WorldWideScience

Sample records for global sedimentary geology

  1. Sedimentary Petrology: from Sorby to the globalization of Sedimentary Geology

    International Nuclear Information System (INIS)

    Alonso-Zarza, A. M.

    2013-01-01

    We describe here the most important milestones and contributions to Sedimentary Petrology compared to other geological disciplines. We define the main aim of our study and the scientific and economic interests involved in Sedimentary Petrology. The body of the paper focuses upon the historical development of this discipline from Henry Sorby's initial work until the present day. The major milestones in its history include: 1) initial descriptive works; 2) experimental studies; 3) the establishment of the different classifications of sedimentary rocks; 4) studies into facies and sedimentary environments; 5) advances in the study of diagenetic processes and their role in hydrocarbon prospection; and 6) the development of Sedimentary Geochemistry. Relationships and coincidences with Sedimentology are discussed. We go on to look at the advances that have taken place over the last 30 years, in which the study of sedimentary rocks is necessarily included in the wider field of Sedimentary Geology as a logical result of the proposal of global models of a changing Earth in which Sedimentary Geology plays a significant part. Finally we mention the notable contributions of Spanish sedimentary petrologists to this whole field of science. (Author) 120 refs.

  2. Sedimentary Petrology: from Sorby to the globalization of Sedimentary Geology; La Petrologia Sedimentaria: desde Sorby a la globalizacion de la Geologia Sedimentaria

    Energy Technology Data Exchange (ETDEWEB)

    Alonso-Zarza, A M

    2013-02-01

    We describe here the most important milestones and contributions to Sedimentary Petrology compared to other geological disciplines. We define the main aim of our study and the scientific and economic interests involved in Sedimentary Petrology. The body of the paper focuses upon the historical development of this discipline from Henry Sorby's initial work until the present day. The major milestones in its history include: 1) initial descriptive works; 2) experimental studies; 3) the establishment of the different classifications of sedimentary rocks; 4) studies into facies and sedimentary environments; 5) advances in the study of diagenetic processes and their role in hydrocarbon prospection; and 6) the development of Sedimentary Geochemistry. Relationships and coincidences with Sedimentology are discussed. We go on to look at the advances that have taken place over the last 30 years, in which the study of sedimentary rocks is necessarily included in the wider field of Sedimentary Geology as a logical result of the proposal of global models of a changing Earth in which Sedimentary Geology plays a significant part. Finally we mention the notable contributions of Spanish sedimentary petrologists to this whole field of science. (Author) 120 refs.

  3. Sedimentary Petrology: from Sorby to the globalization of Sedimentary Geology; La Petrologia Sedimentaria: desde Sorby a la globalizacion de la Geologia Sedimentaria

    Energy Technology Data Exchange (ETDEWEB)

    Alonso-Zarza, A. M.

    2013-02-01

    We describe here the most important milestones and contributions to Sedimentary Petrology compared to other geological disciplines. We define the main aim of our study and the scientific and economic interests involved in Sedimentary Petrology. The body of the paper focuses upon the historical development of this discipline from Henry Sorby's initial work until the present day. The major milestones in its history include: 1) initial descriptive works; 2) experimental studies; 3) the establishment of the different classifications of sedimentary rocks; 4) studies into facies and sedimentary environments; 5) advances in the study of diagenetic processes and their role in hydrocarbon prospection; and 6) the development of Sedimentary Geochemistry. Relationships and coincidences with Sedimentology are discussed. We go on to look at the advances that have taken place over the last 30 years, in which the study of sedimentary rocks is necessarily included in the wider field of Sedimentary Geology as a logical result of the proposal of global models of a changing Earth in which Sedimentary Geology plays a significant part. Finally we mention the notable contributions of Spanish sedimentary petrologists to this whole field of science. (Author) 120 refs.

  4. Geologic processes and sedimentary system on Mars

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, A S

    1988-01-01

    The subject is covered under following headings: (1) morphology and processes at the martian surface (impact craters, water and ice, landslide, aeolian processes, volcanism, chemical weathering); (2) the sedimentary system (martian geologic documentation, sedimentary balance, regolith, pyroclastics, erosion phenomena, deposit and loss of sediments) as well as (3) summary and final remarks. 72 refs.

  5. Sedimentary Geology Context and Challenges for Cyberinfrastructure Data Management

    Science.gov (United States)

    Chan, M. A.; Budd, D. A.

    2014-12-01

    A cyberinfrastructure data management system for sedimentary geology is crucial to multiple facets of interdisciplinary Earth science research, as sedimentary systems form the deep-time framework for many geoscience communities. The breadth and depth of the sedimentary field spans research on the processes that form, shape and affect the Earth's sedimentary crust and distribute resources such as hydrocarbons, coal, and water. The sedimentary record is used by Earth scientists to explore questions such as the continental crust evolution, dynamics of Earth's past climates and oceans, evolution of the biosphere, and the human interface with Earth surface processes. Major challenges to a data management system for sedimentary geology are the volume and diversity of field, analytical, and experimental data, along with many types of physical objects. Objects include rock samples, biological specimens, cores, and photographs. Field data runs the gamut from discrete location and spatial orientation to vertical records of bed thickness, textures, color, sedimentary structures, and grain types. Ex situ information can include geochemistry, mineralogy, petrophysics, chronologic, and paleobiologic data. All data types cover multiple order-of-magnitude scales, often requiring correlation of the multiple scales with varying degrees of resolution. The stratigraphic framework needs dimensional context with locality, time, space, and depth relationships. A significant challenge is that physical objects represent discrete values at specific points, but measured stratigraphic sections are continuous. In many cases, field data is not easily quantified, and determining uncertainty can be difficult. Despite many possible hurdles, the sedimentary community is anxious to embrace geoinformatic resources that can provide better tools to integrate the many data types, create better search capabilities, and equip our communities to conduct high-impact science at unprecedented levels.

  6. Global Journal of Geological Sciences

    African Journals Online (AJOL)

    Global Journal of Geological Sciences is aimed at promoting research in all areas of Geological Sciences including geochemistry, geophysics, engineering geology, hydrogeology, petrology, mineralogy, geochronology, tectonics, mining, structural geology, marine geology, space science etc. Visit the Global Journal Series ...

  7. Geological storage of carbon dioxide: the role of sedimentary basins

    International Nuclear Information System (INIS)

    Gunter, W.D.; Bachu, S.

    2001-01-01

    Sedimentary basins, occuring throughout the world, are thick piles of geologically deposited sediments that are the hosts for fossil fuel deposits. They may become even more important in the future if their large storage capacity is utilized for disposing of carbon dioxide. Sedimentary basins are dynamic, in the sense that they have an intricate plumbing system defined by the location of high and low permeability strata that control the flow of fluids throughout the basins and define 'hydrogeological' traps. The most secure type of hydrogeological trapping is found in oil and gas reservoirs in the form of 'structural' or 'stratigraphic' traps, termed 'closed' hydrogeological traps which have held oil and gas for millions of years. Obviously, these would be very attractive for CO 2 storage due to their long history of containment. A second type of hydrogeological trapping has been recognized in aquifers of sedimentary basins that have slow flow rates. The pore space in such 'open' hydrogeological traps is usually filled with saline ground or formation water. A volume of CO 2 injected into a deep open hydrogeological trap can take over a million years to travel updip to reach the surface and be released to the atmosphere. Although the capacity of structural/stratigraphic traps for CO 2 storage is small relative to open hydrogeological traps in deep sedimentary basins, they are likely to be used first as they are known to be secure, having held oil and gas for geological time. As the capacity of closed traps is exhausted and more is learned about geochemical trapping, the large storage capacity available in open hydrogeological traps will be utilized where security of the geological storage of CO 2 can be enhanced by geochemical reactions of the CO 2 with basic silicate minerals to form carbonates. Potential short circuits to the surface through faults or abandoned wells must be located and their stability evaluated before injection of CO 2 . In any event, a

  8. Global Journal of Geological Sciences: Editorial Policies

    African Journals Online (AJOL)

    Focus and Scope. Global Journal of Geological Sciences is aimed at promoting research in all areas of geological Sciences including Petrology, Mineralogy, geophysics, hydrogeology, Engineering geology, Petroleum geology, Palaeontology, environmental geology, Economic geology, etc.

  9. The Europa Global Geologic Map

    Science.gov (United States)

    Leonard, E. J.; Patthoff, D. A.; Senske, D. A.; Collins, G. C.

    2018-06-01

    The Europa Global Geologic Map reveals three periods in Europa's surface history as well as an interesting distribution of microchaos. We will discuss the mapping and the interesting implications of our analysis of Europa's surface.

  10. Vietnamese sedimentary basins: geological evolution and petroleum potential

    Energy Technology Data Exchange (ETDEWEB)

    Fyhn, M.B.W.; Petersen, Henrik I.; Mathiesen, A.; Nielsen, Lars H.; Pedersen, Stig A.S.; Lindstroem, S.; Bojesen-Koefoed, J.A.; Abatzis, I.; Boldreel, L.O.

    2010-07-15

    The Geological Survey of Denmark and Greenland has worked in Vietnam since 1995 to assess the geology and petroleum potential of the Vietnamese basins. Since 2002 the work has been carried out in cooperation with the Department of Geography and Geology, University of Copenhagen, as part of the ENRECA project (Enhancement of Research Capacity in Developing Countries). The ENRECA project has already completed two phases and a third and final phase has recently started. The initial phase focused on the Phu Khanh and the Song Hong Basins located in the South China Sea offshore north and central Vietnam and the smaller onshore Song Ba Trough. During the second ENRECA phase, completed in 2009, attention shifted towards the Malay - Tho Chu and Phu Quoc basins located in the Gulf of Thailand, SSW of Vietnam. The Phu Quoc Basin continues onshore to the north to form part of the mountainous area between Vietnam and Cambodia. In the recently started third phase of the project, the focus remains on the Phu Quoc Basin in addition to a revisit to the Song Hong Basin on the north Vietnamese margin and onshore beneath the Song Hong (Red River) delta. (LN)

  11. Global Geological Map of Venus

    Science.gov (United States)

    Ivanov, M. A.

    2008-09-01

    Introduction: The Magellan SAR images provide sufficient data to compile a geological map of nearly the entire surface of Venus. Such a global and selfconsistent map serves as the base to address the key questions of the geologic history of Venus. 1) What is the spectrum of units and structures that makes up the surface of Venus [1-3]? 2) What volcanic/tectonic processes do they characterize [4-7]? 3) Did these processes operated locally, regionally, or globally [8- 11]? 4) What are the relationships of relative time among the units [8]? 5) At which length-scale these relationships appear to be consistent [8-10]? 6) What is the absolute timing of formation of the units [12-14]? 7) What are the histories of volcanism, tectonics and the long-wavelength topography on Venus? 7) What model(s) of heat loss and lithospheric evolution [15-21] do these histories correspond to? The ongoing USGS program of Venus mapping has already resulted in a series of published maps at the scale 1:5M [e.g. 22-30]. These maps have a patch-like distribution, however, and are compiled by authors with different mapping philosophy. This situation not always results in perfect agreement between the neighboring areas and, thus, does not permit testing geological hypotheses that could be addressed with a self-consistent map. Here the results of global geological mapping of Venus at the scale 1:10M is presented. The map represents a contiguous area extending from 82.5oN to 82.5oS and comprises ~99% of the planet. Mapping procedure: The map was compiled on C2- MIDR sheets, the resolution of which permits identifying the basic characteristics of previously defined units. The higher resolution images were used during the mapping to clarify geologic relationships. When the map was completed, its quality was checked using published USGS maps [e.g., 22-30] and the catalogue of impact craters [31]. The results suggest that the mapping on the C2-base provided a highquality map product. Units and

  12. Use of structural geology in exploration for and mining of sedimentary rock-hosted Au deposits

    Science.gov (United States)

    Peters, Stephen G.

    2001-01-01

    Structural geology is an important component in regional-, district- and orebody-scale exploration and development of sedimentary rock-hosted Au deposits.Identification of timing of important structural events in an ore district allows analysis and classification of fluid conduits and construction of genetic models for ore formation.The most practical uses of structural geology deal with measurement and definition of various elements that comprise orebodies, which can then be directly applied to ore-reserve estimation,ground control,grade control, safety issues,and mine planning.District- and regional-scale structural studies are directly applicable to long-term strategic planning,economic analysis,and land ownership. Orebodies in sedimentary rock-hosted Au deposits are discrete, hypogene, epigenetic masses usually hosted in a fault zone,breccia mass, or lithologic bed or unit. These attributes allow structural geology to be directly applied to the mining and exploration of sedimentary rock-hosted Au deposits. Internal constituents in orebodies reflect unique episodes relating to ore formation.The main internal constituents in orebodies are ore minerals, gangue, and alteration minerals that usually are mixed with one another in complex patterns, the relations among which may be used to interpret the processes of orebody formation and control.Controls of orebody location and shape usually are due to structural dilatant zones caused by changes in attitude, splays, lithologic contacts,and intersections of the host conduit or unit.In addition,conceptual parameters such as district fabric,predictable distances, and stacking also are used to understand the geometry of orebodies.Controls in ore districts and location and geometry of orebodies in ore districts can be predicted to various degrees by using a number of qualitative concepts such as internal and external orebody plunges,district plunge, district stacking, conduit classification, geochemical, geobarometric and

  13. Global Journal of Geological Sciences: Contact

    African Journals Online (AJOL)

    Principal Contact. Prof . Barth N. Ekwueme MANAGING EDITOR Global Journal Series Department of Geology, University of Calabar, P. O. Box 3561 Unical P.O. Calabar Cross River State Nigeria Email: bachudo@yahoo.com ...

  14. The Punta del Este terrain and its volcano sedimentary cover, metamorphic and sedimentary: geology, geochemistry and geochronology

    International Nuclear Information System (INIS)

    Preciozzi, F.

    2015-01-01

    Gariep belt it develops over the West Africa coastal region of Namibia underlying on Namaqua metamorphic complex.It characterized by supra crustal rocks affected for a very low to low metamorphism and in two tecto no-stratigraphic units identified by Base i et al 2005 showing that sediments of Formation Rocha in Uruguay and the Group Oranjemund Gariep in S E Africa have similar ages in the provenance of the zircons, suggesting that they were probably deposited in the same basin. This unit exhibits detrital zircons around 600my, sedimentation and metamorphism and deformación occur in a narrow time interval from 600-610 to 574 m (Granite de Castillo intrusion) .Cam pal et al, 2005 proposed to the Cerros Aguirre Formation similar in a range of age of different events. To the east separated from the Punta del Este Terrane –Pelotas. Aigua .Florianopolis batholith s by the shear zone Alferez Cordillera (Preciozzi et al. 1999, Basei et al. 2000) Another option develops this granitic belt is an integral part of Land Punta del Este Terrane(Preciozzi in this work), being deployed on a thin cratonic granite edge. The climax of the post-brasilian magmatism is 580my, strongly related to trans current movements (eg shear zones Major Gercino-Alferez- Cordillera and Sierra Ballena.In South America an old west domain is formed by the Piedra Alta Terrane which integrate the Río de la Pl ata Craton, a central domain intensely reworked by Neoproterozoic events known so far as Nico Perez . The primary coverage is integrated by two volcano-sedimentary basins (San Carlos Formation and Cerros de Aguirre Formation)In this study are considered the Geology,Geochemistry and Geochronology of the different units of Rocha Formation

  15. Sedimentary history and economic geology of San Juan Basin, New Mexico and Colorado

    International Nuclear Information System (INIS)

    Peterson, J.A.; LeLeit, A.J.; Spencer, C.W.; Ullrich, R.A.

    1981-01-01

    The San Juan Basin contains up to 15,000 ft of sedimentary rocks ranging in age from Cambrian to Recent. The earliest development of the area as a sedimentary basin or trough apparently took place in Pennsylvanian time, and the basin was maintained, with changing rates of subsidence and filling, through the remainder of geologic time. During the Early Paleozoic, sedimentation was dominated by marine transgressions across the northwestern flank of the regional Transcontinental Arch. The Late Paleozoic history was strongly influenced by tectonism related to development of the Ancestral Rocky Mountains Uplifts and associated downwarping. The Early Mesozoic is characterized by fluvial and eolian environments, interrupted periodically by thin marine transgressive deposits of nearshore redbeds. The final Mesozoic event was the widespread Late Cretaceous marine transgression which deposited a thick cyclic sequence of marine gray shale and sandstone, with interbedded coal. Late Tertiary regional uplift and resulting volcanism were accompanied by a regional dissection of the area by stream systems that evolved into the present drainage pattern of superposed streams. The sedimentary history is directly related to the occurrence of economic deposits in the basin. Major reserves of petroleum and gas are in Cretaceous and Pennsylvanian rocks, coal in Cretaceous, and uranium in Jurassic and Cretaceous. Abstract only

  16. Evaluation of Five Sedimentary Rocks Other Than Salt for Geologic Repository Siting Purposes

    Energy Technology Data Exchange (ETDEWEB)

    Croff, A.G.; Lomenick, T.F.; Lowrie, R.S.; Stow, S.H.

    2003-11-15

    The US Department of Energy (DOE), in order to increase the diversity of rock types under consideration by the geologic disposal program, initiated the Sedimary ROck Program (SERP), whose immediate objectiv eis to evaluate five types of secimdnary rock - sandstone, chalk, carbonate rocks (limestone and dolostone), anhydrock, and shale - to determine the potential for siting a geologic repository. The evaluation of these five rock types, together with the ongoing salt studies, effectively results in the consideration of all types of relatively impermeable sedimentary rock for repository purposes. The results of this evaluation are expressed in terms of a ranking of the five rock types with respect to their potential to serve as a geologic repository host rock. This comparative evaluation was conducted on a non-site-specific basis, by use of generic information together with rock evaluation criteria (RECs) derived from the DOE siting guidelines for geologic repositories (CFR 1984). An information base relevant to rock evaluation using these RECs was developed in hydrology, geochemistry, rock characteristics (rock occurrences, thermal response, rock mechanics), natural resources, and rock dissolution. Evaluation against postclosure and preclosure RECs yielded a ranking of the five subject rocks with respect to their potential as repository host rocks. Shale was determined to be the most preferred of the five rock types, with sandstone a distant second, the carbonate rocks and anhydrock a more distant third, and chalk a relatively close fourth.

  17. Evaluation of Five Sedimentary Rocks Other Than Salt for Geologic Repository Siting Purposes

    International Nuclear Information System (INIS)

    Croff, A.G.; Lomenick, T.F.; Lowrie, R.S.; Stow, S.H.

    2003-01-01

    The US Department of Energy (DOE), in order to increase the diversity of rock types under consideration by the geologic disposal program, initiated the Sedimary ROck Program (SERP), whose immediate objectiv eis to evaluate five types of secimdnary rock - sandstone, chalk, carbonate rocks (limestone and dolostone), anhydrock, and shale - to determine the potential for siting a geologic repository. The evaluation of these five rock types, together with the ongoing salt studies, effectively results in the consideration of all types of relatively impermeable sedimentary rock for repository purposes. The results of this evaluation are expressed in terms of a ranking of the five rock types with respect to their potential to serve as a geologic repository host rock. This comparative evaluation was conducted on a non-site-specific basis, by use of generic information together with rock evaluation criteria (RECs) derived from the DOE siting guidelines for geologic repositories (CFR 1984). An information base relevant to rock evaluation using these RECs was developed in hydrology, geochemistry, rock characteristics (rock occurrences, thermal response, rock mechanics), natural resources, and rock dissolution. Evaluation against postclosure and preclosure RECs yielded a ranking of the five subject rocks with respect to their potential as repository host rocks. Shale was determined to be the most preferred of the five rock types, with sandstone a distant second, the carbonate rocks and anhydrock a more distant third, and chalk a relatively close fourth.

  18. Global Warming in Geologic Time

    International Nuclear Information System (INIS)

    Archer, David

    2008-01-01

    The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere/ ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial/interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.

  19. The First Global Geological Map of Mercury

    Science.gov (United States)

    Prockter, L. M.; Head, J. W., III; Byrne, P. K.; Denevi, B. W.; Kinczyk, M. J.; Fassett, C.; Whitten, J. L.; Thomas, R.; Ernst, C. M.

    2015-12-01

    Geological maps are tools with which to understand the distribution and age relationships of surface geological units and structural features on planetary surfaces. Regional and limited global mapping of Mercury has already yielded valuable science results, elucidating the history and distribution of several types of units and features, such as regional plains, tectonic structures, and pyroclastic deposits. To date, however, no global geological map of Mercury exists, and there is currently no commonly accepted set of standardized unit descriptions and nomenclature. With MESSENGER monochrome image data, we are undertaking the global geological mapping of Mercury at the 1:15M scale applying standard U.S. Geological Survey mapping guidelines. This map will enable the development of the first global stratigraphic column of Mercury, will facilitate comparisons among surface units distributed discontinuously across the planet, and will provide guidelines for mappers so that future mapping efforts will be consistent and broadly interpretable by the scientific community. To date we have incorporated three major datasets into the global geological map: smooth plains units, tectonic structures, and impact craters and basins >20 km in diameter. We have classified most of these craters by relative age on the basis of the state of preservation of morphological features and standard classification schemes first applied to Mercury by the Mariner 10 imaging team. Additional datasets to be incorporated include intercrater plains units and crater ejecta deposits. In some regions MESSENGER color data is used to supplement the monochrome data, to help elucidate different plains units. The final map will be published online, together with a peer-reviewed publication. Further, a digital version of the map, containing individual map layers, will be made publicly available for use within geographic information systems (GISs).

  20. Rare earth elements in sedimentary phosphate deposits: Solution to the global REE crisis?

    Science.gov (United States)

    Emsbo, Poul; McLaughlin, Patrick I.; Breit, George N.; du Bray, Edward A.; Koenig, Alan E.

    2015-01-01

    The critical role of rare earth elements (REEs), particularly heavy REEs (HREEs), in high-tech industries has created a surge in demand that is quickly outstripping known global supply and has triggered a worldwide scramble to discover new sources. The chemical analysis of 23 sedimentary phosphate deposits (phosphorites) in the United States demonstrates that they are significantly enriched in REEs. Leaching experiments using dilute H2SO4 and HCl, extracted nearly 100% of their total REE content and show that the extraction of REEs from phosphorites is not subject to the many technological and environmental challenges that vex the exploitation of many identified REE deposits. Our data suggest that phosphate rock currently mined in the United States has the potential to produce a significant proportion of the world's REE demand as a byproduct. Importantly, the size and concentration of HREEs in some unmined phosphorites dwarf the world's richest REE deposits. Secular variation in phosphate REE contents identifies geologic time periods favorable for the formation of currently unrecognized high-REE phosphates. The extraordinary endowment, combined with the ease of REE extraction, indicates that such phosphorites might be considered as a primary source of REEs with the potential to resolve the global REE (particularly for HREE) supply shortage.

  1. Global Drainage Patterns to Modern Terrestrial Sedimentary Basins and its Influence on Large River Systems

    Science.gov (United States)

    Nyberg, B.; Helland-Hansen, W.

    2017-12-01

    Long-term preservation of alluvial sediments is dependent on the hydrological processes that deposit sediments solely within an area that has available accomodation space and net subsidence know as a sedimentary basin. An understanding of the river processes contributing to terrestrial sedimentary basins is essential to fundamentally constrain and quantify controls on the modern terrestrial sink. Furthermore, the terrestrial source to sink controls place constraints on the entire coastal, shelf and deep marine sediment routing systems. In addition, the geographical importance of modern terrestrial sedimentary basins for agriculture and human settlements has resulted in significant upstream anthropogenic catchment modification for irrigation and energy needs. Yet to our knowledge, a global catchment model depicting the drainage patterns to modern terrestrial sedimentary basins has previously not been established that may be used to address these challenging issues. Here we present a new database of 180,737 global catchments that show the surface drainage patterns to modern terrestrial sedimentary basins. This is achieved by using high resolution river networks derived from digital elevation models in relation to newly acquired maps on global modern sedimentary basins to identify terrestrial sinks. The results show that active tectonic regimes are typically characterized by larger terrestrial sedimentary basins, numerous smaller source catchments and a high source to sink relief ratio. To the contrary passive margins drain catchments to smaller terrestrial sedimentary basins, are composed of fewer source catchments that are relatively larger and a lower source to sink relief ratio. The different geomorphological characteristics of source catchments by tectonic setting influence the spatial and temporal patterns of fluvial architecture within sedimentary basins and the anthropogenic methods of exploiting those rivers. The new digital database resource is aimed to help

  2. Relating Gestures and Speech: An analysis of students' conceptions about geological sedimentary processes

    Science.gov (United States)

    Herrera, Juan Sebastian; Riggs, Eric M.

    2013-08-01

    Advances in cognitive science and educational research indicate that a significant part of spatial cognition is facilitated by gesture (e.g. giving directions, or describing objects or landscape features). We aligned the analysis of gestures with conceptual metaphor theory to probe the use of mental image schemas as a source of concept representations for students' learning of sedimentary processes. A hermeneutical approach enabled us to access student meaning-making from students' verbal reports and gestures about four core geological ideas that involve sea-level change and sediment deposition. The study included 25 students from three US universities. Participants were enrolled in upper-level undergraduate courses on sedimentology and stratigraphy. We used semi-structured interviews for data collection. Our gesture coding focused on three types of gestures: deictic, iconic, and metaphoric. From analysis of video recorded interviews, we interpreted image schemas in gestures and verbal reports. Results suggested that students attempted to make more iconic and metaphoric gestures when dealing with abstract concepts, such as relative sea level, base level, and unconformities. Based on the analysis of gestures that recreated certain patterns including time, strata, and sea-level fluctuations, we reasoned that proper representational gestures may indicate completeness in conceptual understanding. We concluded that students rely on image schemas to develop ideas about complex sedimentary systems. Our research also supports the hypothesis that gestures provide an independent and non-linguistic indicator of image schemas that shape conceptual development, and also play a role in the construction and communication of complex spatial and temporal concepts in the geosciences.

  3. The geological and microbiological controls on the enrichment of Se and Te in sedimentary rocks

    Science.gov (United States)

    Bullock, Liam; Parnell, John; Armstrong, Joseph; Boyce, Adrian; Perez, Magali

    2017-04-01

    Selenium (Se) and tellurium (Te) have become elements of high interest, mainly due to their photovoltaic and photoconductive properties, and can contaminate local soils and groundwater systems during mobilisation. Due to their economic and environmental significance, it is important to understand the processes that lead to Se- and Te-enrichment in sediments. The distribution of Se and Te in sedimentary environments is primarily a function of redox conditions, and may be transported and concentrated by the movement of reduced fluids through oxidised strata. Se and Te concentrations have been measured in a suite of late Neoproterozoic Gwna Group black shales (UK) and uranium red bed (roll-front) samples (USA). Due to the chemical affinity of Se and sulphur (S), variations in the S isotopic composition of pyrite have also been measured in order to provide insights into their origin. Scanning electron microscopy of pyrite in the black shales shows abundant inclusions of the lead selenide mineral clausthalite. The data for the black shale samples show marked enrichment in Te and Se relative to crustal mean and several hundreds of other samples processed through our laboratory. While Se levels in sulphidic black shales are typically below 5 ppm, the measured values of up to 116 ppm are remarkable. The Se enrichment in roll-fronts (up to 168 ppm) is restricted to a narrow band of alteration at the interface between the barren oxidised core, and the highly mineralised reduced nose of the front. Te is depleted in roll-fronts with respect to the continental crust and other geological settings and deposits. S isotope compositions for pyrite in both the black shales and roll-fronts are very light and indicate precipitation by microbial sulphate reduction, suggesting that Se was microbially sequestered. Results show that Gwna Group black shales and U.S roll-front deposits contain marked elemental enrichments (particularly Se content). In Gwna Group black shales, Se and Te were

  4. Shallow subsurface geology and Vs characteristics of sedimentary units throughout Rasht City, Iran

    Directory of Open Access Journals (Sweden)

    Behzad Mehrabi

    2009-06-01

    Full Text Available The Manjil-Rudbar earthquake of June 1990 caused widespread damage to buildings in the city of Rasht located
    60 km from the epicenter. Seismic surveys, including refraction P-wave, S-wave and downhole tests, were
    carried out to study subsurface geology and classify materials in the city of Rasht. Rasht is built on Quaternary
    sediments consisting of old marine (Q1m, deltaic (Q2d, undivided deltaic sediments with gravel (Qdg and
    young marine (Q2m deposits. We used the variations of Vp in different materials to separate sedimentary
    boundaries. The National Earthquake Hazard Reduction Program (NEHRP scheme was used for site classification.
    Average S-wave velocity to a depth of 30 m was used to develop site categories, based on measured Vs values
    in 35 refraction seismic profiles and 4 downhole tests. For each geological unit histograms of S-wave velocity
    were calculated. This study reveals that the Vs(30 of most of the city falls into categories D and C of NEHRP
    site classification. Average horizontal spectral amplification (AHSA in Rasht was calculated using Vs(30 . The
    AHSA map clearly indicates that the amplification factor east and north of the city are higher than those of south
    and central parts. The results show that the lateral changes and heterogeneities in Q1m sediments are significant
    and most damaged buildings in 1990 Manjil earthquake were located in this unit.

  5. A Framework to Estimate CO2 Leakage associated with Geological Storage in Mature Sedimentary Basins

    Science.gov (United States)

    Celia, M. A.; Bachu, S.; Gasda, S.

    2002-12-01

    Geological storage of carbon dioxide requires careful risk analysis to avoid unintended consequences associated with the subsurface injection. Most negative consequences of subsurface injection are associated with leakage of the injected CO2 out of the geological formation into which it is injected. Such leakage may occur through natural geological features, including fractures and faults, or it may occur through human-created pathways such as existing wells. Possible leakage of CO2 through existing wells appears to be especially important in mature sedimentary basins that have been explored intensively and exploited for hydrocarbon production. In the Alberta Basin of western Canada, more than 300,000 oil and gas wells have been drilled, while in the state of Texas in the United States, more than 1,500,000 wells have been drilled. Many of these wells have been abandoned, and the information available to describe their current state is highly variable and sometimes nonexistent. Because these wells represent possible direct conduits from the injection zone to the land surface, a comprehensive assessment of leakage potential associated with these wells needs to be pursued. Analysis of leakage potential associated with existing wells must combine a data mining component with a multi-level modeling effort to assess leakage potential in a probabilistic framework. Information available for existing wells must be categorized and analyzed, and general leakage characteristics associated with wells of varying properties must be quantified. One example of a realistic target formation is the Viking Formation in Alberta, which is overlain by a thick shale layer and contains hydrocarbon in some locations. The existence of hydrocarbon in the formation indicates that the overlying shale layer is an effective barrier to flow, and therefore this is a good candidate formation for CO2 storage. However, the formation and its cap rock are punctured by approximately 180,000 wells, with

  6. Differential preservation in the geologic record of intraoceanic arc sedimentary and tectonic processes

    Science.gov (United States)

    Draut, Amy; Clift, Peter D.

    2013-01-01

    Records of ancient intraoceanic arc activity, now preserved in continental suture zones, are commonly used to reconstruct paleogeography and plate motion, and to understand how continental crust is formed, recycled, and maintained through time. However, interpreting tectonic and sedimentary records from ancient terranes after arc–continent collision is complicated by preferential preservation of evidence for some arc processes and loss of evidence for others. In this synthesis we examine what is lost, and what is preserved, in the translation from modern processes to the ancient record of intraoceanic arcs. Composition of accreted arc terranes differs as a function of arc–continent collision geometry. ‘Forward-facing’ collision can accrete an oceanic arc on to either a passive or an active continental margin, with the arc facing the continent and colliding trench- and forearc-side first. In a ‘backward-facing’ collision, involving two subduction zones with similar polarity, the arc collides backarc-first with an active continental margin. The preservation of evidence for contemporary sedimentary and tectonic arc processes in the geologic record depends greatly on how well the various parts of the arc survive collision and orogeny in each case. Preservation of arc terranes likely is biased towards those that were in a state of tectonic accretion for tens of millions of years before collision, rather than tectonic erosion. The prevalence of tectonic erosion in modern intraoceanic arcs implies that valuable records of arc processes are commonly destroyed even before the arc collides with a continent. Arc systems are most likely to undergo tectonic accretion shortly before forward-facing collision with a continent, and thus most forearc and accretionary-prism material in ancient arc terranes likely is temporally biased toward the final stages of arc activity, when sediment flux to the trench was greatest and tectonic accretion prevailed. Collision geometry

  7. Study of Sedimentary Outcrop of Semanggol Formation with the Correlation of Geology, Geotechnical and Geophysics Technique

    Science.gov (United States)

    Nordiana, A. N.; Nordiana, M. M.; Jia, Teoh Ying; Hisham, Hazrul; Sulaiman, Nabila; Maslinda, Umi; Taqiuddin, Z. M.; Nur Amalina, M. K. A.; Afiq Saharudin, Muhamad

    2017-04-01

    The study location was at Bukit Kukus, Kuala Ketil, Kedah, Malaysia where the geological outcrop of this Semanggol Formation comprises of chert, mudstone, and volcanic tuff. The study was conducted using two geophysical methods, which are 2-D Resistivity and Ground Penetrating Radar (GPR). The objectives of the study are to correlate both of the geophysical methods through the value of conductivity and to identify the physical properties of rocks through the value of porosity and permeability. The data acquisition for both methods was conducted on the same line. For 2-D Resistivity method, the length of the line is 60 m with 1.5 m electrode spacing and the array used was Wenner-Schlumberger. For GPR method, the survey line was on top of the resistivity line, and the frequency of the antenna used is 250 MHz. A good correlation exists between both of the GPR signature and contour maps for resistivity from the surfer 10 software with the outcrop feature. Conductivity value from both GPR and Resistivity method was compared and the range value of conductivity obtained from GPR method almost equivalent with Resistivity method based on derivation and calculation for the sedimentary rocks, which are 0.037 to 0.574 miliSiemens per metre (mS/m) for chert and 0.186 to 10.142 miliSiemens per metre (mS/m) for mudstone. Two types of rock samples were taken, and several geotechnical tests were conducted, but only the value of permeability, K and porosity, ɸ of chert can be calculated, which are 1.95E-22 m2 (original condition) and 2.27E-22 m2 (dry condition) and 3 percent respectively as the sample of mudstone was damaged. The parameter of the 2-D resistivity method derived from Archie’s law was used to calculate the porosity, ɸf value using the Formation Factor equation. The range values of porosity, ɸf for chert mostly in the range of 5 to 25 percent, which is 6.26 to 13.36 percent but slightly out of range for mudstone, which is 14.12 to 36.02 percent.

  8. Global Tsunami Database: Adding Geologic Deposits, Proxies, and Tools

    Science.gov (United States)

    Brocko, V. R.; Varner, J.

    2007-12-01

    A result of collaboration between NOAA's National Geophysical Data Center (NGDC) and the Cooperative Institute for Research in the Environmental Sciences (CIRES), the Global Tsunami Database includes instrumental records, human observations, and now, information inferred from the geologic record. Deep Ocean Assessment and Reporting of Tsunamis (DART) data, historical reports, and information gleaned from published tsunami deposit research build a multi-faceted view of tsunami hazards and their history around the world. Tsunami history provides clues to what might happen in the future, including frequency of occurrence and maximum wave heights. However, instrumental and written records commonly span too little time to reveal the full range of a region's tsunami hazard. The sedimentary deposits of tsunamis, identified with the aid of modern analogs, increasingly complement instrumental and human observations. By adding the component of tsunamis inferred from the geologic record, the Global Tsunami Database extends the record of tsunamis backward in time. Deposit locations, their estimated age and descriptions of the deposits themselves fill in the tsunami record. Tsunamis inferred from proxies, such as evidence for coseismic subsidence, are included to estimate recurrence intervals, but are flagged to highlight the absence of a physical deposit. Authors may submit their own descriptions and upload digital versions of publications. Users may sort by any populated field, including event, location, region, age of deposit, author, publication type (extract information from peer reviewed publications only, if you wish), grain size, composition, presence/absence of plant material. Users may find tsunami deposit references for a given location, event or author; search for particular properties of tsunami deposits; and even identify potential collaborators. Users may also download public-domain documents. Data and information may be viewed using tools designed to extract and

  9. Engineering Geological Properties of Oil-Contaminated Granitic and Meta sedimentary Soils

    International Nuclear Information System (INIS)

    Zulfahmi Ali Rahman; Umar Hamzah; Noorulakma Ahmad

    2011-01-01

    Hydrocarbon is a light-non aqueous phase liquid or known as LNAPL. It poses environmental hazard if accidentally spilled out into the soil and water systems as a result of its insoluble nature in water. LNAPL component infiltrates into soil through pore spaces and afloat at the top of groundwater level. Some of this hydrocarbon would trap and clog within the voids, difficult to remove and costly to clean. The occurrence of hydrocarbon in the soil definitely degraded the behaviour of soils in terms of engineering properties. This study aimed to investigate the engineering properties of oil-contaminated soil for two different residual soils originally developed from in-situ weathering of granitic and meta sedimentary rocks. The physical characterisations of the soil were determined including particle size distribution, specific gravity test and x-ray diffraction (XRD). The engineering parameters for the contaminated and uncontaminated soils were Atterberg limits, compaction and soil shear strength (UU tests). The amounts of hydrocarbon added to soil were varied at 0 %, 4 %, 8 %, 12 % and 16 % of dried weight of soil samples. The results from the particle size distribution analysis showed that residual soil from granitic rock comprises of 38 % sand, 33 % silt and 4 % clay while meta sedimentary soil consists of 4 % sand, 43 % silt dan 29 % clay. The mean values of specific gravity for the granitic and meta sedimentary soils were 2.56 and 2.61, respectively. The types of minerals present in granitic soil sample were quartz, kaolinite and gibbsite while meta sedimentary soil consists of quartz and kaolinite. The Atterberg limits value decreased as a result of increasing amount of added hydrocarbon into the soil. A similar behavior was observed with the values of maximum dry density and optimum water content with increasing hydrocarbon content. The overall unconsolidated undrained shear strength, C u showed a decreasing trend with the increase in hydrocarbon content

  10. Impact of Geological Changes on Regional and Global Economies

    Science.gov (United States)

    Tatiana, Skufina; Peter, Skuf'in; Vera, Samarina; Taisiya, Shatalova; Baranov, Sergey

    2017-04-01

    Periods of geological changes such as super continent cycle (300-500 million years), Wilson's cycles (300-900 million years), magmatic-tectonic cycle (150-200 million years), and cycles with smaller periods (22, 100, 1000 years) lead to a basic contradiction preventing forming methodology of the study of impact of geological changes on the global and regional economies. The reason of this contradiction is the differences of theoretical and methodological aspects of the Earth science and economics such as different time scales and accuracy of geological changes. At the present the geological models cannot provide accurate estimation of time and place where geological changes (strong earthquakes, volcanos) are expected. Places of feature (not next) catastrophic events are the only thing we have known. Thus, it is impossible to use the periodicity to estimate both geological changes and their consequences. Taking into accounts these factors we suggested a collection of concepts for estimating impact of possible geological changes on regional and global economies. We illustrated our approach by example of estimating impact of Tohoku earthquake and tsunami of March 2011 on regional and global economies. Based on this example we concluded that globalization processes increase an impact of geological changes on regional and global levels. The research is supported by Russian Foundation for Basic Research (Projects No. 16-06-00056, 16-32-00019, 16-05-00263A).

  11. Transitioning Groundwater from an Extractive Resource to a Managed Water Storage Resource: Geology and Recharge in Sedimentary Basins

    Science.gov (United States)

    Maples, S.; Fogg, G. E.; Maxwell, R. M.; Liu, Y.

    2017-12-01

    Civilizations have typically obtained water from natural and constructed surface-water resources throughout most of human history. Only during the last 50-70 years has a significant quantity of water for humans been obtained through pumping from wells. During this short time, alarming levels of groundwater depletion have been observed worldwide, especially in some semi-arid and arid regions that rely heavily on groundwater pumping from clastic sedimentary basins. In order to reverse the negative effects of over-exploitation of groundwater resources, we must transition from treating groundwater mainly as an extractive resource to one in which recharge and subsurface storage are pursued more aggressively. However, this remains a challenge because unlike surface-water reservoirs which are typically replenished over annual timescales, the complex geologic architecture of clastic sedimentary basins impedes natural groundwater recharge rates resulting in decadal or longer timescales for aquifer replenishment. In parts of California's Central Valley alluvial aquifer system, groundwater pumping has outpaced natural groundwater recharge for decades. Managed aquifer recharge (MAR) has been promoted to offset continued groundwater overdraft, but MAR to the confined aquifer system remains a challenge because multiple laterally-extensive silt and clay aquitards limit recharge rates in most locations. Here, we simulate the dynamics of MAR and identify potential recharge pathways in this system using a novel combination of (1) a high-resolution model of the subsurface geologic heterogeneity and (2) a physically-based model of variably-saturated, three-dimensional water flow. Unlike most groundwater models, which have coarse spatial resolution that obscures the detailed subsurface geologic architecture of these systems, our high-resolution model can pinpoint specific geologic features and locations that have the potential to `short-circuit' aquitards and provide orders

  12. Geological factors of the isotopic distribution of carbon of organic matter in sedimentary rocks

    International Nuclear Information System (INIS)

    Maass, J.

    1981-01-01

    The isotope ratio of carbon of fossile organic matter can be regarded as a definite criterion of its genetic origin. As the biofacial character of organic matter, especially the chemical composition (H/C-ratio), decisively influences the mode and quantity of the potential hydrocarbon production, isotopic analysis is an essential method for the prognostic evaluation of sedimentary basins with regard to their oil and gas perspectives. The genetic relations to the parent substance continue in the bituminization and coalification products and make it possible to apply the isotopic analysis of carbon to prospection work for hydrocarbons. (author)

  13. Medical Geology: a globally emerging discipline

    Energy Technology Data Exchange (ETDEWEB)

    Bunnell, J.E.; Finkelman, R.B.; Centeno, J.A.; Selinus, O. [Armed Forces Institute of Pathology, Washington, DC (United States)

    2007-07-01

    Medical Geology, the study of the impacts of geologic materials and processes on animal and human health, is a dynamic emerging discipline bringing together the geoscience, biomedical, and public health communities to solve a wide range of environmental health problems. Among the Medical Geology described in this review are examples of both deficiency and toxicity of trace element exposure. Goiter is a widespread and potentially serious health problem caused by deficiency of iodine. In many locations the deficiency is attributable to low concentrations of iodine in the bedrock. Similarly, deficiency of selenium in the soil has been cited as the principal cause of juvenile cardiomyopathy and muscular abnormalities. Overexposure to arsenic is one of the most widespread Medical Geology problems affecting more than one hundred million people in Bangladesh, India, China, Europe, Africa and North and South America. The arsenic exposure is primarily due to naturally high levels in groundwater but combustion of mineralized coal has also caused arsenic poisoning. Dental and skeletal fluorosis also impacts the health of millions of people around the world and, like arsenic, is due to naturally high concentrations in drinking water and, to a lesser extent, coal combustion. Other Medical Geology issues described include geophagia, the deliberate ingestion of soil, exposure to radon, and ingestion of high concentrations of organic compounds in drinking water. Geoscience and biomedical/public health researchers are teaming to help mitigate these health problems as well as various non-traditional issues for geoscientists such as vector-borne diseases.

  14. OneGeology- A Global Geoscience Data Platform

    Science.gov (United States)

    Harrison, M.; Komac, M.; Duffy, T.; Robida, F.; Allison, M. L.

    2014-12-01

    OneGeology (1G) is an initiative of Geological Survey Organisations (GSOs) around the globe that dates back to 2007. Since then, OneGeology has been a leader in developing geological online map data using GeoSciML- an international interoperability standard for the exchange of geological data. Increased use of this new standard allows geological data to be shared and integrated across the planet among organisations. One of the goals of OneGeology is an exchange of know-how with the developing world, shortening the digital learning curve. In autumn 2013 OneGeology was transformed into a Consortium with a clearly defined governance structure, making it more transparent, its operation more sustainable and its membership more open where in addition to GSOs, other types of organisations that create and use geoscience data can join and contribute. The next stage of the OneGeology initiative is focused on increasing the openness and richness of that data from individual countries to create a multi-thematic global geological data resource about the rocks beneath our feet. Authoritative geoscience information will help to mitigate natural disasters, explore for resources (water, minerals and energy) and identify risks to human health on a planetary scale with the aim of 1G to increase awareness of the geosciences and their relevance among professionals and general public- to be part of the solution. We live in a digital world that enables prompt access to vast amounts of open access data. Understanding our world, the geology beneath our feet and environmental challenges related to geology calls for accessibility of geoscience data and the OneGeology Portal (portal.onegeology.org) is the place to find them.

  15. Geology and genesis of uranium deposits in sedimentary and metamorphic formation

    International Nuclear Information System (INIS)

    Danchev, V.I.; Belevtsev, Ya.N.

    1980-01-01

    Main genetic types of uranium deposits in sedimentary cover are described. Their genetic classification is based on the principle of conjugation of ore-forming process with the stages of lithogenesis of ore-enclosing rocks. Examples of poligeneity of uranium mineralization are presented. Texture-structural peculiarities of ores and types of ore-controlling zonality are considered as criteria of definite deposits belonging to various genetic classes. The analysis is given of main regularities of location of exogenous and poligenic uranium deposits. Processes of uranium ore-formation under the conditions of low and high degrees of metamorphism are considered. On the basis of separate types of deposits shown is the possibility of mobilization, transfer and concentration of ore substance, its transformation from primary to secondary forms. Metamorphous and ultrametamorphous deposits are formed as a result of ore element translocation within considerable distances under the effect of endogenous solutions and their concentration in favourable structures. Conclusions on the effect of lithogenesis and metamorphism processes on the ore formation are substantiated by field observations, analyses (including methods of isotopic geochemistry) as well as by experiments

  16. Mapping Neogene and Quaternary sedimentary deposits in northeastern Brazil by integrating geophysics, remote sensing and geological field data

    Science.gov (United States)

    Andrades-Filho, Clódis de Oliveira; Rossetti, Dilce de Fátima; Bezerra, Francisco Hilario Rego; Medeiros, Walter Eugênio; Valeriano, Márcio de Morisson; Cremon, Édipo Henrique; Oliveira, Roberto Gusmão de

    2014-12-01

    Neogene and late Quaternary sedimentary deposits corresponding respectively to the Barreiras Formation and Post-Barreiras Sediments are abundant along the Brazilian coast. Such deposits are valuable for reconstructing sea level fluctuations and recording tectonic reactivation along the passive margin of South America. Despite this relevance, much effort remains to be invested in discriminating these units in their various areas of occurrence. The main objective of this work is to develop and test a new methodology for semi-automated mapping of Neogene and late Quaternary sedimentary deposits in northeastern Brazil integrating geophysical and remote sensing data. The central onshore Paraíba Basin was selected due to the recent availability of a detailed map based on the integration of surface and subsurface geological data. We used airborne gamma-ray spectrometry (i.e., potassium-K and thorium-Th concentration) and morphometric data (i.e., relief-dissection, slope and elevation) extracted from the digital elevation model (DEM) generated by the Shuttle Radar Topography Mission (SRTM). The procedures included: (a) data integration using geographic information systems (GIS); (b) exploratory statistical analyses, including the definition of parameters and thresholds for class discrimination for a set of sample plots; and (c) development and application of a decision-tree classification. Data validation was based on: (i) statistical analysis of geochemical and airborne gamma-ray spectrometry data consisting of K and Th concentrations; and (ii) map validation with the support of a confusion matrix, overall accuracy, as well as quantity disagreement and allocation disagreement for accuracy assessment based on field points. The concentration of K successfully separated the sedimentary units of the basin from Precambrian basement rocks. The relief-dissection morphometric variable allowed the discrimination between the Barreiras Formation and the Post-Barreiras Sediments. In

  17. The geological basis and the representation of spatial variability in sedimentary heterogeneous media

    International Nuclear Information System (INIS)

    Cliffe, K.A.; Franklin, D.J.; Jones, P.I.R.; Macleod, E.J.; Porter, J.D.

    1998-01-01

    The impact of different conceptual models was investigated of the heterogeneity of the Sherwood Sandstone Group (SSG) at Sellafield on calculations of flow and transport. Detailed models of the heterogeneity of the Undifferentiated St Bees Sandstone (USBS) of the SSG were produced. The models took into account directly the geological structures at the facies level. The software package STORM (STOchastic Reservoir Modelling), was used to construct the models. The data required by the model are those that characterise the geometry of the channel bodies and the properties of the various sub-facies within the channels. It was found that for the case in which all of the variability was within channels, the larger scale permeabilities did not exhibit any significant correlation structure. The up-scaled effective permeabilities also exhibited correlation lengths that were comparable with the channel dimensions. Flow and transport calculations were also performed on 90 realizations of a detailed facies scale three-dimensional representation of a larger block of the USBS. The results are broadly consistent with the analytical results for transport through a random permeability field. (R.P.)

  18. The First USGS Global Geologic Map of Europa

    Science.gov (United States)

    Leonard, E. J.; Patthoff, D. A.; Senske, D.; Collins, G. C.

    2017-12-01

    Understanding the global scale geology of Europa is paramount to gaining insight into the potential habitability of this icy world. To this end, work is ongoing to complete a global geological map at the scale of 1:15 million that incorporates data at all resolutions collected by the Voyager and Galileo missions. The results of this work will aid the Europa Clipper mission, now in formulation, by providing a framework for collaborative and synergistic science investigations. To understand global geologic and tectonic relations, a total of 10 geologic units have been defined. These include: Low Albedo Ridge Material (lam)—low albedo material that irregularly surrounds large (>20 km) ridge structures; Ridged plains (pr)—distributed over all latitudes and characterized by subparallel to cross-cutting ridges and troughs visible at high resolution (material (b)—linear to curvilinear zones with a distinct, abrupt albedo change from the surrounding region; Crater material (c), Continuous Crater Ejecta (ce) and Discontinuous Crater Ejecta (dce)—features associated with impact craters including the site of the impact, crater material, and the fall-out debris respectively; Low Albedo Chaos (chl), Mottled Albedo Chaos (chm) and High Albedo Chaos (chh)—disrupted terrain with a relatively uniform low albedo, patchy/variegated albedo, and uniform high albedo appearance respectively; Knobby Chaos (chk) - disrupted terrain with rough and blocky texture occurring in the high latitudes. In addition to the geologic units, our mapping also includes structural features—Ridges, Cycloids, Undifferentiated Linea, Crater Rims, Depression Margins, Dome Margins and Troughs. We also introduce a point feature (at the global scale), Microchaos, to denote small (material. The completed map will constrain the distribution of different Europa terrains and provide a general stratigraphic framework to assess the geologic history of Europa from the regional to the global scale. Here, we

  19. OneGeology Web Services and Portal as a global geological SDI - latest standards and technology

    Science.gov (United States)

    Duffy, Tim; Tellez-Arenas, Agnes

    2014-05-01

    The global coverage of OneGeology Web Services (www.onegeology.org and portal.onegeology.org) achieved since 2007 from the 120 participating geological surveys will be reviewed and issues arising discussed. Recent enhancements to the OneGeology Web Services capabilities will be covered including new up to 5 star service accreditation scheme utilising the ISO/OGC Web Mapping Service standard version 1.3, core ISO 19115 metadata additions and Version 2.0 Web Feature Services (WFS) serving the new IUGS-CGI GeoSciML V3.2 geological web data exchange language standard (http://www.geosciml.org/) with its associated 30+ IUGS-CGI available vocabularies (http://resource.geosciml.org/ and http://srvgeosciml.brgm.fr/eXist2010/brgm/client.html). Use of the CGI simpelithology and timescale dictionaries now allow those who wish to do so to offer data harmonisation to query their GeoSciML 3.2 based Web Feature Services and their GeoSciML_Portrayal V2.0.1 (http://www.geosciml.org/) Web Map Services in the OneGeology portal (http://portal.onegeology.org). Contributing to OneGeology involves offering to serve ideally 1:1000,000 scale geological data (in practice any scale now is warmly welcomed) as an OGC (Open Geospatial Consortium) standard based WMS (Web Mapping Service) service from an available WWW server. This may either be hosted within the Geological Survey or a neighbouring, regional or elsewhere institution that offers to serve that data for them i.e. offers to help technically by providing the web serving IT infrastructure as a 'buddy'. OneGeology is a standards focussed Spatial Data Infrastructure (SDI) and works to ensure that these standards work together and it is now possible for European Geological Surveys to register their INSPIRE web services within the OneGeology SDI (e.g. see http://www.geosciml.org/geosciml/3.2/documentation/cookbook/INSPIRE_GeoSciML_Cookbook%20_1.0.pdf). The Onegeology portal (http://portal.onegeology.org) is the first port of call for anyone

  20. Collaborative Research: Bringing Problem Solving in the Field into the Classroom: Developing and Assessing Virtual Field Trips for Teaching Sedimentary and Introductory Geology

    Science.gov (United States)

    Wang, P.; Caldwell, M.

    2012-12-01

    Coastal Florida offers a unique setting for the facilitation of learning about a variety of modern sedimentary environments. Despite the conflicting concept of "virtual" and "actual" field trip, and the uncertainties associated with the implementation and effectiveness, virtual trips provide likely the only way to reach a large diversified student population and eliminate travel time and expenses. In addition, with rapidly improving web and visualization technology, field trips can be simulated virtually. It is therefore essential to systematically develop and assess the educational effectiveness of virtual field trips. This project is developing, implementing, and assessing a series of virtual field trips for teaching undergraduate sedimentary geology at a large four-year research university and introductory geology at a large two-year community college. The virtual field trip is based on a four-day actual field trip for a senior level sedimentary geology class. Two versions of the virtual field trip, one for advanced class and one for introductory class, are being produced. The educational outcome of the virtual field trip will be compared to that from actual field trip. This presentation summarizes Year 1 achievements of the three-year project. The filming, editing, and initial production of the virtual field trip have been completed. Formative assessments were conducted by the Coalition for Science Literacy at the University of South Florida. Once tested and refined, the virtual field trips will be disseminated through broadly used web portals and workshops at regional and national meetings.

  1. The geological carbon cycle and the global warming / climate debate

    International Nuclear Information System (INIS)

    Frank, F.

    2013-01-01

    The extensively cited seasonal carbon cycle describes the size and the annual fluxes between the temporary reservoirs (ocean, atmosphere, biosphere and soils). Compared with these large annual fluxes (approx. 200 GtC/y) the human contribution seems to be of minor amount and is currently (2011) in the range of 4-5%. However, in the geological carbon cycle, which describes the nearly equal amounts of input (volcanoes etc.) and output (sediments) into and from the temporary reservoirs, the human contribution has now reached 30-50 times the average natural level (9.5 Gt C/y versus ca. 0.2-0.3Gt C/y). In the long-term range (1-10x106y), the variable, but much smaller net imbalance between these geological sources und sinks was responsible for the atmospheric CO2-level in the last 400 My (since then comparable temporary reservoirs exist) and influenced via the various feedbacks the climate on earth. In nearly 95% of this long time the climate system was in (nearly) equilibrium conditions and changes occurred extremely slow. Whenever a certain range of higher rate of change of these driving forces were reached, it had - together with other effects - severe influence on the evolution of life, causing 5 large and many minor 'geological accidents'. Based on isotope geochemistry and a fairly good time resolution by orbitally tuned cyclostratigraphy (astrochronology) in the sedimentary record, we are able to quantify these rates of change with reasonable errors. It turns out that the present rate of change - caused by the C-based fossil energy use - is one to two orders of magnitude more rapid than these severe events (impacts excluded) in the earth system. A vast amount of data is available from the ice age cycles. Climate geology (e.g. the group of M. Sarnthein) made considerable progress in understanding the related geological/oceanic processes and proposed a reasonably constrained mass balance of CO2 during the last cycle, which could help us to understand the future

  2. Palaeogeographical peculiarities of the Pabdeh Formation (Paleogene) in Iran: New evidence of global diversity-determined geological heritage

    Science.gov (United States)

    Habibi, Tahereh; Nielsen, Jan K.; Ponedelnik, Alena A.; Ruban, Dmitry A.

    2017-11-01

    Unique palaeogeographical peculiarities of sedimentary formations are important for geological heritage conservation and use for the purposes of tourism. The heritage value of the Pabdeh Formation (Paleocene-Oligocene) of the Zagros Fold-Thrust Belt in Iran has been investigated. The uniqueness of its palaeogeographical peculiarities has been assessed on the basis of the literature, field studies of three representative sections in the Fars Province (Kavar, Zanjiran, and Shahneshin sections), and comparison with the similar features known in Iran and globally. The Pabdeh Formation reflects the process of mixed siliciclastic-carbonate ramp progradation and the onset of a typical carbonate platform. The other unique features include representation of mesopelagic palaeohabitat, specific trace fossil assemblages, prehistoric bituminous artefacts (production of which was linked to the Pabdeh deposits), etc. It is established that the palaeogeographical type of geological heritage of the Pabdeh Formation is represented by all known subtypes, namely facies, palaeoecosystem, ichnological, taphonomical, event, and geoarchaeological subtypes. Their rank varies between regional and global. The very fact of co-occurrence of these subtypes determines the global importance of the entire palaeogeographical type in the case of this formation. The establishment of geopark in the Zagros Fold-Thrust Belt will facilitate adequate use of the Pabdeh Formation for the purpose of geotourism development. The aesthetic properties (rocks of different colour and striped patterns of outcrops) increase the attractiveness of this geological body to visitors.

  3. Redox front formation in an uplifting sedimentary rock sequence: An analogue for redox-controlling processes in the geosphere around deep geological repositories for radioactive waste

    International Nuclear Information System (INIS)

    Yoshida, H.; Metcalfe, R.; Yamamoto, K.; Murakami, Y.; Hoshii, D.; Kanekiyo, A.; Naganuma, T.; Hayashi, T.

    2008-01-01

    Subsurface redox fronts control the mobilization and fixation of many trace elements, including potential pollutants such as certain radionuclides. Any safety assessment for a deep geological repository for radioactive wastes needs to take into account adequately the long-term redox processes in the geosphere surrounding the repository. To build confidence in understanding these processes, a redox front in a reduced siliceous sedimentary rock distributed in an uplifting area in Japan has been studied in detail. Geochemical analyses show increased concentrations of Fe and trace elements, including rare earth elements (REEs), at the redox front, even though concentrations of reduced rock matrix constituents show little change. Detailed SEM observations revealed that fossilized microorganisms composed of amorphous granules made exclusively of Fe and Si occur in the rock's pore space. Microbial 16S rDNA analysis suggests that there is presently a zonation of different bacterial groups within the redox band, and bacterial zonation played an important role in the concentration of Fe-oxyhydroxides at the redox front. These water-rock-microbe interactions can be considered analogous to the processes occurring in the redox fronts that would develop around geological repositories for radioactive waste. Once formed, the Fe-oxyhydroxides within such a front would be preserved even after reducing conditions resume following repository closure

  4. Redox front formation in an uplifting sedimentary rock sequence: An analogue for redox-controlling processes in the geosphere around deep geological repositories for radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, H. [Nagoya University Museum, Material Research Section, Furocho, Nagoya 464-8602 (Japan)], E-mail: dora@num.nagoya-u.ac.jp; Metcalfe, R. [Quintessa Japan, Queen' s Tower A7-707, Minatomirai, Yokohama 220-6007 (Japan); Yamamoto, K. [Nagoya University Museum, Material Research Section, Furocho, Nagoya 464-8602 (Japan); Murakami, Y. [Japan Atomic Energy Agency (JAEA), Tono Geoscience Centre (Japan); Hoshii, D.; Kanekiyo, A.; Naganuma, T. [Hiroshima University, Higashi Hiroshima, Kagamiyama 1-4-4 (Japan); Hayashi, T. [Asahi University, Department of Dental Pharmacology, Hozumi, Gifu (Japan)

    2008-08-15

    Subsurface redox fronts control the mobilization and fixation of many trace elements, including potential pollutants such as certain radionuclides. Any safety assessment for a deep geological repository for radioactive wastes needs to take into account adequately the long-term redox processes in the geosphere surrounding the repository. To build confidence in understanding these processes, a redox front in a reduced siliceous sedimentary rock distributed in an uplifting area in Japan has been studied in detail. Geochemical analyses show increased concentrations of Fe and trace elements, including rare earth elements (REEs), at the redox front, even though concentrations of reduced rock matrix constituents show little change. Detailed SEM observations revealed that fossilized microorganisms composed of amorphous granules made exclusively of Fe and Si occur in the rock's pore space. Microbial 16S rDNA analysis suggests that there is presently a zonation of different bacterial groups within the redox band, and bacterial zonation played an important role in the concentration of Fe-oxyhydroxides at the redox front. These water-rock-microbe interactions can be considered analogous to the processes occurring in the redox fronts that would develop around geological repositories for radioactive waste. Once formed, the Fe-oxyhydroxides within such a front would be preserved even after reducing conditions resume following repository closure.

  5. Geochemistry of sedimentary carbonates

    National Research Council Canada - National Science Library

    Morse, John W; Mackenzie, Fred T

    1990-01-01

    .... The last major section is two chapters on the global cycle of carbon and human intervention, and the role of sedimentary carbonates as indicators of stability and changes in Earth's surface environment...

  6. Comparative geology and geochemistry of sedimentary-rock-hosted (Carlin Type) gold deposits in the People's Republic of China and in Nevada, USA

    Science.gov (United States)

    Li, Zhiping; Peters, Stephen G.

    1998-01-01

    Sedimentary-rock-hosted (Carlin-type) gold deposits have been considered economically significant and geologically distinct since the early 1960's. This report consists of a nine-part text and an interactive database. This small database is to help Western companies get more information about these gold deposits in China, and to help geologists who are interested in world Carlin-type deposits conduct research on them. Because of their economic significance and geological distinctiveness, these deposits have caught the interest of economic geologists all over the world since the early 1960's. Similar deposits have been discovered in China, Australia, Dominican Republic, Spain, and Russia besides Nevada. Perhaps most significant are the 165 Carlin-type gold deposits that were found in southwest China during the past 15 years. Of these, at least 19 deposits have proven to be of substantial tonnage, making China the second leading country to exploit such deposits. With the increasing interest in Chinese Carlin-type gold deposits, some western companies and geologists desire to get more information about these Chinese deposits. This seems to have been very difficult because the literature was in Chinese. It is estimated that several hundred scientific publications (including papers, books, and technical reports) have been published. This database of Chinese Carlin-type Gold deposits is built on the documentation published during the most recent 10 years and includes six subjects, which consist of 165 records and 30 fields. A new Proterozoic-age sedimentary-rock-hosted gold deposit in northeastern P.R. China also is described. Note that for the old version 1.1 on the CD-ROM, the latitude and longitude locations of the mineral occurrences have been estimated from sketch maps and journal articles and are not intended for digital analysis. One of the improvements in this version 1.2 is the accuracy of geographic data. Version 1.3 updates to the database and includes maps

  7. Global Journal of Geological Sciences - Vol 7, No 1 (2009)

    African Journals Online (AJOL)

    The geologic setting, physico-chemical characteristics and utilization scheme of spring ... Subsurface temperatures, geothermal gradients and hydrocarbon studies in the ... Towards achieving sustainable water resources managemt in Nigeria ...

  8. Global Journal of Geological Sciences - Vol 9, No 2 (2011)

    African Journals Online (AJOL)

    Preliminary geological and radiometric studies of granitoids of Zing-Monkin area, Adamawa Massif, Ne Nigeria · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. IV Haruna, DM Orazulike, AB Ofulume, 123-134 ...

  9. The role of post-collisional strike-slip tectonics in the geological evolution of the late Neoproterozoic volcano-sedimentary Guaratubinha Basin, southern Brazil

    Science.gov (United States)

    Barão, Leonardo M.; Trzaskos, Barbara; Vesely, Fernando F.; de Castro, Luís Gustavo; Ferreira, Francisco J. F.; Vasconcellos, Eleonora M. G.; Barbosa, Tiago C.

    2017-12-01

    The Guaratubinha Basin is a late Neoproterozoic volcano-sedimentary basin included in the transitional-stage basins of the South American Platform. The aim of this study is to investigate its tectonic evolution through a detailed structural analysis based on remote sensing and field data. The structural and aerogeophysics data indicate that at least three major deformational events affected the basin. Event E1 caused the activation of the two main basin-bounding fault zones, the Guaratubinha Master Fault and the Guaricana Shear Zone. These structures, oriented N20-45E, are associated with well-defined right-lateral to oblique vertical faults, conjugate normal faults and vertical flow structures. Progressive transtensional deformation along the two main fault systems was the main mechanism for basin formation and the deposition of thick coarse-grained deposits close to basin-borders. The continuous opening of the basin provided intense intermediate and acid magmatism as well as deposition of volcaniclastic sediments. Event E2 characterizes generalized compression, recorded as minor thrust faults with tectonic transport toward the northwest and left-lateral activation of the NNE-SSW Palmital Shear Zone. Event E3 is related to the Mesozoic tectonism associated with the South Atlantic opening, which generated diabase dykes and predominantly right-lateral strike-slip faults oriented N10-50W. Its rhomboidal geometry with long axis parallel to major Precambrian shear zones, the main presence of high-angle, strike-slip or oblique faults, the asymmetric distribution of geological units and field evidence for concomitant Neoproterozoic magmatism and strike-slip movements are consistent with pull-apart basins reported in the literature.

  10. Geologic mapping of the Amirani-Gish Bar region of Io: Implications for the global geologic mapping of Io

    Science.gov (United States)

    Williams, D.A.; Keszthelyi, L.P.; Crown, D.A.; Jaeger, W.L.; Schenk, P.M.

    2007-01-01

    We produced the first geologic map of the Amirani-Gish Bar region of Io, the last of four regional maps generated from Galileo mission data. The Amirani-Gish Bar region has five primary types of geologic materials: plains, mountains, patera floors, flows, and diffuse deposits. The flows and patera floors are thought to be compositionally similar, but are subdivided based on interpretations regarding their emplacement environments and mechanisms. Our mapping shows that volcanic activity in the Amirani-Gish Bar region is dominated by the Amirani Eruptive Center (AEC), now recognized to be part of an extensive, combined Amirani-Maui flow field. A mappable flow connects Amirani and Maui, suggesting that Maui is fed from Amirani, such that the post-Voyager designation "Maui Eruptive Center" should be revised. Amirani contains at least four hot spots detected by Galileo, and is the source of widespread bright (sulfur?) flows and active dark (silicate?) flows being emplaced in the Promethean style (slowly emplaced, compound flow fields). The floor of Gish Bar Patera has been partially resurfaced by dark lava flows, although other parts of its floor are bright and appeared unchanged during the Galileo mission. This suggests that the floor did not undergo complete resurfacing as a lava lake as proposed for other ionian paterae. There are several other hot spots in the region that are the sources of both active dark flows (confined within paterae), and SO2- and S2-rich diffuse deposits. Mapped diffuse deposits around fractures on mountains and in the plains appear to serve as the source for gas venting without the release of magma, an association previously unrecognized in this region. The six mountains mapped in this region exhibit various states of degradation. In addition to gaining insight into this region of Io, all four maps are studied to assess the best methodology to use to produce a new global geologic map of Io based on the newly released, combined Galileo

  11. Magmatism in the brazilian sedimentary basins and the petroleum geology; Magmatismo nas bacias sedimentares brasileiras e sua influencia na geologia do petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Thomaz Filho, Antonio; Antonioli, Luzia [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Faculdade de Geologia]. E-mails: antoniothomaz@globo.com; antonioli@novanet.com.br; Mizusaki, Ana Maria Pimentel [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Inst. de Geociencias]. E-mail: ana.mizusaki@ufrgs.br

    2008-06-15

    In the recent years, the researches on the magmatic events that occurred in the Brazilian sedimentary basins had shown the importance of these episodes for the hydrocarbons exploration. The generation (heating), migration (structural and petrographic alterations), accumulation (basalt fractures) and migrations barriers (sills and dykes) of the hydrocarbons, produced for these rocks, are cited in the marginal and intra continental Brazilian basins. The magmatism produce the temperature increase in the sedimentary basin, around its intrusion, and this propitiate the maturation of the organic matter contained in the hydrocarbons generating rocks of the basin. At the same time, has been verified that the contacts dykes/sedimentary rocks can represent important ways for the hydrocarbons migrations. Recent studies have shown that the magmatism, in its extrusive manifestations, can be analyzed in view of the possibility of having acted as effective hydrocarbon seals and, in consequence, making possible the accumulation of hydrocarbons generated in the underlying sediments. The magmatism of predominantly basic to intermediary character is generated in the asthenosphere, that is, below the lithosphere. The dykes that had introduced in the basement of our sedimentary basins are good heat conductors and we can expect the geothermal gradients increase in the overlapped sedimentary deposits. The more detailed study of the magmatic processes in the Brazilian sedimentary basins must lead to new forms of hydrocarbons exploration in our sedimentary basins, also in those basins where the traditional exploration activities have not occasioned the waited expected successes. (author)

  12. Geologic map of outcrop areas of sedimentary units in the eastern part of the Hailey 1 degree x 2 degrees quadrangle and part of the southern part of the Challis 1 degree x 2 degrees quadrangle, south-central Idaho

    Science.gov (United States)

    Link, P.K.; Mahoney, J.B.; Bruner, D.J.; Batatian, L.D.; Wilson, Eric; Williams, F.J.C.

    1995-01-01

    The paper version of the Geologic map of outcrop areas of sedimentary units in the eastern part of the Hailey 1x2 Quadrangle and part of the southern part of the Challis 1x2 Quadrangle, south-central Idaho was compiled by Paul Link and others in 1995. The plate was compiled on a 1:100,000 scale topographic base map. TechniGraphic System, Inc. of Fort Collins Colorado digitized this map under contract for N.Shock. G.Green edited and prepared the digital version for publication as a GIS database. The digital geologic map database can be queried in many ways to produce a variety of geologic maps.

  13. Geology

    Data.gov (United States)

    Kansas Data Access and Support Center — This database is an Arc/Info implementation of the 1:500,000 scale Geology Map of Kansas, M­23, 1991. This work wasperformed by the Automated Cartography section of...

  14. Petrological-geochemical characteristics of coarse-grained clastic sedimentary rocks of Quantou Formation, Cretaceous in Songliao basin and their geological significance

    International Nuclear Information System (INIS)

    Wang Gan; Zhang Bangtong

    2005-01-01

    Clastic sedimentary rocks of Quantou Formation, Cretaceous in Qing-an area, Songliao basin are mainly composed of sandstone, mudstone and siltstone. The petrological-chemical analysis of clastic sedimentary rocks from Quantou Formation, Cretaceous indicates that their lithology mainly consists of arkose, shale and minor rock debris sandstone and greywacke by chemical classification of bulk elements. REE distribution pattern displays the apparent enrichment of LREE and negative anomaly of Eu and is similar to that of NASC and PAAS. The ratio of trace-element in sedimentary rocks to that of upper crust shows gentle character. All the above features indicate that these sedimentary rocks were slowly deposited under weakly active tectonic setting. They are sediments typical for passive continental margin and active continental margin. It is suggested that material source of clastic sediments of Quantou Formation, Cretaceous in Qing-an area, Songliao basin was originated from Hercynian granite of Zhangguangchai Mountain, and the granite was originated from upper crust. (authors)

  15. Soils and Global Change in the Carbon Cycle over Geological Time

    Science.gov (United States)

    Retallack, G. J.

