WorldWideScience

Sample records for global sulfate deposition

  1. Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols

    KAUST Repository

    Kravitz, Ben

    2009-07-28

    We used a general circulation model of Earth\\'s climate to conduct geoengineering experiments involving stratospheric injection of sulfur dioxide and analyzed the resulting deposition of sulfate. When sulfur dioxide is injected into the tropical or Arctic stratosphere, the main additional surface deposition of sulfate occurs in midlatitude bands, because of strong cross-tropopause flux in the jet stream regions. We used critical load studies to determine the effects of this increase in sulfate deposition on terrestrial ecosystems by assuming the upper limit of hydration of all sulfate aerosols into sulfuric acid. For annual injection of 5 Tg of SO2 into the tropical stratosphere or 3 Tg of SO2 into the Arctic stratosphere, neither the maximum point value of sulfate deposition of approximately 1.5 mEq m−2 a−1 nor the largest additional deposition that would result from geoengineering of approximately 0.05 mEq m−2 a−1 is enough to negatively impact most ecosystems.

  2. Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols

    KAUST Repository

    Kravitz, Ben; Robock, Alan; Oman, Luke; Stenchikov, Georgiy L.; Marquardt, Allison B.

    2009-01-01

    We used a general circulation model of Earth's climate to conduct geoengineering experiments involving stratospheric injection of sulfur dioxide and analyzed the resulting deposition of sulfate. When sulfur dioxide is injected into the tropical or Arctic stratosphere, the main additional surface deposition of sulfate occurs in midlatitude bands, because of strong cross-tropopause flux in the jet stream regions. We used critical load studies to determine the effects of this increase in sulfate deposition on terrestrial ecosystems by assuming the upper limit of hydration of all sulfate aerosols into sulfuric acid. For annual injection of 5 Tg of SO2 into the tropical stratosphere or 3 Tg of SO2 into the Arctic stratosphere, neither the maximum point value of sulfate deposition of approximately 1.5 mEq m−2 a−1 nor the largest additional deposition that would result from geoengineering of approximately 0.05 mEq m−2 a−1 is enough to negatively impact most ecosystems.

  3. Multi-model comparison of the volcanic sulfate deposition from the 1815 eruption of Mt. Tambora

    Directory of Open Access Journals (Sweden)

    L. Marshall

    2018-02-01

    Full Text Available The eruption of Mt. Tambora in 1815 was the largest volcanic eruption of the past 500 years. The eruption had significant climatic impacts, leading to the 1816 year without a summer, and remains a valuable event from which to understand the climatic effects of large stratospheric volcanic sulfur dioxide injections. The eruption also resulted in one of the strongest and most easily identifiable volcanic sulfate signals in polar ice cores, which are widely used to reconstruct the timing and atmospheric sulfate loading of past eruptions. As part of the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP, five state-of-the-art global aerosol models simulated this eruption. We analyse both simulated background (no Tambora and volcanic (with Tambora sulfate deposition to polar regions and compare to ice core records. The models simulate overall similar patterns of background sulfate deposition, although there are differences in regional details and magnitude. However, the volcanic sulfate deposition varies considerably between the models with differences in timing, spatial pattern and magnitude. Mean simulated deposited sulfate on Antarctica ranges from 19 to 264 kg km−2 and on Greenland from 31 to 194 kg km−2, as compared to the mean ice-core-derived estimates of roughly 50 kg km−2 for both Greenland and Antarctica. The ratio of the hemispheric atmospheric sulfate aerosol burden after the eruption to the average ice sheet deposited sulfate varies between models by up to a factor of 15. Sources of this inter-model variability include differences in both the formation and the transport of sulfate aerosol. Our results suggest that deriving relationships between sulfate deposited on ice sheets and atmospheric sulfate burdens from model simulations may be associated with greater uncertainties than previously thought.

  4. Sulfur accumulation and atmospherically deposited sulfate in the Lake States.

    Science.gov (United States)

    Mark B. David; George Z. Gernter; David F. Grigal; Lewis F. Ohmann

    1989-01-01

    Characterizes the mass of soil sulfur (adjusted for nitrogen), and atmospherically deposited sulfate along an acid precipitation gradient from Minnesota to Michigan. The relationship of these variables, presented graphically through contour mapping, suggests that patterns of atmospheric wet sulfate deposition are reflected in soil sulfur pools.

  5. ROE Wet Sulfate Deposition 2009-2011

    Data.gov (United States)

    U.S. Environmental Protection Agency — The raster data represent the amount of wet sulfate deposition in kilograms per hectare from 2009 to 2011. Summary data in this indicator were provided by EPA’s...

  6. Contemporaneous deposition of phyllosilicates and sulfates: Using Australian acidic saline lake deposits to describe geochemical variability on Mars

    Science.gov (United States)

    Baldridge, A.M.; Hook, S.J.; Crowley, J.K.; Marion, G.M.; Kargel, J.S.; Michalski, J.L.; Thomson, B.J.; de Souza, Filho C.R.; Bridges, N.T.; Brown, A.J.

    2009-01-01

    Studies of the origin of the Martian sulfate and phyllosilicate deposits have led to the hypothesis that there was a marked, global-scale change in the Mars environment from circum-neutral pH aqueous alteration in the Noachian to an acidic evaporitic system in the late Noachian to Hesperian. However, terrestrial studies suggest that two different geochemical systems need not be invoked to explain such geochemical variation.Western Australian acidic playa lakes have large pH differences separated vertically and laterally by only a few tens of meters, demonstrating how highly variable chemistries can coexist over short distances in natural environments. We suggest diverse and variable Martian aqueous environments where the coetaneous formation of phyllosilicates and sulfates at the Australian sites are analogs for regions where phyllosilicates and sulfates coexist on Mars. In these systems, Fe and alkali earth phyllosilicates represent deep facies associated with upwelling neutral to alkaline groundwater, whereas aluminous phyllosilicates and sulfates represent near-surface evaporitic facies formed from more acidic brines. Copyright 2009 by the American Geophysical Union.

  7. Global source attribution of sulfate aerosol and its radiative forcing

    Science.gov (United States)

    Yang, Y.; Wang, H.; Smith, S.; Easter, R. C.; Ma, P. L.; Qian, Y.; Li, C.; Yu, H.; Rasch, P. J.

    2017-12-01

    Sulfate is an important aerosol that poses health risks and influences climate. Due to long-range atmospheric transport, local sulfate pollution could result from intercontinental influences, making domestic efforts of improving air quality inefficient. Accurate understanding of source attribution of sulfate and its radiative forcing is important for both regional air quality improvement and global climate mitigation. In this study, for the first time, a sulfur source-tagging capability is implemented in the Community Atmosphere Model (CAM5) to quantify the global source-receptor relationships of sulfate and its direct and indirect radiative forcing (DRF and IRF). Near-surface sulfate concentrations are mostly contributed by local emissions in regions with high emissions, while over regions with relatively low SO2 emissions, the near-surface sulfate is primarily attributed to non-local sources from long-range transport. The export of SO2 and sulfate from Europe contributes 20% of sulfate concentrations over North Africa, Russia and Central Asia. Sources from the Middle East account for 20% of sulfate over North Africa, Southern Africa and Central Asia in winter and autumn, and 20% over South Asia in spring. East Asia accounts for about 50% of sulfate over Southeast Asia in winter and autumn, 15% over Russia in summer, and 10% over North America in spring. South Asia contributes to 25% of sulfate over Southeast Asia in spring. Lifetime of aerosols, together with regional export, is found to determine regional air quality. The simulated global total sulfate DRF is -0.42 W m-2, with 75% contributed by anthropogenic sulfate and 25% contributed by natural sulfate. In the Southern Hemisphere tropics, dimethyl sulfide (DMS) contributes the most to the total DRF. East Asia has the largest contribution of 20-30% over the Northern Hemisphere mid- and high-latitudes. A 20% perturbation of sulfate and its precursor emissions gives a sulfate IRF of -0.44 W m-2. DMS has the

  8. Dry deposition of sulfate to Quercus rubra and Liriodendron tulipifera foliage

    International Nuclear Information System (INIS)

    Vandenberg, J.J.

    1987-01-01

    Estimates were made of the rate of dry deposition to red oak (Quercus rubra) and tulip poplar (Liriodendron tulipifera) foliage. In the laboratory, radioactive ammonium sulfate aerosols were generated in an exposure chamber. These aerosols were dry deposited onto leaves that were sequentially washed to examine the efficacy of washing procedures in removal of surface deposits. Over 90% of dry deposited sulfate was removed after a 30 second wash duration. Laboratory procedures also estimated the magnitude of foliar sulfur that leached into leaf wash solutions. The majority of laboratory leaves demonstrated no leaching of sulfur from the internal pool. However, some leaves showed significant sulfur leaching. It was concluded that leaching of internal sulfur was highly leaf specific. This indicated that each leaf used in field experiments needed to be individually examined for leaching

  9. Modeling the Sulfate Deposition to the Greenland Ice Sheet From the Laki Eruption

    Science.gov (United States)

    Oman, L.; Robock, A.; Stenchikov, G.; Thordarson, T.; Gao, C.

    2005-12-01

    Using the state of the art Goddard Institute for Space Studies (GISS) modelE general circulation model, simulations were conducted of the chemistry and transport of aerosols resulting from the 1783-84 Laki (64°N) flood lava eruption. A set of 3 ensemble simulations from different initial conditions were conducted by injecting our estimate of the SO2 gas into the atmosphere by the 10 episodes of the eruption and allowing the sulfur chemistry model to convert this gas into sulfate aerosol. The SO2 gas and sulfate aerosol is transported by the model and wet and dry deposition is calculated over each grid box during the simulation. We compare the resulting sulfate deposition to the Greenland Ice Sheet in the model to 23 ice core measurements and find very good agreement. The model simulation deposits a range of 169 to over 300 kg/km2 over interior Greenland with much higher values along the coastal areas. This compares to a range of 62 to 324 kg/km2 for the 23 ice core measurements with an average value of 158 kg/km2. This comparison is one important model validation tool. Modeling and observations show fairly large spatial variations in the deposition of sulfate across the Greenland Ice Sheet for the Laki eruption, but the patterns are similar to those we modeled for the 1912 Katmai and 1991 Pinatubo eruptions. Estimates of sulfate loading based on single ice cores can show significant differences, so ideally several ice cores should be combined in reconstructing the sulfate loading of past volcanic eruptions, taking into account the characteristic spatial variations in the deposition pattern.

  10. Global source attribution of sulfate concentration and direct and indirect radiative forcing

    Science.gov (United States)

    Yang, Yang; Wang, Hailong; Smith, Steven J.; Easter, Richard; Ma, Po-Lun; Qian, Yun; Yu, Hongbin; Li, Can; Rasch, Philip J.

    2017-07-01

    The global source-receptor relationships of sulfate concentrations, and direct and indirect radiative forcing (DRF and IRF) from 16 regions/sectors for years 2010-2014 are examined in this study through utilizing a sulfur source-tagging capability implemented in the Community Earth System Model (CESM) with winds nudged to reanalysis data. Sulfate concentrations are mostly contributed by local emissions in regions with high emissions, while over regions with relatively low SO2 emissions, the near-surface sulfate concentrations are primarily attributed to non-local sources from long-range transport. Regional source efficiencies of sulfate concentrations are higher over regions with dry atmospheric conditions and less export, suggesting that lifetime of aerosols, together with regional export, is important in determining regional air quality. The simulated global total sulfate DRF is -0.42 W m-2, with -0.31 W m-2 contributed by anthropogenic sulfate and -0.11 W m-2 contributed by natural sulfate, relative to a state with no sulfur emissions. In the Southern Hemisphere tropics, dimethyl sulfide (DMS) contributes 17-84 % to the total DRF. East Asia has the largest contribution of 20-30 % over the Northern Hemisphere mid- and high latitudes. A 20 % perturbation of sulfate and its precursor emissions gives a sulfate incremental IRF of -0.44 W m-2. DMS has the largest contribution, explaining -0.23 W m-2 of the global sulfate incremental IRF. Incremental IRF over regions in the Southern Hemisphere with low background aerosols is more sensitive to emission perturbation than that over the polluted Northern Hemisphere.

  11. Global source attribution of sulfate concentration and direct and indirect radiative forcing

    Directory of Open Access Journals (Sweden)

    Y. Yang

    2017-07-01

    Full Text Available The global source–receptor relationships of sulfate concentrations, and direct and indirect radiative forcing (DRF and IRF from 16 regions/sectors for years 2010–2014 are examined in this study through utilizing a sulfur source-tagging capability implemented in the Community Earth System Model (CESM with winds nudged to reanalysis data. Sulfate concentrations are mostly contributed by local emissions in regions with high emissions, while over regions with relatively low SO2 emissions, the near-surface sulfate concentrations are primarily attributed to non-local sources from long-range transport. Regional source efficiencies of sulfate concentrations are higher over regions with dry atmospheric conditions and less export, suggesting that lifetime of aerosols, together with regional export, is important in determining regional air quality. The simulated global total sulfate DRF is −0.42 W m−2, with −0.31 W m−2 contributed by anthropogenic sulfate and −0.11 W m−2 contributed by natural sulfate, relative to a state with no sulfur emissions. In the Southern Hemisphere tropics, dimethyl sulfide (DMS contributes 17–84 % to the total DRF. East Asia has the largest contribution of 20–30 % over the Northern Hemisphere mid- and high latitudes. A 20 % perturbation of sulfate and its precursor emissions gives a sulfate incremental IRF of −0.44 W m−2. DMS has the largest contribution, explaining −0.23 W m−2 of the global sulfate incremental IRF. Incremental IRF over regions in the Southern Hemisphere with low background aerosols is more sensitive to emission perturbation than that over the polluted Northern Hemisphere.

  12. Isotope studies to determine dry deposition of sulfate to deciduous and coniferous trees: Final draft

    International Nuclear Information System (INIS)

    Garten, C.T. Jr.

    1988-01-01

    Experiments have been conducted at two locations near Oak Ridge, Tennessee, with radioactive 35 S (87 day half-life) to examine the cycling behavior of sulfur in yellow poplar (Liriodendron tulipifera), red maple (Acer rubrum), and loblolly pine (Pinus taeda) trees. Some findings pertain to methods development for estimating dry deposition of sulfur to forest canopies and the magnitude of sulfur emissions from natural sources (Task II). We will determine through field studies, the internal cycling, storage, and biogenic emission of sulfur, as traced by 35 SO 4 2- , in environments impacted by atmospheric sulfate deposition; and will determine through isotope dilution studies, the contribution of foliar leaching and dry deposition to net throughfall (NTF) sulfate concentrations beneath deciduous and coniferous trees in such environments. 3 refs., 2 figs., 1 tab

  13. Sulfur deposition changes under sulfate geoengineering conditions: quasi-biennial oscillation effects on the transport and lifetime of stratospheric aerosols

    Science.gov (United States)

    Visioni, Daniele; Pitari, Giovanni; Tuccella, Paolo; Curci, Gabriele

    2018-02-01

    Sustained injection of sulfur dioxide (SO2) in the tropical lower stratosphere has been proposed as a climate engineering technique for the coming decades. Among several possible environmental side effects, the increase in sulfur deposition deserves additional investigation. In this study we present results from a composition-climate coupled model (University of L'Aquila Composition-Chemistry Model, ULAQ-CCM) and a chemistry-transport model (Goddard Earth Observing System Chemistry-Transport Model, GEOS-Chem), assuming a sustained lower-stratospheric equatorial injection of 8 Tg SO2 yr-1. Total S deposition is found to globally increase by 5.2 % when sulfate geoengineering is deployed, with a clear interhemispheric asymmetry (+3.8 and +10.3 % in the Northern Hemisphere (NH) and the Southern Hemisphere (SH), due to +2.2 and +1.8 Tg S yr-1, respectively). The two models show good consistency, both globally and on a regional scale under background and geoengineering conditions, except for S-deposition changes over Africa and the Arctic. The consistency exists with regard to time-averaged values but also with regard to monthly and interannual deposition changes. The latter is driven essentially by the variability in stratospheric large-scale transport associated with the quasi-biennial oscillation (QBO). Using an externally nudged QBO, it is shown how a zonal wind E shear favors aerosol confinement in the tropical pipe and a significant increase in their effective radius (+13 % with respect to W shear conditions). The net result is an increase in the downward cross-tropopause S flux over the tropics with dominant E shear conditions with respect to W shear periods (+0.61 Tg S yr-1, +42 %, mostly due to enhanced aerosol gravitational settling) and a decrease over the extratropics (-0.86 Tg S yr-1, -35 %, mostly due to decreased large-scale stratosphere-troposphere exchange of geoengineering sulfate). This translates into S-deposition changes that are significantly

  14. On numerical simulation of the global distribution of sulfate aerosol produced by a large volcanic eruption

    Energy Technology Data Exchange (ETDEWEB)

    Pudykiewicz, J.A.; Dastoor, A.P. [Atmospheric Environment Service, Quebec (Canada)

    1994-12-31

    Volcanic eruptions play an important role in the global sulfur cycle of the Earth`s atmosphere and can significantly perturb the global atmospheric chemistry. The large amount of sulfate aerosol produced by the oxidation of SO{sub 2} injected into the atmosphere during volcanic eruptions also has a relatively big influence on the radiative equilibrium of the Earth`s climatic system. The submicron particles of the sulfate aerosol reflect solar radiation more effectively than they trap radiation in the infrared range. The effect of this is observed as cooling of the Earth`s surface. The modification of the global radiation budget following volcanic eruption can subsequently cause significant fluctuations of atmospheric variables on a subclimatic scale. The resulting perturbation of weather patterns has been observed and well documented since the eruptions of Mt. Krakatau and Mt. Tambora. The impact of the sulfate aerosol from volcanic eruptions on the radiative equilibrium of the Earth`s atmosphere was also confirmed by the studies done with Global Circulation Models designed to simulate climate. The objective of the present paper is to present a simple and effective method to estimate the global distribution of the sulfate aerosol produced as a consequence of volcanic eruptions. In this study we will present results of the simulation of global distribution of sulfate aerosol from the eruption of Mt Pinatubo.

  15. Assessment of Global Mercury Deposition through Litterfall.

    Science.gov (United States)

    Wang, Xun; Bao, Zhengduo; Lin, Che-Jen; Yuan, Wei; Feng, Xinbin

    2016-08-16

    There is a large uncertainty in the estimate of global dry deposition of atmospheric mercury (Hg). Hg deposition through litterfall represents an important input to terrestrial forest ecosystems via cumulative uptake of atmospheric Hg (most Hg(0)) to foliage. In this study, we estimate the quantity of global Hg deposition through litterfall using statistical modeling (Monte Carlo simulation) of published data sets of litterfall biomass production, tree density, and Hg concentration in litter samples. On the basis of the model results, the global annual Hg deposition through litterfall is estimated to be 1180 ± 710 Mg yr(-1), more than two times greater than the estimate by GEOS-Chem. Spatial distribution of Hg deposition through litterfall suggests that deposition flux decreases spatially from tropical to temperate and boreal regions. Approximately 70% of global Hg(0) dry deposition occurs in the tropical and subtropical regions. A major source of uncertainty in this study is the heterogeneous geospatial distribution of available data. More observational data in regions (Southeast Asia, Africa, and South America) where few data sets exist will greatly improve the accuracy of the current estimate. Given that the quantity of global Hg deposition via litterfall is typically 2-6 times higher than Hg(0) evasion from forest floor, global forest ecosystems represent a strong Hg(0) sink.

  16. Influence of calcareous deposit on corrosion behavior of Q235 carbon steel with sulfate-reducing bacteria

    Science.gov (United States)

    Zhang, Jie; Li, Xiaolong; Wang, Jiangwei; Xu, Weichen; Duan, Jizhou; Chen, Shougang; Hou, Baorong

    2017-12-01

    Cathodic protection is a very effective method to protect metals, which can form calcareous deposits on metal surface. Research on the interrelationship between fouling organism and calcareous deposits is very important but very limited, especially sulfate-reducing bacteria (SRB). SRB is a kind of very important fouling organism that causes microbial corrosion of metals. A study of the influence of calcareous deposit on corrosion behavior of Q235 carbon steel in SRB-containing culture medium was carried out using electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and surface spectroscopy (EDS). The calcareous deposit was formed with good crystallinity and smooth surface under the gradient current density of -30 μA cm-2 in natural seawater for 72 h. Our results can help elucidate the formation of calcareous deposits and reveal the interrelationship between SRB and calcareous deposits under cathodic protection. The results indicate that the corrosion tendency of carbon steel was obviously affected by Sulfate-reducing Bacteria (SRB) metabolic activity and the calcareous deposit formed on the surface of carbon steel under cathodic protection was favourable to reduce the corrosion rate. Calcareous deposits can promote bacterial adhesion before biofilm formation. The results revealed the interaction between biofouling and calcareous deposits, and the anti-corrosion ability was enhanced by a kind of inorganic and organic composite membranes formed by biofilm and calcareous deposits.

  17. Key factors influencing rates of heterotrophic sulfate reduction in active seafloor hydrothermal massive sulfide deposits

    Directory of Open Access Journals (Sweden)

    Kiana Laieikawai Frank

    2015-12-01

    Full Text Available Hydrothermal vents are thermally and geochemically dynamic habitats, and the organisms therein are subject to steep gradients in temperature and chemistry. To date, the influence of these environmental dynamics on microbial sulfate reduction has not been well constrained. Here, via multivariate experiments, we evaluate the effects of key environmental variables (temperature, pH, H2S, SO42-, DOC on sulfate reduction rates and metabolic energy yields in material recovered from a hydrothermal flange from the Grotto edifice in the Main Endeavor Field, Juan de Fuca Ridge. Sulfate reduction was measured in batch reactions across a range of physico-chemical conditions. Temperature and pH were the strongest stimuli, and maximum sulfate reduction rates were observed at 50 °C and pH 6, suggesting that the in situ community of sulfate-reducing organisms in Grotto flanges may be most active in a slightly acidic and moderate thermal/chemical regime. At pH 4, sulfate reduction rates increased with sulfide concentrations most likely due to the mitigation of metal toxicity. While substrate concentrations also influenced sulfate reduction rates, energy-rich conditions muted the effect of metabolic energetics on sulfate reduction rates. We posit that variability in sulfate reduction rates reflect the response of the active microbial consortia to environmental constraints on in situ microbial physiology, toxicity, and the type and extent of energy limitation. These experiments help to constrain models of the spatial contribution of heterotrophic sulfate reduction within the complex gradients inherent to seafloor hydrothermal deposits.

  18. Sulfation of corrosive alkali chlorides by ammonium sulfate in a biomass fired CFB boiler

    Energy Technology Data Exchange (ETDEWEB)

    Brostroem, Markus; Backman, Rainer; Nordin, Anders [Energy Technology and Thermal Process Chemistry, Umeaa University, SE-901 87 Umeaa (Sweden); Kassman, Haakan [Vattenfall Power Consultant AB, Box 1046, SE-611 29 Nykoeping (Sweden); Helgesson, Anna; Berg, Magnus; Andersson, Christer [Vattenfall Research and Development AB, SE-814 26 Aelvkarleby (Sweden)

    2007-12-15

    Biomass and waste derived fuels contain relatively high amounts of alkali and chlorine, but contain very little sulfur. Combustion of such fuels can result in increased deposit formation and superheater corrosion. These problems can be reduced by using a sulfur containing additive, such as ammonium sulfate, which reacts with the alkali chlorides and forms less corrosive sulfates. Ammonium sulfate injection together with a so-called in situ alkali chloride monitor (IACM) is patented and known as ''ChlorOut''. IACM measures the concentrations of alkali chlorides (mainly KCl in biomass combustion) at superheater temperatures. Tests with and without spraying ammonium sulfate into the flue gases have been performed in a 96MW{sub th}/25MW{sub e} circulating fluidized bed (CFB) boiler. The boiler was fired mainly with bark and a chlorine containing waste. KCl concentration was reduced from more than 15 ppm to approximately 2 ppm during injection of ammonium sulfate. Corrosion probe measurements indicated that both deposit formation and material loss due to corrosion were decreased using the additive. Analysis of the deposits showed significantly higher concentration of sulfur and almost no chlorine in the case with ammonium sulfate. Results from impactor measurements supported that KCl was sulfated to potassium sulfate by the additive. (author)

  19. Acidic deposition and global climate change

    International Nuclear Information System (INIS)

    Nikolaidis, N.P.; Ecsedy, C.; Olem, H.; Nikolaidis, V.S.

    1990-01-01

    A literature is presented which examines the research published on understanding ecosystem acidification and the effects of acidic deposition on freshwaters. Topics of discussion include the following: acidic deposition; regional assessments; atmospheric deposition and transport; aquatic effects; mathematical modeling; liming acidic waters; global climate change; atmospheric changes; climate feedbacks; and aquatic effects

  20. Effects of sulfate deposition on pore water dissolved organic carbon, nutrients, and microbial enzyme activities in a northern peatland

    Science.gov (United States)

    L.R. Seifert-Monson; B.H. Hill; R.K. Kolka; T.M. Jicha; L.L. Lehto; C.M. Elonen

    2014-01-01

    Export of dissolved organic carbon from lakes and streams has increased throughout Europe and North America over the past several decades. One possible cause is altered deposition chemistry; specifically, decreasing sulfate inputs leading to changes in ionic strength and dissolved organic carbon solubility. To further investigate the relationship between deposition...

  1. Properties of soils and tree-wood tissue across a Lake States sulfate-deposition gradient. Forest Service resource bulletin

    International Nuclear Information System (INIS)

    Ohmann, L.F.; Grigal, D.F.

    1991-01-01

    There is general concern that atmospheric pollutants may be affecting the health of forests in the USA. The hypotheses tested were that the wet sulfate deposition gradient across the Lake States: (1) is reflected in the amount of accumulated sulfur in the forest floor-soil system and tree woody tissue and (2) is related to differences in tree radial increment. The authors present the properties of the soil and tree woody tissue (mostly chemical) on the study plots. Knowledge of the properties of soil and woody tree tissue is needed for understanding and interpreting relations between sulfate deposition, sulfur accumulation in the ecosystem, soil and tree chemistry, and tree growth and climatic variation. The report provides a summary of those data for study, analysis, and interpretation

  2. Global deposition of airborne dioxin.

    Science.gov (United States)

    Booth, Shawn; Hui, Joe; Alojado, Zoraida; Lam, Vicky; Cheung, William; Zeller, Dirk; Steyn, Douw; Pauly, Daniel

    2013-10-15

    We present a global dioxin model that simulates one year of atmospheric emissions, transport processes, and depositions to the earth's terrestrial and marine habitats. We map starting emission levels for each land area, and we also map the resulting deposits to terrestrial and marine environments. This model confirms that 'hot spots' of deposition are likely to be in northern Europe, eastern North America, and in parts of Asia with the highest marine dioxin depositions being the northeast and northwest Atlantic, western Pacific, northern Indian Ocean and the Mediterranean. It also reveals that approximately 40% of airborne dioxin emissions are deposited to marine environments and that many countries in Africa receive more dioxin than they produce, which results in these countries being disproportionately impacted. Since human exposure to dioxin is largely through diet, this work highlights food producing areas that receive higher atmospheric deposits of dioxin than others. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Volcanic Plume Impact on the Atmosphere and Climate: O- and S-Isotope Insight into Sulfate Aerosol Formation

    Directory of Open Access Journals (Sweden)

    Erwan Martin

    2018-05-01

    Full Text Available The impact of volcanic eruptions on the climate has been studied over the last decades and the role played by sulfate aerosols appears to be major. S-bearing volcanic gases are oxidized in the atmosphere into sulfate aerosols that disturb the radiative balance on earth at regional to global scales. This paper discusses the use of the oxygen and sulfur multi-isotope systematics on volcanic sulfates to understand their formation and fate in more or less diluted volcanic plumes. The study of volcanic aerosols collected from air sampling and ash deposits at different distances from the volcanic systems (from volcanic vents to the Earth poles is discussed. It appears possible to distinguish between the different S-bearing oxidation pathways to generate volcanic sulfate aerosols whether the oxidation occurs in magmatic, tropospheric, or stratospheric conditions. This multi-isotopic approach represents an additional constraint on atmospheric and climatic models and it shows how sulfates from volcanic deposits could represent a large and under-exploited archive that, over time, have recorded atmospheric conditions on human to geological timescales.

  4. Global reactive nitrogen deposition from lightning NOx

    NARCIS (Netherlands)

    Shepon, A.; Gildor, H.; Labrador, L.J.; Butler, T.; Ganzeveld, L.N.; Lawrence, M.G.

    2007-01-01

    We present results of the deposition of nitrogen compounds formed from lightning (LNO x ) using the global chemical transport Model of Atmospheric Transport and Chemistry¿Max Planck Institute for Chemistry version. The model indicates an approximately equal deposition of LNO x in both terrestrial

  5. Smectite Formation in Acid Sulfate Environments on Mars

    Science.gov (United States)

    Peretyazhko, T. S.; Niles, P. B.; Sutter, B.; Clark, J. V.; Morris, R. V.; Ming, D. W.

    2017-01-01

    Phyllosilicates of the smectite group detected in Noachian and early Hesperian terrains on Mars were hypothesized to form under aqueous conditions that were globally neutral to alkaline. These pH conditions and the presence of a CO2-rich atmosphere should have been favorable for the formation of large carbonate deposits. However, large-scale carbonate deposits have not been detected on Mars. We hypothesized that smectite deposits are consistent with perhaps widespread acidic aqueous conditions that prevented carbonate precipitation. The objective of our work was to investigate smectite formation under acid sulfate conditions in order to provide insight into the possible geochemical conditions required for smectite formation on Mars. Hydrothermal batch incubation experiments were performed with Mars-analogue, glass-rich, basalt simulant in the presence of sulfuric acid of variable concentration.

  6. Deposition and cycling of sulfur controls mercury accumulation in Isle Royale fish

    Energy Technology Data Exchange (ETDEWEB)

    Paul E. Drevnick; Donald E. Canfield; Patrick R. Gorski (and others) [Miami University, Oxford, OH (United States). Department of Zoology

    2007-11-01

    Mercury contamination of fish is a global problem. Consumption of contaminated fish is the primary route of methylmercury exposure in humans and is detrimental to health. Newly mandated reductions in anthropogenic mercury emissions aim to reduce atmospheric mercury deposition and thus mercury concentrations in fish. However, factors other than mercury deposition are important for mercury bioaccumulation in fish. In the lakes of Isle Royale, U.S.A., reduced rates of sulfate deposition since the Clean Air Act of 1970 have caused mercury concentrations in fish to decline to levels that are safe for human consumption, even without a discernible decrease in mercury deposition. Therefore, reductions in anthropogenic sulfur emissions may provide a synergistic solution to the mercury problem in sulfate-limited freshwaters. 71 refs., 3 figs., 1 tab.

  7. Effects of sulfate deposition on pore water dissolved organic carbon, nutrients, and microbial enzyme activities in a northern peatland

    Science.gov (United States)

    Export of dissolved organic carbon from lakes and streams has increased throughout Europe and North America over the past several decades. One possible cause is altered deposition chemistry; specifically, decreasing sulfate inputs leading to changes in ionic strength and dissolve...

  8. Deposition of Boron in Possible Evaporite Deposits in Gale Crate

    Science.gov (United States)

    Gasda, P. J.; Peets, E.; Lamm, S. N.; Rapin, W.; Lanza, N.; Frydenvang, J.; Clark, B. C.; Herkenhoff, K. E.; Bridges, J.; Schwenzer, S. P.; Haldeman, E. B.; Wiens, R. C.; Maurice, S.; Clegg, S. M.; Delapp, D.; Sanford, V.; Bodine, M. R.; McInroy, R.

    2017-12-01

    Boron has been previously detected in Gale crater using the ChemCam instrument on board the NASA Curiosity rover within calcium sulfate fracture fill hosted by lacustrine mudstone and eolian sandstone units. Recent results show that up to 300 ppm B is present in the upper sections of the lacustrine unit. Boron has been detected in both the groundwater-emplaced calcium sulfate fracture fill materials and bedding-parallel calcium sulfate layers. The widespread bedding-parallel calcium sulfate layers within the upper strata of the lacustrine bedrock that Curiosity has encountered recently could be interpreted as primary evaporite deposits. We have two hypotheses for the history of boron in Gale crater. In both hypotheses, borates were first deposited as lake water evaporated, depositing primary evaporates that were later re-dissolved by groundwater, which redistributed the boron into secondary evaporitic calcium sulfate fracture fill deposits. In the first scenario, Gale crater may have undergone a period of perennial lake formation during a drier period of martian history, depositing layers of evaporitic minerals (including borates) among lacustrine mudstone layers. In the second scenario, lake margins could have become periodically exposed during cyclic drops in lake level and subsequently desiccated. Evaporites were deposited and desiccation features were formed in lowstand deposits. Either hypothetical scenario of evaporite deposition would promote prebiotic chemical reactions via wet-dry cycles. Boron may be an important prebiotic element, and as such, its presence in ancient martian surface and groundwater provides evidence that important prebiotic chemical reactions could occur on Mars if organics were present. The presence of boron in ancient Gale crater groundwater also provides additional evidence that a habitable environment existed in the martian subsurface well after the expected disappearance of liquid water on the surface of Mars. We will report on the

  9. Global Distribution of Solid Ammonium Sulfate Aerosols and their Climate Impact Acting as Ice Nuclei

    Science.gov (United States)

    Zhou, C.; Penner, J.

    2017-12-01

    Laboratory experiments show that liquid ammonium sulfate particles effloresce when RHw is below 34% to become solid and dissolve when RHw is above 79%. Solid ammonium sulfate aerosols can act as heterogeneous ice nuclei particles (INPs) to form ice particles in deposition mode when the relative humidity over ice is above 120%. In this study we used the coupled IMPACT/CAM5 model to track the efflorescence and deliquescence processes of ammonium sulfate. Results show that about 20% of the total simulated pure sulfate aerosol mass is in the solid state and is mainly distributed in the northern hemisphere (NH) from 50 hPa to 200 hPa. When these solid ammonium sulfate aerosols are allowed to act as ice nuclei particles, they act to increase the ice water path in the NH and reduce ice water path in the tropics. The addition of these particles leads to a positive net radiative effect at the TOA ranging from 0.5-0.9 W/m2 depending on the amounts of other ice nuclei particles (e.g., dust, soot) used in the ice nucleation process. The short-term climate feedback shows that the ITCZ shifts northwards and precipitation increases in the NH. There is also an average warming of 0.05-0.1 K near the surface (at 2 meter) in the NH which is most obvious in the Arctic region.

  10. Fine resolution atmospheric sulfate model driven by operational meteorological data: Comparison with observations

    International Nuclear Information System (INIS)

    Benkovitz, C.M.; Schwartz, S.E.; Berkowitz, C.M.; Easter, R.C.

    1993-09-01

    The hypothesis that anthropogenic sulfur aerosol influences clear-sky and cloud albedo and can thus influence climate has been advanced by several investigators; current global-average climate forcing is estimated to be of comparable magnitude, but opposite sign, to longwave forcing by anthropogenic greenhouse gases. The high space and time variability of sulfate concentrations and column aerosol burdens have been established by observational data; however, geographic and time coverage provided by data from surface monitoring networks is very limited. Consistent regional and global estimates of sulfate aerosol loading, and the contributions to this loading from different sources can be obtained only by modeling studies. Here we describe a sub-hemispheric to global-scale Eulerian transport and transformation model for atmospheric sulfate and its precursors, driven by operational meteorological data, and report results of calculations for October, 1986 for the North Atlantic and adjacent continental regions. The model, which is based on the Global Chemistry Model uses meteorological data from the 6-hour forecast model of the European Center for Medium-Range Weather Forecast to calculate transport and transformation of sulfur emissions. Time- and location-dependent dry deposition velocities were estimated using the methodology of Wesely and colleagues. Chemical reactions includes gaseous oxidation of SO 2 and DMS by OH, and aqueous oxidation of SO 2 by H 2 O 2 and O 3 . Anthropogenic emissions were from the NAPAP and EMEP 1985 inventories and biogenic emissions based on Bates et al. Calculated sulfate concentrations and column burdens exhibit high variability on spatial scale of hundreds of km and temporal scale of days. Calculated daily average sulfate concentrations closely reproduce observed concentrations at locations widespread over the model domain

  11. Simulation of global sulfate distribution and the influence of effective cloud drop radii with a coupled photochemistry-sulfur cycle model

    NARCIS (Netherlands)

    Roelofs, G.J.; Lelieveld, J.; Ganzeveld, L.N.

    1998-01-01

    A sulfur cycle model is coupled to a global chemistry-climate model. The simulated surface sulfate concentrations are generally within a factor of 2 of observed concentrations, and display a realistic seasonality for most background locations. However, the model tends to underestimate sulfate and

  12. Role of Mineral Deposits in Global Geochemical Cycles

    Science.gov (United States)

    Kesler, S.; Wilkinson, B.

    2009-12-01

    Mineral deposits represent the most extreme degree of natural concentration for most elements and their formation and destruction are important parts of global geochemical cycles. Quantitative estimates of the role that mineral deposits play in these geochemical cycles has been limited, however, by the lack of information on actual amounts of elements that are concentrated in these deposits, and their rates of formation and destruction at geologic time scales. Recent use of a “tectonic diffusion” model for porphyry copper deposits, the most important source of world copper, in conjunction with estimates of their copper content (Kesler and Wilkinson, 2008), allows an assessment of the role of copper deposits in Earth’s global copper cycles. These results indicate that ~4.5*10^8 Gg of Cu have been concentrated in porphyry copper deposits through Phanerozoic time, that deposits containing ~2.8*10^8 Gg of Cu have been removed by uplift and erosion over the same time period, and that deposits containing ~1.7*10^8 Gg remain in Earth’s crust. If styles of formation and destruction of other copper-bearing mineral deposits are similar, then all crustal deposits contain ~3*10^8 Gg of copper. This constitutes about 0.03% of the copper that resides in crustal rocks and provides a first-ever estimate of the rate at which natural geochemical cycles produce the extreme concentrations that constitute mineral deposits. Another ~8*10^8 Gg of copper have been destroyed during the uplift and erosion of mineral deposits over Phanerozoic time, a flux amounting to an annual contribution of about 1.5 Gg of copper to the near-surface environment. This amount is similar in magnitude to copper released by volcanic outgassing, but only ~2.5% of the 56 Gg of copper estimated to be released annually by weathering of average crustal rocks (Rauch and Graedel, 2007). The amount of copper removed from mineral deposits by mining, 1.1*10^4 Gg/year, is much larger than any natural

  13. Stratospheric sulfate geoengineering impacts on global agriculture

    Science.gov (United States)

    Xia, L.; Robock, A.; Lawrence, P.; Lombardozzi, D.

    2015-12-01

    Stratospheric sulfate geoengineering has been proposed to reduce the impacts of anthropogenic climate change. If it is ever used, it would change agricultural production, and so is one of the future climate scenarios for the third phase of the Global Gridded Crop Model Intercomparison. As an example of those impacts, we use the Community Land Model (CLM-crop 4.5) to simulate how climate changes from the G4 geoengineering scenario from the Geoengineering Modeling Intercomparison Project. The G4 geoengineering scenario specifies, in combination with RCP4.5 forcing, starting in 2020 daily injections of a constant amount of SO2 at a rate of 5 Tg SO2 per year at one point on the Equator into the lower stratosphere. Eight climate modeling groups have completed G4 simulations. We use the crop model to simulate the impacts of climate change (temperature, precipitation, and solar radiation) on the global agriculture system for five crops - rice, maize, soybeans, cotton, and sugarcane. In general, without irrigation, compared with the reference run (RCP4.5), global production of cotton, rice and sugarcane would increase significantly due to the cooling effect. Maize and soybeans show different regional responses. In tropical regions, maize and soybean have a higher yield in G4 compared with RCP4.5, while in the temperate regions they have a lower yield under a geoengineered climate. Impacts on specific countries in terms of different crop production depend on their locations. For example, the United States and Argentina show soybean production reduction of about 15% under G4 compared to RCP4.5, while Brazil increases soybean production by about 10%.

  14. A 20-year simulated climatology of global dust aerosol deposition.

    Science.gov (United States)

    Zheng, Yu; Zhao, Tianliang; Che, Huizheng; Liu, Yu; Han, Yongxiang; Liu, Chong; Xiong, Jie; Liu, Jianhui; Zhou, Yike

    2016-07-01

    Based on a 20-year (1991-2010) simulation of dust aerosol deposition with the global climate model CAM5.1 (Community Atmosphere Model, version 5.1), the spatial and temporal variations of dust aerosol deposition were analyzed using climate statistical methods. The results indicated that the annual amount of global dust aerosol deposition was approximately 1161±31Mt, with a decreasing trend, and its interannual variation range of 2.70% over 1991-2010. The 20-year average ratio of global dust dry to wet depositions was 1.12, with interannual variation of 2.24%, showing the quantity of dry deposition of dust aerosol was greater than dust wet deposition. High dry deposition was centered over continental deserts and surrounding regions, while wet deposition was a dominant deposition process over the North Atlantic, North Pacific and northern Indian Ocean. Furthermore, both dry and wet deposition presented a zonal distribution. To examine the regional changes of dust aerosol deposition on land and sea areas, we chose the North Atlantic, Eurasia, northern Indian Ocean, North Pacific and Australia to analyze the interannual and seasonal variations of dust deposition and dry-to-wet deposition ratio. The deposition amounts of each region showed interannual fluctuations with the largest variation range at around 26.96% in the northern Indian Ocean area, followed by the North Pacific (16.47%), Australia (9.76%), North Atlantic (9.43%) and Eurasia (6.03%). The northern Indian Ocean also had the greatest amplitude of interannual variation in dry-to-wet deposition ratio, at 22.41%, followed by the North Atlantic (9.69%), Australia (6.82%), North Pacific (6.31%) and Eurasia (4.36%). Dust aerosol presented a seasonal cycle, with typically strong deposition in spring and summer and weak deposition in autumn and winter. The dust deposition over the northern Indian Ocean exhibited the greatest seasonal change range at about 118.00%, while the North Atlantic showed the lowest seasonal

  15. Contribution of foliar leaching and dry deposition to sulfate in net throughfall below deciduous trees

    International Nuclear Information System (INIS)

    Garten, C.T. Jr.; Bondietti, E.A.; Lomax, R.D.

    1988-01-01

    Experiments were conducted at Walker Branch Watershed, Tennessee in 1986 with radioactive 35 S to quantify the contribution of foliar leaching and dry deposition to sulfate (SO 4 2- ) in net throughfall (NTF). Two red maple (Acer rubrum) and two yellow poplar (Liriodendron tulipifera) trees (12-15 m tall) were radiolabeled by stem well injection. Total S and 35 S were measured in leaves; 35 S and SO 4 2- were measured in throughfall (THF). The contribution of foliar leaching to SO 4 2- in NTF, THF minus incident precipitation, was estimated by isotope dilution of 35 S in NTF arising from nonradioactive S in dry deposition. The per cent contribution of foliar leaching to SO 4 2- in NTF was greatest during the week following isotope labeling and during the period of autumn leaf fall. During the growing season, foliar leaching accounted for 80% of the SO 4 2- in NTF beneath the study trees. Dry deposition of S to these tree species can be reasonably approximated during summer from the measurement of SO 4 2- flux in NTF. (author)

  16. Toward Synchronous Evaluation of Source Apportionments for Atmospheric Concentration and Deposition of Sulfate Aerosol Over East Asia

    Science.gov (United States)

    Itahashi, S.

    2018-03-01

    Source apportionments for atmospheric concentration, dry deposition, and wet deposition of sulfate aerosol (SO42-) were synchronously evaluated over East Asia, a main source of anthropogenic sulfur dioxide (SO2) emissions. Estimating dry deposition was difficult owing to the difficulty of measuring deposition velocity directly; therefore, sensitivity simulations using two dry deposition schemes were conducted. Moreover, sensitivity simulations for different emission inventories, the largest uncertainty source in the air quality model, were also conducted. In total, four experimental settings were used. Model performance was verified for atmospheric concentration and wet deposition using a ground-based observation network in China, Korea, and Japan, and all four model settings captured the observations. The underestimation of wet deposition over China was improved by an adjusted approach that linearly scaled the modeled precipitation values to observations. The synchronous evaluation of source apportionments for atmospheric concentration and dry and wet deposition showed the dominant contribution of anthropogenic emissions from China to the atmospheric concentration and deposition in Japan. The contributions of emissions from volcanoes were more important for wet deposition than for atmospheric concentration. Differences in the dry deposition scheme and emission inventory did not substantially influence the relative ratio of source apportionments over Japan. Because the dry deposition was more attributed to local factors, the differences in dry deposition may be an important determinant of the source contributions from China to Japan. Verification of these findings, including the dry deposition velocity, is necessary for better understanding of the behavior of sulfur compound in East Asia.

  17. Constraining Δ33S signatures of Archean seawater sulfate with carbonate-associated sulfate

    Science.gov (United States)

    Peng, Y.; Bao, H.; Bekker, A.; Hofmann, A.

    2017-12-01

    Non-mass dependent sulfur isotope deviation of S-bearing phases in Archean sedimentary strata, and expressed as Δ33S, has a consistent pattern, i.e., sulfide (pyrite) predominantly bear positive Δ33S values, while Paleoarchean sulfate (barite) has negative Δ33S values. This pattern was later corroborated by observations of negative Δ33S values in Archean volcanogenic massive sulfide deposits and negative Δ33S values in early diagenetic nodular pyrite with a wide range of δ34S values, which is thought to be due to microbial sulfate reduction. These signatures have provided a set of initial conditions for a mechanistic interpretation at physical chemistry level. Unlike the younger geological times when large bodies of seawater evaporite deposits are common, to expand seawater sulfate records, carbonate-associated sulfate (CAS) was utilized as a proxy for ancient seawater sulfate. CAS extracted from the Archean carbonates carries positive Δ33S values. However, CAS could be derived from pyrite oxidation following exposure to modern oxidizing conditions and/or during laboratory extraction procedures. It is, therefore, important for us understanding context of the overall early earth atmospheric condition to empirically confirm whether Archean seawater sulfate was generally characterized by negative Δ33S signatures. Combined δ18O, Δ17O, δ34S, and Δ33S analyses of sequentially extracted water-leachable sulfate (WLS) and acid-leachable sulfate (ALS = CAS) and δ34S and Δ33S analyses of pyrite can help to identify the source of extracted sulfate. We studied drill-core samples of Archean carbonates from the 2.55 Ga Malmani and Campell Rand supgroups, South Africa. Our preliminary results show that 1) neither WLS nor ALS were extracted from samples with extremely low pyrite contents (less than 0.05 wt.%); 2) extractable WLS and ALS is present in samples with relatively high pyrite contents (more than 1 wt.%), and that δ34S and Δ33S values of WLS, ALS, and

  18. Estimating 40 years of nitrogen deposition in global biomes using the SCIAMACHY NO2 column

    Science.gov (United States)

    Lu, Xuehe; Zhang, Xiuying; Liu, Jinxun; Jin, Jiaxin

    2016-01-01

    Owing to human activity, global nitrogen (N) cycles have been altered. In the past 100 years, global N deposition has increased. Currently, the monitoring and estimating of N deposition and the evaluation of its effects on global carbon budgets are the focus of many researchers. NO2 columns retrieved by space-borne sensors provide us with a new way of exploring global N cycles and these have the ability to estimate N deposition. However, the time range limitation of NO2 columns makes the estimation of long timescale N deposition difficult. In this study we used ground-based NOx emission data to expand the density of NO2columns, and 40 years of N deposition (1970–2009) was inverted using the multivariate linear model with expanded NO2 columns. The dynamic of N deposition was examined in both global and biome scales. The results show that the average N deposition was 0.34 g N m–2 year–1 in the 2000s, which was an increase of 38.4% compared with the 1970s’. The total N deposition in different biomes is unbalanced. N deposition is only 38.0% of the global total in forest biomes; this is made up of 25.9%, 11.3, and 0.7% in tropical, temperate, and boreal forests, respectively. As N-limited biomes, there was little increase of N deposition in boreal forests. However, N deposition has increased by a total of 59.6% in tropical forests and croplands, which are N-rich biomes. Such characteristics may influence the effects on global carbon budgets.

  19. Removal of Atmospheric Ethanol by Wet Deposition: A Global Flux Estimate

    Science.gov (United States)

    Felix, J. D. D.; Willey, J. D.; Avery, B.; Thomas, R.; Mullaugh, K.; Kieber, R. J.; Mead, R. N.; Helms, J. R.; Campos, L.; Shimizu, M. S.; Guibbina, F.

    2017-12-01

    Global ethanol fuel consumption has increased exponentially over the last two decades and the US plans to double annual renewable fuel production in the next five years as required by the renewable fuel standard. Regardless of the technology or feedstock used to produce the renewable fuel, the primary end product will be ethanol. Increasing ethanol fuel consumption will have an impact on the oxidizing capacity of the atmosphere and increase atmospheric concentrations of the secondary pollutant peroxyacetyl nitrate as well a variety of VOCs with relatively high ozone reactivities (e.g. ethanol, formaldehyde, acetaldehyde). Despite these documented effects of ethanol emissions on atmospheric chemistry, current global atmospheric ethanol budget models have large uncertainties in the magnitude of ethanol sources and sinks. The presented work investigates the global wet deposition sink by providing the first estimate of the global wet deposition flux of ethanol (2.4 ± 1.6 Tg/yr) based on empirical wet deposition data (219 samples collected at 12 locations). This suggests the wet deposition sink removes between 6 and 17% of atmospheric ethanol annually. Concentrations of ethanol in marine wet deposition (25 ± 6 nM) were an order of magnitude less than in the majority of terrestrial deposition (345 ± 280 nM). Terrestrial deposition collected in locations impacted by high local sources of biofuel usage and locations downwind from ethanol distilleries were an order of magnitude higher in ethanol concentration (3090 ± 448 nM) compared to deposition collected in terrestrial locations not impacted by these sources. These results indicate that wet deposition of ethanol is heavily influenced by local sources and ethanol emission impacts on air quality may be more significant in highly populated areas. As established and developing countries continue to rapidly increase ethanol fuel consumption and subsequent emissions, understanding the magnitude of all ethanol sources and

  20. Sulfates on Mars: TES Observations and Thermal Inertia Data

    Science.gov (United States)

    Cooper, C. D.; Mustard, J. F.

    2001-05-01

    The high resolution thermal emission spectra returned by the TES spectrometer on the MGS spacecraft have allowed the mapping of a variety of minerals and rock types by different sets of researchers. Recently, we have used a linear deconvolution approach to compare sulfate-palagonite soil mixtures created in the laboratory with Martian surface spectra. This approach showed that a number of areas on Mars have spectral properties that match those of sulfate-cemented soils (but neither loose powder mixtures of sulfates and soils nor sand-sized grains of disaggregated crusted soils). These features do not appear to be caused by atmospheric or instrumental effects and are thus believed to be related to surface composition and texture. The distribution and physical state of sulfate are important pieces of information for interpreting surface processes on Mars. A number of different mechanisms could have deposited sulfate in surface layers. Some of these include evaporation of standing bodies of water, aerosol deposition of volcanic gases, hydrothermal alteration from groundwater, and in situ interaction between the atmosphere and soil. The areas on Mars with cemented sulfate signatures are spread across a wide range of elevations and are generally large in spatial scale. Some of the areas are associated with volcanic regions, but many are in dark red plains that have previously been interpreted as duricrust deposits. Our current work compares the distribution of sulfate-cemented soils as mapped by the spectral deconvolution approach with thermal inertia maps produced from both Viking and MGS-TES. Duricrust regions, interpreted from intermediate thermal inertia values, are large regions thought to be sulfate-cemented soils similar to coherent, sulfate-rich materials seen at the Viking lander sites. Our observations of apparent regions of cemented sulfate are also large in spatial extent. This scale information is important for evaluating formation mechanisms for the

  1. Investigation of the formation of deposits of calcium sulfate on a metallic wall: detection and growth initiation

    International Nuclear Information System (INIS)

    Guillermin, Roger

    1970-01-01

    Whereas the formation of calcium sulfate deposits on walls of (water desalination) heat exchanger tubes increases the load loss and decreases the heat exchange coefficient, measuring the load loss or measuring heat transfer in an exchanger could be a method to determine whether scaling occurs. In this research thesis, the author aims at a computational assessing of the sensitivity of such methods in conditions easily obtained in laboratory and allowing, if possible, the identification of the different steps of deposit formation. Then, the author considers some discontinuous methods, possibly more sensitive but more difficult to adjust, but which are not interesting in an industrial point of view: methods based on weighing, on chemical dosing, on radioactive measurements (tracers, auto-radiography, beta backscattering), optical methods and electric methods (piezoelectric quartz, conductivity measurements)

  2. Impact of biomass burning on nutrient deposition to the global ocean

    Science.gov (United States)

    Kanakidou, Maria; Myriokefalitakis, Stelios; Daskalakis, Nikos; Mihalopoulos, Nikolaos; Nenes, Athanasios

    2017-04-01

    Atmospheric deposition of trace constituents, both of natural and anthropogenic origin, can act as a nutrient source into the open ocean and affect marine ecosystem functioning and subsequently the exchange of CO2 between the atmosphere and the global ocean. Dust is known as a major source of nutrients (Fe and P) into the atmosphere, but only a fraction of these nutrients is released in soluble form that can be assimilated by the ecosystems. Dust is also known to enhance N deposition by interacting with anthropogenic pollutants and neutralisation of part of the acidity of the atmosphere by crustal alkaline species. These nutrients have also primary anthropogenic sources including combustion emissions. The global atmospheric N [1], Fe [2] and P [3] cycles have been parameterized in the global 3-D chemical transport model TM4-ECPL, accounting for inorganic and organic forms of these nutrients, for all natural and anthropogenic sources of these nutrients including biomass burning, as well as for the link between the soluble forms of Fe and P atmospheric deposition and atmospheric acidity. The impact of atmospheric acidity on nutrient solubility has been parameterised based on experimental findings and the model results have been evaluated by extensive comparison with available observations. In the present study we isolate the significant impact of biomass burning emissions on these nutrients deposition by comparing global simulations that consider or neglect biomass burning emissions. The investigated impact integrates changes in the emissions of the nutrients as well as in atmospheric oxidants and acidity and thus in atmospheric processing and secondary sources of these nutrients. The results are presented and thoroughly discussed. References [1] Kanakidou M, S. Myriokefalitakis, N. Daskalakis, G. Fanourgakis, A. Nenes, A. Baker, K. Tsigaridis, N. Mihalopoulos, Past, Present and Future Atmospheric Nitrogen Deposition, Journal of the Atmospheric Sciences (JAS-D-15

  3. Post-flame gas-phase sulfation of potassium chloride

    DEFF Research Database (Denmark)

    Li, Bo; Sun, Zhiwei; Li, Zhongshan

    2013-01-01

    The sulfation of KCl during biomass combustion has implications for operation and emissions: it reduces the rates of deposition and corrosion, it increases the formation of aerosols, and it leads to higher concentrations of HCl and lower concentrations of SO2 in the gas phase. Rigorously homogene......The sulfation of KCl during biomass combustion has implications for operation and emissions: it reduces the rates of deposition and corrosion, it increases the formation of aerosols, and it leads to higher concentrations of HCl and lower concentrations of SO2 in the gas phase. Rigorously...

  4. Modeling of sulfation of potassium chloride by ferric sulfate addition during grate-firing of biomass

    DEFF Research Database (Denmark)

    Wu, Hao; Jespersen, Jacob Boll; Aho, Martti

    2013-01-01

    Potassium chloride, KCl, formed from critical ash-forming elements released during combustion may lead to severe ash deposition and corrosion problems in biomass-fired boilers. Ferric sulfate, Fe2(SO4)3 is an effective additive, which produces sulfur oxides (SO2 and SO3) to convert KCl to the less...... harmful K2SO4. In the present study the decomposition of ferric sulfate is studied in a fast-heating rate thermogravimetric analyzer (TGA), and a kinetic model is proposed to describe the decomposition process. The yields of SO2 and SO3 from ferric sulfate decomposition are investigated in a laboratory......-scale tube reactor. It is revealed that approximately 40% of the sulfur is released as SO3, the remaining fraction being released as SO2. The proposed decomposition model of ferric sulfate is combined with a detailed gas phase kinetic model of KCl sulfation, and a simplified model of K2SO4 condensation...

  5. Skin deposition and permeation of finasteride in vitro: effects of propylene glycol, ethanol and sodium lauryl sulfate.

    Science.gov (United States)

    Limpongsa, Ekapol; Jaipakdee, Napaphak; Pongjanyakul, Thaned

    2014-08-27

    Abstract The objective of this study was to investigate the effects of propylene glycol (PG), ethanol (EtOH) and sodium lauryl sulfate (SLS) on the in vitro deposition and permeation of finasteride (FNS). A side-by-side diffusion cell mounted with a pig ear skin and a saturated solution of FNS in PG (10, 20% v/v), EtOH (10, 20% v/v) or SLS (0.5, 1% w/v) vehicles were used. Incorporation of PG, EtOH or SLS caused a significant increase in FNS solubility both in the solution and on the skin with SLS > EtOH > PG. The results obtained from skin deposition studies showed that the FNS deposition rate and time increased in the same order as that of the solubility. The deposition kinetics of FNS solubilized in PG, EtOH and SLS vehicles followed either zero-order, square-root-of-time or pseudo-first-order kinetic models depending on the type and concentration of the enhancer. The permeation studies demonstrated that FNS permeation fluxes were enhanced only by EtOH vehicles. These results suggest that PG and SLS could be used as deposition enhancers, while EtOH could be the effective permeation enhancer of FNS. The obtained results can be used as the considerable insights for formulating the topical and transdermal products of FNS.

  6. Sulfation of Condensed Potassium Chloride by SO2

    DEFF Research Database (Denmark)

    Sengeløv, Louise With; Hansen, Troels Bruun; Bartolomé, Carmen

    2013-01-01

    The interaction between alkali chloride and sulfur oxides has important implications for deposition and corrosion in combustion of biomass. In the present study, the sulfation of particulate KCl (90–125 μm) by SO2 was studied in a fixed bed reactor in the temperature range 673–1023 K and with rea......The interaction between alkali chloride and sulfur oxides has important implications for deposition and corrosion in combustion of biomass. In the present study, the sulfation of particulate KCl (90–125 μm) by SO2 was studied in a fixed bed reactor in the temperature range 673–1023 K...... and with reactant concentrations of 500–3000 ppm SO2, 1–20% O2, and 4–15% H2O. The degree of sulfation was monitored by measuring the formation of HCl. Analysis of the solid residue confirmed that the reaction proceeds according to a shrinking core model and showed the formation of an eutectic at higher...... temperatures. On the basis of the experimental results, a rate expression for the sulfation reaction was derived. The model compared well with literature data for sulfation of KCl and NaCl, and the results indicate that it may be applied at even higher SO2 concentrations and temperatures than those...

  7. Global Tsunami Database: Adding Geologic Deposits, Proxies, and Tools

    Science.gov (United States)

    Brocko, V. R.; Varner, J.

    2007-12-01

    A result of collaboration between NOAA's National Geophysical Data Center (NGDC) and the Cooperative Institute for Research in the Environmental Sciences (CIRES), the Global Tsunami Database includes instrumental records, human observations, and now, information inferred from the geologic record. Deep Ocean Assessment and Reporting of Tsunamis (DART) data, historical reports, and information gleaned from published tsunami deposit research build a multi-faceted view of tsunami hazards and their history around the world. Tsunami history provides clues to what might happen in the future, including frequency of occurrence and maximum wave heights. However, instrumental and written records commonly span too little time to reveal the full range of a region's tsunami hazard. The sedimentary deposits of tsunamis, identified with the aid of modern analogs, increasingly complement instrumental and human observations. By adding the component of tsunamis inferred from the geologic record, the Global Tsunami Database extends the record of tsunamis backward in time. Deposit locations, their estimated age and descriptions of the deposits themselves fill in the tsunami record. Tsunamis inferred from proxies, such as evidence for coseismic subsidence, are included to estimate recurrence intervals, but are flagged to highlight the absence of a physical deposit. Authors may submit their own descriptions and upload digital versions of publications. Users may sort by any populated field, including event, location, region, age of deposit, author, publication type (extract information from peer reviewed publications only, if you wish), grain size, composition, presence/absence of plant material. Users may find tsunami deposit references for a given location, event or author; search for particular properties of tsunami deposits; and even identify potential collaborators. Users may also download public-domain documents. Data and information may be viewed using tools designed to extract and

  8. Total and non-seasalt sulfate and chloride measured in bulk precipitation samples from the Kilauea Volcano area, Hawaii

    Science.gov (United States)

    Scholl, M.A.; Ingebritsen, S.E.

    1995-01-01

    Six-month cumulative precipitation samples provide estimates of bulk deposition of sulfate and chloride for the southeast part of the Island of Hawaii during four time periods: August 1991 to February 1992, February 1992 to September 1992, March 1993 to September 1993, and September 1993 to February 1994. Total estimated bulk deposition rates for sulfate ranged from 0.12 to 24 grams per square meter per 180 days, and non-seasalt sulfate deposition ranged from 0.06 to 24 grams per square meter per 180 days. Patterns of non-seasalt sulfate deposition were generally related to prevailing wind directions and the proximity of the collection site to large sources of sulfur gases, namely Kilauea Volcano's summit and East Rift Zone eruption. Total chloride deposition from bulk precipitation samples ranged from 0.01 to 17 grams per square meter per 180 days. Chloride appeared to be predominantly from oceanic sources, as non- seasalt chloride deposition was near zero for most sites.

  9. Potash: a global overview of evaporate-related potash resources, including spatial databases of deposits, occurrences, and permissive tracts: Chapter S in Global mineral resource assessment

    Science.gov (United States)

    Orris, Greta J.; Cocker, Mark D.; Dunlap, Pamela; Wynn, Jeff C.; Spanski, Gregory T.; Briggs, Deborah A.; Gass, Leila; Bliss, James D.; Bolm, Karen S.; Yang, Chao; Lipin, Bruce R.; Ludington, Stephen; Miller, Robert J.; Słowakiewicz, Mirosław

    2014-01-01

    Potash is mined worldwide to provide potassium, an essential nutrient for food crops. Evaporite-hosted potash deposits are the largest source of salts that contain potassium in water-soluble form, including potassium chloride, potassium-magnesium chloride, potassium sulfate, and potassium nitrate. Thick sections of evaporitic salt that form laterally continuous strata in sedimentary evaporite basins are the most common host for stratabound and halokinetic potash-bearing salt deposits. Potash-bearing basins may host tens of millions to more than 100 billion metric tons of potassium oxide (K2O). Examples of these deposits include those in the Elk Point Basin in Canada, the Pripyat Basin in Belarus, the Solikamsk Basin in Russia, and the Zechstein Basin in Germany.

  10. Elevated olivine weathering rates and sulfate formation at cryogenic temperatures on Mars.

    Science.gov (United States)

    Niles, Paul B; Michalski, Joseph; Ming, Douglas W; Golden, D C

    2017-10-17

    Large Hesperian-aged (~3.7 Ga) layered deposits of sulfate-rich sediments in the equatorial regions of Mars have been suggested to be evidence for ephemeral playa environments. But early Mars may not have been warm enough to support conditions similar to what occurs in arid environments on Earth. Instead cold, icy environments may have been widespread. Under cryogenic conditions sulfate formation might be blocked, since kinetics of silicate weathering are typically strongly retarded at temperatures well below 0 °C. But cryo-concentration of acidic solutions may counteract the slow kinetics. Here we show that cryo-concentrated acidic brines rapidly chemically weather olivine minerals and form sulfate minerals at temperatures as low as -60 °C. These experimental results demonstrate the viability of sulfate formation under current Martian conditions, even in the polar regions. An ice-hosted sedimentation and weathering model may provide a compelling description of the origin of large Hesperian-aged layered sulfate deposits on Mars.

  11. Decreased atmospheric sulfur deposition across the southeastern U.S.: When will watersheds release stored sulfate?

    Science.gov (United States)

    Rice, Karen C.; Scanlon, Todd M.; Lynch, Jason A.; Cosby, Bernard J.

    2014-01-01

    Emissions of sulfur dioxide (SO2) to the atmosphere lead to atmospheric deposition of sulfate (SO42-), which is the dominant strong acid anion causing acidification of surface waters and soils in the eastern United States (U.S.). Since passage of the Clean Air Act and its Amendments, atmospheric deposition of SO2 in this region has declined by over 80%, but few corresponding decreases in stream-water SO42- concentrations have been observed in unglaciated watersheds. We calculated SO42- mass balances for 27 forested, unglaciated watersheds from Pennsylvania to Georgia, by using total atmospheric deposition (wet plus dry) as input. Many of these watersheds still retain SO42-, unlike their counterparts in the northeastern U.S. and southern Canada. Our analysis showed that many of these watersheds should convert from retaining to releasing SO42- over the next two decades. The specific years when the watersheds crossover from retaining to releasing SO42- correspond to a general geographical pattern of later net watershed release from north to south. The single most important variable that explained the crossover year was the runoff ratio, defined as the ratio of annual mean stream discharge to precipitation. Percent clay content and mean soil depth were secondary factors in predicting crossover year. The conversion of watersheds from net SO42- retention to release anticipates more widespread reductions in stream-water SO42- concentrations in this region.

  12. Heparan sulfate regulates fibrillin-1 N- and C-terminal interactions

    DEFF Research Database (Denmark)

    Cain, Stuart A; Baldwin, Andrew K; Mahalingam, Yashithra

    2008-01-01

    Fibrillin-1 N- and C-terminal heparin binding sites have been characterized. An unprocessed monomeric N-terminal fragment (PF1) induced a very high heparin binding response, indicating heparin-mediated multimerization. Using PF1 deletion and short fragments, a heparin binding site was localized w......-terminal interactions with heparin/heparan sulfate directly influence cell behavior, whereas C-terminal interactions with heparin/heparan sulfate regulate elastin deposition. These data highlight how heparin/heparan sulfate controls fibrillin-1 interactions....

  13. Immobilization of calcium sulfate contained in demolition waste

    International Nuclear Information System (INIS)

    Ambroise, J.; Pera, J.

    2008-01-01

    This paper presents the results of a laboratory study undertaken to examine the treatment of demolition waste containing calcium sulfate by means of calcium sulfoaluminate clinker (CSA). The quantity of CSA necessary to entirely consume calcium sulfate was determined. Using infrared spectrometry analysis and X-ray diffraction, it was shown that calcium sulfate was entirely consumed when the ratio between CSA and calcium sulfate was 4. Standard sand was polluted by 4% calcium sulfate. Two solutions were investigated: ·either global treatment of sand by CSA, ·or immobilization of calcium sulfate by CSA, followed by the introduction of this milled mixture in standard sand. Regardless of the type of treatment, swelling was almost stabilized after 28 days of immersion in water

  14. Modeling the use of sulfate additives for potassium chloride destruction in biomass combustion

    DEFF Research Database (Denmark)

    Wu, Hao; Grell, Morten Nedergaard; Jespersen, Jacob Boll

    2013-01-01

    Potassium chloride, KCl, formed from biomass combustion may lead to ash deposition and corrosion problems in boilers. Sulfates are effective additives for converting KCl to the less harmful K2SO4. In the present study, the decomposition of ammonium sulfate, aluminum sulfate and ferric sulfate...... of ammonium sulfate addition and ferric sulfation addition compared favorably with the experimental results. However, the model for aluminum sulfate addition under-predicted significantly the high sulfation degree of KCl observed in the experiments, possibly because of an under-estimation of the decomposition...... rate of aluminum. Under the boiler conditions of the present work, the simulation results suggested that the desirable temperature for the ferric sulfate injection was around 950-900oC, whereas for ammonium sulfate the preferable injection temperature was below 800oC....

  15. Dry deposition velocities in the global multi-scale CTM MOCAGE

    Science.gov (United States)

    Michou, M.; Peuch, V.-H.

    2003-04-01

    Surface exchanges considered in the MOCAGE multiscale Chemistry and Transport Model (CTM) of Météo-France include dry deposition of gaseous species. To compute realistic time-dependent fluxes at the surface, a 2D interface between MOCAGE and ARPEGE, the French operational numerical weather prediction model, has been developed. Dry deposition of species including ozone, sulfur dioxide, nitrogen-containing compounds, long-lived and short-lived intermediates organic compounds, have been parameterised according to the [Wesely, 1989] scheme. A number of modifications has been made, for instance concerning the deposition against wet surfaces. The formulation of the aerodynamic resistance follows [Louis, 1979], and that of the stomatal resistance, the Interaction Soil Biosphere Atmosphere (ISBA) Météo-France scheme. Resistances are computed using the surface meteorological fields obtained from the analyses or forecasts of ARPEGE. Vegetation fields such as the Leaf Area Index are prescribed with a one-degree spatial resolution at the global scale, and a five-minute resolution over Europe. Calculated dry deposition velocities of ozone, sulfur dioxide and nitric acid have been evaluated against field experimental data at various locations around the world, from tropical regions, rain forest or savannah over Central Africa and Amazonia (EXPRESSO and LBA campaigns), to Mediterranean regions, including forested and crop sites (ESCOMPTE campaign), and temperate areas (deciduous and evergreen forests). Hourly values, monthly and seasonal means have been examined, as well as the impact of the model resolution, from 2 degrees over the globe to 0.08 degrees over regional domains. The contributions to the global budget of ozone of the deposition fluxes in these different regions of the globe will be also presented.

  16. A ‘rare biosphere’ microorganism contributes to sulfate reduction in a peatland

    Science.gov (United States)

    Pester, Michael; Bittner, Norbert; Deevong, Pinsurang; Wagner, Michael; Loy, Alexander

    2015-01-01

    Methane emission from peatlands contributes substantially to global warming but is significantly reduced by sulfate reduction, which is fuelled by globally increasing aerial sulfur pollution. However, the biology behind sulfate reduction in terrestrial ecosystems is not well understood and the key players for this process as well as their abundance remained unidentified. Comparative 16S rRNA gene stable isotope probing in the presence and absence of sulfate indicated that a Desulfosporosinus species, which constitutes only 0.006% of the total microbial community 16S rRNA genes, is an important sulfate reducer in a long-term experimental peatland field site. Parallel stable isotope probing using dsrAB [encoding subunit A and B of the dissimilatory (bi)sulfite reductase] identified no additional sulfate reducers under the conditions tested. For the identified Desulfosporosinus species a high cell-specific sulfate reduction rate of up to 341 fmol SO42− cell−1 day−1 was estimated. Thus, the small Desulfosporosinus population has the potential to reduce sulfate in situ at a rate of 4.0–36.8 nmol (g soil w. wt.)−1 day−1, sufficient to account for a considerable part of sulfate reduction in the peat soil. Modeling of sulfate diffusion to such highly active cells identified no limitation in sulfate supply even at bulk concentrations as low as 10 μM. Collectively, these data show that the identified Desulfosporosinus species, despite being a member of the ‘rare biosphere’, contributes to an important biogeochemical process that diverts the carbon flow in peatlands from methane to CO2 and, thus, alters their contribution to global warming. PMID:20535221

  17. A new edition global map - Uranium deposits of the world

    International Nuclear Information System (INIS)

    Fairclough, M.

    2014-01-01

    In 1995 The International Atomic Energy Agency published a hard copy map entitled “World Distribution of Uranium Deposits” at a scale of 1:30 000 000. The map displayed data from agency information that was to become UDEPO database of uranium deposits, overlaid on a generalised geological map supplied by the Geological Survey of Canada. At that time, the database contained 582 deposits with a cut-off of 500 t U at an average grade of 0.03% U, and was generated over a period of half a decade by small group external experts. The experts developed a revised deposit classification scheme displayed on the map and in the accompanying guidebook in 1996. A revised and expanded UDEPO database was made widely available on the internet from 2004, and contained additional deposit information and a constantly increasing number of deposits (874 by the end of 2008 coinciding with a new UDEPO guidebook in 2009). Enhanced efforts by the IAEA and consultants of the UDEPO Working Group have now generated a database that has 1526 deposits with a more detailed classification subdivision utilised in a forthcoming IAEA UDEPO publication. The establishment of this classification scheme and the completion of a major phase of updating UDEPO has created an opportunity for creating a completely new edition of the Uranium Deposits Of The World Map using modern GIS techniques. Cartographic tools within GIS software have become very sophisticated, allowing better display of variably dense data through real-time manipulation of layers and symbology with the GIS dataset. Moreover, some of the results of this functionality can then be transferred to the data display aspects the online version of UDEPO as well as distributed as scale-independent digital version of the map. In parallel, a planned IAEA publication regarding global uranium provinces allows a more rigorous clustering of deposits for the purposes of showing particular metallogenic aspects in more detail. This also has an important

  18. Modeling the Use of Sulfate Additives for Potassium Chloride Destruction in Biomass Combustion

    DEFF Research Database (Denmark)

    Wu, Hao; Pedersen, Morten Nedergaard; Jespersen, Jacob Boll

    2014-01-01

    Potassium chloride, KCl, formed from biomass combustion may lead to ash deposition and corrosion problems in boilers. Sulfates are effective additives for converting KCl to the less harmful K2SO4 and HCl. In the present study, the rate constants for decomposition of ammonium sulfate and aluminum...... sulfate were obtained from experiments in a fast heating rate thermogravimetric analyzer. The yields of SO2 and SO3 from the decomposition were investigated in a tube reactor at 600–900 °C, revealing a constant distribution of about 15% SO2 and 85% SO3 from aluminum sulfate decomposition and a temperature...... fluidized-bed reactor using ammonium sulfate, aluminum sulfate, and ferric sulfate as additives. The simulation results for ammonium sulfate and ferric sulfate addition compared favorably to the experiments. The predictions for aluminum sulfate addition were only partly in agreement with the experimental...

  19. Global diffusive fluxes of methane in marine sediments

    Science.gov (United States)

    Egger, Matthias; Riedinger, Natascha; Mogollón, José M.; Jørgensen, Bo Barker

    2018-06-01

    Anaerobic oxidation of methane provides a globally important, yet poorly constrained barrier for the vast amounts of methane produced in the subseafloor. Here we provide a global map and budget of the methane flux and degradation in diffusion-controlled marine sediments in relation to the depth of the methane oxidation barrier. Our new budget suggests that 45-61 Tg of methane are oxidized with sulfate annually, with approximately 80% of this oxidation occurring in continental shelf sediments (methane in steady-state diffusive sediments, we calculate that 3-4% of the global organic carbon flux to the seafloor is converted to methane. We further report a global imbalance of diffusive methane and sulfate fluxes into the sulfate-methane transition with no clear trend with respect to the corresponding depth of the methane oxidation barrier. The observed global mean net flux ratio between sulfate and methane of 1.4:1 indicates that, on average, the methane flux to the sulfate-methane transition accounts for only 70% of the sulfate consumption in the sulfate-methane transition zone of marine sediments.

  20. Co-deposition of basement membrane components during the induction of murine splenic AA amyloid

    DEFF Research Database (Denmark)

    Lyon, A W; Narindrasorasak, S; Young, I D

    1991-01-01

    Past studies have demonstrated that during murine AA amyloid induction there is co-deposition of the AA amyloid peptide and the basement membrane form of heparan sulfate proteoglycan. The synthesis and accumulation of heparan sulfate proteoglycan does not usually occur in the absence of other...... basement membrane components, such as type IV collagen, laminin, and fibronectin. Using immunohistochemical techniques, the present experiments have demonstrated that in addition to the heparan sulfate proteoglycan, there are other basement membrane components present in splenic AA amyloid deposits...... and these are present as soon as AA amyloid deposits are detectable. The results indicate that within the time constraints imposed by the experiments, the basement membrane components, fibronectin, laminin, type IV collagen, and heparan sulfate proteoglycan are co-deposited 36 to 48 hours after the AgNO3 and amyloid...

  1. Metabolic Flexibility of Sulfate Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Caroline M. Plugge

    2011-05-01

    Full Text Available Dissimilatory sulfate-reducing prokaryotes (SRB are a very diverse group of anaerobic bacteria that are omnipresent in nature and play an imperative role in the global cycling of carbon and sulfur. In anoxic marine sediments sulfate reduction accounts for up to 50% of the entire organic mineralization in coastal and shelf ecosystems where sulfate diffuses several meters deep into the sediment. As a consequence, SRB would be expected in the sulfate-containing upper sediment layers, whereas methanogenic Archaea would be expected to succeed in the deeper sulfate-depleted layers of the sediment. Where sediments are high in organic matter, sulfate is depleted at shallow sediment depths, and biogenic methane production will occur. In the absence of sulfate, many SRB ferment organic acids and alcohols, producing hydrogen, acetate, and carbon dioxide, and may even rely on hydrogen- and acetate-scavenging methanogens to convert organic compounds to methane. SRB can establish two different life styles, and these can be termed as sulfidogenic and acetogenic, hydrogenogenic metabolism. The advantage of having different metabolic capabilities is that it raises the chance of survival in environments when electron acceptors become depleted. In marine sediments, SRB and methanogens do not compete but rather complement each other in the degradation of organic matter.Also in freshwater ecosystems with sulfate concentrations of only 10-200 μM, sulfate is consumed efficiently within the top several cm of the sediments. Here, many of the δ-Proteobacteria present have the genetic machinery to perform dissimilatory sulfate reduction, yet they have an acetogenic, hydrogenogenic way of life.In this review we evaluate the physiology and metabolic mode of SRB in relation with their environment.

  2. Simultaneous carbonation and sulfation of CaO in Oxy-Fuel CFB combustion

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C. [School of Energy and Power Engineering, North China Electric Power University, Baoding City, Hebei Province (China); Jia, L.; Tan, Y. [CanmetENERGY, 1 Haanel Drive, Ottawa, Ontario, K1A 1M1 (Canada)

    2011-10-15

    For anthracites and petroleum cokes, the typical combustion temperature in a circulating fluidized bed (CFB) is > 900 C. At CO{sub 2} concentrations of 80-85 % (typical of oxy-fuel CFBC conditions), limestone still calcines. When the ash which includes unreacted CaO cools to the calcination temperature, carbonation of fly ash deposited on cool surfaces may occur. At the same time, indirect and direct sulfation of limestone also will occur, possibly leading to more deposition. In this study, CaO was carbonated and sulfated simultaneously in a thermogravimetric analyzer (TGA) under conditions expected in an oxy-fuel CFBC. It was found that temperature, and concentrations of CO{sub 2}, SO{sub 2}, and especially H{sub 2}O are important factors in determining the carbonation/sulfation reactions of CaO. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. 75 FR 37790 - Lauryl Sulfate Salts; Antimicrobial Registration Review Final Work Plan and Proposed Registration...

    Science.gov (United States)

    2010-06-30

    ..., and opens a 60-day public comment period on the proposed decision. Sodium lauryl sulfate (PC Code...% sodium lauryl sulfate and is registered by Kimberly-Clark Global Sales, LLC (EPA Reg. No. 9402-10). The... sulfate as an active ingredient were first registered in 1948 and sodium lauryl sulfate is widely used as...

  4. Sulfation of chondroitin. Specificity, degree of sulfation, and detergent effects with 4-sulfating and 6-sulfating microsomal systems

    International Nuclear Information System (INIS)

    Sugumaran, G.; Silbert, J.E.

    1988-01-01

    Microsomal preparations from chondroitin 6-sulfate-producing chick embryo epiphyseal cartilage, and from chondroitin 4-sulfate-producing mouse mastocytoma cells, were incubated with UDP-[14C]glucuronic acid and UDP-N-acetylgalactosamine to form non-sulfated proteo[14C]chondroitin. Aliquots of the incubations were then incubated with 3'-phosphoadenylylphosphosulfate (PAPS) in the presence or absence of various detergents. In the absence of detergents, there was good sulfation of this endogenous proteo[14C]chondroitin by the original microsomes from both sources. Detergents, with the exception of Triton X-100, markedly inhibited sulfation in the mast cell system but not in the chick cartilage system. These results indicate that sulfation and polymerization are closely linked on cell membranes and that in some cases this organization can be disrupted by detergents. When aliquots of the original incubation were heat inactivated, and then reincubated with new microsomes from chick cartilage and/or mouse mastocytoma cells plus PAPS, there was no significant sulfation of this exogenous proteo[14C] chondroitin with either system unless Triton X-100 was added. Sulfation of exogenous chondroitin and chondroitin hexasaccharide was compared with sulfation of endogenous and exogenous proteo[14C]chondroitin. Sulfate incorporation into hexasaccharide and chondroitin decreased as their concentrations (based on uronic acid) approached that of the proteo[14C]chondroitin. At the same time, the degree of sulfation in percent of substituted hexosamine increased. However, the degree of sulfation did not reach that of the endogenous proteo[14C]chondroitin. Hexasaccharide and chondroitin sulfation were stimulated by the presence of Triton X-100. However, in contrast to the exogenous proteo[14C]chondroitin, there was some sulfation of hexasaccharide and chondroitin in the absence of this detergent

  5. Mechanisms and rates of atmospheric deposition of selected trace elements and sulfate to a deciduous forest watershed. [Roles of dry and wet deposition concentrations measured in Walker Branch Watershed

    Energy Technology Data Exchange (ETDEWEB)

    Lindberg, S.E.; Harriss, R.C.; Turner, R.R.; Shriner, D.S.; Huff, D.D.

