before use. There are sophisticated statistical techniques for calibrating monthly and seasonal aggregations of the forecasts. However, calibration of seasonal forecasts at the daily time step typically uses very simple statistical methods or climate analogue methods. These methods generally lack the sophistication to achieve unbiased, reliable and coherent forecasts of daily amounts and seasonal accumulated totals. In this study, we propose and evaluate a Rainfall Post-Processing method for Seasonal forecasts (RPP-S, which is based on the Bayesian joint probability modelling approach for calibrating daily forecasts and the Schaake Shuffle for connecting the daily ensemble members of different lead times. We apply the method to post-process ACCESS-S forecasts for 12 perennial and ephemeral catchments across Australia and for 12 initialisation dates. RPP-S significantly reduces bias in raw forecasts and improves both skill and reliability. RPP-S forecasts are also more skilful and reliable than forecasts derived from ACCESS-S forecasts that have been post-processed using quantile mapping, especially for monthly and seasonal accumulations. Several opportunities to improve the robustness and skill of RPP-S are identified. The new RPP-S post-processed forecasts will be used in ensemble sub-seasonal to seasonal streamflow applications.

  16. A Bayesian modelling method for post-processing daily sub-seasonal to seasonal rainfall forecasts from global climate models and evaluation for 12 Australian catchments

    Science.gov (United States)

    Schepen, Andrew; Zhao, Tongtiegang; Wang, Quan J.; Robertson, David E.

    2018-03-01

    Rainfall forecasts are an integral part of hydrological forecasting systems at sub-seasonal to seasonal timescales. In seasonal forecasting, global climate models (GCMs) are now the go-to source for rainfall forecasts. For hydrological applications however, GCM forecasts are often biased and unreliable in uncertainty spread, and calibration is therefore required before use. There are sophisticated statistical techniques for calibrating monthly and seasonal aggregations of the forecasts. However, calibration of seasonal forecasts at the daily time step typically uses very simple statistical methods or climate analogue methods. These methods generally lack the sophistication to achieve unbiased, reliable and coherent forecasts of daily amounts and seasonal accumulated totals. In this study, we propose and evaluate a Rainfall Post-Processing method for Seasonal forecasts (RPP-S), which is based on the Bayesian joint probability modelling approach for calibrating daily forecasts and the Schaake Shuffle for connecting the daily ensemble members of different lead times. We apply the method to post-process ACCESS-S forecasts for 12 perennial and ephemeral catchments across Australia and for 12 initialisation dates. RPP-S significantly reduces bias in raw forecasts and improves both skill and reliability. RPP-S forecasts are also more skilful and reliable than forecasts derived from ACCESS-S forecasts that have been post-processed using quantile mapping, especially for monthly and seasonal accumulations. Several opportunities to improve the robustness and skill of RPP-S are identified. The new RPP-S post-processed forecasts will be used in ensemble sub-seasonal to seasonal streamflow applications.

  17. AIRS Impact on the Analysis and Forecast Track of Tropical Cyclone Nargis in a Global Data Assimilation and Forecasting System

    Science.gov (United States)

    Reale, O.; Lau, W.K.; Susskind, J.; Brin, E.; Liu, E.; Riishojgaard, L. P.; Rosenburg, R.; Fuentes, M.

    2009-01-01

    Tropical cyclones in the northern Indian Ocean pose serious challenges to operational weather forecasting systems, partly due to their shorter lifespan and more erratic track, compared to those in the Atlantic and the Pacific. Moreover, the automated analyses of cyclones over the northern Indian Ocean, produced by operational global data assimilation systems (DASs), are generally of inferior quality than in other basins. In this work it is shown that the assimilation of Atmospheric Infrared Sounder (AIRS) temperature retrievals under partial cloudy conditions can significantly impact the representation of the cyclone Nargis (which caused devastating loss of life in Myanmar in May 2008) in a global DAS. Forecasts produced from these improved analyses by a global model produce substantially smaller track errors. The impact of the assimilation of clear-sky radiances on the same DAS and forecasting system is positive, but smaller than the one obtained by ingestion of AIRS retrievals, possibly due to poorer coverage.

  18. Air-sea interaction in the tropical Pacific Ocean

    Science.gov (United States)

    Allison, L. J.; Steranka, J.; Holub, R. J.; Hansen, J.; Godshall, F. A.; Prabhakara, C.

    1972-01-01

    Charts of 3-month sea surface temperature (SST) anomalies in the eastern tropical Pacific Ocean were produced for the period 1949 to 1970. The anomalies along the United States and South American west coasts and in the eastern tropical Pacific appeared to be oscillating in phase during this period. Similarly, the satellite-derived cloudiness for each of four quadrants of the Pacific Ocean (130 deg E to 100 deg W, 30 deg N to 25 deg S) appeared to be oscillating in phase. In addition, a global tropical cloudiness oscillation from 30 deg N to 30 deg S was noted from 1965 to 1970, by using monthly satellite television nephanalyses. The SST anomalies were found to have a good degree of correlation both positive and negative with the following monthly geophysical parameters: (1) satellite-derived cloudiness, (2) strength of the North and South Pacific semipermanent anticyclones, (3) tropical Pacific island rainfall, and (4) Darwin surface pressure. Several strong direct local and crossequatorial relationships were noted. In particular, the high degree of correlation between the tropical island rainfall and the SST anomalies (r = +0.93) permitted the derivation of SST's for the tropical Pacific back to 1905. The close occurrence of cold tropical SST and North Pacific 700-mb positive height anomalies with central United States drought conditions was noted.

  19. Glacier recession on Mount Kenya in the context of the global tropics

    Directory of Open Access Journals (Sweden)

    1995-01-01

    Full Text Available LE RECUL DES GLACIERS DU MONT KENYA DANS LE CONTEXTE GLOBAL DES TROPIQUES. Les glaciers ont commencé leur retrait autour de la moitié du XIXème siècle dans les Andes équatoriales et en Nouvelle-Guinée, mais il faut attendre la fin du XIXème siècle pour les voir entamer leur recul en Afrique de l’Est. Dans cette région, la déglaciation, comme la baisse du niveau des lacs, est due à des changements hydroclimatiques survenant à la suite de modifications de la circulation atmosphérique dans l’Océan Indien. La diminution des surfaces englacées est attribuée à une réduction de la nébulosité accompagnée d’une baisse des précipitations. Par la suite, un réchauffement progressif et une augmentation de l’humidité atmosphérique sont devenus les facteurs dominants. La déglaciation tend à s’accentuer sous tous les Tropiques depuis deux décennies. RETROCESO DE LOS GLACIARES DEL MONTE KENYA EN EL CONTEXTO GLOBAL DE LOS TRÓPICOS. El retroceso de los glaciares empezó, en los Andes del Ecuador y en Nueva Guinea, a mediados del siglo XIX más o menos, y sólo a fines de este siglo en África del Este. En esta zona, tanto el principio del retroceso de los glaciares como el descenso del nivel de los lagos, han sido provocados por un cambio de las condiciones hidroclimáticas debido a cambios en el sector del Océano Índico. Una reducción de la nubosidad acompañada por una disminución de las precipitaciones tuvo el rol más importante en el proceso de desglaciación. Después, el progresivo recalentamiento y el aumento de la humedad atmosférica fueron los factores dominantes. La desglaciación es un fenómeno que se acentuó en todo el Trópico durante los dos últimos decenios. Glaciers began to retreat around the mid 1800’s in the Ecuadorian Andes and New Guinea, but only towards the end of the 19th century in East Africa. Here the onset of the ice recession as well as the drop of lake levels were due to a change in the

  20. Toward an open-access global database for mapping, control, and surveillance of neglected tropical diseases

    DEFF Research Database (Denmark)

    Hürlimann, Eveline; Schur, Nadine; Boutsika, Konstantina

    2011-01-01

    After many years of general neglect, interest has grown and efforts came under way for the mapping, control, surveillance, and eventual elimination of neglected tropical diseases (NTDs). Disease risk estimates are a key feature to target control interventions, and serve as a benchmark...

  1. An Assessment of Satellite-Derived Rainfall Products Relative to Ground Observations over East Africa

    Directory of Open Access Journals (Sweden)

    Margaret Wambui Kimani

    2017-05-01

    Full Text Available Accurate and consistent rainfall observations are vital for climatological studies in support of better agricultural and water management decision-making and planning. In East Africa, accurate rainfall estimation with an adequate spatial distribution is limited due to sparse rain gauge networks. Satellite rainfall products can potentially play a role in increasing the spatial coverage of rainfall estimates; however, their performance needs to be understood across space–time scales and factors relating to their errors. This study assesses the performance of seven satellite products: Tropical Applications of Meteorology using Satellite and ground-based observations (TAMSAT, African Rainfall Climatology And Time series (TARCAT, Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS, Tropical Rainfall Measuring Mission (TRMM-3B43, Climate Prediction Centre (CPC Morphing technique (CMORPH, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks Climate Data Record (PERSIANN-CDR, CPC Merged Analysis of Precipitation (CMAP, and Global Precipitation Climatology Project (GPCP, using locally developed gridded (0.05° rainfall data for 15 years (1998–2012 over East Africa. The products’ assessments were done at monthly and yearly timescales and were remapped to the gridded rain gauge data spatial scale during the March to May (MAM and October to December (OND rainy seasons. A grid-based statistical comparison between the two datasets was used, but only pixel values located at the rainfall stations were considered for validation. Additionally, the impact of topography on the performance of the products was assessed by analyzing the pixels in areas of highest negative bias. All the products could substantially replicate rainfall patterns, but their differences are mainly based on retrieving high rainfall amounts, especially of localized orographic types. The products exhibited systematic errors, which

  2. Global Invasion History of the Tropical Fire Ant, Solenopsis geminata: A Stowaway on the First Global Trade Routes

    Science.gov (United States)

    Biological invasions are largely thought to be contemporary, having recently increased sharply in the wake of globalization. However, human commerce had already become global in scope by the mid-16th century, when the Spanish connected the New World with Europe and Asia via their Manila galleon and ...

  3. Tropical Cyclones in the 7km NASA Global Nature Run for use in Observing System Simulation Experiments

    Science.gov (United States)

    Reale, Oreste; Achuthavarier, Deepthi; Fuentes, Marangelly; Putman, William M.; Partyka, Gary

    2018-01-01

    The National Aeronautics and Space Administration (NASA) Nature Run (NR), released for use in Observing System Simulation Experiments (OSSEs), is a 2-year long global non-hydrostatic free-running simulation at a horizontal resolution of 7 km, forced by observed sea-surface temperatures (SSTs) and sea ice, and inclusive of interactive aerosols and trace gases. This article evaluates the NR with respect to tropical cyclone (TC) activity. It is emphasized that to serve as a NR, a long-term simulation must be able to produce realistic TCs, which arise out of realistic large-scale forcings. The presence in the NR of the realistic, relevant dynamical features over the African Monsoon region and the tropical Atlantic is confirmed, along with realistic African Easterly Wave activity. The NR Atlantic TC seasons, produced with 2005 and 2006 SSTs, show interannual variability consistent with observations, with much stronger activity in 2005. An investigation of TC activity over all the other basins (eastern and western North Pacific, North and South Indian Ocean, and Australian region), together with relevant elements of the atmospheric circulation, such as, for example, the Somali Jet and westerly bursts, reveals that the model captures the fundamental aspects of TC seasons in every basin, producing realistic number of TCs with realistic tracks, life spans and structures. This confirms that the NASA NR is a very suitable tool for OSSEs targeting TCs and represents an improvement with respect to previous long simulations that have served the global atmospheric OSSE community. PMID:29674806

  4. Trends and variation in monthly rainfall and temperature in Suriname

    International Nuclear Information System (INIS)

    Raid, Nurmohamed

    2004-01-01

    As Surinam lies within the equatorial trough zone, climate is mainly influenced by the movement and intensity of the Inter-tropical Convergence Zone and the El Nino Southern Oscillation. Scientist predict that global climate change will directly effect the hydrological cycle such as rainfall and temperature, and extreme events such as a El Nino and La Nina. The aim of this study is to analyze historical changes in monthly rainfall and temperature and to predict future changes, with respect to climate change (doubling of carbon dioxide (CO 2 ) by 2100) and variability. Linear extrapolation and five Global Circulations Models (GCMS) (HadCM2, ECHAM4, GFDL-TR, CSIRO2-EQ, CCSR-NIES) will be used. Results of GCMs have showed that under global climate change by 2100, the monthly rainfall is predicted to change with -82 to 66 mm during January and August, and -36 to 47 mm during September and November. The monthly temperature is predicted to increase with 1.3 to 4.3 C by 2100. El Nino events have showed that along the coastal zone and in the center of Surinam, most months (>50%) during the year are drier than normal (88 to 316 mm), while in the west part of Surinam, most months (>50%) are wetter than normal (110 to 220 mm). La Nina events have showed that over entire Surinam, most of the months are wetter than normal (19 to 122 mm), with respect to the minimum rainfall. It can be concluded that the changes in rainfall due to El Nino and La Nina events may have significant impacts on the design, planning and management of water resources systems in Surinam and should therefore be incorporated in future water resources planning. (Author)

  5. A Machine Learning-based Rainfall System for GPM Dual-frequency Radar

    Science.gov (United States)

    Tan, H.; Chandrasekar, V.; Chen, H.

    2017-12-01

    Precipitation measurement produced by the Global Precipitation Measurement (GPM) Dual-frequency Precipitation Radar (DPR) plays an important role in researching the water circle and forecasting extreme weather event. Compare with its predecessor - Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR), GRM DPR measures precipitation in two different frequencies (i.e., Ku and Ka band), which can provide detailed information on the microphysical properties of precipitation particles, quantify particle size distribution and quantitatively measure light rain and falling snow. This paper presents a novel Machine Learning system for ground-based and space borne radar rainfall estimation. The system first trains ground radar data for rainfall estimation using rainfall measurements from gauges and subsequently uses the ground radar based rainfall estimates to train GPM DPR data in order to get space based rainfall product. Therein, data alignment between space DPR and ground radar is conducted using the methodology proposed by Bolen and Chandrasekar (2013), which can minimize the effects of potential geometric distortion of GPM DPR observations. For demonstration purposes, rainfall measurements from three rain gauge networks near Melbourne, Florida, are used for training and validation purposes. These three gauge networks, which are located in Kennedy Space Center (KSC), South Florida Water Management District (SFL), and St. Johns Water Management District (STJ), include 33, 46, and 99 rain gauge stations, respectively. Collocated ground radar observations from the National Weather Service (NWS) Weather Surveillance Radar - 1988 Doppler (WSR-88D) in Melbourne (i.e., KMLB radar) are trained with the gauge measurements. The trained model is then used to derive KMLB radar based rainfall product, which is used to train GPM DPR data collected from coincident overpasses events. The machine learning based rainfall product is compared against the GPM standard products

  6. Performance of High Resolution Satellite Rainfall Products over Data Scarce Parts of Eastern Ethiopia

    Directory of Open Access Journals (Sweden)

    Shimelis B. Gebere

    2015-09-01

    Full Text Available Accurate estimation of rainfall in mountainous areas is necessary for various water resource-related applications. Though rain gauges accurately measure rainfall, they are rarely found in mountainous regions and satellite rainfall data can be used as an alternative source over these regions. This study evaluated the performance of three high-resolution satellite rainfall products, the Tropical Rainfall Measuring Mission (TRMM 3B42, the Global Satellite Mapping of Precipitation (GSMaP_MVK+, and the Precipitation Estimation from Remotely-Sensed Information using Artificial Neural Networks (PERSIANN at daily, monthly, and seasonal time scales against rain gauge records over data-scarce parts of Eastern Ethiopia. TRMM 3B42 rain products show relatively better performance at the three time scales, while PERSIANN did much better than GSMaP. At the daily time scale, TRMM correctly detected 88% of the rainfall from the rain gauge. The correlation at the monthly time scale also revealed that the TRMM has captured the observed rainfall better than the other two. For Belg (short rain and Kiremt (long rain seasons, the TRMM did better than the others by far. However, during Bega (dry season, PERSIANN showed a relatively good estimate. At all-time scales, noticing the bias, TRMM tends to overestimate, while PERSIANN and GSMaP tend to underestimate the rainfall. The overall result suggests that monthly and seasonal TRMM rainfall performed better than daily rainfall. It has also been found that both GSMaP and PERSIANN performed better in relatively flat areas than mountainous areas. Before the practical use of TRMM, the RMSE value needs to be improved by considering the topography of the study area or adjusting the bias.

  7. Compilation of a global N{sub 2}O emission inventory for tropical rainforest soils using a detailed biogeochemical model

    Energy Technology Data Exchange (ETDEWEB)

    Werner, C.

    2007-09-15

    Nitrous oxide (N{sub 2}O) is a potent trace gas contributing to approximately 6% to the observed anthropogenic global warming. Soils have been identified to be the major source of atmospheric N{sub 2}O and tropical rainforest soils are thought to account for the largest part. Furthermore, various studies have shown that the magnitude of N{sub 2}O emissions from tropical rainforest soil is highly variable on spatial and temporal scales. Detailed, process-based models coupled to Geographic Information Systems (GIS) are considered promising tools for the calculation of N{sub 2}O emission inventories. This methodology explicitly accounts for the governing microbial processes as well as the environmental controls. Moreover, mechanistic biogeochemical models operating in daily time-steps (e.g. ForestDNDC-tropica) have been shown to capture the observed intra- and inter-annual variations of N{sub 2}O emissions. However, detailed N{sub 2}O emission datasets are required for model calibration and testing, but are currently few in numbers. In this study an automated measurement system was used to derive detailed datasets of N{sub 2}O, methane (CH{sub 4}) and carbon dioxide (CO{sub 2}) soil-atmosphere exchange and important environmental parameters from tropical rainforest soils in Kenya and Southwest China. Distinct differences were identified in the magnitude of the C and N soil-atmosphere exchange at the investigated sites and forest types. However, common features such as N{sub 2}O pulse emissions after dry season or the pronounced soil moisture dependency of N{sub 2}O emissions were observed at both sites. The derived datasets are unique for these tropical regions as so far no information about the source strength of these regions was available and, for the first time, the N{sub 2}O, CH{sub 4} and CO{sub 2} soil-atmosphere exchange was recorded in sub-daily resolution. The datasets were utilized in conjunction with available high-resolution datasets from Australian

  8. The Extratropical Transition of Tropical Storm Cindy From a GLM, ISS LIS and GPM Perspective

    Science.gov (United States)

    Heuscher, Lena; Gatlin, Patrick; Petersen, Walt; Liu, Chuntao; Cecil, Daniel J.

    2017-01-01

    The distribution of lightning with respect to tropical convective precipitation systems has been well established in previous studies and more recently by the successful Tropical Rainfall Measuring Mission (TRMM). However, TRMM did not provide information about precipitation features poleward of +/-38 deg latitude. Hence we focus on the evolution of lightning within extra-tropical cyclones traversing the mid-latitudes, especially its oceans. To facilitate such studies, lightning data from the Geostationary Lightning Mapper (GLM) onboard GOES-16 was combined with precipitation features obtained from the Global Precipitation Measurement (GPM) mission constellation of satellites.

  9. Atlantic Tropical Cyclogenetic Processes During SOP-3 NAMMA in the GEOS-5 Global Data Assimilation and Forecast System

    Science.gov (United States)

    Reale, Oreste; Lau, William K.; Kim, Kyu-Myong; Brin, Eugenia

    2009-01-01

    This article investigates the role of the Saharan air layer (SAL) in tropical cyclogenetic processes associated with a nondeveloping and a developing African easterly wave observed during the Special Observation Period (SOP-3) phase of the 2006 NASA African. Monsoon Multidisciplinary Analyses (NAMMA). The two waves are chosen because they both interact heavily with Saharan air. A glottal data assimilation and forecast system, the NASA Goddard Earth Observing System. version 5 (GEOS-5), is being run to produce a set of high-9 uality global analyses, inclusive of all observations used operationally but with additional satellite information. In particular, following previous works by the same authors, the duality-controlled data from the Atmospheric Infrared Sounder (AIRS) used to produce these analyses have a better coverage than the one adopted by operational centers. From these improved analyses, two sets of 31 five-day high-resolution forecasts, at horizontal resolutions of both half and quarter degrees, are produced. Results indicate that very steep moisture gradients are associated with the SAL in forecasts and analyses, even at great distances from their source over the Sahara. In addition, a thermal dipole in the vertiieat (warm above, cool below) is present in the nondeveloping case. The Moderate Resolution Imaging Spoctroradiometer (MODIS) aboard NASA's Terra and Aqua satellites shows that aerosol optical thickness, indicative of more dust as opposed to other factors, is higher in the nondeveloping case. Altogether, results suggest that the radiative effect of dust may play some role in producing a thermal structure less favorable to cyclogenesis. Results also indicate that only global horizontal resolutions on the order of 20-30 km can capture the large-scale transport and the tine thermal structure of the SAL, inclusive of the sharp moisture gradients, reproducing the effect of tropical cyclone suppression that has been hypothesized by previous authors

  10. Maximum covariance analysis to identify intraseasonal oscillations over tropical Brazil

    Science.gov (United States)

    Barreto, Naurinete J. C.; Mesquita, Michel d. S.; Mendes, David; Spyrides, Maria H. C.; Pedra, George U.; Lucio, Paulo S.

    2017-09-01

    A reliable prognosis of extreme precipitation events in the tropics is arguably challenging to obtain due to the interaction of meteorological systems at various time scales. A pivotal component of the global climate variability is the so-called intraseasonal oscillations, phenomena that occur between 20 and 100 days. The Madden-Julian Oscillation (MJO), which is directly related to the modulation of convective precipitation in the equatorial belt, is considered the primary oscillation in the tropical region. The aim of this study is to diagnose the connection between the MJO signal and the regional intraseasonal rainfall variability over tropical Brazil. This is achieved through the development of an index called Multivariate Intraseasonal Index for Tropical Brazil (MITB). This index is based on Maximum Covariance Analysis (MCA) applied to the filtered daily anomalies of rainfall data over tropical Brazil against a group of covariates consisting of: outgoing longwave radiation and the zonal component u of the wind at 850 and 200 hPa. The first two MCA modes, which were used to create the { MITB}_1 and { MITB}_2 indices, represent 65 and 16 % of the explained variance, respectively. The combined multivariate index was able to satisfactorily represent the pattern of intraseasonal variability over tropical Brazil, showing that there are periods of activation and inhibition of precipitation connected with the pattern of MJO propagation. The MITB index could potentially be used as a diagnostic tool for intraseasonal forecasting.

  11. Diurnal Variation of Tropical Ice Cloud Microphysics inferred from Global Precipitation Measurement Microwave Imager (GPM-GMI)'s Polarimetric Measurement

    Science.gov (United States)

    Gong, J.; Zeng, X.; Wu, D. L.; Li, X.

    2017-12-01

    Diurnal variation of tropical ice cloud has been well observed and examined in terms of the area of coverage, occurring frequency, and total mass, but rarely on ice microphysical parameters (habit, size, orientation, etc.) because of lack of direct measurements of ice microphysics on a high temporal and spatial resolutions. This accounts for a great portion of the uncertainty in evaluating ice cloud's role on global radiation and hydrological budgets. The design of Global Precipitation Measurement (GPM) mission's procession orbit gives us an unprecedented opportunity to study the diurnal variation of ice microphysics on the global scale for the first time. Dominated by cloud ice scattering, high-frequency microwave polarimetric difference (PD, namely the brightness temperature difference between vertically- and horizontally-polarized paired channel measurements) from the GPM Microwave Imager (GMI) has been proven by our previous study to be very valuable to infer cloud ice microphysical properties. Using one year of PD measurements at 166 GHz, we found that cloud PD exhibits a strong diurnal cycle in the tropics (25S-25N). The peak PD amplitude varies as much as 35% over land, compared to only 6% over ocean. The diurnal cycle of the peak PD value is strongly anti-correlated with local ice cloud occurring frequency and the total ice mass with a leading period of 3 hours for the maximum correlation. The observed PD diurnal cycle can be explained by the change of ice crystal axial ratio. Using a radiative transfer model, we can simulate the observed 166 GHz PD-brightness temperature curve as well as its diurnal variation using different axial ratio values, which can be caused by the diurnal variation of ice microphysical properties including particle size, percentage of horizontally-aligned non-spherical particles, and ice habit. The leading of the change of PD ahead of ice cloud mass and occurring frequency implies the important role microphysics play in the

  12. A global historical data set of tropical cyclone exposure (TCE-DAT)

    Science.gov (United States)

    Geiger, Tobias; Frieler, Katja; Bresch, David N.

    2018-01-01

    Tropical cyclones pose a major risk to societies worldwide, with about 22 million directly affected people and damages of USD 29 billion on average per year over the last 20 years. While data on observed cyclones tracks (location of the center) and wind speeds are publicly available, these data sets do not contain information about the spatial extent of the storm and people or assets exposed. Here, we apply a simplified wind field model to estimate the areas exposed to wind speeds above 34, 64, and 96 knots (kn). Based on available spatially explicit data on population densities and gross domestic product (GDP) we estimate (1) the number of people and (2) the sum of assets exposed to wind speeds above these thresholds accounting for temporal changes in historical distribution of population and assets (TCE-hist) and assuming fixed 2015 patterns (TCE-2015). The associated spatially explicit and aggregated country-event-level exposure data (TCE-DAT) cover the period 1950 to 2015 and are freely available at https://doi.org/10.5880/pik.2017.011 (Geiger at al., 2017c). It is considered key information to (1) assess the contribution of climatological versus socioeconomic drivers of changes in exposure to tropical cyclones, (2) estimate changes in vulnerability from the difference in exposure and reported damages and calibrate associated damage functions, and (3) build improved exposure-based predictors to estimate higher-level societal impacts such as long-term effects on GDP, employment, or migration. We validate the adequateness of our methodology by comparing our exposure estimate to estimated exposure obtained from reported wind fields available since 1988 for the United States. We expect that the free availability of the underlying model and TCE-DAT will make research on tropical cyclone risks more accessible to non-experts and stakeholders.

  13. The impact of global warming on the tropical Pacific ocean and El Nino

    Digital Repository Service at National Institute of Oceanography (India)

    Collins, M.; An, S.; Cai, W.; Ganachaud, A.; Guilyardi, E; Jin, F.F.; Jochum, M.; Lengaigne, M.; Power, S.; Timmermann, A.; Vecchi, G.; Wittenberg, A.

    Forrestal Campus, 201 Forrestal Road, Princeton, New Jersey 08540-6649, USA. *e-mail: matthew.collins@metoffice.gov.uk ngeo_868_JUN10.indd 391 19/5/10 11:25:42 © 20 Macmillan Publishers Limited. All rights reserved10 392 nature geoscience | VOL 3... | JUNE 2010 | www.nature.com/naturegeoscience review article NaTUrE gEOSciENcE doi: 10.1038/ngeo868 changes in mean climate To assess and understand changes in the mean state of the tropical Pacific, we separate the time-averaged seasonally varying...

  14. The 3-D Tropical Convective Cloud Spectrum in AMIE Radar Observations and Global Climate Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Courtney [Texas A & M Univ., College Station, TX (United States). Dept. of Atmospheric Sciences

    2015-08-31

    During the three years of this grant performance, the PI and her research group have made a number of significant contributions towards determining properties of tropical deep convective clouds and how models depict and respond to the heating associated with tropical convective systems. The PI has also been an active ARM/ASR science team member, including playing a significant role in AMIE and GoAmazon2014/5. She served on the DOE ASR radar science steering committee and was a joint chair of the Mesoscale Convective Organization group under the Cloud Life Cycle working group. This grant has funded a number of graduate students, many of them women, and the PI and her group have presented their DOE-supported work at various universities and national meetings. The PI and her group participated in the AMIE (2011-12) and GoAmazon2014/5 (2014-15) DOE field deployments that occurred in the tropical Indian Ocean and Brazilian Amazon, respectively. AMIE observational results (DePasquale et al. 2014, Feng et al. 2014, Ahmed and Schumacher 2015) focus on the variation and possible importance of Kelvin waves in various phases of the Madden-Julian Oscillation (MJO), on the synergy of the different wavelength radars deployed on Addu Atoll, and on the importance of humidity thresholds in the tropics on stratiform rain production. Much of the PIs GoAmazon2014/5 results to date relate to overviews of the observations made during the field campaign (Martin et al. 2015, 2016; Fuentes et al. 2016), but also include the introduction of the descending arm and its link to ozone transport from the mid-troposphere to the surface (Gerken et al. 2016). Vertical motion and mass flux profiles from GoAmazon (Giangrande et al. 2016) also show interesting patterns between seasons and provide targets for model simulations. Results from TWP-ICE (Schumacher et al. 2015), which took place in Darwin, Australia in 2006 show that vertical velocity retrievals from the profilers provide structure to

  15. Partitioning washoff of manure-borne fecal indicators (Escherichia coli and stanols) into splash and hydraulic components: field rainfall simulations in a tropical agro-ecosystem.

    Science.gov (United States)

    Ribolzi, Olivier; Rochelle-Newall, Emma J.; Janeau, Jean-Louis; Viguier, Marion; Jardé, Emilie; Latsachack, Keooudone; Henri-Des-Tureaux, Thierry; Thammahacksac, Chanthamousone; Mugler, Claude; Valentin, Christian; Sengtaheuanghoung, Oloth

    2017-04-01

    Overland flow from manured fields and pastures is known to be an important mechanism by which organisms of faecal origin are transferred to streams in rural watersheds. In the tropical montane areas of South-East Asia, recent changes in land use have induced increased runoff, soil erosion, in-stream suspended sediment loads resulting in increased microbial pathogen dissemination and contamination of stream waters. The majority of enteric and environmental bacteria in aquatic systems are associated with particles such as sediments which can strongly influence their survival and transport characteristics. Escherichia coli (E. coli) has emerged as one of the most appropriate microbial indicators of faecal contamination of natural waters, with the presence of E. coli indicating that faecal contamination is present. In association with E. coli, faecal stanols can also be used as microbial source tracking tool for the identification of the origin of the faecal contamination (e.g. livestock, human, etc). Field rain simulations were used to examine how E.coli and stanols are exported from the surface of upland, agricultural soils during overland flow events. The objectives were to characterize the loss dynamics of these indicators from agricultural soils contaminated with livestock waste, and to partition total detachment into the splash and hydraulic components. Nine 1m2 microplots were divided in triplicated treatment groups: (a) controls with no amendments, (b) amended with pig manure or (c) poultry manure. Each plot was divided into two 0.5m2 rectangular subplots. For each simulation, one subplot was designated as a rain splash treatment; the other was covered with 2-mm grid size wire screen 10 cm above the soil surface to break the raindrops into fine droplets, thus drastically reducing their kinetic energy. E. coli concentrations in overland flow were estimated for both the attached and free living fractions and stanols were measured on the particulate matter washed

  16. Climate Change and Tropical Total Lightning

    Science.gov (United States)

    Albrecht, R.; Petersen, W.; Buechler, D.; Goodman, S.; Blakeslee, R.; Christian, H.