    2003-12-01

    sedimentary rocks; organic matter burial is an important long-term control on CO2 levels in the atmosphere (Berner and Kothavala, 2001). The magnitudes of carbon pools and fluxes involved provide a perspective on the importance of soils compared with other carbon reservoirs ( Figure 1). (6K)Figure 1. Pools and fluxes of reduced carbon (bold) and oxidized carbon (regular) in Gt in the pre-industrial carbon cycle (sources Schidlowski and Aharon, 1992; Siegenthaler and Sarmiento, 1993; Stallard, 1998). Before industrialization, there was only 600 Gt (1 Gt=1015g) of carbon in CO2 and methane in the atmosphere, which is about the same amount as in all terrestrial biomass, but less than half of the reservoir of soil organic carbon. The ocean contained only ˜3 Gt of biomass carbon. The deep ocean and sediments comprised the largest reservoir of bicarbonate and organic matter, but that carbon has been kept out of circulation from the atmosphere for geologically significant periods of time (Schidlowski and Aharon, 1992). Humans have tapped underground reservoirs of fossil fuels, and our other perturbations of the carbon cycle have also been significant ( Vitousek et al., 1997b; see Chapter 8.10).Atmospheric increase of carbon in CO2 to 750 Gt C by deforestation and fossil fuel burning has driven ongoing global warming, but is not quite balanced by changes in the other carbon reservoirs leading to search for a "missing sink" of some 1.8±1.3 GtC, probably in terrestrial organisms, soils, and sediments of the northern hemisphere (Keeling et al., 1982; Siegenthaler and Sarmiento, 1993; Stallard, 1998). Soil organic matter is a big, rapidly cycling reservoir, likely to include much of this missing sink.During the geological past, the sizes of, and fluxes between, these reservoirs have varied enormously as the world has alternated between greenhouse times of high carbon content of the atmosphere, and icehouse times of low carbon content of the atmosphere. Oscillations in the atmospheric

  16. Surveying Geology Concepts in Education Standards for a Rapidly Changing Global Context

    Science.gov (United States)

    Guffey, Sarah K.; Slater, Stephanie J.; Schleigh, Sharon P.; Slater, Timothy F.; Heyer, Inge

    2016-01-01

    Internationally much attention is being paid to which of a seemingly endless list of scientific concepts should be taught to schoolchildren to enable them to best participate in the global economy of the 21st Century. In regards to science education, the concepts framing the subject of geology holds exalted status as core scientific principles in…

  17. Reconciling late Quaternary transgressions in the Bohai Sea, China to the global sea level changes, and new linkage of sedimentary records to three astronomical rhythms

    Science.gov (United States)

    Yi, Liang

    2013-04-01

    Terminations. Science 326, 248-252. Ding, Z.L., Yu, Z.W., Rutter, N.W., Liu, T.S., 1994. Towards an orbital time scale for chinese loess deposits. Quaternary Science Reviews 13, 39-70. IOCAS (Institute of Oceanology, Chinese Academy of Sciences), 1985. Bohai Sea Geology. Science Press, Beijing, China. Liu, T., 2009. Loess and Arid Environment. Anhui Science & Techonology Press, Hefei, China. Wang, Y., Cheng, H., Edwards, R.L., An, Z., Wu, J., Chen, C.-C., Dorale, J.A., 2001. A High-Resolution Absolute-Dated Late Pleistocene Monsoon Record from Hulu Cave, China. Science 294, 2345-2348. Wang, Y., Cheng, H., Edwards, R.L., Kong, X., Shao, X., Chen, S., Wu, J., Jiang, X., Wang, X., An, Z., 2008. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature 451, 1090-1093. Yi, L., Yu, H., Ortiz, J.D., Xu, X., Chen, S., Ge, J., Hao, Q., Yao, J., Shi, X., Peng, S., 2012a. Late Quaternary linkage of sedimentary records to three astronomical rhythms and the Asian monsoon, inferred from a coastal borehole in the south Bohai Sea, China. Palaeogeography, Palaeoclimatology, Palaeoecology 329-310, 101-117. Yi, L., Lai, Z.P., Yu, H.J., Xu, X.Y., Su, Q., Yao, J., Wang, X.L., Shi, X., 2012b. Chronologies of sedimentary changes in the south Bohai Sea, China: Constraints from luminescence and radiocarbon dating. Boreas, doi: 10.1111/j.1502-3885.2012.00271.x. Yi, L., Yu, H.J., Ortiz, J.D., Xu, X.Y., Qiang, X.K., Huang, H.J., Shi, X., Deng, C.L., 2012c. A reconstruction of late Pleistocene relative sea level in the south Bohai Sea, China, based on sediment grain-size analysis. Sedimentary Geology 281, 88-100. Zhao, S., Yang, G., Cang, S., Zhang, H., Huang, Q., Xia, D., Wang, Y., Liu, F., Liu, C., 1978. Transgression's stratas and shoreline changes in the south coast of Bohai Bay, China. Oceanologia et Limnologia Sinica 9, 15-25.

  18. Application of /sup 14/C-dating to sedimentary geology and climatology: Sea-level and climate change during the Holocene

    Energy Technology Data Exchange (ETDEWEB)

    Nakai, Nobuyuki; Ohishi, Shyoji; Kuriyama, Toyoko; Nakamura, Toshio

    1987-11-01

    AMS /sup 14/C dating of small sized fossil shells, wood chips and sedimentary humic matter has been applied to the investigation of paleoclimatic and sea-level changes in the Holocene, using three estuarine and brackish lake sediment cores, drilled in Kawasaki city and Lake Hamanako, Japan. Precise and detailed ages at differing depths clarified large transitions of Holocene sedimentation rates, of two orders of magnitude. The vertical variation in delta/sup 13/C and C/N results for sedimentary organic matter, combined with AMS /sup 14/C ages, established continous climatic and sea-level fluctuation patterns through time and indicated the existence of neoglaciation coincident with the marine regression at 7500 to 7000 yr BP.

  19. Building a Bridge to Deep Time: Sedimentary Systems Across Timescales

    Science.gov (United States)

    Romans, B.; Castelltort, S.; Covault, J. A.; Walsh, J. P.

    2013-12-01

    It is increasingly important to understand the complex and interdependent processes associated with sediment production, transport, and deposition at timescales relevant to civilization (annual to millennial). However, predicting the response of sedimentary systems to global environmental change across a range of timescales remains a significant challenge. For example, a significant increase in global average temperature at the Paleocene-Eocene boundary (55.8 Ma) is interpreted to have occurred over millennial timescales; however, the specific response of sedimentary systems (e.g., timing and magnitude of sediment flux variability in river systems) to that forcing is debated. Thus, using such environmental perturbations recorded in sedimentary archives as analogs for ongoing/future global change requires improved approaches to bridging across time. Additionally, the ability to bridge timescales is critical for addressing other questions about sedimentary system behavior, including signal propagation and signal versus ';noise' in the record. The geologic record provides information that can be used to develop a comprehensive understanding of process-response behavior at multiple timescales. The geomorphic ';snapshot' of present-day erosional and depositional landscapes can be examined to reconstruct the history of processes that created the observable configurations. Direct measurement and monitoring of active processes are used to constrain conceptual and numerical models and develop sedimentary system theory. But real-time observations of active Earth-surface processes are limited to the very recent, and how such processes integrate over longer timescales to transform into strata remains unknown. At longer timescales (>106 yr), the stratigraphic record is the only vestige of ancient sedimentary systems. Stratigraphic successions contain a complex record of sediment deposition and preservation, as well as the detrital material that originated in long since denuded

  20. U.S. Geological Survey Global Seismographic Network - Five-Year Plan 2006-2010

    Science.gov (United States)

    Leith, William S.; Gee, Lind S.; Hutt, Charles R.

    2009-01-01

    The Global Seismographic Network provides data for earthquake alerting, tsunami warning, nuclear treaty verification, and Earth science research. The system consists of nearly 150 permanent digital stations, distributed across the globe, connected by a modern telecommunications network. It serves as a multi-use scientific facility and societal resource for monitoring, research, and education, by providing nearly uniform, worldwide monitoring of the Earth. The network was developed and is operated through a partnership among the National Science Foundation (http://www.nsf.gov), the Incorporated Research Institutions for Seismology (http://www.iris.edu/hq/programs/gsn), and the U.S. Geological Survey (http://earthquake.usgs.gov/gsn).

  1. Capture and geological sequestration of CO2: fighting against global warming

    International Nuclear Information System (INIS)

    Czernichowski-Lauriol, I.

    2006-01-01

    In order to take up the global warming challenge, a set of emergency measures is to be implemented: energy saving, clean transportation systems, development of renewable energy sources.. CO 2 sequestration of massive industrial emission sources inside deep geologic formations is another promising solution, which can contribute to the division by two of the world CO 2 emissions between today and 2050. The CO 2 capture and sequestration industry is developing. Research projects and pilot facilities are on the increase over the world. Their aim is to warrant the efficiency and security of this technology over the centuries to come. (J.S.)

  2. Geodatabase model for global geologic mapping: concept and implementation in planetary sciences

    Science.gov (United States)

    Nass, Andrea

    2017-04-01

    One aim of the NASA Dawn mission is to generate global geologic maps of the asteroid Vesta and the dwarf planet Ceres. To accomplish this, the Dawn Science Team followed the technical recommendations for cartographic basemap production. The geological mapping campaign of Vesta was completed and published, but mapping of the dwarf planet Ceres is still ongoing. The tiling schema for the geological mapping is the same for both planetary bodies and for Ceres it is divided into two parts: four overview quadrangles (Survey Orbit, 415 m/pixel) and 15 more detailed quadrangles (High Altitude Mapping HAMO, 140 m/pixel). The first global geologic map was based on survey images (415 m/pixel). The combine 4 Survey quadrangles completed by HAMO data served as basis for generating a more detailed view of the geologic history and also for defining the chronostratigraphy and time scale of the dwarf planet. The most detailed view can be expected within the 15 mapping quadrangles based on HAMO resolution and completed by the Low Altitude Mapping (LAMO) data with 35 m/pixel. For the interpretative mapping process of each quadrangle one responsible mapper was assigned. Unifying the geological mapping of each quadrangle and bringing this together to regional and global valid statements is already a very time intensive task. However, another challenge that has to be accomplished is to consider how the 15 individual mappers can generate one homogenous GIS-based project (w.r.t. geometrical and visual character) thus produce a geologically-consistent final map. Our approach this challenge was already discussed for mapping of Vesta. To accommodate the map requirements regarding rules for data storage and database management, the computer-based GIS environment used for the interpretative mapping process must be designed in a way that it can be adjusted to the unique features of the individual investigation areas. Within this contribution the template will be presented that uses standards

  3. An analysis of fracture trace patterns in areas of flat-lying sedimentary rocks for the detection of buried geologic structure. [Kansas and Texas

    Science.gov (United States)

    Podwysocki, M. H.

    1974-01-01

    Two study areas in a cratonic platform underlain by flat-lying sedimentary rocks were analyzed to determine if a quantitative relationship exists between fracture trace patterns and their frequency distributions and subsurface structural closures which might contain petroleum. Fracture trace lengths and frequency (number of fracture traces per unit area) were analyzed by trend surface analysis and length frequency distributions also were compared to a standard Gaussian distribution. Composite rose diagrams of fracture traces were analyzed using a multivariate analysis method which grouped or clustered the rose diagrams and their respective areas on the basis of the behavior of the rays of the rose diagram. Analysis indicates that the lengths of fracture traces are log-normally distributed according to the mapping technique used. Fracture trace frequency appeared higher on the flanks of active structures and lower around passive reef structures. Fracture trace log-mean lengths were shorter over several types of structures, perhaps due to increased fracturing and subsequent erosion. Analysis of rose diagrams using a multivariate technique indicated lithology as the primary control for the lower grouping levels. Groupings at higher levels indicated that areas overlying active structures may be isolated from their neighbors by this technique while passive structures showed no differences which could be isolated.

  4. Evolution of the Toarcian (Early Jurassic) carbon-cycle and global climatic controls on local sedimentary processes (Cardigan Bay Basin, UK)

    Science.gov (United States)

    Xu, Weimu; Ruhl, Micha; Jenkyns, Hugh C.; Leng, Melanie J.; Huggett, Jennifer M.; Minisini, Daniel; Ullmann, Clemens V.; Riding, James B.; Weijers, Johan W. H.; Storm, Marisa S.; Percival, Lawrence M. E.; Tosca, Nicholas J.; Idiz, Erdem F.; Tegelaar, Erik W.; Hesselbo, Stephen P.

    2018-02-01

    The late Early Jurassic Toarcian Stage represents the warmest interval of the Jurassic Period, with an abrupt rise in global temperatures of up to ∼7 °C in mid-latitudes at the onset of the early Toarcian Oceanic Anoxic Event (T-OAE; ∼183 Ma). The T-OAE, which has been extensively studied in marine and continental successions from both hemispheres, was marked by the widespread expansion of anoxic and euxinic waters, geographically extensive deposition of organic-rich black shales, and climatic and environmental perturbations. Climatic and environmental processes following the T-OAE are, however, poorly known, largely due to a lack of study of stratigraphically well-constrained and complete sedimentary archives. Here, we present integrated geochemical and physical proxy data (high-resolution carbon-isotope data (δ13 C), bulk and molecular organic geochemistry, inorganic petrology, mineral characterisation, and major- and trace-element concentrations) from the biostratigraphically complete and expanded entire Toarcian succession in the Llanbedr (Mochras Farm) Borehole, Cardigan Bay Basin, Wales, UK. With these data, we (1) construct the first high-resolution biostratigraphically calibrated chemostratigraphic reference record for nearly the complete Toarcian Stage, (2) establish palaeoceanographic and depositional conditions in the Cardigan Bay Basin, (3) show that the T-OAE in the hemipelagic Cardigan Bay Basin was marked by the occurrence of gravity-flow deposits that were likely linked to globally enhanced sediment fluxes to continental margins and deeper marine (shelf) basins, and (4) explore how early Toarcian (tenuicostatum and serpentinum zones) siderite formation in the Cardigan Bay Basin may have been linked to low global oceanic sulphate concentrations and elevated supply of iron (Fe) from the hinterland, in response to climatically induced changes in hydrological cycling, global weathering rates and large-scale sulphide and evaporite deposition.

  5. Atmospheric methane from organic carbon mobilization in sedimentary basins — The sleeping giant?

    Science.gov (United States)

    Kroeger, K. F.; di Primio, R.; Horsfield, B.

    2011-08-01

    The mass of organic carbon in sedimentary basins amounts to a staggering 10 16 t, dwarfing the mass contained in coal, oil, gas and all living systems by ten thousand-fold. The evolution of this giant mass during subsidence and uplift, via chemical, physical and biological processes, not only controls fossil energy resource occurrence worldwide, but also has the capacity for driving global climate: only a tiny change in the degree of leakage, particularly if focused through the hydrate cycle, can result in globally significant greenhouse gas emissions. To date, neither climate models nor atmospheric CO 2 budget estimates have quantitatively included methane from thermal or microbial cracking of sedimentary organic matter deep in sedimentary basins. Recent estimates of average low latitude Eocene surface temperatures beyond 30 °C require extreme levels of atmospheric CO 2. Methane degassing from sedimentary basins may be a mechanism to explain increases of atmospheric CO 2 to values as much as 20 times higher than pre-industrial values. Increased natural gas emission could have been set in motion either by global tectonic processes such as pulses of activity in the global alpine fold belt, leading to increased basin subsidence and maturation rates in the prolific Jurassic and Cretaceous organic-rich sediments, or by increased magmatic activity such as observed in the northern Atlantic around the Paleocene-Eocene boundary. Increased natural gas emission would have led to global warming that was accentuated by long lasting positive feedback effects through temperature transfer from the surface into sedimentary basins. Massive gas hydrate dissociation may have been an additional positive feedback factor during hyperthermals superimposed on long term warming, such as the Paleocene-Eocene Thermal Maximum (PETM). As geologic sources may have contributed over one third of global atmospheric methane in pre-industrial time, variability in methane flux from sedimentary

  6. Metallogeny of Mesoproterozoic Sedimentary Rocks in Idaho and Montana - Studies by the Mineral Resources Program, U.S. Geological Survey, 2004-2007

    Science.gov (United States)

    O'Neill, J. Michael

    2007-01-01

    Preface By J.Michael O'Neill The major emphasis of this project was to extend and refine the known Mesoproterozoic geologic and metallogenic framework of the region along and adjacent to the Idaho-Montana boundary north of the Snake River Plain. The Mesoproterozoic metasedimentary rocks in this part of east-central Idaho host important Cu-Co-Au stratabound mineral resources as well as younger, epigenetic hydrothermal, sulfide base-metal mineral deposits. Two tasks of this study were to more accurately understand and portray the character and origin of cobalt-copper-gold deposits that compose the Idaho cobalt belt and specifically to analyze ore mineralogy and metallogenesis within the Blackbird mining district in the central part of the belt. Inasmuch as the cobalt belt is confined to the Mesoproterozoic Lemhi Group strata of east-central Idaho, geologic investigations were also undertaken to determine the relationship between strata of the Lemhi Group and the more extensive, noncobalt-bearing, Belt-Purcell Supergroup strata to the north and northwest. Abrupt lateral differences in the character and thickness of stratigraphic units in the Mesoproterozoic Lemhi Basin may indicate differential sedimentation in contemporaneous fault-bounded subbasins. It is suggested that northeast-trending basement faults of the Great Falls tectonic zone controlled development of the subbasins. O'Neill and others (chapter A, this volume) document a second major basement fault in this area, the newly recognized northwest-striking Great Divide megashear, a zone 1-2 km wide of left-lateral strike-slip faults active during Mesoproterozoic sedimentation and bounding the Cu-Co belt on the northwest. The megashear is a crustal-scale tectonic feature that separates Lemhi Group strata from roughly coeval Belt-Purcell strata to the north and northwest in Montana and northern Idaho. The results of numerous geologic investigations of the Cu- and Co-bearing Mesoproterozoic rocks of east

  7. Regional evaluation and primary geological structural and metallogenical research of great Kavir basin as view of possibility formation of sedimentary-surficial Uranium mineralization

    International Nuclear Information System (INIS)

    Kamali Sadr, S.

    2006-01-01

    Great Kavir basin is the largest inner basin in Iran that extended about 90000 km 2. This basin is situated in the centre of lran , to the south from Alborz mountain range and elongated in the sub- latitudinal trend and its construction is asymmetric. The basin cover consists generally of complicated sequence of continental - marine Oligocene - Miocene molasses. According to drainage systems - conditions, molassoid cycles, alluvial, alluvial - deltaic and lacustrine sediments, climate, morphological conditions and metallogenic and structural features, Great Kavir depression generally is favorable for exigence and surficial uranium deposits (vally - fill, flood plain, deltaic and playa). Uranium occurrences that are Known in the southern and north eastern part of the margent Great Kavir basin, are Arosan, Irekan and Mohammad Abad. Similar geological - structural conditions for uranium mineralization is possible in the margent of Great Kavir basin

  8. GIS-project: geodynamic globe for global monitoring of geological processes

    Science.gov (United States)

    Ryakhovsky, V.; Rundquist, D.; Gatinsky, Yu.; Chesalova, E.

    2003-04-01

    reflect in diagram form a total combination and dynamics of data on the geological structure, geophysical fields, seismicity, geomagnetism, composition of rock complexes, and metalloge-ny of different areas on the Earth's surface. They give us possibility to scale, detail, and develop 3D spatial visualization. Information filling the covers could be replenished as in the existing so in newly formed databases with new data. The integrated analyses of the data allows us more precisely to define our ideas on regularities in development of lithosphere and mantle unhomogeneities using some original technologies. It also enables us to work out 3D digital models for geodynamic development of tectonic zones in convergent and divergent plate boundaries with the purpose of integrated monitoring of mineral resources and establishing correlation between seismicity, magmatic activity, and metallogeny in time-spatial co-ordinates. The created multifold geoinformation system gives a chance to execute an integral analyses of geoinformation flows in the interactive regime and, in particular, to establish some regularities in the time-spatial distribution and dynamics of main structural units in the lithosphere, as well as illuminate the connection between stages of their development and epochs of large and supperlarge mineral deposit formation. Now we try to use the system for prediction of large oil and gas concentration in the main sedimentary basins. The work was supported by RFBR, (grants 93-07-14680, 96-07-89499, 99-07-90030, 00-15-98535, 02-07-90140) and MTC.

  9. Geology for Global Development: Mobilising and equipping young geologists to engage in disaster risk reduction

    Science.gov (United States)

    Gill, Joel

    2016-04-01

    Geology for Global Development (GfGD) is a not-for-profit organisation working to mobilise and equip geologists to engage in all aspects of sustainable development, including disaster risk reduction (DRR). Geologists have a crucial role to play in DRR, and the recently agreed Sendai Framework for DRR 2015-2030. This framework aims to significantly reduce loss of lives and livelihoods due to disasters. The geology community have an understanding of the Earth, its physical structure, and the processes by which it is constantly being shaped which are of particular relevance to Priorities for Action 1 and 4 noted within the Sendai Framework. Effective engagement by geologists, however, requires many skills beyond the standard geology curriculum. Cultural understanding, cross-disciplinary communication, diplomacy, community mobilization and participation, knowledge exchange, and an understanding of social science research tools are commonly necessary for effective research and engagement in the science-policy-practice interface. Topical and disciplinary knowledge, such as understanding social vulnerability, international policy frameworks and development theory are also rarely included in the education and professional training of a young geologist. Through the work of GfGD, we are training young geologists with these skills and the supporting knowledge required to make an effective contribution to reducing disaster risk, support civil society, empower communities and help to strengthen resilience. University chapters have been established in 14 major UK and Irish universities, coordinating extra-curricular seminars, workshops and discussion activities. Our work is currently focused on supporting young geologists, but we are increasingly a respected voice at international geoscience forums that gather a wide range of students and professionals. Wider (national and international) activities include conferences, placements and facilitating youth engagement in education

  10. Geologic setting, sedimentary architecture, and paragenesis of the Mesoproterozoic sediment-hosted Sheep Creek Cu-Co-Ag deposit, Helena embayment, Montana

    Science.gov (United States)

    Graham, Garth; Hitzman, Murray W.; Zieg, Jerry

    2012-01-01

    The northern margin of the Helena Embayment contains extensive syngenetic to diagenetic massive pyrite horizons that extend over 25 km along the Volcano Valley-Buttress fault zone and extend up to 8 km basinward (south) within the Mesoproterozoic Newland Formation. The Sheep Creek Cu-Co deposit occurs within a structural block along a bend in the fault system, where replacement-style chalcopyrite mineralization is spatially associated mostly with the two stratigraphically lowest massive pyrite zones. These mineralized pyritic horizons are intercalated with debris flows derived from synsedimentary movement along the Volcano Valley-Buttress fault zone. Cominco American Inc. delineated a geologic resource of 4.5 Mt at 2.5% Cu and 0.1% Co in the upper sulfide zone and 4 Mt at 4% Cu within the lower sulfide zone. More recently, Tintina Resources Inc. has delineated an inferred resource of 8.48 Mt at 2.96% Cu, 0.12% Co, and 16.4 g/t Ag in the upper sulfide zone. The more intact upper sulfide zone displays significant thickness variations along strike thought to represent formation in at least three separate subbasins. The largest accumulation of mineralized sulfide in the upper zone occurs as an N-S–trending body that thickens southward from the generally E trending Volcano Valley Fault and probably occupies a paleograben controlled by normal faults in the hanging wall of the Volcano Valley Fault. Early microcrystalline to framboidal pyrite was accompanied by abundant and local barite deposition in the upper and lower sulfide zones, respectively. The sulfide bodies underwent intense (lower sulfide zone) to localized (upper sulfide zone) recrystallization and overprinting by coarser-grained pyrite and minor marcasite that is intergrown with and replaces dolomite. Silicification and paragenetically late chalcopyrite, along with minor tennantite in the upper sulfide zone, replaces fine-grained pyrite, barite, and carbonate. The restriction of chalcopyrite to inferred

  11. Uruguayan South Geology

    International Nuclear Information System (INIS)

    Guillemain, H.

    1980-01-01

    This monograph is about the sedimentary geological formation in the southern of Uruguay. According to the previous Gondwana studies there are several concordances between the Uruguayan and Brazilian ground.

  12. Material Units, Structures/Landforms, and Stratigraphy for the Global Geologic Map of Ganymede (1:15M)

    Science.gov (United States)

    Patterson, G. Wesley; Head, James W.; Collins, Geoffrey C.; Pappalardo, Robert T.; Prockter, Louis M.; Lucchitta, Baerbel K.

    2008-01-01

    In the coming year a global geological map of Ganymede will be completed that represents the most recent understanding of the satellite on the basis of Galileo mission results. This contribution builds on important previous accomplishments in the study of Ganymede utilizing Voyager data and incorporates the many new discoveries that were brought about by examination of Galileo data. Material units have been defined, structural landforms have been identified, and an approximate stratigraphy has been determined utilizing a global mosaic of the surface with a nominal resolution of 1 km/pixel assembled by the USGS. This mosaic incorporates the best available Voyager and Galileo regional coverage and high resolution imagery (100-200 m/pixel) of characteristic features and terrain types obtained by the Galileo spacecraft. This map has given us a more complete understanding of: 1) the major geological processes operating on Ganymede, 2) the characteristics of the geological units making up its surface, 3) the stratigraphic relationships of geological units and structures, and 4) the geological history inferred from these relationships. A summary of these efforts is provided here.

  13. Geological history of uranium

    International Nuclear Information System (INIS)

    Niini, Heikki

    1989-01-01

    Uranium is widely distributed in continental geological environments. The order of magnitude of uranium abundance in felsitic igneous rocks is 2-15 ppm, whereas it is less than 1 ppm in mafic rocks. Sedimentary rocks show a large range: from less than 0.1 ppm U in certain evaporites to over 100 ppm in phosphate rocks and organogenic matter. The content of U in seawater varies from 0.0005 to 0.005 ppm. The isotopic ratio U-238/U-235 is presently 137.5+-0.5, having gradually increased during geological time. The third natural isotope is U-234. On the basis of three fundamental economic criteria for ore reserves assessment (geological assurance, technical feasibility, and the grade and quantity of the deposits), the author finally comes to the following conclusions: Although the global uranium ores are not geologically renewable but continuously mined, they still, due to exploration and technical development, will tend to progressively increase for centuries to come

  14. The Mountains of Io: Global and Geological Perspectives from Voyager and Galileo

    Science.gov (United States)

    Schenk, Paul; Hargitai, Henrik; Wilson, Ronda; McEwen, Alfred; Thomas, Peter; Bredekamp, Joe (Technical Monitor)

    2001-01-01

    To search for local and global scale geologic associations that may be related to the internal dynamics of Io, we have completed a global catalog of all mountains and volcanic centers. We have identified 115 mountain structures (covering approx. 3% of the surface) and 541 volcanic centers, including paterae (calderas and dark spots) and shield volcanoes. The average length of an Ionian mountain is 157 km, with the longest being 570 km. The mean height of Ionian mountains is 6.3 km, and the highest known mountain is Boosaule Montes (17.5 +/- 3 km). Five basic morphologic types of mountains have been identified; mesa, plateau peak, ridge, and massif. Very few mountains bear any physical similarity. to classic volcanic landforms, but many resemble flatiron mountains on Earth and are interpreted as tilted crustal blocks. This would be consistent with the hypothesis that most mountains are thrust blocks formed as a result of compressive stresses built up in the lower crust due to the global subsidence of volcanic layers as they are buried over time. More than one mechanism may be responsible for all Ionian mountains, however. The proximity of some mountains to paterae may indicate a direct link between some mountains and volcanism, although it is not always clear which came first. In contrast to earlier studies, a pronounced bimodal pattern is observed in the global distribution of both mountains and volcanic centers. The regions of highest areal densities of volcanic centers are near the sub- and anti-Jovian regions, but are offset roughly 90deg in longitude from the two, regions of greatest concentration of mountains. This anticorrelation may indicate the overprinting of a second stress field on the global compressive stresses due to subsidence. The bimodal distribution of volcanic centers and mountains is consistent with models of asthenospheric tidal heating and internal convection developed by Tackley et al.Over regions of mantle upwelling, compressive stresses in

  15. A preliminary global geologic map of Vesta based on Dawn Survey orbit data

    Science.gov (United States)

    Yingst, R.; Williams, D. A.; Garry, W. B.; Mest, S. C.; Petro, N. E.; Buczkowski, D.; Schenk, P.; Jaumann, R.; Pieters, C. M.; Roatsch, T.; Preusker, F.; Nathues, A.; LeCorre, L.; Reddy, V.; Russell, C. T.; Raymond, C. A.; DeSanctis, C.; Ammannito, E.; Filacchione, G.

    2011-12-01

    NASA's Dawn spacecraft arrived at the asteroid 4Vesta on July 15, 2011, and is now collecting imaging, spectroscopic, and elemental abundance data during its one-year orbital mission. As part of the geological analysis of the surface, we have utilized images and data from the Survey orbital sequence to produce a global map of Vesta's surface. Unit boundaries and feature characteristics were determined primarily from morphologic analysis of image data; projected Framing Camera (FC) images were used as the base map. Spectral information from FC and VIR are used to refine unit contacts and to separate compositional distinctions from differences arising from illumination or other factors. Those units that could be discerned both in morphology and in the color data were interpreted as geologically distinct units. Vesta's surface is highly-cratered; differences in color and albedo are possible indicators of varying thicknesses and areal extents of crater ejecta. The most prominent candidate impact feature dominates the south pole. This feature consists of a depression roughly circular in shape, with a central hill that is characterized by smoother texture and lower albedo distinctive from the lower-lying surrounding terrain. A complex network of deep troughs and ridges cuts through the floor of the feature. Many of these troughs trend north-south, while others appear circumferential to the hill and are truncated by or terminate at orthogonal ridges/grooves. Detailed mapping of these features will provide information on their orientations, possible origin(s), and their relationship, if any, to the central hill. The equator of Vesta is also girdled by a wide set of flat-floored troughs. Their orientation implies that their formation is related to the south polar structure. Several regions on Vesta have a concentration of craters displaying low-albedo interiors or exteriors. These craters may have an exogenic origin, or may be the result of excavation of a thin sub

  16. Geological Corrections in Gravimetry

    Science.gov (United States)

    Mikuška, J.; Marušiak, I.

    2015-12-01

    Applying corrections for the known geology to gravity data can be traced back into the first quarter of the 20th century. Later on, mostly in areas with sedimentary cover, at local and regional scales, the correction known as gravity stripping has been in use since the mid 1960s, provided that there was enough geological information. Stripping at regional to global scales became possible after releasing the CRUST 2.0 and later CRUST 1.0 models in the years 2000 and 2013, respectively. Especially the later model provides quite a new view on the relevant geometries and on the topographic and crustal densities as well as on the crust/mantle density contrast. Thus, the isostatic corrections, which have been often used in the past, can now be replaced by procedures working with an independent information interpreted primarily from seismic studies. We have developed software for performing geological corrections in space domain, based on a-priori geometry and density grids which can be of either rectangular or spherical/ellipsoidal types with cells of the shapes of rectangles, tesseroids or triangles. It enables us to calculate the required gravitational effects not only in the form of surface maps or profiles but, for instance, also along vertical lines, which can shed some additional light on the nature of the geological correction. The software can work at a variety of scales and considers the input information to an optional distance from the calculation point up to the antipodes. Our main objective is to treat geological correction as an alternative to accounting for the topography with varying densities since the bottoms of the topographic masses, namely the geoid or ellipsoid, generally do not represent geological boundaries. As well we would like to call attention to the possible distortions of the corrected gravity anomalies. This work was supported by the Slovak Research and Development Agency under the contract APVV-0827-12.

  17. The GPlates Portal: Cloud-Based Interactive 3D Visualization of Global Geophysical and Geological Data in a Web Browser.

    Science.gov (United States)

    Müller, R Dietmar; Qin, Xiaodong; Sandwell, David T; Dutkiewicz, Adriana; Williams, Simon E; Flament, Nicolas; Maus, Stefan; Seton, Maria

    2016-01-01

    The pace of scientific discovery is being transformed by the availability of 'big data' and open access, open source software tools. These innovations open up new avenues for how scientists communicate and share data and ideas with each other and with the general public. Here, we describe our efforts to bring to life our studies of the Earth system, both at present day and through deep geological time. The GPlates Portal (portal.gplates.org) is a gateway to a series of virtual globes based on the Cesium Javascript library. The portal allows fast interactive visualization of global geophysical and geological data sets, draped over digital terrain models. The globes use WebGL for hardware-accelerated graphics and are cross-platform and cross-browser compatible with complete camera control. The globes include a visualization of a high-resolution global digital elevation model and the vertical gradient of the global gravity field, highlighting small-scale seafloor fabric such as abyssal hills, fracture zones and seamounts in unprecedented detail. The portal also features globes portraying seafloor geology and a global data set of marine magnetic anomaly identifications. The portal is specifically designed to visualize models of the Earth through geological time. These space-time globes include tectonic reconstructions of the Earth's gravity and magnetic fields, and several models of long-wavelength surface dynamic topography through time, including the interactive plotting of vertical motion histories at selected locations. The globes put the on-the-fly visualization of massive data sets at the fingertips of end-users to stimulate teaching and learning and novel avenues of inquiry.

  18. The GPlates Portal: Cloud-Based Interactive 3D Visualization of Global Geophysical and Geological Data in a Web Browser.

    Directory of Open Access Journals (Sweden)

    R Dietmar Müller

    Full Text Available The pace of scientific discovery is being transformed by the availability of 'big data' and open access, open source software tools. These innovations open up new avenues for how scientists communicate and share data and ideas with each other and with the general public. Here, we describe our efforts to bring to life our studies of the Earth system, both at present day and through deep geological time. The GPlates Portal (portal.gplates.org is a gateway to a series of virtual globes based on the Cesium Javascript library. The portal allows fast interactive visualization of global geophysical and geological data sets, draped over digital terrain models. The globes use WebGL for hardware-accelerated graphics and are cross-platform and cross-browser compatible with complete camera control. The globes include a visualization of a high-resolution global digital elevation model and the vertical gradient of the global gravity field, highlighting small-scale seafloor fabric such as abyssal hills, fracture zones and seamounts in unprecedented detail. The portal also features globes portraying seafloor geology and a global data set of marine magnetic anomaly identifications. The portal is specifically designed to visualize models of the Earth through geological time. These space-time globes include tectonic reconstructions of the Earth's gravity and magnetic fields, and several models of long-wavelength surface dynamic topography through time, including the interactive plotting of vertical motion histories at selected locations. The globes put the on-the-fly visualization of massive data sets at the fingertips of end-users to stimulate teaching and learning and novel avenues of inquiry.

  19. A framework for predicting global silicate weathering and CO2 drawdown rates over geologic time-scales.

    Science.gov (United States)

    Hilley, George E; Porder, Stephen

    2008-11-04

    Global silicate weathering drives long-time-scale fluctuations in atmospheric CO(2). While tectonics, climate, and rock-type influence silicate weathering, it is unclear how these factors combine to drive global rates. Here, we explore whether local erosion rates, GCM-derived dust fluxes, temperature, and water balance can capture global variation in silicate weathering. Our spatially explicit approach predicts 1.9-4.6 x 10(13) mols of Si weathered globally per year, within a factor of 4-10 of estimates of global silicate fluxes derived from riverine measurements. Similarly, our watershed-based estimates are within a factor of 4-18 (mean of 5.3) of the silica fluxes measured in the world's ten largest rivers. Eighty percent of total global silicate weathering product traveling as dissolved load occurs within a narrow range (0.01-0.5 mm/year) of erosion rates. Assuming each mol of Mg or Ca reacts with 1 mol of CO(2), 1.5-3.3 x 10(8) tons/year of CO(2) is consumed by silicate weathering, consistent with previously published estimates. Approximately 50% of this drawdown occurs in the world's active mountain belts, emphasizing the importance of tectonic regulation of global climate over geologic timescales.

  20. Sedimentary Basins of the Republic of Yemen : Their Structural Evolution and Geological Characteristics Evolution structurelle et caractéristiques géologiques des bassins sédimentaires de la république du Yemen

    Directory of Open Access Journals (Sweden)

    Beydoun Z. R.

    2006-11-01

    Full Text Available The distribution and evolution of the sedimentary basins of Yemen was, until recently, poorly understood as this was based entirely on surface geology and correlations of the older stratigraphic units which were exposed only in the deeply dissected bordering uplifts of the Gulf of Aden and Red Sea or the high plateau of the north west. Elsewhere cover by the tabular Tertiary sedimentary blanket and the Tertiary Volcanic Group lavas masked the major underlying pre-Cenozoic structural elements and sedimentary successions. Earlier attempts at the delineation of the country's structural framework were, thus, sketchy and/or only partially correct. The discovery of commercial oil and gas in several interior Mesozoic rift basins of Yemen in the late 1980s and in the early 1990s after unification of the former two Yemens, spured many oil companies to enter the exploration race and carry out detailed seismic surveys and intensive exploration drilling in many areas. This resulted in a rapid rise in overall new subsurface geological data acquisition and an increasingly clearer perception of the distribution, orientation and inception times of the main basins. No overall synthesis of results was, however, undertaken since each individual company was primarily concerned with its own concession area and its immediate surroundings. Recent studies involving the review, correlation and synthesis of the mass of new subsurface stratigraphic data in connection with standardisation of lithostratigraphic nomenclature in use in Yemen and its further formalisation in accordance with internationally accepted rules, have, perforce, required the establishment of an overall structural framework within which inter and intra-basinal stratigraphic correlation could be carried out. It is this new framework of depositional basins and interbasinal uplifts that is discussed here. The main Mesozoic basins are related to late Jurassic extension and rifting, principally involving

  1. La migration des hydrocarbures dans les bassins sédimentaires: aspects géologiques et géochimiques Migration of Hydrocarbons in Sedimentary Basins: Geological and Geochemical Aspects

    Directory of Open Access Journals (Sweden)

    Tissot B. P.

    2006-11-01

    expulsion from the source rock where it was formed (primary migration, has long remained one of the least well understood problems in all petroleum geology. The displacement of oil and gas occurs in a separate hydrocarbon phase. Water, which is often considered as the vehicle for oil during migration, effectively plays a negative role. Water saturation must have been sufficiently diminished (by expulsion and hydrocarbon saturation must be sufficiently increased (by generation from kerogen for the flow of a hydrocarbon phase to become possible. The driving force for this expulsion is the pressure gradient. A rise in pressure in the pore volume of source rocks results from three causes (the sedimentary load, the formation of hydrocarbons, and the thermal expansion of water. Microfracturing, which occurs when the internal pressure of fluids exceeds the mechanical strength of the rock, may play an important role. Observations of well documented cases in sedimentary basins are still too rare. In particular, it is difficult to compute the reserves mobilized on the scale of a permit or basin. The numerical modeling of migration combined with that of the formation of oil and gas opens up perspectives in this direction, but it still requires further work. Among the consequences of migration, mention can be made of the possibility of oil/source-rock correlation, the lower content of heavy products in reservoirs than in source rocks, and the role often played by a displacement in which liquid and gaseous hydrocarbons form a single phase that migrates while progressively leaving the heavier fractions behind it, by retrograde condensation.

  2. Evolution of the global water cycle on Mars: The geological evidence

    Science.gov (United States)

    Baker, V. R.; Gulick, V. C.

    1993-01-01

    The geological evidence for active water cycling early in the history of Mars (Noachian geological system or heavy bombardment) consists almost exclusively of fluvial valley networks in the heavily cratered uplands of the planet. It is commonly assumed that these landforms required explanation by atmospheric processes operating above the freezing point of water and at high pressure to allow rainfall and liquid surface runoff. However, it has also been documented that nearly all valley networks probably formed by subsurface outflow and sapping erosion involving groundwater outflow prior to surface-water flow. The prolonged ground-water flow also requires extensive water cycling to maintain hydraulic gradients, but is this done via rainfall recharge, as in terrestrial environments?

  3. U.S. Geological Survey assessment of global potash production and resources—A significant advancement for global development and a sustainable future.

    Science.gov (United States)

    Cocker, Mark D.; Orris, Greta J.; Wynn, Jeff

    2016-01-01

    During the past 15 yr, the global requirement for fertilizers has grown considerably, mainly due to demand by a larger and wealthier world population for more and higher-quality food. The demand and price for potash as a primary fertilizer ingredient have increased in tandem, because of the necessity to increase the quantity and quality of food production on the decreasing amount of available arable land. The primary sources of potash are evaporates, which occur mainly in marine salt basins and a few brine-bearing continental basins. World potash resources are large, but distribution is inequitable and not presently developed in countries where population and food requirements are large and increasing. There is no known substitute for potash in fertilizer, so knowledge of the world’s potash resources is critical for a sustainable future. The U.S. Geological Survey recently completed a global assessment of evaporite-hosted potash resources, which included a geographic information system–based inventory of known potash resources. This assessment included permissive areas or tracts for undiscovered resources at a scale of 1:1,000,000. Assessments of undiscovered potash resources were conducted for a number of the world’s evaporite-hosted potash basins. The data collected provide a major advance in our knowledge of global potash resources that did not exist prior to this study. The two databases include: (1) potash deposits and occurrences, and (2) potash tracts (basins that contain these deposits and occurrences and potentially undiscovered potash deposits). Data available include geology, mineralogy, grade, tonnage, depth, thickness, areal extent, and structure, as well as numerous pertinent references.

  4. A Lithology Based Map Unit Schema For Onegeology Regional Geologic Map Integration

    Science.gov (United States)

    Moosdorf, N.; Richard, S. M.

    2012-12-01

    A system of lithogenetic categories for a global lithological map (GLiM, http://www.ifbm.zmaw.de/index.php?id=6460&L=3) has been compiled based on analysis of lithology/genesis categories for regional geologic maps for the entire globe. The scheme is presented for discussion and comment. Analysis of units on a variety of regional geologic maps indicates that units are defined based on assemblages of rock types, as well as their genetic type. In this compilation of continental geology, outcropping surface materials are dominantly sediment/sedimentary rock; major subdivisions of the sedimentary category include clastic sediment, carbonate sedimentary rocks, clastic sedimentary rocks, mixed carbonate and clastic sedimentary rock, colluvium and residuum. Significant areas of mixed igneous and metamorphic rock are also present. A system of global categories to characterize the lithology of regional geologic units is important for Earth System models of matter fluxes to soils, ecosystems, rivers and oceans, and for regional analysis of Earth surface processes at global scale. Because different applications of the classification scheme will focus on different lithologic constituents in mixed units, an ontology-type representation of the scheme that assigns properties to the units in an analyzable manner will be pursued. The OneGeology project is promoting deployment of geologic map services at million scale for all nations. Although initial efforts are commonly simple scanned map WMS services, the intention is to move towards data-based map services that categorize map units with standard vocabularies to allow use of a common map legend for better visual integration of the maps (e.g. see OneGeology Europe, http://onegeology-europe.brgm.fr/ geoportal/ viewer.jsp). Current categorization of regional units with a single lithology from the CGI SimpleLithology (http://resource.geosciml.org/201202/ Vocab2012html/ SimpleLithology201012.html) vocabulary poorly captures the

  5. The geological heritage of the Kurkur-Dungul area in southern Egypt

    Science.gov (United States)

    Sallam, Emad S.; Ponedelnik, Alena A.; Tiess, Günter; Yashalova, Natalia N.; Ruban, Dmitry A.

    2018-01-01

    The inventory of the geological heritage of Egypt is important for its efficient conservation and usage for the purposes of science, education, and tourism. The field investigations in the Kurkur-Dungul area in southern Egypt have permitted to identify several unique geological features. Their type, rank, relative abundance, and intrinsic diversity, as well as importance of the entire geological heritage of the study area are investigated. Seven geological heritage types are distinguished, namely stratigraphical, sedimentary, palaeogeographical, mineralogical, structural, geomorphological, and economical types. The rank of the features belonging to the listed types ranges from local to global, and the relative abundance and the intrinsic diversity range from low to high. The global rank is established for the sedimentary type, which is determined by the wide distribution of palaeospring tufa deposits. The high relative abundance and intrinsic diversity are established for the geomorphological type. The entire geological heritage of the Kurkur-Dungul area can be employed for diversification of the existing tourism programs offered at the tourist destination of Aswan, as well as for geotourism development. A geopark can be created in the Kurkur-Dungul area for the better exploitation of its geological heritage. The combined development of geological and industrial tourism seems to be possible.

  6. Sedimentary noise and sea levels linked to land-ocean water exchange and obliquity forcing.

    Science.gov (United States)

    Li, Mingsong; Hinnov, Linda A; Huang, Chunju; Ogg, James G

    2018-03-08

    In ancient hothouses lacking ice sheets, the origins of large, million-year (myr)-scale sea-level oscillations remain a mystery, challenging current models of sea-level change. To address this mystery, we develop a sedimentary noise model for sea-level changes that simultaneously estimates geologic time and sea level from astronomically forced marginal marine stratigraphy. The noise model involves two complementary approaches: dynamic noise after orbital tuning (DYNOT) and lag-1 autocorrelation coefficient (ρ 1 ). Noise modeling of Lower Triassic marine slope stratigraphy in South China reveal evidence for global sea-level variations in the Early Triassic hothouse that are anti-phased with continental water storage variations in the Germanic Basin. This supports the hypothesis that long-period (1-2 myr) astronomically forced water mass exchange between land and ocean reservoirs is a missing link for reconciling geological records and models for sea-level change during non-glacial periods.

  7. Assessing offsets between the δ13C of sedimentary components and the global exogenic carbon pool across early Paleogene carbon cycle perturbations

    NARCIS (Netherlands)

    Sluijs, A.; Dickens, G.R.

    2012-01-01

    Negative stable carbon isotope excursions (CIEs) across the Paleocene–Eocene thermal maximum (PETM; ∼56 Ma) range between 2‰ and 7‰, even after discounting sections with truncated records. Individual carbon isotope records differ in shape and magnitude from variations in the global exogenic carbon

  8. Development of the U.S. Geological Survey's PAGER system (Prompt Assessment of Global Earthquakes for Response)

    Science.gov (United States)

    Wald, D.J.; Earle, P.S.; Allen, T.I.; Jaiswal, K.; Porter, K.; Hearne, M.

    2008-01-01

    The Prompt Assessment of Global Earthquakes for Response (PAGER) System plays a primary alerting role for global earthquake disasters as part of the U.S. Geological Survey’s (USGS) response protocol. We provide an overview of the PAGER system, both of its current capabilities and our ongoing research and development. PAGER monitors the USGS’s near real-time U.S. and global earthquake origins and automatically identifies events that are of societal importance, well in advance of ground-truth or news accounts. Current PAGER notifications and Web pages estimate the population exposed to each seismic intensity level. In addition to being a useful indicator of potential impact, PAGER’s intensity/exposure display provides a new standard in the dissemination of rapid earthquake information. We are currently developing and testing a more comprehensive alert system that will include casualty estimates. This is motivated by the idea that an estimated range of possible number of deaths will aid in decisions regarding humanitarian response. Underlying the PAGER exposure and loss models are global earthquake ShakeMap shaking estimates, constrained as quickly as possible by finite-fault modeling and observed ground motions and intensities, when available. Loss modeling is being developed comprehensively with a suite of candidate models that range from fully empirical to largely analytical approaches. Which of these models is most appropriate for use in a particular earthquake depends on how much is known about local building stocks and their vulnerabilities. A first-order country-specific global building inventory has been developed, as have corresponding vulnerability functions. For calibrating PAGER loss models, we have systematically generated an Atlas of 5,000 ShakeMaps for significant global earthquakes during the last 36 years. For many of these, auxiliary earthquake source and shaking intensity data are also available. Refinements to the loss models are ongoing

  9. Compaction and sedimentary basin analysis on Mars

    Science.gov (United States)

    Gabasova, Leila R.; Kite, Edwin S.

    2018-03-01

    Many of the sedimentary basins of Mars show patterns of faults and off-horizontal layers that, if correctly understood, could serve as a key to basin history. Sediment compaction is a possible cause of these patterns. We quantified the possible role of differential sediment compaction for two Martian sedimentary basins: the sediment fill of Gunjur crater (which shows concentric graben), and the sediment fill of Gale crater (which shows outward-dipping layers). We assume that basement topography for these craters is similar to the present-day topography of complex craters that lack sediment infill. For Gunjur, we find that differential compaction produces maximum strains consistent with the locations of observed graben. For Gale, we were able to approximately reproduce the observed layer orientations measured from orbiter image-based digital terrain models, but only with a >3 km-thick donut-shaped past overburden. It is not immediately obvious what geologic processes could produce this shape.

  10. Global Sensitivity Analysis to Assess Salt Precipitation for CO2 Geological Storage in Deep Saline Aquifers

    Directory of Open Access Journals (Sweden)

    Yuan Wang

    2017-01-01

    Full Text Available Salt precipitation is generated near the injection well when dry supercritical carbon dioxide (scCO2 is injected into saline aquifers, and it can seriously impair the CO2 injectivity of the well. We used solid saturation (Ss to map CO2 injectivity. Ss was used as the response variable for the sensitivity analysis, and the input variables included the CO2 injection rate (QCO2, salinity of the aquifer (XNaCl, empirical parameter m, air entry pressure (P0, maximum capillary pressure (Pmax, and liquid residual saturation (Splr and Sclr. Global sensitivity analysis methods, namely, the Morris method and Sobol method, were used. A significant increase in Ss was observed near the injection well, and the results of the two methods were similar: XNaCl had the greatest effect on Ss; the effect of P0 and Pmax on Ss was negligible. On the other hand, with these two methods, QCO2 had various effects on Ss: QCO2 had a large effect on Ss in the Morris method, but it had little effect on Ss in the Sobol method. We also found that a low QCO2 had a profound effect on Ss but that a high QCO2 had almost no effect on the Ss value.

  11. Sedimentary Processes. Quantification Using Radionuclides

    International Nuclear Information System (INIS)

    Carroll, J.; Lerche, I.

    2003-01-01

    The advent of radionuclide methods in geochronology has revolutionized our understanding of modern sedimentary processes in aquatic systems. This book examines the principles of the method and its use as a quantitative tool in marine geology, with emphasis on the Pb-210 method. The assumptions and consequences of models and their behaviour are described providing the necessary background to assess the advantages and trade-offs involved when choosing a particular model for application. One of the purposes of this volume is to disentangle the influences of complicating factors, such as sediment flux variations, post-depositional diffusion of radionuclides, and bio-irrigation of sediments, to arrive at sediment ages and to properly assess the attendant data uncertainty. Environmental impacts of chemical, nuclear, or other waste material are of concern in a variety of areas around the world today. A number of relevant examples are included, demonstrating how dating models are useful for determining sources of contaminants and interpreting their influence on the environment. The book is set at a level so that an able student or professional should have no difficulty in following the procedures and methods developed. Each chapter includes case histories showing the strengths and weaknesses of a given procedure with respect to a data example. Included with this volume is the computer source code of a new generation of modelling tools based on inverse numerical analysis techniques. This first generation of the modelling tool is included, along with detailed instructions and examples for its use, in an appendix

  12. Study on evaluation method for heterogeneous sedimentary rocks based on forward model

    International Nuclear Information System (INIS)

    Masui, Yasuhiro; Kawada, Koji; Katoh, Arata; Tsuji, Takashi; Suwabe, Mizue

    2004-02-01

    It is very important to estimate the facies distribution of heterogeneous sedimentary rocks for geological disposal of high level radioactive waste. The heterogeneousness of sedimentary rocks is due to variable distribution of grain size and mineral composition. The objective of this study is to establish the evaluation method for heterogeneous sedimentary rocks based on forward model. This study consisted of geological study for Horonobe area and the development of soft wear for sedimentary model. Geological study was composed of following items. 1. The sedimentary system for Koetoi and Wakkanai formations in Horonobe area was compiled based on papers. 2. The cores of HDB-1 were observed mainly from sedimentological view. 3. The facies and compaction property of argillaceous rocks were studied based on physical logs and core analysis data of wells. 4. The structure maps, isochrone maps, isopach maps and restored geological sections were made. The soft wear for sedimentary model to show sedimentary system on a basin scale was developed. This soft wear estimates the facies distribution and hydraulic conductivity of sedimentary rocks on three dimensions scale by numerical simulation. (author)

  13. An Overview of the Soutpansberg Sedimentary and Volcanic Rocks

    Directory of Open Access Journals (Sweden)

    J.W. Bristow

    1986-11-01

    Full Text Available Volcanic and sedimentary rocks occupy a faulted graben within the previously uplifted and eroded high-grade gneiss terrain of the Limpopo Mobile Belt. The rocks comprise the Soutpansberg Group and represent an important sequence of Proterozoic rocks. Their general geology and volcanology is summarised in this paper.

  14. Global Positioning System data collection, processing, and analysis conducted by the U.S. Geological Survey Earthquake Hazards Program

    Science.gov (United States)

    Murray, Jessica R.; Svarc, Jerry L.

    2017-01-01

    The U.S. Geological Survey Earthquake Science Center collects and processes Global Positioning System (GPS) data throughout the western United States to measure crustal deformation related to earthquakes and tectonic processes as part of a long‐term program of research and monitoring. Here, we outline data collection procedures and present the GPS dataset built through repeated temporary deployments since 1992. This dataset consists of observations at ∼1950 locations. In addition, this article details our data processing and analysis procedures, which consist of the following. We process the raw data collected through temporary deployments, in addition to data from continuously operating western U.S. GPS stations operated by multiple agencies, using the GIPSY software package to obtain position time series. Subsequently, we align the positions to a common reference frame, determine the optimal parameters for a temporally correlated noise model, and apply this noise model when carrying out time‐series analysis to derive deformation measures, including constant interseismic velocities, coseismic offsets, and transient postseismic motion.

  15. Testing Urey's carbonate-silicate cycle using the calcium isotopic composition of sedimentary carbonates

    Science.gov (United States)

    Blättler, Clara L.; Higgins, John A.

    2017-12-01

    Carbonate minerals constitute a major component of the sedimentary geological record and an archive of a fraction of the carbon and calcium cycled through the Earth's surface reservoirs for over three billion years. For calcium, carbonate minerals constitute the ultimate sink for almost all calcium liberated during continental and submarine weathering of silicate minerals. This study presents >500 stable isotope ratios of calcium in Precambrian carbonate sediments, both limestones and dolomites, in an attempt to characterize the isotope mass balance of the sedimentary carbonate reservoir through time. The mean of the dataset is indistinguishable from estimates of the calcium isotope ratio of bulk silicate Earth, consistent with the Urey cycle being the dominant mechanism exchanging calcium among surface reservoirs. The variability in bulk sediment calcium isotope ratios within each geological unit does not reflect changes in the global calcium cycle, but rather highlights the importance of local mineralogical and/or diagenetic effects in the carbonate record. This dataset demonstrates the potential for calcium isotope ratios to help assess these local effects, such as the former presence of aragonite, even in rocks with a history of neomorphism and recrystallization. Additionally, 29 calcium isotope measurements are presented from ODP (Ocean Drilling Program) Site 801 that contribute to the characterization of altered oceanic crust as an additional sink for calcium, and whose distinct isotopic signature places a limit on the importance of this subduction flux over Earth history.

  16. The GPlates Portal: Cloud-based interactive 3D and 4D visualization of global geological and geophysical data and models in a browser

    Science.gov (United States)

    Müller, Dietmar; Qin, Xiaodong; Sandwell, David; Dutkiewicz, Adriana; Williams, Simon; Flament, Nicolas; Maus, Stefan; Seton, Maria

    2017-04-01

    The pace of scientific discovery is being transformed by the availability of 'big data' and open access, open source software tools. These innovations open up new avenues for how scientists communicate and share data and ideas with each other, and with the general public. Here, we describe our efforts to bring to life our studies of the Earth system, both at present day and through deep geological time. The GPlates Portal (portal.gplates.org) is a gateway to a series of virtual globes based on the Cesium Javascript library. The portal allows fast interactive visualization of global geophysical and geological data sets, draped over digital terrain models. The globes use WebGL for hardware-accelerated graphics and are cross-platform and cross-browser compatible with complete camera control. The globes include a visualization of a high-resolution global digital elevation model and the vertical gradient of the global gravity field, highlighting small-scale seafloor fabric such as abyssal hills, fracture zones and seamounts in unprecedented detail. The portal also features globes portraying seafloor geology and a global data set of marine magnetic anomaly identifications. The portal is specifically designed to visualize models of the Earth through geological time. These space-time globes include tectonic reconstructions of the Earth's gravity and magnetic fields, and several models of long-wavelength surface dynamic topography through time, including the interactive plotting of vertical motion histories at selected locations. The portal has been visited over half a million times since its inception in October 2015, as tracked by google analytics, and the globes have been featured in numerous media articles around the world. This demonstrates the high demand for fast visualization of global spatial big data, both for the present-day as well as through geological time. The globes put the on-the-fly visualization of massive data sets at the fingertips of end-users to

  17. U.S. Geological Survey climate and land use change science strategy: a framework for understanding and responding to global change

    Science.gov (United States)

    Burkett, Virginia R.; Kirtland, David A.; Taylor, Ione L.; Belnap, Jayne; Cronin, Thomas M.; Dettinger, Michael D.; Frazier, Eldrich L.; Haines, John W.; Loveland, Thomas R.; Milly, Paul C.D.; ,; ,; ,; Robert, S.; Maule, Alec G.; McMahon, Gerard; Striegl, Robert G.

    2013-01-01

    The U.S. Geological Survey (USGS), a nonregulatory Federal science agency with national scope and responsibilities, is uniquely positioned to serve the Nation’s needs in understanding and responding to global change, including changes in climate, water availability, sea level, land use and land cover, ecosystems, and global biogeochemical cycles. Global change is among the most challenging and formidable issues confronting our Nation and society. Scientists agree that global environmental changes during this century will have far-reaching societal implications (Intergovernmental Panel on Climate Change, 2007; U.S. Global Change Research Program, 2009). In the face of these challenges, the Nation can benefit greatly by using natural science information in decisionmaking.

  18. Earth's Coming of Age: Isotopically Tracking the Global Transformation from the Hadean to the Geologically Modern Earth

    Science.gov (United States)

    Bennett, V. C.; Nutman, A. P.

    2017-12-01

    Some of the strongest direct evidence that documents fundamental changes in the chemistry and organisation of Earth's interior derives from radiogenic isotopic compositions that include both long-lived (particularly 176Lu-176Hf and 147Sm-143Nd) and short-lived, i.e., now extinct parent isotope, systems (182Hf-182W, 146Sm-142Nd). Changes in patterns of isotopic evolution are linked to changes in mantle dynamics such that tracking these signatures in geologically well-characterised rocks can be used to discover the the nature and evolution of tectonic processes. Over the past decade, intensive geochemical investigations by various groups focussing on the oldest (> 4.0 Ga to 3.6 Ga) rock record, as preserved in several localities, have revealed isotopic distinctions in the early Earth compared with those in Proterozoic and younger rocks. For example, whilst the major and trace element compositions of Eoarchean gneisses have analogs in younger rocks in accord with a continuum of crust formation processes, radiogenic isotopic signatures from both long and short half-life decay schemes record an image of the Earth in transition from early differentiation processes, likely associated with planetary accretion and formation, to more modern style characterised by plate tectonics. The emerging image is that many Eoarchean rocks possess extinct nuclide anomalies in the form of 142Nd and 182Hf isotopic signatures that are absent in modern terrestrial samples; these signatures are evidence of chemical fractionation processes occuring within the first ca. 10-300 million years of Solar System history. In addition, viewing the global database, patterns of long-half life isotope signatures i.e., 143Nd and 176Hf differ from those seen in younger (modern Earth.

  19. Geology for Global Development: Training young geoscientists to communicate and do effective disaster risk reduction in the developing world

    Science.gov (United States)

    Gill, J. C.

    2012-04-01

    Geoscientists have a crucial role to play in improving disaster risk reduction and supporting communities to build resilience and reduce vulnerability. Across the world millions live in severe poverty, without access to many of the basic needs that are often taken for granted - a clean water supply, a reliable food source, safe shelter and suitable infrastructure. This lack of basic needs results in communities being particularly vulnerable to devastating natural hazards, such as floods, earthquakes, volcanic eruptions and landslides. Here we discuss two major gaps which can limit the engagement of geoscience students and recent graduates in the serious debates surrounding resilience and effective disaster risk reduction: (i) Geoscience undergraduate and postgraduate courses rarely give students the opportunity to engage with issues such as vulnerability, sustainability, knowledge exchange and cross-cultural communication. (ii) There are very few opportunities for geoscience students to gain experience in this sector through UK or overseas placements. Geology for Global Development (GfGD), established in 2011, is starting to work with UK students and recent graduates to fill these gaps. GfGD aims to inspire and engage young geoscientists, supporting them to apply their interdisciplinary knowledge and skills to generate solutions and resources which support NGOs, empower communities and help build resilience to natural hazards. This is being and will be done through: (i) active university groups hosting seminars and discussion groups; (ii) blog articles; (iii) opportunities to contribute to technical papers; (iv) workshops and conferences; and (v) UK and overseas placements. GfGD seeks to play a key role in the training and development of geoscience graduates with the necessary 'soft-skills' and opportunities to make an important contribution to improving disaster risk reduction, fighting poverty and improving people's lives.

  20. Sedimentary condensation and authigenesis

    Science.gov (United States)

    Föllmi, Karl

    2016-04-01

    Most marine authigenic minerals form in sediments, which are subjected to condensation. Condensation processes lead to the formation of well individualized, extremely thin ( 100ky), and which experienced authigenesis and the precipitation of glaucony, verdine, phosphate, iron and manganese oxyhydroxides, iron sulfide, carbonate and/or silica. They usually show complex internal stratigraphies, which result from an interplay of sediment accumulation, halts in sedimentation, sediment winnowing, erosion, reworking and bypass. They may include amalgamated faunas of different origin and age. Hardgrounds may be part of condensed beds and may embody strongly condensed beds by themselves. Sedimentary condensation is the result of a hydrodynamically active depositional regime, in which sediment accumulation, winnowing, erosion, reworking and bypass are processes, which alternate as a function of changes in the location and intensity of currents, and/or as the result of episodic high-energy events engendered by storms and gravity flow. Sedimentary condensation has been and still is a widespread phenomenon in past and present-day oceans. The present-day distribution of glaucony and verdine-rich sediments on shelves and upper slopes, phosphate-rich sediments and phosphorite on outer shelves and upper slopes, ferromanganese crusts on slopes, seamounts and submarine plateaus, and ferromanganese nodules on abyssal seafloors is a good indication of the importance of condensation processes today. In the past, we may add the occurrence of oolitic ironstone, carbonate hardgrounds, and eventually also silica layers in banded iron formations as indicators of the importance of condensation processes. Besides their economic value, condensed sediments are useful both as a carrier of geochemical proxies of paleoceanographic and paleoenvironmental change, as well as the product of episodes of paleoceanographic and paleoenvironmental change themselves.

  1. Seeking Signs of Life on Mars: The Importance of Sedimentary Suites as Part of Mars Sample Return

    Science.gov (United States)

    iMOST Team; Mangold, N.; McLennan, S. M.; Czaja, A. D.; Ori, G. G.; Tosca, N. J.; Altieri, F.; Amelin, Y.; Ammannito, E.; Anand, M.; Beaty, D. W.; Benning, L. G.; Bishop, J. L.; Borg, L. E.; Boucher, D.; Brucato, J. R.; Busemann, H.; Campbell, K. A.; Carrier, B. L.; Debaille, V.; Des Marais, D. J.; Dixon, M.; Ehlmann, B. L.; Farmer, J. D.; Fernandez-Remolar, D. C.; Fogarty, J.; Glavin, D. P.; Goreva, Y. S.; Grady, M. M.; Hallis, L. J.; Harrington, A. D.; Hausrath, E. M.; Herd, C. D. K.; Horgan, B.; Humayun, M.; Kleine, T.; Kleinhenz, J.; Mackelprang, R.; Mayhew, L. E.; McCubbin, F. M.; McCoy, J. T.; McSween, H. Y.; Moser, D. E.; Moynier, F.; Mustard, J. F.; Niles, P. B.; Raulin, F.; Rettberg, P.; Rucker, M. A.; Schmitz, N.; Sefton-Nash, E.; Sephton, M. A.; Shaheen, R.; Shuster, D. L.; Siljestrom, S.; Smith, C. L.; Spry, J. A.; Steele, A.; Swindle, T. D.; ten Kate, I. L.; Usui, T.; Van Kranendonk, M. J.; Wadhwa, M.; Weiss, B. P.; Werner, S. C.; Westall, F.; Wheeler, R. M.; Zipfel, J.; Zorzano, M. P.

    2018-04-01

    Sedimentary, and especially lacustrine, depositional environments are high-priority geological/astrobiological settings for Mars Sample Return. We review the detailed investigations, measurements, and sample types required to evaluate such settings.

  2. Capture and geological sequestration of CO{sub 2}: fighting against global warming; Capture et stockage geologique du CO{sub 2}: lutter contre le rechauffement planetaire

    Energy Technology Data Exchange (ETDEWEB)

    Czernichowski-Lauriol, I

    2006-07-01

    In order to take up the global warming challenge, a set of emergency measures is to be implemented: energy saving, clean transportation systems, development of renewable energy sources.. CO{sub 2} sequestration of massive industrial emission sources inside deep geologic formations is another promising solution, which can contribute to the division by two of the world CO{sub 2} emissions between today and 2050. The CO{sub 2} capture and sequestration industry is developing. Research projects and pilot facilities are on the increase over the world. Their aim is to warrant the efficiency and security of this technology over the centuries to come. (J.S.)

  3. Fluvial systems and their sedimentary models

    Directory of Open Access Journals (Sweden)

    Dragomir Skabeme

    1995-12-01

    Full Text Available The Slovenian géomorphologie and sedimentologie terminology for fluvial depositional environments is not established yet. Therefore a classification and the proposal for Slovenian names of fluvial sedimentary and erosional forms and influences controlling them are discussed. Attention is given to the problems of recognition of sedimentary environments in sedimentary rocks, and to fluvial sedimentary models.

  4. VOSGES, a long and rich geologic history

    Science.gov (United States)

    Dominique, Carteaux; Cyrille, Delangle; Sophie, Demangel

    2015-04-01

    The study of geology in scientific classes is often too theoretical and abstract for the pupils. How can teachers make the link between some samples of rocks observed in a practical class and the geologic story of the region? There's nothing better than outdoor education to establish a relationship between the rock observed in macroscopic and microscopic scale in the classroom,with the outcrop scale and the landscape scale in the field: all of them are the result of a fascinating geologic history.Our pupils are lucky enough to live at the heart of a modest mountain massif that has a very rich geologic story: the massif from Vosges situated in the east of France. During two expeditions we show the students all the following tectonic processes: Accretion at the scale of the landscape with the Rhenish Ditch (tectonic and volcanic markers) Obductionis observed due to ophiolites found in the massive of Thalhorn (peridotite, gabbro and sedimentary marine rocks of great depth). Collisionis illuminated with numerous sites like the schists of Steige, the phyllite of Villé, the gneisses of Climont. Subductionis captured bystudying the outcrops of magmatic rocks within the continental crust (andesite, diorite, granodiorite). At each of the stops we have the students, from a hand sample, to findits story in a more global context. So the theory becomes reality. A study of thin slides of rocks observed on the ground finishes these exits and so various scales of understanding are approached. The long and rich geologic history of Vosges maybe reconstituted on hundreds of million years, allowing certainly giving another aspect to the living environment of our pupils.

  5. Proceedings of the 7. Symposium on geology from southeastern Brazil

    International Nuclear Information System (INIS)

    2001-01-01

    This document presents papers on the following subjects: regional geology of the proterozoic and fanerozoic, metallic and non metallic resources, tectoni-sedimentary evolution of the eastern margin Brazil basins and petroleum geology applied to the Santos, Campos and Espirito Santo basins, engineering and environmental geologies, ornamental rocks/building materials/mineral waters/industrial ores

  6. Study on geology and geological structure based on literature studies

    International Nuclear Information System (INIS)

    Funaki, Hironori; Ishii, Eiichi; Yasue, Ken-ichi; Takahashi, Kazuharu

    2005-03-01

    Japan Nuclear Cycle Development Institute (JNC) is proceeding with underground research laboratory (URL) project for the sedimentary rock in Horonobe, Hokkaido. This project is an investigation project which is planned over 20 years. Surface-based investigations (Phase 1) have been conducted for the present. The purposes of the Phase 1 are to construct the geological environment model (geological-structural, hydrogeological, and hydrochemical models) and to confirm the applicability of investigation technologies for the geological environment. The geological-structural model comprises the base for the hydrogeological and hydrochemical models. We constructed the geological-structural model by mainly using data obtained from literature studies. Particulars regarding which data the model is based on and who has performed the interpretation are also saved for traceability. As a result, we explain the understanding of degree and the need of information on stratigraphy and discontinuous structure. (author)

  7. Determining the Accuracy of Paleomagnetic Remanence and High-Resolution Chronostratigraphy for Sedimentary Rocks using Rock Magnetics

    Science.gov (United States)

    Kodama, K. P.

    2017-12-01

    The talk will consider two broad topics in rock magnetism and paleomagnetism: the accuracy of paleomagnetic remanence and the use of rock magnetics to measure geologic time in sedimentary sequences. The accuracy of the inclination recorded by sedimentary rocks is crucial to paleogeographic reconstructions. Laboratory compaction experiments show that inclination shallows on the order of 10˚-15˚. Corrections to the inclination can be made using the effects of compaction on the directional distribution of secular variation recorded by sediments or the anisotropy of the magnetic grains carrying the ancient remanence. A summary of all the compaction correction studies as of 2012 shows that 85% of sedimentary rocks studied have enjoyed some amount of inclination shallowing. Future work should also consider the effect of grain-scale strain on paleomagnetic remanence. High resolution chronostratigraphy can be assigned to a sedimentary sequence using rock magnetics to detect astronomically-forced climate cycles. The power of the technique is relatively quick, non-destructive measurements, the objective identification of the cycles compared to facies interpretations, and the sensitivity of rock magnetics to subtle changes in sedimentary source. An example of this technique comes from using rock magnetics to identify astronomically-forced climate cycles in three globally distributed occurrences of the Shuram carbon isotope excursion. The Shuram excursion may record the oxidation of the world ocean in the Ediacaran, just before the Cambrian explosion of metazoans. Using rock magnetic cyclostratigraphy, the excursion is shown to have the same duration (8-9 Myr) in southern California, south China and south Australia. Magnetostratigraphy of the rocks carrying the excursion in California and Australia shows a reversed to normal geomagnetic field polarity transition at the excursion's nadir, thus supporting the synchroneity of the excursion globally. Both results point to a

  8. Western Canada Sedimentary Basin competitiveness

    International Nuclear Information System (INIS)

    Millar, R.H.G.

    1996-01-01

    Recent dramatic expansion of the natural gas industry in the Western Canada Sedimentary Basin provided ample proof of the potential of this area for further development of natural gas supply. However, the inherent competitive advantages provided by the Western Canada Sedimentary Basin were said to have been offset by low netback prices resulting in poor producer economics when competitiveness is measured by availability of opportunities to find and develop gas supply at costs low enough to ensure attractive returns. Technology was identified as one of the key elements in improving basin competitiveness, but the greatest potential lies in reduced transportation costs and increased access to North American market centres. 8 figs

  9. Stratigraphy of neoproterozoic sedimentary and volcano sedimentary successions of Uruguay

    International Nuclear Information System (INIS)

    Pecoits, E.; Aubet, N.; Oyhantcabal, P.; Sanchez Bettucci, L.

    2004-01-01

    Based on the new data the different characteristics of the Neoproterozoic (volcano) sedimentary succesions of Uruguay are described and discussed. Their stratigraphic tectonics and palaeoclimatic implications are analyzed.The results of the present investigations also allow to define the Maldonado Group which would beintegrated by the Playa Hermosa and Las Ventanas formations.

  10. Gravimetric survey and modeling of the basement morphology in the sedimentary thickness characterization, NE portion of Paraná Sedimentary Basin - Brazil

    Directory of Open Access Journals (Sweden)

    Maximilian Fries

    2017-05-01

    Full Text Available ABSTRACT: The northeast portion of the Paraná Sedimentary Basin is distinguished by structural highs as the known Pitanga Dome, an uplifted structure identified in the last century. It represents a geological and evolutionary evidence of the Paraná Sedimentary Basin and has undergone inspired studies and intense exploration surveys. This study consists of a gravimetric survey in the Pitanga Dome area, State of São Paulo, Brazil. The Bouguer gravity anomalies have been identified and related to the structural high, sedimentary thickness, and the basement morphology. Processing and enhancement techniques were used for forward modeling based on previous studies. The three models from profiles sectioning the dome have a sedimentary thickness varying from 200 to 1.250 meters. The adopted methodology has provided important results determining that the Pitanga Dome can be understood through rational 3D visualization. The area can be interpreted as an undulating basement with thinning of sedimentary rocks related to deep features (structures in the crust/mantle limit (Moho uplift. This characteristic is confirmed by the sedimentary layer thickening present throughout the surrounding area. The results also offer important insights and support for further studies concerning the genesis and evolution of this and other uplifted structures of the Paraná Sedimentary Basin.

  11. Sedimentary structures of tidal flats

    Indian Academy of Sciences (India)

    Sedimentary structures of some coastal tropical tidal flats of the east coast of India, and inner estuarine tidal point bars located at 30 to 50 kilometers inland from the coast, have been extensively studied under varying seasonal conditions. The results reveal that physical features such as flaser bedding, herringbone ...

  12. Engineering geology and environmental protection

    Energy Technology Data Exchange (ETDEWEB)

    Sergeev, E M

    1979-01-01

    A classification is made of the anthropogenic processes in the environment into global, local, universally distributed, zonal, regional, and essentially local processes. Engineering geology is defined as the principal science concerned with the study of the geological medium which in turn involves the study of fossil fuel geology. 22 references.