    1979-06-01

    The critical links between anthropogenic emissions to the atmosphere and their effects on ecosystems are the mechanisms and rates of atmospheric deposition. The atmospheric input of several trace elements and sulfate to a deciduous forest canopy is quantified and the major mechanisms of deposition are determined. The study area was Walker Branch Watershed (WBW) in eastern Tennessee. The presence of a significant quantity of fly ash and dispersed soil particles on upward-facing leaf and flat surfaces suggested sedimentation to be a major mechanism of dry deposition to upper canopy elements. The agreement for deposition rates measured to inert, flat surfaces and to leaves was good for Cd, SO/sub 4//sup =/, Zn, and Mn but poor for Pb. The precipitation concentrations of H/sup +/, Pb, Mn, and SO/sub 4//sup =/ reached maximum values during the summer months. About 90% of the wet deposition of Pb and SO/sub 4//sup =/ was attributed to scavenging by in-cloud processes while for Cd and Mn, removal by in-cloud scavenging accounted for 60 to 70% of the deposition. The interception of incoming rain by the forest canopy resulted in a net increase in the concentrations of Cd, Mn, Pb, Zn, and SO/sub 4//sup =/ but a net decrease in the concentration of H/sup +/. The source of these elements in the forest canopy was primarily dry deposited aerosols for Pb, primarily internal plant leaching for Mn, Cd, and Zn, and an approximately equal combination of the two for SO/sub 4//sup =/. Significant fractions of the total annual elemental flux to the forest floor in a representative chestnut oak stand were attributable to external sources for Pb (99%), Zn (44%), Cd (42%), SO/sub 4//sup =/ (39%), and Mn (14%), the remainder being related to internal element cycling mechanisms. On an annual scale the dry deposition process constituted a significant fraction of the total atmospheric input. (ERB)

  6. Effects of cloudy/clear air mixing and droplet pH on sulfate aerosol formation in a coupled chemistry/climate global model

    Energy Technology Data Exchange (ETDEWEB)

    Molenkamp, C.R.; Atherton, C.A. [Lawrence Livermore National Lab., CA (United States); Penner, J.E.; Walton, J.J. [Michigan Univ., Ann Arbor, MI (United States). Dept. of Atmospheric, Oceanic and Space Sciences

    1996-10-01

    In this paper we will briefly describe our coupled ECHAM/GRANTOUR model, provide a detailed description of our atmospheric chemistry parameterizations, and discuss a couple of numerical experiments in which we explore the influence of assumed pH and rate of mixing between cloudy and clear air on aqueous sulfate formation and concentration. We have used our tropospheric chemistry and transport model, GRANTOUR, to estimate the life cycle and global distributions of many trace species. Recently, we have coupled GRANTOUR with the ECHAM global climate model, which provides several enhanced capabilities in the representation of aerosol interactions.

  7. Impact of mineral dust on nitrate, sulfate, and ozone in transpacific Asian pollution plumes

    Directory of Open Access Journals (Sweden)

    T. D. Fairlie

    2010-04-01

    Full Text Available We use a 3-D global chemical transport model (GEOS-Chem to interpret aircraft observations of nitrate and sulfate partitioning in transpacific dust plumes during the INTEX-B campaign of April–May 2006. The model includes explicit transport of size-resolved mineral dust and its alkalinity, nitrate, and sulfate content. The observations show that particulate nitrate is primarily associated with dust, sulfate is primarily associated with ammonium, and Asian dust remains alkaline across the Pacific. This can be reproduced in the model by using a reactive uptake coefficient for HNO3 on dust (γ(HNO3 ~10−3 much lower than commonly assumed in models and possibly reflecting limitation of uptake by dust dissolution. The model overestimates gas-phase HNO3 by a factor of 2–3, typical of previous model studies; we show that this cannot be corrected by uptake on dust. We find that the fraction of aerosol nitrate on dust in the model increases from ~30% in fresh Asian outflow to 80–90% over the Northeast Pacific, reflecting in part the volatilization of ammonium nitrate and the resulting transfer of nitrate to the dust. Consumption of dust alkalinity by uptake of acid gases in the model is slow relative to the lifetime of dust against deposition, so that dust does not acidify (at least not in the bulk. This limits the potential for dust iron released by acidification to become bio-available upon dust deposition. Observations in INTEX-B show no detectable ozone depletion in Asian dust plumes, consistent with the model. Uptake of HNO3 by dust, suppressing its recycling to NOx, reduces Asian pollution influence on US surface ozone in the model by 10–15% or up to 1 ppb.

  8. Climate effects of anthropogenic sulfate: Simulations from a coupled chemistry/climate model

    International Nuclear Information System (INIS)

    Chuang, C.C.; Penner, J.E.; Taylor, K.E.; Walton, J.J.

    1993-09-01

    In this paper, we use a more comprehensive approach by coupling a climate model with a 3-D global chemistry model to investigate the forcing by anthropogenic aerosol sulfate. The chemistry model treats the global-scale transport, transformation, and removal of SO 2 , DMS and H 2 SO 4 species in the atmosphere. The mass concentration of anthropogenic sulfate from fossil fuel combustion and biomass burning is calculated in the chemistry model and provided to the climate model where it affects the shortwave radiation. We also investigate the effect, with cloud nucleation parameterized in terms of local aerosol number, sulfate mass concentration and updraft velocity. Our simulations indicate that anthropogenic sulfate may result in important increases in reflected solar radiation, which would mask locally the radiative forcing from increased greenhouse gases. Uncertainties in these results will be discussed

  9. In vitro tests for aerosol deposition. III: effect of inhaler insertion angle on aerosol deposition.

    Science.gov (United States)

    Delvadia, Renish R; Longest, P Worth; Hindle, Michael; Byron, Peter R

    2013-06-01

    Inhaler orientation with respect to a patient's mouth may be an important variable determining the efficiency of aerosol lung delivery. The effect of insertion angle on regional deposition was evaluated for a series of inhalers using concurrent in vitro and computational fluid dynamics (CFD) analysis. Geometrically realistic physical mouth-throat (MT) and upper tracheobronchial (TB) models were constructed to connect different inhalers at a series of insertion angles relative to the horizontal plane of the model. These models were used to assess albuterol sulfate deposition from the Novolizer(®) dry powder inhaler (DPI), Proventil(®) HFA pressurized metered dose inhaler (MDI), and Respimat(®) Soft Mist™ Inhaler (SMI) following the actuation of a single dose. Drug deposition from Novolizer DPI was studied for Salbulin(®) and an experimental "drug only" formulation. Albuterol sulfate was recovered and quantified from the device and the MT and TB regions. Significant differences in MT and total lung dose (TLD) of albuterol sulfate deposition were not observed for Salbulin Novolizer DPI and Respimat SMI inserted at different angles. In contrast, drug-only Novolizer DPI and Proventil HFA MDI showed a significant difference in MT and TLD deposition using different insertion angles. For drug-only Novolizer DPI and Proventil HFA MDI, the lowest and the highest MT depositions were observed at +10° and -20°, respectively; for Respimat SMI and Salbulin Novolizer DPI, these angles were -10° and +10°, and +20° and -20°, respectively. CFD simulations were in agreement with the experimental results and illustrated shifts in local particle deposition associated with changes in insertion angle. The effect of inhaler orientation at the inhaler-mouth interface on MT aerosol deposition appeared to be dependent on velocity, aerosol size, and formulation. These findings not only demonstrate the need for patient education on correct inhaler orientation, but provide important

  10. Electrochemical Deposition and Dissolution of Thallium from Sulfate Solutions

    Directory of Open Access Journals (Sweden)

    Ye. Zh. Ussipbekova

    2015-01-01

    Full Text Available The electrochemical behavior of thallium was studied on glassy carbon electrodes in sulfate solutions. Cyclic voltammetry was used to study the kinetics of the electrode processes and to determine the nature of the limiting step of the cathodic reduction of thallium ions. According to the dependence of current on stirring rate and scan rate, this process is diffusion limited. Chronocoulometry showed that the electrodeposition can be performed with a current efficiency of up to 96% in the absence of oxygen.

  11. Acidity characterization of a titanium and sulfate modified vermiculite

    International Nuclear Information System (INIS)

    Hernandez, W.Y.; Centeno, M.A.; Odriozola, J.A.; Moreno, S.; Molina, R.

    2008-01-01

    A natural vermiculite has been modified with titanium and sulfated by the intercalation and impregnation method in order to optimize the acidity of the clay mineral, and characterization of samples were analyzed by X-ray fluorescence (XRF), X-ray diffraction (XRD), nitrogen adsorption isotherms, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and temperature programmed desorption with ammonia (TPD-NH 3 ). All the modified solids have a significantly higher number of acidic sites with respect to the parent material and in all of these, Broensted as well as Lewis acidity are identified. The presence of sulfate appears not to increase the number of acidic centers in the modified clay. For the materials sulfated with the intercalation method, it is observed that the strength of the acidic sites found in the material increases with the nominal sulfate/metal ratio. Nevertheless, when elevated quantities of sulfur are deposited, diffusion problems in the heptane reaction appear

  12. Sulfate metabolism. I. Sulfate uptake and redistribution of acid rain sulfate by edible plants

    International Nuclear Information System (INIS)

    Dallam, R.D.

    1987-01-01

    Sulfur is the major component of polluted air in industrialized societies. Atmospheric sulfur is converted to sulfuric acid through a series of chemical reactions which can eventually reenter many ecosystems. When edible plants are grown in soils containing varying amounts of sulfate, the roots take up and transport inorganic sulfate to the stems and leaves. The sulfate taken up by the roots and the amount transported to the stem and leaves was found to be a function of the concentration of sulfate in the soil. Inorganic sulfate taken up by a corn plant seedling can be rapidly converted to organic sulfate by the root system. Nine days after one of a pair of pea plants was inoculated with artificial acid rain sulfate (dilute H 2 35 SO 4 ) it was found that the sulfate was translocated not only in the inoculated plant, but also to the uninoculated pea plant in the same container. Also, when the leaves of a mature potato plant were inoculated with artificial acid rain sulfate it was found that the sulfate was translocated into the edible potatoes. Fractionation of the potatoes showed that most of the sulfate was water soluble of which 30% was inorganic sulfate and 70% was in the form of organic sulfur. One third of the non-water soluble translocated acid rain sulfate was equally divided between lipid and non-lipid organic sulfur of the potato. 9 references, 2 figures, 5 tables

  13. Effects of sulphuric acid and acidifying ammonium deposition on water quality and vegetation of simulated soft water ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Schuurkes, J.A.; Heck, I.C.; Hesen, P.L.; Leuven, R.S.; Roelofs, J.G.

    1986-11-01

    In a greenhouse, seven identical mini-ecosystems, simulating soft water ponds, were exposed to different types of artificial rain water. The effects of rain water containing H/sub 2/SO/sub 4/ and nitrate, and rain water containing ammonium sulfate on water quality and vegetation were studied and compared. Causal relations were established between rain water quality, water chemistry and changes in floristic composition. Ammonium sulfate deposition, particularly, strongly affected water quality and vegetation development. Although ammonium sulfate deposition was only slightly acid, due to nitrification it acted as an important acid source, causing acidification to pH = 3.8. Under acidified conditions, ammonium sulfate deposition lead to a luxuriant growth of Juncus bulbosus and Agrostis canina. In the mini-ecosystems, H/sub 2/SO/sub 4/ deposition with a pH of 3.5 only decreased the pH of the water to 5.1 within 1 yr. The acidification of water appeared to be coupled with changes in alkalinity, sulfate, Al, Cd, Ca, Mg, K and inorganic-N. It is concluded that in NH/sub 3/-affected regions in The Netherlands, the high atmospheric deposition of ammonium sulfate probably contributes to a large extent in the acidification, eutrophication and floristic changes of oligotrophic soft waters. 10 refs.

  14. Discovery and measurement of an isotopically distinct source of sulfate in Earth's atmosphere.

    Science.gov (United States)

    Dominguez, Gerardo; Jackson, Terri; Brothers, Lauren; Barnett, Burton; Nguyen, Bryan; Thiemens, Mark H

    2008-09-02

    Sulfate (SO(4)) and its precursors are significant components of the atmosphere, with both natural and anthropogenic sources. Recently, our triple-isotope ((16)O, (17)O, (18)O) measurements of atmospheric sulfate have provided specific insights into the oxidation pathways leading to sulfate, with important implications for models of the sulfur cycle and global climate change. Using similar isotopic measurements of aerosol sulfate in a polluted marine boundary layer (MBL) and primary sulfate (p-SO(4)) sampled directly from a ship stack, we quantify the amount of p-SO(4) found in the atmosphere from ships. We find that ships contribute between 10% and 44% of the non-sea-salt sulfate found in fine [diameter (D) sea salt particles may lead to the rapid removal of SO(2) in the MBL. When combined with the longer residence time of p-SO(4) emissions in the MBL, these findings suggest that the importance of p-SO(4) emissions in marine environments may be underappreciated in global chemical models. Given the expected increase of international shipping in the years to come, these findings have clear implications for public health, air quality, international maritime law, and atmospheric chemistry.

  15. Structurally bound sulfide and sulfate in apatite from the Philips Mine iron oxide - apatite deposit, New York, USA: A tracer of redox changes

    Science.gov (United States)

    Sadove, G.; Konecke, B.; Fiege, A.; Simon, A. C.

    2017-12-01

    Multiple competing hypotheses attempt to explain the genesis of iron oxide-apatite (IOA) ore deposits. Many studies have investigated the chemistry of apatite because the abundances of F and Cl can distinguish magmatic vs. hydrothermal processes. Recent experiments demonstrate that apatite incorporates S6+, S4+, and S2-, and that total sulfur (∑S) as well as the S6+/∑S ratio in apatite vary systematically as a function of oxygen fugacity [1], providing information about sulfur budget and redox. Here, we present results from X-ray absorption near-edge structure (XANES) spectroscopy at the S K-edge, electron microprobe analyses, cathodoluminescence (CL) imaging, and element mapping of apatite from the Philip's Mine IOA deposit, southern Adirondack Mountains, USA. The Philip's Mine apatite contains inclusions of pyrite and pyrrhotite, where the latter includes iron oxide and Ni-rich domains. The apatite also contains inclusions of monazite, and exhibits complex CL zonation coincident with variations in the abundances of REE and S. The presence of monazite fingerprints fluid-mediated dissolution-reprecipitation of originally REE-enriched apatite [2]. The S XANES spectra reveal varying proportions of structurally bound S6+ and S2-, as the S6+/∑S ratio ranges from sulfide-only to sulfate-only. Notably, sulfide-dominated domains contain higher S contents than sulfate-dominated regions. These observations are consistent with co-crystallization of apatite and monosulfide solid solution (MSS) at reducing conditions, followed by decomposition of MSS to pyrrhotite, pyrite and intermediate solid solution (ISS, which is not preserved; [3]). Metasomatism of that assemblage by an oxidized fluid resulted in formation of monazite in apatite and iron oxide domains in pyrrhotite. We conclude that the deposit formed by a H2S-Fe-rich volatile phase, possibly evolved from a rather primitive magmatic source, which is consistent with the low Ti content of magnetite. The deposit was

  16. Draft Genome Sequence of a Novel Desulfobacteraceae Member from a Sulfate-Reducing Bioreactor Metagenome

    OpenAIRE

    Almstrand, Robert; Pinto, Ameet J.; Figueroa, Linda A.; Sharp, Jonathan O.

    2016-01-01

    Sulfate-reducing bacteria are important players in the global sulfur cycle and of considerable commercial interest. The draft genome sequence of a sulfate-reducing bacterium of the family Desulfobacteraceae, assembled from a sulfate-reducing bioreactor metagenome, indicates that heavy-metal? and acid-resistance traits of this organism may be of importance for its application in acid mine drainage mitigation.

  17. Importance of Sulfate Aerosol in Evaluating the Relative Contributions of Regional Emissions to the Historical Global Temperature Change

    International Nuclear Information System (INIS)

    Andronova, N.; Schlesinger, M.

    2004-01-01

    During the negotiations of the Kyoto Protocol the delegation of Brazil presented an approach for distributing the burden of emissions reductions among the Parties based on the effect of their cumulative historical emissions on the global-average near-surface temperature. The Letter to the Parties does not limit the emissions to be considered to be only greenhouse gas (GHG) emissions. Thus, in this paper we explore the importance of anthropogenic SOx emissions that are converted to sulfate aerosol in the atmosphere, together with the cumulative greenhouse gas emissions, in attributing historical temperature change. We use historical emissions and our simple climate model to estimate the relative contributions to global warming of the regional emissions by four Parties: OECD90, Africa and Latin America, Asia, and Eastern Europe and the Former Soviet Union. Our results show that for most Parties the large warming contributed by their GHG emissions is largely offset by the correspondingly large cooling by their SOx emissions. Thus, OECD90 has become the dominant contributor to recent global warming following its large reduction in SOx emissions after 1980

  18. Oxygen Isotopic Composition of Nitrate and Sulfate in Fog and River water in Podocarpus National Forest, Ecuador

    Science.gov (United States)

    Brothers, L. A.; Fabian, P.; Thiemens, M. H.

    2006-12-01

    The eastern slopes of the Andean rainforests of Ecuador possess some of the highest plant biodiversity found on the planet; however, these ecosystems are in jeopardy because region is experiences one of the highest deforestation rates in South America. This rainforest characterized by high acidity and low nutrient soils and experiences natural process which are both destabilizing and stabilizing to biodiversity rendering this a unique, though sensitive environment. There is increased concern that anthropogenic activities are affecting rainforests and could lead to higher extinction rates, changes in the biodiversity and far reaching effects on the global troposphere. Measurements of nitrate and sulfate in rain and fog water have shown periods of elevated concentrations in the Podocarpus National Park near Loja, Ecuador. These high episodes contribute to annual deposition rates that are comparable to polluted central Europe. Significant anthropogenic sources near this region are lacking and it is believed that the majority of the nitrate and sulfate pollution can be attributed to biomass burning in the Amazon basin. Concentration measurements do not elucidate the source of high nitrate and sulfate pollution; however, by measuring all three stable isotopes of oxygen in nitrate and sulfate from fog and river water provides a new way to examine the impacts of biomass burning on the region. By using stable isotope techniques atmospheric nitrate and sulfate can be resolved from terrestrial sources. This provides an unique way to trace the contributions from the biomass burning and farming sources. Current research at the field station monitors sulfate and nitrate concentrations in rain and fog water by standard methods to investigate water and nutrient pathways along with data from satellite and ground based remote sensing, in-situ observations and numerical models.

  19. The effects of hydrologic fluctuation and sulfate regeneration on mercury cycling in an experimental peatland

    Science.gov (United States)

    J.K. Coleman Wasik; D.R. Engstrom; C.P.J. Mitchell; E.B. Swain; B.A. Monson; S.J. Balogh; J.D. Jeremiason; B.A. Branfireun; R.K. Kolka; J.E. Almendinger

    2015-01-01

    A series of severe droughts during the course of a long-term, atmospheric sulfate-deposition experiment in a boreal peatland in northern Minnesota created a unique opportunity to study how methylmercury (MeHg) production responds to drying and rewetting events in peatlands under variable levels of sulfate loading. Peat oxidation during extended dry periods mobilized...

  20. Atmospheric bulk deposition of polycyclic aromatic hydrocarbons in Shanghai: Temporal and spatial variation, and global comparison

    International Nuclear Information System (INIS)

    Feng, Daolun; Liu, Ying; Gao, Yi; Zhou, Jinxing; Zheng, Lirong; Qiao, Gang; Ma, Liming; Lin, Zhifen; Grathwohl, Peter

    2017-01-01

    Atmospheric deposition leads to accumulation of atmospheric polycyclic aromatic hydrocarbons (PAHs) on urban surfaces and topsoils. To capture the inherent variability of atmospheric deposition of PAHs in Shanghai's urban agglomeration, 85 atmospheric bulk deposition samples and 7 surface soil samples were collected from seven sampling locations during 2012–2014. Total fluxes of 17 PAHs were 587-32,300 ng m −2 day −1 , with a geometric mean of 2600 ng m −2 day −1 . The deposition fluxes were categorized as moderate to high on a global scale. Phenanthrene, fluoranthene and pyrene were major contributors. The spatial distribution of deposition fluxes revealed the influence of urbanization/industrialization and the relevance of local emissions. Meteorological conditions and more heating demand in cold season lead to a significant increase of deposition rates. Atmospheric deposition is the principal pathway of PAHs input to topsoils and the annual deposition load in Shanghai amounts to ∼4.5 tons (0.7 kg km −2 ) with a range of 2.5–10 tons (0.4–1.6 kg km −2 ). - Highlights: • PAH deposition flux in Shanghai is categorized as moderate to high on global scale. • Their spatial distribution reveals the influence of urbanization/industrialization. • Atmospheric deposition is the principal pathway of PAHs input to local topsoils. • Other pathways have to be considered for PAH input in urban soil. - Atmospheric deposition of PAHs revealed the influence of urbanization and industrialization and the relevance of local emissions on Shanghai topsoils.

  1. Impacts of Four SO2 Oxidation Pathways on Wintertime Sulfate Concentrations

    Science.gov (United States)

    Sarwar, G.; Fahey, K.; Zhang, Y.; Kang, D.; Mathur, R.; Xing, J.; Wei, C.; Cheng, Y.

    2017-12-01

    Air quality models tend to under-estimate winter-time sulfate concentrations compared to observed data. Such under-estimations are particularly acute in China where very high concentrations of sulfate have been measured. Sulfate is produced by oxidation of sulfur dioxide (SO2) in gas-phase by hydroxyl radical and in aqueous-phase by hydrogen peroxide, ozone, etc. and most air quality models employ such typical reactions. Several additional SO2 oxidation pathways have recently been proposed. Heterogeneous reaction on dust has been suggested to be an important sink for SO2. Oxidation of SO2 on fine particles in presence of nitrogen dioxide (NO2) and ammonia (NH3) at high relative humidity has been implicated for sulfate formation in Chinese haze and London fog. Reactive nitrogen chemistry in aerosol water has also been suggested to produce winter-time sulfate in China. Specifically, high aerosol water can trap SO2 which can be subsequently oxidized by NO2 to form sulfate. Aqueous-phase (in-cloud) oxidation of SO2 by NO2 can also produce sulfate. Here, we use the hemispheric Community Multiscale Air Quality (CMAQ) modeling system to examine the potential impacts of these SO2 oxidation pathways on sulfate formation. We use anthropogenic emissions from the Emissions Database for Global Atmospheric Research and biogenic emissions from Global Emissions InitiAtive. We performed simulations without and with these SO2 oxidation pathways for October-December of 2014 using meteorological fields obtained from the Weather Research and Forecasting model. The standard CMAQ model contains one gas-phase chemical reaction and five aqueous-phase chemical reactions for SO2 oxidation. We implement four additional SO2 oxidation pathways into the CMAQ model. Our preliminary results suggest that the dust chemistry enhances mean sulfate over parts of China and Middle-East, the in-cloud SO2 oxidation by NO2 enhances sulfate over parts of western Europe, oxidation of SO2 by NO2 and NH3 on

  2. Modeling the global atmospheric transport and deposition of mercury to the Great Lakes

    Directory of Open Access Journals (Sweden)

    Mark D. Cohen

    2016-07-01

    Full Text Available Abstract Mercury contamination in the Great Lakes continues to have important public health and wildlife ecotoxicology impacts, and atmospheric deposition is a significant ongoing loading pathway. The objective of this study was to estimate the amount and source-attribution for atmospheric mercury deposition to each lake, information needed to prioritize amelioration efforts. A new global, Eulerian version of the HYSPLIT-Hg model was used to simulate the 2005 global atmospheric transport and deposition of mercury to the Great Lakes. In addition to the base case, 10 alternative model configurations were used to examine sensitivity to uncertainties in atmospheric mercury chemistry and surface exchange. A novel atmospheric lifetime analysis was used to characterize fate and transport processes within the model. Model-estimated wet deposition and atmospheric concentrations of gaseous elemental mercury (Hg(0 were generally within ∼10% of measurements in the Great Lakes region. The model overestimated non-Hg(0 concentrations by a factor of 2–3, similar to other modeling studies. Potential reasons for this disagreement include model inaccuracies, differences in atmospheric Hg fractions being compared, and the measurements being biased low. Lake Erie, downwind of significant local/regional emissions sources, was estimated by the model to be the most impacted by direct anthropogenic emissions (58% of the base case total deposition, while Lake Superior, with the fewest upwind local/regional sources, was the least impacted (27%. The U.S. was the largest national contributor, followed by China, contributing 25% and 6%, respectively, on average, for the Great Lakes. The contribution of U.S. direct anthropogenic emissions to total mercury deposition varied between 46% for the base case (with a range of 24–51% over all model configurations for Lake Erie and 11% (range 6–13% for Lake Superior. These results illustrate the importance of atmospheric

  3. Surface investigation and tribological mechanism of a sulfate-based lubricant deposited on zinc-coated steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Timma, Christian, E-mail: christian.timma@thyssenkrupp.com [ThyssenKrupp Steel Europe AG, Technology & Innovation, Kaiser-Wilhelm Str. 100, 47166 Duisburg (Germany); University of Duisburg-Essen, Faculty of Chemistry, CENIDE, Universitätsstraße 7, 45141 Essen (Germany); Lostak, Thomas; Janssen, Stella; Flock, Jörg [ThyssenKrupp Steel Europe AG, Technology & Innovation, Kaiser-Wilhelm Str. 100, 47166 Duisburg (Germany); Mayer, Christian [University of Duisburg-Essen, Faculty of Chemistry, CENIDE, Universitätsstraße 7, 45141 Essen (Germany)

    2016-12-30

    Highlights: • Skin-passed hot-dip galvanized (HDG-) steel sheets were coated with (NH{sub 4}){sub 2}SO{sub 4} in a common roll-coating method. • A formation of (NH{sub 4}){sub 2}Zn(SO{sub 4}) * xH{sub 2}O was observed and the reaction mainly occurred in the skin-passed areas of the surface. • Sulfate coated samples reveal a superior friction behaviour in oil-like conditions compared non-sulfated specimen. - Abstract: Phosphatation is a well-known technique to improve friction and wear behaviour of zinc coated steel, but has a variety of economic and ecologic limitations. In this study an alternative coating based on ammonium sulfate ((NH{sub 4}){sub 2}SO{sub 4}) is applied on skin-passed hot-dip galvanized steel sheets in order to investigate its surface chemical and tribological behaviour in a Pin-on-Disk Tribometer. Raman- and X-ray photoelectron spectroscopic results revealed a formation of ammonium zinc sulfate ((NH{sub 4}){sub 2}Zn(SO{sub 4}){sub 2} * xH{sub 2}O) on the surface, which is primarily located in the skin-passed areas of the steel material. Sulfate coated samples exhibited a superior friction behaviour in Pin-on-Disk Tests using squalane as a model substance for oil-like lubricated conditions and a formation of a thin lubrication film is obtained in the wear track. Squalane acts as a carrier substance for ammonium zinc sulfate, leading to an effective lubrication film in the wear track.

  4. Methylmercury declines in a boreal peatland when experimental sulfate deposition decreases

    Science.gov (United States)

    Jill K. Coleman Wasik; Carl P.J. Mitchell; Daniel R. Engstrom; Edward B. Swain; Bruce A. Monson; Steven J. Balogh; Jeffrey D. Jeremiason; Brian A. Branfireun; Susan L. Eggert; Randall K. Kolka; James E. Almendinger

    2012-01-01

    Between 2001 and 2008 we experimentally manipulated atmospheric sulfate-loading to a small boreal peatland and monitored the resulting short and long-term changes in methylmercury (MeHg) production. MeHg concentrations and %MeHg (fraction of total-Hg (HgT) present as MeHg) in the porewaters of the experimental treatment reached peak values within...

  5. Localized sulfate-reducing zones in a coastal plain aquifer

    Science.gov (United States)

    Brown, C.J.; Coates, J.D.; Schoonen, M.A.A.

    1999-01-01

    High concentrations of dissolved iron in ground water of coastal plain or alluvial aquifers contribute to the biofouling of public supply wells for which treatment and remediation is costly. Many of these aquifers, however, contain zones in which microbial sulfate reduction and the associated precipitation of iron-sulfide minerals decreases iron mobility. The principal water-bearing aquifer (Magothy Aquifer of Cretaceous age) in Suffolk County, New York, contains localized sulfate-reducing zones in and near lignite deposits, which generally are associated with clay lenses. Microbial analyses of core samples amended with [14C]-acetate indicate that microbial sulfate reduction is the predominant terminal-electron-accepting process (TEAP) in poorly permeable, lignite-rich sediments at shallow depths and near the ground water divide. The sulfate-reducing zones are characterized by abundant lignite and iron-sulfide minerals, low concentrations of Fe(III) oxyhydroxides, and by proximity to clay lenses that contain pore water with relatively high concentrations of sulfate and dissolved organic carbon. The low permeability of these zones and, hence, the long residence time of ground water within them, permit the preservation and (or) allow the formation of iron-sulfide minerals, including pyrite and marcasite. Both sulfate-reducing bacteria (SRB) and iron-reducing bacteria (IRB) are present beneath and beyond the shallow sulfate-reducing zones. A unique Fe(III)-reducing organism, MD-612, was found in core sediments from a depth of 187 m near the southern shore of Long Island. The distribution of poorly permeable, lignite-rich, sulfate-reducing zones with decreased iron concentration is varied within the principal aquifer and accounts for the observed distribution of dissolved sulfate, iron, and iron sulfides in the aquifer. Locating such zones for the placement of production wells would be difficult, however, because these zones are of limited aerial extent.

  6. Rare earth elements in sedimentary phosphate deposits: Solution to the global REE crisis?

    Science.gov (United States)

    Emsbo, Poul; McLaughlin, Patrick I.; Breit, George N.; du Bray, Edward A.; Koenig, Alan E.

    2015-01-01

    The critical role of rare earth elements (REEs), particularly heavy REEs (HREEs), in high-tech industries has created a surge in demand that is quickly outstripping known global supply and has triggered a worldwide scramble to discover new sources. The chemical analysis of 23 sedimentary phosphate deposits (phosphorites) in the United States demonstrates that they are significantly enriched in REEs. Leaching experiments using dilute H2SO4 and HCl, extracted nearly 100% of their total REE content and show that the extraction of REEs from phosphorites is not subject to the many technological and environmental challenges that vex the exploitation of many identified REE deposits. Our data suggest that phosphate rock currently mined in the United States has the potential to produce a significant proportion of the world's REE demand as a byproduct. Importantly, the size and concentration of HREEs in some unmined phosphorites dwarf the world's richest REE deposits. Secular variation in phosphate REE contents identifies geologic time periods favorable for the formation of currently unrecognized high-REE phosphates. The extraordinary endowment, combined with the ease of REE extraction, indicates that such phosphorites might be considered as a primary source of REEs with the potential to resolve the global REE (particularly for HREE) supply shortage.

  7. Sulfate Transporters in Dissimilatory Sulfate Reducing Microorganisms: A Comparative Genomics Analysis

    Directory of Open Access Journals (Sweden)

    Angeliki Marietou

    2018-03-01

    Full Text Available The first step in the sulfate reduction pathway is the transport of sulfate across the cell membrane. This uptake has a major effect on sulfate reduction rates. Much of the information available on sulfate transport was obtained by studies on assimilatory sulfate reduction, where sulfate transporters were identified among several types of protein families. Despite our growing knowledge on the physiology of dissimilatory sulfate-reducing microorganisms (SRM there are no studies identifying the proteins involved in sulfate uptake in members of this ecologically important group of anaerobes. We surveyed the complete genomes of 44 sulfate-reducing bacteria and archaea across six phyla and identified putative sulfate transporter encoding genes from four out of the five surveyed protein families based on homology. We did not find evidence that ABC-type transporters (SulT are involved in the uptake of sulfate in SRM. We speculate that members of the CysP sulfate transporters could play a key role in the uptake of sulfate in thermophilic SRM. Putative CysZ-type sulfate transporters were present in all genomes examined suggesting that this overlooked group of sulfate transporters might play a role in sulfate transport in dissimilatory sulfate reducers alongside SulP. Our in silico analysis highlights several targets for further molecular studies in order to understand this key step in the metabolism of SRMs.

  8. Regional sulfate-hematite-sulfide zoning in the auriferous Mariana anticline, Quadrilátero Ferrífero of Minas Gerais, Brazil

    Science.gov (United States)

    Cabral, Alexandre Raphael; Koglin, Nikola; Strauss, Harald; Brätz, Helene; Kwitko-Ribeiro, Rogerio

    2013-10-01

    The distribution of mineral deposits, characterised as barite deposits, hematite-rich auriferous deposits and auriferous tourmaline-sulfide deposits, displays a regional sulfate-hematite-sulfide zoning along the thrust-delineated limbs of the Mariana anticline, in the south-eastern part of the Quadrilátero Ferrífero of Minas Gerais, Brazil. Cross-cut relationships of barite veins and sulfide lodes indicate that sulfidation occurred in a late-tectonic context, which is here attributed to the collapse of the ˜0.6-Ga Brasiliano thrust front. Reconnaissance S-isotopic data from barite and pyrite (Antônio Pereira barite deposit and its adjacent gold deposit, respectively), and arsenopyrite (Passagem de Mariana gold deposit), suggest a new interpretation for the hydrothermal fluid overprint in the Mariana anticline. The Antônio Pereira barite has Δ33S values that are near zero, constraining the sulfate source to rocks younger than 2.45 Ga. The barite-δ34S values are between +19.6 and +20.8 ‰. The Passagem arsenopyrite and tourmaline have Co/Ni ratios that define a positive linear trend with the Antônio Pereira pyrite. The latter has homogenous δ34S values, between +8.8 and +8.9 ‰, which are compatible with thermochemical reduction of aqueous sulfate with the S-isotopic composition of the Antônio Pereira barite.

  9. Inflammatory microRNA-194 and -515 attenuate the biosynthesis of chondroitin sulfate during human intervertebral disc degeneration.

    Science.gov (United States)

    Hu, Bo; Xu, Chen; Tian, Ye; Shi, Changgui; Zhang, Ying; Deng, Lianfu; Zhou, Hongyu; Cao, Peng; Chen, Huajiang; Yuan, Wen

    2017-07-25

    Intervertebral disc degeneration (IDD) is characterized by dehydration and loss of extracellular matrixes in the nucleus pulposus region. Chondroitin sulfate has been found to be the water-binding molecule that played a key role in IDD. Although investigators have reported that inflammatory cytokines are involved in the reduction of chondroitin sulfate in IDD, but the underlying mechanism is unrevealed. Since chondroitin sulfate synthesis is controlled by chondroitin sulfate glycosyltransferases CHSY-1/2/3 and CSGALNACT-1/2, their functional role and regulatory mechanism in IDD is not fully studied. Here, we set out to investigate the function and regulatory roles of these factors during IDD development. We found that among these chondroitin sulfate glycosyltransferases, CHSY-1/2/3 are significantly down-regulated in severe IDD samples than mild IDD samples. In vitro experiments revealed that Interleukin-1β and Tumor Necrosis Factor-α stimulation led to significant reduction of CHSY-1/2/3 at protein level than mRNA level in NP cells, indicating a post-transcriptional regulatory mechanisms are involved. By computational prediction and analysis, we found that inflammatory cytokines stimulated microRNA-194 and -515 target CHSY-1/2/3 mRNA and significantly interrupt their translation and downstream chondroitin sulfate deposition. Inhibition of microRNA-194 and -515 however, significantly rescued CHSY-1/2/3 expressions and chondroitin sulfate deposition. These findings together demonstrated a vital role of inflammatory stimulated microRNAs in promoting intervertebral disc degeneration by interrupt chondroitin sulfate synthesis, which may provide new insights into the mechanism and therapeutic approaches in IDD.

  10. Formation of the natural sulfate aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Kerminen, V M; Hillamo, R; Maekinen, M; Virkkula, A; Maekelae, T; Pakkanen, T [Helsinki Univ. (Finland). Dept. of Physics

    1997-12-31

    Anthropogenic sulfate aerosol, together with particles from biomass burning, may significantly reduce the climatic warming due to man-made greenhouse gases. The radiative forcing of aerosol particles is based on their ability to scatter and absorb solar radiation (direct effect), and on their influences on cloud albedos and lifetimes (indirect effect). The direct aerosol effect depends strongly on the size, number and chemical composition of particles, being greatest for particles of 0.1-1 {mu}m in diameter. The indirect aerosol effect is dictated by the number of particles being able to act as cloud condensation nuclei (CCN). For sulfate particles, the minimum CCN size in tropospheric clouds is of the order of 0.05-0.2 {mu}m. To improve aerosol parameterizations in future climate models, it is required that (1) both primary and secondary sources of various particle types will be characterized at a greater accuracy, and (2) the influences of various atmospheric processes on the spatial and temporal distribution of these particles and their physico-chemical properties are known much better than at the present. In estimating the climatic forcing due to the sulfate particles, one of the major problems is to distinguish between sulfur from anthropogenic sources and that of natural origin. Global emissions of biogenic and anthropogenic sulfate pre-cursors are comparable in magnitude, but over regional scales either of these two source types may dominate. The current presentation is devoted to discussing the natural sulfate aerosol, including the formation of sulfur-derived particles in the marine environment, and the use of particulate methanesulfonic acid (MSA) as a tracer for the natural sulfate

  11. Formation of the natural sulfate aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Kerminen, V.M.; Hillamo, R.; Maekinen, M.; Virkkula, A.; Maekelae, T.; Pakkanen, T. [Helsinki Univ. (Finland). Dept. of Physics

    1996-12-31

    Anthropogenic sulfate aerosol, together with particles from biomass burning, may significantly reduce the climatic warming due to man-made greenhouse gases. The radiative forcing of aerosol particles is based on their ability to scatter and absorb solar radiation (direct effect), and on their influences on cloud albedos and lifetimes (indirect effect). The direct aerosol effect depends strongly on the size, number and chemical composition of particles, being greatest for particles of 0.1-1 {mu}m in diameter. The indirect aerosol effect is dictated by the number of particles being able to act as cloud condensation nuclei (CCN). For sulfate particles, the minimum CCN size in tropospheric clouds is of the order of 0.05-0.2 {mu}m. To improve aerosol parameterizations in future climate models, it is required that (1) both primary and secondary sources of various particle types will be characterized at a greater accuracy, and (2) the influences of various atmospheric processes on the spatial and temporal distribution of these particles and their physico-chemical properties are known much better than at the present. In estimating the climatic forcing due to the sulfate particles, one of the major problems is to distinguish between sulfur from anthropogenic sources and that of natural origin. Global emissions of biogenic and anthropogenic sulfate pre-cursors are comparable in magnitude, but over regional scales either of these two source types may dominate. The current presentation is devoted to discussing the natural sulfate aerosol, including the formation of sulfur-derived particles in the marine environment, and the use of particulate methanesulfonic acid (MSA) as a tracer for the natural sulfate

  12. Restoration of uranium solution mining deposits

    International Nuclear Information System (INIS)

    DeVries, F.W.; Lawes, B.C.

    1981-01-01

    Ammonium carbonates are commonly used as the lixiviant for in-situ leaching of uranium ores. However this leads to the deposition of ammonium ions in the uranium ore formation and the problem of ammonia contamination of ground water which may find its way into the drinking water supply. The ammonia contamination of the ore deposit may be reduced by injecting an aqueous solution of a potassium salt (carbonate, bicarbonate, halide, sulfate, bisulfate, persulfate, or monopersulfate) into the deposit after mining has ceased

  13. Hydrocarbon-degrading sulfate-reducing bacteria in marine hydrocarbon seep sediments

    OpenAIRE

    Kleindienst, Sara

    2012-01-01

    Microorganisms are key players in our biosphere because of their ability to degrade various organic compounds including a wide range of hydrocarbons. At marine hydrocarbon seeps, more than 90% of sulfate reduction (SR) is potentially coupled to non-methane hydrocarbon oxidation. Several hydrocarbon-degrading sulfate-reducing bacteria (SRB) were enriched or isolated from marine sediments. However, in situ active SRB remained largely unknown. In the present thesis, the global distribution and a...

  14. Enhanced sulfate reduction with acidogenic sulfate-reducing bacteria

    International Nuclear Information System (INIS)

    Wang Aijie; Ren Nanqi; Wang Xu; Lee Duujong

    2008-01-01

    Sulfate reduction in a continuous flow, acidogenic reactor using molasses wastewater as the carbon source was studied at varying chemical oxygen demand/sulfate (COD/SO 4 2- ) ratios. At a critical COD/SO 4 2- ratio of 2.7, neither COD nor sulfate were in excess for extra production of ethanol or acetate in the reactor. An acetic-type microbial metabolism was established with sulfate-reducing bacteria (SRB) significantly consuming hydrogen and volatile fatty acids produced by acidogenic bacteria and hydrogen producing acetogens in degrading COD, thereby yielding sulfate removal rate >94.6%. A low critical COD/SO 4 2- ratio of 1.6 was also observed with the enriched ASRB population in reactor which overcomes the barrier to the treatment capability of sulfate-laden wastewater treatment with limited COD supply

  15. Experimental investigation on thermochemical sulfate reduction in the presence of 1-pentanethiol at 200 and 250 °C: Implications for in situ TSR processes occurring in some MVT deposits

    Science.gov (United States)

    Yuan, Shunda; Ellis, Geoffrey S.; Chou, I-Ming; Burruss, Robert

    2017-01-01

    Organic sulfur compounds are ubiquitous in natural oil and gas fields and moderate-low temperature sulfide ore deposits. Previous studies have shown that organic sulfur compounds are important in enhancing the rates of thermochemical sulfate reduction (TSR) reactions, but the details of these reaction mechanisms remain unclear. In order to assess the extent of sulfate reduction in the presence of labile sulfur species at temperature conditions near to those where TSR occurs in nature, we conducted a series of experiments using the fused silica capillary capsule (FCSS) method. The tested systems containing labile sulfur species are MgSO4 + 1-pentanethiol (C5H11SH) + 1-octene (C8H16), MgSO4 + 1-octene (C8H16), MgSO4 + 1-pentanethiol (C5H11SH), 1-pentanethiol (C5H11SH)+H2O, and MgSO4 + 1-pentanethiol (C5H11SH) + ZnBr2 systems. Our results show that: (1) intermediate oxidized carbon species (ethanol and acetic acid) are formed during TSR simulation experiments when 1-pentanethiol is present; (2) in the presence of ZnBr2, 1-pentanethiol can be oxidized by sulfate to CO2 at 200 °C, which is within the temperature range observed in natural TSR; and (3) the precipitation of sulfide minerals may significantly promote the rate of TSR, indicating that the rates of in situ TSR reactions in ore deposits could be much faster than previously thought. This may be important for understanding the possibility of in situ TSR as a mechanism for the precipitation of metal sulfides in some ore deposits. These findings provide important experimental evidence for understanding the role of organic sulfur compounds in TSR reactions and the pathway of TSR reactions initiated by organic sulfur compounds under natural conditions.

  16. Reduced sulfation of chondroitin sulfate but not heparan sulfate in kidneys of diabetic db/db mice.

    Science.gov (United States)

    Reine, Trine M; Grøndahl, Frøy; Jenssen, Trond G; Hadler-Olsen, Elin; Prydz, Kristian; Kolset, Svein O

    2013-08-01

    Heparan sulfate proteoglycans are hypothesized to contribute to the filtration barrier in kidney glomeruli and the glycocalyx of endothelial cells. To investigate potential changes in proteoglycans in diabetic kidney, we isolated glycosaminoglycans from kidney cortex from healthy db/+ and diabetic db/db mice. Disaccharide analysis of chondroitin sulfate revealed a significant decrease in the 4-O-sulfated disaccharides (D0a4) from 65% to 40%, whereas 6-O-sulfated disaccharides (D0a6) were reduced from 11% to 6%, with a corresponding increase in unsulfated disaccharides. In contrast, no structural differences were observed in heparan sulfate. Furthermore, no difference was found in the molar amount of glycosaminoglycans, or in the ratio of hyaluronan/heparan sulfate/chondroitin sulfate. Immunohistochemical staining for the heparan sulfate proteoglycan perlecan was similar in both types of material but reduced staining of 4-O-sulfated chondroitin and dermatan was observed in kidney sections from diabetic mice. In support of this, using qRT-PCR, a 53.5% decrease in the expression level of Chst-11 (chondroitin 4-O sulfotransferase) was demonstrated in diabetic kidney. These results suggest that changes in the sulfation of chondroitin need to be addressed in future studies on proteoglycans and kidney function in diabetes.

  17. Semi-synthesis of chondroitin sulfate-E from chondroitin sulfate-A

    OpenAIRE

    Cai, Chao; Solakyildirim, Kemal; Yang, Bo; Beaudet, Julie M.; Weyer, Amanda; Linhardt, Robert J.; Zhang, Fuming

    2012-01-01

    Chondroitin sulfate-E (chondroitin-4, 6-disulfate) was prepared from chondroitin sulfate-A (chondroitin-4 - sulfate) by regioselective sulfonation, performed using trimethylamine sulfur trioxide in formamide under argon. The structure of semi-synthetic chondroitin sulfate-E was analyzed by PAGE, 1H NMR, 13C NMR, 2D NMR and disaccharide analysis and compared with natural chondroitin sulfate-E. Both semi-synthetic and natural chondroitin sulfate-E were each biotinylated and immobilized on BIAco...

  18. Sulfate-reducing bacteria inhabiting natural corrosion depostis from marine steel structures

    NARCIS (Netherlands)

    Païssé, S.; Ghiglione, J.-F.; Marty, F.; Abbas, B.; Gueuné, H.; Sanchez Amaya, J.; Muyzer, G.; Quillet, L.

    2013-01-01

    In the present study, investigations were conducted on natural corrosion deposits to better understand the role of sulfate-reducing bacteria (SRB) in the accelerated corrosion process of carbon steel sheet piles in port environments. We describe the abundance and diversity of total and metabolically

  19. Nature of fireside deposits in a bagasse and groundnut shell fired 20 MW thermal boiler

    International Nuclear Information System (INIS)

    Srikanth, S.; Das, S.K.; Ravikumar, B.; Rao, D.S.; Nandakumar, K.; Vijayan, P.

    2004-01-01

    The nature of deposit formation on the fireside surfaces of the boiler tubes in the various parts (water walls, platen superheater, final superheater, economizer, electrostatic precipitator etc.) of a commercial 20 MW stoker-fired boiler being fired with a mixture of 80% bagasse and 20% groundnut shell has been analyzed. The deposits in the various portions of the boiler were characterized by particle size analysis, chemical analysis, X-ray diffraction and scanning electron microscopy. The deposits were found to be mainly quartz, alkali and alkaline earth silicates and sulfates. From the phase constitution and other microscopic characteristics of the deposit, it can be inferred that the silicates in the deposit formed through inertial impaction and the sulfates formed by vapor phase deposition

  20. Nature of fireside deposits in a bagasse and groundnut shell fired 20 MW thermal boiler

    Energy Technology Data Exchange (ETDEWEB)

    Srikanth, S.; Rao, D.S. [National Metallurgical Laboratory Madras Centre, Chennai (India); Swapan, S.K.; Das, K.; Ravikumar, B. [National Metallurgical Laboratory, Jamshedpur (India). Materials Characterization Division; Nandakumar, K.; Vijayan, P. [Bharat Heavy Electricals Limited, Tiruchirappalli (India). Research and Development Section

    2004-10-01

    The nature of deposit formation on the fireside surfaces of the boiler tubes in the various parts (water walls, platen superheater, final superheater, economizer, electrostatic precipitator etc.) of a commercial 20 MW stoker-fired boiler being fired with a mixture of 80% bagasse and 20% groundnut shell has been analyzed. The deposits in the various portions of the boiler were characterized by particle size analysis, chemical analysis, X-ray diffraction and scanning electron microscopy. The deposits were found to be mainly quartz, alkali and alkaline earth silicates and sulfates. From the phase constitution and other microscopic characteristics of the deposit, it can be inferred that the silicates in the deposit formed through inertial impaction and the sulfates formed by vapor phase deposition. (author)

  1. Preparation of ultrafine grained copper nanoparticles via immersion deposit method

    Science.gov (United States)

    Abbasi-Kesbi, Fatemeh; Rashidi, Ali Mohammad; Astinchap, Bandar

    2018-03-01

    Today, the exploration about synthesis of nanoparticles is much of interest to materials scientists. In this work, copper nanoparticles have been successfully synthesized by immersion deposit method in the absence of any stabilizing and reducing agents. Copper (II) sulfate pentahydrate as precursor salt and distilled water and Ethylene glycol as solvents were used. The copper nanoparticles were deposited on plates of low carbon steel. The effects of copper sulfate concentrations and solvent type were investigated. X-ray diffraction, scanning electron microscopy and UV-Visible spectroscopy were taken to investigate the crystallite size, crystal structure, and morphology and size distribution and the growth process of the nanoparticles of obtained Cu particles. The results indicated that the immersion deposit method is a particularly suitable method for synthesis of semispherical copper nanoparticles with the crystallites size in the range of 22 to 37 nm. By increasing the molar concentration of copper sulfate in distilled water solvent from 0.04 to 0.2 M, the average particles size is increased from 57 to 81 nm. The better size distribution of Cu nanoparticles was achieved using a lower concentration of copper sulfate. By increasing the molar concentration of copper sulfate in water solvent from 0.04 to 0.2, the location of the SPR peak has shifted from 600 to 630 nm. The finer Cu nanoparticles were formed using ethylene glycol instead water as a solvent. Also, the agglomeration and overlapping of nanoparticles in ethylene glycol were less than that of water solvent.

  2. Zinc-Nickel Codeposition in Sulfate Solution Combined Effect of Cadmium and Boric Acid

    Directory of Open Access Journals (Sweden)

    Y. Addi

    2011-01-01

    Full Text Available The combined effect of cadmium and boric acid on the electrodeposition of zinc-nickel from a sulfate has been investigated. The presence of cadmium ion decreases zinc in the deposit. In solution, cadmium inhibits the zinc ion deposition and suppresses it when deposition potential value is more negative than −1.2 V. Low concentration of CdSO4 reduces the anomalous nature of Zn-Ni deposit. Boric acid decreases current density and shifts potential discharge of nickel and hydrogen to more negative potential. The combination of boric acid and cadmium increases the percentage of nickel in the deposit. Boric acid and cadmium.

  3. Impacts of stratospheric sulfate geoengineering on tropospheric ozone

    Directory of Open Access Journals (Sweden)

    L. Xia

    2017-10-01

    Full Text Available A range of solar radiation management (SRM techniques has been proposed to counter anthropogenic climate change. Here, we examine the potential effects of stratospheric sulfate aerosols and solar insolation reduction on tropospheric ozone and ozone at Earth's surface. Ozone is a key air pollutant, which can produce respiratory diseases and crop damage. Using a version of the Community Earth System Model from the National Center for Atmospheric Research that includes comprehensive tropospheric and stratospheric chemistry, we model both stratospheric sulfur injection and solar irradiance reduction schemes, with the aim of achieving equal levels of surface cooling relative to the Representative Concentration Pathway 6.0 scenario. This allows us to compare the impacts of sulfate aerosols and solar dimming on atmospheric ozone concentrations. Despite nearly identical global mean surface temperatures for the two SRM approaches, solar insolation reduction increases global average surface ozone concentrations, while sulfate injection decreases it. A fundamental difference between the two geoengineering schemes is the importance of heterogeneous reactions in the photochemical ozone balance with larger stratospheric sulfate abundance, resulting in increased ozone depletion in mid- and high latitudes. This reduces the net transport of stratospheric ozone into the troposphere and thus is a key driver of the overall decrease in surface ozone. At the same time, the change in stratospheric ozone alters the tropospheric photochemical environment due to enhanced ultraviolet radiation. A shared factor among both SRM scenarios is decreased chemical ozone loss due to reduced tropospheric humidity. Under insolation reduction, this is the dominant factor giving rise to the global surface ozone increase. Regionally, both surface ozone increases and decreases are found for both scenarios; that is, SRM would affect regions of the world differently in terms of air

  4. Impacts of stratospheric sulfate geoengineering on tropospheric ozone

    Science.gov (United States)

    Xia, Lili; Nowack, Peer J.; Tilmes, Simone; Robock, Alan

    2017-10-01

    A range of solar radiation management (SRM) techniques has been proposed to counter anthropogenic climate change. Here, we examine the potential effects of stratospheric sulfate aerosols and solar insolation reduction on tropospheric ozone and ozone at Earth's surface. Ozone is a key air pollutant, which can produce respiratory diseases and crop damage. Using a version of the Community Earth System Model from the National Center for Atmospheric Research that includes comprehensive tropospheric and stratospheric chemistry, we model both stratospheric sulfur injection and solar irradiance reduction schemes, with the aim of achieving equal levels of surface cooling relative to the Representative Concentration Pathway 6.0 scenario. This allows us to compare the impacts of sulfate aerosols and solar dimming on atmospheric ozone concentrations. Despite nearly identical global mean surface temperatures for the two SRM approaches, solar insolation reduction increases global average surface ozone concentrations, while sulfate injection decreases it. A fundamental difference between the two geoengineering schemes is the importance of heterogeneous reactions in the photochemical ozone balance with larger stratospheric sulfate abundance, resulting in increased ozone depletion in mid- and high latitudes. This reduces the net transport of stratospheric ozone into the troposphere and thus is a key driver of the overall decrease in surface ozone. At the same time, the change in stratospheric ozone alters the tropospheric photochemical environment due to enhanced ultraviolet radiation. A shared factor among both SRM scenarios is decreased chemical ozone loss due to reduced tropospheric humidity. Under insolation reduction, this is the dominant factor giving rise to the global surface ozone increase. Regionally, both surface ozone increases and decreases are found for both scenarios; that is, SRM would affect regions of the world differently in terms of air pollution. In conclusion

  5. Chondroitin sulfates do not impede axonal regeneration in goldfish spinal cord.

    Science.gov (United States)

    Takeda, Akihito; Okada, Soichiro; Funakoshi, Kengo

    2017-10-15

    Chondroitin sulfate proteoglycans produced in glial scar tissue are a major inhibitory factor for axonal regeneration after central nervous system injury in mammals. The inhibition is largely due to chondroitin sulfates, whose effects differ according to the sulfation pattern. In contrast to mammals, fish nerves spontaneously regenerate beyond the scar tissue after spinal cord injury, although the mechanisms that allow for axons to pass through the scar are unclear. Here, we used immunohistochemistry to examine the expression of two chondroitin sulfates with different sulfation variants at the lesion site in goldfish spinal cord. The intact spinal cord was immunoreactive for both chondroitin sulfate-A (CS-A) and chondroitin sulfate-C (CS-C), and CS-A immunoreactivity overlapped extensively with glial processes positive for glial fibrillary acidic protein. At 1week after inducing the spinal lesion, CS-A immunoreactivity was observed in the cell bodies and extracellular matrix, as well as in glial processes surrounding the lesion center. At 2weeks after the spinal lesion, regenerating axons entering the lesion center overtook the CS-A abundant area. In contrast, at 1week after lesion induction, CS-C immunoreactivity was significantly decreased, and at 2weeks after lesion induction, CS-C immunoreactivity was observed along the regenerating axons entering the lesion center. The present findings suggest that after spinal cord injury in goldfish, chondroitin sulfate proteoglycans are deposited in the extracellular matrix at the lesion site but do not form an impenetrable barrier to the growth of regenerating axons. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Formation of carbonate pipes in the northern Okinawa Trough linked to strong sulfate exhaustion and iron supply

    Science.gov (United States)

    Peng, Xiaotong; Guo, Zixiao; Chen, Shun; Sun, Zhilei; Xu, Hengchao; Ta, Kaiwen; Zhang, Jianchao; Zhang, Lijuan; Li, Jiwei; Du, Mengran

    2017-05-01

    The microbial anaerobic oxidation of methane (AOM), a key biogeochemical process that consumes substantial amounts of methane produced in seafloor sediments, can lead to the formation of carbonate deposits at or beneath the sea floor. Although Fe oxide-driven AOM has been identified in cold seep sediments, the exact mode by which it may influence the formation of carbonate deposits remains poorly understood. Here, we characterize the morphology, petrology and geochemistry of a methane-derived Fe-rich carbonate pipe in the northern Okinawa Trough (OT). We detect abundant authigenic pyrites, as well as widespread trace Fe, within microbial mat-like carbonate veins in the pipe. The in situ δ34S values of these pyrites range from -3.9 to 31.6‰ (VCDT), suggesting a strong consumption of seawater sulfate by sulfate-driven AOM at the bottom of sulfate reduction zone. The positive δ56Fe values of pyrite and notable enrichment of Fe in the OT pipe concurrently indicate that the pyrites are primarily derived from Fe oxides in deep sediments. We propose that the Fe-rich carbonate pipe formed at the bottom of sulfate reduction zone, below which Fe-driven AOM, rather than Fe-oxide reduction coupled to organic matter degradation, might be responsible for the abundantly available Fe2+ in the fluids from which pyrites precipitated. The Fe-rich carbonate pipe described in this study probably represents the first fossil example of carbonate deposits linked to Fe-driven AOM. Because Fe-rich carbonate deposits have also been found at other cold seeps worldwide, we infer that similar processes may play an essential role in biogeochemical cycling of sub-seafloor methane and Fe at continental margins.

  7. Toward an integrated genetic model for vent-distal SEDEX deposits

    Science.gov (United States)

    Sangster, D. F.

    2018-04-01

    Although genetic models have been proposed for vent-proximal SEDEX deposits, an equivalent model for vent-distal deposits has not yet appeared. In view of this, it is the object of this paper to present a preliminary integrated vent-distal genetic model through exploration of four major components: (i) nature of the ore-forming fluid, (ii) role of density of the unconsolidated host sediments, (iii) dynamics of sulfate reduction and (iv) depositional environment. Two sub-groups of SEDEX Pb-Zn deposits, vent-proximal and vent-distal, are widely recognized today. Of the two, the latter is by far the largest in terms of metal content with each of the 13 largest containing in excess of 7.5 M (Zn+Pb) metal. In contrast, only one vent-proximal deposit (Sullivan) falls within this size range. Vent-proximal deposits are characteristically underlain by local networks of sulfide-filled veins (commonly regarded as feeder veins) surrounded by a discordant complex of host rock alteration. These attributes are missing in vent-distal deposits, which has led to the widespread view that vent-distal ore-forming fluids have migrated unknown distances away from their vent sites. Because of the characteristic fine grain size of ore minerals, critical fluid inclusion data are lacking for vent-distal ore-stage sulfides. Consequently, hypothetical fluids such as those which formed MVT deposits (120 °C, 20% NaCl equiv.) are considered to represent vent-distal fluids as well. Such high-salinity fluids are capable of carrying significant concentrations of Pb and Zn as chloride complexes while the relatively low temperatures preclude high Cu contents. Densities of such metalliferous brines result in bottom-hugging fluids that collect in shallow saucer-shaped depressions (collector basins). Lateral metal zoning in several deposits reveals the direction from which the brines came. Relative densities of the ore-forming fluid and sediment determine whether the ore-forming fluid stabilizes on top

  8. Global deposition of fallout radionuclides and their dietary intake

    International Nuclear Information System (INIS)

    Morisawa, Shinsuke

    1993-01-01

    Japanese foods depend largely on foreign countries and domestic food supply now is no more than 30 percents if feedstuffs for live-stocks are included. Therefore not only ecological/natural but also social, e.g., human activities related, transportation of fallout radionuclides are to be taken into accounts for estimation of baseline internal irradiation dose and health risks of Japanese peoples through dietary intake of radionuclides. In this study, mathematical model is developed and examined for practical application on estimating Japanese dietary intake level of fallout strontium-90, which is accumulated in various kinds of foodstuffs and is transported to Japan associated with worldwide trades of foods, under appropriate limitations such that direct deposition on plants and seafood intake pathways are not evaluated. Deposition of strontium-90 onto the surface soil was simulated using the model, the compartment model described by a set ordinary differential equations, and the estimates were examined by comparing them with the observed data colleted and complied by the global scale environmental monitoring networks. Sensitivity analysis is also practised to find possible reduction of dietary intake of fallout radionuclides and the related potential health risks. (author)

  9. Astronomically calibrated 40Ar/39Ar age for the Toba supereruption and global synchronization of late Quaternary records

    Science.gov (United States)

    Storey, Michael; Roberts, Richard G.; Saidin, Mokhtar

    2012-11-01

    The Toba supereruption in Sumatra, ∼74 thousand years (ka) ago, was the largest terrestrial volcanic event of the Quaternary. Ash and sulfate aerosols were deposited in both hemispheres, forming a time-marker horizon that can be used to synchronize late Quaternary records globally. A precise numerical age for this event has proved elusive, with dating uncertainties larger than the millennial-scale climate cycles that characterized this period. We report an astronomically calibrated 40Ar/39Ar age of 73.88 ± 0.32 ka (1σ, full external errors) for sanidine crystals extracted from Toba deposits in the Lenggong Valley, Malaysia, 350 km from the eruption source and 6 km from an archaeological site with stone artifacts buried by ash. If these artifacts were made by Homo sapiens, as has been suggested, then our age indicates that modern humans had reached Southeast Asia by ∼74 ka ago. Our 40Ar/39Ar age is an order-of-magnitude more precise than previous estimates, resolving the timing of the eruption to the middle of the cold interval between Dansgaard-Oeschger events 20 and 19, when a peak in sulfate concentration occurred as registered by Greenland ice cores. This peak is followed by a ∼10 °C drop in the Greenland surface temperature over ∼150 y, revealing the possible climatic impact of the eruption. Our 40Ar/39Ar age also provides a high-precision calibration point for other ice, marine, and terrestrial archives containing Toba sulfates and ash, facilitating their global synchronization at unprecedented resolution for a critical period in Earth and human history beyond the range of 14C dating.

  10. Spectral and stratigraphic mapping of hydrated minerals associated with interior layered deposits near the southern wall of Melas Chasma, Mars

    Science.gov (United States)

    Liu, Yang; Goudge, Timothy A.; Catalano, Jeffrey G.; Wang, Alian

    2018-03-01

    Orbital remote sensing data acquired from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) onboard Mars Reconnaissance Orbiter (MRO), in conjunction with other datasets, are used to perform detailed spectral and stratigraphic analyses over a portion of south Melas Chasma, Mars. The Discrete Ordinate Radiative Transfer (DISORT) model is used to retrieve atmospherically corrected single scattering albedos from CRISM I/F data for mineral identification. A sequence of interbedded poly- and monohydrated sulfates associated with interior layered deposits (ILDs) is identified and mapped. Analyses from laboratory experiments and spectral unmixing of CRISM hyperspectral data support the hypothesis of precipitation and dehydration of multiple inputs of complex Mg-Ca-Fe-SO4-Cl brines. In this scenario, the early precipitated Mg sulfates could dehydrate into monohydrated sulfate due to catalytic effects, and the later-precipitated Mg sulfates from the late-stage "clean" brine could terminate their dehydration at mid-degree of hydration to form a polyhydrated sulfate layer due to depletion of the catalytic species (e.g., Ca, Fe, and Cl). Distinct jarosite-bearing units are identified stratigraphically above the hydrated sulfate deposits. These are hypothesized to have formed either by oxidation of a fluid containing Fe(II) and SO4, or by leaching of soluble phases from precursor intermixed jarosite-Mg sulfate units that may have formed during the later stages of deposition of the hydrated sulfate sequence. Results from stratigraphic analysis of the ILDs show that the layers have a consistent northward dip towards the interior of the Melas Chasma basin, a mean dip angle of ∼6°, and neighboring strata that are approximately parallel. These strata are interpreted as initially sub-horizontal layers of a subaqueous, sedimentary evaporite deposits that underwent post-depositional tilting from slumping into the Melas Chasma basin. The interbedded hydrated sulfate

  11. Chondroitin-6-sulfate-containing proteoglycan: a new component of human skin dermoepidermal junction

    DEFF Research Database (Denmark)

    Fine, J D; Couchman, J R

    1988-01-01

    chondroitin sulfate proteoglycan is present in adult, neonatal, and/or fetal skin, and if present, its ultrastructural localization. Indirect immunofluorescence was performed on human adult, neonatal, and fetal skin. To detect the antigen, specimens were pretreated with chondroitinase ABC; absence of enzyme...... treatment served as negative control. Chondroitin sulfate proteoglycan was detectable in linear homogeneous array along the dermoepidermal junction and within vascular (and when present, adnexal) basement membranes in both adult and neonatal skin. In fetal skin, basement membrane staining was noted as early...... as 54 gestational days. Indirect immunoelectron microscopy and NaCl-split skin studies were performed to ultrastructurally localize the antigen; immune deposits were detectable within the lamina densa in chondroitinase-treated skin. These findings demonstrate that chondroitin sulfate proteoglycan...

  12. Regional transport model of atmospheric sulfates

    International Nuclear Information System (INIS)

    Rao, K.S.; Thomson, I.; Egan, B.A.

    1977-01-01

    As part of the Sulfate Regional Experiment (SURE) Design Project, a regional transport model of atmospheric sulfates has been developed. This quasi-Lagrangian three-dimensional grid numerical model uses a detailed SO 2 emission inventory of major anthropogenic sources in the Eastern U.S. region, and observed meteorological data during an episode as inputs. The model accounts for advective transport and turbulent diffusion of the pollutants. The chemical transformation of SO 2 and SO 4 /sup =/ and the deposition of the species at the earth's surface are assumed to be linear processes at specified constant rates. The numerical model can predict the daily average concentrations of SO 2 and SO 4 /sup =/ at all receptor locations in the grid region during the episode. Because of the spatial resolution of the grid, this model is particularly suited to investigate the effect of tall stacks in reducing the ambient concentration levels of sulfur pollutants. This paper presents the formulations and assumptions of the regional sulfate transport model. The model inputs and results are discussed. Isopleths of predicted SO 2 and SO 4 /sup =/ concentrations are compared with the observed ground level values. The bulk of the information in this paper is directed to air pollution meteorologists and environmental engineers interested in the atmospheric transport modeling studies of sulfur oxide pollutants

  13. 1987 wet deposition temporal and spatial patterns in North America

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, J.C.; Olsen, A.R.

    1990-03-01

    The focus of this report is on North American wet deposition temporal patterns from 1979 to 1987 and spatial patterns for 1987. The report investigates the patterns of annual precipitation-weighted average concentration and annual deposition for nine ion species: hydrogen, sulfate, nitrate, ammonium, calcium, chloride, sodium, potassium, and magnesium. Data are from the Acid Deposition System (ADS) for the statistical reporting of North American deposition data which includes the National Atmospheric Deposition Program/National Trends Network (NADP/NTN), the MAP3S precipitation chemistry network, the Utility Acid Precipitation Study Program (UAPSP), the Canadian Precipitation Monitoring Network (CAPMoN), and the daily and 4-weekly Acidic Precipitation in Ontario Study (APIOS-D and APIOS-C). Mosaic maps, based on surface estimation using kriging, display concentration and deposition spatial patterns of pH, hydrogen, sulfate, nitrate, ammonium, and calcium ion species for 1987 annual, winter, and summer periods. The temporal pattern analyses use a subset of 39 sites over a 9-year (1979--1987) period and an expanded subset of 140 sites with greater spatial coverage over a 6-year (1982--1987) period. 68 refs., 15 figs., 15 tabs.

  14. Engineering assessment of in situ sulfate production onboard aircraft at high altitude

    Science.gov (United States)

    Smith, J.; Dykema, J. A.; Keith, D.

    2016-12-01

    Stratospheric injection of scattering aerosols has been proposed as a way to reduce global temperature increases by decreasing net atmospheric radiative forcing. Several methods have been suggested as a means of implementing solar geoengineering, and high altitude aircraft have been identified as an accessible means delivering sulfate aerosols to the lower and mid-stratosphere. This research initiative analyzes the design features of an onboard open cycle chemical plant capable of in situ sulfur to sulfate conversion, and compares the required mass to that of transporting pre-fabricated gaseous or liquid sulfate aerosol precursors. Scaling from aero-derivative gas turbine engines, commercial catalytic converters, and existing aerospace materials indicate that aircraft equipped with such a system could provide a substantial mass benefit compared to direct transport of compound sulfate products.

  15. Sulfate adsorption on goethite

    Energy Technology Data Exchange (ETDEWEB)

    Rietra, R P.J.J.; Hiemstra, T; Riemsdijk, W.H. van

    1999-10-15

    Recent spectroscopic work has suggested that only one surface species of sulfate is dominant on hematite. Sulfate is therefore a very suitable anion to test and develop adsorption models for variable charge minerals. The authors have studied sulfate adsorption on goethite covering a large range of sulfate concentrations, surface coverages, pH values, and electrolyte concentrations. Four different techniques were used to cover the entire range of conditions. For characterization at low sulfate concentrations, below the detection limit of sulfate with ICP-AES, the authors used proton-sulfate titrations at constant pH. Adsorption isotherms were studied for the intermediate sulfate concentration range. Acid-base titrations in sodium sulfate and electromobility were used for high sulfate concentrations. All the data can be modeled with one adsorbed species if it is assumed that the charge of adsorbed sulfate is spatially distributed in the interface. The charge distribution of sulfate follows directly from modeling the proton-sulfate adsorption stoichoimemtry sine this stoichiometry is independent of the intrinsic affinity constant of sulfate. The charge distribution can be related to the structure of the surface complex by use of the Pauling bond valence concept and is in accordance with the microscopic structure found by spectroscopy. The intrinsic affinity constant follows from the other measurements. Modeling of the proton-ion stoichoimetry with the commonly used 2-pK models, where adsorbed ions are treated as point charges, is possible only if at least two surface species for sulfate are used.

  16. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction.

    Science.gov (United States)

    Scheller, Silvan; Yu, Hang; Chadwick, Grayson L; McGlynn, Shawn E; Orphan, Victoria J

    2016-02-12

    The oxidation of methane with sulfate is an important microbial metabolism in the global carbon cycle. In marine methane seeps, this process is mediated by consortia of anaerobic methanotrophic archaea (ANME) that live in syntrophy with sulfate-reducing bacteria (SRB). The underlying interdependencies within this uncultured symbiotic partnership are poorly understood. We used a combination of rate measurements and single-cell stable isotope probing to demonstrate that ANME in deep-sea sediments can be catabolically and anabolically decoupled from their syntrophic SRB partners using soluble artificial oxidants. The ANME still sustain high rates of methane oxidation in the absence of sulfate as the terminal oxidant, lending support to the hypothesis that interspecies extracellular electron transfer is the syntrophic mechanism for the anaerobic oxidation of methane. Copyright © 2016, American Association for the Advancement of Science.

  17. Atmospheric bulk deposition of polycyclic aromatic hydrocarbons in Shanghai: Temporal and spatial variation, and global comparison.

    Science.gov (United States)

    Feng, Daolun; Liu, Ying; Gao, Yi; Zhou, Jinxing; Zheng, Lirong; Qiao, Gang; Ma, Liming; Lin, Zhifen; Grathwohl, Peter

    2017-11-01

    Atmospheric deposition leads to accumulation of atmospheric polycyclic aromatic hydrocarbons (PAHs) on urban surfaces and topsoils. To capture the inherent variability of atmospheric deposition of PAHs in Shanghai's urban agglomeration, 85 atmospheric bulk deposition samples and 7 surface soil samples were collected from seven sampling locations during 2012-2014. Total fluxes of 17 PAHs were 587-32,300 ng m -2 day -1 , with a geometric mean of 2600 ng m -2 day -1 . The deposition fluxes were categorized as moderate to high on a global scale. Phenanthrene, fluoranthene and pyrene were major contributors. The spatial distribution of deposition fluxes revealed the influence of urbanization/industrialization and the relevance of local emissions. Meteorological conditions and more heating demand in cold season lead to a significant increase of deposition rates. Atmospheric deposition is the principal pathway of PAHs input to topsoils and the annual deposition load in Shanghai amounts to ∼4.5 tons (0.7 kg km -2 ) with a range of 2.5-10 tons (0.4-1.6 kg km -2 ). Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Wound healing and antibacterial activities of chondroitin sulfate- and acharan sulfate-reduced silver nanoparticles

    International Nuclear Information System (INIS)

    Im, A-Rang; Kim, Jee Young; Kim, Yeong Shik; Kim, Hyun-Seok; Cho, Seonho; Park, Youmie

    2013-01-01

    For topical applications in wound healing, silver nanoparticles (AgNPs) have attracted much attention as antibacterial agents. Herein, we describe a green-synthetic route for the production of biocompatible and crystalline AgNPs using two glycosaminoglycans, chondroitin sulfate (CS) and acharan sulfate (AS), as reducing agents. The synthetic approach avoids the use of toxic chemicals, and the yield of AgNPs formation is found to be 98.1% and 91.1% for the chondroitin sulfate-reduced silver nanoparticles (CS-AgNPs) and the acharan sulfate-reduced silver nanoparticles (AS-AgNPs), respectively. Nanoparticles with mostly spherical and amorphous shapes were observed, with an average diameter of 6.16 ± 2.26 nm for CS-AgNPs and 5.79 ± 3.10 nm for AS-AgNPs. Images of the CS-AgNPs obtained from atomic force microscopy revealed the self-assembled structure of CS was similar to a densely packed woven mat with AgNPs sprinkled on the CS. These nanoparticles were stable under cell culture conditions without any noticeable aggregation. An approximately 128-fold enhancement of the antibacterial activities of the AgNPs was observed against Enterobacter cloacae and Escherichia coli when compared to CS and AS alone. In addition, an in vivo animal model of wound healing activity was tested using mice that were subjected to deep incision wounds. In comparison to the controls, the ointments containing CS-AgNPs and AS-AgNPs stimulated wound closure under histological examination and accelerated the deposition of granulation tissue and collagen in the wound area. The wound healing activity of the ointments containing CS-AgNPs and AS-AgNPs are comparable to that of a commercial formulation of silver sulfadiazine even though the newly prepared ointments contain a lower silver concentration. Therefore, the newly prepared AgNPs demonstrate potential for use as an attractive biocompatible nanocomposite for topical applications in the treatment of wounds. (paper)

  19. Wound healing and antibacterial activities of chondroitin sulfate- and acharan sulfate-reduced silver nanoparticles

    Science.gov (United States)

    Im, A.-Rang; Kim, Jee Young; Kim, Hyun-Seok; Cho, Seonho; Park, Youmie; Kim, Yeong Shik

    2013-10-01

    For topical applications in wound healing, silver nanoparticles (AgNPs) have attracted much attention as antibacterial agents. Herein, we describe a green-synthetic route for the production of biocompatible and crystalline AgNPs using two glycosaminoglycans, chondroitin sulfate (CS) and acharan sulfate (AS), as reducing agents. The synthetic approach avoids the use of toxic chemicals, and the yield of AgNPs formation is found to be 98.1% and 91.1% for the chondroitin sulfate-reduced silver nanoparticles (CS-AgNPs) and the acharan sulfate-reduced silver nanoparticles (AS-AgNPs), respectively. Nanoparticles with mostly spherical and amorphous shapes were observed, with an average diameter of 6.16 ± 2.26 nm for CS-AgNPs and 5.79 ± 3.10 nm for AS-AgNPs. Images of the CS-AgNPs obtained from atomic force microscopy revealed the self-assembled structure of CS was similar to a densely packed woven mat with AgNPs sprinkled on the CS. These nanoparticles were stable under cell culture conditions without any noticeable aggregation. An approximately 128-fold enhancement of the antibacterial activities of the AgNPs was observed against Enterobacter cloacae and Escherichia coli when compared to CS and AS alone. In addition, an in vivo animal model of wound healing activity was tested using mice that were subjected to deep incision wounds. In comparison to the controls, the ointments containing CS-AgNPs and AS-AgNPs stimulated wound closure under histological examination and accelerated the deposition of granulation tissue and collagen in the wound area. The wound healing activity of the ointments containing CS-AgNPs and AS-AgNPs are comparable to that of a commercial formulation of silver sulfadiazine even though the newly prepared ointments contain a lower silver concentration. Therefore, the newly prepared AgNPs demonstrate potential for use as an attractive biocompatible nanocomposite for topical applications in the treatment of wounds.

  20. Periodate Oxidation for Sulfated Glycosaminoglycans, with Special Reference to the Position of Extra Sulfate Groups in Chondroitin Polysulfates, Chondroitin Sulfate D and Chondroitin Sulfate K

    OpenAIRE

    Seno, Nobuko; Murakami, Keiko; Shibusawa, Haru

    1981-01-01

    The optimum conditions for periodate oxidation of sulfated disaccharides were investigated to determine the position of extra sulfate groups on the saturated disulfated disaccharides obtained from chondroitin polysulfates, chondroitin sulfates D and K. Under the conditions: 2mM saturated disulfated disaccharide with 20mM sodium periodate at 37°in the dark, the uronic acid residue in the disulfated disaccharide from chondroitin sulfate D was rapidly and completely destroyed, whereas that in th...

  1. 1988 Wet deposition temporal and spatial patterns in North America

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, J.C.; Olsen, A.R.; Bittner, E.A.

    1992-03-01

    The focus of this report is on North American wet deposition temporal patterns from 1979 to 1988 and spatial patterns for 1988. It is the third in a series of reports that investigate the patterns of annual precipitation-weighted average concentration and annual deposition for nine ion species: hydrogen, sulfate, nitrate, ammonium, calcium, chloride, sodium, potassium, and magnesium. Mosaic maps, based on surface estimation using kriging, display concentration and deposition spatial patterns of pH, hydrogen, sulfate, nitrate, ammonium, and calcium ion species for 1988 annual, winter, and summer periods. Temporal pattern analyses use a subset of 35 sites over a 10-year (1979--1988) period and an expanded subset of 137 sites, with greater spatial coverage, over a 7-year (1982--1988) period. The 10-year period represents the longest period with wet deposition monitoring data available that has a sufficient number of sites with data of known quality to allow a descriptive summary of annual temporal patterns. Sen's median trend estimate and Kendall's seasonal tau (KST) test are calculated for each ion species concentration and deposition at each site in both subsets.

  2. 1988 Wet deposition temporal and spatial patterns in North America

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, J.C.; Olsen, A.R.; Bittner, E.A.

    1992-03-01

    The focus of this report is on North American wet deposition temporal patterns from 1979 to 1988 and spatial patterns for 1988. It is the third in a series of reports that investigate the patterns of annual precipitation-weighted average concentration and annual deposition for nine ion species: hydrogen, sulfate, nitrate, ammonium, calcium, chloride, sodium, potassium, and magnesium. Mosaic maps, based on surface estimation using kriging, display concentration and deposition spatial patterns of pH, hydrogen, sulfate, nitrate, ammonium, and calcium ion species for 1988 annual, winter, and summer periods. Temporal pattern analyses use a subset of 35 sites over a 10-year (1979--1988) period and an expanded subset of 137 sites, with greater spatial coverage, over a 7-year (1982--1988) period. The 10-year period represents the longest period with wet deposition monitoring data available that has a sufficient number of sites with data of known quality to allow a descriptive summary of annual temporal patterns. Sen`s median trend estimate and Kendall`s seasonal tau (KST) test are calculated for each ion species concentration and deposition at each site in both subsets.

  3. Sulfate Salts in Gasoline and Ethanol Fuels -- Historical Perspective and Analysis of Available Data

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Robert L. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Alleman, Teresa [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yanowitz, Janet [Ecoengineering, Inc., Sharonville, OH (United States)

    2017-09-21

    This report reviews the chemistry of sulfate salts dissolved in ethanol and gasoline, potential sources of sulfate salts in ethanol and gasoline, the history of consumer vehicle issues with sulfate salt deposits in the early 2000s, and the corresponding changes to the denatured fuel ethanol specification. Recommendations for future research are provided. During a period of rapid market expansion in 2004-05, issues were reported with vehicles running on E10 provided by certain suppliers in some markets. It was commonly believed that these vehicle problems were caused by sulfate salts precipitating from the fuel. Investigators identified sodium sulfate, and in one case also ammonium sulfate, as the predominate salts found in the engines. Several stakeholders believed the issue was excess sulfate ions in the ethanol portion of the E10, and in 2005 the ASTM specification for ethanol (D4806) was modified to include a 4-part per million (ppm) limit on sulfate ions. While there have been no further reports of consumer vehicle issues, the recently approved increase of ethanol in gasoline from 10 to 15 volume percent has resulted in renewed interest in the sulfate ion concentration in fuel ethanol. This report reviews published data on the solubility of sulfate salts in ethanol. The possible sources of sulfate anions and charge balancing cations (such as sodium) in fuel ethanol and petroleum derived blendstocks are discussed. Examination of historical information on the consumer vehicle issues that occurred in 2004-2005 reveals that a source of sodium or ammonium ions, required for the formation of the observed insoluble salts, was never identified. Recommendations for research to better understand sulfate salt solubility issues in ethanol, hydrocarbon blendstocks, and ethanol-gasoline blends are presented.

  4. Effects of acid deposition on microbial processes in natural waters

    International Nuclear Information System (INIS)

    Gilmour, C.C.

    1992-01-01

    Biogeochemical processes mediated by microorganisms are not adversely affected by the acidification of natural waters to the same extent as are the life cycles of higher organisms. Basic processes, e.g., primary production and organic matter decomposition, are not slowed in moderately acidified systems and do not generally decline above a pH of 5. More specifically, the individual components of the carbon, nitrogen, and sulfur cycles are, with few exceptions, also acid resistant. The influence of acid deposition on microbial processes is more often stimulation of nitrogen and sulfur cycling, often leading to alkalinity production, which mitigates the effect of strong acid deposition. Bacterial sulfate reduction and denitrification in sediments are two of the major processes that can be stimulated by sulfate and nitrate deposition, respectively, and result in ANC (acid-neutralizing capacity) generation. One of the negative effects of acid deposition is increased mobilization and bioaccumulation of some metals. Bacteria appear to play an important role, especially in mercury cycling, with acidification leading to increased bacterial methylation of mercury and subsequent bioaccumulation in higher organisms

  5. Raman spectroscopy of efflorescent sulfate salts from Iron Mountain Mine Superfund Site, California

    Science.gov (United States)

    Sobron, Pablo; Alpers, Charles N.

    2013-01-01

    The Iron Mountain Mine Superfund Site near Redding, California, is a massive sulfide ore deposit that was mined for iron, silver, gold, copper, zinc, and pyrite intermittently for nearly 100 years. As a result, both water and air reached the sulfide deposits deep within the mountain, producing acid mine drainage consisting of sulfuric acid and heavy metals from the ore. Particularly, the drainage water from the Richmond Mine at Iron Mountain is among the most acidic waters naturally found on Earth. The mineralogy at Iron Mountain can serve as a proxy for understanding sulfate formation on Mars. Selected sulfate efflorescent salts from Iron Mountain, formed from extremely acidic waters via drainage from sulfide mining, have been characterized by means of Raman spectroscopy. Gypsum, ferricopiapite, copiapite, melanterite, coquimbite, and voltaite are found within the samples. This work has implications for Mars mineralogical and geochemical investigations as well as for terrestrial environmental investigations related to acid mine drainage contamination.

  6. Raman spectroscopy of efflorescent sulfate salts from Iron Mountain Mine Superfund Site, California.

    Science.gov (United States)

    Sobron, Pablo; Alpers, Charles N

    2013-03-01

    The Iron Mountain Mine Superfund Site near Redding, California, is a massive sulfide ore deposit that was mined for iron, silver, gold, copper, zinc, and pyrite intermittently for nearly 100 years. As a result, both water and air reached the sulfide deposits deep within the mountain, producing acid mine drainage consisting of sulfuric acid and heavy metals from the ore. Particularly, the drainage water from the Richmond Mine at Iron Mountain is among the most acidic waters naturally found on Earth. The mineralogy at Iron Mountain can serve as a proxy for understanding sulfate formation on Mars. Selected sulfate efflorescent salts from Iron Mountain, formed from extremely acidic waters via drainage from sulfide mining, have been characterized by means of Raman spectroscopy. Gypsum, ferricopiapite, copiapite, melanterite, coquimbite, and voltaite are found within the samples. This work has implications for Mars mineralogical and geochemical investigations as well as for terrestrial environmental investigations related to acid mine drainage contamination.