    2009-01-01

    While global warming is regarded as a fact by many in the scientific community, its future impact remains a challenge to be determined and measured. The International Panel on Climate Change (IPCC) assessment report (IPCC, 2007) shows inconclusive answers on global rainfall trends and general agreement on a future drier climate with increased global warming. The relationship between temperature, humidity and convection is not linear and is strongly dependent on regional scale features, such as topography and land cover. Furthermore, the relationship between convective lightning production (thunderstorms) and temperature is even more complicated, being subjected to the cloud dynamics and microphysics. Total lightning (intracloud and cloud-to-ground) monitoring is a relatively new field of observation. Global and tropical total lightning began to be more extensively measured by satellites in the mid 90s. In this scope, the Lightning Imaging Sensor (LIS) onboard of the Tropical Rainfall Measurement Mission (TRMM) has been operational for over 11 years. Here we address total lightning trends observed by LIS from 1998 to 2008 in different temporal (annual and seasonal) and spatial (large and regional) scales. The observed 11-year trends are then associate to different predicted/hypothesized climate change scenarios.

  17. REDD and PINC: A new policy framework to fund tropical forests as global 'eco-utilities'

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, M R; Mitchell, A W; Mardas, N; Parker, C [Global Canopy Programme, John Krebs Field Station, Wytham, Oxford, OX2 8QJ (United Kingdom); Watson, J E [University of Queensland, Ecology Centre, Queensland 4072 (Australia); Nobre, A D, E-mail: m.trivedi@globalcanopy.or [Instituto Nacional de Pesquisas da Amazonia, INPA, Escritorio Regional do INPA, Sao Jose dos Campos, 12227-010 (Brazil)

    2009-11-01

    Tropical forests are 'eco-utilities' providing critical ecosystem services that underpin food, energy, water and climate security at local to global scales. Currently, these services are unrecognised and unrewarded in international policy and financial frameworks, causing forests to be worth more dead than alive. Much attention is currently focused on REDD (Reducing Emissions from Deforestation and forest Degradation) and A/R (Afforestation and Reforestation) as mitigation options. In this article we propose an additional mechanism - PINC (Proactive Investment in Natural Capital) - that recognises and rewards the value of ecosystem services provided by standing tropical forests, especially from a climate change adaptation perspective. Using Amazonian forests as a case study we show that PINC could improve the wellbeing of rural and forest-dependent populations, enabling them to cope with the impacts associated with climate change and deforestation. By investing pro-actively in areas where deforestation pressures are currently low, the long-term costs of mitigation and adaptation will be reduced. We suggest a number of ways in which funds could be raised through emerging financial mechanisms to provide positive incentives to maintain standing forests. To develop PINC, a new research and capacity-building agenda is needed that explores the interdependence between communities, the forest eco-utility and the wider economy.

  18. Into and out of the tropics: global diversification patterns in a hyperdiverse clade of ectomycorrhizal fungi.

    Science.gov (United States)

    Looney, Brian P; Ryberg, Martin; Hampe, Felix; Sánchez-García, Marisol; Matheny, P Brandon

    2016-01-01

    Ectomycorrhizal (ECM) fungi, symbiotic mutualists of many dominant tree and shrub species, exhibit a biogeographic pattern counter to the established latitudinal diversity gradient of most macroflora and fauna. However, an evolutionary basis for this pattern has not been explicitly tested in a diverse lineage. In this study, we reconstructed a mega-phylogeny of a cosmopolitan and hyperdiverse genus of ECM fungi, Russula, sampling from annotated collections and utilizing publically available sequences deposited in GenBank. Metadata from molecular operational taxonomic unit cluster sets were examined to infer the distribution and plant association of the genus. This allowed us to test for differences in patterns of diversification between tropical and extratropical taxa, as well as how their associations with different plant lineages may be a driver of diversification. Results show that Russula is most species-rich at temperate latitudes and ancestral state reconstruction shows that the genus initially diversified in temperate areas. Migration into and out of the tropics characterizes the early evolution of the genus, and these transitions have been frequent since this time. We propose the 'generalized diversification rate' hypothesis to explain the reversed latitudinal diversity gradient pattern in Russula as we detect a higher net diversification rate in extratropical lineages. Patterns of diversification with plant associates support host switching and host expansion as driving diversification, with a higher diversification rate in lineages associated with Pinaceae and frequent transitions to association with angiosperms. © 2015 John Wiley & Sons Ltd.

  19. Sensitivity of South American tropical climate to Last Glacial Maximum boundary conditions: focus on teleconnections with tropics and extratropics (Invited)

    Science.gov (United States)

    Khodri, M.; Kageyama, M.; Roche, D. M.

    2009-12-01

    Proxy data over tropical latitudes for the Last Glacial Maximum (LGM) has been interpreted as a southward shift of the Inter Tropical Convergence Zone (ITCZ) and so far linked to a mechanism analogous to the modern day “meridional-mode” in the Atlantic Ocean. Here we have explored alternative mechanisms, related to the direct impact of the LGM global changes in the dry static stability on tropical moist deep convection. We have used a coupled ocean-atmosphere model capable of capturing the thermodynamical structure of the atmosphere and the tropical component of the Hadley and Walker circulations. In each experiment, we have applied either all the LGM forcings, or the individual contributions of greenhouse gases (GHG) concentrations, ice sheet topography and/or albedo to explore the hydrological response over tropical latitudes with a focus on South America. The dominant forcing for the LGM tropical temperature and precipitation changes is found to be due to the reduced GHG, through the direct effect of reduced radiative heating (Clausius-Clapeyron relationship). The LGM GHG is also responsible for increased extra-tropical static stability which strengthens the Hadley Cell. Stronger subsidence over northern tropics then produces an amplification of the northern tropics drying initially due to the direct cooling effect. The land ice sheet is also able to promote the Hadley cell feedback mostly via the topographic effect on the extra-tropical dry static stability and on the position of the subtropical jets. Our results therefore suggest that the communication between the extratropics and the tropics is tighter during LGM and does not necessarily rely on the “meridional-mode” mechanism. The Hadley cell response is constrained by the requirement that diabatic heating in the tropics balances cooling in subtropics. We show that such extratropics-tropics dependence is stronger at the LGM because of the stronger perturbation of northern extra tropical thermal and

  20. Reply [to: Atlantic Tropical Cyclogenetic Processes during SOP-3 NAMMA in the GEOS-5 Global Data Assimilation and Forecast System

    Science.gov (United States)

    Reale, Oreste; Lau, William K.

    2010-01-01

    This article is a Reply to a Comment by Scott Braun on a previously published article by O. Reale, K.-M. Lau, and E. Brin: "Atlantic tropical cyclogenetic processes during SOP-3 NAMMA in the GEOS-5 global data assimilation and forecast system", by Reale, Lau and Brin, hereafter referred to as RA09. RA09 investigated the role of the Saharan Air Layer (SAL) in tropical cyclogenetic processes associated with a non-developing easterly wave observed during the Special Observation Period (SOP-3) phase of the 2006 NASA African Monsoon Multidisciplinary Analyses (MAMMA). The wave was chosen because both interact heavily with Saharan air. Results showed: a) very steep moisture gradients are associated with the SAL in forecasts and analyses even at great distance from the Sahara; b) a thermal dipole (warm above, cool below) in the non-developing case. RA09A suggested that radiative effect of dust may play some role in producing a thermal structure less favorable to cyclogenesis, and also indicated that only global horizontal resolutions on the order of 20-30 kilometers can capture the large-scale transport and the fine thermal structure of the SAL Braun (2010) questions those results attributing the wave dissipation to midlatitude air. The core discussion is on a dry filament preceding the wave, on the presence of dust, and on the origin of the air contained in this dry filament. In the 'Reply', higher resolution analyses than the ones used by Braun, taken at almost coincident times with Aqua and Terra passes, are shown, to emphasize how the channel of dry air associated with W1 is indeed rich in dust. Backtrajectories on a higher resolution grid are also performed, leading to results drastically different from Braun (2010), and in particularly showing that there is a clear contribution of Saharan air. Finally, the 'Reply' presents evidence on that analyses at a horizontal resolution of one degree are inadequate to investigate such feature.

  1. Understanding the El Niño-like Oceanic Response in the Tropical Pacific to Global Warming

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yiyong; Lu, Jian; Liu, Fukai; Liu, Wei

    2015-10-10

    The enhanced central and eastern Pacific SST warming and the associated ocean processes under global warming are investigated using the ocean component of the Community Earth System Model (CESM), Parallel Ocean Program version 2 (POP2). The tropical SST warming pattern in the coupled CESM can be faithfully reproduced by the POP2 forced with surface fluxes computed using the aerodynamic bulk formula. By prescribing the wind stress and/or wind speed through the bulk formula, the effects of wind stress change and/or the wind-evaporation-SST (WES) feedback are isolated and their linearity is evaluated in this ocean-alone setting. Result shows that, although the weakening of the equatorial easterlies contributes positively to the El Niño-like SST warming, 80% of which can be simulated by the POP2 without considering the effects of wind change in both mechanical and thermodynamic fluxes. This result points to the importance of the air-sea thermal interaction and the relative feebleness of the ocean dynamical process in the El Niño-like equatorial Pacific SST response to global warming. On the other hand, the wind stress change is found to play a dominant role in the oceanic response in the tropical Pacific, accounting for most of the changes in the equatorial ocean current system and thermal structures, including the weakening of the surface westward currents, the enhancement of the near-surface stratification and the shoaling of the equatorial thermocline. Interestingly, greenhouse gas warming in the absence of wind stress change and WES feedback also contributes substantially to the changes at the subsurface equatorial Pacific. Further, this warming impact can be largely replicated by an idealized ocean experiment forced by a uniform surface heat flux, whereby, arguably, a purest form of oceanic dynamical thermostat is revealed.

  2. Deglaciation in the tropical Indian Ocean driven by interplay between the regional monsoon and global teleconnections

    Digital Repository Service at National Institute of Oceanography (India)

    Saraswat, R.; Lea, D.W.; Nigam, R.; Mackensen, A.; Naik, Dinesh K.

    High resolution climate records of the ice age terminations from monsoon-dominated regions reveal the interplay of regional and global driving forces. Speleothem records from Chinese caves indicate that glacial terminations were interrupted...

  3. Implications of land use change in tropical West Africa under global warming

    Science.gov (United States)

    Brücher, Tim; Claussen, Martin

    2015-04-01

    Northern Africa, and the Sahel in particular, are highly vulnerable to climate change, due to strong exposure to increasing temperature, precipitation variability, and population growth. A major link between climate and humans in this region is land use and associated land cover change, mainly where subsistence farming prevails. But how strongly does climate change affect land use and how strongly does land use feeds back into climate change? To which extent may climate-induced water, food and wood shortages exacerbate conflict potential and lead changes in land use and to migration? Estimates of possible changes in African climate vary among the Earth System Models participating in the recent Coupled Model Intercomparison (CMIP5) exercise, except for the region adjacent to the Mediterranean Sea, where a significant decrease of precipitation emerges. While all models agree in a strong temperature increase, rainfall uncertainties for most parts of the Sahara, Sahel, and Sudan are higher. Here we present results of complementary experiments based on extreme and idealized land use change scenarios within a future climate.. We use the MPI-ESM forced with a strong green house gas scenario (RCP8.5) and apply an additional land use forcing by varying largely the intensity and kind of agricultural practice. By these transient experiments (until 2100) we elaborate the additional impact on climate due to strong land use forcing. However, the differences are mostly insignificant. The greenhouse gas caused temperature increase and the high variability in the West African Monsoon rainfall superposes the minor changes in climate due to land use. While simulated climate key variables like precipitation and temperature are not distinguishable from the CMIP5 RCP8.5 results, an additional greening is simulated, when crops are demanded. Crops have lower water usage than pastureland has. This benefits available soil water, which is taken up by the natural vegetation and makes it more

  4. Daily TRMM and Others Rainfall Estimate (3B42 V7 derived) V7

    Data.gov (United States)

    National Aeronautics and Space Administration — The Tropical Rainfall Measuring Mission (TRMM) is a joint U.S.-Japan satellite mission to monitor tropical and subtropical precipitation and to estimate its...

  5. TRMM and Other Sources Rainfall Product (TRMM Product 3B43) V7

    Data.gov (United States)

    National Aeronautics and Space Administration — The Tropical Rainfall Measuring Mission (TRMM) is a joint U.S.-Japan satellite mission to monitor tropical and subtropical precipitation and to estimate its...

  6. Validation Of TRMM For Hazard Assessment In The Remote Context Of Tropical Africa

    Science.gov (United States)

    Monsieurs, E.; Kirschbaum, D.; Tan, J.; Jacobs, L.; Kervyn, M.; Demoulin, A.; Dewitte, O.

    2017-12-01

    Accurate rainfall data is fundamental for understanding and mitigating the disastrous effects of many rainfall-triggered hazards, especially when one considers the challenges arising from climate change and rainfall variability. In tropical Africa in particular, the sparse operational rainfall gauging network hampers the ability to understand these hazards. Satellite rainfall estimates (SRE) can therefore be of great value. Yet, rigorous validation is required to identify the uncertainties when using SRE for hazard applications. We evaluated the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42 Research Derived Daily Product from 1998 to 2017, at 0.25° x 0.25° spatial and 24 h temporal resolution. The validation was done over the western branch of the East African Rift, with the perspective of regional landslide hazard assessment in mind. Even though we collected an unprecedented dataset of 47 gauges with a minimum temporal resolution of 24 h, the sparse and heterogeneous temporal coverage in a region with high rainfall variability poses challenges for validation. In addition, the discrepancy between local-scale gauge data and spatially averaged ( 775 km²) TMPA data in the context of local convective storms and orographic rainfall is a crucial source of uncertainty. We adopted a flexible framework for SRE validation that fosters explorative research in a remote context. Results show that TMPA performs reasonably well during the rainy seasons for rainfall intensities controls on, and uncertainties of, TMPA revealed in this study. Moreover, it is found relevant in mapping regional-scale rainfall-triggered hazards that are in any case poorly covered by the sparse available gauges. We anticipate validation of TMPA's successor (Integrated Multi-satellitE Retrievals for Global Precipitation Measurement; 10 km × 10 km, half-hourly) using the proposed framework, as soon as this product will be available in early 2018 for the

  7. The Next-Generation Goddard Convective-Stratiform Heating Algorithm: New Retrievals for Tropical and Extra-tropical Environments

    Science.gov (United States)

    Lang, S. E.; Tao, W. K.; Iguchi, T.

    2017-12-01

    The Goddard Convective-Stratiform Heating (or CSH) algorithm has been used to estimate cloud heating over the global Tropics using TRMM rainfall data and a set of look-up-tables (LUTs) derived from a series of multi-week cloud-resolving model (CRM) simulations using the Goddard Cumulus Ensemble model (GCE). These simulations link satellite observables (i.e., surface rainfall and stratiform fraction) with cloud heating profiles, which are not directly observable. However, with the launch of GPM in 2014, the range over which such algorithms can be applied has been extended from the Tropics into higher latitudes, including cold season and synoptic weather systems. In response, the CSH algorithm and its LUTs have been revised both to improve the retrievals in the Tropics as well as expand retrievals to higher latitudes. For the Tropics, the GCE simulations used to build the LUTs were upgraded using larger 2D model domains (512 vs 256 km) and a new, improved Goddard 4-ice scheme as well as expanded with additional cases (4 land and 6 ocean in total). The new tropical LUTs are also re-built using additional metrics. Besides surface type, conditional rain intensity and stratiform fraction, the new LUTs incorporate echo top heights and low-level (0-2 km) vertical reflectivity gradients. CSH retrievals in the Tropics based on the new LUTs show significant differences from previous iterations using TRMM data or the old LUT metrics. For the Extra-tropics, 6 NU-WRF simulations of synoptic events (3 East Coast and 3 West Coast), including snow, were used to build new extra-tropical CSH LUTs. The LUT metrics for the extra-tropics are based on radar characteristics and freezing level height. The extra-tropical retrievals are evaluated with a self-consistency check approach using the model heating as `truth,' and freezing level height is used to transition CSH retrievals from the Tropics to Extra-tropics. Retrieved zonal average heating structures in the Extra-tropics are

  8. The influence of eruption season on the global aerosol evolution and radiative impact of tropical volcanic eruptions

    Directory of Open Access Journals (Sweden)

    M. Toohey

    2011-12-01

    Full Text Available Simulations of tropical volcanic eruptions using a general circulation model with coupled aerosol microphysics are used to assess the influence of season of eruption on the aerosol evolution and radiative impacts at the Earth's surface. This analysis is presented for eruptions with SO2 injection magnitudes of 17 and 700 Tg, the former consistent with estimates of the 1991 Mt. Pinatubo eruption, the later a near-"super eruption". For each eruption magnitude, simulations are performed with eruptions at 15° N, at four equally spaced times of year. Sensitivity to eruption season of aerosol optical depth (AOD, clear-sky and all-sky shortwave (SW radiative flux is quantified by first integrating each field for four years after the eruption, then calculating for each cumulative field the absolute or percent difference between the maximum and minimum response from the four eruption seasons. Eruption season has a significant influence on AOD and clear-sky SW radiative flux anomalies for both eruption magnitudes. The sensitivity to eruption season for both fields is generally weak in the tropics, but increases in the mid- and high latitudes, reaching maximum values of ~75 %. Global mean AOD and clear-sky SW anomalies show sensitivity to eruption season on the order of 15–20 %, which results from differences in aerosol effective radius for the different eruption seasons. Smallest aerosol size and largest cumulative impact result from a January eruption for Pinatubo-magnitude eruption, and from a July eruption for the near-super eruption. In contrast to AOD and clear-sky SW anomalies, all-sky SW anomalies are found to be insensitive to season of eruption for the Pinatubo-magnitude eruption experiment, due to the reflection of solar radiation by clouds in the mid- to high latitudes. However, differences in all-sky SW anomalies between eruptions in different seasons are significant for the larger eruption magnitude, and the ~15 % sensitivity to

  9. Comments on "Atlantic Tropical Cyclogenetic Processes during SOP-3 NAMMA in the GEOS-5 Global Data Assimilation and Forecast System"

    Science.gov (United States)

    Braun, Scott A.

    2010-01-01

    Considerable attention has been given to the potential negative impacts of the Saharan air layer (SAL) in recent years. Researchers recently raised questions about the negative impacts of Dunion and Velden and other studies in terms of storms that reached at least tropical storm strength and suggested that the SAL was an intrinsic part of the tropical cyclone environment for both storms that weaken after formation and those that intensify. Braun also suggested that several incorrect assumptions underlie many of the studies on the negative impacts of the SAL, including assumptions that most low-to-midlevel dry tropical air is SAL air, that the SAL is dry throughout its depth, and that the proximity of the SAL to storms struggling to intensify implies some role in that struggle. The recent paper by Reale et al.(RL1) is an example of the problems inherent in some of these assumptions. In their paper, RL1 analyze a simulation from the Global Earth Observing System (GEOS-5) global model and describe an extensive tongue of warm, dry air that stretches southward from at least 30 deg N (the northern limit of their plots) and wraps into a low pressure system during the period 26-29 August 2006, suppressing convection and possibly development of the African easterly wave associated with that low pressure system. They attributed the warm, dry tongue to the SAL (i.e., heating of the air mass during passage over the Sahara and radiative warming of the dust layer). Whether it was their intention, the implication is that this entire feature is due solely to the SAL and not to other possible sources of dry air or warmth. In addition, they suggested that a cool tongue of air in the boundary layer located directly beneath the elevated warm, dry tongue (forming a thermal dipole) was possibly the result of reduced solar radiation caused by an overlying dust layer. They stated that "the cool anomaly in the lower levels does not have any plausible explanation relying only on transport

  10. Predicting Tropical Cyclogenesis with a Global Mesoscale Model: Preliminary Results with Very Severe Cyclonic Storm Nargis (2008)

    Science.gov (United States)

    Shen, B.; Tao, W.; Atlas, R.

    2008-12-01

    Very Severe Cyclonic Storm Nargis, the deadliest named tropical cyclone (TC) in the North Indian Ocean Basin, devastated Burma (Myanmar) in May 2008, causing tremendous damage and numerous fatalities. An increased lead time in the prediction of TC Nargis would have increased the warning time and may therefore have saved lives and reduced economic damage. Recent advances in high-resolution global models and supercomputers have shown the potential for improving TC track and intensity forecasts, presumably by improving multi-scale simulations. The key but challenging questions to be answered include: (1) if and how realistic, in terms of timing, location and TC general structure, the global mesoscale model (GMM) can simulate TC genesis and (2) under what conditions can the model extend the lead time of TC genesis forecasts. In this study, we focus on genesis prediction for TCs in the Indian Ocean with the GMM. Preliminary real-data simulations show that the initial formation and intensity variations of TC Nargis can be realistically predicted at a lead time of up to 5 days. These simulations also suggest that the accurate representations of a westerly wind burst (WWB) and an equatorial trough, associated with monsoon circulations and/or a Madden-Julian Oscillation (MJO), are important for predicting the formation of this kind of TC. In addition to the WWB and equatorial trough, other favorable environmental conditions will be examined, which include enhanced monsoonal circulation, upper-level outflow, low- and middle-level moistening, and surface fluxes.

  11. Establishing the thermal threshold of the tropical mussel Perna viridis in the face of global warming.

    Science.gov (United States)

    Goh, B P L; Lai, C H

    2014-08-30

    With increasing recognition that maximum oxygen demand is the unifying limit in tolerance, the first line of thermal sensitivity is, as a corollary, due to capacity limitations at a high level of organisational complexity before individual, molecular or membrane functions become disturbed. In this study the tropical mussel Perna viridis were subjected to temperature change of 0.4 °C per hour from ambient to 8-36 °C. By comparing thermal mortality against biochemical indices (hsp70, gluthathione), physiological indices (glycogen, FRAP, NRRT) and behavioural indices (clearance rate), a hierarchy of thermal tolerance was therein elucidated, ranging from systemic to cellular to molecular levels. Generally, while biochemical indices indicated a stress signal much earlier than the more integrated behavioural indices, failure of the latter (indicating a tolerance limit and transition to pejus state) occurred much earlier than the other indices tending towards thermal extremities at both ends of the thermal spectrum. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Shallow and Deep Latent Heating Modes Over Tropical Oceans Observed with TRMM PR Spectral Latent Heating Data

    Science.gov (United States)

    Takayabu, Yukari N.; Shige, Shoichi; Tao, Wei-Kuo; Hirota, Nagio

    2010-01-01

    The global hydrological cycle is central to the Earth's climate system, with rainfall and the physics of its formation acting as the key links in the cycle. Two-thirds of global rainfall occurs in the Tropics. Associated with this rainfall is a vast amount of heat, which is known as latent heat. It arises mainly due to the phase change of water vapor condensing into liquid droplets; three-fourths of the total heat energy available to the Earth's atmosphere comes from tropical rainfall. In addition, fresh water provided by tropical rainfall and its variability exerts a large impact upon the structure and motions of the upper ocean layer. Three-dimensional distributions of latent heating estimated from Tropical Rainfall Measuring Mission Precipitation Radar (TRMM PR)utilizing the Spectral Latent Heating (SLH) algorithm are analyzed. Mass-weighted and vertically integrated latent heating averaged over the tropical oceans is estimated as approx.72.6 J/s (approx.2.51 mm/day), and that over tropical land is approx.73.7 J/s (approx.2.55 mm/day), for 30degN-30degS. It is shown that non-drizzle precipitation over tropical and subtropical oceans consists of two dominant modes of rainfall systems, deep systems and congestus. A rough estimate of shallow mode contribution against the total heating is about 46.7 % for the average tropical oceans, which is substantially larger than 23.7 % over tropical land. While cumulus congestus heating linearly correlates with the SST, deep mode is dynamically bounded by large-scale subsidence. It is notable that substantial amount of rain, as large as 2.38 mm day-1 in average, is brought from congestus clouds under the large-scale subsiding circulation. It is also notable that even in the region with SST warmer than 28 oC, large-scale subsidence effectively suppresses the deep convection, remaining the heating by congestus clouds. Our results support that the entrainment of mid-to-lower-tropospheric dry air, which accompanies the large

  13. Vegetation Dynamics and Rainfall Sensitivity of the Amazon

    Science.gov (United States)

    Hilker, Thomas; Lyapustin, Alexei I.; Tucker, Compton J.; Hall, Forrest G.; Myneni, Ranga B.; Wang, Yujie; Bi, Jian; Mendes de Moura, Yhasmin; Sellers, Piers J.

    2014-01-01

    We show that the vegetation canopy of the Amazon rainforest is highly sensitive to changes in precipitation patterns and that reduction in rainfall since 2000 has diminished vegetation greenness across large parts of Amazonia. Large-scale directional declines in vegetation greenness may indicate decreases in carbon uptake and substantial changes in the energy balance of the Amazon. We use improved estimates of surface reflectance from satellite data to show a close link between reductions in annual precipitation, El Nino southern oscillation events, and photosynthetic activity across tropical and subtropical Amazonia. We report that, since the year 2000, precipitation has declined across 69% of the tropical evergreen forest (5.4 million sq km) and across 80% of the subtropical grasslands (3.3 million sq km). These reductions, which coincided with a decline in terrestrial water storage, account for about 55% of a satellite-observed widespread decline in the normalized difference vegetation index (NDVI). During El Nino events, NDVI was reduced about 16.6% across an area of up to 1.6 million sq km compared with average conditions. Several global circulation models suggest that a rise in equatorial sea surface temperature and related displacement of the intertropical convergence zone could lead to considerable drying of tropical forests in the 21st century. Our results provide evidence that persistent drying could degrade Amazonian forest canopies, which would have cascading effects on global carbon and climate dynamics.

  14. Heterogeneity of Dutch rainfall

    NARCIS (Netherlands)

    Witter, J.V.

    1984-01-01

    Rainfall data for the Netherlands have been used in this study to investigate aspects of heterogeneity of rainfall, in particular local differences in rainfall levels, time trends in rainfall, and local differences in rainfall trend. The possible effect of urbanization and industrialization on the

  15. An effort to improve track and intensity prediction of tropical cyclones through vortex initialization in NCUM-global model

    Science.gov (United States)

    Singh, Vivek; Routray, A.; Mallick, Swapan; George, John P.; Rajagopal, E. N.

    2016-05-01

    Tropical cyclones (TCs) have strong impact on socio-economic conditions of the countries like India, Bangladesh and Myanmar owing to its awful devastating power. This brings in the need of precise forecasting system to predict the tracks and intensities of TCs accurately well in advance. However, it has been a great challenge for major operational meteorological centers over the years. Genesis of TCs over data sparse warm Tropical Ocean adds more difficulty to this. Weak and misplaced vortices at initial time are one of the prime sources of track and intensity errors in the Numerical Weather Prediction (NWP) models. Many previous studies have reported the forecast skill of track and intensity of TC improved due to the assimilation of satellite data along with vortex initialization (VI). Keeping this in mind, an attempt has been made to investigate the impact of vortex initialization for simulation of TC using UK-Met office global model, operational at NCMRWF (NCUM). This assessment is carried out by taking the case of a extremely severe cyclonic storm "Chapala" that occurred over Arabian Sea (AS) from 28th October to 3rd November 2015. Two numerical experiments viz. Vort-GTS (Assimilation of GTS observations with VI) and Vort-RAD (Same as Vort-GTS with assimilation of satellite data) are carried out. This vortex initialization study in NCUM model is first of its type over North Indian Ocean (NIO). The model simulation of TC is carried out with five different initial conditions through 24 hour cycles for both the experiments. The results indicate that the vortex initialization with assimilation of satellite data has a positive impact on the track and intensity forecast, landfall time and position error of the TCs.

  16. Model simulations of rainfall over southern Africa and its eastern ...

    African Journals Online (AJOL)

    2016-01-01

    Jan 1, 2016 ... Rainfall simulations over southern and tropical Africa in the form of low-resolution Atmospheric Model ..... provision of sea-surface temperatures and sea-ice fields of a host ...... with variability of the Atlantic Ocean. Bull.

  17. Using naive Bayes classifier for classification of convective rainfall ...

    Indian Academy of Sciences (India)

    the rainfall intensity in the convective clouds is evaluated using weather radar over the northern Algeria. The results indicate an ... tropical and extratropical regions, are dominated .... MSG is a new series of European geostationary satellites ...

  18. Assessment of the Weather Research and Forecasting (WRF) model for simulation of extreme rainfall events in the upper Ganga Basin

    Science.gov (United States)

    Chawla, Ila; Osuri, Krishna K.; Mujumdar, Pradeep P.; Niyogi, Dev

    2018-02-01

    Reliable estimates of extreme rainfall events are necessary for an accurate prediction of floods. Most of the global rainfall products are available at a coarse resolution, rendering them less desirable for extreme rainfall analysis. Therefore, regional mesoscale models such as the advanced research version of the Weather Research and Forecasting (WRF) model are often used to provide rainfall estimates at fine grid spacing. Modelling heavy rainfall events is an enduring challenge, as such events depend on multi-scale interactions, and the model configurations such as grid spacing, physical parameterization and initialization. With this background, the WRF model is implemented in this study to investigate the impact of different processes on extreme rainfall simulation, by considering a representative event that occurred during 15-18 June 2013 over the Ganga Basin in India, which is located at the foothills of the Himalayas. This event is simulated with ensembles involving four different microphysics (MP), two cumulus (CU) parameterizations, two planetary boundary layers (PBLs) and two land surface physics options, as well as different resolutions (grid spacing) within the WRF model. The simulated rainfall is evaluated against the observations from 18 rain gauges and the Tropical Rainfall Measuring Mission Multi-Satellite Precipitation Analysis (TMPA) 3B42RT version 7 data. From the analysis, it should be noted that the choice of MP scheme influences the spatial pattern of rainfall, while the choice of PBL and CU parameterizations influences the magnitude of rainfall in the model simulations. Further, the WRF run with Goddard MP, Mellor-Yamada-Janjic PBL and Betts-Miller-Janjic CU scheme is found to perform best in simulating this heavy rain event. The selected configuration is evaluated for several heavy to extremely heavy rainfall events that occurred across different months of the monsoon season in the region. The model performance improved through incorporation

  19. Simulating the characteristics of tropical cyclones over the South West Indian Ocean using a Stretched-Grid Global Climate Model

    Science.gov (United States)

    Maoyi, Molulaqhooa L.; Abiodun, Babatunde J.; Prusa, Joseph M.; Veitch, Jennifer J.