  13. Single-grain 40Ar-39Ar ages of glauconies: implications for the geologic time scale and global sea level variations

    Science.gov (United States)

    Smith; Evensen; York; Odin

    1998-03-06

    The mineral series glaucony supplies 40% of the absolute-age database for the geologic time scale of the last 250 million years. However, glauconies have long been suspected of giving young potassium-argon ages on bulk samples. Laser-probe argon-argon dating shows that glaucony populations comprise grains with a wide range of ages, suggesting a period of genesis several times longer ( approximately 5 million years) than previously thought. An estimate of the age of their enclosing sediments (and therefore of time scale boundaries) is given by the oldest nonrelict grains in the glaucony populations, whereas the formation times of the younger grains appear to be modulated by global sea level.

  14. Geology and undiscovered resource assessment of the potash-bearing Central Asia Salt Basin, Turkmenistan, Uzbekistan, Tajikistan, and Afghanistan: Chapter AA in Global mineral resource assessment

    Science.gov (United States)

    Wynn, Jeff; Orris, Greta J.; Dunlap, Pamela; Cocker, Mark D.; Bliss, James D.

    2016-03-23

    Undiscovered potash resources in the Central Asia Salt Basin (CASB) of Turkmenistan, Uzbekistan, Tajikistan, and Afghanistan were assessed as part of a global mineral resource assessment led by the U.S. Geological Survey. The term “potash” refers to potassium-bearing, water-soluble salts derived from evaporite basins, where seawater dried up and precipitated various salt compounds; the word for the element “potassium” is derived from potash. Potash is produced worldwide at amounts exceeding 30 million metric tons per year, mostly for use in fertilizers. The term “potash” is used by industry to refer to potassium chloride, as well as potassium in sulfate, nitrate, and oxide forms. For the purposes of this assessment, the term “potash” refers to potassium ores and minerals and potash ore grades. Resource and production values are usually expressed by industry in terms of K2O (potassium oxide) or muriate of potash (KCl, potassium chloride).

  15. Geologic history of the polar regions of Mars based on Mars Global survey data. I. Noachian and Hesperian Periods

    Science.gov (United States)

    Tanaka, K.L.; Kolb, E.J.

    2001-01-01

    During the Noachian Period, the south polar region of Mars underwent intense cratering, construction of three groups of volcanoes, widespread contractional deformation, resurfacing of low areas, and local dissection of valley networks; no evidence for polar deposits, ice sheets, or glaciation is recognized. South polar Hesperian geology is broadly characterized by waning impacts, volcanism, and tectonism. Emplacement of the polar Dorsa Argentea Formation (DAF) occurred during the Hesperian Period. Mars Orbiter Laser Altimeter topographic data and Mars Orbiter Camera images elucidate stratigraphic, morphologic, and topographic relations, permitting the dividing of the DAF into eight members, which surround and underlie about half of the Amazonian south polar layered deposits. The lobate fronts and lack of typical volcanic-flow morphology of the six plains units indicate that they may be made up of debris flows. We think that these flows, tens of meters to 200 m thick, may have originated by the discharge of huge volumes of slurry fluidized by ground water or liquid CO2, perhaps triggered by local impacts, igneous activity, or basal melting beneath polar deposits. The cavi and rugged members include irregular depressions that penetrate the subsurface; some of the pits have raised rims. The depressions may have formed by collapse due to expulsion of subsurface material in which local explosive activity built up the raised rims. Further, smaller eruptions of volatile-rich material may have resulted in narrow, sinuous channel deposits within aggrading fine-grained unconsolidated material perhaps produced by gaseous discharge of subsurface volatiles; preferential erosion of the latter material could have produced the Dorsa Argentea-type ginuous ridges associated mainly with the DAF. Alternatively, the ridges may be eskers, but the lack of associated glacial and fluvial morphologies casts doubt on this interpretation. The knobby, degraded materials forming Scandia Colles

  16. Sedimentary environment and facies of St Lucia Estuary Mouth, Zululand, South Africa

    Science.gov (United States)

    Wright, C. I.; Mason, T. R.

    The St. Lucia Estuary is situated on the subtropical, predominantly microtidal Zululand coast. Modern sedimentary environments within the estuary fall into three categories: (1) barrier environments; (2) abandoned channel environments; and (3) estuarine/lagoonal environments. The barrier-associated environment includes tidal inlet channel, inlet beach face, flood-tidal delta, ebb-tidal delta, spit, backspit and aeolian dune facies. The abandoned channel environment comprises washover fan, tidal creek tidal creek delta and back-barrier lagoon facies. The estuarine/lagoonal environment includes subtidal estuarine channel, side-attached bar, channel margin, mangrove fringe and channel island facies. Each sedimentary facies is characterised by sedimentary and biogenic structures, grain-size and sedimentary processes. Vertical facies sequences produced by inlet channel migration and lagoonal infilling are sufficiently distinct to be recognized in the geological record and are typical of a prograding shoreline.

  17. Investigating Coccolithophorid Biology in the Sedimentary Laboratory

    Science.gov (United States)

    McClelland, H. L. O.; Barbarin, N.; Beaufort, L.; Hermoso, M.; Rickaby, R. E. M.

    2014-12-01

    Coccolithophores are the ocean's dominant calcifying phytoplankton; they play an important, but poorly understood, role in long-term biogeochemical climatic feedbacks. Calcite producing marine organisms are likely to calcify less in a future world where higher carbon dioxide concentrations will lead to ocean acidification (OA), but coccolithophores may be the exception. In coccolithophores calcification occurs in an intracellular vesicle, where the site of calcite precipitation is buffered from the external environment and is subject to a uniquely high degree of biological control. Culture manipulation experiments mimicking the effects of OA in the laboratory have yielded empirical evidence for phenotypic plasticity, competition and evolutionary adaptation in asexual populations. However, the extent to which these results are representative of natural populations, and of the response over timescales of greater than a few hundred generations, is unclear. Here we describe a new sediment-based proxy for the PIC:POC (particulate inorganic to particulate organic carbon ratio) of coccolithophore biomass, which is equivalent to the fractional energy contribution to calcification at constant pH, and a biologically meaningful measure of the organism's tendency to calcify. Employing the geological record as a laboratory, we apply this proxy to sedimentary material from the southern Pacific Ocean to investigate the integrated response of real ancient coccolithophore populations to environmental change over many thousands of years. Our results provide a new perspective on phenotypic change in real populations of coccolithophorid algae over long timescales.

  18. Hydrogeology of exogenic epigenic uranium deposits (sedimentary type) in Uzbekistan

    International Nuclear Information System (INIS)

    Irgashev, Yu.I.; Gavrilov, V.A.; Muslimov, B.A.

    1996-01-01

    Common problems of hydrogeology and geotechnology for uranium deposits (sedimentary type) in the Republic of Uzbekistan are discussed in the paper. Hydrogeology includes studies of texture of water-bearing horizons, occurrences of ore bodies in horizons, hydrochemical survey, hydrodynamics and engineering geology. Features of deposits workable by underground leaching are presented. Such terms as 'water-bearing horizon', 'efficiency', 'water-bearing bed' are explained accounting the results of 30 year investigations conducted during prospecting, designing and exploitation of uranium deposits. Stages of hydrogeological survey are listed and features of each of them are described. Importance of geotechnology for a deposit characterization is shown. (author). 6 refs.; 1 fig.; 1 tab

  19. NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS

    Energy Technology Data Exchange (ETDEWEB)

    Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

    2002-02-05

    From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations

  20. Geological heritage diversity in the Faiyum Oasis (Egypt): A comprehensive assessment

    Science.gov (United States)

    Sallam, Emad S.; Fathy, Esraa E.; Ruban, Dmitry A.; Ponedelnik, Alena A.; Yashalova, Natalia N.

    2018-04-01

    The Faiyum Oasis in the Western Desert of Egypt is famous for its palaeontological localities (Cenozoic whales, primates, etc.) of global importance, but its geological heritage has been not studied in the modern theoretical frame. The new investigation based on the field studies and the literature review permits comprehensive assessment of the geological heritage diversity in this oasis. For this purposes, unique geological features are inventoried with establishment of their geological essence, rank, relative abundance, and intrinsic diversity. As a result, the existence of ten geological heritage types in the Faiyum Oasis is found. These include palaeontological, palaeogeographical, geomorphological, stratigraphical, sedimentary (merged with mineralogical), hydrological coupled with geochemical, igneous, and economical types. From them, the palaeontological and palaeogeographical types are ranked globally, and the geomorphological and hydrological types are ranked nationally. The other types are either of regional (provincial) or local importance. Some hills and cliffs can serve as viewpoint sites for observation of the local geological landscape. The relative abundance and the intrinsic diversity of the unique geological features vary between low and high. Generally, the concentration of this geological heritage in the Faiyum Oasis permits recognition of the geodiversity hotspot that requires conservation and use for tourism purposes. The protected areas located in the oasis and the existing tourism programs do not offer geoconservation and geotourism activities for the entire hotspot. The possible solution of this problem would be creation of a large geopark similar in its design to the Jeju Island Geopark in South Korea. There are important premises for geotourism development in the Faiyum Oasis and its combination with the archaeological and industrial tourism. Nature conservation failures in this geopark should be avoided; some recommendations are given on

  1. A model for global diversity in response to temperature change over geological time scales, with reference to planktic organisms.

    Science.gov (United States)

    De Blasio, Fabio Vittorio; Liow, Lee Hsiang; Schweder, Tore; De Blasio, Birgitte Freiesleben

    2015-01-21

    There are strong propositions in the literature that abiotic factors override biotic drivers of diversity on time scales of the fossil record. In order to study the interaction of biotic and abiotic forces on long term changes, we devise a spatio-temporal discrete-time Markov process model of macroevolution featuring population formation, speciation, migration and extinction, where populations are free to migrate. In our model, the extinction probability of these populations is controlled by latitudinally and temporally varying environment (temperature) and competition. Although our model is general enough to be applicable to disparate taxa, we explicitly address planktic organisms, which are assumed to disperse freely without barriers over the Earth's oceans. While rapid and drastic environmental changes tend to eliminate many species, generalists preferentially survive and hence leave generalist descendants. In other words, environmental fluctuations result in generalist descendants which are resilient to future environmental changes. Periods of stable or slow environmental changes lead to more specialist species and higher population numbers. Simulating Cenozoic diversity dynamics with both competition and the environmental component of our model produces diversity curves that reflect current empirical knowledge, which cannot be obtained with just one component. Our model predicts that the average temperature optimum at which planktic species thrive best has declined over the Neogene, following the trend of global average temperatures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Geological-genetic classification for uranium deposits

    International Nuclear Information System (INIS)

    Terentiev, V.M.; Naumov, S.S.

    1997-01-01

    The paper describes a system for classification uranium deposits based on geological and genetic characteristics. The system is based on the interrelation and interdependence of uranium ore formation processes and other geological phenomena including sedimentation, magmatism and tectonics, as well as the evolution of geotectonic structures. Using these aspects, deposits are classified in three categories: endogenic - predominately hydrothermal and hydrothermal-metasomatic; exogenic - sedimentary diagenetic, biogenic sorption, and infiltrational; and polygenetic or composite types. The latter complex types includes: sedimentary/metamorphic and metamorphic and sedimentary/hydrothermal, where different ore generating processes have prevailed over a rock unit at different times. The 3 page classification is given in both the English and Russian languages. (author). 3 tabs

  3. Globalization

    Directory of Open Access Journals (Sweden)

    Tulio Rosembuj

    2006-12-01

    Full Text Available There is no singular globalization, nor is the result of an individual agent. We could start by saying that global action has different angles and subjects who perform it are different, as well as its objectives. The global is an invisible invasion of materials and immediate effects.

  4. Globalization

    OpenAIRE

    Tulio Rosembuj

    2006-01-01

    There is no singular globalization, nor is the result of an individual agent. We could start by saying that global action has different angles and subjects who perform it are different, as well as its objectives. The global is an invisible invasion of materials and immediate effects.

  5. Improving the effectiveness of geological prospecting with neutron activation analysis

    International Nuclear Information System (INIS)

    Fardy, J.J.

    1984-01-01

    Two examples of the use of neutron activation analysis to improve the effectiveness of geological prospecting are examined. The first is application to the direct hydrogeochemical prospecting for gold in surface waters. The second shows how multielement data banks produced by NAA for a geological formation provide a powerful method for the classification of ore bodies and sedimentary materials

  6. Environmental marine geology of the Arctic Ocean

    International Nuclear Information System (INIS)

    Mudie, P.J.

    1991-01-01

    The Arctic Ocean and its ice cover are major regulators of Northern Hemisphere climate, ocean circulation and marine productivity. The Arctic is also very sensitive to changes in the global environment because sea ice magnifies small changes in temperature, and because polar regions are sinks for air pollutants. Marine geology studies are being carried out to determine the nature and rate of these environmental changes by study of modem ice and sea-bed environments, and by interpretation of geological records imprinted in the sea-floor sediments. Sea ice camps, an ice island, and polar icebreakers have been used to study both western and eastern Arctic Ocean basins. Possible early warning signals of environmental changes in the Canadian Arctic are die-back in Arctic sponge reefs, outbreaks of toxic dinoflagellates, and pesticides in the marine food chain. Eastern Arctic ice and surface waters are contaminated by freon and radioactive fallout from Chernobyl. At present, different sedimentary processes operate in the pack ice-covered Canadian polar margin than in summer open waters off Alaska and Eurasia. The geological records, however, suggest that a temperature increase of 1-4 degree C would result in summer open water throughout the Arctic, with major changes in ocean circulation and productivity of waters off Eastern North America, and more widespread transport of pollutants from eastern to western Arctic basins. More studies of longer sediment cores are needed to confirm these interpretations, but is is now clear that the Arctic Ocean has been the pacemaker of climate change during the past 1 million years

  7. DOE workshop: Sedimentary systems, aqueous and organic geochemistry

    International Nuclear Information System (INIS)

    1993-07-01

    A DOE workshop on sedimentary systems, aqueous and organic geochemistry was held July 15-16, 1993 at Lawrence Berkeley Laboratory. Papers were organized into several sections: Fundamental Properties, containing papers on the thermodynamics of brines, minerals and aqueous electrolyte solutions; Geochemical Transport, covering 3-D imaging of drill core samples, hydrothermal geochemistry, chemical interactions in hydrocarbon reservoirs, fluid flow model application, among others; Rock-Water Interactions, with presentations on stable isotope systematics of fluid/rock interaction, fluid flow and petotectonic evolution, grain boundary transport, sulfur incorporation, tracers in geologic reservoirs, geothermal controls on oil-reservoir evolution, and mineral hydrolysis kinetics; Organic Geochemistry covered new methods for constraining time of hydrocarbon migration, kinetic models of petroleum formation, mudstones in burial diagenesis, compound-specific carbon isotope analysis of petroleums, stability of natural gas, sulfur in sedimentary organic matter, organic geochemistry of deep ocean sediments, direct speciation of metal by optical spectroscopies; and lastly, Sedimentary Systems, covering sequence stratigraphy, seismic reflectors and diagenetic changes in carbonates, geochemistry and origin of regional dolomites, and evidence of large comet or asteroid impacts at extinction boundaries

  8. DOE workshop: Sedimentary systems, aqueous and organic geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    A DOE workshop on sedimentary systems, aqueous and organic geochemistry was held July 15-16, 1993 at Lawrence Berkeley Laboratory. Papers were organized into several sections: Fundamental Properties, containing papers on the thermodynamics of brines, minerals and aqueous electrolyte solutions; Geochemical Transport, covering 3-D imaging of drill core samples, hydrothermal geochemistry, chemical interactions in hydrocarbon reservoirs, fluid flow model application, among others; Rock-Water Interactions, with presentations on stable isotope systematics of fluid/rock interaction, fluid flow and petotectonic evolution, grain boundary transport, sulfur incorporation, tracers in geologic reservoirs, geothermal controls on oil-reservoir evolution, and mineral hydrolysis kinetics; Organic Geochemistry covered new methods for constraining time of hydrocarbon migration, kinetic models of petroleum formation, mudstones in burial diagenesis, compound-specific carbon isotope analysis of petroleums, stability of natural gas, sulfur in sedimentary organic matter, organic geochemistry of deep ocean sediments, direct speciation of metal by optical spectroscopies; and lastly, Sedimentary Systems, covering sequence stratigraphy, seismic reflectors and diagenetic changes in carbonates, geochemistry and origin of regional dolomites, and evidence of large comet or asteroid impacts at extinction boundaries.

  9. Globalization

    OpenAIRE

    Andru?cã Maria Carmen

    2013-01-01

    The field of globalization has highlighted an interdependence implied by a more harmonious understanding determined by the daily interaction between nations through the inducement of peace and the management of streamlining and the effectiveness of the global economy. For the functioning of the globalization, the developing countries that can be helped by the developed ones must be involved. The international community can contribute to the institution of the development environment of the gl...

  10. Study on flow and mass transport through fractured sedimentary rocks (2)

    International Nuclear Information System (INIS)

    Shimo, Michito; Kumamoto, Sou; Karasaki, Kenzi; Sato, Hisashi; Sawada, Atsushi

    2009-03-01

    It is important for safety assessment of HLW geological disposal to understand hydro-geological conditions at the investigation area, and to evaluate groundwater flow and mass transport model and parameters, at each investigation phase. Traditionally, for Neogene sedimentary rock, the grain spacing of sediments has been considered as the dominant migration path. However, fractures of sedimentary rock could act as dominant paths, although they were soft sedimentary rocks. In this study, as part of developing groundwater flow and mass transport evaluation methodologies of such a fractured sedimentary rock' distributed area, we conducted two different scale of studies; 1) core rock sample scale and 2) several kilometer scale. For the core rock sample scale, some of laboratory hydraulic and tracer experiments have conducted using the rock cores with tailored parallel fracture, obtained at pilot borehole drilled in the vicinity of ventilation shaft. From the test results, hydraulic conductivity, diffusion coefficient, transport aperture, dispersion length and etc. was evaluated. Based on these test results, the influence of these parameters onto mass transport behavior of fractures sedimentary rocks was examined. For larger scale, such as several kilometer scale, the regional scale groundwater flow was examined using temperature data observed along the boreholes at Horonobe site. The results show that the low permeable zone between the boreholes might be estimated. (author)

  11. Discussion on the origin of sedimentary rock resistivity

    International Nuclear Information System (INIS)

    Dong Gangjian

    2012-01-01

    Conduction current way of sedimentary rock sedimentary rock is caused by the internal structure of sedimentary rock sedimentary rock pore resistance depends on the salinity of pore water and clay content and distribution. Resistivity of sedimentary rock sedimentary rock major factor in mineral composition, water resistance, oil resistance. and sedimentary structures. In practice, we should give full attention to the difference between lithology and physical properties. (author)

  12. Sedimentary record of erg migration

    Science.gov (United States)

    Porter, M. L.

    1986-06-01

    The sedimentary record of erg (eolian sand sea) migration consists of an idealized threefold division of sand-sea facies sequences. The basal division, here termed the fore-erg, is composed of a hierarchy of eolian sand bodies contained within sediments of the flanking depositional environment. These sand bodies consist of eolian strata deposited by small dune complexes, zibars, and sand sheets. The fore-erg represents the downwind, leading edge of the erg and records the onset of eolian sedimentation. Basin subsidence coupled with erg migration places the medial division, termed the central erg, over the fore-erg strata. The central erg, represented by a thick accumulation of large-scale, cross-stratified sandstone, is the product of large draa complexes. Eolian influence on regional sedimentation patterns is greatest in the central erg, and most of the sand transported and deposited in the erg is contained within this region. Reduction in sand supply and continued erg migration will cover the central-erg deposits with a veneer of back-erg deposits. This upper division of the erg facies sequence resembles closely the fore-erg region. Similar types of eolian strata are present and organized in sand bodies encased in sediments of the upwind flanking depositional environment(s). Back-erg deposits may be thin due to limited eolian influence on sedimentation or incomplete erg migration, or they may be completely absent because of great susceptibility to postdepositional erosion. Tectonic, climatic, and eustatic influences on sand-sea deposition will produce distinctive variations or modifications of the idealized erg facies sequence. The resulting variants in the sedimentary record of erg migration are illustrated with ancient examples from western North America, Europe, southern Africa, and South America.

  13. In-situ heater test in sedimentary soft rocks under high temperature (Phase I)

    International Nuclear Information System (INIS)

    Ikenoya, Takafumi; Takakura, Nozomu; Okada, Tetsuji; Sawada, Masataka; Hirano, Kouhei; Tani, Kazuo

    2008-01-01

    Various researches have been conducted on high level radioactive waste geological disposal in sedimentary soft rocks. It's noted that the long-term mechanical behaviors of sedimentary soft rocks can be affected by various environmental factors such as temperatures or hydraulic conditions. Therefore, in-situ heater test was conducted in an underground cavern at a depth of 50 meters for the purpose of improving thermo-hydro-mechanical coupled analysis code. This report presents the test result demonstrating the changes of temperature and strain distributions with time at the elevated temperature of the heater up to 40 degrees Celsius. (author)

  14. In-situ heating test in sedimentary soft rock. Phase 2

    International Nuclear Information System (INIS)

    Ikenoya, Takafumi; Takakura, Nozomu; Okada, Tetsuji; Sawada, Masataka; Hirano, Kouhei; Tani, Kazuo

    2011-01-01

    Various researches have been conducted on high level radioactive waste geological disposal in sedimentary soft rocks. It is noted that the long-term mechanical behaviors of sedimentary soft rocks can be affected by various environmental factors such as temperatures or hydraulic conditions. Therefore, in-situ heater test was conducted in an underground cavern at a depth of 50 m for the purpose of improving thermo-hydro-mechanical coupled analysis code. This report presents the test result demonstrating the changes of temperature and strain distributions with time at the elevated temperature of the heater up to 90degC. (author)

  15. Elemental Characteristics of Australian Sedimentary Opals and their Implications for Opal Formation and Gemstone Fingerprinting

    Science.gov (United States)

    Dutkiewicz, A.; Landgrebe, T. C.; Rey, P. F.

    2011-12-01

    Opal consists of amorphous SiO2.nH2O comprising a network of silica spheres, which in precious opal are of similar size and form an ordered network allowing light to diffract into an array of colors. Common opal, which is often associated with precious opal, lacks this play of color as it is composed of silica spheres of variable sizes. Australia supplies over 95% of the world's precious opal. The opal is almost exclusively located within Cretaceous sedimentary rocks of the Great Artesian Basin, which experienced a major phase of uplift in the Late Cretaceous with subsequent erosion removing a package of sedimentary rock up to 3 km in thickness. Intense weathering resulted in extensive silicification at relatively shallow levels within the Tertiary regolith. However, despite a billion dollar industry and a well-constrained geological history of the basin, the formation of sedimentary opal and its uniqueness to the Australian continent are still very poorly understood. In this study we have used laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) on precious and common opal from key opal mining areas in order to constrain the possible sources of silica fluids involved in opal genesis and to assess whether any major or trace elements could be used to determine the provenance of opal with respect to a particular mining area. A total of 123 spots, each comprising 59 elements, including rare earth elements were analyzed. Globally, volcanic and sedimentary opals can be distinguished on the basis of Ba and Ca concentrations. Although the opals from the Great Artesian Basin are all sedimentary, some show Ba concentrations consistent with volcanic opals suggesting that silica fluids from which they formed were derived from a volcanic province. The most likely source is the Cretaceous volcanic-plutonic province of central Queensland, which supplied vast amounts of volcanogenic material into the Great Artesian Basin. The weathering of feldspars from the

  16. Methods of practice and guidelines for using survey-grade global navigation satellite systems (GNSS) to establish vertical datum in the United States Geological Survey

    Science.gov (United States)

    Rydlund, Jr., Paul H.; Densmore, Brenda K.

    2012-01-01

    Geodetic surveys have evolved through the years to the use of survey-grade (centimeter level) global positioning to perpetuate and post-process vertical datum. The U.S. Geological Survey (USGS) uses Global Navigation Satellite Systems (GNSS) technology to monitor natural hazards, ensure geospatial control for climate and land use change, and gather data necessary for investigative studies related to water, the environment, energy, and ecosystems. Vertical datum is fundamental to a variety of these integrated earth sciences. Essentially GNSS surveys provide a three-dimensional position x, y, and z as a function of the North American Datum of 1983 ellipsoid and the most current hybrid geoid model. A GNSS survey may be approached with post-processed positioning for static observations related to a single point or network, or involve real-time corrections to provide positioning "on-the-fly." Field equipment required to facilitate GNSS surveys range from a single receiver, with a power source for static positioning, to an additional receiver or network communicated by radio or cellular for real-time positioning. A real-time approach in its most common form may be described as a roving receiver augmented by a single-base station receiver, known as a single-base real-time (RT) survey. More efficient real-time methods involving a Real-Time Network (RTN) permit the use of only one roving receiver that is augmented to a network of fixed receivers commonly known as Continually Operating Reference Stations (CORS). A post-processed approach in its most common form involves static data collection at a single point. Data are most commonly post-processed through a universally accepted utility maintained by the National Geodetic Survey (NGS), known as the Online Position User Service (OPUS). More complex post-processed methods involve static observations among a network of additional receivers collecting static data at known benchmarks. Both classifications provide users

  17. Geologic Time.

    Science.gov (United States)

    Newman, William L.

    One of a series of general interest publications on science topics, the booklet provides those interested in geologic time with an introduction to the subject. Separate sections discuss the relative time scale, major divisions in geologic time, index fossils used as guides for telling the age of rocks, the atomic scale, and the age of the earth.…

  18. Incorporating the International Polar Year Into Introductory Geology Laboratories at Ohio State University

    Science.gov (United States)

    Judge, S. A.; Wilson, T. J.

    2005-12-01

    The International Polar Year (IPY) provides an excellent opportunity for highlighting polar research in education. The ultimate goal of our outreach and education program is to develop a series of modules that are focused on societally-relevant topics being investigated in Antarctic earth science, while teaching basic geologic concepts that are standard elements of school curricula. For example, we envision a university-level, undergraduate, introductory earth science class with the entire semester/quarter laboratory program focused on polar earth science research during the period of the International Polar Year. To attain this goal, a series of modules will be developed, including inquiry-based exercises founded on imagery (video, digital photos, digital core scans), GIS data layers, maps, and data sets available from OSU research groups. Modules that highlight polar research are also suitable for the K-12 audience. Scaleable/grade appropriate modules that use some of the same data sets as the undergraduate modules can be outlined for elementary through high school earth science classes. An initial module is being developed that focuses on paleoclimate data. The module provides a hands-on investigation of the climate history archived in both ice cores and sedimentary rock cores in order to understand time scales, drivers, and processes of global climate change. The paleoclimate module also demonstrates the types of polar research that are ongoing at OSU, allowing students to observe what research the faculty are undertaking in their respective fields. This will link faculty research with student education in the classroom, enhancing learning outcomes. Finally, this module will provide a direct link to U.S. Antarctic Program research related to the International Polar Year, when new ice and sedimentary rock cores will be obtained and analyzed. As a result of this laboratory exercise, the students will be able to: (1) Define an ice core and a sedimentary rock core

  19. Globalization

    DEFF Research Database (Denmark)

    Plum, Maja

    Globalization is often referred to as external to education - a state of affair facing the modern curriculum with numerous challenges. In this paper it is examined as internal to curriculum; analysed as a problematization in a Foucaultian sense. That is, as a complex of attentions, worries, ways...... of reasoning, producing curricular variables. The analysis is made through an example of early childhood curriculum in Danish Pre-school, and the way the curricular variable of the pre-school child comes into being through globalization as a problematization, carried forth by the comparative practices of PISA...

  20. Globalization

    OpenAIRE

    F. Gerard Adams

    2008-01-01

    The rapid globalization of the world economy is causing fundamental changes in patterns of trade and finance. Some economists have argued that globalization has arrived and that the world is “flat†. While the geographic scope of markets has increased, the author argues that new patterns of trade and finance are a result of the discrepancies between “old†countries and “new†. As the differences are gradually wiped out, particularly if knowledge and technology spread worldwide, the t...

  1. Subsurface geology off Bombay with paleoclimatic inferences interpreted from shallow seismic profiles

    Digital Repository Service at National Institute of Oceanography (India)

    Bhattacharya, G.C.; Almeida, F.; Vora, K.H.; Siddiquie, H.N.

    High resolution seismic reflection profiles nearshore areas off Bombay provide information on subsurface geology and permit certain paleoclimatic inferences. Three sedimentary units overlie the acoustic basement: late Pleistocene consolidated...

  2. Deformation style of the Mesozoic sedimentary rocks in southern Thailand

    Science.gov (United States)

    Kanjanapayont, Pitsanupong

    2014-10-01

    Mesozoic sedimentary rocks in southern Thailand are widespread from NNE-SSW and N-S in Chumphon and Trang provinces. The Mesozoic stratigraphic units are the marine Triassic Sai Bon Formation and the non-marine Jurassic-Cretaceous Thung Yai Group, the latter subdivided into Khlong Min, Lam Thap, Sam Chom, and Phun Phin Formations. These units overlie Permian carbonate rocks with an angular unconformity, and are overlain unconformably by Cenozoic units and the Quaternary sediments. The Mesozoic rocks have been folded to form two huge first-ordered syncline or synclinoria, the Chumphon and Surat Thani-Krabi-Trang synclinoria. These synclinoria are elongated in NNE-SSW to N-S direction, and incorporate asymmetric lower-order parasitic folds. The folds have moderately to steeply dipping eastward limbs and more gently dipping westward limbs. These folds were transected by brittle fractures in four major directions. These geologic structures indicate WNW-ESE to E-W contraction with top-to-the-east simple shear at some time before the deposition of the Cenozoic sedimentary units. No major deformation has affected the rocks subsequently, apart from the formation of the fault-controlled Cenozoic basins.

  3. Study on flow and mass transport through fractured soft sedimentary rocks (Contact research)

    International Nuclear Information System (INIS)

    Shimo, Michito; Kumamoto, Sou; Maekawa, Keisuke

    2007-03-01

    It is important for safety assessment of HLW geological disposal to evaluate groundwater flow and mass transport in deep underground accurately. Though it is considered that the mass transport in sedimentary rock occurs in pores between grains mainly, fractures of sedimentary rock can be main paths. The objective of this study is to establish a conceptual model for flow and mass transport in fractured soft sedimentary rock. In previous study, a series of laboratory hydraulic and tracer tests and numerical analyses were carried out using sedimentary rock specimens obtained from Koetoi and Wakkanai formation. Single natural fractured cores and rock block specimen were used for the tests and analyses. The results indicated that the matrix diffusion played an important role for mass transport in the fractured soft sedimentary rocks. In this study, the following two tasks were carried out: (1) laboratory hydraulic and tracer experiments of rock cores of Koetoi and Wakkanai formation obtained at HDB-9, HDB-10 and HDB-11 boreholes and a rock block specimen, Wakkanai formation, obtained at an outcrop in the Horonobe area, (2) a numerical study on the conceptual model of flow and mass transport through fractured soft sedimentary rocks. Non-sorbing tracer experiments using naturally fractured cores and rock block specimens were carried out. Pottasium iodide was used as a tracer. The obtained breakthrough curves were interpreted and fitted by using a numerical simulator, and mass transport parameters, such as longitudinal dispersivity, matrix diffusion coefficient, transport aperture, were obtained. Mass transport simulations using a fracture network model, a continuum model and a double porosity model were performed to study the applicability of continuum model and double porosity model for transport in fractured sedimentary rock. (author)

  4. Physicomechanical parameters of sedimentary rocks in eastern Sichuan, China

    International Nuclear Information System (INIS)

    Guo, Jian; Sun, Yan; Shu, Liangshu; Zhu, Wenbin; Wang, Feng; Li, Benliang; Liu, Deliang

    2009-01-01

    Rock samples were collected and selected from the sedimentary covering strata from Cambrian to Jurassic in eastern Sichuan, China, which belongs to the Upper Yangtze plate. Physicomechanical parameters were measured systematically. Based on parametric texture characteristics and observation data of geology, five regional layer-slip systems are derived. The five layer-slip systems correspond to five reservoir–cover systems, as the incompetent beds correspond to cover beds and the competent beds to reservoir beds. In comparison with the Middle and Lower Yangtze plates, the physicomechanical parameters, lithologic composition and structural characteristics are basically similar to the Upper Yangtze plate. This comparison offers some insight into the oil and gas reservoir–cover systems in the region

  5. The sedimentary record and petrophysical logs from the Spanish Central Pyrenees: Implications for paleoclimate change in the Early Devonian

    Czech Academy of Sciences Publication Activity Database

    Slavík, Ladislav; Valenzuela-Ríos, J. I.; Hladil, Jindřich; Chadimová, Leona; Liao, J-Ch.; Hušková, Aneta; Calvo, H.; Hrstka, Tomáš

    2015-01-01

    Roč. 21, - (2015), s. 350-350 ISSN 1608-8166. [International Congress on Stratigraphy /2./. STRATI 2015. 19.07.2015-23.07.2015, Graz] Institutional support: RVO:67985831 Keywords : stratigraphy * Early Devonian * sedimentary record * paleoclimate change * Spanish Central Pyrenees Subject RIV: DB - Geology ; Mineralogy http://www.zobodat.at/pdf/Ber-Inst-Erdwiss-Univ-Graz_21_0001-0437.pdf

  6. Stratigraphy and geologic history of Mercury

    International Nuclear Information System (INIS)

    Spudis, P.D.; Guest, J.E.

    1988-01-01

    The geologic evolution of Mercury based on the Mariner-10 mission data is discussed. As reconstructed through photogeological analysis of global geologic relations of rock-stratigraphic units, Mercury's geologic history is shown to involve intensive early impact bombardment and widespread resurfacing by volcanic lavas. Evidence is presented to indicate that this volcanic activity essentially ended as much as 3 Gyr ago, with most of the major geologic events being completed within the first 1 to 1.5 Gyr of Mercurian history

  7. Stratigraphy and geologic history of Mercury

    Science.gov (United States)

    Spudis, Paul D.; Guest, John E.

    1988-01-01

    The geologic evolution of Mercury based on the Mariner-10 mission data is discussed. As reconstructed through photogeological analysis of global geologic relations of rock-stratigraphic units, Mercury's geologic history is shown to involve intensive early impact bombardment and widespread resurfacing by volcanic lavas. Evidence is presented to indicate that this volcanic activity essentially ended as much as 3 Gyr ago, with most of the major geologic events being completed within the first 1 to 1.5 Gyr of Mercurian history.

  8. 'Anthropocene': An Ethical Crisis, Not a Geological Epoch

    Science.gov (United States)

    Cuomo, Chris

    2017-04-01

    The term 'anthropocene' has gained enormous popularity among scientists who believe we are in a global phase distinguished by the extensive and lasting impacts of social activities on Earth's sedimentary record and vital systems. Beyond its widespread informal use, a working group of the International Union of Geological Sciences seeks to formalize the term to name a new geological epoch, implying that the Holocene epoch has ended. I argue that the move to formalize the 'anthropocene' and to declare the demise of the Holocene is premature and ethically misguided, at best, and that the very name 'anthropocene' obscures rather than illuminates the serious moral and political/economic implications of the dire warnings evident in recent stratigraphic and ecological changes. If human-caused mass extinction and other ecological catastrophes are serious harms, ethical responses are required. Instead, the move to formalize the idea of an 'anthropocene' epoch treats dire ethical warnings as an opportunity to redefine the current dangerous situation as a new status quo. Have we met our responsibilities to protect Holocene Earth? This presentation will focus on the ethical implications of using the power and discourse of geology to demote Holocene ecological states from their role as the foundational benchmarks for guiding and assessing human relationships with nature and other species. Have geoscientists adequately consulted the biological, ecological and social sciences before declaring the end of the Holocene epoch? Upon what do we base environmental ethics if the Holocene is considered past history? I will also examine the ethical dimensions of naming the so-called 'anthropocene', asking: who is the presumed 'anthro' in the 'anthropocene'? Are the phenomena identified with the 'anthropocene' (nuclear fallout, mass species endangerment, ocean acidification, fossil fuel pollution, deforestation, mining) definitive accomplishments of the human species? Should the practices

  9. Lunar and Planetary Geology

    Science.gov (United States)

    Basilevsky, Alexander T.

    2018-05-01

    Lunar and planetary geology can be described using examples such as the geology of Earth (as the reference case) and geologies of the Earth's satellite the Moon; the planets Mercury, Mars and Venus; the satellite of Saturn Enceladus; the small stony asteroid Eros; and the nucleus of the comet 67P Churyumov-Gerasimenko. Each body considered is illustrated by its global view, with information given as to its position in the solar system, size, surface, environment including gravity acceleration and properties of its atmosphere if it is present, typical landforms and processes forming them, materials composing these landforms, information on internal structure of the body, stages of its geologic evolution in the form of stratigraphic scale, and estimates of the absolute ages of the stratigraphic units. Information about one body may be applied to another body and this, in particular, has led to the discovery of the existence of heavy "meteoritic" bombardment in the early history of the solar system, which should also significantly affect Earth. It has been shown that volcanism and large-scale tectonics may have not only been an internal source of energy in the form of radiogenic decay of potassium, uranium and thorium, but also an external source in the form of gravity tugging caused by attractions of the neighboring bodies. The knowledge gained by lunar and planetary geology is important for planning and managing space missions and for the practical exploration of other bodies of the solar system and establishing manned outposts on them.

  10. Destination: Geology?

    Science.gov (United States)

    Price, Louise

    2016-04-01

    "While we teach, we learn" (Roman philosopher Seneca) One of the most beneficial ways to remember a theory or concept is to explain it to someone else. The offer of fieldwork and visits to exciting destinations is arguably the easiest way to spark a students' interest in any subject. Geology at A-Level (age 16-18) in the United Kingdom incorporates significant elements of field studies into the curriculum with many students choosing the subject on this basis and it being a key factor in consolidating student knowledge and understanding. Geology maintains a healthy annual enrollment with interest in the subject increasing in recent years. However, it is important for educators not to loose sight of the importance of recruitment and retention of students. Recent flexibility in the subject content of the UK curriculum in secondary schools has provided an opportunity to teach the basic principles of the subject to our younger students and fieldwork provides a valuable opportunity to engage with these students in the promotion of the subject. Promotion of the subject is typically devolved to senior students at Hessle High School and Sixth Form College, drawing on their personal experiences to engage younger students. Prospective students are excited to learn from a guest speaker, so why not use our most senior students to engage and promote the subject rather than their normal subject teacher? A-Level geology students embarking on fieldwork abroad, understand their additional responsibility to promote the subject and share their understanding of the field visit. They will typically produce a series of lessons and activities for younger students using their newly acquired knowledge. Senior students also present to whole year groups in seminars, sharing knowledge of the location's geology and raising awareness of the exciting destinations offered by geology. Geology fieldwork is always planned, organised and led by the member of staff to keep costs low, with recent visits

  11. Sedimentary mode and reservoir distribution of the Cambrian carbonate & evaporate paragenesis system in the Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Anna Xu

    2016-11-01

    Full Text Available The Cambrian carbonate & evaporite paragenesis system in the Sichuan Basin is made up of the Longwangmiao, Gaotai and Xixiangchi Fms. So far, great breakthrough has been made only in the Longwangmiao Fm instead of the latter two, and the Anyue Gasfield was discovered in the center of this basin. In this paper, therefore, the Cambrian carbonate & evaporite paragenesis system in the Sichuan Basin was analyzed in terms of its structural–sedimentary setting, sequence stratigraphic framework, sedimentary facies and the distribution of evaporites by using various geologic, logging and seismic data. Then, the geological model of sedimentary facies was established and the distribution range of favorable reservoirs was predicted. Based on these studies, the following results are obtained. Firstly, the palaeotectonic framework is characterized by the style of “one depression between two uplifts” in the setting of a large SE dipping slope, and the stratigraphic filling is in the structure of “onlapping at the bottom and truncation at the top” which is thin in the west and thick in the east. Secondly, three third-order sequence cycles which, on the whole, become shallow upward are developed from bottom to top, and gypsum-salt rocks are mainly located at the high system tract (HST of third-order sequences and concentrated in the Wanzhou–Yibin sag. Thirdly, the geological model of sedimentary facies is composed of three major sedimentary structural layers from bottom to top, namely the evaporative carbonate ramp, the evaporative diamictic restricted platform and the evaporative restricted platform. The sedimentary environment changes from the open to the closed and the penesaline for a long time, and then back to the open. The distribution of shoals changes from the pattern of “dual banks” in a large area to more scattered shoals and banded shoals, while the evaporative lagoon and tidal flat shrink. Fourthly, the reservoir distribution is

  12. The Oligocene carbonate platform of the Zagros Basin, SW Iran: An assessment of highly-complex geological heritage

    Science.gov (United States)

    Habibi, Tahereh; Ruban, Dmitry A.

    2017-05-01

    North Africa and the Middle East possess rich geological heritage, but the latter is yet to be fully identified and described. The Oligocene carbonate platform of the Zagros Basin in southwest Iran, which corresponds to the lower part of the Asmari Formation, has significant potential for geoconservation and geotourism. The types of the geological heritage, their value, and the possible geosites have been assessed. The studied deposits are interesting because of lithology (carbonate rocks), fossils (larger foraminifera, other microfossils, diverse marine invertebrates, fish microremains, and trace fossils), biostratigraphical developments, facies (homoclinal carbonate ramp) and signature of global events (glacioeustatic fluctuations), and outstanding hydrocarbon resources. The five main geological heritage types are sedimentary, palaeontological, stratigraphical, palaeogeographical, and economical, from which the palaeontological, palaeogeographical, and economical types are of global rank. The Khollar and Kavar sections in the Fars Province of Iran are recommended as geosites suitable for research, education, and tourism. The high complexity of the geological heritage linked to the Oligocene carbonate platform of the Zagros Basin implies the phenomenon of geodiversity should be understood with regard to the relationships between types and their values.

  13. Hydrogeologic framework of fractured sedimentary rock, Newark Basin, New Jersey

    Science.gov (United States)

    Lacombe, Pierre J.; Burton, William C.

    2010-01-01

    The hydrogeologic framework of fractured sedimentary bedrock at the former Naval Air Warfare Center (NAWC), Trenton, New Jersey, a trichloroethylene (TCE)-contaminated site in the Newark Basin, is developed using an understanding of the geologic history of the strata, gamma-ray logs, and rock cores. NAWC is the newest field research site established as part of the U.S. Geological Survey Toxic Substances Hydrology Program, Department of Defense (DoD) Strategic Environmental Research and Development Program, and DoD Environmental Security Technology Certification Program to investigate contaminant remediation in fractured rock. Sedimentary bedrock at the NAWC research site comprises the Skunk Hollow, Byram, and Ewing Creek Members of the Lockatong Formation and Raven Rock Member of the Stockton Formation. Muds of the Lockatong Formation that were deposited in Van Houten cycles during the Triassic have lithified to form the bedrock that is typical of much of the Newark Basin. Four lithotypes formed from the sediments include black, carbon-rich laminated mudstone, dark-gray laminated mudstone, light-gray massive mudstone, and red massive mudstone. Diagenesis, tectonic compression, off-loading, and weathering have altered the rocks to give some strata greater hydraulic conductivity than other strata. Each stratum in the Lockatong Formation is 0.3 to 8 m thick, strikes N65 degrees E, and dips 25 degrees to 70 degrees NW. The black, carbon-rich laminated mudstone tends to fracture easily, has a relatively high hydraulic conductivity and is associated with high natural gamma-ray count rates. The dark-gray laminated mudstone is less fractured and has a lower hydraulic conductivity than the black carbon-rich laminated mudstone. The light-gray and the red massive mudstones are highly indurated and tend to have the least fractures and a low hydraulic conductivity. The differences in gamma-ray count rates for different mudstones allow gamma-ray logs to be used to correlate and

  14. The White Nile sedimentary system

    Science.gov (United States)

    Garzanti, Eduardo; Andò, Sergio; Padoan, Marta; Resentini, Alberto; Vezzoli, Giovanni; Villa, Igor

    2014-05-01

    The Nile River flows for ~6700 km from south of the Equator to finally reach the Mediterranean Sea at northern subtropical latitudes (Woodward et al. 2007). This is the longest sedimentological laboratory on Earth, a unique setting in which we are investigating changes in sediment composition associated with diverse chemical and physical processes, including weathering and hydraulic sorting. The present study focuses on the southern branch of the Nile across 20° of latitude, from hyperhumid Burundi and Rwanda highlands in central Africa to Khartoum, the capital city of Sudan at the southern edge of the Sahara. Our study of the Kagera basin emphasizes the importance of weathering in soils at the source rather than during stepwise transport, and shows that the transformation of parent rocks into quartzose sand may be completed in one sedimentary cycle (Garzanti et al. 2013a). Micas and heavy minerals, less effectively diluted by recycling than main framework components, offer the best key to identify the original source-rock imprint. The different behaviour of chemical indices such as the CIA (a truer indicator of weathering) and the WIP (markedly affected by quartz dilution) helps us to distinguish strongly weathered first-cycle versus polycyclic quartz sands (Garzanti et al. 2013b). Because sediment is efficiently trapped in East African Rift lakes, the composition of Nile sediments changes repeatedly northwards across Uganda. Downstream of both Lake Kyoga and Lake Albert, quartzose sands are progressively enriched in metamorphiclastic detritus supplied from tributaries draining amphibolite-facies basements. The evolution of White Nile sediments across South Sudan, a scarcely accessible region that suffered decades of civil war, was inferred from the available information (Shukri 1950), integrated by original petrographic, heavy-mineral and geochemical data (Padoan et al. 2011). Mineralogical and isotopic signatures of Bahr-el-Jebel and Sobat sediments, derived

  15. Determination of Cenozoic sedimentary structures using integrated geophysical surveys: A case study in the Barkol Basin, Xinjiang, China

    Science.gov (United States)

    Sun, Kai; Chen, Chao; Du, Jinsong; Wang, Limin; Lei, Binhua

    2018-01-01

    Thickness estimation of sedimentary basin is a complex geological problem, especially in an orogenic environment. Intense and multiple tectonic movements and climate changes result in inhomogeneity of sedimentary layers and basement configurations, which making sedimentary structure modelling difficult. In this study, integrated geophysical methods, including gravity, magnetotelluric (MT) sounding and electrical resistivity tomography (ERT), were used to estimate basement relief to understand the geological structure and evolution of the eastern Barkol Basin in China. This basin formed with the uplift of the eastern Tianshan during the Cenozoic. Gravity anomaly map revealed the framework of the entire area, and ERT as well as MT sections reflected the geoelectric features of the Cenozoic two-layer distribution. Therefore, gravity data, constrained by MT, ERT and boreholes, were utilized to estimate the spatial distribution of the Quaternary layer. The gravity effect of the Quaternary layer related to the Tertiary layer was later subtracted to obtain the residual anomaly for inversion. For the Tertiary layer, the study area was divided into several parts because of lateral difference of density contrasts. Gravity data were interpreted to determine the density contrast constrained by the MT results. The basement relief can be verified by geological investigation, including the uplift process and regional tectonic setting. The agreement between geophysical survey and prior information from geology emphasizes the importance of integrated geophysical survey as a complementary means of geological studies in this region.

  16. Geologic studies

    International Nuclear Information System (INIS)

    Wayland, T.E.; Rood, A.

    1983-01-01

    The modern Great Divide Basin is the end product of natural forces influenced by the Green River lake system, Laramide tectonism, and intermittent volcanic events. It ranks as one of the most complex structural and stratigtaphic features within the Tertiary basins of Wyoming. Portions of the Great Divide Basin and adjoining areas in Wyoming have been investigated by applying detailed and region exploration methods to known uranium deposits located within the Red Desert portions of the basin. Geologic field investigations conducted by Bendix Field Engineering Corporaton (Bendix) were restricted to reconnaissance observations made during infrequent visits to the project area by various Bendix personnel. Locations of the most comprehensive field activities are shown in Figure II-1. The principal source fo data for geologic studies of the Red Desert project area has been information and materials furnished by industry. Several hundred holes have been drilled by various groups to delineate the uranium deposits. Results from Bendix-drilled holes at selected locations within the project area are summarized in Table II-1. Additional details and gross subsurface characteristics are illustrated in cross sections; pertinent geologic features are illustrated in plan maps. Related details of continental sedimentation that pertain to the Wyoming Basins generally, and the project area specificially, are discussed in subsections of this Geologic Studies section

  17. Sea-floor morphology and sedimentary environments in western Block Island Sound, offshore of Fishers Island, New York

    Science.gov (United States)

    McMullen, Katherine Y.; Poppe, Lawrence J.; Danforth, William W.; Blackwood, Dann S.; Winner, William G.; Parker, Castle E.

    2015-01-01

    Multibeam-bathymetric and sidescan-sonar data, collected by the National Oceanic and Atmospheric Administration in a 114-square-kilometer area of Block Island Sound, southeast of Fishers Island, New York, are combined with sediment samples and bottom photography collected by the U.S. Geological Survey from 36 stations in this area in order to interpret sea-floor features and sedimentary environments. These interpretations and datasets provide base maps for studies on benthic ecology and resource management. The geologic features and sedimentary environments on the sea floor are products of the area’s glacial history and modern processes. These features include bedrock, drumlins, boulders, cobbles, large current-scoured bathymetric depressions, obstacle marks, and glaciolacustrine sediments found in high-energy sedimentary environments of erosion or nondeposition; and sand waves and megaripples in sedimentary environments characterized by coarse-grained bedload transport. Trawl marks are preserved in lower energy environments of sorting and reworking. This report releases the multibeam-bathymetric, sidescan-sonar, sediment, and photographic data and interpretations of the features and sedimentary environments in Block Island Sound, offshore Fishers Island.

  18. Derivation of Strike and Dip in Sedimentary Terrain Using 3D Image Interpretation Based on Airborne LiDAR Data

    Directory of Open Access Journals (Sweden)

    Chih-Hsiang Yeh

    2014-01-01

    Full Text Available Traditional geological mapping may be hindered by rough terrain and dense vegetation resulting in obscured geological details. The advent of airborne Light Detection and Ranging (LiDAR provides a very precise three-dimensional (3D digital terrain model (DTM. However, its full potential in complementing traditional geological mapping remains to be explored using 3D rendering techniques. This study uses two types of 3D images which differ in imaging principles to further explore the finer details of sedimentary terrain. Our purposes are to demonstrate detailed geological mapping with 3D rendering techniques, to generate LiDAR-derived 3D strata boundaries that are advantageous in generating 2D geological maps and cross sections, and to develop a new practice in deriving the strike and dip of bedding with LiDAR data using an example from the north bank of the Keelung River in northern Taiwan. We propose a geological mapping practice that improves efficiency and meets a high-precision mapping standard with up to 2 m resolution using airborne LiDAR data. Through field verification and assessment, LiDAR data manipulation with relevant 3D visualization is shown to be an effective approach in improving the details of existing geological maps, specifically in sedimentary terrain.

  19. Combined crustal-geological cross-section of Ellesmere Island

    DEFF Research Database (Denmark)

    Stephenson, Randell Alexander; Schiffer, Christian; Oakey, Gordon

    are reported in detail in another presentation at this symposium (Schiffer et al.). Moho depth, a number of intracrustal horizons and sedimentary thicknesses can be inferred. Meanwhile, geological mapping on Ellesmere Island in the framework of BGR’s (Germany) CASE (“Circum-Arctic Structural Events”) programme...

  20. Radioactive waste disposal in deep geologic deposits. Associated research problems

    International Nuclear Information System (INIS)

    Rousset, G.

    1992-01-01

    This paper describes the research associated problems for radioactive waste disposal in deep geologic deposits such granites, clays or salt deposits. After a brief description of the underground disposal, the author studies the rheology of sedimentary media and proposes rheological models applied to radioactive wastes repositories. Waste-rock interactions, particularly thermal effects and temperature distribution versus time. 17 refs., 14 figs

  1. Explorability and predictability of the paleozoic sedimentary sequence beneath the Bruce nuclear site

    International Nuclear Information System (INIS)

    Parmenter, A.; Jensen, M.; Crowe, R.; Raven, K.

    2011-01-01

    Ontario Power Generation (OPG) is proposing to develop a Deep Geologic Repository (DGR) for the long-term management of its Low and Intermediate Level Waste (L&ILW) at the Bruce nuclear site located in the Municipality of Kincardine, Ontario. A 4-year program of geoscientific studies to assess the suitability of the 850 m thick Palaeozoic age sedimentary sequence beneath the site to host the DGR was completed in 2010. The studies provide evidence of a geologic setting in which the DGR concept would be safely implemented at a nominal depth of 680 m within the argillaceous limestone of the Cobourg Formation. This paper describes the geologic framework of the Bruce nuclear site with a focus on illustrating the high degree of stratigraphic continuity and traceability at site-specific and regional scales within the Ordovician sediments proposed to host and enclose the DGR. As part of the site-specific studies, a program of deep drilling/coring (6 boreholes) and in-situ testing through the sedimentary sequence was completed from 4 drill sites situated beyond the DGR footprint, approximately 1 km apart. Core logging reveals that the stratigraphic sequence comprises 34 distinct bedrock formations/members/units consistent with the known regional stratigraphic framework. These layered sedimentary formations dip 0.6 o (~10 m/km) to the southwest with highly uniform thicknesses both at the site- and regional-scale, particularly, the Ordovician sediments, which vary on the order of metres. The occurrence of steeply-dipping faults within the sedimentary sequence is not revealed through surface outcrop fracture mapping, micro-seismic (M ≥ 1) monitoring, inclined borehole coring or intersection of hydrothermal type dolomitized reservoir systems. Potential fault structures, interpreted from a 2-D seismic survey, were targeted by angled boreholes which found no evidence for their existence. Formation specific continuity is also evidence by the lateral traceability of physical rock

  2. Geologic map of the Murray Quadrangle, Newton County, Arkansas

    Science.gov (United States)

    Hudson, Mark R.; Turner, Kenzie J.

    2016-07-06

    This map summarizes the geology of the Murray quadrangle in the Ozark Plateaus region of northern Arkansas. Geologically, the area is on the southern flank of the Ozark dome, an uplift that has the oldest rocks exposed at its center, in Missouri. Physiographically, the Murray quadrangle is within the Boston Mountains, a high plateau region underlain by Pennsylvanian sandstones and shales. Valleys of the Buffalo River and Little Buffalo River and their tributaries expose an approximately 1,600-ft-thick (488-meter-thick) sequence of Ordovician, Mississippian, and Pennsylvanian carbonate and clastic sedimentary rocks that have been mildly deformed by a series of faults and folds. The Buffalo National River, a park that encompasses the Buffalo River and adjacent land that is administered by the National Park Service is present at the northwestern edge of the quadrangle.Mapping for this study was carried out by field inspection of numerous sites and was compiled as a 1:24,000 geographic information system (GIS) database. Locations and elevation of sites were determined with the aid of a global positioning satellite receiver and a hand-held barometric altimeter that was frequently recalibrated at points of known elevation. Hill-shade relief and slope maps derived from a U.S. Geological Survey 10-meter digital elevation model as well as orthophotographs were used to help trace ledge-forming units between field traverses within the Upper Mississippian and Pennsylvanian part of the stratigraphic sequence. Strike and dip of beds were typically measured along stream drainages or at well-exposed ledges. Structure contours, constructed on the top of the Boone Formation and the base of a prominent sandstone unit within the Bloyd Formation, were drawn based on the elevations of field sites on these contacts well as other limiting information for their minimum elevations above hilltops or their maximum elevations below valley bottoms.

  3. Sedimentary environments: processes, facies, and stratigraphy

    National Research Council Canada - National Science Library

    Reading, H. G; Reading, Harold G

    1996-01-01

    ... and chemical systems, 6 2.1.2 Climate, 7 2.1.3 Tectonic movements and subsidence, 11 2.1.4 Sea-level changes, 11 2.1.5 Milankovitch processes and orbital forcing, 14 2.1.6 Intrinsic sedimentary processes,...

  4. Sedimentary Environments Offshore Norway - Palaeozoic to Recent

    Energy Technology Data Exchange (ETDEWEB)

    Martinsen, Ole J.; Dreyer, Tom [eds.

    1999-07-01

    The report includes the extended abstracts from the conference, 71 in number. The presentations discuss the sedimentary characteristics of the North Sea area and the the methods used in the research, a thorough knowledge of which is important for economic exploration of the oil and gas resources of the North Sea.

  5. CSPG - SEPM joint convention : Program with abstracts - Sedimentary events and hydrocarbon systems

    International Nuclear Information System (INIS)

    Beauchamp, B.

    1997-01-01

    This joint conference of the Canadian Society of Petroleum Geologists (CSPG) and the Society for Sedimentary Geology (SEPM) was held in Calgary, to encourage collaboration between the petroleum resource industry and academia. Well over 150 papers were presented in various special sessions. The principal topics of discussion included examination, investigation and assessment of the geology, geophysics, geochemistry and the resource potential of sedimentary basins in Canada and around the world. In the course of the presentations the depositional, tectonic and diagenetic histories of various formations, augmented with interpretations of the origin and evolution of the basins were reviewed. The new interpretations were made possible by the new concepts and models of sedimentary geoscience that were born in the creative cauldron of collaboration that exists between industry, government institutions and the universities. The widespread use of modern sequence stratigraphy was used as an example of how scientific and engineering synergy evolved over time to shed new light on the nature of the stratigraphic record. Environmental issues regarding the petroleum industry also received much attention. This volume contains the complete conference program listing, a list of the sponsors and exhibitors, and provides brief abstracts of all papers presented at the conference

  6. Estimate of the Geothermal Energy Resource in the Major Sedimentary Basins in the United States (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, A.; Porro, C.; Augustine, C.; Roberts, B.

    2012-09-01

    Because most sedimentary basins have been explored for oil and gas, well logs, temperatures at depth, and reservoir properties such as depth to basement and formation thickness are well known. The availability of this data reduces exploration risk and allows development of geologic exploration models for each basin. This study estimates the magnitude of recoverable geothermal energy from 15 major known U.S. sedimentary basins and ranks these basins relative to their potential. The total available thermal resource for each basin was estimated using the volumetric heat-in-place method originally proposed by (Muffler, 1979). A qualitative recovery factor was determined for each basin based on data on flow volume, hydrothermal recharge, and vertical and horizontal permeability. Total sedimentary thickness maps, stratigraphic columns, cross sections, and temperature gradient information was gathered for each basin from published articles, USGS reports, and state geological survey reports. When published data were insufficient, thermal gradients and reservoir properties were derived from oil and gas well logs obtained on oil and gas commission databases. Basin stratigraphy, structural history, and groundwater circulation patterns were studied in order to develop a model that estimates resource size, temperature distribution, and a probable quantitative recovery factor.

  7. Age, sedimentary environments, and other aspects of sandstone and related host rocks for uranium deposits

    International Nuclear Information System (INIS)

    1983-01-01

    Project II of the Uranium Geology Working Group was assigned to the study of sedimentary basins and sandstone - type uranium deposits. About 40% of the worlds's uranium resources are contained in sandstone-type deposits, which has led to extensive research. The research was carried out mainly by correspondence, and the results reported by 21 geologists from 10 nations are summarized in this report. It investigated five topics dealing with important aspects of the geology of uranium ores in sandstone host formations: age of host rock; partitioning of uranium between continental and marine sediments; latitude limitation on formation of sandstone deposits; effect of rock formation dip on sandstone ores; usefulness of stable isotope and fluid inclusion studies. The results of studies on these subjects form part of a wider programme of the Working Group, whose final results will be presented at the 27th International Geological Congress in Moscow in 1984

  8. Effect of hydro mechanical coupling on natural fracture network formation in sedimentary basins

    Science.gov (United States)

    Ouraga, Zady; Guy, Nicolas; Pouya, Amade

    2018-05-01

    In sedimentary basin context, numerous phenomena, depending on the geological time span, can result in natural fracture network formation. In this paper, fracture network and dynamic fracture spacing triggered by significant sedimentation rate are studied considering mode I fracture propagation using a coupled hydro-mechanical numerical methods. The focus is put on synthetic geological structure under a constant sedimentation rate on its top. This model contains vertical fracture network initially closed and homogeneously distributed. The fractures are modelled with cohesive zone model undergoing damage and the flow is described by Poiseuille's law. The effect of the behaviour of the rock is studied and the analysis leads to a pattern of fracture network and fracture spacing in the geological layer.

  9. Geological and Petrographic Characteristics of Kimberlite Pipes

    Directory of Open Access Journals (Sweden)

    N. N. Zinchuk

    2016-12-01

    Full Text Available Studies of the geological structure and petrochemical composition of the Siberian Platform kimberlites indicated complexity, diversity of geological, tectonic, and paleogeographic situations, which must be considered for proper prospecting-exploration for diamonds in each area of investigation. Information about petrochemical composition of potential diatremes, hosting, and overlying sedimentary and magmatic formations is an important prerequisite for prospecting of kimberlite deposits in different geologic-tectonic conditions. The most attention should be paid to typomorphic specific features of primary and secondary minerals of diatremes. Each diamondiferous region is characterized by a certain set of typomorphic associations of kimberlites primary and secondary minerals. The diamonds with ultrabasic association of solid phase inclusions (olivine, chrome-spinel, pyrope, etc. dominate in majority of kimberlite pipes.

  10. The geologic history of Margaritifer basin, Mars

    Science.gov (United States)

    Salvatore, M. R.; Kraft, M. D.; Edwards, Christopher; Christensen, P.R.

    2016-01-01

    In this study, we investigate the fluvial, sedimentary, and volcanic history of Margaritifer basin and the Uzboi-Ladon-Morava (ULM) outflow channel system. This network of valleys and basins spans more than 8000 km in length, linking the fluvially dissected southern highlands and Argyre Basin with the northern lowlands via Ares Vallis. Compositionally, thermophysically, and morphologically distinct geologic units are identified and are used to place critical relative stratigraphic constraints on the timing of geologic processes in Margaritifer basin. Our analyses show that fluvial activity was separated in time by significant episodes of geologic activity, including the widespread volcanic resurfacing of Margaritifer basin and the formation of chaos terrain. The most recent fluvial activity within Margaritifer basin appears to terminate at a region of chaos terrain, suggesting possible communication between surface and subsurface water reservoirs. We conclude with a discussion of the implications of these observations on our current knowledge of Martian hydrologic evolution in this important region.

  11. Geological evolution of clay sediments: the petroleum exploration vision

    International Nuclear Information System (INIS)

    Schneider, F.

    2004-01-01

    The radioactive waste isolation capacity assessment for a clay sediment host rock is link: (1) to the understanding of their present state properties and 3-D repartition (from basin evolution, including sedimentary and diagenetic process); and (2) to the prediction of their future evolution during the next million years. For petroleum exploration, basin modelling aims at reconstructing the accumulation of hydrocarbons at basin scale, and at geological timescale, taking into account the effects of kinematics displacements, sedimentation, erosion, compaction, temperatures history, overpressures and fluids flows (water and hydrocarbons). Furthermore, explorationists wish to address overpressure reconstruction in order to estimate the risks of drilling. Clay sediments are of interest for petroleum exploration because source rocks and seal are generally composed of them. Nevertheless, in spite of their occurrence in nature their evolution at geological timescale is not well understood. And, most of the knowledge has been achieved by those working in the realms of soils mechanics and civil engineering until the present geological investigations for long term radioactive waste repositories. Application of this knowledge to clay sediment is considered to be valid within the first hundreds of meters at the top of the sedimentary pile, according to a repository depth. This paper is dedicated to the sedimentary rocks behaviour at geological timescale. This behaviour is characterised by: (1) the deposition of the sediment; (2) the loading path at geological timescale; (3) the constitutive law which includes the consolidation process and the rupture criteria; and (4) the parameters evolution related to consolidation. (author)

  12. Sedimentary basins reconnaissance using the magnetic Tilt-Depth method

    Science.gov (United States)

    Salem, A.; Williams, S.; Samson, E.; Fairhead, D.; Ravat, D.; Blakely, R.J.

    2010-01-01

    We compute the depth to the top of magnetic basement using the Tilt-Depth method from the best available magnetic anomaly grids covering the continental USA and Australia. For the USA, the Tilt-Depth estimates were compared with sediment thicknesses based on drilling data and show a correlation of 0.86 between the datasets. If random data were used then the correlation value goes to virtually zero. There is little to no lateral offset of the depth of basinal features although there is a tendency for the Tilt-Depth results to be slightly shallower than the drill depths. We also applied the Tilt-Depth method to a local-scale, relatively high-resolution aeromagnetic survey over the Olympic Peninsula of Washington State. The Tilt-Depth method successfully identified a variety of important tectonic elements known from geological mapping. Of particular interest, the Tilt-Depth method illuminated deep (3km) contacts within the non-magnetic sedimentary core of the Olympic Mountains, where magnetic anomalies are subdued and low in amplitude. For Australia, the Tilt-Depth estimates also give a good correlation with known areas of shallow basement and sedimentary basins. Our estimates of basement depth are not restricted to regional analysis but work equally well at the micro scale (basin scale) with depth estimates agreeing well with drill hole and seismic data. We focus on the eastern Officer Basin as an example of basin scale studies and find a good level of agreement between previously-derived basin models. However, our study potentially reveals depocentres not previously mapped due to the sparse distribution of well data. This example thus shows the potential additional advantage of the method in geological interpretation. The success of this study suggests that the Tilt-Depth method is useful in estimating the depth to crystalline basement when appropriate quality aeromagnetic anomaly data are used (i.e. line spacing on the order of or less than the expected depth to

  13. Modelling of the Duero Sedimentary Basin and Selection of Deep Favourable Geological Formations for Supercritical CO{sub 2} Storage; Modelizacion del Subsuelo de la Cuenca del Duero y Seleccion de Formaciones Favorables para el Almacenamiento de CO{sub 2} en Estado Supercritico

    Energy Technology Data Exchange (ETDEWEB)

    Prado, A. J.; Perez del Villar, L.; Pelayo, M.; Recreo, F.

    2008-04-10

    Currently, the Deep Geological Storage is the internationally most accepted option to store CO{sub 2}, whose main goal is to reduce the CO{sub 2} emissions to the atmosphere. This work, which has been carried out in the frame of The Strategic Singular Project entitled: CO{sub 2} generation, capture and storage advanced technologies summarizes a general methodology focused on the selection and modelling of favourable formations to store CO{sub 2} and to estimate their storage capacity. To conclude, the Duero basin suitability to allocate a CO{sub 2} storage plant has been quantified by integrating the Multi-criteria Evaluation Methods with the corresponding developed Geographical Information Systems. (Author) 45 refs.

  14. Planetary geology

    CERN Document Server

    Gasselt, Stephan

    2018-01-01

    This book provides an up-to-date interdisciplinary geoscience-focused overview of solid solar system bodies and their evolution, based on the comparative description of processes acting on them. Planetary research today is a strongly multidisciplinary endeavor with efforts coming from engineering and natural sciences. Key focal areas of study are the solid surfaces found in our Solar System. Some have a direct interaction with the interplanetary medium and others have dynamic atmospheres. In any of those cases, the geological records of those surfaces (and sub-surfaces) are key to understanding the Solar System as a whole: its evolution and the planetary perspective of our own planet. This book has a modular structure and is divided into 4 sections comprising 15 chapters in total. Each section builds upon the previous one but is also self-standing. The sections are:  Methods and tools Processes and Sources  Integration and Geological Syntheses Frontiers The latter covers the far-reaching broad topics of exo...

  15. Epigenetic alterations of sedimentary rocks at deposits

    International Nuclear Information System (INIS)

    Komarova, G.V.; Kondrat'eva, I.A.; Zelenova, O.I.

    1980-01-01

    Notions are explained, and technique for studying epigenetic alterations of sedimentary rocks at uranium deposits is described. Main types of epigenetic transformations and their mineralogic-geochemical characteristics are considered. Rock alterations, accompanying uranium mineralization, can be related to 2 types: oxidation and reduction. The main mineralogic-geochemical property of oxidation transformations is epigenetic limonitization. Stratal limonitization in primary grey-coloured terrigenic rocks and in epigenetically reduced (pyritized) rocks, as well as in rock, subjected to epigenetic gleying, are characterized. Reduction type of epigenetic transformations is subdivided into sulphidic and non-sulphidic (gley) subtypes. Sulphidic transformations in grey-coloured terrigenic rocks with organic substance of carbonic row, in rocks, containing organic substance of oil row, sulphide transformations of sedimentary rocks, as well as gley transformations, are considered

  16. PREDICTED SEDIMENTARY SECTION OF SUBGLACIAL LAKE VOSTOK

    Directory of Open Access Journals (Sweden)

    G. I. Leychenkov

    2012-01-01

    Full Text Available In early February 2012, the drill hole at the Vostok Station encountered theLakeVostokwater. This step is important to study the lake composition including possible microbial life and to model subglacial environments however, the next ambitious target of the Vostok Drilling Project is sampling of bottom sediments, which contain the unique record of ice sheet evolution and environmental changes in centralAntarcticafor millions of years. In this connection, the forecast of sedimentary succession based on existing geophysical data, study of mineral inclusions in the accretion ice cores and tectonic models is important task. Interpretation of Airborne geophysical data suggests thatLakeVostokis the part of spacious rift system, which exists at least from Cretaceous. Reflection and refraction seismic experiments conducted in the southern part ofLakeVostokshow very thin (200–300 m stratified sedimentary cover overlying crystalline basement with velocity of 6.0–6.2 km/s. At present, deposition in southernLakeVostokis absent and similar conditions occurred likely at least last3 m.y. when ice sheet aboveLakeVostokchanged insignificantly. It can be also inferred that from the Late Miocene the rate of deposition inLakeVostokwas extremely low and so the most of sedimentary section is older being possibly of Oligocene to early to middle Miocene age when ice sheet oscillated and deposition was more vigorous. If so, the sampling of upper few meters of this condensed section is very informative in terms of history of Antarctic glaciation. Small thickness of sedimentary cover raises a question about existence of lake (rift depression during preglacial and early glacial times.

  17. Evaluating the effects of terrestrial ecosystems, climate and carbon dioxide on weathering over geological time: a global-scale process-based approach

    Science.gov (United States)

    Taylor, Lyla L.; Banwart, Steve A.; Valdes, Paul J.; Leake, Jonathan R.; Beerling, David J.

    2012-01-01

    Global weathering of calcium and magnesium silicate rocks provides the long-term sink for atmospheric carbon dioxide (CO2) on a timescale of millions of years by causing precipitation of calcium carbonates on the seafloor. Catchment-scale field studies consistently indicate that vegetation increases silicate rock weathering, but incorporating the effects of trees and fungal symbionts into geochemical carbon cycle models has relied upon simple empirical scaling functions. Here, we describe the development and application of a process-based approach to deriving quantitative estimates of weathering by plant roots, associated symbiotic mycorrhizal fungi and climate. Our approach accounts for the influence of terrestrial primary productivity via nutrient uptake on soil chemistry and mineral weathering, driven by simulations using a dynamic global vegetation model coupled to an ocean–atmosphere general circulation model of the Earth's climate. The strategy is successfully validated against observations of weathering in watersheds around the world, indicating that it may have some utility when extrapolated into the past. When applied to a suite of six global simulations from 215 to 50 Ma, we find significantly larger effects over the past 220 Myr relative to the present day. Vegetation and mycorrhizal fungi enhanced climate-driven weathering by a factor of up to 2. Overall, we demonstrate a more realistic process-based treatment of plant fungal–geosphere interactions at the global scale, which constitutes a first step towards developing ‘next-generation’ geochemical models. PMID:22232768

  18. Geology Before Pluto: Pre-encounter Considerations

    Science.gov (United States)

    Moore, J. M.

    2014-12-01

    Pluto, its large satellite Charon, and its four small known satellites represent the first trans-Neptunian Kuiper Belt objects populating the outer-most solar system beyond the gas giant planets to be studied in detail from a spacecraft (New Horizons). A complete picture of the solar nebula and solar system formation cannot be confidently formulated until representatives of this group of bodies at the edge of solar space have been examined. The Pluto system is composed of unique, lunar- and intermediate-sized objects that can tell us much about how objects with volatile icy compositions evolve. Modeling of the interior suggests that geologic activity may have been significant to some degree, and observations of frost on the surface could imply the need for a geologic reservoir for the replenishment of these phases. However, these putative indicators of Pluto's geologic history are inconclusive and unspecific. Detailed examination of Pluto's geologic record is the only plausible means of bridging the gap between theory and observation. In this talk I will examine the potential importance of these tentative indications of geologic activity and how specific spacecraft observations have been designed and used to constrain the Pluto system's geologic history. The cameras of New Horizons will provide robust data sets that should be immanently amenable to geological analysis of the Pluto system's landscapes. In this talk, we begin with a brief discussion of the planned observations by the New Horizons cameras that will bear most directly on geological interpretability. Then I will broadly review major geological processes that could potentially operate on the surfaces of Pluto and its moons. I will first survey exogenic processes (i.e., those for which energy for surface modification is supplied externally to the planetary surface): impact cratering, sedimentary processes (including volatile migration), and the work of wind. I will conclude with an assessment of the

  19. Geology Before Pluto: Pre-Encounter Considerations

    Science.gov (United States)

    Moore, Jeffrey M.