  7. Influence of deposition time on the properties of chemical bath deposited manganese sulfide thin films

    Directory of Open Access Journals (Sweden)

    Anuar Kassim

    2010-12-01

    Full Text Available Manganese sulfide thin films were chemically deposited from an aqueous solution containing manganese sulfate, sodium thiosulfate and sodium tartrate. The influence of deposition time (2, 3, 6 and 8 days on the properties of thin films was investigated. The structure and surface morphology of the thin films were studied by X-ray diffraction and atomic force microscopy, respectively. In addition, in order to investigate the optical properties of the thin films, the UV-visible spectrophotometry was used. The XRD results indicated that the deposited MnS2 thin films exhibited a polycrystalline cubic structure. The number of MnS2 peaks on the XRD patterns initially increased from three to six peaks and then decreased to five peaks, as the deposition time was increased from 2 to 8 days. From the AFM measurements, the film thickness and surface roughness were found to be dependent on the deposition time.

  8. Economic filters for evaluating porphyry copper deposit resource assessments using grade-tonnage deposit models, with examples from the U.S. Geological Survey global mineral resource assessment: Chapter H in Global mineral resource assessment

    Science.gov (United States)

    Robinson, Gilpin R.; Menzie, W. David

    2012-01-01

    An analysis of the amount and location of undiscovered mineral resources that are likely to be economically recoverable is important for assessing the long-term adequacy and availability of mineral supplies. This requires an economic evaluation of estimates of undiscovered resources generated by traditional resource assessments (Singer and Menzie, 2010). In this study, simplified engineering cost models were used to estimate the economic fraction of resources contained in undiscovered porphyry copper deposits, predicted in a global assessment of copper resources. The cost models of Camm (1991) were updated with a cost index to reflect increases in mining and milling costs since 1989. The updated cost models were used to perform an economic analysis of undiscovered resources estimated in porphyry copper deposits in six tracts located in North America. The assessment estimated undiscovered porphyry copper deposits within 1 kilometer of the land surface in three depth intervals.

  9. Significant role of organic sulfur in supporting sedimentary sulfate reduction in low-sulfate environments

    Science.gov (United States)

    Fakhraee, Mojtaba; Li, Jiying; Katsev, Sergei

    2017-09-01

    Dissimilatory sulfate reduction (DSR) is a major carbon mineralization pathway in aquatic sediments, soils, and groundwater, which regulates the production of hydrogen sulfide and the mobilization rates of biologically important elements such as phosphorus and mercury. It has been widely assumed that water-column sulfate is the main sulfur source to fuel this reaction in sediments. While this assumption may be justified in high-sulfate environments such as modern seawater, we argue that in low-sulfate environments mineralization of organic sulfur compounds can be an important source of sulfate. Using a reaction-transport model, we investigate the production of sulfate from sulfur-containing organic matter for a range of environments. The results show that in low sulfate environments (50%) of sulfate reduction. In well-oxygenated systems, porewater sulfate profiles often exhibit sub-interface peaks so that sulfate fluxes are directed out of the sediment. Our measurements in Lake Superior, the world's largest lake, corroborate this conclusion: offshore sediments act as sources rather than sinks of sulfate for the water column, and sediment DSR is supported entirely by the in-sediment production of sulfate. Sulfate reduction rates are correlated to the depth of oxygen penetration and strongly regulated by the supply of reactive organic matter; rate co-regulation by sulfate availability becomes appreciable below 500 μM level. The results indicate the need to consider the mineralization of organic sulfur in the biogeochemical cycling in low-sulfate environments, including several of the world's largest freshwater bodies, deep subsurface, and possibly the sulfate-poor oceans of the Early Earth.

  10. The principal rare earth elements deposits of the United States-A summary of domestic deposits and a global perspective

    Science.gov (United States)

    Long, Keith R.; Van Gosen, Bradley S.; Foley, Nora K.; Cordier, Daniel

    2010-01-01

    this project, with the assistance of the USGS National Minerals Information Center, prepared the enclosed USGS report on domestic REE resources. The USGS Mineral Resources Program has investigated domestic and selected foreign REE resources for many decades, and this report summarizes what has been learned from this research. The USGS National Minerals Information Center (formerly Minerals Information Team) has monitored global production, trade, and resources for an equally long period and is the principal source of statistics used in this report. The objective of this study is to provide a nontechnical overview of domestic reserves and resources of REE and possibilities for utilizing those resources. At the present time, the United States obtains its REE raw materials from foreign sources, almost exclusively from China. Import dependence upon a single country raises serious issues of supply security. In a global context, domestic REE resources are modest and of uncertain value; hence, available resources in traditional trading partners (such as Canada and Australia) are of great interest for diversifying sources of supply. This report restates basic geologic facts about REE relevant to assessing security of supply, followed by a review of current United States consumption and imports of REE, current knowledge of domestic resources, and possibilities for future domestic production. Further detail follows in a deposit-by-deposit review of the most significant domestic REE deposits (see index map). Necessary steps to develop domestic resources are discussed in a separate section, leading into a review of current domestic exploration and a discussion of the value of a future national mineral resource assessment of REE. The report also includes an overview of known global REE resources and discusses the reliability of alternative foreign sources of REE.

  11. Air pollution: Tropospheric ozone, and wet deposition of sulfate and inorganic nitrogen

    Science.gov (United States)

    John W. Coulston

    2009-01-01

    The influence of air pollutants on ecosystems in the United States is an important environmental issue. The term “air pollution” encompasses a wide range of topics, but acid deposition and ozone are primary concerns in the context of forest health. Acid deposition partially results from emissions of sulfur dioxide, nitrogen oxides, and ammonia that are deposited in wet...

  12. Apportioning global and non-global components of mercury deposition through (210)Pb indexing.

    Science.gov (United States)

    Lamborg, Carl H; Engstrom, Daniel R; Fitzgerald, William F; Balcom, Prentiss H

    2013-03-15

    Our previous work has documented a correlation between Hg concentrations and (210)Pb activity measured in wet deposition that might be used to help apportion sources of Hg in precipitation. Here we present the results of a 27-month precipitation collection effort using co-located samplers for Hg and (210)Pb designed to assess this hypothesis. Study sites were located on the east and west coasts of North America, in the continental interior, and on the Florida Peninsula. Relatively high variability in Hg/(210)Pb ratios was found at all sites regionally and seasonally (e.g., overall: 0.99-9.13ngdpm(-1)). The ratio of average volume-weighted Hg concentrations and (210)Pb activities showed consistent trends (higher in impacted area), with Glacier Bay in southeast Alaska, exhibiting the lowest value. Assuming that Glacier Bay represents a benchmark for a site with no regional contribution, we estimate less than 50% of the Hg input was "global" at the Seattle and Florida sites. Differences in Hg/(210)Pb in wet deposition could be due to either a regional/local source contribution of Hg, or a regional/local enhancement in the removal of Hg from the atmosphere (i.e., oxidants), however, this approach is not capable of discerning between these two possibilities. Thus, this method of source apportionment represents an estimate of the maximal amount of Hg contributed by regional sources and may be limited in regions of deep convective mixing. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. The smog-fog-smog cycle and acid deposition

    Science.gov (United States)

    Pandis, Spyros N.; Seinfeld, John H.; Pilinis, Christodoulos

    1990-10-01

    A model including descriptions of aerosol and droplet microphysics, gas and aqueous-phase chemistry, and deposition is used to study the transformation of aerosol to fog droplets and back to aerosol in an urban environment. Fogs in polluted environments have the potential to increase aerosol sulfate concentrations but at the same time to cause reductions in the aerosol concentration of nitrate, chloride, ammonium and sodium and well as in the total aerosol mass concentration. The sulfate produced during fog episodes favors the aerosol particles that have access to most of the fog liquid water which are usually the large particles. Aerosol scavenging efficiencies of around 80 percent are calculated for urban fogs. Sampling and subsequent mixing of fog droplets of different sizes may result in measured concentrations that are not fully representative of the fogwater chemical composition and can introduce errors in the reported values of the ionic species deposition velocities. Differences in the major ionic species deposition velocities can be explained by their distribution over the droplet size spectrum and can be correlated with the species average diameter. Two different expressions are derived for use in fog models for the calculation of the liquid water deposition velocity during fog growth and dissipation stages.

  14. Assessment of sand quality on concrete performance : examination of acidic and sulfate/sulfide-bearing sands.

    Science.gov (United States)

    2014-12-01

    The purpose of this research is to examine how the presence of sulfide- and sulfate-containing : minerals in acidic aggregates may affect the properties of mortar and concrete. Analyses were : performed to compare two sands from a deposit in the Geor...

  15. Sensitivity of modelled sulfate aerosol and its radiative effect on climate to ocean DMS concentration and air–sea flux

    Directory of Open Access Journals (Sweden)

    J.-E. Tesdal

    2016-09-01

    Full Text Available Dimethylsulfide (DMS is a well-known marine trace gas that is emitted from the ocean and subsequently oxidizes to sulfate in the atmosphere. Sulfate aerosols in the atmosphere have direct and indirect effects on the amount of solar radiation reaching the Earth's surface. Thus, as a potential source of sulfate, ocean efflux of DMS needs to be accounted for in climate studies. Seawater concentration of DMS is highly variable in space and time, which in turn leads to high spatial and temporal variability in ocean DMS emissions. Because of sparse sampling (in both space and time, large uncertainties remain regarding ocean DMS concentration. In this study, we use an atmospheric general circulation model with explicit aerosol chemistry (CanAM4.1 and several climatologies of surface ocean DMS concentration to assess uncertainties about the climate impact of ocean DMS efflux. Despite substantial variation in the spatial pattern and seasonal evolution of simulated DMS fluxes, the global-mean radiative effect of sulfate is approximately linearly proportional to the global-mean surface flux of DMS; the spatial and temporal distribution of ocean DMS efflux has only a minor effect on the global radiation budget. The effect of the spatial structure, however, generates statistically significant changes in the global-mean concentrations of some aerosol species. The effect of seasonality on the net radiative effect is larger than that of spatial distribution and is significant at global scale.

  16. Expanding atmospheric acid deposition in China from the 1990s to the 2010s

    Science.gov (United States)

    Yu, Haili; Wang, Qiufeng

    2017-04-01

    Atmospheric acid deposition is considered a global environmental issue. China has been experiencing serious acid deposition, which is anticipated to be more serious with the country's economic development and increasing consumption of fossil fuels in recent decades. By collecting nationwide data on pH and concentrations of sulfate (SO42-) and nitrate (NO3-) in precipitation between 1980 and 2014 in China, we explored the spatiotemporal variations of precipitation acid deposition (bulk deposition) and their influencing factors. Our results showed that average precipitation pH values were 4.86 and 4.84 in the 1990s and 2010s, respectively. This suggests that precipitation acid deposition in China has not seriously changes. Average SO42- deposition declined from 30.73 to 28.61 kg S ha-1 yr-1 but average NO3- deposition increased from 4.02 to 6.79 kg N ha-1 yr-1. Specifically, the area of severe precipitation acid deposition in southern China has shrunk to some extent as a result of decreasing pollutant emissions, whereas the area of moderate precipitation acid deposition has expanded in northern China, associated with rapid industrial and transportation development. Significant positive correlations have been found between precipitation acid deposition, energy consumption, and rainfall. Our findings provide a comprehensive evaluation of the spatiotemporal dynamics of precipitation acid deposition in China over past three decades, and confirm the idea that strategies implemented to save energy and reduce pollutant emissions in China have been effective in alleviating precipitation acid deposition. These findings might be used to demonstrate how developing countries could achieve economic development and environmental protection through the implementation of advanced technologies to reduce pollutant emissions.

  17. Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin

    Science.gov (United States)

    Dhillon, Ashita; Teske, Andreas; Dillon, Jesse; Stahl, David A.; Sogin, Mitchell L.

    2003-01-01

    The Guaymas Basin (Gulf of California) is a hydrothermal vent site where thermal alteration of deposited planktonic and terrestrial organic matter forms petroliferous material which supports diverse sulfate-reducing bacteria. We explored the phylogenetic and functional diversity of the sulfate-reducing bacteria by characterizing PCR-amplified dissimilatory sulfite reductase (dsrAB) and 16S rRNA genes from the upper 4 cm of the Guaymas sediment. The dsrAB sequences revealed that there was a major clade closely related to the acetate-oxidizing delta-proteobacterial genus Desulfobacter and a clade of novel, deeply branching dsr sequences related to environmental dsr sequences from marine sediments in Aarhus Bay and Kysing Fjord (Denmark). Other dsr clones were affiliated with gram-positive thermophilic sulfate reducers (genus Desulfotomaculum) and the delta-proteobacterial species Desulforhabdus amnigena and Thermodesulforhabdus norvegica. Phylogenetic analysis of 16S rRNAs from the same environmental samples resulted in identification of four clones affiliated with Desulfobacterium niacini, a member of the acetate-oxidizing, nutritionally versatile genus Desulfobacterium, and one clone related to Desulfobacula toluolica and Desulfotignum balticum. Other bacterial 16S rRNA bacterial phylotypes were represented by non-sulfate reducers and uncultured lineages with unknown physiology, like OP9, OP8, as well as a group with no clear affiliation. In summary, analyses of both 16S rRNA and dsrAB clone libraries resulted in identification of members of the Desulfobacteriales in the Guaymas sediments. In addition, the dsrAB sequencing approach revealed a novel group of sulfate-reducing prokaryotes that could not be identified by 16S rRNA sequencing.

  18. Efflorescent sulfates from Baia Sprie mining area (Romania)--Acid mine drainage and climatological approach.

    Science.gov (United States)

    Buzatu, Andrei; Dill, Harald G; Buzgar, Nicolae; Damian, Gheorghe; Maftei, Andreea Elena; Apopei, Andrei Ionuț

    2016-01-15

    The Baia Sprie epithermal system, a well-known deposit for its impressive mineralogical associations, shows the proper conditions for acid mine drainage and can be considered a general example for affected mining areas around the globe. Efflorescent samples from the abandoned open pit Minei Hill have been analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman and near-infrared (NIR) spectrometry. The identified phases represent mostly iron sulfates with different hydration degrees (szomolnokite, rozenite, melanterite, coquimbite, ferricopiapite), Zn and Al sulfates (gunningite, alunogen, halotrichite). The samples were heated at different temperatures in order to establish the phase transformations among the studied sulfates. The dehydration temperatures and intermediate phases upon decomposition were successfully identified for each of mineral phases. Gunningite was the single sulfate that showed no transformations during the heating experiment. All the other sulfates started to dehydrate within the 30-90 °C temperature range. The acid mine drainage is the main cause for sulfates formation, triggered by pyrite oxidation as the major source for the abundant iron sulfates. Based on the dehydration temperatures, the climatological interpretation indicated that melanterite formation and long-term presence is related to continental and temperate climates. Coquimbite and rozenite are attributed also to the dry arid/semi-arid areas, in addition to the above mentioned ones. The more stable sulfates, alunogen, halotrichite, szomolnokite, ferricopiapite and gunningite, can form and persists in all climate regimes, from dry continental to even tropical humid. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Brittlestars contain highly sulfated chondroitin sulfates/dermatan sulfates that promote fibroblast growth factor 2-induced cell signaling.

    Science.gov (United States)

    Ramachandra, Rashmi; Namburi, Ramesh B; Ortega-Martinez, Olga; Shi, Xiaofeng; Zaia, Joseph; Dupont, Sam T; Thorndyke, Michael C; Lindahl, Ulf; Spillmann, Dorothe

    2014-02-01

    Glycosaminoglycans (GAGs) isolated from brittlestars, Echinodermata class Ophiuroidea, were characterized, as part of attempts to understand the evolutionary development of these polysaccharides. A population of chondroitin sulfate/dermatan sulfate (CS/DS) chains with a high overall degree of sulfation and hexuronate epimerization was the major GAG found, whereas heparan sulfate (HS) was below detection level. Enzymatic digestion with different chondroitin lyases revealed exceptionally high proportions of di- and trisulfated CS/DS disaccharides. The latter unit appears much more abundant in one of four individual species of brittlestars, Amphiura filiformis, than reported earlier in other marine invertebrates. The brittlestar CS/DS was further shown to bind to growth factors such as fibroblast growth factor 2 and to promote FGF-stimulated cell signaling in GAG-deficient cell lines in a manner similar to that of heparin. These findings point to a potential biological role for the highly sulfated invertebrate GAGs, similar to those ascribed to HS in vertebrates.

  20. Bedded Barite Deposits from Sonora (nw Mexico): a Paleozoic Analog for Modern Cold Seeps

    Science.gov (United States)

    Canet, C.; Anadón, P.; González-Partida, E.; Alfonso, P.; Rajabi, A.; Pérez-Segura, E.; Alba-Aldave, L. A.

    2013-05-01

    The Mazatán barite deposits represent an outstanding example of Paleozoic bedded barite, a poorly understood type of mineral deposit of major economic interest. The largest barite bodies of Mazatán are hosted within an Upper Carboniferous flysch succession, which formed part of an accretionary wedge related to the subduction of the Rheic Ocean beneath Gondwana. As well, a few barite occurrences are hosted in Upper Devonian, pre-orogenic turbidites. A variety of mineralized structures is displayed by barite, including: septaria nodules, enterolitic structures, rosettes and debris-flow conglomerates. Barite is accompanied by chalcedony, pyrite (framboids) and berthierine. Gas-rich fluid inclusions in barite were analyzed by Raman spectroscopy and methane was identified, suggesting the occurrence of light hydrocarbons in the environment within which barite precipitated. 13C-depleted carbonates (δ13C: -24.3 to -18.8‰) were found in the barite deposits; they formed through anaerobic oxidation of methane coupled to sulfate reduction, and yield negative δ18O values (-11.9 to -5.2‰) reflecting the isotopic composition of Devonian-Carboniferous seawater. Methane-derived carbonates occur in modern hydrocarbon seeps and have been reported from Mesozoic and Cenozoic seep sediments, but they have never before been described in Paleozoic bedded barite deposits. δ34S of barite varies from +17.6 to +64.1‰, with the lowest values overlapping the range for coeval seawater sulfate; this distribution indicates a process of sulfate reduction. Barite precipitation can be explained by mixing of methane- and barium-rich fluids with pore-water (seawater) containing sulfate residual from microbial reduction. Two analyses from barite gave an 87Sr/86Sr within and slightly above the range for seawater at the time of deposition, with 0.708130 and 0.708588, which would preclude the involvement of hydrothermal fluids in the mineralization process.

  1. Discovery of a Heparan sulfate 3- o -sulfation specific peeling reaction

    NARCIS (Netherlands)

    Huang, Yu; Mao, Yang; Zong, Chengli; Lin, Cheng; Boons, Geert Jan|info:eu-repo/dai/nl/088245489; Zaia, Joseph

    2015-01-01

    Heparan sulfate (HS) 3-O-sulfation determines the binding specificity of HS/heparin for antithrombin III and plays a key role in herpes simplex virus (HSV) infection. However, the low natural abundance of HS 3-O-sulfation poses a serious challenge for functional studies other than the two cases

  2. p-Cresyl sulfate and indoxyl sulfate in pediatric patients on chronic dialysis

    Directory of Open Access Journals (Sweden)

    Hye Sun Hyun

    2013-04-01

    Full Text Available <b>Purpose:</b> Indoxyl sulfate and p- cresyl sulfate are important protein-bound uremic retention solutes whose levels can be partially reduced by renal replacement therapy. These solutes originate from intestinal bacterial protein fermentation and are associated with cardiovascular outcomes and chronic kidney disease progression. The aims of this study were to investigate the levels of indoxyl sulfate and p- cresyl sulfate as well as the effect of probiotics on reducing the levels of uremic toxins in pediatric patients on dialysis. <b>Methods:</b> We enrolled 20 pediatric patients undergoing chronic dialysis; 16 patients completed the study. The patients underwent a 12-week regimen of VSL#3, a high-concentration probiotic preparation, and the serum levels of indoxyl sulfate and p- cresyl sulfate were measured before treatment and at 4, 8, and 12 weeks after the regimen by using fluorescence liquid chromatography. To assess the normal range of indoxyl sulfate and p- cresyl sulfate we enrolled the 16 children with normal glomerular filtration rate who had visited an outpatient clinic for asymptomatic microscopic hematuria that had been detected by a school screening in August 2011. <b>Results:</b> The baseline serum levels of indoxyl sulfate and p- cresyl sulfate in the patients on chronic dialysis were significantly higher than those in the children with microscopic hematuria. The baseline serum levels of p- cresyl sulfate in the peritoneal dialysis group were significantly higher than those in the hemodialysis group. There were no significant changes in the levels of these uremic solutes after 12-week VSL#3 treatment in the patients on chronic dialysis. <b>Conclusion:</b> The levels of the uremic toxins p- cresyl sulfate and indoxyl sulfate are highly elevated in pediatric patients on dialysis, but there was no significant effect by

  3. Intensified Vegetation Water Use due to Soil Calcium Leaching under Acid Deposition

    Science.gov (United States)

    Lanning, M.; Wang, L.; Scanlon, T. M.; Vadeboncoeur, M. A.; Adams, M. B.; Epstein, H. E.; Druckenbrod, D.

    2017-12-01

    Despite the important role vegetation plays in the global water cycle, the exact controls of vegetation water use, especially the role of soil biogeochemistry, remain elusive. Nitrate and sulfate deposition from fossil fuel burning has caused significant soil acidification, leading to the leaching of soil base cations. From a physiological perspective, plants require various soil cations as signaling and regulatory ions as well as integral parts of structural molecules; a depletion of soil cations can cause reduced productivity and abnormal responses to environmental change. A deficiency in calcium could also potentially prolong stomatal opening, leading to increased transpiration until enough calcium had been acquired to stimulate stomatal closure. Based on the plant physiology and the nature of acidic deposition, we hypothesize that depletion of the soil calcium supply, induced by acid deposition, would intensify vegetation water use at the watershed scale. We tested this hypothesis by analyzing a long-term and unique data set (1989-2012) of soil lysimeter data along with stream flow and evapotranspiration data at the Fernow Experimental Forest. We show that depletion of soil calcium by acid deposition can intensify vegetation water use ( 10% increase in evapotranspiration and depletion in soil water) for the first time. These results are critical to understanding future water availability, biogeochemical cycles, and surficial energy flux and may help reduce uncertainties in terrestrial biosphere models.

  4. Co-existence of Methanogenesis and Sulfate Reduction with Common Substrates in Sulfate-Rich Estuarine Sediments

    Directory of Open Access Journals (Sweden)

    Michal Sela-Adler

    2017-05-01

    Full Text Available The competition between sulfate reducing bacteria and methanogens over common substrates has been proposed as a critical control for methane production. In this study, we examined the co-existence of methanogenesis and sulfate reduction with shared substrates over a large range of sulfate concentrations and rates of sulfate reduction in estuarine systems, where these processes are the key terminal sink for organic carbon. Incubation experiments were carried out with sediment samples from the sulfate-methane transition zone of the Yarqon (Israel estuary with different substrates and inhibitors along a sulfate concentrations gradient from 1 to 10 mM. The results show that methanogenesis and sulfate reduction can co-exist while the microbes share substrates over the tested range of sulfate concentrations and at sulfate reduction rates up to 680 μmol L-1 day-1. Rates of methanogenesis were two orders of magnitude lower than rates of sulfate reduction in incubations with acetate and lactate, suggesting a higher affinity of sulfate reducing bacteria for the available substrates. The co-existence of both processes was also confirmed by the isotopic signatures of δ34S in the residual sulfate and that of δ13C of methane and dissolved inorganic carbon. Copy numbers of dsrA and mcrA genes supported the dominance of sulfate reduction over methanogenesis, while showing also the ability of methanogens to grow under high sulfate concentration and in the presence of active sulfate reduction.

  5. Effect of sulfate ions on the crystallization and photocatalytic activity of TiO2/diatomite composite photocatalyst

    Science.gov (United States)

    Zhang, Jinjun; Wang, Xiaoyan; Wang, Jimei; Wang, Jing; Ji, Zhijiang

    2016-01-01

    TiO2 nanoparticles were immobilized on diatomite by hydrolysis-deposition method using titanium tetrachloride as precursor. The effect of sulfate ions on the crystallization and photocatalytic activity of TiO2/diatomite composite photocatalyst was characterized by TG-DSC, XRD, BET surface area, SEM, FT-IR spectroscopy, XPS and UV-vis diffuse reflectance spectra. The results indicate that addition of a small amount of sulfate ions promotes the formation of anatase phase and inhibits the transformation from anatase to rutile. On the other hand, sulfate ions immobilized on the surface of TiO2/diatomite have strong affinity for electrons, capturing the photo-generated electrons, which hinders the recombination of electrons and holes.

  6. Final report on the safety assessment of sodium cetearyl sulfate and related alkyl sulfates as used in cosmetics.

    Science.gov (United States)

    Fiume, Monice; Bergfeld, Wilma F; Belsito, Donald V; Klaassen, Curtis D; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Alan Andersen, F

    2010-05-01

    Sodium cetearyl sulfate is the sodium salt of a mixture of cetyl and stearyl sulfate. The other ingredients in this safety assessment are also alkyl salts, including ammonium coco-sulfate, ammonium myristyl sulfate, magnesium coco-sulfate, sodium cetyl sulfate, sodium coco/hydrogenated tallow sulfate, sodium coco-sulfate, sodium decyl sulfate, sodium ethylhexyl sulfate, sodium myristyl sulfate, sodium oleyl sulfate, sodium stearyl sulfate, sodium tallow sulfate, sodium tridecyl sulfate, and zinc coco-sulfate. These ingredients are surfactants used at concentrations from 0.1% to 29%, primarily in soaps and shampoos. Many of these ingredients are not in current use. The Cosmetic Ingredient Review (CIR) Expert Panel previously completed a safety assessment of sodium and ammonium lauryl sulfate. The data available for sodium lauryl sulfate and ammonium lauryl sulfate provide sufficient basis for concluding that sodium cetearyl sulfate and related alkyl sulfates are safe in the practices of use and concentration described in the safety assessment.

  7. Microbial Preservation in Sulfates in the Haughton Impact Structure Suggests Target in Search for Life on Mars

    Science.gov (United States)

    Parnell, J.; Osinski, G. R.; Lee, P.; Cockell, C. S.

    2005-01-01

    Microbes in Haughton Crater Sulfates: Impact craters are of high interest in planetary exploration because they are viewed as possible sites for evidence of life [1]. Hydrothermal systems in craters are particularly regarded as sites where primitive life could evolve. Evidence from the Miocene Haughton impact structure shows that crater hydrothermal deposits may also be a preferred site for subsequent colonization and hence possible extant life: Hydrothermal sulfates at Haughton are colonized by viable cyanobacteria [2]. The Haughton impact structure, Devon Island, Canadian High Arctic, is a 24 km-diameter crater of mid-Tertiary age. The structure preserves an exceptional record of impact-induced hydrothermal activity, including sulfide, and sulfate mineralization [3]. The target rocks excavated at the site included massive gypsum-bearing carbonate rocks of Ordovician age. Impact-remobilized sulfates occur as metre-scale masses of intergrown crystals of the clear form of gypsum selenite in veins and cavity fillings within the crater s impact melt breccia deposits [4]. The selenite is part of the hydrothermal assemblage as it was precipitated by cooling hot waters that were circulating as a result of the impact. Remobilization of the sulfate continues to the present day, such that it occurs in soil crusts (Fig. 1) including sandy beds with a gypsum cement. The sulfate-cemented beds make an interesting comparison with the sulfate-bearing sandy beds encountered by the Opportunity MER [5]. The selenite crystals are up to 0.3 m in width, of high purity, and transparent. They locally exhibit frayed margins where cleavage surfaces have separated. This exfoliation may be a response to freeze-thaw weathering. The selenite contains traces of rock detritus, newly precipitated gypsum, and microbial colonies. The rock detritus consists of sediment particles which penetrated the opened cleavages by up to 2cm from the crystal margins. Some of the detritus is cemented into place

  8. 78 FR 56583 - Deposit Insurance Regulations; Definition of Insured Deposit

    Science.gov (United States)

    2013-09-13

    ... as a potential global deposit insurer, preserve confidence in the FDIC deposit insurance system, and... the United States.\\2\\ The FDIC generally pays out deposit insurance on the next business day after a... since 2001 and total approximately $1 trillion today. In many cases, these branches do not engage in...

  9. Rare earth sulfates

    International Nuclear Information System (INIS)

    Komissarova, L.N.; Shatskij, V.M.; Pokrovskij, A.N.; Chizhov, S.M.; Bal'kina, T.I.; Suponitskij, Yu.L.

    1986-01-01

    Results of experimental works on the study of synthesis conditions, structure and physico-chemical properties of rare earth, scandium and yttrium sulfates, have been generalized. Phase diagrams of solubility and fusibility, thermodynamic and crystallochemical characteristics, thermal stability of hydrates and anhydrous sulfates of rare earths, including normal, double (with cations of alkali and alkaline-earth metals), ternary and anion-mixed sulfates of rare earths, as well as their adducts, are considered. The state of ions of rare earths, scandium and yttrium in aqueous sulfuric acid solutions is discussed. Data on the use of rare earth sulfates are given

  10. Stable sulfur and oxygen isotopes as geochemical tracers of sulfate in karst waters

    Science.gov (United States)

    Sun, Jing; Kobayashi, Tatsuaki; Strosnider, William H. J.; Wu, Pan

    2017-08-01

    Karst water resources, which are extremely sensitive to mining activities, are critical for the support of human societies and ecological systems in many regions worldwide. In order to determine the sources and fate of dissolved sulfate in low-pH karst waters, hydrochemical variations of karst waters with and without acid mine drainage (AMD) impacts were investigated along with stable isotope dynamics. As expected, hydrochemical characteristics and isotopic compositions of the AMD and AMD-downstream water (ADW) were dramatically different from that of the non-AMD-impacted water (NAW). The sources of sulfur isotopes in sulfate were predominantly pyrite oxidation for the AMD and ADW, and atmospheric deposition for the NAW. Based on the general isotope-balance model, the relative proportions of sulfate oxygen derived from water and air were calculated. The mean proportion of sulfate oxygen derived from water in ADW was roughly double that of AMD. This suggests that the sulfate associated with AMD is predominantly influenced by aerobic pyrite oxidation, while that of ADW is likely affected by the dissolution of pyrite under anaerobic conditions in reservoir sediment. This observation was coincident with the noted variations of hydrochemical characteristics and was supported by principal component analysis. These results provide a better understanding of how stable isotopes of sulfate and water can be used to track mining contamination in karst aquifers, which could benefit remediation planning for these distinctive systems.

  11. Heparan sulfate biosynthesis

    DEFF Research Database (Denmark)

    Multhaupt, Hinke A B; Couchman, John R

    2012-01-01

    Heparan sulfate is perhaps the most complex polysaccharide known from animals. The basic repeating disaccharide is extensively modified by sulfation and uronic acid epimerization. Despite this, the fine structure of heparan sulfate is remarkably consistent with a particular cell type. This suggests...... that the synthesis of heparan sulfate is tightly controlled. Although genomics has identified the enzymes involved in glycosaminoglycan synthesis in a number of vertebrates and invertebrates, the regulation of the process is not understood. Moreover, the localization of the various enzymes in the Golgi apparatus has......-quality resolution of the distribution of enzymes. The EXT2 protein, which when combined as heterodimers with EXT1 comprises the major polymerase in heparan sulfate synthesis, has been studied in depth. All the data are consistent with a cis-Golgi distribution and provide a starting point to establish whether all...

  12. Effects of supporting electrolyte on galvanic deposition of Cu2O crystals

    International Nuclear Information System (INIS)

    Wang Lida; Liu Guichang; Xue Dongfeng

    2011-01-01

    Highlights: → The effects of electrolyte on the galvanic deposition of Cu 2 O crystals have been investigated. → The chemical nature of supporting electrolyte plays important roles in the galvanic deposition of Cu 2 O crystals. → Cubic Cu 2 O crystals are formed in chloride electrolytes. → Truncated octahedral Cu 2 O crystals are produced in nitrate, sulfate and fluoride electrolytes. - Abstract: The effects of introduced supporting electrolyte on the galvanic deposition of Cu 2 O crystals have been investigated using scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), X-ray diffraction (XRD). The results show that the chemical nature of supporting electrolytes plays very important roles in the galvanic deposition of Cu 2 O crystals. The chloride stabilizes the (1 0 0) planes of Cu 2 O crystals, resulting in the formation of cubic crystals, while nitrate, sulfate and fluoride stabilize the (1 1 1) planes of Cu 2 O crystals, leading to the deposition of truncated octahedral and octahedral Cu 2 O crystals. It provides a facile way to control the morphology of galvanically obtained Cu 2 O crystals by indirectly adjusting the inorganic adsorption agents.

  13. Modeling of ferric sulfate decomposition and sulfation of potassium chloride during grate‐firing of biomass

    DEFF Research Database (Denmark)

    Wu, Hao; Jespersen, Jacob Boll; Jappe Frandsen, Flemming

    2013-01-01

    Ferric sulfate is used as an additive in biomass combustion to convert the released potassium chloride to the less harmful potassium sulfate. The decomposition of ferric sulfate is studied in a fast heating rate thermogravimetric analyzer and a volumetric reaction model is proposed to describe...... the process. The yields of sulfur oxides from ferric sulfate decomposition under boiler conditions are investigated experimentally, revealing a distribution of approximately 40% SO3 and 60% SO2. The ferric sulfate decomposition model is combined with a detailed kinetic model of gas‐phase KCl sulfation...... and a model of K2SO4 condensation to simulate the sulfation of KCl by ferric sulfate addition. The simulation results show good agreements with experiments conducted in a biomass grate‐firing reactor. The results indicate that the SO3 released from ferric sulfate decomposition is the main contributor to KCl...

  14. A revised global ozone dry deposition estimate based on a new two-layer parameterisation for air-sea exchange and the multi-year MACC composition reanalysis

    Science.gov (United States)

    Luhar, Ashok K.; Woodhouse, Matthew T.; Galbally, Ian E.

    2018-03-01

    Dry deposition at the Earth's surface is an important sink of atmospheric ozone. Currently, dry deposition of ozone to the ocean surface in atmospheric chemistry models has the largest uncertainty compared to deposition to other surface types, with implications for global tropospheric ozone budget and associated radiative forcing. Most global models assume that the dominant term of surface resistance in the parameterisation of ozone dry deposition velocity at the oceanic surface is constant. There have been recent mechanistic parameterisations for air-sea exchange that account for the simultaneous waterside processes of ozone solubility, molecular diffusion, turbulent transfer, and first-order chemical reaction of ozone with dissolved iodide and other compounds, but there are questions about their performance and consistency. We present a new two-layer parameterisation scheme for the oceanic surface resistance by making the following realistic assumptions: (a) the thickness of the top water layer is of the order of a reaction-diffusion length scale (a few micrometres) within which ozone loss is dominated by chemical reaction and the influence of waterside turbulent transfer is negligible; (b) in the water layer below, both chemical reaction and waterside turbulent transfer act together and are accounted for; and (c) chemical reactivity is present through the depth of the oceanic mixing layer. The new parameterisation has been evaluated against dry deposition velocities from recent open-ocean measurements. It is found that the inclusion of only the aqueous iodide-ozone reaction satisfactorily describes the measurements. In order to better quantify the global dry deposition loss and its interannual variability, modelled 3-hourly ozone deposition velocities are combined with the 3-hourly MACC (Monitoring Atmospheric Composition and Climate) reanalysis ozone for the years 2003-2012. The resulting ozone dry deposition is found to be 98.4 ± 30.0 Tg O3 yr-1 for the ocean

  15. The origin and control of the Camamu barite deposit (BA)

    International Nuclear Information System (INIS)

    Campos, E.G.

    1984-01-01

    Geological and geochemical mechanisms responsible for the origin of the camamu barite deposit (Bahia State) was studied. The marine origin of sulfate is confirmed by the isotopic studies of oxygen delta and sulphur delta. (Author) [pt

  16. Correction: Dermatan sulfate in tunicate phylogeny: Order-specific sulfation pattern and the effect of [→4IdoA(2-Sulfateβ-1→3GalNAc(4-Sulfateβ-1→] motifs in dermatan sulfate on heparin cofactor II activity

    Directory of Open Access Journals (Sweden)

    Sugahara Kazuyuki

    2011-07-01

    Full Text Available Abstract After the publication of the work entitled "Dermatan sulfate in tunicate phylogeny: Order-specific sulfation pattern and the effect of [→4IdoA(2-Sulfateβ-1→3GalNAc(4-Sulfateβ-1→] motifs in dermatan sulfate on heparin cofactor II activity", by Kozlowski et al., BMC Biochemistry 2011, 12:29, we found that the legends to Figures 2 to 5 contain serious mistakes that compromise the comprehension of the work. This correction article contains the correct text of the legends to Figures 2 to 5.

  17. Molecular Characterization of Sulfate-Reducing Bacteria in the Guaymas Basin†

    Science.gov (United States)

    Dhillon, Ashita; Teske, Andreas; Dillon, Jesse; Stahl, David A.; Sogin, Mitchell L.

    2003-01-01

    The Guaymas Basin (Gulf of California) is a hydrothermal vent site where thermal alteration of deposited planktonic and terrestrial organic matter forms petroliferous material which supports diverse sulfate-reducing bacteria. We explored the phylogenetic and functional diversity of the sulfate-reducing bacteria by characterizing PCR-amplified dissimilatory sulfite reductase (dsrAB) and 16S rRNA genes from the upper 4 cm of the Guaymas sediment. The dsrAB sequences revealed that there was a major clade closely related to the acetate-oxidizing delta-proteobacterial genus Desulfobacter and a clade of novel, deeply branching dsr sequences related to environmental dsr sequences from marine sediments in Aarhus Bay and Kysing Fjord (Denmark). Other dsr clones were affiliated with gram-positive thermophilic sulfate reducers (genus Desulfotomaculum) and the delta-proteobacterial species Desulforhabdus amnigena and Thermodesulforhabdus norvegica. Phylogenetic analysis of 16S rRNAs from the same environmental samples resulted in identification of four clones affiliated with Desulfobacterium niacini, a member of the acetate-oxidizing, nutritionally versatile genus Desulfobacterium, and one clone related to Desulfobacula toluolica and Desulfotignum balticum. Other bacterial 16S rRNA bacterial phylotypes were represented by non-sulfate reducers and uncultured lineages with unknown physiology, like OP9, OP8, as well as a group with no clear affiliation. In summary, analyses of both 16S rRNA and dsrAB clone libraries resulted in identification of members of the Desulfobacteriales in the Guaymas sediments. In addition, the dsrAB sequencing approach revealed a novel group of sulfate-reducing prokaryotes that could not be identified by 16S rRNA sequencing. PMID:12732547

  18. Pre-industrial and recent (1970-2010) atmospheric deposition of sulfate and mercury in snow on southern Baffin Island, Arctic Canada.

    Science.gov (United States)

    Zdanowicz, Christian; Kruemmel, Eva; Lean, David; Poulain, Alexandre; Kinnard, Christophe; Yumvihoze, Emmanuel; Chen, JiuBin; Hintelmann, Holger

    2015-03-15

    Sulfate (SO4(2-)) and mercury (Hg) are airborne pollutants transported to the Arctic where they can affect properties of the atmosphere and the health of marine or terrestrial ecosystems. Detecting trends in Arctic Hg pollution is challenging because of the short period of direct observations, particularly of actual deposition. Here, we present an updated proxy record of atmospheric SO4(2-) and a new 40-year record of total Hg (THg) and monomethyl Hg (MeHg) deposition developed from a firn core (P2010) drilled from Penny Ice Cap, Baffin Island, Canada. The updated P2010 record shows stable mean SO4(2-) levels over the past 40 years, which is inconsistent with observations of declining atmospheric SO4(2-) or snow acidity in the Arctic during the same period. A sharp THg enhancement in the P2010 core ca 1991 is tentatively attributed to the fallout from the eruption of the Icelandic volcano Hekla. Although MeHg accumulation on Penny Ice Cap had remained constant since 1970, THg accumulation increased after the 1980s. This increase is not easily explained by changes in snow accumulation, marine aerosol inputs or air mass trajectories; however, a causal link may exist with the declining sea-ice cover conditions in the Baffin Bay sector. The ratio of THg accumulation between pre-industrial times (reconstructed from archived ice cores) and the modern industrial era is estimated at between 4- and 16-fold, which is consistent with estimates from Arctic lake sediment cores. The new P2010 THg record is the first of its kind developed from the Baffin Island region of the eastern Canadian Arctic and one of very few such records presently available in the Arctic. As such, it may help to bridge the knowledge gap linking direct observation of gaseous Hg in the Arctic atmosphere and actual net deposition and accumulation in various terrestrial media. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Global Particulate Matter Source Apportionment

    Science.gov (United States)

    Lamancusa, C.; Wagstrom, K.

    2017-12-01

    As our global society develops and grows it is necessary to better understand the impacts and nuances of atmospheric chemistry, in particular those associated with atmospheric particulate matter. We have developed a source apportionment scheme for the GEOS-Chem global atmospheric chemical transport model. While these approaches have existed for several years in regional chemical transport models, the Global Particulate Matter Source Apportionment Technology (GPSAT) represents the first incorporation into a global chemical transport model. GPSAT runs in parallel to a standard GEOS-Chem run. GPSAT uses the fact that all molecules of a given species have the same probability of undergoing any given process as a core principle. This allows GPSAT to track many different species using only the flux information provided by GEOS-Chem's many processes. GPSAT accounts for the change in source specific concentrations as a result of aqueous and gas-phase chemistry, horizontal and vertical transport, condensation and evaporation on particulate matter, emissions, and wet and dry deposition. By using fluxes, GPSAT minimizes computational cost by circumventing the computationally costly chemistry and transport solvers. GPSAT will allow researchers to address many pertinent research questions about global particulate matter including the global impact of emissions from different source regions and the climate impacts from different source types and regions. For this first application of GPSAT, we investigate the contribution of the twenty largest urban areas worldwide to global particulate matter concentrations. The species investigated include: ammonium, nitrates, sulfates, and the secondary organic aerosols formed by the oxidation of benzene, isoprene, and terpenes. While GPSAT is not yet publically available, we will incorporate it into a future standard release of GEOS-Chem so that all GEOS-Chem users will have access to this new tool.

  20. Measurement of forest condition and response along the Pennsylvania atmospheric deposition gradent

    Science.gov (United States)

    D.D. David; J.M. Skelly; J.A. Lynch; L.H. McCormick; B.L. Nash; M. Simini; E.A. Cameron; J.R. McClenahen; R.P. Long

    1991-01-01

    Research in the oak-hickory forest of northcentral Pennsylvania is being conducted to detect anomalies in forest condition that may be due to atmospheric deposition, with the intent that such anomalies will be further studied to determine the role, if any, of atmospheric deposition. This paper presents the status of research along a 160-km gradient of sulfate/nitrate...

  1. Continental-scale assessment of long-term trends in wet deposition trajectories: Role of anthropogenic and hydro-climatic drivers

    Science.gov (United States)

    Park, J.; Gall, H. E.; Niyogi, D.; Rao, S.

    2012-12-01

    The global trend of increased urbanization, and associated increased intensity of energy and material consumption and waste emissions, has contributed to shifts in the trajectories of aquatic, terrestrial, and atmospheric environments. Here, we focus on continental-scale spatiotemporal patterns in two atmospheric constituents (nitrate and sulfate), whose global biogeochemical cycles have been dramatically altered by emissions from mobile and fixed sources in urbanized and industrialized regions. The observed patterns in wet deposition fluxes of nitrate and sulfate are controlled by (1) natural hydro-climatic forcing, and (2) anthropogenic forcing (emissions and regulatory control), both of which are characterized by stochasticity and non-stationarity. We examine long-term wet deposition records in the U.S., Europe, and East Asia to evaluate how anthropogenic and natural forcing factors jointly contributed to the shifting temporal patterns of wet deposition fluxes at continental scales. These data offer clear evidence for successful implementation of regulatory controls and widespread adoption of technologies contributed to improving water quality and mitigation of adverse ecological impacts. We developed a stochastic model to project the future trajectories of wet deposition fluxes in emerging countries with fast growing urban areas. The model generates ellipses within which projected wet deposition flux trajectories are inscribed, similar to the trends in observational data. The shape of the ellipses provides information regarding the relative dominance of anthropogenic (e.g., industrial and urban emissions) versus hydro-climatic drivers (e.g., rainfall patterns, aridity index). Our analysis facilitates projections of the trajectory shift as a result of urbanization and other land-use changes, climate change, and regulatory enforcement. We use these observed data and the model to project likely trajectories for rapidly developing countries (BRIC), with a

  2. Episodic response project: Wet deposition at watersheds in three regions of the eastern United States

    International Nuclear Information System (INIS)

    Barchet, W.R.

    1991-11-01

    During the period from August 1988 to June 1990, wet-only sampling of precipitation was carried out at three Episodic Response Project sites and at one supplemental site. The three watershed sites are Moss Lake, Biscuit Brook, and Linn Run. The supplemental site was the MAP3S site at Pennsylvania State University that characterizes the central group of northern Appalachian streams. The site operators adhered by varying degrees to the sample collection protocol based on the daily sampling protocol of the MAP3S Precipitation Chemistry Network. Sulfate and nitrate ion together accounted for more than 80% of total anions (in μEq/L) in the precipitation at all sites. Wet deposition of sulfate at Moss Lake, Biscuit Brook, Penn State, and Linn Run averaged 223, 230, 253, and 402 mg/m 2 /month, respectively, whereas nitrate wet deposition averaged 197, 195, 160, and 233 mg/m 2 /month, respectively. Sulfate deposition was a factor of 2 to 4 higher in summer than in winter. The seasonal pattern for nitrate deposition was weak; the seasonal contrast was less than a factor of 2.5 at all sites. The association between the wet deposition and precipitation chemistry at the MAP3S monitoring site and the average for the study watersheds was dependent on the distance between the site and watershed and the intervening terrain. Precipitation chemistry at the monitoring site is representative of that at the ERP study watersheds in the Adirondack and Catskill regions and in the south-western group of watersheds in the Appalachian region. High spatial variability in precipitation amounts makes this assumption weaker for wet deposition. Chemical input to watersheds from dry deposition has not been determined at any site but could range from a factor of 0.3 to 1.0 of the wet deposition. 7 refs., 38 figs., 12 tabs

  3. Impacts of Stratospheric Sulfate Geoengineering on PM2.5

    Science.gov (United States)

    Robock, A.; Xia, L.; Tilmes, S.; Mills, M. J.; Richter, J.; Kravitz, B.; MacMartin, D.

    2017-12-01

    Particulate matter (PM) includes sulfate, nitrate, organic carbon, elemental carbon, soil dust, and sea salt. The first four components are mostly present near the ground as fine particulate matter with a diameter less than 2.5 µm (PM2.5), and these are of the most concern for human health. PM is efficiently scavenged by precipitation, which is its main atmospheric sink. Here we examine the impact of stratospheric climate engineering on this important pollutant and health risk, taking advantage of two sets of climate model simulations conducted at the National Center for Atmospheric Research. We use the full tropospheric and stratospheric chemistry version of the Community Earth System Model - Community Atmospheric Model 4 (CESM CAM4-chem) with a horizontal resolution of 0.9° x 1.25° lat-lon to simulate a stratospheric sulfate injection climate intervention of 8 Tg SO2 yr-1 combined with an RCP6.0 global warming forcing, the G4 Specified Stratospheric Aerosol (G4SSA) scenario. We also analyze the output from a 20-member ensemble of Community Earth System Model, version 1 with the Whole Atmosphere Community Climate Model as its atmospheric component (CESM1(WACCM)) simulations, also at 0.9° x 1.25° lat-lon resolution, with sulfur dioxide injection at 15°N, 15°S, 30°N, and 30°S varying in time to balance RCP8.5 forcing. While the CESM CAM4-chem model has full tropospheric and stratospheric chemistry, CESM1(WACCM) has an internally generated quasi-biennial oscillation and a comprehensive tropospheric and stratospheric sulfate aerosol treatment, but only stratospheric chemistry. For G4SSA, there are a global temperature reduction of 0.8 K and global averaged precipitation decrease of 3% relative to RCP6.0. The global averaged surface PM2.5 reduces about 1% compared with RCP6.0, mainly over Eurasian and East Asian regions in Northern Hemisphere winter. The PM2.5 concentration change is a combination of effects from tropospheric chemistry and precipitation

  4. Modeling dry and wet deposition of sulfate, nitrate, and ammonium ions in Jiuzhaigou National Nature Reserve, China using a source-oriented CMAQ model: Part II. Emission sector and source region contributions.

    Science.gov (United States)

    Qiao, Xue; Tang, Ya; Kota, Sri Harsha; Li, Jingyi; Wu, Li; Hu, Jianlin; Zhang, Hongliang; Ying, Qi

    2015-11-01

    A source-oriented Community Multiscale Air Quality (CMAQ) model driven by the meteorological fields generated by the Weather Research and Forecasting (WRF) model was used to study the dry and wet deposition of nitrate (NO3(-)), sulfate (SO4(2-)), and ammonium (NH4(+)) ions in the Jiuzhaigou National Nature Reserve (JNNR), China from June to August 2010 and to identify the contributions of different emission sectors and source regions that were responsible for the deposition fluxes. Contributions from power plants, industry, transportation, domestic, biogenic, windblown dust, open burning, fertilizer, and manure management sources to deposition fluxes in JNNR watershed and four EANET sites are determined. In JNNR, 96%, 82%, and 87% of the SO4(2-), NO3(-) and NH4(+) deposition fluxes are in the form of wet deposition of the corresponding aerosol species. Industry and power plants are the two major sources of SO4(2-) deposition flux, accounting for 86% of the total wet deposition of SO4(2-), and industry has a higher contribution (56%) than that of power plants (30%). Power plants and industry are also the top sources that are responsible for NO3(-) wet deposition, and contributions from power plants (30%) are generally higher than those from industries (21%). The major sources of NH4(+) wet deposition flux in JNNR are fertilizer (48%) and manure management (39%). Source-region apportionment confirms that SO2 and NOx emissions from local and two nearest counties do not have a significant impact on predicted wet deposition fluxes in JNNR, with contributions less than 10%. While local NH3 emissions account for a higher fraction of the NH4(+) deposition, approximately 70% of NH4(+) wet deposition in JNNR originated from other source regions. This study demonstrates that S and N deposition in JNNR is mostly from long-range transport rather than from local emissions, and to protect JNNR, regional emission reduction controls are needed. Copyright © 2015 Elsevier B.V. All

  5. Modeling dry and wet deposition of sulfate, nitrate, and ammonium ions in Jiuzhaigou National Nature Reserve, China using a source-oriented CMAQ model: Part I. Base case model results.

    Science.gov (United States)

    Qiao, Xue; Tang, Ya; Hu, Jianlin; Zhang, Shuai; Li, Jingyi; Kota, Sri Harsha; Wu, Li; Gao, Huilin; Zhang, Hongliang; Ying, Qi

    2015-11-01

    A source-oriented Community Multiscale Air Quality (CMAQ) model driven by the meteorological fields generated by the Weather Research and Forecasting (WRF) model was used to study the dry and wet deposition of nitrate (NO3(-)), sulfate (SO4(2-)), and ammonium (NH4(+)) ions in the Jiuzhaigou National Nature Reserve (JNNR), China from June to August 2010 and to identify the contributions of different emission sectors and source regions that were responsible for the deposition fluxes. The model performance is evaluated in this paper and the source contribution analyses are presented in a companion paper. The results show that WRF is capable of reproducing the observed precipitation rates with a Mean Normalized Gross Error (MNGE) of 8.1%. Predicted wet deposition fluxes of SO4(2-) and NO3(-) at the Long Lake (LL) site (3100 m a.s.l.) during the three-month episode are 2.75 and 0.34 kg S(N) ha(-1), which agree well with the observed wet deposition fluxes of 2.42 and 0.39 kg S(N) ha(-1), respectively. Temporal variations in the weekly deposition fluxes at LL are also well predicted. Wet deposition flux of NH4(+) at LL is over-predicted by approximately a factor of 3 (1.60 kg N ha(-1)vs. 0.56 kg N ha(-1)), likely due to missing alkaline earth cations such as Ca(2+) in the current CMAQ simulations. Predicted wet deposition fluxes are also in general agreement with observations at four Acid Deposition Monitoring Network in East Asia (EANET) sites in western China. Predicted dry deposition fluxes of SO4(2-) (including gas deposition of SO2) and NO3(-) (including gas deposition of HNO3) are 0.12 and 0.12 kg S(N) h a(-1) at LL and 0.07 and 0.08 kg S(N) ha(-1) at Jiuzhaigou Bureau (JB) in JNNR, respectively, which are much lower than the corresponding wet deposition fluxes. Dry deposition flux of NH4(+) (including gas deposition of NH3) is 0.21 kg N ha(-1) at LL, and is also much lower than the predicted wet deposition flux. For both dry and wet deposition fluxes, predictions

  6. Direct Sulfation of Limestone

    DEFF Research Database (Denmark)

    Hu, Guilin; Dam-Johansen, Kim; Wedel, Stig

    2007-01-01

    The direct sulfation of limestone was studied in a laboratory fixed-bed reactor. It is found that the direct sulfation of limestone involves nucleation and crystal grain growth of the solid product (anhydrite). At 823 K and at low-conversions (less than about 0.5 %), the influences of SO2, O-2...... and CO2 on the direct sulfation of limestone corresponds to apparent reaction orders of about 0.2, 0.2 and -0.5, respectively. Water is observed to promote the sulfation reaction and increase the apparent reaction orders of SO2 and O-2. The influence of O-2 at high O-2 concentrations (> about 15...... %) becomes negligible. In the temperature interval from 723 K to 973 K, an apparent activation energy of about 104 kJ/mol is observed for the direct sulfation of limestone. At low temperatures and low conversions, the sulfation process is most likely under mixed control by chemical reaction and solid...

  7. Analysis Of The Underpotential Deposition Of Cadmium On Copper

    Directory of Open Access Journals (Sweden)

    Kowalik R.

    2015-09-01

    Full Text Available In this study the process of deposition of cadmium on polycrystalline copper electrode in sulfate solution was investigated. The process of underpotential and bulk deposition was analyzed by classical electrochemical method: cyclic voltammetry(CV, anodic stripping voltammetry(ASV and electrochemical quartz crystal microbalance(EQCM. The obtained results were compared with electrochemical impedance spectroscopy(EIS measurements. CV, EQCM and EIS results suggest that the UPD of cadmium starts below potential −0.4 V vs Ag/AgCl. Additionally the stripping analysis indicates the formation of cadmium monolayer with different density of deposited atoms depending on the applied potential. The transition from UPD to bulk deposition occurs below potential −0,7 V.

  8. Measurement of chemical leaching potential of sulfate from landfill disposed sulfate containing wastes.

    Science.gov (United States)

    Sun, Wenjie; Barlaz, Morton A

    2015-02-01

    A number of sulfate-containing wastes are disposed in municipal solid wastes (MSW) landfills including residues from coal, wood, and MSW combustion, and construction and demolition (C&D) waste. Under anaerobic conditions that dominate landfills, the sulfate can be reduced to hydrogen sulfide which is problematic for several reasons including its low odor threshold, toxicity, and corrosive nature. The overall objective of this study was to evaluate existing protocols for the quantification of total leachable sulfate from solid samples and to compare their effectiveness and efficiency with a new protocol described in this study. Methods compared include two existing acid extraction protocols commonly used in the U.S., a pH neutral protocol that requires multiple changes of the leaching solution, and a new acid extraction method. The new acid extraction method was shown to be simple and effective to measure the leaching potential of sulfate from a range of landfill disposed sulfate-containing wastes. However, the acid extraction methods do not distinguish between sulfate and other forms of sulfur and are thus most useful when sulfate is the only form of sulfur present. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. New simple deposition model based on reassessment of global fallout data 1954 - 1976

    Energy Technology Data Exchange (ETDEWEB)

    Palsson, S.E. [Icelandic Radiation Safety Authority, Reykjavik (Iceland); Bergan, T.D. [Directorate for Civil Protection and Emergency Planning, Toensberg (Norway); Howard, B.J. [Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster (United Kingdom); Ikaeheimonen, T.K. [STUK - Radiation and Nuclear Safety Authority, Helsinki (Finland); Isaksson, M. [Univ. of Gothenburg. Dept. of Radiation Physics, Institute of Clinical Sciences, Sahlgren Academy, Gothenburg (Sweden); Nielsen, Sven P. [Technical Univ. of Denmark. DTU Nutech, Roskilde (Denmark); Paatero, J. [Finnish Meteorological Institute. Observation Services, Helsinki (Finland)

    2012-12-15

    Atmospheric testing of nuclear weapons began in 1945 and largely ceased in 1963. This testing is the major cause of distribution of man-made radionuclides over the globe and constitutes a background that needs to be considered when effects of other sources are estimated. The main radionuclides of long term (after the first months) concern are generally assumed to be {sup 137}Cs and {sup 90}Sr. It has been known for a long time that the deposition density of {sup 137}Cs and {sup 90}Sr is approximately proportional to the amount of precipitation. But the use of this proportional relationship raised some questions such as (a) over how large area can it be assumed that the concentration in precipitation is the same at any given time; (b) how does this agree with the observed latitude dependency of deposition density and (c) are the any other parameters that could be of use in a simple model describing global fallout? These issues were amongst those taken up in the NKS-B EcoDoses activity. The preliminary results for {sup 137}Cs and {sup 90}Sr showed for each that the measured concentration had been similar at many European and N-American sites at any given time and that the change with time had been similar. These finding were followed up in a more thorough study in this (DepEstimates) activity. Global data (including the US EML and UK AERE data sets) from 1954 - 1976 for {sup 90}Sr and {sup 137}Cs were analysed testing how well different potential explanatory variables could describe the deposition density. The best fit was obtained by not assuming the traditional proportional relationship, but instead a non-linear power function. The predictions obtained using this new model may not be significantly different from those obtained using the traditional model, when using a limited data set such as from one country as a test in this report showed. But for larger data sets and understanding of underlying processes the new model should be an improvement. (Author)

  10. Global deposition and transport efficiencies of radioactive species with respect to modelling credibility after Fukushima (Japan, 2011)

    International Nuclear Information System (INIS)

    Evangeliou, Nikolaos; Balkanski, Yves; Florou, Heleni; Eleftheriadis, Konstantinos; Cozic, Anne; Kritidis, Panayotis

    2015-01-01

    In this study we conduct a detailed comparison of the modelling response of the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident with global and local observations. We use five different model versions characterized by different horizontal and vertical resolutions of the same General Circulation Model (GCM). Transport efficiencies of 137 Cs across the world are presented as an indication of the expected radioactive impact. Activity concentrations were well represented showing lower Normalized Mean Biases (NMBs) when the better resolved versions of the GCM were used. About 95% of the results using the zoom configuration over Europe (zEur) remained within a factor of 10 from the observations. Close to Japan, the model reproduced well 137 Cs concentrations using the zoom version over Asia (zAsia) showing high correlations, while more than 64% of the modelling results were found within a factor of two from the observations and more than 92% within a factor of 10. Labile and refractory rare radionuclides calculated indirectly showed larger deviations, with about 60% of the simulated concentrations within a factor of 10 from the observations. We estimate that around 23% of the released 137 Cs remained into Japan, while 76% deposited in the oceans. Around 163 TBq deposited over North America, among which 95 TBq over USA, 40 TBq over Canada and 5 TBq over Greenland). About 14 TBq deposited over Europe (mostly in the European part of Russia, Sweden and Norway) and 47 TBq over Asia (mostly in the Asian part of Russia, Philippines and South Korea), while traces were observed over Africa, Oceania and Antarctica. Since the radioactive plume followed a northward direction before its arrival to USA and then to Europe, a significant amount of about 69 TBq deposited in the Arctic, as well. These patterns of deposition are fully consistent with the most recent reports for the accident. - Highlights: • 5 versions of an Eulerian model were used to simulate the Fukushima

  11. Inhibition of synthesis of heparan sulfate by selenate: Possible dependence on sulfation for chain polymerization

    International Nuclear Information System (INIS)

    Dietrich, C.P.; Nader, H.B.; Buonassisi, V.; Colburn, P.

    1988-01-01

    Selenate, a sulfation inhibitor, blocks the synthesis of heparan sulfate and chondroitin sulfate by cultured endothelial cells. In contrast, selenate does not affect the production of hyaluronic acid, a nonsulfated glycosaminoglycan. No differences in molecular weight, [ 3 H]glucosamine/[ 35 S]sulfuric acid ratios, or disaccharide composition were observed when the heparan sulfate synthesized by selenate-treated cells was compared with that of control cells. The absence of undersulfated chains in preparations from cultures exposed to selenate supports the concept that, in the intact cell, the polymerization of heparan sulfate might be dependent on the sulfation of the saccharide units added to the growing glycosaminoglycan chain

  12. Growth and sedimentation of fine particles produced in aqueous solutions of palladium sulfate and palladium sulfate-silver sulfate induced by gamma-ray irradiation

    International Nuclear Information System (INIS)

    Hatada, Motoyoshi; Jonah, C.D.

    1994-10-01

    It is known that palladium and palladium-silver fine particles were formed from deaerated aqueous solutions of palladium sulfate and palladium sulfate-silver sulfate induced by gamma-ray irradiation. Changes in particle size and with amount of particles in the solution with time during and after irradiation were studied using dynamic light scattering technique and UV spectrophotometer. The particles formed from palladium sulfate solution are found to be water-filled bulky particles of diameter of 200 nm, which grow by mutual coagulation even after irradiation was terminated. Average density depends on concentration of palladium ion in the solution and dose, and the lowest density was about 2 g/cm 3 for particles of 200 nm obtained from 0.06 mM solution by 2.4 kGy irradiation. The average density of the particles obtained from palladium sulfate-silver sulfate solutions was smaller than those obtained for the corresponding palladium sulfate solutions. Supersonic agitation destroyed coagulated precipitates to form fine particles, but did not form clusters of a few atoms. (author)

  13. High rates of sulfate reduction in a low-sulfate hot spring microbial mat are driven by a low level of diversity of sulfate-respiring microorganisms

    DEFF Research Database (Denmark)

    Dillon, Jesse G; Fishbain, Susan; Miller, Scott R

    2007-01-01

    The importance of sulfate respiration in the microbial mat found in the low-sulfate thermal outflow of Mushroom Spring in Yellowstone National Park was evaluated using a combination of molecular, microelectrode, and radiotracer studies. Despite very low sulfate concentrations, this mat community...... was shown to sustain a highly active sulfur cycle. The highest rates of sulfate respiration were measured close to the surface of the mat late in the day when photosynthetic oxygen production ceased and were associated with a Thermodesulfovibrio-like population. Reduced activity at greater depths...... was correlated with novel populations of sulfate-reducing microorganisms, unrelated to characterized species, and most likely due to both sulfate and carbon limitation....

  14. Accessing the Impact of Sea-Salt Emissions on Aerosol Chemical Formation and Deposition Over Pearl River Delta, China

    Science.gov (United States)

    Fan, Q.; Wang, X.; Liu, Y.; Wu, D.; Chan, P. W.; Fan, S.; Feng, Y.

    2015-12-01

    Sea-salt aerosol (SSA) emissions have a significant impact on aerosol pollution and haze formation in the coastal areas. In this study, Models-3/CMAQ modeling system was utilized to access the impact of SSA emissions on aerosol chemical formation and deposition over Pearl River Delta (PRD), China in July 2006. More SSAs were transported inland from the open-ocean under the southeast wind in summertime. Two experiments (with and without SSA emissions in the CMAQ model) were set up to compare the modeling results with each other. The results showed that the increase of sulfate concentrations were more attributable to the primary emissions of coarse SO42- particles in SSA, while the increase of nitrate concentrations were more attributable to secondary chemical formations, known as the mechanisms of chloride depletion in SSA. In the coastal areas, 17.62 % of SO42-, 26.6% of NO3- and 38.2% of PM10 were attributed to SSA emissions, while those portions were less than 1% in the inland areas. The increases of PM10 and its components due to SSA emissions resulted in higher deposition fluxes over PRD, particularly in the coastal areas, except for the wet deposition of nitrate. Nitrate was more sensitive to SSA emissions in chemical formations than sulfate and dry deposition of aerosol was also more sensitive than that for wet deposition. Process analysis of sulfate and nitrate was applied to find out the difference of physical and chemical mechanisms between Guangzhou (the inland areas) and Zhuhai (the coastal areas). The negative contributions of dry deposition process to both sulfate and nitrate concentrations increased if SSA emissions were taken into account in the model, especially for Zhuhai. The negative contributions of cloud process also increased due to cloud scavenging and wet deposition process. In the coastal area, the gas-to-particle conversions became more active with high contributions of aerosol process to nitrate concentrations.

  15. Acid Sulfate Alteration in Gusev Crater, Mars

    Science.gov (United States)

    Morris, R. V.; Ming, D. W.; Catalano, J. G.

    2016-01-01

    The Mars Exploration Rover (MER) Spirit landed on the Gusev Crater plains west of the Columbia Hills in January, 2004, during the Martian summer (sol 0; sol = 1 Martian day = 24 hr 40 min). Spirit explored the Columbia Hills of Gusev Crater in the vicinity of Home Plate at the onset on its second winter (sol approximately 900) until the onset of its fourth winter (sol approximately 2170). At that time, Spirit became mired in a deposit of fined-grained and sulfate-rich soil with dust-covered solar panels and unfavorable pointing of the solar arrays toward the sun. Spirit has not communicated with the Earth since sol 2210 (January, 2011). Like its twin rover Opportunity, which landed on the opposite side of Mars at Meridiani Planum, Spirit has an Alpha Particle X-Ray Spectrometer (APXS) instrument for chemical analyses and a Moessbauer spectrometer (MB) for measurement of iron redox state, mineralogical speciation, and quantitative distribution among oxidation (Fe(3+)/sigma Fe) and coordination (octahedral versus tetrahedral) states and mineralogical speciation (e.g., olivine, pyroxene, ilmenite, carbonate, and sulfate). The concentration of SO3 in Gusev rocks and soils varies from approximately 1 to approximately 34 wt%. Because the APXS instrument does not detect low atomic number elements (e.g., H and C), major-element oxide concentrations are normalized to sum to 100 wt%, i.e., contributions of H2O, CO2, NO2, etc. to the bulk composition care not considered. The majority of Gusev samples have approximately 6 plus or minus 5 wt% SO3, but there is a group of samples with high SO3 concentrations (approximately 30 wt%) and high total iron concentrations (approximately 20 wt%). There is also a group with low total Fe and SO3 concentrations that is also characterized by high SiO2 concentrations (greater than 70 wt%). The trend labeled "Basaltic Soil" is interpreted as mixtures in variable proportions between unaltered igneous material and oxidized and SO3-rich basaltic

  16. SO2 photoexcitation mechanism links mass-independent sulfur isotopic fractionation in cryospheric sulfate to climate impacting volcanism

    Science.gov (United States)

    Hattori, Shohei; Schmidt, Johan A.; Johnson, Matthew S.; Danielache, Sebastian O.; Yamada, Akinori; Ueno, Yuichiro; Yoshida, Naohiro

    2013-01-01

    Natural climate variation, such as that caused by volcanoes, is the basis for identifying anthropogenic climate change. However, knowledge of the history of volcanic activity is inadequate, particularly concerning the explosivity of specific events. Some material is deposited in ice cores, but the concentration of glacial sulfate does not distinguish between tropospheric and stratospheric eruptions. Stable sulfur isotope abundances contain additional information, and recent studies show a correlation between volcanic plumes that reach the stratosphere and mass-independent anomalies in sulfur isotopes in glacial sulfate. We describe a mechanism, photoexcitation of SO2, that links the two, yielding a useful metric of the explosivity of historic volcanic events. A plume model of S(IV) to S(VI) conversion was constructed including photochemistry, entrainment of background air, and sulfate deposition. Isotopologue-specific photoexcitation rates were calculated based on the UV absorption cross-sections of 32SO2, 33SO2, 34SO2, and 36SO2 from 250 to 320 nm. The model shows that UV photoexcitation is enhanced with altitude, whereas mass-dependent oxidation, such as SO2 + OH, is suppressed by in situ plume chemistry, allowing the production and preservation of a mass-independent sulfur isotope anomaly in the sulfate product. The model accounts for the amplitude, phases, and time development of Δ33S/δ34S and Δ36S/Δ33S found in glacial samples. We are able to identify the process controlling mass-independent sulfur isotope anomalies in the modern atmosphere. This mechanism is the basis of identifying the magnitude of historic volcanic events. PMID:23417298

  17. Chondroitin sulfate/dermatan sulfate sulfatases from mammals and bacteria.

    Science.gov (United States)

    Wang, Shumin; Sugahara, Kazuyuki; Li, Fuchuan

    2016-12-01

    Sulfatases that specifically catalyze the hydrolysis of the sulfate groups on chondroitin sulfate (CS)/dermatan sulfate (DS) poly- and oligosaccharides belong to the formylglycine-dependent family of sulfatases and have been widely found in various mammalian and bacterial organisms. However, only a few types of CS/DS sulfatase have been identified so far. Recently, several novel CS/DS sulfatases have been cloned and characterized. Advanced studies have provided significant insight into the biological function and mechanism of action of CS/DS sulfatases. Moreover, further studies will provide powerful tools for structural and functional studies of CS/DS as well as related applications. This article reviews the recent progress in CS/DS sulfatase research and is expected to initiate further research in this field.

  18. Assessment of undiscovered sandstone copper deposits of the Kodar-Udokan area, Russia: Chapter M in Global mineral resource assessment

    Science.gov (United States)

    Zientek, Michael L.; Chechetkin, Vladimir S.; Parks, Heather L.; Box, Stephen E.; Briggs, Deborah A.; Cossette, Pamela M.; Dolgopolova, Alla; Hayes, Timothy S.; Seltmann, Reimar; Syusyura, Boris; Taylor, Cliff D.; Wintzer, Niki E.

    2014-01-01

    Mineral resource assessments integrate and synthesize available information as a basis for estimating the location, quality, and quantity of undiscovered mineral resources. This probabilistic mineral resource assessment of undiscovered sandstone copper deposits within Paleoproterozoic metasedimentary rocks of the Kodar-Udokan area in Russia is a contribution to a global assessment led by the U.S. Geological Survey (USGS). The purposes of this study are to (1) delineate permissive areas (tracts) to indicate where undiscovered sandstone-hosted copper deposits may occur within 2 km of the surface, (2) provide a database of known sandstone copper deposits and significant prospects, (3) estimate numbers of undiscovered deposits within these permissive tracts at several levels of confidence, and (4) provide probabilistic estimates of amounts of copper (Cu) and mineralized rock that could be contained in undiscovered deposits within each tract. The workshop for the assessment, held in October 2009, used a three-part form of mineral resource assessment as described by Singer (1993) and Singer and Menzie (2010).

  19. Novel processes for anaerobic sulfate production from elemental sulfur by sulfate-reducing bacteria

    Science.gov (United States)

    Lovley, D.R.; Phillips, E.J.P.

    1994-01-01

    Sulfate reducers and related organisms which had previously been found to reduce Fe(III) with H2 or organic electron donors oxidized S0 to sulfate when Mn(IV) was provided as an electron acceptor. Organisms catalyzing this reaction in washed cell suspensions included Desulfovibrio desulfuricans, Desulfomicrobium baculatum. Desulfobacterium autotrophicum, Desulfuromonas acetoxidans, and Geobacter metallireducens. These organisms produced little or no sulfate from S0 with Fe(III) as a potential electron acceptor or in the absence of an electron acceptor. In detailed studies with Desulfovibrio desulfuricans, the stoichiometry of sulfate and Mn(II) production was consistent with the reaction S0 + 3 MnO2 + 4H+ ???SO42- + 3Mn(II) + 2H2O. None of the organisms evaluated could be grown with S0 as the sole electron donor and Mn(IV) as the electron acceptor. In contrast to the other sulfate reducers evaluated, Desulfobulbus propionicus produced sulfate from S0 in the absence of an electron acceptor and Fe(III) oxide stimulated sulfate production. Sulfide also accumulated in the absence of Mn(IV) or Fe(III). The stoichiometry of sulfate and sulfide production indicated that Desulfobulbus propionicus disproportionates S0 as follows: 4S0 + 4H2O???SO42- + 3HS- + 5 H+. Growth of Desulfobulbus propionicus with S0 as the electron donor and Fe(III) as a sulfide sink and/or electron acceptor was very slow. The S0 oxidation coupled to Mn(IV) reduction described here provides a potential explanation for the Mn(IV)-dependent sulfate production that previous studies have observed in anoxic marine sediments. Desulfobulbus propionicus is the first example of a pure culture known to disproportionate S0.

  20. Heparan sulfate-chondroitin sulfate hybrid proteoglycan of the cell surface and basement membrane of mouse mammary epithelial cells

    International Nuclear Information System (INIS)

    David, G.; Van den Berghe, H.

    1985-01-01

    Chondroitin sulfate represents approximately 15% of the 35 SO 4 -labeled glycosaminoglycans carried by the proteoglycans of the cell surface and of the basolateral secretions of normal mouse mammary epithelial cells in culture. Evidence is provided that these chondroitin sulfate-carrying proteoglycans are hybrid proteoglycans, carrying both chondroitin sulfate and heparan sulfate chains. Complete N-desulfation but limited O-desulfation, by treatment with dimethyl sulfoxide, of the proteoglycans decreased the anionic charge of the chondroitin sulfate-carrying proteoglycans to a greater extent than it decreased the charge of their constituent chondroitin sulfate chains. Partial depolymerization of the heparan sulfate residues of the proteoglycans with nitrous acid or with heparin lyase also reduced the effective molecular radius of the chondroitin sulfate-carrying proteoglycans. The effect of heparin lyase on the chondroitin sulfate-carrying proteoglycans was prevented by treating the proteoglycan fractions with dimethyl sulfoxide, while the effect of nitrous acid on the dimethyl sulfoxide-treated proteoglycans was prevented by acetylation. This occurrence of heparan sulfate-chondroitin sulfate hybrid proteoglycans suggests that the substitution of core proteins by heparan sulfate or chondroitin sulfate chains may not solely be determined by the specific routing of these proteins through distinct chondroitin sulfate and heparan sulfate synthesizing mechanisms. Moreover, regional and temporal changes in pericellular glycosaminoglycan compositions might be due to variable postsynthetic modification of a single gene product

  1. Sulfates on Mars: A systematic Raman spectroscopic study of hydration states of magnesium sulfates

    Science.gov (United States)

    Wang, A.; Freeman, J.J.; Jolliff, B.L.; Chou, I.-Ming

    2006-01-01

    The martian orbital and landed surface missions, OMEGA on Mar Express and the two Mars Explorations Rovers, respectively, have yielded evidence pointing to the presence of magnesium sulfates on the martian surface. In situ identification of the hydration states of magnesium sulfates, as well as the hydration states of other Ca- and Fe- sulfates, will be crucial in future landed missions on Mars in order to advance our knowledge of the hydrologic history of Mars as well as the potential for hosting life on Mars. Raman spectroscopy is a technique well-suited for landed missions on the martian surface. In this paper, we report a systematic study of the Raman spectra of the hydrates of magnesium sulfate. Characteristic and distinct Raman spectral patterns were observed for each of the 11 distinct hydrates of magnesium sulfates, crystalline and non-crystalline. The unique Raman spectral features along with the general tendency of the shift of the position of the sulfate ??1 band towards higher wavenumbers with a decrease in the degree of hydration allow in situ identification of these hydrated magnesium sulfates from the raw Raman spectra of mixtures. Using these Raman spectral features, we have started the study of the stability field of hydrated magnesium sulfates and the pathways of their transformations at various temperature and relative humidity conditions. In particular we report on the Raman spectrum of an amorphous hydrate of magnesium sulfate (MgSO4??2H2O) that may have specific relevance for the martian surface. ?? 2006 Elsevier Inc. All rights reserved.

  2. Analysis of tyrosine-O-sulfation

    DEFF Research Database (Denmark)

    Bundgaard, J.R.; Sen, J.W.; Johnsen, A.H.

    2008-01-01

    Tyrosine O-sulfation was first described about 50 years ago as a post-translational modification of fibrinogen. In the following 30 years it was considered to be a rare modification affecting only a few proteins and peptides. However, in the beginning of the 1980s tyrosine (Tyr) sulfation was shown...... to be a common modification and since then an increasing number of proteins have been identified as sulfated. The target proteins belong to the classes of secretory, plasma membrane, and lysosomal proteins, which reflects the intracellular localization of the enzymes catalyzing Tyr sulfation, the tyrosylprotein...... sulfotransferases (TPSTs).Traditionally, Tyr sulfation has been analyzed by incorporation of radiolabeled sulfate into target cells followed by purification of the target protein. Subsequently, the protein is degraded enzymatically or by alkaline hydrolysis followed by thin-layer electrophoresis to demonstrate...

  3. Efflorescent sulfates from Baia Sprie mining area (Romania) — Acid mine drainage and climatological approach

    International Nuclear Information System (INIS)

    Buzatu, Andrei; Dill, Harald G.; Buzgar, Nicolae; Damian, Gheorghe; Maftei, Andreea Elena; Apopei, Andrei Ionuț

    2016-01-01

    The Baia Sprie epithermal system, a well-known deposit for its impressive mineralogical associations, shows the proper conditions for acid mine drainage and can be considered a general example for affected mining areas around the globe. Efflorescent samples from the abandoned open pit Minei Hill have been analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman and near-infrared (NIR) spectrometry. The identified phases represent mostly iron sulfates with different hydration degrees (szomolnokite, rozenite, melanterite, coquimbite, ferricopiapite), Zn and Al sulfates (gunningite, alunogen, halotrichite). The samples were heated at different temperatures in order to establish the phase transformations among the studied sulfates. The dehydration temperatures and intermediate phases upon decomposition were successfully identified for each of mineral phases. Gunningite was the single sulfate that showed no transformations during the heating experiment. All the other sulfates started to dehydrate within the 30–90 °C temperature range. The acid mine drainage is the main cause for sulfates formation, triggered by pyrite oxidation as the major source for the abundant iron sulfates. Based on the dehydration temperatures, the climatological interpretation indicated that melanterite formation and long-term presence is related to continental and temperate climates. Coquimbite and rozenite are attributed also to the dry arid/semi-arid areas, in addition to the above mentioned ones. The more stable sulfates, alunogen, halotrichite, szomolnokite, ferricopiapite and gunningite, can form and persists in all climate regimes, from dry continental to even tropical humid. - Highlights: • Efflorescent salts from mining areas have a great impact on the environment. • Secondary minerals are influenced by geology, hydrology, biology and climate. • AMD-precipitates samples were analyzed by XRD, SEM, Raman and NIR spectrometry. • The dehydration temperatures

  4. Efflorescent sulfates from Baia Sprie mining area (Romania) — Acid mine drainage and climatological approach

    Energy Technology Data Exchange (ETDEWEB)

    Buzatu, Andrei, E-mail: andrei.buzatu@uaic.ro [“Alexandru Ioan Cuza” University of Iaşi, Department of Geology, 20A Carol I Blv., 700505 Iaşi (Romania); Dill, Harald G. [Gottfried Wilhelm Leibniz University, Welfengarten 1 D-30167, Hannover (Germany); Buzgar, Nicolae [“Alexandru Ioan Cuza” University of Iaşi, Department of Geology, 20A Carol I Blv., 700505 Iaşi (Romania); Damian, Gheorghe [Technical University Cluj Napoca, North University Center of Baia Mare, 62A Dr. Victor Babeş Street, 430083 Baia Mare (Romania); Maftei, Andreea Elena; Apopei, Andrei Ionuț [“Alexandru Ioan Cuza” University of Iaşi, Department of Geology, 20A Carol I Blv., 700505 Iaşi (Romania)

    2016-01-15

    The Baia Sprie epithermal system, a well-known deposit for its impressive mineralogical associations, shows the proper conditions for acid mine drainage and can be considered a general example for affected mining areas around the globe. Efflorescent samples from the abandoned open pit Minei Hill have been analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman and near-infrared (NIR) spectrometry. The identified phases represent mostly iron sulfates with different hydration degrees (szomolnokite, rozenite, melanterite, coquimbite, ferricopiapite), Zn and Al sulfates (gunningite, alunogen, halotrichite). The samples were heated at different temperatures in order to establish the phase transformations among the studied sulfates. The dehydration temperatures and intermediate phases upon decomposition were successfully identified for each of mineral phases. Gunningite was the single sulfate that showed no transformations during the heating experiment. All the other sulfates started to dehydrate within the 30–90 °C temperature range. The acid mine drainage is the main cause for sulfates formation, triggered by pyrite oxidation as the major source for the abundant iron sulfates. Based on the dehydration temperatures, the climatological interpretation indicated that melanterite formation and long-term presence is related to continental and temperate climates. Coquimbite and rozenite are attributed also to the dry arid/semi-arid areas, in addition to the above mentioned ones. The more stable sulfates, alunogen, halotrichite, szomolnokite, ferricopiapite and gunningite, can form and persists in all climate regimes, from dry continental to even tropical humid. - Highlights: • Efflorescent salts from mining areas have a great impact on the environment. • Secondary minerals are influenced by geology, hydrology, biology and climate. • AMD-precipitates samples were analyzed by XRD, SEM, Raman and NIR spectrometry. • The dehydration temperatures

  5. Immunohistochemical localization of chondroitin sulfate, chondroitin sulfate proteoglycan, heparan sulfate proteoglycan, entactin, and laminin in basement membranes of postnatal developing and adult rat lungs

    DEFF Research Database (Denmark)

    Sannes, P L; Burch, K K; Khosla, J

    1993-01-01

    Histologic preparations of lungs from 1-, 5-, 10-, 18-, and 25-day-old postnatal and adult rats were examined immunohistochemically with antibodies specific against chondroitin sulfate (CS), basement membrane chondroitin sulfate proteoglycan (BM-CSPG), heparan sulfate proteoglycan (HSPG), entactin...