    2018-03-01

    Tropical cyclones (TCs) are one of the most devastating natural phenomena. This study examines the capability of a global climate model with grid stretching (CAM-EULAG, hereafter CEU) in simulating the characteristics of TCs over the South West Indian Ocean (SWIO). In the study, CEU is applied with a variable increment global grid that has a fine horizontal grid resolution (0.5° × 0.5°) over the SWIO and coarser resolution (1° × 1°—2° × 2.25°) over the rest of the globe. The simulation is performed for the 11 years (1999-2010) and validated against the Joint Typhoon Warning Center (JTWC) best track data, global precipitation climatology project (GPCP) satellite data, and ERA-Interim (ERAINT) reanalysis. CEU gives a realistic simulation of the SWIO climate and shows some skill in simulating the spatial distribution of TC genesis locations and tracks over the basin. However, there are some discrepancies between the observed and simulated climatic features over the Mozambique channel (MC). Over MC, CEU simulates a substantial cyclonic feature that produces a higher number of TC than observed. The dynamical structure and intensities of the CEU TCs compare well with observation, though the model struggles to produce TCs with a deep pressure centre as low as the observed. The reanalysis has the same problem. The model captures the monthly variation of TC occurrence well but struggles to reproduce the interannual variation. The results of this study have application in improving and adopting CEU for seasonal forecasting over the SWIO.

  20. Monitoring of the Spatio-Temporal Dynamics of the Floods in the Guayas Watershed (Ecuadorian Pacific Coast Using Global Monitoring ENVISAT ASAR Images and Rainfall Data

    Directory of Open Access Journals (Sweden)

    Frédéric Frappart

    2017-01-01

    Full Text Available The floods are an annual phenomenon on the Pacific Coast of Ecuador and can become devastating during El Niño years, especially in the Guayas watershed (32,300 km2, the largest drainage basin of the South American western side of the Andes. As limited information on flood extent in this basin is available, this study presents a monitoring of the spatio-temporal dynamics of floods in the Guayas Basin, between 2005 and 2008, using a change detection method applied to ENVISAT ASAR Global Monitoring SAR images acquired at a spatial resolution of 1 km. The method is composed of three steps. First, a supervised classification was performed to identify pixels of open water present in the Guayas Basin. Then, the separability of their radar signature from signatures of other classes was determined during the four dry seasons from 2005 to 2008. In the end, standardized anomalies of backscattering coefficient were computed during the four wet seasons of the study period to detect changes between dry and wet seasons. Different thresholds were tested to identify the flooded areas in the watershed using external information from the Dartmouth Flood Observatory. A value of −2.30 ± 0.05 was found suitable to estimate the number of inundated pixels and limit the number of false detection (below 10%. Using this threshold, monthly maps of inundation were estimated during the wet season (December to May from 2004 to 2008. The most frequently inundated areas were found to be located along the Babahoyo River, a tributary in the east of the basin. Large interannual variability in the flood extent is observed at the flood peak (from 50 to 580 km2, consistent with the rainfall in the Guayas watershed during the study period.

  1. Semi-empirical models for the estimation of clear sky solar global and direct normal irradiances in the tropics

    International Nuclear Information System (INIS)

    Janjai, S.; Sricharoen, K.; Pattarapanitchai, S.

    2011-01-01

    Highlights: → New semi-empirical models for predicting clear sky irradiance were developed. → The proposed models compare favorably with other empirical models. → Performance of proposed models is comparable with that of widely used physical models. → The proposed models have advantage over the physical models in terms of simplicity. -- Abstract: This paper presents semi-empirical models for estimating global and direct normal solar irradiances under clear sky conditions in the tropics. The models are based on a one-year period of clear sky global and direct normal irradiances data collected at three solar radiation monitoring stations in Thailand: Chiang Mai (18.78 o N, 98.98 o E) located in the North of the country, Nakhon Pathom (13.82 o N, 100.04 o E) in the Centre and Songkhla (7.20 o N, 100.60 o E) in the South. The models describe global and direct normal irradiances as functions of the Angstrom turbidity coefficient, the Angstrom wavelength exponent, precipitable water and total column ozone. The data of Angstrom turbidity coefficient, wavelength exponent and precipitable water were obtained from AERONET sunphotometers, and column ozone was retrieved from the OMI/AURA satellite. Model validation was accomplished using data from these three stations for the data periods which were not included in the model formulation. The models were also validated against an independent data set collected at Ubon Ratchathani (15.25 o N, 104.87 o E) in the Northeast. The global and direct normal irradiances calculated from the models and those obtained from measurements are in good agreement, with the root mean square difference (RMSD) of 7.5% for both global and direct normal irradiances. The performance of the models was also compared with that of other models. The performance of the models compared favorably with that of empirical models. Additionally, the accuracy of irradiances predicted from the proposed model are comparable with that obtained from some

  2. Trends in total rainfall, heavy rain events, and number of dry days in San Juan, Puerto Rico, 1955-2009

    Directory of Open Access Journals (Sweden)

    Pablo A. Méndez-Lázaro

    2014-06-01

    Full Text Available Climate variability is a threat to water resources on a global scale and in tropical regions in particular. Rainfall events and patterns are associated worldwide with natural disasters like mudslides and landslides, meteorological phenomena like hurricanes, risks/hazards including severe storms and flooding, and health effects like vector-borne and waterborne diseases. Therefore, in the context of global change, research on rainfall patterns and their variations presents a challenge to the scientific community. The main objective of this research was to analyze recent trends in precipitation in the San Juan metropolitan area in Puerto Rico and their relationship with regional and global climate variations. The statistical trend analysis of precipitation was performed with the nonparametric Mann-Kendall test. All stations showed positive trends of increasing annual rainfall between 1955 and 2009. The winter months of January and February had an increase in monthly rainfall, although winter is normally a dry season on the island. Regarding dry days, we found an annual decreasing trend, also specifically in winter. In terms of numbers of severe rainfall events described as more than 78 mm in 24 hours, 63 episodes have occurred in the San Juan area in the last decade, specifically in the 2000-2009 time frame, with an average of 6 severe events per year. The majority of the episodes occurred in summer, more frequently in August and September. These results can be seen as a clear example of the complexity of spatial and temporal of rainfall distribution over a tropical city.

  3. Agro-Science Journal of Tropical Agriculture, Food, Environment ...

    African Journals Online (AJOL)

    OLUWOLE AKINNAGBE

    2009-09-03

    Sep 3, 2009 ... Agro-Science Journal of Tropical Agriculture, Food, Environment and Extension. Volume 8 ... 3 International Institute of Tropical Agriculture, High Rainfall Station,. Onne, Rivers State ...... Biosciences proceedings. 6: 444-454.

  4. Deforestation and rainfall recycling in Brazil: Is decreased forest cover connectivity associated with decreased rainfall connectivity?

    Science.gov (United States)

    Adera, S.; Larsen, L.; Levy, M. C.; Thompson, S. E.

    2017-12-01

    In the Brazilian rainforest-savanna transition zone, deforestation has the potential to significantly affect rainfall by disrupting rainfall recycling, the process by which regional evapotranspiration contributes to regional rainfall. Understanding rainfall recycling in this region is important not only for sustaining Amazon and Cerrado ecosystems, but also for cattle ranching, agriculture, hydropower generation, and drinking water management. Simulations in previous studies suggest complex, scale-dependent interactions between forest cover connectivity and rainfall. For example, the size and distribution of deforested patches has been found to affect rainfall quantity and spatial distribution. Here we take an empirical approach, using the spatial connectivity of rainfall as an indicator of rainfall recycling, to ask: as forest cover connectivity decreased from 1981 - 2015, how did the spatial connectivity of rainfall change in the Brazilian rainforest-savanna transition zone? We use satellite forest cover and rainfall data covering this period of intensive forest cover loss in the region (forest cover from the Hansen Global Forest Change dataset; rainfall from the Climate Hazards Infrared Precipitation with Stations dataset). Rainfall spatial connectivity is quantified using transfer entropy, a metric from information theory, and summarized using network statistics. Networks of connectivity are quantified for paired deforested and non-deforested regions before deforestation (1981-1995) and during/after deforestation (2001-2015). Analyses reveal a decline in spatial connectivity networks of rainfall following deforestation.

  5. NOx and O3 above a tropical rainforest: an analysis with a global and box model

    Directory of Open Access Journals (Sweden)

    C. E. Reeves

    2010-11-01

    Full Text Available A cross-platform field campaign, OP3, was conducted in the state of Sabah in Malaysian Borneo between April and July of 2008. Among the suite of observations recorded, the campaign included measurements of NOx and O3 – crucial outputs of any model chemistry mechanism. We describe the measurements of these species made from both the ground site and aircraft. We then use the output from two resolutions of the chemistry transport model p-TOMCAT to illustrate the ability of a global model chemical mechanism to capture the chemistry at the rainforest site. The basic model performance is good for NOx and poor for ozone. A box model containing the same chemical mechanism is used to explore the results of the global model in more depth and make comparisons between the two. Without some parameterization of the nighttime boundary layer – free troposphere mixing (i.e. the use of a dilution parameter, the box model does not reproduce the observations, pointing to the importance of adequately representing physical processes for comparisons with surface measurements. We conclude with a discussion of box model budget calculations of chemical reaction fluxes, deposition and mixing, and compare these results to output from p-TOMCAT. These show the same chemical mechanism behaves similarly in both models, but that emissions and advection play particularly strong roles in influencing the comparison to surface measurements.

  6. Spatiotemporal Interpolation of Rainfall by Combining BME Theory and Satellite Rainfall Estimates

    Directory of Open Access Journals (Sweden)

    Tingting Shi

    2015-09-01

    Full Text Available The accurate assessment of spatiotemporal rainfall variability is a crucial and challenging task in many hydrological applications, mainly due to the lack of a sufficient number of rain gauges. The purpose of the present study is to investigate the spatiotemporal variations of annual and monthly rainfall over Fujian province in China by combining the Bayesian maximum entropy (BME method and satellite rainfall estimates. Specifically, based on annual and monthly rainfall data at 20 meteorological stations from 2000 to 2012, (1 the BME method with Tropical Rainfall Measuring Mission (TRMM estimates considered as soft data, (2 ordinary kriging (OK and (3 cokriging (CK were employed to model the spatiotemporal variations of rainfall in Fujian province. Subsequently, the performance of these methods was evaluated using cross-validation statistics. The results demonstrated that BME with TRMM as soft data (BME-TRMM performed better than the other two methods, generating rainfall maps that represented the local rainfall disparities in a more realistic manner. Of the three interpolation (mapping methods, the mean absolute error (MAE and root mean square error (RMSE values of the BME-TRMM method were the smallest. In conclusion, the BME-TRMM method improved spatiotemporal rainfall modeling and mapping by integrating hard data and soft information. Lastly, the study identified new opportunities concerning the application of TRMM rainfall estimates.

  7. Rainfall Effects on the Kuroshio Current East of Taiwan

    Science.gov (United States)

    Hsu, Po-Chun; Lin, Chen-Chih; Ho, Chung-Ru

    2017-04-01

    Changes of sea surface salinity (SSS) in the open oceans are related to precipitation and evaporation. SSS has been an indicator of water cycle. It may be related to the global change. The Kuroshio Current, a western boundary current originating from the North Equatorial Current, transfers warm and higher salinity to higher latitudes. It flows northward along the east coasts of Luzon Island and Taiwan Island to Japan. In this study, effects of heavy rainfall on the Kuroshio surface salinity east of Taiwan are investigated. Sea surface salinity (SSS) data taken by conductivity temperature depth (CTD) sensor on R/V Ocean Researcher I cruises, conductivity sensor on eight glider cruises, and Aquarius satellite data are used in this study. The rain rate data derived from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) are also employed. A glider is a kind of autonomous underwater vehicle, which uses small changes in its buoyancy in conjunction with wings to convert vertical motion to horizontal in the underwater without requiring input from an operator. It can take sensors to measure salinity, temperature, and pressure. The TRMM/TMI data from remote sensing system are daily and are mapped to 0.25-degree grid. The results show a good correlation between the rain rate and SSS with a correlation coefficient of 0.86. The rainfall causes SSS of the Kuroshio surface water drops 0.176 PSU per 1 mm/hr rain rate.

  8. Tree rings and rainfall in the equatorial Amazon

    Science.gov (United States)

    Granato-Souza, Daniela; Stahle, David W.; Barbosa, Ana Carolina; Feng, Song; Torbenson, Max C. A.; de Assis Pereira, Gabriel; Schöngart, Jochen; Barbosa, Joao Paulo; Griffin, Daniel

    2018-05-01

    The Amazon basin is a global center of hydroclimatic variability and biodiversity, but there are only eight instrumental rainfall stations with continuous records longer than 80 years in the entire basin, an area nearly the size of the coterminous US. The first long moisture-sensitive tree-ring chronology has been developed in the eastern equatorial Amazon of Brazil based on dendrochronological analysis of Cedrela cross sections cut during sustainable logging operations near the Rio Paru. The Rio Paru chronology dates from 1786 to 2016 and is significantly correlated with instrumental precipitation observations from 1939 to 2016. The strength and spatial scale of the precipitation signal vary during the instrumental period, but the Rio Paru chronology has been used to develop a preliminary reconstruction of February to November rainfall totals from 1786 to 2016. The reconstruction is related to SSTs in the Atlantic and especially the tropical Pacific, similar to the stronger pattern of association computed for the instrumental rainfall data from the eastern Amazon. The tree-ring data estimate extended drought and wet episodes in the mid- to late-nineteenth century, providing a valuable, long-term perspective on the moisture changes expected to emerge over the Amazon in the coming century due to deforestation and anthropogenic climate change.

  9. Characterisation of Seasonal Rainfall for Cropping Schedules ...

    African Journals Online (AJOL)

    El Nino-South Oscillation (ENSO) phenomenon occurs in the Equatorial Eastern Pacific Ocean and has been noted to account significantly for rainfall variability in many parts of the world, particularly tropical regions. This variability is very important in rainfed crop production and needs to be well understood. Thirty years of ...

  10. Impact of global warming on tropical cyclone genesis in coupled and forced simulations: role of SST spatial anomalies

    Science.gov (United States)

    Royer, Jean-François; Chauvin, Fabrice; Daloz, Anne-Sophie

    2010-05-01

    The response of tropical cyclones (TC) activity to global warming has not yet reached a clear consensus in the Fourth Assessment Report (AR4) published by the Intergovernmental Panel on Climate Change (IPCC, 2007) or in the recent scientific literature. Observed series are neither long nor reliable enough for a statistically significant detection and attribution of past TC trends, and coupled climate models give widely divergent results for the future evolution of TC activity in the different ocean basins. The potential importance of the spatial structure of the future SST warming has been pointed out by Chauvin et al. (2006) in simulations performed at CNRM with the ARPEGE-Climat GCM. The current presentation describes a new set of simulations that have been performed with the ARPEGE-Climat model to try to understand the possible role of SST patterns in the TC cyclogenesis response in 15 CMIP3 coupled simulations analysed by Royer et al (2009). The new simulations have been performed with the atmospheric component of the ARPEGE-Climat GCM forced in 10 year simulations by the SST patterns from each of 15 CMIP3 simulations with different climate model at the end of the 21st century according to scenario A2. The TC analysis is based on the computation of a Convective Yearly Genesis Parameter (CYGP) and the Genesis Potential Index (GPI). The computed genesis indices for each of the ARPEGE-Climat forced simulations is compared with the indices computed directly from the initial coupled simulation. The influence of SST patterns can then be more easily assessed since all the ARPEGE-Climat simulations are performed with the same atmospheric model, whereas the original simulations used models with different parameterization and resolutions. The analysis shows that CYGP or GPI anomalies obtained with ARPEGE are as variable between each other as those obtained originally by the different IPCC models. The variety of SST patterns used to force ARPEGE explains a large part of

  11. Interannual Variability of the Tropical Water Cycle: Capabilities in the TRMM Era and Challenges for GPM

    Science.gov (United States)

    Robertson, Franklin R.

    2003-01-01

    closely with the TMI time series, yet the PR rainfall interannual variability (and attenuation derived predominantly from reflectivity) differs even in sign. We will explore these apparent inconsistencies and detail their impact on estimates of how ENSO events perturb the tropical rainfall. We will place these results in perspective by considering requirements for precipitation accuracy for global climate variability and change studies involving ENSO, monsoon dynamics and variations, and climate model improvement and validation. The discussion will conclude with an assessment of the implications of these findings for Global Precipitation Mission (GPM) requirements.

  12. Mixed Effectiveness of Africa's Tropical Protected Areas for Maintaining Forest Cover: Insights from a Global Forest Change Dataset

    Science.gov (United States)

    De Vos, A.; Bowker, J.; Ament, J.; Cumming, G.

    2016-12-01

    The effectiveness of parks for forest conservation is widely debated in Africa, where increasing human pressure, insufficient funding, and lack of management capacity frequently place significant demands on forest habitats. Tropical forests house a significant portion of the world's remaining biodiversity and are being heavily impacted by anthropogenic activity. We used Hansen et al.'s (2013) global forest change dataset to analyse park effectiveness at the individual (224 parks) and national (23 countries) level across Africa by comparing the extent of forest loss (as a proxy for deforestation) inside parks to matched unprotected control samples. We found that, although significant geographical variation exists between parks, the majority of African parks experienced significantly lower deforestation within their boundaries. Accessibility was a significant driver of deforestation, with less accessible areas having a higher probability of forest loss in ineffective parks and more accessible areas having a higher probability of forest loss in effective parks. Smaller parks were less effective at preventing forest loss inside park boundaries than larger parks, and older parks were less effective than younger parks. Our analysis, which is the first individual and national assessment of park effectiveness across Africa, demonstrates the complexity of factors influencing the ability of a park to curb deforestation within its boundaries and highlights the potential of web-based remote sensing technology in monitoring protected area effectiveness.

  13. Possible influence of long-term sea surface temperature anomalies in the tropical Pacific on global zone

    Energy Technology Data Exchange (ETDEWEB)

    Komhyr, W D; Oltmans, S J; Grass, R D [Atmospheric Administration Climate Monitoring and Diagnostics Lab., Boulder, CO (USA); Leonard, R K [Colorado Univ., Boulder, CO (USA)

    1991-01-01

    A significant negative correlation exists between summer sea surface temperatures (SSTs) in the east equatorial Pacific and late-October south pole total ozone values. SSTs in the eastern equatorial Pacific were anomalously warmer during 1976-1987 compared with 1962-1975. QBO (quasi-biennial oscillation) easterly winds in the equatorial Pacific stratosphere were generally stronger after 1975. Before the early-to-mid 1970s the trend in global ozone was generally upward, but then turned downward. Total ozone at Hawaii and Samoa, which had been decreasing during 1976-1987, showed recovery to mid-1970s values in 1988-1989 following a drop in SSTs in the eastern equatorial Pacific to low values last observed there prior to 1976. During late October 1988, total south pole ozone, which had decreased from ca 280 Dobson units (DU) before 1980 to 140 DU in 1987, suddenly recovered to 250 DU, though substantial ozone depletion by heterogeneous photochemical processes involving polar stratospheric clouds was still evident in the south pole ozone vertical profiles. These observations suggest that the downward trend in ozone observed over the globe in recent years may have been at least partly meteorologically induced, possibly via modulation by the warmer tropical Pacific ocean waters of QBO easterly winds at the equator, of Hadley Cell circulation, or other factors. A cursory analysis of geostrophic wind flow around the Baffin Island low suggests a meteorological influence on the observed downward trend in ozone over North America during the past decade. Because ozone has a lifetime that varies from years to minutes, changes in atmospheric dynamics have a potential to not only redistribute ozone over the globe but also to change global ozone abundance. 47 refs., 5 figs., 1 tab.

  14. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction.

    Science.gov (United States)

    García-Robledo, Carlos; Kuprewicz, Erin K; Staines, Charles L; Erwin, Terry L; Kress, W John

    2016-01-19

    The critical thermal maximum (CTmax), the temperature at which motor control is lost in animals, has the potential to determine if species will tolerate global warming. For insects, tolerance to high temperatures decreases with latitude, suggesting that similar patterns may exist along elevational gradients as well. This study explored how CTmax varies among species and populations of a group of diverse tropical insect herbivores, the rolled-leaf beetles, across both broad and narrow elevational gradients. Data from 6,948 field observations and 8,700 museum specimens were used to map the elevational distributions of rolled-leaf beetles on two mountains in Costa Rica. CTmax was determined for 1,252 individual beetles representing all populations across the gradients. Initial morphological identifications suggested a total of 26 species with populations at different elevations displaying contrasting upper thermal limits. However, compared with morphological identifications, DNA barcodes (cytochrome oxidase I) revealed significant cryptic species diversity. DNA barcodes identified 42 species and haplotypes across 11 species complexes. These 42 species displayed much narrower elevational distributions and values of CTmax than the 26 morphologically defined species. In general, species found at middle elevations and on mountaintops are less tolerant to high temperatures than species restricted to lowland habitats. Species with broad elevational distributions display high CTmax throughout their ranges. We found no significant phylogenetic signal in CTmax, geography, or elevational range. The narrow variance in CTmax values for most rolled-leaf beetles, especially high-elevation species, suggests that the risk of extinction of insects may be substantial under some projected rates of global warming.

  15. Weakened tropical circulation and reduced precipitation in response to geoengineering

    International Nuclear Information System (INIS)

    Ferraro, Angus J; Highwood, Eleanor J; Charlton-Perez, Andrew J

    2014-01-01

    Geoengineering by injection of reflective aerosols into the stratosphere has been proposed as a way to counteract the warming effect of greenhouse gases by reducing the intensity of solar radiation reaching the surface. Here, climate model simulations are used to examine the effect of geoengineering on the tropical overturning circulation. The strength of the circulation is related to the atmospheric static stability and has implications for tropical rainfall. The tropical circulation is projected to weaken under anthropogenic global warming. Geoengineering with stratospheric sulfate aerosol does not mitigate this weakening of the circulation. This response is due to a fast adjustment of the troposphere to radiative heating from the aerosol layer. This effect is not captured when geoengineering is modelled as a reduction in total solar irradiance, suggesting caution is required when interpreting model results from solar dimming experiments as analogues for stratospheric aerosol geoengineering. (letter)

  16. RRR for NNN-a rapid research response for the Neglected Tropical Disease NGDO Network: a novel framework to challenges faced by the global programs targeting neglected tropical diseases.

    Science.gov (United States)

    Toledo, Chelsea E; Jacobson, Julie; Wainwright, Emily C; Ottesen, Eric A; Lammie, Patrick J

    2016-03-01

    While global programs targeting the control or elimination of five of the neglected tropical diseases (NTDs)-lymphatic filariasis, onchocerciasis, soil-transmitted helminthiasis, schistosomiasis and trachoma-are well underway, they still face many operational challenges. Because of the urgency of 2020 program targets, the Bill & Melinda Gates Foundation and the U.S. Agency for International Development devised a novel rapid research response (RRR) framework to engage national programs, researchers, implementers and WHO in a Coalition for Operational Research on NTDs. After 2 years, this effort has succeeded as an important basis for the research response to programmatic challenges facing NTD programs. © The Author 2016. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene.

  17. The response of tropical rainforests to drought-lessons from recent research and future prospects.

    Science.gov (United States)

    Bonal, Damien; Burban, Benoit; Stahl, Clément; Wagner, Fabien; Hérault, Bruno

    We review the recent findings on the influence of drought on tree mortality, growth or ecosystem functioning in tropical rainforests. Drought plays a major role in shaping tropical rainforests and the response mechanisms are highly diverse and complex. The numerous gaps identified here require the international scientific community to combine efforts in order to conduct comprehensive studies in tropical rainforests on the three continents. These results are essential to simulate the future of these ecosystems under diverse climate scenarios and to predict the future of the global earth carbon balance. Tropical rainforest ecosystems are characterized by high annual rainfall. Nevertheless, rainfall regularly fluctuates during the year and seasonal soil droughts do occur. Over the past decades, a number of extreme droughts have hit tropical rainforests, not only in Amazonia but also in Asia and Africa. The influence of drought events on tree mortality and growth or on ecosystem functioning (carbon and water fluxes) in tropical rainforest ecosystems has been studied intensively, but the response mechanisms are complex. Herein, we review the recent findings related to the response of tropical forest ecosystems to seasonal and extreme droughts and the current knowledge about the future of these ecosystems. This review emphasizes the progress made over recent years and the importance of the studies conducted under extreme drought conditions or in through-fall exclusion experiments in understanding the response of these ecosystems. It also points to the great diversity and complexity of the response of tropical rainforest ecosystems to drought. The numerous gaps identified here require the international scientific community to combine efforts in order to conduct comprehensive studies in tropical forest regions. These results are essential to simulate the future of these ecosystems under diverse climate scenarios and to predict the future of the global earth carbon balance.

  18. Investigation of Long-Term Impacts of Urbanization when Considering Global Warming for a Coastal Tropical Region

    Science.gov (United States)

    Gonalez, Jorge E.; Comarazamy, Daniel E.; Luvall, Jeffrey C.; Rickman, Douglas L.; Smith, T.

    2010-01-01

    The overachieving goal of this project is to gain a better understanding of the climate impacts caused by the combined effects of land cover and land use (LCLU) changes and increasing global concentrations of green house gases (GHG) in tropical coastal areas, regions where global, regional and local climate phenomena converge, taking as the test case the densely populated northeast region of the Caribbean island of Puerto Rico. The research uses an integrated approach of high-resolution remote sensing information linked to a high resolution Regional Atmospheric Modeling System (RAMS), which was employed to perform ensembles of climate simulations (combining 2-LCLU and 2-GHG concentration scenarios). Reconstructed agricultural maps are used to define past LCLU, and combined with reconstructed sea surface temperatures (SST) for the same period form the PAST climate scenario (1951-1956); while the PRESENT scenario (2000-2004) was additionally supported by high resolution remote sensing data (10-m-res). The climate reconstruction approach is validated with available observed climate data from surface weather stations for both periods of time simulated. The selection of the past and present climate scenarios considers large-scale biases (i.e. ENSO/NAO) as reflected in the region of interest. Direct and cross comparison of the results is allowing quantifying single, combined, and competitive effects. Results indicate that global GHG have dominant effects on minimum temperatures (following regional tendencies), while urban sprawl dominates maximum temperatures. To further investigate impacts of land use the Bowen Ratio and the thermal response number (TRN) are analyzed. The Bowen ratio indicates that forestation of past agricultural high areas have an overwhelmingly mitigation effect on increasing temperatures observed in different LCLU scenarios, but when abandoned agricultural lands are located in plains, the resulting shrub/grass lands produce higher surface

  19. The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific.

    Directory of Open Access Journals (Sweden)

    Douglas B Rusch

    2007-03-01

    Full Text Available The world's oceans contain a complex mixture of micro-organisms that are for the most part, uncharacterized both genetically and biochemically. We report here a metagenomic study of the marine planktonic microbiota in which surface (mostly marine water samples were analyzed as part of the Sorcerer II Global Ocean Sampling expedition. These samples, collected across a several-thousand km transect from the North Atlantic through the Panama Canal and ending in the South Pacific yielded an extensive dataset consisting of 7.7 million sequencing reads (6.3 billion bp. Though a few major microbial clades dominate the planktonic marine niche, the dataset contains great diversity with 85% of the assembled sequence and 57% of the unassembled data being unique at a 98% sequence identity cutoff. Using the metadata associated with each sample and sequencing library, we developed new comparative genomic and assembly methods. One comparative genomic method, termed "fragment recruitment," addressed questions of genome structure, evolution, and taxonomic or phylogenetic diversity, as well as the biochemical diversity of genes and gene families. A second method, termed "extreme assembly," made possible the assembly and reconstruction of large segments of abundant but clearly nonclonal organisms. Within all abundant populations analyzed, we found extensive intra-ribotype diversity in several forms: (1 extensive sequence variation within orthologous regions throughout a given genome; despite coverage of individual ribotypes approaching 500-fold, most individual sequencing reads are unique; (2 numerous changes in gene content some with direct adaptive implications; and (3 hypervariable genomic islands that are too variable to assemble. The intra-ribotype diversity is organized into genetically isolated populations that have overlapping but independent distributions, implying distinct environmental preference. We present novel methods for measuring the genomic

  20. Representation of the tropical stratospheric zonal wind in global atmospheric reanalyses

    Directory of Open Access Journals (Sweden)

    Y. Kawatani

    2016-06-01

    Full Text Available This paper reports on a project to compare the representation of the monthly-mean zonal wind in the equatorial stratosphere among major global atmospheric reanalysis data sets. The degree of disagreement among the reanalyses is characterized by the standard deviation (SD of the monthly-mean zonal wind and this depends on latitude, longitude, height, and the phase of the quasi-biennial oscillation (QBO. At each height the SD displays a prominent equatorial maximum, indicating the particularly challenging nature of the reanalysis problem in the low-latitude stratosphere. At 50–70 hPa the geographical distributions of SD are closely related to the density of radiosonde observations. The largest SD values are over the central Pacific, where few in situ observations are available. At 10–20 hPa the spread among the reanalyses and differences with in situ observations both depend significantly on the QBO phase. Notably the easterly-to-westerly phase transitions in all the reanalyses except MERRA are delayed relative to those directly observed in Singapore. In addition, the timing of the easterly-to-westerly phase transitions displays considerable variability among the different reanalyses and this spread is much larger than for the timing of the westerly-to-easterly phase changes. The eddy component in the monthly-mean zonal wind near the Equator is dominated by zonal wavenumber 1 and 2 quasi-stationary planetary waves propagating from midlatitudes in the westerly phase of the QBO. There generally is considerable disagreement among the reanalyses in the details of the quasi-stationary waves near the Equator. At each level, there is a tendency for the agreement to be best near the longitude of Singapore, suggesting that the Singapore observations act as a strong constraint on all the reanalyses. Our measures of the quality of the reanalysis clearly show systematic improvement over the period considered (1979–2012. The SD among the reanalysis

  1. Impact of Organic Amendments on Global Warming Potential of Diversified Tropical Rice Rotation Systems

    Science.gov (United States)

    Janz, B.; Weller, S.; Kraus, D.; Wassmann, R.; Butterbach-Bahl, K.; Ralf, K.