    2014-01-01

    Pluto, its large satellite Charon, and its four known satellites represent the first trans-Neptunian Kuiper Belt objects populating the outer-most solar system beyond the gas giant planets to be studied in detail from a spacecraft (New Horizons). A complete picture of the solar nebula, and solar system formation cannot be confidently formulated until representatives of this group of bodies at the edge of solar space have been examined. The Pluto system is composed of unique lunar- and intermediate-sized objects that can tell us much about how objects with volatile icy compositions evolve. Modeling of the interior suggests that geologic activity may have been to some degree, and observations of frost on the surface could imply the need for a geologic reservoir for the replenishment of these phases. However, the putative indicators of Pluto's geologic history are inconclusive and unspecific. Detailed examination of Pluto's geologic record is the only plausible means of bridging the gap between theory and observations. In this talk I will examine the potential importance of these tentative indications of geologic activity and how specific spacecraft observations have been designed and used to constrain the Pluto system's geologic history. The cameras of New Horizons will provide robust data sets that should be immanently amenable to geological analysis of the Pluto System's landscapes. In this talk, we begin with a brief discussion of the planned observations by New Horizons' cameras that will bear most directly on geological interpretability. Then I will broadly review major geological processes that could potentially operate of the surfaces of Pluto and its moons. I will first survey exogenic processes (i.e., those for which energy for surface modification is supplied externally to the planetary surface): impact cratering, sedimentary processes (including volatile migration) and the work of wind. I will conclude with an assessment of prospects for endogenic activity

  20. Geologic history of the Slick Rock district and vicinity, San Miguel and Dolores Counties, Colorado

    International Nuclear Information System (INIS)

    Shawe, D.R.

    1976-01-01

    This report is a narrative summary and interpretation, in the form of a geologic history of the Slick Rock district and vicinity, of four previously published chapters in this series dealing with stratigraphy of the Slick Rock district and vicinity, petrography of sedimentary rocks of the district, structure of the district and vicinity, and altered sedimentary rocks of the district, and of other previously published reports on the district. It forms the background, with the earlier reports, for presentation of a final report in the series describing the uranium-vanadium ore deposits. A review of the origin of sedimentary rocks and geologic history of the region indicates that formation of uranium-vanadium deposits was a natural result of the deposition of th rocks, the occurrence of intrastratal waters therein, and the post-depositional movement of the waters resulting from evolution of the sedimentary rock environment. 31 refs

  1. Provenance of Neoproterozoic to upper Cretaceous sedimentary rocks, eastern Greenland: Implications for recognizing the sources of sediments in the Norwegian Sea

    Czech Academy of Sciences Publication Activity Database

    Sláma, Jiří; Walderhaug, O.; Fonneland, H.; Kosler, J.; Pederson, R. B.

    2011-01-01

    Roč. 238, 3/4 (2011), s. 254-267 ISSN 0037-0738 Institutional research plan: CEZ:AV0Z30130516 Keywords : sedimentary * Eastern Greenland * provenance * U-Pb and Lu-Hf * zircon * Jan Mayen Island * North Atlantic Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.537, year: 2011

  2. The relation between well spacing and Net Present Value in fluvial Hot Sedimentary Aquifer geothermal doublets : a West Netherlands Basin case study

    NARCIS (Netherlands)

    Willems, C.J.L.; Goense, T.; Maghami Nick, Hamidreza M.; Bruhn, D.F.

    2016-01-01

    This paper analyzes the relation between well spacing and Net Present Value of a Hot Sedimentary Aquifer geothermal doublet. First, a sensitivity analysis is carried out to evaluate the effect of uncertainty of geological and production parameters on the Net present Value. Second a finite-element

  3. The Nysa-Morava Zone: an active tectonic domain with Late Cenozoic sedimentary grabens in the Western Carpathians' foreland (NE Bohemian Massif)

    Czech Academy of Sciences Publication Activity Database

    Špaček, P.; Bábek, O.; Štěpančíková, Petra; Švancara, J.; Pazdírková, J.; Sedláček, J.

    2015-01-01

    Roč. 104, č. 4 (2015), s. 963-990 ISSN 1437-3254 R&D Projects: GA ČR GAP210/12/0573; GA MŠk LM2010008 Institutional support: RVO:67985891 Keywords : Bohemian Massif * Upper Morava Basin * tectonic evolution * seismicity * sedimentary grabens Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.133, year: 2015

  4. Geology and bedrock engineering

    International Nuclear Information System (INIS)

    1985-11-01

    This book deals with geology of Korea which includes summary, geology in central part and southern part in Korea and characteristic of geology structure, limestone like geology property of limestone, engineered property of limestone, and design and construction case in limestone area. It also introduces engineered property of the cenozoic, clay rock and shale, geologic and engineered property of phyllite and stratum.

  5. The Geologic Nitrogen Cycle

    Science.gov (United States)

    Johnson, B. W.; Goldblatt, C.

    2013-12-01

    N2 is the dominant gas in Earth's atmosphere, and has been so through the majority of the planet's history. Originally thought to only be cycled in significant amounts through the biosphere, it is becoming increasingly clear that a large degree of geologic cycling can occur as well. N is present in crustal rocks at 10s to 100s of ppm and in the mantle at 1s to perhaps 10s of ppm. In light of new data, we present an Earth-system perspective of the modern N cycle, an updated N budget for the silicate Earth, and venture to explain the evolution of the N cycle over time. In an fashion similar to C, N has a fast, biologically mediated cycle and a slower cycle driven by plate tectonics. Bacteria fix N2 from the atmosphere into bioavailable forms. N is then cycled through the food chain, either by direct consumption of N-fixing bacteria, as NH4+ (the primary waste form), or NO3- (the most common inorganic species in the modern ocean). Some organic material settles as sediment on the ocean floor. In anoxic sediments, NH4+ dominates; due to similar ionic radii, it can readily substitute for K+ in mineral lattices, both in sedimentary rocks and in oceanic lithosphere. Once it enters a subduction zone, N may either be volatilized and returned to the atmosphere at arc volcanoes as N2 or N2O, sequestered into intrusive igneous rocks (as NH4+?), or subducted deep into the mantle, likely as NH4+. Mounting evidence indicates that a significant amount of N may be sequestered into the solid Earth, where it may remain for long periods (100s m.y.) before being returned to the atmosphere/biosphere by volcanism or weathering. The magnitude fluxes into the solid Earth and size of geologic N reservoirs are poorly constrained. The size of the N reservoirs contained in the solid Earth directly affects the evolution of Earth's atmosphere. It is possible that N now sequestered in the solid Earth was once in the atmosphere, which would have resulted in a higher atmospheric pressure, and

  6. Old Geology and New Geology

    Science.gov (United States)

    2003-01-01

    [figure removed for brevity, see original site] Released 28 May 2003Mangala Vallis one of the large outflow channels that channeled large quantities of water into the northern lowlands, long ago on geological timescales. This valley is one of the few in the southern hemisphere, as well as one of the few west of the Tharsis bulge. A closer look at the channel shows more recent weathering of the old water channel: the walls of the channel show small, dark slope streaks that form in dusty areas; and much of the surrounding terrain has subtle linear markings trending from the upper left to the lower right, which are probably features sculpted and streamlined by the wind. Geology still shapes the surface of Mars today, but its methods over the eons have changed.Image information: VIS instrument. Latitude -6, Longitude 209.6 East (150.4 West). 19 meter/pixel resolution.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  7. Monitoring the sedimentary carbon in an artificially disturbed deep-sea sedimentary environment

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, B.N.; Khadge, N.H.; Nabar, S.; Raghukumar, C.; Ingole, B.S.; Valsangkar, A.B.; Sharma, R.; Srinivas, K.

    1 Author version: Environ. Monit. Assess., vol.184; 2012; 2829-2844 Monitoring the sedimentary carbon in an artificially disturbed deep-sea sedimentary environment B. Nagender Nath * , N.H. Khadge, Sapana Nabar, C. Raghu Kumar, B.S. Ingole... community two years after an artificial rapid deposition event. Publication of Seto Marine Biological Laboratory, 39(1), 17-27. Gage, J.D. (1978). Animals in deep-sea sediments. Proceedings of Royal Society of Edinburgh, 768, 77-93. Gage, J.D., & Tyler...

  8. Scotland's forgotten carbon: a national assessment of mid-latitude fjord sedimentary carbon stocks

    Directory of Open Access Journals (Sweden)

    C. Smeaton

    2017-12-01

    Full Text Available Fjords are recognised as hotspots for the burial and long-term storage of carbon (C and potentially provide a significant climate regulation service over multiple timescales. Understanding the magnitude of marine sedimentary C stores and the processes which govern their development is fundamental to understanding the role of the coastal ocean in the global C cycle. In this study, we use the mid-latitude fjords of Scotland as a natural laboratory to further develop methods to quantify these marine sedimentary C stores on both the individual fjord and national scale. Targeted geophysical and geochemical analysis has allowed the quantification of sedimentary C stocks for a number of mid-latitude fjords and, coupled with upscaling techniques based on fjord classification, has generated the first full national sedimentary C inventory for a fjordic system. The sediments within these mid-latitude fjords hold 640.7 ± 46 Mt of C split between 295.6 ± 52 and 345.1 ± 39 Mt of organic and inorganic C, respectively. When compared, these marine mid-latitude sedimentary C stores are of similar magnitude to their terrestrial equivalents, with the exception of the Scottish peatlands, which hold significantly more C. However, when area-normalised comparisons are made, these mid-latitude fjords are significantly more effective as C stores than their terrestrial counterparts, including Scottish peatlands. The C held within Scotland's coastal marine sediments has been largely overlooked as a significant component of the nation's natural capital; such coastal C stores are likely to be key to understanding and constraining improved global C budgets.

  9. Scotland's forgotten carbon: a national assessment of mid-latitude fjord sedimentary carbon stocks

    Science.gov (United States)

    Smeaton, Craig; Austin, William E. N.; Davies, Althea L.; Baltzer, Agnes; Howe, John A.; Baxter, John M.

    2017-12-01

    Fjords are recognised as hotspots for the burial and long-term storage of carbon (C) and potentially provide a significant climate regulation service over multiple timescales. Understanding the magnitude of marine sedimentary C stores and the processes which govern their development is fundamental to understanding the role of the coastal ocean in the global C cycle. In this study, we use the mid-latitude fjords of Scotland as a natural laboratory to further develop methods to quantify these marine sedimentary C stores on both the individual fjord and national scale. Targeted geophysical and geochemical analysis has allowed the quantification of sedimentary C stocks for a number of mid-latitude fjords and, coupled with upscaling techniques based on fjord classification, has generated the first full national sedimentary C inventory for a fjordic system. The sediments within these mid-latitude fjords hold 640.7 ± 46 Mt of C split between 295.6 ± 52 and 345.1 ± 39 Mt of organic and inorganic C, respectively. When compared, these marine mid-latitude sedimentary C stores are of similar magnitude to their terrestrial equivalents, with the exception of the Scottish peatlands, which hold significantly more C. However, when area-normalised comparisons are made, these mid-latitude fjords are significantly more effective as C stores than their terrestrial counterparts, including Scottish peatlands. The C held within Scotland's coastal marine sediments has been largely overlooked as a significant component of the nation's natural capital; such coastal C stores are likely to be key to understanding and constraining improved global C budgets.

  10. California Geological Survey Geologic Map Index

    Data.gov (United States)

    California Natural Resource Agency — All the individual maps from the Geologic Atlas of California and the Regional Geologic map series have been georeferenced for display in a GIS (and viewable online...

  11. Submarine geology and geomorphology of active Sub-Antarctic volcanoes: Heard and McDonald Islands

    Science.gov (United States)

    Watson, S. J.; Coffin, M. F.; Whittaker, J. M.; Lucieer, V.; Fox, J. M.; Carey, R.; Arculus, R. J.; Bowie, A. R.; Chase, Z.; Robertson, R.; Martin, T.; Cooke, F.

    2016-12-01

    Heard and McDonald Islands (HIMI) are World Heritage listed sub-Antarctic active volcanic islands in the Southern Indian Ocean. Built atop the Kerguelen Plateau by Neogene-Quaternary volcanism, HIMI represent subaerial exposures of the second largest submarine Large Igneous Province globally. Onshore, processes influencing island evolution include glaciers, weathering, volcanism, vertical tectonics and mass-wasting (Duncan et al. 2016). Waters surrounding HIMI are largely uncharted, due to their remote location. Hence, the extent to which these same processes shape the submarine environment around HIMI has not been investigated. In early 2016, we conducted marine geophysical and geologic surveys around HIMI aboard RV Investigator (IN2016_V01). Results show that volcanic and sedimentary features prominently trend east-west, likely a result of erosion by the eastward flowing Antarctic Circumpolar Current and tidal currents. However, spatial patterns of submarine volcanism and sediment distribution differ substantially between the islands. >70 sea knolls surround McDonald Island suggesting substantial submarine volcanism. Geophysical data reveals hard volcanic seafloor around McDonald Island, whereas Heard Island is characterised by sedimentary sequences tens of meters or more thick and iceberg scours - indicative of glacial processes. Differences in submarine geomorphology are likely due to the active glaciation of Heard Island and differing rock types (Heard: alkali basalt, McDonald: phonolite), and dominant products (clastics vs. lava). Variations may also reflect different magmatic plumbing systems beneath the two active volcanoes (Heard produces larger volumes of more focused lava, whilst McDonald extrudes smaller volumes of more evolved lavas from multiple vents across the edifice). Using geophysical data, corroborated with new and existing geologic data, we present the first geomorphic map revealing the processes that shape the submarine environment around HIMI.

  12. The distribution of uranium over Europe: Geological and environmental significance

    Science.gov (United States)

    Plant, J.A.; Reeder, S.; Salminen, R.; Smith, D.B.; Tarvainen, T.; de Vivo, B.; Petterson, M.G.

    2003-01-01

    The variation of baseline levels of uranium in soil and stream sediments over Europe is described, based on new data prepared by the Forum of European Geological Surveys (FOREGS). The samples have been collected and analysed according to the protocols established for the International Union of Geological Sciences/International Association of Geochemistry and Cosmochemistry (IUGS/IAGC) Working Group on Global Geochemical Baselines. The baseline levels of U vary between 0??21 to 53 mg kg-1 in topsoils, 0??19 to 30 mg kg-1 in subsoils and sample types, and the median concentration in all three media is approximately 2 mg kg-1. The most anomalous baseline levels occur over the Variscan orogen, especially areas into which late post-orogenic radiothermal high heat production (HHP) granites were emplaced. Spiderdiagrams based on trace element levels and rare earth element (REE) plots, confirm the association between the highest U anomalies and evolved radiothermal granites. High values are also associated with parts of the Alpine terrain especially in Slovenia, where there are historical U workings, and Southern Italy, where high values of U reflect contemporary volcanism. In contrast, much of the Caledonides of North West Europe and the Precambrian of the Baltic Shield and East European craton and its overlying sedimentary cover have very low values, generally radiation and radon potential associated with radiothermal granites. This is likely to be especially important where the granites are mineralised and have been worked historically, for example in the North West of the Iberian Peninsula where U and its decay products are likely to be more dispersed in the surface environment. The study also indicates the value of multi-element data in distinguishing between anthropogenic and naturally occurring anomalies.

  13. Postclosure safety assessment of a used fuel repository in sedimentary rock

    International Nuclear Information System (INIS)

    Gobien, M.; Garisto, F.; Hunt, N.; Kremer, E.

    2014-01-01

    The Nuclear Waste Management Organization (NWMO) is responsible for the implementation of Adaptive Phased Management (APM), the federally-approved plan for safe long-term management of Canada's used nuclear fuel. Under the APM plan, used nuclear fuel will ultimately be placed within a deep geological repository in a suitable rock formation. This paper summarizes an illustrative case study of the current multi-barrier design and postclosure safety of a deep geological repository in a hypothetical sedimentary Michigan Basin setting. The purpose of this postclosure safety assessment is to determine potential effects of the repository on the health and safety of persons and the environment. Results are compared against acceptance criteria established for the protection of persons and the environment from potential radiological and non-radiological hazards. (author)

  14. Postclosure safety assessment of a used fuel repository in sedimentary rock

    Energy Technology Data Exchange (ETDEWEB)

    Gobien, M.; Garisto, F.; Hunt, N.; Kremer, E. [Nuclear Waste Management Organization, Toronto, ON (Canada)

    2014-07-01

    The Nuclear Waste Management Organization (NWMO) is responsible for the implementation of Adaptive Phased Management (APM), the federally-approved plan for safe long-term management of Canada's used nuclear fuel. Under the APM plan, used nuclear fuel will ultimately be placed within a deep geological repository in a suitable rock formation. This paper summarizes an illustrative case study of the current multi-barrier design and postclosure safety of a deep geological repository in a hypothetical sedimentary Michigan Basin setting. The purpose of this postclosure safety assessment is to determine potential effects of the repository on the health and safety of persons and the environment. Results are compared against acceptance criteria established for the protection of persons and the environment from potential radiological and non-radiological hazards. (author)

  15. Shallow Sedimentary Structure of the Brahmaputra Valley Constraint from Receiver Functions Analysis

    Science.gov (United States)

    Saikia, Sowrav; Chopra, Sumer; Baruah, Santanu; Singh, Upendra K.

    2017-01-01

    In this study, receiver functions from ten Broadband seismograph stations on Cenozoic sediment formations of Brahmaputra valley and its neighboring region in northeastern part of India are determined. Receiver function traces from this region show delay in peak by 1-2.5 s and associated minor peaks with the direct P-phase peak. Based on such observation, we try to image sedimentary structure of the Brahmaputra valley plain, adjacent Shillong plateau and Himalayan foredeep region. An adapted hybrid global waveform inversion technique has been applied to extract sedimentary basin structure beneath each site. The sedimentary cover of the basin is about 0.5-6.5 km thick across the valley, 0.5-1.0 km on Shillong plateau and 2.0-5.0 km in nearby foredeep region. We have found that sedimentary thickness increases from SW to NE along the Brahmaputra valley and towards the Eastern Himalayan syntaxes. The estimated sediment thickness and S wave velocity structure agree well with the results of previous active source, gravity, and deep borehole studies carried out in this region. The thick crustal low velocity sediment cover in Brahmaputra valley is expected to amplify ground motions during earthquakes and therefore important for seismic hazard assessment of the region.

  16. Advanced Horizontal Well Recirculation Systems for Geothermal Energy Recovery in Sedimentary and Crystalline Formations

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Mike S. [Terralog Technologies USA, Inc., Calgary (Canada); Detwiler, Russell L. [Terralog Technologies USA, Inc., Calgary (Canada); Lao, Kang [Terralog Technologies USA, Inc., Calgary (Canada); Serajian, Vahid [Terralog Technologies USA, Inc., Calgary (Canada); Elkhoury, Jean [Terralog Technologies USA, Inc., Calgary (Canada); Diessl, Julia [Terralog Technologies USA, Inc., Calgary (Canada); White, Nicky [Terralog Technologies USA, Inc., Calgary (Canada)

    2012-12-13

    There is increased recognition that geothermal energy resources are more widespread than previously thought, with potential for providing a significant amount of sustainable clean energy worldwide. Recent advances in drilling, completion, and production technology from the oil and gas industry can now be applied to unlock vast new geothermal resources, with some estimates for potential electricity generation from geothermal energy now on the order of 2 million megawatts. The primary objectives of this DOE research effort are to develop and document optimum design configurations and operating practices to produce geothermal power from hot permeable sedimentary and crystalline formations using advanced horizontal well recirculation systems. During Phase I of this research project Terralog Technologies USA and The University of California, Irvine (UCI), have completed preliminary investigations and documentation of advanced design concepts for paired horizontal well recirculation systems, optimally configured for geothermal energy recovery in permeable sedimentary and crystalline formations of varying structure and material properties. We have also identified significant geologic resources appropriate for application of such technology. The main challenge for such recirculation systems is to optimize both the design configuration and the operating practices for cost-effective geothermal energy recovery. These will be strongly influenced by sedimentary formation properties, including thickness and dip, temperature, thermal conductivity, heat capacity, permeability, and porosity; and by working fluid properties.

  17. Integrated techniques to evaluate the features of sedimentary rocks of archaeological areas of Sicily

    Directory of Open Access Journals (Sweden)

    Maria Brai

    2004-02-01

    Full Text Available Sicily includes a great variety of lithologies, giving a high complexity to the geologic landscape. Their prevalent lithology is sedimentary. It is well known that rocks of sedimentary origin, compared with metamorphic and volcanic deposits, can be relatively soft and hence fairly easy to model. Nevertheless, this workability advantage is a drawback for Cultural Heritage applications. In fact, these materials show a high porosity, with pore-size distributions that lead to deterioration through absorption of water. In this paper, several sedimentary rocks used in historical Cultural Heritage items of Sicily, from "Magna Graecia" to nowadays, are classified for mineralogical features, chemical composition, and for porosity. Particularly, some samples collected in quarries relevant to the archaeological sites of 41 Agrigento, Segesta and Selinunte will be considered and characterized using integrated techniques (XRD, XRF, NMR and CT. Data on samples obtained in laboratory will be compared with the relevant values measured in situ on monuments of historical-cultural interest of the quoted archaeological places.

  18. A process-sedimentary framework for characterizing recent and ancient sabkhas

    Science.gov (United States)

    Handford, C.R.

    1981-01-01

    The discovery of sabkha environments during the 1960's, marked the beginning of Recent evaporite sedimentological studies and their perception as models for facies analysis. However, variation among Recent sabkhas, though recognized by the geologic community, has not been duly addressed, which has resulted in overuse of the Trucial Coast model in comparative sedimentological studies. Knowledge of the dominant physical processes which determine sabkha morphology, and of the sedimentary response to those processes, can lead to a fundamental understanding of a sabkha's origin and of how it differs from other sabkhas. Physical processes thought to be most important (besides evaporation) include those operative under: (1) marine-; (2) fluvial-lacustrine-; and (3) eolian-dominated conditions. Dominance of one or more of these in the proper settings give rise to marine coastal sabkhas, continental playas, and interdune sabkhas. Sedimentary responses to dominant physical processes lead to the development of sabkhas consisting of a combination of either: (1) terrigenous clastics; (2) carbonate-sulfate (anhydrite-gypsum) minerals; or (3) soluble salts (halite, sylvite, polyhalite, etc.). Sediment characterization can also allow discrimination of the range or compositional variety in, for example, coastal sabkhas. Where applied to the stratigraphic record, this classification system may help unravel the sedimentary history of an ancient sabkha system, and a determination of the dominant physical processes that ruled its development. ?? 1981.

  19. Sea-floor morphology and sedimentary environments in southern Narragansett Bay, Rhode Island

    Science.gov (United States)

    McMullen, Katherine Y.; Poppe, Lawrence J.; Blackwood, Dann S.; Nardi, Matthew J.; Andring, Matthew A.

    2015-09-09

    Multibeam echosounder data collected by the National Oceanic and Atmospheric Administration along with sediment samples and still and video photography of the sea floor collected by the U.S. Geological Survey were used to interpret sea-floor features and sedimentary environments in southern Narragansett Bay, Rhode Island, as part of a long-term effort to map the sea floor along the northeastern coast of the United States. Sea-floor features include rocky areas and scour depressions in high-energy environments characterized by erosion or nondeposition, and sand waves and megaripples in environments characterized by coarse-grained bedload transport. Two shipwrecks are also located in the study area. Much of the sea floor is relatively featureless within the resolution of the multibeam data; sedimentary environments in these areas are characterized by processes associated with sorting and reworking. This report releases bathymetric data from the multibeam echosounder, grain-size analyses of sediment samples, and photographs of the sea floor and interpretations of the sea-floor features and sedimentary environments. It provides base maps that can be used for resource management and studies of topics such as benthic ecology, contaminant inventories, and sediment transport.

  20. A geologic approach to field methods in fluvial geomorphology

    Science.gov (United States)

    Fitzpatrick, Faith A.; Thornbush, Mary J; Allen, Casey D; Fitzpatrick, Faith A.

    2014-01-01

    A geologic approach to field methods in fluvial geomorphology is useful for understanding causes and consequences of past, present, and possible future perturbations in river behavior and floodplain dynamics. Field methods include characterizing river planform and morphology changes and floodplain sedimentary sequences over long periods of time along a longitudinal river continuum. Techniques include topographic and bathymetric surveying of fluvial landforms in valley bottoms and describing floodplain sedimentary sequences through coring, trenching, and examining pits and exposures. Historical sediment budgets that include floodplain sedimentary records can characterize past and present sources and sinks of sediment along a longitudinal river continuum. Describing paleochannels and floodplain vertical accretion deposits, estimating long-term sedimentation rates, and constructing historical sediment budgets can assist in management of aquatic resources, habitat, sedimentation, and flooding issues.

  1. Modern sedimentary environments in a large tidal estuary, Delaware Bay

    Science.gov (United States)

    Knebel, H.J.

    1989-01-01

    Data from an extensive grid of sidescan-sonar records reveal the distribution of sedimentary environments in the large, tidally dominated Delaware Bay estuary. Bathymetric features of the estuary include large tidal channels under the relatively deep (> 10 m water depth) central part of the bay, linear sand shoals (2-8 m relief) that parallel the sides of the tidal channels, and broad, low-relief plains that form the shallow bay margins. The two sedimentary environments that were identified are characterized by either (1) bedload transport and/or erosion or (2) sediment reworking and/or deposition. Sand waves and sand ribbons, composed of medium to coarse sands, define sites of active bedload transport within the tidal channels and in gaps between the linear shoals. The sand waves have spacings that vary from 1 to 70 m, amplitudes of 2 m or less, and crestlines that are usually straight. The orientations of the sand waves and ribbons indicate that bottom sediment movement may be toward either the northwest or southeast along the trends of the tidal channels, although sand-wave asymmetry indicates that the net bottom transport is directed northwestward toward the head of the bay. Gravelly, coarse-grained sediments, which appear as strongly reflective patterns on the sonographs, are also present along the axes and flanks of the tidal channels. These coarse sediments are lag deposits that have developed primarily where older strata were eroded at the bay floor. Conversely, fine sands that compose the linear shoals and muddy sands that cover the shallow bay margins appear mainly on the sonographs either as smooth featureless beds that have uniform light to moderate shading or as mosaics of light and dark patches produced by variations in grain size. These acoustic and textural characteristics are the result of sediment deposition and reworking. Data from this study (1) support the hypothesis that bed configurations under deep tidal flows are functions of current

  2. Inverse modeling of geochemical and mechanical compaction in sedimentary basins

    Science.gov (United States)

    Colombo, Ivo; Porta, Giovanni Michele; Guadagnini, Alberto

    2015-04-01

    We study key phenomena driving the feedback between sediment compaction processes and fluid flow in stratified sedimentary basins formed through lithification of sand and clay sediments after deposition. Processes we consider are mechanic compaction of the host rock and the geochemical compaction due to quartz cementation in sandstones. Key objectives of our study include (i) the quantification of the influence of the uncertainty of the model input parameters on the model output and (ii) the application of an inverse modeling technique to field scale data. Proper accounting of the feedback between sediment compaction processes and fluid flow in the subsurface is key to quantify a wide set of environmentally and industrially relevant phenomena. These include, e.g., compaction-driven brine and/or saltwater flow at deep locations and its influence on (a) tracer concentrations observed in shallow sediments, (b) build up of fluid overpressure, (c) hydrocarbon generation and migration, (d) subsidence due to groundwater and/or hydrocarbons withdrawal, and (e) formation of ore deposits. Main processes driving the diagenesis of sediments after deposition are mechanical compaction due to overburden and precipitation/dissolution associated with reactive transport. The natural evolution of sedimentary basins is characterized by geological time scales, thus preventing direct and exhaustive measurement of the system dynamical changes. The outputs of compaction models are plagued by uncertainty because of the incomplete knowledge of the models and parameters governing diagenesis. Development of robust methodologies for inverse modeling and parameter estimation under uncertainty is therefore crucial to the quantification of natural compaction phenomena. We employ a numerical methodology based on three building blocks: (i) space-time discretization of the compaction process; (ii) representation of target output variables through a Polynomial Chaos Expansion (PCE); and (iii) model

  3. The investigation of sedimentary facies and stacking pattern in the Mulid River (Southeastern Qayen

    Directory of Open Access Journals (Sweden)

    Marzieh Fayazi Borujeni

    2017-03-01

    Full Text Available Introduction In the most gravel bed rivers, particle size exponentially decreases to the downstream. The study of particle size fining trend to the downstream and determination of the effective processes on it along the recent rivers is accomplished in the different parts of Iran. The river sedimentary facies are deposited in the channel and overbank areas and they are provided important information about sedimentary environment and deposition rate, the extent and development of the river channel and floodplain. These sedimentary facies that are deposited in the different depositional conditions have been achieved from variations of flow regime and/ or variation in the depositional environment in the large scale. The aim of this study is to investigate of the particle size variations and the effective controllers of fining trend to downstream, to determine of the important factors in creating sedimentary discontinuities and to study of the sedimentary facies, architectural elements, determination of depositional model and some paleohydraulic parameters of river. The Mulid River catchment with elongated shape is located in 120 km of southeast Qayen in the Southern Khorasan Province, in the 33̊ 24ʹ 44.3ʺ to 33̊ 35ʹ 11.4ʺ east latitude and 59̊ 56ʹ 42.5ʺ to 59̊ 58ʹ 44ʺ north longitude. According to the geological classification of Iran, this basin is a part of the East Iran flysch and mélange belt that is located in the east of the Lut Block.  Materials and Methods  In order to sedimentological studies, 30 sediment samples unsystematically were collected from upstream to downstream and from about 20 cm depth of the main channel bottom of river (with 30 km long. The granulometry analysis of the studied samples were achieved using the dry sieving method with 0.5 φ intervals and weight percent of gravel, sand and mud size particles were estimated. The sediment naming is done using Folk (1980 classification and the estimation of sorting

  4. Mineralogy and depositional sources of sedimentary interbeds beneath the Idaho National Engineering Laboratory; eastern Snake River Plain, Idaho

    International Nuclear Information System (INIS)

    Reed, M.F.

    1994-01-01

    Idaho State University, in cooperation with the U.S. Geological Survey, and the U.S. Department of Energy, collected 57 samples of sedimentary interbeds at 19 sites at the Idaho National Engineering Laboratory (INEL) for mineralogical analysis. Previous work by the U.S. Geological Survey on surficial sediments showed that ratios detrital of quartz, total feldspars, and calcite can be used to distinguish the sedimentary mineralogy of specific stream drainages at the INEL. Semi-quantitative x-ray diffraction analyses were used to determine mineral abundances in the sedimentary interbeds. Samples were collected from wells at the New Production Reactor (NPR) area, Idaho Chemical Processing Plant (ICPP), Test Reactor Area (TRA), miscellaneous sites, Radioactive Waste Management Complex (RWMC), Naval Reactors Facility (NRF), and Test Area North (TAN). Normalized mean percentages of quartz, feldspar, and carbonate were calculated from sample data sets at each site. Percentages for quartz, feldspar, and carbonate from the NPR, ICPP, TRA, miscellaneous sites, RWMC, and NRF ranged from 37 to 59, 26 to 40, and 5 to 25, respectively. Percentages for quartz, feldspar, and carbonate from wells at Test Area North (TAN) were 24, 10, and 66, respectively. Mineralogical data indicate that sedimentary interbed samples collected from the NPR, ICPP, TRA, miscellaneous sites, RWMC, and NRF correlate with surficial sediment samples from the present day Big Lost River. Sedimentary interbeds from TAN sites correlate with surficial sediment samples from Birch Creek. These correlations suggest that the sources for the sediments at and near the INEL have remained relatively consistent for the last 580,000 years. 12 refs., 4 figs., 3 tabs

  5. Quantifying time in sedimentary successions by radio-isotopic dating of ash beds

    Science.gov (United States)

    Schaltegger, Urs

    2014-05-01

    Sedimentary rock sequences are an accurate record of geological, chemical and biological processes throughout the history of our planet. If we want to know more about the duration or the rates of some of these processes, we can apply methods of absolute age determination, i.e. of radio-isotopic dating. Data of highest precision and accuracy, and therefore of highest degree of confidence, are obtained by chemical abrasion, isotope-dilution, thermal ionization mass spectrometry (CA-ID-TIMS) 238U-206Pb dating techniques, applied to magmatic zircon from ash beds that are interbedded with the sediments. This techniques allows high-precision estimates of age at the 0.1% uncertainty for single analyses, and down to 0.03% uncertainty for groups of statistically equivalent 206Pb/238U dates. Such high precision is needed, since we would like the precision to be approximately equivalent or better than the (interpolated) duration of ammonoid zones in the Mesozoic (e.g., Ovtcharova et al. 2006), or to match short feedback rates of biological, climatic, or geochemical cycles after giant volcanic eruptions in large igneous provinces (LIP's), e.g., at the Permian/Triassic or the Triassic/Jurassic boundaries. We also wish to establish as precisely as possible temporal coincidence between the sedimentary record and short-lived volcanic events within the LIP's. Precision and accuracy of the U-Pb data has to be traceable and quantifiable in absolute terms, achieved by direct reference to the international kilogram, via an absolute calibration of the standard and isotopic tracer solutions. Only with a perfect control on precision and accuracy of radio-isotopic data, we can confidently determine whether two ages of geological events are really different, and avoid mistaking interlaboratory or interchronometer biases for age difference. The development of unprecedented precision of CA-ID-TIMS 238U-206Pb dates led to the recognition of protracted growth of zircon in a magmatic liquid (see

  6. Revisiting the effects of hydrodynamic sorting and sedimentary recycling on chemical weathering indices

    Science.gov (United States)

    Guo, Yulong; Yang, Shouye; Su, Ni; Li, Chao; Yin, Ping; Wang, Zhongbo

    2018-04-01

    Although the proxies based on elemental geochemistry of siliciclastic sediments have been well developed to indicate the intensity of chemical weathering in various catchments, their geological indications and limitations, and especially how the differentiation of minerals and sediment grain size influences the applications of these proxies needs more clarification. This paper investigates the interactive effects of weathering, hydraulic sorting and sedimentary recycling on river sediment chemistry, and further validates the application of various weathering indices by measuring mineralogical and geochemical compositions of bank sediments and suspended particulate matters (SPMs) from five rivers in East China bearing various sizes, geologic settings and climatic regimes. For a specific river, the silicate weathering intensity registered in the fine SPMs is systematically stronger than that in the coarse-grained bank sediments. Most of the weathering indices not only reflect the integrated weathering history of various catchments but also depend on hydraulic sorting effect during sediment transport and depositional processes. The correlation between CIA (chemical index of alteration) and WIP (weathering index of Parker) offers an approach to predict the weathering trends of the fine SPMs, coarse bank sediments and recycled sediments under the influence of quartz dilution. To minimize the effects of hydrodynamic sorting and sedimentary recycling, we suggest that the fine sediments (e.g. SPMs and <2 μm fraction of bank sediments) in rivers can better reflect the average of present-day weathering crust in catchments and the weathered terrigenous materials into marginal seas and oceans.

  7. Chemistry of decomposition of freshwater wetland sedimentary organic material during ramped pyrolysis

    Science.gov (United States)

    Williams, E. K.; Rosenheim, B. E.

    2011-12-01

    Ramped pyrolysis methodology, such as that used in the programmed-temperature pyrolysis/combustion system (PTP/CS), improves radiocarbon analysis of geologic materials devoid of authigenic carbonate compounds and with low concentrations of extractable authochthonous organic molecules. The approach has improved sediment chronology in organic-rich sediments proximal to Antarctic ice shelves (Rosenheim et al., 2008) and constrained the carbon sequestration potential of suspended sediments in the lower Mississippi River (Roe et al., in review). Although ramped pyrolysis allows for separation of sedimentary organic material based upon relative reactivity, chemical information (i.e. chemical composition of pyrolysis products) is lost during the in-line combustion of pyrolysis products. A first order approximation of ramped pyrolysis/combustion system CO2 evolution, employing a simple Gaussian decomposition routine, has been useful (Rosenheim et al., 2008), but improvements may be possible. First, without prior compound-specific extractions, the molecular composition of sedimentary organic matter is unknown and/or unidentifiable. Second, even if determined as constituents of sedimentary organic material, many organic compounds have unknown or variable decomposition temperatures. Third, mixtures of organic compounds may result in significant chemistry within the pyrolysis reactor, prior to introduction of oxygen along the flow path. Gaussian decomposition of the reaction rate may be too simple to fully explain the combination of these factors. To relate both the radiocarbon age over different temperature intervals and the pyrolysis reaction thermograph (temperature (°C) vs. CO2 evolved (μmol)) obtained from PTP/CS to chemical composition of sedimentary organic material, we present a modeling framework developed based upon the ramped pyrolysis decomposition of simple mixtures of organic compounds (i.e. cellulose, lignin, plant fatty acids, etc.) often found in sedimentary

  8. Engineering Geology | Alaska Division of Geological & Geophysical Surveys

    Science.gov (United States)

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska content Engineering Geology Additional information Engineering Geology Posters and Presentations Alaska Alaska MAPTEACH Tsunami Inundation Mapping Engineering Geology Staff Projects The Engineering Geology

  9. Mineralogical correlation of surficial sediment from area drainages with selected sedimentary interbeds at the Idaho National Engineering Laboratory, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomay, R.C.

    1990-08-01

    Ongoing research by the US Geological Survey at the INEL involves investigation of the migration of radioactive elements contained in low-level radioactive waste, hydrologic and geologic factors affecting waste movement, and geochemical factors that influence the chemical composition of the waste. Identification of the mineralogy of the Snake River Plain is needed to aid in the study of the hydrology and geochemistry of subsurface waste disposal. The US Geological Surveys project office at the Idaho National Engineering Laboratory, in cooperation with the US Department of Energy, used mineralogical data to correlate surficial sediment samples from the Big Lost River, Little Lost River, and Birch Greek drainages with selected sedimentary interbed core samples taken from test holes at the RWMC (Radioactive Waste Management Complex), TRA (Test Reactors Area), ICPP (Idaho Chemical Processing Plant), and TAN (Test Area North). Correlating the mineralogy of a particular present-day drainage area with a particular sedimentary interbed provides information on historical source of sediment for interbeds in and near the INEL. Mineralogical data indicate that surficial sediment samples from the Big Lost River drainage contained a larger amount of feldspar and pyroxene and a smaller amount of calcite and dolomite than samples from the Little Lost River and Birch Creek drainages. Mineralogical data from sedimentary interbeds at the RWMC, TRA, and ICPP correlate with surficial sediment of the present-day big Lost River drainage. Mineralogical data from a sedimentary interbed at TAN correlate with surficial sediment of the present-day Birch Creek drainage. 13 refs., 5 figs., 3 tabs.

  10. Mineralogical correlation of surficial sediment from area drainages with selected sedimentary interbeds at the Idaho National Engineering Laboratory, Idaho

    International Nuclear Information System (INIS)

    Bartholomay, R.C.

    1990-08-01

    Ongoing research by the US Geological Survey at the INEL involves investigation of the migration of radioactive elements contained in low-level radioactive waste, hydrologic and geologic factors affecting waste movement, and geochemical factors that influence the chemical composition of the waste. Identification of the mineralogy of the Snake River Plain is needed to aid in the study of the hydrology and geochemistry of subsurface waste disposal. The US Geological Surveys project office at the Idaho National Engineering Laboratory, in cooperation with the US Department of Energy, used mineralogical data to correlate surficial sediment samples from the Big Lost River, Little Lost River, and Birch Greek drainages with selected sedimentary interbed core samples taken from test holes at the RWMC (Radioactive Waste Management Complex), TRA (Test Reactors Area), ICPP (Idaho Chemical Processing Plant), and TAN (Test Area North). Correlating the mineralogy of a particular present-day drainage area with a particular sedimentary interbed provides information on historical source of sediment for interbeds in and near the INEL. Mineralogical data indicate that surficial sediment samples from the Big Lost River drainage contained a larger amount of feldspar and pyroxene and a smaller amount of calcite and dolomite than samples from the Little Lost River and Birch Creek drainages. Mineralogical data from sedimentary interbeds at the RWMC, TRA, and ICPP correlate with surficial sediment of the present-day big Lost River drainage. Mineralogical data from a sedimentary interbed at TAN correlate with surficial sediment of the present-day Birch Creek drainage. 13 refs., 5 figs., 3 tabs

  11. Presumption of the distribution of the geological structure based on the geological survey and the topographic data in and around the Horonobe area

    International Nuclear Information System (INIS)

    Sakai, Toshihiro; Matsuoka, Toshiyuki

    2015-06-01

    The Horonobe Underground Research Laboratory (URL) Project, a comprehensive research project investigating the deep underground environment in sedimentary rock, is being pursued by the Japan Atomic Energy Agency (JAEA) at Horonobe-cho in Northern Hokkaido, Japan. One of the main goals of the URL project is to establish techniques for investigation, analysis and assessment of the deep geological environment. JAEA constructed the geologic map and the database of geological mapping in Horonobe-cho in 2005 based on the existing literatures and 1/200,000 geologic maps published by Geological Survey of Japan, and then updated the geologic map in 2007 based on the results of various investigations which were conducted around the URL as the surface based investigation phase of the URL project. On the other hand, there are many geological survey data which are derived from natural resources (petroleum, natural gas and coal, etc.) exploration in and around Horonobe-cho. In this report, we update the geologic map and the database of the geological mapping based on these geological survey and topographical analysis data in and around the Horonobe area, and construct a digital geologic map and a digital database of geological mapping as GIS. These data can be expected to improve the precision of modeling and analyzing of geological environment including its long-term evaluation. The digital data is attached on CD-ROM. (J.P.N.)

  12. Geochemical parameters of radioelements applied to assess uranium prospects in geological formation

    International Nuclear Information System (INIS)

    Ma Zhongxiang.

    1988-01-01

    Based on geochemical characteristics of radioelements and the theory of facieology, the author describes the characteristics of the distribution of U, Th and K in sedimentary formation and the relationship between their combined parameters MA and MB and uranium mineralization in geological formation. The ranges of MA and MB in uraniferous geological formation used to assess four different levels of uranium mineralization in regional investigation are obtained from the comparision of combined parameters MA and MB in the geological formation with different levels of mineralization and the experience is provided for quantitatively assessing uranium prospects in geological by multi-parameter model of radioelements

  13. Sedimentary petrology of oil well rock cores; Petrologia sedimentaria de nucleos de rocas de pozos petroleros

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo M, Georgina; Paredes S, Adriana [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2001-07-01

    At the request of PEMEX Exploration and Production (PEP), in the area of Geology of the Gerencia de Geotermia, the necessary methodology has been integrated to carry out the geologic characterization of cores obtained during the oil well drilling. The integrated studies have been of utility for PEMEX, because they provide detailed information on the processes, conditions of deposition and diagenesis that occur in sedimentary rocks. On the other hand, this geologic information contributes to the update of the geologic model of the field in study. [Spanish] A solicitud de PEMEX Exploracion y Produccion (PEP), en el area de Geologia de la Gerencia de Geotermia, se ha integrado la metodologia necesaria para llevar a cabo la caracterizacion geologica de nucleos obtenidos durante la perforacion de pozos petroleros. Los estudios integrados han sido de utilidad para PEMEX, pues proporcionan informacion detallada sobre los procesos, condiciones de depositacion y diagenesis que ocurren en rocas sedimentarias. Por otro lado, esta informacion geologica contribuye a la actualizacion del modelo geologico del campo en estudio.

  14. Mining of sedimentary-type ore deposits

    International Nuclear Information System (INIS)

    Bruha, J.; Slovacek, T.; Berka, J.; Sadilek, P.

    1992-01-01

    A procedure is proposed for mining sedimentary-type ore deposits, particularly uranium deposits, using the stope-pillar technique. The stope having been mined out, the free room is filled with hydro-setting gob from the surface. A precondition for the application of this technique is horizontal ore mineralization in sediments where the total thickness of the mineralized ore layer is at least 3 to 5 m. Mining losses do not exceed 5%. For thicknesses greater than 5 m, the roof is reinforced and the walls are secured with netting. The assets of the technique include higher labor productivity of the driving, lower material demands in reinforcing and filling, lower power consumption, and reduced use of explosives. (Z.S.). 3 figs

  15. Permanganate diffusion and reaction in sedimentary rocks.

    Science.gov (United States)

    Huang, Qiuyuan; Dong, Hailiang; Towne, Rachael M; Fischer, Timothy B; Schaefer, Charles E

    2014-04-01

    In situ chemical oxidation using permanganate has frequently been used to treat chlorinated solvents in fractured bedrock aquifers. However, in systems where matrix back-diffusion is an important process, the ability of the oxidant to migrate and treat target contaminants within the rock matrix will likely determine the overall effectiveness of this remedial approach. In this study, a series of diffusion experiments were performed to measure the permanganate diffusion and reaction in four different types of sedimentary rocks (dark gray mudstone, light gray mudstone, red sandstone, and tan sandstone). Results showed that, within the experimental time frame (~2 months), oxidant migration into the rock was limited to distances less than 500 μm. The observed diffusivities for permanganate into the rock matrices ranged from 5.3 × 10(-13) to 1.3 × 10(-11) cm(2)/s. These values were reasonably predicted by accounting for both the rock oxidant demand and the effective diffusivity of the rock. Various Mn minerals formed as surface coatings from reduction of permanganate coupled with oxidation of total organic carbon (TOC), and the nature of the formed Mn minerals was dependent upon the rock type. Post-treatment tracer testing showed that these Mn mineral coatings had a negligible impact on diffusion through the rock. Overall, our results showed that the extent of permanganate diffusion and reaction depended on rock properties, including porosity, mineralogy, and organic carbon. These results have important implications for our understanding of long-term organic contaminant remediation in sedimentary rocks using permanganate. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Modelling hydrothermal venting in volcanic sedimentary basins: Impact on hydrocarbon maturation and paleoclimate

    Science.gov (United States)

    Iyer, Karthik; Schmid, Daniel W.; Planke, Sverre; Millett, John

    2017-06-01

    Vent structures are intimately associated with sill intrusions in sedimentary basins globally and are thought to have been formed contemporaneously due to overpressure generated by gas generation during thermogenic breakdown of kerogen or boiling of water. Methane and other gases generated during this process may have driven catastrophic climate change in the geological past. In this study, we present a 2D FEM/FVM model that accounts for 'explosive' vent formation by fracturing of the host rock based on a case study in the Harstad Basin, offshore Norway. Overpressure generated by gas release during kerogen breakdown in the sill thermal aureole causes fracture formation. Fluid focusing and overpressure migration towards the sill tips results in vent formation after only few tens of years. The size of the vent depends on the region of overpressure accessed by the sill tip. Overpressure migration occurs in self-propagating waves before dissipating at the surface. The amount of methane generated in the system depends on TOC content and also on the type of kerogen present in the host rock. Generated methane moves with the fluids and vents at the surface through a single, large vent structure at the main sill tip matching first-order observations. Violent degassing takes place within the first couple of hundred years and occurs in bursts corresponding to the timing of overpressure waves. The amount of methane vented through a single vent is only a fraction (between 5 and 16%) of the methane generated at depth. Upscaling to the Vøring and Møre Basins, which are a part of the North Atlantic Igneous Province, and using realistic host rock carbon content and kerogen values results in a smaller amount of methane vented than previously estimated for the PETM. Our study, therefore, suggests that the negative carbon isotope excursion (CIE) observed in the fossil record could not have been caused by intrusions within the Vøring and Møre Basins alone and that a contribution

  17. Geologic map of the Bateman Spring Quadrangle, Lander County, Nevada

    Science.gov (United States)

    Ramelli, Alan R.; Wrucke, Chester T.; House, P. Kyle

    2017-01-01

    This 1:24,000-scale geologic map of the Bateman Spring 7.5-minute quadrangle in Lander County, Nevada contains descriptions of 24 geologic units and one cross section. Accompanying text includes full unit descriptions and references. This quadrangle includes lower Paleozoic siliciclastic sedimentary rocks of the Roberts Mountain allochthon, Miocene intrusive dikes, alluvial deposits of the northern Shoshone Range piedmont, and riverine deposits of the Reese and Humboldt rivers.Significant findings include: refined age estimates for the Ordovician-Cambrian Valmy Formation and Devonian Slaven Chert, based on new fossil information; and detailed mapping of late Quaternary fault traces along the Shoshone Range fault system.

  18. Inverse geothermal modelling applied to Danish sedimentary basins

    Science.gov (United States)

    Poulsen, Søren E.; Balling, Niels; Bording, Thue S.; Mathiesen, Anders; Nielsen, Søren B.

    2017-10-01

    This paper presents a numerical procedure for predicting subsurface temperatures and heat-flow distribution in 3-D using inverse calibration methodology. The procedure is based on a modified version of the groundwater code MODFLOW by taking advantage of the mathematical similarity between confined groundwater flow (Darcy's law) and heat conduction (Fourier's law). Thermal conductivity, heat production and exponential porosity-depth relations are specified separately for the individual geological units of the model domain. The steady-state temperature model includes a model-based transient correction for the long-term palaeoclimatic thermal disturbance of the subsurface temperature regime. Variable model parameters are estimated by inversion of measured borehole temperatures with uncertainties reflecting their quality. The procedure facilitates uncertainty estimation for temperature predictions. The modelling procedure is applied to Danish onshore areas containing deep sedimentary basins. A 3-D voxel-based model, with 14 lithological units from surface to 5000 m depth, was built from digital geological maps derived from combined analyses of reflection seismic lines and borehole information. Matrix thermal conductivity of model lithologies was estimated by inversion of all available deep borehole temperature data and applied together with prescribed background heat flow to derive the 3-D subsurface temperature distribution. Modelled temperatures are found to agree very well with observations. The numerical model was utilized for predicting and contouring temperatures at 2000 and 3000 m depths and for two main geothermal reservoir units, the Gassum (Lower Jurassic-Upper Triassic) and Bunter/Skagerrak (Triassic) reservoirs, both currently utilized for geothermal energy production. Temperature gradients to depths of 2000-3000 m are generally around 25-30 °C km-1, locally up to about 35 °C km-1. Large regions have geothermal reservoirs with characteristic temperatures

  19. Geological myths and reality

    Science.gov (United States)

    Ostrihansky, Lubor

    2014-05-01

    Myths are the result of man's attempts to explain noteworthy features of his environment stemming from unfounded imagination. It is unbelievable that in 21st century the explanation of evident lithospheric plates movements and origin of forces causing this movement is still bound to myths, They are the myth about mantle convection, myth about Earth's expansion, myth about mantle heterogeneities causing the movement of plates and myth about mantle plumes. From 1971 to 1978 I performed extensive study (Ostřihanský 1980) about the terrestrial heat flow and radioactive heat production of batholiths in the Bohemian Massive (Czech Republic). The result, gained by extrapolation of the heat flow and heat production relationship, revealed the very low heat flow from the mantle 17.7mW m-2 close to the site of the Quarterly volcano active only 115,000 - 15,000 years ago and its last outbreak happened during Holocene that is less than 10,000 years ago. This volcano Komorní Hůrka (Kammerbühls) was known by J. W. Goethe investigation and the digging of 300 m long gallery in the first half of XIX century to reach the basaltic plug and to confirm the Stromboli type volcano. In this way the 19th century myth of neptunists that basalt was a sedimentary deposit was disproved in spite that famous poet and scientist J.W.Goethe inclined to neptunists. For me the result of very low heat flow and the vicinity of almost recent volcanoes in the Bohemian Massive meant that I refused the hypothesis of mantle convection and I focused my investigation to external forces of tides and solar heat, which evoke volcanic effects, earthquakes and the plate movement. To disclose reality it is necessary to present calculation of acting forces using correct mechanism of their action taking into account tectonic characteristics of geologic unites as the wrench tectonics and the tectonic of planets and satellites of the solar system, realizing an exceptional behavior of the Earth as quickly rotating

  20. Potash—A vital agricultural nutrient sourced from geologic deposits

    Science.gov (United States)

    Yager, Douglas B.

    2016-11-15

    This report summarizes the primary sources of potash in the United States. Potash is an essential nutrient that, along with phosphorus and nitrogen, is used as fertilizer for growing crops. Plants require sufficient potash to activate enzymes, which in turn catalyze chemical reactions important for water uptake and photosynthesis. When potassium is available in quantities necessary for healthy plant growth, disease resistance and physical quality are improved and crop yield and shelf life are increased. Potash is a water-soluble compound of potassium formed by geologic and hydrologic processes. The principal potash sources discussed are the large, stratiform deposits that formed during retreat and evaporation of intracontinental seas. The Paradox, Delaware, Holbrook, Michigan, and Williston sedimentary basins in the United States are examples where extensive potash beds were deposited. Ancient marine-type potash deposits that are close to the surface can be mined using conventional underground mining methods. In situ solution mining can be used where beds are too deep, making underground mining cost-prohibitive, or where underground mines are converted to in situ solution mines. Quaternary brine is another source of potash that is recovered by solar evaporation in manmade ponds. Groundwater from Pleistocene Lake Bonneville (Wendover, Utah) and the present-day Great Salt Lake in Utah are sources of potashbearing brine. Brine from these sources pumped to solar ponds is evaporated and potash concentrated for harvesting, processing, and refinement. Although there is sufficient potash to meet near-term demand, the large marine-type deposits are either geographically restricted to a few areas or are too deep to easily mine. Other regions lack sources of potash brine from groundwater or surface water. Thus, some areas of the world rely heavily on potash imports. Political, economic, and global population pressures may limit the ability of some countries from securing

  1. High resolution reservoir geological modelling using outcrop information

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Changmin; Lin Kexiang; Liu Huaibo [Jianghan Petroleum Institute, Hubei (China)] [and others

    1997-08-01

    This is China`s first case study of high resolution reservoir geological modelling using outcrop information. The key of the modelling process is to build a prototype model and using the model as a geological knowledge bank. Outcrop information used in geological modelling including seven aspects: (1) Determining the reservoir framework pattern by sedimentary depositional system and facies analysis; (2) Horizontal correlation based on the lower and higher stand duration of the paleo-lake level; (3) Determining the model`s direction based on the paleocurrent statistics; (4) Estimating the sandbody communication by photomosaic and profiles; (6) Estimating reservoir properties distribution within sandbody by lithofacies analysis; and (7) Building the reservoir model in sandbody scale by architectural element analysis and 3-D sampling. A high resolution reservoir geological model of Youshashan oil field has been built by using this method.

  2. Archaen to Recent aeolian sand systems and their sedimentary record

    DEFF Research Database (Denmark)

    Rodríguez-López, Juan Pedro; Clemmensen, Lars B; Lancaster, Nick

    2014-01-01

    The sedimentary record of aeolian sand systems extends from the Archean to the Quaternary, yet current understanding of aeolian sedimentary processes and product remains limited. Most preserved aeolian successions represent inland sand-sea or dunefield (erg) deposits, whereas coastal systems are ...

  3. Economic filters for evaluating porphyry copper deposit resource assessments using grade-tonnage deposit models, with examples from the U.S. Geological Survey global mineral resource assessment: Chapter H in Global mineral resource assessment

    Science.gov (United States)

    Robinson, Gilpin R.; Menzie, W. David

    2012-01-01

    An analysis of the amount and location of undiscovered mineral resources that are likely to be economically recoverable is important for assessing the long-term adequacy and availability of mineral supplies. This requires an economic evaluation of estimates of undiscovered resources generated by traditional resource assessments (Singer and Menzie, 2010). In this study, simplified engineering cost models were used to estimate the economic fraction of resources contained in undiscovered porphyry copper deposits, predicted in a global assessment of copper resources. The cost models of Camm (1991) were updated with a cost index to reflect increases in mining and milling costs since 1989. The updated cost models were used to perform an economic analysis of undiscovered resources estimated in porphyry copper deposits in six tracts located in North America. The assessment estimated undiscovered porphyry copper deposits within 1 kilometer of the land surface in three depth intervals.

  4. Geochemistry of shale and sedimentary pyrite as a proxy for gold fertility in the Selwyn basin area, Yukon

    Science.gov (United States)

    Sack, Patrick J.; Large, Ross R.; Gregory, Daniel D.

    2018-01-01

    Selwyn basin area strata contain sedimentary pyrite with Au above background levels when analyzed by laser ablation-inductively coupled mass spectrometry. Hyland Group rocks contain framboidal pyrite contents of 670 ppb Au, 1223 ppm As, and 5.3 ppm Te; the mean of all types of sedimentary pyrite in the Hyland Group is 391 ppb Au, 1489 ppm As, and 3.8 ppm Te. These levels are similar to sedimentary pyrite in host lithologies from major orogenic gold districts in New Zealand and Australia. Comparison of whole rock and pyrite data show that rocks deposited in continental slope settings with significant terrigenous input contain pyrite that is consistently enriched in Au, As, Te, Co, and Cu. Although data are limited, whole rock samples of stratigraphic units containing Au-rich pyrite also contain high Au, indicating that most of the Au is within sedimentary pyrite. Based on geologic characteristics and comparison of pyrite chemistry data with whole rock chemistry, Selwyn basin area strata have the necessary ingredients to form orogenic gold deposits: Au-enriched source rocks, metamorphic conditions permissive of forming a metamorphic ore fluid, and abundant structural preparation for channeling fluids and depositing ore.

  5. Measurement of unsaturated hydraulic properties and evaluation of property-transfer models for deep sedimentary interbeds, Idaho National Laboratory, Idaho

    Science.gov (United States)

    Perkins, Kimberlie; Johnson, Brittany D.; Mirus, Benjamin B.

    2014-01-01

    Operations at the Idaho National Laboratory (INL) have the potential to contaminate the underlying Eastern Snake River Plain (ESRP) aquifer. Methods to quantitatively characterize unsaturated flow and recharge to the ESRP aquifer are needed to inform water-resources management decisions at INL. In particular, hydraulic properties are needed to parameterize distributed hydrologic models of unsaturated flow and transport at INL, but these properties are often difficult and costly to obtain for large areas. The unsaturated zone overlying the ESRP aquifer consists of alternating sequences of thick fractured volcanic rocks that can rapidly transmit water flow and thinner sedimentary interbeds that transmit water much more slowly. Consequently, the sedimentary interbeds are of considerable interest because they primarily restrict the vertical movement of water through the unsaturated zone. Previous efforts by the U.S. Geological Survey (USGS) have included extensive laboratory characterization of the sedimentary interbeds and regression analyses to develop property-transfer models, which relate readily available physical properties of the sedimentary interbeds (bulk density, median particle diameter, and uniformity coefficient) to water retention and unsaturated hydraulic conductivity curves.

  6. Seismic velocities within the sedimentary succession of the Canada Basin and southern Alpha-Mendeleev Ridge, Arctic Ocean: evidence for accelerated porosity reduction?

    Science.gov (United States)

    Shimeld, John; Li, Qingmou; Chian, Deping; Lebedeva-Ivanova, Nina; Jackson, Ruth; Mosher, David; Hutchinson, Deborah R.

    2016-01-01

    The Canada Basin and the southern Alpha-Mendeleev ridge complex underlie a significant proportion of the Arctic Ocean, but the geology of this undrilled and mostly ice-covered frontier is poorly known. New information is encoded in seismic wide-angle reflections and refractions recorded with expendable sonobuoys between 2007 and 2011. Velocity–depth samples within the sedimentary succession are extracted from published analyses for 142 of these records obtained at irregularly spaced stations across an area of 1.9E + 06 km2. The samples are modelled at regional, subregional and station-specific scales using an exponential function of inverse velocity versus depth with regionally representative parameters determined through numerical regression. With this approach, smooth, non-oscillatory velocity–depth profiles can be generated for any desired location in the study area, even where the measurement density is low. Practical application is demonstrated with a map of sedimentary thickness, derived from seismic reflection horizons interpreted in the time domain and depth converted using the velocity–depth profiles for each seismic trace. A thickness of 12–13 km is present beneath both the upper Mackenzie fan and the middle slope off of Alaska, but the sedimentary prism thins more gradually outboard of the latter region. Mapping of the observed-to-predicted velocities reveals coherent geospatial trends associated with five subregions: the Mackenzie fan; the continental slopes beyond the Mackenzie fan; the abyssal plain; the southwestern Canada Basin; and, the Alpha-Mendeleev magnetic domain. Comparison of the subregional velocity–depth models with published borehole data, and interpretation of the station-specific best-fitting model parameters, suggests that sandstone is not a predominant lithology in any of the five subregions. However, the bulk sand-to-shale ratio likely increases towards the Mackenzie fan, and the model for this subregion compares

  7. Arching Structures in Granular Sedimentary Deposits

    Czech Academy of Sciences Publication Activity Database

    Kulaviak, Lukáš; Hladil, Jindřich; Růžička, Marek; Drahoš, Jiří; Saint-Lary, L.

    2013-01-01

    Roč. 246, SEP (2013), s. 269-277 ISSN 0032-5910 R&D Projects: GA ČR GA104/07/1110; GA AV ČR IAAX00130702; GA MŠk(CZ) LG11014 Institutional support: RVO:67985858 ; RVO:67985831 Keywords : wet granulars * deposit * arching structure Subject RIV: CI - Industrial Chemistry, Chemical Engineering; DB - Geology ; Mineralogy (GLU-S) Impact factor: 2.269, year: 2013

  8. Tracing contaminant pathways in sandy heterogeneous glaciofluvial sediments using a sedimentary depositional model

    International Nuclear Information System (INIS)

    Webb, E.K.; Anderson, M.P.

    1990-01-01

    Heterogeneous sedimentary deposits present complications for tracking contaminant movement by causing a complex advective flow field. Connected areas of high conductivity produce so-called fast paths that control movement of solutes. Identifying potential fast paths and describing the variation in hydraulic properties was attempted through simulating the deposition of a glaciofluvial deposit (outwash). Glaciofluvial deposits usually consist of several depositional facies, each of which has different physical characteristics, depositional structures and hydraulic properties. Therefore, it is unlikely that the property of stationarity (a constant mean hydraulic conductivity and a mono-modal probability distribution) holds for an entire glaciofluvial sequence. However, the process of dividing an outwash sequence into geologic facies presumably identifies units of material with similar physical characteristics. It is proposed that patterns of geologic facies determined by field observation can be quantified by mathematical simulation of sediment deposition. Subsequently, the simulated sediment distributions can be used to define the distribution of hydrogeologic parameters and locate possible fast paths. To test this hypothesis, a hypothetical glacial outwash deposit based on geologic facies descriptions contained in the literature was simulated using a sedimentary depositional model, SEDSIM, to produce a three-dimensional description of sediment grain size distributions. Grain size distributions were then used to estimate the spatial distribution of hydraulic conductivity. Subsequently a finite-difference flow model and linked particle tracking algorithm were used to trace conservative transport pathways. This represents a first step in describing the spatial heterogeneity of hydrogeologic characteristics for glaciofluvial and other braided stream environments. (Author) (39 refs., 7 figs.)

  9. 3D coupled heat and mass transfer processes at the scale of sedimentary basisn

    Science.gov (United States)

    Cacace, M.; Scheck-Wenderoth, M.; Kaiser, B. O.

    2014-12-01

    We use coupled 3D simulations of fluid, heat, and transport based on a 3D structural model of a complex geological setting, the Northeast German Basin (NEGB). The geological structure of the NEGB is characterized by a relatively thick layer of Permian Zechstein salt, structured in differnet diapirs (up to 5000 m thick) and pillows locally reaching nearly the surface. Salt is thermally more conductive than other sediments, hydraulically impervious but highly solvable. Thus salt structures have first order influence on the temperature distribution, the deep flow regime and the salinity of groundawater bearing aquifers. In addition, the post-Permian sedimentary sequence is vertically subdivided into several aquifers and aquitards. The shallow Quaternary to late Tertiary freshwater aquifer is separated from the underlying Mesozoic saline aquifers by an embedded Tertiary clay enriched aquitard (Rupelian Aquitard). An important feature of this aquitard is that hydraulic connections between the upper and lower aquifers exist in areas where the Rupelian Aquitard is missing (hydrogeological windows). By means of 3D numerical simulations we explore the role of heat conduction, pressure, and density driven groundwater flow as well as fluid viscosity-related and salinity-dependent effects on the resulting flow and temperature fields. Our results suggest that the regional temperature distribution within the basin results from interactions between regional pressure forces and thermal diffusion locally enhanced by thermal conductivity contrasts between the different sedimentary rocks with the highly conductive salt. Buoyancy forces triggered by temperature-dependent fluid density variations affect only locally the internal thermal configuration. Locations, geometry, and wavelengths of convective thermal anomalies are mainly controlled by the permeability field and thickness values of the respective geological layers. Numerical results from 3D thermo-haline numerical simulations

  10. Global Journal of Engineering Research

    African Journals Online (AJOL)

    The Global Journal of Engineering Research is aimed at promoting research in all areas of Engineering Research including Mechanical, Civil, Electrical, Chemical, Electronics, Geological etc. Visit the Global Journal Series website here: http://www.globaljournalseries.com/ ...

  11. GEOLOGICAL-GEOPHYSICAL EXPLORATION OF THE BAUXITE DEPOSITS APPLICATION OF THE SHALLOW SEIZMIC REFLECTION METHOD

    OpenAIRE

    Ivan Dragičević; Miroslav Andrić; Ivan Blašković

    1991-01-01

    The exploration of bauxite deposits in the region of the carbonaceous Dinarides has been performed by using different geological and geophysical methods. Deposits laying shallower or deeper below the roof sediments have so far most often been discovered by expensive drilling methods in a corresponding grid. Complex geological explorations have led to a series of valuable data thus enabling the application of other much more economical methods as well. In the region of the bauxite sedimentary ...

  12. Niger republic mineral planning ( part two): actual state of Niger republic geological knowledge

    International Nuclear Information System (INIS)

    Joo, Julien; Franconi, A.

    1983-01-01

    In this document, the followings points are described: available scientific supports basicly use for mining and geological research; geological history outline of Niger republic and west Africa; crystalline fields of liptako-gourma (western part of Niger); air massif; southern Niger crystalline (Damagaram-Mounio, and southern Maradi); Primary , secondary and tertiary formations of Niger western sedimentary basin and eastern Niger crystalline socle and phanerozoic formation [fr

  13. The global marine phosphorus cycle: sensitivity to oceanic circulation

    Directory of Open Access Journals (Sweden)

    C. P. Slomp

    2007-01-01

    Full Text Available A new mass balance model for the coupled marine cycles of phosphorus (P and carbon (C is used to examine the relationships between oceanic circulation, primary productivity, and sedimentary burial of reactive P and particulate organic C (POC, on geological time scales. The model explicitly represents the exchanges of water and particulate matter between the continental shelves and the open ocean, and it accounts for the redox-dependent burial of POC and the various forms of reactive P (iron(III-bound P, particulate organic P (POP, authigenic calcium phosphate, and fish debris. Steady state and transient simulations indicate that a slowing down of global ocean circulation decreases primary production in the open ocean, but increases that in the coastal ocean. The latter is due to increased transfer of soluble P from deep ocean water to the shelves, where it fuels primary production and causes increased reactive P burial. While authigenic calcium phosphate accounts for most reactive P burial ocean-wide, enhanced preservation of fish debris may become an important reactive P sink in deep-sea sediments during periods of ocean anoxia. Slower ocean circulation globally increases POC burial, because of enhanced POC preservation under anoxia in deep-sea depositional environments and higher primary productivity along the continental margins. In accordance with geological evidence, the model predicts increased accumulation of reactive P on the continental shelves during and following periods of ocean anoxia.

  14. Questioning the Sedimentary Paradigm for Granites

    Science.gov (United States)

    Glazner, A. F.; Bartley, J. M.; Coleman, D. S.; Boudreau, A.; Walker, J. D.

    2007-12-01

    A critical question regarding volcano-pluton links is whether plutons are samples of magma that passed through on its way to eruption, or residues left behind after volcanic rocks were extracted. A persistent theme of recent work on granites sensu lato is that many are sedimentary accumulations of crystals that lost significant volumes of magmatic liquid. This view is based on observations of structures that clearly seem to reflect deposition on a magma chamber floor (e.g., flows of chilled mafic magma into silicic magma) and on the inference that many other structures, such as modal layering, truncated layering, and crystal accumulations, reflect crystal sedimentation on such chamber floors. There are significant physical and geochemical reasons to question this view, based on observations in the Sierra Nevada of California and similar results from other batholiths. First, few granites show the enrichments in Ba, Sr, and relative Eu that feldspar accumulation should produce. Second, sedimentary features such as graded bedding and cross-bedding form in highly turbulent flows, but turbulence is unachievable in viscous silicic liquids, where velocities on the order of 104 m/s would be required to induce turbulence in a liquid with η=104 Pa s. Third, tabular modally layered domains commonly cut surrounding modal layering on both sides, and orientations of modal layering and of the troughs of "ladder dikes" commonly scatter widely within hectare-sized areas; it is difficult to reconcile these features with gravity-driven settling. Fourth, accumulations of K-feldspar megacrysts are typically inferred to be depositional, but this is precluded by crystallization of most K- feldspar after rheologic lock-up occurs. Finally, accumulations of K-feldspar and hornblende are typically packed too tightly to be depositional. With analogy to layered mafic intrusions, many features attributed to crystal sedimentation in granites may be better explained by crystal aging and other in

  15. Discrete kinematic modeling of the 3-D deformation of sedimentary basins; Modelisation cinematique discrete de la deformation 3D des bassins sedimentaires

    Energy Technology Data Exchange (ETDEWEB)

    Cornu, T.

    2001-01-01

    The present work deals with three-dimensional deformation of sedimentary basins. The main goal of the work was to propose new ways to study tectonic deformation and to insert it into basin-modeling environment for hydrocarbon migration applications. To handle the complexity of the deformation, the model uses kinematic laws, a discrete approach, and the construction of a code that allows the greatest diversity in the deformation mechanisms we can take into account. The 3-D-volume deformation is obtained through the calculation of the behavior of the neutral surface of each basin layer. The main idea is to deform the neutral surface of each layer with the help of geometrical laws and to use the result to rebuild the volume deformation of the basin. The constitutive algorithm includes three characteristic features. The first one deals with the mathematical operator we use to describe the flexural-slip mechanism which is a combination of the translation of the neutral surface nodes and the rotation of the vertical edges attached to these nodes. This performs the reversibility that was required for the basin modeling. The second one is about. the use of a discrete approach, which gives a better description of the global deformation and offers to locally control volume evolutions. The knowledge of volume variations can become a powerful tool in structural geology analysis and the perfect complement for a field study. The last one concerns the modularity of the developed code. Indeed, the proposed model uses three main mechanisms of deformation. But the architecture of the code allows the insertion of new mechanisms or a better interaction between them. The model has been validated first with 2-D cases, then with 3-D natural cases. They give good results from a qualitative point of view. They also show the capacity of the model to provide a deformation path that is geologically acceptable, and its ability to control the volume variations of the basin through the

  16. Frontiers in Sedimentary Geology: Microstructure of Fine-Grained Sediments from Mud to Shale

    Science.gov (United States)

    1990-01-01

    impregnation of the resin, a small probe ( dental tool or bamboo delicate, fine-grain, high porosity, clayey sediments. It could stick) can be used to...two binary images shown in Figure 40.4a and b. 374 S.K. Bhatia and A. Soliman 150- 󈧔Somple’ OM 665 Voids 120- emin = 0.04 emax = 1.38 As’. >90-Av o...increase the mass perme- across the crown of many earthen dams. The author observed a ability (Williams and Farvolden. 1967: Stohr et al., 1988). Other

  17. Lithology, stratigraphy and geochemistry of sediments: Sedimentary geology of the deformation zone

    Digital Repository Service at National Institute of Oceanography (India)

    Muradmaa, I.O.; Levitan, M.A.; Reddy, N.P.C.; Emelyanov, E.M; Jafri, S.H.

    stream_size 10 stream_content_type text/plain stream_name Memoir_Geol_Soc_India_1998_39_177.pdf.txt stream_source_info Memoir_Geol_Soc_India_1998_39_177.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  18. Development of Geostatistical Models to Estimate CO2 Storage Resource in Sedimentary Geologic Formations

    Science.gov (United States)

    Popova, Olga H.