  6. Role of sulfate reduction in long term accumulation of organic and inorganic sulfur in lake sediments

    International Nuclear Information System (INIS)

    Rudd, J.W.M.; Kelly, C.A.; Furutani, A.

    1986-01-01

    Sulfate reduction and the accumulation of reduced sulfur in epilimnetic sediments were studied in lakes in southern Norway, the Adirondack Mountains, and at the Experimental Lakes Area (ELA) of northwestern Ontario. In all of the lakes, sulfate reduction produced substantial quantities of pyrite and organic sulfur compounds. In 9-month in situ experiments at ELA using 35 S, there was a large loss (55%) with time of the S initially reduced and deposited in the sediments and a preferential loss of inorganic S compounds which led to a predominance of organic 35 S accumulation in the sediments. An intensive study of long term accumulation of sulfur in the epilimnetic sediments of four Adirondack lakes also showed that the most important long term end product of sulfate reduction was organic S and that sulfate reduction was the major source of S to the sediments. Because of high concentrations of iron in all of the sediments samples and because of the long term storage of sulfur in sediments, mostly as organic S, iron did not limit iron sulfide accumulation in these sediments. Iron limitation is unlikely to occur except in unusual circumstances. This study indicates that formation of organic S in epilimnetic sediments is primarily responsible for H + consumption via sulfate reduction in acidified lakes

  7. Implications of Earth analogs to Martian sulfate-filled Fractures

    Science.gov (United States)

    Holt, R. M.; Powers, D. W.

    2017-12-01

    Sulfate-filled fractures in fine-grained sediments on Mars are interpreted to be the result of fluid movement during deep burial. Fractures in the Dewey Lake (aka Quartermaster) Formation of southeastern New Mexico and west Texas are filled with gypsum that is at least partially synsedimentary. Sulfate in the Dewey Lake takes two principal forms: gypsum cement and gypsum (mainly fibrous) that fills fractures ranging from horizontal to vertical. Apertures are mainly mm-scale, though some are > 1 cm. The gypsum is antitaxial, fibrous, commonly approximately perpendicular to the wall rock, and displays suture lines and relics of the wall rock. Direct evidence of synsedimentary, near-surface origin includes gypsum intraclasts, intraclasts that include smaller intraclasts that contain gypsum clasts, intraclasts of gypsum with suture lines, gypsum concentrated in small desiccation cracks, and intraclasts that include fibrous gypsum-filled fractures that terminate at the eroded clast boundary. Dewey Lake fracture fillings suggest that their Martian analogs may also have originated in the shallow subsurface, shortly following the deposition of Martian sediments, in the presence of shallow aquifers.

  8. NOAA/WDC Global Tsunami Deposits Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Discover where, when and how severely tsunamis affected Earth in geologic history. Information regarding Tsunami Deposits and Proxies for Tsunami Events complements...

  9. SULFATE PRODUCTION IN CLOUDS IN EASTERN CHINA: OBSERVATIONS FROM MT. TAI

    Science.gov (United States)

    Collett, J. L.; Shen, X.; Lee, T.; Wang, X.; Wang, W.; Wang, T.

    2009-12-01

    The fate of China’s sulfur dioxide emissions depends, in part, on the ability of regional clouds to support rapid aqueous oxidation of these emissions to sulfate. Sulfur dioxide oxidized in regional clouds is more likely to be removed by wet deposition while sulfur dioxide that undergoes slower gas phase oxidation is expected to survive longer in the atmosphere and exert a radiative forcing impact over a broader spatial scale. Two 2008 field campaigns conducted at Mt. Tai, an isolated peak on the NE China plain, provide insight into the importance of various aqueous phase sulfur oxidation pathways in the region. Single and two-stage cloudwater collectors were used to collect bulk and drop size-resolved samples of cloudwater. Collected cloudwater was analyzed for key species that influence in-cloud sulfate production, including pH, S(IV), H2O2, Fe and Mn. Other major cloud solutes, including inorganic ions, total organic carbon, formaldehyde, and organic acids were also analyzed, as were gas phase concentrations of SO2, O3, and H2O2. A wide range of cloud pH was observed, from below 3 to above 6. High concentrations of cloudwater sulfate were consistent with abundant sulfur dioxide emissions in the region. Despite its fast aqueous reaction with sulfur dioxide, high concentrations of residual hydrogen peroxide were measured in some clouds implying a substantial capacity for additional sulfate production. Ozone was found to be an important S(IV) oxidant in some periods when cloud pH was high. This presentation will examine the importance of different oxidants (H2O2, O3, and O2 catalyzed by trace metals) for sulfur oxidation and the overall capacity of regional clouds to support rapid aqueous phase sulfate production.

  10. Deposition of tropoelastin into the extracellular matrix requires a competent elastic fiber scaffold but not live cells.

    Science.gov (United States)

    Kozel, Beth A; Ciliberto, Christopher H; Mecham, Robert P

    2004-04-01

    The initial steps of elastic fiber assembly were investigated using an in vitro assembly model in which purified recombinant tropoelastin (rbTE) was added to cultures of live or dead cells. The ability of tropoelastin to associate with preexisting elastic fibers or microfibrils in the extracellular matrix was then assessed by immunofluorescence microscopy using species-specific tropoelastin antibodies. Results show that rbTE can associate with elastic fiber components in the absence of live cells through a process that does not depend on crosslink formation. Time course studies show a transformation of the deposited protein from an initial globular appearance early in culture to a more fibrous structure as the matrix matures. Deposition required the C-terminal region of tropoelastin and correlated with the presence of preexisting elastic fibers or microfibrils. Association of exogenously added tropoelastin to the cellular extracellular matrix was inhibited by the addition of heparan sulfate but not chondroitin sulfate sugars. Together, these results suggest that the matrix elaborated by the cell is sufficient for the initial deposition of tropoelastin in the extracellular space and that elastin assembly may be influenced by the composition of sulfated proteoglycans in the matrix.

  11. Influence of indium concentration and substrate temperature on the physical characteristics of chemically sprayed ZnO:In thin films deposited from zinc pentanedionate and indium sulfate

    International Nuclear Information System (INIS)

    Castaneda, L; Morales-Saavedra, O G; Cheang-Wong, J C; Acosta, D R; Banuelos, J G; Maldonado, A; Olvera, M de la L

    2006-01-01

    Chemically sprayed indium-doped zinc oxide thin films (ZnO:In) were deposited on glass substrates starting from zinc pentanedionate and indium sulfate. The influence of both the dopant concentration in the starting solution and the substrate temperature on the transport, morphology, composition, linear and nonlinear optical (NLO) properties of the ZnO:In thin films were studied. The structure of all the ZnO:In thin films was polycrystalline, and variation in the preferential growth with the indium content in the solution was observed: from an initial (002) growth in films with low In content, switching to a predominance of (101) planes for intermediate dopant regime, and finally turning to a (100) growth for heavily doped films. The crystallite size was found to decrease with doping concentration and range from 36 to 23 nm. The film composition and the dopant concentration were determined by Rutherford backscattering spectrometry; these results showed that the films are almost stoichiometric ZnO. The optimum deposition conditions leading to conductive and transparent ZnO:In thin films were also found. In this way a resistivity of 4 x 10 -3 Ω cm and an average transmittance in the visible spectra of 85%, with a (101) preferential growth, were obtained in optimized ZnO:In thin films

  12. Growth of sulfate reducers in deep-subseafloor sediments stimulated by crustal fluids

    Directory of Open Access Journals (Sweden)

    Katja eFichtel

    2012-02-01

    Full Text Available On a global scale, crustal fluids fuel a substantial part of the deep subseafloor biosphere by providing electron acceptors for microbial respiration. In this study, we examined bacterial cultures from a sediment column of the Juan de Fuca Ridge, Northeast Pacific (IODP Site U1301 which is divided into three distinctive compartments: an upper sulfate-containing zone, formed by bottom-seawater diffusion, a sulfate-depleted zone and a second (~140 m thick sulfate-containing zone influenced by fluid diffusion from the basaltic aquifer. Sulfate reducers were isolated from near-surface and near-basement sediments. All initial enrichments harboured specific communities of heterotrophic microorganisms. Among those, the number of isolated spore-forming Firmicutes decreased from 60% to 21% with sediment depth. Strains affiliated to Desulfosporosinus lacus, Desulfotomaculum sp. and Desulfovibrio aespoeensis were recovered from the upper sediment layers (1.3-9.1 meters below seafloor, mbsf. Several strains of Desulfovibrio indonesiensis and one relative of Desulfotignum balticum were isolated from near-basement sediments (240-262 mbsf. The physiological investigation of strains affiliated to D. aespoeensis, D. indonesiensis and D. balticum indicated that they were all able to use sulfate, thiosulfate and sulfite as electron acceptors. In the presence of sulfate, they grew strain-specifically on a few short-chain n-alcohols and fatty acids, only. The strains fermented either ethanol, pyruvate or betaine. Interestingly, all strains utilized hydrogen and the isolate affiliated to D. indonesiensis even exhibited an autotrophic life-mode. Thus, in the deep subseafloor where organic substrates are limited or hardly degradable, hydrogen might become an essential electron donor. The isolation of non-sporeforming sulfate reducers from fluid-influenced layers indicates that they have survived the long-term burial as active populations even after the separation from

  13. Remotely sensed detection of sulfates on Mars: Laboratory measurements and spacecraft observations

    Science.gov (United States)

    Cooper, Christopher David

    Visible, near-infrared, and mid-infrared spectroscopic measurements were made of physically realistic analogs of Martian soil containing silicates and sulfates. These measurements indicate that the physical structure of soil will control its spectroscopic properties. Orbital measurements from the Thermal Emission Spectrometer (TES) identified features similar to those seen in the laboratory mixtures. Maps were made of this sulfate-cemented soil which indicated that the presence of this material is not geographically controlled and hints at an origin for duricrust in atmosphere-surface interactions. Further confirmation comes from combining data from TES and the Imaging Spectrometer for Mars (ISM). This data shows a congruence between sulfate spectral features and water features. The likely form of the mappable sulfate in Martian soils is therefore a cemented mixture of hydrated sulfate mixed with silicates and oxides derived from crustal rocks. The combination of ISM and TES spectra in particular and spectra from multiple wavelength regimes in general also is an excellent technique for addressing other problems of interest regarding the geology of Mars. A number of topics including rock coatings in Syrtis Major and the nature of low albedo rock assemblages are addressed. Syrtis Major is found to behave differently in the thermal and near infrared, likely indicating that the spectral features are not related to simple coatings but perhaps processes like penetrative oxidation. TES Type I rocks are found to be high in pyroxene, but TES Type II rocks do not have a correlation with pyroxene. Spectral mixing trends indicate that dust and rock are the dominant two variables in surface composition on a large scale. A smaller mixing trend involves the physical breakup of sulfate-cemented soils into a loose, fine-grained, but still hydrated form. In all, this work provides strong evidence for the global identification and distribution of sulfate minerals in the Martian soil.

  14. Multi-model Mean Nitrogen and Sulfur Deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Evaluation of Historical and Projected Future Changes

    Energy Technology Data Exchange (ETDEWEB)

    Lamarque, Jean-Francois; Dentener, Frank; McConnell, J.R.; Ro, C-U; Shaw, Mark; Vet, Robert; Bergmann, D.; Cameron-Smith, Philip; Dalsoren, S.; Doherty, R.; Faluvegi, G.; Ghan, Steven J.; Josse, B.; Lee, Y. H.; MacKenzie, I. A.; Plummer, David; Shindell, Drew; Skeie, R. B.; Stevenson, D. S.; Strode, S.; Zeng, G.; Curran, M.; Dahl-Jensen, D.; Das, S.; Fritzsche, D.; Nolan, M.

    2013-08-20

    We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The computed deposition fluxes are compared to surface wet deposition and ice-core measurements. We use a new dataset of wet deposition for 2000-2002 based on critical assessment of the quality of existing regional network data. We show that for present-day (year 2000 ACCMIP time-slice), the ACCMIP results perform similarly to previously published multi-model assessments. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States, but less so over Europe. This difference points towards misrepresentation of 1980 NH3 emissions over North America. Based on ice-core records, the 1850 deposition fluxes agree well with Greenland ice cores but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double 2000 in some scenarios and reaching >1300 mgN/m2/yr averaged over regional to continental scale regions in RCP 2.6 and 8.5, ~30-50% larger than the values in any region currently (2000). Despite known issues, the new ACCMIP deposition dataset provides novel, consistent and evaluated global gridded deposition fields for use in a wide range of climate and ecological studies.

  15. The magnitude and causes of uncertainty in global model simulations of cloud condensation nuclei

    Directory of Open Access Journals (Sweden)

    L. A. Lee

    2013-09-01

    Full Text Available Aerosol–cloud interaction effects are a major source of uncertainty in climate models so it is important to quantify the sources of uncertainty and thereby direct research efforts. However, the computational expense of global aerosol models has prevented a full statistical analysis of their outputs. Here we perform a variance-based analysis of a global 3-D aerosol microphysics model to quantify the magnitude and leading causes of parametric uncertainty in model-estimated present-day concentrations of cloud condensation nuclei (CCN. Twenty-eight model parameters covering essentially all important aerosol processes, emissions and representation of aerosol size distributions were defined based on expert elicitation. An uncertainty analysis was then performed based on a Monte Carlo-type sampling of an emulator built for each model grid cell. The standard deviation around the mean CCN varies globally between about ±30% over some marine regions to ±40–100% over most land areas and high latitudes, implying that aerosol processes and emissions are likely to be a significant source of uncertainty in model simulations of aerosol–cloud effects on climate. Among the most important contributors to CCN uncertainty are the sizes of emitted primary particles, including carbonaceous combustion particles from wildfires, biomass burning and fossil fuel use, as well as sulfate particles formed on sub-grid scales. Emissions of carbonaceous combustion particles affect CCN uncertainty more than sulfur emissions. Aerosol emission-related parameters dominate the uncertainty close to sources, while uncertainty in aerosol microphysical processes becomes increasingly important in remote regions, being dominated by deposition and aerosol sulfate formation during cloud-processing. The results lead to several recommendations for research that would result in improved modelling of cloud–active aerosol on a global scale.

  16. Acute Exacerbations of COPD Are Associated With Increased Expression of Heparan Sulfate and Chondroitin Sulfate in BAL.

    Science.gov (United States)

    Papakonstantinou, Eleni; Klagas, Ioannis; Roth, Michael; Tamm, Michael; Stolz, Daiana

    2016-03-01

    Acute exacerbations of COPD (AECOPDs) are associated with accelerated aggravation of clinical symptoms and deterioration of pulmonary function. The mechanisms by which exacerbations may contribute to airway remodeling and declined lung function are poorly understood. We investigated whether AECOPDs are associated with differential expression of glycosaminoglycans in BAL in a cohort of 97 patients with COPD. Patients with COPD with either stable disease (n = 53) or AECOPD (n = 44) and undergoing diagnostic bronchoscopy were matched for demographics and lung function parameters. Levels of heparan sulfate, chondroitin sulfate, dermatan sulfate, and matrix metalloproteinases (MMPs) in BAL were measured by enzyme-linked immunosorbent assay. Heparan sulfate and chondroitin sulfate were significantly increased in BAL of patients during exacerbations. Levels of heparan sulfate were higher in the BAL of patients with microbial infections. Chondroitin sulfate was negatively correlated with FEV1 % predicted but not with diffusing capacity of lung for carbon monoxide % predicted, indicating that chondroitin sulfate is associated with airway remodeling, leading to obstruction rather than to emphysema. Furthermore, heparan sulfate and chondroitin sulfate were significantly correlated with MMP-9, MMP-2, and MMP-12 in BAL, indicating that they were cleaved from their respective proteoglycans by MMPs and subsequently washed out in BAL. During AECOPD, there is increased expression of heparan sulfate and chondroitin sulfate in BAL. These molecules are significantly correlated with MMPs in BAL, indicating that they may be associated with airway remodeling and may lead to lung function decline during exacerbations of COPD. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  17. An intertwined evolutionary history of methanogenic archaea and sulfate reduction.

    Directory of Open Access Journals (Sweden)

    Dwi Susanti

    Full Text Available Hydrogenotrophic methanogenesis and dissimilatory sulfate reduction, two of the oldest energy conserving respiratory systems on Earth, apparently could not have evolved in the same host, as sulfite, an intermediate of sulfate reduction, inhibits methanogenesis. However, certain methanogenic archaea metabolize sulfite employing a deazaflavin cofactor (F(420-dependent sulfite reductase (Fsr where N- and C-terminal halves (Fsr-N and Fsr-C are homologs of F(420H(2 dehydrogenase and dissimilatory sulfite reductase (Dsr, respectively. From genome analysis we found that Fsr was likely assembled from freestanding Fsr-N homologs and Dsr-like proteins (Dsr-LP, both being abundant in methanogens. Dsr-LPs fell into two groups defined by following sequence features: Group I (simplest, carrying a coupled siroheme-[Fe(4-S(4] cluster and sulfite-binding Arg/Lys residues; Group III (most complex, with group I features, a Dsr-type peripheral [Fe(4-S(4] cluster and an additional [Fe(4-S(4] cluster. Group II Dsr-LPs with group I features and a Dsr-type peripheral [Fe(4-S(4] cluster were proposed as evolutionary intermediates. Group III is the precursor of Fsr-C. The freestanding Fsr-N homologs serve as F(420H(2 dehydrogenase unit of a putative novel glutamate synthase, previously described membrane-bound electron transport system in methanogens and of assimilatory type sulfite reductases in certain haloarchaea. Among archaea, only methanogens carried Dsr-LPs. They also possessed homologs of sulfate activation and reduction enzymes. This suggested a shared evolutionary history for methanogenesis and sulfate reduction, and Dsr-LPs could have been the source of the oldest (3.47-Gyr ago biologically produced sulfide deposit.

  18. Response of lake chemistry to changes in atmospheric deposition and climate in three high-elevation wilderness areas of Colorado

    Science.gov (United States)

    Mast, M. Alisa; Turk, John T.; Clow, David W.; Campbell, Donald D.

    2011-01-01

    Trends in precipitation chemistry and hydrologic and climatic data were examined as drivers of long-term changes in the chemical composition of high-elevation lakes in three wilderness areas in Colorado during 1985-2008. Sulfate concentrations in precipitation decreased at a rate of -0.15 to -0.55 μeq/l/year at 10 high-elevation National Atmospheric Deposition Program stations in the state during 1987-2008 reflecting regional reductions in SO2 emissions. In lakes where sulfate is primarily derived from atmospheric inputs, sulfate concentrations also decreased although the rates generally were less, ranging from -0.12 to -0.27 μeq/l/year. The similarity in timing and sulfur isotopic data support the hypothesis that decreases in atmospheric deposition are driving the response of high-elevation lakes in some areas of the state. By contrast, in lakes where sulfate is derived primarily from watershed weathering sources, sulfate concentrations showed sharp increases during 1985-2008. Analysis of long-term climate records indicates that annual air temperatures have increased between 0.45 and 0.93°C per decade throughout most mountainous areas of Colorado, suggesting climate as a factor. Isotopic data reveal that sulfate in these lakes is largely derived from pyrite, which may indicate climate warming is preferentially affecting the rate of pyrite weathering.

  19. Chondroitin Sulfate Perlecan Enhances Collagen Fibril Formation

    DEFF Research Database (Denmark)

    Kvist, A. J.; Johnson, A. E.; Mörgelin, M.

    2006-01-01

    in collagen type II fibril assembly by perlecan-null chondrocytes. Cartilage perlecan is a heparin sulfate or a mixed heparan sulfate/chondroitin sulfate proteoglycan. The latter form binds collagen and accelerates fibril formation in vitro, with more defined fibril morphology and increased fibril diameters...... produced in the presence of perlecan. Interestingly, the enhancement of collagen fibril formation is independent on the core protein and is mimicked by chondroitin sulfate E but neither by chondroitin sulfate D nor dextran sulfate. Furthermore, perlecan chondroitin sulfate contains the 4,6-disulfated...... disaccharides typical for chondroitin sulfate E. Indeed, purified glycosaminoglycans from perlecan-enriched fractions of cartilage extracts contain elevated levels of 4,6-disulfated chondroitin sulfate disaccharides and enhance collagen fibril formation. The effect on collagen assembly is proportional...

  20. Activation and transfer of sulfate in biological systems (1960); Activation biologique du sulfate et son transfert (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Chapeville, F [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    It examines in this review the successive stages of active sulfate formation and its role in biological synthesis of sulfuric esters. The possible role of active sulfate as intermediary in sulfate reduction is also discussed. (author) [French] On examine dans cette etude les stades successifs de la mise en evidence du sulfate actif, son role dans la formation des esters sulfuriques de natures diverses, ainsi que sa participation eventuelle comme intermediaire au cours de la reduction du sulfate. On decrit aussi un procede de preparation du systeme biologique, generateur du sulfate actif et une methode de synthese chimique. (auteur)

  1. Quantitative analysis of glycosaminoglycans, chondroitin/dermatan sulfate, hyaluronic acid, heparan sulfate, and keratan sulfate by liquid chromatography-electrospray ionization-tandem mass spectrometry.

    Science.gov (United States)

    Osago, Harumi; Shibata, Tomoko; Hara, Nobumasa; Kuwata, Suguru; Kono, Michihaya; Uchio, Yuji; Tsuchiya, Mikako

    2014-12-15

    We developed a method using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) with a selected reaction monitoring (SRM) mode for simultaneous quantitative analysis of glycosaminoglycans (GAGs). Using one-shot analysis with our MS/MS method, we demonstrated the simultaneous quantification of a total of 23 variously sulfated disaccharides of four GAG classes (8 chondroitin/dermatan sulfates, 1 hyaluronic acid, 12 heparan sulfates, and 2 keratan sulfates) with a sensitivity of less than 0.5 pmol within 20 min. We showed the differences in the composition of GAG classes and the sulfation patterns between porcine articular cartilage and yellow ligament. In addition to the internal disaccharides described above, some saccharides derived from the nonreducing terminal were detected simultaneously. The simultaneous quantification of both internal and nonreducing terminal saccharides could be useful to estimate the chain length of GAGs. This method would help to establish comprehensive "GAGomic" analysis of biological tissues. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Atmospheric wet deposition of mercury and other trace elements in Pensacola, Florida

    Directory of Open Access Journals (Sweden)

    W. M. Landing

    2010-05-01

    Full Text Available In an effort to understand and quantify the impact of local, regional, and far-distant atmospheric mercury sources to rainfall mercury deposition in the Pensacola, Florida watershed, a program of event-based rainfall sampling was started in late 2004. Modified Aerochem-Metrics wet/dry rainfall samplers were deployed at three sites in the region around the Crist coal-fired power plant and event-based samples were collected continuously for three years. Samples were analyzed for total Hg and a suite of trace elements including Al, As, Ba, Bi, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, La, Li, Mg, Mn, Na, Nb, Ni, P, Pb, Sb, Se, Si, Sn, Sr, Th, U, V, and Zn. Nutrients (ammonia and nitrate and major anions (chloride and sulfate were also measured on each sample. Multivariate statistical methods were used to sort these tracers into factors that represent potential source categories contributing to the rainfall chemistry. As, Hg, Sb, Se, Sn, and non sea-salt sulfate were all significantly correlated (R>0.6 with one factor which we interpret as an anthropogenic source term reflecting input from coal combustion throughout the southeastern US. Using ratios of total Hg to volatile elements, we estimate that 22–33% of the rainfall Hg results from coal combustion in the southeastern US with the majority coming from the global background.

  3. Effects of sulfate deprivation on the production of chondroitin/dermatan sulfate by cultures of skin fibroblasts from normal and diabetic individuals

    International Nuclear Information System (INIS)

    Silbert, C.K.; Humphries, D.E.; Palmer, M.E.; Silbert, J.E.

    1991-01-01

    Human skin fibroblast monolayer cultures from two normal men, three Type I diabetic men, and one Type I diabetic woman were incubated with [3H]glucosamine in the presence of diminished concentrations of sulfate. Although total synthesis of [3H]chondroitin/dermatan glycosaminoglycans varied somewhat between cell lines, glycosaminoglycan production was not affected within any line when sulfate levels were decreased from 0.3 mM to 0.06 mM to 0.01 mM to 0 added sulfate. Lowering of sulfate concentrations resulted in diminished sulfation of chondroitin/dermatan in a progressive manner, so that overall sulfation dropped to as low as 19% for one of the lines. Sulfation of chondroitin to form chondroitin 4-sulfate and chondroitin 6-sulfate was progressively and equally affected by decreasing the sulfate concentration in the culture medium. However, sulfation to form dermatan sulfate was preserved to a greater degree, so that the relative proportion of dermatan sulfate to chondroitin sulfate increased. Essentially all the nonsulfated residues were susceptible to chondroitin AC lyase, indicating that little epimerization of glucuronic acid residues to iduronic acid had occurred in the absence of sulfation. These results confirm the previously described dependency of glucuronic/iduronic epimerization on sulfation, and indicate that sulfation of the iduronic acid-containing disaccharide residues of dermatan can take place with sulfate concentrations lower than those needed for 6-sulfation and 4-sulfation of the glucuronic acid-containing disaccharide residues of chondroitin. There were considerable differences among the six fibroblast lines in susceptibility to low sulfate medium and in the proportion of chondroitin 6-sulfate, chondroitin 4-sulfate, and dermatan sulfate. However, there was no pattern of differences between normals and diabetics

  4. INTRACELLULAR SYNTHESIS OF CHONDROITIN SULFATE

    Science.gov (United States)

    Dziewiatkowski, Dominic D.

    1962-01-01

    In autoradiograms of slices of costal cartilage, incubated for 4 hours in a salt solution containing S35-sulfate and then washed extensively and dehydrated, about 85 per cent of the radioactivity was assignable to the chondrocytes. From alkaline extracts of similarly prepared slices of cartilage, 64 to 83 per cent of the total sulfur-35 in the slices was isolated as chondroitin sulfate by chromatography on an anion-exchange resin. In view of the estimate that only about 15 per cent of the radioactivity was in the matrix, the isolation of 64 to 83 per cent of the total sulfur-35 as chondroitin sulfate is a strong argument that the chondrocytes are the loci in which chondroitin sulfate(s) is synthesized. PMID:13888910

  5. Synthesis of N-oleyl O-sulfate chitosan from methyl oleate with O-sulfate chitosan as edible film material

    Science.gov (United States)

    Daniel; Sihaloho, O.; Saleh, C.; Magdaleni, A. R.

    2018-04-01

    The research on the synthesis of N-oleyl O-sulfate chitosan through sulfonation reaction on chitosan with ammonium sulfate and followed by amidation reaction using methyl oleate has been done. In this study, chitosan was chemically modified into N-oleyl O-sulfatechitosan as an edible film making material. N-oleyl O-sulfate chitosan was synthesized by reaction between methyl oleate and O-sulfate chitosan. Wherein the depleted chitosan of O-sulfate chitosan into O-sulfate chitosan was obtained by reaction of sulfonation between ammonium sulfate and chitosan aldimine. While chitosan aldimine was obtained through reaction between chitosan with acetaldehyde. The structure of N-oleyl O-sulfate chitosan was characterized by FT-IR analysis which showed vibration uptake of C-H sp3 group, S=O group, and carbonyl group C=O of the ester. The resulting of N-oleyl O-sulfate chitosan yielded a percentage of 93.52%. Hydrophilic-Lipophilic Balance (HLB) test results gave a value of 6.68. In the toxicity test results of N-oleyl O-sulfate chitosan obtained LC50 value of 3738.4732 ppm. In WVTR (Water Vapor Transmission Rate) test results for chitosan film was 407.625 gram/m2/24 hours and N-oleylO-sulfate chitosan film was 201.125 gram/m2/24 hours.

  6. Response of temperature and density profiles to heat deposition profile and its impact on global scaling in LHD

    International Nuclear Information System (INIS)

    Yamada, H.

    2002-01-01

    Significant density dependence of the energy confinement time as described in the ISS95 scaling has been demonstrated in the extended parameter regimes in LHD. However, recent experiments have indicated that this density dependence is lost at a certain density under specific conditions. This paper discusses the cause of this saturation and related characteristics of anomalous transport. The saturation of the energy confinement time is observed in the density ramp-up phase of NBI heated plasmas. In contrast to the global energy confinement time, the local heat conduction coefficient still indicates the temperature dependence which is a companion to the density dependence of the energy confinement time. The apparent contradiction between the global confinement and the local transport can be attributed to the change of the heat deposition profile. Through this study, the response of temperature and density profiles to the heat deposition profile is highlighted, which is contrasted to the concept of stiffness or profile consistency observed in tokamaks. The major anomalous transport models based on ITG/TEM and interchange/ballooning modes are assessed. (author)

  7. Source-receptor relationships between East Asian sulfur dioxide emissions and Northern Hemisphere sulfate concentrations

    Directory of Open Access Journals (Sweden)

    J. Liu

    2008-07-01

    Full Text Available We analyze the effect of varying East Asian (EA sulfur emissions on sulfate concentrations in the Northern Hemisphere, using a global coupled oxidant-aerosol model (MOZART-2. We conduct a base and five sensitivity simulations, in which sulfur emissions from each continent are tagged, to establish the source-receptor (S-R relationship between EA sulfur emissions and sulfate concentrations over source and downwind regions. We find that from west to east across the North Pacific, EA sulfate contributes approximately 80%–20% of sulfate at the surface, but at least 50% at 500 hPa. Surface sulfate concentrations are dominated by local anthropogenic sources. Of the sulfate produced from sources other than local anthropogenic emissions (defined here as "background" sulfate, EA sources account for approximately 30%–50% (over the Western US and 10%–20% (over the Eastern US. The surface concentrations of sulfate from EA sources over the Western US are highest in MAM (up to 0.15 μg/m3, and lowest in DJF (less than 0.06 μg/m3. Reducing EA SO2 emissions will significantly decrease the spatial extent of the EA sulfate influence (represented by the areas where at least 0.1 μg m−3 of sulfate originates from EA over the North Pacific both at the surface and at 500 hPa in all seasons, but the extent of influence is insensitive to emission increases, particularly in DJF and JJA. We find that EA sulfate concentrations over most downwind regions respond nearly linearly to changes in EA SO2 emissions, but sulfate concentrations over the EA source region increase more slowly than SO2 emissions, particularly at the surface and in winter, due to limited availability of oxidants (in particular of H2O2, which oxidizes SO2 to sulfate in the aqueous phase. We find that similar estimates of the S-R relationship for trans-Pacific transport of EA sulfate would be

  8. sup(113m)indium-iron chondroitin sulfate colloid for quantitative assessment of the marrow RE function

    Energy Technology Data Exchange (ETDEWEB)

    Okuyama, S; Ito, Y; Takahashi, K; Sato, T; Matsuzawa, T [Tohoku Univ., Sendai (Japan). Research Inst. for Tuberculosis, Leprosy and Cancer

    1975-07-01

    sup(113m)In-iron chondroitin sulfate colloid shows a large accumulation in the bone marrow and is suitable for bone marrow imaging. Quantitative assessment of the marrow reticuloendotherial function was performed using this compound. When an appropriate amount of iron carrier was added for adjustment, the rate of accumulation of hyperfunction in the marrow reticuloendotherial system (RES) induced by acute loss of blood increased. Marrow RES hypofunction was efficiently exhibited regardless of the presence or absence of iron carrier. Deposition of sup(113m)In-iron chondroitin sulfate in the spleen increased remarkably in the presence of carrier In. sup(113m)In-iron chondroitin sulfate colloid appears to be suitable for the measurement of the conditions of marrow RES functions. If short half-life nuclide radio-colloids of the present type are clinically applied, it is possible not only to elaborately observe the bone marrow by scintigraphy but also to gradually decrease the absorbed dose of irradiation.

  9. sup(113m)indium-iron chondroitin sulfate colloid for quantitative assessment of the marrow RE function

    International Nuclear Information System (INIS)

    Okuyama, Shinichi; Ito, Yasuhiko; Takahashi, Kunibumi; Sato, Tachio; Matsuzawa, Taiju

    1975-01-01

    sup(113m)In-iron chondroitin sulfate colloid shows a large accumulation in the bone marrow and is suitable for bone marrow imaging. Quantitative assessment of the marrow reticuloendotherial function was performed using this compound. When an appropriate amount of iron carrier was added for adjustment, the rate of accumulation of hyperfunction in the marrow reticuloendotherial system (RES) induced by acute loss of blood increased. Marrow RES hypofunction was efficiently exhibited regardless of the presence or absence of iron carrier. Deposition of sup(113m)In-iron chondroitin sulfate in the spleen increased remarkably in the presence of carrier In. sup(113m)In-iron chondroitin sulfate colloid appears to be suitable for the measurement of the conditions of marrow RES functions. If short half-life nuclide radio-colloids of the present type are clinically applied, it is possible not only to elaborately observe the bone marrow by scintigraphy but also to gradually decrease the absorbed dose of irradiation. (Mukohata, S.)

  10. Depositional environment of the San Miguel lignite deposit in Atascosa and McMullen Counties, Texas

    Energy Technology Data Exchange (ETDEWEB)

    Gowan, S.W.

    1985-01-01

    An analysis of the environment of deposition of the San Miguel lignite deposit was carried out in order to understand newly discovered characteristics of the deposit. The environment of deposition of the overburden and underburden was evaluated through an interpretation of three continuous cores. Four coal cores and a highwall section were carefully described to determine the depositional environmental of the coal seams and partings. These studies were supplemented by the construction of seam and parting isopachs, and the analysis of the distribution of sulfur isotopes, sulfur, forms, and total sulfur within the coal. The sedimentary package is composed of a basal prograding barrier that beach, dune, and back-barrier sands. This unit correlates with a downdip sand that was also interpreted as a prograding barrier by other authors. The barrier is overlain by a series of slit and clay deposits of lagoonal, tidal flat, and tidal channel origin. These deposits are capped by restricted lagoon sediments composed of green, calcareous clays that occasionally contain shell layers. The restricted lagoon deposits formed when the barrier closed the lagoon off from the sea. Peat forming freshwater swamps eventually became established behind the barrier and on top of the restricted lagoon sediments. The parting isopachs reveal a reticulate morphology similar to the mangrove swamps located lateral to the modern Niger River Delta. The partings represent vegetated tidal flat deposits that formed during periodic invasions by the sea that killed the swamp and inundated the peat with sulfate rich water. The lignite interval is capped by open lagoon and tidal flat sediments.

  11. Multi-model Mean Nitrogen and Sulfur Deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Evaluation Historical and Projected Changes

    Science.gov (United States)

    Lamarque, J.-F.; Dentener, F.; McConnell, J.; Ro, C.-U.; Shaw, M.; Vet, R.; Bergmann, D.; Cameron-Smith, P.; Doherty, R.; Faluvegi, G.; hide

    2013-01-01

    We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The computed deposition fluxes are compared to surface wet deposition and ice-core measurements. We use a new dataset of wet deposition for 2000-2002 based on critical assessment of the quality of existing regional network data. We show that for present-day (year 2000 ACCMIP time-slice), the ACCMIP results perform similarly to previously published multi-model assessments. For this time slice, we find a multi-model mean deposition of 50 Tg(N) yr1 from nitrogen oxide emissions, 60 Tg(N) yr1 from ammonia emissions, and 83 Tg(S) yr1 from sulfur emissions. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States but less so over Europe. This difference points towards misrepresentation of 1980 NH3 emissions over North America. Based on ice-core records, the 1850 deposition fluxes agree well with Greenland ice cores but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double 2000 in some scenarios and reaching 1300 mg(N) m2 yr1 averaged over regional to continental scale regions in RCP 2.6 and 8.5, 3050 larger than the values in any region currently (2000). The new ACCMIP deposition dataset provides novel, consistent and evaluated global gridded deposition fields for use in a wide range of climate and ecological studies.

  12. Characterization of the acidic cold seep emplaced jarositic Golden Deposit, NWT, Canada, as an analogue for jarosite deposition on Mars

    Science.gov (United States)

    Battler, Melissa M.; Osinski, Gordon R.; Lim, Darlene S. S.; Davila, Alfonso F.; Michel, Frederick A.; Craig, Michael A.; Izawa, Matthew R. M.; Leoni, Lisa; Slater, Gregory F.; Fairén, Alberto G.; Preston, Louisa J.; Banerjee, Neil R.

    2013-06-01

    Surficial deposits of the OH-bearing iron sulfate mineral jarosite have been observed in several places on Mars, such as Meridiani Planum and Mawrth Vallis. The specific depositional conditions and mechanisms are not known, but by comparing martian sites to analogous locations on Earth, the conditions of formation and, thus, the martian depositional paleoenvironments may be postulated. Located in a cold semi-arid desert ˜100 km east of Norman Wells, Northwest Territories, Canada, the Golden Deposit (GD) is visible from the air as a brilliant golden-yellow patch of unvegetated soil, approximately 140 m × 50 m. The GD is underlain by permafrost and consists of yellow sediment, which is precipitating from seeps of acidic, iron-bearing groundwater. On the surface, the GD appears as a patchwork of raised polygons, with acidic waters flowing from seeps in troughs between polygonal islands. Although UV-Vis-NIR spectral analysis detects only jarosite, mineralogy, as determined by X-ray diffraction and inductively coupled plasma emission spectrometry, is predominantly natrojarosite and jarosite, with hydronium jarosite, goethite, quartz, clays, and small amounts of hematite. Water pH varies significantly over short distances depending on proximity to acid seeps, from 2.3 directly above seeps, to 5.7 several m downstream from seeps within the deposit, and up to 6.5 in ponds proximal to the deposit. Visual observations of microbial filament communities and phospholipid fatty acid analyses confirm that the GD is capable of supporting life for at least part of the year. Jarosite-bearing sediments extend beneath vegetation up to 70 m out from the deposit and are mixed with plant debris and minerals presumably weathered from bedrock and glacial till. This site is of particular interest because mineralogy (natrojarosite, jarosite, hematite, and goethite) and environmental conditions (permafrost and arid conditions) at the time of deposition are conceivably analogous to jarosite

  13. The investigation on physico-chemical conditions of sulfides and sulfates based on petrographic and sulfur - oxygen stable isotope studies from the Darreh-Zar porphyry copper deposit, Kerman

    Directory of Open Access Journals (Sweden)

    Anis Parsapoor

    2014-04-01

    Full Text Available The Darreh-Zar porphyry copper deposit, located in the Urumieh – Dokhtar magmatic belt, lies about 10 km southeast of Sar-Cheshmeh porphyry copper deposit. The ore body with hydrothermally altered zones including potassic, chlorite-sericite, sericite, argillic and propylitic all related to the Darreh-Zar porphyry stock intruded the Eocene volcanic rocks. Pyrite, chalcopyrite, molybdenite, with different textures as disseminated and veinlet, are the major sulfide minerals and chalcocite and covellite are considered as the secondary minerals. Sulfur isotopic composition of the sulfates and sulfides studied fall on the magmatic values. Two different origins may be suggested for the gypsums studied: 1- hydration of anhydrite and 2- oxidation of pyrite during supergene enrichment. The stable isotopic data calculated on couple minerals (pyrite-anhydrite point to the formation temperature of about 485-515οC for the fluids involved in mineralization. The fluid responsible for mineralization suggests magmatic sources for all sulfide phases and reduced aqueous sulfur species. Isotopic zoning, based on the δ34S pyrite values, divided the area into the east and the west parts with negative and positive correlation against the depth, respectively. Also, a negative correlation is observed between the Cu and the δ34S in the eastern portion of the area.

  14. 21 CFR 184.1261 - Copper sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Copper sulfate. 184.1261 Section 184.1261 Food and... Substances Affirmed as GRAS § 184.1261 Copper sulfate. (a) Copper sulfate (cupric sulfate, CuSO4·5H2O, CAS... the reaction of sulfuric acid with cupric oxide or with copper metal. (b) The ingredient must be of a...

  15. Heritability and clinical determinants of serum indoxyl sulfate and p-cresyl sulfate, candidate biomarkers of the human microbiome enterotype.

    Directory of Open Access Journals (Sweden)

    Liesbeth Viaene

    Full Text Available BACKGROUND: Indoxyl sulfate and p-cresyl sulfate are unique microbial co-metabolites. Both co-metabolites have been involved in the pathogenesis of accelerated cardiovascular disease and renal disease progression. Available evidence suggests that indoxyl sulfate and p-cresyl sulfate may be considered candidate biomarkers of the human enterotype and may help to explain the link between diet and cardiovascular disease burden. OBJECTIVE AND DESIGN: Information on clinical determinants and heritability of indoxyl sulfate and p-cresyl sulfate serum is non-existing. To clarify this issue, the authors determined serum levels of indoxyl sulfate and p-cresyl sulfate in 773 individuals, recruited in the frame of the Flemish Study on Environment, Genes and Health Outcomes (FLEMENGHO study. RESULTS: Serum levels of indoxyl sulfate and p-cresyl sulfate amounted to 3.1 (2.4-4.3 and 13.0 (7.4-21.5 μM, respectively. Regression analysis identified renal function, age and sex as independent determinants of both co-metabolites. Both serum indoxyl sulfate (h2 = 0.17 and p-cresyl sulfate (h2 = 0.18 concentrations showed moderate but significant heritability after adjustment for covariables, with significant genetic and environmental correlations for both co-metabolites. LIMITATIONS: Family studies cannot provide conclusive evidence for a genetic contribution, as confounding by shared environmental effects can never be excluded. CONCLUSIONS: The heritability of indoxyl sulfate and p-cresyl sulfate is moderate. Besides genetic host factors and environmental factors, also renal function, sex and age influence the serum levels of these co-metabolites.

  16. The electrical and thermal properties of sodium sulfate mixed with lithium sulfate, yttrium sulfate, and silicon dioxide

    International Nuclear Information System (INIS)

    Imanaka, N.; Yamaguchi, Y.; Adachi, G.; Shiokawa, J.

    1986-01-01

    Sodium sulfate mixed with lithium sulfate, yttrium sulfate, and silicon dioxide was prepared. The thermal and electrical properties of its phases were investigated. The Na 2 SO 4 -Li 2 SO 4 -Y 2 (SO 4 ) 3 SiO 2 samples are similar to the Na 2 SO 4 -I phase (a high temperature phase), which is appreciably effective for Na + ionic conduction. Phase transformation was considerably suppressed by mixing. Electromotive force (EMF) was measured, using Na 2 SO 4 -Li 2 SO 4 -Y 2 (SO 4 ) 3 -SiO 2 as a solid electrolyte, by constructing an SO 2 gas concentration cell. The measured EMF's at 823 and 773 K were in fairly good accordance with the calculated EMF's for inlet SO 2 gas concentration between 30 ppm and 1%, and 500 ppm and 0.5% respectively

  17. 21 CFR 172.822 - Sodium lauryl sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium lauryl sulfate. 172.822 Section 172.822 Food... Multipurpose Additives § 172.822 Sodium lauryl sulfate. The food additive sodium lauryl sulfate may be safely... specifications: (1) It is a mixture of sodium alkyl sulfates consisting chiefly of sodium lauryl sulfate [CH2(CH2...

  18. Purification and sequence characterization of chondroitin sulfate and dermatan sulfate from fishes.

    Science.gov (United States)

    Lin, Na; Mo, Xiaoli; Yang, Yang; Zhang, Hong

    2017-04-01

    Chondroitin sulfate (CS) and dermatan sulfate (DS) were extracted and purified from skins or bones of salmon (Salmo salar), snakehead (Channa argus), monkfish (Lophius litulon) and skipjack tuna (Katsuwonus pelamis). Size, structural sequences and sulfate groups of oligosaccharides in the purified CS and DS could be characterized and identified using high performance liquid chromatography (HPLC) combined with Orbitrap mass spectrometry. CS and DS chain structure varies depending on origin, but motif structure appears consistent. Structures of CS and DS oligosaccharides with different size and sulfate groups were compared between fishes and other animals, and results showed that some minor differences of special structures could be identified by hydrophilic interaction chromatography-liquid chromatography-fourier transform-mass/mass spectrometry (HILIC-LC-FT-MS/MS). For example, data showed that salmon and skipjack CS had a higher percentage content of high-level sulfated oligosaccharides than that porcine CS. In addition, structural information of different origins of CS and DS was analyzed by principal component analysis (PCA) and results showed that CS and DS samples could be differentiated according to their molecular conformation and oligosaccharide fragments information. Understanding CS and DS structure derived from different origins may lead to the production of CS or DS with unique disaccharides or oligosaccharides sequence composition and biological functions.

  19. Treatment and electricity harvesting from sulfate/sulfide-containing wastewaters using microbial fuel cell with enriched sulfate-reducing mixed culture

    International Nuclear Information System (INIS)

    Lee, Duu-Jong; Lee, Chin-Yu; Chang, Jo-Shu

    2012-01-01

    Highlights: ► We started up microbial fuel cell (MFC) using enriched sulfate-reducing mixed culture. ► Sulfate-reducing bacteria and anode-respiring bacteria were enriched in anodic biofilms. ► The MFC effectively remove sulfate to elementary sulfur in the presence of lactate. ► The present device can treat sulfate laden wastewaters with electricity harvesting. - Abstract: Anaerobic treatment of sulfate-laden wastewaters can produce excess sulfide, which is corrosive to pipelines and is toxic to incorporated microorganisms. This work started up microbial fuel cell (MFC) using enriched sulfate-reducing mixed culture as anodic biofilms and applied the so yielded MFC for treating sulfate or sulfide-laden wastewaters. The sulfate-reducing bacteria in anodic biofilm effectively reduced sulfate to sulfide, which was then used by neighboring anode respiring bacteria (ARB) as electron donor for electricity production. The presence of organic carbons enhanced MFC performance since the biofilm ARB were mixotrophs that need organic carbon to grow. The present device introduces a route for treating sulfate laden wastewaters with electricity harvesting.

  20. Treatment and electricity harvesting from sulfate/sulfide-containing wastewaters using microbial fuel cell with enriched sulfate-reducing mixed culture

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Duu-Jong, E-mail: cedean@mail.ntust.edu.tw [Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan (China); Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan (China); Lee, Chin-Yu [Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan (China); Chang, Jo-Shu [Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan (China); Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan (China); Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan, Taiwan (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer We started up microbial fuel cell (MFC) using enriched sulfate-reducing mixed culture. Black-Right-Pointing-Pointer Sulfate-reducing bacteria and anode-respiring bacteria were enriched in anodic biofilms. Black-Right-Pointing-Pointer The MFC effectively remove sulfate to elementary sulfur in the presence of lactate. Black-Right-Pointing-Pointer The present device can treat sulfate laden wastewaters with electricity harvesting. - Abstract: Anaerobic treatment of sulfate-laden wastewaters can produce excess sulfide, which is corrosive to pipelines and is toxic to incorporated microorganisms. This work started up microbial fuel cell (MFC) using enriched sulfate-reducing mixed culture as anodic biofilms and applied the so yielded MFC for treating sulfate or sulfide-laden wastewaters. The sulfate-reducing bacteria in anodic biofilm effectively reduced sulfate to sulfide, which was then used by neighboring anode respiring bacteria (ARB) as electron donor for electricity production. The presence of organic carbons enhanced MFC performance since the biofilm ARB were mixotrophs that need organic carbon to grow. The present device introduces a route for treating sulfate laden wastewaters with electricity harvesting.

  1. Isolation of a sulfate reducing bacterium and its application in sulfate ...

    African Journals Online (AJOL)

    The results show that the effect of C. freundii in removing sulfate was best when the temperature was 32°C, pH was 7.0, COD/SO42- was 5.0 and the initial SO42- concentration was 1500 mg/L. Also, the SRB was inoculated onto an up-flow anaerobic sludge bed (UASB) to remove sulfate in actual tannery wastewater.

  2. Present and potential future contributions of sulfate, black and organic carbon aerosols from China to global air quality, premature mortality and radiative forcing

    Science.gov (United States)

    Saikawa, Eri; Naik, Vaishali; Horowitz, Larry W.; Liu, Junfeng; Mauzerall, Denise L.

    Aerosols are harmful to human health and have both direct and indirect effects on climate. China is a major contributor to global emissions of sulfur dioxide (SO 2), a sulfate (SO 42-) precursor, organic carbon (OC), and black carbon (BC) aerosols. Although increasingly examined, the effect of present and potential future levels of these emissions on global premature mortality and climate change has not been well quantified. Through both direct radiative effects and indirect effects on clouds, SO 42- and OC exert negative radiative forcing (cooling) while BC exerts positive forcing (warming). We analyze the effect of China's emissions of SO 2, SO 42-, OC and BC in 2000 and for three emission scenarios in 2030 on global surface aerosol concentrations, premature mortality, and radiative forcing (RF). Using global models of chemical transport (MOZART-2) and radiative transfer (GFDL RTM), and combining simulation results with gridded population data, mortality rates, and concentration-response relationships from the epidemiological literature, we estimate the contribution of Chinese aerosols to global annual premature mortality and to RF in 2000 and 2030. In 2000, we estimate these aerosols cause approximately 470 000 premature deaths in China and an additional 30 000 deaths globally. In 2030, aggressive emission controls lead to a 50% reduction in premature deaths from the 2000 level to 240 000 in China and 10 000 elsewhere, while under a high emissions scenario premature deaths increase 50% from the 2000 level to 720 000 in China and to 40 000 elsewhere. Because the negative RF from SO 42- and OC is larger than the positive forcing from BC, Chinese aerosols lead to global net direct RF of -74 mW m -2 in 2000 and between -15 and -97 mW m -2 in 2030 depending on the emissions scenario. Our analysis indicates that increased effort to reduce greenhouse gases is essential to address climate change as China's anticipated reduction of aerosols will result in the

  3. Global atmospheric changes.

    Science.gov (United States)

    Piver, W T

    1991-12-01

    Increasing concentrations of CO2 and other greenhouse gases in the atmosphere can be directly related to global warming. In terms of human health, because a major cause of increasing atmospheric concentrations of CO2 is the increased combustion of fossil fuels, global warming also may result in increases in air pollutants, acid deposition, and exposure to ultraviolet (UV) radiation. To understand better the impacts of global warming phenomena on human health, this review emphasizes the processes that are responsible for the greenhouse effect, air pollution, acid deposition, and increased exposure to UV radiation.

  4. Divergent Synthesis of Chondroitin Sulfate Disaccharides and Identification of Sulfate Motifs that Inhibit Triple Negative Breast Cancer

    Science.gov (United States)

    Wei Poh, Zhong; Heng Gan, Chin; Lee, Eric J.; Guo, Suxian; Yip, George W.; Lam, Yulin

    2015-09-01

    Glycosaminoglycans (GAGs) regulate many important physiological processes. A pertinent issue to address is whether GAGs encode important functional information via introduction of position specific sulfate groups in the GAG structure. However, procurement of pure, homogenous GAG motifs to probe the “sulfation code” is a challenging task due to isolation difficulty and structural complexity. To this end, we devised a versatile synthetic strategy to obtain all the 16 theoretically possible sulfation patterns in the chondroitin sulfate (CS) repeating unit; these include rare but potentially important sulfated motifs which have not been isolated earlier. Biological evaluation indicated that CS sulfation patterns had differing effects for different breast cancer cell types, and the greatest inhibitory effect was observed for the most aggressive, triple negative breast cancer cell line MDA-MB-231.

  5. Isolation of sulfate-reducing bacteria from sediments above the deep-subseafloor aquifer.

    Science.gov (United States)

    Fichtel, Katja; Mathes, Falko; Könneke, Martin; Cypionka, Heribert; Engelen, Bert

    2012-01-01

    On a global scale, crustal fluids fuel a large part of the deep-subseafloor biosphere by providing electron acceptors for microbial respiration. In this study, we examined bacterial cultures from sediments of the Juan de Fuca Ridge, Northeast Pacific (IODP Site U1301). The sediments comprise three distinctive compartments: an upper sulfate-containing zone, formed by bottom-seawater diffusion, a sulfate-depleted zone, and a second (∼140 m thick) sulfate-containing zone influenced by fluid diffusion from the basaltic aquifer. In order to identify and characterize sulfate-reducing bacteria, enrichment cultures from different sediment layers were set up, analyzed by molecular screening, and used for isolating pure cultures. The initial enrichments harbored specific communities of heterotrophic microorganisms. Strains affiliated to Desulfosporosinus lacus, Desulfotomaculum sp., and Desulfovibrio aespoeensis were isolated only from the top layers (1.3-9.1 meters below seafloor, mbsf), while several strains of Desulfovibrio indonesiensis and a relative of Desulfotignum balticum were obtained from near-basement sediments (240-262 mbsf). Physiological tests on three selected strains affiliated to Dv. aespoeensis, Dv. indonesiensis, and Desulfotignum balticum indicated that all reduce sulfate with a limited number of short-chain n-alcohols or fatty acids and were able to ferment either ethanol, pyruvate, or betaine. All three isolates shared the capacity of growing chemolithotrophically with H(2) as sole electron donor. Strain P23, affiliating with Dv. indonesiensis, even grew autotrophically in the absence of any organic compounds. Thus, H(2) might be an essential electron donor in the deep-subseafloor where the availability of organic substrates is limited. The isolation of non-sporeforming sulfate reducers from fluid-influenced layers indicates that they have survived the long-term burial as active populations even after the separation from the seafloor hundreds

  6. Are there links between responses of soil microbes and ecosystem functioning to elevated CO2, N deposition and warming? A global perspective.

    Science.gov (United States)

    García-Palacios, Pablo; Vandegehuchte, Martijn L; Shaw, E Ashley; Dam, Marie; Post, Keith H; Ramirez, Kelly S; Sylvain, Zachary A; de Tomasel, Cecilia Milano; Wall, Diana H

    2015-04-01

    In recent years, there has been an increase in research to understand how global changes' impacts on soil biota translate into altered ecosystem functioning. However, results vary between global change effects, soil taxa, and ecosystem processes studied, and a synthesis of relationships is lacking. Therefore, here we initiate such a synthesis to assess whether the effect size of global change drivers (elevated CO2, N deposition, and warming) on soil microbial abundance is related with the effect size of these drivers on ecosystem functioning (plant biomass, soil C cycle, and soil N cycle) using meta-analysis and structural equation modeling. For N deposition and warming, the global change effect size on soil microbes was positively associated with the global change effect size on ecosystem functioning, and these relationships were consistent across taxa and ecosystem processes. However, for elevated CO2, such links were more taxon and ecosystem process specific. For example, fungal abundance responses to elevated CO2 were positively correlated with those of plant biomass but negatively with those of the N cycle. Our results go beyond previous assessments of the sensitivity of soil microbes and ecosystem processes to global change, and demonstrate the existence of general links between the responses of soil microbial abundance and ecosystem functioning. Further we identify critical areas for future research, specifically altered precipitation, soil fauna, soil community composition, and litter decomposition, that are need to better quantify the ecosystem consequences of global change impacts on soil biodiversity. © 2014 John Wiley & Sons Ltd.

  7. 2-Amino-4-hydroxyethylaminoanisole sulfate

    DEFF Research Database (Denmark)

    Madsen, Jakob T; Andersen, Klaus E

    2016-01-01

    positive patch test reactions to the coupler 2-amino-4-hydroxyethylaminoanisole sulfate 2% pet. from 2005 to 2014. METHODS: Patch test results from the Allergen Bank database for eczema patients patch tested with 2-amino-4-hydroxyethylaminoanisole sulfate 2% pet. from 2005 to 2014 were reviewed. RESULTS......: A total of 902 dermatitis patients (154 from the dermatology department and 748 from 65 practices) were patch tested with amino-4-hydroxyethylaminoanisole sulfate 2% pet. from 2005 to 2014. Thirteen (1.4%) patients had a positive patch test reaction. Our results do not indicate irritant reactions....... CONCLUSIONS: 2-Amino-4-hydroxyethylaminoanisole sulfate is a new but rare contact allergen....

  8. Holothurian Fucosylated Chondroitin Sulfate

    Directory of Open Access Journals (Sweden)

    Vitor H. Pomin

    2014-01-01

    Full Text Available Fucosylated chondroitin sulfate (FucCS is a structurally distinct glycosaminoglycan found in sea cucumber species. It has the same backbone composition of alternating 4-linked glucuronic acid and 3-linked N-acetyl galactosamine residues within disaccharide repeating units as regularly found in mammalian chondroitin sulfates. However, FucCS has also sulfated fucosyl branching units 3-O-linked to the acid residues. The sulfation patterns of these branches vary accordingly with holothurian species and account for different biological actions and responses. FucCSs may exhibit anticoagulant, antithrombotic, anti-inflammatory, anticancer, antiviral, and pro-angiogenic activities, besides its beneficial effects in hemodialysis, cellular growth modulation, fibrosis and hyperglycemia. Through an historical overview, this document covers most of the science regarding the holothurian FucCS. Both structural and medical properties of this unique GAG, investigated during the last 25 years, are systematically discussed herein.

  9. Sulfate- and Sulfur-Reducing Bacteria as Terrestrial Analogs for Microbial Life on Jupiter's Satellite Io

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.; Six, N. Frank (Technical Monitor)

    2001-01-01

    Observations from the Voyager and Galileo spacecraft have revealed Jupiter's moon Io to be the most volcanically active body of our Solar System. The Galileo Near Infrared Imaging Spectrometer (NIMS) detected extensive deposits of sulfur compounds, elemental sulfur and SO2 frost on the surface of Io. There are extreme temperature variations on Io's surface, ranging from -130 C to over 2000 C at the Pillan Patera volcanic vent. The active volcanoes, fumaroles, calderas, and lava lakes and vast sulfur deposits on this frozen moon indicate that analogs of sulfur- and sulfate-reducing bacteria might inhabit Io. Hence Io may have great significance to Astrobiology. Earth's life forms that depend on sulfur respiration are members of two domains: Bacteria and Archaea. Two basic links of the biogeochemical sulfur cycle of Earth have been studied: 1) the sulfur oxidizing process (occurring at aerobic conditions) and 2) the process of sulfur-reduction to hydrogen sulfide (anaerobic conditions). Sulfate-reducing bacteria (StRB) and sulfur-reducing bacteria (SrRB) are responsible for anaerobic reducing processes. At the present time the systematics of StRB include over 112 species distributed into 35 genera of Bacteria and Archaea. Moderately thermophilic and mesophilic SrRB belong to the Bacteria. The hyperthermophilic SrRB predominately belong to the domain Archaea and are included in the genera: Pyrodictium, Thermoproteus, Pyrobaculum, Thermophilum, Desulfurococcus, and Thermodiscus. The StRB and SrRB use a wide spectrum of substrates as electron donors for lithotrophic and heterotrophic type nutrition. The electron acceptors for the StRB include: sulfate, thiosulfate, sulfite, sulfur, arsenate, dithionite, tetrathionate, sulfur monoxide, iron, nitrite, selenite, fumarate, oxygen, carbon dioxide, and chlorine-containing phenol compounds. The Sulfate- and Sulfur-reducing bacteria are widely distributed in anaerobic ecosystems, including extreme environments like hot springs

  10. Response of temperature and density profiles to heat deposition profile and its impact on global scaling in LHD

    International Nuclear Information System (INIS)

    Yamada, H.; Murakami, S.; Yamazaki, K.

    2002-01-01

    Energy confinement and heat transport of net current-free NBI-heated plasmas in the Large Helical Device (LHD) are discussed with an emphasis on density dependence. Although the apparent density dependence of the energy confinement time has been demonstrated in a wide parameter range in LHD, the loss of this dependence has been observed in the high density regime under the specific condition. Broad heat deposition due to off-axis alignment and shallow penetration of neutral beams degrades the global energy confinement while the local heat transport maintains a clear temperature dependence lying between Bohm and gyro-Bohm characteristics. The central heat deposition inclines towards an intrinsic density dependence like τ E ∝(n-bar e /P) 0.6 from the saturated state. The broadening of the temperature profile due to the broad heat deposition profile contrasts with the invariant property which has observed widely as profile consistency and stiffness in tokamak experiments. (author)

  11. Response of temperature and density profiles to heat deposition profile and its impact on global scaling in LHD

    International Nuclear Information System (INIS)

    Yamada, H.; Murakami, S.; Yamazaki, K.

    2003-01-01

    Energy confinement and heat transport of net current-free NBI-heated plasmas in the Large Helical Device (LHD) are discussed with an emphasis on density dependence. Although the apparent density dependence of the energy confinement time has been demonstrated in a wide parameter range in LHD, the loss of this dependence has been observed in the high density regime under the specific condition. Broad heat deposition due to off-axis alignment and shallow penetration of neutral beams degrades the global energy confinement while the local heat transport maintains a clear temperature dependence lying between Bohm and gyro-Bohm characteristics. The central heat deposition inclines towards an intrinsic density dependence like τ E ∝(n-bars e /P) 0.6 from the saturated state. The broadening of the temperature profile due to the broad heat deposition profile contrasts with the invariant property which has observed widely as profile consistency and stiffness in tokamak experiments. (author)

  12. A multi-analytical approach to better assess the keratan sulfate contamination in animal origin chondroitin sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Restaino, Odile Francesca, E-mail: odilefrancesca.restaino@unina2.it [Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples (Italy); Finamore, Rosario, E-mail: rosario.finamore@unina2.it [Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples (Italy); Diana, Paola, E-mail: paola.diana@unina2.it [Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples (Italy); Marseglia, Mariacarmela, E-mail: marimars84@hotmail.it [Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples (Italy); Vitiello, Mario, E-mail: mariovitiello.ita@gmail.com [Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples (Italy); Casillo, Angela, E-mail: angela.casillo@unina.it [Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples (Italy); Bedini, Emiliano, E-mail: emiliano.bedini@unina.it [Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples (Italy); Parrilli, Michelangelo, E-mail: michelangelo.parrilli@unina.it [Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples (Italy); and others

    2017-03-15

    Chondroitin sulfate is a glycosaminoglycan widely used as active principle of anti-osteoarthritis drugs and nutraceuticals, manufactured by extraction from animal cartilaginous tissues. During the manufacturing procedures, another glycosaminoglycan, the keratan sulfate, might be contemporarily withdrawn, thus eventually constituting a contaminant difficult to be determined because of its structural similarity. Considering the strict regulatory rules on the pureness of pharmaceutical grade chondrotin sulfate there is an urgent need and interest to determine the residual keratan sulfate with specific, sensitive and reliable methods. To pursue this aim, in this paper, for the first time, we set up a multi-analytical and preparative approach based on: i) a newly developed method by high performance anion-exchange chromatography with pulsed amperometric detection, ii) gas chromatography-mass spectrometry analyses, iii) size exclusion chromatography analyses coupled with triple detector array module and on iv) strong anion exchange chromatography separation. Varied KS percentages, in the range from 0.1 to 19.0% (w/w), were determined in seven pharmacopeia and commercial standards and nine commercial samples of different animal origin and manufacturers. Strong anion exchange chromatography profiles of the samples showed three or four different peaks. These peaks analyzed by high performance anion-exchange with pulsed amperometric detection and size exclusion chromatography with triple detector array, ion chromatography and by mono- or two-dimensional nuclear magnetic resonance revealed a heterogeneous composition of both glycosaminoglycans in terms of sulfation grade and molecular weight. High molecular weight species (>100 KDa) were also present in the samples that counted for chains still partially linked to a proteoglycan core. - Highlights: • A multi-analytical approach was set up, for the first time, for the determination of the residual keratan sulfate

  13. A multi-analytical approach to better assess the keratan sulfate contamination in animal origin chondroitin sulfate

    International Nuclear Information System (INIS)

    Restaino, Odile Francesca; Finamore, Rosario; Diana, Paola; Marseglia, Mariacarmela; Vitiello, Mario; Casillo, Angela; Bedini, Emiliano; Parrilli, Michelangelo

    2017-01-01

    Chondroitin sulfate is a glycosaminoglycan widely used as active principle of anti-osteoarthritis drugs and nutraceuticals, manufactured by extraction from animal cartilaginous tissues. During the manufacturing procedures, another glycosaminoglycan, the keratan sulfate, might be contemporarily withdrawn, thus eventually constituting a contaminant difficult to be determined because of its structural similarity. Considering the strict regulatory rules on the pureness of pharmaceutical grade chondrotin sulfate there is an urgent need and interest to determine the residual keratan sulfate with specific, sensitive and reliable methods. To pursue this aim, in this paper, for the first time, we set up a multi-analytical and preparative approach based on: i) a newly developed method by high performance anion-exchange chromatography with pulsed amperometric detection, ii) gas chromatography-mass spectrometry analyses, iii) size exclusion chromatography analyses coupled with triple detector array module and on iv) strong anion exchange chromatography separation. Varied KS percentages, in the range from 0.1 to 19.0% (w/w), were determined in seven pharmacopeia and commercial standards and nine commercial samples of different animal origin and manufacturers. Strong anion exchange chromatography profiles of the samples showed three or four different peaks. These peaks analyzed by high performance anion-exchange with pulsed amperometric detection and size exclusion chromatography with triple detector array, ion chromatography and by mono- or two-dimensional nuclear magnetic resonance revealed a heterogeneous composition of both glycosaminoglycans in terms of sulfation grade and molecular weight. High molecular weight species (>100 KDa) were also present in the samples that counted for chains still partially linked to a proteoglycan core. - Highlights: • A multi-analytical approach was set up, for the first time, for the determination of the residual keratan sulfate

  14. Comparison of magnesium sulfate and sodium sulfate for removal of water from pesticide extracts of foods.

    Science.gov (United States)

    Schenck, Frank J; Callery, Patrick; Gannett, Peter M; Daft, Jonathan R; Lehotay, Steven J

    2002-01-01

    Water-miscible solvents, such as acetone and acetonitrile, effectively extract both polar and nonpolar pesticide residues from nonfatty foods. The addition of sodium chloride to the resulting acetonitrile-water or acetone-water extract (salting out) results in the separation of the water from the organic solvent. However, the organic solvent layer (pesticide extract) still contains some residual water, which can adversely affect separation procedures that follow, such as solid-phase extraction and/or gas chromatography. Drying agents, such as sodium sulfate or magnesium sulfate, are used to remove the water from the organic extracts. In the present study, we used nuclear magnetic resonance spectroscopy to study the composition of the phases resulting from salting out and to compare the effectiveness of sodium sulfate and magnesium sulfate as drying agents. The study showed that considerable amounts of water remained in the organic phase after phase separation. Sodium sulfate was a relatively ineffective drying agent, removing little or no residual water from the organic solvent. Magnesium sulfate proved to be a much more effective drying agent.

  15. Global Distribution of Net Electron Acceptance in Subseafloor Sediment

    Science.gov (United States)

    Fulfer, V. M.; Pockalny, R. A.; D'Hondt, S.

    2017-12-01

    We quantified the global distribution of net electron acceptance rates (e-/m2/year) in subseafloor sediment (>1.5 meters below seafloor [mbsf]) using (i) a modified version of the chemical-reaction-rate algorithm by Wang et al. (2008), (ii) physical properties and dissolved oxygen and sulfate data from interstitial waters of sediment cores collected by the Ocean Drilling Program, Integrated Ocean Drilling Program, International Ocean Discovery Program, and U.S. coring expeditions, and (iii) correlation of net electron acceptance rates to global oceanographic properties. Calculated net rates vary from 4.8 x 1019 e-/m2/year for slowly accumulating abyssal clay to 1.2 x 1023 e-/m2/year for regions of high sedimentation rate. Net electron acceptance rate correlates strongly with mean sedimentation rate. Where sedimentation rate is very low (e.g., 1 m/Myr), dissolved oxygen penetrates more than 70 mbsf and is the primary terminal electron acceptor. Where sedimentation rate is moderate (e.g., 3 to 60 m/Myr), dissolved sulfate penetrates as far as 700 mbsf and is the principal terminal electron acceptor. Where sedimentation rate is high (e.g., > 60 m/Myr), dissolved sulfate penetrates only meters, but is the principal terminal electron acceptor in subseafloor sediment to the depth of sulfate penetration. Because microbial metabolism continues at greater depths than the depth of sulfate penetration in fast-accumulating sediment, complete quantification of subseafloor metabolic rates will require consideration of other chemical species.

  16. Bactericide for sulfate-reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Shklyar, T F; Anoshina, G M; Blokhin, V Ye; Kisarrev, Ye L; Novikovsa, G M

    1981-01-01

    The aim of the invention is to find a bactericide for sulfate-reducing bacteria of oil fields in Western Siberia in order to suppress the biocorrosive activity on oil industry equipment. This goal is achieved by using M-nitroacetanylide as the bactericide of sulfate-reducing bacteria. This agent suppresses the activity of a stored culture of sulfate-reducing bacteria that comes from industrial waste waters injection wells of the Smotlor oil field.

  17. Sulfate-rich eolian and wet interdune deposits, erebus crater, meridiani Planum, Mars

    Science.gov (United States)

    Metz, J.M.; Grotzinger, J.P.; Rubin, D.M.; Lewis, K.W.; Squyres, S. W.; Bell, J.F.

    2009-01-01

    This study investigates three bedrock exposures at Erebus crater, an ?? 300 m diameter crater approximately 4 km south of Endurance crater on Mars. These outcrops, called Olympia, Payson, and Yavapai, provide additional evidence in support of the dune-interdune model proposed for the formation of the deposits at the Opportunity landing site in Meridiani Planum. There is evidence for greater involvement of liquid water in the Olympia outcrop exposures than was observed in Eagle or Endurance craters. The Olympia outcrop likely formed in a wet interdune and sand sheet environment. The facies observed within the Payson outcrop, which is likely stratigraphically above the Olympia outcrop, indicate that it was deposited in a damp-wet interdune, sand sheet, and eolian dune environment. The Yavapai outcrop, which likely stratigraphically overlies the Payson outcrop, indicates that it was deposited in primarily a sand sheet environment and also potentially in an eolian dune environment. These three outcrop exposures may indicate an overall drying-upward trend spanning the stratigraphic section from its base at the Olympia outcrop to its top at the Yavapai outcrop. This contrasts with the wetting-upward trend seen in Endurance and Eagle craters. Thus, the series of outcrops seen at Meridiani by Opportunity may constitute a full climatic cycle, evolving from dry to wet to dry conditions. ?? 2009, SEPM (Society for Sedimentary Geology).

  18. Heparan sulfate proteoglycan is associated with amyloid plaques and neuroanatomically targeted PrP pathology throughout the incubation period of scrapie-infected mice

    NARCIS (Netherlands)

    McBride, P. A.; Wilson, M. I.; Eikelenboom, P.; Tunstall, A.; Bruce, M. E.

    1998-01-01

    Heparan sulfate proteoglycan (HSPG) has been found to be associated with amyloid deposits in a number of diseases including the cerebral amyloid plaques of Alzheimer's disease and the transmissible spongiform encephalopathies (TSEs). The role of HSPG in amyloid formation and the neurodegenerative

  19. Eolian intracrater deposits on Mars - Physical properties and global distribution

    Science.gov (United States)

    Christensen, P. R.

    1983-01-01

    It is noted that more than one-fourth of all craters larger than 25 km in diameter between -50 deg S and 50 deg N have localized deposits of coarse material on the floor which are associated with the dark 'splotches' that are seen visually. If homogeneous, unconsolidated materials are assumed, the measured thermal inertias of these deposits imply effective grain sizes that range from 0.1 mm to 1 cm, with a modal value of 0.9 mm. Even though these deposits are coarser and darker than the surrounding terrains and the greater part of the Martian surface, they are not compositionally distinct from materials with similar albedos. It is thought most likely that these features were formed by entrapment of marginally mobile material that can be transported into, but not out of, crater depressions by the wind. Most of the 'splotch' deposits are coarser than the dune-forming materials occurring in the north polar region and inside extreme southern latitude craters; they probably form low, broad zibar dunes or lag deposits. The distribution of intracrater deposits is seen as suggesting that the intracrater features have been buried in the interior of Arabia and that the dust deposit is less extensive at the margins and may currently be expanding.

  20. Characterizing the influence of anthropogenic emissions and transport variability on sulfate aerosol concentrations at Mauna Loa Observatory

    Science.gov (United States)

    Potter, Lauren E.

    Sulfate aerosol in the atmosphere has substantial impacts on human health and environmental quality. Most notably, atmospheric sulfate has the potential to modify the earth's climate system through both direct and indirect radiative forcing mechanisms (Meehl et al., 2007). Emissions of sulfur dioxide, the primary precursor of sulfate aerosol, are now globally dominated by anthropogenic sources as a result of widespread fossil fuel combustion. Economic development in Asian countries since 1990 has contributed considerably to atmospheric sulfur loading, particularly China, which currently emits approximately 1/3 of global anthropogenic SO2 (Klimont et al., 2013). Observational and modeling studies have confirmed that anthropogenic pollutants from Asian sources can be transported long distances with important implications for future air quality and global climate change. Located in the remote Pacific Ocean (19.54°N, 155.58°W) at an elevation of 3.4 kilometers above sea level, Mauna Loa Observatory (MLO) is an ideal measurement site for ground-based, free tropospheric observations and is well situated to experience influence from springtime Asian outflow. This study makes use of a 14-year data set of aerosol ionic composition, obtained at MLO by the University of Hawaii at Manoa. Daily filter samples of total aerosol concentrations were made during nighttime downslope (free-tropospheric) transport conditions, from 1995 to 2008, and were analyzed for aerosol-phase concentrations of the following species: nitrate (NO3-), sulfate (SO42-), methanesulfonate (MSA), chloride (Cl-), oxalate, sodium (Na+), ammonium (NH 4+), potassium (K+), magnesium (Mg 2+), and calcium (Ca2+). An understanding of the factors controlling seasonal and interannual variations in aerosol speciation and concentrations at this site is complicated by the relatively short lifetimes of aerosols, compared with greenhouse gases which have also been sampled over long time periods at MLO. Aerosol filter

  1. Inter vs. intraglycosidic acetal linkages control sulfation pattern in semi-synthetic chondroitin sulfate.

    Science.gov (United States)

    Laezza, Antonio; De Castro, Cristina; Parrilli, Michelangelo; Bedini, Emiliano

    2014-11-04

    Microbial-sourced unsulfated chondroitin could be converted into chondroitin sulfate (CS) polysaccharide by a multi-step strategy relying upon benzylidenation and acetylation reactions as key-steps for its regioselective protection. By conducting the two reactions one- or two-pots, CSs with different sulfation patterns could be obtained at the end of the semi-synthesis. In particular, a CS polysaccharide possessing sulfate groups randomly distributed between positions 4 and 6 of N-acetyl-galactosamine (GalNAc) units could be obtained through the two-pots route, whereas the one-pot pathway allowed an additional sulfation at position 3 of some glucuronic acid (GlcA) units. This difference was ascribed to the stabilization of a labile interglycosidic benzylidene acetal involving positions O-3 and O-6 of some GlcA and GalNAc, respectively, when the benzylidene-acetylation reactions were conducted in a one-pot fashion. Isolation and characterization of a polysaccharide intermediate showing interglycosidic acetal moieties was accomplished. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. 21 CFR 582.5443 - Magnesium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium sulfate. 582.5443 Section 582.5443 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5443 Magnesium sulfate. (a) Product. Magnesium sulfate. (b) Conditions of use. This...

  3. 21 CFR 582.5230 - Calcium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium sulfate. 582.5230 Section 582.5230 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5230 Calcium sulfate. (a) Product. Calcium sulfate. (b) Conditions of use. This substance...

  4. 21 CFR 582.1125 - Aluminum sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum sulfate. 582.1125 Section 582.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  5. 21 CFR 182.1125 - Aluminum sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum sulfate. 182.1125 Section 182.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  6. Sulfation pattern of fucose branches affects the anti-hyperlipidemic activities of fucosylated chondroitin sulfate.

    Science.gov (United States)

    Wu, Nian; Zhang, Yu; Ye, Xingqian; Hu, Yaqin; Ding, Tian; Chen, Shiguo

    2016-08-20

    Fucosylated chondroitin sulfates (fCSs) are glycosaminoglycans extracted from sea cucumbers, consisting of chondroitin sulfate E (CSE) backbones and sulfated fucose branches. The biological properties of fCSs could be affected by the sulfation pattern of their fucose branches. In the present study, two fCSs were isolated from sea cucumbers Isostichopus badionotus (fCS-Ib) and Pearsonothuria graeffei (fCS-Pg). Their monosaccharide compositions of glucuronic acid (GlcA), N-acetylgalactosamine (GalNAc), fucose (Fuc) and sulfate were at similar molar ratio with 1.0/0.7/0.9/3.1 for fCS-Ib and 1.0/0.8/1.5/2.6 for fCS-Pg. The two fCSs have different sulfation patterns on their fucose branches, fCS-Pg with 3,4-O-disulfation while fCS-Ib with 2,4-O-disulfation. Their antihyperlipidemic effects were compared using a high-fat high-fructose diet (HFFD)-fed C57BL/6J mice model. Both fCS-Ib and fCS-Pg had significant effects on lipid profile improvement, liver protection, blood glucose diminution and hepatic glycogen synthesis. Specifically, fCS-Pg with 3,4-O-disulfation fucose branches was more effective in reduction of blood cholesterol (TC), low density lipoprotein (LDL) and atherogenic index (AI). Our results indicate that both fCSs, especially fCS-Pg, could be used as a potential anti-hyperlipidemic drug. Copyright © 2016. Published by Elsevier Ltd.

  7. Climate Impacts of Ozone and Sulfate Air Pollution from Specific Emissions Sectors and Regions

    Science.gov (United States)

    Unger, N.; Koch, D. M.; Shindell, D. T.; Streets, D. G.

    2006-12-01

    The secondary air pollutants ozone (O3) and sulfate aerosol are generated by human activities and affect the Earth's climate system. The global mean radiative forcings of these short-lived species depend on the location of the precursor gas emissions, which has so far prevented their incorporation into climate-motivated policy agreements. O3 and sulfate aerosol are strongly coupled through tropospheric photochemistry and yet air quality control efforts consider each species separately. Previous modeling work to assess climate impacts of O3 has focused on individual precursors, such as nitrogen oxides, even though policy action would target a particular sector. We use the G-PUCCINI atmospheric composition-climate model to isolate the O3 and sulfate direct radiative forcing impacts of 6 specific emissions sectors (industry, transport, power, domestic biofuel, domestic fossil fuel and biomass burning) from 7 geographic regions (North America, Europe, South Asia, East Asia, North Africa and the Middle East, Central and South Africa and South America) for the near future 2030 atmosphere. The goal of the study is to identify specific source sectors and regions that present the most effective opportunities to mitigate global warming. At 2030, the industry and power sectors dominate the sulfate forcing across all regions, with East Asia, South Asia and North Africa and Middle East contributing the largest sulfate forcings (-100 to 120 mWm-2). The transport sector represents an important O3 forcing from all regions ranging from 5 mWm-2 (Europe) to 12 mWm-2 (East Asia). Domestic biofuel O3 forcing is important for the East Asia (13 mWm-2), South Asia (7 mWm-2) and Central and South Africa (10 mWm-2) regions. Biomass burning contributes large O3 forcings for the Central and South Africa (15 mWm-2) and South America (11 mWm-2) regions. In addition, the power sector O3 forcings from East Asia (14 mWm-2) and South Asia (8 mWm-2) are also substantial. Considering the sum of the O

  8. Formation of aqueous-phase sulfate during the haze period in China: Kinetics and atmospheric implications

    Science.gov (United States)

    Zhang, Haijie; Chen, Shilu; Zhong, Jie; Zhang, Shaowen; Zhang, Yunhong; Zhang, Xiuhui; Li, Zesheng; Zeng, Xiao Cheng

    2018-03-01

    Sulfate is one of the most important components in the aerosol due to its key role in air pollution and global climate change. Recent work has suggested that reactive nitrogen chemistry in aqueous water can explain the missing source of sulfate in the aqueous water. Herein, we have mapped out the energy profile of the oxidization process of SO2 leading from NO2 and two feasible three-step mechanisms have been proposed. For the oxidation of HOSO2- and HSO3- by the dissolved NO2 in weakly acidic and neutral aerosol (pH ≤ 7), the main contribution to the missing sulfate production comes from the oxidation of HOSO2-. The whole process is a self-sustaining process. For the oxidation of SO32- in alkaline aerosol (pH > 7), the third step - decomposition step of H2O or hydrolysis of SO3 step which are two parallel processes are the rate-limiting steps. The present results are of avail to better understand the missing source of sulfate in the aerosol and hence may lead to better science-based solutions for resolving the severe haze problems in China.

  9. Shotgun lipidomic analysis of chemically sulfated sterols compromises analytical sensitivity

    DEFF Research Database (Denmark)

    Casanovas, Albert; Hannibal-Bach, Hans Kristian; Jensen, Ole Nørregaard

    2014-01-01

    Shotgun lipidomics affords comprehensive and quantitative analysis of lipid species in cells and tissues at high-throughput [1 5]. The methodology is based on direct infusion of lipid extracts by electrospray ionization (ESI) combined with tandem mass spectrometry (MS/MS) and/or high resolution F...... low ionization efficiency in ESI [7]. For this reason, chemical derivatization procedures including acetylation [8] or sulfation [9] are commonly implemented to facilitate ionization, detection and quantification of sterols for global lipidome analysis [1-3, 10]....

  10. 21 CFR 524.1484e - Neomycin sulfate and polymyxin B sulfate ophthalmic solution.

    Science.gov (United States)

    2010-04-01

    ... ophthalmic solution. 524.1484e Section 524.1484e Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS OPHTHALMIC AND TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.1484e Neomycin sulfate and polymyxin B sulfate ophthalmic solution. (a...

  11. Galactose 6-sulfate sulfatase activity in Morquio syndrome

    International Nuclear Information System (INIS)

    Yutaka, T.; Okada, S.; Kato, T.; Inui, K.; Yabuuhi, H.

    1982-01-01

    The authors have prepared a new substrate, o-β-D-sulfo-galactosyl-(1-4)-β-D-6-sulfo-2-acetamido-2-deoxyglucosyl-(1-4)-D-[1- 3 H]galactitol, from shark cartilage keratan sulfate, for the assay of galactose 6-sulfate sulfatase activity. Using this substrate, they found there was a striking deficiency of galactose 6-sulfate sulfatase activity, in addition to the known deficiency of N-acetylgalactosamine 6-sulfate sulfatase, in the cultured skin fibroblasts of patients with Morquio syndrome. Their results could be explained by the hypothesis that accumulation of keratan sulfate and chondroitin 6-sulfate in Morquio syndrome is due to a deficiency of galactose 6-sulfate sulfatase and N-acetylgalactosamine 6-sulfate sulfatase activity, which are necessary for the degradation of these two mucopolysaccharides. (Auth.)