    2017-12-01

    Paddy rice cultivation is increasingly challenged by irrigation water scarcity, which is forcing farmers to change traditional rice cultivation from flooded double-rice systems to the introduction of well-aerated upland crops during dry season. Emissions of methane (CH4) are expected to decrease, while there is a risk of increasing emissions of nitrous oxide (N2O) and decreasing soil organic carbon (SOC) stocks through volatilization in the form of carbon dioxide (CO2). We present a unique dataset of long-term continuous greenhouse gas emission measurements (CH4 and N2O) in the Philippines to assess global warming potentials (GWP) of diversified rice crop rotations including different field management practices such as straw residue application and legume intercropping. Since 2012, more than four years of CH4 and N2O emissions in double-rice cropping (R-R) and paddy rice rotations diversified with either maize (R-M) or aerobic rice (R-A) during dry season have been collected. Introduction of upland crops reduced irrigation water use and CH4 emissions by 66-81% and 95-99%, respectively. Although dry season N2O emissions increased twice- to threefold in the diversified systems, the strong reduction of CH4 led to a significantly lower annual GWP (CH4 + N2O) as compared to the traditional R-R system. Diversified crop management practices were first implemented during land-preparation for dry season 2015 where i) 6 t/ha rice straw was returned to the field and ii) mungbean was grown as a cover-crop between dry and wet season in addition to rice straw application. The input of organic material (straw and mungbean) led to higher substrate availability for methanogens during the following season. Therefore, GWP was 9-39% higher following straw incorporation than the control treatment. This increase was mainly driven by additional CH4 emissions. Even more, mungbean intercropping further increased GWPs, whereby the increment was highest in R-R rotation (88%) and lowest in R

  2. Greenhouse gas emissions and global warming potential of traditional and diversified tropical rice rotation systems.

    Science.gov (United States)

    Weller, Sebastian; Janz, Baldur; Jörg, Lena; Kraus, David; Racela, Heathcliff S U; Wassmann, Reiner; Butterbach-Bahl, Klaus; Kiese, Ralf

    2016-01-01

    Global rice agriculture will be increasingly challenged by water scarcity, while at the same time changes in demand (e.g. changes in diets or increasing demand for biofuels) will feed back on agricultural practices. These factors are changing traditional cropping patterns from double-rice cropping to the introduction of upland crops in the dry season. For a comprehensive assessment of greenhouse gas (GHG) balances, we measured methane (CH4 )/nitrous oxide (N2 O) emissions and agronomic parameters over 2.5 years in double-rice cropping (R-R) and paddy rice rotations diversified with either maize (R-M) or aerobic rice (R-A) in upland cultivation. Introduction of upland crops in the dry season reduced irrigation water use and CH4 emissions by 66-81% and 95-99%, respectively. Moreover, for practices including upland crops, CH4 emissions in the subsequent wet season with paddy rice were reduced by 54-60%. Although annual N2 O emissions increased two- to threefold in the diversified systems, the strong reduction in CH4 led to a significantly lower (P < 0.05) annual GWP (CH4  + N2 O) as compared to the traditional double-rice cropping system. Measurements of soil organic carbon (SOC) contents before and 3 years after the introduction of upland crop rotations indicated a SOC loss for the R-M system, while for the other systems SOC stocks were unaffected. This trend for R-M systems needs to be followed as it has significant consequences not only for the GWP balance but also with regard to soil fertility. Economic assessment showed a similar gross profit span for R-M and R-R, while gross profits for R-A were reduced as a consequence of lower productivity. Nevertheless, regarding a future increase in water scarcity, it can be expected that mixed lowland-upland systems will expand in SE Asia as water requirements were cut by more than half in both rotation systems with upland crops. © 2015 John Wiley & Sons Ltd.

  3. Rainfall Erosivity in Europe

    DEFF Research Database (Denmark)

    Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale

    2015-01-01

    Rainfall is one the main drivers of soil erosion. The erosive force of rainfall is expressed as rainfall erosivity. Rainfall erosivity considers the rainfall amount and intensity, and is most commonly expressed as the Rfactor in the USLE model and its revised version, RUSLE. At national...... and continental levels, the scarce availability of data obliges soil erosion modellers to estimate this factor based on rainfall data with only low temporal resolution (daily, monthly, annual averages). The purpose of this study is to assess rainfall erosivity in Europe in the form of the RUSLE R-factor, based...

  4. A Merging Framework for Rainfall Estimation at High Spatiotemporal Resolution for Distributed Hydrological Modeling in a Data-Scarce Area

    Directory of Open Access Journals (Sweden)

    Yinping Long

    2016-07-01

    Full Text Available Merging satellite and rain gauge data by combining accurate quantitative rainfall from stations with spatial continuous information from remote sensing observations provides a practical method of estimating rainfall. However, generating high spatiotemporal rainfall fields for catchment-distributed hydrological modeling is a problem when only a sparse rain gauge network and coarse spatial resolution of satellite data are available. The objective of the study is to present a satellite and rain gauge data-merging framework adapting for coarse resolution and data-sparse designs. In the framework, a statistical spatial downscaling method based on the relationships among precipitation, topographical features, and weather conditions was used to downscale the 0.25° daily rainfall field derived from the Tropical Rainfall Measuring Mission (TRMM Multisatellite Precipitation Analysis (TMPA precipitation product version 7. The nonparametric merging technique of double kernel smoothing, adapting for data-sparse design, was combined with the global optimization method of shuffled complex evolution, to merge the downscaled TRMM and gauged rainfall with minimum cross-validation error. An indicator field representing the presence and absence of rainfall was generated using the indicator kriging technique and applied to the previously merged result to consider the spatial intermittency of daily rainfall. The framework was applied to estimate daily precipitation at a 1 km resolution in the Qinghai Lake Basin, a data-scarce area in the northeast of the Qinghai-Tibet Plateau. The final estimates not only captured the spatial pattern of daily and annual precipitation with a relatively small estimation error, but also performed very well in stream flow simulation when applied to force the geomorphology-based hydrological model (GBHM. The proposed framework thus appears feasible for rainfall estimation at high spatiotemporal resolution in data-scarce areas.

  5. The IOD-ENSO precursory teleconnection over the tropical Indo-Pacific Ocean: dynamics and long-term trends under global warming

    Science.gov (United States)

    Yuan, Dongliang; Hu, Xiaoyue; Xu, Peng; Zhao, Xia; Masumoto, Yukio; Han, Weiqing

    2018-01-01

    The dynamics of the teleconnection between the Indian Ocean Dipole (IOD) in the tropical Indian Ocean and El Niño-Southern Oscillation (ENSO) in the tropical Pacific Ocean at the time lag of one year are investigated using lag correlations between the oceanic anomalies in the southeastern tropical Indian Ocean in fall and those in the tropical Indo-Pacific Ocean in the following winter-fall seasons in the observations and in high-resolution global ocean model simulations. The lag correlations suggest that the IOD-forced interannual transport anomalies of the Indonesian Throughflow generate thermocline anomalies in the western equatorial Pacific Ocean, which propagate to the east to induce ocean-atmosphere coupled evolution leading to ENSO. In comparison, lag correlations between the surface zonal wind anomalies over the western equatorial Pacific in fall and the Indo-Pacific oceanic anomalies at time lags longer than a season are all insignificant, suggesting the short memory of the atmospheric bridge. A linear continuously stratified model is used to investigate the dynamics of the oceanic connection between the tropical Indian and Pacific Oceans. The experiments suggest that interannual equatorial Kelvin waves from the Indian Ocean propagate into the equatorial Pacific Ocean through the Makassar Strait and the eastern Indonesian seas with a penetration rate of about 10%-15% depending on the baroclinic modes. The IOD-ENSO teleconnection is found to get stronger in the past century or so. Diagnoses of the CMIP5 model simulations suggest that the increased teleconnection is associated with decreased Indonesian Throughflow transports in the recent century, which is found sensitive to the global warming forcing.

  6. A cosmogenic 10Be chronology for the local last glacial maximum and termination in the Cordillera Oriental, southern Peruvian Andes: Implications for the tropical role in global climate

    Science.gov (United States)

    Bromley, Gordon R. M.; Schaefer, Joerg M.; Hall, Brenda L.; Rademaker, Kurt M.; Putnam, Aaron E.; Todd, Claire E.; Hegland, Matthew; Winckler, Gisela; Jackson, Margaret S.; Strand, Peter D.

    2016-09-01

    Resolving patterns of tropical climate variability during and since the last glacial maximum (LGM) is fundamental to assessing the role of the tropics in global change, both on ice-age and sub-millennial timescales. Here, we present a10Be moraine chronology from the Cordillera Carabaya (14.3°S), a sub-range of the Cordillera Oriental in southern Peru, covering the LGM and the first half of the last glacial termination. Additionally, we recalculate existing 10Be ages using a new tropical high-altitude production rate in order to put our record into broader spatial context. Our results indicate that glaciers deposited a series of moraines during marine isotope stage 2, broadly synchronous with global glacier maxima, but that maximum glacier extent may have occurred prior to stage 2. Thereafter, atmospheric warming drove widespread deglaciation of the Cordillera Carabaya. A subsequent glacier resurgence culminated at ∼16,100 yrs, followed by a second period of glacier recession. Together, the observed deglaciation corresponds to Heinrich Stadial 1 (HS1: ∼18,000-14,600 yrs), during which pluvial lakes on the adjacent Peruvian-Bolivian altiplano rose to their highest levels of the late Pleistocene as a consequence of southward displacement of the inter-tropical convergence zone and intensification of the South American summer monsoon. Deglaciation in the Cordillera Carabaya also coincided with the retreat of higher-latitude mountain glaciers in the Southern Hemisphere. Our findings suggest that HS1 was characterised by atmospheric warming and indicate that deglaciation of the southern Peruvian Andes was driven by rising temperatures, despite increased precipitation. Recalculated 10Be data from other tropical Andean sites support this model. Finally, we suggest that the broadly uniform response during the LGM and termination of the glaciers examined here involved equatorial Pacific sea-surface temperature anomalies and propose a framework for testing the viability

  7. Seasonal and temporal CO2 dynamics in three tropical mangrove creeks - A revision of global mangrove CO2 emissions

    Science.gov (United States)

    Rosentreter, Judith A.; Maher, D. T.; Erler, D. V.; Murray, R.; Eyre, B. D.

    2018-02-01

    Continuous high-resolution surface water pCO2 and δ13C-CO2 and 222Rn (dry season only) were measured over two tidal cycles in the wet and dry season in three tropical tidal mangrove creeks on the north-eastern coast of Queensland, Australia. Mangrove surface water pCO2 followed a clear tidal pattern (ranging from 387 to 13,031 μatm) with higher pCO2-values in the wet season than in the dry season. The δ13C-CO2 in the mangrove waters ranged from -21.7 to -8.8‰ and was rather indicative of a mixed source than a distinct mangrove signature. Surface water CO2 was likely driven by a combination of mangrove and external carbon sources, e.g. exchange with groundwater/pore water enriched in 13C, or terrestrial carbon inputs with a significant contribution of C4-vegetation (sugar cane) source. The kinetic and equilibrium fractionation during the gas exchange at the water-atmosphere interface may have further caused a 13C-enrichment of the CO2 pool in the mangrove surface waters. Average CO2 evasion rates (58.7-277.6 mmol m-2 d-1) were calculated using different empirical gas transfer velocity models. Using our high-resolution time series data and previously published data, the average CO2 flux rate in mangrove ecosystems was estimated to be 56.5 ± 8.9 mmol m-2 d-1, which corresponds to a revised global mangrove CO2 emission of 34.1 ± 5.4 Tg C per year.

  8. Genesis of Twin Tropical Cyclones as Revealed by a Global Mesoscale Model: The Role of Mixed Rossby Gravity Waves

    Science.gov (United States)

    Shen, Bo-Wen; Tao, Wei-Kuo; Lin, Yuh-Lang; Laing, Arlene

    2012-01-01

    In this study, it is proposed that twin tropical cyclones (TCs), Kesiny and 01A, in May 2002 formed in association with the scale interactions of three gyres that appeared as a convectively coupled mixed Rossby gravity (ccMRG) wave during an active phase of the Madden-Julian Oscillation (MJO). This is shown by analyzing observational data, including NCEP reanalysis data and METEOSAT 7 IR satellite imagery, and performing numerical simulations using a global mesoscale model. A 10-day control run is initialized at 0000 UTC 1 May 2002 with grid-scale condensation but no sub-grid cumulus parameterizations. The ccMRG wave was identified as encompassing two developing and one non-developing gyres, the first two of which intensified and evolved into the twin TCs. The control run is able to reproduce the evolution of the ccMRG wave and thus the formation of the twin TCs about two and five days in advance as well as their subsequent intensity evolution and movement within an 8-10 day period. Five additional 10-day sensitivity experiments with different model configurations are conducted to help understand the interaction of the three gyres, leading to the formation of the TCs. These experiments suggest the improved lead time in the control run may be attributed to the realistic simulation of the ccMRG wave with the following processes: (1) wave deepening (intensification) associated with a reduction in wavelength and/or the intensification of individual gyres, (2) poleward movement of gyres that may be associated with boundary layer processes, (3) realistic simulation of moist processes at regional scales in association with each of the gyres, and (4) the vertical phasing of low- and mid-level cyclonic circulations associated with a specific gyre.

  9. Photochemical ozone production in tropical squall line convection during NASA Global Tropospheric Experiment/Amazon Boundary Layer Experiment 2A

    Science.gov (United States)

    Pickering, Kenneth E.; Thompson, Anne M.; Tao, Wei-Kuo; Simpson, Joanne; Scala, John R.

    1991-01-01

    The role of convection was examined in trace gas transport and ozone production in a tropical dry season squall line sampled on August 3, 1985, during NASA Global Tropospheric Experiment/Amazon Boundary Layer Experiment 2A (NASA GTE/ABLE 2A) in Amazonia, Brazil. Two types of analyses were performed. Transient effects within the cloud are examined with a combination of two-dimensional cloud and one-dimensional photochemical modeling. Tracer analyses using the cloud model wind fields yield a series of cross sections of NO(x), CO, and O3 distribution during the lifetime of the cloud; these fields are used in the photochemical model to compute the net rate of O3 production. At noon, when the cloud was mature, the instantaneous ozone production potential in the cloud is between 50 and 60 percent less than in no-cloud conditions due to reduced photolysis and cloud scavenging of radicals. Analysis of cloud inflows and outflows is used to differentiate between air that is undisturbed and air that has been modified by the storm. These profiles are used in the photochemical model to examine the aftereffects of convective redistribution in the 24-hour period following the storm. Total tropospheric column O3 production changed little due to convection because so little NO(x) was available in the lower troposphere. However, the integrated O3 production potential in the 5- to 13-km layer changed from net destruction to net production as a result of the convection. The conditions of the August 3, 1985, event may be typical of the early part of the dry season in Amazonia, when only minimal amounts of pollution from biomass burning have been transported into the region.

  10. TRMM 3-Hourly 0.25 deg. TRMM and Other-GPI Calibration Rainfall Data V7

    Data.gov (United States)

    National Aeronautics and Space Administration — The Tropical Rainfall Measuring Mission (TRMM) is a joint U.S.-Japan satellite mission to monitor tropical and subtropical precipitation and to estimate its...

  11. Interactions between Global Health Initiatives and country health systems: the case of a neglected tropical diseases control program in Mali.

    Science.gov (United States)

    Cavalli, Anna; Bamba, Sory I; Traore, Mamadou N; Boelaert, Marleen; Coulibaly, Youssouf; Polman, Katja; Pirard, Marjan; Van Dormael, Monique

    2010-08-17

    Recently, a number of Global Health Initiatives (GHI) have been created to address single disease issues in low-income countries, such as poliomyelitis, trachoma, neonatal tetanus, etc.. Empirical evidence on the effects of such GHIs on local health systems remains scarce. This paper explores positive and negative effects of the Integrated Neglected Tropical Disease (NTD) Control Initiative, consisting in mass preventive chemotherapy for five targeted NTDs, on Mali's health system where it was first implemented in 2007. Campaign processes and interactions with the health system were assessed through participant observation in two rural districts (8 health centres each). Information was complemented by interviews with key informants, website search and literature review. Preliminary results were validated during feedback sessions with Malian authorities from national, regional and district levels. We present positive and negative effects of the NTD campaign on the health system using the WHO framework of analysis based on six interrelated elements: health service delivery, health workforce, health information system, drug procurement system, financing and governance. At point of delivery, campaign-related workload severely interfered with routine care delivery which was cut down or totally interrupted during the campaign, as nurses were absent from their health centre for campaign-related activities. Only 2 of the 16 health centres, characterized by a qualified, stable and motivated workforce, were able to keep routine services running and to use the campaign as an opportunity for quality improvement. Increased workload was compensated by allowances, which significantly improved staff income, but also contributed to divert attention away from core routine activities. While the campaign increased the availability of NTD drugs at country level, parallel systems for drug supply and evaluation requested extra efforts burdening local health systems. The campaign budget

  12. Interactions between Global Health Initiatives and country health systems: the case of a neglected tropical diseases control program in Mali.

    Directory of Open Access Journals (Sweden)

    Anna Cavalli

    Full Text Available BACKGROUND: Recently, a number of Global Health Initiatives (GHI have been created to address single disease issues in low-income countries, such as poliomyelitis, trachoma, neonatal tetanus, etc.. Empirical evidence on the effects of such GHIs on local health systems remains scarce. This paper explores positive and negative effects of the Integrated Neglected Tropical Disease (NTD Control Initiative, consisting in mass preventive chemotherapy for five targeted NTDs, on Mali's health system where it was first implemented in 2007. METHODS AND FINDINGS: Campaign processes and interactions with the health system were assessed through participant observation in two rural districts (8 health centres each. Information was complemented by interviews with key informants, website search and literature review. Preliminary results were validated during feedback sessions with Malian authorities from national, regional and district levels. We present positive and negative effects of the NTD campaign on the health system using the WHO framework of analysis based on six interrelated elements: health service delivery, health workforce, health information system, drug procurement system, financing and governance. At point of delivery, campaign-related workload severely interfered with routine care delivery which was cut down or totally interrupted during the campaign, as nurses were absent from their health centre for campaign-related activities. Only 2 of the 16 health centres, characterized by a qualified, stable and motivated workforce, were able to keep routine services running and to use the campaign as an opportunity for quality improvement. Increased workload was compensated by allowances, which significantly improved staff income, but also contributed to divert attention away from core routine activities. While the campaign increased the availability of NTD drugs at country level, parallel systems for drug supply and evaluation requested extra efforts

  13. Uganda rainfall variability and prediction

    Science.gov (United States)

    Jury, Mark R.

    2018-05-01

    This study analyzes large-scale controls on Uganda's rainfall. Unlike past work, here, a May-October season is used because of the year-round nature of agricultural production, vegetation sensitivity to rainfall, and disease transmission. The Uganda rainfall record exhibits steady oscillations of ˜3 and 6 years over 1950-2013. Correlation maps at two-season lead time resolve the subtropical ridge over global oceans as an important feature. Multi-variate environmental predictors include Dec-May south Indian Ocean sea surface temperature, east African upper zonal wind, and South Atlantic wind streamfunction, providing a 33% fit to May-Oct rainfall time series. Composite analysis indicates that cool-phase El Niño Southern Oscillation supports increased May-Oct Uganda rainfall via a zonal overturning lower westerly/upper easterly atmospheric circulation. Sea temperature anomalies are positive in the east Atlantic and negative in the west Indian Ocean in respect of wet seasons. The northern Hadley Cell plays a role in limiting the northward march of the equatorial trough from May to October. An analysis of early season floods found that moist inflow from the west Indian Ocean converges over Uganda, generating diurnal thunderstorm clusters that drift southwestward producing high runoff.

  14. Species biogeography predicts drought responses in a seasonally dry tropical forest

    Science.gov (United States)

    Schwartz, N.; Powers, J. S.; Vargas, G.; Xu, X.; Smith, C. M.; Brodribb, T.; Werden, L. K.; Becknell, J.; Medvigy, D.

    2017-12-01

    The timing, distribution, and amount of rainfall in the seasonal tropics have shifted in recent years, with consequences for seasonally dry tropical forests (SDTF). SDTF are sensitive to changing rainfall regimes and drought conditions, but sensitivity to drought varies substantially across species. One potential explanation of species differences is that species that experience dry conditions more frequently throughout their range will be better able to cope with drought than species from wetter climates, because species from drier climates will be better adapted to drought. An El-Niño induced drought in 2015 presented an opportunity to assess species-level differences in mortality in SDTF, and to ask whether the ranges of rainfall conditions species experience and the average rainfall regimes in species' ranges predict differences in mortality rates in Costa Rican SDTF. We used field plot data from northwest Costa Rica to determine species' level mortality rates. Mortality rates ranged substantially across species, with some species having no dead individuals to as high as 50% mortality. To quantify rainfall conditions across species' ranges, we used species occurrence data from the Global Biodiversity Information Facility, and rainfall data from the Chelsa climate dataset. We found that while the average and range of mean annual rainfall across species ranges did not predict drought-induced mortality in the field plots, across-range averages of the seasonality index, a measure of rainfall seasonality, was strongly correlated with species-level drought mortality (r = -0.62, p < 0.05), with species from more strongly seasonal climates experiencing less severe drought mortality. Furthermore, we found that the seasonality index was a stronger predictor of mortality than any individual functional trait we considered. This result shows that species' biogeography may be an important factor for how species will respond to future drought, and may be a more integrative

  15. Eventos extremos de precipitação no estado do Ceará e suas relações com a temperatura dos oceanos tropicais Extreme rainfall events in Ceará state and its relationship with tropical oceans temperature

    Directory of Open Access Journals (Sweden)

    Carlos Antonio Costa dos Santos

    2011-03-01

    Full Text Available O principal objetivo deste trabalho é prover informações sobre as tendências recentes dos eventos extremos de precipitação sobre o Estado do Ceará, associando esses eventos extremos às anomalias de Temperatura da Superfície do Mar (TSM nos Oceanos Pacífico e Atlântico. Foram utilizados dados pluviométricos de 18 postos de 1971 a 2006 e o método de Mann-Kendall foi utilizado na obtenção das tendências. Os resultados mostram que existem características de aumento nas intensidades das secas e diminuição dos eventos de precipitação forte, e que o aumento nas anomalias de TSM no Pacífico e ao norte do equador, no Oceano Atlântico, acarreta em um aumento do número de dias consecutivos secos no norte do Ceará. Os índices extremos de precipitação mostraram correlações negativas com as anomalias de TSM nas regiões do Pacífico do Atlântico Tropical Norte e positivas com a região do Atlântico Tropical Sul. Entretanto, para a região sul do Ceará, o comportamento dos dias consecutivos chuvosos indica que o período chuvoso é governado por outros sistemas atmosféricos, necessitando assim, ser melhor estudado para o entendimento desse comportamento.The main objective of this study is to provide information about recent trends of extreme rainfall over Ceará State, associating these extreme events with Sea Surface Temperature (SST anomalies in the Pacific and Atlantic Oceans. Mann-Kendall method is applied to rainfall data of 18 rain gauges from 1971 to 2006 to obtain the trends. The results show that the drought intensity is increasing and the heavy precipitation events are decreasing and that the increase in the Pacific and north of equator Atlantic Ocean SST anomalies lead to an increase in the number of consecutive dry days in northern Ceará. Rainfall extreme indices have shown negative correlations with SST anomalies on Pacific and Tropical North Atlantic regions and positive with Tropical South Atlantic region

  16. Observations of cloud and rainfall enhancement over irrigated agriculture in an arid environment

    Science.gov (United States)

    Garcia-Carreras, Luis; Marsham, John H.; Spracklen, Dominick V.

    2017-04-01

    The impact of irrigated agriculture on clouds and rainfall remains uncertain, particularly in less studied arid regions. Irrigated crops account for 20% of global cropland area, and non-renewable groundwater accounts for 20% of global irrigation water demand. Quantifying the feedbacks between agriculture and the atmosphere are therefore not only necessary to better understand the climate impacts of land-use change, but are also crucial for predicting long-term water use in water-scarce regions. Here we use high spatial-resolution satellite data to show the impact of irrigated crops in the arid environment of northern Saudi Arabia on cloud cover and rainfall patterns. Land surface temperatures over the crops are 5-10 K lower than their surroundings, linked to evapotranspiration rates of up to 20 mm/ month. Daytime cloud cover is up to 30% higher over the cropland compared to its immediate surroundings, and this enhancement is highly correlated with the seasonal variability in leaf area index. The cloud enhancement is associated with a much more rapid cloud cloud development during the morning. Afternoon rainfall is 85% higher over, and just downwind, of the cropland during the growing season, although rainfall remains very low in absolute terms. The feedback sign we find is the opposite to what has been observed in tropical and semiarid regions, where temperature gradients promote convergence and clouds on the warmer side of land-surface type discontinuities. This suggests that different processes are responsible for the land-atmosphere feedback in very dry environments, where lack of moisture may be a stronger constraint. Increased cloud and rainfall, and associated increases in diffuse radiation and reductions in temperature, can affect vegetation growth thus producing an internal feedback. These effects will therefore need to be taken into account to properly assess the impact of climate change on crop productivity and water use, as well as how global land

  17. The response of land-falling tropical cyclone characteristics to projected climate change in northeast Australia

    Science.gov (United States)

    Parker, Chelsea L.; Bruyère, Cindy L.; Mooney, Priscilla A.; Lynch, Amanda H.

    2018-01-01

    Land-falling tropical cyclones along the Queensland coastline can result in serious and widespread damage. However, the effects of climate change on cyclone characteristics such as intensity, trajectory, rainfall, and especially translation speed and size are not well-understood. This study explores the relative change in the characteristics of three case studies by comparing the simulated tropical cyclones under current climate conditions with simulations of the same systems under future climate conditions. Simulations are performed with the Weather Research and Forecasting Model and environmental conditions for the future climate are obtained from the Community Earth System Model using a pseudo global warming technique. Results demonstrate a consistent response of increasing intensity through reduced central pressure (by up to 11 hPa), increased wind speeds (by 5-10% on average), and increased rainfall (by up to 27% for average hourly rainfall rates). The responses of other characteristics were variable and governed by either the location and trajectory of the current climate cyclone or the change in the steering flow. The cyclone that traveled furthest poleward encountered a larger climate perturbation, resulting in a larger proportional increase in size, rainfall rate, and wind speeds. The projected monthly average change in the 500 mb winds with climate change governed the alteration in the both the trajectory and translation speed for each case. The simulated changes have serious implications for damage to coastal settlements, infrastructure, and ecosystems through increased wind speeds, storm surge, rainfall, and potentially increased size of some systems.

  18. Does the GPM mission improve the systematic error component in satellite rainfall estimates over TRMM? An evaluation at a pan-India scale

    Science.gov (United States)

    Beria, Harsh; Nanda, Trushnamayee; Singh Bisht, Deepak; Chatterjee, Chandranath

    2017-12-01

    The last couple of decades have seen the outburst of a number of satellite-based precipitation products with Tropical Rainfall Measuring Mission (TRMM) as the most widely used for hydrologic applications. Transition of TRMM into the Global Precipitation Measurement (GPM) promises enhanced spatio-temporal resolution along with upgrades to sensors and rainfall estimation techniques. The dependence of systematic error components in rainfall estimates of the Integrated Multi-satellitE Retrievals for GPM (IMERG), and their variation with climatology and topography, was evaluated over 86 basins in India for year 2014 and compared with the corresponding (2014) and retrospective (1998-2013) TRMM estimates. IMERG outperformed TRMM for all rainfall intensities across a majority of Indian basins, with significant improvement in low rainfall estimates showing smaller negative biases in 75 out of 86 basins. Low rainfall estimates in TRMM showed a systematic dependence on basin climatology, with significant overprediction in semi-arid basins, which gradually improved in the higher rainfall basins. Medium and high rainfall estimates of TRMM exhibited a strong dependence on basin topography, with declining skill in higher elevation basins. The systematic dependence of error components on basin climatology and topography was reduced in IMERG, especially in terms of topography. Rainfall-runoff modeling using the Variable Infiltration Capacity (VIC) model over two flood-prone basins (Mahanadi and Wainganga) revealed that improvement in rainfall estimates in IMERG did not translate into improvement in runoff simulations. More studies are required over basins in different hydroclimatic zones to evaluate the hydrologic significance of IMERG.

  19. Does the GPM mission improve the systematic error component in satellite rainfall estimates over TRMM? An evaluation at a pan-India scale

    Directory of Open Access Journals (Sweden)

    H. Beria

    2017-12-01

    Full Text Available The last couple of decades have seen the outburst of a number of satellite-based precipitation products with Tropical Rainfall Measuring Mission (TRMM as the most widely used for hydrologic applications. Transition of TRMM into the Global Precipitation Measurement (GPM promises enhanced spatio-temporal resolution along with upgrades to sensors and rainfall estimation techniques. The dependence of systematic error components in rainfall estimates of the Integrated Multi-satellitE Retrievals for GPM (IMERG, and their variation with climatology and topography, was evaluated over 86 basins in India for year 2014 and compared with the corresponding (2014 and retrospective (1998–2013 TRMM estimates. IMERG outperformed TRMM for all rainfall intensities across a majority of Indian basins, with significant improvement in low rainfall estimates showing smaller negative biases in 75 out of 86 basins. Low rainfall estimates in TRMM showed a systematic dependence on basin climatology, with significant overprediction in semi-arid basins, which gradually improved in the higher rainfall basins. Medium and high rainfall estimates of TRMM exhibited a strong dependence on basin topography, with declining skill in higher elevation basins. The systematic dependence of error components on basin climatology and topography was reduced in IMERG, especially in terms of topography. Rainfall-runoff modeling using the Variable Infiltration Capacity (VIC model over two flood-prone basins (Mahanadi and Wainganga revealed that improvement in rainfall estimates in IMERG did not translate into improvement in runoff simulations. More studies are required over basins in different hydroclimatic zones to evaluate the hydrologic significance of IMERG.