    Dental hygiene students must embody effective critical thinking skills in order to provide evidence-based comprehensive patient care. The problem addressed in this study it was not known if and to what extent concept mapping and reflective journaling activities embedded in a curriculum over a 4-week period, impacted the critical thinking skills of 22 first and second-year dental hygiene students attending a community college in the Midwest. The overarching research questions were: what is the effect of concept mapping, and what is the effect of reflective journaling on the level of critical thinking skills of first and second year dental hygiene students? This quantitative study employed a quasi-experimental, pretest-posttest design. Analysis of Covariance (ANCOVA) assessed students' mean scores of critical thinking on the California Critical Thinking Skills Test (CCTST) pretest and posttest for the concept mapping and reflective journaling treatment groups. The results of the study found an increase in CCTST posttest scores with the use of both concept mapping and reflective journaling. However, the increase in scores was not found to be statistically significant. Hence, this study identified concept mapping using Ausubel's assimilation theory and reflective journaling incorporating Johns's revision of Carper's patterns of knowing as potential instructional strategies and theoretical models to enhance undergraduate students' critical thinking skills. More research is required in this area to draw further conclusions. Keywords: Critical thinking, critical thinking development, critical thinking skills, instructional strategies, concept mapping, reflective journaling, dental hygiene, college students.

  19. Geology of Uruguay review

    International Nuclear Information System (INIS)

    Gomez Rifas, C.

    2011-01-01

    This work is about the Uruguay geology review.This country has been a devoted to breeding cattle and agriculture.The evolution of geological knowledge begun with Dr. Karl Walther who published 53 papers between 1909 and 1948.

  20. Geological Services Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Researchers use computed tomography (CT) scanners at NETL’s Geological Services Laboratory in Morgantown, WV, to peer into geologic core samples to determine how...

  1. Mercury's Early Geologic History

    Science.gov (United States)

    Denevi, B. W.; Ernst, C. M.; Klima, R. L.; Robinson, M. S.

    2018-05-01

    A combination of geologic mapping, compositional information, and geochemical models are providing a better understanding of Mercury's early geologic history, and allow us to place it in the context of the Moon and the terrestrial planets.

  2. Sedimentary Geothermal Feasibility Study: October 2016

    Energy Technology Data Exchange (ETDEWEB)

    Augustine, Chad [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zerpa, Luis [Colorado School of Mines, Golden, CO (United States)

    2017-01-01

    The objective of this project is to analyze the feasibility of commercial geothermal projects using numerical reservoir simulation, considering a sedimentary reservoir with low permeability that requires productivity enhancement. A commercial thermal reservoir simulator (STARS, from Computer Modeling Group, CMG) is used in this work for numerical modeling. In the first stage of this project (FY14), a hypothetical numerical reservoir model was developed, and validated against an analytical solution. The following model parameters were considered to obtain an acceptable match between the numerical and analytical solutions: grid block size, time step and reservoir areal dimensions; the latter related to boundary effects on the numerical solution. Systematic model runs showed that insufficient grid sizing generates numerical dispersion that causes the numerical model to underestimate the thermal breakthrough time compared to the analytic model. As grid sizing is decreased, the model results converge on a solution. Likewise, insufficient reservoir model area introduces boundary effects in the numerical solution that cause the model results to differ from the analytical solution.

  3. Global Journal of Geological Sciences: Advanced Search

    African Journals Online (AJOL)

    Search tips: Search terms are case-insensitive; Common words are ignored; By default only articles containing all terms in the query are returned (i.e., AND is implied); Combine multiple words with OR to find articles containing either term; e.g., education OR research; Use parentheses to create more complex queries; e.g., ...

  4. Analysis on metallogenetic geological and physicochemical conditions in uranium deposit No.138

    International Nuclear Information System (INIS)

    Tang Qitao

    1996-01-01

    The uranium deposit No.138 is of Mesozoic volcano-sedimentary transformation type. This paper discusses such geological conditions as source of uranium, stratigraphy and lithology, lithofacies and paleogeography, paleoclimate, structure and reworking-regeneration, and such physicochemical conditions as uranium adsorbent and reductant, effective porosity, chemical compositions, pH and Eh of rocks in the deposit

  5. Main geologic characteristics and metallogenic models of uranium deposits in Zhejiang

    International Nuclear Information System (INIS)

    Tang Qitao

    2000-01-01

    Uranium resources in Zhejiang is abundant with numerous mineralization types. According to the genesis they can be classified into: sedimentary-reworking type, hydrothermal type and infiltration type. The author briefly describes main geologic characteristics and metallogenic models of different type uranium deposits

  6. The Spatial Thinking Workbook: A Research-Validated Spatial Skills Curriculum for Geology Majors

    Science.gov (United States)

    Ormand, Carol J.; Shipley, Thomas F.; Tikoff, Basil; Dutrow, Barbara; Goodwin, Laurel B.; Hickson, Thomas; Atit, Kinnari; Gagnier, Kristin; Resnick, Ilyse

    2017-01-01

    Spatial visualization is an essential prerequisite for understanding geological features at all scales, such as the atomic structures of minerals, the geometry of a complex fault system, or the architecture of sedimentary deposits. Undergraduate geoscience majors bring a range of spatial skill levels to upper-level courses. Fortunately, spatial…

  7. Geology and mineral potential of Ethiopia: a note on geology and mineral map of Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Tadesse, S.; Milesi, J.P.; Deschamps, Y. [University of Addis Ababa, Addis Ababa (Ethiopia). Dept. for Geology & Geophysics

    2003-05-01

    This work presents a geoscientific map and database for geology, mineral and energy resources of Ethiopia in a digital form at a scale of 1 : 2,000,000, compiled from several sources. The final result of the work has been recorded on CD-ROM in GIS format. Metallic resources (precious, rare, base and ferrous-ferroalloy metals) are widely related to the metamorphic meta-volcano-sedimentary belts and associated intrusives belonging to various terranes of the Arabian-Nubian Shield, accreted during the East and West Gondwana collision (Neoproterozoic, 900-500 Ma). Industrial minerals and rock resources occur in more diversified geological environments, including the Proterozoic basement rocks, the Late Paleozoic to Mesozoic sediments and recent (Cenozoic) volcanics and associated sediments. Energy resources (oil, coal, geothermal resources) are restricted to Phanerozoic basin sediments and Cenozoic volcanism and rifting areas.

  8. Analysis of geologic terrain models for determination of optimum SAR sensor configuration and optimum information extraction for exploration of global non-renewable resources. Pilot study: Arkansas Remote Sensing Laboratory, part 1, part 2, and part 3

    Science.gov (United States)

    Kaupp, V. H.; Macdonald, H. C.; Waite, W. P.; Stiles, J. A.; Frost, F. S.; Shanmugam, K. S.; Smith, S. A.; Narayanan, V.; Holtzman, J. C. (Principal Investigator)

    1982-01-01

    Computer-generated radar simulations and mathematical geologic terrain models were used to establish the optimum radar sensor operating parameters for geologic research. An initial set of mathematical geologic terrain models was created for three basic landforms and families of simulated radar images were prepared from these models for numerous interacting sensor, platform, and terrain variables. The tradeoffs between the various sensor parameters and the quantity and quality of the extractable geologic data were investigated as well as the development of automated techniques of digital SAR image analysis. Initial work on a texture analysis of SEASAT SAR imagery is reported. Computer-generated radar simulations are shown for combinations of two geologic models and three SAR angles of incidence.

  9. Geologic Map of the Boxley Quadrangle, Newton and Madison Counties, Arkansas

    Science.gov (United States)

    Hudson, Mark R.; Turner, Kenzie J.

    2007-01-01

    This map summarizes the geology of the Boxley 7.5-minute quadrangle in the Ozark Plateaus region of northern Arkansas. Geologically, the area lies on the southern flank of the Ozark dome, an uplift that exposes oldest rocks at its center in Missouri. Physiographically, the Boxley quadrangle lies within the Boston Mountains, a high plateau region underlain by Pennsylvanian sandstones and shales. Valleys of the Buffalo River and its tributaries expose an approximately 1,600-ft-(490-m-)thick sequence of Ordovician, Mississippian, and Pennsylvanian carbonate and clastic sedimentary rocks that have been mildly deformed by a series of faults and folds. Part of Buffalo National River, a park encompassing the Buffalo River and adjacent land that is administered by the National Park Service, extends through the eastern part of the quadrangle. Mapping for this study was conducted by field inspection of numerous sites and was compiled as a 1:24,000-scale geographic information system (GIS) database. Locations and elevation sites were determined with the aid of a global positioning satellite receiver and a hand-held barometric altimeter. Hill-shade-relief and slope maps derived from a U.S. Geological Survey 10-m digital elevation model as well as orthophotos were used to help trace ledge-forming units between field traverses within the Upper Mississippian and Pennsylvanian part of the stratigraphic sequence. Strike and dip of beds were typically measured along stream drainages or at well-exposed ledges. Structure contours were constructed on the top of the Boone Formation and the base of a prominent sandstone unit within the Bloyd Formation based on elevations of control points as well as other limiting information on their maximum or minimum elevations.

  10. European Program 'EVEREST'. Evaluation of the elements producing the effective doses associated to a radioactive waste disposal in deep underground geological formations. Comparative study of the results obtained by IPSN concerning the sedimentary and granite formations; Programme europeen 'EVEREST'. Evaluation des elements responsables des doses efficaces associees a un stockage de dechets radioactifs en formations geologiques profondes. Etude comparative des resultats obtenus par l'IPSN concernant les formations sedimentaire et granitique

    Energy Technology Data Exchange (ETDEWEB)

    Baudoin, Patrick; Serres, Christophe; Certes Catherine [Departement d' evaluation de surete, Inst. de Protection et de Surete Nucleaire, CEA Centre d' Etudes de Fontenay-aux-Roses, 92 (France)

    1996-09-01

    The European exercise EVEREST that was run from 1991 to 1995 was a means of training for IPSN, having in view the expertise studies of ANDRA on the safety of radioactive waste geological disposal. The exercise implied two fictitious waste disposal sites, one inside a granite massif and the other in a clay formation, and had as principal objective identification and establishing a hierarchy of the radiological risk parameters important after the disposal closing. The study has considered the most likely scenario for evolution of the geological environment. As computing tools three codes were utilized: MELODIE, assuming a continuous 2D water flow and transfer of radionuclides from waste disposal to biosphere; TRISEC, assuming a continuous 3D water flow and NEWSAM, assuming a transient water flow in a multi-shell geometry. Results for the water circulation in different geological environment as well as the flux curves of soluble radionuclides are presented. Twenty seven radionuclides were retained as important by their radiological impact in assessing the influential EVEREST parameters. The EVEREST exercise does not prove the feasibility of a given geological disposal. It only contributes to the comprehension of the mechanisms controlling the radionuclide migration and gives a hierarchy of the questions which IPSN must answer in approaching the safety demonstrations required by ANDRA.

  11. A Sedimentary Carbon Inventory for a Scottish Sea Loch

    Science.gov (United States)

    Smeaton, Craig; Austin, William; Davies, Althea; Baltzer, Agnes

    2015-04-01

    biogeochemical methodology and how it was applied to Loch Sunart. The methodology was applied to seismic geophysics data collected in 2009 (Baltzer et al. 2010,) and data compiled through biogeochemical analysis of sediment cores collected from Loch Sunart. Through the combination of these datasets we have undertaken calculations to quantify the total sediment mass and the percentage of carbon contained in that sediment. Through this work we have created the first holistic sedimentary carbon inventory for a sea loch; which is the first step to tackling the larger questions around coastal carbon. Baltzer, A, Bates, R, Mokeddem, Z, Clet-Pellerin, M, Walter-Simonnet, A-V, Bonnot-Courtois, C and Austin, WEN 2010, Using seismic facies and pollen analyses to evaluate climatically driven change in a Scottish sea loch (fjord) over the last 20 ka, Geological Society, London, Special Publications, 344, (1), pp. 355-369. Bauer, JE, Cai, W-J, Raymond, P a, Bianchi, TS, Hopkinson, CS and Regnier, P a G 2013, The changing carbon cycle of the coastal ocean., Nature, 504, (7478), pp. 61-70.

  12. Stratigraphic sequence and sedimentary characteristics of Lower Silurian Longmaxi Formation in Sichuan Basin and its peripheral areas

    Directory of Open Access Journals (Sweden)

    Yuman Wang

    2015-03-01

    Full Text Available A high-precision sedimentary environment study of the Lower Silurian Longmaxi Formation is an important subject for shale gas exploration and development in Sichuan Basin and its surrounding areas. On the basis of outcrops and drilling data, its isochronous stratigraphic framework was built according to a particular graptolite zone and an important marker bed, and lithofacies, paleontology, calcareous content, well logging, geochemistry and other geologic information were combined to describe the sedimentary microfacies of Longmaxi Formation and its stratigraphic sequence, sedimentary evolution process and high quality shale distribution features as follows: ① with regional diachronism of the top and the bottom, the Longmaxi Formation is divided into two third-order sequences (SQ1 and SQ2, of which SQ1 is mainly an abyssal sedimentary assemblage deposited in the marine transgression period, and SQ2 is a bathyal to shallow sea sedimentary assemblage deposited in the marine regression period; ② there are eight microfacies such as deep calcareous shelf and deep argillaceous shelf in this formation and the organic-rich shale was mainly deposited in the deep water area of SQ1; and ③ from SQ1 to SQ2, the depocenter moved from the depression area in southern-eastern to northern Sichuan Basin, but the central Sichuan uplift remained an underwater one. It is concluded from this study that: ① shale gas production layers were mainly deposited in SQ1, the southern-eastern depression area was the depocenter in SQ1 and a shale gas enrichment area; and ② black shale in northern Sichuan was deposited in late SQ2, with limited distribution and relatively insufficient exploration potential, but the potential of shale gas exploration in western Hubei area is between southern-eastern and northern Sichuan Basin.

  13. Formation Conditions and Sedimentary Characteristics of a Triassic Shallow Water Braided Delta in the Yanchang Formation, Southwest Ordos Basin, China.

    Directory of Open Access Journals (Sweden)

    Ziliang Liu

    Full Text Available A large, shallow braided river delta sedimentary system developed in the Yanchang Formation during the Triassic in the southwest of the Ordos basin. In this braided delta system, abundant oil and gas resources have been observed, and the area is a hotspot for oil and gas resource exploration. Through extensive field work on outcrops and cores and analyses of geophysical data, it was determined that developments in the Late Triassic produced favorable geological conditions for the development of shallow water braided river deltas. Such conditions included a large basin, flat terrain, and wide and shallow water areas; wet and dry cyclical climate changes; ancient water turbulence; dramatic depth cycle changes; ancient uplift development; strong weathering of parent rock; and abundant supply. The shallow water braided river delta showed grain sediment granularity, plastic debris, and sediment with mature composition and structure that reflected the strong hydrodynamic environment of large tabular cross-bedding, wedge cross-bedding, and multiple positive rhythms superimposed to form a thick sand body layer. The branch river bifurcation developed underwater, and the thickness of the sand body increased further, indicating that the slope was slow and located in shallow water. The seismic responses of the braided river delta reflected strong shallow water performance, indicated by a progradation seismic reflection phase axis that was relatively flat; in addition, the seismic reflection amplitude was strong and continuous with a low angle and extended over considerable distances (up to 50 km. The sedimentary center was close to the provenance, the width of the river was large, and a shallow sedimentary structure and a sedimentary rhythm were developed. The development of the delta was primarily controlled by tectonic activity and changes in the lake level; as a result, the river delta sedimentary system eventually presented a "small plain, big front

  14. Late Quaternary sedimentary dynamics in Western Amazonia: Implications for the origin of open vegetation/forest contrasts

    Science.gov (United States)

    Rossetti, D. F.; Bertani, T. C.; Zani, H.; Cremon, E. H.; Hayakawa, E. H.

    2012-12-01

    This work investigated the evolution of sedimentary environments during the latest Quaternary and their influence on the paradoxical occurrence of open vegetation patches in sharp contact with the Amazonian forest. The approach integrated pre-existing geological and floristic data from lowlands in the Brazilian Amazonia, with remote sensing imagery including multispectral optical images (TM, ETM+, and ASTER), Phased Array L-band Synthetic Aperture Radar (PALSAR), InSAR C-band SRTM-DEMs, and high resolution images obtained from Google Earth™. The detection of an abundance of paleomorphologies provided evidence of a scenario in which constant environmental shifts were linked to the evolution of fluvial and megafan depositional systems. In all studied areas, the open vegetation patches are not random, but associated with sedimentary deposits representative of environments either deactivated during the Holocene or presently in the process of deactivation. Sedimentary evolution would have determined the distribution of wetlands and terra firme in many areas of the Amazonian lowlands, and would have a major impact on the development of open vegetated patches within the modern rainforest. Subsiding areas were filled up with megafan deposits, and many fluvial tributaries were rearranged on the landscape. The close relationship between vegetation and the physical environment suggests that sedimentary history related to the evolution of depositional settings during the latest Quaternary played a major role in the distribution of flooded and non-flooded areas of the Amazonian lowlands, with a direct impact on the distribution of modern floristic patterns. As the depositional sites were abandoned and their sedimentary deposits were exposed to the surface, they became sites suitable for vegetation growth, first of herbaceous species and then of forest. Although climate fluctuations might have been involved, fault reactivation appears to have been the main cause of changes in

  15. Formation Conditions and Sedimentary Characteristics of a Triassic Shallow Water Braided Delta in the Yanchang Formation, Southwest Ordos Basin, China.

    Science.gov (United States)

    Liu, Ziliang; Shen, Fang; Zhu, Xiaomin; Li, Fengjie; Tan, Mengqi

    2015-01-01

    A large, shallow braided river delta sedimentary system developed in the Yanchang Formation during the Triassic in the southwest of the Ordos basin. In this braided delta system, abundant oil and gas resources have been observed, and the area is a hotspot for oil and gas resource exploration. Through extensive field work on outcrops and cores and analyses of geophysical data, it was determined that developments in the Late Triassic produced favorable geological conditions for the development of shallow water braided river deltas. Such conditions included a large basin, flat terrain, and wide and shallow water areas; wet and dry cyclical climate changes; ancient water turbulence; dramatic depth cycle changes; ancient uplift development; strong weathering of parent rock; and abundant supply. The shallow water braided river delta showed grain sediment granularity, plastic debris, and sediment with mature composition and structure that reflected the strong hydrodynamic environment of large tabular cross-bedding, wedge cross-bedding, and multiple positive rhythms superimposed to form a thick sand body layer. The branch river bifurcation developed underwater, and the thickness of the sand body increased further, indicating that the slope was slow and located in shallow water. The seismic responses of the braided river delta reflected strong shallow water performance, indicated by a progradation seismic reflection phase axis that was relatively flat; in addition, the seismic reflection amplitude was strong and continuous with a low angle and extended over considerable distances (up to 50 km). The sedimentary center was close to the provenance, the width of the river was large, and a shallow sedimentary structure and a sedimentary rhythm were developed. The development of the delta was primarily controlled by tectonic activity and changes in the lake level; as a result, the river delta sedimentary system eventually presented a "small plain, big front" character.

  16. The geology of the southeastern Baltic Sea: a review

    Science.gov (United States)

    Ūsaitytė, Daiva

    2000-06-01

    The Baltic Sea, particularly its southeastern part, is discussed in the paper. Investigations of regional character as well as specialized studies in the area are reviewed. General historical works are mentioned briefly. Previous surveys since the 1950s are presented by the subject studied. The compilation of geological structure of the SE Baltic Sea bottom and adjacent land of Balticum (Baltic States: Estonia, Latvia, Lithuania) is based on considerable amounts of summarized materials. The crystalline basement, sedimentary cover and Quaternary deposits are characterized in the comprehensive survey of geological structure. From a stratigraphical point of view, geological sequence of the platformal cover is comparatively complete: deposits of all geological systems (from the Archean to Cenozoic) are present in the Baltic Syneclise. Considering geotectonical cycles, the sedimentary cover of the syneclise is subdivided into four structural complexes. The thickness and distribution of Quaternary deposits are closely related to the recent bottom relief of the Baltic Sea that in turn is inherited from the Pre-Quaternary surface. Buried palaeo-valleys are characteristic of the Pre-Quaternary surface in the Baltic region and the Baltic Sea bottom. The Quaternary is characterized by layers of various geneses and by sharp changes of their thicknesses.

  17. Sc, Y, La-Lu. Rare earth elements. Vol. A 6a. Y, La, and the lanthanoids. Geochemistry: Sedimentary cycle. Metamorphic cycle. 8. rev. ed

    Energy Technology Data Exchange (ETDEWEB)

    Ditz, R; Sarbas, B; Schubert, P; Toepper, W

    1988-01-01

    The present volume 'Rare Earth Elements' A 6a describes origin, mode of occurrence, and behavior of Y and RE elements in the sedimentary and metamorphic cycles, and completes the series of volumes describing cosmo- and geochemistry of these elements. In the chapter 'Sedimentary Cycle', the behavior of Y and RE during the weathering process is first outlined under both marine and terrestrial conditions, including a short compilation for migration and precipitation in surficial weathering and oxidation zones. The main part of the chapter treats, in addition to the mode of occurrence, predominantly the distribution of Y and RE in the different types of sedimentary rocks in relation to genetic processes (comprising physical and/or spatial factors such as geological age of the deposition). A concluding part gives a description of mobilization, migration, and precipitation of Y and RE during the diagenetic transformation of sediments, especially in relation to the various types of ferromanganese concretions. In the chapter 'Metamorphic Cycle', the first, extensive part gives examples of mode of occurrence and behavior of Y and RE during both the contact-metamorphic and prograde and retrograde regional-metamorphic processes affecting sedimentary and igeneous source rocks. The second part briefly describes behaviour of Y and RE during ultrametamorphism of metamorphic rocks, and during metamorphic processes in connection with special types of geologic events (as, e.g., subduction of crustal material into the earth's mantle and impact of extraterrestrial material). (orig.) With 4 figs.

  18. The geological attitude

    International Nuclear Information System (INIS)

    Fuller, J.G.C.M.

    1992-01-01

    This paper discusses geological activity which takes place mainly in response to industrial and social pressures. Past geological reaction to these pressures profoundly altered popular conceptions of time, the Church, man, and the balance of nature. The present-day circumstances of geology are not essentially different from those of the past. Petroleum geology in North American illustrates the role of technology in determining the style and scope of geological work. Peaks of activity cluster obviously on the introduction from time to time of new instrumental capabilities (geophysical apparatus, for example), although not infrequently such activity is testing concepts or relationships perceived long before. Organic metamorphism and continental drift provide two examples. The petroleum industry now faces the dilemma of satisfying predicted demands for fuel, without doing irreparable injury to its environment of operation. Awareness of man's place in nature, which is a fundamental perception of geology, governs the geological attitude

  19. The role of deep-water sedimentary processes in shaping a continental margin: The Northwest Atlantic

    Science.gov (United States)

    Mosher, David C.; Campbell, D.C.; Gardner, J.V.; Piper, D.J.W.; Chaytor, Jason; Rebesco, M.

    2017-01-01

    The tectonic history of a margin dictates its general shape; however, its geomorphology is generally transformed by deep-sea sedimentary processes. The objective of this study is to show the influences of turbidity currents, contour currents and sediment mass failures on the geomorphology of the deep-water northwestern Atlantic margin (NWAM) between Blake Ridge and Hudson Trough, spanning about 32° of latitude and the shelf edge to the abyssal plain. This assessment is based on new multibeam echosounder data, global bathymetric models and sub-surface geophysical information.The deep-water NWAM is divided into four broad geomorphologic classifications based on their bathymetric shape: graded, above-grade, stepped and out-of-grade. These shapes were created as a function of the balance between sediment accumulation and removal that in turn were related to sedimentary processes and slope-accommodation. This descriptive method of classifying continental margins, while being non-interpretative, is more informative than the conventional continental shelf, slope and rise classification, and better facilitates interpretation concerning dominant sedimentary processes.Areas of the margin dominated by turbidity currents and slope by-pass developed graded slopes. If sediments did not by-pass the slope due to accommodation then an above grade or stepped slope resulted. Geostrophic currents created sedimentary bodies of a variety of forms and positions along the NWAM. Detached drifts form linear, above-grade slopes along their crests from the shelf edge to the deep basin. Plastered drifts formed stepped slope profiles. Sediment mass failure has had a variety of consequences on the margin morphology; large mass-failures created out-of-grade profiles, whereas smaller mass failures tended to remain on the slope and formed above-grade profiles at trough-mouth fans, or nearly graded profiles, such as offshore Cape Fear.

  20. Mineralizations of the Lavalleja Group (Uruguay), a Probable Neoproterozoic Volcano-sedimentary Sequence

    International Nuclear Information System (INIS)

    Sanchez Bettucci, L.; Oyhantcabal, P.; Loureiro, J.; Basei, M.; Ramos, V.; Preciozzi, F.; Basei, M.

    2004-01-01

    The Lavalleja Group is located in the southern extreme of the Dom Feliciano Belt, being tentatively correlated with the Porongos and Brusque Groups of Brazil. The basement of the Lavalleja Group is probably represented by granitic gneissic rocks of the Campanero Unit with ages, in the southern portion, ranging from 1.75 to 2.1 Ga (U-Pb in zircon). The Lavalleja Group is characterized by narrow bands of meta sedimentary and meta volcanic rocks and it is separated in three formations, namely (from base to top): Zanja del Tigre, Fuente del Puma and Minas. Outcrops assigned to the Minas Formation have been recently correlated with the Arroyo del Soldado Group. Only the Fuente del Puma formation hosts base metals, Au and Ag occurrences. The Fuente del Puma formation is divided into three informal units: sedimentary, volcanic and hornblenditic gabbros. The sedimentary unit is characterized by an important amount of carbonates. Syn collisional to pos tectonic granitic bodies (Carapé Complex) intrudes the Lavalleja Group and the Campanero Unit. Several mineralizations are located in the Fuente del Puma Formation, those associated to Arrospide, Ramallo-Reus, Chape, Valencia, La Oriental, Apolonia, Redondo Hill, La China and La Paloma mines are the most important. In addition, many occurrences of Cu-Zn-Pb were recognized in the region. The Cu-Zn-Pb mineralization includes massive sulfides with pyrite-chalcopyrite-sphalerite-galena-pyrrothyte, arsenopyrite-hematite into small bodies with lenticular shape. The host rock shows frequently hydrothermal alteration. The geochemistry and the geological features of the mineralizations suggest Besshi Massive Sulphide Zn-Cu-Pb and SEDEX Zn-Pb as most probably genetic models for the deposits related to the Neoproterozoic orogeny. Early mineralizations are syngenetic and were formed on the sea floor, although the main mineralizations are related to remobilization during syn- to late-metamorphic events and thrusting

  1. Sedimentary features and exploration targets of Middle Permian reservoirs in the SW Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Guoming Xu

    2015-11-01

    Full Text Available The exploration direction and targets for the large-scale Middle Permian gas reservoirs in the Sichuan Basin are hot spots and challenges in current exploration researches. The exploration successes of large gas field of Cambrian Longwangmiao Formation in Gaoshiti-Moxi region, Central Sichuan Basin, indicated that prospective sedimentary facies belt was the basis for the formation of large gas fields. In this paper, based on seismic data, outcrop data and drilling data, the tectonic framework and sedimentary features of the Middle Permian in the SW Sichuan Basin were comprehensively studied. The following conclusions were reached from the perspective of sedimentary facies control: (1 during the Middle Permian, this region was in shallow water gentle slope belts with high energy, where thick reef flat facies were deposited; (2 the basement was uplifted during Middle Permian, resulting in the unconformity weathering crust at the top of Maokou Formation due to erosion; the SW Sichuan Basin was located in the karst slope belt, where epigenic karstification was intense; and (3 reef flat deposits superimposed by karst weathering crust was favorable for the formation of large-scale reef flat karst reservoirs. Based on the combination of the resources conditions and hydrocarbon accumulation conditions in this region, it was pointed out that the Middle Permian has great potential of large-scale reef flat karst gas reservoir due to its advantageous geological conditions; the Middle Permian traps with good hydrocarbon accumulation conditions were developed in the Longmen Mountain front closed structural belt in the SW Sichuan Basin and Western Sichuan Basin depression slope belt, which are favorable targets for large-scale reef flat karst reservoirs.

  2. Geological research for public outreach and education in Lithuania

    Science.gov (United States)

    Skridlaite, Grazina; Guobyte, Rimante

    2013-04-01

    Successful IYPE activities and implementation of Geoheritage day in Lithuania increased public awareness in geology. A series of projects introducing geology to the general public and youth, supported by EU funds and local communities, were initiated. Researchers from the scientific and applied geology institutions of Lithuania participated in these projects and provided with the geological data. In one case, the Lithuanian Survey of Protected Areas supported the installation of a series of geological exhibitions in several regional and national parks. An animation demonstrating glacial processes was chosen for most of these because the Lithuanian surface is largely covered with sedimentary deposits of the Nemunas (Weichselian) glaciation. Researchers from the Lithuanian Geological Survey used the mapping results to demonstrate real glacial processes for every chosen area. In another case, 3D models showing underground structures of different localities were based on detailed geological maps and profiles obtained for that area. In case of the Sartai regional park, the results of previous geological research projects provided the possibility to create a movie depicting the ca. 2 Ga geological evolution of the region. The movie starts with the accretion of volcanic island arcs on the earlier continental margin at ca. 2 Ga and deciphers later Precambrian tectonic and magmatic events. The reconstruction is based on numerous scientific articles and interpretation of geophysical data. Later Paleozoic activities and following erosion sculptured the surface which was covered with several ice sheets in Quaternary. For educational purpose, a collection of minerals and rocks at the Forestry Institute was used to create an exhibition called "Cycle of geological processes". Forestry scientists and their students are able to study the interactions of geodiversity and biodiversity and to understand ancient and modern geological processes leading to a soil formation. An aging

  3. Study on the remote sensing geological information of uranium mineralization in Western Liaoning and Northern Hebei

    International Nuclear Information System (INIS)

    Yu Baoshan; Wang Dianbai; Jin Shihua; Qiao Rui

    1996-01-01

    Based on the whole areal geological map joint application rd exploitation, composite forming map, generalization analysis and field examination in detail of key region that mainly depend on remote sensing information and generalize the data of geology, geophysical and geochemical prospecting, and geohydrology, this paper reveals the structure framework, regional geological background, uranium metallogenic condition and space time distribution rule of orustal evolution and its result, and set up the interpretation marks of arc-shaped structure in different of rock area and discusses its geological genesis. The author also interprets volcanic apparatus, small type closed sedimentary basin, magmatic rock body which relate closely to uranium deposit, ore control structure and occurrence and type of mineralization alteration envelope. The thermal halo point of satellite image is emphatically interpreted and its geological meaning and its relation to uranium deposit is discussed. Remote sensing geological prospecting ore model and synthetic provision model is determined lastly

  4. OneGeology - Access to geoscience for all

    Science.gov (United States)

    Komac, Marko; Lee, Kathryn; Robida, Francois

    2014-05-01

    OneGeology is an initiative of Geological Survey Organisations (GSO) around the globe that dates back to Brighton, UK in 2007. Since then OneGeology has been a leader in developing geological online map data using a new international standard - a geological exchange language known as 'GeoSciML'. Increased use of this new language allows geological data to be shared and integrated across the planet with other organisations. One of very important goals of OneGeology was a transfer of valuable know-how to the developing world, hence shortening the digital learning curve. In autumn 2013 OneGeology was transformed into a Consortium with a clearly defined governance structure, making its structure more official, its operability more flexible and its membership more open where in addition to GSO also to other type of organisations that manage geoscientific data can join and contribute. The next stage of the OneGeology initiative will hence be focused into increasing the openness and richness of that data from individual countries to create a multi-thematic global geological data resource on the rocks beneath our feet. Authoritative information on hazards and minerals will help to prevent natural disasters, explore for resources (water, minerals and energy) and identify risks to human health on a planetary scale. With this new stage also renewed OneGeology objectives were defined and these are 1) to be the provider of geoscience data globally, 2) to ensure exchange of know-how and skills so all can participate, and 3) to use the global profile of 1G to increase awareness of the geosciences and their relevance among professional and general public. We live in a digital world that enables prompt access to vast amounts of open access data. Understanding our world, the geology beneath our feet and environmental challenges related to geology calls for accessibility of geoscientific data and OneGeology Portal (portal.onegeology.org) is the place to find them.

  5. Alteration of Sedimentary Clasts in Martian Meteorite Northwest Africa 7034

    Science.gov (United States)

    McCubbin, F. M.; Tartese, R.; Santos, A. R.; Domokos, G.; Muttik, N.; Szabo, T.; Vazquez, J.; Boyce, J. W.; Keller, L. P.; Jerolmack, D. J.; hide

    2014-01-01

    The martian meteorite Northwest Africa (NWA) 7034 and pairings represent the first brecciated hand sample available for study from the martian surface [1]. Detailed investigations of NWA 7034 have revealed substantial lithologic diversity among the clasts [2-3], making NWA 7034 a polymict breccia. NWA 7034 consists of igneous clasts, impact-melt clasts, and "sedimentary" clasts represented by prior generations of brecciated material. In the present study we conduct a detailed textural and geochemical analysis of the sedimentary clasts.

  6. Organic geochemistry of the Dongsheng sedimentary uranium ore deposits, China

    International Nuclear Information System (INIS)

    Tuo Jincai; Ma Wanyun; Zhang Mingfeng; Wang Xianbin

    2007-01-01

    Organic matter (OM) associated with the Dongsheng sedimentary U ore hosting sandstone/siltstone was characterized by Rock-Eval, gas chromatography-mass spectrometry and stable C isotope analysis and compared to other OM in the sandstone/siltstone interbedded organic matter-rich strata. The OM in all of the analyzed samples is Type III with Ro less than 0.6%, indicating that the OM associated with these U ore deposits can be classified as a poor hydrocarbon source potential for oil and gas. n-Alkanes in the organic-rich strata are characterized by a higher relative abundance of high-molecular-weight (HMW) homologues and are dominated by C 25 , C 27 or C 29 with distinct odd-to-even C number predominances from C 23 to C 29 . In contrast, in the sandstone/siltstone samples, the n-alkanes have a higher relative abundance of medium-molecular-weight homologues and are dominated by C 22 with no or only slight odd-to-even C number predominances from C 23 to C 29 . Methyl alkanoates in the sandstone/siltstone extracts range from C 14 to C 30 , maximizing at C 16 , with a strong even C number predominance, but in the organic-rich layers the HMW homologues are higher, maximizing at C 24 , C 26 or C 28 , also with an even predominance above C 22 . n-Alkanes in the sandstone/siltstone sequence are significantly depleted in 13 C relative to n-alkanes in most of the organic-rich strata. Diasterenes, ββ-hopanes and hopenes are present in nearly all the organic-rich sediments but in the sandstone/siltstone samples they occur as the geologically mature isomers. All the results indicate that the OM in the Dongsheng U ore body is derived from different kinds of source materials. The organic compounds in the organic-rich strata are mainly terrestrial, whereas, in the sand/siltstones, they are derived mainly from aquatic biota. Similar distribution patterns and consistent δ 13 C variations between n-alkanes and methyl alkanoates in corresponding samples suggest they are derived from

  7. Prediction of CO2 leakage during sequestration into marine sedimentary strata

    International Nuclear Information System (INIS)

    Li, Qi; Wu Zhishen; Li Xiaochun

    2009-01-01

    Deep ocean storage of CO 2 could help reduce the atmospheric level of greenhouse gas as part of a climate change mitigation strategy. In this paper, a multiphase flow model of CO 2 sequestration into deep ocean sediments was designed associated with the formation of CO 2 hydrates. A simplified assumption was proposed to predict the critical time of CO 2 leakage from marine sedimentary strata into seawater. Moreover, some principal parameters, which include the permeability, anisotropy, total injection amount, and length of the injection part of wellbores, were investigated by numerical simulations. The numerical estimates are used to assess the feasibility and effectiveness of CO 2 storage in deep ocean sediments. Accurately predicting the actual fate of liquid CO 2 sequestered into the marine sedimentary strata at depths greater than 500 m is complicated by uncertainties associated with not only the chemical-physical behavior of CO 2 under such conditions but also the geo-environment of disposal sites. Modeling results have shown some implications that the effectiveness of CO 2 ocean sequestration depends mainly on the injection conditions (such as injection rate, total injection amount, and the depth of injection), the site geology (such as permeability and anisotropy of disposal formations), and the chemical-physical behavior of CO 2 in marine environment

  8. Classification Scheme for Diverse Sedimentary and Igneous Rocks Encountered by MSL in Gale Crater

    Science.gov (United States)

    Schmidt, M. E.; Mangold, N.; Fisk, M.; Forni, O.; McLennan, S.; Ming, D. W.; Sumner, D.; Sautter, V.; Williams, A. J.; Gellert, R.

    2015-01-01

    The Curiosity Rover landed in a lithologically and geochemically diverse region of Mars. We present a recommended rock classification framework based on terrestrial schemes, and adapted for the imaging and analytical capabilities of MSL as well as for rock types distinctive to Mars (e.g., high Fe sediments). After interpreting rock origin from textures, i.e., sedimentary (clastic, bedded), igneous (porphyritic, glassy), or unknown, the overall classification procedure (Fig 1) involves: (1) the characterization of rock type according to grain size and texture; (2) the assignment of geochemical modifiers according to Figs 3 and 4; and if applicable, in depth study of (3) mineralogy and (4) geologic/stratigraphic context. Sedimentary rock types are assigned by measuring grains in the best available resolution image (Table 1) and classifying according to the coarsest resolvable grains as conglomerate/breccia, (coarse, medium, or fine) sandstone, silt-stone, or mudstone. If grains are not resolvable in MAHLI images, grains in the rock are assumed to be silt sized or smaller than surface dust particles. Rocks with low color contrast contrast between grains (e.g., Dismal Lakes, sol 304) are classified according to minimum size of apparent grains from surface roughness or shadows outlining apparent grains. Igneous rocks are described as intrusive or extrusive depending on crystal size and fabric. Igneous textures may be described as granular, porphyritic, phaneritic, aphyric, or glassy depending on crystal size. Further descriptors may include terms such as vesicular or cumulate textures.

  9. Morphology and modern sedimentary deposits of the macrotidal Marapanim Estuary (Amazon, Brazil)

    Science.gov (United States)

    Araújo da Silva, Cléa; Souza-Filho, Pedro Walfir M.; Rodrigues, Suzan W. P.

    2009-03-01

    The northern Brazilian coast, east of the Amazon River is characterized by several macrotidal estuarine systems that harbor large mangrove areas with approximately 7600 km 2. The Marapanim Estuary is influenced by macrotidal regime with moderate waves influence. Morphologic units were investigated by using remote sensing images (i.e., Landsat-7 ETM+, RADARSAT- 1 Wide and SRTM) integrated with bathymetric data. The modern sedimentary deposits were analyzed from 67 cores collected by Vibracore and Rammkersonde systems. Analysis of morphology and surface sedimentary deposits of the Marapanim River reveal they are strongly influenced by the interaction of tidal, wave and fluvial currents. Based on these processes it was possible to recognize three distinct longitudinal facies zonation that revels the geological filling of a macrotidal estuary. The estuary mouth contain fine to medium marine sands strongly influenced by waves and tides, responsible for macrotidal sandy beaches and estuarine channel development, which are characterized by wave-ripple bedding and longitudinal cross-bedding sands. The estuary funnel is mainly influenced by tides that form wide tidal mudflats, colonized by mangroves, along the estuarine margin, with parallel laminations, lenticular bedding, root fragments and organic matter lenses. The upstream estuary contains coarse sand to gravel of fluvial origin. Massive mud with organic matter lenses, marks and roots fragments occur in the floodplain accumulates during seasonal flooding providing a slowly aggrading in the alluvial plain. This morphologic and depositional pattern show easily a tripartite zonation of a macrotidal estuary, that are in the final stage of filling.

  10. Evolution of fore-arc and back-arc sedimentary basins with focus on the Japan subduction system and its analogues

    Science.gov (United States)

    Sato, Hiroshi; Ishiyama, Tatsuya; Matenco, Liviu; Nader, Fadi Henri

    2017-07-01

    The International Lithosphere Program (ILP) seeks to elucidate the nature, dynamics, origin and evolution of the lithosphere through international, multidisciplinary geoscience research projects and coordinating committees (Cloetingh and Negendank, 2010). The focus of the Task Force VI Sedimentary Basins activities is to foster collaborations between academia, research institutes and industry in all domains relevant for the understanding of sedimentary basins, from regional to nano-scale, from the deep earth to near surface processes (e.g., Roure et al., 2010, 2013). In this activity, it is important to develop and validate novel concepts of sedimentary basin evolution and topography building by incorporating geological/geophysical datasets and methodologies applied to worldwide natural laboratories (Cloetingh et al., 2011; Cloetingh and Willett, 2013; Matenco and Andriessen, 2013). The Task Force aims to understand and predict the processes that control the formation and evolution of the coupled orogens and sedimentary basins system through integration of field studies, analytical techniques and numerical/analogue modelling. At the same time, the Task Force aims to promote research in the domain of sedimentary basins evolution and quantitative tectonics for the study of mountain building and the subsequent extensional collapse, and their quantitative implications for vertical motions on different temporal and spatial scales (Gibson et al., 2015; Matenco et al., 2016; Roure, 2008; Seranne et al., 2015). The implications of tectonics on basin fluids (fluid-flow and rock-fluid interactions) are important to understand and predict geo-resources (e.g., Nader, 2016). Important is to initiate innovative research lines in linking the evolution of sedimentary systems by integrating cross-disciplinary expertise with a focus on integrated sedimentary basins and orogenic evolution. The key is to strengthen the synergy between academic research and applied industry in large

  11. Mineralogy of selected sedimentary interbeds at or near the Idaho National Engineering Laboratory, Idaho

    International Nuclear Information System (INIS)

    Reed, M.F.; Bartholomay, R.C.

    1994-08-01

    The US Geological Survey's (USGS) Project Office at the Idaho National Engineering Laboratory (INEL) analyzed 66 samples from sedimentary interbed cores during a 38-month period beginning in October 1990 to determine bulk and clay mineralogy. These cores had been collected from 19 sites in the Big Lost River Basin, 2 sites in the Birch Creek Basin, and 1 site in the Mud Lake Basin, and were archived at the USGS lithologic core library at the INEL. Mineralogy data indicate that core samples from the Big Lost River Basin have larger mean and median percentages of quartz, total feldspar, and total clay minerals, but smaller mean and median percentages of calcite than the core samples from the Birch Creek Basin. Core samples from the Mud Lake Basin have abundant quartz, total feldspar, calcite, and total clay minerals. Identification of the mineralogy of the Snake River Plain is needed to aid in the study of the hydrology and geochemistry of subsurface waste disposal

  12. Nanoindentation hardness of banded Australian sedimentary opal

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, P S; Smallwood, A S; Ray, A S [Department of Chemistry, Material and Forensic Science, University of Technology Sydney, PO Box 123, Broadway, NSW 2007 (Australia); Briscoe, B J; Parsonage, D [Department of Chemical Engineering and Chemical Technology, Imperial College of Science, Technology and Medicine, London, SW7 2AZ (United Kingdom)], E-mail: paul.thomas@uts.edu.au

    2008-04-07

    Nanoindentation hardness data in continuous stiffness mode are reported for banded potch and play of colour opals sourced from Lightning Ridge in New South Wales and Andamooka in South Australia. Despite the significant visible heterogeneities observed and the significant differences in origin and microstructures, as observed by SEM, and subtle differences in the elemental distributions between bands within specimens, little difference was observed in the mechanical properties. Specimens were found to be mechanically homogeneous and values of the hardness and moduli were found to be similar between samples. The creep behaviour of the specimens was also observed to be similar. It was concluded that the similarities in mechanical properties were due to the similarities in the silica morphology of the specimens, formed in similar geological environments, as differences in microstructure and trace element distribution were found not to significantly influence the observed bulk mechanical properties.

  13. Technique for large-scale structural mapping at uranium deposits i in non-metamorphosed sedimentary cover rocks

    International Nuclear Information System (INIS)

    Kochkin, B.T.

    1985-01-01

    The technique for large-scale construction (1:1000 - 1:10000), reflecting small amplitude fracture plicate structures, is given for uranium deposits in non-metamorphozed sedimentary cover rocks. Structure drill log sections, as well as a set of maps with the results of area analysis of hidden disturbances, structural analysis of iso-pachous lines and facies of platform mantle horizons serve as sour ce materials for structural mapplotting. The steps of structural map construction are considered: 1) structural carcass construction; 2) reconstruction of structure contour; 3) time determination of structure initiation; 4) plotting of an additional geologic load

  14. Geology of the Horse Range Mesa quadrangle, Colorado

    Science.gov (United States)

    Cater, Fred W.; Bush, A.L.; Bell, Henry; Withington, C.F.

    1953-01-01

    The Horse Range Mesa quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of the quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary strictures in sandstones of favorable composition.

  15. The Geological Susceptibility of Induced Earthquakes in the Duvernay Play

    Science.gov (United States)

    Pawley, Steven; Schultz, Ryan; Playter, Tiffany; Corlett, Hilary; Shipman, Todd; Lyster, Steven; Hauck, Tyler

    2018-02-01

    Presently, consensus on the incorporation of induced earthquakes into seismic hazard has yet to be established. For example, the nonstationary, spatiotemporal nature of induced earthquakes is not well understood. Specific to the Western Canada Sedimentary Basin, geological bias in seismogenic activation potential has been suggested to control the spatial distribution of induced earthquakes regionally. In this paper, we train a machine learning algorithm to systemically evaluate tectonic, geomechanical, and hydrological proxies suspected to control induced seismicity. Feature importance suggests that proximity to basement, in situ stress, proximity to fossil reef margins, lithium concentration, and rate of natural seismicity are among the strongest model predictors. Our derived seismogenic potential map faithfully reproduces the current distribution of induced seismicity and is suggestive of other regions which may be prone to induced earthquakes. The refinement of induced seismicity geological susceptibility may become an important technique to identify significant underlying geological features and address induced seismic hazard forecasting issues.

  16. Constraining the Antarctic contribution to global sea-level change: ANDRILL and beyond

    Science.gov (United States)

    Naish, Timothy

    2016-04-01

    Observations, models and paleoclimate reconstructions suggest that Antarctica's marine-based ice sheets behave in an unstable manner with episodes of rapid retreat in response to warming climate. Understanding the processes involved in this "marine ice sheet instability" is key for improving estimates of Antarctic ice sheet contribution to future sea-level rise. Another motivating factor is that far-field sea-level reconstructions and ice sheet models imply global mean sea level (GMSL) was up to 20m and 10m higher, respectively, compared with present day, during the interglacials of the warm Pliocene (~4-3Ma) and Late Pleistocene (at ~400ka and 125ka). This was when atmospheric CO2 was between 280 and 400ppm and global average surface temperatures were 1 to 3°C warmer, suggesting polar ice sheets are highly sensitive to relatively modest increases in climate forcing. Such magnitudes of GMSL rise not only require near complete melt of the Greenland Ice Sheet and the West Antarctic Ice Sheet, but a substantial retreat of marine-based sectors of East Antarctic Ice Sheet. Recent geological drilling initiatives on the continental margin of Antarctica from both ship- (e.g. IODP; International Ocean Discovery Program) and ice-based (e.g. ANDRILL/Antarctic Geological Drilling) platforms have provided evidence supporting retreat of marine-based ice. However, without direct access through the ice sheet to archives preserved within sub-glacial sedimentary basins, the volume and extent of ice sheet retreat during past interglacials cannot be directly constrained. Sediment cores have been successfully recovered from beneath ice shelves by the ANDRILL Program and ice streams by the WISSARD (Whillans Ice Stream Sub-glacial Access Research Drilling) Project. Together with the potential of the new RAID (Rapid Access Ice Drill) initiative, these demonstrate the technological feasibility of accessing the subglacial bed and deeper sedimentary archives. In this talk I will outline the

  17. Pre-Carboniferous sedimentary sequences of the northeastern flank of the Parana basin and southwestern of the Parnaiba basin and its uraniferous possibilites

    International Nuclear Information System (INIS)

    Andrade, S.M. de; Camarco, P.E.N.

    1982-01-01

    The analyses of the already existent geological data of the northeastern flank of the Parana Basin and the Southwestern flank of the Parnaiba Basin, added to new data from drilling and geological mapping allowed a better knowledge of the stratigraphy of the pre-carboniferous sedimentary sequences (silurian and devonian ages) as well as provided subsidies for the definition of its uranium possibilites. Besides the already known uranium deposits of the Ponta Grossa Formation, is should be considered as worth while of prospecting the Pimenteiras Formation. (Author) [pt

  18. On selection of geological medium for disposal of high-level radwaste

    International Nuclear Information System (INIS)

    Min Maozhong

    1991-01-01

    The present paper briefly reviews the suitability of some rocks as geological disposal repositories of high-level radwaste (HLW). The suitable rocks for geological ogi disposal of HLW are rock salt (salt diapir, bedded salt), granite, argillaceous rocks, tuff, basalt, gabbro, diabase, anhydrite, marine sedimentary rocks etc., especially, rock salt, granite, and argillaceous rocks. The data of principal hydraulic properties, mechanical-physical properties for various rocks in typical environment which might be considered for disposal purposes are also given in this paper. These data give a reference to China's geological disposal of HLW in the future

  19. Geologic map of the St. Joe quadrangle, Searcy and Marion Counties, Arkansas

    Science.gov (United States)

    Hudson, Mark R.; Turner, Kenzie J.

    2009-01-01

    This map summarizes the geology of the St. Joe 7.5-minute quadrangle in the Ozark Plateaus region of northern Arkansas. Geologically, the area lies on the southern flank of the Ozark dome, an uplift that exposes oldest rocks at its center in Missouri. Physiographically, the St. Joe quadrangle lies within the Springfield Plateau, a topographic surface generally held up by Mississippian cherty limestone. The quadrangle also contains isolated mountains (for example, Pilot Mountain) capped by Pennsylvanian rocks that are erosional outliers of the higher Boston Mountains plateau to the south. Tomahawk Creek, a tributary of the Buffalo River, flows through the eastern part of the map area, enhancing bedrock erosion. Exposed bedrock of this region comprises an approximately 1,300-ft-thick sequence of Ordovician, Mississippian, and Pennsylvanian carbonate and clastic sedimentary rocks that have been mildly deformed by a series of faults and folds. The geology of the St. Joe quadrangle was mapped by McKnight (1935) as part of a larger area at 1:125,000 scale. The current map confirms many features of this previous study, but it also identifies new structures and uses a revised stratigraphy. Mapping for this study was conducted by field inspection of numerous sites and was compiled as a 1:24,000-scale geographic information system (GIS) database. Locations and elevations of sites were determined with the aid of a global positioning satellite receiver and a hand-held barometric altimeter that was frequently recalibrated at points of known elevation. Hill-shade-relief and slope maps derived from a U.S. Geological Survey 10-m digital elevation model as well as U.S. Geological Survey orthophotographs from 2000 were used to help trace ledge-forming units between field traverses within the Upper Mississippian and Pennsylvanian part of the stratigraphic sequence. Strikes and dips of beds were typically measured along stream drainages or at well-exposed ledges. Beds dipping less

  20. Current status and prospects of uranium geology developments of foreign in-situ leachable sandstone type uranium deposits

    International Nuclear Information System (INIS)

    Wang Zhengbang

    2002-01-01

    Firstly, with emphasis on in-situ leachable sandstone-type uranium deposits, the prospecting history of uranium deposits worldwide and its scientific research development are generally reviewed in four steps, and their basic historical experience is also summarized. Secondly, based on the detailed description of current development status of uranium geology of foreign in-situ leachable sandstone-type uranium deposits the important strategic position of sandstone-type uranium deposits in overall uranium resources all-over-the-world and its classification, spatial-temporal distribution and regulation, and metallogenic condition of sandstone-type uranium deposits are analysed thoroughly in five aspects: techtonics, paleo-climate, hydrogeology, sedimentary facies and lithology, as well as uranium sources: Afterwards, evaluation principles of three type of hyper-genic, epigenetic infiltrated sandstone-type uranium deposits are summarized. Based on sandstone-type uranium deposits located two important countries: the United States and Russia, the current development status of prospecting technology for in-situ leachable sandstone-type uranium deposits in foreign countries is outlined. Finally, according to the prospects of supply-demand development of global uranium resources, the author points out seriously that Chinese uranium geology is faced with a severe challenge, and proposes directly four strategic measures that should be taken

  1. Geology and Design: Formal and Rational Connections

    Science.gov (United States)

    Eriksson, S. C.; Brewer, J.

    2016-12-01

    Geological forms and the manmade environment have always been inextricably linked. From the time that Upper Paleolithic man created drawings in the Lascaux Caves in the southwest of France, geology has provided a critical and dramatic spoil for human creativity. This inspiration has manifested itself in many different ways, and the history of architecture is rife with examples of geologically derived buildings. During the early 20th Century, German Expressionist art and architecture was heavily influenced by the natural and often translucent quality of minerals. Architects like Bruno Taut drew and built crystalline forms that would go on to inspire the more restrained Bauhaus movement. Even within the context of Contemporary architecture, geology has been a fertile source for inspiration. Architectural practices across the globe leverage the rationality and grounding found in geology to inform a process that is otherwise dominated by computer-driven parametric design. The connection between advanced design technology and the beautifully realized geo natural forms insures that geology will be a relevant source of architectural inspiration well into the 21st century. The sometimes hidden relationship of geology to the various sub-disciplines of Design such as Architecture, Interiors, Landscape Architecture, and Historic Preservation is explored in relation to curriculum and the practice of design. Topics such as materials, form, history, the cultural and physical landscape, natural hazards, and global design enrich and inform curriculum across the college. Commonly, these help define place-based education.

  2. Environmental geology and hydrology

    Science.gov (United States)

    Nakić, Zoran; Mileusnić, Marta; Pavlić, Krešimir; Kovač, Zoran

    2017-10-01

    Environmental geology is scientific discipline dealing with the interactions between humans and the geologic environment. Many natural hazards, which have great impact on humans and their environment, are caused by geological settings. On the other hand, human activities have great impact on the physical environment, especially in the last decades due to dramatic human population growth. Natural disasters often hit densely populated areas causing tremendous death toll and material damage. Demand for resources enhanced remarkably, as well as waste production. Exploitation of mineral resources deteriorate huge areas of land, produce enormous mine waste and pollute soil, water and air. Environmental geology is a broad discipline and only selected themes will be presented in the following subchapters: (1) floods as natural hazard, (2) water as geological resource and (3) the mining and mineral processing as types of human activities dealing with geological materials that affect the environment and human health.

  3. Effects of mass transfer between Martian satellites on surface geology

    Science.gov (United States)

    2015-12-21

    suspected. Published by Elsevier Inc.1. Introduction Several features about the surface geology on the moons of Mars remain poorly understood. The grooves on...Deimos may have an effect on Phobos’ geology ; we shall attempt to estimate the magnitude of that effect in Section 4. For impacts with Mars, Phobos or...global surface geology , particularly in the 100+ Ma since the last Voltaire-sized impact. Therefore we believe it unlikely that the red veneer of

  4. Geology of Mars

    International Nuclear Information System (INIS)

    Soderblom, L.A.

    1988-01-01

    The geology of Mars and the results of the Mariner 4, 6/7, and 9 missions and the Viking mission are reviewed. The Mars chronology and geologic modification are examined, including chronological models for the inactive planet, the active planet, and crater flux. The importance of surface materials is discussed and a multispectral map of Mars is presented. Suggestions are given for further studies of the geology of Mars using the Viking data. 5 references

  5. Clay, Water, and Salt: Controls on the Permeability of Fine-Grained Sedimentary Rocks.

    Science.gov (United States)

    Bourg, Ian C; Ajo-Franklin, Jonathan B

    2017-09-19

    The ability to predict the permeability of fine-grained soils, sediments, and sedimentary rocks is a fundamental challenge in the geosciences with potentially transformative implications in subsurface hydrology. In particular, fine-grained sedimentary rocks (shale, mudstone) constitute about two-thirds of the sedimentary rock mass and play important roles in three energy technologies: petroleum geology, geologic carbon sequestration, and radioactive waste management. The problem is a challenging one that requires understanding the properties of complex natural porous media on several length scales. One inherent length scale, referred to hereafter as the mesoscale, is associated with the assemblages of large grains of quartz, feldspar, and carbonates over distances of tens of micrometers. Its importance is highlighted by the existence of a threshold in the core scale mechanical properties and regional scale energy uses of shale formations at a clay content X clay ≈ 1/3, as predicted by an ideal packing model where a fine-grained clay matrix fills the gaps between the larger grains. A second important length scale, referred to hereafter as the nanoscale, is associated with the aggregation and swelling of clay particles (in particular, smectite clay minerals) over distances of tens of nanometers. Mesoscale phenomena that influence permeability are primarily mechanical and include, for example, the ability of contacts between large grains to prevent the compaction of the clay matrix. Nanoscale phenomena that influence permeability tend to be chemomechanical in nature, because they involve strong impacts of aqueous chemistry on clay swelling. The second length scale remains much less well characterized than the first, because of the inherent challenges associated with the study of strongly coupled nanoscale phenomena. Advanced models of the nanoscale properties of fine-grained media rely predominantly on the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, a mean field

  6. Geologic map of the Lower Valley quadrangle, Caribou County, Idaho

    Science.gov (United States)

    Oberlindacher, H. Peter; Hovland, R. David; Miller, Susan T.; Evans, James G.; Miller, Robert J.

    2018-04-05

    The Lower Valley 7.5-minute quadrangle, located in the core of the Southeast Idaho Phosphate Resource Area, includes Mississippian to Triassic marine sedimentary rocks, Pliocene to Pleistocene basalt, and Tertiary to Holocene surficial deposits. The Mississippian to Triassic marine sedimentary sequence was deposited on a shallow shelf between an emergent craton to the east and the Antler orogenic belt to the west. The Meade Peak Phosphatic Shale Member of the Permian Phosphoria Formation hosts high-grade deposits of phosphate that were the subject of geologic studies through much of the 20th century. Open-pit mining of the phosphate has been underway within and near the Lower Valley quadrangle for several decades.

  7. Interactions between sedimentary evolution and prehistoric human occupation in the south-central coast of Santa Catarina, Brazil

    Directory of Open Access Journals (Sweden)

    Paulo César Fonseca Giannini

    2010-04-01

    Full Text Available Since the beginning of the human occupation in the south-central coast of Santa Catarina State, in Brazil, the articulation between natural and anthropic processes modeled a strongly domesticated landscape, shaped by the massive construction of shell mounds of monumental dimensions and millenarian permanence. In the coastal plain between Passagem da Barra (Laguna District and Figueirinha Lake (Jaguaruna District, 76 sambaquis were mapped, 48 of which have been dated. Systematic site surveys and radiocarbon datings allowed identifying patterns of spatial distribution in sambaquis according to the sedimentary context at the time of construction, stratigraphy and age. Based on these criteria, the following groups were recognized: five geological-geomorphological contexts of location; three stratigraphic patterns; and four phases of sambaqui occupation in the area, based on site number and type of constructive pattern. The model for sedimentary evolution and time-space distribution of sambaquis shows that sites were built in already emerged areas and that inland sites, away from the lagoons, may have not be preserved or they are not exposed due to the continuous sedimentary filling that characterized this region after the maximum Holocene transgression. The crossing of data, here proposed, shows the importance of integral approaches between archaeology and geosciences for the study of landscape evolution.

  8. Abstracts of the Annual Meeting of Planetary Geologic Mappers, San Antonio, TX, 2009

    Science.gov (United States)

    Bleamaster, Leslie F., III (Editor); Tanaka, Kenneth L.; Kelley, Michael S.

    2009-01-01

    Topics covered include: Geologic Mapping of the Beta-Atla-Themis (BAT) Region of Venus: A Progress Report; Geologic Map of the Snegurochka Planitia Quadrangle (V-1): Implications for Tectonic and Volcanic History of the North Polar Region of Venus; Preliminary Geological Map of the Fortuna Tessera (V-2) Quadrangle, Venus; Geological Map of the Fredegonde (V-57) Quadrangle, Venus; Geological Mapping of the Lada Terra (V-56) Quadrangle, Venus; Geologic Mapping of V-19; Lunar Geologic Mapping: A Preliminary Map of a Portion of the LQ-10 ("Marius") Quadrangle; Geologic Mapping of the Lunar South Pole, Quadrangle LQ-30: Volcanic History and Stratigraphy of Schr dinger Basin; Geologic Mapping along the Arabia Terra Dichotomy Boundary: Mawrth Vallis and Nili Fossae, Mars; Geologic Mapping Investigations of the Northwest Rim of Hellas Basin, Mars; Geologic Mapping of the Meridiani Region of Mars; Geology of a Portion of the Martian Highlands: MTMs -20002, -20007, -25002 and -25007; Geologic Mapping of Holden Crater and the Uzboi-Ladon-Morava Outflow System; Mapping Tyrrhena Patera and Hesperia Planum, Mars; Geologic Mapping of Athabaca Valles; Geologic Mapping of MTM -30247, -35247 and -40247 Quadrangles, Reull Vallis Region, Mars Topography of the Martian Impact Crater Tooting; Mars Structural and Stratigraphic Mapping along the Coprates Rise; Geology of Libya Montes and the Interbasin Plains of Northern Tyrrhena Terra, Mars: Project Introduction and First Year Work Plan; Geology of the Southern Utopia Planitia Highland-Lowland Boundary Plain: Second Year Results and Third Year Plan; Mars Global Geologic Mapping: About Half Way Done; New Geologic Map of the Scandia Region of Mars; Geologic Mapping of the Medusae Fossae Formation on Mars and the Northern Lowland Plains of Venus; Volcanism on Io: Insights from Global Geologic Mapping; and Planetary Geologic Mapping Handbook - 2009.

  9. Geology's Impact on Culture

    Science.gov (United States)

    Pizzorusso, Ann

    2017-04-01

    Most people consider geology boring, static and difficult. The fields of astronomy and physics have "rebranded" themselves with exciting programs formatted so as to be readily understandable to the general public. The same thing can be done for geology. My research on geology's influence on other disciplines has resulted in a book, Tweeting da Vinci, in which I was able to show how geology affected Italy's art, architecture, medicine, religion, literature, engineering and just about everything else. The reaction to the book and my lectures by both students and the general public has been very positive, including four gold medals, with reviews and comments indicating that they never knew geology could be so exciting. The book is very user friendly, packed with facts, full-color photos, paintings, sketches and illustrations. Complex aspects of geology are presented in an easily understandable style. Widely diverse topics—such as gemology, folk remedies, grottoes, painting, literature, physics and religion—are stitched together using geology as a thread. Quoting everyone from Pliny the Elder to NASA physicist Friedemann Freund, the work is solidly backed scholarship that reads as easily as a summer novel. The book can be used in classes such as physics, chemistry, literature, art history, medicine, Classical Studies, Latin, Greek and Italian. By incorporating a "geologic perspective" in these courses, it can be perceived as a more "all encompassing" discipline and encourage more students to study it. The lectures I have given on college campuses have resulted in students seeing their own majors from a different perspective and some have even signed up for introductory geology courses. One college organized summer course to the Bay of Naples based on the book. We followed the geology as well as the culture of the area and the students were profoundly moved. To encourage dialog, the book is linked to Facebook, Twitter and Instagram. This has enabled followers from

  10. Global water cycle: geochemistry and environment

    National Research Council Canada - National Science Library

    Berner, Elizabeth Kay; Berner, Robert A

    1987-01-01

    .... The book provides an integrated approach to global geochemistry and environmental problems and introduces the reader to some fundamental concepts of geology, oceanography, meteorology, environmental...

  11. Assessing correlations between geological hazards and health outcomes: Addressing complexity in medical geology.

    Science.gov (United States)

    Wardrop, Nicola Ann; Le Blond, Jennifer Susan

    2015-11-01

    The field of medical geology addresses the relationships between exposure to specific geological characteristics and the development of a range of health problems: for example, long-term exposure to arsenic in drinking water can result in the development of skin conditions and cancers. While these relationships are well characterised for some examples, in others there is a lack of understanding of the specific geological component(s) triggering disease onset, necessitating further research. This paper aims to highlight several important complexities in geological exposures and the development of related diseases that can create difficulties in the linkage of exposure and health outcome data. Several suggested approaches to deal with these complexities are also suggested. Long-term exposure and lengthy latent periods are common characteristics of many diseases related to geological hazards. In combination with long- or short-distance migrations over an individual's life, daily or weekly movement patterns and small-scale spatial heterogeneity in geological characteristics, it becomes problematic to appropriately assign exposure measurements to individuals. The inclusion of supplementary methods, such as questionnaires, movement diaries or Global Positioning System (GPS) trackers can support medical geology studies by providing evidence for the most appropriate exposure measurement locations. The complex and lengthy exposure-response pathways involved, small-distance spatial heterogeneity in environmental components and a range of other issues mean that interdisciplinary approaches to medical geology studies are necessary to provide robust evidence. Copyright © 2015. Published by Elsevier Ltd.

  12. Sicily in its Mediterranean geological frame

    Energy Technology Data Exchange (ETDEWEB)

    Broquet, P.

    2016-10-01

    The Island of Sicily is generally considered to be the geological link between the North African Fold Belt and the Appennines, in Italy. This comes from a cylindristic meaning and is only partly exact. As a matter of fact, Sicily is essentially Greek; Ionian. Up to Middle Cretaceous time, the Sicilian area was a submerged shoal in the sea or the Panormide area, bordering the Ionian Ocean. This shoal lay between the future North African Fold Belt and the Appennines, forming an intermediate link between the Appenninic, Apulian, Panormian and Tunisian platforms. It was only during the Middle to Upper Cretaceous that the Atlantic and Ligure Oceans merged, making a continuous relationship between the Appenninic, Sicilian and North African sedimentary series. The key time periods are the Permian, Cretaceous and Oligo-Miocene periods leading to the formation of the actual Calabro-Sicilian arc. From the Permian to the present, the Sicilian geological history pertains to three oceanic domains: Ionian, Ligurian and Atlantic, of which the Ionian and Ligurian were under the influence of Tethys (Neo and Paleo-Tethys). The Tethysian identity of Sicily constitutes the major aspect of its geological history. However, the European and African plate tectonic movements complicated its structure. During the Middle Miocene subduction, southern Sicily became African, meanwhile its north-eastern part became, in Pliocene time, Maghrebian by accretion. Sicily is thus a truly geological patchwork, but its main section remains Ionian and now constitutes a link between North Africa and the Appennines. With older data, but also by means of recent results, we will replace Sicily in its Mediterranean frame, giving the mean stages of its paleogeographical and then its tectonic evolution. We will review the calabro-sicilian arc evolution from the Oligocene, developing the actual context and recalling the main fundamental play of the Numidian flysch. (Author)

  13. Gestures and metaphors as indicators of conceptual understanding of sedimentary systems

    Science.gov (United States)

    Riggs, E. M.; Herrera, J. S.

    2012-12-01

    Understanding the geometry and evolution of sedimentary systems and sequence stratigraphy is crucial to the development of geoscientists and engineers working in the petroleum industry. There is a wide variety of audiences within industry who require relatively advanced instruction in this area of geoscience, and there is an equally wide array of approaches to teaching this material in the classroom and field. This research was undertaken to develop a clearer picture of how conceptual understanding in this area of sedimentary geology grows as a result of instruction and how instructors can monitor the completeness and accuracy of student thinking and mental models. We sought ways to assess understanding that did not rely on model-specific jargon but rather was based in physical expression of basic processes and attributes of sedimentary systems. Advances in cognitive science and educational research indicate that a significant part of spatial cognition is facilitated by gesture, (e.g. giving directions, describing objects or landscape features). We aligned the analysis of gestures with conceptual metaphor theory to probe the use of mental image-schemas as a source of concept representation for students' learning of sedimentary processes. In order to explore image schemas that lie in student explanations, we focused our analysis on four core ideas about sedimentary systems that involve sea level change and sediment deposition, namely relative sea level, base level, and sea-level fluctuations and resulting basin geometry and sediment deposition changes. The study included 25 students from three U.S. Midwestern universities. Undergraduate and graduate-level participants were enrolled in senior-level undergraduate courses in sedimentology and stratigraphy. We used semi-structured interviews and videotaping for data collection. We coded the data to focus on deictic, iconic, and metaphoric gestures, and coded interview transcripts for linguistic metaphors using the

  14. The Geologic Signature of Anaerobic Oxidation of Methane (Invited)

    Science.gov (United States)

    Ussler, W.; Paull, C. K.

    2010-12-01

    Anaerobic oxidation of methane (AOM) is an enormous sink in anoxic marine sediments for methane produced in situ or ascending through the sediment column towards the seafloor. Existing estimates indicate that between 75 and 382 Tg of sedimentary methane are oxidized each year before reaching the sediment-water interface making AOM a diagenetic process of global significance. This methane is derived from a variety of sources including microbial production, thermocatalytic cracking of complex organic matter, decomposing gas hydrates, and possibly abiogenic processes. Stables isotopes of membrane lipid biomarkers and authigenic carbonates associated with zones of AOM, fluorescence in situ hybridization, and anaerobic methane incubations have substantiated the role Archaea and sulfate-reducing bacteria have in driving AOM. The products of AOM are dissolved inorganic carbon (predominantly HCO3-) and bisulfide (HS-). Stable isotope measurements of authigenic carbonates associated with zones of AOM are consistent with the diagenetic carbon being primarily methane derived. These methane-derived carbonates occur in a variety of forms including sedimentary nodules and thin lenses within and below zones of contemporary AOM; outcrops of slabs, ledges, and jagged authigenic carbonates exhumed on the seafloor; and authigenic carbonate mounds associated with near-subsurface methane gas accumulations. Examples of exhumed authigenic carbonates include rugged outcrops along the Guaymas Transform in the Gulf of California, extensive slabs and ledges in the Eel River Basin, and mounds in various stages of development near Bullseye Vent, off Vancouver Island and in the Santa Monica Basin. It is clear from basic microbial biogeochemistry and the occurrences of massive authigenic carbonate which span a large range in size that DIC produced by AOM is preserved as authigenic carbonate within the seafloor and not on the seafloor. These exhumed authigenic carbonate provide a glimpse of how

  15. AEGIS geologic simulation model

    International Nuclear Information System (INIS)

    Foley, M.G.

    1982-01-01

    The Geologic Simulation Model (GSM) is used by the AEGIS (Assessment of Effectiveness of Geologic Isolation Systems) program at the Pacific Northwest Laboratory to simulate the dynamic geology and hydrology of a geologic nuclear waste repository site over a million-year period following repository closure. The GSM helps to organize geologic/hydrologic data; to focus attention on active natural processes by requiring their simulation; and, through interactive simulation and calibration, to reduce subjective evaluations of the geologic system. During each computer run, the GSM produces a million-year geologic history that is possible for the region and the repository site. In addition, the GSM records in permanent history files everything that occurred during that time span. Statistical analyses of data in the history files of several hundred simulations are used to classify typical evolutionary paths, to establish the probabilities associated with deviations from the typical paths, and to determine which types of perturbations of the geologic/hydrologic system, if any, are most likely to occur. These simulations will be evaluated by geologists familiar with the repository region to determine validity of the results. Perturbed systems that are determined to be the most realistic, within whatever probability limits are established, will be used for the analyses that involve radionuclide transport and dose models. The GSM is designed to be continuously refined and updated. Simulation models are site specific, and, although the submodels may have limited general applicability, the input data equirements necessitate detailed characterization of each site before application

  16. An Overview of Geologic Carbon Sequestration Potential in California

    Energy Technology Data Exchange (ETDEWEB)

    Cameron Downey; John Clinkenbeard

    2005-10-01

    As part of the West Coast Regional Carbon Sequestration Partnership (WESTCARB), the California Geological Survey (CGS) conducted an assessment of geologic carbon sequestration potential in California. An inventory of sedimentary basins was screened for preliminary suitability for carbon sequestration. Criteria included porous and permeable strata, seals, and depth sufficient for critical state carbon dioxide (CO{sub 2}) injection. Of 104 basins inventoried, 27 met the criteria for further assessment. Petrophysical and fluid data from oil and gas reservoirs was used to characterize both saline aquifers and hydrocarbon reservoirs. Where available, well log or geophysical information was used to prepare basin-wide maps showing depth-to-basement and gross sand distribution. California's Cenozoic marine basins were determined to possess the most potential for geologic sequestration. These basins contain thick sedimentary sections, multiple saline aquifers and oil and gas reservoirs, widespread shale seals, and significant petrophysical data from oil and gas operations. Potential sequestration areas include the San Joaquin, Sacramento, Ventura, Los Angeles, and Eel River basins, followed by the smaller Salinas, La Honda, Cuyama, Livermore, Orinda, and Sonoma marine basins. California's terrestrial basins are generally too shallow for carbon sequestration. However, the Salton Trough and several smaller basins may offer opportunities for localized carbon sequestration.