  12. Galactose 6-sulfate sulfatase activity in Morquio syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Yutaka, T.; Okada, S.; Kato, T.; Inui, K.; Yabuuhi, H. (Osaka Univ. (Japan). Faculty of Medicine)

    1982-07-01

    The authors have prepared a new substrate, o-..beta..-D-sulfo-galactosyl-(1-4)-..beta..-D-6-sulfo-2-acetamido-2-deoxyglucosyl-(1-4)-D-(1-/sup 3/H)galactitol, from shark cartilage keratan sulfate, for the assay of galactose 6-sulfate sulfatase activity. Using this substrate, they found there was a striking deficiency of galactose 6-sulfate sulfatase activity, in addition to the known deficiency of N-acetylgalactosamine 6-sulfate sulfatase, in the cultured skin fibroblasts of patients with Morquio syndrome. Their results could be explained by the hypothesis that accumulation of keratan sulfate and chondroitin 6-sulfate in Morquio syndrome is due to a deficiency of galactose 6-sulfate sulfatase and N-acetylgalactosamine 6-sulfate sulfatase activity, which are necessary for the degradation of these two mucopolysaccharides.

  13. 21 CFR 184.1643 - Potassium sulfate.

    Science.gov (United States)

    2010-04-01

    ... hydroxide or potassium carbonate. (b) The ingredient meets the specifications of the “Food Chemicals Codex... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg...

  14. Hydrometallurgical process for recovering iron sulfate and zinc sulfate from baghouse dust

    Science.gov (United States)

    Zaromb, Solomon; Lawson, Daniel B.

    1994-01-01

    A process for recovering zinc/rich and iron-rich fractions from the baghouse dust that is generated in various metallurgical operations, especially in steel-making and other iron-making plants, comprises the steps of leaching the dust by hot concentrated sulfuric acid so as to generate dissolved zinc sulfate and a precipitate of iron sulfate, separating the precipitate from the acid by filtration and washing with a volatile liquid, such as methanol or acetone, and collecting the filtered acid and the washings into a filtrate fraction. The volatile liquid may be recovered distillation, and the zinc may be removed from the filtrate by alternative methods, one of which involves addition of a sufficient amount of water to precipitate hydrated zinc sulfate at 10.degree. C., separation of the precipitate from sulfuric acid by filtration, and evaporation of water to regenerate concentrated sulfuric acid. The recovery of iron may also be effected in alternative ways, one of which involves roasting the ferric sulfate to yield ferric oxide and sulfur trioxide, which can be reconverted to concentrated sulfuric acid by hydration. The overall process should not generate any significant waste stream.

  15. The ceric sulfate dosimeter

    DEFF Research Database (Denmark)

    Bjergbakke, Erling

    1970-01-01

    The process employed for the determination of absorbed dose is the reduction of ceric ions to cerous ions in a solution of ceric sulfate and cerous sulfate in 0.8N sulfuric acid: Ce4+→Ce 3+ The absorbed dose is derived from the difference in ceric ion concentration before and after irradiation...

  16. 21 CFR 184.1443 - Magnesium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium sulfate. 184.1443 Section 184.1443 Food... Specific Substances Affirmed as GRAS § 184.1443 Magnesium sulfate. (a) Magnesium sulfate (MgSO4·7H2O, CAS... magnesium oxide, hydroxide, or carbonate with sulfuric acid and evaporating the solution to crystallization...

  17. Regeneration of sulfated metal oxides and carbonates

    Science.gov (United States)

    Hubble, Bill R.; Siegel, Stanley; Cunningham, Paul T.

    1978-03-28

    Alkali metal or alkaline earth metal carbonates such as calcium carbonate and magnesium carbonate found in dolomite or limestone are employed for removal of sulfur dioxide from combustion exhaust gases. The sulfated carbonates are regenerated to oxides through use of a solid-solid reaction, particularly calcium sulfide with calcium sulfate to form calcium oxide and sulfur dioxide gas. The regeneration is performed by contacting the sulfated material with a reductant gas such as hydrogen within an inert diluent to produce calcium sulfide in mixture with the sulfate under process conditions selected to permit the sulfide-sulfate, solid-state reaction to occur.

  18. High concentrations of manganese and sulfur in deposits on Murray Ridge, Endeavour Crater, Mars

    Science.gov (United States)

    Arvidson, Raymond E.; Squyres, Steven W.; Morris, Richard V.; Knoll, Andrew H.; Gellert, Ralf; Clark, Benton C.; Catalano, Jeffrey G.; Jolliff, Bradley L.; McLennan, Scott M.; Herkenhoff, Kenneth E.; VanBommel, Scott; Mittelfehldt, David W.; Grotzinger, John P.; Guinness, Edward A.; Johnson, Jeffrey R.; Bell, James F.; Farrand, William H.; Stein, Nathan; Fox, Valerie K.; Golombek, Matthew P.; Hinkle, Margaret A. G.; Calvin, Wendy M.; de Souza, Paulo A.

    2016-01-01

    Mars Reconnaissance Orbiter HiRISE images and Opportunity rover observations of the ~22 km wide Noachian age Endeavour Crater on Mars show that the rim and surrounding terrains were densely fractured during the impact crater-forming event. Fractures have also propagated upward into the overlying Burns formation sandstones. Opportunity’s observations show that the western crater rim segment, called Murray Ridge, is composed of impact breccias with basaltic compositions, as well as occasional fracture-filling calcium sulfate veins. Cook Haven, a gentle depression on Murray Ridge, and the site where Opportunity spent its sixth winter, exposes highly fractured, recessive outcrops that have relatively high concentrations of S and Cl, consistent with modest aqueous alteration. Opportunity’s rover wheels serendipitously excavated and overturned several small rocks from a Cook Haven fracture zone. Extensive measurement campaigns were conducted on two of them: Pinnacle Island and Stuart Island. These rocks have the highest concentrations of Mn and S measured to date by Opportunity and occur as a relatively bright sulfate-rich coating on basaltic rock, capped by a thin deposit of one or more dark Mn oxide phases intermixed with sulfate minerals. We infer from these unique Pinnacle Island and Stuart Island rock measurements that subsurface precipitation of sulfate-dominated coatings was followed by an interval of partial dissolution and reaction with one or more strong oxidants (e.g., O2) to produce the Mn oxide mineral(s) intermixed with sulfate-rich salt coatings. In contrast to arid regions on Earth, where Mn oxides are widely incorporated into coatings on surface rocks, our results demonstrate that on Mars the most likely place to deposit and preserve Mn oxides was in fracture zones where migrating fluids intersected surface oxidants, forming precipitates shielded from subsequent physical erosion.

  19. AMS measurements of global fallout U-236 and Pu in an ombrotrophic peat profile: evidence for their post depositional migration

    Energy Technology Data Exchange (ETDEWEB)

    Quinto, Francesca; Hrnecek, Erich; Krachler, Michael [European Commission Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Shotyk, William [Department of Renewable Resources, University of Alberta, 839 General Services Building, Edmonton, AB (Canada); Steier, Peter; Winkler, Stephan; Golser, Robin [VERA Laboratory, Faculty of Physics, University of Vienna, Waehringer Strasse 17, A-1090 Vienna (Austria)

    2014-07-01

    U-236, Pu-239, Pu-240, Pu-241 and Pu-242 were analysed in an ombrotrophic peat core representing the last 80 years of atmospheric deposition. The determination of these isotopes at femtogram and attogram levels was possible by using ultra-clean laboratory procedures and accelerator mass spectrometry. Since the Pu isotopic composition characteristic for global fallout, as well as anthropogenic U-236, were identified in peat samples pre-dating the period of atmospheric atom bomb testing, migration of Pu and U within the peat profile is clearly indicated. The vertical profile of the U-236/U-238 isotopic ratio represents the first observation of the U-236 bomb peak in a terrestrial environment. Comparing the abundances of the global fallout derived U-236 and Pu-239 along the peat core, the post depositional migration of plutonium exceeds that of uranium. These results highlight, for the first time, the mobility of Pu and U in a peat bog with implications for their migration in other acidic, organic rich environments.

  20. Christmas Island lagoonal lakes, models for the deposition of carbonate–evaporite–organic laminated sediments

    OpenAIRE

    Trichet , Jean; Défarge , Christian; Tribble , J.; Tribble , G.W.; Sansone , F.J.

    2001-01-01

    The atoll of Christmas Island (now known as Kiritimati) in the Kiribati Republic (Central Pacific) lies at about 2°N in the intertropical convergence zone. Much of the surface area of the atoll (ca. 360 km2) is occupied by numerous lakes in which carbonate, evaporite (calcium sulfate, halite) and organic layers are deposited. Observations suggest that deposition of these different laminae is controlled by climatic and biologic factors. It is thought that periodic climatic variations, such as ...

  1. Separation of pharmacologically active nitrogen-containing compounds on silica gels modified with 6,10-ionene, dextran sulfate, and gold nanoparticles

    Science.gov (United States)

    Ioutsi, A. N.; Shapovalova, E. N.; Ioutsi, V. A.; Mazhuga, A. G.; Shpigun, O. A.

    2017-12-01

    New stationary phases for HPLC are obtained via layer-by-layer deposition of polyelectrolytes and studied: (1) silica gel modified layer-by-layer with 6,10-ionene and dextran sulfate (Sorbent 1); (2) silica gel twice subjected to the above modification (Sorbent 2); and (3) silica gel modified with 6,10-ionene, gold nanoparticles, and dextran sulfate (Sorbent 3). The effect the content of the organic solvent in the mobile phase and the concentration and pH of the buffer solution have on the chromatographic behavior of several pharmacologically active nitrogen-containing compounds is studied. The sorbents are stable during the process and allow the effective separation of beta-blockers, calcium channel blockers, alpha-agonists, and antihistamines. A mixture of caffeine, nadolol, tetrahydrozoline, pindolol, orphenadrine, doxylamine, carbinoxamine, and chlorphenamine is separated in 6.5 min on the silica gel modified with 6,10-ionene, gold nanoparticles, and dextran sulfate.

  2. Multi-model study of HTAP II on sulfur and nitrogen deposition

    Science.gov (United States)

    Tan, Jiani; Fu, Joshua S.; Dentener, Frank; Sun, Jian; Emmons, Louisa; Tilmes, Simone; Sudo, Kengo; Flemming, Johannes; Eiof Jonson, Jan; Gravel, Sylvie; Bian, Huisheng; Davila, Yanko; Henze, Daven K.; Lund, Marianne T.; Kucsera, Tom; Takemura, Toshihiko; Keating, Terry

    2018-05-01

    This study uses multi-model ensemble results of 11 models from the second phase of Task Force Hemispheric Transport of Air Pollution (HTAP II) to calculate the global sulfur (S) and nitrogen (N) deposition in 2010. Modeled wet deposition is evaluated with observation networks in North America, Europe and East Asia. The modeled results agree well with observations, with 76-83 % of stations being predicted within ±50 % of observations. The models underestimate SO42-, NO3- and NH4+ wet depositions in some European and East Asian stations but overestimate NO3- wet deposition in the eastern United States. Intercomparison with previous projects (PhotoComp, ACCMIP and HTAP I) shows that HTPA II has considerably improved the estimation of deposition at European and East Asian stations. Modeled dry deposition is generally higher than the inferential data calculated by observed concentration and modeled velocity in North America, but the inferential data have high uncertainty, too. The global S deposition is 84 Tg(S) in 2010, with 49 % in continental regions and 51 % in the ocean (19 % of which coastal). The global N deposition consists of 59 Tg(N) oxidized nitrogen (NOy) deposition and 64 Tg(N) reduced nitrogen (NHx) deposition in 2010. About 65 % of N is deposited in continental regions, and 35 % in the ocean (15 % of which coastal). The estimated outflow of pollution from land to ocean is about 4 Tg(S) for S deposition and 18 Tg(N) for N deposition. Comparing our results to the results in 2001 from HTAP I, we find that the global distributions of S and N deposition have changed considerably during the last 10 years. The global S deposition decreases 2 Tg(S) (3 %) from 2001 to 2010, with significant decreases in Europe (5 Tg(S) and 55 %), North America (3 Tg(S) and 29 %) and Russia (2 Tg(S) and 26 %), and increases in South Asia (2 Tg(S) and 42 %) and the Middle East (1 Tg(S) and 44 %). The global N deposition increases by 7 Tg(N) (6 %), mainly contributed by South Asia

  3. The confused world of sulfate attack on concrete

    International Nuclear Information System (INIS)

    Neville, Adam

    2004-01-01

    External sulfate attack is not completely understood. Part I identifies the issues involved, pointing out disagreements, and distinguishes between the mere occurrence of chemical reactions of sulfates with hydrated cement paste and the damage or deterioration of concrete; only the latter are taken to represent sulfate attack. Furthermore, sulfate attack is defined as deleterious action involving sulfate ions; if the reaction is physical, then, it is physical sulfate attack that takes place. The discussion of the two forms of sulfate attack leads to a recommendation for distinct nomenclature. Sulfate attack on concrete structures in service is not widespread, and the amount of laboratory-based research seems to be disproportionately large. The mechanisms of attack by different sulfates--sodium, calcium, and magnesium--are discussed, including the issue of topochemical and through-solution reactions. The specific aspects of the action of magnesium sulfate are discussed, and the differences between laboratory conditions and field exposure are pointed out. Part II discusses the progress of sulfate attack and its manifestations. This is followed by a discussion of making sulfate-resisting concrete. One of the measures is to use Type V cement, and this topic is extensively discussed. Likewise, the influence of w/c on sulfate resistance is considered. The two parameters are not independent of one another. Moreover, the cation in the sulfate salt has a strong bearing on the efficiency of the Type V cement. Recent interpretations of the Bureau of Reclamation tests, both long term and accelerated, are evaluated, and it appears that they need reworking. Part III reviews the standards and guides for the classification of the severity of exposure of structures to sulfates and points out the lack of calibration of the various classes of exposure. A particular problem is the classification of soils because much depends on the extraction ratio of sulfate in the soil: there is a

  4. Sulfation in lead-acid batteries

    Science.gov (United States)

    Catherino, Henry A.; Feres, Fred F.; Trinidad, Francisco

    Virtually, all military land vehicle systems use a lead-acid battery to initiate an engine start. The maintainability of these batteries and as a consequence, system readiness, has suffered from a lack of understanding of the reasons for battery failure. Often, the term most commonly heard for explaining the performance degradation of lead-acid batteries is the word, sulfation. Sulfation is a residual term that came into existence during the early days of lead-acid battery development. The usage is part of the legend that persists as a means for interpreting and justifying the eventual performance deterioration and failure of lead-acid batteries. The usage of this term is confined to the greater user community and, over time, has encouraged a myriad of remedies for solving sulfation problems. One can avoid the connotations associated with the all-inclusive word, sulfation by visualizing the general "sulfation" effect in terms of specific mechanistic models. Also, the mechanistic models are essential for properly understanding the operation and making proper use this battery system. It is evident that the better the model, the better the level of understanding.

  5. Inventories and mobilization of unsaturated zone sulfate, fluoride, and chloride related to land use change in semiarid regions, southwestern United States and Australia

    Science.gov (United States)

    Scanlon, Bridget R.; Stonestrom, David A.; Reedy, Robert C.; Leaney, Fred W.; Gates, John; Cresswell, Richard G.

    2009-01-01

    Unsaturated zone salt reservoirs are potentially mobilized by increased groundwater recharge as semiarid lands are cultivated. This study explores the amounts of pore water sulfate and fluoride relative to chloride in unsaturated zone profiles, evaluates their sources, estimates mobilization due to past land use change, and assesses the impacts on groundwater quality. Inventories of water‐extractable chloride, sulfate, and fluoride were determined from borehole samples of soils and sediments collected beneath natural ecosystems (N = 4), nonirrigated (“rain‐fed”) croplands (N = 18), and irrigated croplands (N = 6) in the southwestern United States and in the Murray Basin, Australia. Natural ecosystems contain generally large sulfate inventories (7800–120,000 kg/ha) and lower fluoride inventories (630–3900 kg/ha) relative to chloride inventories (6600–41,000 kg/ha). Order‐of‐magnitude higher chloride concentrations in precipitation and generally longer accumulation times result in much larger chloride inventories in the Murray Basin than in the southwestern United States. Atmospheric deposition during the current dry interglacial climatic regime accounts for most of the measured sulfate in both U.S. and Australian regions. Fluoride inventories are greater than can be accounted for by atmospheric deposition in most cases, suggesting that fluoride may accumulate across glacial/interglacial climatic cycles. Chemical modeling indicates that fluorite controls fluoride mobility and suggests that water‐extractable fluoride may include some fluoride from mineral dissolution. Increased groundwater drainage/recharge following land use change readily mobilized chloride. Sulfate displacement fronts matched or lagged chloride fronts by up to 4 m. In contrast, fluoride mobilization was minimal in all regions. Understanding linkages between salt inventories, increased recharge, and groundwater quality is important for quantifying impacts of anthropogenic

  6. Heparan sulfate and cell division

    Directory of Open Access Journals (Sweden)

    Porcionatto M.A.

    1999-01-01

    Full Text Available Heparan sulfate is a component of vertebrate and invertebrate tissues which appears during the cytodifferentiation stage of embryonic development. Its structure varies according to the tissue and species of origin and is modified during neoplastic transformation. Several lines of experimental evidence suggest that heparan sulfate plays a role in cellular recognition, cellular adhesion and growth control. Heparan sulfate can participate in the process of cell division in two distinct ways, either as a positive or negative modulator of cellular proliferation, or as a response to a mitogenic stimulus.

  7. Sulfate and dissolved sulfide variation under low COD/Sulfate ratio in Up-flow Anaerobic Sludge Blanket (UASB treating domestic wastewater

    Directory of Open Access Journals (Sweden)

    Sérvio Túlio Alves Cassini

    2012-04-01

    Full Text Available In this study, the dynamics of sulfate reduction and dissolved sulfide generation (S2-, HS-, H2Saq in liquid phase was evaluated in an UASB reactor treating domestic wastewater with low COD/Sulfate content. The evaluation in the UASB reactor was performed at three sludge heights (0.25, 1.25, 2.25 taps and effluent of the reactor. Sulfate reduction was verified in the reactor, with an average reduction of 24 % throughout the experiment period. However, the dissolved sulfide concentration in the reactor was not higher than 5.0 mg Sdiss/L. The kinetic model of first order showed good fit to describe the sulfate reduction under different COD/sulfate ratio, with K1app between 2.94x10-5 s-1 and 1.17x10-5 s-1 with correlation coefficients for data over 91%. The maximum rate to sulfate reduction was 18.0 mg SO42-/L.h-1 and small variation in COD/sulfate ratio promotes a significant change both in sulfate and sulfide concentrations.

  8. Global Atmosphere Watch Workshop on Measurement-Model ...

    Science.gov (United States)

    The World Meteorological Organization’s (WMO) Global Atmosphere Watch (GAW) Programme coordinates high-quality observations of atmospheric composition from global to local scales with the aim to drive high-quality and high-impact science while co-producing a new generation of products and services. In line with this vision, GAW’s Scientific Advisory Group for Total Atmospheric Deposition (SAG-TAD) has a mandate to produce global maps of wet, dry and total atmospheric deposition for important atmospheric chemicals to enable research into biogeochemical cycles and assessments of ecosystem and human health effects. The most suitable scientific approach for this activity is the emerging technique of measurement-model fusion for total atmospheric deposition. This technique requires global-scale measurements of atmospheric trace gases, particles, precipitation composition and precipitation depth, as well as predictions of the same from global/regional chemical transport models. The fusion of measurement and model results requires data assimilation and mapping techniques. The objective of the GAW Workshop on Measurement-Model Fusion for Global Total Atmospheric Deposition (MMF-GTAD), an initiative of the SAG-TAD, was to review the state-of-the-science and explore the feasibility and methodology of producing, on a routine retrospective basis, global maps of atmospheric gas and aerosol concentrations as well as wet, dry and total deposition via measurement-model

  9. Effect of alterations in glomerular charge on deposition of cationic and anionic antibodies to fixed glomerular antigens in the rat.

    Science.gov (United States)

    Adler, S; Baker, P; Pritzl, P; Couser, W G

    1985-07-01

    Reduction of the negative charge of the glomerular capillary wall alters its charge- and size-selective properties. To investigate the effect of alteration in glomerular charge properties on antibody localization, we prepared cationic and anionic fractions of antibodies to subepithelial and glomerular basement membrane (GBM) antigens, and compared their deposition in normal rats and rats treated with protamine sulfate or aminonucleoside of puromycin to reduce capillary wall charge. IgG antibodies were eluted from kidneys of rats with active Heymann's nephritis (AICN), passive Heymann's nephritis (PHN), or anti-GBM nephritis (NTN), separated into cationic and anionic fractions, and radiolabeled with iodine 125 or iodine 131. Relative antibody content of each fraction was determined by incubation with an excess of glomerular antigen. Varying amounts of cationic and anionic IgG eluted from kidneys of rats with AICN or PHN were injected into 24 normal or protamine sulfate-treated rats. Glomerular binding of all antibodies was highly correlated with IgG delivery to the kidney. The ratio of cationic to anionic antibody deposited in the glomeruli of normal rats after 4 hours was 1.08 +/- 0.07 for AICN eluate and 0.37 +/- 0.04 for PHN eluate. The ratios were not significantly different in animals pretreated with protamine sulfate (1.15 +/- 0.06 and 0.44 +/- 0.06, respectively; P greater than 0.05). Varying amounts of cationic and anionic IgG eluted from kidneys of rats with NTN were injected into 10 normal rats and four rats treated with aminonucleoside of puromycin. Glomerular binding of antibody was again highly correlated with IgG delivery to the kidney. The ratio of cationic to anionic antibody deposited in the glomeruli of normal rats after 1 hour was 1.03 +/- 0.06, and was not significantly altered in rats treated with aminonucleoside of puromycin (1.05 +/- 0.03, P greater than 0.5). Proteinuria in PHN rats was also unaffected by treatment with protamine sulfate for

  10. Setting constraints on the nature and origin of the two major hydrous sulfates on Mars: Monohydrated and polyhydrated sulfates

    Science.gov (United States)

    Wang, Alian; Jolliff, Bradley L.; Liu, Yang; Connor, Kathryn

    2016-04-01

    Monohydrated Mg sulfate (MgSO4·H2O) and polyhydrated sulfate are the most common and abundant hydrous sulfates observed thus far on Mars. They are widely distributed and coexist in many locations. On the basis of results from two new sets of experiments, in combination with past experimental studies and the subsurface salt mineralogy observed at a saline playa (Dalangtan, DLT) in a terrestrial analogue hyperarid region on the Tibet Plateau, we can now set new constraints on the nature and origin of these two major Martian sulfates. Starkeyite (MgSO4·4H2O) is the best candidate for polyhydrated sulfate. MgSO4·H2O in the form of "LH-1w," generated from dehydration of Mg sulfates with high degrees of hydration, is the most likely mineral form for the majority of Martian monohydrated Mg sulfate. Two critical properties of Mg sulfates are responsible for the coexistence of these two phases that have very different degrees of hydration: (1) the metastability of a substructural unit in starkeyite at relatively low temperatures, and (2) catalytic effects attributed to coprecipitated species (sulfates, chlorides, oxides, and hydroxides) from chemically complex brines that help overcome the metastability of starkeyite. The combination of these two properties controls the coexistence of the LH-1w layer and starkeyite layers at many locations on Mars, which sometimes occur in an interbedded stratigraphy. The structural H2O held by these two broadly distributed sulfates represents a large H2O reservoir at the surface and in the shallow subsurface on current Mars.

  11. Dzhezkazgan and associated sandstone copper deposits of the Chu-Sarysu basin, Central Kazakhstan

    Science.gov (United States)

    Box, Stephen E.; Seltmann, Reimar; Zientek, Michael L.; Syusyura, Boris; Creaser, Robert A.; Dolgopolova, Alla

    2012-01-01

    Sandstone-hosted copper (sandstone Cu) deposits occur within a 200-km reach of the northern Chu-Sarysu basin of central Kazakhstan (Dzhezkazgan and Zhaman-Aibat deposits, and the Zhilandy group of deposits). The deposits consist of Cu sulfide minerals as intergranular cement and grain replacement in 10 ore-bearing members of sandstone and conglomerate within a 600- to 1,000-m thick Pennsylvanian fluvial red-bed sequence. Copper metal content of the deposits ranges from 22 million metric tons (Mt, Dzehzkazgan) to 0.13Mt (Karashoshak in the Zhilandy group), with average grades of 0.85 to 1.7% Cu and significant values for silver (Ag) and rhenium (Re). Broader zones of iron reduction (bleaching) of sandstones and conglomerates of the red-bed sequence extend over 10 km beyond each of the deposits along E-NE-trending anticlines, which began to form in the Pennsylvanian. The bleached zones and organic residues within them are remnants of ormer petroleum fluid accumulations trapped by these anticlines. Deposit sites along these F1anticlines are localized at and adjacent to the intersections of nearly orthogonal N-NW-trending F2synclines. These structural lows served to guide the flow of dense ore brines across the petroleum-bearing anticlines, resulting in ore sulfide precipitation where the two fluids mixed. The ore brine was sourced either from the overlying Early Permian lacustrine evaporitic basin, whose depocenter occurs between the major deposits, or from underlying Upper Devonian marine evaporites. Sulfur isotopes indicate biologic reduction of sulfate but do not resolve whether the sulfate was contributed from the brine or from the petroleum fluids. New Re-Os age dates of Cu sulfides from the Dzhezkazgan deposit indicate that mineralization took place between 299 to 309 Ma near the Pennsylvanian-Permian age boundary. At the Dzhezkazgan and some Zhilandy deposits, F2fold deformation continued after ore deposition. Copper orebodies in Lower Permian

  12. Mineralization, geochemistry, fluid inclusion and sulfur stable isotope studies in the carbonate hosted Baqoroq Cu-Zn-As deposit (NE Anarak

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Jazi

    2015-10-01

    , crustification banding,andbotryoidaltexture. The host rock has undergone dolomitization alteration Hypogene minerals include chalcopyrite, pyrite, sphalerite, galena, enargite, barite, and calcite. Supergene minerals include malachite, azurite, covellite, chrysocolla, chalcocite, cerussite, smithsonite, native copper and iron oxide minerals. Sulfantimonides and sulfardenides are abundant in low- and moderate temperature stages of the deposit, while bismuth sulfides generally occur in higher temperature ores, according to Malakhov, 1968. Analysis of rich ore samples indicates copper is the most abundant heavy metal in the ore (average 20.28 wt%, followed by zinc (average ~ 1 wt% and arsenic (average ~ 1 wt%, respectively. Thepresence of many trace elements in the ore, such as Sb, Pb, Ag and V, are very important. Element pairs such as Ag-Cu, Zn-Cd, Zn-Sb, Fe-V and Pb-Mo are correlated with each other. The Baqoroq ore minerals are rich in As, Sb and poor in Bi. Highamountsof antimony usually occur in a low temperature stage (Marshall and Joensuu, 1961. Malakhov (1968 suggested thata high Sb/Biratio in the ore indicates a low temperature of formation for the Baqoroq deposit. Sulfide mineralization fluids were found to have homogenization temperatures between 259 and 354°C and salinities between 8.37 and 13.18 wt% NaCl eq. Surface water apparently diluted theore-bearing fluids in the final stages and deposited sulfide-freecalcite veins at relatively low temperatures (78 to 112 °C and low salinities (3.59 to 6.07 wt% NaCl eq.. The δ34S values of barite of the Baqoroq deposit range from +13.1 to +14.37‰from whichδ34S values of ore fluids were calculated to vary between -8.57‰ and -7.23‰. Sulfur within natural environments is derived ultimately from either igneous or seawater sources (Ohmoto and Rye, 1979. Barite δ34S values of Baqoroq deposit lie within the range of Cretaceous-age oceanic sulfate values. The reduction of sulfate to sulfide couldhave been caused either by

  13. Thermophilic Sulfate-Reducing Bacteria in Cold Marine Sediment

    DEFF Research Database (Denmark)

    ISAKSEN, MF; BAK, F.; JØRGENSEN, BB

    1994-01-01

    sulfate-reducing bacteria was detected. Time course experiments showed constant sulfate reduction rates at 4 degrees C and 30 degrees C, whereas the activity at 60 degrees C increased exponentially after a lag period of one day. Thermophilic, endospore-forming sulfate-reducing bacteria, designated strain...... C to search for presence of psychrophilic, mesophilic and thermophilic sulfate-reducing bacteria. Detectable activity was initially only in the mesophilic range, but after a lag phase sulfate reduction by thermophilic sulfate-reducing bacteria were observed. No distinct activity of psychrophilic...... P60, were isolated and characterized as Desulfotomaculum kuznetsovii. The temperature response of growth and respiration of strain P60 agreed well with the measured sulfate reduction at 50 degrees-70 degrees C. Bacteria similar to strain P60 could thus be responsible for the measured thermophilic...

  14. Thermophilic Sulfate-Reducing Bacteria in Cold Marine Sediment

    DEFF Research Database (Denmark)

    ISAKSEN, MF; BAK, F.; JØRGENSEN, BB

    1994-01-01

    C to search for presence of psychrophilic, mesophilic and thermophilic sulfate-reducing bacteria. Detectable activity was initially only in the mesophilic range, but after a lag phase sulfate reduction by thermophilic sulfate-reducing bacteria were observed. No distinct activity of psychrophilic...... sulfate-reducing bacteria was detected. Time course experiments showed constant sulfate reduction rates at 4 degrees C and 30 degrees C, whereas the activity at 60 degrees C increased exponentially after a lag period of one day. Thermophilic, endospore-forming sulfate-reducing bacteria, designated strain...... P60, were isolated and characterized as Desulfotomaculum kuznetsovii. The temperature response of growth and respiration of strain P60 agreed well with the measured sulfate reduction at 50 degrees-70 degrees C. Bacteria similar to strain P60 could thus be responsible for the measured thermophilic...

  15. Distribution of iron- and sulfate-reducing bacteria across a coastal acid sulfate soil (CASS environment: implications for passive bioremediation by tidal inundation

    Directory of Open Access Journals (Sweden)

    Yu-Chen eLing

    2015-07-01

    Full Text Available Coastal acid sulfate soils (CASS constitute a serious and global environmental problem. Oxidation of iron sulfide minerals exposed to air generates sulfuric acid with consequently negative impacts on coastal and estuarine ecosystems. Tidal inundation represents one current treatment strategy for CASS, with the aim of neutralizing acidity by triggering microbial iron- and sulfate-reduction and inducing the precipitation of iron-sulfides. Although well-known functional guilds of bacteria drive these processes, their distributions within CASS environments, as well as their relationships to tidal cycling and the availability of nutrients and electron acceptors, are poorly understood. These factors will determine the long-term efficacy of passive CASS remediation strategies. Here we studied microbial community structure and functional guild distribution in sediment cores obtained from ten depths ranging from 0-20 cm in three sites located in the supra-, inter- and sub-tidal segments, respectively, of a CASS-affected salt marsh (East Trinity, Cairns, Australia. Whole community 16S rRNA gene diversity within each site was assessed by 454 pyrotag sequencing and bioinformatic analyses in the context of local hydrological, geochemical and lithological factors. The results illustrate spatial overlap, or close association, of iron- and sulfate-reducing bacteria in an environment rich in organic matter and controlled by parameters such as acidity, redox potential, degree of water saturation, and mineralization. The observed spatial distribution implies the need for empirical understanding of the timing, relative to tidal cycling, of various terminal electron-accepting processes that control acid generation and biogeochemical iron and sulfur cycling.

  16. Sulfate reduction in freshwater peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Oequist, M.

    1996-12-31

    This text consist of two parts: Part A is a literature review on microbial sulfate reduction with emphasis on freshwater peatlands, and part B presents the results from a study of the relative importance of sulfate reduction and methane formation for the anaerobic decomposition in a boreal peatland. The relative importance of sulfate reduction and methane production for the anaerobic decomposition was studied in a small raised bog situated in the boreal zone of southern Sweden. Depth distribution of sulfate reduction- and methane production rates were measured in peat sampled from three sites (A, B, and C) forming an minerotrophic-ombrotrophic gradient. SO{sub 4}{sup 2-} concentrations in the three profiles were of equal magnitude and ranged from 50 to 150 {mu}M. In contrast, rates of sulfate reduction were vastly different: Maximum rates in the three profiles were obtained at a depth of ca. 20 cm below the water table. In A it was 8 {mu}M h{sup -1} while in B and C they were 1 and 0.05 {mu}M h{sup -1}, respectively. Methane production rates, however, were more uniform across the three nutrient regimes. Maximum rates in A (ca. 1.5 {mu}g d{sup -1} g{sup -1}) were found 10 cm below the water table, in B (ca. 1.0 {mu}g d{sup -1} g{sup -1}) in the vicinity of the water table, and in C (0.75 {mu}g d{sup -1} g{sup -1}) 20 cm below the water table. In all profiles both sulfate reduction and methane production rates were negligible above the water table. The areal estimates of methane production for the profiles were 22.4, 9.0 and 6.4 mmol m{sup -2} d{sup -1}, while the estimates for sulfate reduction were 26.4, 2.5, and 0.1 mmol m{sup -2} d{sup -1}, respectively. The calculated turnover times at the sites were 1.2, 14.2, and 198.7 days, respectively. The study shows that sulfate reducing bacteria are important for the anaerobic degradation in the studied peatland, especially in the minerotrophic sites, while methanogenic bacteria dominate in ombrotrophic sites Examination

  17. Sulfate reduction in freshwater peatlands

    International Nuclear Information System (INIS)

    Oequist, M.

    1996-01-01

    This text consist of two parts: Part A is a literature review on microbial sulfate reduction with emphasis on freshwater peatlands, and part B presents the results from a study of the relative importance of sulfate reduction and methane formation for the anaerobic decomposition in a boreal peatland. The relative importance of sulfate reduction and methane production for the anaerobic decomposition was studied in a small raised bog situated in the boreal zone of southern Sweden. Depth distribution of sulfate reduction- and methane production rates were measured in peat sampled from three sites (A, B, and C) forming an minerotrophic-ombrotrophic gradient. SO 4 2- concentrations in the three profiles were of equal magnitude and ranged from 50 to 150 μM. In contrast, rates of sulfate reduction were vastly different: Maximum rates in the three profiles were obtained at a depth of ca. 20 cm below the water table. In A it was 8 μM h -1 while in B and C they were 1 and 0.05 μM h -1 , respectively. Methane production rates, however, were more uniform across the three nutrient regimes. Maximum rates in A (ca. 1.5 μg d -1 g -1 ) were found 10 cm below the water table, in B (ca. 1.0 μg d -1 g -1 ) in the vicinity of the water table, and in C (0.75 μg d -1 g -1 ) 20 cm below the water table. In all profiles both sulfate reduction and methane production rates were negligible above the water table. The areal estimates of methane production for the profiles were 22.4, 9.0 and 6.4 mmol m -2 d -1 , while the estimates for sulfate reduction were 26.4, 2.5, and 0.1 mmol m -2 d -1 , respectively. The calculated turnover times at the sites were 1.2, 14.2, and 198.7 days, respectively. The study shows that sulfate reducing bacteria are important for the anaerobic degradation in the studied peatland, especially in the minerotrophic sites, while methanogenic bacteria dominate in ombrotrophic sites Examination paper. 67 refs, 6 figs, 3 tabs

  18. Surface ozone seasonality under global change: Influence from dry deposition and isoprene emissions at northern mid-latitudes

    Science.gov (United States)

    Clifton, O.; Paulot, F.; Fiore, A. M.; Horowitz, L. W.; Malyshev, S.; Shevliakova, E.; Correa, G. J. P.; Lin, M.

    2017-12-01

    Identifying the contributions of nonlinear chemistry and transport to observed surface ozone seasonal cycles over land using global models relies on an accurate representation of ozone uptake by vegetation (dry deposition). It is well established that in the absence of ozone precursor emission changes, a warming climate will increase surface ozone in polluted regions, and that a rise in temperature-dependent isoprene emissions would exacerbate this "climate penalty". However, the influence of changes in ozone dry deposition, expected to evolve with climate and land use, is often overlooked in air quality projections. With a new scheme that represents dry deposition within the NOAA GFDL dynamic vegetation land model (LM3) coupled to the NOAA GFDL atmospheric chemistry-climate model (AM3), we simulate the impact of 21st century climate and land use on ozone dry deposition and isoprene emissions. This dry deposition parameterization is a version of the Wesely scheme, but uses parameters explicitly calculated by LM3 that respond to climate and land use (e.g., stomatal conductance, canopy interception of water, leaf area index). The parameterization includes a nonstomatal deposition dependence on humidity. We evaluate climatological present-day seasonal cycles of ozone deposition velocities and abundances with those observed at northern mid-latitude sites. With a set of 2010s and 2090s decadal simulations under a high climate warming scenario (RCP8.5) and a sensitivity simulation with well-mixed greenhouse gases following RCP8.5 but air pollutants held at 2010 levels (RCP8.5_WMGG), we examine changes in surface ozone seasonal cycles. We build on our previous findings, which indicate that strong reductions in anthropogenic NOx emissions under RCP8.5 cause the surface ozone seasonal cycle over the NE USA to reverse, shifting from a summer peak at present to a winter peak by 2100. Under RCP8.5_WMGG, we parse the separate effects of climate and land use on ozone dry

  19. Preparation of Low Molecular Weight Chondroitin Sulfates, Screening of a High Anti-Complement Capacity of Low Molecular Weight Chondroitin Sulfate and Its Biological Activity Studies in Attenuating Osteoarthritis.

    Science.gov (United States)

    Li, Lian; Li, Yan; Feng, Danyang; Xu, Linghua; Yin, Fengxin; Zang, Hengchang; Liu, Chunhui; Wang, Fengshan

    2016-10-11

    Chondroitin sulfate (CS) plays important roles in the complement system. However, the CS structure is complicated due to different sources and the number and positions of sulfate groups. The objective of this study was to prepare different low molecular weight chondroitin sulfates (LMWCSs) and to investigate the biological activity in anti-complement capacity. A series of LMWCSs was prepared from different sources and characterized by ultraviolet-visible (UV) spectroscopy, high-performance liquid chromatography (HPLC), size exclusion chromatography-multiangle laser light scattering (SEC-MALLS) and nuclear magnetic resonance (NMR) spectroscopy. Hemolytic, anti-complement 3 deposition capacity and cell viability assays were carried out to investigate the biological activities in vitro. The results showed that LMWCS prepared from shark cartilage with the oxidative degradation method (LMWCS-S-O) had the best anti-complement capacity. LMWCS-S-O could inhibit the alternative pathway of the complement system and protect chondrocytes from cell death. The attenuating effect of LMWCS-S-O on Osteoarthritis (OA) was investigated by destabilization of the medial meniscus (DMM) model in vivo. Functional wind-up, histological and C5b-9 analyses were used to evaluate the treatment effect on the OA model. In vivo results showed that LMWCS-S-O could attenuate OA. LMWCS-S-O with a high content of ΔDi-2,6diS and ΔDi-6S could be used for attenuating OA through regulating the complement system.

  20. Preparation of Low Molecular Weight Chondroitin Sulfates, Screening of a High Anti-Complement Capacity of Low Molecular Weight Chondroitin Sulfate and Its Biological Activity Studies in Attenuating Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Lian Li

    2016-10-01

    Full Text Available Chondroitin sulfate (CS plays important roles in the complement system. However, the CS structure is complicated due to different sources and the number and positions of sulfate groups. The objective of this study was to prepare different low molecular weight chondroitin sulfates (LMWCSs and to investigate the biological activity in anti-complement capacity. A series of LMWCSs was prepared from different sources and characterized by ultraviolet-visible (UV spectroscopy, high-performance liquid chromatography (HPLC, size exclusion chromatography-multiangle laser light scattering (SEC-MALLS and nuclear magnetic resonance (NMR spectroscopy. Hemolytic, anti-complement 3 deposition capacity and cell viability assays were carried out to investigate the biological activities in vitro. The results showed that LMWCS prepared from shark cartilage with the oxidative degradation method (LMWCS-S-O had the best anti-complement capacity. LMWCS-S-O could inhibit the alternative pathway of the complement system and protect chondrocytes from cell death. The attenuating effect of LMWCS-S-O on Osteoarthritis (OA was investigated by destabilization of the medial meniscus (DMM model in vivo. Functional wind-up, histological and C5b-9 analyses were used to evaluate the treatment effect on the OA model. In vivo results showed that LMWCS-S-O could attenuate OA. LMWCS-S-O with a high content of ΔDi-2,6diS and ΔDi-6S could be used for attenuating OA through regulating the complement system.

  1. Sulfation and cation effects on the conformational properties of the glycan backbone of chondroitin sulfate disaccharides.

    Science.gov (United States)

    Faller, Christina E; Guvench, Olgun

    2015-05-21

    Chondroitin sulfate (CS) is one of several glycosaminoglycans that are major components of proteoglycans. A linear polymer consisting of repeats of the disaccharide -4GlcAβ1-3GalNAcβ1-, CS undergoes differential sulfation resulting in five unique sulfation patterns. Because of the dimer repeat, the CS glycosidic "backbone" has two distinct sets of conformational degrees of freedom defined by pairs of dihedral angles: (ϕ1, ψ1) about the β1-3 glycosidic linkage and (ϕ2, ψ2) about the β1-4 glycosidic linkage. Differential sulfation and the possibility of cation binding, combined with the conformational flexibility and biological diversity of CS, complicate experimental efforts to understand CS three-dimensional structures at atomic resolution. Therefore, all-atom explicit-solvent molecular dynamics simulations with Adaptive Biasing Force sampling of the CS backbone were applied to obtain high-resolution, high-precision free energies of CS disaccharides as a function of all possible backbone geometries. All 10 disaccharides (β1-3 vs β1-4 linkage × five different sulfation patterns) were studied; additionally, ion effects were investigated by considering each disaccharide in the presence of either neutralizing sodium or calcium cations. GlcAβ1-3GalNAc disaccharides have a single, broad, thermodynamically important free-energy minimum, whereas GalNAcβ1-4GlcA disaccharides have two such minima. Calcium cations but not sodium cations bind to the disaccharides, and binding is primarily to the GlcA -COO(-) moiety as opposed to sulfate groups. This binding alters the glycan backbone thermodynamics in instances where a calcium cation bound to -COO(-) can act to bridge and stabilize an interaction with an adjacent sulfate group, whereas, in the absence of this cation, the proximity of a sulfate group to -COO(-) results in two like charges being both desolvated and placed adjacent to each other and is found to be destabilizing. In addition to providing information

  2. Development and validation of an alternative titration method for the determination of sulfate ion in indinavir sulfate

    Directory of Open Access Journals (Sweden)

    Breno de Carvalho e Silva

    2005-02-01

    Full Text Available A simple and rapid precipitation titration method was developed and validated to determine sulfate ion content in indinavir sulfate raw material. 0.1 mol L-1 lead nitrate volumetric solution was used as titrant employing potentiometric endpoint determination using a lead-specific electrode. The United States Pharmacopoeia Forum indicates a potentiometric method for sulfate ion quantitation using 0.1 mol L-1 lead perchlorate as titrant. Both methods were validated concerning linearity, precision and accuracy, yielding good results. The sulfate ion content found by the two validated methods was compared by the statistical t-student test, indicating that there was no statistically significant difference between the methods.

  3. Earth's copper resources estimated from tectonic diffusion of porphyry copper deposits

    Science.gov (United States)

    Kesler, Stephen E.; Wilkinson, Bruce H.

    2008-03-01

    Improved estimates of global mineral endowments are relevantto issues ranging from strategic planning to global geochemicalcycling. We have used a time-space model for the tectonic migrationof porphyry copper deposits vertically through the crust tocalculate Earth's endowment of copper in mineral deposits. Themodel relies only on knowledge of numbers and ages of porphyrycopper deposits, Earth's most widespread and important sourceof copper, in order to estimate numbers of eroded and preserveddeposits in the crust. Model results indicate that 125,895 porphyrycopper deposits were formed during Phanerozoic time, that only47,789 of these remain at various crustal depths, and that thesecontain 1.7 x 1011 tonnes (t) of copper. Assuming that othertypes of copper deposits behave similarly in the crust and haveabundances proportional to their current global production yieldsan estimate of 3 x 1011 t for total global copper resourcesat all levels in Earth's crust. Thus, 0.25% of the copper inthe crust has been concentrated into deposits through Phanerozoictime, and about two-thirds of this has been recycled by upliftand erosion. The amount of copper in deposits above 3.3 km,a likely limit of future mining, could supply current worldmine production for 5500 yr, thus quantifying the highly unusualand nonrenewable nature of mineral deposits.

  4. The combined therapy with chondroitin sulfate plus glucosamine sulfate or chondroitin sulfate plus glucosamine hydrochloride does not improve joint damage in an experimental model of knee osteoarthritis in rabbits.

    Science.gov (United States)

    Roman-Blas, Jorge A; Mediero, Aránzazu; Tardío, Lidia; Portal-Nuñez, Sergio; Gratal, Paula; Herrero-Beaumont, Gabriel; Largo, Raquel

    2017-01-05

    Osteoarthritis is the most common chronic joint disorder especially during aging. Although with controversies, glucosamine, both in its forms of sulfate and hydrochloride, and chondroitin sulfate are commonly employed to treat osteoarthritis. Due to the modest improve in the symptoms observed in patients treated with these drugs alone, a formulation combining both agents has been considered. The discrepant results achieved for pain control or structural improvement in osteoarthritis patients has been attributed to the quality of chemical formulations or different bias in clinical studies. The current study has been designed to test the effects of two different combined formulations with adequate pharmaceutical grade of these drugs in osteoarthritic joints, and to explore the underlying mechanisms modulated by both formulations in different osteoarthritis target tissues. Knee osteoarthritis was surgically induced in experimental rabbits. Some animals received the combined therapy (CT)1, (chondroitin sulfate 1200mg/day + glucosamine sulfate 1500mg/day), or the CT2 ((chondroitin sulfate 1200mg/day + glucosamine hydrochloride 1500mg/day). Neither CT1 nor CT2 significantly modified the cartilage damage or the synovial inflammation observed in osteoarthritic animals. Treatments were also unable to modify the presence of pro-inflammatory mediators, and the synthesis of metalloproteinases in the cartilage or in the synovium of osteoarthritic animals. Combined therapies did not modify the decrease in the subchondral bone mineral density observed in osteoarthritic rabbits. Therapies of chondroitin sulfate plus glucosamine sulfate or chondroitin sulfate plus glucosamine hydrochloride failed to improve structural damage or to ameliorate the inflammatory profile of joint tissues during experimental osteoarthritis. Published by Elsevier B.V.

  5. Highly sulfated hexasaccharide sequences isolated from chondroitin sulfate of shark fin cartilage: insights into the sugar sequences with bioactivities.

    Science.gov (United States)

    Mizumoto, Shuji; Murakoshi, Saori; Kalayanamitra, Kittiwan; Deepa, Sarama Sathyaseelan; Fukui, Shigeyuki; Kongtawelert, Prachya; Yamada, Shuhei; Sugahara, Kazuyuki

    2013-02-01

    Chondroitin sulfate (CS) chains regulate the development of the central nervous system in vertebrates and are linear polysaccharides consisting of variously sulfated repeating disaccharides, [-4GlcUAβ1-3GalNAcβ1-](n), where GlcUA and GalNAc represent D-glucuronic acid and N-acetyl-D-galactosamine, respectively. CS chains containing D-disaccharide units [GlcUA(2-O-sulfate)-GalNAc(6-O-sulfate)] are involved in the development of cerebellar Purkinje cells and neurite outgrowth-promoting activity through interaction with a neurotrophic factor, pleiotrophin, resulting in the regulation of signaling. In this study, to obtain further structural information on the CS chains containing d-disaccharide units involved in brain development, oligosaccharides containing D-units were isolated from a shark fin cartilage. Seven novel hexasaccharide sequences, ΔO-D-D, ΔA-D-D, ΔC-D-D, ΔE-A-D, ΔD-D-C, ΔE-D-D and ΔA-B-D, in addition to three previously reported sequences, ΔC-A-D, ΔC-D-C and ΔA-D-A, were isolated from a CS preparation of shark fin cartilage after exhaustive digestion with chondroitinase AC-I, which cannot act on the galactosaminidic linkages bound to D-units. The symbol Δ stands for a 4,5-unsaturated bond of uronic acids, whereas A, B, C, D, E and O represent [GlcUA-GalNAc(4-O-sulfate)], [GlcUA(2-O-sulfate)-GalNAc(4-O-sulfate)], [GlcUA-GalNAc(6-O-sulfate)], [GlcUA(2-O-sulfate)-GalNAc(6-O-sulfate)], [GlcUA-GalNAc(4-O-, 6-O-sulfate)] and [GlcUA-GalNAc], respectively. In binding studies using an anti-CS monoclonal antibody, MO-225, the epitopes of which are involved in cerebellar development in mammals, novel epitope structures, ΔA-D-A, ΔA-D-D and ΔA-B-D, were revealed. Hexasaccharides containing two consecutive D-units or a B-unit will be useful for the structural and functional analyses of CS chains particularly in the neuroglycobiological fields.

  6. Effect of metakaolin on external sulfate attack

    Energy Technology Data Exchange (ETDEWEB)

    Ramlochan, T.; Thomas, M. [Toronto Univ., Dept. of Civil Engineering, ON (Canada)

    2000-07-01

    The effect of high reactivity metakaolin (HRM) on the sulfate resistance of mortars was studied. Mortar bars with three cements of varying C{sub 3}A content were used for the experiment. After a six month exposure to a 5 per cent solution of sodium sulfate, mortar bars incorporating any level of HRM as a partial replacement for a high-C{sub 3}A was considered 'moderately sulfate resistant'; mortar bars with HRM and a moderate or low C{sub 3}A content as 'high sulfate resistant'. It was also determined that for long term sulfate resistance 15 per cent HRM or more may be required, depending on the C{sub 3}A content. The performance of HRM was found to be significantly influenced by the water-cementitious material ratio, and in turn, by permeability, suggesting that HRM might increase sulfate resistance more by lowering the permeability of the concrete than by any chemical action. 7 refs., 4 tabs., 7 figs.

  7. Process for removing sulfate anions from waste water

    Science.gov (United States)

    Nilsen, David N.; Galvan, Gloria J.; Hundley, Gary L.; Wright, John B.

    1997-01-01

    A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

  8. A potential role for chondroitin sulfate/dermatan sulfate in arm regeneration in Amphiura filiformis.

    Science.gov (United States)

    Ramachandra, Rashmi; Namburi, Ramesh B; Dupont, Sam T; Ortega-Martinez, Olga; van Kuppevelt, Toin H; Lindahl, Ulf; Spillmann, Dorothe

    2017-05-01

    Glycosaminoglycans (GAGs), such as chondroitin sulfate (CS) and dermatan sulfate (DS) from various vertebrate and invertebrate sources are known to be involved in diverse cellular mechanisms during repair and regenerative processes. Recently, we have identified CS/DS as the major GAG in the brittlestar Amphiura filiformis, with high proportions of di- and tri-O-sulfated disaccharide units. As this echinoderm is known for its exceptional regeneration capacity, we aimed to explore the role of these GAG chains during A. filiformis arm regeneration. Analysis of CS/DS chains during the regeneration process revealed an increase in the proportion of the tri-O-sulfated disaccharides. Conversely, treatment of A. filiformis with sodium chlorate, a potent inhibitor of sulfation reactions in GAG biosynthesis, resulted in a significant reduction in arm growth rates with total inhibition at concentrations higher than 5 mM. Differentiation was less impacted by sodium chlorate exposure or even slightly increased at 1-2 mM. Based on the structural changes observed during arm regeneration we identified chondroitin synthase, chondroitin-4-O-sulfotransferase 2 and dermatan-4-O-sulfotransferase as candidate genes and sought to correlate their expression with the expression of the A. filiformis orthologue of bone morphogenetic factors, AfBMP2/4. Quantitative amplification by real-time PCR indicated increased expression of chondroitin synthase and chondroitin-4-O-sulfotransferase 2, with a corresponding increase in AfBMP2/4 during regeneration relative to nonregenerating controls. Our findings suggest that proper sulfation of GAGs is important for A. filiformis arm regeneration and that these molecules may participate in mechanisms controlling cell proliferation. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Sulfate transport in toad skin

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Simonsen, K

    1988-01-01

    1. In short-circuited toad skin preparations exposed bilaterally to NaCl-Ringer's containing 1 mM SO2(-4), influx of sulfate was larger than efflux showing that the skin is capable of transporting sulfate actively in an inward direction. 2. This active transport was not abolished by substituting...... apical Na+ for K+. 3. Following voltage activation of the passive Cl- permeability of the mitochondria-rich (m.r.) cells sulfate flux-ratio increased to a value predicted from the Ussing flux-ratio equation for a monovalent anion. 4. In such skins, which were shown to exhibit vanishingly small leakage...... conductances, the variation of the rate coefficient for sulfate influx (y) was positively correlated with the rate coefficient for Cl- influx (x), y = 0.035 x - 0.0077 cm/sec (r = 0.9935, n = 15). 5. Addition of the phosphodiesterase inhibitor, 3-isobutyl-1-methyl-xanthine to the serosal bath of short...

  10. N-sulfation of heparan sulfate is critical for syndecan-4-mediated podocyte cell-matrix interactions

    NARCIS (Netherlands)

    Sugar, T.; Wassenhove-McCarthy, D.J.; Orr, A.W.; Green, J.; Kuppevelt, T.H. van; McCarthy, K.J.

    2016-01-01

    Previous research has shown that podocytes unable to assemble heparan sulfate on cell surface proteoglycan core proteins have compromised cell-matrix interactions. This report further explores the role of N-sulfation of intact heparan chains in podocyte-matrix interactions. For the purposes of this

  11. Electro-deposition of nickel, on reactor seal discs

    International Nuclear Information System (INIS)

    Vernekar, R.B.; Bhide, G.K.

    1977-01-01

    The effect of plating variables, acidity, current density and temperature on hardness of nickel deposited from purified nickel sulfamate bath has been investigated and optimum conditions for electrodeposition of nickel plating of hardness 160-170 VHN on reactor seal discs are established. Sodium lauryl sulfate was added as a wetting agent to the bath to overcome pitting tendency of the deposit. Factors affecting hydrogen absorption by electrodeposited nickel are also discussed. It is observed that : (1) at a pH 3.5 - 4.0 the decomposition rate of sulfamate salt is almost negligible and is the best value for bath operation, (2) at 15 A/dm 2 the hardness value is consistently around 160-170 VHN, (3) the temperatures less than 50 0 C give harder deposits and the bath is best operated at temperature 50-60 0 C and (4) annealing of the plated discs substantially reduces the hardness. (M.G.B.)

  12. Recent Atmospheric Deposition and its Effects on Sandstone Cliffs in Bohemian Switzerland National Park, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Vařilová, Z.; Navrátil, Tomáš; Dobešová, Irena

    2011-01-01

    Roč. 220, 1/4 (2011), s. 117-130 ISSN 0049-6979 Institutional research plan: CEZ:AV0Z30130516 Keywords : acid deposition * sandstone percolates * chemical weathering * salt efflorescence * Black Triangle * aluminum * sulfates Subject RIV: DD - Geochemistry Impact factor: 1.625, year: 2011

  13. Deposition of nucleosomal antigens (histones and DNA) in the epidermal basement membrane in human lupus nephritis.

    NARCIS (Netherlands)

    Grootscholten, C.; Bruggen, M.C.J. van; Pijl, J.W. van der; Jong, E.M.G.J. de; Ligtenberg, G.; Derksen, R.H.W.M.; Berden, J.H.M.

    2003-01-01

    OBJECTIVE: Antinuclear autoantibodies complexed to nucleosomes can bind to heparan sulfate (HS) in the glomerular basement membrane. This binding is due to the binding of the positively charged histones to the strongly anionic HS. Nucleosomes and histones have been identified in glomerular deposits

  14. Vibrational, X-ray absorption, and Mössbauer spectra of sulfate minerals from the weathered massive sulfide deposit at Iron Mountain, California

    Science.gov (United States)

    Majzlan, Juraj; Alpers, Charles N.; Bender Koch, Christian; McCleskey, R. Blaine; Myneni, Satish B.C.; Neil, John M.

    2014-01-01

    The Iron Mountain Mine Superfund site in California is a prime example of an acid mine drainage (AMD) system with well developed assemblages of sulfate minerals typical for such settings. Here we present and discuss the vibrational (infrared), X-ray absorption, and Mössbauer spectra of a number of these phases, augmented by spectra of a few synthetic sulfates related to the AMD phases. The minerals and related phases studied in this work are (in order of increasing Fe2O3/FeO): szomolnokite, rozenite, siderotil, halotrichite, römerite, voltaite, copiapite, monoclinic Fe2(SO4)3, Fe2(SO4)3·5H2O, kornelite, coquimbite, Fe(SO4)(OH), jarosite and rhomboclase. Fourier transform infrared spectra in the region 750–4000 cm−1 are presented for all studied phases. Position of the FTIR bands is discussed in terms of the vibrations of sulfate ions, hydroxyl groups, and water molecules. Sulfur K-edge X-ray absorption near-edge structure (XANES) spectra were collected for selected samples. The feature of greatest interest is a series of weak pre-edge peaks whose position is determined by the number of bridging oxygen atoms between Fe3+ octahedra and sulfate tetrahedra. Mössbauer spectra of selected samples were obtained at room temperature and 80 K for ferric minerals jarosite and rhomboclase and mixed ferric–ferrous minerals römerite, voltaite, and copiapite. Values of Fe2+/[Fe2+ + Fe3+] determined by Mössbauer spectroscopy agree well with those determined by wet chemical analysis. The data presented here can be used as standards in spectroscopic work where spectra of well-characterized compounds are required to identify complex mixtures of minerals and related phases.

  15. Layer-by-layer assembly of type I collagen and chondroitin sulfate on aminolyzed PU for potential cartilage tissue engineering application

    International Nuclear Information System (INIS)

    He Xianyun; Wang Yingjun; Wu Gang

    2012-01-01

    Highlights: ► A novel biodegradable polyurethane (PU) was successfully synthesized. ► Surface aminolyzing of the PU was performed by reacting it with 1,3-propanediamine. ► Collagen and chondroitin sulfate were deposited alternately on the PU surface. - Abstract: In this paper, a two-step method was used to synthesize a biodegradable polyurethane (PU) composed of L-lysine ethyl ester diisocyanate (LDI), poly(ε-caprolactone) diols (PCL-diol) and 1,4:3,6-dianhydro-D-sorbitol (isosorbide). Amino groups were introduced onto the surface of the PU membrane by an amination reacting with 1,3-propanediamine to produce polycationic substratum. And then, type I collagen (Col) and chondroitin sulfate (CS) were deposited alternately on the polycationic substratum through layer-by-layer (LBL) assembly technology. The FTIR and 1 H NMR results showed that the polyurethane was successfully synthesized. Rhodamine B isothiocyanate (RBITC) fluorescence spectrum indicated that amino groups were successfully introduced onto the PU surface. The results of quartz-crystal microbalance (QCM) and RBITC-Col fluorescence spectroscopy monitoring the LBL assemble process presented that the Col/CS deposited alternately on the PU surface. X-ray photoelectron spectroscopy (XPS) results displayed that the CS deposited on the PU surface as well. The surface of the assembled PU became even smoother observed from the surface morphology by atomic force microscopy (AFM) imaging. The hydrophilicity of the PU membrane was greatly enhanced though the modification of LBL assembly. The PU modified with the adsorption of Col/CS may be a potential application for cartilage tissue engineering due to its created mimicking chondrogenic environment.

  16. Trace-element deposition in the Cariaco Basin, Venezuela Shelf, under sulfate-reducing conditions: a history of the local hydrography and global climate, 20 ka to the present

    Science.gov (United States)

    Piper, David Z.; Dean, Walter E.

    2002-01-01

    A sediment core from the Cariaco Basin on the Venezuelan continental shelf, which recovered sediment that has been dated back to 20 ka (thousand years ago), was examined for its major-element-oxide and trace-element composition. Cadmium (Cd), chromium (Cr), copper (Cu), molybdenum (Mo), nickel (Ni), vanadium (V), and zinc (Zn) can be partitioned between a siliciclastic, terrigenous-derived fraction and two seawater-derived fractions. The two marine fractions are (1) a biogenic fraction represented by nutrient trace elements taken up mostly in the photic zone by phytoplankton, and (2) a hydrogenous fraction that has been derived from bottom water via adsorption and precipitation reactions. This suite of trace elements contrasts with a second suite of trace elements—barium (Ba), cobalt (Co), gallium (Ga), lithium (Li), the rare-earth elements, thorium (Th), yttrium (Y), and several of the major-element oxides—that has had solely a terrigenous source. The partitioning scheme, coupled with bulk sediment accumulation rates measured by others, allows us to determine the accumulation rate of trace elements in each of the three sediment fractions and of the fractions themselves. The current export of organic matter from the photic zone, redox conditions and advection of bottom water, and flux of terrigenous debris into the basin can be used to calculate independently trace-element depositional rates. The calculated rates show excellent agreement with the measured rates of the surface sediment. This agreement supports a model of trace-element accumulation rates in the subsurface sediment that gives a 20-kyr history of upwelling into the photic zone (that is, primary productivity), bottom-water advection and redox, and provenance. Correspondence of extrema in the geochemical signals with global changes in sea level and climate demonstrates the high degree to which the basin hydrography and provenance have responded to the paleoceanographic and paleoclimatic regimes of

  17. Acid Sulfate Alteration on Mars

    Science.gov (United States)

    Ming, D. W.; Morris, R. V.

    2016-01-01

    A variety of mineralogical and geochemical indicators for aqueous alteration on Mars have been identified by a combination of surface and orbital robotic missions, telescopic observations, characterization of Martian meteorites, and laboratory and terrestrial analog studies. Acid sulfate alteration has been identified at all three landing sites visited by NASA rover missions (Spirit, Opportunity, and Curiosity). Spirit landed in Gusev crater in 2004 and discovered Fe-sulfates and materials that have been extensively leached by acid sulfate solutions. Opportunity landing on the plains of Meridiani Planum also in 2004 where the rover encountered large abundances of jarosite and hematite in sedimentary rocks. Curiosity landed in Gale crater in 2012 and has characterized fluvial, deltaic, and lacustrine sediments. Jarosite and hematite were discovered in some of the lacustrine sediments. The high elemental abundance of sulfur in surface materials is obvious evidence that sulfate has played a major role in aqueous processes at all landing sites on Mars. The sulfate-rich outcrop at Meridiani Planum has an SO3 content of up to 25 wt.%. The interiors of rocks and outcrops on the Columbia Hills within Gusev crater have up to 8 wt.% SO3. Soils at both sites generally have between 5 to 14 wt.% SO3, and several soils in Gusev crater contain around 30 wt.% SO3. After normalization of major element compositions to a SO3-free basis, the bulk compositions of these materials are basaltic, with a few exceptions in Gusev crater and in lacustrine mudstones in Gale crater. These observations suggest that materials encountered by the rovers were derived from basaltic precursors by acid sulfate alteration under nearly isochemical conditions (i.e., minimal leaching). There are several cases, however, where acid sulfate alteration minerals (jarosite and hematite) formed in open hydrologic systems, e.g., in Gale crater lacustrine mudstones. Several hypotheses have been suggested for the

  18. Mencegah Pembentukan Kalsium Sulfat pada Desalinasi Air Laut

    Directory of Open Access Journals (Sweden)

    Mirna Rahmah Lubis

    2007-06-01

    Full Text Available Resin penukar-anion, Relite MG 1/P, dapat digunakan untuk memisahkan sulfat dalam air laut guna mencegah pembentukan kerak kalsium sulfat pada heat exchanger. Resin tersebut menunjukkan selektivitas sulfat yang tinggi dalam air laut sintetis. Resin yang telah dipakai dapat diregenerasi menggunakan air asin yang dipekatkan dengan asam hingga mencapai pH 4. Untuk waktu pemakaian dan regenerasi yang sama, faktor konsentrasi desalinasi (misalnya 2 hingga 4 menaikkan konsentrasi klorida dalam air asin yang diblowdown. Dengan faktor konsentrasi yang tetap, kenaikan laju alir (pengurangan waktu pemakaian dan regenerasi memperendah efisiensi regenerasi dan menaikkan pemisahan sulfat. Akibat kelarutan kalsium sulfat yang bersifat terbalik tersebut, temperatur air asin yang tinggi memerlukan pemisahan sulfat yang lebih banyak, yang dapat dicapai dengan mengurangi laju alir air laut. Pengurangan laju alir tersebut membutuhkan peralatan yang lebih besar dan resin yang lebih banyak, sehingga biaya modal bertambah. Untuk pabrik desalinasi dengan kapasitas produksi 1 juta gallon per hari dan faktor konsentrasi sebesar 2, biaya pemisahan sulfat meliputi biaya resin dan biaya peralatan. Biaya tersebut bervariasi dari $0.246 hingga $0.356/kgalon (per ribu galon air yang diproduksi karena temperatur maksimum air asin berubah dari 140°C menjadi 180°C. Keywords: desalinasi air laut, ion exchange, kalsium sulfat, kerak; mechanical vapor compression (MVC, pemisahan sulfat, resin penukar-anion basa lemah

  19. Investigating Dry Deposition of Ozone to Vegetation

    Science.gov (United States)

    Silva, Sam J.; Heald, Colette L.

    2018-01-01

    Atmospheric ozone loss through dry deposition to vegetation is a critically important process for both air quality and ecosystem health. The majority of atmospheric chemistry models calculate dry deposition using a resistance-in-series parameterization by Wesely (1989), which is dependent on many environmental variables and lookup table values. The uncertainties contained within this parameterization have not been fully explored, ultimately challenging our ability to understand global scale biosphere-atmosphere interactions. In this work, we evaluate the GEOS-Chem model simulation of ozone dry deposition using a globally distributed suite of observations. We find that simulated daytime deposition velocities generally reproduce the magnitude of observations to within a factor of 1.4. When correctly accounting for differences in land class between the observations and model, these biases improve, most substantially over the grasses and shrubs land class. These biases do not impact the global ozone burden substantially; however, they do lead to local absolute changes of up to 4 ppbv and relative changes of 15% in summer surface concentrations. We use MERRA meteorology from 1979 to 2008 to assess that the interannual variability in simulated annual mean ozone dry deposition due to model input meteorology is small (generally less than 5% over vegetated surfaces). Sensitivity experiments indicate that the simulation is most sensitive to the stomatal and ground surface resistances, as well as leaf area index. To improve ozone dry deposition models, more measurements are necessary over rainforests and various crop types, alongside constraints on individual depositional pathways and other in-canopy ozone loss processes.

  20. Potential for Sulfate Reduction in Mangrove Forest Soils: Comparison between Two Dominant Species of the Americas

    KAUST Repository

    Balk, Melike

    2016-11-18

    Avicennia and Rhizophora are globally occurring mangrove genera with different traits that place them in different parts of the intertidal zone. It is generally accepted that the oxidizing capacity of Avicennia roots is larger than that of Rhizophora roots, which initiates more reduced conditions in the soil below the latter genus. We hypothesize that the more reduced conditions beneath Rhizophora stands lead to more active sulfate-reducing microbial communities compared to Avicennia stands. To test this hypothesis, we measured sulfate reduction traits in soil samples collected from neighboring Avicennia germinans and Rhizophora mangle stands at three different locations in southern Florida. The traits measured were sulfate reduction rates (SRR) in flow-through reactors containing undisturbed soil layers in the absence and presence of easily degradable carbon compounds, copy numbers of the dsrB gene, which is specific for sulfate-reducing microorganisms, and numbers of sulfate-reducing cells that are able to grow in liquid medium on a mixture of acetate, propionate and lactate as electron donors. At the tidal locations Port of the Islands and South Hutchinson Islands, steady state SRR, dsrB gene copy numbers and numbers of culturable cells were higher at the A. germinans than at the R. mangle stands, although not significantly for the numbers at Port of the Islands. At the non-tidal location North Hutchinson Island, results are mixed with respect to these sulfate reduction traits. At all locations, the fraction of culturable cells were significantly higher at the R. mangle than at the A. germinans stands. The dynamics of the initial SRR implied a more in situ active sulfate-reducing community at the intertidal R. mangle stands. It was concluded that in agreement with our hypothesis R. mangle stands accommodate a more active sulfate-reducing community than A. germinans stands, but only at the tidal locations. The differences between R. mangle and A. germinans stands

  1. Pattern of chondroitin sulfate proteoglycan expression after ablation of the sensorimotor cortex of the neonatal and adult rat brain

    Directory of Open Access Journals (Sweden)

    Dacić Sanja

    2008-01-01

    Full Text Available The central nervous system has a limited capacity for self-repair after damage. However, the neonatal brain has agreater capacity for recovery than the adult brain. These differences in the regenerative capability depend on local environmental factors and the maturational stage of growing axons. Among molecules which have both growth-promoting and growth-inhibiting activities is the heterogeneous class of chondroitin sulfate proteoglycans (CSPGs. In this paper, we investigated the chondroitin-4 and chondroitin-6 sulfate proteoglycan expression profile after left sensorimotor cortex ablation of the neonatal and adult rat brain. Immunohistochemical analysis revealed that compared to the normal uninjured cortex, lesion provoked up regulation of CSPGs showing a different pattern of expression in the neonatal vs. the adult brain. Punctuate and membrane-bound labeling was predominate after neonatal lesion, where as heavy deposition of staining in the extracellular matrix was observed after adult lesion. Heavy deposition of CSPG immunoreactivity around the lesionsite in adult rats, in contrast to a less CSPG-rich environment in neonatal rats, indicated that enhancement of the recovery process after neonatal injury is due to amore permissive environment.

  2. EFFECT OF MAGNESIUM SULFATE (A LAXATIVE) ON ...

    African Journals Online (AJOL)

    use with little success . Magnesium sulfate also known as Epsom salt or bitter salt is a hydrate salt with a chemical name of magnesium sulfate heptahydrate . Chemical formula is MgSO. 7HO and trade name is. Andrews liver salt. Dried magnesium sulfate is an osmotic laxative or a saline laxative that acts by increasing the.

  3. Recent field studies of dry deposition to surfaces in plant canopies

    International Nuclear Information System (INIS)

    Lindberg, S.E.; Lovett, G.M.; Bondietti, E.A.; Davidson, C.I.

    1984-01-01

    A variety of field techniques were used to assess the dry deposition of sulfur. In a deciduous forest canopy in eastern Tennessee, inert petri plates and adjacent chestnut oak leaves showed similar SO 4 -2 deposition velocities of about 0.1 cm s -1 . In the same forest, statistical analysis of throughfall yielded a deposition velocity of 0.48 cm s -1 for total sulfur (SO 4 -2 plus SO 2 ). The throughfall technique appears useful for scaling individual surface measurements to larger spatial and temporal scales. On a grassy field in Illinois, flat Teflon plates, petri dishes, and dustfall buckets were exposed side by side. Measured sulfate deposition increased with increasing rim height on the collection surface, and deposition velocities ranged from 0.14 to 0.70 cm s -1 . Much of the deposition to these surfaces can be attributed to large-particle SO 4 -2 . Dry season (summer) deposition velocities of 7 Be in California were found to be similar to dry deposition velocities of 212 Pb in Tennessee, ranging from 0.18 to 0.35 cm s -1 . These natural radionuclides attach to submicron aerosols in the atmosphere and may be useful tracers of submicron SO 4 -2 deposition. 9 references, 5 figures, 4 tables

  4. Extraction of beryllium sulfate by a long chain amine; Extraction du sulfate de beryllium par une amine a longue chaine

    Energy Technology Data Exchange (ETDEWEB)

    Etaix, E.S. [Commissariat a l' Energie Atomique, Fontenay-Aux-Roses (France). Centre d' Etudes Nucleaires

    1968-06-01

    The extraction of sulfuric acid in aqueous solution by a primary amine in benzene solution, 3-9 (diethyl) - 6-amino tri-decane (D.E.T. ) - i.e., with American nomenclature 1-3 (ethyl-pentyl) - 4-ethyl-octyl amine (E.P.O.) - has made it possible to calculate the formation constants of alkyl-ammonium sulfate and acid sulfate. The formula of the beryllium and alkyl-ammonium sulfate complex formed in benzene has next been determined, for various initial acidity of the aqueous solution. Lastly, evidence has been given of negatively charged complexes of beryllium and sulfate in aqueous solution, through the dependence of the aqueous sulfate ions concentration upon beryllium extraction. The formation constant of these anionic complexes has been evaluated. (author) [French] L'etude de l'extraction de l'acide sulfurique en solution aqueuse par une amine primaire en solution dans le benzene, le diethyl-3,9 amino-6 tridecane (D.E.T.) - autre nom americain 1-3 (ethylpentyl) - 4-ethyloctylamine (E.P.O.) a permis de calculer les constantes de formation du sulfate et de l'hydrogenosulfate d'alkyl-ammonium. La formule du complexe de sulfate de beryllium et d'alkyl-ammonium forme en solution benzenique a ete ensuite determinee pour diverses acidites initiales de la solution aqueuse. Enfin, l'influence de la concentration des ions sulfate de la phase aqueuse sur l'extraction du beryllium a mis en evidence la formation en solution aqueuse de complexes anioniques de sulfate et de beryllium dont la constante de formation a ete evaluee. (auteur)

  5. Extraction of beryllium sulfate by a long chain amine; Extraction du sulfate de beryllium par une amine a longue chaine

    Energy Technology Data Exchange (ETDEWEB)

    Etaix, E S [Commissariat a l' Energie Atomique, Fontenay-Aux-Roses (France). Centre d' Etudes Nucleaires

    1968-06-01

    The extraction of sulfuric acid in aqueous solution by a primary amine in benzene solution, 3-9 (diethyl) - 6-amino tri-decane (D.E.T. ) - i.e., with American nomenclature 1-3 (ethyl-pentyl) - 4-ethyl-octyl amine (E.P.O.) - has made it possible to calculate the formation constants of alkyl-ammonium sulfate and acid sulfate. The formula of the beryllium and alkyl-ammonium sulfate complex formed in benzene has next been determined, for various initial acidity of the aqueous solution. Lastly, evidence has been given of negatively charged complexes of beryllium and sulfate in aqueous solution, through the dependence of the aqueous sulfate ions concentration upon beryllium extraction. The formation constant of these anionic complexes has been evaluated. (author) [French] L'etude de l'extraction de l'acide sulfurique en solution aqueuse par une amine primaire en solution dans le benzene, le diethyl-3,9 amino-6 tridecane (D.E.T.) - autre nom americain 1-3 (ethylpentyl) - 4-ethyloctylamine (E.P.O.) a permis de calculer les constantes de formation du sulfate et de l'hydrogenosulfate d'alkyl-ammonium. La formule du complexe de sulfate de beryllium et d'alkyl-ammonium forme en solution benzenique a ete ensuite determinee pour diverses acidites initiales de la solution aqueuse. Enfin, l'influence de la concentration des ions sulfate de la phase aqueuse sur l'extraction du beryllium a mis en evidence la formation en solution aqueuse de complexes anioniques de sulfate et de beryllium dont la constante de formation a ete evaluee. (auteur)

  6. Expression and activity of sulfate transporters and APS reductase in curly kale in response to sulfate deprivation and re-supply

    NARCIS (Netherlands)

    Koralewska, Aleksandra; Buchner, Peter; Stuiver, C. Elisabeth E.; Posthumus, Freek S.; Kopriva, Stanislav; Hawkesford, Malcolm J.; De Kok, Luit J.

    2009-01-01

    Both activity and expression of sulfate transporters and APS reductase in plants are modulated by the sulfur status of the plant. To examine the regulatory mechanisms in curly kale (Brossica olerracea L.), the sulfate supply was manipulated by the transfer of seedlings to sulfate-deprived

  7. Metallization on FDM Parts Using the Chemical Deposition Technique

    Directory of Open Access Journals (Sweden)

    Azhar Equbal

    2014-08-01

    Full Text Available Metallization of ABS (acrylonitrile-butadiene-styrene parts has been studied on flat part surfaces. These parts are fabricated on an FDM (fused deposition modeling machine using the layer-wise deposition principle using ABS as a part material. Electroless copper deposition on ABS parts was performed using two different surface preparation processes, namely ABS parts prepared using chromic acid for etching and ABS parts prepared using a solution mixture of sulphuric acid and hydrogen peroxide (H2SO4/H2O2 for etching. After surface preparations using these routes, copper (Cu is deposited electrolessly using four different acidic baths. The acidic baths used are 5 wt% CuSO4 (copper sulfate with 15 wt% of individual acids, namely HF (hydrofluoric acid, H2SO4 (sulphuric acid, H3PO4 (phosphoric acid and CH3COOH (acetic acid. Cu deposition under different acidic baths used for both the routes is presented and compared based on their electrical performance, scanning electron microscopy (SEM and energy dispersive X-ray spectrometry (EDS. The result shows that chromic acid etched samples show better electrical performance and Cu deposition in comparison to samples etched via H2SO4/H2O2.

  8. SO2 photoexcitation mechanism links mass-independent sulfur isotopic fractionation in cryospheric sulfate to climate impacting volcanism

    DEFF Research Database (Denmark)

    Hattori, Shohei; Schmidt, Johan Albrecht; Johnson, Matthew Stanley

    2013-01-01

    Natural climate variation, such as that caused by volcanoes, is the basis for identifying anthropogenic climate change. However, knowledge of the history of volcanic activity is inadequate, particularly concerning the explosivity of specific events. Some material is deposited in ice cores......, but the concentration of glacial sulfate does not distinguish between tropospheric and stratospheric eruptions. Stable sulfur isotope abundances contain additional information, and recent studies show a correlation between volcanic plumes that reach the stratosphere and mass-independent anomalies in sulfur isotopes...... plume chemistry, allowing the production and preservation of a mass-independent sulfur isotope anomaly in the sulfate product. The model accounts for the amplitude, phases, and time development of Δ(33)S/δ(34)S and Δ(36)S/Δ(33)S found in glacial samples. We are able to identify the process controlling...

  9. Modeling and minimization of barium sulfate scale

    Science.gov (United States)

    Alan W. Rudie; Peter W. Hart

    2006-01-01

    The majority of the barium present in the pulping process exits the digester as barium carbonate. Barium carbonate dissolves in the bleach plant when the pH drops below 7 and, if barium and sulfate concentrations are too high, begins to precipitate as barium sulfate. Barium is difficult to control because a mill cannot avoid this carbonate-to-sulfate transition using...

  10. Sulfate mineralogy of fumaroles in the Salton Sea Geothermal Field, Imperial County, California

    Science.gov (United States)

    Adams, Paul M.; Lynch, David K.; Buckland, Kerry N.; Johnson, Patrick D.; Tratt, David M.

    2017-11-01

    The Salton Trough lies in the transition between the San Andreas Fault and oblique spreading centers and transform faults in the Gulf of California. The Salton Sea Geothermal Field is the northernmost expression of those spreading centers. In 2007 two ammonia-emitting fumarole fields that had been submerged beneath the Salton Sea were exposed for the first time in nearly 50 years. As the sea level continued to drop these fields have developed a number of boiling pools, mud pots, gryphons and a unique suite of ammonium sulfate minerals. These have been studied over time with long-wave infrared remote sensing coupled with ground truth surveys backed by laboratory analyses of the minerals. Many vents lie at the center of concentric rings of mineralization with systematic occurrence of different minerals from center to edge. Three semi-concentric zones (fumarole, transition and evaporite) have been defined with respect to ammonia-emitting vents and bubbling pools. The scale of these zones range from several meters, localized around individual vents, to that of the fumarole fields as a whole. The fumarole zone is closest to the vents and locally contains cavernous sulfur crystals and significant deposits of gypsum, mascagnite, boussingaultite and other ammonium sulfates. The transition zone comprises a dark brown surficial band of inconspicuous sodium nitrate underlain by anhydrite/bassanite that is thought to have formed by ammonia-oxidizing microbes interacting with the ammonium sulfates of the outer fumarole zone. The evaporite zone is the outermost and contains blödite, thenardite and glauberite, which are typical of the sulfates associated with the shoreline of the Salton Sea. Remote sensing has shown that the mineral zones have remained relatively stable from 2013 to 2017, with minor variations depending on rainfall, temperature and levels of agricultural runoff.

  11. Sulfate resistance of nanosilica contained Portland cement mortars

    Science.gov (United States)

    Batilov, Iani B.

    Soils, sea water and ground water high in sulfates are commonly encountered hostile environments that can attack the structure of concrete via chemical and physical mechanisms which can lead to costly repairs or replacement. Sulfate attack is a slow acting deteriorative phenomenon that can result in cracking, spalling, expansion, increased permeability, paste-to-aggregate bond loss, paste softening, strength loss, and ultimately, progressive failure of concrete. In the presented research study, Portland cement (PC) mortars containing 1.5% to 6.0% nanosilica (nS) cement replacement by weight were tested for sulfate resistance through full submersion in sodium sulfate to simulate external sulfate attack. Mortars with comparable levels of cement replacement were also prepared with microsilica (mS). Three cement types were chosen to explore nS' effectiveness to reduce sulfate expansion, when paired with cements of varying tricalcium aluminate (C3A) content and Blaine fineness, and compare it to that of mS. Mortars were also made with combined cement replacement of equal parts nS and mS to identify if they were mutually compatible and beneficial towards sulfate resistance. Besides sulfate attack expansion of mortar bars, the testing program included investigations into transport and microstructure properties via water absorption, sulfate ion permeability, porosimetry, SEM with EDS, laser diffraction, compressive strength, and heat of hydration. Expansion measurements indicated that mS replacement mortars outperformed both powder form nS, and nS/mS combined replacement mixtures. A negative effect of the dry nS powder replacement attributed to agglomeration of its nanoparticles during mixing negated the expected superior filler, paste densification, and pozzolanic activity of the nanomaterial. Agglomerated nS was identified as the root cause behind poor performance of nS in comparison to mS for all cement types, and the control when paired with a low C3A sulfate resistant

  12. Nitrogen and sulfar desposition on regional and global scales: A multimodel evaluation

    NARCIS (Netherlands)

    Dentener, F.; Drevet, J.; Lamarque, J.F.; Bey, I.; Eickhout, B.; Fiore, A.M.; Hauglustaine, D.; Horowitz, L.W.; Krol, M.C.; Kulshrestha, U.C.; Lawrence, M.; Galy-Lacaux, C.; Rast, S.; Shindell, D.; Stevenson, D.; Noije, van T.; Atherton, C.; Bell, N.; Bergman, D.; Butler, T.; Cofala, J.; Collins, B.; Doherty, R.; Ellingsen, K.; Galloway, J.; Gauss, M.; Montanaro, V.; Müller, J.F.; Pitari, G.; Rodriguez, J.; Sanderson, M.; Solmon, F.; Strahan, S.; Schultz, M.; Sudo, K.; Szopa, S.; Wild, O.