  20. Interaction between Tropical Atlantic Variability and El Niño-Southern Oscillation.

    Science.gov (United States)

    Saravanan, R.; Chang, Ping

    2000-07-01

    The interaction between tropical Atlantic variability and El Niño-Southern Oscillation (ENSO) is investigated using three ensembles of atmospheric general circulation model integrations. The integrations are forced by specifying observed sea surface temperature (SST) variability over a forcing domain. The forcing domain is the global ocean for the first ensemble, limited to the tropical ocean for the second ensemble, and further limited to the tropical Atlantic region for the third ensemble. The ensemble integrations show that extratropical SST anomalies have little impact on tropical variability, but the effect of ENSO is pervasive in the Tropics. Consistent with previous studies, the most significant influence of ENSO is found during the boreal spring season and is associated with an anomalous Walker circulation. Two important aspects of ENSO's influence on tropical Atlantic variability are noted. First, the ENSO signal contributes significantly to the `dipole' correlation structure between tropical Atlantic SST and rainfall in the Nordeste Brazil region. In the absence of the ENSO signal, the correlations are dominated by SST variability in the southern tropical Atlantic, resulting in less of a dipole structure. Second, the remote influence of ENSO also contributes to positive correlations between SST anomalies and downward surface heat flux in the tropical Atlantic during the boreal spring season. However, even when ENSO forcing is absent, the model integrations provide evidence for a positive surface heat flux feedback in the deep Tropics, which is analyzed in a companion study by Chang et al. The analysis of model simulations shows that interannual atmospheric variability in the tropical Pacific-Atlantic system is dominated by the interaction between two distinct sources of tropical heating: (i) an equatorial heat source in the eastern Pacific associated with ENSO and (ii) an off-equatorial heat source associated with SST anomalies near the Caribbean

  1. Uncertainties of the rainfall regime in a tropical semi-arid region: the case of the State of Ceará. = Incertezas do regime pluviométrico no semiárido tropical: o caso do estado do Ceará

    Directory of Open Access Journals (Sweden)

    Eunice Maia de Andrade

    2016-07-01

    Full Text Available The rural population of a tropical semi-arid region such as the northeast of Brazil is directly dependent on rainfall for agricultural production, pasture for livestock, and the storage of drinking water for human consumption. The region is characterised by the frequent occurrence of dry years and consecutive dry days (CDD during the rainy season, demonstrating the vulnerability of rainfed agriculture. The aim of this study therefore, was to identify homogeneous regions of the State of Ceará where there is greater or lesser uncertainty of the rainfall regime. Accordingly, the occurrence of dry and very dry years were investigated as uncertainties between years, together with the occurrence of two classes of CDD (10-20 and 21-30 days during the rainy season. To define similar regions as to the uncertainty of the rainfall regime, the technique of Hierarchical Cluster Analysis (HCA was used. The study considered time series of least 30 years, from 77 rain gauge stations around the state of Ceará. The use of HCA resulted in the formation of seven homogenous groups in both of the phenomena being investigated. Municipalities in the Central Backlands, the Inhamuns Backlands and the Jaguaribana Region displayed a higher frequency of both inter-annual (dry years and intra-annual (CDD uncertainty, demonstrating the greater vulnerability of rainfed agriculture. The occurrence of a CDD event is not dependent on the total annual rainfall, as several stations with an average rainfall higher than that of the state showed potential for the occurrence of CDD. The number of CDD events recorded in the 11-20 day class was higher than in the 21-30 day class. = A população rural das regiões semiáridas tropicais como o Nordeste brasileiro é diretamente dependente das chuvas para a produção agrícola, pasto para os animais domésticos e armazenamento de água potável para consumo humano. A região se caracteriza pela frequente ocorrência de anos secos e de

  2. Using Co-authorship Networks to Map and Analyse Global Neglected Tropical Disease Research with an Affiliation to Germany.

    Directory of Open Access Journals (Sweden)

    Max Ernst Bender

    2015-12-01

    Full Text Available Research on Neglected Tropical Diseases (NTDs has increased in recent decades, and significant need-gaps in diagnostic and treatment tools remain. Analysing bibliometric data from published research is a powerful method for revealing research efforts, partnerships and expertise. We aim to identify and map NTD research networks in Germany and their partners abroad to enable an informed and transparent evaluation of German contributions to NTD research.A SCOPUS database search for articles with German author affiliations that were published between 2002 and 2012 was conducted for kinetoplastid and helminth diseases. Open-access tools were used for data cleaning and scientometrics (OpenRefine, geocoding (OpenStreetMaps and to create (Table2Net, visualise and analyse co-authorship networks (Gephi. From 26,833 publications from around the world that addressed 11 diseases, we identified 1,187 (4.4% with at least one German author affiliation, and we processed 972 publications for the five most published-about diseases. Of those, we extracted 4,007 individual authors and 863 research institutions to construct co-author networks. The majority of co-authors outside Germany were from high-income countries and Brazil. Collaborations with partners on the African continent remain scattered. NTD research within Germany was distributed among 220 research institutions. We identified strong performers on an individual level by using classic parameters (number of publications, h-index and social network analysis parameters (betweenness centrality. The research network characteristics varied strongly between diseases.The share of NTD publications with German affiliations is approximately half of its share in other fields of medical research. This finding underlines the need to identify barriers and expand Germany's otherwise strong research activities towards NTDs. A geospatial analysis of research collaborations with partners abroad can support decisions to

  3. A 507-year rainfall and runoff reconstruction for the Monsoonal North West, Australia derived from remote paleoclimate archives

    Science.gov (United States)

    Verdon-Kidd, Danielle C.; Hancock, Gregory R.; Lowry, John B.

    2017-11-01

    The Monsoonal North West (MNW) region of Australia faces a number of challenges adapting to anthropogenic climate change. These have the potential to impact on a range of industries, including agricultural, pastoral, mining and tourism. However future changes to rainfall regimes remain uncertain due to the inability of Global Climate Models to adequately capture the tropical weather/climate processes that are known to be important for this region. Compounding this is the brevity of the instrumental rainfall record for the MNW, which is unlikely to represent the full range of climatic variability. One avenue for addressing this issue (the focus of this paper) is to identify sources of paleoclimate information that can be used to reconstruct a plausible pre-instrumental rainfall history for the MNW. Adopting this approach we find that, even in the absence of local sources of paleoclimate data at a suitable temporal resolution, remote paleoclimate records can resolve 25% of the annual variability observed in the instrumental rainfall record. Importantly, the 507-year rainfall reconstruction developed using the remote proxies displays longer and more intense wet and dry periods than observed during the most recent 100 years. For example, the maximum number of consecutive years of below (above) average rainfall is 90% (40%) higher in the rainfall reconstruction than during the instrumental period. Further, implications for flood and drought risk are studied via a simple GR1A rainfall runoff model, which again highlights the likelihood of extremes greater than that observed in the limited instrumental record, consistent with previous paleoclimate studies elsewhere in Australia. Importantly, this research can assist in informing climate related risks to infrastructure, agriculture and mining, and the method can readily be applied to other regions in the MNW and beyond.

  4. Effects of global climate change on chlorophyll-a concentrations in a tropical aquatic system during a cyanobacterial bloom: a microcosm study

    Directory of Open Access Journals (Sweden)

    Meirielle Euripa Pádua de Moura

    2017-05-01

    Full Text Available Recent studies have investigated the impact of climate change on aquatic environments, and Chlorophyll-a (Chl-a concentration is a quick and reliable variable for monitoring such changes. This study evaluated the impact of rainfall frequency as a diluting agent and the effect of increased temperature on Chl-a concentrations in eutrophic environments during a bloom of cyanobacteria. This was based on the hypothesis that the concentration of Chl-a will be higher in treatments in which the rainfall frequency is not homogeneous and that warmer temperatures predicted due to climate change should favor higher concentrations of Chl-a. The experiment was designed to investigate three factors: temperature, precipitation and time. Temperature was tested with two treatment levels (22°C and the future temperature of 25°C. Precipitation was tested with four treatments (no precipitation, a homogeneous precipitation pattern, and two types of concentrated precipitation patterns. Experiments were run for 15 days, and Chl-a concentration was measured every five days in each of the temperature and precipitation treatments. The water used in the microcosms was collected from a eutrophic lake located in Central Brazil during a bloom of filamentous cyanobacteria (Geilterinema amphibium. Chl-a levels were high in all treatments. The higher temperature treatment showed increased Chl-a concentration (F=10.343; P=0.002; however, the extreme precipitation events did not significantly influence Chl-a concentrations (F=1.198; P=0.326. Therefore, the study demonstrates that future climatic conditions (projected to 2100, such as elevated temperatures, may affect the primary productivity of aquatic environments in tropical aquatic systems.

  5. Tropical Peatland Geomorphology and Hydrology

    Science.gov (United States)

    Cobb, A.; Harvey, C. F.

    2017-12-01

    Tropical peatlands cover many low-lying areas in the tropics. In tropical peatlands, a feedback between hydrology, landscape morphology, and carbon storage causes waterlogged organic matter to accumulate into gently mounded land forms called peat domes over thousands of years. Peat domes have a stable morphology in which peat production is balanced by loss and net precipitation is balanced by lateral flow, creating a link between peatland morphology, rainfall patterns and drainage networks. We show how landscape morphology can be used to make inferences about hydrologic processes in tropical peatlands. In particular, we show that approaches using simple storage-discharge relationships for catchments are especially well suited to tropical peatlands, allowing river forecasting based on peatland morphology in catchments with tropical peatland subcatchments.

  6. Engineering of an Extreme Rainfall Detection System using Grid Computing

    Directory of Open Access Journals (Sweden)

    Olivier Terzo

    2012-10-01

    Full Text Available This paper describes a new approach for intensive rainfall data analysis. ITHACA's Extreme Rainfall Detection System (ERDS is conceived to provide near real-time alerts related to potential exceptional rainfalls worldwide, which can be used by WFP or other humanitarian assistance organizations to evaluate the event and understand the potentially floodable areas where their assistance is needed. This system is based on precipitation analysis and it uses rainfall data from satellite at worldwide extent. This project uses the Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis dataset, a NASA-delivered near real-time product for current rainfall condition monitoring over the world. Considering the great deal of data to process, this paper presents an architectural solution based on Grid Computing techniques. Our focus is on the advantages of using a distributed architecture in terms of performances for this specific purpose.

  7. Satellite-based Flood Modeling Using TRMM-based Rainfall Products

    Directory of Open Access Journals (Sweden)

    Greg Easson

    2007-12-01

    Full Text Available Increasingly available and a virtually uninterrupted supply of satellite-estimatedrainfall data is gradually becoming a cost-effective source of input for flood predictionunder a variety of circumstances. However, most real-time and quasi-global satelliterainfall products are currently available at spatial scales ranging from 0.25o to 0.50o andhence, are considered somewhat coarse for dynamic hydrologic modeling of basin-scaleflood events. This study assesses the question: what are the hydrologic implications ofuncertainty of satellite rainfall data at the coarse scale? We investigated this question onthe 970 km2 Upper Cumberland river basin of Kentucky. The satellite rainfall productassessed was NASA’s Tropical Rainfall Measuring Mission (TRMM Multi-satellitePrecipitation Analysis (TMPA product called 3B41RT that is available in pseudo real timewith a latency of 6-10 hours. We observed that bias adjustment of satellite rainfall data canimprove application in flood prediction to some extent with the trade-off of more falsealarms in peak flow. However, a more rational and regime-based adjustment procedureneeds to be identified before the use of satellite data can be institutionalized among floodmodelers.

  8. Regions Subject to Rainfall Oscillation in the 5–10 Year Band

    Directory of Open Access Journals (Sweden)

    Jean-Louis Pinault

    2018-01-01

    Full Text Available The decadal oscillation of rainfall in Europe that has been observed since the end of the 20th century is a phenomenon well known to climatologists. Consequences are considerable because the succession of wet or dry years produces floods or, inversely, droughts. Moreover, much research has tried to answer the question about the possible link between the frequency and the intensity of extra-tropical cyclones, which are particularly devastating, and global warming. This work aims at providing an exhaustive description of the rainfall oscillation in the 5–10 year band during one century on a planetary scale. It is shown that the rainfall oscillation results from baroclinic instabilities over the oceans. For that, a joint analysis of the amplitude and the phase of sea surface temperature anomalies and rainfall anomalies is performed, which discloses the mechanisms leading to the alternation of high and low atmospheric pressure systems. For a prospective purpose, some milestones are suggested on a possible link with very long-period Rossby waves in the oceans.

  9. GARP Atlantic Tropical Experiment

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The GARP Atlantic Tropical Experiment (GATE) was the first major international experiment of the Global Atmospheric Research Program (GARP). It was conducted over...

  10. Darfur: rainfall and conflict

    Science.gov (United States)

    Kevane, Michael; Gray, Leslie

    2008-07-01

    Data on rainfall patterns only weakly corroborate the claim that climate change explains the Darfur conflict that began in 2003 and has claimed more than 200 000 lives and displaced more than two million persons. Rainfall in Darfur did not decline significantly in the years prior to the eruption of major conflict in 2003; rainfall exhibited a flat trend in the thirty years preceding the conflict (1972 2002). The rainfall evidence suggests instead a break around 1971. Rainfall is basically stationary over the pre- and post-1971 sub-periods. The break is larger for the more northerly rainfall stations, and is less noticeable for En Nahud. Rainfall in Darfur did indeed decline, but the decline happened over 30 years before the conflict erupted. Preliminary analysis suggests little merit to the proposition that a structural break several decades earlier is a reasonable predictor of the outbreak of large-scale civil conflict in Africa.

  11. Darfur: rainfall and conflict

    International Nuclear Information System (INIS)

    Kevane, Michael; Gray, Leslie

    2008-01-01

    Data on rainfall patterns only weakly corroborate the claim that climate change explains the Darfur conflict that began in 2003 and has claimed more than 200 000 lives and displaced more than two million persons. Rainfall in Darfur did not decline significantly in the years prior to the eruption of major conflict in 2003; rainfall exhibited a flat trend in the thirty years preceding the conflict (1972-2002). The rainfall evidence suggests instead a break around 1971. Rainfall is basically stationary over the pre- and post-1971 sub-periods. The break is larger for the more northerly rainfall stations, and is less noticeable for En Nahud. Rainfall in Darfur did indeed decline, but the decline happened over 30 years before the conflict erupted. Preliminary analysis suggests little merit to the proposition that a structural break several decades earlier is a reasonable predictor of the outbreak of large-scale civil conflict in Africa

  12. Critical Phenomena of Rainfall in Ecuador

    Science.gov (United States)

    Serrano, Sh.; Vasquez, N.; Jacome, P.; Basile, L.

    2014-02-01

    Self-organized criticality (SOC) is characterized by a power law behavior over complex systems like earthquakes and avalanches. We study rainfall using data of one day, 3 hours and 10 min temporal resolution from INAMHI (Instituto Nacional de Meteorologia e Hidrologia) station at Izobamba, DMQ (Metropolitan District of Quito), satellite data over Ecuador from Tropical Rainfall Measure Mission (TRMM,) and REMMAQ (Red Metropolitana de Monitoreo Atmosferico de Quito) meteorological stations over, respectively. Our results show a power law behavior of the number of rain events versus mm of rainfall measured for the high resolution case (10 min), and as the resolution decreases this behavior gets lost. This statistical property is the fingerprint of a self-organized critical process (Peter and Christensen, 2002) and may serve as a benchmark for models of precipitation based in phase transitions between water vapor and precipitation (Peter and Neeling, 2006).

  13. Evaluation of short-period rainfall estimates from Kalpana-1 satellite

    Indian Academy of Sciences (India)

    The INSAT Multispectral Rainfall Algorithm (IMSRA) technique for rainfall estimation, has recently been developed to meet the shortcomings of the Global Precipitation Index (GPI) technique of rainfall estimation from the data of geostationary satellites; especially for accurate short period rainfall estimates. This study ...

  14. Processes influencing rainfall features in the Amazonian region

    Science.gov (United States)

    Gerken, T.; Chamecki, M.; Fuentes, J. D.; Katul, G. G.; Fitzjarrald, D. R.; Manzi, A. O.; Nascimento dos Santos, R. M.; von Randow, C.; Stoy, P. C.; Tota, J.; Trowbridge, A.; Schumacher, C.; Machado, L.

    2014-12-01

    The Amazon is globally unique as it experiences the deepest atmospheric convection with important teleconnections to other parts of the Earth's climate system. In the Amazon Basin a large fraction of the local evapotranspiration is recycled through the formation of deep convective precipitating storms. Deep convection occurs due to moist thermodynamic conditions associated with elevated amounts of convective available potential energy. Aerosols invigorate the formation of convective storms in the Amazon via their unique concentrations, physical size, and chemical composition to activate into cloud condensation nuclei (CCN), but important aspects of aerosol/precipitation feedbacks remain unresolved. During the wet season, low atmospheric aerosol concentrations prevail in the pristine tropical air masses. These conditions have led to the Green Ocean hypothesis, which compares the clean tropical air to maritime air-masses and emphasizes biosphere-atmosphere feedbacks, to explain the features of the convective-type rainfall events in the Amazon. Field studies have been designed to investigate these relationships and the development of mesoscale convective systems through the Green Ocean Amazon project and the GOAmazon Boundary Layer Experiment. From March to October 2014 a field experiment was conducted at the Cuieiras Biological Reserve (2°51' S, 54°58' W), 80 km north of the city of Manaus, Brazil. This investigation spans the biological, chemical, and physical conditions influencing emissions and reactions of precursors (biogenic and anthropogenic volatile organic compounds, VOCs), formation of aerosols and CCNs and transport out of the ABL, and their role in cloud formation and precipitation triggers. In this presentation we will show results on the magnitude turbulent fluxes of latent and sensible heat, CCN concentrations, and rain droplet size distribution for both the wet and dry season. Such influencing factors on precipitation, will be contrasted with the

  15. TRMM and Its Connection to the Global Water Cycle

    Science.gov (United States)

    Kummerow, Christian; Hong, Ye

    1999-01-01

    The importance of quantitative knowledge of tropical rainfall, its associated latent heating and variability is summarized in the context of the global hydrologic cycle. Much of the tropics is covered by oceans. What land exists, is covered largely by rainforests that are only thinly populated. The only way to adequately measure the global tropical rainfall for climate and general circulation models is from space. The TRMM orbit is inclined 35' leading to good sampling in the tropics and a rapid precession to study the diurnal cycle of precipitation. The precipitation instrument complement consists of the first rain radar to be flown in space (PR), a multi-channel passive microwave sensor (TMI) and a five-channel VIS/IR (VIRS) sensor. The precipitation radar operates at a frequency of 13.6 GHz. The swath width is 220 km, with a horizontal resolution of 4 km and the vertical resolution of 250 in. The minimum detectable signal from the precipitation radar has been measured at 17 dBZ. The TMI instrument is designed similar to the SSM/I with two important changes. The 22.235 GHz water vapor absorption channel of the SSM/I was moved to 21.3 GHz in order to avoid saturation in the tropics and 10.7 GHz V&H polarized channels were added to expand the dynamic range of rainfall estimates. The resolution of the TMI varies from 4.6 km at 85 GHz to 36 km at 10.7 GHz. The visible and infrared sensor (VIRS) measures radiation at 0.63, 1.6, 3.75, 10.8 and 12.0 microns. The spatial resolution of all five VIRS channels is 2 km at nadir. In addition to the three primary rainfall instruments, TRMM will also carry a Lightning Imaging Sensor (LIS) and a Clouds and the Earth's Radiant Energy System (CERES) instrument.

  16. Future changes in rainfall associated with ENSO, IOD and changes in the mean state over Eastern Africa

    Science.gov (United States)

    Endris, Hussen Seid; Lennard, Christopher; Hewitson, Bruce; Dosio, Alessandro; Nikulin, Grigory; Artan, Guleid A.

    2018-05-01

    This study examines the projected changes in the characteristics of the El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) in terms of mean state, intensity and frequency, and associated rainfall anomalies over eastern Africa. Two regional climate models driven by the same four global climate models (GCMs) and the corresponding GCM simulations are used to investigate projected changes in teleconnection patterns and East African rainfall. The period 1976-2005 is taken as the reference for present climate and the far-future climate (2070-2099) under Representative Concentration Pathway 8.5 (RCP8.5) is analyzed for projected change. Analyses of projections based on GCMs indicate an El Niño-like (positive IOD-like) warming pattern over the tropical Pacific (Indian) Ocean. However, large uncertainties remain in the projected future changes in ENSO/IOD frequency and intensity with some GCMs show increase of ENSO/IOD frequency and intensity, and others a decrease or no/small change. Projected changes in mean rainfall over eastern Africa based on the GCM and RCM data indicate a decrease in rainfall over most parts of the region during JJAS and MAM seasons, and an increase in rainfall over equatorial and southern part of the region during OND, with the greatest changes in equatorial region. During ENSO and IOD years, important changes in the strength of the teleconnections are found. During JJAS, when ENSO is an important driver of rainfall variability over the region, both GCM and RCM projections show an enhanced La Niña-related rainfall anomaly compared to the present period. Although the long rains (MAM) have little association with ENSO in the reference period, both GCMs and RCMs project stronger ENSO teleconnections in the future. On the other hand, during the short rains (OND), a dipole future change in rainfall teleconnection associated with ENSO and IOD is found, with a stronger ENSO/IOD related rainfall anomaly over the eastern part of the domain

  17. A Robust Response of Precipitation to Global Warming from CMIP5 Models

    Science.gov (United States)

    Lau, K. -M.; Wu, H. -T.; Kim, K. -M.

    2012-01-01

    How precipitation responds to global warming is a major concern to society and a challenge to climate change research. Based on analyses of rainfall probability distribution functions of 14 state-of-the-art climate models, we find a robust, canonical global rainfall response to a triple CO2 warming scenario, featuring 100 250% more heavy rain, 5-10% less moderate rain, and 10-15% more very light or no-rain events. Regionally, a majority of the models project a consistent response with more heavy rain events over climatologically wet regions of the deep tropics, and more dry events over subtropical and tropical land areas. Results suggest that increased CO2 emissions induce basic structural changes in global rain systems, increasing risks of severe floods and droughts in preferred geographic locations worldwide.

  18. Quantitative Assessment on Anthropogenic Contributions to the Rainfall Extremes Associated with Typhoon Morakot (2009)

    Science.gov (United States)

    Chen, C. T.; Lo, S. H.; Wang, C. C.; Tsuboki, K.

    2017-12-01

    More than 2000 mm rainfall occurred over southern Taiwan when a category 1 Typhoon Morakot pass through Taiwan in early August 2009. Entire village and hundred of people were buried by massive mudslides induced by record-breaking precipitation. Whether the past anthropogenic warming played a significant role in such extreme event remained very controversial. On one hand, people argue it's nearly impossible to attribute an individual extreme event to global warming. On the other hand, the increase of heavy rainfall is consistent with the expected effects of climate change on tropical cyclone. To diagnose possible anthropogenic contributions to the odds of such heavy rainfall associated with Typhoon Morakot, we adapt an existing probabilistic event attribution framework to simulate a `world that was' and compare it with an alternative condition, 'world that might have been' that removed the historical anthropogenic drivers of climate. One limitation for applying such approach to high-impact weather system is that it will require models capable of capturing the essential processes lead to the studied extremes. Using a cloud system resolving model that can properly simulate the complicated interactions between tropical cyclone, large-scale background, topography, we first perform the ensemble `world that was' simulations using high resolution ECMWF YOTC analysis. We then re-simulate, having adjusted the analysis to `world that might have been conditions' by removing the regional atmospheric and oceanic forcing due to human influences estimated from the CMIP5 model ensemble mean conditions between all forcing and natural forcing only historical runs. Thus our findings are highly conditional on the driving analysis and adjustments therein, but the setup allows us to elucidate possible contribution of anthropogenic forcing to changes in the likelihood of heavy rainfall associated Typhoon Morakot in early August 2009.

  19. Human-induced changes in the distribution of rainfall.

    Science.gov (United States)

    Putnam, Aaron E; Broecker, Wallace S

    2017-05-01

    A likely consequence of global warming will be the redistribution of Earth's rain belts, affecting water availability for many of Earth's inhabitants. We consider three ways in which planetary warming might influence the global distribution of precipitation. The first possibility is that rainfall in the tropics will increase and that the subtropics and mid-latitudes will become more arid. A second possibility is that Earth's thermal equator, around which the planet's rain belts and dry zones are organized, will migrate northward. This northward shift will be a consequence of the Northern Hemisphere, with its large continental area, warming faster than the Southern Hemisphere, with its large oceanic area. A third possibility is that both of these scenarios will play out simultaneously. We review paleoclimate evidence suggesting that (i) the middle latitudes were wetter during the last glacial maximum, (ii) a northward shift of the thermal equator attended the abrupt Bølling-Allerød climatic transition ~14.6 thousand years ago, and (iii) a southward shift occurred during the more recent Little Ice Age. We also inspect trends in seasonal surface heating between the hemispheres over the past several decades. From these clues, we predict that there will be a seasonally dependent response in rainfall patterns to global warming. During boreal summer, in which the rate of recent warming has been relatively uniform between the hemispheres, wet areas will get wetter and dry regions will become drier. During boreal winter, rain belts and drylands will expand northward in response to differential heating between the hemispheres.

  20. First direct landscape-scale measurement of tropical rain forest Leaf Area Index, a key driver of global primary productivity

    Science.gov (United States)

    David B. Clark; Paulo C. Olivas; Steven F. Oberbauer; Deborah A. Clark; Michael G. Ryan

    2008-01-01

    Leaf Area Index (leaf area per unit ground area, LAI) is a key driver of forest productivity but has never previously been measured directly at the landscape scale in tropical rain forest (TRF). We used a modular tower and stratified random sampling to harvest all foliage from forest floor to canopy top in 55 vertical transects (4.6 m2) across 500 ha of old growth in...

  1. Assessment of satellite rainfall products over the Andean plateau

    Science.gov (United States)

    Satgé, Frédéric; Bonnet, Marie-Paule; Gosset, Marielle; Molina, Jorge; Hernan Yuque Lima, Wilson; Pillco Zolá, Ramiro; Timouk, Franck; Garnier, Jérémie

    2016-01-01

    Nine satellite rainfall estimations (SREs) were evaluated for the first time over the South American Andean plateau watershed by comparison with rain gauge data acquired between 2005 and 2007. The comparisons were carried out at the annual, monthly and daily time steps. All SREs reproduce the salient pattern of the annual rain field, with a marked north-south gradient and a lighter east-west gradient. However, the intensity of the gradient differs among SREs: it is well marked in the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis 3B42 (TMPA-3B42), Precipitation Estimation from remotely Sensed Information using Artificial Neural Networks (PERSIANN) and Global Satellite Mapping of Precipitation (GSMaP) products, and it is smoothed out in the Climate prediction center MORPHing (CMORPH) products. Another interesting difference among products is the contrast in rainfall amounts between the water surfaces (Lake Titicaca) and the surrounding land. Some products (TMPA-3B42, PERSIANN and GSMaP) show a contradictory rainfall deficit over Lake Titicaca, which may be due to the emissivity contrast between the lake and the surrounding lands and warm rain cloud processes. An analysis differentiating coastal Lake Titicaca from inland pixels confirmed this trend. The raw or Real Time (RT) products have strong biases over the study region. These biases are strongly positive for PERSIANN (above 90%), moderately positive for TMPA-3B42 (28%), strongly negative for CMORPH (- 42%) and moderately negative for GSMaP (- 18%). The biases are associated with a deformation of the rain rate frequency distribution: GSMaP underestimates the proportion of rainfall events for all rain rates; CMORPH overestimates the proportion of rain rates below 2 mm day- 1; and the other products tend to overestimate the proportion of moderate to high rain rates. These biases are greatly reduced by the gauge adjustment in the TMPA-3B42, PERSIANN and CMORPH products, whereas a

  2. Humans Have Already Increased the Risk of Basin-wide Disruptions to Pacific Rainfall, and the Risk Increases Even If Global Warming is Restricted to the 2oC Paris Target

    Science.gov (United States)

    Power, S.; Delage, F.; Chung, C.; Ye, H.; Murphy, B.

    2017-12-01

    The El Nino-Southern Oscillation causes major, intermittent disruptions to rainfall patterns and intensity over the Pacific Ocean lasting up to approximately one year. These disruptions have major impacts on severe weather, agricultural production, ecosystems, streamflow, and disease within and adjacent to the Pacific, and in many countries beyond. The frequency with which major disruptions to Pacific rainfall occur has been projected to increase over the 21st century, in response to global warming caused by large 21st century greenhouse gas emissions. Here we use the latest generation of climate models to show that the risk of disruption has already increased, and that humans may have contributed to the severity of the 1982/83 and 1997/98 events. We also demonstrate - for the first time - that although marked and sustained reductions in 21st century anthropogenic greenhouse gas emissions can greatly moderate the likelihood of major disruption, elevated risk of occurrence appears locked in now, and for at least the remainder of the 21st century. DOI: 10.1038/ncomms14368

  3. Estimating impact of rainfall change on hydrological processes in Jianfengling rainforest watershed, China using BASINS-HSPF-CAT modeling system

    Science.gov (United States)

    Zhang Zhou; Ying Ouyang; Yide Li; Zhijun Qiu; Matt Moran

    2017-01-01

    Climate change over the past several decades has resulted in shifting rainfall pattern and modifying rain-fall intensity, which has exacerbated hydrological processes and added the uncertainty and instability tothese processes. This study ascertained impacts of potential future rainfall change on hydrological pro-cesses at the Jianfengling (JFL) tropical mountain...

  4. Simulated sensitivity of African terrestrial ecosystem photosynthesis to rainfall frequency, intensity, and rainy season length

    Science.gov (United States)

    Guan, Kaiyu; Good, Stephen P.; Caylor, Kelly K.; Medvigy, David; Pan, Ming; Wood, Eric F.; Sato, Hisashi; Biasutti, Michela; Chen, Min; Ahlström, Anders; Xu, Xiangtao

    2018-02-01

    There is growing evidence of ongoing changes in the statistics of intra-seasonal rainfall variability over large parts of the world. Changes in annual total rainfall may arise from shifts, either singly or in a combination, of distinctive intra-seasonal characteristics -i.e. rainfall frequency, rainfall intensity, and rainfall seasonality. Understanding how various ecosystems respond to the changes in intra-seasonal rainfall characteristics is critical for predictions of future biome shifts and ecosystem services under climate change, especially for arid and semi-arid ecosystems. Here, we use an advanced dynamic vegetation model (SEIB-DGVM) coupled with a stochastic rainfall/weather simulator to answer the following question: how does the productivity of ecosystems respond to a given percentage change in the total seasonal rainfall that is realized by varying only one of the three rainfall characteristics (rainfall frequency, intensity, and rainy season length)? We conducted ensemble simulations for continental Africa for a realistic range of changes (-20% ~ +20%) in total rainfall amount. We find that the simulated ecosystem productivity (measured by gross primary production, GPP) shows distinctive responses to the intra-seasonal rainfall characteristics. Specifically, increase in rainfall frequency can lead to 28% more GPP increase than the same percentage increase in rainfall intensity; in tropical woodlands, GPP sensitivity to changes in rainy season length is ~4 times larger than to the same percentage changes in rainfall frequency or intensity. In contrast, shifts in the simulated biome distribution are much less sensitive to intra-seasonal rainfall characteristics than they are to total rainfall amount. Our results reveal three major distinctive productivity responses to seasonal rainfall variability—‘chronic water stress’, ‘acute water stress’ and ‘minimum water stress’ - which are respectively associated with three broad spatial patterns of

  5. Indian summer monsoon rainfall variability during 2014 and 2015 and associated Indo-Pacific upper ocean temperature patterns

    Science.gov (United States)

    Kakatkar, Rashmi; Gnanaseelan, C.; Chowdary, J. S.; Parekh, Anant; Deepa, J. S.