  17. Dust – A geology-orientated attempt to reappraise the natural components, amounts, inputs to sediment, and importance for correlation purposes

    Czech Academy of Sciences Publication Activity Database

    Hladil, Jindřich; Čejchan, Petr; Bábek, O.; Koptíková, Leona; Navrátil, Tomáš; Kubínová, Petra

    2010-01-01

    Roč. 13, č. 4 (2010), s. 367-384 ISSN 1374-8505 R&D Projects: GA AV ČR IAAX00130702 Institutional research plan: CEZ:AV0Z30130516 Keywords : natural dust * particulare matter * aerosol * sedimentary background * sedimentary inputs * dust teleconnection * limestones * iron contents * Holocene Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.645, year: 2010 http://popups.ulg.ac.be/Geol/docannexe.php?id=3104

  18. Field Geology/Processes

    Science.gov (United States)

    Allen, Carlton; Jakes, Petr; Jaumann, Ralf; Marshall, John; Moses, Stewart; Ryder, Graham; Saunders, Stephen; Singer, Robert

    1996-01-01

    The field geology/process group examined the basic operations of a terrestrial field geologist and the manner in which these operations could be transferred to a planetary lander. Four basic requirements for robotic field geology were determined: geologic content; surface vision; mobility; and manipulation. Geologic content requires a combination of orbital and descent imaging. Surface vision requirements include range, resolution, stereo, and multispectral imaging. The minimum mobility for useful field geology depends on the scale of orbital imagery. Manipulation requirements include exposing unweathered surfaces, screening samples, and bringing samples in contact with analytical instruments. To support these requirements, several advanced capabilities for future development are recommended. Capabilities include near-infrared reflectance spectroscopy, hyper-spectral imaging, multispectral microscopy, artificial intelligence in support of imaging, x ray diffraction, x ray fluorescence, and rock chipping.

  19. OneGeology-Europe: architecture, portal and web services to provide a European geological map

    Science.gov (United States)

    Tellez-Arenas, Agnès.; Serrano, Jean-Jacques; Tertre, François; Laxton, John

    2010-05-01

    OneGeology-Europe is a large ambitious project to make geological spatial data further known and accessible. The OneGeology-Europe project develops an integrated system of data to create and make accessible for the first time through the internet the geological map of the whole of Europe. The architecture implemented by the project is web services oriented, based on the OGC standards: the geological map is not a centralized database but is composed by several web services, each of them hosted by a European country involved in the project. Since geological data are elaborated differently from country to country, they are difficult to share. OneGeology-Europe, while providing more detailed and complete information, will foster even beyond the geological community an easier exchange of data within Europe and globally. This implies an important work regarding the harmonization of the data, both model and the content. OneGeology-Europe is characterised by the high technological capacity of the EU Member States, and has the final goal to achieve the harmonisation of European geological survey data according to common standards. As a direct consequence Europe will make a further step in terms of innovation and information dissemination, continuing to play a world leading role in the development of geosciences information. The scope of the common harmonized data model was defined primarily by the requirements of the geological map of Europe, but in addition users were consulted and the requirements of both INSPIRE and ‘high-resolution' geological maps were considered. The data model is based on GeoSciML, developed since 2006 by a group of Geological Surveys. The data providers involved in the project implemented a new component that allows the web services to deliver the geological map expressed into GeoSciML. In order to capture the information describing the geological units of the map of Europe the scope of the data model needs to include lithology; age; genesis and

  20. Study on remote sensing geologic information of uranium metallogeny in western Liaoning-northern Hebei region

    International Nuclear Information System (INIS)

    Yu Baoshan

    1998-01-01

    Based on the study on geologic metallogenic environment, temporal and spatial distribution and deposit features of uranium deposits in western Liaoning-northern Hebei region, summarizing mainly remote sensing information and synthesizing geologic, geophysical and geochemical as well as hydrological data, the author has implemented all-region joint-quadrangle analysis, composite mapping and applications, set up interpretation criteria for circular and arcuate structures of different lithological areas, and then expounded their geologic meaning. Volcanic apparatuses, small close sedimentary basins and magmatic rockbodies closely associated with uranium mineralizations, especially the altitude and types of ore-controlling structures and mineralized alteration zones have been interpreted. 'Heat halo spot' has also been interpreted on the satellite image and its geologic meaning and relation to uranium metallization have been discussed. Finally, remote sensing geologic prospecting model and comprehensive prediction model have been established

  1. Geologic and mineral and water resources investigations in western Colorado using ERTS-1 data

    Science.gov (United States)

    Knepper, D. H. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Most of the geologic information in ERTS-1 imagery can be extracted from bulk processed black and white transparencies by a skilled interpreter using standard photogeologic techniques. In central and western Colorado, the detectability of lithologic contacts on ERTS-1 imagery is closely related to the time of year the imagery was acquired. Geologic structures are the most readily extractable type of geologic information contained in ERTS images. Major tectonic features and associated minor structures can be rapidly mapped, allowing the geologic setting of a large region to be quickly accessed. Trends of geologic structures in younger sedimentary appear to strongly parallel linear trends in older metamorphic and igneous basement terrain. Linears and color anomalies mapped from ERTS imagery are closely related to loci of known mineralization in the Colorado mineral belt.

  2. Geochronology of the Jequie-Itabuna granulitic belt and of the Contendas-Mirante volcano-sedimentary belt

    International Nuclear Information System (INIS)

    Marinho, Moacyr M.; Barbosa, Johildo S.F.; Sabate, Pierre

    1995-01-01

    The Jequie-Itabuna Granulitic Belt is divided here into the Jequie-Mutuipe-Maracas Domain and the Atlantic Coast Domain. The paper analyzes the geochronological data from the Jequie-Mutuipe-Maracas Domain in two parts: plutonic rocks equilibrated in granulite facies, including the charno-enderbitic rocks from the Laje-Mutuipe region and the charnockitic rocks from the Maracas region; and ortho- and paraderived rocks metamorphosed in granulite facies, with the data obtained from rocks collected at the Jequie quarry and from homogeneous rocks collected at the western outskirts of the Jequirica town. The available geochronological data for the Atlantic Coast Domain is discussed, and due to the lack of petrologic control of the analyzed rocks, the geological significance of the ages between 2.0 and 2.3 is obtained in several line regressions. The paper identifies the following domains within the Contendas-Mirante volcano-sedimentary belt: the the basement dones, the volcano-sedimentary sequence and the intrusive rocks. The basement domes is the domain of the ancient gray gneisses (ca 3.4 Ga), to TTG (tonalite-trondhjemite-granodiorite) terrains and among the different massifs that crop out in the SE sector of the volcano-sedimentary belt, those of Sete Voltas and Boa Vista/Mata Verde have geochronological data available. The volcano-sedimentary sequence is divided into a lower, a middle and an upper unit and its available isotopic data are analyzed. The item referent to the intrusive rocks deals with the following plutons: The Lagoa Morro da Velha granitoid, the Pe da Serra granite, the Rio Jacare sill and the Transamazonian granites. 31 figs., 5 tabs

  3. Combined application of numerical simulation models and fission tracks analysis in order to determine the history of temperature, subsidence and lifting of sedimentary basins. A case study from the Ruhr Coal basin inWest Germany; Die kombinierte Anwendung numerischer Simulationsmodelle und Spaltspurenuntersuchungen zur Entschluesselung der Temperatur-, Subsidenz- und Hebungsgeschichte von Sedimentbecken - Ein Fallbeispiel aus dem Ruhrkohlenbecken Westdeutschlands

    Energy Technology Data Exchange (ETDEWEB)

    Karg, H. [Forschungszentrum Juelich (Germany). Inst. fuer Erdoel und organische Geochemie; Littke, R. [RWTH Aachen (Germany); Bueker, C. [Univ. Bern (Switzerland). Inst. fuer Geologie

    1998-12-31

    The Ruhr Coal basin is one of the globally best known sedimentary basins. According to classical, established the Ruhr Basin is a typical foreland molasse basins. The thermal history (heating and cooling) and the structural and sedimentary development since the formation of the basin, i.e. subsidence and lifting and erosion are of the first importance for the potential formation of hydrocarbons. In order to quantify these processes, two-dimensional numerical simulation models (based on geological and seismological sections) of the Ruhr basin were developed from which one could conclude the heat flow at the time of maximum basin depth after variscis orogenesis, maximum temperatures of individual strata sections and thickness of eroded strata. The PetroMod program package of the company IES/Juelich was used for these analyses. Finite-element-grids enable mathematican mapping and reconstruction of complex geological structures and processes. The models on temperature history are calibrated by comparing measured and calculated carbonification (vitrinite reflection) data. (orig./MSK). [Deutsch] Das Ruhrkohlenbecken stellt weltweit eines der am besten erforschten Sedimentbecken dar. Nach klassischen und etablierten Beckenmodellen kann das Ruhrbecken als typisches Vorlandmolassebecken angesehen werden. Besonders relevant fuer die potentielle Bildung von Kohlenwasserstoffen sind in erster Linie die thermische Geschichte (Aufheizung und Abkuehlung) sowie die strukturelle und sedimentaere Entwicklung seit der Beckenbildung, sprich Versenkungs-, Hebungs- und Erosionsprozesse. Um solche Prozesse zu quantifizieren, wurden im Ruhrbecken zweidimensionale (d.h. auf der Grundlage von geologischen und seismischen Sektionen) numerische Simulationsmodelle entwickelt, die Aufschluss ueber Waermefluesse zur Zeit der maximalen Beckeneintiefung im Anschluss an die variszische Orogenese, erreichte Maximaltemperaturen einzelner Schichtglieder sowie die Maechtigkeit erodierter Schichten im

  4. Excess europium content in Precambrian sedimentary rocks and continental evolution

    Science.gov (United States)

    Jakes, P.; Taylor, S. R.

    1974-01-01

    It is proposed that the europium excess in Precambrian sedimentary rocks, relative to those of younger age, is derived from volcanic rocks of ancient island arcs, which were the source materials for the sediments. Precambrian sedimentary rocks and present-day volcanic rocks of island arcs have similar REE patterns, total REE abundances, and excess Eu, relative to the North American shale composite. The present upper crustal REE pattern, as exemplified by that of sediments, is depleted in Eu, relative to chondrites. This depletion is considered to be a consequence of development of a granodioritic upper crust by partial melting in the lower crust, which selectively retains europium.

  5. Sorption and migration of neptunium in porous sedimentary materials

    International Nuclear Information System (INIS)

    Tanaka, Tadao; Mukai, Masayuki; Nakayama, Shinichi

    2005-01-01

    Column migration experiments of neptunium were conducted for porous sedimentary materials: coastal sand, tuffaceous sand, ando soil, reddish soil, yellowish soil and loess, and migration behavior, sorption mechanisms and chemical formation of Np were investigated. The migration behavior of Np in each material was much different each other, due to chemical formation in solution and/or sorption mechanism of Np. Mathematical models of different concepts were applied to the experimental results to interpret the sorption mechanism and the migration behavior. It can be concluded that both of instantaneous equilibrium sorption and sorption-desorption kinetics have to be considered to model the Np migration in sedimentary materials. (author)

  6. Geological hazard monitoring system in Georgia

    Science.gov (United States)

    Gaprindashvili, George

    2017-04-01

    Georgia belongs to one of world's most complex mountainous regions according to the scale and frequency of Geological processes and damage caused to population, farmlands, and Infrastructure facilities. Geological hazards (landslide, debrisflow/mudflow, rockfall, erosion and etc.) are affecting many populated areas, agricultural fields, roads, oil and gas pipes, high-voltage electric power transmission towers, hydraulic structures, and tourist complexes. Landslides occur almost in all geomorphological zones, resulting in wide differentiation in the failure types and mechanisms and in the size-frequency distribution. In Georgia, geological hazards triggered by: 1. Activation of highly intense earthquakes; 2. Meteorological events provoking the disaster processes on the background of global climatic change; 3. Large-scale Human impact on the environment. The prediction and monitoring of Geological Hazards is a very wide theme, which involves different researchers from different spheres. Geological hazard monitoring is essential to prevent and mitigate these hazards. In past years in Georgia several monitoring system, such as Ground-based geodetic techniques, Debrisflow Early Warning System (EWS) were installed on high sensitive landslide and debrisflow areas. This work presents description of Geological hazard monitoring system in Georgia.

  7. Status and development of deep geological repository in Slovak republic from geological point of view

    Directory of Open Access Journals (Sweden)

    Jozef Franzen

    2007-01-01

    Full Text Available During the operation of Slovak NPPs, production of approximately 2,300 metric tons of spent fuel expressed as heavy metal (18,654 spent fuel assemblies is expected. In addition, about 5000 metric tons of radioactive waste unfit for near surface repository at Mochovce and destined for a deep geological disposal. The safe and long-term solution of back-end fuel cycle is so highly required.One of the most favorable solutions is Deep Geological Repository (DGR. The site for a DGR, along with repository design and the engineered barrier system must ensure long-term safety of the disposal system.A preliminary set of site-selection criteria for a DGR was proposed in Slovakia, based on worldwide experience and consistent with IAEA recommendations. Main groups of criteria are: 1 geological and tectonic stability of prospective sites; 2 appropriate characteristics of host rock (lithological homogeneity, suitable hydrogeological and geochemical conditions, favourable geotechnical setting, absence of mineral resources, etc.; 3 conflict of interests (natural resources, natural and cultural heritage, protected resources of thermal waters, etc..Based on the previous geological investigations, three distinct areas (five localities were determined as the most prospective sites for construction of a DGR so far. Three of them are built by granitoids rock (Tribeč Mts., Veporske vrchy Mts. and Stolicke vrchy Mts., other consist of sedimentary rock formations (Cerova vrchovina Upland and Rimavska kotlina Basin. Objective for the next investigation stage is to perform more detailed geological characterization of the prospective sites.

  8. Caprock and overburden processes in geological CO2 storage: An experimental study on sealing efficiency and mineral alterations

    NARCIS (Netherlands)

    Wollenweber, J.; Alles, S.a.; Kronimus, A.; Busch, A.; Stanjek, H.; Krooss, B.M.

    2009-01-01

    A comprehensive set of experimental and analytical methods has been used to characterise the sealing and fluid -transport properties of fine-grained (pelitic) sedimentary rocks under the pressure and temperature conditions of geological CO2 storage. The flow experiments were carried out on

  9. Geological heritage of Morocco

    International Nuclear Information System (INIS)

    Elhadi, H.; Tahiri, A.

    2012-01-01

    Full text: The soil and subsoil of Morocco are rich in geological phenomena that bear the imprint of a history that goes back in time more than 2000 million years. Very many sites geologically remarkable exposed in accessible outcrops, with good quality remain unknown to the general public and therefore deserve to be vulgarized. It is a memory to acquaint to the present generations but also to preserve for future generations. In total, a rich geological heritage in many ways: Varied landscapes, international stratotypes, various geological structures, varied rocks, mineral associations, a huge procession of fossiles, remnants of oceanic crust (ophiolites) among oldests ones in the world (800my), etc... For this geological heritage, an approach of an overall inventory is needed, both regionally and nationally, taking into account all the skills of the earth sciences. This will put the item on the natural (geological) potentialities as a lever for sustainable regional development. For this, it is necessary to implement a strategy of ''geoconservation'' for the preservation and assessment of the geological heritage.

  10. Fundamentals of Structural Geology

    Science.gov (United States)

    Pollard, David D.; Fletcher, Raymond C.

    2005-09-01

    Fundamentals of Structural Geology provides a new framework for the investigation of geological structures by integrating field mapping and mechanical analysis. Assuming a basic knowledge of physical geology, introductory calculus and physics, it emphasizes the observational data, modern mapping technology, principles of continuum mechanics, and the mathematical and computational skills, necessary to quantitatively map, describe, model, and explain deformation in Earth's lithosphere. By starting from the fundamental conservation laws of mass and momentum, the constitutive laws of material behavior, and the kinematic relationships for strain and rate of deformation, the authors demonstrate the relevance of solid and fluid mechanics to structural geology. This book offers a modern quantitative approach to structural geology for advanced students and researchers in structural geology and tectonics. It is supported by a website hosting images from the book, additional colour images, student exercises and MATLAB scripts. Solutions to the exercises are available to instructors. The book integrates field mapping using modern technology with the analysis of structures based on a complete mechanics MATLAB is used to visualize physical fields and analytical results and MATLAB scripts can be downloaded from the website to recreate textbook graphics and enable students to explore their choice of parameters and boundary conditions The supplementary website hosts color images of outcrop photographs used in the text, supplementary color images, and images of textbook figures for classroom presentations The textbook website also includes student exercises designed to instill the fundamental relationships, and to encourage the visualization of the evolution of geological structures; solutions are available to instructors

  11. Discussions of the uranium geology working groups IGC, Sydney

    International Nuclear Information System (INIS)

    1978-01-01

    The report is divided into six working group discussions on the following subjects: 1) Chemical and physical mechanisms in the formation of uranium mineralization, geochronology, isotope geology and mineralogy; 2) Sedimentary basins and sandstone-type uranium deposits; 3) Uranium in quartz-pebble conglomerates; 4) Vein and similar type deposits (pitchblende); 5) Other uranium deposits; 6) Relation of metallogenic, tectonic and zoning factors to the origin of uranium deposits. Each working group paper contains a short introductory part followed by a discussion by the working group members

  12. Uranium prospecting and geological favour ability in Uruguay

    International Nuclear Information System (INIS)

    Goso, H.

    1981-01-01

    Uranium prospecting carried out in Uruguay since 1976 is described. On the basis of literature available and of an analysis of the large structural units pertinent to Uruguay's geology, the prospecting performed in general in the northeast of the country, and in particular in the districts of Cerro Largo and Las Canas, is described. Some information is presented on uranium favour ability in Uruguay related to sedimentary formations: Devonian (Cerrezuelo Formation) and Gondwana (San Gregorio and Tres Islas Formations), and to the Crystalline formations of the centre and Southwest (1700-2000 m.y.) and of the east and southeast (500-700 m.y.)

  13. 3D Geological Model for "LUSI" - a Deep Geothermal System

    Science.gov (United States)

    Sohrabi, Reza; Jansen, Gunnar; Mazzini, Adriano; Galvan, Boris; Miller, Stephen A.

    2016-04-01

    Geothermal applications require the correct simulation of flow and heat transport processes in porous media, and many of these media, like deep volcanic hydrothermal systems, host a certain degree of fracturing. This work aims to understand the heat and fluid transport within a new-born sedimentary hosted geothermal system, termed Lusi, that began erupting in 2006 in East Java, Indonesia. Our goal is to develop conceptual and numerical models capable of simulating multiphase flow within large-scale fractured reservoirs such as the Lusi region, with fractures of arbitrary size, orientation and shape. Additionally, these models can also address a number of other applications, including Enhanced Geothermal Systems (EGS), CO2 sequestration (Carbon Capture and Storage CCS), and nuclear waste isolation. Fractured systems are ubiquitous, with a wide-range of lengths and scales, making difficult the development of a general model that can easily handle this complexity. We are developing a flexible continuum approach with an efficient, accurate numerical simulator based on an appropriate 3D geological model representing the structure of the deep geothermal reservoir. Using previous studies, borehole information and seismic data obtained in the framework of the Lusi Lab project (ERC grant n°308126), we present here the first 3D geological model of Lusi. This model is calculated using implicit 3D potential field or multi-potential fields, depending on the geological context and complexity. This method is based on geological pile containing the geological history of the area and relationship between geological bodies allowing automatic computation of intersections and volume reconstruction. Based on the 3D geological model, we developed a new mesh algorithm to create hexahedral octree meshes to transfer the structural geological information for 3D numerical simulations to quantify Thermal-Hydraulic-Mechanical-Chemical (THMC) physical processes.

  14. Late Quaternary sedimentary features of Bear Lake, Utah and Idaho

    Science.gov (United States)

    Smoot, J.P.

    2009-01-01

    Bear Lake sediments were predominantly aragonite for most of the Holocene, reflecting a hydrologically closed lake fed by groundwater and small streams. During the late Pleistocene, the Bear River flowed into Bear Lake and the lake waters spilled back into the Bear River drainage. At that time, sediment deposition was dominated by siliciclastic sediment and calcite. Lake-level fluctuation during the Holocene and late Pleistocene produced three types of aragonite deposits in the central lake area that are differentiated primarily by grain size, sorting, and diatom assemblage. Lake-margin deposits during this period consisted of sandy deposits including well-developed shoreface deposits on margins adjacent to relatively steep gradient lake floors and thin, graded shell gravel on margins adjacent to very low gradient lake-floor areas. Throughout the period of aragonite deposition, episodic drops in lake level resulted in erosion of shallow-water deposits, which were redeposited into the deeper lake. These sediment-focusing episodes are recognized by mixing of different mineralogies and crystal habits and mixing of a range of diatom fauna into poorly sorted mud layers. Lake-level drops are also indicated by erosional gaps in the shallow-water records and the occurrence of shoreline deposits in areas now covered by as much as 30 m of water. Calcite precipitation occurred for a short interval of time during the Holocene in response to an influx of Bear River water ca. 8 ka. The Pleistocene sedimentary record of Bear Lake until ca. 18 ka is dominated by siliciclastic glacial fl our derived from glaciers in the Uinta Mountains. The Bear Lake deep-water siliciclastic deposits are thoroughly bioturbated, whereas shallow-water deposits transitional to deltas in the northern part of the basin are upward-coarsening sequences of laminated mud, silt, and sand. A major drop in lake level occurred ca. 18 ka, resulting in subaerial exposure of the lake floor in areas now covered by

  15. Simulations of hydraulic fracturing and leakage in sedimentary basins

    Energy Technology Data Exchange (ETDEWEB)

    Lothe, Ane Elisabeth

    2004-01-01

    Hydraulic fracturing and leakage of water through the caprock is described from sedimentary basin over geological time scale. Abnormal pressure accumulations reduce the effective stresses in the underground and trigger the initiation of hydraulic fractures. The major faults in the basin define these pressure compartments. In this Thesis, basin simulations of hydraulic fracturing and leakage have been carried out. A simulator (Pressim) is used to calculate pressure generation and dissipitation between the compartments. The flux between the compartments and not the flow within the compartments is modelled. The Griffith-Coulomb failure criterion determines initial failure at the top structures of overpressured compartments, whereas the frictional sliding criterion is used for reactivation along the same fractures. The minimum horizontal stress is determined from different formulas, and an empirical one seems to give good results compared to measured pressures and minimum horizontal stresses. Simulations have been carried out on two datasets; one covering the Halten Terrace area and one the Tune Field area in the northern North Sea. The timing of hydraulic fracturing and amount of leakage has been quantified in the studies from the Halten Terrace area. This is mainly controlled by the lateral fluid flow and the permeability of the major faults in the basin. Low fault permeability gives early failure, while high fault permeabilities results in no or late hydraulic fracturing and leakage from overpressured parts of the basin. In addition to varying the transmissibility of all faults in a basin, the transmissibility across individual faults can be varied. Increasing the transmissibility across faults is of major importance in overpressured to intermediately pressured areas. However, to obtain change in the flow, a certain pressure difference has to be the situation between the different compartments. The coefficient of internal friction and the coefficient of frictional

  16. Geology of the Integrated Disposal Facility Trench

    International Nuclear Information System (INIS)

    Reidel, Steve P.; Fecht, Karl R.

    2005-01-01

    This report describes the geology of the integrated Disposal Facility (IDF) Trench. The stratigraphy consists of some of the youngest sediments of the Missoula floods (younger than 770 ka). The lithology is dominated sands with minor silts and gravels that are largely unconsolidated. The stratigraphy can be subdivided into five geologic units that can be mapped throughout the trench. Four of the units were deposited by the Missoula floods and the youngest consists of windblown sand and silt. The sediment has little moisture and is consistent with that observed in the characterization boreholes. The sedimentary layers are flat lying and there are no faults or folds present. Two clastic dikes were encountered, one along the west wall and one that can be traced from the north to the southwall. The north-south clastic dike nearly bifurcates the trench but the west wall clastic dike can not be traced very far east into the trench. The classic dikes consist mainly of sand with clay-lined walls. The sediment in the dikes is compacted to partly cemented and are more resistant than the layered sediments

  17. Microbial mat-induced sedimentary structures in siliciclastic sediments

    Indian Academy of Sciences (India)

    This paper addresses macroscopic signatures of microbial mat-related structures within the. 1.6Ga-old Chorhat Sandstone ... Sandstone differentiated in facies superposed one over the other and their respective structural assemblages (b). may be ..... within the classification of primary sedimentary struc- tures; J. Sed. Res.

  18. Sedimentary characteristics of samples collected from some submarine canyons

    NARCIS (Netherlands)

    Bouma, Arnold H.

    Oriented rectangular cores of 20.3 × 30.5 cm and 45.7 cm high have been collected in a number of submarine canyons off southern California (U.S.A.) and off the southern tip of Baja California (Mexico) for a detailed study of their sedimentary structures. By applying several methods, mainly X-ray

  19. Epigenetic alteration of sedimentary rocks at hydrogenic uranium deposit

    International Nuclear Information System (INIS)

    Ding Wanlie; Shen Kefeng

    2001-01-01

    The author introduces the concept, the recognition criteria, the genesis and classification of the epigenetic alteration of sedimentary rocks in brief, and expounds the mineral-geochemical indications and characteristics of oxidation and reduction alterations in different geochemical zones in detail, and proposes the two models of ore-controlling zonation of epigenetic alteration. The authors finally introduce research methods of epigenetic alteration

  20. Amino acids in the sedimentary humic and fulvic acids

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.

    acids in the coastal Arabian Sea sediments: whereas amino acids content of fulvic acids was lower than that of humic acids in the coastal sediments of Bay of Bengal. Slope sedimentary humic acids were relatively enriched in amino acids as compared...

  1. FEATURES OF GEODEFORMATION CHANGES OF NEAR SURFACE SEDIMENTARY ROCKS

    Directory of Open Access Journals (Sweden)

    I. A. Larionov

    2016-11-01

    Full Text Available The results of investigations of the deformation process in the near surface sedimentary rocks, which has been carried out in a seismically active region of Kamchatka peninsular since 2007,are presented. The peculiarity of the experiments on the registration of geodeformations is the application of a laser deformograph-interferometer constructed according to the Michelson interferometer scheme.

  2. Long-term cyclicities in Phanerozoic sea-level sedimentary record and their potential drivers

    Science.gov (United States)

    Boulila, Slah; Laskar, Jacques; Haq, Bilal U.; Galbrun, Bruno; Hara, Nathan

    2018-06-01

    Cyclic sedimentation has varied at several timescales and this variability has been geologically well documented at Milankovitch timescales, controlled in part by climatically (insolation) driven sea-level changes. At the longer (tens of Myr) timescales connection between astronomical parameters and sedimentation via cyclic solar-system motions within the Milky Way has also been proposed, but this hypothesis remains controversial because of the lack of long geological records. In addition, the absence of a meaningful physical mechanism that could explain the connection between climate and astronomy at these longer timescales led to the more plausible explanation of plate motions as the main driver of climate and sedimentation through changes in ocean and continent mass distribution on Earth. Here we statistically show a prominent and persistent 36 Myr sedimentary cyclicity superimposed on two megacycles ( 250 Myr) in a relatively well-constrained sea-level (SL) record of the past 542 Myr (Phanerozoic eon). We also show two other significant 9.3 and 91 Myr periodicities, but with lower amplitudes. The 9.3 Myr cyclicity was previously attributed to long-period Milankovitch band based on the Cenozoic record. However, the 91 Myr cyclicity has never been observed before in the geologic record. The 250 Myr cyclicity was attributed to the Wilson tectonic (supercontinent) cycle. The 36 Myr periodicity, also detected for the first time in SL record, has previously been ascribed either to tectonics or to astronomical cyclicity. Given the possible link between amplitudes of the 36 and 250 Myr cyclicities in SL record and the potential that these periodicities fall into the frequency band of solar system motions, we suggest an astronomical origin, and model these periodicities as originating from the path of the solar system in the Milky Way as vertical and radial periods that modulate the flux of cosmic rays on Earth. Our finding of the 36 Myr SL cyclicity lends credibility

  3. Iowa Geologic Sampling Points

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Point locations of geologic samples/files in the IGS repository. Types of samples include well cuttings, outcrop samples, cores, drillers logs, measured sections,...

  4. Iowa Bedrock Geology

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The bedrock geologic map portrays the current interpretation of the distribution of various bedrock stratigraphic units present at the bedrock surface. The bedrock...

  5. Thermoluminescence studies in geology

    International Nuclear Information System (INIS)

    Sankaran, A.V.; Sunta, C.M.; Nambi, K.S.V.; Bapat, V.N.

    1980-01-01

    Even though the phenomenon of thermoluminescence is well studied, particularly over last 3 decades, its potentialities in the field of geology have not been adequately evaluated. In this report several useful applications of TL in mineralogy, petrogenesis, stratigraphy, tectonics, ore-prospecting and other branches have been identified with particular emphasis to the Indian scene. Important areas in the country that may provide the basic material for such studies are indicated at the end along with brief geological or mineralogical accounts. (auth.)

  6. Advances in planetary geology

    International Nuclear Information System (INIS)

    1987-06-01

    The surface of Mars displays a broad range of channel and valley features. There is as great a range in morphology as in scale. Some of the features of Martian geography are examined. Geomorphic mapping, crater counts on selected surfaces, and a detailed study of drainage basins are used to trace the geologic evolution of the Margaritifer Sinus Quandrangle. The layered deposits in the Valles Marineris are described in detail and the geologic processes that could have led to their formation are analyzed

  7. Advancements in exploration and In-Situ Recovery of sedimentary hosted uranium

    International Nuclear Information System (INIS)

    Märten, H.; Marsland-Smith, A.; Ross, J.; Haschke, M.; Kalka, H.; Schubert, J.

    2014-01-01

    This paper describes recent advancements in exploration technologies for sedimentary-hosted uranium deposits as basis for improved model-based planning and optimization of in-situ recovery (ISR). High-resolution shallow (<500 m depth) seismic in combination with refraction tomography is used for high-fidelity imaging of true-depth stratigraphy of sedimentary formations, tectonic faults and specific structures for the improved understanding of (hydro)geology in general and as potential indicator for uranium mineralization in particular. A new-generation geophysical downhole-wireline tool with pulsed neutron generator has been developed (i) to accurately measure U grade (PFN [prompt fission neutron] method with important intool corrections for systematic influences), (ii) to determine geophysical parameters including porosity, density, macroscopic neutron cross section (clay content) and deduced permeability, and (iii) to log the mineral composition (based on element-specific gamma ray spectroscopy applied to natural gamma rays as well as gamma rays from inelastic neutron scattering, thermal-neutron capture and neutron activation) – all by one tool. This new data - together with conventional geophysical and geochemical information – provides an excellent aid to the assessment of ISR feasibility, the design of wellfields and planning of wellfield operation. A new kinetic leaching model (reactive transport) has been specifically adjusted to acidic leaching conditions considering kinetic rates of the main neutralizing and redox reactions as function of both pH and oxidation potential (balance of e- acceptor species). It is used as an effective tool for predicting wellfield recovery curves, estimating chemicals’ consumption and optimizing leaching chemistry (i.e. dosage of chemicals to injection lixiviant) in dependence on mineralogical conditions (abundance of main reactants). (author)

  8. The role microbial sulfate reduction in the direct mediation of sedimentary authigenic carbonate precipitation

    Science.gov (United States)

    Turchyn, A. V.; Walker, K.; Sun, X.

    2016-12-01

    The majority of modern deep marine sediments are bathed in water that is undersaturated with respect to calcium carbonate. However, within marine sediments changing chemical conditions, driven largely by the microbial oxidation of organic carbon in the absence of oxygen, lead to supersaturated conditions and drive calcium carbonate precipitation. This sedimentary calcium carbonate is often called `authigenic carbonate', and is found in the form of cements and disseminated crystals within the marine sedimentary pile. As this precipitation of this calcium carbonate is microbially mediated, identifying authigenic carbonate within the geological record and understanding what information its geochemical and/or isotopic signature may hold is key for understanding its importance and what information it may contain past life. However, the modern controls on authigenic carbonate precipitation remain enigmatic because the myriad of microbially mediated reactions occurring within sediments both directly and indirectly impact the proton balance. In this submission we present data from 25 ocean sediment cores spanning the globe where we explore the deviation from the stoichiometrically predicted relationships among alkalinity, calcium and sulfate concentrations. In theory for every mol of organic carbon reduced by sulfate, two mol of alkalinity is produced, and to precipitate subsurface calcium carbonate one mol of calcium is used to consume two mol of alkalinity. We use this data with a model to explore changes in carbonate saturation state with depth below the seafloor. Alkalinity changes in the subsurface are poorly correlated with changes in calcium concentrations, however calcium concentrations are directly and tightly coupled to changes in sulfate concentrations in all studied sites. This suggests a direct role for sulfate reducing bacteria in the precipitation of subsurface carbonate cements.

  9. Different controls on sedimentary organic carbon in the Bohai Sea: River mouth relocation, turbidity and eutrophication

    Science.gov (United States)

    Xu, Yunping; Zhou, Shangzhe; Hu, Limin; Wang, Yinghui; Xiao, Wenjie

    2018-04-01

    The extractable lipids and bulk organic geochemical parameters in three sediment cores (M-1, M-3 and M-7) from southern, central and northern Bohai Sea were analyzed in order to reconstruct environmental changes since 1900. The C/N ratio and multiple biomarkers (e.g., C27 + C29 + C31n-alkanes, C24 + C26 + C28n-alkanols, branched versus isoprenoid tetraether index) suggest more terrigenous organic carbon (OC) inputs in southern Bohai Sea. The abrupt changes of biomarker indicators in core M-1 are generally synchronous with the Yellow River mouth relocation events (e.g., 1964, 1976 and 1996), suggesting the distance to the river mouth being an important factor for sedimentary OC dispersal in the southern Bohai Sea. However, in cores M-3 and M-7, terrigenous biomarkers (i.e., BIT) show a long-term declining trend, consistent with a continuous reduction of the Yellow River sediment load, whereas marine biomarkers such as cholesterol, brassicasterol and dinosterol dramatically increased post-1980, apparently related to human-induced eutrophication in the Bohai Sea. Our study suggests different controlling factors on sedimentary OC distribution in the southern (high turbidity) and other parts (less turbidity) of the Bohai Sea, which should be considered for interpretation of paleoenvironments and biogeochemical processes in the river dominated margins that are hotspots of the global carbon cycling.

  10. Geology and radiometry of West Macedonia (Greece)

    International Nuclear Information System (INIS)

    Minatidis, Demetrios G.

    1984-10-01

    Car borne scintillometry survey in W. Macedonia (Greece) showed that the granitic rocks of the area, the zone centered on the Tertiary volcanic rocks of Almopia zone and a large part of adjacent sediments constitute the most promising geological formations for further uranium exploration. Some Tertiary volcanic rocks in the general area centered on the Aegean plate are associated with uranium mineralization and high radioactivity. An attempt has been made to evaluate young Alpine volcanic rocks from uranium exploration point of view on a regional scale by using arithmetic mean radioactivity data from the car borne survey coverage of W. Macedonia, as well as other geological and geochemical data from numerous similar volcanic rocks of the area and other neighbouring areas. In connection with this further exploration of the Tertiary volcanic rocks of W. Macedonia is expected to reveal new uranium deposits in the area. Horizontal or gently dipping sedimentary rocks adjacent to the above mentioned volcanics have a statistical radioactivity higher than that in normal sediments, a fact that may give evidence of the existence or uranium mineralization in deeper horizons in these sediments. To make a comparison with this the existence of 134 ppm of leachable U in sediments of W. Crete Island, 20 to 30 meters below the surface, is reported where the overlying sediments exhibit also a radioactivity higher than in normal sediments. Some structural contacts, in particular the contact between the granite of Florina and the limestones of Krystallopigi (west of Florina), have locally a very high radioactivity. Also an open fault in the Achlada-Papadia area (Florina) exhibits locally a high radioactivity and a high U content. All the above mentioned geological formations are, therefore, proposed for further U exploration. (author)

  11. A quantitative geologic study of heterogeneity

    International Nuclear Information System (INIS)

    Davis, J.M.; Phillips, F.M.

    1990-01-01

    Spatial variation of hydraulic conductivity has been generally recognized as the dominant medium-dependent control on the transport and dispersion of contaminants in ground water. An empirical study focusing on the relationship between patters of sedimentology and patterns of permeability is being conducted at an outcrop of the Pliocene/Pleistocene Sierra Ladrones formation, central New Mexico. Methods of geostatistics and sedimentary basin analysis are employed to study the problem of aquifer heterogeneity. An air permeameter provides a means of obtaining extensive field measurements of air-flow rates through the sediments. These flow rates are subsequently used to characterize the permeability distribution of the outcrop. Both the geologic information and the air-flow rate data provide the basis for analysis of aquifer heterogeneity. Preliminary geologic mapping indicates that the sediments in the study area are the products of an arid fluvial/interfluvial depositional environment. Probability distribution analysis of the air-flow rate data suggests that the permeability of these sediments is log-normally distributed. The air permeability data are used to estimate variograms and correlation lengths in both the horizontal and vertical directions. At the scale of 10's of centimeters, the horizontal variograms exhibit exponential variogram behaviour . When two distinct lithologies are present, the correlation structure appears to be a nested exponential. Variogram analysis of estimated mean permeability at the scale of meters also shows evidence of a nested correlation structure in the horizontal direction and a periodic correlation structure in the vertical direction. Results of this study suggest that there is a direct connection between observable geologic structure and permeability statistics. (Author) (35 refs., 10 figs., 5 tabs.)

  12. Geologic map of the Western Grove quadrangle, northwestern Arkansas

    Science.gov (United States)

    Hudson, Mark R.; Turner, Kenzie J.; Repetski, John E.

    2006-01-01

    This map summarizes the geology of the Western Grove 7.5-minute quadrangle in northern Arkansas that is located on the southern flank of the Ozark dome, a late Paleozoic regional uplift. The exposed bedrock of this map area comprises approximately 1,000 ft of Ordovician and Mississippian carbonate and clastic sedimentary rocks that have been mildly folded and broken by faults. A segment of the Buffalo River loops through the southern part of the quadrangle, and the river and adjacent lands form part of Buffalo National River, a park administered by the U.S. National Park Service. This geologic map provides information to better understand the natural resources of the Buffalo River watershed, particularly its karst hydrogeologic framework.

  13. Rocks and geology in the San Francisco Bay region

    Science.gov (United States)

    Stoffer, Philip W.

    2002-01-01

    The landscape of the San Francisco Bay region is host to a greater variety of rocks than most other regions in the United States. This introductory guide provides illustrated descriptions of 46 common and important varieties of igneous, sedimentary, and metamorphic rock found in the region. Rock types are described in context of their identification qualities, how they form, and where they occur in the region. The guide also provides discussion about of regional geology, plate tectonics, the rock cycle, the significance of the selected rock types in relation to both earth history and the impact of mineral resources on the development in the region. Maps and text also provide information where rocks, fossils, and geologic features can be visited on public lands or in association with public displays in regional museums, park visitor centers, and other public facilities.

  14. Deep geological disposal of radioactive waste - An international perspective

    Energy Technology Data Exchange (ETDEWEB)

    Gautschi, A. [National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland)

    2015-07-01

    This article provides a condensed summary of a presentation given by the author in June 2015. Various types of disposal facilities are reviewed, ranging from very limited natural barriers through to sophisticated, multi-barrier systems. Advantages, disadvantages and costs of the various disposal options are discussed. In particular, solutions used worldwide are listed in a comprehensive table. The simpler solutions range from open, non-engineered barriers through to simple geological barriers on the surface and underground. Multi-barrier systems in Sweden, Finland, France, Switzerland and Canada are listed and discussed. These include geological barriers through to engineered confinements in crystalline and sedimentary rocks. Links to relevant internet web sites are quoted.

  15. Deep geological disposal of radioactive waste - An international perspective

    International Nuclear Information System (INIS)

    Gautschi, A.

    2015-01-01

    This article provides a condensed summary of a presentation given by the author in June 2015. Various types of disposal facilities are reviewed, ranging from very limited natural barriers through to sophisticated, multi-barrier systems. Advantages, disadvantages and costs of the various disposal options are discussed. In particular, solutions used worldwide are listed in a comprehensive table. The simpler solutions range from open, non-engineered barriers through to simple geological barriers on the surface and underground. Multi-barrier systems in Sweden, Finland, France, Switzerland and Canada are listed and discussed. These include geological barriers through to engineered confinements in crystalline and sedimentary rocks. Links to relevant internet web sites are quoted

  16. Geological Structure and Radon Hazards in Lublin Region

    Directory of Open Access Journals (Sweden)

    Lucjan Gazda

    2018-03-01

    Full Text Available The purpose of the study was to show the relationship between the geological structure of the Lublin region (eastern Poland and radon concentrations in the ground air, and therefore, in the indoor environment of buildings located in that area. The study was based on the information pertaining to the geological structure of Lublin region available in the literature. The radon concentrations in buildings, caves, wells, as well as coal, phosphate and chalk mines were measured with both passive and active methods. Elemental analyses and uranium and lead isotope analyses of ground rocks were also performed. The conducted studies indicated that the sources of radon in Lublin region constitute Paleogene and Mesozoic sedimentary rocks rich in radionuclides. Application of radon remediation methods is recommended in the existing buildings located in the vicinity of these rocks, which are characterized by relatively high radon exhalations. On the other hand, the designed buildings should employ the measures protecting against harmful effects of radon presence.

  17. Outstanding diversity of heritage features in large geological bodies: The Gachsaran Formation in southwest Iran

    Science.gov (United States)

    Habibi, Tahereh; Ruban, Dmitry A.

    2017-09-01

    The ideas of geological heritage and geological diversity have become very popular in the modern science. These are usually applied to geological domains or countries, provinces, districts, etc. Additionally, it appears to be sensible to assess heritage value of geological bodies. The review of the available knowledge and the field investigation of the Gachsaran Formation (lower Miocene) in southwest Iran permit to assign its features and the relevant phenomena to as much as 10 geological heritage types, namely stratigraphical, sedimentary, palaeontological, palaeogeographical, geomorphological, hydrogeological, engineering, structural, economical, and geohistorical types. The outstanding diversity of the features of this formation determines its high heritage value and the national rank. The geological heritage of the Gachsaran Formation is important to scientists, educators, and tourists. The Papoon and Abolhaiat sections of this formation are potential geological heritage sites, although these do not represent all above-mentioned types. The large territory, where the Gachsaran Formation outcrop, has a significant geoconservation and geotourism potential, and further inventory of geosites on this territory is necessary. Similar studies of geological bodies in North Africa and the Middle East can facilitate better understanding of the geological heritage of this vast territory.

  18. Updating the Geologic Barcodes for South China: Discovery of Late Archean Banded Iron Formations in the Yangtze Craton.

    Science.gov (United States)

    Ye, Hui; Wu, Chang-Zhi; Yang, Tao; Santosh, M; Yao, Xi-Zhu; Gao, Bing-Fei; Wang, Xiao-Lei; Li, Weiqiang

    2017-11-08

    Banded iron formations (BIFs) in Archean cratons provide important "geologic barcodes" for the global correlation of Precambrian sedimentary records. Here we report the first finding of late Archean BIFs from the Yangtze Craton, one of largest Precambrian blocks in East Asia with an evolutionary history of over 3.3 Ga. The Yingshan iron deposit at the northeastern margin of the Yangtze Craton, displays typical features of BIF, including: (i) alternating Si-rich and Fe-rich bands at sub-mm to meter scales; (ii) high SiO 2  + Fe 2 O 3total contents (average 90.6 wt.%) and Fe/Ti ratios (average 489); (iii) relative enrichment of heavy rare earth elements and positive Eu anomalies (average 1.42); (iv) and sedimentary Fe isotope compositions (δ 56 Fe IRMM-014 as low as -0.36‰). The depositional age of the BIF is constrained at ~2464 ± 24 Ma based on U-Pb dating of zircon grains from a migmatite sample of a volcanic protolith that conformably overlied the Yingshan BIF. The BIF was intruded by Neoproterozoic (805.9 ± 4.7 Ma) granitoids that are unique in the Yangtze Craton but absent in the North China Craton to the north. The discovery of the Yingshan BIF provides new constraints for the tectonic evolution of the Yangtze Craton and has important implications in the reconstruction of Pre-Nuna/Columbia supercontinent configurations.

  19. Estimation of Potential Carbon Dioxide Storage Capacities of Onshore Sedimentary Basins in Republic of Korea

    Science.gov (United States)

    Park, S.; Kim, J.; Lee, Y.

    2010-12-01

    The potential carbon dioxide storage capacities of the five main onshore sedimentary basins (Chungnam, Gyeongsang, Honam, Mungyeong, and Taebaeksan Basins) in Republic of Korea are estimated based on the methods suggested by the United States National Energy Technology Laboratory (NETL). The target geologic formations considered for geologic storage of carbon dioxide in the sedimentary basins are sandstone and coal beds. The density of carbon dioxide is set equal to 446.4 kg/m3. The adsorption capacity and density of coal (anthracite) are set equal to 2.71 × 10-2 kg/kg and 1.82 × 103 kg/m3, respectively. The average storage efficiency factors for sandstone and coal are set equal to 2.5% and 34.0%, respectively. The Chungnam Basin has the sandstone volume of 72 km3 and the coal volume of 1.24 km3. The average porosity of sandstone in the Chungnam Basin is 3.8%. As a result, the potential carbon dioxide storage capacities of sandstone and coal in the Chungnam Basin are estimated to be 31 Mton and 21 Mton, respectively. The Gyeongsang Basin has the sandstone volume of 1,960 km3. The average porosity of sandstone in the Gyeongsang Basin is 4.6%. As a result, the potential carbon dioxide storage capacity of sandstone in the Gyeongsang Basin is estimated to be 1,011 Mton. The Honam Basin has the sandstone volume of 8 km3 and the coal volume of 0.27 km3. The average porosity of sandstone in the Honam Basin is 1.9%. As a result, the potential carbon dioxide storage capacities of sandstone and coal in the Honam Basin are estimated to be 2 Mton and 5 Mton, respectively. The Mungyeong Basin has the sandstone volume of 60 km3 and the coal volume of 0.66 km3. The average porosity of sandstone in the Mungyeong Basin is 2.0%. As a result, the potential carbon dioxide storage capacities of sandstone and coal in the Mungyeong Basin are estimated to be 13 Mton and 11 Mton, respectively. The Taebaeksan Basin has the sandstone volume of 71 km3 and the coal volume of 0.73 km3. The

  20. Geological exploration of uranium ores at Burgos' basin

    International Nuclear Information System (INIS)

    Cabrera Valdez, M.E.

    1975-01-01

    The outcrop sediments of the Burgos river basin cover the complete Cenozoic sequence from the Pallaeocene to recent date, and are arranged in the form of parallel strips with a regional dip towards the east, in which direction the sediments become steadily younger. Generally speaking they correspond to a regressive process the lithology of which is an alternation of shales, sandstones, tuffaceous material and conglomerates. The explorations and evaluations of sedimentary uranium deposits so far carried out in the north-east of Mexico show close relationships between the mineralization and the sedimentary processes of the enclosing rock. Analysis of the sedimentary-type uranium ore bodies in Mexico indicates characteristics very similar to those found in the deposits of the same type which were first studied and described in southern Texas and were used as a standard for the first exploratory studies. The uranium ore in the State of Texas is found in sands belonging mainly to the Jackson group of the Eocene and, to a lesser extent, the Catahoula formation of Miocene-Oligocene age. In the Burgos basin the existence of uranium deposits in the non-marine Frio formation of Oligocene age, with geological characteristics similar to the Texan deposits, has been demonstrated. This comparative analysis suggests very good prospects for uranium exploration in the region; it is recommended that priority be given to intensive study of the sediments of the non-marine member of the Frio formation, and the Jackson and Catahoula formations. (author)

  1. Geology and potential of the formation of sandstone type uranium mineralization at Hatapang region, North Sumatera

    International Nuclear Information System (INIS)

    Ngadenin

    2013-01-01

    The Study based on geological setting of Hatapang region, North Sumatera, identified as a favourable area to the formation of sandstone type uranium mineralization. This characterized by the occurred of anomalous radioactivity, uranium contents of the upper cretaceous granite intrusions and radioactivity anomalous of tertiary sedimentary rocks deposited in terrestrial environments. The study is objective to find out the potential formation of sandstone type-uranium mineralization within tertiary sedimentary rocks based on data’s studies of geological, geochemical, mineralogy, radioactivity of rocks. Stratigraphy of Hatapang area of the oldest to youngest are quartz units (permian-carboniferous), sandstone units (upper Triassic), granite (upper cretaceous), conglomerate units (Lower –middle Miocene) and tuff units (Pleistocene). Hatapang’s granite is S type granite which is not only potential as source of radioactive minerals, particularly placer type monazite, but also potential as source rocks of sandstone type-uranium mineralization on lighter sedimentary rocks. Sedimentary rock of conglomerate units has potential as host rock, even though uranium did not accumulated in its rocks since the lack number of carbon as precipitant material and dissolved U"+"6 in water did not reduced into U"+"4 caused the uranium mineralization did not deposited. (author)

  2. Geologic map of the Cochiti Dam quadrangle, Sandoval County, New Mexico

    Science.gov (United States)

    Dethier, David P.; Thompson, Ren A.; Hudson, Mark R.; Minor, Scott A.; Sawyer, David A.

    2011-01-01

    The Cochiti Dam quadrangle is located in the southern part of the Española Basin and contains sedimentary and volcanic deposits that record alluvial, colluvial, eolian, tectonic and volcanic processes over the past seventeen million years. The geology was mapped from 1997 to 1999 and modified in 2004 to 2008. The primary mapping responsibilities were as follows: Dethier mapped the surficial deposits, basin-fill sedimentary deposits, Miocene to Quaternary volcanic deposits of the Jemez volcanic field, and a preliminary version of fault distribution. Thompson and Hudson mapped the Pliocene and Quaternary volcanic deposits of the Cerros del Rio volcanic field. Thompson, Minor, and Hudson mapped surface exposures of faults and Hudson conducted paleomagnetic studies for stratigraphic correlations. Thompson prepared the digital compilation of the geologic map.

  3. The geologic investigation of the bedrock and the tectonic and geophysical surveys at Kynnefjaell

    International Nuclear Information System (INIS)

    Ahlbom, K.; Ahlin, S.; Eriksson, L.; Samuelsson, L.

    1980-05-01

    The geologic survey took place at a selected area of Kynnefjaell. The result is given on geologic and tectonic maps. Two kinds of rock dominate, namely (a) sedimentary veined gneiss and (b) gneissic granite. The strike is in the N-S direction. A symmetric folds dip to the last. The fissure zones are oriented in the N-S and NE-SW directions. The latter zones are considered to be Precambrian shear zones with a dip to the NW. The dip of the fissure zones with the direction N-S is difficult to ascertain. The frequency of fissures is the same for granite and gneiss. The length of fissures is longer in the gneissic granite than in the sedimentary veined gneiss. The measurement of stress shows its main direction to be WNW-NW to ESE-SE. The fissure zones are at right or blunt-ended angles to the main stress direction. (G.B.)

  4. The STRATAFORM Project: U.S. Geological Survey geotechnical studies

    Science.gov (United States)

    Minasian, Diane L.; Lee, Homa J.; Locat, Jaques; Orzech, Kevin M.; Martz, Gregory R.; Israel, Kenneth

    2001-01-01

    This report presents physical property logs of core samples from an offshore area near Eureka, CA. The cores were obtained as part of the STRATAFORM Program (Nittrouer and Kravitz, 1995, 1996), a study investigating how present sedimentation and sediment transport processes influence long-term stratigraphic sequences preserved in the geologic record. The core samples were collected during four separate research cruises to the northern California study area, and data shown in the logs of the cores were collected using a multi-sensor whole core logger. The physical properties collected are useful in identifying stratigraphic units, ground-truthing acoustic imagery and sub-bottom profiles, and in understanding mass movement processes. STRATA FORmation on Margins was initiated in 1994 by the Office of Naval Research, Marine Geology and Geophysics Department as a coordinated multi-investigator study of continental-margin sediment transport processes and stratigraphy (Nittrouer and Kravitz, 1996). The program is investigating the stratigraphic signature of the shelf and slope parts of the continental margins, and is designed to provide a better understanding of the sedimentary record and a better prediction of strata. Specifically, the goals of the STRATAFORM Program are to (Nittrouer and Kravitz, 1995): - determine the geological relevance of short-term physical processes that erode, transport, and deposit particles and those processes that subsequently rework the seabed over time scales - improve capabilities for identifying the processes that form the strata observed within the upper ~100 m of the seabed commonly representing 104-106 years of sedimentation. - synthesize this knowledge and bridge the gap between time scales of sedimentary processes and those of sequence stratigraphy. The STRATAFORM Program is divided into studies of the continental shelf and the continental slope; the geotechnical group within the U.S. Geological Survey provides support to both parts

  5. Global scale concentrations of volcanic activity on Venus: A summary of three 23rd Lunar and Planetary Science Conference abstracts. 1: Venus volcanism: Global distribution and classification from Magellan data. 2: A major global-scale concentration of volcanic activity in the Beta-Atla-Themis region of Venus. 3: Two global concentrations of volcanism on Venus: Geologic associations and implications for global pattern of upwelling and downwelling

    Science.gov (United States)

    Crumpler, L. S.; Aubele, Jayne C.; Head, James W.; Guest, J.; Saunders, R. S.

    1992-01-01

    As part of the analysis of data from the Magellan Mission, we have compiled a global survey of the location, dimensions, and subsidiary notes of all identified volcanic features on Venus. More than 90 percent of the surface area was examined and the final catalog comprehensively identifies 1548 individual volcanic features larger than approximately 20 km in diameter. Volcanic features included are large volcanoes, intermediate volcanoes, fields of small shield volcanoes, calderas, large lava channels, and lava floods as well as unusual features first noted on Venus such as coronae, arachnoids, and novae.

  6. Cenozoic uplift of the Tibetan Plateau: Evidence from the tectonic–sedimentary evolution of the western Qaidam Basin

    Directory of Open Access Journals (Sweden)

    Yadong Wang

    2012-03-01

    Full Text Available Geologists agree that the collision of the Indian and Asian plates caused uplift of the Tibet Plateau. However, controversy still exists regarding the modes and mechanisms of the Tibetan Plateau uplift. Geology has recorded this uplift well in the Qaidam Basin. This paper analyzes the tectonic and sedimentary evolution of the western Qaidam Basin using sub-surface seismic and drill data. The Cenozoic intensity and history of deformation in the Qaidam Basin have been reconstructed based on the tectonic developments, faults growth index, sedimentary facies variations, and the migration of the depositional depressions. The changes in the sedimentary facies show that lakes in the western Qaidam Basin had gone from inflow to still water deposition to withdrawal. Tectonic movements controlled deposition in various depressions, and the depressions gradually shifted southeastward. In addition, the morphology of the surface structures in the western Qaidam Basin shows that the Cenozoic tectonic movements controlled the evolution of the Basin and divided it into (a the southern fault terrace zone, (b a central Yingxiongling orogenic belt, and (c the northern fold-thrust belt; divided by the XI fault (Youshi fault and Youbei fault, respectively. The field data indicate that the western Qaidam Basin formed in a Cenozoic compressive tectonic environment caused by the India–Asia plate collision. Further, the Basin experienced two phases of intensive tectonic deformation. The first phase occurred during the Middle Eocene–Early Miocene (Xia Ganchaigou Fm. and Shang Ganchaigou Fm., 43.8–22 Ma, and peaked in the Early Oligocene (Upper Xia Ganchaigou Fm., 31.5 Ma. The second phase occurred between the Middle Miocene and the Present (Shang Youshashan Fm. and Qigequan Fm., 14.9–0 Ma, and was stronger than the first phase. The tectonic–sedimentary evolution and the orientation of surface structures in the western Qaidam Basin resulted from the Tibetan

  7. Environmental and human impact on the sedimentary dynamic in the Rhone Delta subaquatic canyons (France-Switzerland)

    Science.gov (United States)

    Arantegui, A.; Corella, J. P.; Loizeau, J. L.; Anselmetti, F. S.; Girardclos, S.

    2012-04-01

    Deltas are very sensitive environments and highly vulnerable to variations in water discharge and the amount of suspended sediment load provided by the delta-forming currents. Human activities in the watershed, such as building of dams and irrigation ditches, or river bed deviations, may affect the discharge regime and sediment input, thus affecting delta growth. Underwater currents create deeply incised canyons cutting into the delta lobes. Understanding the sedimentary processes in these subaquatic canyons is crucial to reconstruct the fluvial evolution and human impact on deltaic environments and to carry out a geological risk assessment related to mass movements, which may affect underwater structures and civil infractructure. Recently acquired high-resolution multibeam bathymetry on the Rhone Delta in Lake Geneva (Sastre et al. 2010) revealed the complexity of the underwater morphology formed by active and inactive canyons first described by Forel (1892). In order to unravel the sedimentary processes and sedimentary evolution in these canyons, 27 sediment cores were retrieved in the distal part of each canyon and in the canyon floor/levee complex of the active canyon. Geophysical, sedimentological, geochemical and radiometric dating techniques were applied to analyse these cores. Preliminary data show that only the canyon originating at the current river mouth is active nowadays, while the others remain inactive since engineering works in the watershed occurred, confirming Sastre et al. (2010). However, alternating hemipelagic and turbiditic deposits on the easternmost canyons, evidence underflow processes during the last decades as well. Two canyons, which are located close to the Rhone river mouth, correspond to particularly interesting deeply incised crevasse channels formed when the underwater current broke through the outer bend of a meander in the proximal northern levee. In these canyons, turbidites occur in the sediment record indicating ongoing

  8. A refined model of sedimentary rock cover in the southeastern part of the Congo basin from GOCE gravity and vertical gravity gradient observations

    Science.gov (United States)

    Martinec, Zdeněk; Fullea, Javier

    2015-03-01

    We aim to interpret the vertical gravity and vertical gravity gradient of the GOCE-GRACE combined gravity model over the southeastern part of the Congo basin to refine the published model of sedimentary rock cover. We use the GOCO03S gravity model and evaluate its spherical harmonic representation at or near the Earth's surface. In this case, the gradiometry signals are enhanced as compared to the original measured GOCE gradients at satellite height and better emphasize the spatial pattern of sedimentary geology. To avoid aliasing, the omission error of the modelled gravity induced by the sedimentary rocks is adjusted to that of the GOCO03S gravity model. The mass-density Green's functions derived for the a priori structure of the sediments show a slightly greater sensitivity to the GOCO03S vertical gravity gradient than to the vertical gravity. Hence, the refinement of the sedimentary model is carried out for the vertical gravity gradient over the basin, such that a few anomalous values of the GOCO03S-derived vertical gravity gradient are adjusted by refining the model. We apply the 5-parameter Helmert's transformation, defined by 2 translations, 1 rotation and 2 scale parameters that are searched for by the steepest descent method. The refined sedimentary model is only slightly changed with respect to the original map, but it significantly improves the fit of the vertical gravity and vertical gravity gradient over the basin. However, there are still spatial features in the gravity and gradiometric data that remain unfitted by the refined model. These may be due to lateral density variation that is not contained in the model, a density contrast at the Moho discontinuity, lithospheric density stratifications or mantle convection. In a second step, the refined sedimentary model is used to find the vertical density stratification of sedimentary rocks. Although the gravity data can be interpreted by a constant sedimentary density, such a model does not correspond to

  9. Petroleum geology of the Palo Duro Basin, Texas Panhandle

    International Nuclear Information System (INIS)

    Rose, P.R.

    1986-03-01

    The Palo Duro Basin, Permian Basin, Texas is an asymmetric, relatively shallow, intracratonic basin in the southern Texas Panhandle filled mostly by Mississippian, Pennsylvanian, and Permian sedimentary rocks. Although deeper and prolific prolific petroleum-producing basins adjoin it on the north (Anadarko Basin), south (Midland Basin), and east (Hardeman Basin), the Palo Duro Basin has produced remarkably small amounts of oil and gas to date. This is all the more noteworthy because the sedimentary sequence and rock types of the basin are similar to those of the adjacent basins. Analyses of the stratigraphic succession and structural configuration of the Palo Duro Basin suggest that adequate reservoir rocks, top-seals, and geologic structures are present. Most of the structures formed early enough to have trapped hydrocarbons if they were migrating in the rock column. Although additional work is under way to properly address the question of the petroleum source rocks, generation, and migration, the general absence of production in the basin may relate to an overall deficiency in hydrocarbon generation within the basin. Geologic information in this report will form part of the basis for further analysis and conclusions on hydrocarbon potential in the Palo Duro Basin

  10. Study on characteristics of sedimentary rock at the Horonobe site (2). Report of collaboration research between CRIEPI and JAEA

    International Nuclear Information System (INIS)

    Oyama, Takahiro; Kiho, Kenzo; Suzuki, Koichi; Nakata, Eiji; Tanaka, Shiro; Hasegawa, Takuma; Nakata, Kotaro; Nagaoka, Toru; Nakamura, Takamichi; Fukushima, Tatsuo; Ishii, Eiichi; Kunimaru; Takanori; Hama, Katsuhiro; Iwatsuki, Teruki; Sugita, Yutaka; Yabuuchi, Satoshi; Miyahara, Shigenori; Takahashi, Kazuharu

    2010-01-01

    CRIEPI (Central Research Institute of Electric Power Industry) and JAEA (Japan Atomic Energy Agency) have been conducting a collaboration research to develop methodology for the characterization of geological environment since FY 2002. This report describes the results of the collaboration research in mainly from FY 2004 to FY 2008. As the collaboration research, the following research results were obtained. (1) Study on the slaking property. We discovered the spherical silica (amorphous silica) in siliceous rock (Opalin chert) between the Koetoi and Wakkanai Formation. The permeability of this chert (10 -12 m/sec) decreases to compare with near depth diatomaceous mudstone (10 -10 m/sec). This diatomaceous mudstone dose not rapidly slakes. Excavated disturbed zone(EdZ) at -140 m tunnel was estimated with drilled cores and gas flows from the tunnel wall. (2) Study on the chemical weathering of the sedimentary rock. The weathering property was investigated of mudstone at an outcrop and east shaft. Weathering profile was divided oxidized, dissolved, transition and fresh zone. Oxidation was limited to the vicinity of surface. (3) Study on the pore water extraction methodology. Sample preparation under N 2 condition before porewater squeezing to prevent oxidation showed that the squeezed porewater chemistry was affected by the sample storage period before squeezing. (4) Study on exploration method considering the physical property of the rock. The depth profile of the mechanical and permeability properties can be estimated by the results of physical logging in the borehole and laboratory measurements of core samples. (5) Study on the applicability of the controlled drilling system to the Horonobe site. The controlled drilling system was applied to the Hokushin site and the Kami-horonobe site in the Horonobe town. At the Kami-horonobe site, the system was applied to drill the Omagari fault and characterize the hydro-geology around the fault. The controlled drilling was

  11. Geology at Yucca Mountain

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Both advocates and critics disagree on the significance and interpretation of critical geological features which bear on the safety and suitability of Yucca Mountain as a site for the construction of a high-level radioactive waste repository. Critics believe that there is sufficient geological evidence to rule the site unsuitable for further investigation. Some advocates claim that there is insufficient data and that investigations are incomplete, while others claim that the site is free of major obstacles. We have expanded our efforts to include both the critical evaluations of existing geological and geochemical data and the collection of field data and samples for the purpose of preparing scientific papers for submittal to journals. Summaries of the critical reviews are presented in this paper

  12. Relationship between water quality of deep-groundwater and geology in non-volcanic areas in Japan

    International Nuclear Information System (INIS)

    Oyama, Yoichi; Takahashi, Masaaki; Tsukamoto, Hitoshi; Kazahaya, Kohei; Yasuhara, Masaya; Takahashi, Hiroshi; Morikawa, Noritoshi; Ohwada, Michiko; Shibahara, Akihiko; Inamura, Akihiko

    2011-01-01

    Geochemical characteristics in groundwater such as groundwater chemistry and physicochemical parameters are affected by their source and the interaction with rocks and minerals. We observed the relationships between groundwater chemistry of the deep-groundwater and the geology in non-volcanic areas in Japan using about 9300 of deep-groundwater data. A Geographical Information System (GIS) was used to extract data in non-volcanic areas and numbers of water data are about 5200. The data were further classified into four types of geology (sedimentary rock, accretionary complex, volcanic rock and plutonic rock). The pH, temperature and major ion concentrations among deep-groundwaters in each geology have been statistically analysed. Result shows that the total cation concentration of deep-groundwaters are significantly different between geology, and the average values are decreased in the order of the sedimentary rock (66.7 meq l -1 ), volcanic rock (43.0 meq l -1 ), accretionary complex (24.6 meq l -1 ), and plutonic rock (11.0 meq l -1 ). The average pH does not show the major difference between geology whereas the highest average temperature is found in volcanic rock. In addition, the all four major cations (Na, K, Mg, and Ca) show the highest average concentrations in sedimentary rock, within the highest average concentrations of major anions for Cl, SO 4 , and HCO 3 are found in sedimentary rock, volcanic rock and accretionary complex, respectively, indicating the difference of the influence on the anions varied with geology. The distribution of deep-groundwater that are dominated by each major anions implied that SO 4 -type groundwater in volcanic rocks are formed by the influence of Neogene volcanic rock (Green tuff). In addition, HCO 3 -type groundwater in accretionary complex found from Kinki to Shikoku regions are formed by the addition of CO 2 gases supplying not only from surface soil and carbonate minerals but from deep underground. (author)

  13. Geologic map of the Hasty Quadrangle, Boone and Newton Counties, Arkansas

    Science.gov (United States)

    Hudson, Mark R.; Murray, Kyle E.

    2004-01-01

    This digital geologic map compilation presents new polygon (for example, geologic map unit contacts), line (for example, fault, fold axis, and structure contour), and point (for example, structural attitude, contact elevations) vector data for the Hasty 7.5-minute quadrangle in northern Arkansas. The map database, which is at 1:24,000-scale resolution, provides geologic coverage of an area of current hydrogeologic, tectonic, and stratigraphic interest. The Hasty quadrangle is located in northern Newton and southern Boone Counties about 20 km south of the town of Harrison. The map area is underlain by sedimentary rocks of Ordovician, Mississippian, and Pennsylvanian age that were mildly deformed by a series of normal and strike-slip faults and folds. The area is representative of the stratigraphic and structural setting of the southern Ozark Dome. The Hasty quadrangle map provides new geologic information for better understanding groundwater flow paths in and adjacent to the Buffalo River watershed.

  14. MORPHOLOGICAL AND GEOLOGICAL INDICATORS OF THE POSSIBLE BAUXITE DEPOSITS IN THE KARST REGION OF WESTERN HERZEGOVINA

    Directory of Open Access Journals (Sweden)

    Ivan Blašković

    1995-12-01

    Full Text Available Investigation results of morphological and geological potential bauxite deposit indicators in the Mesihovina-Rakitno bauxitebearing sedimentary basin in Western Herzegovina are presented. Region with carbonate and clastic hangingwalls as well as those without overlying sediments have been studied. It was established that the expression and number of the indicators depend size as well as on character and thickness of hangingwall sediments. The morphological indicators are expressed as a particular relief forms situated right above the deposits or nearby and are a consequence of geological relations and exodynamic processes. Ihe numerous geological indicators resulted from complex geological events. The most important are: preore structural relations, the formation of paleorelief, peculiar way of hangingwall rocks sedimentation, lithification processes and the formation of the recent structural pattern. It has been observed that particular indicators should be recognized within a relatively thick succession of the overlying sediments which is of the great importance in the exploration of bauxite deposits.

  15. Geothermal reservoir simulation of hot sedimentary aquifer system using FEFLOW®

    Science.gov (United States)

    Nur Hidayat, Hardi; Gala Permana, Maximillian

    2017-12-01

    The study presents the simulation of hot sedimentary aquifer for geothermal utilization. Hot sedimentary aquifer (HSA) is a conduction-dominated hydrothermal play type utilizing deep aquifer, which is heated by near normal heat flow. One of the examples of HSA is Bavarian Molasse Basin in South Germany. This system typically uses doublet wells: an injection and production well. The simulation was run for 3650 days of simulation time. The technical feasibility and performance are analysed in regards to the extracted energy from this concept. Several parameters are compared to determine the model performance. Parameters such as reservoir characteristics, temperature information and well information are defined. Several assumptions are also defined to simplify the simulation process. The main results of the simulation are heat period budget or total extracted heat energy, and heat rate budget or heat production rate. Qualitative approaches for sensitivity analysis are conducted by using five parameters in which assigned lower and higher value scenarios.

  16. Russian geological education in the world market (the case of Russian State Geological Prospecting University

    Directory of Open Access Journals (Sweden)

    Vasily Ivanovich Lisov

    2016-12-01

    Full Text Available Higher geological education in Russia and in MSGPI-RSGPU specific. It - engineering. The mineral deposits determine the development of the global industry and foreign trade. Growing global demand for the profession of geologists and mining engineers. Training of foreign students in Russia has its own geopolitical and economic importance. In Russia a strong resource-based economy. It attracts students from developing countries. MGRI-RSGPU is the leading universities training specialists for mining. The article presents data about the University and types of education. Shown scientific and educational problems in higher education. This article discusses the prospects for the promotion of Russian higher geological education at the world market of educational services. The increasing role of new scientific and technological achievements in mining, enhanced environmental as well as staff requirements is revealed. Given that the leading schools in the mining industry, in addition to Russia, are formed in Canada, Germany, USA, Australia, Great Britain, many developing countries rich in natural resources, have begun to form their own national centers for training in this area. Under such competitive conditions Russian geological education maintains its own niche. Recognition of this is the active participation of Russian universities in the creation and development of the World Forum of sustainable development of mineral universities (WFURS, described in the article. The main factors of competitiveness that led to leading positions of Russian State Geological Prospecting University in system of the Russian geological education are described. Particular attention is paid to the international activities of Russian higher educational institutions including Geological Prospecting University. The basic statistics (both in the context of the country, and in the field of foreign undergraduate and graduate students enrolled at this university is provided. The

  17. Tectonics and sedimentary process in the continental talud in Uruguay

    International Nuclear Information System (INIS)

    De Santa Ana, H.; Soto, M.; Morales, E.; Tomasini, J.; Hernandez-Molina, F.; Veroslavsky, G.

    2012-01-01

    The morphology and evolution of the continental margin of Uruguay is due to the interaction of an important set of sedimentary processes. The contourite and turbiditic are the most significant processes which are associated with the development of submarine canyons as well as the gravitational mass respect to major landslides. These processes generate erosional and depositional features with a direct impact on different areas of application, which have potential environmental risks (gravitational landslides, earthquakes, tsunamis) and potential economic resources

  18. Favorability for uranium in tertiary sedimentary rocks, southwestern Montana

    International Nuclear Information System (INIS)

    Wopat, M.A.; Curry, W.E.; Robins, J.W.; Marjaniemi, D.K.

    1977-10-01

    Tertiary sedimentary rocks in the basins of southwestern Montana were studied to determine their favorability for potential uranium resources. Uranium in the Tertiary sedimentary rocks was probably derived from the Boulder batholith and from silicic volcanic material. The batholith contains numerous uranium occurrences and is the most favorable plutonic source for uranium in the study area. Subjective favorability categories of good, moderate, and poor, based on the number and type of favorable criteria present, were used to classify the rock sequences studied. Rocks judged to have good favorability for uranium deposits are (1) Eocene and Oligocene strata and undifferentiated Tertiary rocks in the western Three Forks basin and (2) Oligocene rocks in the Helena basin. Rocks having moderate favorability consist of (1) Eocene and Oligocene strata in the Jefferson River, Beaverhead River, and lower Ruby River basins, (2) Oligocene rocks in the Townsend and Clarkston basins, (3) Miocene and Pliocene rocks in the Upper Ruby River basin, and (4) all Tertiary sedimentary formations in the eastern Three Forks basin, and in the Grasshopper Creek, Horse Prairie, Medicine Lodge Creek, Big Sheep Creek, Deer Lodge, Big Hole River, and Bull Creek basins. The following have poor favorability: (1) the Beaverhead Conglomerate in the Red Rock and Centennial basins, (2) Eocene and Oligocene rocks in the Upper Ruby River basin, (3) Miocene and Pliocene rocks in the Townsend, Clarkston, Smith River, and Divide Creek basins, (4) Miocene through Pleistocene rocks in the Jefferson River, Beaverhead River, and Lower Ruby River basins, and (5) all Tertiary sedimentary rocks in the Boulder River, Sage Creek, Muddy Creek, Madison River, Flint Creek, Gold Creek, and Bitterroot basins

  19. Estimation of sedimentary proxy records together with associated uncertainty

    OpenAIRE

    Goswami, B.; Heitzig, J.; Rehfeld, K.; Marwan, N.; Anoop, A.; Prasad, S.; Kurths, J.