    2006-01-01

    We use 23 atmospheric chemistry transport models to calculate current and future (2030) deposition of reactive nitrogen (NOy, NHx) and sulfate (SOx) to land and ocean surfaces. The models are driven by three emission scenarios: (1) current air quality legislation (CLE); (2) an optimistic case of the

  13. Early diagenesis in the sediments of the Congo deep-sea fan dominated by massive terrigenous deposits: Part III - Sulfate- and methane- based microbial processes

    Science.gov (United States)

    Pastor, L.; Toffin, L.; Decker, C.; Olu, K.; Cathalot, C.; Lesongeur, F.; Caprais, J.-C.; Bessette, S.; Brandily, C.; Taillefert, M.; Rabouille, C.

    2017-08-01

    Geochemical profiles (SO42-, H2S, CH4, δ13CH4) and phylogenetic diversity of Archaea and Bacteria from two oceanographic cruises dedicated to the lobes sediments of the Congo deep-sea fan are presented in this paper. In this area, organic-rich turbidites reach 5000 m and allow the establishment of patchy cold-seep-like habitats including microbial mats, reduced sediments, and vesicomyid bivalves assemblages. These bivalves live in endosymbiosis with sulfur-oxidizing bacteria and use sulfides to perform chemosynthesis. In these habitats, unlike classical abyssal sediments, anoxic processes are dominant. Total oxygen uptake fluxes and methane fluxes measured with benthic chambers are in the same range as those of active cold-seep environments, and oxygen is mainly used for reoxidation of reduced compounds, especially in bacterial mats and reduced sediments. High concentrations of methane and sulfate co-exist in the upper 20 cm of sediments, and evidence indicates that sulfate-reducing microorganisms and methanogens co-occur in the shallow layers of these sediments. Simultaneously, anaerobic oxidation of methane (AOM) with sulfate as the electron acceptor is evidenced by the presence of ANMEs (ANaerobic MEthanotroph). Dissolved sulfide produced through the reduction of sulfate is reoxidized through several pathways depending on the habitat. These pathways include vesicomyid bivalves uptake (adults or juveniles in the bacterial mats habitats), reoxidation by oxygen or iron phases within the reduced sediment, or reoxidation by microbial mats. Sulfide uptake rates by vesicomyids measured in sulfide-rich sea water (90±18 mmol S m-2 d-1) were similar to sulfide production rates obtained by modelling the sulfate profile with different bioirrigation constants, highlighting the major control of vesicomyids on sulfur cycle in their habitats.

  14. Preparation of textural lamellar tin deposits via electrodeposition

    Science.gov (United States)

    Wen, Xiaoyu; Pan, Xiaona; Wu, Libin; Li, Ruinan; Wang, Dan; Zhang, Jinqiu; Yang, Peixia

    2017-06-01

    Lamellar tin deposits were prepared by galvanostatical electroplating from the aqueous acidic-sulfate bath, with gelatin and benzalacetone dissolved in ethanol (ABA+EtOH) as additive, and their morphologies were investigated by scanning electron microscopy. Cathodic polarization curves revealed that the absorbability of ABA+EtOH on the cathode surface was higher than that of gelatin. X-ray diffraction analysis indicated preferred orientations of tin growth led to the formation of lamellar structure and distortion of tin lattice. The growth mechanism of lamellar tin was also discussed.

  15. Anthropogenic nitrogen deposition in boreal forests has a minor impact on the global carbon cycle.

    Science.gov (United States)

    Gundale, Michael J; From, Fredrik; Bach, Lisbet H; Nordin, Annika

    2014-01-01

    It is proposed that increases in anthropogenic reactive nitrogen (Nr ) deposition may cause temperate and boreal forests to sequester a globally significant quantity of carbon (C); however, long-term data from boreal forests describing how C sequestration responds to realistic levels of chronic Nr deposition are scarce. Using a long-term (14-year) stand-scale (0.1 ha) N addition experiment (three levels: 0, 12.5, and 50 kg N ha(-1)  yr(-1) ) in the boreal zone of northern Sweden, we evaluated how chronic N additions altered N uptake and biomass of understory communities, and whether changes in understory communities explained N uptake and C sequestration by trees. We hypothesized that understory communities (i.e. mosses and shrubs) serve as important sinks for low-level N additions, with the strength of these sinks weakening as chronic N addition rates increase, due to shifts in species composition. We further hypothesized that trees would exhibit nonlinear increases in N acquisition, and subsequent C sequestration as N addition rates increased, due to a weakening understory N sink. Our data showed that understory biomass was reduced by 50% in response to the high N addition treatment, mainly due to reduced moss biomass. A (15) N labeling experiment showed that feather mosses acquired the largest fraction of applied label, with this fraction decreasing as the chronic N addition level increased. Contrary to our hypothesis, the proportion of label taken up by trees was equal (ca. 8%) across all three N addition treatments. The relationship between N addition and C sequestration in all vegetation pools combined was linear, and had a slope of 16 kg C kg(-1)  N. While canopy retention of Nr deposition may cause C sequestration rates to be slightly different than this estimate, our data suggest that a minor quantity of annual anthropogenic CO2 emissions are sequestered into boreal forests as a result of Nr deposition. © 2013 John Wiley & Sons Ltd.

  16. Chondroitin / dermatan sulfate modification enzymes in zebrafish development.

    Directory of Open Access Journals (Sweden)

    Judith Habicher

    Full Text Available Chondroitin/dermatan sulfate (CS/DS proteoglycans consist of unbranched sulfated polysaccharide chains of repeating GalNAc-GlcA/IdoA disaccharide units, attached to serine residues on specific proteins. The CS/DS proteoglycans are abundant in the extracellular matrix where they have essential functions in tissue development and homeostasis. In this report a phylogenetic analysis of vertebrate genes coding for the enzymes that modify CS/DS is presented. We identify single orthologous genes in the zebrafish genome for the sulfotransferases chst7, chst11, chst13, chst14, chst15 and ust and the epimerase dse. In contrast, two copies were found for mammalian sulfotransferases CHST3 and CHST12 and the epimerase DSEL, named chst3a and chst3b, chst12a and chst12b, dsela and dselb, respectively. Expression of CS/DS modification enzymes is spatially and temporally regulated with a large variation between different genes. We found that CS/DS 4-O-sulfotransferases and 6-O-sulfotransferases as well as CS/DS epimerases show a strong and partly overlapping expression, whereas the expression is restricted for enzymes with ability to synthesize di-sulfated disaccharides. A structural analysis further showed that CS/DS sulfation increases during embryonic development mainly due to synthesis of 4-O-sulfated GalNAc while the proportion of 6-O-sulfated GalNAc increases in later developmental stages. Di-sulfated GalNAc synthesized by Chst15 and 2-O-sulfated GlcA/IdoA synthesized by Ust are rare, in accordance with the restricted expression of these enzymes. We also compared CS/DS composition with that of heparan sulfate (HS. Notably, CS/DS biosynthesis in early zebrafish development is more dynamic than HS biosynthesis. Furthermore, HS contains disaccharides with more than one sulfate group, which are virtually absent in CS/DS.

  17. Effects of sulfate chitosan derivatives on nonalcoholic fatty liver disease

    Science.gov (United States)

    Yu, Mingming; Wang, Yuanhong; Jiang, Tingfu; Lv, Zhihua

    2014-06-01

    Sulfate chitosan derivatives have good solubility and therapeutic effect on the cell model of NAFLD. The aim of this study was to examine the therapeutic effect of sulfate chitosan derivatives on NAFLD. The male Wistar rats were orally fed high fat emulsion and received sulfate chitosan derivatives for 5 weeks to determine the pre-treatment effect of sulfate chitosan derivatives on NAFLD. To evaluate the therapeutic effect of sulfate chitosan derivatives on NAFLD, the rats were orally fed with high concentration emulsion for 5 weeks, followed by sulfate chitosan derivatives for 3 weeks. Histological analysis and biomedical assays showed that sulfate chitosan derivatives can dramatically prevent the development of hepatic steatosis in hepatocyte cells. In animal studies, pre-treatment and treatment with sulfate chitosan derivatives significantly protected against hepatic steatohepatitis induced by high fat diet according to histological analysis. Furthermore, increased TC, ALT, MDA, and LEP in NAFLD were significantly ameliorated by pre-treatment and treatment with sulfate chitosan derivatives. Furthermore, increased TG, AST, and TNF-α in NAFLD were significantly ameliorated by treatment with sulfate chitosan derivatives. Sulfate chitosan derivatives have good pre-treatment and therapeutic effect on NAFLD.

  18. Importance of sulfate radical anion formation and chemistry in heterogeneous OH oxidation of sodium methyl sulfate, the smallest organosulfate

    Science.gov (United States)

    Chung Kwong, Kai; Chim, Man Mei; Davies, James F.; Wilson, Kevin R.; Nin Chan, Man

    2018-02-01

    Organosulfates are important organosulfur compounds present in atmospheric particles. While the abundance, composition, and formation mechanisms of organosulfates have been extensively investigated, it remains unclear how they transform and evolve throughout their atmospheric lifetime. To acquire a fundamental understanding of how organosulfates chemically transform in the atmosphere, this work investigates the heterogeneous OH radical-initiated oxidation of sodium methyl sulfate (CH3SO4Na) droplets, the smallest organosulfate detected in atmospheric particles, using an aerosol flow tube reactor at a high relative humidity (RH) of 85 %. Aerosol mass spectra measured by a soft atmospheric pressure ionization source (direct analysis in real time, DART) coupled with a high-resolution mass spectrometer showed that neither functionalization nor fragmentation products are detected. Instead, the ion signal intensity of the bisulfate ion (HSO4-) has been found to increase significantly after OH oxidation. We postulate that sodium methyl sulfate tends to fragment into a formaldehyde (CH2O) and a sulfate radical anion (SO4 ṡ -) upon OH oxidation. The formaldehyde is likely partitioned back to the gas phase due to its high volatility. The sulfate radical anion, similar to OH radical, can abstract a hydrogen atom from neighboring sodium methyl sulfate to form the bisulfate ion, contributing to the secondary chemistry. Kinetic measurements show that the heterogeneous OH reaction rate constant, k, is (3.79 ± 0.19) × 10-13 cm3 molecule-1 s-1 with an effective OH uptake coefficient, γeff, of 0.17 ± 0.03. While about 40 % of sodium methyl sulfate is being oxidized at the maximum OH exposure (1.27 × 1012 molecule cm-3 s), only a 3 % decrease in particle diameter is observed. This can be attributed to a small fraction of particle mass lost via the formation and volatilization of formaldehyde. Overall, we firstly demonstrate that the heterogeneous OH oxidation of an

  19. Chondroitin-4-sulfation negatively regulates axonal guidance and growth

    Science.gov (United States)

    Wang, Hang; Katagiri, Yasuhiro; McCann, Thomas E.; Unsworth, Edward; Goldsmith, Paul; Yu, Zu-Xi; Tan, Fei; Santiago, Lizzie; Mills, Edward M.; Wang, Yu; Symes, Aviva J.; Geller, Herbert M.

    2008-01-01

    Summary Glycosaminoglycan (GAG) side chains endow extracellular matrix proteoglycans with diversity and complexity based upon the length, composition, and charge distribution of the polysaccharide chain. Using cultured primary neurons, we show that specific sulfation in the GAG chains of chondroitin sulfate (CS) mediates neuronal guidance cues and axonal growth inhibition. Chondroitin-4-sulfate (CS-A), but not chondroitin-6-sulfate (CS-C), exhibits a strong negative guidance cue to mouse cerebellar granule neurons. Enzymatic and gene-based manipulations of 4-sulfation in the GAG side chains alter their ability to direct growing axons. Furthermore, 4-sulfated CS GAG chains are rapidly and significantly increased in regions that do not support axonal regeneration proximal to spinal cord lesions in mice. Thus, our findings provide the evidence showing that specific sulfation along the carbohydrate backbone carries instructions to regulate neuronal function. PMID:18768934

  20. Changing transport processes in the stratosphere by radiative heating of sulfate aerosols

    Directory of Open Access Journals (Sweden)

    U. Niemeier

    2017-12-01

    Full Text Available The injection of sulfur dioxide (SO2 into the stratosphere to form an artificial stratospheric aerosol layer is discussed as an option for solar radiation management. Sulfate aerosol scatters solar radiation and absorbs infrared radiation, which warms the stratospheric sulfur layer. Simulations with the general circulation model ECHAM5-HAM, including aerosol microphysics, show consequences of this warming, including changes of the quasi-biennial oscillation (QBO in the tropics. The QBO slows down after an injection of 4 Tg(S yr−1 and completely shuts down after an injection of 8 Tg(S yr−1. Transport of species in the tropics and sub-tropics depends on the phase of the QBO. Consequently, the heated aerosol layer not only impacts the oscillation of the QBO but also the meridional transport of the sulfate aerosols. The stronger the injection, the stronger the heating and the simulated impact on the QBO and equatorial wind systems. With increasing injection rate the velocity of the equatorial jet streams increases, and the less sulfate is transported out of the tropics. This reduces the global distribution of sulfate and decreases the radiative forcing efficiency of the aerosol layer by 10 to 14 % compared to simulations with low vertical resolution and without generated QBO. Increasing the height of the injection increases the radiative forcing only for injection rates below 10 Tg(S yr−1 (8–18 %, a much smaller value than the 50 % calculated previously. Stronger injection rates at higher levels even result in smaller forcing than the injections at lower levels.

  1. Long-term experience with sodium chondroitin sulfate in patients with painful bladder syndrome.

    Science.gov (United States)

    Tornero, J I; Olarte, H; Escudero, F; Gómez, G

    2013-09-01

    To assess the response of patients diagnosed with painful bladder syndrome to treatment with instillations of sodium chondroitin sulfate. We present a series of cases of patients with painful bladder syndrome who followed a bladder instillation protocol with sodium chondroitin sulfate, according to our centre's regimen. The response to treatment was assessed with respect to pain, according to the Downie scale; urinary frequency, according to the voiding diary; and subjective improvement, according to the Patient Global Impression of Improvement (PGI-I) scale. A total of 28 patients with a median age of 59 years (range 22-90) followed this protocol. From the medical histories, 19.4% had suffered an infection of the urinary tract, 3.8% had suffered urinary tuberculosis, 7.6% received pelvic radiation therapy and 26.9% had taken anticholinergic drugs for overactive bladder syndrome. We evaluated the response to treatment at 0, 3, 6 and 12 months and found that at the end of treatment 72.3% of the patients had improved bladder pain and 75% were significantly better. Treatment with sodium chondroitin sulfate through endovesical instillation in painful bladder syndrome improves pain, voiding frequency and quality of life in the long term. Copyright © 2013 AEU. Published by Elsevier Espana. All rights reserved.

  2. Magmatic gases in fluid inclusions from hydrothermal ore deposits

    Energy Technology Data Exchange (ETDEWEB)

    Graney, J.; Kesler, S. (University of Michigan, MI (United States))

    1992-08-31

    In this study, magmatic gases in fluid inclusions from hydrothermal ore deposits have been analyzed. The gas composition of fluid inclusions from a wide range of extinct hydrothermal systems as represented by different ore deposit types was determined using a quadrupole mass spectrometer. Most samples used for analysis consisted of transparent quartz, although barite, jasperoid, opal, sphalerite, pyrite, chalcopyrite, and bornite were also analyzed. H2O was the dominant volatile component in fluid inclusions, and composed 95-99 mole percent of the inclusion fluid. CO2 comprised most of the remaining volatile component and the other gases were generally present in amounts smaller than 0.1 mole percent. Analysis from porphyry and acid-sulfate deposits, in which magmatic gas contributions are considered to be largest, plotted closest to the fumarolic gas compositions. These inclusion fluid volatile component comparisons have shown that there are systematic differences in inclusion fluids from different hydrothermal systems. 9 refs., 3 figs.

  3. Acidity-Reactivity Relationships in Catalytic Esterification over Ammonium Sulfate-Derived Sulfated Zirconia

    Directory of Open Access Journals (Sweden)

    Abdallah I. M. Rabee

    2017-07-01

    Full Text Available New insight was gained into the acidity-reactivity relationships of sulfated zirconia (SZ catalysts prepared via (NH42SO4 impregnation of Zr(OH4 for propanoic acid esterification with methanol. A family of systematically related SZs was characterized by bulk and surface analyses including XRD, XPS, TGA-MS, N2 porosimetry, temperature-programmed propylamine decomposition, and FTIR of adsorbed pyridine, as well as methylbutynol (MBOH as a reactive probe molecule. Increasing surface sulfation induces a transition from amphoteric character for the parent zirconia and low S loadings <1.7 wt %, evidenced by MBOH conversion to 3-hydroxy-3-methyl-2-butanone, methylbutyne and acetone, with higher S loadings resulting in strong Brønsted-Lewis acid pairs upon completion of the sulfate monolayer, which favored MBOH conversion to prenal. Catalytic activity for propanoic acid esterification directly correlated with acid strength determined from propylamine decomposition, coincident with the formation of Brønsted-Lewis acid pairs identified by MBOH reactive titration. Monodispersed bisulfate species are likely responsible for superacidity at intermediate sulfur loadings.

  4. Function of a deltaic silt deposit as a repository and long-term source of sulfate and related weathering products in a glaciofluvial aquifer derived from organic-rich shale (North Dakota, USA)

    Science.gov (United States)

    Schuh, W. M.; Bottrell, S. H.

    2014-05-01

    A shallow unconfined glaciofluvial aquifer in North Dakota (USA) has largest groundwater sulfate concentrations near the bottom boundary. A deltaic silt layer underlying the aquifer, at >16 m, is the modern proximate sulfate source for the aquifer. The original sulfate source was pyrite in the organic-rich shale component of the aquifer and silt grain matrix. An oxidizing event occurred during which grain-matrix pyrite sulfur was oxidized to sulfate. Thereafter the silt served as a "conserving" layer, slowly feeding sulfate into the lower part of the aquifer and the underlying till. A method was developed for estimating the approximate initial sulfate concentration in the source layer and the redistribution time since the oxidizing event, using a semi-generic convection-dispersion model. The convection-dispersion model and a model for the evolution of modern sulfate δ 34S in silt-layer pore water from the initial grain-matrix pyrite δ 34S, both estimated that the oxidizing event occurred several thousand years ago, and was likely related to the dry conditions of the Hypsithermal Interval. The silt layer also serves as an arsenic source. Results indicate that deltaic silts derived from organic-rich shale parent materials in a glacial environment can provide long-term sources for sulfate and arsenic and possibly other related oxidative weathering products.

  5. Barium Sulfate

    Science.gov (United States)

    ... uses a computer to put together x-ray images to create cross-sectional or three dimensional pictures of the inside of the body). Barium sulfate is in a class of medications called radiopaque contrast media. It works by coating the esophagus, stomach, or ...

  6. Metabolic interactions in methanogenic and sulfate-reducing bioreactors.

    Science.gov (United States)

    Stams, A J M; Plugge, C M; de Bok, F A M; van Houten, B H G W; Lens, P; Dijkman, H; Weijma, J

    2005-01-01

    In environments where the amount of electron acceptors is insufficient for complete breakdown of organic matter, methane is formed as the major reduced end product. In such methanogenic environments organic acids are degraded by syntrophic consortia of acetogenic bacteria and methanogenic archaea. Hydrogen consumption by methanogens is essential for acetogenic bacteria to convert organic acids to acetate and hydrogen. Several syntrophic cocultures growing on propionate and butyrate have been described. These syntrophic fatty acid-degrading consortia are affected by the presence of sulfate. When sulfate is present sulfate-reducing bacteria compete with methanogenic archaea for hydrogen and acetate, and with acetogenic bacteria for propionate and butyrate. Sulfate-reducing bacteria easily outcompete methanogens for hydrogen, but the presence of acetate as carbon source may influence the outcome of the competition. By contrast, acetoclastic methanogens can compete reasonably well with acetate-degrading sulfate reducers. Sulfate-reducing bacteria grow much faster on propionate and butyrate than syntrophic consortia.

  7. Layer-by-layer assembly of type I collagen and chondroitin sulfate on aminolyzed PU for potential cartilage tissue engineering application

    Energy Technology Data Exchange (ETDEWEB)

    He Xianyun [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 (China); Wang Yingjun, E-mail: imwangyj@163.com [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China) and National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China) and Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 (China); Wu Gang, E-mail: imwugang@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 (China)

    2012-10-01

    Highlights: Black-Right-Pointing-Pointer A novel biodegradable polyurethane (PU) was successfully synthesized. Black-Right-Pointing-Pointer Surface aminolyzing of the PU was performed by reacting it with 1,3-propanediamine. Black-Right-Pointing-Pointer Collagen and chondroitin sulfate were deposited alternately on the PU surface. - Abstract: In this paper, a two-step method was used to synthesize a biodegradable polyurethane (PU) composed of L-lysine ethyl ester diisocyanate (LDI), poly({epsilon}-caprolactone) diols (PCL-diol) and 1,4:3,6-dianhydro-D-sorbitol (isosorbide). Amino groups were introduced onto the surface of the PU membrane by an amination reacting with 1,3-propanediamine to produce polycationic substratum. And then, type I collagen (Col) and chondroitin sulfate (CS) were deposited alternately on the polycationic substratum through layer-by-layer (LBL) assembly technology. The FTIR and {sup 1}H NMR results showed that the polyurethane was successfully synthesized. Rhodamine B isothiocyanate (RBITC) fluorescence spectrum indicated that amino groups were successfully introduced onto the PU surface. The results of quartz-crystal microbalance (QCM) and RBITC-Col fluorescence spectroscopy monitoring the LBL assemble process presented that the Col/CS deposited alternately on the PU surface. X-ray photoelectron spectroscopy (XPS) results displayed that the CS deposited on the PU surface as well. The surface of the assembled PU became even smoother observed from the surface morphology by atomic force microscopy (AFM) imaging. The hydrophilicity of the PU membrane was greatly enhanced though the modification of LBL assembly. The PU modified with the adsorption of Col/CS may be a potential application for cartilage tissue engineering due to its created mimicking chondrogenic environment.

  8. Sulfated cellulose thin films with antithrombin affinity

    Directory of Open Access Journals (Sweden)

    2009-11-01

    Full Text Available Cellulose thin films were chemically modified by in situ sulfation to produce surfaces with anticoagulant characteristics. Two celluloses differing in their degree of polymerization (DP: CEL I (DP 215–240 and CEL II (DP 1300–1400 were tethered to maleic anhydride copolymer (MA layers and subsequently exposed to SO3•NMe3 solutions at elevated temperature. The impact of the resulting sulfation on the physicochemical properties of the cellulose films was investigated with respect to film thickness, atomic composition, wettability and roughness. The sulfation was optimized to gain a maximal surface concentration of sulfate groups. The scavenging of antithrombin (AT by the surfaces was determined to conclude on their potential anticoagulant properties.

  9. Direct sulfation of limestone based on oxy-fuel combustion technology

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.M.; Zhao, C.S.; Liu, S.T.; Wang, C.B. [North China Electric Power University, Baoding (China)

    2009-10-15

    With limestone as the sorbent, the sulfation reaction can proceed via two different routes depending on whether calcination of the limestone takes place under the given reaction conditions. The direct sulfation reaction is defined as the sulfation reaction between sulfur dioxide (SO{sub 2}) and limestone in an uncalcined state. This reaction, based on oxyfuel combustion technology, was studied by thermogravimetric analysis. Surface morphologies of the limestone particles after sulfation were examined by a scanning electron microscope. Results show that there are more pores or gaps in the product layer formed by direct sulfation of limestone than by indirect sulfation, which can be attributed to the generation of carbon dioxide (CO{sub 2}) at a reaction interface. Compared with indirect sulfation, direct sulfation of limestone can yield much higher conversion and has a much higher reaction rate. For direct sulfation, the greater porosity in the product layer greatly reduces the solid-state ion diffusion distance, resulting in a higher reaction rate and higher conversion.

  10. Chinese hamster ovary cell mutants defective in heparan sulfate biosynthesis

    International Nuclear Information System (INIS)

    Bame, K.J.; Kiser, C.S.; Esko, J.D.

    1987-01-01

    The authors have isolated Chinese hamster ovary cell mutants defective in proteoglycan synthesis by radiographic screening for cells unable to incorporate 35 SO 4 into acid-precipitable material. Some mutants did not incorporate 35 SO 4 into acid-precipitable material, whereas others incorporated about 3-fold less radioactivity. HPLC anion exchange chromatographic analysis of radiolabelled glycosaminoglycans isolated from these mutants revealed many are defective in heparan sulfate biosynthesis. Mutants 803 and 677 do not synthesize heparan sulfate, although they produce chondroitin sulfate: strain 803 makes chondroitin sulfate normally, whereas 677 overaccumulates chondroitin sulfate by a factor of three. These mutants fall into the same complementation group, suggesting that the mutations are allelic. A second group of heparan sulfate biosynthetic mutants, consisting of cell lines 625, 668 and 679, produce undersulfated heparan sulfate and normal chondroitin sulfate. Treatment of the chains with nitrous acid should determine the position of the sulfate groups along the chain. These mutants may define a complementation group that is defective in the enzymes which modify the heparan sulfate chain. To increase the authors repertoire of heparan sulfate mutants, they are presently developing an in situ enzyme assay to screen colonies replica plated on filter discs for sulfotransferase defects

  11. Incorporation of 35S-sulfate and 3H-glucosamine into heparan and chondroitin sulfates during the cell cycle of B16-F10 cells

    International Nuclear Information System (INIS)

    Blair, O.C.; Sartorelli, A.C.

    1984-01-01

    Changes in glycosaminoglycan composition occurring during the cell cycle were determined in B16-F10 cells sorted flow cytometrically with respect to DNA content. Incorporation of 35 S-sulfate into heparan sulfate and chondroitin sulfate of unsorted and G1,S, and G2 +M sorted cells was determined following chondroitinase ABC or nitrous acid treatment; the incorporation into surface material was measured as the difference between the radioactivity of control and trypsin-treated cells. Incorporation of 35 S-sulfate and 3 H-glucosamine into cetyl pyridinium chloride (CPC)-precipitable material was characterized before and after chondroitinase or nitrous acid treatment by Sephadex G50 chromatography. Long-term (48 h) and short-term (1 h) labeling studies demonstrate that (a) the amount of total cellular chondroitin sulfate is greater than that of heparan sulfate, with larger amounts of unsulfated heparan than chondroitin being present; (b) the rate of turnover of heparan sulfate is greater than that of chondroitin sulfate; (c) greatest short-term incorporation of 3H-glucosamine into CPC-precipitable material occurs during S phase; and (d) the rate of turnover of both heparan sulfate and chondroitin sulfate is decreased in S phase relative to G1 and G2 + M

  12. Direct shortwave forcing of climate by anthropogenic sulfate aerosol: Sensitivity to particle size, composition, and relative humidity

    Energy Technology Data Exchange (ETDEWEB)

    Nemesure, S.; Wagener, R.; Schwartz, S.E. [Brookhaven National Lab., Upton, New York (United States)

    1996-04-01

    Recent estimates of global or hemispheric average forcing of climate by anthropogenic sulfate aerosol due to scattering of shortwave radiation are uncertain by more than a factor of 2. This paper examines the sensitivity of forcing to these microphysical properties for the purposes of obtaining a better understanding of the properties required to reduce the uncertainty in the forcing.

  13. Purification, structural characterization and antiproliferative properties of chondroitin sulfate/dermatan sulfate from tunisian fish skins.

    Science.gov (United States)

    Krichen, Fatma; Volpi, Nicola; Sila, Assaâd; Maccari, Francesca; Mantovani, Veronica; Galeotti, Fabio; Ellouz-Chaabouni, Semia; Bougatef, Ali

    2017-02-01

    Chondroitin sulfate/dermatan sulfate GAGs were extracted and purified from the skins of grey triggerfish (GTSG) and smooth hound (SHSG). The disaccharide composition produced by chondroitinase ABC treatment showed the presence of nonsulfated disaccharide, monosulfated disaccharides ΔDi6S and ΔDi4S, and disulfated disaccharides in different percentages. In particular, the nonsulfated disaccharide ΔDi0S of GTSG and SHSG were 3.5% and 5.5%, respectively, while monosulfated disaccharides ΔDi6S and ΔDi4S were evaluated to be 18.2%, 59% and 14.6%, 47.0%, respectively. Capillary elecrophoresis analysis of GTSG and SHSG contained 99.2% and 95.4% of chondroitin sulfate/dermatan sulfate, respectively. PAGE analysis showed a GTSG and SHSG having molecular masses with average values of 41.72KDa and 23.8KDa, respectively. HCT116 cell proliferation was inhibited (p<0.05) by 70.6% and 72.65% at 200μg/mL of GTSG and SHSG respectively. Both GTSG and SHSG demonstrated promising antiproliferative potential, which may be used as a novel, effective agent. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. A simple and reliable anion-exchange resin method for sulfate extraction and purification suitable for multiple O- and S-isotope measurements.

    Science.gov (United States)

    Le Gendre, Erwann; Martin, Erwan; Villemant, Benoit; Cartigny, Pierre; Assayag, Nelly

    2017-01-15

    The O- and S-isotope compositions of sulfates can be used as key tracers of the fate and sink of sulfate in both terrestrial and extra-terrestrial environments. However, their application remains limited in those geological systems where sulfate occurs in low concentrations. Here we present a simple and reliable method to extract, purify and concentrate sulfate from natural samples. The method allows us to take into account the separation of nitrate, which is known to be an issue in O-isotope analysis. The separation and concentration of sulfate from other anions in any aqueous solution are performed within a few hours via anion-exchange resin. The possible O- (δ 18 O and Δ 17 O) and S- (δ 34 S, Δ 33 S and Δ 36 S) isotope exchanges, fractionations and/or contaminations are for the first time monitored during the whole procedure using initial O- and S-mass-dependent and mass-independent sulfate solutions. After elution in HCl, pure sulfate is fully retrieved and precipitated into BaSO 4 , which is suitable for O- and S-isotopic measurements using established techniques. The analysis of retrieved barite presents no variation within 2σ uncertainties: ±0.5‰ and ±0.1‰ in O- (δ 18 O, Δ 17 O) and ±0.2‰, ±0.02‰ and ±0.09‰ in S- (δ 34 S, Δ 33 S and Δ 36 S) isotope ratios, respectively. This study shows that the resin method for sulfate extraction and purification, in addition to being cheap, simple and quick, is applicable for the measurements of all O- and S-isotopic ratios in sulfates (including the Δ 17 O, Δ 33 S and Δ 36 S values). Therefore, this method can be easily used for a high range of natural samples in which sulfate occurs in low concentration including aerosols, ice cores, sediments, volcanic deposits, (paleo)soils and rainwater, and thus it can be a key to our understanding of the sulfur cycle on Earth. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Diagenesis of amorphous organic matter as an essential aspect of genesis and alteration of tabular-type uranium-vanadium deposits, Colorado Plateau

    International Nuclear Information System (INIS)

    Spirakis, C.S.; Hansley, P.L.

    1987-01-01

    Organic matter was the key to the initial concentration of uranium and vanadium (during the sulfate reduction stage of early diagenesis) in all sandstone-hosted, tabular deposits in the Morrison Formation, Colorado Plateau. In deposits rich in amorphous organic matter, as are many in the Grants uranium region (GUR), diagenesis did not proceed beyond sulfate reduction. In contrast, in organic-poor, chlorite deposits of the Henry Mountains district, 13 C- and 18 O-enriched dolomites preserve evidence of a subsequent methanogenic stage. In these and similar organic-poor deposits in the Slick Rock district and in parts of the GUR, aluminosilicate dissolution (including a distinctive, organic-acid-induced etching of garnets) and growth of coarse-grained coffinite, albite, ankerite, and chlorite suggest diagenesis reached the organic acid stage. Temperature and thermal maturation indicators (vitrinite reflectance, type IIb chlorite, ordered illite/smectite, and fluid inclusion data) are consistent with temperatures of organic-acid stage diagenesis (∼ 100 0 C). The localization of these alterations in and around organic-poor, clay-rich ore; the similarities in type and sequence of these alterations to the normal alteration of organic-bearing sediments; the alteration of iron-titanium oxides (attributed to the action of soluble organic complexes) around both organic-rich and organic-poor deposits; and the gradation from organic-rich to organic-poor, chlorite-rich deposits (in GUR) suggest that (1) amorphous organic matter was involved in the genesis of all of these deposits and (2) differences among deposits may reflect varying degrees of diagenesis of the organic matter

  16. Sulfur and Oxygen Isotopic Composition of Sulfate in the Fresh Water, King Sejong Station, King George Island, Antarctica

    Science.gov (United States)

    Kim, M.; Lee, I.; Lee, J.; Park, B.; Mayer, B.; Kaufman, A. J.; Park, S.; Kim, G.; Lee, K.

    2008-12-01

    rather pure precipitation not affected by seawater sulfate. The atmospheric deposition might have been the major source of dissolved sulfate but it is not clear whether the source materials are from natural and/or anthropogenic origin.

  17. Methodical studies of groundwater pollution caused by fly ash deposits from coal-fired power plants

    International Nuclear Information System (INIS)

    Spuziak-Salzenberg, D.

    1990-01-01

    The risk potential of fly ash deposits from fossil-fuel power plants was investigated through laboratory elution experiments (single elution, multiple elution, column leaching). The groundwater risk potential in the case of indiscriminate, unsealed dumping is high because of an increased water hardness and due to sulfate, molybdenum, selenium, boron, chromium, barium, strontium and arsenic contamination. Higher barium and strontium concentrations are typical of fly ash deposits. Barium and strontium thus serve as target elements for identification of sites of long-standing pollution. The risks of arsenic leaching are discussed in detail. (orig./LU) [de

  18. Importance of sulfate radical anion formation and chemistry in heterogeneous OH oxidation of sodium methyl sulfate, the smallest organosulfate

    Directory of Open Access Journals (Sweden)

    K. C. Kwong

    2018-02-01

    Full Text Available Organosulfates are important organosulfur compounds present in atmospheric particles. While the abundance, composition, and formation mechanisms of organosulfates have been extensively investigated, it remains unclear how they transform and evolve throughout their atmospheric lifetime. To acquire a fundamental understanding of how organosulfates chemically transform in the atmosphere, this work investigates the heterogeneous OH radical-initiated oxidation of sodium methyl sulfate (CH3SO4Na droplets, the smallest organosulfate detected in atmospheric particles, using an aerosol flow tube reactor at a high relative humidity (RH of 85 %. Aerosol mass spectra measured by a soft atmospheric pressure ionization source (direct analysis in real time, DART coupled with a high-resolution mass spectrometer showed that neither functionalization nor fragmentation products are detected. Instead, the ion signal intensity of the bisulfate ion (HSO4− has been found to increase significantly after OH oxidation. We postulate that sodium methyl sulfate tends to fragment into a formaldehyde (CH2O and a sulfate radical anion (SO4 ⋅ − upon OH oxidation. The formaldehyde is likely partitioned back to the gas phase due to its high volatility. The sulfate radical anion, similar to OH radical, can abstract a hydrogen atom from neighboring sodium methyl sulfate to form the bisulfate ion, contributing to the secondary chemistry. Kinetic measurements show that the heterogeneous OH reaction rate constant, k, is (3.79 ± 0.19  ×  10−13 cm3 molecule−1 s−1 with an effective OH uptake coefficient, γeff, of 0.17 ± 0.03. While about 40 % of sodium methyl sulfate is being oxidized at the maximum OH exposure (1.27  ×  1012 molecule cm−3 s, only a 3 % decrease in particle diameter is observed. This can be attributed to a small fraction of particle mass lost via the formation and volatilization of formaldehyde. Overall, we

  19. Low levels of H2S may replace sulfate as sulfur source in sulfate-deprived onion

    NARCIS (Netherlands)

    Durenkamp, Mark; De Kok, LJ

    2005-01-01

    Onion (Allium cepa L.) was exposed to low levels of H2S in order to investigate to what extent H2S could be used as a sulfur source for growth under sulfate-deprived conditions. Sulfate deprivation for a two-week period resulted in a decreased biomass production of the shoot, a subsequently

  20. Development of affinity-based delivery of NGF from a chondroitin sulfate biomaterial.

    Science.gov (United States)

    Butterfield, Karen Chao; Conovaloff, Aaron W; Panitch, Alyssa

    2011-01-01

    Chondroitin sulfate is a major component of the extracellular matrix in both the central and peripheral nervous systems. Chondroitin sulfate is upregulated at injury, thus methods to promote neurite extension through chondroitin sulfate-rich matrices and synthetic scaffolds are needed. We describe the use of both chondroitin sulfate and a novel chondroitin sulfate-binding peptide to control the release of nerve growth factor. Interestingly, the novel chondroitin sulfate-binding peptide enhances the controlled release properties of the chondroitin sulfate gels. While introduction of chondroitin sulfate into a scaffold inhibits primary cortical outgrowth, the combination of chondroitin sulfate, chondroitin sulfate-binding peptide and nerve growth factor promotes primary cortical neurite outgrowth in chondroitin sulfate gels.

  1. Removal of Sulfate Ion From AN-107 by Evaporation

    International Nuclear Information System (INIS)

    GJ Lumetta; GS Klinger; DE Kurath; RL Sell; LP Darnell; LR Greenwood; CZ Soderquist; MJ Steele; MW Urie; JJ Wagner

    2000-01-01

    Hanford low-activity waste solutions contain sulfate, which can cause accelerated corrosion of the vitrification melter and unacceptable operating conditions. A method is needed to selectively separate sulfate from the waste. An experiment was conducted to evaluate evaporation for removing sulfate ion from Tank AN-107 low-activity waste. Two evaporation steps were performed. In the first step, the volume was reduced by 55% while in the second step, the liquid volume was reduced another 22%. Analysis of the solids precipitated during these evaporations revealed that large amounts of sodium nitrate and nitrite co-precipitated with sodium sulfate. Many other waste components precipitated as well. It can be concluded that sulfate removal by precipitation is not selective, and thus, evaporation is not a viable option for removing sulfate from the AN-107 liquid

  2. Xyloside-primed Chondroitin Sulfate/Dermatan Sulfate from Breast Carcinoma Cells with a Defined Disaccharide Composition Has Cytotoxic Effects in Vitro.

    Science.gov (United States)

    Persson, Andrea; Tykesson, Emil; Westergren-Thorsson, Gunilla; Malmström, Anders; Ellervik, Ulf; Mani, Katrin

    2016-07-08

    We previously reported that the xyloside 2-(6-hydroxynaphthyl) β-d-xylopyranoside (XylNapOH), in contrast to 2-naphthyl β-d-xylopyranoside (XylNap), specifically reduces tumor growth both in vitro and in vivo Although there are indications that this could be mediated by the xyloside-primed glycosaminoglycans (GAGs) and that these differ in composition depending on xyloside and cell type, detailed knowledge regarding a structure-function relationship is lacking. In this study we isolated XylNapOH- and XylNap-primed GAGs from a breast carcinoma cell line, HCC70, and a breast fibroblast cell line, CCD-1095Sk, and demonstrated that both XylNapOH- and XylNap-primed chondroitin sulfate/dermatan sulfate GAGs derived from HCC70 cells had a cytotoxic effect on HCC70 cells and CCD-1095Sk cells. The cytotoxic effect appeared to be mediated by induction of apoptosis and was inhibited in a concentration-dependent manner by the XylNap-primed heparan sulfate GAGs. In contrast, neither the chondroitin sulfate/dermatan sulfate nor the heparan sulfate derived from CCD-1095Sk cells primed on XylNapOH or XylNap had any effect on the growth of HCC70 cells or CCD-105Sk cells. These observations were related to the disaccharide composition of the XylNapOH- and XylNap-primed GAGs, which differed between the two cell lines but was similar when the GAGs were derived from the same cell line. To our knowledge this is the first report on cytotoxic effects mediated by chondroitin sulfate/dermatan sulfate. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Fouling tendency of ash resulting from burning mixtures of biofuels. Part 2: Deposit chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Mischa Theis; Bengt-Johan Skrifvars; Maria Zevenhoven; Mikko Hupa; Honghi Tranb [Aabo Akademi Process Chemistry Centre, Aabo (Finland). Combustion and Materials Chemistry

    2006-10-15

    Mixtures of peat with bark and peat with straw were burned in a lab-scale entrained flow reactor under controlled conditions, and deposits were collected on an air-cooled probe at a temperature of 550 {sup o}C. The fuel and deposit compositions were compared using chemical fractionation analysis and SEM/EDX. Chemical fractionation analysis was capable of explaining the relative fouling tendency of peat, bark, and straw. The composition of deposits obtained from firing peat, bark, and straw individually resembled the composition of their ashes. When firing peat-bark and peat-straw mixtures, it was found that the deposition rate only started to increase when the Cl/S molar ratio in the feed ash exceeded 0.15. The composition of the ensuing deposits resembled the deposits obtained from burning either bark or straw individually. For peat-bark mixtures it was concluded that the presence of S in the feed suppresses deposition by sulfating chloride compounds, leading to deposits that contain less Cl and have less molten phase. For peat-straw mixtures it was concluded that the deposition behaviour is governed by other mechanisms than the interaction of Cl and S. 27 refs., 7 figs., 1 tab.

  4. Development of atmospheric acid deposition in China from the 1990s to the 2010s

    International Nuclear Information System (INIS)

    Yu, Haili; He, Nianpeng; Wang, Qiufeng; Zhu, Jianxing; Gao, Yang; Zhang, Yunhai; Jia, Yanlong; Yu, Guirui

    2017-01-01

    Atmospheric acid deposition is a global environmental issue. China has been experiencing serious acid deposition, which is anticipated to become more severe with the country's economic development and increasing consumption of fossil fuels in recent decades. We explored the spatiotemporal variations of acid deposition (wet acid deposition) and its influencing factors by collecting nationwide data on pH and concentrations of sulfate (SO 4 2− ) and nitrate (NO 3 − ) in precipitation between 1980 and 2014 in China. Our results showed that average precipitation pH values were 4.59 and 4.70 in the 1990s and 2010s, respectively, suggesting that precipitation acid deposition in China has not seriously worsened. Average SO 4 2− deposition declined from 40.54 to 34.87 kg S ha −1 yr −1 but average NO 3 − deposition increased from 4.44 to 7.73 kg N ha −1 yr −1 . Specifically, the area of severe precipitation acid deposition in southern China has shrunk to some extent as a result of controlling the pollutant emissions; but the area of moderate precipitation acid deposition has expanded in northern China, associated with rapid industrial and transportation development. Furthermore, we found significant positive correlations between precipitation acid deposition, energy consumption, and rainfall. Our findings provide a relatively comprehensive evaluation of the spatiotemporal dynamics of precipitation acid deposition in China over past three decades, and confirm the idea that strategies implemented to save energy and control pollutant emissions in China have been effective in alleviating precipitation acid deposition. These findings might be used to demonstrate how developing countries could achieve economic development and environmental protection through the implementation of advanced technologies to reduce pollutant emissions. - Highlights: • Explore spatial and temporal dynamics of wet acid deposition during three decades in China. • Acid

  5. Worldwide deposition of 90Sr through 1984

    International Nuclear Information System (INIS)

    Larsen, R.J.; Juzdan, Z.R.

    1986-10-01

    The deposition of 90 Sr in the Northern Hemisphere during 1984 was 0.3 PBq (0.008 MCi), while that of the Southern Hemisphere was 0.1 PBq (0.003 MCi). This resulted in a total deposition on the surface of the earth during 1984 of 0.4 PBq (0.011 MCi). This is the lowest total yearly deposit since the initiation of the Environmental Measurements Laboratory's global fallout program in the mid-1950's. The worldwide cumulative deposit decreased to 357 PBq (9.6 MCi)

  6. ROLE OF TYROSINE-SULFATED PROTEINS IN RETINAL STRUCTURE AND FUNCTION

    Science.gov (United States)

    Kanan, Y.; Al-Ubaidi, M.R.

    2014-01-01

    The extracellular matrix (ECM) plays a significant role in cellular and retinal health. The study of retinal tyrosine-sulfated proteins is an important first step toward understanding the role of ECM in retinal health and diseases. These secreted proteins are members of the retinal ECM. Tyrosine sulfation was shown to be necessary for the development of proper retinal structure and function. The importance of tyrosine sulfation is further demonstrated by the evolutionary presence of tyrosylprotein sulfotransferases, enzymes that catalyze proteins’ tyrosine sulfation, and the compensatory abilities of these enzymes. Research has identified four tyrosine-sulfated retinal proteins: fibulin 2, vitronectin, complement factor H (CFH), and opticin. Vitronectin and CFH regulate the activation of the complement system and are involved in the etiology of some cases of age-related macular degeneration. Analysis of the role of tyrosine sulfation in fibulin function showed that sulfation influences the protein's ability to regulate growth and migration. Although opticin was recently shown to exhibit anti-angiogenic properties, it is not yet determined what role sulfation plays in that function. Future studies focusing on identifying all of the tyrosine-sulfated retinal proteins would be instrumental in determining the impact of sulfation on retinal protein function in retinal homeostasis and diseases. PMID:25819460

  7. Climatic impacts of stratospheric geoengineering with sulfate, black carbon and titania injection

    Directory of Open Access Journals (Sweden)

    A. C. Jones

    2016-03-01

    Full Text Available In this paper, we examine the potential climatic effects of geoengineering by sulfate, black carbon and titania injection against a baseline RCP8.5 scenario. We use the HadGEM2-CCS model to simulate scenarios in which the top-of-the-atmosphere radiative imbalance due to rising greenhouse gas concentrations is offset by sufficient aerosol injection throughout the 2020–2100 period. We find that the global-mean temperature is effectively maintained at historical levels for the entirety of the period for all three aerosol-injection scenarios, though there is a wide range of side-effects which are discussed in detail. The most prominent conclusion is that although the BC injection rate necessary to produce an equivalent global mean temperature response is much lower, the severity of stratospheric temperature changes (> +70 °C and precipitation impacts effectively exclude BC from being a viable option for geoengineering. Additionally, while it has been suggested that titania would be an effective particle because of its high scattering efficiency, it also efficiently absorbs solar ultraviolet radiation producing a significant stratospheric warming (> +20 °C. As injection rates and climatic impacts for titania are close to those for sulfate, there appears to be little benefit in terms of climatic influence of using titania when compared to the injection of sulfur dioxide, which has the added benefit of being well-modeled through extensive research that has been carried out on naturally occurring explosive volcanic eruptions.

  8. A novel chondroitin sulfate hydrogel for nerve repair

    Science.gov (United States)

    Conovaloff, Aaron William

    Brachial plexus injuries affect numerous patients every year, with very debilitating results. The majority of these cases are very severe, and involve damage to the nerve roots. To date, repair strategies for these injuries address only gross tissue damage, but do not supply cells with adequate regeneration signals. As a result, functional recovery is often severely lacking. Therefore, a chondroitin sulfate hydrogel that delivers neurotrophic signals to damaged neurons is proposed as a scaffold to support nerve root regeneration. Capillary electrophoresis studies revealed that chondroitin sulfate can physically bind with a variety of neurotrophic factors, and cultures of chick dorsal root ganglia demonstrated robust neurite outgrowth in chondroitin sulfate hydrogels. Outgrowth in chondroitin sulfate gels was greater than that observed in control gels of hyaluronic acid. Furthermore, the chondroitin sulfate hydrogel's binding activity with nerve growth factor could be enhanced by incorporation of a synthetic bioactive peptide, as revealed by fluorescence recovery after photobleaching. This enhanced binding was observed only in chondroitin sulfate gels, and not in hyaluronic acid control gels. This enhanced binding activity resulted in enhanced dorsal root ganglion neurite outgrowth in chondroitin sulfate gels. Finally, the growth of regenerating dorsal root ganglia in these gels was imaged using label-free coherent anti-Stokes scattering microscopy. This technique generated detailed, high-quality images of live dorsal root ganglion neurites, which were comparable to fixed, F-actin-stained samples. Taken together, these results demonstrate the viability of this chondroitin sulfate hydrogel to serve as an effective implantable scaffold to aid in nerve root regeneration.

  9. Oxygen isotopic fractionation during bacterial sulfate reduction

    Science.gov (United States)

    Balci, N.; Turchyn, A. V.; Lyons, T.; Bruchert, V.; Schrag, D. P.; Wall, J.

    2006-12-01

    Sulfur isotope fractionation during bacterial sulfate reduction (BSR) is understood to depend on a variety of environmental parameters, such as sulfate concentration, temperature, cell specific sulfate reduction rates, and the carbon substrate. What controls oxygen isotope fractionation during BSR is less well understood. Some studies have suggested that carbon substrate is important, whereas others concluded that there is a stoichiometric relationship between the fractionations of sulfur and oxygen during BSR. Studies of oxygen fractionation are complicated by isotopic equilibration between sulfur intermediates, particularly sulfite, and water. This process can modify the isotopic composition of the extracellular sulfate pool (δ18OSO4 ). Given this, the challenge is to distinguish between this isotopic equilibration and fractionations linked to the kinetic effects of the intercellular enzymes and the incorporation of sulfate into the bacterial cell. The δ18OSO4 , in concert with the sulfur isotope composition of sulfate (δ34SSO4), could be a powerful tool for understanding the pathways and environmental controls of BSR in natural systems. We will present δ18OSO4 data measured from batch culture growth of 14 different species of sulfate reducing bacteria for which sulfur isotope data were previously published. A general observation is that δ18OSO4 shows little isotopic change (kinetic effect during BSR and/or equilibration between sulfur intermediates and the isotopically light water (~-5‰) of the growth medium. Our present batch culture data do not allow us to convincingly isolate the magnitude and the controlling parameters of the kinetic isotope effect for oxygen. However, ongoing growth of mutant bacteria missing enzymes critical in the different steps of BSR may assist in this mission.

  10. Radiative forcing estimates of sulfate aerosol in coupled climate-chemistry models with emphasis on the role of the temporal variability

    Directory of Open Access Journals (Sweden)

    C. Déandreis

    2012-06-01

    Full Text Available This paper describes the impact on the sulfate aerosol radiative effects of coupling the radiative code of a global circulation model with a chemistry-aerosol module. With this coupling, temporal variations of sulfate aerosol concentrations influence the estimate of aerosol radiative impacts. Effects of this coupling have been assessed on net fluxes, radiative forcing and temperature for the direct and first indirect effects of sulfate.

    The direct effect respond almost linearly to rapid changes in concentrations whereas the first indirect effect shows a strong non-linearity. In particular, sulfate temporal variability causes a modification of the short wave net fluxes at the top of the atmosphere of +0.24 and +0.22 W m−2 for the present and preindustrial periods, respectively. This change is small compared to the value of the net flux at the top of the atmosphere (about 240 W m−2. The effect is more important in regions with low-level clouds and intermediate sulfate aerosol concentrations (from 0.1 to 0.8 μg (SO4 m−3 in our model.

    The computation of the aerosol direct radiative forcing is quite straightforward and the temporal variability has little effect on its mean value. In contrast, quantifying the first indirect radiative forcing requires tackling technical issues first. We show that the preindustrial sulfate concentrations have to be calculated with the same meteorological trajectory used for computing the present ones. If this condition is not satisfied, it introduces an error on the estimation of the first indirect radiative forcing. Solutions are proposed to assess radiative forcing properly. In the reference method, the coupling between chemistry and climate results in a global average increase of 8% in the first indirect radiative forcing. This change reaches 50% in the most sensitive regions. However, the reference method is not suited to run long climate

  11. Bone sialoprotein II synthesized by cultured osteoblasts contains tyrosine sulfate

    International Nuclear Information System (INIS)

    Ecarot-Charrier, B.; Bouchard, F.; Delloye, C.

    1989-01-01

    Isolated mouse osteoblasts that retain their osteogenic activity in culture were incubated with [35S] sulfate. Two radiolabeled proteins, in addition to proteoglycans, were extracted from the calcified matrix of osteoblast cultures. All the sulfate label in both proteins was in the form of tyrosine sulfate as assessed by amino acid analysis and thin layer chromatography following alkaline hydrolysis. The elution behavior on DEAE-Sephacel of the major sulfated protein and the apparent Mr on sodium dodecyl sulfate gels were characteristic of bone sialoprotein II extracted from rat. This protein was shown to cross-react with an antiserum raised against bovine bone sialoprotein II, indicating that bone sialoprotein II synthesized by cultured mouse osteoblasts is a tyrosine-sulfated protein. The minor sulfated protein was tentatively identified as bone sialoprotein I or osteopontin based on its elution properties on DEAE-Sephacel and anomalous behavior on sodium dodecyl sulfate gels similar to those reported for rat bone sialoprotein I

  12. Pectin of Prunus domestica L. alters sulfated structure of cell-surface heparan sulfate in differentiated Caco-2 cells through stimulation of heparan sulfate 6-O-endosulfatase-2.

    Science.gov (United States)

    Nishida, Mitsutaka; Murata, Kazuma; Kanamaru, Yoshihiro; Yabe, Tomio

    2014-01-01

    Although previous reports have suggested that pectin induces morphological changes of the small intestine in vivo, the molecular mechanisms have not been elucidated. As heparan sulfate plays important roles in development of the small intestine, to verify the involvement of heparan sulfate (HS) in the pectin-induced morphological changes of the small intestine, the effects of pectin from Prunus domestica L. on cell-surface HS were investigated using differentiated Caco-2 cells. Disaccharide compositional analysis revealed that sulfated structures of HS were markedly changed by pectin administration. Real-time RT-PCR showed that pectin upregulated human HS 6-O-endosulfatase-2 (HSulf-2) expression and markedly inhibited HSulf-1 expression. Furthermore, inhibition analysis suggested that pretreatment with fibronectin III1C fragment, RGD peptide, and ERK1/2 inhibitor suppressed pectin-induced HSulf-2 expression. These observations indicate that pectin induced the expression of HSulf-2 through the interaction with fibronectin, α5β1 integrin, and ERK1/2, thereby regulating the sulfated structure of HS on differentiated Caco-2 cells.

  13. An Injectable Enzymatically Crosslinked Carboxymethylated Pullulan/Chondroitin Sulfate Hydrogel for Cartilage Tissue Engineering

    Science.gov (United States)

    Chen, Feng; Yu, Songrui; Liu, Bing; Ni, Yunzhou; Yu, Chunyang; Su, Yue; Zhu, Xinyuan; Yu, Xiaowei; Zhou, Yongfeng; Yan, Deyue

    2016-01-01

    In this study, an enzymatically cross-linked injectable and biodegradable hydrogel system comprising carboxymethyl pullulan-tyramine (CMP-TA) and chondroitin sulfate-tyramine (CS-TA) conjugates was successfully developed under physiological conditions in the presence of both horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) for cartilage tissue engineering (CTTE). The HRP crosslinking method makes this injectable system feasible, minimally invasive and easily translatable for regenerative medicine applications. The physicochemical properties of the mechanically stable hydrogel system can be modulated by varying the weight ratio and concentration of polymer as well as the concentrations of crosslinking reagents. Additionally, the cellular behaviour of porcine auricular chondrocytes encapsulated into CMP-TA/CS-TA hydrogels demonstrates that the hydrogel system has a good cyto-compatibility. Specifically, compared to the CMP-TA hydrogel, these CMP-TA/CS-TA composite hydrogels have enhanced cell proliferation and increased cartilaginous ECM deposition, which significantly facilitate chondrogenesis. Furthermore, histological analysis indicates that the hydrogel system exhibits acceptable tissue compatibility by using a mouse subcutaneous implantation model. Overall, the novel injectable pullulan/chondroitin sulfate composite hydrogels presented here are expected to be useful biomaterial scaffold for regenerating cartilage tissue.

  14. Heparan Sulfate and Chondroitin Sulfate Glycosaminoglycans Are Targeted by Bleomycin in Cancer Cells.

    Science.gov (United States)

    Li, Xiulian; Lan, Ying; He, Yanli; Liu, Yong; Luo, Heng; Yu, Haibo; Song, Ni; Ren, Sumei; Liu, Tianwei; Hao, Cui; Guo, Yunliang; Zhang, Lijuan

    2017-01-01

    Bleomycin is a clinically used anti-cancer drug that produces DNA breaks once inside of cells. However, bleomycin is a positively charged molecule and cannot get inside of cells by free diffusion. We previously reported that the cell surface negatively charged glycosaminoglycans (GAGs) may be involved in the cellular uptake of bleomycin. We also observed that a class of positively charged small molecules has Golgi localization once inside of the cells. We therefore hypothesized that bleomycin might perturb Golgi-operated GAG biosynthesis. We used stable isotope labeling coupled with LC/MS analysis of GAG disaccharides simultaneously from bleomycin-treated and non-treated cancer cells. To further understand the cytotoxicity of bleomycin and its relationship to GAGs, we used sodium chlorate to inhibit GAG sulfation and commercially available GAGs to compete for cell surface GAG/bleomycin interactions in seven cell lines including CHO745 defective in both heparan sulfate and chondroitin sulfate biosynthesis. we discovered that heparan sulfate GAG was significantly undersulfated and the quantity and disaccharide compositions of GAGs were changed in bleomycin-treated cells in a concentration- and time-dependent manner. We revealed that bleomycin-induced cytotoxicity was directly related to cell surface GAGs. GAGs were targeted by bleomycin both at cell surface and at Golgi. Thus, GAGs might be the biological relevant molecules that might be related to the bleomycin-induced fibrosis in certain cancer patients, a severe side effect with largely unknown molecular mechanism. © 2017 The Author(s). Published by S. Karger AG, Basel.

  15. Ferric sulfates on Mars: Surface Explorations and Laboratory Experiments

    Science.gov (United States)

    Wang, A.; Ling, Z.; Freeman, J. J.

    2008-12-01

    Recent results from missions to Mars have reinforced the importance of sulfates for Mars science. They are the hosts of water, the sinks of acidity, and maybe the most active species in the past and current surface/near-surface processes on Mars. Fe-sulfate was found frequently by Spirit and Opportunity rovers: jarosite in Meridiani Planum outcrops and a less specific "ferric sulfate" in the salty soils excavated by Spirit at Gusev Crater. Pancam spectral analysis suggests a variety of ferric sulfates in these soils, i.e. ferricopiapite, jarosite, fibroferrite, and rhomboclase. A change in the Pancam spectral features occurred in Tyrone soils after ~ 190 sols of exposure to surface conditions. Dehydration of ferric sulfate is a possible cause. We synthesized eight ferric sulfates and conducted a series of hydration/dehydration experiments. Our goal was to establish the stability fields and phase transition pathways of these ferric sulfates. In our experiments, water activity, temperature, and starting structure are the variables. No redox state change was observed. Acidic, neutral, and basic salts were used. Ferric sulfate sample containers were placed into relative humidity buffer solutions that maintain static relative humidity levels at three temperatures. The five starting phases were ferricopiapite (Fe4.67(SO4)6(OH)2.20H2O), kornelite (Fe2(SO4)3.7H2O), rhomboclase (FeH(SO4)2.4H2O), pentahydrite (Fe2(SO4)3.5H2O), and an amorphous phase (Fe2(SO4)3.5H2O). A total of one hundred fifty experiments have been running for nearly ten months. Thousands of coupled Raman and gravimetric measurements were made at intermediate steps to monitor the phase transitions. The first order discovery from these experiments is the extremely large stability field of ferricopiapite. Ferricopiapite is the major ferric sulfate to precipitate from a Fe3+-S-rich aqueous solution at mid-low temperature, and it has the highest H2O/Fe ratio (~ 4.3). However, unlike the Mg-sulfate with highest

  16. Ferrous Sulfate (Iron)

    Science.gov (United States)

    ... are allergic to ferrous sulfate, any other medications tartrazine (a yellow dye in some processed foods and ... in, tightly closed, and out of reach of children. Store it at room temperature and away from ...

  17. DEPENDENCY OF SULFATE SOLUBILITY ON MELT COMPOSITION AND MELT POLYMERIZATION

    International Nuclear Information System (INIS)

    JANTZEN, CAROL M.

    2004-01-01

    Sulfate and sulfate salts are not very soluble in borosilicate waste glass. When sulfate is present in excess it can form water soluble secondary phases and/or a molten salt layer (gall) on the melt pool surface which is purported to cause steam explosions in slurry fed melters. Therefore, sulfate can impact glass durability while formation of a molten salt layer on the melt pool can impact processing. Sulfate solubility has been shown to be compositionally dependent in various studies, (e.g. , B2O3, Li2O, CaO, MgO, Na2O, and Fe2O3 were shown to increase sulfate solubility while Al2O3 and SiO2 decreased sulfate solubility). This compositional dependency is shown to be related to the calculated melt viscosity at various temperatures and hence the melt polymerization

  18. Sulfated glycosaminoglycans in human vocal fold lamina propria

    Directory of Open Access Journals (Sweden)

    Sung Woo Park

    Full Text Available Abstract Introduction: The distribution, concentration and function of glycosaminoglycans in the various vocal fold tissues are still unclear. Objective: To evaluate the distribution and concentration of sulfated glycosaminoglycans in different layers of the human vocal fold according to gender and age. Methods: We used 11 vocal folds obtained from cadavers (7 men and 4 women with no laryngeal lesion, less than 12 h after death, and aged between 35 and 98 years. The folds underwent glycosaminoglycans extraction from the cover and ligament, and post-electrophoresis analysis. Data were compared according to the layer, age and gender. Results: The concentration of dermatan sulfate was significantly higher in all layers. No differences were observed in the total concentrations of glycosaminoglycans in layers studied according to gender. It is significantly lower in the cover of individuals aged below 60 years. Conclusion: Dermatan sulfate, chondroitin sulfate, and heparan sulfate were observed in the human vocal folds cover and ligament of both genders, with the concentration of dermatan sulfate being significantly higher in all layers. Glycosaminoglycans concentration on the cover is significantly lower in individuals below 60 years compared with elderly.

  19. Sulfur isotopes as a tracer for biogenic sulfate reduction in natural environments: A link between modern and ancient ecosystems. Geologica Ultraiectina (316)

    NARCIS (Netherlands)

    Stam, M.C.

    2010-01-01

    Sulfur isotopes have been widely used to trace the activity of sulfate reducing prokaryotes in modern and ancient geochemical settings and to estimate the role of this microbial metabolism in global sulfur cycling. Extensive pure culture data provide detailed insight into cellular mechanisms

  20. A survey of the signal stability and radiation dose response of sulfates in the context of adapting optical dating for Mars

    International Nuclear Information System (INIS)

    O'Connor, V.A.; Lepper, K.; Morken, T.O.; Thorstad, D.J.; Podoll, A.; Giles, M.J.

    2011-01-01

    The Martian landscape is currently dominated by eolian processes, and eolian dunes are a direct geomorphic expression of the dynamic interaction between the atmosphere and the lithosphere of planets. The timing, frequency, and spatial extent of dune mobility directly reflects changing climatic conditions, therefore, sedimentary depositional ages are important for understanding the paleoclimatic and geomorphologic history of features and processes present on the surface of the Earth or Mars. Optical dating is an established terrestrial dosimetric dating technique that is being developed for this task on Mars. Gypsum and anhydrite are two of the most stable and abundant sulfate species found on the Earth, and they have been discovered in Martian sediments along with various magnesium sulfates and jarosite. In this study, the optical dating properties of various Ca-, Mg-, and Fe-bearing sulfates were documented to help evaluate the influence they may have on in-situ optical dating in eolian environments on Mars. Single-aliquot regenerative-dose (SAR) experimental procedures have been adapted to characterize the radiation dose response and signal stability of the Martian sulfate analogs. Jarosite was dosimetrically inert in our experiments. The radiation dose response of the Ca- and Mg-sulfates was monotonically increasing in all cases with characteristic doses ranging from ∼100 to ∼1000 Gy. Short-term signal fading also varied considerably in the Ca- and Mg-sulfates ranging from ∼0% to ∼40% per decade for these materials. These results suggest that the OSL properties of Ca- and Mg-sulfates will need to be considered when developing protocols for in-situ optical dating on Mars, but more enticingly, our results foreshadow the potential for gypsum to be developed as a geochronometer for Mars or the Earth. - Highlights: → The radiation dose response and OSL signal stability of Ca- and Mg-sulfates was highly variable. → OSL properties of Ca- and Mg-sulfates

  1. DHEA-sulfate test

    Science.gov (United States)

    ... DHEA sulfate may be due to: Adrenal gland disorders that produce lower than normal amounts of adrenal hormones, including adrenal insufficiency and Addison disease The pituitary gland not producing normal amounts of its hormones ( hypopituitarism ) ...

  2. Behaviour of cementitious materials: sulfates and temperature actions

    International Nuclear Information System (INIS)

    Barbarulo, Remi

    2002-09-01

    The research work presented in this Ph.D. thesis is related to the nuclear waste underground repository concept. Concrete could be used in such a repository, and would be subjected to variations of temperature in presence of sulfate, a situation that could induce expansion of concrete. The research was lead in three parts: an experimental study of the possibility of an internal sulfate attack on mortars; an experimental study and modeling of the chemical equilibriums of the CaO-SiO 2 -Al 2 O 3 -SO 3 -H 2 O system; and a modeling of the mechanisms of internal and external sulfate attacks, and the effect of temperature. The results show that mortars can develop expansions after a steam-cure during hydration, but also when a long steam-cure is applied to one-year-old mortars, which is a new point. Ettringite precipitation can be considered as responsible for these expansions. The experimental study of the CaO-SiO 2 -Al 2 O 3 -SO 3 -H 2 O system clarified the role of Calcium Silicate Hydrates (C-S-H) on chemical equilibriums of cementitious materials. Sulfate sorption on C-S-H has been studied in detail. The quantity of sulfate bound to the C-S-H mainly depends on the sulfate concentration in solution, on the Ca/Si ratio of the C-S-H and is not significantly influenced by temperature. Aluminium inclusion in the C-S-H seems to be a significant phenomenon. Temperature increases the calcium sulfo-aluminate solubilities and thus increases sulfates concentration in solution. A modeling of the chemical system is proposed. Simulations of external sulfate attack (15 mmol/L of Na 2 SO 4 ) predict ettringite precipitation at 20 and 85±C. Simulation of internal sulfate attack was performed at a local scale (a hydrated cement grain). An initial inhomogeneity can lead, after a thermal curing at 85±C, to ettringite precipitation in zones originally free from ettringite. This new-formed ettringite could be the origin of the expansions. (author) [fr

  3. Selenium inhibits sulfate-mediated methylmercury production in rice paddy soil.

    Science.gov (United States)

    Wang, Yong-Jie; Dang, Fei; Zhao, Jia-Ting; Zhong, Huan

    2016-06-01

    There is increasing interest in understanding factors controlling methylmercury (MeHg) production in mercury-contaminated rice paddy soil. Sulfate has been reported to affect MeHg biogeochemistry under anoxic conditions, and recent studies revealed that selenium (Se) could evidently reduce MeHg production in paddy soil. However, the controls of sulfate and Se on net MeHg production in paddy soil under fluctuating redox conditions remain largely unknown. Microcosm experiments were conducted to explore the effects of sulfate and Se on net MeHg production in rice paddy soil. Soil was added with 0-960 mg/kg sulfate, in the presence or absence of 3.0 mg/kg selenium (selenite or selenate), and incubated under anoxic (40 days) or suboxic conditions (5 days), simulating fluctuating redox conditions in rice paddy field. Sulfate addition moderately affected soil MeHg concentrations under anoxic conditions, while reoxidation resulted in evidently higher (18-40%) MeHg levels in sulfate amended soils than the control. The observed changes in net MeHg production were related to dynamics of sulfate and iron. However, Se could inhibit sulfate-mediated MeHg production in the soils: Se addition largely reduced net MeHg production in the soils (23-86%, compared to the control), despite of sulfate addition. Similarly, results of the pot experiments (i.e., rice cultivation in amended soils) indicated that soil MeHg levels were rather comparable in Se-amended soils during rice growth period, irrespective of added sulfate doses. The more important role of Se than sulfate in controlling MeHg production was explained by the formation of HgSe nanoparticles irrespective of the presence of sulfate, confirmed by TEM-EDX and XANES analysis. Our findings regarding the effects of sulfate and Se on net MeHg production in rice paddy soil together with the mechanistic explanation of the processes advance our understanding of MeHg dynamics and risk in soil-rice systems. Copyright © 2016 Elsevier

  4. Extraction of uranyl sulfate with primary amine

    International Nuclear Information System (INIS)

    Mrnka, M.; Bizek, V.; Nekovar, P.; Cizevska, S.; Schroetterova, D.

    1984-01-01

    PRIMENE JM-T was used for extraction. Its composition was found to approach the general formula C 21 H 43 NH 2 . It was found that the extraction of uranyl sulfate is lower in case of a higher steady-state concentration of sulfuric acid in the aqueous phase. Extraction is accompanied with coextraction of water. The results obtained showed that uranyl sulfate passes into the organic phase by two mechanisms: extraction with amine sulfate and extraction with free amine. A mathematical description of the process was made based on the obtained results. (E.S.)

  5. Biological functions of iduronic acid in chondroitin/dermatan sulfate.

    Science.gov (United States)

    Thelin, Martin A; Bartolini, Barbara; Axelsson, Jakob; Gustafsson, Renata; Tykesson, Emil; Pera, Edgar; Oldberg, Åke; Maccarana, Marco; Malmstrom, Anders

    2013-05-01

    The presence of iduronic acid in chondroitin/dermatan sulfate changes the properties of the polysaccharides because it generates a more flexible chain with increased binding potentials. Iduronic acid in chondroitin/dermatan sulfate influences multiple cellular properties, such as migration, proliferation, differentiation, angiogenesis and the regulation of cytokine/growth factor activities. Under pathological conditions such as wound healing, inflammation and cancer, iduronic acid has diverse regulatory functions. Iduronic acid is formed by two epimerases (i.e. dermatan sulfate epimerase 1 and 2) that have different tissue distribution and properties. The role of iduronic acid in chondroitin/dermatan sulfate is highlighted by the vast changes in connective tissue features in patients with a new type of Ehler-Danlos syndrome: adducted thumb-clubfoot syndrome. Future research aims to understand the roles of the two epimerases and their interplay with the sulfotransferases involved in chondroitin sulfate/dermatan sulfate biosynthesis. Furthermore, a better definition of chondroitin/dermatan sulfate functions using different knockout models is needed. In this review, we focus on the two enzymes responsible for iduronic acid formation, as well as the role of iduronic acid in health and disease. © 2013 The Authors Journal compilation © 2013 FEBS.

  6. Bicarbonate sulfate exchange in canalicular rat liver plasma membrane vesicles

    International Nuclear Information System (INIS)

    Meier, P.J.; Valantinas, J.; Hugentobler, G.; Rahm, I.

    1987-01-01

    The mechanism(s) and driving forces for biliary excretion of sulfate were investigated in canalicular rat liver plasma membrane vesicles (cLPM). Incubation of cLPM vesicles in the presence of an inside-to-outside (in, out) bicarbonate gradient but not pH or out-to-in sodium gradients, stimulated sulfate uptake 10-fold compared with the absence of bicarbonate and approximately 2-fold above sulfate equilibrium (overshoot). Initial rates of this bicarbonate gradient-driven [ 35 S]-sulfate uptake were saturable with increasing concentrations of sulfate and could be inhibited by probenecid, N-(4-azido-2-nitrophenyl)-2-aminoethylsulfonate, acetazolamide, furosemide, 4-acetamideo-4'-isothiocyanostilbene-2,2'-disulfonic acid, and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (IC 50 , ∼40 μM). Cisinhibition of initial bicarbonate gradient-stimulated sulfate uptake and transstimulation of sulfate uptake in the absence of bicarbonate were observed with sulfate, thiosulfate, and oxalate but not with chloride, nitrate, phosphate, acetate, lactate, glutamate, aspartate, cholate, taurocholate, dehydrocholate, taurodehydrocholate, and reduced or oxidized glutathione. These findings indicate the presence of a sulfate (oxalate)-bicarbonate anion exchange system in canalicular rat liver plasma membranes. These findings support the concept that bicarbonate-sensitive transport system might play an important role in bile acid-independent canalicular bile formation

  7. Sulfur-Bearing Phases Detected by Evolved Gas Analysis of the Rocknest Aeolian Deposit, Gale Crater, Mars

    Science.gov (United States)

    Mcadam, Amy Catherine; Franz, Heather Bryant

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument suite detected SO2, H2S, OCS, and CS2 from approx.450 to 800 C during evolved gas analysis (EGA) of materials from the Rocknest aeolian deposit in Gale Crater, Mars. This was the first detection of evolved sulfur species from a Martian surface sample during in situ EGA. SO2(approx. 3-22 micro-mol) is consistent with the thermal decomposition of Fe sulfates or Ca sulfites, or evolution/desorption from sulfur-bearing amorphous phases. Reactions between reduced sulfur phases such as sulfides and evolved O2 or H2O in the SAM oven are another candidate SO2 source. H2S (approx.41-109 nmol) is consistent with interactions of H2O, H2 and/or HCl with reduced sulfur phases and/or SO2 in the SAM oven. OCS (approx.1-5 nmol) and CS2(approx.0.2-1 nmol) are likely derived from reactions between carbon-bearing compounds and reduced sulfur. Sulfates and sulfites indicate some aqueous interactions, although not necessarily at the Rocknest site; Fe sulfates imply interaction with acid solutions whereas Ca sulfites can form from acidic to near-neutral solutions. Sulfides in the Rocknest materials suggest input from materials originally deposited in a reducing environment or from detrital sulfides from an igneous source. The presence of sulfides also suggests that the materials have not been extensively altered by oxidative aqueous weathering. The possibility of both reduced and oxidized sulfur compounds in the deposit indicates a nonequilibrium assemblage. Understanding the sulfur mineralogy in Rocknest materials, which exhibit chemical similarities to basaltic fines analyzed elsewhere on Mars, can provide insight in to the origin and alteration history of Martian surface materials.

  8. Global atmospheric changes.

    OpenAIRE

    Piver, W T

    1991-01-01

    Increasing concentrations of CO2 and other greenhouse gases in the atmosphere can be directly related to global warming. In terms of human health, because a major cause of increasing atmospheric concentrations of CO2 is the increased combustion of fossil fuels, global warming also may result in increases in air pollutants, acid deposition, and exposure to ultraviolet (UV) radiation. To understand better the impacts of global warming phenomena on human health, this review emphasizes the proces...

  9. The anaerobic treatment of sulfate containing wastewater

    NARCIS (Netherlands)

    Visser, A.

    1995-01-01


    In the anaerobic treatment of sulfate containing wastewater sulfate reducing bacteria (SRB) will compete with methanogenic- (MB) and acetogenic bacteria (AB) for the available substrates such as hydrogen, acetate, propionate and butyrate. The outcome of this competition will

  10. Chemical characterization of biomass burning deposits from cooking stoves in Bangladesh

    International Nuclear Information System (INIS)

    Salam, Abdus; Hasan, Mahmodul; Begum, Bilkis A.; Begum, Monira; Biswas, Swapan K.

    2013-01-01

    Biomass burning smoke deposits were characterized from cooking stoves in Brahmondi, Narsingdi, Bangladesh. Arjun, bamboo, coconut, madhabilata, mahogany, mango, rice husk coil, plum and mixed dried leaves were used as biomasses. Smoke deposits were collected from the ceiling (above the stove) of the kitchen on aluminum foil. Deposits samples were analyzed with X-ray fluorescence (XRF) spectroscopy for trace elements determination. UV–visible spectrophotometer was used for ions analysis. The surface morphology of the smoke deposits was studied with scanning electron microscope (SEM). Elevated concentrations of the trace elements were observed, especially for toxic metals (Pb, Co, Cu). The highest concentration of lead was observed in rice husk coil among the determined biomasses followed by mahogany and arjun, whereas the lowest concentration was observed in bamboo. Potassium has the highest concentration among the determined trace elements followed by calcium, iron and titanium. Trace elements such as potassium, calcium, iron showed significant variation among different biomass burning smoke deposits. The average concentrations of sulfate, nitrate, and phosphate were 38.0, 0.60, 0.73 mg kg −1 , respectively. The surface morphology was almost similar for these biomass burning deposit samples. The Southeast Asian biomass burning smoke deposits had distinct behavior from European and USA wood fuels combustion. -- Highlights: •Elevated concentrations of trace elements were observed in biomass burning deposits. •Very high concentration of lead was observed in biomasses burring deposits •Elevated toxic trace elements concentrations in kitchens need further surveillance

  11. Effects of Sulfation Level on the Desulfation Behavior of Presulfated Pt-BaO/Al2O3 Lean

    International Nuclear Information System (INIS)

    Kim, D.; Szanyi, J.; Kwak, J.; Wang, X.; Hanson, J.; Engelhard, M.; Peden, C.

    2009-01-01

    Desulfation by hydrogen of presulfated Pt (2 wt %)-BaO(20 wt %)/Al2O3 with various sulfur loading (S/Ba = 0.12, 0.31, and 0.62) were investigated by combining H2 temperature programmed reaction (TPRX), X-ray photoelectron spectroscopy (XPS), in situ sulfur K-edge X-ray absorption near-edge spectroscopy (XANES), and synchrotron time-resolved X-ray diffraction (TR-XRD) techniques. We find that the amount of H2S desorbed during the desulfation in the H2 TPRX experiments is not proportional to the amount of initial sulfur loading. The results of both in situ sulfur K-edge XANES and TR-XRD show that at low sulfur loadings, sulfates were transformed to a BaS phase and remained in the catalyst rather than being removed as H2S. On the other hand, when the deposited sulfur level exceeded a certain threshold (at least S/Ba = 0.31) sulfates were reduced to form H2S, and the relative amount of the residual sulfide species in the catalyst was much less than at low sulfur loading. Unlike samples with high sulfur loading (e.g., S/Ba = 0.62), H2O did not promote the desulfation for the sample with S/Ba of 0.12, implying that the formed BaS species originating from the reduction of sulfates at low sulfur loading are more stable to hydrolysis. The results of this combined spectroscopy investigation provide clear evidence to show that sulfates at low sulfur loadings are less likely to be removed as H2S and have a greater tendency to be transformed to BaS on the material, leading to the conclusion that desulfation behavior of Pt-BaO/Al2O3 lean NOx trap catalysts is markedly dependent on the sulfation levels.

  12. Simulated responses of terrestrial aridity to black carbon and sulfate aerosols

    Science.gov (United States)

    Lin, L.; Gettelman, A.; Xu, Y.; Fu, Q.

    2016-01-01

    Aridity index (AI), defined as the ratio of precipitation to potential evapotranspiration (PET), is a measure of the dryness of terrestrial climate. Global climate models generally project future decreases of AI (drying) associated with global warming scenarios driven by increasing greenhouse gas and declining aerosols. Given their different effects in the climate system, scattering and absorbing aerosols may affect AI differently. Here we explore the terrestrial aridity responses to anthropogenic black carbon (BC) and sulfate (SO4) aerosols with Community Earth System Model simulations. Positive BC radiative forcing decreases precipitation averaged over global land at a rate of 0.9%/°C of global mean surface temperature increase (moderate drying), while BC radiative forcing increases PET by 1.0%/°C (also drying). BC leads to a global decrease of 1.9%/°C in AI (drying). SO4 forcing is negative and causes precipitation a decrease at a rate of 6.7%/°C cooling (strong drying). PET also decreases in response to SO4 aerosol cooling by 6.3%/°C cooling (contributing to moistening). Thus, SO4 cooling leads to a small decrease in AI (drying) by 0.4%/°C cooling. Despite the opposite effects on global mean temperature, BC and SO4 both contribute to the twentieth century drying (AI decrease). Sensitivity test indicates that surface temperature and surface available energy changes dominate BC- and SO4-induced PET changes.

  13. Sources and Contributions of Oxygen During Microbial Pyrite Oxidation: the Triple Oxygen Isotopes of Sulfate

    Science.gov (United States)

    Ziegler, K.; Coleman, M. L.; Mielke, R. E.; Young, E. D.

    2008-12-01

    expected based on published equilibrium values [2,3,4]. Our inferred ɛ18OSO4-H2O of at least ~+10‰ is similar to some reported values. These new insights into the close links between microbial life cycle and sources of sulfate oxygen during sulfide oxidation, and their oxygen isotopic expressions, will help elucidate the role of microbial oxidation in natural systems. If microbial populations in natural systems remain in a perpetual lag-phase due to constrains of chemistry, atmospheric oxygen will imprint its isotopic signature onto sulfate deposits. Ultimately, such data could be used as biosignatures on Early Earth or Mars. [1] Brunner and Coleman (2008) EPSL 270, 63-72. [2] Balci et al. (2007) GCA 71, 3796-3811. [3] Pisapia et al. (2007) GCA 71, 2474-2490. [4] Taylor et al. (1984) GCA 48, 2669-2678.

  14. Extraction of beryllium sulfate by a long chain amine

    International Nuclear Information System (INIS)

    Etaix, E.S.

    1968-01-01

    The extraction of sulfuric acid in aqueous solution by a primary amine in benzene solution, 3-9 (diethyl) - 6-amino tri-decane (D.E.T. ) - i.e., with American nomenclature 1-3 (ethyl-pentyl) - 4-ethyl-octyl amine (E.P.O.) - has made it possible to calculate the formation constants of alkyl-ammonium sulfate and acid sulfate. The formula of the beryllium and alkyl-ammonium sulfate complex formed in benzene has next been determined, for various initial acidity of the aqueous solution. Lastly, evidence has been given of negatively charged complexes of beryllium and sulfate in aqueous solution, through the dependence of the aqueous sulfate ions concentration upon beryllium extraction. The formation constant of these anionic complexes has been evaluated. (author) [fr

  15. Atmospheric nitrogen deposition: Revisiting the question of the importance of the organic component

    International Nuclear Information System (INIS)

    Cornell, Sarah E.