    2018-02-01

    In this study, factors responsible for the deficit Indian Summer Monsoon (ISM) rainfall in 2014 and 2015 and the ability of Indian Institute of Tropical Meteorology-Global Ocean Data Assimilation System (IITM-GODAS) in representing the oceanic features are examined. IITM-GODAS has been used to provide initial conditions for seasonal forecast in India during 2014 and 2015. The years 2014 and 2015 witnessed deficit ISM rainfall but were evolved from two entirely different preconditions over Pacific. This raises concern over the present understanding of the role of Pacific Ocean on ISM variability. Analysis reveals that the mechanisms associated with the rainfall deficit over the Indian Subcontinent are different in the two years. It is found that remote forcing in summer of 2015 due to El Niño is mostly responsible for the deficit monsoon rainfall through changes in Walker circulation and large-scale subsidence. In the case of the summer of 2014, both local circulation with anomalous anticyclone over central India and intrusion of mid-latitude dry winds from north have contributed for the deficit rainfall. In addition to the above, Tropical Indian Ocean (TIO) sea surface temperature (SST) and remote forcing from Pacific Ocean also modulated the ISM rainfall. It is observed that Pacific SST warming has extended westward in 2014, making it a basin scale warming unlike the strong El Niño year 2015. The eastern equatorial Indian Ocean is anomalously warmer than west in summer of 2014, and vice versa in 2015. These differences in SST in both tropical Pacific and TIO have considerable impact on ISM rainfall in 2014 and 2015. The study reveals that initializing coupled forecast models with proper upper ocean temperature over the Indo-Pacific is therefore essential for improved model forecast. It is important to note that the IITM-GODAS which assimilates only array for real-time geostrophic oceanography (ARGO) temperature and salinity profiles could capture most of the

  6. Rainfall simulation in education

    Science.gov (United States)

    Peters, Piet; Baartman, Jantiene; Gooren, Harm; Keesstra, Saskia

    2016-04-01

    Rainfall simulation has become an important method for the assessment of soil erosion and soil hydrological processes. For students, rainfall simulation offers an year-round, attractive and active way of experiencing water erosion, while not being dependent on (outdoors) weather conditions. Moreover, using rainfall simulation devices, they can play around with different conditions, including rainfall duration, intensity, soil type, soil cover, soil and water conservation measures, etc. and evaluate their effect on erosion and sediment transport. Rainfall simulators differ in design and scale. At Wageningen University, both BSc and MSc student of the curriculum 'International Land and Water Management' work with different types of rainfall simulation devices in three courses: - A mini rainfall simulator (0.0625m2) is used in the BSc level course 'Introduction to Land Degradation and Remediation'. Groups of students take the mini rainfall simulator with them to a nearby field location and test it for different soil types, varying from clay to more sandy, slope angles and vegetation or litter cover. The groups decide among themselves which factors they want to test and they compare their results and discuss advantage and disadvantage of the mini-rainfall simulator. - A medium sized rainfall simulator (0.238 m2) is used in the MSc level course 'Sustainable Land and Water Management', which is a field practical in Eastern Spain. In this course, a group of students has to develop their own research project and design their field measurement campaign using the transportable rainfall simulator. - Wageningen University has its own large rainfall simulation laboratory, in which a 15 m2 rainfall simulation facility is available for research. In the BSc level course 'Land and Water Engineering' Student groups will build slopes in the rainfall simulator in specially prepared containers. Aim is to experience the behaviour of different soil types or slope angles when (heavy) rain

  7. Connection of the stratospheric QBO with global atmospheric general circulation and tropical SST. Part II: interdecadal variations

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Zeng-Zhen [Climate Prediction Center (Room 605), NCEP/NWS/NOAA, Camp Springs, MD (United States); Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States); Huang, Bohua; Kinter, James L. [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States); George Mason University, Department of Atmospheric, Oceanic, and Earth Sciences, College of Science, Fairfax, VA (United States); Wu, Zhaohua [Florida State University, Department of Earth, Ocean, and Atmospheric Science, and Center for Ocean-Atmospheric Prediction Studies, Tallahassee, FL (United States); Kumar, Arun [Climate Prediction Center (Room 605), NCEP/NWS/NOAA, Camp Springs, MD (United States)

    2012-01-15

    The interdecadal variation of the association of the stratospheric quasi-biennial oscillation (QBO) with tropical sea surface temperature (SST) anomalies (SSTA) and with the general circulation in the troposphere and lower stratosphere is examined using the ERA40 and NCEP/NCAR reanalyses, as well as other observation-based analyses. It is found that the relationship between the QBO and tropical SSTA changed once around 1978-1980, and again in 1993-1995. During 1966-1974, negative correlation between the QBO and NINO3.4 indices reached its maximum when the NINO3.4 index lagged the QBO by less than 6 months. Correspondingly, the positive correlations were observed when the NINO3.4 index led the QBO by about 11-13 months or lagged by about 12-18 months. However, maximum negative correlations were shifted from the NINO3.4 index lagging the QBO by about 0-6 months during 1966-1974 to about 3-12 months during 1985-1992. During 1975-1979, both the negative and positive correlations were relatively small and the QBO and ENSO were practically unrelated to each other. The phase-based QBO life cycle composites also confirm that, on average, there are two phase (6-7 months) delay in the evolution of the QBO-associated anomalous Walker circulation, tropical SST, atmospheric stability, and troposphere and lower stratosphere temperature anomalies during 1980-1994 in comparison with those in 1957-1978. The interdecadal variation of the association between the QBO and the troposphere variability may be largely due to the characteristic change of El Nino-Southern Oscillation. The irregularity of the QBO may play a secondary role in the interdecadal variation of the association. (orig.)

  8. Connection of stratospheric QBO with global atmospheric general circulation and tropical SST. Part I: methodology and composite life cycle

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Bohua; Kinter, James L. [George Mason University, Department of Atmospheric, Oceanic, and Earth Sciences, College of Science, Fairfax, VA (United States); Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States); Hu, Zeng-Zhen [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States); Climate Prediction Center (suite 605), NCEP/NWS/NOAA, Camp Springs, MD (United States); Wu, Zhaohua [Florida State University, Department of Earth, Ocean, and Atmospheric Science, and Center for Ocean-Atmospheric Prediction Studies, Tallahassee, FL (United States); Kumar, Arun [Climate Prediction Center (suite 605), NCEP/NWS/NOAA, Camp Springs, MD (United States)

    2012-01-15

    The stratospheric quasi-biennial oscillation (QBO) and its association with the interannual variability in the stratosphere and troposphere, as well as in tropical sea surface temperature anomalies (SSTA), are examined in the context of a QBO life cycle. The analysis is based on the ERA40 and NCEP/NCAR reanalyses, radiosonde observations at Singapore, and other observation-based datasets. Both reanalyses reproduce the QBO life cycle and its associated variability in the stratosphere reasonably well, except that some long-term changes are detected only in the NCEP/NCAR reanalysis. In order to separate QBO from variability on other time scales and to eliminate the long-term changes, a scale separation technique [Ensemble Empirical Mode Decomposition (EEMD)] is applied to the raw data. The QBO component of zonal wind anomalies at 30 hPa, extracted using the EEMD method, is defined as a QBO index. Using this index, the QBO life cycle composites of stratosphere and troposphere variables, as well as SSTA, are constructed and examined. The composite features in the stratosphere are generally consistent with previous investigations. The correlations between the QBO and tropical Pacific SSTA depend on the phase in a QBO life cycle. On average, cold (warm) SSTA peaks about half a year after the maximum westerlies (easterlies) at 30 hPa. The connection of the QBO with the troposphere seems to be associated with the differences of temperature anomalies between the stratosphere and troposphere. While the anomalies in the stratosphere propagate downward systematically, some anomalies in the troposphere develop and expand vertically. Therefore, it is possible that the temperature difference between the troposphere and stratosphere may alter the atmospheric stability and tropical deep convection, which modulates the Walker circulation and SSTA in the equatorial Pacific Ocean. (orig.)

  9. Connection of stratospheric QBO with global atmospheric general circulation and tropical SST. Part I: methodology and composite life cycle

    Science.gov (United States)

    Huang, Bohua; Hu, Zeng-Zhen; Kinter, James L.; Wu, Zhaohua; Kumar, Arun

    2012-01-01

    The stratospheric quasi-biennial oscillation (QBO) and its association with the interannual variability in the stratosphere and troposphere, as well as in tropical sea surface temperature anomalies (SSTA), are examined in the context of a QBO life cycle. The analysis is based on the ERA40 and NCEP/NCAR reanalyses, radiosonde observations at Singapore, and other observation-based datasets. Both reanalyses reproduce the QBO life cycle and its associated variability in the stratosphere reasonably well, except that some long-term changes are detected only in the NCEP/NCAR reanalysis. In order to separate QBO from variability on other time scales and to eliminate the long-term changes, a scale separation technique [Ensemble Empirical Mode Decomposition (EEMD)] is applied to the raw data. The QBO component of zonal wind anomalies at 30 hPa, extracted using the EEMD method, is defined as a QBO index. Using this index, the QBO life cycle composites of stratosphere and troposphere variables, as well as SSTA, are constructed and examined. The composite features in the stratosphere are generally consistent with previous investigations. The correlations between the QBO and tropical Pacific SSTA depend on the phase in a QBO life cycle. On average, cold (warm) SSTA peaks about half a year after the maximum westerlies (easterlies) at 30 hPa. The connection of the QBO with the troposphere seems to be associated with the differences of temperature anomalies between the stratosphere and troposphere. While the anomalies in the stratosphere propagate downward systematically, some anomalies in the troposphere develop and expand vertically. Therefore, it is possible that the temperature difference between the troposphere and stratosphere may alter the atmospheric stability and tropical deep convection, which modulates the Walker circulation and SSTA in the equatorial Pacific Ocean.

  10. An Atlantic influence on Amazon rainfall

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jin-Ho [University of Maryland, Department of Atmospheric and Oceanic Science, College Park, MD (United States); Zeng, Ning [University of Maryland, Earth System Science Interdisciplinary Center, College Park, MD (United States); University of Maryland, Department of Atmospheric and Oceanic Science, College Park, MD (United States)

    2010-02-15

    Rainfall variability over the Amazon basin has often been linked to variations in Pacific sea surface temperature (SST), and in particular, to the El Nino/Southern Oscillation (ENSO). However, only a fraction of Amazon rainfall variability can be explained by ENSO. Building upon the recent work of Zeng (Environ Res Lett 3:014002, 2008), here we provide further evidence for an influence on Amazon rainfall from the tropical Atlantic Ocean. The strength of the North Atlantic influence is found to be comparable to the better-known Pacific ENSO connection. The tropical South Atlantic Ocean also shows some influence during the wet-to-dry season transition period. The Atlantic influence is through changes in the north-south divergent circulation and the movement of the ITCZ following warm SST. Therefore, it is strongest in the southern part of the Amazon basin during the Amazon's dry season (July-October). In contrast, the ENSO related teleconnection is through anomalous east-west Walker circulation with largely concentrated in the eastern (lower) Amazon. This ENSO connection is seasonally locked to boreal winter. A complication due to the influence of ENSO on Atlantic SST causes an apparent North Atlantic SST lag of Amazon rainfall. Removing ENSO from North Atlantic SST via linear regression resolves this causality problem in that the residual Atlantic variability correlates well and is in phase with the Amazon rainfall. A strong Atlantic influence during boreal summer and autumn is particularly significant in terms of the impact on the hydro-ecosystem which is most vulnerable during the dry season, as highlighted by the severe 2005 Amazon drought. Such findings have implications for both seasonal-interannual climate prediction and understanding the longer-term changes of the Amazon rainforest. (orig.)

  11. Validation of the CHIRPS Satellite Rainfall Estimates over Eastern of Africa

    Science.gov (United States)

    Dinku, T.; Funk, C. C.; Tadesse, T.; Ceccato, P.

    2017-12-01

    Long and temporally consistent rainfall time series are essential in climate analyses and applications. Rainfall data from station observations are inadequate over many parts of the world due to sparse or non-existent observation networks, or limited reporting of gauge observations. As a result, satellite rainfall estimates have been used as an alternative or as a supplement to station observations. However, many satellite-based rainfall products with long time series suffer from coarse spatial and temporal resolutions and inhomogeneities caused by variations in satellite inputs. There are some satellite rainfall products with reasonably consistent time series, but they are often limited to specific geographic areas. The Climate Hazards Group Infrared Precipitation (CHIRP) and CHIRP combined with station observations (CHIRPS) are recently produced satellite-based rainfall products with relatively high spatial and temporal resolutions and quasi-global coverage. In this study, CHIRP and CHIRPS were evaluated over East Africa at daily, dekadal (10-day) and monthly time scales. The evaluation was done by comparing the satellite products with rain gauge data from about 1200 stations. The is unprecedented number of validation stations for this region covering. The results provide a unique region-wide understanding of how satellite products perform over different climatic/geographic (low lands, mountainous regions, and coastal) regions. The CHIRP and CHIRPS products were also compared with two similar satellite rainfall products: the African Rainfall Climatology version 2 (ARC2) and the latest release of the Tropical Applications of Meteorology using Satellite data (TAMSAT). The results show that both CHIRP and CHIRPS products are significantly better than ARC2 with higher skill and low or no bias. These products were also found to be slightly better than the latest version of the TAMSAT product. A comparison was also done between the latest release of the TAMSAT product

  12. Sensitivity of point scale surface runoff predictions to rainfall resolution

    Directory of Open Access Journals (Sweden)

    A. J. Hearman

    2007-01-01

    averaged rainfall under these soil and rainfall conditions and predictions of larger scale phenomena such as hillslope runoff and runon. It offers insight into how rainfall resolution can affect predicted amounts of water entering the soil and thus soil water storage and drainage, possibly changing our understanding of the ecological functioning of the system or predictions of agri-chemical leaching. The application of this sensitivity analysis to different rainfall regions in Western Australia showed that locations in the tropics with higher intensity rainfalls are more likely to have differences in infiltration excess predictions with different rainfall resolutions and that a general understanding of the prevailing rainfall conditions and the soil's infiltration capacity can help in deciding whether high rainfall resolutions (below 1 h are required for accurate surface runoff predictions.

  13. The Plight of Migrant Birds Wintering in the Caribbean: Rainfall Effects in the Annual Cycle

    Directory of Open Access Journals (Sweden)

    Joseph M. Wunderle, Jr.

    2017-04-01

    Full Text Available Here, we summarize results of migrant bird research in the Caribbean as part of a 75th Anniversary Symposium on research of the United States Department of Agriculture Forest Service, International Institute of Tropical Forestry (IITF. The fate of migratory birds has been a concern stimulating research over the past 40 years in response to population declines documented in long-term studies including those of the IITF and collaborators in Puerto Rico’s Guánica dry forest. Various studies indicate that in addition to forest loss or fragmentation, some migrant declines may be due to rainfall variation, the consequences of which may carry over from one stage of a migrant’s annual cycle to another. For example, the Guánica studies indicate that rainfall extremes on either the temperate breeding or tropical wintering grounds affect migrant abundance and survival differently depending on the species. In contrast, IITF’s collaborative studies of the migrant Kirtland’s Warbler (Setophaga kirtlandii in the Bahamas found that late winter droughts affect its annual survival and breeding success in Michigan. We review these IITF migrant studies and relate them to other studies, which have improved our understanding of migrant ecology of relevance to conservation. Particularly important is the advent of the full annual cycle (FAC approach. The FAC will facilitate future identification and mitigation of limiting factors contributing to migrant population declines, which for some species, may be exacerbated by global climate change.

  14. Changes in tropical cyclones under stabilized 1.5 and 2.0 °C global warming scenarios as simulated by the Community Atmospheric Model under the HAPPI protocols

    Directory of Open Access Journals (Sweden)

    M. F. Wehner

    2018-02-01

    Full Text Available The United Nations Framework Convention on Climate Change (UNFCCC invited the scientific community to explore the impacts of a world in which anthropogenic global warming is stabilized at only 1.5 °C above preindustrial average temperatures. We present a projection of future tropical cyclone statistics for both 1.5 and 2.0 °C stabilized warming scenarios with direct numerical simulation using a high-resolution global climate model. As in similar projections at higher warming levels, we find that even at these low warming levels the most intense tropical cyclones become more frequent and more intense, while simultaneously the frequency of weaker tropical storms is decreased. We also conclude that in the 1.5 °C stabilization, the effect of aerosol forcing changes complicates the interpretation of greenhouse gas forcing changes.

  15. Changes in tropical cyclones under stabilized 1.5 and 2.0 °C global warming scenarios as simulated by the Community Atmospheric Model under the HAPPI protocols

    Science.gov (United States)

    Wehner, Michael F.; Reed, Kevin A.; Loring, Burlen; Stone, Dáithí; Krishnan, Harinarayan

    2018-02-01

    The United Nations Framework Convention on Climate Change (UNFCCC) invited the scientific community to explore the impacts of a world in which anthropogenic global warming is stabilized at only 1.5 °C above preindustrial average temperatures. We present a projection of future tropical cyclone statistics for both 1.5 and 2.0 °C stabilized warming scenarios with direct numerical simulation using a high-resolution global climate model. As in similar projections at higher warming levels, we find that even at these low warming levels the most intense tropical cyclones become more frequent and more intense, while simultaneously the frequency of weaker tropical storms is decreased. We also conclude that in the 1.5 °C stabilization, the effect of aerosol forcing changes complicates the interpretation of greenhouse gas forcing changes.

  16. The Research of Dr. Joanne Simpson: Fifty Years Investigating Hurricanes, Tropical Clouds and Cloud Systems

    Science.gov (United States)

    Tao, W. -K.; Halverson, J.; Adler, R.; Garstang, M.; Houze, R., Jr.; LeMone, M.; Pielke, R., Sr.; Woodley, W.; O'C.Starr, David (Technical Monitor)

    2001-01-01

    This AMS Meteorological Monographs is dedicated to Dr. Joanne Simpson for her many pioneering research efforts in tropical meteorology during her fifty-year career. Dr. Simpson's major areas of scientific research involved the "hot tower" hypothesis and its role in hurricanes, structure and maintenance of trade winds, air-sea interaction, and observations and the mechanism for hurricanes and waterspouts. She was also a pioneer in cloud modeling with the first one-dimensional model and had the first cumulus model on a computer. She also played a major role in planning and leading observational experiments on convective cloud systems. The launch of the Tropical Rainfall Measuring Mission (TRMM) satellite, a joint U.S.-Japan project, in November of 1997 made it possible for quantitative measurements of tropical rainfall to be obtained on a continuous basis over the entire global tropics. Dr. Simpson was the TRAM Project Scientist from 1986 until its launch in 1997. Her efforts during this crucial period ensured that the mission was both well planned scientifically and well engineered as well as within budget. In this paper, Dr. J. Simpson's nine specific accomplishments during her fifty-year career: (1) hot tower hypothesis, (2) hurricanes, (3) airflow and clouds over heated islands, (4) cloud models, (5) trade winds and their role in cumulus development, (6) air-sea interaction, (7) cloud-cloud interactions and mergers, (8) waterspouts, and (9) TRMM science, will be described and discussed.

  17. The impact of tropical wind data on the analysis and forcasts of the GLA GCM for the global weather experiment

    Science.gov (United States)

    Paegle, Jan; Baker, W. E.

    1985-01-01

    It is well-known that divergent wind estimates are much more dependent upon the analysis system than are estimates of the rotational wind. This conclusion is supported in recent analyses of FGGE SOP1 data produced by the Goddard Laboratory for Atmospheres (GLA), the Geophysical Fluid Dynamics Laboratory (GFDL) and the European Center for Medium Range Weather Forecasting (ECMWF). These analyses differ in the forecast models that are used for the four-dimensional assimilation, in the data rejection criteria, and, to a certain extent, in the data density. Because the final divergent wind is a product of both model constraints and observation, it is relevant to inquire how much of each goes into the final product. We presently investigate this question through a systematic analysis of tropical data that are sampled at different densities by the GLA GCM.

  18. Possible climatic impact of tropical deforestation

    Energy Technology Data Exchange (ETDEWEB)

    Potter, G L; Ellsaesser, H W; MacCracken, M C; Luther, F M

    1975-12-25

    A computer model of climate changes resulting from removal of tropical rain forests to increase arable acreage is described. A chain of consequences is deduced from the model which begins with deforestation and ends with overall global cooling and a reduction in precipitation. A model of the global water budget shows that the reduction in precipitation is accompanied by cooling in the upper tropical troposphere, a lowering of the tropical tropopause, and a warming of the lower tropical stratosphere. (HLW)

  19. Precipitation isotopes link regional climate patterns to water supply in a tropical mountain forest, eastern Puerto Rico

    Science.gov (United States)

    Scholl, Martha A.; Murphy, Sheila F.

    2014-05-01

    Like many mountainous areas in the tropics, watersheds in the Luquillo Mountains of eastern Puerto Rico have abundant rainfall and stream discharge and provide much of the water supply for the densely populated metropolitan areas nearby. Projected changes in regional temperature and atmospheric dynamics as a result of global warming suggest that water availability will be affected by changes in rainfall patterns. It is essential to understand the relative importance of different weather systems to water supply to determine how changes in rainfall patterns, interacting with geology and vegetation, will affect the water balance. To help determine the links between climate and water availability, stable isotope signatures of precipitation from different weather systems were established to identify those that are most important in maintaining streamflow and groundwater recharge. Precipitation stable isotope values in the Luquillo Mountains had a large range, from fog/cloud water with δ2H, δ18O values as high as +12 ‰, -0.73 ‰ to tropical storm rain with values as low as -127 ‰, -16.8 ‰. Temporal isotope values exhibit a reverse seasonality from those observed in higher latitude continental watersheds, with higher isotopic values in the winter and lower values in the summer. Despite the higher volume of convective and low-pressure system rainfall, stable isotope analyses indicated that under the current rainfall regime, frequent trade -wind orographic showers contribute much of the groundwater recharge and stream base flow. Analysis of rain events using 20 years of 15 -minute resolution data at a mountain station (643 m) showed an increasing trend in rainfall amount, in agreement with increased precipitable water in the atmosphere, but differing from climate model projections of drying in the region. The mean intensity of rain events also showed an increasing trend. The determination of recharge sources from stable isotope tracers indicates that water supply

  20. Extension of the TAMSAT satellite-based rainfall monitoring over Africa and from 1983 to present

    OpenAIRE

    Tarnavsky, Elena; Grimes, David; Maidment, Ross; Black, Emily; Allan, Richard; Stringer, Marc; Chadwick, Robin; Kayitakire, Francois

    2014-01-01

    Tropical Applications of Meteorology Using Satellite Data and Ground-Based Observations (TAMSAT) rainfall monitoring products have been extended to provide spatially contiguous rainfall estimates across Africa. This has been achieved through a new, climatology-based calibration, which varies in both space and time. As a result, cumulative estimates of rainfall are now issued at the end of each 10-day period (dekad) at 4-km spatial resolution with pan-African coverage. The utility of the produ...

  1. Rainfall Prediction of Indian Peninsula: Comparison of Time Series Based Approach and Predictor Based Approach using Machine Learning Techniques

    Science.gov (United States)

    Dash, Y.; Mishra, S. K.; Panigrahi, B. K.

    2017-12-01

    Prediction of northeast/post monsoon rainfall which occur during October, November and December (OND) over Indian peninsula is a challenging task due to the dynamic nature of uncertain chaotic climate. It is imperative to elucidate this issue by examining performance of different machine leaning (ML) approaches. The prime objective of this research is to compare between a) statistical prediction using historical rainfall observations and global atmosphere-ocean predictors like Sea Surface Temperature (SST) and Sea Level Pressure (SLP) and b) empirical prediction based on a time series analysis of past rainfall data without using any other predictors. Initially, ML techniques have been applied on SST and SLP data (1948-2014) obtained from NCEP/NCAR reanalysis monthly mean provided by the NOAA ESRL PSD. Later, this study investigated the applicability of ML methods using OND rainfall time series for 1948-2014 and forecasted up to 2018. The predicted values of aforementioned methods were verified using observed time series data collected from Indian Institute of Tropical Meteorology and the result revealed good performance of ML algorithms with minimal error scores. Thus, it is found that both statistical and empirical methods are useful for long range climatic projections.

  2. Spatial structure of monthly rainfall measurements average over 25 years and trends of the hourly variability of a current rainy day in Rwanda.

    Science.gov (United States)

    Nduwayezu, Emmanuel; Kanevski, Mikhail; Jaboyedoff, Michel

    2013-04-01

    Climate plays a vital role in a wide range of socio-economic activities of most nations particularly of developing countries. Climate (rainfall) plays a central role in agriculture which is the main stay of the Rwandan economy and community livelihood and activities. The majority of the Rwandan population (81,1% in 2010) relies on rain fed agriculture for their livelihoods, and the impacts of variability in climate patterns are already being felt. Climate-related events like heavy rainfall or too little rainfall are becoming more frequent and are impacting on human wellbeing.The torrential rainfall that occurs every year in Rwanda could disturb the circulation for many days, damages houses, infrastructures and causes heavy economic losses and deaths. Four rainfall seasons have been identified, corresponding to the four thermal Earth ones in the south hemisphere: the normal season (summer), the rainy season (autumn), the dry season (winter) and the normo-rainy season (spring). Globally, the spatial rainfall decreasing from West to East, especially in October (spring) and February (summer) suggests an «Atlantic monsoon influence» while the homogeneous spatial rainfall distribution suggests an «Inter-tropical front» mechanism. What is the hourly variability in this mountainous area? Is there any correlation with the identified zones of the monthly average series (from 1965 to 1990 established by the Rwandan meteorological services)? Where could we have hazards with several consecutive rainy days (using forecasted datas from the Norwegian Meteorological Institute)? Spatio-temporal analysis allows for identifying and explaining large-scale anomalies which are useful for understanding hydrological characteristics and subsequently predicting these hydrological events. The objective of our current research (Rainfall variability) is to proceed to an evaluation of the potential rainfall risk by applying advanced geospatial modelling tools in Rwanda: geostatistical

  3. Climatology and Spatio-Temporal Variability of Wintertime Total and Extreme Rainfall in Thailand during 1970-2012

    Directory of Open Access Journals (Sweden)

    Atsamon Limsakul

    2017-07-01

    Full Text Available This study aims at examining wintertime (December-January-February; DJF climatology and spatio-temporal variability of Thailand’s total and extreme rainfall during 1970-2012. Analysis showed that the area along the Gulf of Thailand’s eastern coast not only received much amount of rainfall but also underwent great extremes and variances during the northeast monsoon (NEM winters. Empirical Orthogonal Function (EOF analysis similarly revealed that the leading mode of each DJF total or extreme rainfall index was marked by maximum loadings concentrated at the stations located at the exposed area of the NEM flow. Correlation analysis indicated that the leading EOF mode of DJF total and extreme indices in Thailand tended to be higher (lower than normal during strong (weak East Asian Winter Monsoon (EAWM. On longer timescales, the recent decadal change observed in the leading EOF mode of all rainfall indices has been coincident with re-amplification of the EAWM taken place since the early/mid 2000. The leading EOF mode of DJF total and extreme rainfall indices in Thailand also exhibited strong correlations with the tropical-subtropical Pacific Ocean surface temperatures. It was characterized as the Pacific Decadal Oscillation (PDO/El Niño Southern Oscillation (ENSO-related boomerang-shaped spatial patterns, resembling the typical mature phases of the La Niña event and the PDO cool epoch. Based on our analysis, it is reasonable to believe that the anomalies of the NEM and other key EAWM-related circulations are likely to be the possible causes of DJF total and extreme rainfall variations in Thailand. In addition, the ENSO and PDO as the primary global atmospheric external forcing are likely to exert their influence on wintertime Thailand’s climate via modulating the EAWM/NEM-related circulations anomalies.

  4. Oceanic influence on extreme rainfall trends in the north central coast of Venezuela: present and future climate assessments

    Directory of Open Access Journals (Sweden)

    Lelys Guenni

    2013-10-01

    Full Text Available Extreme events are an important part of climate variability and their intensity and persistence are often modulated by large scale climatic patterns which might act as forcing drivers affecting their probability of occurrence. When the North Tropical Atlantic (NTA and the Equatorial Pacific (Ni\\~no 3 region sea surface temperature (SST anomalies are of opposite signs and the first one is positive while the second one is negative, the rainfall response is stronger in the northern coast of Venezuela as well as in the Pacific coast of Central America during the Nov-Feb period. The difference between these two SST anomaly time series (NTA-Ni\\~no3 is used in this analysis and it is called the Atlantic-Pacific Index or API. By fitting a dynamic generalized extreme value (GEV model to station based daily rainfall at different locations and to the Xie and Arkin dataset for the Vargas state, we found the API index to be an adequate index to explain the probabilistic nature of rainfall extremes in the northern Venezuelan coast for the months Nov-Feb. Dependence between the Atlantic-Pacific index and the probabilistic behavior of extreme rainfall was also explored for simulations from two global coupled General Circulation Models for the 20th century climate (20C3M experiment and the 21st century climate (SRES A2 experiment: the Echam5 model and the HadCM3 model. A significant dependence of extreme rainfall on the Atlantic-Pacific index is well described by the GEV dynamic model for the Echam5 20C3M experiment model outputs. When looking at future climates under the SRES A2 experiment, the dependence of extreme rainfall from the API index is still significant for the middle part of the 21st century (2046-2064, while this dependence fades off for the latest part of the century (2081-2099

  5. Rainfall: State of the Science

    Science.gov (United States)

    Testik, Firat Y.; Gebremichael, Mekonnen

    Rainfall: State of the Science offers the most up-to-date knowledge on the fundamental and practical aspects of rainfall. Each chapter, self-contained and written by prominent scientists in their respective fields, provides three forms of information: fundamental principles, detailed overview of current knowledge and description of existing methods, and emerging techniques and future research directions. The book discusses • Rainfall microphysics: raindrop morphodynamics, interactions, size distribution, and evolution • Rainfall measurement and estimation: ground-based direct measurement (disdrometer and rain gauge), weather radar rainfall estimation, polarimetric radar rainfall estimation, and satellite rainfall estimation • Statistical analyses: intensity-duration-frequency curves, frequency analysis of extreme events, spatial analyses, simulation and disaggregation, ensemble approach for radar rainfall uncertainty, and uncertainty analysis of satellite rainfall products The book is tailored to be an indispensable reference for researchers, practitioners, and graduate students who study any aspect of rainfall or utilize rainfall information in various science and engineering disciplines.