    2014-01-01

    Sedimentary proxy records constitute a significant portion of the recorded evidence that allows us to investigate paleoclimatic conditions and variability. However, uncertainties in the dating of proxy archives limit our ability to fix the timing of past events and interpret proxy record intercomparisons. While there are various age-modeling approaches to improve the estimation of the age–depth relations of archives, relatively little focus has been placed on the propagation...

  20. Properties of Pliocene sedimentary geomagnetic reversal records from the Mediterranean

    OpenAIRE

    Linssen, J.H.

    1991-01-01

    In the history of the Earth the dipolar geomagnetic field has frequently reversed polarity. Though this property was already known early this century (Brunhes, 1906), nowadays the characteristics and the origin of polarity transitions are still largely unknown. The geomagnetic field and its variations are recorded in rocks as a natural remanent magnetization (NRM) during the formation of these rocks. The study of the NRM in sedimentary reversal records is the subject of this dissertation.

  1. Geologic Mapping Results for Ceres from NASA's Dawn Mission

    Science.gov (United States)

    Williams, D. A.; Mest, S. C.; Buczkowski, D.; Scully, J. E. C.; Raymond, C. A.; Russell, C. T.

    2017-12-01

    NASA's Dawn Mission included a geologic mapping campaign during its nominal mission at dwarf planet Ceres, including production of a global geologic map and a series of 15 quadrangle maps to determine the variety of process-related geologic materials and the geologic history of Ceres. Our mapping demonstrates that all major planetary geologic processes (impact cratering, volcanism, tectonism, and gradation (weathering-erosion-deposition)) have occurred on Ceres. Ceres crust, composed of altered and NH3-bearing silicates, carbonates, salts and 30-40% water ice, preserves impact craters and all sizes and degradation states, and may represent the remains of the bottom of an ancient ocean. Volcanism is manifested by cryovolcanic domes, such as Ahuna Mons and Cerealia Facula, and by explosive cryovolcanic plume deposits such as the Vinalia Faculae. Tectonism is represented by several catenae extending from Ceres impact basins Urvara and Yalode, terracing in many larger craters, and many localized fractures around smaller craters. Gradation is manifested in a variety of flow-like features caused by mass wasting (landslides), ground ice flows, as well as impact ejecta lobes and melts. We have constructed a chronostratigraphy and geologic timescale for Ceres that is centered around major impact events. Ceres geologic periods include Pre-Kerwanan, Kerwanan, Yalodean/Urvaran, and Azaccan (the time of rayed craters, similar to the lunar Copernican). The presence of geologically young cryovolcanic deposits on Ceres surface suggests that there could be warm melt pockets within Ceres shallow crust and the dwarf planet remain geologically active.

  2. Major element compositions of fluid inclusions from hydrothermal vein-type deposits record eroded sedimentary units in the Schwarzwald district, SW Germany

    Science.gov (United States)

    Walter, Benjamin F.; Burisch, Mathias; Marks, Michael A. W.; Markl, Gregor

    2017-12-01

    Mixing of sedimentary formation fluids with basement-derived brines is an important mechanism for the formation of hydrothermal veins. We focus on the sources of the sediment-derived fluid component in ore-forming processes and present a comprehensive fluid inclusion study on 84 Jurassic hydrothermal veins from the Schwarzwald mining district (SW Germany). Our data derive from about 2300 fluid inclusions and reveal differences in the average fluid composition between the northern, central, and southern Schwarzwald. Fluids from the northern and southern Schwarzwald are characterised by high salinities (18-26 wt% NaCl+CaCl2), low Ca/(Ca+Na) mole ratios (0.1-0.4), and variable Cl/Br mass ratios (30-1140). In contrast, fluids from the central Schwarzwald show even higher salinities (23-27 wt% NaCl+CaCl2), higher Ca/(Ca+Na) mole ratios (0.2-0.9), and less variable Cl/Br mass ratios (40-130). These fluid compositions correlate with the nature and thickness of the now eroded sedimentary cover rocks. Compared to the northern and the southern Schwarzwald, where halite precipitation occurred during the Middle Triassic, the sedimentary basin in the central Schwarzwald was relatively shallow at this time and no halite was precipitated. Accordingly, Cl/Br ratios of fluids from the central Schwarzwald provide no evidence for the reaction of a sedimentary brine with halite, whereas those from the northern and southern Schwarzwald do. Instead, elevated Ca/(Ca+Na), high SO4 contents, and relatively low Cl/Br imply the presence of a gypsum dissolution brine during vein formation in the central Schwarzwald which agrees with the reconstructed regional Triassic geology. Hence, the information archived in fluid inclusions from hydrothermal veins in the crystalline basement has the potential for reconstructing sedimentary rocks in the former overburden.

  3. Modern sedimentary processes along the Doce river adjacent continental shelf

    Directory of Open Access Journals (Sweden)

    Valéria da Silva Quaresma

    Full Text Available In areas of the continental shelf where sediment supply is greater than the sediment dispersion capacity, an extensive terrigenous deposits and consequently submerged deltas can be formed. The Eastern Brazilian shelf is characterized by the occurrence of river feed deltas in between starving coasts. Herein, modern sedimentary processes acting along the Doce river adjacent continental shelf are investigated. The main objective was to understand the shelf sediment distribution, recognizing distinct sedimentary patterns and the major influence of river sediment discharge in the formation of shelf deposits. The study used 98 surficial samples that were analyzed for grain size, composition and bulk density. Results revealed 3 distinct sectors: south - dominated by mud fraction with a recent deposition from riverine input until 30 m deep and from this depth bioclastic sands dominate; central north - sand mud dominated, been recognized as a bypass zone of resuspended sediment during high energy events; and north - relict sands with high carbonate content. The modern sedimentation processes along the Doce river continental shelf is dominated by distinct sedimentary regimes, showing a strong fluvial influence associated with wave/wind induced sediment dispersion and a carbonate regime along the outer shelf. These regimes seem to be controlled by the distance from the river mouth and bathymetric gradients.

  4. Potensi sumber daya geologi di daerah Cekungan Bandung dan sekitarnya

    Directory of Open Access Journals (Sweden)

    Sutikno Bronto

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.vol1no1.20062aGeologically, Bandung Basin and the surrounding area comprise volcanic rocks; therefore, originally the geological resources, such as energy, environmental geology and mineral were generated from past volcanic activities. Energy resources having been utilized or in the exploration stage are water energy (Saguling Electrical Hydro Power and geothermal energy (Darajat, Kamojang, Wayang-Windu and Patuha Geothermal Fields. Potency of hydrocarbon energy is considered due to the presence of Tertiary sedimentary rocks under Bandung volcanic rocks. Environmental resources include water, soil, land, and natural panorama that mostly are already used for living, tourism, industry etc. Mineral resources cover metals and non metals. Mineral explorations, particularly for gold, have been conducted in the southern Bandung area. Recently, Center for Geological Survey itself has found a new mineral resource in the northern Bandung, i.e. Cupunagara Village, Cisalak Sub-Regency, Subang Regency - West Jawa.    

  5. Evaluating Geologic Sources of Arsenic in Well Water in Virginia (USA

    Directory of Open Access Journals (Sweden)

    Tiffany VanDerwerker

    2018-04-01

    Full Text Available We investigated if geologic factors are linked to elevated arsenic (As concentrations above 5 μg/L in well water in the state of Virginia, USA. Using geologic unit data mapped within GIS and two datasets of measured As concentrations in well water (one from public wells, the other from private wells, we evaluated occurrences of elevated As (above 5 μg/L based on geologic unit. We also constructed a logistic regression model to examine statistical relationships between elevated As and geologic units. Two geologic units, including Triassic-aged sedimentary rocks and Triassic-Jurassic intrusives of the Culpeper Basin in north-central Virginia, had higher occurrences of elevated As in well water than other geologic units in Virginia. Model results support these patterns, showing a higher probability for As occurrence above 5 μg/L in well water in these two units. Due to the lack of observations (<5% having elevated As concentrations in our data set, our model cannot be used to predict As concentrations in other parts of the state. However, our results are useful for identifying areas of Virginia, defined by underlying geology, that are more likely to have elevated As concentrations in well water. Due to the ease of obtaining publicly available data and the accessibility of GIS, this study approach can be applied to other areas with existing datasets of As concentrations in well water and accessible data on geology.

  6. Geological evolution of the Antongil Craton, NE Madagascar

    Science.gov (United States)

    Schofield, D.I.; Thomas, Ronald J.; Goodenough, K.M.; De Waele, B.; Pitfield, P.E.J.; Key, R.M.; Bauer, W.; Walsh, G.J.; Lidke, D.J.; Ralison, A.V.; Rabarimanana, M.; Rafahatelo, J.-M.; Randriamananjara, T.

    2010-01-01

    The Antongil Craton, along with the Masora and Antananarivo cratons, make up the fundamental Archaean building blocks of the island of Madagascar. They were juxtaposed during the late-Neoproterozoic to early Palaeozoic assembly of Gondwana. In this paper we give a synthesis of the geology of the Antongil Craton and present previously published and new geochemical and U-Pb zircon analyses to provide an event history for its evolution.The oldest rocks in the Antongil Craton form a nucleus of tonalitic gneiss, characteristic of Palaeo-Mesoarchaean cratons globally, including phases dated between 3320 ?? 14. Ma to 3231 ?? 6. Ma and 3187 ?? 2. Ma to 3154 ?? 5. Ma. A series of mafic dykes was intruded into the Mesoarchaean tonalites and a sedimentary succession was deposited on the craton prior to pervasive deformation and migmatisation of the region. The age of deposition of the metasediments has been constrained from a volcanic horizon to around 3178 ?? 2. Ma and subject to migmatisation at around 2597 ?? 49. Ma. A subsequent magmatic episode generated voluminous, weakly foliated granitic rocks, that also included additions from both reworked older crustal material and younger source components. An earlier granodiorite-dominated assemblage, dated between 2570 ?? 18. Ma and 2542 ?? 5. Ma, is largely exposed in xenoliths and more continuously in the northern part of the craton, while a later monzogranite-dominated phase, dated between 2531 ?? 13. Ma and 2513 ?? 0.4. Ma is more widely developed. Together these record the stabilisation of the craton, attested to by the intrusion of a younger dyke swarm, the age of which is constrained by a sample of metagabbro dated at 2147 ?? 6. Ma, providing the first evidence for Palaeoproterozoic rocks from the Antongil Craton.The youngest events recorded in the isotopic record of the Antongil Craton are reflected in metamorphism, neocrystallisation and Pb-loss at 792 ?? 130. Ma to 763 ?? 13. Ma and 553 ?? 68. Ma. These events are

  7. A two-dimensional model of the passive coastal margin deep sedimentary carbon and methane cycles

    Directory of Open Access Journals (Sweden)

    D. E. Archer

    2012-08-01

    Full Text Available We present a new geologic-time and basin-spatial scale model of the continental margin methane cycle. The model, SpongeBOB, is used to simulate evolution of the carbon cycle in a passive sedimentary continental margin in response to changing oceanographic and geologic forcing over a time scale of 200 million years. The geochemistry of the sediment column is altered by the addition of vertical high-permeability channels intended to mimic the effects of heterogeneity in the real sediment column due to faults, and produces results consistent with measured pore-water tracers SO42− and 129I. Pore water dissolved inorganic carbon (DIC concentrations are consistent with chemical weathering (CaCO3 formation from igneous rocks at depth within the sediment column. The carbon isotopic composition of the DIC is consistent with a methane production efficiency from particulate organic carbon (POC of 50%, which is somewhat lower than redox balance with the H / C of organic matter in the model. The hydrate inventory in the model is somewhat less sensitive to temperature than our previous results with a one-dimensional model, quite sensitive to reasonable changes in POC, and extremely sensitive to the ability of methane bubbles to rise within the sediment column, and how far gas-phase methane can get through the sediment column before it redissolves when it reaches undersaturated conditions. Hydrate formation is also sensitive to deep respiration of migrating petroleum. Other phenomena which we simulated had only a small impact on the hydrate inventory, including thermogenic methane production and production/decomposition of dissolved organic carbon.

  8. Radon and its decay product activities in the magmatic area and the adjacent volcano-sedimentary Intrasudetic Basin

    Directory of Open Access Journals (Sweden)

    D. Tchorz

    2007-06-01

    Full Text Available In the magmatic area of Sudetes covering the Karkonosze granite and adjacent volcano-sedimentary Intrasudetic Basin a study of atmospheric radon activity was performed by means of SSNTD Kodak LR-115. The study was completed by gamma spectrometric survey of eU and eTh determined by gamma activity of radon decay products 214Bi and 208Tl respectively. In the case of the western part of the Karkonosze granite area the radon decay products activity in the granitic basement was found to be as high as 343 Bq/kg for 214Bi and 496 Bq/kg for 208Tl respectively. Atmospheric radon content measured by means of Kodak LR115 track detector at the height of 1.5 m was found as high as 70 Bq/m3 in the regions, where no mining activities took place. However in the eastern part of the granitic massif in the proximity of abandoned uranium mine atmospheric radon content was found to be 6000 Bq/m3. In the case of sedimentary basin where sedimentary sequence of Carboniferous rocks has been penetrated by younger gases and fluids of volcanic origin uranium mineralization developed. The region known from its CO2 outburst during coal mining activity is characterized by good ventilation of the uranium enriched geological basement resulting in increased atmospheric radon activity being in average 72 Bq/m3. In the vicinity of coal mine tailing an increase up to 125 Bq/m3 can be observed. Seasonal variations of atmospheric radon content are influenced in agricultural areas by cyclic cultivation works (plough on soils of increased uranium content and in the case of post-industrial brownfields varying rates of radon exhalation from tailings due to different meteorological conditions.

  9. Public perceptions of geology

    Science.gov (United States)

    Gibson, Hazel; Stewart, Iain; Anderson, Mark; Pahl, Sabine; Stokes, Alison

    2014-05-01

    Geological issues are increasingly intruding on the everyday lives of ordinary people. Whether it be onshore exploration and extraction of oil and gas, deep injection of water for geothermal power or underground storage of carbon dioxide and radioactive waste, many communities across Europe are being faced with potentially contested geological activity under their backyard. As well as being able to communicate the technical aspects of such work, geoscience professionals also need to appreciate that for most people the subsurface is an unfamiliar realm. In order to engage communities and individuals in effective dialogue about geological activities, an appreciation of what 'the public' already know and what they want to know is needed, but this is a subject that is in its infancy. In an attempt to provide insight into these key issues, this study examines the concerns the public have, relating to geology, by constructing 'Mental Models' of people's perceptions of the subsurface. General recommendations for public engagement strategies will be presented based on the results of selected case studies; specifically expert and non-expert mental models for communities in the south-west of England.

  10. Geology and land use

    Science.gov (United States)

    Brown, R.D.

    1990-01-01

    Geologists' eyes are trained to find and trace such natural landmarks as flood plains, landslide scars, retreating shoreline bluffs, or surface traces of active earthquake faults. more and more often, in developing areas, we find these obvious signs of trouble being erased by urban development. A geological hazard concealed by landscaping or hosing is fully as dangerous as when it is visible.

  11. Geology of Venus

    International Nuclear Information System (INIS)

    Basilevsky, A.T.; Head, J.W. III.

    1988-01-01

    This paper summarizes the emerging picture of the surface of Venus provided by high-resolution earth-based radar telescopes and orbital radar altimetry and imaging systems. The nature and significance of the geological processes operating there are considered. The types of information needed to complete the picture are addressed. 71 references

  12. Geological impacts on nutrition

    Science.gov (United States)

    This chapter reviews the nutritional roles of mineral elements, as part of a volume on health implications of geology. The chapter addresses the absorption and post-absorptive utilization of the nutritionally essential minerals, including their physiological functions and quantitative requirements....

  13. Research on geological disposal

    International Nuclear Information System (INIS)

    Uchida, Masahiro

    2011-01-01

    The aims of this research are to develop criteria for reviewing acceptability of the adequacy of the result of Preliminary and Detailed Investigations submitted by the implementor, and to establish a basic policy to secure safety for safety review. In FY 2010, 13 geology/climate related events for development of acceptance criteria for reviewing the adequacy of the result of Preliminary and Detailed Investigations were extracted. And the accuracy of geophysical exploration methods necessary for the Preliminary Investigation was evaluated. Regarding the research for safety review, we developed an idea of safety concept of Japanese geological disposal, and analyzed basic safety functions to secure safety. In order to verify the groundwater flow evaluation methods developed in regulatory research, the hydrological and geochemical data at Horonobe, northern Hokkaido were obtained, and simulated result of regional groundwater flow were compared with measured data. And we developed the safety scenario of geology/climate related events categorized by geological and geomorphological properties. Also we created a system to check the quality of research results in Japan and other countries in order to utilize for safety regulation, and developed a database system to compile them. (author)

  14. Canadian geologic isolation program

    International Nuclear Information System (INIS)

    Dyne, P.J.

    1976-01-01

    The Canadian geologic isolation program is directed at examining the potential of (1) salt deposits and (2) hard rock as repositories for radioactive wastes. It was felt essential from the inception that alternative host rocks be evaluated over a fairly large geographical area. The studies on salt deposits to date are based on existing geological information and have identified the areas that show some potential and merit further study. The factors considered include depth, thickness and purity of the deposit, overlying aquifers, and the potential for gas and oil exploration as well as potash recovery. The studies on hard rock are restricted to plutonic igneous rocks in the Ontario part of the Canadian Shield. Because geological information on their nature and extent is sparse, the study is limited to bodies that are well exposed and for which information is available.for which information is available. Field studies in the next two seasons are aimed at mapping the fault and joint patterns and defining the geologic controls on their development. In 1977 and 1978, two or three of the more favorable sites will be mapped in greater detail, and an exploratory drilling program will be established to determine the extent of fracturing at depth and the hydrology of these fractures. Conceptual designs of mined repositories in hard rock are also being made with the hope of identifying, at an early stage in this program, special problems in hard-rock repositories that may require development and study

  15. Proceedings of the 39. Brazilian congress on geology. v. 1

    International Nuclear Information System (INIS)

    1996-01-01

    The book presents the 39. Brazilian Congress on Geology works, occurred in Salvador, Bahia, during the period of September 1 to 6, 1996. The meeting main subject - geology and society - reflects the current change epoch. The symposiums revealed the more important actions about geosciences applications to the society in the country. The round tables, structured for the polemical subjects debates that involves the geosciences and the mineral sector crisis aspects, were achieved by several invited participants completely embraced with the subject. During the congress activities development there were some courses, technical excursions and external actions in Salvador, aiming to to show the geosciences role to the social welfare. The works were presented the following symposiums: the social value of the environment study; urban geology and geology risks; degraded areas recovery; coastal erosion; global paleoregisters; and carstic terranes geology

  16. Sedimentary and mineral dust sources of dissolved iron to the world ocean

    Directory of Open Access Journals (Sweden)

    J. K. Moore

    2008-05-01

    from sinking particles; and 3 an improved sedimentary source for dissolved iron. Most scavenged iron (90% is put on sinking particles to remineralize deeper in the water column. The model-observation differences are reduced with these modifications. The improved BEC model is used to examine the relative contributions of mineral dust and marine sediments in driving dissolved-iron distributions and marine biogeochemistry. Mineral dust and sedimentary sources of iron contribute roughly equally, on average, to dissolved iron concentrations. The sedimentary source from the continental margins has a strong impact on open-ocean iron concentrations, particularly in the North Pacific. Plumes of elevated dissolved-iron concentrations develop at depth in the Southern Ocean, extending from source regions in the SW Atlantic and around New Zealand. The lower particle flux and weaker scavenging in the Southern Ocean allows the continental iron source to be advected far from sources. Both the margin sediment and mineral dust Fe sources substantially influence global-scale primary production, export production, and nitrogen fixation, with a stronger role for the dust source. Ocean biogeochemical models that do not include the sedimentary source for dissolved iron, will overestimate the impact of dust deposition variations on the marine carbon cycle. Available iron observations place some strong constraints on ocean biogeochemical models. Model results should be evaluated against both surface and subsurface Fe observations in the waters that supply dissolved iron to the euphotic zone.

  17. How to find the sedimentary archive of fluvial pollution in a bedrock-confined river reach

    Science.gov (United States)

    Elznicova, Jitka; Matys Grygar, Tomas; Kiss, Timea; Lelkova, Tereza; Balogh, Marton; Sikora, Martin

    2016-04-01

    The Ohre River springs in the Eastern Germany and it is a tributary of the Labe (Elbe) River in Northwest Bohemia. The river received pollution from several sources during the last five centuries. Most of the pollution sources located along the upper and middle reaches, where the depositional and erosional pattern of the river is highly variable. The upper part of the catchment consists of mainly felsic rocks and the river has a broad floodplain. The middle reach and its right-bank tributaries are deeply incised into the Doupovske Hory Mts., which consists of mafic volcanic rocks; whereas the left-bank tributaries are incised into intrusive and metamorphic rocks of the Krusne Hory Mts. (Ore mountains) with several local ore mines (Ag, Pb and U) in particular in around Olovi and Jachymov. Due to the geologic and geomorphologic complexity, deposition of historical sediments in the middle reach has been spatially limited and uneven, and anomalous background concentrations of risk elements are expected. As a consequence, in the middle reach of the Ohre River it is difficult to find a useful sedimentary archive of historical pollution, though it is desired for two main reasons: (1) to decipher the undocumented and poorly described pollution history from the Krusne Hory Mts. and (2) to better understand the retention of pollutants in the transport zones of a confined river system. Based on historical maps we identified a side-bar (35x320 m) in the middle reach of the river near Straz on Ohre and aimed to describe its formation, its recent erosion/deposition history and to evaluate its sedimentary archive value. In the first half of the 19th century it was an island separated from the valley edge by a side channel. Since then there has been no apparent lateral accretion of the bar (its shape has not been changed), but the upstream part of the side channel aggraded by a sediment plug. We evaluated the current bar topography and geomorphology by a detailed field survey

  18. Geological data integration techniques

    International Nuclear Information System (INIS)

    1988-09-01

    The objectives of this Technical Committee are to bring together current knowledge on geological data handling and analysis technologies as developed in the mineral and petroleum industries for geological, geophysical, geochemical and remote sensing data that can be applied to uranium exploration and resource appraisal. The recommendation for work on this topic was first made at the meeting of the NEA-IAEA Joint Group of Experts on R and D in Uranium Exploration Techniques (Paris, May 1984). In their report, processing of integrated data sets was considered to be extremely important in view of the very extensive data sets built up over the recent years by large uranium reconnaissance programmes. With the development of large, multidisciplinary data sets which includes geochemical, geophysical, geological and remote sensing data, the ability of the geologist to easily interpret large volumes of information has been largely the result of developments in the field of computer science in the past decade. Advances in data management systems, image processing software, the size and speed of computer systems and significantly reduced processing costs have made large data set integration and analysis practical and affordable. The combined signatures which can be obtained from the different types of data significantly enhance the geologists ability to interpret fundamental geological properties thereby improving the chances of finding a significant ore body. This volume is the product of one of a number of activities related to uranium geology and exploration during the past few years with the intent of bringing new technologies and exploration techniques to the IAEA Member States

  19. Sedimentary Markers : a window into deep geodynamic processes Examples from the Western Mediterranean Sea

    Science.gov (United States)

    Rabineau, Marina; Aslanian, Daniel; Leroux, Estelle; Pellen, Romain; Gorini, Christian; Moulin, Maryline; Droz, Laurence; Bache, Francois; Molliex, Stephane; Silenzario, Carmine; Rubino, Jean-Loup

    2017-04-01

    Deep Earth dynamics impact so strongly on surface geological processes that we can use sediment palaeo-markers as a window into the deeper Earth. Derived from climatic and tectonic erosive actions on the continents, and related to eustasy, subsidence and isostasy, the sediment in a deep basin is the main recorder of these processes. Nevertheless, defining and quantifying the relative roles of parameters that interact to give the final sedimentary architecture is not a simple task. Using a 3D-grid of seismic and wide-angle data, boreholes and numerical stratigraphic modelling, we propose here a quantification of post-rift vertical movements in the Provençal Basin (Western Mediterranean) involving three domains of subsidence: seaward tilting on the platform and the slope and purely vertical subsidence in the deep basin (Rabineau et al., 2014 ; Leroux et al., 2015). These domains fit the deeper crustal domains highlighted by previous geophysical data (Moulin et al., 2015 ; Afilhado et al., 2015). Post-break-up sedimentary markers may therefore be used to identify the initial hinge lines of the rifting phase, to quantify sedimentation rates and isostatic rebound (Rabineau et al., 2014) and redefine the subsidence laws. Similar work and results are obtained in the Valencia Basin (Pellen et al., 2016). This Western Mediterranean Sea is a natural laboratory with very high total subsidence rates that enable high sedimentation rates along the margin with sediments provided by the Rhône and Ebro rivers flowing from the Alps, the Pyrennees and Catalan chains, which in turn archives the detailed record of climate/tectonic evolution during the Neogene. The Western Mediterranean Sea could therefore further probe deep-earth and surface connections using deep drillings of this land-locked ocean basin transformed into a giant saline basin (Rabineau et al., 2015). Leroux, E., Aslanian, D., Rabineau, M., M. Moulin, D. Granjeon, C. Gorini, L. Droz, 2015. Sedimentary markers: a

  20. Study on characteristics of sedimentary rock at the Horonobe site. Report of collaboration research between CRIEPI and JAEA

    International Nuclear Information System (INIS)

    Kiho, Kenzo; Oyama, Takahiro; Suzuki, Koichi; Nakata, Eiji; Tanaka, Shiro; Miyakawa, Kimio; Ishii, Eiichi; Takahashi, Kazuharu; Kunimaru, Takanori; Tsukui, Rota; Fukushima, Tatsuo; Seya, Masami; Hama, Katsuhiro; Aoki, Kazuhiro

    2006-01-01

    CRIEPI (Central Research Institute of Electric Power Industry) and JAEA (Japan Atomic Energy Agency) have been conducting a collaboration research to develop methodology for the characterization of geological environment since FY 2002. This report describes the results of the collaboration research in mainly FY 2003. As the collaboration research, the following research results were obtained. (1) Study on the diagenesis of the sedimentary rock of the Noegene Tertiary. The maximum burial depth of the formation can be estimated. (2) Study on the chemical weathering of the soft sedimentary rock. The acidic water can be caused by the chemical weathering of the rock in the Koetoi formation. (3) Study on the pore water extraction. The hydrochemical condition at the Horonobe site can be estimated by the results of the chemical analyses of extracted pore water, and the different pressure of the extraction results the different chloride contents of the pore water. (4) Study on exploration method considering the physical property of the rock. The depth profile of the mechanical properties can be estimated by the results of physical logging in the borehole. (5) Study on the applicability of the controlled drilling system to the Horonobe site. The controlled drilling system can be applicable to drill the directional borehole. (author)

  1. Sedimentary uranium occurrences in Eastern Europe with special reference to sandstone formations

    International Nuclear Information System (INIS)

    Barthel, F.; Hahn, L.

    1985-01-01

    Sedimentary uranium deposits, especially in sandstones, play an important role in uranium mining in Eastern Europe. The paper reviews recent publications on uranium occurrences in sandstone formations in the German Democratic Republic, Poland, CSSR, Hungary, Romania, Bulgaria and Albania. The uranium deposits in sandstones in Yugoslavia are described in a separate paper in this volume. Sandstone deposits of the USSR are not reviewed. Uranium mineralizations occur in sandstones from Ordovician to Tertiary age. Major deposits are developed in Upper Carboniferous sandstones in association with coal (GDR, Poland), in Permian strata (CSSR, Hungary, Romania), in Cretaceous sandstones (GDR, CSSR), and in Tertiary sediments (CSSR). The Permian deposits can be compared with deposits of similar age in Northern Italy and Northern Yugoslavia. Roll-type orebodies are developed in some of the Cenomanian sandstones. Tertiary deposits are mainly associated with lignites. Uranium deposits in sandstones of Albania and Bulgaria are not described in the literature. Geologic similarities with sandstone basins in adjacent countries suggest the presence of uranium mineralizations in Permian, Lower Triassic, and Tertiary sandstones. (author)

  2. Geochemical characteristics of the Permian sedimentary rocks from Qiangtang Basin: Constraints for paleoenvironment and paleoclimate

    Directory of Open Access Journals (Sweden)

    Junjie Hu

    2017-01-01

    Full Text Available Qiangtang Basin is expected to become important strategic petroleum exploitation area in China. However, little research has been done on the Permian strata in this area. This paper presents Lower Permian Zhanjin Formation geochemical data from the Jiaomuri area, reconstructing the paleo-depositional environment and providing information for further petroleum exploration. The geochemical characteristics of 19 samples were investigated. These geochemical samples show a developed mud flat characteristic with light rich clay content. The geological data were used to constrain the paleoredox environment, which proved that these sediments were deposited mainly beneath a slightly oxic water column with relatively low paleoproductivity as evidenced by the P/Ti (mean of 0.07 and Ba/Al (mean of 20.5. Palaeoclimate indexes such as the C-value (0.24-1.75 and Sr/Cu (1.28-11.58 reveal a humid climatic condition during Zhanjin Formation sediment deposition. The ω(LaN/ω(YbN ratio values indicate a fast sedimentary rate during the deposition period.

  3. Evaluation of Uranium depositional system in sedimentary rocks of Sibolga formation, Tapanuli Tengah

    International Nuclear Information System (INIS)

    I Gde Sukadana; Heri Syaeful

    2016-01-01

    Uranium in nature formed in various deposit type, depends on its sources, process, and depositional environments. Uranium occurrence in Sibolga, hosted in sedimentary rocks of Sibolga Formation, is properly potential to develop; nevertheless, the depositional pattern and uranium mineralization process so far had not been recognized. The research aim is to determine the rock distribution patterns and the existence of uranium grade anomalies based on surface geology and borehole log data. Mineralization occurrences from borehole log data distributed from basalt conglomerate unit (Kgl 1), sandstone 1 unit (Bp 1), conglomerate 2 unit (Kgl 2), and sandstone 2 unit (Bp 2) with their distribution and thickness are thinning to the top. Mineralization distribution in the eastern area, mainly on Kgl 1 unit, dominated by detritus materials from epi-genetic depositional in the form of monazite which is formed along with the formation of granite as its source rock. Meanwhile, mineralization on the upper rocks units formed a channel pattern trending northeast-southwest, which formed in syn-genetic process consist of uraninite, carnotite, and coffinite. Sibolga Formation deposition originated from east to west and uranium deposit formed because of the differences of depositional environment from oxidation in the east to the more reductive in the southwest. The increasing of organic materials in southwest basin caused the reduction condition of depositional environment. (author)

  4. Radon exhalation from samples of Danish soils, subsoils and sedimentary rocks

    International Nuclear Information System (INIS)

    Korsbech, U.

    1985-01-01

    For some years it has been known that the ground below a house could be the major source of radon and radon daughters in the indoor air. Th amount of radon penetrating into buildings from the ground depends on several factors e.g. the amount of radon produced in the ground, the amount of cracks and holes in the foundation of buildings, and the pressure difference between the air in the ground (sol air) and the indoor air. As a first step in determining the influence of the ground below Danish buildings 60 samples of soils, subsoils, and sedimentary rocks have been measured for their exhalation rates of radon i.e. the amount of radon escaping the sample per mass unit and per second (Bq.kg -1 .s -1 or radon atoms per kg and per sec.). The results of the measurements of the radon exhalation are presented and commented, and a conclusion concerning the methods for finding geological deposits with a high radon halation rate is presented. (author)

  5. Correlation between Bieniawski’s RMR index and Barton’s Q index in fine-grained sedimentary rock formations

    Directory of Open Access Journals (Sweden)

    J. D. Fernández-Gutiérrez

    2017-09-01

    Full Text Available From the XX century, various rock mass classification systems have been proposed. Among them, the Bieniawski’s RMR system and Barton’s Q system have emerged as the most used rock mass classification worldwide. Correlations between both indices have been proposed, usually with a wide scattering of the data used in deriving the equations. However, it has been observed that correlations established for a specific geological unit fit better. The aim of this paper is to propose a correlation between RMR and Q indices for fine-grained sedimentary rock formations, normally found in the area of Bilbao (Spain, by means of the collected data during the excavation of the tunnel Etxebarri-Casco Viejo of the line 3 of the Metropolitan Railway of Bilbao. Obtained equation shows a high correlation coefficient and a unique relationship between the two classification systems has been proposed, not depending on the choice of the independent variable.

  6. Two-dimensional simulation of clastic and carbonate sedimentation, consolidation, subsidence, fluid flow, heat flow and solute transport during the formation of sedimentary basins

    Science.gov (United States)

    Bitzer, Klaus

    1999-05-01

    Geological processes that create sedimentary basins or act during their formation can be simulated using the public domain computer code `BASIN'. For a given set of geological initial and boundary conditions the sedimentary basin evolution is calculated in a forward modeling approach. The basin is represented in a two-dimensional vertical cross section with individual layers. The stratigraphic, tectonic, hydrodynamic and thermal evolution is calculated beginning at an initial state, and subsequent changes of basin geometry are calculated from sedimentation rates, compaction and pore fluid mobilization, isostatic compensation, fault movement and subsidence. The sedimentologic, hydraulic and thermal parameters are stored at discrete time steps allowing the temporal evolution of the basin to be analyzed. A maximum flexibility in terms of geological conditions is achieved by using individual program modules representing geological processes which can be switched on and off depending on the data available for a specific simulation experiment. The code incorporates a module for clastic and carbonate sedimentation, taking into account the impact of clastic sediment supply on carbonate production. A maximum of four different sediment types, which may be mixed during sedimentation, can be defined. Compaction and fluid flow are coupled through the consolidation equation and the nonlinear form of the equation of state for porosity, allowing nonequilibrium compaction and overpressuring to be calculated. Instead of empirical porosity-effective stress equations, a physically consistent consolidation model is applied which incorporates a porosity dependent sediment compressibility. Transient solute transport and heat flow are calculated as well, applying calculated fluid flow rates from the hydraulic model. As a measure for hydrocarbon generation, the Time-Temperature Index (TTI) is calculated. Three postprocessing programs are available to provide graphic output in Post

  7. Geologic framework and hydrogeologic characteristics in the southern part of the Rancho Diana Natural Area, northern Bexar County, Texas, 2008-10

    Science.gov (United States)

    Clark, Allan K.; Morris, Robert R.

    2011-01-01

    The area designated by the city of San Antonio as the Rancho Diana Natural Area is in northern Bexar County, near San Antonio, Texas. During 2008-10, the U.S. Geological Survey, in cooperation with the city of San Antonio, documented the geologic framework and mapped the hydrogeologic characteristics for the southern part of the Rancho Diana Natural Area. The geologic framework of the study area and its hydrogeologic characteristics were documented using field observations and information from previously published reports. Many of the geologic and hydrogeologic features were found by making field observations through the dense vegetation along gridlines spaced approximately 25 feet apart and documenting the features as they were located. Surface geologic features were identified and hydrogeologic features such as caves, sinkholes, and areas of solutionally enlarged porosity were located using hand-held Global Positioning System units. The location data were used to create a map of the hydrogeologic subdivisions and the location of karst features. The outcrops of the Edwards and Trinity aquifer recharge zones were mapped by using hydrogeologic subdivisions modified from previous reports. All rocks exposed within the study area are of sedimentary origin and Lower Cretaceous in age. The valley floor is formed in the cavernous member of the upper Glen Rose Limestone of the Trinity Group. The hills are composed of the basal nodular member, dolomitic member, Kirschberg evaporite member, and grainstone member of the Kainer Formation of the Edwards Group. Field observations made during this study of the exposed formations and members indicate that the formations and members typically are composed of mudstones, wackestones, packstones, grainstones, and argillaceous limestones, along with marls. The upper Glen Rose Limestone is approximately 410 to 450 feet thick but only the upper 70 feet is exposed in the study area. The Kainer Formation is approximately 255 feet thick in

  8. Geoethics and Forensic Geology

    Science.gov (United States)

    Donnelly, Laurance

    2017-04-01

    The International Union of Geological Sciences (IUGS), Initiative on Forensic Geology (IFG) was set up in 2011 to promote and develop the applications of geology to policing and law enforcement throughout the world. This includes the provision of crime scene examinations, searches to locate graves or items of interest that have been buried beneath the ground surface as part of a criminal act and geological trace analysis and evidence. Forensic geologists may assist the police and law enforcement in a range of ways including for example; homicide, sexual assaults, counter terrorism, kidnapping, humanitarian incidents, environmental crimes, precious minerals theft, fakes and fraudulent crimes. The objective of this paper is to consider the geoethical aspects of forensic geology. This includes both delivery to research and teaching, and contribution to the practical applications of forensic geology in case work. The case examples cited are based on the personal experiences of the authors. Often, the technical and scientific aspect of forensic geology investigation may be the most straightforward, after all, this is what the forensic geologist has been trained to do. The associated geoethical issues can be the most challenging and complex to manage. Generally, forensic geologists are driven to carry-out their research or case work with integrity, honesty and in a manner that is law abiding, professional, socially acceptable and highly responsible. This is necessary in advising law enforcement organisations, society and the scientific community that they represent. As the science of forensic geology begins to advance around the world it is desirable to establish a standard set of principles, values and to provide an agreed ethical a framework. But what are these core values? Who is responsible for producing these? How may these become enforced? What happens when geoethical standards are breached? This paper does not attempt to provide all of the answers, as further work

  9. CO2 Saline Storage Demonstration in Colorado Sedimentary Basins. Applied Studies in Reservoir Assessment and Dynamic Processes Affecting Industrial Operations

    Energy Technology Data Exchange (ETDEWEB)

    Nummedal, Dag [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Doran, Kevin [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Sitchler, Alexis [Trustees Of The Colorado School Of Mines, Golden, CO (United States); McCray, John [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Mouzakis, Katherine [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Glossner, Andy [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Mandernack, Kevin [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Gutierrez, Marte [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Pranter, Matthew [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Rybowiak, Chris [Trustees Of The Colorado School Of Mines, Golden, CO (United States)

    2012-09-30

    This multitask research project was conducted in anticipation of a possible future increase in industrial efforts at CO2 storage in Colorado sedimentary basins. Colorado is already the home to the oldest Rocky Mountain CO2 storage site, the Rangely Oil Field, where CO2-EOR has been underway since the 1980s. The Colorado Geological Survey has evaluated storage options statewide, and as part of the SW Carbon Sequestration Partnership the Survey, is deeply engaged in and committed to suitable underground CO2 storage. As a more sustainable energy industry is becoming a global priority, it is imperative to explore the range of technical options available to reduce emissions from fossil fuels. One such option is to store at least some emitted CO2 underground. In this NETL-sponsored CO2 sequestration project, the Colorado School of Mines and our partners at the University of Colorado have focused on a set of the major fundamental science and engineering issues surrounding geomechanics, mineralogy, geochemistry and reservoir architecture of possible CO2 storage sites (not limited to Colorado). Those are the central themes of this final report and reported below in Tasks 2, 3, 4, and 6. Closely related to these reservoir geoscience issues are also legal, environmental and public acceptance concerns about pore space accessibility—as a precondition for CO2 storage. These are addressed in Tasks 1, 5 and 7. Some debates about the future course of the energy industry can become acrimonius. It is true that the physics of combustion of hydrocarbons makes it impossible for fossil energy to attain a carbon footprint anywhere nearly as low as that of renewables. However, there are many offsetting benefits, not the least that fossil energy is still plentiful, it has a global and highly advanced distribution system in place, and the footprint that the fossil energy infrastructure occupies is

  10. The geology of the surrounding metamorphic rock of Zaer granite (Morocco): contribution to the search for uranium

    International Nuclear Information System (INIS)

    Mathias, Laurent

    1984-01-01

    This research thesis reports a study which aimed at reconstituting the geological history of the Zaer region in Morocco with objectives of mining exploration and of assessment of its uranium metallogenic potential. The author examined the whole geological context by studying stratigraphy, sedimentology, tectonic, and petrography of rocks belonging to the concerned area. The main objective was to determine the origin of uranium between a granitic one and a sedimentary one. This meant a reconstitution of the geological history, and therefore the study of the metamorphized sedimentary surrounding rock, of the intrusive granite and of their different possible relationships. On a first part, the author analysed outcropping formations and tried to assign them with a stratigraphic position. He also tried to define the deposition modalities of these formations which could have conditioned sedimentary sites. In a second part, the author reports the study of geological structures and tectonic in order to try to recognise possible structures which could have promoted uranium deposition and trapping in the surrounding rock as well as in granite. The last part addresses the petrography of the different rocks met in the area, and mineralization, notably that of uranium [fr

  11. 77 FR 19032 - Geological Survey

    Science.gov (United States)

    2012-03-29

    ... DEPARTMENT OF THE INTERIOR Geological Survey Announcement of National Geospatial Advisory Committee Meeting AGENCY: U.S. Geological Survey, Interior. ACTION: Notice of meeting. SUMMARY: The National.... Geological Survey (703-648-6283, [email protected] ). Registrations are due by April 13, 2012. While the...

  12. Introduction to ore geology

    International Nuclear Information System (INIS)

    Evans, A.M.

    1987-01-01

    This textbook on ore geology is for second and third year undergraduates and closely parallels the undergraduate course given in this subject at England's University of Leicester. The volume covers three major areas: (1) principles of ore geology, (2) examples of the most important types of ore deposits, and (3) mineralization in space and time. Many chapters have been thoroughly revised for this edition and a chapter on diamonds has been added. Chapters on greisen and pegmatite have also been added, the former in response to the changing situation in tin mining following the recent tin crisis, and the latter in response to suggestions from geologists in a number of overseas countries. Some chapters have been considerably expanded and new sections added, including disseminated gold deposits and unconformity-associated uranium deposits. The author also expands on the importance of viewing mineral deposits from an economic standpoint

  13. Geologic Field Database

    Directory of Open Access Journals (Sweden)

    Katarina Hribernik

    2002-12-01

    Full Text Available The purpose of the paper is to present the field data relational database, which was compiled from data, gathered during thirty years of fieldwork on the Basic Geologic Map of Slovenia in scale1:100.000. The database was created using MS Access software. The MS Access environment ensures its stability and effective operation despite changing, searching, and updating the data. It also enables faster and easier user-friendly access to the field data. Last but not least, in the long-term, with the data transferred into the GISenvironment, it will provide the basis for the sound geologic information system that will satisfy a broad spectrum of geologists’ needs.

  14. Realistic modelling of observed seismic motion in complex sedimentary basins

    International Nuclear Information System (INIS)

    Faeh, D.; Panza, G.F.

    1994-03-01

    Three applications of a numerical technique are illustrated to model realistically the seismic ground motion for complex two-dimensional structures. First we consider a sedimentary basin in the Friuli region, and we model strong motion records from an aftershock of the 1976 earthquake. Then we simulate the ground motion caused in Rome by the 1915, Fucino (Italy) earthquake, and we compare our modelling with the damage distribution observed in the town. Finally we deal with the interpretation of ground motion recorded in Mexico City, as a consequence of earthquakes in the Mexican subduction zone. The synthetic signals explain the major characteristics (relative amplitudes, spectral amplification, frequency content) of the considered seismograms, and the space distribution of the available macroseismic data. For the sedimentary basin in the Friuli area, parametric studies demonstrate the relevant sensitivity of the computed ground motion to small changes in the subsurface topography of the sedimentary basin, and in the velocity and quality factor of the sediments. The total energy of ground motion, determined from our numerical simulation in Rome, is in very good agreement with the distribution of damage observed during the Fucino earthquake. For epicentral distances in the range 50km-100km, the source location and not only the local soil conditions control the local effects. For Mexico City, the observed ground motion can be explained as resonance effects and as excitation of local surface waves, and the theoretical and the observed maximum spectral amplifications are very similar. In general, our numerical simulations permit the estimate of the maximum and average spectral amplification for specific sites, i.e. are a very powerful tool for accurate micro-zonation. (author). 38 refs, 19 figs, 1 tab

  15. Pore water colloid properties in argillaceous sedimentary rocks.

    Science.gov (United States)

    Degueldre, Claude; Cloet, Veerle

    2016-11-01

    The focus of this work is to evaluate the colloid nature, concentration and size distribution in the pore water of Opalinus Clay and other sedimentary host rocks identified for a potential radioactive waste repository in Switzerland. Because colloids could not be measured in representative undisturbed porewater of these host rocks, predictive modelling based on data from field and laboratory studies is applied. This approach allowed estimating the nature, concentration and size distributions of the colloids in the pore water of these host rocks. As a result of field campaigns, groundwater colloid concentrations are investigated on the basis of their size distribution quantified experimentally using single particle counting techniques. The colloid properties are estimated considering data gained from analogue hydrogeochemical systems ranging from mylonite features in crystalline fissures to sedimentary formations. The colloid concentrations were analysed as a function of the alkaline and alkaline earth element concentrations. Laboratory batch results on clay colloid generation from compacted pellets in quasi-stagnant water are also reported. Experiments with colloids in batch containers indicate that the size distribution of a colloidal suspension evolves toward a common particle size distribution independently of initial conditions. The final suspension size distribution was found to be a function of the attachment factor of the colloids. Finally, calculations were performed using a novel colloid distribution model based on colloid generation, aggregation and sedimentation rates to predict under in-situ conditions what makes colloid concentrations and size distributions batch- or fracture-size dependent. The data presented so far are compared with the field and laboratory data. The colloid occurrence, stability and mobility have been evaluated for the water of the considered potential host rocks. In the pore water of the considered sedimentary host rocks, the clay

  16. Sedimentary organic matter variations in the Chukchi Borderland over the last 155 kyr

    Science.gov (United States)

    Rella, S. F.; Uchida, M.

    2011-03-01

    Knowledge on past variability of sedimentary organic carbon in the Arctic Ocean is important to assess natural carbon cycling and transport processes related to global climate changes. However, the late Pleistocene oceanographic history of the Arctic is still poorly understood. In the present study we show sedimentary records of total organic carbon (TOC), C/N and CaCO3 from a piston core recovered from the northern Northwind Ridge in the far western Arctic Ocean, a region potentially sensitively responding to past variability in surface current regimes and sedimentary processes such as coastal erosion. An age model based on correlation of our CaCO3 record with the benthic δ18O stack, supplemented by lithological constraints, suggests that the piston core records paleoenvironmental changes of the last 155 kyr. According to this age model, TOC and C/N show orbital-scale increases and decreases that can be respectively correlated to the waxing and waning of large ice sheets dominating the Eurasian Arctic, suggesting advection of fine suspended matter derived from glacial erosion to the Northwind Ridge by eastward flowing intermediate water and/or surface water and sea ice during cold episodes of the last two glacial-interglacial cycles. At millennial scales, increases in TOC and C/N appear to correlate to a suite of Dansgaard-Oeschger Stadials between 120 and 40 ka before present (BP) and thus seem to respond to abrupt northern hemispheric temperature changes. Between 65 and 40 ka BP, closures and openings of the Bering Strait could have additionally influenced TOC and C/N variability. CaCO3 content tends to anti-correlate with TOC and C/N on both orbital and millennial time scales, which we interpret as enhanced sediment advection from the carbonate-rich Canadian Arctic via an extended Beaufort Gyre during warm periods of the last two glacial-interglacial cycles and increased terrestrial organic carbon advection from the Siberian Arctic during cold periods when the

  17. Research on geological disposal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The aims of this research are to develop criteria for reviewing reliability and suitability of the result from Preliminary Investigations to be submitted by the implementer, and to establish a basic policy for safety review. For development of reliability and suitability criteria for reviewing the result of Preliminary Investigations, we evaluated the uncertainties and their influence from limited amount of investigations, as well as we identified important procedures during investigations and constructions of models, as follows: (1) uncertainties after limited amount of geological exploration and drilling, (2) influence of uncertainties in regional groundwater flow model, (3) uncertainties of DFN (Discrete Fracture Network) models in the fractured rock, (4) analyzed investigation methods described in implementer's report, and (5) identified important aspects in investigation which need to be reviewed and follow QA (Quality Assurance). For development of reliability and suitability criteria for reviewing the result of Detailed Investigations, we analyzed important aspects in investigation which supplies data to design and safety assessment, as well as studied the applicability of pressure interference data during excavation to verify hydrogeological model. Regarding the research for safety review, uncertainties of geologic process in long time-scale was studied. In FY2012, we started to evaluate the structural stabilities of concrete and bentonite in disposal environment. Finally, we continued to accumulate the knowledge on geological disposal into the database system. (author)

  18. Geological remote sensing

    Science.gov (United States)

    Bishop, Charlotte; Rivard, Benoit; de Souza Filho, Carlos; van der Meer, Freek

    2018-02-01

    Geology is defined as the 'study of the planet Earth - the materials of which it is made, the processes that act on these materials, the products formed, and the history of the planet and its life forms since its origin' (Bates and Jackson, 1976). Remote sensing has seen a number of variable definitions such as those by Sabins and Lillesand and Kiefer in their respective textbooks (Sabins, 1996; Lillesand and Kiefer, 2000). Floyd Sabins (Sabins, 1996) defined it as 'the science of acquiring, processing and interpreting images that record the interaction between electromagnetic energy and matter' while Lillesand and Kiefer (Lillesand and Kiefer, 2000) defined it as 'the science and art of obtaining information about an object, area, or phenomenon through the analysis of data acquired by a device that is not in contact with the object, area, or phenomenon under investigation'. Thus Geological Remote Sensing can be considered the study of, not just Earth given the breadth of work undertaken in planetary science, geological features and surfaces and their interaction with the electromagnetic spectrum using technology that is not in direct contact with the features of interest.

  19. Geologic sources of energy

    Science.gov (United States)

    Bundtzen, Thomas K.; Nokleberg, Warren J.; Bundtzen, Thomas K.; Nokleberg, Warren J.; Price, Raymond A.; Scholl, David W.; Stone, David B.

    2017-01-01

    This chapter describes the exploration, development, and geologic setting of petroleum resources (including tar sands), coal resources (including coalbed methane), and geothermal energy resources of the Northern Cordillera.For petroleum resources, the chapter describes: (1) the history of petroleum development and production, first for Alaska and then for the Canadian Cordillera; and (2) generalized basin analysis geologic settings for the six major petroleum basins that are illustrated in summary maps and cross sections. Subsequent sections of the chapter describe the nature and geologic setting of tar sand resources, geothermal energy resources, and coal resources. The area distribution of the energy resources of the region are depicted in the Energy Resources Map that has multiple layers that can be displayed in various arrangements. Employing this map in a separate window while reading the text will be greatly beneficial. Many geographic names are employed in the descriptions throughout this chapter. While reading this chapter, viewing the Geographic Regions Layer of the Energy Resources Map, as needed, will be valuable.

  20. Radioactive sedimentary deposits concerning the coasts of the Camargue

    International Nuclear Information System (INIS)

    2000-01-01

    CRII-RAD has detected abnormal levels of radioactivity on some beaches situated near the Espiguette lighthouse in the south-east coast of France. This document presents the in-situ measurements performed by IPSN. These results confirm a relevant increase of gamma radiation in sedimentary deposits. Chemical analyses have shown that this radioactivity is due to potassium 40 and radionuclides from thorium and uranium series. There is no doubt about the natural origin of this radioactivity but thorough geo-chemical studies are necessary to see whether these radioactive sands are a consequence of nearby industrial activities concerning ore dressing. (A.C.)

  1. Groundwater Recharge Process in the Morondava Sedimentary Basin, Southwestern Madagascar

    International Nuclear Information System (INIS)

    Mamifarananahary, E.; Rajaobelison, J.; Ramaroson, V.; Rahobisoa, J.J.

    2007-01-01

    The groundwater recharge process in the Morondava Sedimentary basin was determined using chemical and isotopic tools. The results showed that the main recharge into shallow aquifer is from infiltration of evaporated water. Into deeper aquifer, it is done either from direct infiltration of rainfall from recharge areas on the top of the hill in the East towards the low-lying discharge areas in the West, or from vertical infiltration of evaporated shallow groundwater. The tritium contents suggest that recharge from shallow aquifers is from recent rainfall with short residence time while recharge into deeper aquifers is from older rainfall with longer residence time.

  2. Study on epigenetic alterations of ore-enclosing sedimentary rocks

    International Nuclear Information System (INIS)

    Kondrat'eva, I.A.; Komarova, G.V.

    1985-01-01

    Epigenetic alterations of sedimentary rocks under effect of exogenous undeground waters of various types: near-surface, ground, stratum, and deep circulation waters, are considered. Association to postsedimentary tectonic structures, confinement of neogenesis to areas of high permeability (porous or crack one), geochemical contradictions between mineral neogenis and facial outlook of deposits, noncoincidence of variability gradient of authigenous mineral associations with variability of primary facial signs of deposits, regular position of mineral formations and ore concentrations in epigenetic mineralogo-geochemical zonation are referred to epigenetic criteria. The complex of epigenetic alterations accompanying mineralization is frequently used as a search sign of uranium deposit of a certain type

  3. Pore water colloid properties in argillaceous sedimentary rocks

    Energy Technology Data Exchange (ETDEWEB)

    Degueldre, Claude, E-mail: c.degueldre@lancaster.ac.uk [Engineering Department, University of Lancaster, LA1 4YW Lancaster (United Kingdom); ChiAM & Institute of Environment, University of Geneva, 1211 Genève 4, Swizerland (Switzerland); Earlier, NES, Paul Scherrer Institute, 5232 Villigen (Switzerland); Cloet, Veerle [NAGRA, Hardstrasse 73, 5430 Wettingen (Switzerland)

    2016-11-01

    The focus of this work is to evaluate the colloid nature, concentration and size distribution in the pore water of Opalinus Clay and other sedimentary host rocks identified for a potential radioactive waste repository in Switzerland. Because colloids could not be measured in representative undisturbed porewater of these host rocks, predictive modelling based on data from field and laboratory studies is applied. This approach allowed estimating the nature, concentration and size distributions of the colloids in the pore water of these host rocks. As a result of field campaigns, groundwater colloid concentrations are investigated on the basis of their size distribution quantified experimentally using single particle counting techniques. The colloid properties are estimated considering data gained from analogue hydrogeochemical systems ranging from mylonite features in crystalline fissures to sedimentary formations. The colloid concentrations were analysed as a function of the alkaline and alkaline earth element concentrations. Laboratory batch results on clay colloid generation from compacted pellets in quasi-stagnant water are also reported. Experiments with colloids in batch containers indicate that the size distribution of a colloidal suspension evolves toward a common particle size distribution independently of initial conditions. The final suspension size distribution was found to be a function of the attachment factor of the colloids. Finally, calculations were performed using a novel colloid distribution model based on colloid generation, aggregation and sedimentation rates to predict under in-situ conditions what makes colloid concentrations and size distributions batch- or fracture-size dependent. The data presented so far are compared with the field and laboratory data. The colloid occurrence, stability and mobility have been evaluated for the water of the considered potential host rocks. In the pore water of the considered sedimentary host rocks, the clay

  4. Gravitational dislocations of sedimentary deposits in southern UkSSR

    Energy Technology Data Exchange (ETDEWEB)

    Belokrys, L S

    1980-01-01

    Characteristics of several types of dislocations are presented: pseudosynclines in Pontian deposits, and fracture dislocations; brachy-syncline subsidence folds; protrusion folds and their relics (easily diagnosed landslide faults). It is shown that two circumstances govern local folding and fracture faults in horizontally bedded sedimentary deposits in the southern Ukraine: 1) the alternation of competent and incompetent deposits in the fault, 2) the increasing unevenness of the static burden on the plastic layers as the erosion network grows. These faults are undoubtedly linked with geomorphological, not tectonic, elements.

  5. Induced polarization and electromagnetic field surveys of sedimentary uranium deposits

    International Nuclear Information System (INIS)

    Campbell, D.L.; Smith, B.D.

    1985-01-01

    Induced polarization (IP) and electromagnetic (EM) geophysical surveys were made over three areas of sedimentary uranium deposits in the western United States. The EM techniques were sometimes useful for investigating general structural settings, but not for finding uranium deposits per se. IP techniques were useful to help pinpoint zones of disseminated pyrite associated with the uranium deposits. In one case no clear differences were seen between the IP signatures of oxidized and reduced ground. Spectral (multi-frequency) IP showed no particular advantages over conventional IP for exploration applications. A sediment mineralization factor is introduced comparable to the ''metal factor'' used to detect porphyry copper mineralization. (author)

  6. Applying Binary Forecasting Approaches to Induced Seismicity in the Western Canada Sedimentary Basin

    Science.gov (United States)

    Kahue, R.; Shcherbakov, R.

    2016-12-01

    The Western Canada Sedimentary Basin has been chosen as a focus due to an increase in the recent observed seismicity there which is most likely linked to anthropogenic activities related to unconventional oil and gas exploration. Seismicity caused by these types of activities is called induced seismicity. The occurrence of moderate to larger induced earthquakes in areas where critical infrastructure is present can be potentially problematic. Here we use a binary forecast method to analyze past seismicity and well production data in order to quantify future areas of increased seismicity. This method splits the given region into spatial cells. The binary forecast method used here has been suggested in the past to retroactively forecast large earthquakes occurring globally in areas called alarm cells. An alarm cell, or alert zone, is a bin in which there is a higher likelihood for earthquakes to occur based on previous data. The first method utilizes the cumulative Benioff strain, based on earthquakes that had occurred in each bin above a given magnitude over a time interval called the training period. The second method utilizes the cumulative well production data within each bin. Earthquakes that occurred within an alert zone in the retrospective forecast period contribute to the hit rate, while alert zones that did not have an earthquake occur within them in the forecast period contribute to the false alarm rate. In the resulting analysis the hit rate and false alarm rate are determined after optimizing and modifying the initial parameters using the receiver operating characteristic diagram. It is found that when modifying the cell size and threshold magnitude parameters within various training periods, hit and false alarm rates are obtained for specific regions in Western Canada using both recent seismicity and cumulative well production data. Certain areas are thus shown to be more prone to potential larger earthquakes based on both datasets. This has implications

  7. Geochemical element mobility during the history of a Paleo-proterozoic clastic sedimentary basin, the Athabasca Basin (Saskatchewan, Canada)

    International Nuclear Information System (INIS)

    Kister, Philippe

    2003-01-01

    In order to understand the mechanisms of migration and deposition of ore elements, it is essential to determine the timing, source, and destination of the geochemical element mass transfers and/or transportation on a scale encompassing the great sedimentary basins. The purpose of this study is to trace and to date the element migrations that occurred during the history of a Paleo-proterozoic clastic sedimentary basin, the Athabasca Basin, which hosts the world's largest and richest uranium deposits. As this geological environment was proved to be efficient to preserve high grade ore deposits for over more than one billion years, it provides an opportunity to study some natural analogues of deep geological nuclear waste storage. Five research topics were studied: 3D modelling of the distribution of normative minerals and trace elements on a basin-wide scale; U-Pb and Rb-Sr systematics; average chemical age estimation; thermodynamic modelling of the major mineralogical assemblages; U-Pb geochronology of uranium oxides. Some elements have remained immobile (Zr) since their initial sedimentary deposition, or were transferred from one phase to another (Al, Th). Other elements have been transported during fluid flow events that occurred: (1) on a basin wide scale during diagenesis (REE, Y, Sr, Fe), (2) at the unconformity and in the vicinity of the fault zones that represent preferential fluid flow pathways between the basement and the sandstone cover (U, Ni, As, B, Mg, K, Fe, Sr, REE), (3) during the late fault reactivation events associated with the basin uplift (U, Pb, Ni, S, Sr, REE). The successive tectonic events related to the geodynamical context that lead to the formation of these high-grade U concentrations (1460 Ma, 1335 Ma and 1275 Ma in the McArthur River deposit), did not however systematically occur in the whole basin (1275 Ma only at Shea Creek). The exceptionally high grade and tonnages of some deposits seem to be related to a larger number of U

  8. Recent Sedimentary Processes Along the Western Continental Margin of the South Korea Plateau, East Sea of Korea

    Science.gov (United States)

    Cukur, D.; Um, I. K.; Bahk, J. J.; Chun, J. H.; Lee, G. S.; Soo, K. G.; Horozal, S.; Kim, S. P.

    2017-12-01

    The continental margins of the marginal seas is largely shaped by a complex interplay of sediment transport processes directed both downslope and along-slope. Factors influence the sediment transport from shelf to the deep basin include: (i) seabed morphology, (ii) climate, (iii) sea level changes, (iv) slope stability, (v) oceanographic regime, and (vi) sediment sources. In order to understand the recent sedimentary processes along the western margin of the South Korea Plateau in the East Sea, we collected multiple geophysical datasets including the subbottom profiler and multibeam echosounder as well as geological sampling. Twelve echo types have been defined and interpreted as deposits formed by shallow marine, hemipelagic sedimentation, bottom currents, combined- (mass-movement/hemipelagic and hemipelagic/turbidites) and mass-movement-processes. Hemipelagic sedimentation, which is reflected as undisturbed layered sediments, appears to have been the primary sedimentary process throughout the study area. Two major slope-parallel channels appear to have acted as major conduits for turbidity currents from shallower shelf into the deep basins. Bottom current deposits, which is expressed as undulating seafloor morphology, are prevalent in the southern mid-slope at water depths between 250 to 450 m. Mass-transport deposits, consisting of chaotic seismic facies, occur in the upper and lower parts of the continental slope. Piston cores confirm the presence of MTDs that are characterized by mud clasts of variable size and shape. Multibeam bathymetry data show that these MTDs chiefly initiate on lower-slopes (400-600 m) where the gradient is up to 3°. In addition, subbottom profiles suggest the presence of numerous faults in close vicinity of headwall scarps; some are extending to the seafloor suggesting their recent activity. Earthquakes associated with tectonic activity are considered as the main triggering mechanism for these MTDs. Overall, the acoustic facies

  9. Moessbauer Study of Sedimentary Rocks from King George Island, Antarctica

    International Nuclear Information System (INIS)

    Kuzmann, E.; Souza, P. A. de; Schuch, L. A.; Oliveira, A. C. de; Garg, R.; Garg, V. K.

    2002-01-01

    The separation of continents at the periphery of Antarctica occurred about 180 ma ago due to volcanic activity. Geological faults can be very important in the study of geological occurrences. Such geological faults occur across the Admiralty Bay, King George Island, and have been studied in detail previously. Controversial statements were given in earlier works, based on conventional geological investigations, as to whether altered 'Jurassic' and unaltered Tertiary rocks were separated by a major fault which goes across the Admiralty Bay, or whether there is no difference in the alteration of the rocks located at either side of the fault. The aim of our work is to investigate rock samples from the Admiralty Bay of King George Island, Antarctica, from different locations on both sides of the geological fault. For these investigations 57 Fe Moessbauer spectroscopy and X-ray diffractometry were used. We have found that the phase composition, and the iron distribution among the crystallographic sites of iron-bearing minerals, are characteristic of the location of the rock samples from the Admiralty Bay of King George Island. There is a much higher amount of iron oxides in the rocks from the south part of the geological fault than in the north part. The differences in the mineral composition and iron distribution showed that the rocks in the southern part of the geological fault of King George Island are significantly altered compared to the rocks in the northern part. Our present results support and complement well the results obtained earlier on soils from King George Island.

  10. Fluvial response to abrupt global warming at the Palaeocene/Eocene boundary.

    Science.gov (United States)

    Foreman, Brady Z; Heller, Paul L; Clementz, Mark T

    2012-11-01

    Climate strongly affects the production of sediment from mountain catchments as well as its transport and deposition within adjacent sedimentary basins. However, identifying climatic influences on basin stratigraphy is complicated by nonlinearities, feedback loops, lag times, buffering and convergence among processes within the sediment routeing system. The Palaeocene/Eocene thermal maximum (PETM) arguably represents the most abrupt and dramatic instance of global warming in the Cenozoic era and has been proposed to be a geologic analogue for anthropogenic climate change. Here we evaluate the fluvial response in western Colorado to the PETM. Concomitant with the carbon isotope excursion marking the PETM we document a basin-wide shift to thick, multistoried, sheets of sandstone characterized by variable channel dimensions, dominance of upper flow regime sedimentary structures, and prevalent crevasse splay deposits. This progradation of coarse-grained lithofacies matches model predictions for rapid increases in sediment flux and discharge, instigated by regional vegetation overturn and enhanced monsoon precipitation. Yet the change in fluvial deposition persisted long after the approximately 200,000-year-long PETM with its increased carbon dioxide levels in the atmosphere, emphasizing the strong role the protracted transmission of catchment responses to distant depositional systems has in constructing large-scale basin stratigraphy. Our results, combined with evidence for increased dissolved loads and terrestrial clay export to world oceans, indicate that the transient hyper-greenhouse climate of the PETM may represent a major geomorphic 'system-clearing event', involving a global mobilization of dissolved and solid sediment loads on Earth's surface.

  11. Tsunami geology in paleoseismology

    Science.gov (United States)

    Yuichi Nishimura,; Jaffe, Bruce E.

    2015-01-01

    The 2004 Indian Ocean and 2011 Tohoku-oki disasters dramatically demonstrated the destructiveness and deadliness of tsunamis. For the assessment of future risk posed by tsunamis it is necessary to understand past tsunami events. Recent work on tsunami deposits has provided new information on paleotsunami events, including their recurrence interval and the size of the tsunamis (e.g. [187–189]). Tsunamis are observed not only on the margin of oceans but also in lakes. The majority of tsunamis are generated by earthquakes, but other events that displace water such as landslides and volcanic eruptions can also generate tsunamis. These non-earthquake tsunamis occur less frequently than earthquake tsunamis; it is, therefore, very important to find and study geologic evidence for past eruption and submarine landslide triggered tsunami events, as their rare occurrence may lead to risks being underestimated. Geologic investigations of tsunamis have historically relied on earthquake geology. Geophysicists estimate the parameters of vertical coseismic displacement that tsunami modelers use as a tsunami's initial condition. The modelers then let the simulated tsunami run ashore. This approach suffers from the relationship between the earthquake and seafloor displacement, the pertinent parameter in tsunami generation, being equivocal. In recent years, geologic investigations of tsunamis have added sedimentology and micropaleontology, which focus on identifying and interpreting depositional and erosional features of tsunamis. For example, coastal sediment may contain deposits that provide important information on past tsunami events [190, 191]. In some cases, a tsunami is recorded by a single sand layer. Elsewhere, tsunami deposits can consist of complex layers of mud, sand, and boulders, containing abundant stratigraphic evidence for sediment reworking and redeposition. These onshore sediments are geologic evidence for tsunamis and are called ‘tsunami deposits’ (Figs. 26

  12. Safeguards for geological repositories

    International Nuclear Information System (INIS)

    Fattah, A.

    2000-01-01

    Direct disposal of spent nuclear fuel in geological repositories is a recognised option for closing nuclear fuel cycles. Geological repositories are at present in stages of development in a number of countries and are expected to be built and operated early next century. A State usually has an obligation to safely store any nuclear material, which is considered unsuitable to re-enter the nuclear fuel cycle, isolated from the biosphere. In conjunction with this, physical protection has to be accounted for to prevent inadvertent access to such material. In addition to these two criteria - which are fully under the State's jurisdiction - a third criterion reflecting international non-proliferation commitments needs to be addressed. Under comprehensive safeguards agreements a State concedes verification of nuclear material for safeguards purposes to the IAEA. The Agency can thus provide assurance to the international community that such nuclear material has been used for peaceful purposes only as declared by the State. It must be emphasised that all three criteria mentioned constitute a 'unit'. None can be sacrificed for the sake of the other, but compromises may have to be sought in order to make their combination as effective as possible. Based on comprehensive safeguards agreements signed and ratified by the State, safeguards can be terminated only when the material has been consumed or diluted in such a way that it can no longer be utilised for any nuclear activities or has become practicably irrecoverable. As such safeguards for nuclear material in geological repositories have to be continued even after the repository has been back-filled and sealed. The effective application of safeguards must assure continuity-of-knowledge that the nuclear material in the repository has not been diverted for an unknown purpose. The nuclear material disposed in a geological repository may eventually have a higher and long term proliferation risk because the inventory is

  13. The predictable nature of the Paleozoic sedimentary sequence beneath the Bruce nuclear site in Southern Ontario, Canada

    International Nuclear Information System (INIS)

    Parmenter, Andrew; Jensen, Mark; Crowe, Richard

    2012-01-01

    Document available in extended abstract form only. A key aspect of a Deep Geologic Repository (DGR) safety case is the ability to develop and communicate an understanding of the geologic stability and resilience to change at time frames relevant to demonstrating repository performance. As part of an on-going Environmental Assessment, Ontario Power Generation (OPG) recently completed site-specific investigations within an 850 m thick Paleozoic sedimentary sequence beneath the Bruce nuclear site for the proposed development of a DGR for Low and Intermediate Level Waste (L and ILW). As envisioned, the shaft-accessed DGR would be excavated at a nominal depth of 680 m within the low permeability Ordovician argillaceous limestone of the Cobourg Formation, which is overlain by more than 200 m of low permeability Ordovician shale. The geo-scientific investigations revealed a relatively undeformed and laterally continuous architecture within the sedimentary sequence at the repository scale (1.5 km 2 ) and beyond. This paper explores the predictable nature of the sedimentary sequence that has contributed to increasing confidence in an understanding of the spatial distribution of groundwater system properties, deep groundwater system evolution and natural barrier performance. Multi-disciplinary geo-scientific investigations of the Bruce nuclear site were completed in 3 phases between 2006 and 2010. The sub-surface investigations included a deep drilling, coring and in-situ testing program and, the completion of a 19.7 km (9 lines) 2-D seismic reflection survey. The drilling program involved 6 (150 mm dia.) deep boreholes (4-vertical; 2 inclined) that were extended through the sedimentary sequence from 4 drill sites, arranged around the 0.3 km 2 footprint of the proposed repository. The more than 3.8 km of rock core (77 mm dia.) retrieved have provided, in part, a strong basis to understand bedrock lithology and mineralogy, facies assemblages, structure, and oil and gas

  14. Micro-analysis by U-Pb method using LAM-ICPMS and its applications for the evolution of sedimentary basins: the example from Brasilia Belt

    International Nuclear Information System (INIS)

    Pimentel, Marcio Martins; Matteini, Massimo; Junges, Sergio Luiz; Giustina, Maria Emilia Schutesky Della; Dantas, Elton Luiz; Buhn, Bernhard

    2015-01-01

    The U-Pb geochronological method using LAM-MC-ICPMS represents an important tool to investigate the geological evolution of sedimentary basins, as well as its geochronology, through the determination of upper limits for the depositional ages of detrital sedimentary rocks. The method has been applied in the Geochronology Laboratory of the Universidade de Brasilia, and in this study, a brief review of the provenance data for the sediments of the Neoproterozoic Brasilia Belt is presented and their significance for the evolution of the orogen is discussed. The results indicate that the Paranoa and Canastra Groups represent passive margin sequences formed along the western margin of the Sao Francisco-Congo continent. The Vazante Group presents similar provenance patterns, although Sm-Nd isotopic results suggest that its upper portions had contributions from younger (Neoproterozoic) sources, possibly from the Neoproterozoic Goias Magmatic Arc. On the other hand, metasediments of the Araxa and Ibia groups contain an important proportion of material derived from Neoproterozoic sources, demonstrating that they represent syn-orogenic basins. The provenance pattern of the Bambui Group is marked by an important Neoproterozoic component, showing that it constitutes a sedimentary sequence which is younger than 600 Ma, representing a foreland basin to the Brasilia Belt. (author)

  15. Natural climate variations in a geological perspective

    International Nuclear Information System (INIS)

    Mikkelsen, N.; Kuijpers, A.