    2011-01-01

    The organic component of atmospheric reactive nitrogen plays a role in biogeochemical cycles, climate and ecosystems. Although its deposition has long been known to be quantitatively significant, it is not routinely assessed in deposition studies and monitoring programmes. Excluding this fraction, typically 25-35%, introduces significant uncertainty in the determination of nitrogen deposition, with implications for the critical loads approach. The last decade of rainwater studies substantially expands the worldwide dataset, giving enough global coverage for specific hypotheses to be considered about the distribution, composition, sources and effects of organic-nitrogen deposition. This data collation and meta-analysis highlights knowledge gaps, suggesting where data-gathering efforts and process studies should be focused. New analytical techniques allow long-standing conjectures about the nature and sources of organic N to be investigated, with tantalising indications of the interplay between natural and anthropogenic sources, and between the nitrogen and carbon cycles. - Highlights: → Organic-nitrogen deposition is globally ubiquitous. → Geographic patterns can now be seen in the near-global dataset. → Organic N can be formed through interactions of biogenic and anthropogenic compounds. → Neglecting organic N in deposition assessments increases critical loads uncertainty - Routinely including the organic component of atmospheric deposition (known to be around 25-35% worldwide) would make the understanding and prediction of nitrogen biogeochemistry more robust. This paper makes a preliminary global synthesis based on literature reports.

  16. Monitoring of scale deposition in petroleum pipelines by means of photon scattering: a preliminary study

    International Nuclear Information System (INIS)

    Meric, Ilker; Johansen, Geir A.

    2013-01-01

    In the petroleum industry precipitation of scale onto the inner walls of hydrocarbon pipelines poses a significant challenge as, unless treated appropriately, deposits such as sulfate and carbonate scales reduce the overall flow area and even lead to blockage of entire sections of the pipework. This may in turn result in costly production suspension and maintenance work. Therefore, monitoring and characterization of scale deposits can be said to be of great importance. In this work, a preliminary feasibility study is carried out in order to investigate the possibility of utilizing photon scattering for scale detection in multiphase oil/water/gas pipelines. (author)

  17. Sulfate reduction and methanogenesis at a freshwater

    DEFF Research Database (Denmark)

    Iversen, Vibeke Margrethe Nyvang; Andersen, Martin Søgaard; Jakobsen, Rasmus

    The freshwater-seawater interface was studied in a ~9-m thick anaerobic aquifer located in marine sand and gravel with thin peat lenses. Very limited amounts of iron-oxides are present. Consequently, the dominating redox processes are sulfate reduction and methanogenesis, and the groundwater...... is enriched in dissolved sulfide, methane and bicarbonate. Under normal conditions the seawater-freshwater interface is found at a depth of 4 m at the coastline and reaches the bottom of the aquifer 40 m inland. However, occasional flooding of the area occurs, introducing sulfate to the aquifer. Groundwater...... chemistry was studied in a 120 m transect perpendicular to the coast. Cores were taken for radiotracer rate measurements of sulfate reduction and methanogenesis. In the saline part of the aquifer 35 m inland, sulfate reduction was the dominant process with rates of 0.1-10 mM/year. In the freshwater part 100...

  18. Scenario and parameter studies on global deposition of radioactivity using the computer model GLODEP2

    International Nuclear Information System (INIS)

    Shapiro, C.S.

    1984-08-01

    The GLODEP2 computer code was utilized to determine biological impact to humans on a global scale using up-to-date estimates of biological risk. These risk factors use varied biological damage models for assessing effects. All the doses reported are the unsheltered, unweathered, smooth terrain, external gamma dose. We assume the unperturbed atmosphere in determining injection and deposition. Effects due to ''nuclear winter'' may invalidate this assumption. The calculations also include scenarios that attempt to assess the impact of the changing nature of the nuclear stockpile. In particular, the shift from larger to smaller yield nuclear devices significantly changes the injection pattern into the atmosphere, and hence significantly affects the radiation doses that ensue. We have also looked at injections into the equatorial atmosphere. In total, we report here the results for 8 scenarios. 10 refs., 6 figs., 11 tabs

  19. Studies on sulfate attack: Mechanisms, test methods, and modeling

    Science.gov (United States)

    Santhanam, Manu

    The objective of this research study was to investigate various issues pertaining to the mechanism, testing methods, and modeling of sulfate attack in concrete. The study was divided into the following segments: (1) effect of gypsum formation on the expansion of mortars, (2) attack by the magnesium ion, (3) sulfate attack in the presence of chloride ions---differentiating seawater and groundwater attack, (4) use of admixtures to mitigate sulfate attack---entrained air, sodium citrate, silica fume, and metakaolin, (5) effects of temperature and concentration of the attack solution, (6) development of new test methods using concrete specimens, and (7) modeling of the sulfate attack phenomenon. Mortar specimens using portland cement (PC) and tricalcium silicate (C 3S), with or without mineral admixtures, were prepared and immersed in different sulfate solutions. In addition to this, portland cement concrete specimens were also prepared and subjected to complete and partial immersion in sulfate solutions. Physical measurements, chemical analyses and microstructural studies were performed periodically on the specimens. Gypsum formation was seen to cause expansion of the C3S mortar specimens. Statistical analyses of the data also indicated that the quantity of gypsum was the most significant factor controlling the expansion of mortar bars. The attack by magnesium ion was found to drive the reaction towards the formation of brucite. Decalcification of the C-S-H and its subsequent conversion to the non-cementitious M-S-H was identified as the mechanism of destruction in magnesium sulfate attack. Mineral admixtures were beneficial in combating sodium sulfate attack, while reducing the resistance to magnesium sulfate attack. Air entrainment did not change the measured physical properties, but reduced the visible distress of the mortars. Sodium citrate caused a substantial reduction in the rate of damage of the mortars due to its retarding effect. Temperature and

  20. Mg-Sulfate Salts as Possible Water Reservoirs in Martian Regolith

    Science.gov (United States)

    Vaniman, D. T.; Bish, D. L.; Chipera, S. J.; Carey, J. W.; Feldman, W. C.

    2003-12-01

    Neutron spectrometer data from the Mars Odyssey orbiter provide evidence of high water-equivalent hydrogen abundance in some near-equatorial locations on Mars. In broad regions shallow (duricrust indicate that Mg and S are correlated and that ˜10% of an Mg-sulfate salt is a likely cementing agent. However, the range of possible Mg sulfates is large. Epsomite (7-hydrate, 51% water) and hexahydrite (6-hydrate, 47% water) are the most hydrated; both form structures of isolated SO4 tetrahedra with isolated octahedral sites consisting of Mg coordinated by six H2O molecules (epsomite has an extra H2O in addition to the six required to coordinate with Mg). Pentahydrite (5-hydrate, 43% water) has infinite chains of alternating SO4 tetrahedra and Mg octahedra, with 4/5 of the water forming apices in octahedral sites. Starkeyite (4-hydrate, 37% water) has clusters of two SO4 tetrahedra and two Mg octahedra, linked only by hydrogen bonds. The Mg-sulfate sanderite (2-hydrate, 23% water) is rare and has poorly known structure. Kieserite (1-hydrate, 13% water) is relatively common in evaporite deposits and has a framework structure of infinite tetrahedral-octahedral chains cross-linked by hydrogen bonds. The stability of Mg-sulfate hydrates under martian near-surface conditions depends on their structures; those with excess water beyond that required to form the octahedral Mg site (e.g., epsomite, pentahydrite) lose that excess readily. Experiments with epsomite and hexahydrite indicate great sensitivity to environmental conditions; epsomite is not stable at 295 K at relative humidity (RH) values less than about 55%, below which hexahydrite is the observed phase. More importantly, hexahydrite - with all water coordinated to Mg in octahedral sites - is unstable at pressures less than ˜20 mtorr. X-ray diffraction analysis of hexahydrite held at 20 mtorr for six hours shows that structural degradation is slow at 100 K but becomes obvious in 1 hour at 273 K. Thermogravimetric

  1. Euglena mitochondria and chloroplasts form tyrosine-O-sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Saidha, T.; Hanfstingl, U.; Schiff, J.A. (Brandeis Univ., Waltham, MA (USA))

    1989-04-01

    Mitochondria from light-grown wild-type Euglena gracilis var. bacillaris Cori or dark-grown mutant W{sub 10}BSmL incubated with {sup 35}SO{sub 4}{sup 2{minus}} and ATP, or with {sup 14}C-tyrosine, non-radioactive sulfate and ATP accumulate a labeled compound in the medium. Since this compound shows exact coelectrophoresis with tyrosine-O-sulfate (TOS) at pH 2.0, 5.8 or 8.0., yields sulfate and tyrosine on acid hydrolysis, and treatment with aryl sulfatase from Aerobacter aerogenes yields sulfate and tyrosine but no tyrosine methyl ester, it is identified as TOS. No TOS is found outside purified developing chloroplasts incubated with {sup 35}SO{sub 4}{sup 2{minus}} and ATP, but both chloroplasts and mitochondria form to {sup 35}S externally when incubated with adenosine 3{prime} phosphate 5{prime}phospho({sup 35}S) sulfate (PAP{sup 35}S). Since no tyrosine need be added, tyrosine is provided from endogenous sources. Although TOS is found in the free pool of Euglena cells it cannot be detected in proteins of cells or mucus ruling our sulfation of tyrosine of protein or incorporation of TOS into proteins. The system forming TOS is membrane-bound and may be involved in tyrosine transport.

  2. Measurements of dry-deposition parameters for the California acid-deposition monitoring program. Final report

    International Nuclear Information System (INIS)

    Watson, J.G.; Chow, J.C.; Egami, R.T.; Bowen, J.L.; Frazier, C.A.

    1991-06-01

    The State of California monitors the concentrations of acidic gases and particles at 10 sites throughout the state. Seven sites represent urban areas (South Coast Air Basin - three sites, San Francisco Bay Area, Bakersfield, Santa Barbara, and Sacramento) and three represent forested areas (Sequoia National Park, Yosemite National Park, and Gasquet). Several sites are collocated with monitoring instruments for other air quality and forest response networks. Continuous monitors for the dry deposition network collect hourly average values for ozone, wind speed, wind direction, atmospheric stability, temperature, dew point, time of wetness, and solar radiation. A newly-designed gas/particle sampler collects daytime (6 a.m. to 6 p.m.) and nighttime (6 p.m. to 6 a.m.) samples every sixth day for sulfur dioxide, ammonia, nitrogen dioxide, and nitric acid. Particles are collected on the same day/night schedule in PM(10) and PM(2.5) size ranges, and are analyzed for mass, sulfate, nitrate, chloride, ammonium, sodium, magnesium, potassium, and calcium ions. The sampling schedule follows the regulatory schedule adopted by the EPA and ARB for suspended particulate matter. Wet deposition data are collected at or nearby the dry deposition stations. The first year of the monitoring program included installation of the network, training of technicians, acquisition and validation of data, and transfer of the sampling and analysis technology to Air Resources Board operating divisions. Data have been validated and stored for the period May, 1988 through September, 1989

  3. COMPARISON OF UASB AND FLUIDIZED-BED REACTORS FOR SULFATE REDUCTION

    Directory of Open Access Journals (Sweden)

    S. M. Bertolino

    2015-03-01

    Full Text Available Abstract Reactor hydrodynamics is important for sulfidogenesis because sulfate reduction bacteria (SRB do not granulate easily. In this work, the sulfate reduction performance of two continuous anaerobic bioreactors was investigated: (i an upflow anaerobic sludge blanket (UASB reactor and (ii a fluidized bed reactor (FBR. Organic loading, sulfate reduction, and COD removal were the main parameters monitored during lactate and glycerol degradation. The UASB reactor with biomass recirculation showed a specific sulfate reduction rate of 0.089±0.014 g.gSSV-1.d-1 (89% reduction, whereas values twice as high were achieved in the FBR treating either lactate (0.200±0.017 g.gSSV-1.d-1 or glycerol (0.178±0.010 g.gSSV-1.d-1. Sulfate reduction with pure glycerol produced a smaller residual COD (1700 mg.L-1 than that produced with lactate (2500 mg.L-1 at the same COD.sulfate-1 mass ratio. It was estimated that 50% of glycerol degradation was due to sulfate reduction and 50% to fermentation, which was supported by the presence of butyrate in the FBR effluent. The UASB reactor was unable to produce effluents with sulfate concentrations below 250 mg.L-1 due to poor mixing conditions, whereas the FBR consistently ensured residual sulfate concentrations below such a value.

  4. On the sulfation of O-desmethyltramadol by human cytosolic sulfotransferases.

    Science.gov (United States)

    Rasool, Mohammed I; Bairam, Ahsan F; Kurogi, Katsuhisa; Liu, Ming-Cheh

    2017-10-01

    Previous studies have demonstrated that sulfate conjugation is involved in the metabolism of the active metabolite of tramadol, O-desmethyltramadol (O-DMT). The current study aimed to systematically identify the human cytosolic sulfotransferases (SULTs) that are capable of mediating the sulfation of O-DMT. The sulfation of O-DMT under metabolic conditions was demonstrated using HepG2 hepatoma cells and Caco-2 human colon carcinoma cells. O-DMT-sulfating activity of thirteen known human SULTs and four human organ specimens was examined using an established sulfotransferase assay. pH-Dependency and kinetic parameters were also analyzed using, respectively, buffers at different pHs and varying O-DMT concentrations in the assays. Of the thirteen human SULTs tested, only SULT1A3 and SULT1C4 were found to display O-DMT-sulfating activity, with different pH-dependency profiles. Kinetic analysis revealed that SULT1C4 was 60 times more catalytically efficient in mediating the sulfation of O-DMT than SULT1A3 at respective optimal pH. Of the four human organ specimens tested, the cytosol prepared from the small intestine showed much higher O-DMT-sulfating activity than cytosols prepared from liver, lung, and kidney. Both cultured HepG2 and Caco-2 cells were shown to be capable of sulfating O-DMT and releasing sulfated O-DMT into cultured media. SULT1A3 and SULT1C4 were the major SULTs responsible for the sulfation of O-DMT. Collectively, the results obtained provided a molecular basis underlying the sulfation of O-DMT and contributed to a better understanding about the pharmacokinetics and pharmacodynamics of tramadol in humans. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  5. Chlorate: a reversible inhibitor of proteoglycan sulfation

    International Nuclear Information System (INIS)

    Humphries, D.E.; Silbert, J.E.

    1988-01-01

    Bovine aorta endothelial cells were cultured in medium containing [ 3 H]glucosamine, [ 35 S]sulfate, and various concentrations of chlorate. Cell growth was not affected by 10 mM chlorate, while 30 mM chlorate had a slight inhibitory effect. Chlorate concentrations greater than 10 mM resulted in significant undersulfation of chondroitin. With 30 mM chlorate, sulfation of chondroitin was reduced to 10% and heparan to 35% of controls, but [ 3 H]glucosamine incorporation on a per cell basis did not appear to be inhibited. Removal of chlorate from the culture medium of cells resulted in the rapid resumption of sulfation

  6. Antifouling potential of Nature-inspired sulfated compounds

    Science.gov (United States)

    Almeida, Joana R.; Correia-da-Silva, Marta; Sousa, Emília; Antunes, Jorge; Pinto, Madalena; Vasconcelos, Vitor; Cunha, Isabel

    2017-02-01

    Natural products with a sulfated scaffold have emerged as antifouling agents with low or nontoxic effects to the environment. In this study 13 sulfated polyphenols were synthesized and tested for antifouling potential using the anti-settlement activity of mussel (Mytilus galloprovincialis) plantigrade post-larvae and bacterial growth inhibition towards four biofilm-forming bacterial strains. Results show that some of these Nature-inspired compounds were bioactive, particularly rutin persulfate (2), 3,6-bis(β-D-glucopyranosyl) xanthone persulfate (6), and gallic acid persulfate (12) against the settlement of plantigrades. The chemical precursors of sulfated compounds 2 and 12 were also tested for anti-settlement activity and it was possible to conclude that bioactivity is associated with sulfation. While compound 12 showed the most promising anti-settlement activity (EC50 = 8.95 μg.mL-1), compound 2 also caused the higher level of growth inhibition in bacteria Vibrio harveyi (EC20 = 12.5 μg.mL-1). All the three bioactive compounds 2, 6, and 12 were also found to be nontoxic to the non target species Artemia salina ( 1000 μg.mL-1). This study put forward the relevance of synthesizing non-natural sulfated small molecules to generate new nontoxic antifouling agents.

  7. Acidity enhancement of niobia by sulfation: An experimental and DFT study

    International Nuclear Information System (INIS)

    Rocha, Angela S.; Costa, Gustavo C.; Tamiasso-Martinhon, Priscila; Sousa, Célia; Rocha, Alexandre B.

    2017-01-01

    Acidic solids are used as catalyst at several industrial processes and studies to improve their activities have been developed by different groups. One method well known is sulfating oxide to create new acid sites, but investigations about sulfated niobia are still scarce. This work studied the influence of sulfation on the niobia acidity by using a very simple reaction model, the esterification of acetic acid with ethanol, performed at 60 °C and 1 atm. Niobia and sulfated niobia samples were characterized by N 2 adsorption, X-ray diffraction, FTIR and titration with n-butylamine. To investigate the nature of sulfate groups formed on the surface of niobia, calculations based on the Density Functional Theory (DFT) have been performed for two models: pure niobia with hydroxylated surface and sulfated niobia where one OH − surface group was replaced by a HSO 4 − . The experimental results indicated that the sulfation treatment leads to an increase in the specific surface area, acidity and, consequently, in the activity of niobia, with small changes in the crystal structure of the solid. The presence of sulfate groups was evidenced by FTIR spectra and calculations have indicated HSO 4 − species bounded to the surface. Density Functional Perturbation Theory (DFPT) was also employed to obtain infrared intensities in the region of sulfate vibration bands. - Highlights: • Sulfation treatment has improved the acidity of niobium oxide. • A sulfate group on niobia (T-Nb 2 O 5 ) was proposed using DFT method. • Niobia and sulfated niobia are used for esterification of acetic acid with ethanol.

  8. A multi-analytical approach to better assess the keratan sulfate contamination in animal origin chondroitin sulfate.

    Science.gov (United States)

    Restaino, Odile Francesca; Finamore, Rosario; Diana, Paola; Marseglia, Mariacarmela; Vitiello, Mario; Casillo, Angela; Bedini, Emiliano; Parrilli, Michelangelo; Corsaro, Maria Michela; Trifuoggi, Marco; De Rosa, Mario; Schiraldi, Chiara

    2017-03-15

    Chondroitin sulfate is a glycosaminoglycan widely used as active principle of anti-osteoarthritis drugs and nutraceuticals, manufactured by extraction from animal cartilaginous tissues. During the manufacturing procedures, another glycosaminoglycan, the keratan sulfate, might be contemporarily withdrawn, thus eventually constituting a contaminant difficult to be determined because of its structural similarity. Considering the strict regulatory rules on the pureness of pharmaceutical grade chondrotin sulfate there is an urgent need and interest to determine the residual keratan sulfate with specific, sensitive and reliable methods. To pursue this aim, in this paper, for the first time, we set up a multi-analytical and preparative approach based on: i) a newly developed method by high performance anion-exchange chromatography with pulsed amperometric detection, ii) gas chromatography-mass spectrometry analyses, iii) size exclusion chromatography analyses coupled with triple detector array module and on iv) strong anion exchange chromatography separation. Varied KS percentages, in the range from 0.1 to 19.0% (w/w), were determined in seven pharmacopeia and commercial standards and nine commercial samples of different animal origin and manufacturers. Strong anion exchange chromatography profiles of the samples showed three or four different peaks. These peaks analyzed by high performance anion-exchange with pulsed amperometric detection and size exclusion chromatography with triple detector array, ion chromatography and by mono- or two-dimensional nuclear magnetic resonance revealed a heterogeneous composition of both glycosaminoglycans in terms of sulfation grade and molecular weight. High molecular weight species (>100 KDa) were also present in the samples that counted for chains still partially linked to a proteoglycan core. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  9. Sulfate reduction in an entrained-flow black liquor gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Kymaelaeinen, M.; Janka, K. [Tampella Power, Tampere (Finland); Frederick, W.J.; Littau, M.; Sricharoenchaikul, V.; Jivakanun, N.; Waag, K. [Oregon State Univ., Corvallis, OR (United States). Dept. of Chemical Engineering

    1995-12-31

    Sulfate reduction and carbon conversion during pyrolysis and gasification of black liquor particles were experimentally studied in a laminar entrained-flow reactor. A model was also developed to simulate an entrained-flow black liquor gasifier. Experimental results were then compared to model calculations. Results indicated that carbon must be present to get a high degree of sulfate reduction during gasification. It is therefore important to balance the rates of carbon conversion and sulfate reduction. High local temperatures in the reactor should be avoided so that carbon does not convert too rapidly, but temperatures of nearly 1000 degrees C are required to achieve good sulfate reduction. It was suggested that a new equation was needed to adequately predict sulfate reduction in an entrained-flow black liquor gasifier. 12 refs., 8 figs., 5 tabs.

  10. Preparation and antifouling property of polyurethane film modified by chondroitin sulfate

    Science.gov (United States)

    Yuan, Huihui; Xue, Jing; Qian, Bin; Chen, Huaying; Zhu, Yonggang; Lan, Minbo

    2017-02-01

    An antifouling polyurethane film modified by chondroitin sulfate (PU-CS) was prepared by chemical grafting with N-Boc-1,3-propanediamine as a spacer. The different mass fraction of N-Boc-1,3-propanediamine was investigated to obtain PU-CS films with different CS grafting density. The surface properties of PU-CS films were comprehensively characterized. Proteins adsorption and glycosaminoglycans adhesion on films were evaluated. Moreover, inorganic salt deposition on film with highest CS grafting density (3.70 μg/cm2) was briefly investigated. The results showed that the increase of CS grafting density improved not only the hydrophilicity but the antifouling performance of films. The best antifouling film reduced the adsorption of fibrinogen (BFG), human serum albumin (HSA) and lysozyme (LYS) by 81.4%, 95.0% and 76.5%, respectively, and the adhesion of chondroitin (CS), heparin (HP) and hyaluronic acid (HA) by 70.6%, 87.4% and 81.3%, respectively. In addition, the co-adsorption of proteins and glycosaminoglycans reduced up to 86.9% and 75.5%, respectively. Changes in inorganic salt deposition after co-adsorption of proteins and glycosaminoglycans on PU-CS(3) suggested that the proteins promoted the inorganic salt deposition, while glycosaminoglycans inhibited the crystal growth. The negatively charged polysaccharides might promote the generation of smaller crystals which could be conducive to provide theoretical and practical guide to develop novel urinary stents with significant anti-encrustation properties.

  11. Sulfur Cycling in an Iron Oxide-Dominated, Dynamic Marine Depositional System: The Argentine Continental Margin

    Directory of Open Access Journals (Sweden)

    Natascha Riedinger

    2017-05-01

    Full Text Available The interplay between sediment deposition patterns, organic matter type and the quantity and quality of reactive mineral phases determines the accumulation, speciation, and isotope composition of pore water and solid phase sulfur constituents in marine sediments. Here, we present the sulfur geochemistry of siliciclastic sediments from two sites along the Argentine continental slope—a system characterized by dynamic deposition and reworking, which result in non-steady state conditions. The two investigated sites have different depositional histories but have in common that reactive iron phases are abundant and that organic matter is refractory—conditions that result in low organoclastic sulfate reduction rates (SRR. Deposition of reworked, isotopically light pyrite and sulfurized organic matter appear to be important contributors to the sulfur inventory, with only minor addition of pyrite from organoclastic sulfate reduction above the sulfate-methane transition (SMT. Pore-water sulfide is limited to a narrow zone at the SMT. The core of that zone is dominated by pyrite accumulation. Iron monosulfide and elemental sulfur accumulate above and below this zone. Iron monosulfide precipitation is driven by the reaction of low amounts of hydrogen sulfide with ferrous iron and is in competition with the oxidation of sulfide by iron (oxyhydroxides to form elemental sulfur. The intervals marked by precipitation of intermediate sulfur phases at the margin of the zone with free sulfide are bordered by two distinct peaks in total organic sulfur (TOS. Organic matter sulfurization appears to precede pyrite formation in the iron-dominated margins of the sulfide zone, potentially linked to the presence of polysulfides formed by reaction between dissolved sulfide and elemental sulfur. Thus, SMTs can be hotspots for organic matter sulfurization in sulfide-limited, reactive iron-rich marine sedimentary systems. Furthermore, existence of elemental sulfur and iron

  12. Development of affinity-based delivery of NGF from a chondroitin sulfate biomaterial

    OpenAIRE

    Butterfield, Karen Chao; Conovaloff, Aaron W.; Panitch, Alyssa

    2011-01-01

    Chondroitin sulfate is a major component of the extracellular matrix in both the central and peripheral nervous systems. Chondroitin sulfate is upregulated at injury, thus methods to promote neurite extension through chondroitin sulfate-rich matrices and synthetic scaffolds are needed. We describe the use of both chondroitin sulfate and a novel chondroitin sulfate-binding peptide to control the release of nerve growth factor. Interestingly, the novel chondroitin sulfate-binding peptide enhanc...

  13. Evolutionary relationships and functional diversity of plant sulfate transporters

    Directory of Open Access Journals (Sweden)

    Hideki eTakahashi

    2012-01-01

    Full Text Available Sulfate is an essential nutrient cycled in nature. Ion transporters that specifically facilitate the transport of sulfate across the membranes are found ubiquitously in living organisms. The phylogenetic analysis of known sulfate transporters and their homologous proteins from eukaryotic organisms indicate two evolutionarily distinct groups of sulfate transport systems. One major group named Tribe 1 represents yeast and fungal SUL, plant SULTR and animal SLC26 families. The evolutionary origin of SULTR family members in land plants and green algae is suggested to be common with yeast and fungal sulfate transporters (SUL and animal anion exchangers (SLC26. The lineage of plant SULTR family is expanded into four subfamilies (SULTR1 to SULTR4 in land plant species. By contrast, the putative SULTR homologues from Chlorophyte green algae are in two separate lineages; one with the subfamily of plant tonoplast-localized sulfate transporters (SULTR4, and the other diverged before the appearance of lineages for SUL, SULTR and SLC26. There also was a group of yet undefined members of putative sulfate transporters in yeast and fungi divergent from these major lineages in Tribe 1. The other distinct group is Tribe 2, primarily composed of animal sodium-dependent sulfate/carboxylate transporters (SLC13 and plant tonoplast-localized dicarboxylate transporters (TDT. The putative sulfur-sensing protein (SAC1 and SAC1-like transporters (SLT of Chlorophyte green algae, bryophyte and lycophyte show low degrees of sequence similarities with SLC13 and TDT. However, the phylogenetic relationship between SAC1/SLT and the other two families, SLC13 and TDT in Tribe 2, is not clearly supported. In addition, the SAC1/SLT family is completely absent in the angiosperm species analyzed. The present study suggests distinct evolutionary trajectories of sulfate transport systems for land plants and green algae.

  14. Biologically induced formation of realgar deposits in soil

    Science.gov (United States)

    Drahota, Petr; Mikutta, Christian; Falteisek, Lukáš; Duchoslav, Vojtěch; Klementová, Mariana

    2017-12-01

    The formation of realgar (As4S4) has recently been identified as a prominent As sequestration pathway in the naturally As-enriched wetland soil at the Mokrsko geochemical anomaly (Czech Republic). Here we used bulk soil and pore water analyses, synchrotron X-ray absorption spectroscopy, S isotopes, and DNA extractions to determine the distribution and speciation of As as a function of soil depth and metabolic properties of microbial communities in wetland soil profiles. Total solid-phase analyses showed that As was strongly correlated with organic matter, caused by a considerable As accumulation (up to 21 g kg-1) in an organic-rich soil horizon artificially buried in 1980 at a depth of ∼80 cm. Extended X-ray absorption fine structure spectroscopy revealed that As in the buried organic horizon was predominantly present as realgar occurring as nanocrystallites (50-100 nm) in millimeter-scale deposits associated with particulate organic matter. The realgar was depleted in the 34S isotope by 9-12.5‰ relative to the aqueous sulfate supplied to the soil, implying its biologically induced formation. Analysis of the microbial communities by 16S rDNA sequencing showed that realgar deposits formed in strictly anaerobic organic-rich domains dominated by sulfate-reducing and fermenting metabolisms. In contrast, realgar deposits were not observed in similar domains with even small contributions of oxidative metabolisms. No association of realgar with specific microbial species was observed. Our investigation shows that strongly reducing microenvironments associated with buried organic matter are significant biogeochemical traps for As, with an estimated As accumulation rate of 61 g As m-2 yr-1. Nevertheless the production of biologically induced realgar in these microenvironments is too slow to lower As groundwater concentrations at our field site (∼6790 mg L-1). Our study demonstrates the intricate link between geochemistry and microbial community dynamics in wetland

  15. Tyrosine sulfation modulates activity of tick-derived thrombin inhibitors

    Science.gov (United States)

    Thompson, Robert E.; Liu, Xuyu; Ripoll-Rozada, Jorge; Alonso-García, Noelia; Parker, Benjamin L.; Pereira, Pedro José Barbosa; Payne, Richard J.

    2017-09-01

    Madanin-1 and chimadanin are two small cysteine-free thrombin inhibitors that facilitate blood feeding in the tick Haemaphysalis longicornis. Here, we report a post-translational modification—tyrosine sulfation—of these two proteins that is critical for potent anti-thrombotic and anticoagulant activity. Inhibitors produced in baculovirus-infected insect cells displayed heterogeneous sulfation of two tyrosine residues within each of the proteins. One-pot ligation-desulfurization chemistry enabled access to homogeneous samples of all possible sulfated variants of the proteins. Tyrosine sulfation of madanin-1 and chimadanin proved crucial for thrombin inhibitory activity, with the doubly sulfated variants three orders of magnitude more potent than the unmodified inhibitors. The three-dimensional structure of madanin-1 in complex with thrombin revealed a unique mode of inhibition, with the sulfated tyrosine residues binding to the basic exosite II of the protease. The importance of tyrosine sulfation within this family of thrombin inhibitors, together with their unique binding mode, paves the way for the development of anti-thrombotic drug leads based on these privileged scaffolds.

  16. Determination of boron spectrophotometry in thorium sulfate

    International Nuclear Information System (INIS)

    Federgrun, L.; Abrao, A.

    1976-01-01

    A procedure for the determination of microquantities of boron in nuclear grade thorium sulfate is described. The method is based on the extraction of BF - 4 ion associated to monomethylthionine (MMT) in 1,2 - dichloroethane. The extraction of the colored BF - 4 -MMT complex does not allow the presence of sulfuric and phosphoric acids; other anions interfere seriously. This fact makes the dissolution of the thorium sulfate impracticable, since it is insoluble in both acids. On the other hand, the quantitative separation of thorium is mandatory, to avoid the precipitation of ThF 4 . To overcome this difficulty, the thorium sulfate is dissolved using a strong cationic ion exchanger, Th 4+ being totally retained into the resin. Boron is then analysed in the effluent. The procedure allows the determination of 0.2 to 10.0 microgramas of B, with a maximum error of 10%. Thorium sulfate samples with contents of 0.2 to 2.0μg B/gTh have being analysed [pt

  17. The geomicrobiology of bauxite deposits

    Directory of Open Access Journals (Sweden)

    Xiluo Hao

    2010-10-01

    Full Text Available Bauxite deposits are studied because of their economic value and because they play an important role in the study of paleoclimate and paleogeography of continents. They provide a rare record of the weathering and evolution of continental surfaces. Geomicrobiological analysis makes it possible to verify that microorganisms have played a critical role during the formation of bauxite with the possibility already intimated in previous studies. Ambient temperature, abundance of water, organic carbon and bioavailable iron and other metal substrates provide a suitable environment for microbes to inhabit. Thiobacillus, Leptospirilum, Thermophilic bacteria and Heterotrophs have been shown to be able to oxidize ferrous iron and to reduce sulfate-generating sulfuric acid, which can accelerate the weathering of aluminosilicates and precipitation of iron oxyhydroxides. Microorganisms referred to the genus Bacillus can mediate the release of alkaline metals. Although the dissimilatory iron-reducing and sulfate-reducing bacteria in bauxites have not yet been identified, some recorded authigenic carbonates and “bacteriopyrites” that appear to be unique in morphology and grain size might record microbial activity. Typical bauxite minerals such as gibbsite, kaolinite, covellite, galena, pyrite, zircon, calcium plagioclase, orthoclase, and albite have been investigated as part of an analysis of microbial mediation. The paleoecology of such bauxitic microorganisms inhabiting continental (sub surfaces, revealed through geomicrobiological analysis, will add a further dimension to paleoclimatic and paleoenvironmental studies.

  18. Sulfated oligosaccharide structures, as determined by NMR techniques

    International Nuclear Information System (INIS)

    Noseda, M.D.; Duarte, M.E.R.; Tischer, C.A.; Gorin, P.A.J.; Cerezo, A.S.

    1997-01-01

    Carrageenans are sulfated polysaccharides, produced by red seaweeds (Rhodophyta), that have important biological and physico-chemical properties. Using partial autohydrolysis, we obtained sulfated oligosaccharides from a λ-carrageenan (Noseda and Cerezo, 1993). These oligosaccharides are valuable not only for the study of the structures of the parent carrageenans but also for their possible biological activities. In this work we determined the chemical structure of one of the sulfated oligosaccharides using 1D and 2D NMR techniques. (author)

  19. Sources et marché du sulfate d'ammonium Sources of and Market for Ammonium Sulfate

    Directory of Open Access Journals (Sweden)

    Loussouarn C.

    2006-11-01

    Full Text Available Engrais azoté le plus utilisé dans le monde jusqu'en 1970, le sulfate d'ammonium ne représente plus aujourd'hui que 4 % de la fertilisation azotée. Avec une teneur en azote de 21 % seulement, il a été peu à peu remplacé comme engrais universel par des produits plus concentrés, notamment l'urée et le nitrate d'ammonium. Obtenu pour plus de 40 % comme sous-produit dans la synthèse de monomères comme le caprolactame, l'acrylonitrile ou le méthacrylate de méthyle, et pour près de 10 % dans le traitement des gaz de cokerie, sa production dépend largement des développements du marché des fibres synthétiques, et, dans une moindre mesure, de la sidérurgie et de la métallurgie. Dans les pays développés, où la production est essentiellement fatale, le volume du marché est et sera plus fonction de la disponibilité du sulfate d'ammonium que de la demande ou de facteurs de marché; sa consommation ne résidera plus que dans des applications spécifiques pour lesquelles il sera bien adapté. Par contre, l'intérêt croissant pour compenser le déficit en soufre de certains sols, et les qualités agronomiques propres du sulfate d'ammonium laissent entrevoir la possibilité d'un essor de son utilisation dans certaines régions en voie de développernent. Ammonium sulfate was the most worldwide nitrogenous fertilizer used up to 1970. Today, it makes up only 4% of nitrogenous fertilization. With a nitrogen content of only 21%, it has gradually been replaced as a universal fertilizer by more concentrated products, particularly urea and ammonium nitrate. More than 40% of the ammonium sulfate is obtained as a by-product from the synthesis of monomers such as caprolactam, acrylonitrile or methyl methacrylate, and nearly 10% from coking gas processing. Its production depends extensively on the development of the market for synthetic fibers and, to a lesser extent, on the steel and metallurgical industries. In the industrialized countries

  20. Tyrosine Sulfation as a Protein Post-Translational Modification

    Directory of Open Access Journals (Sweden)

    Yuh-Shyong Yang

    2015-01-01

    Full Text Available Integration of inorganic sulfate into biological molecules plays an important role in biological systems and is directly involved in the instigation of diseases. Protein tyrosine sulfation (PTS is a common post-translational modification that was first reported in the literature fifty years ago. However, the significance of PTS under physiological conditions and its link to diseases have just begun to be appreciated in recent years. PTS is catalyzed by tyrosylprotein sulfotransferase (TPST through transfer of an activated sulfate from 3'-phosphoadenosine-5'-phosphosulfate to tyrosine in a variety of proteins and peptides. Currently, only a small fraction of sulfated proteins is known and the understanding of the biological sulfation mechanisms is still in progress. In this review, we give an introductory and selective brief review of PTS and then summarize the basic biochemical information including the activity and the preparation of TPST, methods for the determination of PTS, and kinetics and reaction mechanism of TPST. This information is fundamental for the further exploration of the function of PTS that induces protein-protein interactions and the subsequent biochemical and physiological reactions.

  1. Correlating Mediterranean shallow water deposits with global Oligocene–Miocene stratigraphy and oceanic events☆

    Science.gov (United States)

    Reuter, Markus; Piller, Werner E.; Brandano, Marco; Harzhauser, Mathias

    2013-01-01

    Shallow-marine sediment records have the strong potential to display sensitive environmental changes in sedimentary geometries and skeletal content. However, the time resolution of most neritic carbonate records is not high enough to be compared with climatic events as recorded in the deep-sea sediment archives. In order to resolve the paleoceanographic and paleoclimatic changes during the Oligocene–Miocene transition in the Mediterranean shallow water carbonate systems with the best possible time resolution, we re-evaluated the Decontra section on the Maiella Platform (central Apennines, Italy), which acts as a reference for the correlation of Oligocene–Miocene shallow water deposits in the Mediterranean region. The 120-m-thick late Oligocene–late Miocene carbonate succession is composed of larger foraminiferal, bryozoan and corallinacean limestones interlayered with distinct planktonic foraminiferal carbonates representing a mostly outer neritic setting. Integrated multi-proxy and facies analyses indicate that CaCO3 and total organic carbon contents as well as gamma-ray display only local to regional processes on the carbonate platform and are not suited for stratigraphic correlation on a wider scale. In contrast, new biostratigraphic data correlate the Decontra stable carbon isotope record to the global deep-sea carbon isotope record. This links relative sea level fluctuations, which are reflected by facies and magnetic susceptibility changes, to third-order eustatic cycles. The new integrated bio-, chemo-, and sequence stratigraphic framework enables a more precise timing of environmental changes within the studied time interval and identifies Decontra as an important locality for correlating not only shallow and deep water sediments of the Mediterranean region but also on a global scale. PMID:25844021

  2. Correlating Mediterranean shallow water deposits with global Oligocene-Miocene stratigraphy and oceanic events.

    Science.gov (United States)

    Reuter, Markus; Piller, Werner E; Brandano, Marco; Harzhauser, Mathias

    2013-12-01

    Shallow-marine sediment records have the strong potential to display sensitive environmental changes in sedimentary geometries and skeletal content. However, the time resolution of most neritic carbonate records is not high enough to be compared with climatic events as recorded in the deep-sea sediment archives. In order to resolve the paleoceanographic and paleoclimatic changes during the Oligocene-Miocene transition in the Mediterranean shallow water carbonate systems with the best possible time resolution, we re-evaluated the Decontra section on the Maiella Platform (central Apennines, Italy), which acts as a reference for the correlation of Oligocene-Miocene shallow water deposits in the Mediterranean region. The 120-m-thick late Oligocene-late Miocene carbonate succession is composed of larger foraminiferal, bryozoan and corallinacean limestones interlayered with distinct planktonic foraminiferal carbonates representing a mostly outer neritic setting. Integrated multi-proxy and facies analyses indicate that CaCO 3 and total organic carbon contents as well as gamma-ray display only local to regional processes on the carbonate platform and are not suited for stratigraphic correlation on a wider scale. In contrast, new biostratigraphic data correlate the Decontra stable carbon isotope record to the global deep-sea carbon isotope record. This links relative sea level fluctuations, which are reflected by facies and magnetic susceptibility changes, to third-order eustatic cycles. The new integrated bio-, chemo-, and sequence stratigraphic framework enables a more precise timing of environmental changes within the studied time interval and identifies Decontra as an important locality for correlating not only shallow and deep water sediments of the Mediterranean region but also on a global scale.

  3. Atmospheric nitrogen deposition in world biodiversity hotspots: the need for a greater global perspective in assessing N deposition impacts

    NARCIS (Netherlands)

    Phoenix, G.K.; Hicks, W.K.; Cinderby, S.; Kuylenstierna, J.C.I.; Stock, W.D.; Dentener, F.J.; Giller, K.E.; Austin, A.T.; Lefroy, R.D.B.; Gimeno, B.S.; Ashmore, M.R.; Ineson, P.

    2006-01-01

    Increased atmospheric nitrogen (N) deposition is known to reduce plant diversity in natural and semi-natural ecosystems, yet our understanding of these impacts comes almost entirely from studies in northern Europe and North America. Currently, we lack an understanding of the threat of N deposition

  4. Acidity enhancement of niobia by sulfation: An experimental and DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Angela S., E-mail: angela.sanches.rocha@gmail.com [Universidade do Estado do Rio de Janeiro, Departamento de Físico-Química, Instituto de Química, Rio de Janeiro (Brazil); Costa, Gustavo C. [Universidade do Estado do Rio de Janeiro, Departamento de Físico-Química, Instituto de Química, Rio de Janeiro (Brazil); Tamiasso-Martinhon, Priscila; Sousa, Célia; Rocha, Alexandre B. [Universidade Federal do Rio de Janeiro, Departamento de Físico-Química, Instituto de Química, Rio de Janeiro (Brazil)

    2017-01-15

    Acidic solids are used as catalyst at several industrial processes and studies to improve their activities have been developed by different groups. One method well known is sulfating oxide to create new acid sites, but investigations about sulfated niobia are still scarce. This work studied the influence of sulfation on the niobia acidity by using a very simple reaction model, the esterification of acetic acid with ethanol, performed at 60 °C and 1 atm. Niobia and sulfated niobia samples were characterized by N{sub 2} adsorption, X-ray diffraction, FTIR and titration with n-butylamine. To investigate the nature of sulfate groups formed on the surface of niobia, calculations based on the Density Functional Theory (DFT) have been performed for two models: pure niobia with hydroxylated surface and sulfated niobia where one OH{sup −} surface group was replaced by a HSO{sub 4}{sup −}. The experimental results indicated that the sulfation treatment leads to an increase in the specific surface area, acidity and, consequently, in the activity of niobia, with small changes in the crystal structure of the solid. The presence of sulfate groups was evidenced by FTIR spectra and calculations have indicated HSO{sub 4}{sup −} species bounded to the surface. Density Functional Perturbation Theory (DFPT) was also employed to obtain infrared intensities in the region of sulfate vibration bands. - Highlights: • Sulfation treatment has improved the acidity of niobium oxide. • A sulfate group on niobia (T-Nb{sub 2}O{sub 5}) was proposed using DFT method. • Niobia and sulfated niobia are used for esterification of acetic acid with ethanol.

  5. Global change and modern coral reefs: New opportunities to understand shallow-water carbonate depositional processes

    Science.gov (United States)

    Hallock, Pamela

    2005-04-01

    Human activities are impacting coral reefs physically, biologically, and chemically. Nutrification, sedimentation, chemical pollution, and overfishing are significant local threats that are occurring worldwide. Ozone depletion and global warming are triggering mass coral-bleaching events; corals under temperature stress lose the ability to synthesize protective sunscreens and become more sensitive to sunlight. Photo-oxidative stress also reduces fitness, rendering reef-building organisms more susceptible to emerging diseases. Increasing concentration of atmospheric CO 2 has already reduced CaCO 3 saturation in surface waters by more than 10%. Doubling of atmospheric CO 2 concentration over pre-industrial concentration in the 21st century may reduce carbonate production in tropical shallow marine environments by as much as 80%. As shallow-water reefs decline worldwide, opportunities abound for researchers to expand understanding of carbonate depositional systems. Coordinated studies of carbonate geochemistry with photozoan physiology and calcification, particularly in cool subtropical-transition zones between photozoan-reef and heterotrophic carbonate-ramp communities, will contribute to understanding of carbonate sedimentation under environmental change, both in the future and in the geologic record. Cyanobacteria are becoming increasingly prominent on declining reefs, as these microbes can tolerate strong solar radiation, higher temperatures, and abundant nutrients. The responses of reef-dwelling cyanobacteria to environmental parameters associated with global change are prime topics for further research, with both ecological and geological implications.

  6. X-ray diffraction study of lithium hydrazinium sulfate and lithium ammonium sulfate crystals under a static electric field

    International Nuclear Information System (INIS)

    Sebastian, M.T.; Becker, R.A.; Klapper, H.

    1991-01-01

    X-ray diffraction studies are made on proton-conducting polar lithium hydrazinium sulfate and ferroelectric lithium ammonium sulfate. The X-ray rocking curves recorded with in situ electric field along the polar b axis of lithium hydrazinium sulfate (direction of proton conductivity) show a strong enhancement of the 0k0 diffraction intensity. The corresponding 0k0 X-ray topographs reveal extinction contrast consisting of striations parallel to the polar axis. They disappear when the electric field is switched off. The effect is very strong in 0k0 but invisible in h0l reflections. It is present only if the electric field is parallel to the polar axis b. This unusual X-ray topographic contrast is correlated with the proton conduction. It is supposed that, under electric field, an inhomogeneous charge distribution develops, distorting the crystal lattice. Similar experiments on lithium ammonium sulfate also show contrast variations, but of quite different behaviour than before. In this case they result from changes of the ferroelectric domain configuration under electric field. (orig.)

  7. Sulfate Reduction Remediation of a Metals Plume Through Organic Injection

    International Nuclear Information System (INIS)

    Phifer, M.A.

    2003-01-01

    Laboratory testing and a field-scale demonstration for the sulfate reduction remediation of an acidic/metals/sulfate groundwater plume at the Savannah River Site has been conducted. The laboratory testing consisted of the use of anaerobic microcosms to test the viability of three organic substrates to promote microbially mediated sulfate reduction. Based upon the laboratory testing, soybean oil and sodium lactate were selected for injection during the subsequent field-scale demonstration. The field-scale demonstration is currently ongoing. Approximately 825 gallons (3,123 L) of soybean oil and 225 gallons (852 L) of 60 percent sodium lactate have been injected into an existing well system within the plume. Since the injections, sulfate concentrations in the injection zone have significantly decreased, sulfate-reducing bacteria concentrations have significantly increased, the pH has increased, the Eh has decreased, and the concentrations of many metals have decreased. Microbially mediated sulfate reduction has been successfully promoted for the remediation of the acidic/metals/sulfate plume by the injection of soybean oil and sodium lactate within the plume

  8. Using Sulfate-Amended Sediment Slurry Batch Reactors to Evaluate Mercury Methylation

    International Nuclear Information System (INIS)

    Harmon, S.M.

    2003-01-01

    In the methylated form, mercury represents a concern to public health primarily through the consumption of contaminated fish tissue. Research conducted on the methylation of mercury strongly suggests the process is microbial in nature and facilitated principally by sulfate-reducing bacteria. This study addressed the potential for mercury methylation by varying sulfate treatments and wetland-based soil in microbial slurry reactors with available inorganic mercury. Under anoxic laboratory conditions conducive to growth of naturally occurring sulfate-reducing bacteria in the soil, it was possible to evaluate how various sulfate additions influenced the methylation of inorganic mercury added to overlying water. Treatments included sulfate amendments ranging FR-om 25 to 500 mg/L (0.26 to 5.2 mM) above the soil's natural sulfate level. This study also provided an assessment of mercury methylation relative to sulfate-reducing bacterial population growth and subsequent sulfide production. Mercury methylation in sulfate treatments did not exceed that of the non-amended control during a 35-day incubation. However, increases in methylmercury concentration were linked to bacterial growth and sulfate reduction. A time lag in methylation in the highest treatment correlated with an equivalent lag in bacterial growth

  9. Tales of volcanoes and El-Nino southern oscillations with the oxygen isotope anomaly of sulfate aerosol.

    Science.gov (United States)

    Shaheen, Robina; Abauanza, Mariana; Jackson, Teresa L; McCabe, Justin; Savarino, Joel; Thiemens, Mark H

    2013-10-29

    The ability of sulfate aerosols to reflect solar radiation and simultaneously act as cloud condensation nuclei renders them central players in the global climate system. The oxidation of S(IV) compounds and their transport as stable S(VI) in the Earth's system are intricately linked to planetary scale processes, and precise characterization of the overall process requires a detailed understanding of the linkage between climate dynamics and the chemistry leading to the product sulfate. This paper reports a high-resolution, 22-y (1980-2002) record of the oxygen-triple isotopic composition of sulfate (SO4) aerosols retrieved from a snow pit at the South Pole. Observed variation in the O-isotopic anomaly of SO4 aerosol is linked to the ozone variation in the tropical upper troposphere/lower stratosphere via the Ozone El-Niño Southern Oscillations (ENSO) Index (OEI). Higher (17)O values (3.3‰, 4.5‰, and 4.2‰) were observed during the three largest ENSO events of the past 2 decades. Volcanic events inject significant quantities of SO4 aerosol into the stratosphere, which are known to affect ENSO strength by modulating stratospheric ozone levels (OEI = 6 and (17)O = 3.3‰, OEI = 11 and (17)O = 4.5‰) and normal oxidative pathways. Our high-resolution data indicated that (17)O of sulfate aerosols can record extreme phases of naturally occurring climate cycles, such as ENSOs, which couple variations in the ozone levels in the atmosphere and the hydrosphere via temperature driven changes in relative humidity levels. A longer term, higher resolution oxygen-triple isotope analysis of sulfate aerosols from ice cores, encompassing more ENSO periods, is required to reconstruct paleo-ENSO events and paleotropical ozone variations.

  10. Neoproterozoic sulfur-isotope variation in Australia

    International Nuclear Information System (INIS)

    Gorjan, P.; Walter, M.R.

    2000-01-01

    A number of stages are apparent in sulfur-isotope geochemistry throughout the Neoproterozoic. Prior to the Sturtian glaciation (840-700 Ma) δ 34 S sulfate varied little (19 to 17.5 per mil), and δ 34 S sulfide ranged from -20 to +23 per mil. In the Bitter Springs Formation δ 34 S sulfide is greater in the non-marine portion compared to the marine portion. This can be explained by a paucity of sulfate in the non-marine waters, and is consistent with mineralogical evidence (Southgate, 1991). In the Sturtian glacial sediments δ 34 S sulfide starts below 0 per mil and rises to >30 per mil at the top of the glacial sediments. After the Sturtian glaciation δ 34 S sulfide averages ∼30 per mil (and 34 per mil for δ 34 S organic ) for the extent of silt deposition. This increase in δ 34 S sulfide also appears in China, Canada and Namibia (Gorjan et al., 2000). δ 34 S sulfate also rises but is lower than the average δ 34 S sulfate (5 sulfate nodules in the Tapley Hill Formation average 26 per mil). However, the sulfate nodules may not be preserving the original seawater δ 34 S sulfate 34 S enrichment in sulfides usually occurs in freshwater or euxinic settings, but all evidence points to a sulfate-rich and non-euxinic environment in the Sturtian post-glacial deposits (linear %C vs. %S plots; high FeS 2 :FeS ratios; low degree of pyritisation; Gorjan et al. 2000, Gorjan, 1998). Such a situation points to sulfides being formed from extremely 34 S enriched sulfate (perhaps up to 45 per mil). This global rise in δ 34 S of both sulfur fractions in the Sturtian postglacial has led us to speculate that 34 S enriched sulfate was formed beneath a stagnant, ice-covered ocean, an environment postulated by Hoffman (1998), during the Sturtian glaciation and was brought to shallower waters in an ocean-upwelling event. Sulfide depleted in 34 S may have been deposited on abyssal plains. δ 34 S sulfide and δ 34 S sulfate falls sharply at the conclusion of siltstone deposition

  11. Fixed-premium deposit insurance and international credit crunches

    OpenAIRE

    Mark M. Spiegel

    1996-01-01

    This article introduces a monopolistically competitive model of foreign lending in which both explicit and implicit fixed-premium deposit insurance increase the degree to which bank participation in relending to problem debtors falls below its globally optimal level. This provides a channel for fixed-premium deposit insurance to inhibit credit extension in bad states, resulting in an increase in the expected default percentage and an increase in the expected burden on the deposit insurance in...

  12. Contribution of ship emissions to the concentration and deposition of air pollutants in Europe

    Directory of Open Access Journals (Sweden)

    S. Aksoyoglu

    2016-02-01

    Full Text Available Emissions from the marine transport sector are one of the least-regulated anthropogenic emission sources and contribute significantly to air pollution. Although strict limits were introduced recently for the maximum sulfur content in marine fuels in the SECAs (sulfur emission control areas and in EU ports, sulfur emissions outside the SECAs and emissions of other components in all European maritime areas have continued to increase in the last two decades. We have used the air quality model CAMx (Comprehensive Air Quality Model with Extensions with and without ship emissions for the year 2006 to determine the effects of international shipping on the annual as well as seasonal concentrations of ozone, primary and secondary components of PM2.5, and the dry and wet deposition of nitrogen and sulfur compounds in Europe. The largest changes in pollutant concentrations due to ship emissions were predicted for summer. Concentrations of particulate sulfate increased due to ship emissions in the Mediterranean (up to 60 %, the English Channel and the North Sea (30–35 %, while increases in particulate nitrate levels were found especially in the north, around the Benelux area (20 %, where there were high NH3 land-based emissions. Our model results showed that not only are the atmospheric concentrations of pollutants affected by ship emissions, but also depositions of nitrogen and sulfur compounds increase significantly along the shipping routes. NOx emissions from the ships, especially in the English Channel and the North Sea, cause a decrease in the dry deposition of reduced nitrogen at source regions by moving it from the gas phase to the particle phase which then contributes to an increase in the wet deposition at coastal areas with higher precipitation. In the western Mediterranean region, on the other hand, model results show an increase in the deposition of oxidized nitrogen (mostly HNO3 due to the ship traffic. Dry deposition of SO2 seems to

  13. A zinc complex of heparan sulfate destabilises lysozyme and alters its conformation

    International Nuclear Information System (INIS)

    Hughes, Ashley J.; Hussain, Rohanah; Cosentino, Cesare; Guerrini, Marco; Siligardi, Giuliano; Yates, Edwin A.; Rudd, Timothy R.

    2012-01-01

    Highlights: ► Zinc–heparan sulfate complex destabilises lysozyme, a model amyloid protein. ► Addition of zinc, without heparan sulfate, stabilises lysozyme. ► Heparan sulfate cation complexes provide alternative protein folding routes. -- Abstract: The naturally occurring anionic cell surface polysaccharide heparan sulfate is involved in key biological activities and is implicated in amyloid formation. Following addition of Zn–heparan sulfate, hen lysozyme, a model amyloid forming protein, resembled β-rich amyloid by far UV circular dichroism (increased β-sheet: +25%), with a significantly reduced melting temperature (from 68 to 58 °C) by fluorescence shift assay. Secondary structure stability of the Zn–heparan sulfate complex with lysozyme was also distinct from that with heparan sulfate, under stronger denaturation conditions using synchrotron radiation circular dichroism. Changing the cation associated with heparan sulfate is sufficient to alter the conformation and stability of complexes formed between heparan sulfate and lysozyme, substantially reducing the stability of the protein. Complexes of heparan sulfate and cations, such as Zn, which are abundant in the brain, may provide alternative folding routes for proteins.

  14. Dermatan Sulfate Epimerase 1-Deficient Mice Have Reduced Content and Changed Distribution of Iduronic Acids in Dermatan Sulfate and an Altered Collagen Structure in Skin

    DEFF Research Database (Denmark)

    Maccarana, M.; Kalamajski, S.; Kongsgaard, M.

    2009-01-01

    Dermatan sulfate epimerase 1 (DS-epi1) and DS-epi2 convert glucuronic acid to iduronic acid in chondroitin/dermatan sulfate biosynthesis. Here we report on the generation of DS-epi1-null mice and the resulting alterations in the chondroitin/dermatan polysaccharide chains. The numbers of long blocks...... of adjacent iduronic acids are greatly decreased in skin decorin and biglycan chondroitin/dermatan sulfate, along with a parallel decrease in iduronic-2-O-sulfated-galactosamine-4-O-sulfated structures. Both iduronic acid blocks and iduronic acids surrounded by glucuronic acids are also decreased in versican......-derived chains. DS-epi1-deficient mice are smaller than their wild-type littermates but otherwise have no gross macroscopic alterations. The lack of DS-epi1 affects the chondroitin/dermatan sulfate in many proteoglycans, and the consequences for skin collagen structure were initially analyzed. We found...

  15. Recoverable immobilization of transuranic elements in sulfate ash

    Science.gov (United States)

    Greenhalgh, Wilbur O.

    1985-01-01

    Disclosed is a method of reversibly immobilizing sulfate ash at least about 20% of which is sulfates of transuranic elements. The ash is mixed with a metal which can be aluminum, cerium, samarium, europium, or a mixture thereof, in amounts sufficient to form an alloy with the transuranic elements, plus an additional amount to reduce the transuranic element sulfates to elemental form. Also added to the ash is a fluxing agent in an amount sufficient to lower the percentage of the transuranic element sulfates to about 1% to about 10%. The mixture of the ash, metal, and fluxing agent is heated to a temperature sufficient to melt the fluxing agent and the metal. The mixture is then cooled and the alloy is separated from the remainder of the mixture.

  16. Chondroitin sulfate effects on neural stem cell differentiation.

    Science.gov (United States)

    Canning, David R; Brelsford, Natalie R; Lovett, Neil W

    2016-01-01

    We have investigated the role chondroitin sulfate has on cell interactions during neural plate formation in the early chick embryo. Using tissue culture isolates from the prospective neural plate, we have measured neural gene expression profiles associated with neural stem cell differentiation. Removal of chondroitin sulfate from stage 4 neural plate tissue leads to altered associations of N-cadherin-positive neural progenitors and causes changes in the normal sequence of neural marker gene expression. Absence of chondroitin sulfate in the neural plate leads to reduced Sox2 expression and is accompanied by an increase in the expression of anterior markers of neural regionalization. Results obtained in this study suggest that the presence of chondroitin sulfate in the anterior chick embryo is instrumental in maintaining cells in the neural precursor state.

  17. Chemistry and melting characteristics of fireside deposits taken from boiler tubes in waste incinerators

    International Nuclear Information System (INIS)

    Otsuka, Nobuo

    2011-01-01

    Highlights: → We examine tube deposits taken from boilers of municipal solid waste incinerators. → Literature survey is done on the corrosion mechanism of tube steels. → Chemical analyses, X-ray diffraction, DSC, and corrosion test were conducted. → Melting behavior of salt constituents affected the corrosiveness of the deposits. - Abstract: Twenty-three tube deposits taken from seven heat-recovery boilers of municipal solid waste incinerators were examined by chemical analyses and X-ray diffraction. These deposits were measured by Differential Scanning Calorimeter (DSC) in N 2 to investigate their melting characteristics. Sixteen deposits were used to evaluate their corrosiveness to carbon steel by high-temperature corrosion test conducted at 400 o C for 20 h in 1500 ppm HCl - 300 ppm SO 2 - 7.5%O 2 - 7.5%CO 2 - 20%H 2 O - N 2 . Total heat of endothermic reactions of the deposits taking place between 200 and 400 o C can be related to the corrosion rate of carbon steel at 400 o C. Corrosion initiated at temperatures when the deposits started to melt, became severe when fused salt constituents increased, and alleviated when the majority of the deposits became fused. The corrosion can be interpreted as fused salt corrosion caused by chloride and sulfate salts.

  18. Chondroitin sulfate synthase-2 is necessary for chain extension of chondroitin sulfate but not critical for skeletal development.

    Science.gov (United States)

    Ogawa, Hiroyasu; Hatano, Sonoko; Sugiura, Nobuo; Nagai, Naoko; Sato, Takashi; Shimizu, Katsuji; Kimata, Koji; Narimatsu, Hisashi; Watanabe, Hideto

    2012-01-01

    Chondroitin sulfate (CS) is a linear polysaccharide consisting of repeating disaccharide units of N-acetyl-D-galactosamine and D-glucuronic acid residues, modified with sulfated residues at various positions. Based on its structural diversity in chain length and sulfation patterns, CS provides specific biological functions in cell adhesion, morphogenesis, neural network formation, and cell division. To date, six glycosyltransferases are known to be involved in the biosynthesis of chondroitin saccharide chains, and a hetero-oligomer complex of chondroitin sulfate synthase-1 (CSS1)/chondroitin synthase-1 and chondroitin sulfate synthase-2 (CSS2)/chondroitin polymerizing factor is known to have the strongest polymerizing activity. Here, we generated and analyzed CSS2(-/-) mice. Although they were viable and fertile, exhibiting no overt morphological abnormalities or osteoarthritis, their cartilage contained CS chains with a shorter length and at a similar number to wild type. Further analysis using CSS2(-/-) chondrocyte culture systems, together with siRNA of CSS1, revealed the presence of two CS chain species in length, suggesting two steps of CS chain polymerization; i.e., elongation from the linkage region up to Mr ∼10,000, and further extension. There, CSS2 mainly participated in the extension, whereas CSS1 participated in both the extension and the initiation. Our study demonstrates the distinct function of CSS1 and CSS2, providing a clue in the elucidation of the mechanism of CS biosynthesis.

  19. Synthesis of [2,4-3H] 17β-dihydroequilin sulfate

    International Nuclear Information System (INIS)

    Bhavnani, B.R.

    1994-01-01

    [2,4- 3 H] 17β-dihydroequilin-3-sulfate ammonium salt suitable for in vivo pharmacokinetic studies was synthesized from [2,4- 3 H] equilin. Sulfation of [2,4- 3 H] equilin with pyridine-chlorosulfonic acid mixture gave in high yields [2,4- 3 H] equilin sulfate, which was then reduced with sodium borohydride to yield [2,4- 3 H] 17β-dihydroequilin sulfate. The reduction was sterospecific and no 17α-reduced products were formed. (author)

  20. Improving weapons fallout time series on a global basis using precipitation data

    International Nuclear Information System (INIS)

    Palsson, S.E.; Howard, B.J.; Aoyama, M.

    2004-01-01

    The fallout from the atmospheric weapons tests in the late fifties and early sixties forms the main source of man made radionuclides in the terrestrial environment. It is important to be able to distinguish global fallout from other sources of man-made radioactivity, and therefore to have good methods of quantifying the level of global fallout in areas where it has not previously been measured. Because global fallout was deposited over many years, model validation can require knowledge about deposition time series which are not available through direct measurements. This can be especially important for sparsely populated areas with vulnerable ecosystems, where high transfer of radionuclides, particularly radiocaesium, may occur. The UNSCEAR reports describe the global data and show how the deposition was dependent on latitude. Others have successfully used a model assuming a proportional relationship between deposition and precipitation (e.g. on a regional scale within the AMAP project and on a local scale in some countries, such as Iceland and Sweden). This paper describes a study where different data sets were combined to test, at a local scale to a global scale, how well the proportional relationship between precipitation and deposition holds and to what degree other effects (e.g. dependence on latitude as in the UNSCEAR model) need to be taken into account. It makes use of the Integrated Global Fallout Database of the Meteorological Research Institute of Japan which has been used previously to demonstrate the relationship between precipitation and deposition and subsequently to make an estimate of the total fallout amount of 137 Cs in the mid latitudes of the Northern Hemisphere. The study described in this paper provides a fuller description of global deposition than the latitude or precipitation based studies alone. Applied in a simple model as presented here, this enable better deposition estimation (including time dependency), especially if precipitation

  1. Biological sulfate removal from gypsum contaminated construction and demolition debris.

    Science.gov (United States)

    Kijjanapanich, Pimluck; Annachhatre, Ajit P; Esposito, Giovanni; van Hullebusch, Eric D; Lens, Piet N L

    2013-12-15

    Construction and demolition debris (CDD) contains high levels of sulfate that can cause detrimental environmental impacts when disposed without adequate treatment. In landfills, sulfate can be converted to hydrogen sulfide under anaerobic conditions. CDD can thus cause health impacts or odor problems to landfill employees and surrounding residents. Reduction of the sulfate content of CDD is an option to overcome these problems. This study aimed at developing a biological sulfate removal system to reduce the sulfate content of gypsum contaminated CDD in order to decrease the amount of solid waste, to improve the quality of CDD waste for recycling purposes and to recover sulfur from CDD. The treatment leached out the gypsum contained in CDD by water in a leaching column. The sulfate loaded leachate was then treated in a biological sulfate reducing Upflow Anaerobic Sludge Blanket (UASB) reactor to convert the sulfate to sulfide. The UASB reactor was operated at 23 ± 3 °C with a hydraulic retention time and upflow velocity of 15.5 h and 0.1 m h(-1), respectively while ethanol was added as electron donor at a final organic loading rate of 3.46 g COD L(-1) reactor d(-1). The CDD leachate had a pH of 8-9 and sulfate dissolution rates of 526.4 and 609.8 mg L(-1) d(-1) were achieved in CDD gypsum and CDD sand, respectively. Besides, it was observed that the gypsum dissolution was the rate limiting step for the biological treatment of CDD. The sulfate removal efficiency of the system stabilized at around 85%, enabling the reuse of the UASB effluent for the leaching step, proving the versatility of the bioreactor for practical applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. National contributions to observed global warming

    International Nuclear Information System (INIS)

    Matthews, H Damon; Graham, Tanya L; Keverian, Serge; Lamontagne, Cassandra; Seto, Donny; Smith, Trevor J

    2014-01-01

    There is considerable interest in identifying national contributions to global warming as a way of allocating historical responsibility for observed climate change. This task is made difficult by uncertainty associated with national estimates of historical emissions, as well as by difficulty in estimating the climate response to emissions of gases with widely varying atmospheric lifetimes. Here, we present a new estimate of national contributions to observed climate warming, including CO 2 emissions from fossil fuels and land-use change, as well as methane, nitrous oxide and sulfate aerosol emissions While some countries’ warming contributions are reasonably well defined by fossil fuel CO 2 emissions, many countries have dominant contributions from land-use CO 2 and non-CO 2 greenhouse gas emissions, emphasizing the importance of both deforestation and agriculture as components of a country’s contribution to climate warming. Furthermore, because of their short atmospheric lifetime, recent sulfate aerosol emissions have a large impact on a country’s current climate contribution We show also that there are vast disparities in both total and per-capita climate contributions among countries, and that across most developed countries, per-capita contributions are not currently consistent with attempts to restrict global temperature change to less than 2 °C above pre-industrial temperatures. (paper)

  3. Sulfate Aerosol in the Arctic: Source Attribution and Radiative Forcing

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yang [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Wang, Hailong [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Smith, Steven J. [Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park MD USA; Easter, Richard C. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Rasch, Philip J. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA

    2018-02-08

    Source attributions of Arctic sulfate and its direct radiative effect for 2010–2014 are quantified in this study using the Community Earth System Model (CESM) equipped with an explicit sulfur source-tagging technique. Regions that have high emissions and/or are near/within the Arctic present relatively large contributions to Arctic sulfate burden, with the largest contribution from sources in East Asia (27%). East Asia and South Asia together have the largest contributions to Arctic sulfate concentrations at 9–12 km, whereas sources within or near the Arctic account largely below 2 km. For remote sources with strong emissions, their contributions to Arctic sulfate burden are primarily driven by meteorology, while contributions of sources within or near the Arctic are dominated by their emission strength. The sulfate direct radiative effect (DRE) is –0.080 W m-2 at the Arctic surface, offsetting the net warming effect from the combination of in-snow heating and DRE cooling from black carbon. East Asia, Arctic local and Russia/Belarus/Ukraine sources contribute –0.017, –0.016 and –0.014 W m-2, respectively, to Arctic sulfate DRE. A 20% reduction in anthropogenic SO2 emissions leads to a net increase of +0.013 W m-2 forcing at the Arctic surface. These results indicate that a joint reduction in BC emissions could prevent possible Arctic warming from future reductions in SO2 emissions. Sulfate DRE efficiency calculations suggest that short transport pathways together with meteorology favoring long sulfate lifetimes make certain sources more efficient in influencing the Arctic sulfate DRE.

  4. Human platelet as an independent unit for sulfate conjugation

    International Nuclear Information System (INIS)

    Khoo, B.Y.; Sit, K.H.; Wong, K.P.

    1988-01-01

    The human platelets possess a full complement of enzymes capable of synthesizing N-acetyldopamine (NADA) 35 sulfate from ATP, Mg ++ and sodium 35 sulfate. The pH optimum for this three-step overall sulfate conjugation (comprising of the ATP sulfurylase, APS kinase and phenolsulfotransferase reactions) is 8.6 and the reactions proceeded progressively for several hours. Both ATP and Mg ++ ions, above their respective optimal concentrations of 5 and 7 mM, inhibited the sulfate conjugation of NADA. The apparent Km values for NADA as determined by the phenolsulfotransferase (PST) and overall reactions were similar in magnitude being 2.6 and 4.8 μM, respectively, while that for sodium 35 sulfate was 202 μM. A comparison of these two activities in 62 platelet preparations of normal subjects showed that the rate of the PST reaction was generally higher than the overall reaction even though the PST assay was carried out at suboptimal concentration of PAPS. There was a positive correlation (r=0.82) between the two sets of data, suggesting that the PST reaction probably has some control over the rate of overall sulfate conjugation

  5. Sulfated oligosaccharide structures, as determined by NMR techniques

    Energy Technology Data Exchange (ETDEWEB)

    Noseda, M.D.; Duarte, M.E.R.; Tischer, C.A.; Gorin, P.A.J. [Parana Univ., Curitiba, PR (Brazil). Dept. De Bioquimica; Cerezo, A.S. [Buenos Aires Univ. Nacional (Argentina). Dept. de Quimica Organica

    1997-12-31

    Carrageenans are sulfated polysaccharides, produced by red seaweeds (Rhodophyta), that have important biological and physico-chemical properties. Using partial autohydrolysis, we obtained sulfated oligosaccharides from a {lambda}-carrageenan (Noseda and Cerezo, 1993). These oligosaccharides are valuable not only for the study of the structures of the parent carrageenans but also for their possible biological activities. In this work we determined the chemical structure of one of the sulfated oligosaccharides using 1D and 2D NMR techniques. (author) 4 refs., 8 figs., 1 tabs.

  6. Potential for beneficial application of sulfate reducing bacteria in sulfate containing domestic wastewater treatment.

    Science.gov (United States)

    van den Brand, T P H; Roest, K; Chen, G H; Brdjanovic, D; van Loosdrecht, M C M

    2015-11-01

    The activity of sulfate reducing bacteria (SRB) in domestic wastewater treatment plants (WWTP) is often considered as a problem due to H2S formation and potential related odour and corrosion of materials. However, when controlled well, these bacteria can be effectively used in a positive manner for the treatment of wastewater. The main advantages of using SRB in wastewater treatment are: (1) minimal sludge production, (2) reduction of potential pathogens presence, (3) removal of heavy metals and (4) as pre-treatment of anaerobic digestion. These advantages are accessory to efficient and stable COD removal by SRB. Though only a few studies have been conducted on SRB treatment of domestic wastewater, the many studies performed on industrial wastewater provide information on the potential of SRB in domestic wastewater treatment. A key-parameter analyses literature study comprising pH, organic substrates, sulfate, salt, temperature and oxygen revealed that the conditions are well suited for the application of SRB in domestic wastewater treatment. Since the application of SRB in WWTP has environmental benefits its application is worth considering for wastewater treatment, when sulfate is present in the influent.

  7. Cell-associated proteoheparan sulfate from bovine arterial smooth muscle cells

    International Nuclear Information System (INIS)

    Schmidt, A.; Buddecke, E.

    1988-01-01

    Cell-associated proteoheparan sulfate has been isolated from bovine arterial smooth muscle cells preincubated with [ 35 S]sulfate or a combination of [ 3 H]glucosamine and [ 35 S]methionine. The purified proteoheparan sulfate had an apparent M r of 200,000 on calibrated Sepharose CL-2B columns. The glycosaminoglycan component (M r ∼30,000) was identified as heparan sulfate by its susceptibility to specific enzymatic and chemical degradation. After degradation of the proteoheparan sulfate by microbial heparitinase the resulting protein core had an apparent M r of 92,000 on SDS-polyacrylamide gels. Its mobility was similar in the absence and presence of reducing agents indicating that the protein core consists of a single polypeptide chain. Pulse-chase experiments revealed that about 40% of the cell layer-associated proteoheparan sulfate was released into the medium, while the remainder was internalized and converted to smaller species through a series of degradation steps. Initially there was a proteolytical cleavage of the protein core generating glycosaminoglycan peptide intermediates with polysaccharides chains similar in size to the original. The half-life of the native proteoheparan sulfate was found to be about 4 h

  8. Potential influence of inter-continental transport of sulfate aerosols on air quality

    International Nuclear Information System (INIS)

    Liu Junfeng; Mauzerall, Denise L

    2007-01-01

    In this study, we compare the potential influence of inter-continental transport of sulfate aerosols on the air quality of (different) continental regions. We use a global chemical transport model, Model of Ozone and Related Tracers, version 2 (MOZART-2), to quantify the source-receptor relationships of inter-continental transport of sulfate aerosols among ten regions in 2000. In order to compare the importance of foreign with domestic emissions and to estimate the effect of future changes in emissions on human exposure, we define an 'influence potential' (IP). The IP quantifies the human exposure that occurs in a receptor region as a result of a unit of SO 2 emissions from a source region. We find that due to the non-linear nature of sulfate production, regions with low SO 2 emissions usually have large domestic IP, and vice versa. An exception is East Asia (EA), which has both high SO 2 emissions and relatively large domestic IP, mostly caused by the spatial coincidence of emissions and population. We find that inter-continental IPs are usually less than domestic IPs by 1-3 orders of magnitude. SO 2 emissions from the Middle East (ME) and Europe (EU) have the largest potential to influence populations in surrounding regions. By comparing the IP ratios (IPR) between foreign and domestic SO 2 emissions, we find that the IPR values range from 0.000 01 to 0.16 and change with season. Therefore, if reducing human exposure to sulfate aerosols is the objective, all regions should first focus on reducing domestic SO 2 emissions. In addition, we find that relatively high IPR values exist among the EU, ME, the former Soviet Union (FSU) and African (AF) regions. Therefore, on the basis of the IP and IPR values, we conclude that a regional agreement among EA countries, and an inter-regional agreement among EU, ME, FSU and (north) AF regions to control sulfur emissions could benefit public health in these regions

  9. Growth performance and root transcriptome remodeling of Arabidopsis in response to Mars-like levels of magnesium sulfate.

    Directory of Open Access Journals (Sweden)

    Anne M Visscher

    Full Text Available BACKGROUND: Martian regolith (unconsolidated surface material is a potential medium for plant growth in bioregenerative life support systems during manned missions on Mars. However, hydrated magnesium sulfate mineral levels in the regolith of Mars can reach as high as 10 wt%, and would be expected to be highly inhibitory to plant growth. METHODOLOGY AND PRINCIPAL FINDINGS: Disabling ion transporters AtMRS2-10 and AtSULTR1;2, which are plasma membrane localized in peripheral root cells, is not an effective way to confer tolerance to magnesium sulfate soils. Arabidopsis mrs2-10 and sel1-10 knockout lines do not mitigate the growth inhibiting impacts of high MgSO(4.7H(2O concentrations observed with wildtype plants. A global approach was used to identify novel genes with potential to enhance tolerance to high MgSO(4.7H(2O (magnesium sulfate stress. The early Arabidopsis root transcriptome response to elevated concentrations of magnesium sulfate was characterized in Col-0, and also between Col-0 and the mutant line cax1-1, which was confirmed to be relatively tolerant of high levels of MgSO(4.7H(2O in soil solution. Differentially expressed genes in Col-0 treated for 45 min. encode enzymes primarily involved in hormone metabolism, transcription factors, calcium-binding proteins, kinases, cell wall related proteins and membrane-based transporters. Over 200 genes encoding transporters were differentially expressed in Col-0 up to 180 min. of exposure, and one of the first down-regulated genes was CAX1. The importance of this early response in wildtype Arabidopsis is exemplified in the fact that only four transcripts were differentially expressed between Col-0 and cax1-1 at 180 min. after initiation of treatment. CONCLUSIONS/SIGNIFICANCE: The results provide a solid basis for the understanding of the metabolic response of plants to elevated magnesium sulfate soils; it is the first transcriptome analysis of plants in this environment. The results foster

  10. Desulfonatronovibrio halophilus sp. nov., a novel moderately halophilic sulfate-reducing bacterium from hypersaline chloride-sulfate lakes in Central Asia

    NARCIS (Netherlands)

    Sorokin, D.Y.; Tourova, T.P.; Abbas, B.; Suhacheva, M.V.; Muyzer, G.

    2012-01-01

    Four strains of lithotrophic sulfate-reducing bacteria (SRB) have been enriched and isolated from anoxic sediments of hypersaline chloride-sulfate lakes in the Kulunda Steppe (Altai, Russia) at 2 M NaCl and pH 7.5. According to the 16S rRNA gene sequence analysis, the isolates were closely related

  11. Desulfonatronovibrio halophilus sp. nov., a novel moderately halophilic sulfate-reducing bacterium from hypersaline chloride–sulfate lakes in Central Asia

    NARCIS (Netherlands)

    Sorokin, D.Y.; Tourova, T.P.; Abbas, B.; Suhacheva, M.V.; Muyzer, G.

    2012-01-01

    Four strains of lithotrophic sulfate-reducing bacteria (SRB) have been enriched and isolated from anoxic sediments of hypersaline chloride–sulfate lakes in the Kulunda Steppe (Altai, Russia) at 2 M NaCl and pH 7.5. According to the 16S rRNA gene sequence analysis, the isolates were closely related

  12. Modelling global nitrogen export to ground and surface water from natural ecosystems: impact of N deposition, climate, and CO2 concentration

    Science.gov (United States)

    Braakhekke, Maarten; Rebel, Karin; Dekker, Stefan; van Beek, Rens; Bierkens, Marc; Smith, Ben; Wassen, Martin

    2015-04-01

    For large regions in the world strong increases in atmospheric nitrogen (N) deposition are predicted as a result of emissions from fossil fuel combustion and food production. This will cause many previously N limited ecosystems to become N saturated, leading to increased export to ground and surface water and negative impacts on the environment and human health. However, precise N export fluxes are difficult to predict. Due to its strong link to carbon, N in vegetation and soil is also determined by productivity, as affected by rising atmospheric CO2 concentration and temperature, and denitrification. Furthermore, the N concentration of water delivered to streams depends strongly on local hydrological conditions. We aim to study how N delivery to ground and surface water is affected by changes in environmental factors. To this end we are developing a global dynamic modelling system that integrates representations of N cycling in vegetation and soil, and N delivery to ground and surface water. This will be achieved by coupling the dynamic global vegetation model LPJ-GUESS, which includes representations of N cycling, as well as croplands and pasture, to the global water balance model PCR-GLOBWB, which simulates surface runoff, interflow, groundwater recharge, and baseflow. This coupling will allow us to trace N across different systems and estimate the input of N into the riverine system which can be used as input for river biogeochemical models. We will present large scale estimates of N leaching and transport to ground and surface water for natural ecosystems in different biomes, based on a loose coupling of the two models. Furthermore, by means of a factorial model experiment we will explore how these fluxes are influenced by N deposition, temperature, and CO2 concentration.

  13. Secondary Sulfate Mineralization and Basaltic Chemistry of Craters of the Moon National Monument, Idaho: Potential Martian Analog

    Energy Technology Data Exchange (ETDEWEB)

    C. Doc Richardson; Nancy W. Hinman; Lindsay J. McHenry; J. Michelle Kotler; Jill R. Scott

    2012-05-01

    Secondary deposits associated with the basaltic caves of Craters of the Moon National Monument (COM) in southern Idaho were examined using X-ray powder diffraction, X-ray fluorescence spectrometry, Fourier transform infrared spectrometry, and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). The secondary mineral assemblages are dominated by Na-sulfate minerals (thenardite, mirabilite) with a small fraction of the deposits containing minor concentrations of Na-carbonate minerals. The assemblages are found as white, efflorescent deposits in small cavities along the cave walls and ceilings and as localized mounds on the cave floors. Formation of the deposits is likely due to direct and indirect physiochemical leaching of meteoritic water through the overlying basalts. Whole rock data from the overlying basaltic flows are characterized by their extremely high iron concentrations, making them good analogs for martian basalts. Understanding the physiochemical pathways leading to secondary mineralization at COM is also important because lava tubes and basaltic caves are present on Mars. The ability of FTICR-MS to consistently and accurately identify mineral species within these heterogeneous mineral assemblages proves its validity as a valuable technique for the direct fingerprinting of mineral species by deductive reasoning or by comparison with reference spectra.

  14. Micro-SHINE Uranyl Sulfate Irradiations at the Linac

    Energy Technology Data Exchange (ETDEWEB)

    Youker, Amanda J. [Argonne National Lab. (ANL), Argonne, IL (United States); Kalensky, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States); Schneider, John [Argonne National Lab. (ANL), Argonne, IL (United States); Byrnes, James [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-08-01

    Peroxide formation due to water radiolysis in a uranyl sulfate solution is a concern for the SHINE Medical Technologies process in which Mo-99 is generated from the fission of dissolved low enriched uranium. To investigate the effects of power density and fission on peroxide formation and uranyl-peroxide precipitation, uranyl sulfate solutions were irradiated using a 50-MeV electron linac as part of the micro-SHINE experimental setup. Results are given for uranyl sulfate solutions with both high and low enriched uranium irradiated at different linac powers.

  15. Investigation into the role of sodium chloride deposited on oxide and metal substrates in the initiation of hot corrosion

    Science.gov (United States)

    Birks, N.

    1983-01-01

    Sodium chloride is deposited on the surface of alumina substrates and exposed to air containing 1% SO2 at temperatures between 500 C and 700 C. In all cases the sodium chloride was converted to sodium sulfate. The volatilization of sodium chloride from the original salt particles was responsible for the development of a uniform coating of sodium sulfate on the alumina substrate. At temperatures above 625 C, a liquid NaCl-Na2SO4 autectic was formed on the substrate. The mechanisms for these reactions are given. One of the main roles of NaCl in low temperature hot corrosion lies in enabling a corrosive liquid to form.

  16. Opiate-like excitatory effects of steroid sulfates and calcium-complexing agents given cerebroventricularly.

    Science.gov (United States)

    LaBella, F S; Havlicek, V; Pinsky, C

    1979-01-12

    Intracerebroventricular administration of 10--20 microgram of steroid-O-sulfates induced hypermotility, agitation, salivation, EEG abnormalities, stereotypies, wet dog shakes and seizures. Equivalent effects resulted from 30--200 microgram morphine sulfate (H2SO4 salt), 50 microgram EGTA or 300--400 microgram of sodium sulfate or phosphate, but not chloride, nitrate or acetate. Non-steroid sulfates, steroid glucuronides and steroid phosphates were inactive. Naloxone, previously found to antagonize the excitatory effects of androsterone sulfate, failed to antagonize those of cortisol sulfate, sodium sulfate or EGTA. These findings suggest a role for extracellular calcium ions and for sulfate derived from circulating steroids in central responses to opiates.