  6. Dynamic Hydrological Modeling in Drylands with TRMM Based Rainfall

    Directory of Open Access Journals (Sweden)

    Elena Tarnavsky

    2013-12-01

    Full Text Available This paper introduces and evaluates DryMOD, a dynamic water balance model of the key hydrological process in drylands that is based on free, public-domain datasets. The rainfall model of DryMOD makes optimal use of spatially disaggregated Tropical Rainfall Measuring Mission (TRMM datasets to simulate hourly rainfall intensities at a spatial resolution of 1-km. Regional-scale applications of the model in seasonal catchments in Tunisia and Senegal characterize runoff and soil moisture distribution and dynamics in response to varying rainfall data inputs and soil properties. The results highlight the need for hourly-based rainfall simulation and for correcting TRMM 3B42 rainfall intensities for the fractional cover of rainfall (FCR. Without FCR correction and disaggregation to 1 km, TRMM 3B42 based rainfall intensities are too low to generate surface runoff and to induce substantial changes to soil moisture storage. The outcomes from the sensitivity analysis show that topsoil porosity is the most important soil property for simulation of runoff and soil moisture. Thus, we demonstrate the benefit of hydrological investigations at a scale, for which reliable information on soil profile characteristics exists and which is sufficiently fine to account for the heterogeneities of these. Where such information is available, application of DryMOD can assist in the spatial and temporal planning of water harvesting according to runoff-generating areas and the runoff ratio, as well as in the optimization of agricultural activities based on realistic representation of soil moisture conditions.

  7. Radioactive pollution in rainfall

    International Nuclear Information System (INIS)

    Jemtland, R.

    1985-01-01

    Routine measurements of radioactivity in rainfall are carried out at the National Institute for Radiation Hygiene, Norway. The report discusses why the method of ion exchange was selected and gives details on how the measurements are performed

  8. Sea surface temperature inter-hemispheric dipole and its relation to tropical precipitation

    International Nuclear Information System (INIS)

    Sun, Cheng; Li, Jianping; Ding, Ruiqiang; Jin, Fei-Fei

    2013-01-01

    Using different SST datasets, the variability of zonal mean SSTs is investigated. Besides the global warming mode, the variability is dominated by one equatorially symmetric mode and one antisymmetric mode. The former is most pronounced in the Pacific and dominated by interannual variability, corresponding to the ENSO signature. The latter features an inter-hemispheric dipole-like pattern and is referred to as the SST inter-hemispheric dipole (SSTID). The SSTID and Atlantic multidecadal oscillation are found to be related but distinct in the spatial pattern. Observational analysis shows that the SSTID significantly influences tropical rainfall and contributes to the north–south asymmetry of tropical precipitation on multidecadal timescales. The observed SSTID and its relation to the tropical rainfall are realistically reproduced in a control simulation with the UKMO-HadCM3 climate model. Results from the UKMO-HadCM3 simulation suggest that the SSTID is related to the variability of the global ocean northward cross-equatorial heat transport. (letter)

  9. Copenhagen 2009: Could a Cap-and-Trade Market Combat Global Warming and Conserve Earth's Tropical Forests?

    Science.gov (United States)

    Beedle, Harold; Calhoun, Bruce

    2009-01-01

    As the world increasingly comes to terms with the reality of global warming, international negotiators are struggling to work out the terms of a new climate change framework to be finalized this December in Copenhagen, Denmark. One aspect being discussed is a plan to compensate developing countries for reducing greenhouse gas emissions by…

  10. Impact of the dynamical core on the direct simulation of tropical cyclones in a high-resolution global model

    International Nuclear Information System (INIS)

    Reed, K. A.

    2015-01-01

    Our paper examines the impact of the dynamical core on the simulation of tropical cyclone (TC) frequency, distribution, and intensity. The dynamical core, the central fluid flow component of any general circulation model (GCM), is often overlooked in the analysis of a model's ability to simulate TCs compared to the impact of more commonly documented components (e.g., physical parameterizations). The Community Atmosphere Model version 5 is configured with multiple dynamics packages. This analysis demonstrates that the dynamical core has a significant impact on storm intensity and frequency, even in the presence of similar large-scale environments. In particular, the spectral element core produces stronger TCs and more hurricanes than the finite-volume core using very similar parameterization packages despite the latter having a slightly more favorable TC environment. Furthermore, these results suggest that more detailed investigations into the impact of the GCM dynamical core on TC climatology are needed to fully understand these uncertainties. Key Points The impact of the GCM dynamical core is often overlooked in TC assessments The CAM5 dynamical core has a significant impact on TC frequency and intensity A larger effort is needed to better understand this uncertainty

  11. Prediction of summer monsoon rainfall over India using the NCEP climate forecast system

    Energy Technology Data Exchange (ETDEWEB)

    Pattanaik, D.R. [India Meteorological Department (IMD), New Delhi (India); Kumar, Arun [Climate Prediction Center, National Centre for Environmental Prediction (NCEP)/NWS/NOAA, Camp Springs, MD (United States)

    2010-03-15

    The performance of a dynamical seasonal forecast system is evaluated for the prediction of summer monsoon rainfall over the Indian region during June to September (JJAS). The evaluation is based on the National Centre for Environmental Prediction's (NCEP) climate forecast system (CFS) initialized during March, April and May and integrated for a period of 9 months with a 15 ensemble members for 25 years period from 1981 to 2005. The CFS's hindcast climatology during JJAS of March (lag-3), April (lag-2) and May (lag-1) initial conditions show mostly an identical pattern of rainfall similar to that of verification climatology with the rainfall maxima (one over the west-coast of India and the other over the head Bay of Bengal region) well simulated. The pattern correlation between verification and forecast climatology over the global tropics and Indian monsoon region (IMR) bounded by 50 E-110 E and 10 S-35 N shows significant correlation coefficient (CCs). The skill of simulation of broad scale monsoon circulation index (Webster and Yang; WY index) is quite good in the CFS with highly significant CC between the observed and predicted by the CFS from the March, April and May forecasts. High skill in forecasting El Nino event is also noted for the CFS March, April and May initial conditions, whereas, the skill of the simulation of Indian Ocean Dipole is poor and is basically due to the poor skill of prediction of sea surface temperature (SST) anomalies over the eastern equatorial Indian Ocean. Over the IMR the skill of monsoon rainfall forecast during JJAS as measured by the spatial Anomaly CC between forecast rainfall anomaly and the observed rainfall anomaly during 1991, 1994, 1997 and 1998 is high (almost of the order of 0.6), whereas, during the year 1982, 1984, 1985, 1987 and 1989 the ACC is only around 0.3. By using lower and upper tropospheric forecast winds during JJAS over the regions of significant CCs as predictors for the All India Summer Monsoon

  12. Tropical Rainforests.

    Science.gov (United States)

    Nigh, Ronald B.; Nations, James D.

    1980-01-01

    Presented is a summary of scientific knowledge about the rainforest environment, a tropical ecosystem in danger of extermination. Topics include the current state of tropical rainforests, the causes of rainforest destruction, and alternatives of rainforest destruction. (BT)

  13. Will surface winds weaken in response to global warming?

    Science.gov (United States)

    Ma, Jian; Foltz, Gregory R.; Soden, Brian J.; Huang, Gang; He, Jie; Dong, Changming

    2016-12-01

    The surface Walker and tropical tropospheric circulations have been inferred to slow down from historical observations and model projections, yet analysis of large-scale surface wind predictions is lacking. Satellite measurements of surface wind speed indicate strengthening trends averaged over the global and tropical oceans that are supported by precipitation and evaporation changes. Here we use corrected anemometer-based observations to show that the surface wind speed has not decreased in the averaged tropical oceans, despite its reduction in the region of the Walker circulation. Historical simulations and future projections for climate change also suggest a near-zero wind speed trend averaged in space, regardless of the Walker cell change. In the tropics, the sea surface temperature pattern effect acts against the large-scale circulation slow-down. For higher latitudes, the surface winds shift poleward along with the eddy-driven mid-latitude westerlies, resulting in a very small contribution to the global change in surface wind speed. Despite its importance for surface wind speed change, the influence of the SST pattern change on global-mean rainfall is insignificant since it cannot substantially alter the global energy balance. As a result, the precipitation response to global warming remains ‘muted’ relative to atmospheric moisture increase. Our results therefore show consistency between projections and observations of surface winds and precipitation.

  14. The assessment of Global Precipitation Measurement estimates over the Indian subcontinent

    Science.gov (United States)

    Murali Krishna, U. V.; Das, Subrata Kumar; Deshpande, Sachin M.; Doiphode, S. L.; Pandithurai, G.

    2017-08-01

    Accurate and real-time precipitation estimation is a challenging task for current and future spaceborne measurements, which is essential to understand the global hydrological cycle. Recently, the Global Precipitation Measurement (GPM) satellites were launched as a next-generation rainfall mission for observing the global precipitation characteristics. The purpose of the GPM is to enhance the spatiotemporal resolution of global precipitation. The main objective of the present study is to assess the rainfall products from the GPM, especially the Integrated Multi-satellitE Retrievals for the GPM (IMERG) data by comparing with the ground-based observations. The multitemporal scale evaluations of rainfall involving subdaily, diurnal, monthly, and seasonal scales were performed over the Indian subcontinent. The comparison shows that the IMERG performed better than the Tropical Rainfall Measuring Mission (TRMM)-3B42, although both rainfall products underestimated the observed rainfall compared to the ground-based measurements. The analyses also reveal that the TRMM-3B42 and IMERG data sets are able to represent the large-scale monsoon rainfall spatial features but are having region-specific biases. The IMERG shows significant improvement in low rainfall estimates compared to the TRMM-3B42 for selected regions. In the spatial distribution, the IMERG shows higher rain rates compared to the TRMM-3B42, due to its enhanced spatial and temporal resolutions. Apart from this, the characteristics of raindrop size distribution (DSD) obtained from the GPM mission dual-frequency precipitation radar is assessed over the complex mountain terrain site in the Western Ghats, India, using the DSD measured by a Joss-Waldvogel disdrometer.

  15. Pneumonia in the tropics.

    Science.gov (United States)

    Lim, Tow Keang; Siow, Wen Ting

    2018-01-01

    Pneumonia in the tropics poses a heavy disease burden. The complex interplay of climate change, human migration influences and socio-economic factors lead to changing patterns of respiratory infections in tropical climate but also increasingly in temperate countries. Tropical and poorer countries, especially South East Asia, also bear the brunt of the global tuberculosis (TB) pandemic, accounting for almost one-third of the burden. But, as human migration patterns evolve, we expect to see more TB cases in higher income as well as temperate countries, and rise in infections like scrub typhus from ecotourism activities. Fuelled by the ease of air travel, novel zoonotic infections originating from the tropics have led to global respiratory pandemics. As such, clinicians worldwide should be aware of these new conditions as well as classical tropical bacterial pneumonias such as melioidosis. Rarer entities such as co-infections of leptospirosis and chikungunya or dengue will need careful consideration as well. In this review, we highlight aetiologies of pneumonia seen more commonly in the tropics compared with temperate regions, their disease burden, variable clinical presentations as well as impact on healthcare delivery. © 2017 Asian Pacific Society of Respirology.

  16. Woody encroachment over 70 years in South African savannahs: overgrazing, global change or extinction aftershock?

    Science.gov (United States)

    Stevens, Nicola; Erasmus, B F N; Archibald, S; Bond, W J

    2016-09-19

    Woody encroachment in 'open' biomes like grasslands and savannahs is occurring globally. Both local and global drivers, including elevated CO2, have been implicated in these increases. The relative importance of different processes is unresolved as there are few multi-site, multi-land-use evaluations of woody plant encroachment. We measured 70 years of woody cover changes over a 1020 km(2) area covering four land uses (commercial ranching, conservation with elephants, conservation without elephants and communal rangelands) across a rainfall gradient in South African savannahs. Different directions of woody cover change would be expected for each different land use, unless a global factor is causing the increases. Woody cover change was measured between 1940 and 2010 using the aerial photo record. Detection of woody cover from each aerial photograph was automated using eCognitions' Object-based image analysis (OBIA). Woody cover doubled in all land uses across the rainfall gradient, except in conservation areas with elephants in low-rainfall savannahs. Woody cover in 2010 in low-rainfall savannahs frequently exceeded the maximum woody cover threshold predicted for African savannahs. The results indicate that a global factor, of which elevated CO2 is the likely candidate, may be driving encroachment. Elephants in low-rainfall savannahs prevent encroachment and localized megafaunal extinction is a probable additional cause of encroachment.This article is part of the themed issue 'Tropical grassy biomes: linking ecology, human use and conservation'. © 2016 The Author(s).

  17. The Impact of Amazonian Deforestation on Dry-Season Rainfall

    Science.gov (United States)

    Negri, Andrew J.; Adler, Robert F.; Xu, Li-Ming; Surratt, Jason; Starr, David OC. (Technical Monitor)

    2002-01-01

    Many modeling studies have concluded that widespread deforestation of Amazonia would lead to decreased rainfall. We analyze geosynchronous infrared satellite data with respect percent cloudiness, and analyze rain estimates from microwave sensors aboard the Tropical Rainfall Measuring Mission satellite. We conclude that in the dry-season, when the effects of the surface are not overwhelmed by synoptic-scale weather disturbances, deep convective cloudiness, as well as rainfall occurrence, all increase over the deforested and non-forested (savanna) regions. This is in response to a local circulation initiated by the differential heating of the region's varying forestation. Analysis of the diurnal cycle of cloudiness reveals a shift toward afternoon hours in the deforested and savanna regions, compared to the forested regions. Analysis of 14 years of data from the Special Sensor Microwave/Imager data revealed that only in August did rainfall amounts increase over the deforested region.

  18. Effect of rainfall infiltration into unsaturated soil using soil column

    Science.gov (United States)

    Ibrahim, A.; Mukhlisin, M.; Jaafar, O.

    2018-02-01

    Rainfall especially in tropical region caused infiltration to the soil slope. The infiltration may change pore water pressure or matric suction of the soil. The event of rainfall infiltration into soil is a complex mechanism. Therefore, the main objectives of this research paper is to study the influence of rainfall intensity and duration that changed pore water pressure to soil. There are two types of soils used in this study; forest soil and kaolin. Soil column apparatus is used for experiments. Rainfall were applied to the soil and result for 3, 6, 12, 24, 72, 120 and 168 hours were retrieved. Result shows that for the both types of soil, the negative pore water pressures were increased during wetting process and gradually decreased towards drying process. The results also show that pore water pressure at top part was increased greatly as the wetting process started compared to the middle and bottom part of the column.

  19. A Metastatistical Approach to Satellite Estimates of Extreme Rainfall Events

    Science.gov (United States)

    Zorzetto, E.; Marani, M.

    2017-12-01

    The estimation of the average recurrence interval of intense rainfall events is a central issue for both hydrologic modeling and engineering design. These estimates require the inference of the properties of the right tail of the statistical distribution of precipitation, a task often performed using the Generalized Extreme Value (GEV) distribution, estimated either from a samples of annual maxima (AM) or with a peaks over threshold (POT) approach. However, these approaches require long and homogeneous rainfall records, which often are not available, especially in the case of remote-sensed rainfall datasets. We use here, and tailor it to remotely-sensed rainfall estimates, an alternative approach, based on the metastatistical extreme value distribution (MEVD), which produces estimates of rainfall extreme values based on the probability distribution function (pdf) of all measured `ordinary' rainfall event. This methodology also accounts for the interannual variations observed in the pdf of daily rainfall by integrating over the sample space of its random parameters. We illustrate the application of this framework to the TRMM Multi-satellite Precipitation Analysis rainfall dataset, where MEVD optimally exploits the relatively short datasets of satellite-sensed rainfall, while taking full advantage of its high spatial resolution and quasi-global coverage. Accuracy of TRMM precipitation estimates and scale issues are here investigated for a case study located in the Little Washita watershed, Oklahoma, using a dense network of rain gauges for independent ground validation. The methodology contributes to our understanding of the risk of extreme rainfall events, as it allows i) an optimal use of the TRMM datasets in estimating the tail of the probability distribution of daily rainfall, and ii) a global mapping of daily rainfall extremes and distributional tail properties, bridging the existing gaps in rain gauges networks.

  20. Changes in Eocene-Miocene shallow marine carbonate factories along the tropical SE Circum-Caribbean responded to major regional and global environmental and tectonic events

    Science.gov (United States)

    Silva-Tamayo, Juan Carlos

    2015-04-01

    Changes in the factory of Cenozoic tropical marine carbonates have been for long attributed to major variations on climatic and environmental conditions. Although important changes on the factories of Cenozoic Caribbean carbonates seem to have followed global climatic and environmental changes, the regional impact of such changes on the factories of shallow marine carbonate along the Caribbean is not well established. Moreover, the influence of transpressional tectonics on the occurrence, distribution and stratigraphy of shallow marine carbonate factories along this area is far from being well understood. Here we report detailed stratigraphic, petrographic and Sr-isotope chemostratigraphic information of several Eocene-Miocene carbonate successions deposited along the equatorial/tropical SE Circum-Caribbean (Colombia and Panama) from which we further assess the influence of changing environmental conditions, transtentional tectonics and sea level change on the development of the shallow marine carbonate factories. Our results suggest that during the Eocene-early Oligocene interval, a period of predominant high atmospheric pCO2, coralline algae constitute the principal carbonate builders of shallow marine carbonate successions along the SE Circum-Caribbean. Detailed stratigraphic and paragenetic analyses suggest the developed of laterally continuous red algae calcareous build-ups along outer-rimmed carbonate platforms. The predominance of coralline red algae over corals on the shallow marine carbonate factories was likely related to high sea surface temperatures and high turbidity. The occurrence of such build-ups was likely controlled by pronounce changes in the basin paleotopography, i.e. the occurrence of basement highs and lows, resulting from local transpressional tectonics. The occurrence of these calcareous red algae dominated factories was also controlled by diachronic opening of different sedimentary basins along the SE Circum Caribbean resulting from

  1. Long-term Increases in Flower Production by Growth Forms in Response to Anthropogenic Change in a Tropical Forest

    Science.gov (United States)

    Pau, S.; Wright, S. J.

    2016-12-01

    There is mounting evidence that anthropogenic global change is altering the ecology of tropical forests. A limited number of studies have focused on long-term trends in tropical reproductive activity, yet differences in reproductive activity should have consequences for demography and ultimately forest carbon, water, and energy balance. Here we analyze a 28-year record of tropical flower production in response to anthropogenic climate change. We show that a multi-decadal increase in flower production is most strongly driven by rising atmospheric CO2, which had approximately 8x the effect of the Multivariate ENSO Index and approximately 13x the effect of rainfall or solar radiation. Interannual peaks in flower production were associated with greater solar radiation and low rainfall during El Niño years. Observed changes in solar radiation explained flower production better than rainfall (models including solar radiation accounted for 94% of cumulative AICc weight compared to 87% for rainfall). All growth forms (lianas, canopy trees, midstory trees, and shrubs) produced more flowers with increasing CO2 except for understory treelets. The increase in flower production was matched by a lengthening of flowering duration for canopy trees and midstory trees; duration was also longer for understory treelets. Given that anthropogenic CO2 emissions will continue to climb over the next century, the long-term increase in flower production may persist unless offset by increasing cloudiness in the tropics, or until rising CO2 and/or warming temperatures associated with the greenhouse effect pass critical thresholds for plant reproduction.

  2. Origin and global diversification patterns of tropical rain forests: inferences from a complete genus-level phylogeny of palms

    Directory of Open Access Journals (Sweden)

    Couvreur Thomas LP

    2011-06-01

    Full Text Available Abstract Background Understanding how biodiversity is shaped through time is a fundamental question in biology. Even though tropical rain forests (TRF represent the most diverse terrestrial biomes on the planet, the timing, location and mechanisms of their diversification remain poorly understood. Molecular phylogenies are valuable tools for exploring these issues, but to date most studies have focused only on recent time scales, which minimises their explanatory potential. In order to provide a long-term view of TRF diversification, we constructed the first complete genus-level dated phylogeny of a largely TRF-restricted plant family with a known history dating back to the Cretaceous. Palms (Arecaceae/Palmae are one of the most characteristic and ecologically important components of TRF worldwide, and represent a model group for the investigation of TRF evolution. Results We provide evidence that diversification of extant lineages of palms started during the mid-Cretaceous period about 100 million years ago. Ancestral biome and area reconstructions for the whole family strongly support the hypothesis that palms diversified in a TRF-like environment at northern latitudes. Finally, our results suggest that palms conform to a constant diversification model (the 'museum' model or Yule process, at least until the Neogene, with no evidence for any change in diversification rates even through the Cretaceous/Paleogene mass extinction event. Conclusions Because palms are restricted to TRF and assuming biome conservatism over time, our results suggest the presence of a TRF-like biome in the mid-Cretaceous period of Laurasia, consistent with controversial fossil evidence of the earliest TRF. Throughout its history, the TRF biome is thought to have been highly dynamic and to have fluctuated greatly in extent, but it has persisted even during climatically unfavourable periods. This may have allowed old lineages to survive and contribute to the steady

  3. Tropical Glaciers

    Science.gov (United States)

    Fountain, Andrew

    The term "tropical glacier" calls to mind balmy nights and palm trees on one hand and cold, blue ice on the other. Certainly author Gabriel Garcia Marqez exploited this contrast in One Hundred Years of Solitude. We know that tropical fish live in warm, Sun-kissed waters and tropical plants provide lush, dense foliage populated by colorful tropical birds. So how do tropical glaciers fit into this scene? Like glaciers everywhere, tropical glaciers form where mass accumulation—usually winter snow—exceeds mass loss, which is generally summer melt. Thus, tropical glaciers exist at high elevations where precipitation can occur as snowfall exceeds melt and sublimation losses, such as the Rwenzori Mountains in east Africa and the Maoke Range of Irian Jaya.

  4. Tropical radioecology

    CERN Document Server

    Baxter, M

    2012-01-01

    Tropical Radioecology is a guide to the wide range of scientific practices and principles of this multidisciplinary field. It brings together past and present studies in the tropical and sub-tropical areas of the planet, highlighting the unique aspects of tropical systems. Until recently, radioecological models for tropical environments have depended upon data derived from temperate environments, despite the differences of these regions in terms of biota and abiotic conditions. Since radioactivity can be used to trace environmental processes in humans and other biota, this book offers examples of studies in which radiotracers have been used to assess biokinetics in tropical biota. Features chapters, co-authored by world experts, that explain the origins, inputs, distribution, behaviour, and consequences of radioactivity in tropical and subtropical systems. Provides comprehensive lists of relevant data and identifies current knowledge gaps to allow for targeted radioecological research in the future. Integrate...

  5. Tree height and tropical forest biomass estimation

    Science.gov (United States)

    M.O. Hunter; M. Keller; D. Vitoria; D.C. Morton

    2013-01-01

    Tropical forests account for approximately half of above-ground carbon stored in global vegetation. However, uncertainties in tropical forest carbon stocks remain high because it is costly and laborious to quantify standing carbon stocks. Carbon stocks of tropical forests are determined using allometric relations between tree stem diameter and height and biomass....

  6. Rainfall erosivity in Europe.

    Science.gov (United States)

    Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale; Meusburger, Katrin; Klik, Andreas; Rousseva, Svetla; Tadić, Melita Perčec; Michaelides, Silas; Hrabalíková, Michaela; Olsen, Preben; Aalto, Juha; Lakatos, Mónika; Rymszewicz, Anna; Dumitrescu, Alexandru; Beguería, Santiago; Alewell, Christine

    2015-04-01

    Rainfall is one the main drivers of soil erosion. The erosive force of rainfall is expressed as rainfall erosivity. Rainfall erosivity considers the rainfall amount and intensity, and is most commonly expressed as the R-factor in the USLE model and its revised version, RUSLE. At national and continental levels, the scarce availability of data obliges soil erosion modellers to estimate this factor based on rainfall data with only low temporal resolution (daily, monthly, annual averages). The purpose of this study is to assess rainfall erosivity in Europe in the form of the RUSLE R-factor, based on the best available datasets. Data have been collected from 1541 precipitation stations in all European Union (EU) Member States and Switzerland, with temporal resolutions of 5 to 60 min. The R-factor values calculated from precipitation data of different temporal resolutions were normalised to R-factor values with temporal resolutions of 30 min using linear regression functions. Precipitation time series ranged from a minimum of 5 years to a maximum of 40 years. The average time series per precipitation station is around 17.1 years, the most datasets including the first decade of the 21st century. Gaussian Process Regression (GPR) has been used to interpolate the R-factor station values to a European rainfall erosivity map at 1 km resolution. The covariates used for the R-factor interpolation were climatic data (total precipitation, seasonal precipitation, precipitation of driest/wettest months, average temperature), elevation and latitude/longitude. The mean R-factor for the EU plus Switzerland is 722 MJ mm ha(-1) h(-1) yr(-1), with the highest values (>1000 MJ mm ha(-1) h(-1) yr(-1)) in the Mediterranean and alpine regions and the lowest (<500 MJ mm ha(-1) h(-1) yr(-1)) in the Nordic countries. The erosivity density (erosivity normalised to annual precipitation amounts) was also the highest in Mediterranean regions which implies high risk for erosive events and floods

  7. Small changes in climate can profoundly alter the dynamics and ecosystem services of tropical crater lakes.

    Directory of Open Access Journals (Sweden)

    Émilie Saulnier-Talbot

    Full Text Available African tropical lakes provide vital ecosystem services including food and water to some of the fastest growing human populations, yet they are among the most understudied ecosystems in the world. The consequences of climate change and other stressors on the tropical lakes of Africa have been informed by long-term analyses, but these studies have largely focused on the massive Great Rift Valley lakes. Our objective was to evaluate how recent climate change has altered the functioning and services of smaller tropical lakes, which are far more abundant on the landscape. Based on a paired analysis of 20 years of high-resolution water column data and a paleolimnological record from a small crater lake in western Uganda, we present evidence that even a modest warming of the air (∼0.9°C increase over 20 years and changes in the timing and intensity of rainfall can have significant consequences on the dynamics of this common tropical lake type. For example, we observed a significant nonlinear increase (R(2 adj  = 0.23, e.d.f. = 7, p<0.0001 in thermal stability over the past 20 years. This resulted in the expansion of anoxic waters and consequent deterioration of fish habitat and appears to have abated primary production; processes that may impair ecosystem services for a vulnerable human population. This study on a system representative of small tropical crater lakes highlights the far-reaching effects of global climatic change on tropical waters. Increased research efforts into tropical aquatic ecosystem health and the development of sound management practices are necessary in order to strengthen adaptive capabilities in tropical regions.

  8. Small changes in climate can profoundly alter the dynamics and ecosystem services of tropical crater lakes.

    Science.gov (United States)

    Saulnier-Talbot, Émilie; Gregory-Eaves, Irene; Simpson, Kyle G; Efitre, Jackson; Nowlan, Tobias E; Taranu, Zofia E; Chapman, Lauren J

    2014-01-01

    African tropical lakes provide vital ecosystem services including food and water to some of the fastest growing human populations, yet they are among the most understudied ecosystems in the world. The consequences of climate change and other stressors on the tropical lakes of Africa have been informed by long-term analyses, but these studies have largely focused on the massive Great Rift Valley lakes. Our objective was to evaluate how recent climate change has altered the functioning and services of smaller tropical lakes, which are far more abundant on the landscape. Based on a paired analysis of 20 years of high-resolution water column data and a paleolimnological record from a small crater lake in western Uganda, we present evidence that even a modest warming of the air (∼0.9°C increase over 20 years) and changes in the timing and intensity of rainfall can have significant consequences on the dynamics of this common tropical lake type. For example, we observed a significant nonlinear increase (R(2) adj  = 0.23, e.d.f. = 7, pdeterioration of fish habitat and appears to have abated primary production; processes that may impair ecosystem services for a vulnerable human population. This study on a system representative of small tropical crater lakes highlights the far-reaching effects of global climatic change on tropical waters. Increased research efforts into tropical aquatic ecosystem health and the development of sound management practices are necessary in order to strengthen adaptive capabilities in tropical regions.

  9. Globalization

    Directory of Open Access Journals (Sweden)

    Tulio Rosembuj

    2006-12-01

    Full Text Available There is no singular globalization, nor is the result of an individual agent. We could start by saying that global action has different angles and subjects who perform it are different, as well as its objectives. The global is an invisible invasion of materials and immediate effects.

  10. Globalization

    OpenAIRE

    Tulio Rosembuj

    2006-01-01

    There is no singular globalization, nor is the result of an individual agent. We could start by saying that global action has different angles and subjects who perform it are different, as well as its objectives. The global is an invisible invasion of materials and immediate effects.

  11. 8000-year monsoonal record from Himalaya revealing reinforcement of tropical and global climate systems since mid-Holocene.

    Science.gov (United States)

    Srivastava, Pradeep; Agnihotri, Rajesh; Sharma, Deepti; Meena, Narendra; Sundriyal, Y P; Saxena, Anju; Bhushan, Ravi; Sawlani, R; Banerji, Upasana S; Sharma, C; Bisht, P; Rana, N; Jayangondaperumal, R

    2017-11-06

    We provide the first continuous Indian Summer Monsoon (ISM) climate record for the higher Himalayas (Kedarnath, India) by analyzing a 14 C-dated peat sequence covering the last ~8000 years, with ~50 years temporal resolution. The ISM variability inferred using various proxies reveal striking similarity with the Greenland ice core (GISP2) temperature record and rapid denitrification changes recorded in the sediments off Peru. The Kedarnath record provides compelling evidence for a reorganization of the global climate system taking place at ~5.5 ka BP possibly after sea level stabilization and the advent of inter-annual climate variability governed by the modern ENSO phenomenon. The ISM record also captures warm-wet and cold-dry conditions during the Medieval Climate Anomaly and Little Ice Age, respectively.

  12. Identifying gaps in research prioritization: The global burden of neglected tropical diseases as reflected in the Cochrane database of systematic reviews

    Directory of Open Access Journals (Sweden)

    Soumyadeep Bhaumik

    2015-01-01

    Full Text Available Background: Neglected tropical diseases (NTDs impact disadvantaged populations in resource-scarce settings. Availability of synthesized evidence is paramount to end this disparity. The aim of the study was to determine whether NTD systematic reviews or protocols in the Cochrane Database of Systematic Reviews (CDSR reflect disease burden. Methods: Two authors independently searched the CDSR for reviews/protocols regarding the NTDs diseases. Each review or protocol was classified to a single NTD category. Any discrepancy was solved by consensus with third author. NTD systematic review or protocol from CDSR were matched with disability-adjusted life year (DALY metrics from the Global Burden of Disease 2010 Study. Spearman′s rank correlation coefficient and associated P values were used to assess for correlation between the number of systematic reviews and protocols and the %2010 DALY associated with each NTD. Results: Overall, there was poor correlation between CDSR representation and DALYs. Yellow fever, echinococcus, onchocerciasis, and schistosomiasis representation was well-aligned with DALY. Leprosy, trachoma, dengue, leishmaniasis, and Chagas disease representation was greater, while cysticercosis, human African trypanosomiasis, ascariasis, lymphatic filariasis, and hookworm representation was lower than DALY. Three of the 18 NTDs had reviews/protocols of diagnostic test accuracy. Conclusions: Our results indicate the need for increased prioritization of systematic reviews on NTDs, particularly diagnostic test accuracy reviews.