    2001-01-01

    The climate is constantly changing, and it has been changing throughout the geological history of the Earth. These natural changes have shown a variability with frequencies from millions of years to just a few hundreds or tens of years. Some of the variations have been rather dramatic - shifting from globally uniform and hot climates to regular ice ages - whereas other changes have been less spectacular. All natural climate variations have an impact on the physical and biological systems of the Earth - and on mankind and culture during the last hundred thousand years. In this chapter we shall discuss the natural climate changes that has taken place during the geological history of the Earth and comment on the impact of these changes on the cultural evolution of mankind with special emphasis on Greenland. (LN)

  16. The Geomechanics of CO2 Storage in Deep Sedimentary Formations

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, Jonny [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-01-12

    This study provides a review of the geomechanics and modeling of geomechanics associated with geologic carbon storage (GCS), focusing on storage in deep sedimentary formations, in particular saline aquifers. The paper first introduces the concept of storage in deep sedimentary formations, the geomechanical processes and issues related with such an operation, and the relevant geomechanical modeling tools. This is followed by a more detailed review of geomechanical aspects, including reservoir stress-strain and microseismicity, well integrity, caprock sealing performance, and the potential for fault reactivation and notable (felt) seismic events. Geomechanical observations at current GCS field deployments, mainly at the In Salah CO2 storage project in Algeria, are also integrated into the review. The In Salah project, with its injection into a relatively thin, low-permeability sandstone is an excellent analogue to the saline aquifers that might be used for large scale GCS in parts of Northwest Europe, the U.S. Midwest, and China. Some of the lessons learned at In Salah related to geomechanics are discussed, including how monitoring of geomechanical responses is used for detecting subsurface geomechanical changes and tracking fluid movements, and how such monitoring and geomechanical analyses have led to preventative changes in the injection parameters. Recently, the importance of geomechanics has become more widely recognized among GCS stakeholders, especially with respect to the potential for triggering notable (felt) seismic events and how such events could impact the long-term integrity of a CO2 repository (as well as how it could impact the public perception of GCS). As described in the paper, to date, no notable seismic event has been reported from any of the current CO2 storage projects, although some unfelt microseismic activities have been detected by geophones. However, potential future commercial GCS operations from large

  17. Sedimentary facies and depositional history of the Swan Islands, Honduras

    Science.gov (United States)

    Ivey, Marvin L.; Breyer, John A.; Britton, Joseph C.

    1980-10-01

    Swan Island is a Honduran possession in the western Caribbean, located on the southeastern side of the Cayman Trench. Two sedimentary assemblages are found on the island: an older bedded sequence of mid-Tertiary age (Aquitanian or Burdigalian) and a younger sedimentary sequence of Late Pleistocene age. The older sequence is composed of a series of calcarenites, calcilutites, and siliciclastic mudstones; capping these are cliff-forming reefal carbonates of the younger sequence. The rocks of the older bedded sequence accumulated in deep water. Sedimentation consisted of a constant rain of pyroclastic debris interrupted by the episodic introduction of upslope carbonate material by turbidity currents. Uplift and deformation of this sequence was initiated sometime after the Early Miocene. By the Late Pleistocene, uplift had brought the rocks into water depths conducive to coral growth. Pleistocene sedimentation on the island was controlled by the interaction between tectonic uplift and eustatic sea-level changes. The primary controlling force on the tectonic history of the island is its proximity to the boundary between the North American and Caribbean plates.

  18. Isolation of Geobacter species from diverse sedimentary environments

    Science.gov (United States)

    Coaxes, J.D.; Phillips, E.J.P.; Lonergan, D.J.; Jenter, H.; Lovley, D.R.

    1996-01-01

    In an attempt to better understand the microorganisms responsible for Fe(III) reduction in sedimentary environments, Fe(III)-reducing microorganisms were enriched for and isolated from freshwater aquatic sediments, a pristine deep aquifer, and a petroleum-contaminated shallow aquifer. Enrichments were initiated with acetate or toluene as the electron donor and Fe(III) as the electron acceptor. Isolations were made with acetate or benzoate. Five new strains which could obtain energy for growth by dissimilatory Fe(III) reduction were isolated. All five isolates are gram- negative strict anaerobes which grow with acetate as the electron donor and Fe(III) as the electron acceptor. Analysis of the 16S rRNA sequence of the isolated organisms demonstrated that they all belonged to the genus Geobacter in the delta subdivision of the Proteobacteria. Unlike the type strain, Geobacter metallireducens, three of the five isolates could use H2 as an electron donor fur Fe(III) reduction. The deep subsurface isolate is the first Fe(III) reducer shown to completely oxidize lactate to carbon dioxide, while one of the freshwater sediment isolates is only the second Fe(III) reducer known that can oxidize toluene. The isolation of these organisms demonstrates that Geobacter species are widely distributed in a diversity of sedimentary environments in which Fe(III) reduction is an important process.

  19. Geochronology of La Tinta Upper Proterozoic sedimentary rocks, Argentina

    International Nuclear Information System (INIS)

    Cingolani, C.A.; Bonhomme, M.G.

    1982-01-01

    Olavarria-Sierras Bayas, Barker-San Manuel and Balcarce-Mar del Plata fine-grained sedimentary rocks from La Tinta Formation, the pre-Cenozoic cover of the Tandilia region, were studied using the Rb-Sr and K-Ar geochronology. The mineralogical study of the fine fraction has shown that only the Olavarria-Sierras Bayas area presents suitable material comprising typical sedimentary clays, affected only by diagenetic processes. Two Rb-Sr isochrons were obtained from Olavarria-Sierras Bayas rocks. They show: (1) an age of 769 +- 12 Ma with ( 87 Sr/ 86 Sr) 0 = 0.7121 +- 0.0005, for Aust Quarry rocks; and (2) an age of 723 +- 21 Ma with ( 87 Sr/ 86 Sr) 0 = 0.7171 +- 0.0012 for Cerro Negro and Losa Quarries rocks. Considering the above-mentioned isochron data and the mineralogy of the clays studied, the conclusion is drawn that the ages obtained reflect the isotopic setting of a late diagenetic process, dated back to nearly 720 Ma. K-Ar data also support the Rb-Sr isochrons and the late diagenetic clay origin. The lower section of La Tinta sequence in the Sierras Bayas area must then be considered as Upper Proterozoic in age. These new data support the recently reported stratigraphical divisions and ages. (Auth.)

  20. Stratigraphical analysis of the neoproterozoic sedimentary sequences of the Sao Francisco Basin

    International Nuclear Information System (INIS)

    Martins, Mariela; Lemos, Valesca Brasil

    2007-01-01

    A stratigraphic analysis was performed under the principles of Sequence Stratigraphy on the neoproterozoic sedimentary sequences of the Sao Francisco Basin (Central Brazil). Three periods of deposition separated by unconformities were recognized in the Sao Francisco Megasequence: (1) Sequences 1 and 2, a cryogenian glaciogenic sequence, followed by a distal scarp carbonate ramp, developed during stable conditions, (2) Sequence 3, a Upper Cryogenian stack homoclinal ramps with mixed carbonate-siliciclastic sedimentation, deposited under a progressive influence of compressional stresses of the Brasiliano Cycle, (3) Sequence 4, a Lower Ediacaran shallow platform dominated by siliciclastic sedimentation of molassic nature, the erosion product of the nearby uplifted thrust sheets. Each of the carbonate-bearing sequences presents a distinct δ 13 C isotopic signature. The superposition to the global curve for carbon isotopic variation allowed the recognition of a major depositional hiatus between the Paranoa and Sao Francisco Megasequences, and suggested that the glacial diamictite deposition (Jequitai Formation) took place most probably around 800 Ma. This constrains the Sao Francisco Megasequence deposition to the interval between 800 and 600 Ma (the known ages of the Brasiliano Orogeny defines the upper limit). A minor depositional hiatus (700.680 Ma) was also identified separating sequences 2 and 3. Isotopic analyses suggest that from then on, more restricted environmental conditions were established in the basin, probably associated with a first order global event, which prevailed throughout deposition of the Sequence 3. (author)

  1. Rare earth elements and neodymium isotopes in sedimentary organic matter

    Science.gov (United States)

    Freslon, Nicolas; Bayon, Germain; Toucanne, Samuel; Bermell, Sylvain; Bollinger, Claire; Chéron, Sandrine; Etoubleau, Joel; Germain, Yoan; Khripounoff, Alexis; Ponzevera, Emmanuel; Rouget, Marie-Laure

    2014-09-01

    We report rare earth element (REE) and neodymium (Nd) isotope data for the organic fraction of sediments collected from various depositional environments, i.e. rivers (n = 25), estuaries (n = 18), open-ocean settings (n = 15), and cold seeps (n = 12). Sedimentary organic matter (SOM) was extracted using a mixed hydrogen peroxide/nitric acid solution (20%-H2O2-0.02 M-HNO3), after removal of carbonate and oxy-hydroxide phases with dilute hydrochloric acid (0.25 M-HCl). A series of experimental tests indicate that extraction of sedimentary organic compounds using H2O2 may be complicated occasionally by partial dissolution of sulphide minerals and residual carbonates. However, this contamination is expected to be minor for REE because measured concentrations in H2O2 leachates are about two-orders of magnitude higher than in the above mentioned phases. The mean REE concentrations determined in the H2O2 leachates for samples from rivers, estuaries, coastal seas and open-ocean settings yield relatively similar levels, with ΣREE = 109 ± 86 ppm (mean ± s; n = 58). The organic fractions leached from cold seep sediments display even higher concentration levels (285 ± 150 ppm; mean ± s; n = 12). The H2O2 leachates for most sediments exhibit remarkably similar shale-normalized REE patterns, all characterized by a mid-REE enrichment compared to the other REE. This suggests that the distribution of REE in leached sedimentary organic phases is controlled primarily by biogeochemical processes, rather than by the composition of the source from which they derive (e.g. pore, river or sea-water). The Nd isotopic compositions for organic phases leached from river sediments are very similar to those for the corresponding detrital fractions. In contrast, the SOM extracted from marine sediments display εNd values that typically range between the εNd signatures for terrestrial organic matter (inferred from the analysis of the sedimentary detrital fractions) and marine organic matter

  2. Geologic map of the Nepenthes Planum Region, Mars

    Science.gov (United States)

    Skinner, James A.; Tanaka, Kenneth L.

    2018-03-26

    This map product contains a map sheet at 1:1,506,000 scale that shows the geology of the Nepenthes Planum region of Mars, which is located between the cratered highlands that dominate the southern hemisphere and the less-cratered sedimentary plains that dominate the northern hemisphere.  The map region contains cone- and mound-shaped landforms as well as lobate materials that are morphologically similar to terrestrial igneous or mud vents and flows. This map is part of an informal series of small-scale (large-area) maps aimed at refining current understanding of the geologic units and structures that make up the highland-to-lowland transition zone. The map base consists of a controlled Thermal Emission Imaging System (THEMIS) daytime infrared image mosaic (100 meters per pixel resolution) supplemented by a Mars Orbiter Laser Altimeter (MOLA) digital elevation model (463 meters per pixel resolution). The map includes a Description of Map Units and a Correlation of Map Units that describes and correlates units identified across the entire map region. The geologic map was assembled using ArcGIS software by Environmental Systems Research Institute (http://www.esri.com). The ArcGIS project, geodatabase, base map, and all map components are included online as supplemental data.

  3. Okinawa, Japan: Geologic Battleground

    Science.gov (United States)

    Waymack, S. W.; Carrington, M. P.; Harpp, K. S.

    2005-12-01

    One of our main goals as instructors, particularly in introductory courses, is to impart students with an appreciation of how geology has influenced the course of human events. Despite the apparent accessibility of such topics, communicating this in a lively, relevant, and effective way often proves difficult. We use a series of historical events, the Pacific island hopping campaign of WWII, to engage students in an active, guided inquiry exercise to explore how terrain and the underlying geology of an area can shape historical events. Teams of students are assigned the role of planning either the defense or occupation of Okinawa Island, in the Ryukyu arc, in a theoretical version of the 1945 conflict. Students are given a package of information, including geologic and topographic maps, a list of military resources available to them at the time, and some historical background. Students also have access to "reconnaissance" images, 360o digital panoramas of the landscape of Okinawa, keyed to their maps. Each team has a week to plan their strategies and carry out additional research, which they subsequently bring to the table in the form of a written battle plan. With an instructor as arbiter, teams alternate drawing their maneuvers on a map of the island, to which the other team then responds. This continues one move at a time, until the instructor declares a victor. Throughout the exercise, the instructor guides students through analysis of each strategic decision in light of the island's structure and topography, with an emphasis on the appropriate interpretation of the maps. Students soon realize that an understanding of the island's terrain literally meant the difference between life and death for civilians and military participants alike in 1945. The karst landscape of Okinawa posed unique obstacles to both the Japanese and the American forces, including difficult landing sites, networks of natural caves, and sequences of hills aligned perpendicular to the

  4. Lectures in isotope geology

    International Nuclear Information System (INIS)

    Jaeger, E.; Hunziker, J.C.

    1979-01-01

    Designed for a introductory course in geochronology and the geochemistry of stable isotopes, this text has been written by recognized experts in the field. Emphasis is on the interpretation and on applications, and examples of these are offered along with each technique. Extraterrestrial applications have been avoided and the treatment of pure experimentation has been kept at a minimum. This text will be appreciated by geologists who want to learn more about methods used in isotope geology, how they can be applied, and how to gauge their usefulness. (orig.) [de

  5. Study on investigation and evaluation methods of deep seated sedimentary rocks. Chemical weathering, pore water squeezing and relationships of physical properties of sedimentary rocks

    International Nuclear Information System (INIS)

    Oyama, Takahiro; Suzuki, Koichi

    2006-01-01

    Chemical weathering, porewater squeezing and physical properties for the sedimentary rocks were examined. Chemical weathering potential of rocks was described by the sulfur as a acceleration factor of weathering and carbonate contents as a neutralization factor of it. The carbonate contents in the rocks were measured accurately by the gas pressure measurement method. Pore water squeezing method was applied for the semi-hard sedimentary rocks (Opalinusclay). The chemical change of extracted pore water under high pressure conditions was estimated. Physical property of sedimentary rocks have relationship among the porosity and permeability and resistivity coefficient in the same rock types. It is possible to estimate the water permeability from the geophysical tests. (author)

  6. Geologic evolution of the SE.23 Sheet - Belo Horizonte, MG, Brazil

    International Nuclear Information System (INIS)

    Pereira, A.D.C.; Fonseca, E.G. da; Braz, E.R.C.

    1987-01-01

    The aim of this paper is to present a synthesis of the geologic evolution in the Belo Horizonte Sheet comprising an area about 281.210 Km 2 . Rb-Sr and K-Ar isotope dating methods are used for age estimation of geologic deposits. The geologic evolution of the cratonic area is reflected by a stable central nucleus surrounded by marginal orogenic belts. In the central area were recognized greenstone belts structures involved by granite terrains and bordered by a granulitic region. The framework of the Sao Francisco Craton involves events of metamorphism, granitogenesis, sedimentary, volcanism and plutonism developed in the Early to Late Proterozoic. The stratigraphic column is complemented by Late Jurassic-Early Cretaceous continental deposits belonging to Parana-Basin. (M.V.M.)

  7. Potential uses of genetic geological modelling to identify new uranium provinces

    International Nuclear Information System (INIS)

    Finch, W.I.

    1982-01-01

    Genetic-geological modelling is the placing of the various processes of the development of a uranium province into distinct stages that are ordered chronologically and made part of a matrix with corresponding geologic evidence. The models can be applied to a given region by using one of several methods to determine a numerical favorability rating. Two of the possible methods, geologic decision analysis and an oil-and-gas type of play analysis, are briefly described. Simplified genetic models are given for environments of the quartz-pebble conglomerate, unconformity-related vein, and sandstone types of deposits. Comparison of the genetic models of these three sedimentary-related environments reveals several common attributes that may define a general uranium province environment

  8. Geological characteristics of granite type uranium deposits in middle of Inner Mongolia in comparison with south China

    International Nuclear Information System (INIS)

    Wang Gui

    2012-01-01

    Granites extensively distributed in middle of Inner Mongolia and South China, namely Caledonian, Hercynian and Yanshanian. Some of the intrusive are composed of granites which belong to different ages. Some of the uranium deposits were found inside the granite bodies or in sedimentary rocks and meta sedimentary rocks along the exocontact zone. Granite rock was comparing in middle Inner Mongolia and South China, including Uranium ore-forming geological conditions. ore-forming process and Ore-controlling factors. Think the Uranium ore-forming geological conditions is similar; ore-forming process is mainly for low-mid temperature hot liquid; Uranium ore bodies (uranium mineralization) was controlled by fracture. Explain granite type uranium mineralization potential is tremendous in middle of Inner Mongolia. (author)

  9. Transferability of geodata from European to Canadian (Ontario) sedimentary rocks to study gas transport from nuclear wastes repositories

    International Nuclear Information System (INIS)

    Fall, M.; Ghafari, H.; Evgin, E.; Nguyen, T.S.

    2010-01-01

    Document available in extended abstract form only. A deep geological repository (DGR) for low and intermediate level waste in southern Ontario is currently proposed, at a depth of approximately 680 m in an argillaceous limestone formation (Cobourg Limestone) overlain by 200 m of low permeability shale (Ordovician Shale). Significant quantities of gas could be generated in the aforementioned DGR from several processes (e.g., degradation of waste forms, corrosion of waste containers). The accumulation and release of such gases from the repository system may affect a number of processes that influence its long-term safety. Consequently, safety assessments of the proposed DGR need to be supported by a solid understanding of the main mechanisms associated with gas generation and migration and the capability to mathematically model those mechanisms. The development of those mathematical models would usually require the consideration of complex coupled thermo-hydro-mechanical- chemical (THMC) processes. A research program is being conducted in the Department of Civil Engineering of the University of Ottawa in collaboration with the Canadian Nuclear Safety Commission (CNSC) to model the coupled THMC processes associated with gas migration and their impacts on the safety of DGR in southern Ontario. The development and validation of such model as well as the assessment of the impact of gas migration need the acquisition of sufficient amount of (good quality) data on the geomechanical, geochemical, hydraulic, thermal properties of the sedimentary rocks in Southern Ontario as well as relevant gas transport parameters, such as gas entry pressure, Klinkenberg effect, intrinsic permeability, capillary pressure-water saturation relationship. During the past fifteen years, several laboratory and field investigations have been conducted in several countries to acquire geo-data to study and model the THMC processes associated with gas migration in DGR in sedimentary rocks. However

  10. Geologic Map of the Thaumasia Region, Mars

    Science.gov (United States)

    Dohm, Janes M.; Tanaka, Kenneth L.; Hare, Trent M.

    2001-01-01

    ). The medium-resolution Viking images used for mapping and base preparation also formed the basis of the 1:2,000,000 scale subquadrangle series. Earlier geologic maps of all or parts of the region include: (1) maps of the Phoenicis Lacus, Coprates, Thaumasia, and Argyre quadrangles at 1:5,000,000 scale based mainly on Mariner 9 images (respectively, Masursky and others, 1978; McCauley, 1978; McGill, 1978; and Hodges, 1980), (2) the global map of Mars at 1:25,000,000 (Scott and Carr, 1978) compiled largely from the 1:5,000,000 scale geologic maps, (3) maps showing lava flows in the Tharsis region at 1:2,000,000 scale compiled from Viking and Mariner 9 images (Scott, 1981; Scott and Tanaka, 1981a, b; Scott and others, 1981), (4) the map of the western equatorial region of Mars at 1:15,000,000 scale based on Viking images (Scott and Tanaka, 1986), and (5) the map of the Valles Marineris region at 1:2,000,000 scale compiled from Viking images (Witbeck and others, 1991). The previous maps have described the overall geology and geomorphology of the region but have not unraveled the detailed stratigraphy and complex evolution of this unique and geologically diverse martian province. The main purpose of this comprehensive mapping project is to reconstruct the stratigraphic, structural, and erosional histories of the Thaumasia region. The region is the last major province of the Tharsis region to undergo detailed structural mapping using Viking images; its history is essential to documenting the overall tectonic history of Tharsis. Other provinces of Tharsis that have been structurally mapped include Syria Planum (Tanaka and Davis, 1988), Tempe Terra and Ulysses Patera (Scott and Dohm, 1990b), and Alba Patera (Tanaka, 1990). Another primary mapping objective is to determine the region's volcanic history and assess the relations among fault systems and volcanoes (Wise and others, 1979; Scott and Tanaka, 1980; Whitford-Stark, 1982; Scott and Dohm, 1990a). A secondary mapping

  11. Geology and environments of subglacial Lake Vostok.

    Science.gov (United States)

    Leitchenkov, German L; Antonov, Anton V; Luneov, Pavel I; Lipenkov, Vladimir Ya

    2016-01-28

    The reconstruction of the geological (tectonic) structure and environments of subglacial Lake Vostok is based on geophysical surveys and the study of mineral particles found in cores of accreted ice and frozen lake water (sampled after the lake was unsealed). Seismic reflection and refraction investigations conducted in the southern part of Lake Vostok show very thin (200-300 m) sedimentary cover overlying a crystalline basement. Most of this thin veneer is thought to have been deposited during temperate-glacial conditions in Oligocene to Middle Miocene time (ca 34-14 Ma). The composition of the lake-bottom sediments can be deduced from mineral inclusions found in cores of accreted ice. Inclusions are represented by soft aggregates consisting mainly of clay-mica minerals and micrometre-sized quartz grains. Some of these inclusions contain subangular to semi-rounded rock clasts (siltstones and sandstones) ranging from 0.3 to 8 mm in size. In total, 31 zircon grains have been identified in two rock clasts and dated using SHRIMP-II. The ages of the studied zircons range from 0.6 to 2.0 Ga with two distinct clusters between 0.8 and 1.15 Ga and between 1.6 and 1.8 Ga. Rock clasts obviously came from the western lake shore, which is thus composed of terrigenous strata with an age of not older than 600 Ma. The sedimentary nature of the western lake shore is also confirmed by seismic refraction data showing seismic velocities there of 5.4-5.5 km s(-1) at the bedrock surface. After Lake Vostok was unsealed, its water (frozen and sampled next season) was also studied with scanning electron microscopy and X-ray microprobe analysis. This study showed the existence of calcium carbonate and silica microparticles (10-20 μm across) in frozen water. © 2015 The Author(s).

  12. The volcanic-sedimentary sequence of the Lousal deposit, Iberian Pyrite Belt (Portugal)

    Science.gov (United States)

    Rosa, Carlos; Rosa, Diogo; Matos, Joao; Relvas, Jorge

    2010-05-01

    dominant fragmentation mechanism. Unlike many locations of the IPB, fiamme-rich pyroclastic units were not identified at Lousal. The ore deposits occur in close proximity with this volcanic centre that may have driven hydrothermal circulation that led to ore formation. The volcanic rocks show intense chloritic alteration, indicating that the mineralizing event occurred after most of the rhyolitic units have emplaced. The massive sulfides show abundant sedimentary structures which is not typical in the massive sulfide deposits of the IPB. The Lousal 50 Mt massive sulfide deposit consists of at least 11 ore bodies and was exploited until 1988 mainly for pyrite. The ores mined averaged 0.7% Cu, 0.8%Pb e 1.4%Zn (Strauss, 1971). These relatively low base metal grades led to an evaluation of the contents and distribution of high-tech element in the ore bodies, which would improve the economic viability of mining the deposit. This evaluation is currently focusing on the distribution and mineralogy of selenium, as ores mined in the past were known to be rich in this element. This work benefits from research projects INCA (PTDC/CTE-GIN/67027/2006; Characterization of crucial mineral resources for the development of renewable energy technologies: The Iberian Pyrite Belt ores as a source of indium and other high-technology elements) and project ARCHYMEDES II (POCTI/CTA/45873/2002), both funded by the Fundação para a Ciência e Tecnologia. REFERENCES Strauss, G.K., 1970. Sobre la geologia de la provincia piritifera del Suroeste de la Peninsula Iberica y sus yacimientos, en especial sobre la mina de pirita de Lousal (Portugal): Memoria del IGME 77, 1-266. Tornos, F., 2006. Environment of formation and styles of volcanogenic massive sulfides: The Iberian Pyrite Belt. Ore Geology Reviews 28, 259-307.

  13. Terrestrial analogs, planetary geology, and the nature of geological reasoning

    Science.gov (United States)

    Baker, Victor R.

    2014-05-01

    Analogical reasoning is critical to planetary geology, but its role can be misconstrued by those unfamiliar with the practice of that science. The methodological importance of analogy to geology lies in the formulation of genetic hypotheses, an absolutely essential component of geological reasoning that was either ignored or denigrated by most 20th century philosophers of science, who took the theoretical/ experimental methodology of physics to be the sole model for all of scientific inquiry. Following the seminal 19th century work of Grove Karl Gilbert, an early pioneer of planetary geology, it has long been recognized that broad experience with and understanding of terrestrial geological phenomena provide geologists with their most effective resource for the invention of potentially fruitful, working hypotheses. The actions of (1) forming such hypotheses, (2) following their consequences, and (3) testing those consequences comprise integral parts of effective geological practice in regard to the understanding of planetary surfaces. Nevertheless, the logical terminology and philosophical bases for such practice will be unfamiliar to most planetary scientists, both geologists and nongeologists. The invention of geological hypotheses involves both inductive inferences of the type Gilbert termed “empiric classification” and abductive inferences of a logical form made famous by the 19th century American logician Charles Sanders Peirce. The testing and corroboration of geological hypotheses relies less on the correspondence logic of theoretical/ experimental sciences, like physics, and more on the logic of consistency, coherence, and consilience that characterizes the investigative and historical sciences of interpretation exemplified by geology.

  14. Hydro-mechanical modelling of a shaft seal in crystalline and sedimentary host rock media using COMSOL

    Energy Technology Data Exchange (ETDEWEB)

    Priyanto, D.G. [Atomic Energy of Canada Limited, Pinawa, MB (Canada)

    2011-07-01

    Shaft seals are components of the engineered barriers system considered for closure of a Deep Geological Repository (DGR). These seals would be installed in strategic locations of the shafts, where significant fracture zones (FZ) are located and would serve to limit upward flow of groundwater from the repository level towards the surface. This paper presents the results of hydro-mechanical (HM) numerical modelling exercises to evaluate the performance of a shaft seal using a finite element computer code, COMSOL. This study considered a variety of host geological media as part of generic assessments of system evolution in a variety of environments including five hypothetical sedimentary and crystalline host rock conditions. Four simulations of a shaft seal in different sedimentary rocks were completed, including: shale with isotropic permeability; shale with anisotropic permeability; limestone with isotropic permeability; and limestone with anisotropic permeability. The other simulation was a shaft seal in crystalline rock with isotropic permeability. Two different stages were considered in these HM simulations. Stages 1 and 2 simulated the groundwater flow into an open shaft and after installation of shaft sealing components, respectively. As expected, the models were able to simulate that installation of the shaft seal limits groundwater flow through the shaft. Based on the conditions and assumptions defined for the host media and fracture features examined in this study, the following conclusions can be drawn from the results of the numerical modelling exercises. A shaft that remained open for a longer time was beneficial with respect to delaying of seal saturation because it could reduce the groundwater flow rate around the fracture zone. Delaying saturation time indicates slower movement of the groundwater or other substances that may be transported with the groundwater. The core of the shaft seal (i.e., the bentonite-sand mixture (BSM)) became fully saturated

  15. Generalized surficial geologic map of the Fort Irwin area, San Bernadino: Chapter B in Geology and geophysics applied to groundwater hydrology at Fort Irwin, California

    Science.gov (United States)

    Miller, David M.; Menges, Christopher M.; Lidke, David J.; Buesch, David C.

    2014-01-01

    The geology and landscape of the Fort Irwin area, typical of many parts of the Mojave Desert, consist of rugged mountains separated by broad alluviated valleys that form the main coarse-resolution features of the geologic map. Crystalline and sedimentary rocks, Mesozoic and older in age, form most of the mountains with lesser accumulations of Miocene sedimentary and volcanic rocks. In detail, the area exhibits a fairly complex distribution of surficial deposits resulting from diverse rock sources and geomorphology that has been driven by topographic changes caused by recent and active faulting. Depositional environments span those typical of the Mojave Desert: alluvial fans on broad piedmonts, major intermittent streams along valley floors, eolian sand dunes and sheets, and playas in closed valleys that lack through-going washes. Erosional environments include rocky mountains, smooth gently sloping pediments, and badlands in readily eroded sediment. All parts of the landscape, from regional distribution of mountains, valleys, and faults to details of degree of soil development in surface materials, are portrayed by the surficial geologic map. Many of these attributes govern infiltration and recharge, and the surface distribution of permeable rock units such as Miocene sedimentary and volcanic rocks provides a basis for evaluating potential groundwater storage. Quaternary faults are widespread in the Fort Irwin area and include sinistral, east-striking faults that characterize the central swath of the area and the contrasting dextral, northwest-striking faults that border the east and west margins. Bedrock distribution and thickness of valley-fill deposits are controlled by modern and past faulting, and faults on the map help to identify targets for groundwater exploration.

  16. Stress history influence on sedimentary rock porosity estimates: Implications for geological CO2 storage in Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Wen-Jie Wu

    2017-01-01

    Full Text Available We established a stress-history-dependent porosity model of potential target rocks for CO2 geosequestration based on rock sample porosity measurements under various effective stresses (5 - 120 MPa. The measured samples were collected from shallow boreholes (< 300 m depth drilled at the frontal fold in northern Taiwan. The lithology, density, and the stress-history-dependent porosity derived from shallow boreholes enabled us to predict the porosity-depth relationship of given rock formations at (burial depths of approximately 3170 - 3470 m potential sites for CO2 geosequestration located near the Taoyuan Tableland coastline. Our results indicate that the porosity of samples derived from laboratory tests under atmospheric pressure is significantly greater than the porosity measured under stress caused by sediment burial. It is therefore strongly recommended that CO2 storage capacity assessment not be estimated from the porosity measured under atmospheric pressure. Neglecting the stress history effect on the porosity of compacted and uplifted rocks may induce a percentage error of 7.7% at a depth of approximately 1000 m, where the thickness of the eroded, formerly overlying formation is 2.5 km in a synthetic case. The CO2 injection pressure effect on the porosity was also evaluated using the stress-history-dependent porosity model. As expected, the pore pressure buildup during CO2 injection will induce an increase in the rock porosity. For example, a large injection pressure of 13 MPa at a depth of approximately 1000 m will increase the rock porosity by a percentage error of 6.7%. Our results have implications for CO2 storage capacity injection pressure estimates.

  17. Geology and recognition criteria for sandstone uranium deposits in mixed fluvial-shallow marine sedimentary sequences, South Texas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S.S.; Smith, R.B.

    1981-01-01

    Uranium deposits in the South Texas Uranium Region are classical roll-type deposits that formed at the margin of tongues of altered sandstone by the encroachment of oxidizing, uraniferous solutions into reduced aquifers containing pyrite and, in a few cases, carbonaceous plant material. Many of the uranium deposits in South Texas are dissimilar from the roll fronts of the Wyoming basins. The host sands for many of the deposits contain essentially no carbonaceous plant material, only abundant disseminated pyrite. Many of the deposits do not occur at the margin of altered (ferric oxide-bearing) sandstone tongues but rather occur entirely within reduced, pyurite-bearing sandstone. The abundance of pyrite within the sands probably reflects the introduction of H/sub 2/S up along faults from hydrocarbon accumulations at depth. Such introductions before ore formation prepared the sands for roll-front development, whereas post-ore introductions produced re-reduction of portions of the altered tongue, leaving the deposit suspended in reduced sandstone. Evidence from three deposits suggests that ore formation was not accompanied by the introduction of significant amounts of H/sub 2/S.

  18. Geology and recognition criteria for sandstone uranium deposits in mixed fluvial-shallow marine sedimentary sequences, South Texas. Final report

    International Nuclear Information System (INIS)

    Adams, S.S.; Smith, R.B.

    1981-01-01

    Uranium deposits in the South Texas Uranium Region are classical roll-type deposits that formed at the margin of tongues of altered sandstone by the encroachment of oxidizing, uraniferous solutions into reduced aquifers containing pyrite and, in a few cases, carbonaceous plant material. Many of the uranium deposits in South Texas are dissimilar from the roll fronts of the Wyoming basins. The host sands for many of the deposits contain essentially no carbonaceous plant material, only abundant disseminated pyrite. Many of the deposits do not occur at the margin of altered (ferric oxide-bearing) sandstone tongues but rather occur entirely within reduced, pyurite-bearing sandstone. The abundance of pyrite within the sands probably reflects the introduction of H 2 S up along faults from hydrocarbon accumulations at depth. Such introductions before ore formation prepared the sands for roll-front development, whereas post-ore introductions produced re-reduction of portions of the altered tongue, leaving the deposit suspended in reduced sandstone. Evidence from three deposits suggests that ore formation was not accompanied by the introduction of significant amounts of H 2 S

  19. Geologic environmental study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chun Soo; Bae, Dae Seok; Kim, Kyung Su; Park, Byung Yoon; Koh, Young Kown; Chun, Kwan Sik; Kim, Jhin Wung

    2000-05-01

    The geoscience research works are focused on the production of geologic basic data accompanying with the technical development of geology and hydrogeologic characterization. The lithology of the Korean peninsula consists of a complex structure of 29 rock types from Archean to Quaternary. The wide distribution of Mesozoic plutonic rock is an important consideration as a potential host rock allowing flexibility of siting. The recent tectonic activities are limited to localized particular area, which can be avoided by excluding in the early stage of siting. Three rock types such as plutonic rocks, crystalline gneisses and massive volcanic rocks were suggested as the preferred host rocks for the further study on HLW disposal system. This report contains grouping of regional faults, and on the distributional characteristics of faults and fractures(zones) in terms of lithological domain and tectonical provinces. The regional groundwater regime can be grouped into 3 regimes by tectonic setting and four groundwater regions based on an altitute. Groundwaters can be grouped by their chemistry and host rocks. The origin of groundwater was proposed by isotope ({sup 1}8O, {sup 2}H, {sup 1}3C, {sup 3}4S, {sup 8}7Sr, {sup 1}5N) studies and the residence time of groundwater was inferred from their tritium contents. Based on the geochemical and isotope characteristics, the geochemical evolutions of each types of groundwater were simulated using SOLVEQ/CHILLER and PHREEQC programs.

  20. Geologic environmental study

    International Nuclear Information System (INIS)

    Kim, Chun Soo; Bae, Dae Seok; Kim, Kyung Su; Park, Byung Yoon; Koh, Young Kown; Chun, Kwan Sik; Kim, Jhin Wung

    2000-05-01

    The geoscience research works are focused on the production of geologic basic data accompanying with the technical development of geology and hydrogeologic characterization. The lithology of the Korean peninsula consists of a complex structure of 29 rock types from Archean to Quaternary. The wide distribution of Mesozoic plutonic rock is an important consideration as a potential host rock allowing flexibility of siting. The recent tectonic activities are limited to localized particular area, which can be avoided by excluding in the early stage of siting. Three rock types such as plutonic rocks, crystalline gneisses and massive volcanic rocks were suggested as the preferred host rocks for the further study on HLW disposal system. This report contains grouping of regional faults, and on the distributional characteristics of faults and fractures(zones) in terms of lithological domain and tectonical provinces. The regional groundwater regime can be grouped into 3 regimes by tectonic setting and four groundwater regions based on an altitute. Groundwaters can be grouped by their chemistry and host rocks. The origin of groundwater was proposed by isotope ( 1 8O, 2 H, 1 3C, 3 4S, 8 7Sr, 1 5N) studies and the residence time of groundwater was inferred from their tritium contents. Based on the geochemical and isotope characteristics, the geochemical evolutions of each types of groundwater were simulated using SOLVEQ/CHILLER and PHREEQC programs

  1. Geology of kilauea volcano

    Science.gov (United States)

    Moore, R.B.; Trusdell, F.A.

    1993-01-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower cast rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. ?? 1993.

  2. Seismic response of the geologic structure underlying the Roman Colosseum and a 2-D resonance of a sediment valley

    OpenAIRE

    Mozco, P.; Rovelli, A.; Labak, P.; Malagnini, L.

    1995-01-01

    The seismic response of the geologic structure beneath the Colosseum is investigated using a two-dimensional modeling for a vertically incident plane SH wave. Computations indicate that the southern part of the Colosseum may be exposed to a seismic ground motion with significantly larger amplitudes, differential motion and longer duration than the northern part. because the southern part of the Colosseum is underlain by a sedimentfilled valley created by sedimentary filling of the former trib...

  3. Late quaternary geology in Desaguadero river basin, San Luis, Argentina

    International Nuclear Information System (INIS)

    Chiesa, J.; Strasser, E.; Gomez, D.; De Miguel, T.

    2007-01-01

    Absolute radiocarbon datings of the sedimentary successions have come to knowledge enabling us to distinguish the Pleistocene deposits from the supra-lying Holocene ones. A palaeo-environmental evolution is proposed considering climatic fluctuations at the time, their relation with the river unloadings of the Andean glaciers and that proposed for the palaeo-lake of Salina del Bebedero. Sediments are described on the basis of a detailed field sampling, textural analysis (sieved and Bouyoucos) and laboratory geo-chemicals. Their interpretation of the geologic evolution is considered to be very important since it is the only river course on this arid-semi-arid region linked to the reduction of glaciers in the Andes. The sedimentary succession is dominated by high percentages of laminated limes and with green-yellowish to greyish-brown-reddish tones deposited in watery environments of low energy such as lacustrine basins and extended plains of flood, which is why the evolution of the deposit is characterized by the contrast of the values of insolubles (clastic sediment and carbonate) versus solubles (insoluble saline). The climatic cycles dominant and proposed for the center-east Argentine region are identified considering the influence of Andean glaciers on the river systems and the water balances in plain semi-arid environments. (author)

  4. Geology and mineral deposits of Churchill County, Nevada

    Science.gov (United States)

    Willden, Ronald; Speed, Robert C.

    1974-01-01

    Churchill County, in west-central Nevada, is an area of varied topography and geology that has had a rather small total mineral production. The western part of the county is dominated by the broad low valley of the Carson Sink, which is underlain by deposits of Lake Lahontan. The bordering mountain ranges to the west and south are of low relief and underlain largely by Tertiary volcanic and sedimentary units. Pre-Tertiary rocks are extensively exposed east of the Carson Sink in the Stillwater Range, Clan Alpine Mountains, Augusta Mountains, and New Pass Mountains. The eastern valleys are underlain by Quaternary alluvial and lacustrine deposits contemporaneous with the western deposits of Lake Lahontan. The eastern mountain ranges are more rugged than the western ranges and have higher relief; the eastern valleys are generally narrower.

  5. Geology and geothermics of the Island of Milos (Greece)

    Energy Technology Data Exchange (ETDEWEB)

    Fytikas, M.; Marinelli, G.

    1976-01-01

    Geothermal research which has been conducted on the island of Milos is reviewed and the island's geology is discussed in terms of the geodynamics of the eastern Mediterranean. The rock formations which outcrop at Milos are described in detail, including the crystalline basement, Neogene transgressive conglomerates and limestones, and the Quaternary volcanics and volcano-sedimentary series. The recent disjunctive tectonics and volcano-tectonics affecting Milos and the neighboring islands are reviewed. Thermal manifestations and their attendant mineralizations and hydrothermal alterations are described. The geophysical methods utilized in exploration and for the siting of production wells are described. Exploration work involved the drilling of 55 wells for thermometric determinations and a full scale electrical survey. Preliminary data from two production wells with bottom-hole temperatures in excess of 300/sup 0/C are reported. Fifty-four references are provided.

  6. Geologic History of Eocene Stonerose Fossil Beds, Republic, Washington, USA

    Directory of Open Access Journals (Sweden)

    George E. Mustoe

    2015-07-01

    Full Text Available Eocene lakebed sediments at Stonerose Interpretive Center in Republic, Washington, USA are one of the most important Cenozoic fossil sites in North America, having gained international attention because of the abundance and diversity of plant, insect, and fish fossils. This report describes the first detailed geologic investigation of this unusual lagerstätten. Strata are gradationally divided into three units: Siliceous shale that originated as diatomite, overlain by laminated mudstone, which is in turn overlain by massive beds of lithic sandstone. The sedimentary sequence records topographic and hydrologic changes that caused a deep lake to become progressively filled with volcaniclastic detritus from earlier volcanic episodes. The location of the ancient lake within an active graben suggests that displacements along the boundary faults were the most likely trigger for changes in depositional processes.

  7. Application of MSS/LANDSAT images to the structural study of recent sedimentary areas: Campos Sedimentary Basin, Rio de Janeiro, Brazil

    Science.gov (United States)

    Parada, N. D. J. (Principal Investigator); Barbosa, M. P.

    1983-01-01

    Visual and computer aided interpretation of MSS/LANDSAT data identified linear and circular features which represent the ""reflexes'' of the crystalline basement structures in the Cenozoic sediments of the emergent part of the Campos Sedimentary Basin.

  8. Stability of IRSL signals from sedimentary K-feldspar samples

    DEFF Research Database (Denmark)

    Thomsen, Kristina Jørkov; Murray, A.S.; Jain, Mayank

    2011-01-01

    for potassium-rich sedimentary feldspars. We show that the natural post-IR IRSL (pIRIR) signal from a 3.6 Ma old sample is in apparent saturation on a laboratory generated dose response curve, i.e. it does not show detectable fading in nature although a low fading rate is observed on laboratory time scales. We...... be explained in terms of either a single- or multiple-trap model. We present evidence that may suggest that at least part of pIRIR signal is derived from a high temperature trap (∼550°C thermoluminescence (TL) peak), although again the data can also be explained in terms of a single-trap model. Finally, we...

  9. Prediction of thermal conductivity of sedimentary rocks from well logs

    DEFF Research Database (Denmark)

    Fuchs, Sven; Förster, Andrea

    2014-01-01

    The calculation of heat-flow density in boreholes requires reliable values for the change of temperature and rock thermal conductivity with depth. As rock samples for laboratory measurements of thermal conductivity (TC) are usually rare geophysical well logs are used alternatively to determine TC...... parameters (i.e. thermal conductivity, density, hydrogen index, sonic interval transit time, gamma-ray response, photoelectric factor) of artificial mineral assemblages consisting 15 rock-forming minerals that are used in different combinations to typify sedimentary rocks. The predictive capacity of the new...... equations is evaluated on subsurface data from four boreholes drilled into the Mesozoic sequence of the North German Basin, including more than 1700 laboratory-measured thermal-conductivity values. Results are compared with those from other approaches published in the past. The new approach predicts TC...

  10. Meteoric 10Be/9Be ratios in marine sedimentary records: Deciphering the mixing between their marine and terrestrial sources and influence of costal trace metal fluxes

    Science.gov (United States)

    Wittmann, H.; von Blanckenburg, F.; Mohtadi, M.; Christl, M.; Bernhardt, A.

    2017-12-01

    Meteoric 10Be to stable 9Be ratios combine a cosmogenic nuclide produced in the atmosphere at a rate known from reconstructions of magnetic field strength with a stable isotope that records the present and past continental weathering and erosion flux. In seawater, the 10Be/9Be ratio provides important information on metal release from bottom sediments, called boundary exchange, and the oceanic mixing of reactive trace metals due to the inherently different sources of the two isotopes. When measured in the authigenic phase of marine sediments, the 10Be/9Be ratio allows deriving the feedbacks between erosion, weathering, and climate in the geologic past. At an ocean margin site 37°S offshore Chile, we use the 10Be/9Be ratio to trace changes in terrestrial particulate composition due to exchange with seawater. We analyzed the reactive (sequentially extracted) phase of marine surface sediments along a coast-perpendicular transect, and compared to samples from their riverine source. We find evidence for growth of authigenic rims through co-precipitation, not via reversible adsorption, that incorporate an open ocean 10Be/9Be signature from a deep water source only 30 km from the coast, thereby overprinting terrestrial riverine 10Be/9Be signatures. We show that the measured 10Be/9Be ratios in marine sediments comprise a mixture between seawater-derived and riverine-sourced phases. As 10Be/9Be ratios increase due to exchange with seawater, particulate-bound Fe concentrations increase, which we attribute to release of Fe-rich pore waters during boundary exchange in the sediment. The implications for the use of 10Be/9Be in sedimentary records for paleo-denudation flux reconstructions are that in coast-proximal sites that are neither affected by deeper water nor by narrow boundary currents, the authigenic record will be a direct recorder of terrigenous denudation of the adjacent river catchments. Hence archive location and past oceanic circulation have to be accounted for

  11. Practical aspects of geological prediction

    International Nuclear Information System (INIS)

    Mallio, W.J.; Peck, J.H.

    1981-01-01

    Nuclear waste disposal requires that geology be a predictive science. The prediction of future events rests on (1) recognizing the periodicity of geologic events; (2) defining a critical dimension of effect, such as the area of a drainage basin, the length of a fault trace, etc; and (3) using our understanding of active processes the project the frequency and magnitude of future events in the light of geological principles. Of importance to nuclear waste disposal are longer term processes such as continental denudation and removal of materials by glacial erosion. Constant testing of projections will allow the practical limits of predicting geological events to be defined. 11 refs

  12. The sedimentary record of dinoflagellate cysts: looking back into the future of phytoplankton blooms

    Directory of Open Access Journals (Sweden)

    Barrie Dale

    2001-12-01

    Full Text Available Marine systems are not as well understood as terrestrial systems, and there is still a great need for more primary observations, in the tradition of the old-time naturalists, before newer methods such as molecular genetics and modeling can be fully utilized. The scientific process whereby the smaller, detailed building blocks of observation are ultimately linked towards better understanding natural systems is illustrated from my own career experience, especially with regard to the dinoflagellates and plankton blooms. Some dinoflagellates produce a fossilizable resting stage (cyst in their life cycle, and dinoflagellate cysts have become one of the most important groups of microfossils used in geological exploration (e.g. oil and gas. This has stimulated both paleontological and biological research producing detailed building blocks of information, currently scattered throughout the respective literature. Here, I attempt to bring together the present day perspective, from biology, with the past, from paleontology, as the most comprehensive basis for future work on the group. This shows the cysts to be the critical link needed for focusing future molecular genetics studies towards a more verifiable view of evolutionary pathways, and it also suggests new integrated methods for studying past, present, and future blooms. The large, rapidly growing field of harmful algal bloom studies is producing many different building blocks, but plankton blooms as episodic phenomena are still poorly understood. This is largely due to the general lack of long-term datasets allowing identification of the changing environmental factors that permit certain species to bloom at unpredictable intervals of time. Cysts in sediments are useful environmental indicators today, e.g. reflecting aspects of climate and pollution, and provide information directly relevant to some dinoflagellate blooms. They therefore may be used for obtaining retrospective information from the

  13. Sedimentary mechanisms of a modern banded iron formation on Milos Island, Greece

    Directory of Open Access Journals (Sweden)

    E. Chi Fru

    2018-05-01

    Full Text Available An early Quaternary shallow submarine hydrothermal iron formation (IF in the Cape Vani sedimentary basin (CVSB on Milos Island, Greece, displays banded rhythmicity similar to Precambrian banded iron formation (BIF. Field-wide stratigraphic and biogeochemical reconstructions show two temporal and spatially isolated iron deposits in the CVSB with distinct sedimentological character. Petrographic screening suggests the presence of a photoferrotrophic-like microfossil-rich IF (MFIF, accumulated on a basement consisting of andesites in a ∼ 150 m wide basin in the SW margin of the basin. A banded nonfossiliferous IF (NFIF sits on top of the Mn-rich sandstones at the transition to the renowned Mn-rich formation, capping the NFIF unit. Geochemical data relate the origin of the NFIF to periodic submarine volcanism and water column oxidation of released Fe(II in conditions predominated by anoxia, similar to the MFIF. Raman spectroscopy pairs hematite-rich grains in the NFIF with relics of a carbonaceous material carrying an average δ13Corg signature of ∼ −25‰. A similar δ13Corg signature in the MFIF could not be directly coupled to hematite by mineralogy. The NFIF, which postdates large-scale Mn deposition in the CVSB, is composed primarily of amorphous Si (opal-SiO2 ⋅ nH2O while crystalline quartz (SiO2 predominates the MFIF. An intricate interaction between tectonic processes, changing redox, biological activity, and abiotic Si precipitation are proposed to have collectively formed the unmetamorphosed BIF-type deposits in a shallow submarine volcanic center. Despite the differences in Precambrian ocean–atmosphere chemistry and the present geologic time, these formation mechanisms coincide with those believed to have formed Algoma-type BIFs proximal to active seafloor volcanic centers.

  14. Geochemical behaviour of uranium in sedimentary formations: insights from a natural analogue study - 16340

    International Nuclear Information System (INIS)

    Noseck, Ulrich; Brasser, Thomas; Havlova, Vaclava; Cervinka, Radek; Suksi, Juhani

    2009-01-01

    Groundwater data from the natural analogue site Ruprechtov have been evaluated with special emphasis on the uranium behaviour in the so-called uranium-rich clay/lignite horizon. In this horizon in-situ Eh-values in the range of -160 to -280 mV seem to be determined by the SO 4 2- /HS - couple. Under these conditions U(IV) is expected to be the preferential redox state in solution. However, on-site measurements in groundwater from the clay/lignite horizon show only a fraction of about 20 % occurring in the reduced state U(IV). Thermodynamic calculations reveal that the high CO 2 partial pressure in the clay/lignite horizon can stabilise hexavalent uranium, which explains the occurrence of U(VI). The calculations also indicate that the low uranium concentrations in the range between 0.2 and 2.1 μg/l are controlled by amorphous UO 2 and/or the U(IV) phosphate mineral ningyoite. This confirms the findings from previous work that the uranium (IV) mineral phases are long-term stable under the reducing conditions in the clay/lignite horizon without any signatures for uranium mobilisation. It supports the current knowledge of the geological development of the site and is also another important indication for the long-term stability of the sedimentary system itself, namely of the reducing geochemical conditions in the near-surface (30 m to 60 m deep) clay/lignite horizon. Further work with respect to the impact of changes in redox conditions on the uranium speciation is on the way. (authors)

  15. The relationship between hydrogeologic properties and sedimentary facies: an example from Pennsylvanian bedrock aquifers, southwestern Indiana

    International Nuclear Information System (INIS)

    Fisher, A.T.; Barnhill, M.; Revenaugh, J.

    1998-01-01

    The relationship between the hydrogeologic properties and sedimentary facies of shallow Pennsylvanian bedrock aquifers was examined using detailed sedimentologic descriptions, aquifer (slug) tests, and gamma ray logs. The main goal of the study was to determine if it was possible to reliably estimate near-well hydraulic conductivities using core descriptions and logging data at a complex field site, based on assignment of consistent conductivity indicators to individual facies. Lithologic information was gathered from three sources: core descriptions, simplified lithologic columns derived from the core descriptions, and drillers' logs. Gamma ray data were collected with a conventional logging instrument. Slug tests were conducted in all wells containing screened zones entirely within the Pennsylvanian facies of interest. Simplified subsets of sedimentologic facies were assembled for classification of subsurface geology, and all rocks within the screened intervals of test wells were assigned to individual facies based on visual descriptions. Slug tests were conducted to determine the bulk hydraulic conductivity (a spatial average within the screened interval) in the immediate vicinity of the wells, with measured values varying from 10 -4 m/s to 10 -8 m/s. Gamma ray logs from these wells revealed variations in raw counts above about 1.5 orders of magnitude. Data were combined using simple linear and nonlinear inverse techniques to derive relations between sedimentologic facies, gamma ray signals, and bulk hydraulic conductivities. The analyses suggest that facies data alone, even those derived from detailed core descriptions, are insufficient for estimating hydraulic conductivity in this setting to better than an order of magnitude. The addition of gamma ray data improved the estimates, as did selective filtering of several extreme values from the full data set. Better estimates might be obtained through more careful field measurements and reduction of

  16. Drying-induced deformation of Horonobe sedimentary rock in the Koetoi and Wakkanai formations

    International Nuclear Information System (INIS)

    Illankoon, Thilini Nuwanradha; Yee, Suu Mon; Osada, Masahiko; Maekawa, Keisuke; Tada, Hiroyuki; Kumasaka, Hiroo

    2013-01-01

    In order to increase the long-term safety of geological disposal sites, knowledge of the drying-induced deformation characteristics of the rock mass in underground ventilated galleries is necessary to understand its cracking susceptibility and the chance of further propagation of the excavation damaged zone. Hence, strain was measured in ten cylindrical mudstone specimens (4 from Koetoi formation and 6 from Wakkanai formation respectively) cored at Horonobe Underground Research Laboratory (URL), an off-site (generic) URL, to examine deformation behavior during desiccation. The specimens were prepared in one-dimensional drying conditions in a 25degC or 40degC climatic chamber with 50% relative humidity. Mercury intrusion porosimetry (MIP) was also conducted to measure the pore size distributions of each formation. The recorded data showed that the Koetoi formation specimens generated smaller maximum shrinkage values (10,000 μ) compared to those from the Wakkanai formation (13,000 μ and 24,000 μ for Wakkanai groups I and II respectively). Wakkanai formation specimens were divided into two groups (Wakkanai groups I and II) according to their strain behavior. The porosity of the Koetoi formation was 54% whereas that of the Wakkanai formation was 27 - 38%. MIP results clearly indicate that the Wakkanai formation has a greater mesopore volume (63% and 73% of porosity for Wakkanai groups I and II respectively) than the Koetoi formation (8% of porosity) which contributes to its greater shrinkage. In addition, Wakkanai groups I and II have different pore size distribution patterns. Therefore, Wakkanai groups I and II exhibit distinct strain behaviors during drying. Similarities in grain density, a decrease in porosity and a gradual increase in mesopore volume with depth confirm the progressive hardening of Horonobe sedimentary rock. The pore volume in the 0.013 - 0.025 μm pore radius range exerts a strong influence on shrinkage generation in the Wakkanai formation

  17. 3D Voronoi grid dedicated software for modeling gas migration in deep layered sedimentary formations with TOUGH2-TMGAS

    Science.gov (United States)

    Bonduà, Stefano; Battistelli, Alfredo; Berry, Paolo; Bortolotti, Villiam; Consonni, Alberto; Cormio, Carlo; Geloni, Claudio; Vasini, Ester Maria

    2017-11-01

    As is known, a full three-dimensional (3D) unstructured grid permits a great degree of flexibility when performing accurate numerical reservoir simulations. However, when the Integral Finite Difference Method (IFDM) is used for spatial discretization, constraints (arising from the required orthogonality between the segment connecting the blocks nodes and the interface area between blocks) pose difficulties in the creation of grids with irregular shaped blocks. The full 3D Voronoi approach guarantees the respect of IFDM constraints and allows generation of grids conforming to geological formations and structural objects and at the same time higher grid resolution in volumes of interest. In this work, we present dedicated pre- and post-processing gridding software tools for the TOUGH family of numerical reservoir simulators, developed by the Geothermal Research Group of the DICAM Department, University of Bologna. VORO2MESH is a new software coded in C++, based on the voro++ library, allowing computation of the 3D Voronoi tessellation for a given domain and the creation of a ready to use TOUGH2 MESH file. If a set of geological surfaces is available, the software can directly generate the set of Voronoi seed points used for tessellation. In order to reduce the number of connections and so to decrease computation time, VORO2MESH can produce a mixed grid with regular blocks (orthogonal prisms) and irregular blocks (polyhedron Voronoi blocks) at the point of contact between different geological formations. In order to visualize 3D Voronoi grids together with the results of numerical simulations, the functionality of the TOUGH2Viewer post-processor has been extended. We describe an application of VORO2MESH and TOUGH2Viewer to validate the two tools. The case study deals with the simulation of the migration of gases in deep layered sedimentary formations at basin scale using TOUGH2-TMGAS. A comparison between the simulation performances of unstructured and structured

  18. Shale across Scales from the Depths of Sedimentary Basins to Soil and Water at Earth's Surface

    Science.gov (United States)

    Brantley, S. L.; Gu, X.

    2017-12-01

    Shale has become highly important on the world stage because it can host natural gas. In addition, shale is now targeted as a formation that can host repositories for disposal of radioactive waste. This newly recognized importance of shale has driven increased research into the nature of this unusual material. Much of this research incorporates characterization tools that probe shale at scales from nanometers to millimeters. Many of the talks in this Union session discuss these techniques and how scientists use them to understand how they impact the flow of fluids at larger scales. Another research avenue targets how material properties affect soil formation on this lithology and how water quality is affected in sedimentary basins where shale gas resources are under development. For example, minerals in shale are dominated by clays aligned along bedding. As the shales are exhumed and exposed at the surface during weathering, bedding planes open and fractures and microfractures form, allowing outfluxes or influxes of fluids. These phenomena result in specific patterns of fluid flow and, eventually, soil formation and landscape development. Specifically, in the Marcellus Formation gas play - the largest shale gas play in the U.S.A. - exposures of the shale at the surface result in deep oxidation of pyrite and organic matter, deep dissolution of carbonates, and relatively shallow alteration of clays. Micron-sized particles are also lost from all depths above the oxidation front. These characteristics result in deeply weathered and quickly eroded landscapes, and may also be related to patterns in water quality in shale gas plays. For example, across the entire Marcellus shale gas play in Pennsylvania, the single most common water quality issue is contamination by natural gas. This contamination is rare and is observed to be more prevalent in certain areas. These areas are likely related to shale material properties and geological structure. Specifically, natural gas

  19. Geologic map of the Vail West quadrangle, Eagle County, Colorado

    Science.gov (United States)

    Scott, Robert B.; Lidke, David J.; Grunwald, Daniel J.

    2002-01-01

    This new 1:24,000-scale geologic map of the Vail West 7.5' quadrangle, as part of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, provides new interpretations of the stratigraphy, structure, and geologic hazards in the area on the southwest flank of the Gore Range. Bedrock strata include Miocene tuffaceous sedimentary rocks, Mesozoic and upper Paleozoic sedimentary rocks, and undivided Early(?) Proterozoic metasedimentary and igneous rocks. Tuffaceous rocks are found in fault-tilted blocks. Only small outliers of the Dakota Sandstone, Morrison Formation, Entrada Sandstone, and Chinle Formation exist above the redbeds of the Permian-Pennsylvanian Maroon Formation and Pennsylvanian Minturn Formation, which were derived during erosion of the Ancestral Front Range east of the Gore fault zone. In the southwestern area of the map, the proximal Minturn facies change to distal Eagle Valley Formation and the Eagle Valley Evaporite basin facies. The Jacque Mountain Limestone Member, previously defined as the top of the Minturn Formation, cannot be traced to the facies change to the southwest. Abundant surficial deposits include Pinedale and Bull Lake Tills, periglacial deposits, earth-flow deposits, common diamicton deposits, common Quaternary landslide deposits, and an extensive, possibly late Pliocene landslide deposit. Landscaping has so extensively modified the land surface in the town of Vail that a modified land-surface unit was created to represent the surface unit. Laramide movement renewed activity along the Gore fault zone, producing a series of northwest-trending open anticlines and synclines in Paleozoic and Mesozoic strata, parallel to the trend of the fault zone. Tertiary down-to-the-northeast normal faults are evident and are parallel to similar faults in both the Gore Range and the Blue River valley to the northeast; presumably these are related to extensional deformation that occurred during formation of the northern end of the

  20. Geology of Europa

    Science.gov (United States)

    Greeley, R.; Chyba, C.; Head, J. W.; McCord, T.; McKinnon, W. B.; Pappalardo, R. T.

    2004-01-01

    Europa is a rocky object of radius 1565 km (slightly smaller than Earth s moon) and has an outer shell of water composition estimated to be of order 100 km thick, the surface of which is frozen. The total volume of water is about 3 x 10(exp 9) cubic kilometers, or twice the amount of water on Earth. Moreover, like its neighbor Io, Europa experiences internal heating generated from tidal flexing during its eccentric orbit around Jupiter. This raises the possibility that some of the water beneath the icy crust is liquid. The proportion of rock to ice, the generation of internal heat, and the possibility of liquid water make Europa unique in the Solar System. In this chapter, we outline the sources of data available for Europa (with a focus on the Galileo mission), review previous and on-going research on its surface geology, discuss the astrobiological potential of Europa, and consider plans for future exploration.

  1. Geology of National Parks

    Science.gov (United States)

    Stoffer, Philip W.

    2008-01-01

    This is a set of two sheets of 3D images showing geologic features of many National Parks. Red-and-cyan viewing glasses are need to see the three-dimensional effect. A search on the World Wide Web will yield many sites about anaglyphs and where to get 3D glasses. Red-blue glasses will do but red-cyan glasses are a little better. This publication features a photo quiz game: Name that park! where you can explore, interpret, and identify selected park landscapes. Can you identify landscape features in the images? Can you explain processes that may have helped form the landscape features? You can get the answers online.

  2. Geological terrain models

    Science.gov (United States)

    Kaupp, V. H.; Macdonald, H. C.; Waite, W. P.

    1981-01-01

    The initial phase of a program to determine the best interpretation strategy and sensor configuration for a radar remote sensing system for geologic applications is discussed. In this phase, terrain modeling and radar image simulation were used to perform parametric sensitivity studies. A relatively simple computer-generated terrain model is presented, and the data base, backscatter file, and transfer function for digital image simulation are described. Sets of images are presented that simulate the results obtained with an X-band radar from an altitude of 800 km and at three different terrain-illumination angles. The simulations include power maps, slant-range images, ground-range images, and ground-range images with statistical noise incorporated. It is concluded that digital image simulation and computer modeling provide cost-effective methods for evaluating terrain variations and sensor parameter changes, for predicting results, and for defining optimum sensor parameters.

  3. Radon as geological tracer

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, T.; Anjos, R.M. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Fisica; Valladares, D.L.; Rizzotto, M.; Velasco, H.; Ayub, J. Juri [Universidad Nacional de San Luis (Argentina). Inst. de Matematica Aplicada San Luis (IMASL); Silva, A.A.R. da; Yoshimura, E.M. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica

    2012-07-01

    Full text: This work presents measurements of {sup 222}Rn levels performed in La Carolina gold mine and Los Condores tungsten mine at the province of San Luis, Argentina, today used for tourist visitation, and can evaluate the potential use of such radioactive noble gas as tracer or marker for geological processes in underground environments. By concentrations of {sup 40}K, {sup 232}Th and {sup 23}'8U were also measured in the walls of tunnels were determined the rocks mineral composition, what indicated that the mines have the same composition. In this sense, we used nuclear trace plastic detectors CR-39, gamma spectrometry of rock samples and Geiger-Muller (GM) monitors The patterns of radon gas transportation processes revealed that La Carolina could be interpreted through a model based on a radioactive gas confined into a single entrance tube, with constant cross section and air velocity. Los Condores, which has a second main entrance, could be interpreted through a model based on a radioactive gas confined into a two entrance tube, allowing a chimney effect for air circulation. The results showed the high potential of using {sup 222}Rn as a geological tracer. In what concerns the occupational hazard, in summer (time of more intense tourist activity in the mine) La Carolina presented a mean concentration of the radioactive noble gas that exceeds in four times the action level of 1,5 kBq m{sup -3} recommended by the International Commission of Radiological Protection (ICRP). The chimney effect shows the low mean concentration of radon in Los Condores. (author)

  4. Radon as geological tracer

    International Nuclear Information System (INIS)

    Lacerda, T.; Anjos, R.M.; Silva, A.A.R. da; Yoshimura, E.M.

    2012-01-01

    Full text: This work presents measurements of 222 Rn levels performed in La Carolina gold mine and Los Condores tungsten mine at the province of San Luis, Argentina, today used for tourist visitation, and can evaluate the potential use of such radioactive noble gas as tracer or marker for geological processes in underground environments. By concentrations of 40 K, 232 Th and 23 '8U were also measured in the walls of tunnels were determined the rocks mineral composition, what indicated that the mines have the same composition. In this sense, we used nuclear trace plastic detectors CR-39, gamma spectrometry of rock samples and Geiger-Muller (GM) monitors The patterns of radon gas transportation processes revealed that La Carolina could be interpreted through a model based on a radioactive gas confined into a single entrance tube, with constant cross section and air velocity. Los Condores, which has a second main entrance, could be interpreted through a model based on a radioactive gas confined into a two entrance tube, allowing a chimney effect for air circulation. The results showed the high potential of using 222 Rn as a geological tracer. In what concerns the occupational hazard, in summer (time of more intense tourist activity in the mine) La Carolina presented a mean concentration of the radioactive noble gas that exceeds in four times the action level of 1,5 kBq m -3 recommended by the International Commission of Radiological Protection (ICRP). The chimney effect shows the low mean concentration of radon in Los Condores. (author)

  5. Geology of Kilauea volcano

    Energy Technology Data Exchange (ETDEWEB)

    Moore, R.B. (Geological Survey, Denver, CO (United States). Federal Center); Trusdell, F.A. (Geological Survey, Hawaii National Park, HI (United States). Hawaiian Volcano Observatory)

    1993-08-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower east rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. 71 refs., 2 figs.

  6. Geologic hazards in the region of the Hurricane fault

    Science.gov (United States)

    Lund, W.R.

    1997-01-01

    Complex geology and variable topography along the 250-kilometer-long Hurricane fault in northwestern Arizona and southwestern Utah combine to create natural conditions that can present a potential danger to life and property. Geologic hazards are of particular concern in southwestern Utah, where the St. George Basin and Interstate-15 corridor north to Cedar City are one of Utah's fastest growing areas. Lying directly west of the Hurricane fault and within the Basin and Range - Colorado Plateau transition zone, this region exhibits geologic characteristics of both physiographic provinces. Long, potentially active, normal-slip faults displace a generally continuous stratigraphic section of mostly east-dipping late Paleozoic to Cretaceous sedimentary rocks unconformably overlain by Tertiary to Holocene sedimentary and igneous rocks and unconsolidated basin-fill deposits. Geologic hazards (exclusive of earthquake hazards) of principal concern in the region include problem soil and rock, landslides, shallow ground water, and flooding. Geologic materials susceptible to volumetric change, collapse, and subsidence in southwestern Utah include; expansive soil and rock, collapse-prone soil, gypsum and gypsiferous soil, soluble carbonate rocks, and soil and rock subject to piping and other ground collapse. Expansive soil and rock are widespread throughout the region. The Petrified Forest Member of the Chinle Formation is especially prone to large volume changes with variations in moisture content. Collapse-prone soils are common in areas of Cedar City underlain by alluvial-fan material derived from the Moenkopi and Chinle Formations in the nearby Hurricane Cliffs. Gypsiferous soil and rock are subject to dissolution which can damage foundations and create sinkholes. The principal formations in the region affected by dissolution of carbonate are the Kaibab and Toroweap Formations; both formations have developed sinkholes where crossed by perennial streams. Soil piping is

  7. Hydrogeological Properties of Geological Elements in Geological Model around KURT

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Woo; Kim, Kyung Soo; Koh, Yong Kwon; Choi, Jong Won [Korea Atomic Energy Institue, Daejeon (Korea, Republic of)

    2012-09-15

    To develop site characterization technologies for a radioactive waste disposal research in KAERI, the geological and hydrogeological investigations have been carried out since 1997. In 2006, the KURT (KAERI Underground Research Tunnel) was constructed to study a solute migration, a microbiology and an engineered barrier system as well as deeply to understand geological environments in in-situ condition. This study is performed as one of the site characterization works around KURT. Several investigations such as a lineament analysis, a borehole/tunnel survey, a geophyscial survey and logging in borehole, were used to construct the geological model. As a result, the geological model is constructed, which includes the lithological model and geo-structural model in this study. Moreover, from the results of the in-situ hydraulic tests, the hydrogeological properties of elements in geological model were evaluated.

  8. Hydrogeological Properties of Geological Elements in Geological Model around KURT

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Kim, Kyung Soo; Koh, Yong Kwon; Choi, Jong Won

    2012-01-01

    To develop site characterization technologies for a radioactive waste disposal research in KAERI, the geological and hydrogeological investigations have been carried out since 1997. In 2006, the KURT (KAERI Underground Research Tunnel) was constructed to study a solute migration, a microbiology and an engineered barrier system as well as deeply to understand geological environments in in-situ condition. This study is performed as one of the site characterization works around KURT. Several investigations such as a lineament analysis, a borehole/tunnel survey, a geophyscial survey and logging in borehole, were used to construct the geological model. As a result, the geological model is constructed, which includes the lithological model and geo-structural model in this study. Moreover, from the results of the in-situ hydraulic tests, the hydrogeological properties of elements in geological model were evaluated.

  9. The sedimentary dynamics in natural and human-influenced delta channel belts

    NARCIS (Netherlands)

    Hobo, N.

    2015-01-01

    This study investigates the increased anthropogenic influence on the within-channel belt sedimentary dynamics in the Rhine delta. To make this investigation, the sedimentary dynamics within the life-cycle of a single channel belt were reconstructed for three key periods of increasing human impact,

  10. Potentiality if Rb-Sr method for dating the argillous sedimentary rocks

    International Nuclear Information System (INIS)

    Thomaz Filho, A.

    1976-01-01

    The potentiality of application Rb-Sr method in argillous sediments, using samples from paleozoic and mesozoic formation in brazilian sedimentaries basin was tested. Physical, chemistry and isotopic analysis of thirty eight samples were made in the laboratories of geochronology Research Center from the University of Sao Paulo. Four isochronic diagrams for the argillous sedimentary rocks were also proposed. (author)

  11. Age and sedimentary record of inland eolian sediments in Lithuania, NE European Sand Belt

    DEFF Research Database (Denmark)

    Kalińska-Nartiša, Edyta; Thiel, Christine; Nartišs, Maris

    2015-01-01

    in any detail. The sedimentary structural-textural features are investigated and a chronology was derived using optically stimulated luminescence on both quartz and feldspar. The sedimentary structures and the rounding and surface characteristics of the quartz grains argue for a predominance of eolian...

  12. Late Holocene sedimentary changes in floodplain and shelf environments of the Tagus River (Portugal)

    NARCIS (Netherlands)

    Vis, G.J.; Kasse, C.; Kroon, D.; Jung, S.J.A.; Zuur, H.; Prick, A.C.H.

    2010-01-01

    Sedimentary changes during the last ∼2500 years have been reconstructed from cored sedimentary records from the deltaic floodplain of the Lower Tagus Valley and the Tagus mudbelt on the continental shelf offshore Lisbon. We used a multi-proxy approach consisting of sedimentology, grainsize, pollen

  13. GIS-technologies as a mechanism to study geological structures

    Science.gov (United States)

    Sharapatov, Abish

    2014-05-01

    Earth scientists are odd, thus, solving only local tasks); - Development of specialized GIS-technology that ensures creating multi-parameter models, completing multi-criteria optimisation tasks, and issues of geological profile forecasts using miscellaneous data; - Application of the modern approach to the geological, petrological and genetic modeling of the targets in the geological zone under survey; determination of the structural and tectonic position of the Valerianovskaya SFZ and its relations to the mineralization; - A possibility to apply the GIS created for the region as a desk (local) system integrated to the regional or national bank of geospatial information with a corporate access via local and global networks.

  14. Geologic Framework Model (GFM2000)

    International Nuclear Information System (INIS)

    T. Vogt

    2004-01-01

    The purpose of this report is to document the geologic framework model, version GFM2000 with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, and the differences between GFM2000 and previous versions. The version number of this model reflects the year during which the model was constructed. This model supersedes the previous model version, documented in Geologic Framework Model (GFM 3.1) (CRWMS M and O 2000 [DIRS 138860]). The geologic framework model represents a three-dimensional interpretation of the geology surrounding the location of the monitored geologic repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain. The geologic framework model encompasses and is limited to an area of 65 square miles (168 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the geologic framework model (shown in Figure 1-1) were chosen to encompass the exploratory boreholes and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The upper surface of the model is made up of the surface topography and the depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The geologic framework model was constructed from geologic map and borehole data. Additional information from measured stratigraphic sections, gravity profiles, and seismic profiles was also considered. The intended use of the geologic framework model is to provide a geologic framework over the area of interest consistent with the level of detailed needed for hydrologic flow and radionuclide transport modeling through the UZ and for repository design. The model is limited by the availability of data and relative amount of geologic complexity found in an area. The geologic framework model is inherently limited by scale and content. The grid spacing used in

  15. Geologic Framework Model (GFM2000)

    Energy Technology Data Exchange (ETDEWEB)

    T. Vogt

    2004-08-26

    The purpose of this report is to document the geologic framework model, version GFM2000 with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, and the differences between GFM2000 and previous versions. The version number of this model reflects the year during which the model was constructed. This model supersedes the previous model version, documented in Geologic Framework Model (GFM 3.1) (CRWMS M&O 2000 [DIRS 138860]). The geologic framework model represents a three-dimensional interpretation of the geology surrounding the location of the monitored geologic repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain. The geologic framework model encompasses and is limited to an area of 65 square miles (168 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the geologic framework model (shown in Figure 1-1) were chosen to encompass the exploratory boreholes and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The upper surface of the model is made up of the surface topography and the depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The geologic framework model was constructed from geologic map and borehole data. Additional information from measured stratigraphic sections, gravity profiles, and seismic profiles was also considered. The intended use of the geologic framework model is to provide a geologic framework over the area of interest consistent with the level of detailed needed for hydrologic flow and radionuclide transport modeling through the UZ and for repository design. The model is limited by the availability of data and relative amount of geologic complexity found in an area. The geologic framework model is inherently limited by scale and content. The grid spacing used in the

  16. Synthetic geology - Exploring the "what if?" in geology

    Science.gov (United States)

    Klump, J. F.; Robertson, J.

    2015-12-01

    The spatial and temporal extent of geological pheno