  17. Sulfur isotopes of host strata for Howards Pass (Yukon–Northwest Territories) Zn-Pb deposits implicate anaerobic oxidation of methane, not basin stagnation

    Science.gov (United States)

    Johnson, Craig A.; Slack, John F.; Dumoulin, Julie A.; Kelley, Karen Duttweiler; Falck, Hendrik

    2018-01-01

    A new sulfur isotope stratigraphic profile has been developed for Ordovician-Silurian mudstones that host the Howards Pass Zn-Pb deposits (Canada) in an attempt to reconcile the traditional model of a stagnant euxinic basin setting with new contradictory findings. Our analyses of pyrite confirm the up-section 34S enrichment reported previously, but additional observations show parallel depletion of carbonate 13C, an increase in organic carbon weight percent, and a change in pyrite morphology. Taken together, the data suggest that the 34S enrichment reflects a transition in the mechanism of pyrite formation during diagenesis, not isotopic evolution of a stagnant water mass. Low in the stratigraphic section, pyrite formed mainly in the sulfate reduction zone in association with organic matter–driven bacterial sulfate reduction. In contrast, starting just below the Zn-Pb mineralized horizon, pyrite formed increasingly within the sulfate-methane transition zone in association with anaerobic oxidation of methane. Our new insights on diagenesis have implications for (1) the setting of Zn-Pb ore formation, (2) the reliability of redox proxies involving metals, and (3) the source of ore sulfur for Howards Pass, and potentially for other stratiform Zn-Pb deposits contained in carbonaceous strata.

  18. Evolutionary relationships and functional diversity of plant sulfate transporters.

    Science.gov (United States)

    Takahashi, Hideki; Buchner, Peter; Yoshimoto, Naoko; Hawkesford, Malcolm J; Shiu, Shin-Han

    2011-01-01

    Sulfate is an essential nutrient cycled in nature. Ion transporters that specifically facilitate the transport of sulfate across the membranes are found ubiquitously in living organisms. The phylogenetic analysis of known sulfate transporters and their homologous proteins from eukaryotic organisms indicate two evolutionarily distinct groups of sulfate transport systems. One major group named Tribe 1 represents yeast and fungal SUL, plant SULTR, and animal SLC26 families. The evolutionary origin of SULTR family members in land plants and green algae is suggested to be common with yeast and fungal SUL and animal anion exchangers (SLC26). The lineage of plant SULTR family is expanded into four subfamilies (SULTR1-SULTR4) in land plant species. By contrast, the putative SULTR homologs from Chlorophyte green algae are in two separate lineages; one with the subfamily of plant tonoplast-localized sulfate transporters (SULTR4), and the other diverged before the appearance of lineages for SUL, SULTR, and SLC26. There also was a group of yet undefined members of putative sulfate transporters in yeast and fungi divergent from these major lineages in Tribe 1. The other distinct group is Tribe 2, primarily composed of animal sodium-dependent sulfate/carboxylate transporters (SLC13) and plant tonoplast-localized dicarboxylate transporters (TDT). The putative sulfur-sensing protein (SAC1) and SAC1-like transporters (SLT) of Chlorophyte green algae, bryophyte, and lycophyte show low degrees of sequence similarities with SLC13 and TDT. However, the phylogenetic relationship between SAC1/SLT and the other two families, SLC13 and TDT in Tribe 2, is not clearly supported. In addition, the SAC1/SLT family is absent in the angiosperm species analyzed. The present study suggests distinct evolutionary trajectories of sulfate transport systems for land plants and green algae.

  19. Parameterization and evaluation of sulfate adsorption in a dynamic soil chemistry model

    International Nuclear Information System (INIS)

    Martinson, Liisa; Alveteg, Mattias; Warfvinge, Per

    2003-01-01

    Including sulfate adsorption improves the dynamic behavior of the SAFE model. - Sulfate adsorption was implemented in the dynamic, multi-layer soil chemistry model SAFE. The process is modeled by an isotherm in which sulfate adsorption is considered to be fully reversible and dependent on sulfate concentration as well as pH in soil solution. The isotherm was parameterized by a site-specific series of simple batch experiments at different pH (3.8-5.0) and sulfate concentration (10-260 μmol l -1 ) levels. Application of the model to the Lake Gaardsjoen roof covered site shows that including sulfate adsorption improves the dynamic behavior of the model and sulfate adsorption and desorption delay acidification and recovery of the soil. The modeled adsorbed pool of sulfate at the site reached a maximum level of 700 mmol/m 2 in the late 1980s, well in line with experimental data

  20. Global Modeling Study of the Bioavailable Atmospheric Iron Supply to the Global Ocean

    Science.gov (United States)

    Myriokefalitakis, S.; Krol, M. C.; van Noije, T.; Le Sager, P.

    2017-12-01

    Atmospheric deposition of trace constituents acts as a nutrient source to the open ocean and affect marine ecosystem. Dust is known as a major source of nutrients to the global ocean, but only a fraction of these nutrients is released in a bioavailable form that can be assimilated by the marine biota. Iron (Fe) is a key micronutrient that significantly modulates gross primary production in the High-Nutrient-Low-Chlorophyll (HNLC) oceans, where macronutrients like nitrate are abundant, but primary production is limited by Fe scarcity. The global atmospheric Fe cycle is here parameterized in the state-of-the-art global Earth System Model EC-Earth. The model takes into account the primary emissions of both insoluble and soluble Fe forms, associated with mineral dust and combustion aerosols. The impact of atmospheric acidity and organic ligands on mineral dissolution processes, is parameterized based on updated experimental and theoretical findings. Model results are also evaluated against available observations. Overall, the link between the labile Fe atmospheric deposition and atmospheric composition changes is here demonstrated and quantified. This work has been financed by the Marie-Curie H2020-MSCA-IF-2015 grant (ID 705652) ODEON (Online DEposition over OceaNs; modeling the effect of air pollution on ocean bio-geochemistry in an Earth System Model).

  1. Sulfur in serpentinized oceanic peridotites: Serpentinization processes and microbial sulfate reduction

    Science.gov (United States)

    Alt, J.C.; Shanks, Wayne C.

    1998-01-01

    The mineralogy, contents, and isotopic compositions of sulfur in oceanic serpentinites reflect variations in temperatures and fluid fluxes. Serpentinization of serpentinization of Iberian Margin peridotites occurred at low temperatures (???20??-200??C) and high water/rock ratios. Complete serpentinization and consumption of ferrous iron allowed evolution to higher fO2. Microbial reduction of seawater sulfate resulted in addition of low-??34S sulfide (-15 to -43???) and formation of higher-sulfur assemblages that include valleriite and pyrite. The high SO4/total S ratio of Hess Deep serpentinites (0.89) results in an increase of total sulfur and high ??34S of total sulfur (mean ??? 8???). In contrast, Iberian Margin serpentinites gained large amounts of 34S-poor sulfide (mean total S = 3800 ppm), and the high sulfide/total S ratio (0.61) results in a net decrease in ??34S of total sulfur (mean ??? -5???). Thus serpentinization is a net sink for seawater sulfur, but the amount fixed and its isotopic composition vary significantly. Serpentinization may result in uptake of 0.4-14 ?? 1012 g S yr-1 from the oceans, comparable to isotopic exchange in mafic rocks of seafloor hydrothermal systems and approaching global fluxes of riverine sulfate input and sedimentary sulfide output.

  2. Gastrointestinal and microbial responses to sulfate-supplemented drinking water in mice.

    Science.gov (United States)

    Deplancke, Bart; Finster, Kai; Graham, W Vallen; Collier, Chad T; Thurmond, Joel E; Gaskins, H Rex

    2003-04-01

    There is increasing evidence that hydrogen sulfide (H2S), produced by intestinal sulfate-reducing bacteria (SRB), may be involved in the etiopathogenesis of chronic diseases such as ulcerative colitis and colorectal cancer. The activity of SRB, and thus H2S production, is likely determined by the availability of sulfur-containing compounds in the intestine. However, little is known about the impact of dietary or inorganic sulfate on intestinal sulfate and SRB-derived H2S concentrations. In this study, the effects of short-term (7 day) and long-term (1 year) inorganic sulfate supplementation of the drinking water on gastrointestinal (GI) sulfate and H2S concentrations (and thus activity of resident SRBs), and the density of large intestinal sulfomucin-containing goblet cells, were examined in C3H/HeJBir mice. Additionally, a PCR-denaturing gradient gel electrophoresis (DGGE)-based molecular ecology technique was used to examine the impact of sulfate-amended drinking water on microbial community structure throughout the GI tract. Average H2S concentrations ranged from 0.1 mM (stomach) to 1 mM (cecum). A sulfate reduction assay demonstrated in situ production of H2S throughout the GI tract, confirming the presence of SRB. However, H2S generation and concentrations were greatest in the cecum and colon. Sulfate supplementation of drinking water did not significantly increase intestinal sulfate or H2S concentrations, suggesting that inorganic sulfate is not an important modulator of intestinal H2S concentrations, although it altered the bacterial profiles of the stomach and distal colon of 1-year-old mice. This change in colonic bacterial profiles may reflect a corresponding increase in the density of sulfomucin-containing goblet cells in sulfate-supplemented compared with control mice.

  3. Considerations on the parent material in the soil developed on the evaporite deposits from Stana (Cluj district

    Directory of Open Access Journals (Sweden)

    Horea Bedelean

    2003-09-01

    Full Text Available This research concerned three profiles developed on Eocene (Priabonian gypsum parent material from Stana (Cluj district in order to investigate their properties. The soil and parent material samples were collected from individual horizons in each profile. Both the mineralogical and structural-textural features of the parent material (evaporitic deposits reflect the depositional context. From a mineralogical point of view, the deposits are represented by gypsum, and anhydrite. Typical sulfate facies are present: laminitic, nodular, gypscretic, and entherolitic. Physical and mineralogical properties of the soil layers were determined in the laboratory. The field observations and the results of the analyses allowed us to classify the soil as a rendzinic regosol, according to the Romanian System of Soil Taxonomy (S.R.T.S. 2000.

  4. A global plasma model for reactive deposition of compound films by modulated pulsed power magnetron sputtering discharges

    Science.gov (United States)

    Zheng, B. C.; Wu, Z. L.; Wu, B.; Li, Y. G.; Lei, M. K.

    2017-05-01

    A spatially averaged, time-dependent global plasma model has been developed to describe the reactive deposition of a TiAlSiN thin film by modulated pulsed power magnetron sputtering (MPPMS) discharges in Ar/N2 mixture gas, based on the particle balance and the energy balance in the ionization region, and considering the formation and erosion of the compound at the target surface. The modeling results show that, with increasing the N2 partial pressure from 0% to 40% at a constant working pressure of 0.3 Pa, the electron temperature during the strongly ionized period increases from 4 to 7 eV and the effective power transfer coefficient, which represents the power fraction that effectively heats the electrons and maintains the discharge, increases from about 4% to 7%; with increasing the working pressure from 0.1 to 0.7 Pa at a constant N2 partial pressure of 25%, the electron temperature decreases from 10 to 4 eV and the effective power transfer coefficient decreases from 8% to 5%. Using the modeled plasma parameters to evaluate the kinetic energy of arriving ions, the ion-to-neutral flux ratio of deposited species, and the substrate heating, the variations of process parameters that increase these values lead to an enhanced adatom mobility at the target surface and an increased input energy to the substrate, corresponding to the experimental observation of surface roughness reduction, the microstructure transition from the columnar structure to the dense featureless structure, and the enhancement of phase separation. At higher N2 partial pressure or lower working pressure, the modeling results demonstrate an increase in electron temperature, which shifts the discharge balance of Ti species from Ti+ to Ti2+ and results in a higher return fraction of Ti species, corresponding to the higher Al/Ti ratio of deposited films at these conditions. The modeling results are well correlated with the experimental observation of the composition variation and the microstructure

  5. Sulfate was a trace constituent of Archean seawater

    DEFF Research Database (Denmark)

    Crowe, Sean Andrew; Paris, Guillaume; Katsev, Sergei

    2014-01-01

    In the low-oxygen Archean world (>2400 million years ago), seawater sulfate concentrations were much lower than today, yet open questions frustrate the translation of modern measurements of sulfur isotope fractionations into estimates of Archean seawater sulfate concentrations. In the water column...

  6. Role of crude oil in the genesis of Mississippi Valley-type deposits. Evidence from the Cincinnati arch

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, S.E.; Jones, H.D. (Univ. of Michigan, Ann Arbor, MI (United States)); Furman, F.C. (Univ. of Missouri, Rolla, MO (United States)); Sassen, R. (Texas A M Univ., College Station, TX (United States)); Anderson, W.H. (Univ. of Kentucky, Lexington, KY (United States)); Kyle, J.R. (Univ. of Texas, Austin, TX (United States))

    1994-07-01

    Mississippi Valley-type (MVT) sulfide minerals and oil from deposits along the Cincinnati arch have almost identical [delta][sup 34]S values (-9% to +9% for MVT sulfides, -12% to +9% for oils). These values are very similar to those for MVT sulfides and oil in the Illinois-Kentucky district and support their proposed inclusion in a regional hydrothermal system. Many MVT deposits with low [delta][sup 34]S values are closely associated with oil, whereas MVT deposits with high [delta][sup 34]S values often contain bitumen. Reduced sulfur in MVT deposits with high [delta][sup 34]S values probably came from thermochemical sulfate reduction, whereas that in MVT deposits with low [delta][sup 34]S values probably came from oil and related organic matter. Oil-related sulfur could have been derived from oil fields or disseminated oil and other organic matter in regional wallrocks. 44 refs., 3 figs., 2 tabs.

  7. Global Atmosphere Watch Workshop on Measurement-Model Fusion for Global Total Atmospheric Deposition (MMF-GTAD)

    Science.gov (United States)

    The World Meteorological Organization’s (WMO) Global Atmosphere Watch (GAW) Programme coordinates high-quality observations of atmospheric composition from global to local scales with the aim to drive high-quality and high-impact science while co-producing a new generation of pro...

  8. Initial kinetics of the direct sulfation of limestone

    DEFF Research Database (Denmark)

    Hu, Guilin; Shang, Lei; Dam-Johansen, Kim

    2008-01-01

    The initial kinetics of direct sulfation of Faxe Bryozo, a porous bryozoan limestone was studied in the temperature interval from 873 to 973 K in a pilot entrained flow reactor with very short reaction times (between 0.1 and 0.6 s). The initial conversion rate of the limestone - for conversions...... less than 0.3% - was observed to be significantly promoted by higher SO2 concentrations and lower CO2 concentrations, whereas 02 showed negligible influence. A mathematical model for the sulfation of limestone involving chemical reaction at calcite grain surfaces and solid-state diffusion of carbonate...... ions in calcite grains is established. The validity of the model is limited to the initial sulfation period, in which nucleation of the solid product calcium sulphate is not started. This theoretical reaction-diffusion model gives a good simulation of the initial kinetics of the direct sulfation...

  9. Evaluation of aerosol distributions in the GISS-TOMAS global aerosol microphysics model with remote sensing observations

    Directory of Open Access Journals (Sweden)

    Y. H. Lee

    2010-03-01

    Full Text Available The Aerosol Optical Depth (AOD and Angstrom Coefficient (AC predictions in the GISS-TOMAS model of global aerosol microphysics are evaluated against remote sensing data from MODIS, MISR, and AERONET. The model AOD agrees well (within a factor of two over polluted continental (or high sulfate, dusty, and moderate sea-salt regions but less well over the equatorial, high sea-salt, and biomass burning regions. Underprediction of sea-salt in the equatorial region is likely due to GCM meteorology (low wind speeds and high precipitation. For the Southern Ocean, overprediction of AOD is very likely due to high sea-salt emissions and perhaps aerosol water uptake in the model. However, uncertainties in cloud screening at high latitudes make it difficult to evaluate the model AOD there with the satellite-based AOD. AOD in biomass burning regions is underpredicted, a tendency found in other global models but more severely here. Using measurements from the LBA-SMOCC 2002 campaign, the surface-level OC concentration in the model are found to be underpredicted severely during the dry season while much less severely for EC concentration, suggesting the low AOD in the model is due to underpredictions in OM mass. The potential for errors in emissions and wet deposition to contribute to this bias is discussed.

  10. Prognostic significance of highly sulfated chondroitin sulfates in ovarian cancer defined by the single chain antibody GD3A11.

    Science.gov (United States)

    van der Steen, Sophieke C H A; van Tilborg, Angela A G; Vallen, Myrtille J E; Bulten, Johan; van Kuppevelt, Toin H; Massuger, Leon F A G

    2016-03-01

    The extracellular matrix (ECM) of ovarian cancer may provide a number of potential biomarkers. Chondroitin sulfate (CS), a class of sulfated polysaccharides, is abundantly present in the ECM of ovarian cancer. Structural alterations of CS chains (i.e. sulfation pattern) have been demonstrated to play a role in cancer development and progression. In this study we investigate the potential of highly sulfated CS as a biomarker in ovarian cancer using the single chain antibody GD3A11 selected by the phage display technology. The specificity of the antibody was determined by an indirect ELISA. GD3A11 epitope expression was assessed by immunohistochemistry in healthy organs, benign and malignant ovarian tumors (N=359) and correlated to clinical parameters. The CHST15 gene, responsible for the biosynthesis of highly sulfated CS was evaluated for mutation and methylation status. The GD3A11 epitope was minimally expressed in normal organs. Intense expression was observed in the ECM of different ovarian cancer subtypes, in contrast to benign ovarian tumors. Expression was independent of tumor grade, FIGO stage, and the use chemotherapy. For the aggressive ovarian cancer phenotype, intense expression was identified as an independent predictor for poor prognosis. CHST15 gene analysis showed no mutations nor an altered methylation status. Specific highly sulfated CS motifs expressed in the tumoral ECM hold biomarker potential in ovarian cancer patients. These matrix motifs constitute a novel class of biomarkers with prognostic significance and may be instrumental for innovative diagnostic and therapeutic applications (e.g. targeted therapy) in management of ovarian cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Role of protein sulfation in vasodilation induced by minoxidil sulfate, a K+ channel opener

    International Nuclear Information System (INIS)

    Meisheri, K.D.; Oleynek, J.J.; Puddington, L.

    1991-01-01

    Evidence from contractile, radioisotope ion flux and electrophysiological studies suggest that minoxidil sulfate (MNXS) acts as a K+ channel opener in vascular smooth muscle. This study was designed to examine possible biochemical mechanisms by which MNXS exerts such an effect. Experiments performed in the isolated rabbit mesenteric artery (RMA) showed that MNXS, 5 microM, but not the parent compound minoxidil, was a potent vasodilator. Whereas the relaxant effects of an another K+ channel opener vasodilator, BRL-34915 (cromakalim), were removed by washing with physiological saline solution, the effects of MNXS persisted after repeated washout attempts. Furthermore, after an initial exposure of segments of intact RMA to [35S] MNXS, greater than 30% of the radiolabel was retained 2 hr after removal of the drug. In contrast, retention of radiolabel was not detected with either [3H]MNXS (label on the piperidine ring of MNXS) or [3H]minoxidil (each less than 3% after a 2-hr washout). These data suggested that the sulfate moiety from MNXS was closely associated with the vascular tissue. To determine if proteins were the acceptors of sulfate from MNXS, intact RMAs were incubated with [35S]MNXS, and then 35S-labeled proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and analyzed by fluorography. Preferential labeling of a 116 kD protein was detected by 2 and 5 min of treatment. A 43 kD protein (resembling actin) also showed significant labeling. A similar profile of 35S-labeled proteins was observed in [35S] MNXS-treated A7r5 rat aortic smooth muscle cells, suggesting that the majority of proteins labeled by [35S]MNXS in intact RMA were components of smooth muscle cells

  12. Influence of Internal Sulfate Attack on Some Properties of High Strength Concrete

    Directory of Open Access Journals (Sweden)

    Nada Mahdi Fawzi

    2015-08-01

    Full Text Available One of the most important problems that faces the concrete industry in Iraq is the deterioration due to internal sulfate attack , since it reduces the compressive strength and increases the expansion of concrete. Consequently, the concrete structure may be damage .The effects of total and total effective sulfate contents on high strength concrete (HSC have been studied in the present study. The research studied the effect of sulfate content in cement , sand and gravel , as well as comparing the total sulfate content with the total effective SO3 content. Materials used were divided into two groups of SO3 in cement ,three groups of SO3 in sand ,and two groups of SO3 in gravel. The results show that considering the total effective sulfate content is better than the total content of sulfates since the effect of sulfate in each constituent of concrete, depends on it's granular size .The smaller the particle size of the material the more effective is the sulfate in it. Therefore, it is recommended to follow the Iraqi specification for total effective sulfate content, because it gives more flexibility to the use of sand and gravel with higher sulfate content. The results of compressive strength at 90-days show that the effect of total effective SO3 content of ( 2.647% , 2.992% , 3.424% that correspond to total sulfate of ( 3.778%, 3.294%, 4.528% decrease the compressive strength by (7.53%, 11.44%, 14.59% respectively.

  13. Deposition to forests in Europe: most important factors influencing dry deposition and models used for generalisation

    International Nuclear Information System (INIS)

    Erisman, Jan Willem; Draaijers, Geert

    2003-01-01

    The influence of forest characteristics on deposition can be modelled reasonably well; forest edge effects and dynamical processes are still uncertain. - Dry deposition of gases and particles to forests is influenced by factors influencing the turbulent transport, such as wind speed, tree height, canopy closure, LAI, etc. as well as by factors influencing surface condition, such as precipitation, relative humidity, global radiation, etc. In this paper, an overview of these factors is given and it is shown which are the most important determining temporal and spatial variation of dry deposition of sodium and sulphur. Furthermore, it is evaluated how well current deposition models are able to describe the temporal and spatial variation in dry deposition. It is concluded that the temporal variation is not modelled well enough, because of limited surface-wetness exchange parameterisations. The influence of forest characteristics are modelled reasonably well, provided enough data describing the forests and the spatial variation in concentration is available. For Europe these data are not available. The means to decrease the atmospheric deposition through forest management is discussed

  14. Isotopic constraints on heterogeneous sulfate production in Beijing haze

    Science.gov (United States)

    He, Pengzhen; Alexander, Becky; Geng, Lei; Chi, Xiyuan; Fan, Shidong; Zhan, Haicong; Kang, Hui; Zheng, Guangjie; Cheng, Yafang; Su, Hang; Liu, Cheng; Xie, Zhouqing

    2018-04-01

    Discerning mechanisms of sulfate formation during fine-particle pollution (referred to as haze hereafter) in Beijing is important for understanding the rapid evolution of haze and for developing cost-effective air pollution mitigation strategies. Here we present observations of the oxygen-17 excess of PM2.5 sulfate (Δ17O(SO42-)) collected in Beijing haze from October 2014 to January 2015 to constrain possible sulfate formation pathways. Throughout the sampling campaign, the 12-hourly averaged PM2.5 concentrations ranged from 16 to 323 µg m-3 with a mean of (141 ± 88 (1σ)) µg m-3, with SO42- representing 8-25 % of PM2.5 mass. The observed Δ17O(SO42-) varied from 0.1 to 1.6 ‰ with a mean of (0.9 ± 0.3) ‰. Δ17O(SO42-) increased with PM2.5 levels in October 2014 while the opposite trend was observed from November 2014 to January 2015. Our estimate suggested that in-cloud reactions dominated sulfate production on polluted days (PDs, PM2.5 ≥ 75 µg m-3) of Case II in October 2014 due to the relatively high cloud liquid water content, with a fractional contribution of up to 68 %. During PDs of Cases I and III-V, heterogeneous sulfate production (Phet) was estimated to contribute 41-54 % to total sulfate formation with a mean of (48 ± 5) %. For the specific mechanisms of heterogeneous oxidation of SO2, chemical reaction kinetics calculations suggested S(IV) ( = SO2 ⚫ H2O + HSO3- + SO32-) oxidation by H2O2 in aerosol water accounted for 5-13 % of Phet. The relative importance of heterogeneous sulfate production by other mechanisms was constrained by our observed Δ17O(SO42-). Heterogeneous sulfate production via S(IV) oxidation by O3 was estimated to contribute 21-22 % of Phet on average. Heterogeneous sulfate production pathways that result in zero-Δ17O(SO42-), such as S(IV) oxidation by NO2 in aerosol water and/or by O2 via a radical chain mechanism, contributed the remaining 66-73 % of Phet. The assumption about the thermodynamic state of aerosols

  15. On the roles and regulation of chondroitin sulfate and heparan sulfate in zebrafish pharyngeal cartilage morphogenesis

    DEFF Research Database (Denmark)

    Holmborn, Katarina; Habicher, Judith; Kasza, Zsolt

    2012-01-01

    The present study addresses the roles of heparan sulfate (HS) proteoglycans and chondroitin sulfate (CS) proteoglycans in the development of zebrafish pharyngeal cartilage structures. uxs1 and b3gat3 mutants, predicted to have impaired biosynthesis of both HS and CS because of defective formation...... levels of CS than control larvae, whereas morpholino-mediated suppression of csgalnact1/csgalnact2 resulted in increased HS biosynthesis. Thus, the balance of the Extl3 and Csgalnact1/Csgalnact2 proteins influences the HS/CS ratio. A characterization of the pharyngeal cartilage element morphologies...

  16. Incorporation of Monovalent Cations in Sulfate Green Rust

    DEFF Research Database (Denmark)

    Christiansen, B. C.; Dideriksen, K.; Katz, A.

    2014-01-01

    Green rust is a naturally occurring layered mixed-valent ferrous-ferric hydroxide, which can react with a range of redox-active compounds. Sulfate-bearing green rust is generally thought to have interlayers composed of sulfate and water. Here, we provide evidence that the interlayers also contain...... with water showed that Na+ and K+ were structurally fixed in the interlayer, whereas Rb+ and Cs+ could be removed, resulting in a decrease in the basal layer spacing. The incorporation of cations in the interlayer opens up new possibilities for the use of sulfate green rust for exchange reactions with both...

  17. Isotopic data from proterozoic sediment-hosted sulfide deposits of Brazil: Implications for their metallogenic evolution and for mineral exploration

    International Nuclear Information System (INIS)

    Misi, Aroldo; Coelho, Carlos E.S.; Franca Rocha, Washington J.S.; Gomez, Adriana S.R.; Cunha, Iona A.; Iyer, Sundaram S.; Tassinari, Colombo C.G.; Kyle, J. Richard

    1998-01-01

    Geological, petrographic, fluid inclusions studies and isotopic data of seven Proterozoic sediment-hosted Pb-Zn-Ag sulfide deposits of Brazil, permit the estimation of the age of the hosting sequence and the mineralization, the nature of the sulfur and metal sources, the temperature range of sulfide formation and the environment of deposition of the mineral deposits. The studies suggest that they were formed during periods of extensional tectonics: Growth faults or reactivated basement faults were responsible for localized circulation of metal-bearing fluids within the sedimentary sequences. In most cases, sulfides were formed by the reduction of sedimentary sulfates. Linear structures are important controls for sulfide concentration in these Proterozoic basins. (author)

  18. Transmission spectra study of sulfate substituted potassium dihydrogen phosphate

    KAUST Repository

    LI, LIANG; Zhang, Jianqin; Sun, Xun; Zhang, Qiang; Zhao, Xian; Zhang, Xixiang

    2013-01-01

    Potassium dihydrogen phosphate (KDP) crystals with different amounts of sulfate concentration were grown and the transmittance spectrum was studied. A crystal with high sulfate replacement density exhibits heavy absorption property

  19. Cloning and characterization of a novel chondroitin sulfate/dermatan sulfate 4-O-endosulfatase from a marine bacterium.

    Science.gov (United States)

    Wang, Wenshuang; Han, Wenjun; Cai, Xingya; Zheng, Xiaoyu; Sugahara, Kazuyuki; Li, Fuchuan

    2015-03-20

    Sulfatases are potentially useful tools for structure-function studies of glycosaminoglycans (GAGs). To date, various GAG exosulfatases have been identified in eukaryotes and prokaryotes. However, endosulfatases that act on GAGs have rarely been reported. Recently, a novel HA and CS lyase (HCLase) was identified for the first time from a marine bacterium (Han, W., Wang, W., Zhao, M., Sugahara, K., and Li, F. (2014) J. Biol. Chem. 289, 27886-27898). In this study, a putative sulfatase gene, closely linked to the hclase gene in the genome, was recombinantly expressed and characterized in detail. The recombinant protein showed a specific N-acetylgalactosamine-4-O-sulfatase activity that removes 4-O-sulfate from both disaccharides and polysaccharides of chondroitin sulfate (CS)/dermatan sulfate (DS), suggesting that this sulfatase represents a novel endosulfatase. The novel endosulfatase exhibited maximal reaction rate in a phosphate buffer (pH 8.0) at 30 °C and effectively removed 17-65% of 4-O-sulfates from various CS and DS and thus significantly inhibited the interactions of CS and DS with a positively supercharged fluorescent protein. Moreover, this endosulfatase significantly promoted the digestion of CS by HCLase, suggesting that it enhances the digestion of CS/DS by the bacterium. Therefore, this endosulfatase is a potential tool for use in CS/DS-related studies and applications. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Chondroitin sulfate proteoglycan synthesis and reutilization of beta-D-xyloside-initiated chondroitin/dermatan sulfate glycosaminoglycans in fetal kidney branching morphogenesis

    International Nuclear Information System (INIS)

    Klein, D.J.; Brown, D.M.; Moran, A.; Oegema, T.R. Jr.; Platt, J.L.

    1989-01-01

    Branching morphogenesis and chondroitin sulfate proteoglycan synthesis by explanted fetal mouse kidneys were previously shown to be inhibited by p-nitrophenyl beta-D-xylopyranoside (beta-D-xyloside) while glomerular development and heparan sulfate proteoglycan synthesis were unaffected. The metabolic fate of fetal kidney explant proteoglycans was investigated to determine whether or not recovery of proteoglycan synthesis and morphogenesis occur after exposure to beta-D-xyloside. Chondroitin sulfate proteoglycan synthesis resumed within 4 hr of removal of beta-D-xyloside and was enhanced once beta-D-xyloside-initiated chondroitin/dermatan- 35 SO 4 glycosaminoglycans (GAGs) were released from the tissue. Radioactivity incorporated into beta-D-xyloside-initiated chondroitin/dermatan- 35 SO 4 GAGs during labeling in the presence of beta-D-xyloside was reutilized in the synthesis of chondroitin- 35 SO 4 proteoglycan during a 24-hr chase in nonradioactive medium without beta-D-xyloside. Further, highly purified beta-D-xyloside-initiated chondroitin/dermatan- 35 SO 4 GAGs were taken up by kidneys more avidly than was free [ 35 S]sulfate. These 35 S-GAGs were degraded and reutilized in the synthesis of chondroitin- 35 SO 4 proteoglycan. Ureteric bud branching resumed 48 hr after beta-D-xyloside was removed from the incubation medium. These findings support the idea that both chondroitin sulfate proteoglycan synthesis and proteoglycan processing may be involved in branching morphogenesis

  1. Diversity of sulfur isotope fractionations by sulfate-reducing prokaryotes

    DEFF Research Database (Denmark)

    Detmers, Jan; Brüchert, Volker; Habicht, K S

    2001-01-01

    Batch culture experiments were performed with 32 different sulfate-reducing prokaryotes to explore the diversity in sulfur isotope fractionation during dissimilatory sulfate reduction by pure cultures. The selected strains reflect the phylogenetic and physiologic diversity of presently known...... sulfate reducers and cover a broad range of natural marine and freshwater habitats. Experimental conditions were designed to achieve optimum growth conditions with respect to electron donors, salinity, temperature, and pH. Under these optimized conditions, experimental fractionation factors ranged from 2.......0 to 42.0 per thousand. Salinity, incubation temperature, pH, and phylogeny had no systematic effect on the sulfur isotope fractionation. There was no correlation between isotope fractionation and sulfate reduction rate. The type of dissimilatory bisulfite reductase also had no effect on fractionation...

  2. Oceanic ferromanganese deposits: Future resources and past-ocean recorders

    Digital Repository Service at National Institute of Oceanography (India)

    Banakar, V.K.; Nair, R.R.; Parthiban, G.; Pattan, J.N.

    decades following the Mero's publication witnessed global "Nodule Rush". The technological leaders of those years like US, Germany, Japan, France, New-Zealand, and USSR have conducted major scientific expeditions to the Central Pacific to map...-Mn-(Cu+Ni+Co) in ferromanganese deposits from the Central Indian Ocean (Source: Jauhari, 1987). OCEANIC FERROMANGANESE DEPOSITS 45 DISTRIBUTION The nodules occur invariably in almost all the deep-sea basins witnessing low sedimentation rates. But abundant ore grade deposits...

  3. Ammonium Laurate Surfactant for Cleaner Deposition of Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Hanna M. [Department of Material Science and Engineering and ‡Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States; Meany, Brendan [Department of Material Science and Engineering and ‡Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States; Ticey, Jeremy [Department of Material Science and Engineering and ‡Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States; Sun, Chuan-Fu [Department of Material Science and Engineering and ‡Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States; Wang, YuHuang [Department of Material Science and Engineering and ‡Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States; Cumings, John [Department of Material Science and Engineering and ‡Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States

    2015-06-15

    Experiments probing the properties of individual carbon nanotubes (CNTs) and those measuring bulk composites show vastly different results. One major issue limiting the results is that the procedures required to separate and test CNTs introduce contamination that changes the properties of the CNT. These contamination residues often come from the resist used in lithographic processing and the surfactant used to suspend and deposit the CNTs, commonly sodium dodecyl sulfate (SDS). Here we present ammonium laurate (AL), a surfactant that has previously not been used for this application, which differs from SDS only by substitution of ionic constituents but shows vastly cleaner depositions. In addition, we show that compared to SDS, AL-suspended CNTs have greater shelf stability and more selective dispersion. These results are verified using transmission electron microscopy, atomic force microscopy, ζ-potential measurements, and Raman and absorption optical spectroscopy. This surfactant is simple to prepare, and the nanotube solutions require minimal sonication and centrifugation in order to outperform SDS.

  4. Influence of sulfate reduction on the organic matter of Wealden sediments of the Lower Saxony Basin (Germany)

    Energy Technology Data Exchange (ETDEWEB)

    Berner, U. [Bundesanstalt fuer Geowissenschaften und Rohstoffe (BGR), Hannover (Germany)

    2013-08-01

    Sediments of the Wealden (Lower Saxony Basin, Germany) as obtained from the well Isterberg 1001 consist of clay stones, marls and few massive carbonate horizons. Although, the basin is predominantly characterized as lacustrine geochemical data indicate significant influences of marine ingression which have introduced sulfur into the depositional system. Consequently the organic matter of the sediments has been substantially affected by bacterial sulfate reduction, which has led to losses of the initial organic carbon of 5 to 80 wt.- percent, which is a minimum estimate as losses of H{sub 2}S form the sediments were not taken into account for the mass balance consideration. Complete uptake of reactive iron into sulfides has led in a significant number of samples to the presence of excess sulfur not contained in sulfides. In our argumentation we assume that excess sulfur is at least partly incorporated into the organic matter. Pyrolysis investigations show that organic matter in samples containing higher amounts of excess sulfur generates hydrocarbons at lower temperatures than samples with low concentrations of excess sulfur. These observations are compatible with findings usually reported for Type S-II kerogens. The likely organically bound excess sulfur introduces a bias with thermal maturities from RockEval pyrolysis, which implies that T{sub max} data rather reflect quality changes of the organic matter than thermal maturity in the investigated Wealden sediments. The hydrocarbon potential has been reduced significantly in samples which have been affected strongly by the microbial process as indicated by hydrogen indices of the sediments. The observations of variable degrees of sulfate reduction indicate also a variation of organic matter fluxes to the sediment surface of the palaeo-lake likely resulting from changes in biological surface productivity. Low carbon fluxes likely coincide with extensive use of organic substrate by sulfate reducers whereas high

  5. Annual sulfate budgets for Dutch lowland peat polders

    NARCIS (Netherlands)

    Vermaat, Jan E.; Harmsen, Joop; Hellmann, Fritz A.; Geest, van der Harm G.; Klein, de Jeroen J.M.; Kosten, Sarian; Smolders, Alfons J.P.; Verhoeven, Jos T.A.; Mes, Ron G.; Ouboter, Maarten

    2016-01-01

    Annual sulfate mass balances have been constructed for four low-lying peat polders in the Netherlands, to resolve the origin of high sulfate concentrations in surface water, which is considered a water quality problem, as indicated amongst others by the absence of sensitive water plant species.

  6. Effects of Aluminium Sulfate on Cadmium Accumulation in Rice

    International Nuclear Information System (INIS)

    Khamvarn, Vararas; Boontanon, Narin; Prapagdee, Benjaphorn; Kumsopa, Acharaporn; Boonsirichai, Kanokporn

    2011-06-01

    Full text: Cadmium accumulation in Pathum Thani 1 and Suphan Buri 60 rice cultivars was investigated upon treatment with aluminium sulfate as a precipitant. Rice was grown hydroponically in a medium containing 4 ppm cadmium nitrate with or without 4 ppm aluminium sulfate. Root, stem with leaves and grain samples were collected and analyzed for cadmium content using atomic absorption spectroscopy and inductively coupled plasma atomic emission spectroscopy. Without the addition of aluminium sulfate, Pathum Thani 1 and Suphan Buri 60 accumulated 24.71∫ 3.14 ppm and 34.43 ∫ 4.51 ppm (dry weight of whole plant) of cadmium, respectively. With aluminium sulfate, cadmium accumulation increased to 40.66 ∫ 2.47 ppm and 62.94 ∫ 10.69 ppm, respectively. The addition of aluminium sulfate to the planting medium did not reduce cadmium accumulation but caused the rice to accumulate more cadmium especially in the shoots and grains. This observation might serve as the basis for future research on the management of agricultural areas that are contaminated with cadmium and aluminium

  7. A salt diapir-related Mississippi Valley-type deposit: the Bou Jaber Pb-Zn-Ba-F deposit, Tunisia: fluid inclusion and isotope study

    Science.gov (United States)

    Bouhlel, Salah; Leach, David L.; Johnson, Craig A.; Marsh, Erin; Salmi-Laouar, Sihem; Banks, David A.

    2016-08-01

    evaporation of seawater to halite saturation and requires a dilution of more than two times by meteoric water. The higher K/Na values in fluid inclusions from barite suggest that the brines interacted with K-rich rocks in the basement or siliciclastic sediments in the basin. Carbonate gangue minerals (ankerite and calcite) have δ13C and δ18O values that are close to the carbonate host rock and indicate fluid equilibrium between carbonate host rocks and hydrothermal brines. The δ34S values for sphalerite and galena fall within a narrow range (1 to 10 ‰) with a bulk value of 7.5 ‰, indicating a homogeneous source of sulfur. The δ34S values of barite are also relatively homogeneous (22 ‰), with 6 ‰ higher than the δ34S of local and regional Triassic evaporites (15 ‰). The latter are believed to be the source of sulfate. Temperature of deposition together with sulfur isotope data indicate that the reduced sulfur in sulfides was derived through thermochemical sulfate reduction of Triassic sulfate via hydrocarbons produced probably from Late Cretaceous source rocks. The 87Sr/86Sr ratio in the Bou Jaber barite (0.709821 to 0.711408) together with the lead isotope values of Bou Jaber galena (206Pb/204Pb = 18.699 to 18.737; 207Pb/204Pb = 15.635 to 15.708 and 208Pb/204Pb = 38.321 to 38.947) show that metals were extracted from homogeneous crustal source(s). The tectonic setting of the Bou Jaber ore deposit, the carbonate nature of the host rocks, the epigenetic style of the mineralization and the mineral associations, together with sulfur and oxygen isotope data and fluid inclusion data show that the Bou Jaber lead-zinc mineralization has the major characteristics of a salt diapir-related Mississippi Valley-type (MVT) deposit with superimposed events of fluorite and of barite deposition. Field relations are consistent with mineral deposition during the Eocene-Miocene Alpine orogeny from multiple hydrothermal events: (1) Zn-Pb sulfides formed by mixing of two fluids: one

  8. Preparation and characterization of a chemically sulfated cashew gum polysaccharide

    Energy Technology Data Exchange (ETDEWEB)

    Moura Neto, Erico de; Maciel, Jeanny da S.; Cunha, Pablyana L. R.; Paula, Regina Celia M. de; Feitosa, Judith P.A., E-mail: judith@dqoi.ufc.br [Departamento de Quimica Organica e Inorganica, Universidade Federal do Ceara, Fortaleza (Brazil)

    2011-09-15

    Cashew gum (CG) was sulfated in pyridine:formamide using chlorosulfonic acid as the reagent. Confirmation of sulfation was obtained by Fourier transform infrared (FTIR) spectroscopy through the presence of an asymmetrical S=O stretching vibration at 1259 cm{sup -1}. The degrees of substitution were 0.02, 0.24 and 0.88 determined from the sulfur percentage. 1D and 2D nuclear magnetic resonance (NMR) data showed that the sulfation occurred at primary carbons. An increase of at least 4% of the solution viscosity was observed due to sulfation. The thermal gravimetric curves (TGA) indicate that the derivatives are stable up to ca. 200 deg C. The sulfated CG is compared to carboxymethylated CG in order to verify the possibility of the use of the former in the preparation of polyelectrolyte complexes; the latter is already being used for this application. (author)

  9. Modeling of Sulfate Double-Salt in Nuclear Wastes

    International Nuclear Information System (INIS)

    Toghiani, B.; Lindner, J.S.; Weber, C.F.; Hunt, R.D.

    2000-01-01

    The Environmental Simulation Program (ESP) continues to adequately predict the solubility of most key chemical systems in the Hanford tank waste. For example, the ESP predictions were in fair agreement with the solubility experiments for the fluoride-phosphate system, although ESP probably underestimates the aqueous amounts. Due to the importance of this system in the formation of pipeline plugs, additional experiments have been made at elevated temperatures, and improvements to the ESP database will be made. ESP encountered problems with sulfate systems because the Public database for ESP does not include anhydrous sodium sulfate in mixed solutions below 32.4 C. This limitation leads to convergence problems and to spurious predictions of solubility near the transition point with sodium sulfate decahydrate when other salts such as sodium nitrate are present. However, ESP was able to make reasonable solubility predictions with a corrected database, demonstrating the need to validate and document the various databases that can be used by ESP. Even though ESP does not include the sulfate-nitrate double salt, this omission does not appear to be a major problem. The solubility predictions with and without the sulfate-nitrate double salt are comparable. In sharp contrast, the sulfate-fluoride double salt is included, but ESP still underestimates solubility in some cases. This problem can misrepresent the ionic strength of the solution, which is an important factor in the formation of pipeline plugs. Solubility tests on the sulfate-fluoride system are planned to provide additional data at higher temperatures and in caustic solutions. These results will be used to improve the range and accuracy of ESP predictions. ESP will continue to provide important predictions for waste processing operations while being evaluated and improved. For example, ESP will be used to determine the amount of water for the saltcake dissolution efforts at Hanford. When ESP underestimates the

  10. Transcriptome analysis of the sulfate deficiency response in the marine microalga Emiliania huxleyi.

    Science.gov (United States)

    Bochenek, Michal; Etherington, Graham J; Koprivova, Anna; Mugford, Sam T; Bell, Thomas G; Malin, Gill; Kopriva, Stanislav

    2013-08-01

    The response to sulfate deficiency of plants and freshwater green algae has been extensively analysed by system biology approaches. By contrast, seawater sulfate concentration is high and very little is known about the sulfur metabolism of marine organisms. Here, we used a combination of metabolite analysis and transcriptomics to analyse the response of the marine microalga Emiliania huxleyi as it acclimated to sulfate limitation. Lowering sulfate availability in artificial seawater from 25 to 5 mM resulted in significant reduction in growth and intracellular concentrations of dimethylsulfoniopropionate and glutathione. Sulfate-limited E. huxleyi cells showed increased sulfate uptake but sulfate reduction to sulfite did not seem to be regulated. Sulfate limitation in E. huxleyi affected expression of 1718 genes. The vast majority of these genes were upregulated, including genes involved in carbohydrate and lipid metabolism, and genes involved in the general stress response. The acclimation response of E. huxleyi to sulfate deficiency shows several similarities to the well-described responses of Arabidopsis and Chlamydomonas, but also has many unique features. This dataset shows that even though E. huxleyi is adapted to constitutively high sulfate concentration, it retains the ability to re-program its gene expression in response to reduced sulfate availability. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  11. O-sulfated bacterial polysaccharides with low anticoagulant activity inhibit metastasis.

    Science.gov (United States)

    Borgenström, Marjut; Wärri, Anni; Hiilesvuo, Katri; Käkönen, Rami; Käkönen, Sanna; Nissinen, Liisa; Pihlavisto, Marjo; Marjamäki, Anne; Vlodavsky, Israel; Naggi, Annamaria; Torri, Giangiacomo; Casu, Benito; Veromaa, Timo; Salmivirta, Markku; Elenius, Klaus

    2007-07-01

    Heparin-like polysaccharides possess the capacity to inhibit cancer cell proliferation, angiogenesis, heparanase-mediated cancer cell invasion, and cancer cell adhesion to vascular endothelia via adhesion receptors, such as selectins. The clinical applicability of the antitumor effect of such polysaccharides, however, is compromised by their anticoagulant activity. We have compared the potential of chemically O-sulfated and N,O-sulfated bacterial polysaccharide (capsular polysaccharide from E. COLI K5 [K5PS]) species to inhibit metastasis of mouse B16-BL6 melanoma cells and human MDA-MB-231 breast cancer cells in two in vivo models. We demonstrate that in both settings, O-sulfated K5PS was a potent inhibitor of metastasis. Reducing the molecular weight of the polysaccharide, however, resulted in lower antimetastatic capacity. Furthermore, we show that O-sulfated K5PS efficiently inhibited the invasion of B16-BL6 cells through Matrigel and also inhibited the in vitro activity of heparanase. Moreover, treatment with O-sulfated K5PS lowered the ability of B16-BL6 cells to adhere to endothelial cells, intercellular adhesion molecule-1, and P-selectin, but not to E-selectin. Importantly, O-sulfated K5PSs were largely devoid of anticoagulant activity. These findings indicate that O-sulfated K5PS polysaccharide should be considered as a potential antimetastatic agent.

  12. Distinguishing iron-reducing from sulfate-reducing conditions

    Science.gov (United States)

    Chapelle, F.H.; Bradley, P.M.; Thomas, M.A.; McMahon, P.B.

    2009-01-01

    Ground water systems dominated by iron- or sulfate-reducing conditions may be distinguished by observing concentrations of dissolved iron (Fe2+) and sulfide (sum of H2S, HS-, and S= species and denoted here as "H2S"). This approach is based on the observation that concentrations of Fe2+ and H2S in ground water systems tend to be inversely related according to a hyperbolic function. That is, when Fe2+ concentrations are high, H2S concentrations tend to be low and vice versa. This relation partly reflects the rapid reaction kinetics of Fe2+ with H2S to produce relatively insoluble ferrous sulfides (FeS). This relation also reflects competition for organic substrates between the iron- and the sulfate-reducing microorganisms that catalyze the production of Fe2+ and H 2S. These solubility and microbial constraints operate in tandem, resulting in the observed hyperbolic relation between Fe2+ and H 2S concentrations. Concentrations of redox indicators, including dissolved hydrogen (H2) measured in a shallow aquifer in Hanahan, South Carolina, suggest that if the Fe2+/H2S mass ratio (units of mg/L) exceeded 10, the screened interval being tapped was consistently iron reducing (H2 ???0.2 to 0.8 nM). Conversely, if the Fe 2+/H2S ratio was less than 0.30, consistent sulfate-reducing (H2 ???1 to 5 nM) conditions were observed over time. Concomitantly high Fe2+ and H2S concentrations were associated with H2 concentrations that varied between 0.2 and 5.0 nM over time, suggesting mixing of water from adjacent iron- and sulfate-reducing zones or concomitant iron and sulfate reduction under nonelectron donor-limited conditions. These observations suggest that Fe2+/H2S mass ratios may provide useful information concerning the occurrence and distribution of iron and sulfate reduction in ground water systems. ?? 2009 National Ground Water Association.

  13. Understanding the kinetics of sulfate reduction in brines by hydrogen: Progress report

    International Nuclear Information System (INIS)

    Strachan, D.M.

    1988-07-01

    Experiments were conducted with mixtures of hydrogen gas and each of PBB1 and PBB3 brines to examine the reduction kinetics of sulfate in high ionic strength solutions. Results from the experiments with brines showed that the kinetics of sulfate reduction is slower in high ionic strength solutions than the kinetics in low ionic strength solutions. However, the kinetic mechanism does not seem to alter the slow kinetics, but the addition of much larger quantities of sulfide, about 40 mM, does accelerate the reduction of sulfate. Since the proposed reaction mechanism for the reduction of sulfate by hydrogen gas involves the reaction of sulfide with sulfate, slow initial kinetics in the absence of sulfide is understandable, but also implies an unknown rate-limiting reaction. Precipitation of calcium sulfate(s) and calcium sulfide may limit the sulfide and sulfate concentrations to low values. The coexistence of anhydrite and oldhamite may indicate a part of the Ca-S-H 2 O that has not yet been investigated. 6 refs., 4 figs., 3 tabs

  14. Hexagonal-shaped chondroitin sulfate self-assemblies have exalted anti-HSV-2 activity.

    Science.gov (United States)

    Galus, Aurélia; Mallet, Jean-Maurice; Lembo, David; Cagno, Valeria; Djabourov, Madeleine; Lortat-Jacob, Hugues; Bouchemal, Kawthar

    2016-01-20

    The initial step in mucosal infection by the herpes simplex virus type 2 (HSV-2) requires its binding to certain glycosaminoglycans naturally present on host cell membranes. We took advantage of this interaction to design biomimetic supramolecular hexagonal-shaped nanoassemblies composed of chondroitin sulfate having exalted anti-HSV-2 activity in comparison with native chondroitin sulfate. Nanoassemblies were formed by mixing hydrophobically-modified chondroitin sulfate with α-cyclodextrin in water. Optimization of alkyl chain length grafted on chondroitin sulfate and the ratio between hydrophobically-modified chondroitin sulfate and α-cyclodextrin showed that more cohesive and well-structured nanoassemblies were obtained using higher α-cyclodextrin concentration and longer alkyl chain lengths. A structure-activity relationship was found between anti-HSV-2 activity and the amphiphilic nature of hydrophobically-modified chondroitin sulfate. Also, antiviral activity of hexagonal nanoassemblies against HSV-2 was further improved in comparison with hydrophobically-modified chondroitin sulfate. This work suggests a new biomimetic formulation approach that can be extended to other heparan-sulfate-dependent viruses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Comparative Evaluation of Aluminum Sulfate and Ferric Sulfate-Induced Coagulations as Pretreatment of Microfiltration for Treatment of Surface Water

    Directory of Open Access Journals (Sweden)

    Yali Song

    2015-06-01

    Full Text Available Two coagulants, aluminum sulfate and ferric chloride, were tested to reduce natural organic matter (NOM as a pretreatment prior to polyvinylidene fluoride (PVDF microfiltration (MF membranes for potable water treatment. The results showed that the two coagulants exhibited different treatment performance in NOM removal. Molecular weight (MW distributions of NOM in the tested surface raw water were concentrated at 3–5 kDa and approximately 0.2 kDa. Regardless of the coagulant species and dosages, the removal of 0.2 kDa NOM molecules was limited. In contrast, NOM at 3–5 kDa were readily removed with increasing coagulant dosages. In particular, aluminum sulfate favorably removed NOM near 5 kDa, whereas ferric chloride tended to reduce 3 kDa organic substances. Although aluminum sulfate and ferric chloride could improve the flux of the ensuing MF treatment, the optimal coagulant dosages to achieve effective pretreatment were different: 2–30 mg/L for aluminum sulfate and >15 mg/L for ferric chloride. The scanning electron microscope (SEM image of the membrane-filtered coagulated raw water showed that coagulation efficiency dramatically affected membrane flux and that good coagulation properties can reduce membrane fouling.

  16. Relationship between microbial sulfate reduction rates and sulfur isotopic fractionation

    Science.gov (United States)

    Matsu'Ura, F.

    2009-12-01

    Sulfate reduction is one of the common processes to obtain energy for certain types of microorganisms.They use hydrogen gas or organic substrates as electron donor and sulfates as electron acceptor, and reduce sulfates to sulfides. Sulfate reducing microbes extend across domains Archea and Bacteria, and are believed to be one of the earliest forms of terrestrial life (Shen 2004). The origin of 34S-depleted (light) sulfide sulfur, especially δ34S vials, which contain 40ml of liquid culture media slightly modified from DSMZ #63 medium.Excess amount of Fe (II) is added to the DSMZ#63 medium to precipitate sulfide as iron sulfide. The vials were incubated at 25°C, 30°C, and 37°C, respectively. 21 vials were used for one temperature and sulfide and sulfate was collected from each three glass vials at every 12 hours from 72 hours to 144 hours after start of incubation. The sulfide was precipitated as iron sulfide and the sulfate was precipitated as barite. Sulfur isotope compositions of sulfate and sulfide were measured by standard method using Delta Plus mass-spectrometer. [Results and Discussion] The fractionation between sulfide and sulfate ranged from 2.7 to 11.0. The fractionation values varied among the different incubation temperature and growth phase of D. desulfuricans. The maximum fractionation values of three incubation temperatures were 9.9, 11.0, and 9.7, for 25 °C, 30°C, and 37°C, respectively. These results were different from standard model and Canfield et al. (2006). I could not find the clear correlation between ∂34S values and incubation temperatures in this experiment. The measured fractionation values during the incubation varied with incubation stage. The fractionation values clearly increased with incubation time at every temperature, and at 25°C ∂34S value was 3.6 at the 72h and it increased to 7.9 at 144 hours. This indicated the difference of sulfate reduction rate due to the growth phase of SRB. In the early logarithmic growth phase

  17. Oriented nucleation and growth of anhydrite during direct sulfation of limestone

    DEFF Research Database (Denmark)

    Hu, Guilin; Dam-Johansen, Kim; Wedel, Stig

    2008-01-01

    The direct sulfation of limestone (Iceland Spar) was studied at 973 K in a fixed-bed reactor. Scanning electron microscopy examinations of the sulfated limestone particles show that the sulfation process involves oriented nucleation and growth of the solid product, anhydrite. The reason...

  18. Uranyl Sulfate Nanotubules Templated by N-phenylglycine

    Directory of Open Access Journals (Sweden)

    Oleg I. Siidra

    2018-04-01

    Full Text Available The synthesis, structure, and infrared spectroscopy properties of the new organically templated uranyl sulfate Na(phgH+7[(UO26(SO410](H2O3.5 (1, obtained at room temperature by evaporation from aqueous solution, are reported. Its structure contains unique uranyl sulfate [(UO26(SO410]8− nanotubules templated by protonated N-phenylglycine (C6H5NH2CH2COOH+. Their internal diameter is 1.4 nm. Each of the nanotubules is built from uranyl sulfate rings sharing common SO4 tetrahedra. The template plays an important role in the formation of the complex structure of 1. The aromatic rings are stacked parallel to each other due to the effect of π–π interaction with their side chains extending into the gaps between the nanotubules.

  19. Substantial Seasonal Contribution of Observed Biogenic Sulfate Particles to Cloud Condensation Nuclei.

    Science.gov (United States)

    Sanchez, Kevin J; Chen, Chia-Li; Russell, Lynn M; Betha, Raghu; Liu, Jun; Price, Derek J; Massoli, Paola; Ziemba, Luke D; Crosbie, Ewan C; Moore, Richard H; Müller, Markus; Schiller, Sven A; Wisthaler, Armin; Lee, Alex K Y; Quinn, Patricia K; Bates, Timothy S; Porter, Jack; Bell, Thomas G; Saltzman, Eric S; Vaillancourt, Robert D; Behrenfeld, Mike J

    2018-02-19

    Biogenic sources contribute to cloud condensation nuclei (CCN) in the clean marine atmosphere, but few measurements exist to constrain climate model simulations of their importance. The chemical composition of individual atmospheric aerosol particles showed two types of sulfate-containing particles in clean marine air masses in addition to mass-based Estimated Salt particles. Both types of sulfate particles lack combustion tracers and correlate, for some conditions, to atmospheric or seawater dimethyl sulfide (DMS) concentrations, which means their source was largely biogenic. The first type is identified as New Sulfate because their large sulfate mass fraction (63% sulfate) and association with entrainment conditions means they could have formed by nucleation in the free troposphere. The second type is Added Sulfate particles (38% sulfate), because they are preexisting particles onto which additional sulfate condensed. New Sulfate particles accounted for 31% (7 cm -3 ) and 33% (36 cm -3 ) CCN at 0.1% supersaturation in late-autumn and late-spring, respectively, whereas sea spray provided 55% (13 cm -3 ) in late-autumn but only 4% (4 cm -3 ) in late-spring. Our results show a clear seasonal difference in the marine CCN budget, which illustrates how important phytoplankton-produced DMS emissions are for CCN in the North Atlantic.

  20. Dissolution of sulfate scales

    Energy Technology Data Exchange (ETDEWEB)

    Hen, J.

    1991-11-26

    This patent describes a composition for the removal of sulfate scale from surfaces. It comprises: an aqueous solution of about 0.1 to 1.0 molar concentration of an aminopolycarboxylic acid (APCA) containing 1 to 4 amino groups or a salt thereof, and about 0.1 to 1.0 molar concentration of a second component which is diethylenetriaminepenta (methylenephosphonic acid) (DTPMP) or a salt thereof, or aminotri (methylenephosphonic acid) (ATMP) or a salt thereof as an internal phase enveloped by a hydrocarbon membrane phase which is itself emulsified in an external aqueous phase, the hydrocarbon membrane phase continuing a complexing agent weaker for the cations of the sulfate scale than the APCA and DTPMP or ATMP, any complexing agent for the cations in the external aqueous phase being weaker than that in the hydrocarbon membrane phase.

  1. Global niche of marine anaerobic metabolisms expanded by particle microenvironments

    Science.gov (United States)

    Bianchi, Daniele; Weber, Thomas S.; Kiko, Rainer; Deutsch, Curtis

    2018-04-01

    In ocean waters, anaerobic microbial respiration should be confined to the anoxic waters found in coastal regions and tropical oxygen minimum zones, where it is energetically favourable. However, recent molecular and geochemical evidence has pointed to a much broader distribution of denitrifying and sulfate-reducing microbes. Anaerobic metabolisms are thought to thrive in microenvironments that develop inside sinking organic aggregates, but the global distribution and geochemical significance of these microenvironments is poorly understood. Here, we develop a new size-resolved particle model to predict anaerobic respiration from aggregate properties and seawater chemistry. Constrained by observations of the size spectrum of sinking particles, the model predicts that denitrification and sulfate reduction can be sustained throughout vast, hypoxic expanses of the ocean, and could explain the trace metal enrichment observed in particles due to sulfide precipitation. Globally, the expansion of the anaerobic niche due to particle microenvironments doubles the rate of water column denitrification compared with estimates based on anoxic zones alone, and changes the sensitivity of the marine nitrogen cycle to deoxygenation in a warming climate.

  2. Evaluation of sulfate aerosol optical depths over the North Atlantic and comparison with satellite observations

    International Nuclear Information System (INIS)

    Berkowitz, C.M.; Ghan, S.J.; Benkovitz, C.M.; Wagener, R.; Nemesure, S.; Schwartz, S.E.

    1993-11-01

    It has been postulated that scattering of sunlight by aerosols can significantly reduce the amount of solar energy absorbed by the climate system. Aerosol measurement programs alone cannot provide all the information needed to evaluate the radiative forcing due to anthropogenic aerosols. Thus, comprehensive global-scale aerosol models, properly validated against surface-based and satellite measurements, are a fundamental tool for evaluating the impacts of aerosols on the planetary radiation balance. Analyzed meteorological fields from the European Centre for Medium-Range Weather Forecasts are used to drive a modified version of the PNL Global Chemistry Model, applied to the atmospheric sulfur cycle. The resulting sulfate fields are used to calculate aerosol optical depths, which in turn are compared to estimates of aerosol optical depth based on satellite observations

  3. Damage modelling in concrete subject to sulfate attack

    Directory of Open Access Journals (Sweden)

    N. Cefis

    2014-07-01

    Full Text Available In this paper, we consider the mechanical effect of the sulfate attack on concrete. The durability analysis of concrete structures in contact to external sulfate solutions requires the definition of a proper diffusion-reaction model, for the computation of the varying sulfate concentration and of the consequent ettringite formation, coupled to a mechanical model for the prediction of swelling and material degradation. In this work, we make use of a two-ions formulation of the reactive-diffusion problem and we propose a bi-phase chemo-elastic damage model aimed to simulate the mechanical response of concrete and apt to be used in structural analyses.

  4. Mechanism research on coupling effect between dew point corrosion and ash deposition

    International Nuclear Information System (INIS)

    Wang, Yun-Gang; Zhao, Qin-Xin; Zhang, Zhi-Xiang; Zhang, Zhi-Chao; Tao, Wen-Quan

    2013-01-01

    In order to study the coupling mechanism between ash deposition and dew point corrosion, five kinds of tube materials frequently used as anti-dew point corrosion materials were selected as research objects. Dew point corrosion and ash deposition experiments were performed with a new type experimental device in a Chinese thermal power plant. The microstructures of the materials and the composition of ash deposition were analyzed by X-ray diffraction (XRD) and Energy Dispersive Spectrometer (EDS). The results showed that the ash deposition layer could be divided into non-condensation zone, the main condensation zone and the secondary condensation zone. The acid vapor condensed in the main condensation zone rather than directly on the tube wall surface. The dew point corrosion mainly is oxygen corrosion under the condition of the viscosity ash deposition, and the corrosion products are composed of the ash and acid reaction products in the outer layer, iron sulfate in the middle layer, and iron oxide in the inner layer. The innermost layer is the main corrosion layer. With the increase of the tube wall temperature, the ash deposition changes from the viscosity ash deposition to the dry loose ash deposition, the ash deposition rate decreases dramatically and dew point corrosion is alleviated efficiently. The sulfuric dew point corrosion resistance of the five test materials is as follows: 316L > ND > Corten>20G > 20 steel. -- Highlights: ► Dew point corrosion and ash deposition tests of five materials were performed. ► Acid vapor condensed in the ash deposit rather than directly on the tube surface. ► Dew point corrosion resistance is as follow: 316L > ND > Corten>20G > 20 steel. ► Dew point corrosion mainly is oxygen corrosion under viscosity ash deposition

  5. Extracellular matrix of cultured glial cells: Selective expression of chondroitin 4-sulfate by type-2 astrocytes and their progenitors

    International Nuclear Information System (INIS)

    Gallo, V.; Bertolotto, A.

    1990-01-01

    We have studied the extracellular matrix composition of cultured glial cells by immunocytochemistry with different monoclonal and polyclonal antibodies. Double immunofluorescence experiments and metabolic labeling with [3H]glucosamine performed in different types of cerebellar and cortical cultures showed that bipotential progenitors for type-2 astrocytes and for oligodendrocytes synthesize chondroitin sulfate (CS) and deposit this proteoglycan in their extracellular matrix. The distribution of the various [3H]glucosamine-labeled glycosaminoglycans between the intracellular and the extracellular space was different. CS was present both within the cells and in the culture medium, although in different amounts. Bi-potential progenitors became also O4-positive during their development in vitro. At the stage of O4-positivity they were still stained with antibodies against CS. However, when the progenitor cells were maintained in serum-free medium and differentiated into Gal-C-positive oligodendrocytes, they became CS-negative. In the presence of fetal calf serum in the culture medium, the bipotential progenitors differentiated into GFAP-positive type-2 astrocytes. These cells still expressed CS: their Golgi area and their surface were stained with anti-CS antibodies. Staining with monoclonal antibodies specific for different types of CS (4-sulfate, 6-sulfate, and unsulfated) revealed that both bipotential progenitors and type-2 astrocytes synthesized only chondroitin 4-sulfate. Type-1 astrocytes were negative for both the polyclonal and the monoclonal anti-CS antibodies. Finally, type-2 astrocytes and their progenitors were weakly stained with anti-laminin antibodies and unstained with anti-fibronectin. Type-1 astrocytes were positive for both anti-laminin and anti-fibronectin antibodies and appeared to secrete fibronectin in the extracellular space

  6. Identifying sources of acidity and spatial distribution of acid sulfate soils in the Anglesea River catchment, southern Australia

    Science.gov (United States)

    Wong, Vanessa; Yau, Chin; Kennedy, David

    2015-04-01

    Globally, coastal and estuarine floodplains are frequently underlain by sulfidic sediments. When exposed to oxygen, sulfidic sediments oxidise to form acid sulfate soils, adversely impacting on floodplain health and adjacent aquatic ecoystems. In eastern Australia, our understanding of the formation of these coastal and estuarine floodplains, and hence, spatial distribution of acid sulfate soils, is relatively well established. These soils have largely formed as a result of sedimentation of coastal river valleys approximately 6000 years BP when sea levels were one to two metres higher. However, our understanding of the evolution of estuarine systems and acid sulfate soil formation, and hence, distribution, in southern Australia remains limited. The Anglesea River, in southern Australia, is subjected to frequent episodes of poor water quality and low pH resulting in closure of the river and, in extreme cases, large fish kill events. This region is heavily reliant on tourism and host to a number of iconic features, including the Great Ocean Road and Twelve Apostles. Poor water quality has been linked to acid leakage from mining activities and Tertiary-aged coal seams, peat swamps and acid sulfate soils in the region. However, our understanding of the sources of acidity and distribution of acid sulfate soils in this region remains poor. In this study, four sites on the Anglesea River floodplain were sampled, representative of the main vegetation communities. Peat swamps and intertidal marshes were both significant sources of acidity on the floodplain in the lower catchment. However, acid neutralising capacity provided by carbonate sands suggests that there are additional sources of acidity higher in the catchment. This pilot study has highlighted the complexity in the links between the floodplain, upper catchment and waterways with further research required to understand these links for targeted acid management strategies.

  7. Ionic and secretory response of pancreatic islet cells to minoxidil sulfate

    International Nuclear Information System (INIS)

    Antoine, M.H.; Hermann, M.; Herchuelz, A.; Lebrun, P.

    1991-01-01

    Minoxidil sulfate is an antihypertensive agent belonging to the new class of vasodilators, the K+ channel openers. The present study was undertaken to characterize the effects of minoxidil sulfate on ionic and secretory events in rat pancreatic islets. The drug unexpectedly provoked a concentration-dependent decrease in 86Rb outflow. This inhibitory effect was reduced in a concentration-dependent manner by glucose and tolbutamide. Minoxidil sulfate did not affect 45Ca outflow from islets perfused in the presence of extracellular Ca++ and absence or presence of glucose. However, in islets exposed to a medium deprived of extracellular Ca++, the drug provoked a rise in 45Ca outflow. Whether in the absence or presence of extracellular Ca++, minoxidil sulfate increased the cytosolic free Ca++ concentration of islet cells. Lastly, minoxidil sulfate increased the release of insulin from glucose-stimulated pancreatic islets. These results suggest that minoxidil sulfate reduces the activity of the ATP-sensitive K+ channels and promotes an intracellular translocation of Ca++. The latter change might account for the effect of the drug on the insulin-releasing process. However, the secretory response to minoxidil sulfate could also be mediated, at least in part, by a modest Ca++ entry

  8. Sulfate Formation on Mars by Volcanic Aerosols: A New Look

    Science.gov (United States)

    Blaney, D. L.

    1996-03-01

    Sulfur was measured at both Viking Lander sites in abundances of 5-9 wt % SO3. Because the sulfur was more concentrated in clumps which disintegrated and the general oxidized nature of the Martian soil, these measurements led to the assumption that a sulfate duricrust existed. Two types of models for sulfate formation have been proposed. One is a formation by upwardly migrating ground water. The other is the formation of sulfates by the precipitation of volcanic aerosols. Most investigators have tended to favor the ground water origin of sulfates on Mars. However, evidence assemble since Viking may point to a volcanic aerosol origin.

  9. Structure-Activity Relationships of Bioengineered Heparin/Heparan Sulfates Produced in Different Bioreactors

    Directory of Open Access Journals (Sweden)

    Ha Na Kim

    2017-05-01

    Full Text Available Heparin and heparan sulfate are structurally-related carbohydrates with therapeutic applications in anticoagulation, drug delivery, and regenerative medicine. This study explored the effect of different bioreactor conditions on the production of heparin/heparan sulfate chains via the recombinant expression of serglycin in mammalian cells. Tissue culture flasks and continuously-stirred tank reactors promoted the production of serglycin decorated with heparin/heparan sulfate, as well as chondroitin sulfate, while the serglycin secreted by cells in the tissue culture flasks produced more highly-sulfated heparin/heparan sulfate chains. The serglycin produced in tissue culture flasks was effective in binding and signaling fibroblast growth factor 2, indicating the utility of this molecule in drug delivery and regenerative medicine applications in addition to its well-known anticoagulant activity.

  10. Chondroitin sulfate addition to CD44H negatively regulates hyaluronan binding

    International Nuclear Information System (INIS)

    Ruffell, Brian; Johnson, Pauline

    2005-01-01

    CD44 is a widely expressed cell adhesion molecule that binds hyaluronan, an extracellular matrix glycosaminoglycan, in a tightly regulated manner. This regulated interaction has been implicated in inflammation and tumor metastasis. CD44 exists in the standard form, CD44H, or as higher molecular mass isoforms due to alternative splicing. Here, we identify serine 180 in human CD44H as the site of chondroitin sulfate addition and show that lack of chondroitin sulfate addition at this site enhances hyaluronan binding by CD44. A CD44H-immunoglobulin fusion protein expressed in HEK293 cells, and CD44H expressed in murine L fibroblast cells were modified by chondroitin sulfate, as determined by reduced sulfate incorporation after chondroitinase ABC treatment. Mutation of serine 180 or glycine 181 in CD44H reduced chondroitin sulfate addition and increased hyaluronan binding, indicating that serine 180 is the site for chondroitin sulfate addition in CD44H and that this negatively regulates hyaluronan binding

  11. Development of the aerosol generation system for simulating the dry deposition behavior of radioaerosol emitted by the accident of FDNPP

    Science.gov (United States)

    Zhang, Z.

    2015-12-01

    A large amount of radioactivity was discharged by the accident of FDNPP. The long half-life radionuclide, 137Cs was transported through the atmosphere mainly as the aerosol form and deposited to the forests in Fukushima prefecture. After the dry deposition of the 137Cs, the foliar uptake process would occur. To evaluate environmental transfer of radionuclides, the dry deposition and following foliar uptake is very important. There are some pioneering studies for radionuclide foliar uptake with attaching the solution containing stable target element on the leaf, however, cesium oxide aerosols were used for these deposition study [1]. In the FDNPP case, 137Cs was transported in sulfate aerosol form [2], so the oxide aerosol behaviors could not represent the actual deposition behavior in this accident. For evaluation of whole behavior of 137Cs in vegetation system, fundamental data for deposition and uptake process of sulfate aerosol was desired. In this study, we developed aerosol generation system for simulating the dry deposition and the foliar uptake behaviors of aerosol in the different chemical constitutions. In this system, the method of aerosol generation based on the spray drying. Solution contained 137Cs was send to a nozzle by a syringe pump and spraying with a high speed air flow. The sprayed mist was generated in a chamber in the relatively high temperature. The solution in the mist was dried quickly, and micro size solid aerosols consisting 137Cs were generated. The aerosols were suctioned by an ejector and transported inside a tube by the dry air flow, then were directly blown onto the leaves. The experimental condition, such as the size of chamber, chamber temperature, solution flow rate, air flow rate and so on, were optimized. In the deposition experiment, the aerosols on leaves were observed by a SEM/EDX system and the deposition amount was evaluated by measuring the stable Cs remaining on leaf. In the presentation, we will discuss the detail

  12. Interpreting isotopic analyses of microbial sulfate reduction in oil reservoirs

    Science.gov (United States)

    Hubbard, C. G.; Engelbrektson, A. L.; Druhan, J. L.; Cheng, Y.; Li, L.; Ajo Franklin, J. B.; Coates, J. D.; Conrad, M. E.

    2013-12-01

    Microbial sulfate reduction in oil reservoirs is often associated with secondary production of oil where seawater (28 mM sulfate) is commonly injected to maintain reservoir pressure and displace oil. The hydrogen sulfide produced can cause a suite of operating problems including corrosion of infrastructure, health exposure risks and additional processing costs. We propose that monitoring of the sulfur and oxygen isotopes of sulfate can be used as early indicators that microbial sulfate reduction is occurring, as this process is well known to cause substantial isotopic fractionation. This approach relies on the idea that reactions with reservoir (iron) minerals can remove dissolved sulfide, thereby delaying the transport of the sulfide through the reservoir relative to the sulfate in the injected water. Changes in the sulfate isotopes due to microbial sulfate reduction may therefore be measurable in the produced water before sulfide is detected. However, turning this approach into a predictive tool requires (i) an understanding of appropriate fractionation factors for oil reservoirs, (ii) incorporation of isotopic data into reservoir flow and reactive transport models. We present here the results of preliminary batch experiments aimed at determining fractionation factors using relevant electron donors (e.g. crude oil and volatile fatty acids), reservoir microbial communities and reservoir environmental conditions (pressure, temperature). We further explore modeling options for integrating isotope data and discuss whether single fractionation factors are appropriate to model complex environments with dynamic hydrology, geochemistry, temperature and microbiology gradients.

  13. Biological sulfate removal from construction and demolition debris leachate: Effect of bioreactor configuration

    Energy Technology Data Exchange (ETDEWEB)

    Kijjanapanich, Pimluck, E-mail: som_cheng00@hotmail.com [Pollution Prevention and Resource Recovery Chair Group, UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft (Netherlands); Do, Anh Tien [Civil and Environmental Engineering, University of South Florida, Tampa, FL 33620 (United States); Annachhatre, Ajit P. [Environmental Engineering and Management, Asian Institute of Technology, PO Box 4, Klongluang, Pathumthani 12120 (Thailand); Esposito, Giovanni [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043 Cassino (Italy); Yeh, Daniel H. [Civil and Environmental Engineering, University of South Florida, Tampa, FL 33620 (United States); Lens, Piet N.L. [Pollution Prevention and Resource Recovery Chair Group, UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft (Netherlands)

    2014-03-01

    Highlights: • Novel biological technique for gypsum removal from CDD. • CDDS leachate treatment performed using different sulfate reducing bioreactors. • Gypsum in CDD can be used as a source of sulfate for sulfate reducing bacteria. • High calcium concentration (1000 mg L{sup −1}) did not affect the bioreactor performance. - Abstract: Due to the contamination of construction and demolition debris (CDD) by gypsum drywall, especially, its sand fraction (CDD sand, CDDS), the sulfate content in CDDS exceeds the posed limit of the maximum amount of sulfate present in building sand (1.73 g sulfate per kg of sand for the Netherlands). Therefore, the CDDS cannot be reused for construction. The CDDS has to be washed in order to remove most of the impurities and to obtain the right sulfate content, thus generating a leachate, containing high sulfate and calcium concentrations. This study aimed at developing a biological sulfate reduction system for CDDS leachate treatment and compared three different reactor configurations for the sulfate reduction step: the upflow anaerobic sludge blanket (UASB) reactor, inverse fluidized bed (IFB) reactor and gas lift anaerobic membrane bioreactor (GL-AnMBR). This investigation demonstrated that all three systems can be applied for the treatment of CDDS leachate. The highest sulfate removal efficiency of 75–85% was achieved at a hydraulic retention time (HRT) of 15.5 h. A high calcium concentration up to 1000 mg L{sup −1} did not give any adverse effect on the sulfate removal efficiency of the IFB and GL-AnMBR systems.

  14. Biological sulfate removal from construction and demolition debris leachate: Effect of bioreactor configuration

    International Nuclear Information System (INIS)

    Kijjanapanich, Pimluck; Do, Anh Tien; Annachhatre, Ajit P.; Esposito, Giovanni; Yeh, Daniel H.; Lens, Piet N.L.

    2014-01-01

    Highlights: • Novel biological technique for gypsum removal from CDD. • CDDS leachate treatment performed using different sulfate reducing bioreactors. • Gypsum in CDD can be used as a source of sulfate for sulfate reducing bacteria. • High calcium concentration (1000 mg L −1 ) did not affect the bioreactor performance. - Abstract: Due to the contamination of construction and demolition debris (CDD) by gypsum drywall, especially, its sand fraction (CDD sand, CDDS), the sulfate content in CDDS exceeds the posed limit of the maximum amount of sulfate present in building sand (1.73 g sulfate per kg of sand for the Netherlands). Therefore, the CDDS cannot be reused for construction. The CDDS has to be washed in order to remove most of the impurities and to obtain the right sulfate content, thus generating a leachate, containing high sulfate and calcium concentrations. This study aimed at developing a biological sulfate reduction system for CDDS leachate treatment and compared three different reactor configurations for the sulfate reduction step: the upflow anaerobic sludge blanket (UASB) reactor, inverse fluidized bed (IFB) reactor and gas lift anaerobic membrane bioreactor (GL-AnMBR). This investigation demonstrated that all three systems can be applied for the treatment of CDDS leachate. The highest sulfate removal efficiency of 75–85% was achieved at a hydraulic retention time (HRT) of 15.5 h. A high calcium concentration up to 1000 mg L −1 did not give any adverse effect on the sulfate removal efficiency of the IFB and GL-AnMBR systems

  15. 21 CFR 864.9320 - Copper sulfate solution for specific gravity determinations.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Copper sulfate solution for specific gravity... Establishments That Manufacture Blood and Blood Products § 864.9320 Copper sulfate solution for specific gravity determinations. (a) Identification. A copper sulfate solution for specific gravity determinations is a device...

  16. Magnesium sulfate infusion for acute asthma in the emergency department

    Directory of Open Access Journals (Sweden)

    Jose Enrique Irazuzta

    Full Text Available Abstract Objectives: To describe the role of intravenous magnesium sulfate (MgSO4 as therapy for acute severe asthma in the pediatric emergency department (ED. Source: Publications were searched in the PubMed and Cochrane databases using the following keywords: magnesium AND asthma AND children AND clinical trial. A total of 53 publications were retrieved using this criteria. References of relevant articles were also screened. The authors included the summary of relevant publications where intravenous magnesium sulfate was studied in children (age <18 years with acute asthma. The NAEPP and Global Initiative for Asthma expert panel guidelines were also reviewed. Summary of the data: There is a large variability in the ED practices on the intravenous administration of MgSO4 for severe asthma. The pharmacokinetics of MgSO4 is often not taken into account with a consequent impact in its pharmacodynamics properties. The cumulative evidence points to the effectiveness of intravenous MgSO4 in preventing hospitalization, if utilized in a timely manner and at an appropriate dosage (50-75 mg/kg. For every five children treated in the ED, one hospital admission could be prevented. Another administration modality is a high-dose continuous magnesium sulfate infusion (HDMI as 50 mg/kg/h/4 h (200 mg/kg/4 h. The early utilization of HDMI for non-infectious mediated asthma may be superior to a MgSO4 bolus in avoiding admissions and expediting discharges from the ED. HDMI appears to be cost-effective if applied early to a selected population. Intravenous MgSO4 has a similar safety profile than other asthma therapies. Conclusions: Treatment with intravenous MgSO4 reduces the odds of hospital admissions. The use of intravenous MgSO4 in the emergency room was not associated with significant side effects or harm. The authors emphasize the role of MgSO4 as an adjunctive therapy, while corticosteroids and beta agonist remain the primary acute therapeutic agents.

  17. Reduction of orthophosphates loss in agricultural soil by nano calcium sulfate.

    Science.gov (United States)

    Chen, Dong; Szostak, Paul; Wei, Zongsu; Xiao, Ruiyang

    2016-01-01

    Nutrient loss from soil, especially phosphorous (P) from farmlands to natural water bodies via surface runoff or infiltration, have caused significant eutrophication problems. This is because dissolved orthophosphates are usually the limiting nutrient for algal blooms. Currently, available techniques to control eutrophication are surprisingly scarce. Calcium sulfate or gypsum is a common soil amendment and has a strong complexation to orthophosphates. The results showed that calcium sulfate reduced the amount of water extractable P (WEP) through soil incubation tests, suggesting less P loss from farmlands. A greater decrease in WEP occurred with a greater dosage of calcium sulfate. Compared to conventional coarse calcium sulfate, nano calcium sulfate further reduced WEP by providing a much greater specific surface area, higher solubility, better contact with the fertilizer and the soil particles, and superior dispersibility. The enhancement of the nano calcium sulfate for WEP reduction is more apparent for a pellet- than a powdered- fertilizer. At the dosage of Ca/P weight ratio of 2.8, the WEP decreased by 31±5% with the nano calcium sulfate compared to 20±5% decrease with the coarse calcium sulfate when the pellet fertilizer was used. Computation of the chemical equilibrium speciation shows that calcium hydroxyapatite has the lowest solubility. However, other mineral phases such as hydroxydicalcium phosphate, dicalcium phosphate dihydrate, octacalcium phosphate, and tricalcium phosphate might form preceding to calcium hydroxyapatite. Since calcium sulfate is the major product of the flue gas desulfurization (FGD) process, this study demonstrates a potential beneficial reuse and reduction of the solid FGD waste. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Controlling sulfate attack in Mississippi Department of Transportation structures

    Science.gov (United States)

    2010-08-01

    At some construction sites in Mississippi, deterioration of concrete in contact with the surrounding soil could be related to the high sulfate content of the adjacent soils. Studies dating to 1966 have documented sulfate attack associated with sp...

  19. Controlling sulfate attack in Mississippi Department of Transportation structures.

    Science.gov (United States)

    2010-08-01

    At some construction sites in Mississippi, deterioration of concrete in contact with the surrounding soil could be related to the high sulfate content of the adjacent soils. Studies dating to 1966 have documented sulfate attack associated with specif...

  20. Sulfate cooling effects on climate through in-cloud oxidation of anthropogenic SO2

    International Nuclear Information System (INIS)

    Lelieveld, J.; Heintzenberg, J.

    1992-01-01

    Anthropogenic SO 2 emissions may exert a significant cooling effect on climate in the Northern Hemisphere through backscattering of solar radiation by sulfate particles. Earlier estimates of the sulfate climate forcing were based on a limited number of sulfate-scattering correlation measurements from which a high sulfate-scattering efficiency was derived. Model results suggest that cloud processing of air is the underlying mechanism. aqueous phase oxidation of SO 2 into sulfate and the subsequent release of the dry aerosol by cloud evaporation render sulfate a much more efficient scatterer than through gas-phase SO 2 oxidation