  13. Simulation of aerosol optical properties over a tropical urban site in India using a global model and its comparison with ground measurements

    Directory of Open Access Journals (Sweden)

    D. Goto

    2011-05-01

    Full Text Available Aerosols have great impacts on atmospheric environment, human health, and earth's climate. Therefore, information on their spatial and temporal distribution is of paramount importance. Despite numerous studies have examined the variation and trends of BC and AOD over India, only very few have focused on their spatial distribution or even correlating the observations with model simulations. In the present study, a three-dimensional aerosol transport-radiation model coupled with a general circulation model. SPRINTARS, simulated atmospheric aerosol distributions including BC and aerosol optical properties, i.e., aerosol optical thickness (AOT, Ångström Exponent (AE, and single scattering albedo (SSA. The simulated results are compared with both BC measurements by aethalometer and aerosol optical properties measured by ground-based skyradiometer and by satellite sensor, MODIS/Terra over Hyderabad, which is a tropical urban area of India, for the year 2008. The simulated AOT and AE in Hyderabad are found to be comparable to ground-based measured ones. The simulated SSA tends to be higher than the ground-based measurements. Both these comparisons of aerosol optical properties between the simulations with different emission inventories and the measurements indicate that, firstly the model uncertainties derived from aerosol emission inventory cannot explain the gaps between the simulations and the measurements and secondly the vertical transport of BC and the treatment of BC-containing particles can be the main issue in the global model to solve the gap.

  14. Deepwater carbonate ion concentrations in the western tropical Pacific since 250 ka: Evidence for oceanic carbon storage and global climate influence

    Science.gov (United States)

    Qin, Bingbin; Li, Tiegang; Xiong, Zhifang; Algeo, Thomas J.; Chang, Fengming

    2017-04-01

    We present new "size-normalized weight" (SNW)-Δ[CO32-] core-top calibrations for three planktonic foraminiferal species and assess their reliability as a paleo-alkalinity proxy. SNWs of Globigerina sacculifer and Neogloboquadrina dutertrei can be used to reconstruct past deep Pacific [CO32-], whereas SNWs of Pulleniatina obliquiloculata are controlled by additional environmental factors. Based on this methodological advance, we reconstruct SNW-based deepwater [CO32-] for core WP7 from the western tropical Pacific since 250 ka. Secular variation in the SNW proxy documents little change in deep Pacific [CO32-] between the Last Glacial Maximum and the Holocene. Further back in time, deepwater [CO32-] shows long-term increases from marine isotope stage (MIS) 5e to MIS 3 and from early MIS 7 to late MIS 6, consistent with the "coral reef hypothesis" that the deep Pacific Ocean carbonate system responded to declining shelf carbonate production during these two intervals. During deglaciations, we have evidence of [CO32-] peaks coincident with Terminations 2 and 3, which suggests that a breakdown of oceanic vertical stratification drove a net transfer of CO2 from the ocean to the atmosphere, causing spikes in carbonate preservation (i.e., the "deglacial ventilation hypothesis"). During MIS 4, a transient decline in SNW-based [CO32-], along with other reported [CO32-] and/or dissolution records, implies that increased deep-ocean carbon storage resulted in a global carbonate dissolution event. These findings provide new insights into the role of the deep Pacific in the global carbon cycle during the late Quaternary.

  15. Accuracy of CHIRPS Satellite-Rainfall Products over Mainland China

    Directory of Open Access Journals (Sweden)

    Lei Bai

    2018-02-01

    Full Text Available Precipitation is the main component of global water cycle. At present, satellite quantitative precipitation estimates (QPEs are widely applied in the scientific community. However, the evaluations of satellite QPEs have some limitations in terms of the deficiency in observation, evaluation methodology, the selection of time windows for evaluation and short periods for evaluation. The objective of this work is to make some improvements by evaluating the spatio-temporal pattern of the long-terms Climate Hazard Group InfraRed Precipitation Satellite’s (CHIRPS’s QPEs over mainland China. In this study, we compared the daily precipitation estimates from CHIRPS with 2480 rain gauges across China and gridded observation using several statistical metrics in the long-term period of 1981–2014. The results show that there is significant difference between point evaluation and grid evaluation for CHIRPS. CHIRPS has better performance for a large amount of precipitation than it does for arid and semi-arid land. The change in good performance zones has strong relationship with monsoon’s movement. Therefore, CHIRPS performs better in river basins of southern China and exhibits poor performance in river basins in northwestern and northern China. Moreover, CHIRPS exhibits better in warm season than in Winter, owing to its limited ability to detect snowfall. Nevertheless, CHIRPS is moderately sensitive to the precipitation from typhoon weather systems. The limitations for CHIRPS result from the Tropical Rainfall Measuring Mission (TRMM 3B42 estimates’ accuracy and valid spatial coverage.

  16. European extra-tropical storm damage risk from a multi-model ensemble of dynamically-downscaled global climate models

    Science.gov (United States)

    Haylock, M. R.

    2011-10-01

    Uncertainty in the return levels of insured loss from European wind storms was quantified using storms derived from twenty-two 25 km regional climate model runs driven by either the ERA40 reanalyses or one of four coupled atmosphere-ocean global climate models. Storms were identified using a model-dependent storm severity index based on daily maximum 10 m wind speed. The wind speed from each model was calibrated to a set of 7 km historical storm wind fields using the 70 storms with the highest severity index in the period 1961-2000, employing a two stage calibration methodology. First, the 25 km daily maximum wind speed was downscaled to the 7 km historical model grid using the 7 km surface roughness length and orography, also adopting an empirical gust parameterisation. Secondly, downscaled wind gusts were statistically scaled to the historical storms to match the geographically-dependent cumulative distribution function of wind gust speed. The calibrated wind fields were run through an operational catastrophe reinsurance risk model to determine the return level of loss to a European population density-derived property portfolio. The risk model produced a 50-yr return level of loss of between 0.025% and 0.056% of the total insured value of the portfolio.

  17. The global palm oil sector must change to save biodiversity and improve food security in the tropics.

    Science.gov (United States)

    Azhar, Badrul; Saadun, Norzanalia; Prideaux, Margi; Lindenmayer, David B

    2017-12-01

    Most palm oil currently available in global markets is sourced from certified large-scale plantations. Comparatively little is sourced from (typically uncertified) smallholders. We argue that sourcing sustainable palm oil should not be determined by commercial certification alone and that the certification process should be revisited. There are so-far unrecognized benefits of sourcing palm oil from smallholders that should be considered if genuine biodiversity conservation is to be a foundation of 'environmentally sustainable' palm oil production. Despite a lack of certification, smallholder production is often more biodiversity-friendly than certified production from large-scale plantations. Sourcing palm oil from smallholders also alleviates poverty among rural farmers, promoting better conservation outcomes. Yet, certification schemes - the current measure of 'sustainability' - are financially accessible only for large-scale plantations that operate as profit-driven monocultures. Industrial palm oil is expanding rapidly in regions with weak environmental laws and enforcement. This warrants the development of an alternative certification scheme for smallholders. Greater attention should be directed to deforestation-free palm oil production in smallholdings, where production is less likely to cause large scale biodiversity loss. These small-scale farmlands in which palm oil is mixed with other crops should be considered by retailers and consumers who are interested in promoting sustainable palm oil production. Simultaneously, plantation companies should be required to make their existing production landscapes more compatible with enhanced biodiversity conservation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. European extra-tropical storm damage risk from a multi-model ensemble of dynamically-downscaled global climate models

    Directory of Open Access Journals (Sweden)

    M. R. Haylock

    2011-10-01

    Full Text Available Uncertainty in the return levels of insured loss from European wind storms was quantified using storms derived from twenty-two 25 km regional climate model runs driven by either the ERA40 reanalyses or one of four coupled atmosphere-ocean global climate models. Storms were identified using a model-dependent storm severity index based on daily maximum 10 m wind speed. The wind speed from each model was calibrated to a set of 7 km historical storm wind fields using the 70 storms with the highest severity index in the period 1961–2000, employing a two stage calibration methodology. First, the 25 km daily maximum wind speed was downscaled to the 7 km historical model grid using the 7 km surface roughness length and orography, also adopting an empirical gust parameterisation. Secondly, downscaled wind gusts were statistically scaled to the historical storms to match the geographically-dependent cumulative distribution function of wind gust speed.

    The calibrated wind fields were run through an operational catastrophe reinsurance risk model to determine the return level of loss to a European population density-derived property portfolio. The risk model produced a 50-yr return level of loss of between 0.025% and 0.056% of the total insured value of the portfolio.

  19. Carbon annuities and their potential to preserve tropical forests and slow global warming: an application for small-scale farmers

    Energy Technology Data Exchange (ETDEWEB)

    Caviglia-Harris, J.L. [Salisbury University, Salisbury, MD (United States). Dept. of Economics and Finance; Kahn, J.R. [Washington and Lee University, Lexington, VA (United States). Dept. of Economics

    2003-07-01

    Carbon annuities have been suggested as a means for rewarding landowners for preserving forests and sequestering carbon. Although this is an intuitively appealing approach, the benefits of the sequestration activities have not been compared with the opportunity cost of preserving the forest. This paper represents an initial attempt at analysing how large carbon annuities must be to induce a landowner in the Amazonian rainforest to accept the annuity and leave the forest intact. The benefits of carbon sequestration are computed based on estimates in the literature on the carbon contained in a hectare of rainforest and the damages associated with a ton of carbon emissions. This is compared with information on household income from Rondonia, Brazil. Our results show that, for the majority of our conservative assumptions about the damages of carbon emissions, the magnitude of an annuity is greater than the income from agriculture. For less conservative assumptions about the damages from global warming, a fraction of the annuity would be a sufficient incentive for small- scale farmers to switch to sustainable techniques that leave the forest intact. (author)

  20. Rainfall Stochastic models

    Science.gov (United States)

    Campo, M. A.; Lopez, J. J.; Rebole, J. P.

    2012-04-01

    This work was carried out in north of Spain. San Sebastian A meteorological station, where there are available precipitation records every ten minutes was selected. Precipitation data covers from October of 1927 to September of 1997. Pulse models describe the temporal process of rainfall as a succession of rainy cells, main storm, whose origins are distributed in time according to a Poisson process and a secondary process that generates a random number of cells of rain within each storm. Among different pulse models, the Bartlett-Lewis was used. On the other hand, alternative renewal processes and Markov chains describe the way in which the process will evolve in the future depending only on the current state. Therefore they are nor dependant on past events. Two basic processes are considered when describing the occurrence of rain: the alternation of wet and dry periods and temporal distribution of rainfall in each rain event, which determines the rainwater collected in each of the intervals that make up the rain. This allows the introduction of alternative renewal processes and Markov chains of three states, where interstorm time is given by either of the two dry states, short or long. Thus, the stochastic model of Markov chains tries to reproduce the basis of pulse models: the succession of storms, each one composed for a series of rain, separated by a short interval of time without theoretical complexity of these. In a first step, we analyzed all variables involved in the sequential process of the rain: rain event duration, event duration of non-rain, average rainfall intensity in rain events, and finally, temporal distribution of rainfall within the rain event. Additionally, for pulse Bartlett-Lewis model calibration, main descriptive statistics were calculated for each month, considering the process of seasonal rainfall in each month. In a second step, both models were calibrated. Finally, synthetic series were simulated with calibration parameters; series

  1. Raingauge-Based Rainfall Nowcasting with Artificial Neural Network

    Science.gov (United States)

    Liong, Shie-Yui; He, Shan

    2010-05-01

    Rainfall forecasting and nowcasting are of great importance, for instance, in real-time flood early warning systems. Long term rainfall forecasting demands global climate, land, and sea data, thus, large computing power and storage capacity are required. Rainfall nowcasting's computing requirement, on the other hand, is much less. Rainfall nowcasting may use data captured by radar and/or weather stations. This paper presents the application of Artificial Neural Network (ANN) on rainfall nowcasting using data observed at weather and/or rainfall stations. The study focuses on the North-East monsoon period (December, January and February) in Singapore. Rainfall and weather data from ten stations, between 2000 and 2006, were selected and divided into three groups for training, over-fitting test and validation of the ANN. Several neural network architectures were tried in the study. Two architectures, Backpropagation ANN and Group Method of Data Handling ANN, yielded better rainfall nowcasting, up to two hours, than the other architectures. The obtained rainfall nowcasts were then used by a catchment model to forecast catchment runoff. The results of runoff forecast are encouraging and promising.With ANN's high computational speed, the proposed approach may be deliverable for creating the real-time flood early warning system.

  2. Late Pleistocene and Holocene Hydroclimate Variability in the Tropical Andes from Alpine Lake Sediments, Cordillera de Mérida, Venezuela

    Science.gov (United States)

    Larsen, D. J.; Abbott, M. B.; Polissar, P. J.

    2014-12-01

    The tropics play a major role in the global hydrologic cycle and changes to tropical rainfall patterns have critical implications for water resources and ecosystem dynamics over large geographic scales. In tropical South America, late Pleistocene and Holocene precipitation variability has been documented in geologic records and associated with numerous external and internal variables, including changes in summer insolation, South American summer monsoon strength, Pacific Ocean sea surface temperatures, continental moisture recycling, and other climate processes. However, there are few records from the northern hemisphere tropical Americas, a key region for understanding interhemispheric linkages and the drivers of tropical hydroclimate variability. Here, we present a ~13 ka record of coupled hydroclimate and environmental changes from Laguna Brava, a small (~0.07 km2), hydrologically closed lake basin situated at 2400 m asl in the Cordillera de Mérida, Venezuela. Sediment cores collected from varying water depths and proximity to shore are placed in a chronologic framework using radiocarbon ages from terrestrial macrofossils, and analyzed for a suite of physical, bulk geochemical, and stable isotopic parameters. Compound specific hydrogen isotope (D/H) measurements of terrestrial plant waxes (long-chain n-alkanes) show a sharp increase in the late Pleistocene, followed by a long-term trend toward more negative values that suggest a ~20‰ decrease in the D/H ratios of South American tropical precipitation during the Holocene. This pattern is consistent in sign and magnitude to other South American precipitation reconstructions from both hemispheres, indicating interhemispheric similarities in tropical hydroclimate variability. Superimposed on this continent-scale trend are changes in moisture balance and environmental conditions in the Venezuelan Andes. We reconstruct these parameters at Laguna Brava at multidecadal and centennial resolution and evaluate this

  3. Climate change and the impact of increased rainfall variability on sediment transport and catchment scale water quality

    Science.gov (United States)

    Hancock, G. R.; Willgoose, G. R.; Cohen, S.

    2009-12-01

    Recently there has been recognition that changing climate will affect rainfall and storm patterns with research directed to examine how the global hydrological cycle will respond to climate change. This study investigates the effect of different rainfall patterns on erosion and resultant water quality for a well studied tropical monsoonal catchment that is undisturbed by Europeans in the Northern Territory, Australia. Water quality has a large affect on a range of aquatic flora and fauna and a significant change in sediment could have impacts on the aquatic ecosystems. There have been several studies of the effect of climate change on rainfall patterns in the study area with projections indicating a significant increase in storm activity. Therefore it is important that the impact of this variability be assessed in terms of catchment hydrology, sediment transport and water quality. Here a numerical model of erosion and hydrology (CAESAR) is used to assess several different rainfall scenarios over a 1000 year modelled period. The results show that that increased rainfall amount and intensity increases sediment transport rates but predicted water quality was variable and non-linear but within the range of measured field data for the catchment and region. Therefore an assessment of sediment transport and water quality is a significant and complex issue that requires further understandings of the role of biophysical feedbacks such as vegetation as well as the role of humans in managing landscapes (i.e. controlled and uncontrolled fire). The study provides a robust methodology for assessing the impact of enhanced climate variability on sediment transport and water quality.

  4. Preventing intensive care admissions for sepsis in tropical Africa (PICASTA): an extension of the international pediatric global sepsis initiative: an African perspective.

    Science.gov (United States)

    Pollach, Gregor; Namboya, Felix

    2013-07-01

    The Global Sepsis Initiative recommends prevention of sepsis through immunizations, vitamins, breast feeding, and other important interventions. In our study, we consider a second set of proposals for preventing intensive care admissions for sepsis in tropical Africa, which have been specifically designed to further prevent ICU admissions for sepsis in the group A nation hospital setting. To reduce admissions with severe sepsis in an ICU of a group A nation through the identification of challenges leading to preventable, foreseeable, or nosocomial sepsis specific to our setting. Malawi is one of the poorest countries in the world. Lacking the ability to comply with standard sepsis treatment, we conducted over 4 years several studies, audits, and surveys to identify challenges leading to preventable pediatric sepsis in our setting. We developed a method to identify malnourished children through a "gatekeeper" in the theaters without any equipment, tried to implement the World Health Organization's Safe Surgery Campaign checklist, evaluated our educational courses for the districts to improve the quality of referrals, looked into the extreme fasting times discovered in our hospital, trained different cadres in the districts to deal with peripartal and posttraumatic sepsis, and identified the needs in human resources to deal with pediatric sepsis in our setting. Six foci were identified as promising to work on in future. Focus 1: Preventing elective operations and procedures in malnourished children in the hospital and in the district: 134 of 145 nurses (92.4%) and even 25 of 31 African laymen (80.6%) were able to identify malnourished children with their own fingers. Focus 2: Preventing sepsis-related problems in emergencies through the implementation of the Safe Surgery Campaign checklist: only 100 of 689 forms (14.5%) were filled in due to challenges in ownership, communication responsibility, and time constraints. Focus 3: Preventing sepsis through the reduction

  5. Recent reversal in loss of global terrestrial biomass

    KAUST Repository

    Liu, Yi Y.; Van Dijk, Albert I J M; De Jeu, Richard A M; Canadell., Josep G.; McCabe, Matthew; Evans, Jason P.; Wang, Guojie

    2015-01-01

    Vegetation change plays a critical role in the Earth's carbon (C) budget and its associated radiative forcing in response to anthropogenic and natural climate change. Existing global estimates of aboveground biomass carbon (ABC) based on field survey data provide brief snapshots that are mainly limited to forest ecosystems. Here we use an entirely new remote sensing approach to derive global ABC estimates for both forest and non-forest biomes during the past two decades from satellite passive microwave observations. We estimate a global average ABC of 362 PgC over the period 1998-2002, of which 65% is in forests and 17% in savannahs. Over the period 1993-2012, an estimated '0.07 PgC yr '1 ABC was lost globally, mostly resulting from the loss of tropical forests ('0.26 PgC yr '1) and net gains in mixed forests over boreal and temperate regions (+0.13 PgC yr '1) and tropical savannahs and shrublands (+0.05 PgC yr '1). Interannual ABC patterns are greatly influenced by the strong response of water-limited ecosystems to rainfall variability, particularly savannahs. From 2003 onwards, forest in Russia and China expanded and tropical deforestation declined. Increased ABC associated with wetter conditions in the savannahs of northern Australia and southern Africa reversed global ABC loss, leading to an overall gain, consistent with trends in the global carbon sink reported in recent studies. © 2015 Macmillan Publishers Limited. All rights reserved.

  6. Recent reversal in loss of global terrestrial biomass

    KAUST Repository

    Liu, Yi Y.

    2015-03-30

    Vegetation change plays a critical role in the Earth\\'s carbon (C) budget and its associated radiative forcing in response to anthropogenic and natural climate change. Existing global estimates of aboveground biomass carbon (ABC) based on field survey data provide brief snapshots that are mainly limited to forest ecosystems. Here we use an entirely new remote sensing approach to derive global ABC estimates for both forest and non-forest biomes during the past two decades from satellite passive microwave observations. We estimate a global average ABC of 362 PgC over the period 1998-2002, of which 65% is in forests and 17% in savannahs. Over the period 1993-2012, an estimated \\'0.07 PgC yr \\'1 ABC was lost globally, mostly resulting from the loss of tropical forests (\\'0.26 PgC yr \\'1) and net gains in mixed forests over boreal and temperate regions (+0.13 PgC yr \\'1) and tropical savannahs and shrublands (+0.05 PgC yr \\'1). Interannual ABC patterns are greatly influenced by the strong response of water-limited ecosystems to rainfall variability, particularly savannahs. From 2003 onwards, forest in Russia and China expanded and tropical deforestation declined. Increased ABC associated with wetter conditions in the savannahs of northern Australia and southern Africa reversed global ABC loss, leading to an overall gain, consistent with trends in the global carbon sink reported in recent studies. © 2015 Macmillan Publishers Limited. All rights reserved.

  7. Origins and interrelationship of Intraseasonal rainfall variations around the Maritime Continent during boreal winter

    Science.gov (United States)

    Cao, Xi; Wu, Renguang

    2018-04-01

    Large intraseasonal rainfall variations are identified over the southern South China Sea (SSCS), tropical southeastern Indian Ocean (SEIO), and east coast of the Philippines (EPHI) in boreal winter. The present study contrasts origins and propagations and investigates interrelations of intraseasonal rainfall variations on the 10-20- and 30-60-day time scales in these regions. Different origins are identified for intraseasonal rainfall anomalies over the SSCS, SEIO, and EPHI on both time scales. On the 10-20-day time scale, strong northerly or northeasterly wind anomalies related to the East Asian winter monsoon (EAWM) play a major role in intraseasonal rainfall variations over the SSCS and EPHI. On the 30-60-day time scale, both the intraseasonal signal from the tropical Indian Ocean and the EAWM-related wind anomalies contribute to intraseasonal rainfall variations over the SSCS, whereas the EAWM-related wind anomalies have a major contribution to the intraseasonal rainfall variations over the EPHI. No relation is detected between the intraseasonal rainfall variations over the SEIO and the EAWM on both the 10-20-day and 30-60-day time scales. The anomalies associated with intraseasonal rainfall variations over the SSCS and EPHI propagate northwestward and northeastward, respectively, on the 10-20- and 30-60-day time scales. The intraseasonal rainfall anomalies display northwestward and northward propagation over the Bay of Bengal, respectively, on the 10-20- and 30-60-day time scales.

  8. Globalization

    OpenAIRE

    Andru?cã Maria Carmen

    2013-01-01

    The field of globalization has highlighted an interdependence implied by a more harmonious understanding determined by the daily interaction between nations through the inducement of peace and the management of streamlining and the effectiveness of the global economy. For the functioning of the globalization, the developing countries that can be helped by the developed ones must be involved. The international community can contribute to the institution of the development environment of the gl...

  9. Comprehensive overview of FPL field testing conducted in the tropics (1945-2005)

    Science.gov (United States)

    Grant T. Kirker; Stan L. Lebow; Mark E. Mankowski

    2016-01-01

    Tropical exposure often represents a more severe environment for treated wood and wood based products. Accelerated tropical decay rates are typically attributed to higher mean rainfall and temperatures. The Forest Products Laboratory (FPL) in Madison, WI has been conducting tropical field tests in a variety of locations since the early 1940’s. This paper summarizes FPL...

  10. Frequency and distribution of forest, savanna, and crop fires over tropical regions during PEM-Tropics A

    Science.gov (United States)

    Olson, Jennifer R.; Baum, Bryan A.; Cahoon, Donald R.; Crawford, James H.

    1999-03-01

    Advanced very high resolution radiometer 1.1 km resolution satellite radiance data were used to locate active fires throughout much of the tropical region during NASA's Global Tropospheric Experiment (GTE) Pacific Exploratory Mission-Tropics (PEM-Tropics A) aircraft campaign, held in September and October 1996. The spatial and temporal distributions of the fires in Australia, southern Africa, and South America are presented here. The number of fires over northern Australia, central Africa, and South America appeared to decrease toward the end of the mission period. Fire over eastern Australia was widespread, and temporal patterns showed a somewhat consistent amount of burning with periodic episodes of enhanced fire counts observed. At least one episode of enhanced fire counts corresponded to the passage of a frontal system which brought conditions conducive to fire to the region, with strong westerlies originating over the hot, dry interior continent. Regions that were affected by lower than normal rainfall during the previous wet season (e.g., northern Australia and southwestern Africa) showed relatively few fires during this period. This is consistent with a drought-induced decrease in vegetation and therefore a decreased availability of fuel for burning. Alternatively, a heavier than normal previous wet season along the southeastern coast of South Africa may have contributed to high fuel loading and an associated relatively heavy amount of burning compared to data from previous years.

  11. Thermodynamic ocean-atmosphere Coupling and the Predictability of Nordeste rainfall

    Science.gov (United States)

    Chang, P.; Saravanan, R.; Giannini, A.

    2003-04-01

    The interannual variability of rainfall in the northeastern region of Brazil, or Nordeste, is known to be very strongly correlated with sea surface temperature (SST) variability, of Atlantic and Pacific origin. For this reason the potential predictability of Nordeste rainfall is high. The current generation of state-of-the-art atmospheric models can replicate the observed rainfall variability with high skill when forced with the observed record of SST variability. The correlation between observed and modeled indices of Nordeste rainfall, in the AMIP-style integrations with two such models (NSIPP and CCM3) analyzed here, is of the order of 0.8, i.e. the models explain about 2/3 of the observed variability. Assuming that thermodynamic, ocean-atmosphere heat exchange plays the dominant role in tropical Atlantic SST variability on the seasonal to interannual time scale, we analyze its role in Nordeste rainfall predictability using an atmospheric general circulation model coupled to a slab ocean model. Predictability experiments initialized with observed December SST show that thermodynamic coupling plays a significant role in enhancing the persistence of SST anomalies, both in the tropical Pacific and in the tropical Atlantic. We show that thermodynamic coupling is sufficient to provide fairly accurate forecasts of tropical Atlantic SST in the boreal spring that are significantly better than the persistence forecasts. The consequences for the prediction of Nordeste rainfall are analyzed.

  12. Variability of the Tropical Ocean Surface Temperatures at Decadal-Multidecadal Timescales. Part I: The Atlantic Ocean.

    Science.gov (United States)

    Mehta, Vikram M.

    1998-09-01

    Gridded time series from the Global Ocean Surface Temperature Atlas were analyzed with a variety of techniques to identify spatial structures and oscillation periods of the tropical Atlantic sea surface temperature (SST) variations at decadal timescales, and to develop physical interpretations of statistical patterns of decadal SST variations. Each time series was 110 yr (1882-1991) long. The tropical Atlantic SST variations were compared with decadal variations in a 74-yr-long (1912-85) north Nordeste Brazil rainfall time series and a 106-yr-long (1886-1991) tropical Atlantic cyclone activity index time series. The tropical Atlantic SST variations were also compared with decadal variations in the extratropical Atlantic SST.Multiyear to multidecadal variations in the cross-equatorial dipole pattern identified as a dominant empirical pattern of the tropical Atlantic SST variations in earlier and present studies are shown to be variations in the approximately north-south gradient of SST anomalies. It is also shown that there was no dynamical-thermodynamical, dipole mode of SST variations during the analysis period. There was a distinct decadal timescale (12-13 yr) of SST variations in the tropical South Atlantic, whereas no distinct decadal timescale was found in the tropical North Atlantic SST variations. Approximately 80% of the coherent decadal variance in the cross-equatorial SST gradient was `explained' by coherent decadal oscillations in the tropical South Atlantic SSTs. There were three, possibly physical, modes of decadal variations in the tropical Atlantic SSTs during the analysis period. In the more energetic mode of the North Atlantic decadal SST variations, anomalies traveled into the tropical North Atlantic from the extratropical North Atlantic along the eastern boundary of the basin. The anomalies strengthened and resided in the tropical North Atlantic for several years, then frequently traveled northward into the mid-high-latitude North Atlantic along

  13. Global impacts from improved tropical forages: A meta-analysis revealing overlooked benefits and costs, evolving values and new priorities

    Directory of Open Access Journals (Sweden)

    Douglas S. White

    2013-09-01

    Full Text Available El uso más amplio y el desempeño mejorado de forrajes tropicales sembrados pueden cambiar sustancialmente los paisajes social, económico y ambiental. Mediante la revisión de estudios relacionados con el impacto de forrajes tropicales publicados en las últimas dos décadas, este artículo muestra cómo las prioridades de desarrollo cambiantes han influido en los tipos de impactos que se están documentando. Se utilizó un meta-análisis para examinar 98 estudios de acuerdo con: (i la envergadura de los efectos reportados en relación con los objetivos de desarrollo de equidad social, crecimiento económico y sostenibilidad ambiental; (ii el alcance de los efectos, que van desde impactos a mediano plazo a más largo plazo; y (iii la precisión de medición (identificación, descripción o cuantificación de los impactos. Se han evaluado impactos para menos de la mitad de los 118 millones de hectáreas con forrajes mejorados que se encuentran documentados. Aunque Brasil representa el 86% de la superficie sembrada que se conoce, los informes de adopción de tecnología son, en general, irregulares, lo cual afecta a la precisión de las estimaciones globales. Más del 80% de los estudios relacionados con el impacto de forrajes tropicales reportaron efectos económicos, mientras que menos del 20% son estimaciones cuantitativas del impacto económico a largo plazo. Métodos y supuestos de valoración inconsistentes impidieron sumar, en forma válida, el impacto económico total. Se reportaron efectos sociales en menos del 60% de los estudios, y se enfatizaron los resultados a nivel de los hogares en cuanto a género y trabajo. La mayoría de los efectos reportados fueron no cuantitativos. Los efectos ambientales fueron reportados un poco más frecuentemente que los efectos sociales, con aumentos recientes en las estimaciones cuantitativas de la acumulación de carbono. Pocos estudios analizaron las ventajas y desventajas. Aproximadamente el 15% de

  14. Rainfall Downscaling Conditional on Upper-air Atmospheric Predictors: Improved Assessment of Rainfall Statistics in a Changing Climate

    Science.gov (United States)

    Langousis, Andreas; Mamalakis, Antonis; Deidda, Roberto; Marrocu, Marino

    2015-04-01

    To improve the level skill of Global Climate Models (GCMs) and Regional Climate Models (RCMs) in reproducing the statistics of rainfall at a basin level and at hydrologically relevant temporal scales (e.g. daily), two types of statistical approaches have been suggested. One is the statistical correction of climate model rainfall outputs using historical series of precipitation. The other is the use of stochastic models of rainfall to conditionally simulate precipitation series, based on large-scale atmospheric predictors produced by climate models (e.g. geopotential height, relative vorticity, divergence, mean sea level pressure). The latter approach, usually referred to as statistical rainfall downscaling, aims at reproducing the statistical character of rainfall, while accounting for the effects of large-scale atmospheric circulation (and, therefore, climate forcing) on rainfall statistics. While promising, statistical rainfall downscaling has not attracted much attention in recent years, since the suggested approaches involved complex (i.e. subjective or computationally intense) identification procedures of the local w