WorldWideScience

Sample records for global optimization algorithms

  1. On benchmarking Stochastic Global Optimization Algorithms

    Hendrix, E.M.T.; Lancinskas, A.

    2015-01-01

    A multitude of heuristic stochastic optimization algorithms have been described in literature to obtain good solutions of the box-constrained global optimization problem often with a limit on the number of used function evaluations. In the larger question of which algorithms behave well on which

  2. A Direct Search Algorithm for Global Optimization

    Enrique Baeyens

    2016-06-01

    Full Text Available A direct search algorithm is proposed for minimizing an arbitrary real valued function. The algorithm uses a new function transformation and three simplex-based operations. The function transformation provides global exploration features, while the simplex-based operations guarantees the termination of the algorithm and provides global convergence to a stationary point if the cost function is differentiable and its gradient is Lipschitz continuous. The algorithm’s performance has been extensively tested using benchmark functions and compared to some well-known global optimization algorithms. The results of the computational study show that the algorithm combines both simplicity and efficiency and is competitive with the heuristics-based strategies presently used for global optimization.

  3. On the efficiency of chaos optimization algorithms for global optimization

    Yang Dixiong; Li Gang; Cheng Gengdong

    2007-01-01

    Chaos optimization algorithms as a novel method of global optimization have attracted much attention, which were all based on Logistic map. However, we have noticed that the probability density function of the chaotic sequences derived from Logistic map is a Chebyshev-type one, which may affect the global searching capacity and computational efficiency of chaos optimization algorithms considerably. Considering the statistical property of the chaotic sequences of Logistic map and Kent map, the improved hybrid chaos-BFGS optimization algorithm and the Kent map based hybrid chaos-BFGS algorithm are proposed. Five typical nonlinear functions with multimodal characteristic are tested to compare the performance of five hybrid optimization algorithms, which are the conventional Logistic map based chaos-BFGS algorithm, improved Logistic map based chaos-BFGS algorithm, Kent map based chaos-BFGS algorithm, Monte Carlo-BFGS algorithm, mesh-BFGS algorithm. The computational performance of the five algorithms is compared, and the numerical results make us question the high efficiency of the chaos optimization algorithms claimed in some references. It is concluded that the efficiency of the hybrid optimization algorithms is influenced by the statistical property of chaotic/stochastic sequences generated from chaotic/stochastic algorithms, and the location of the global optimum of nonlinear functions. In addition, it is inappropriate to advocate the high efficiency of the global optimization algorithms only depending on several numerical examples of low-dimensional functions

  4. A Novel Particle Swarm Optimization Algorithm for Global Optimization.

    Wang, Chun-Feng; Liu, Kui

    2016-01-01

    Particle Swarm Optimization (PSO) is a recently developed optimization method, which has attracted interest of researchers in various areas due to its simplicity and effectiveness, and many variants have been proposed. In this paper, a novel Particle Swarm Optimization algorithm is presented, in which the information of the best neighbor of each particle and the best particle of the entire population in the current iteration is considered. Meanwhile, to avoid premature, an abandoned mechanism is used. Furthermore, for improving the global convergence speed of our algorithm, a chaotic search is adopted in the best solution of the current iteration. To verify the performance of our algorithm, standard test functions have been employed. The experimental results show that the algorithm is much more robust and efficient than some existing Particle Swarm Optimization algorithms.

  5. Dual Schroedinger Equation as Global Optimization Algorithm

    Huang Xiaofei; eGain Communications, Mountain View, CA 94043

    2011-01-01

    The dual Schroedinger equation is defined as replacing the imaginary number i by -1 in the original one. This paper shows that the dual equation shares the same stationary states as the original one. Different from the original one, it explicitly defines a dynamic process for a system to evolve from any state to lower energy states and eventually to the lowest one. Its power as a global optimization algorithm might be used by nature for constructing atoms and molecules. It shall be interesting to verify its existence in nature.

  6. Parallel Global Optimization with the Particle Swarm Algorithm (Preprint)

    Schutte, J. F; Reinbolt, J. A; Fregly, B. J; Haftka, R. T; George, A. D

    2004-01-01

    .... To obtain enhanced computational throughput and global search capability, we detail the coarse-grained parallelization of an increasingly popular global search method, the Particle Swarm Optimization (PSO) algorithm...

  7. Theory and Algorithms for Global/Local Design Optimization

    Haftka, Raphael T

    2004-01-01

    ... the component and overall design as well as on exploration of global optimization algorithms. In the former category, heuristic decomposition was followed with proof that it solves the original problem...

  8. Theory and Algorithms for Global/Local Design Optimization

    Watson, Layne T; Guerdal, Zafer; Haftka, Raphael T

    2005-01-01

    The motivating application for this research is the global/local optimal design of composite aircraft structures such as wings and fuselages, but the theory and algorithms are more widely applicable...

  9. A dynamic global and local combined particle swarm optimization algorithm

    Jiao Bin; Lian Zhigang; Chen Qunxian

    2009-01-01

    Particle swarm optimization (PSO) algorithm has been developing rapidly and many results have been reported. PSO algorithm has shown some important advantages by providing high speed of convergence in specific problems, but it has a tendency to get stuck in a near optimal solution and one may find it difficult to improve solution accuracy by fine tuning. This paper presents a dynamic global and local combined particle swarm optimization (DGLCPSO) algorithm to improve the performance of original PSO, in which all particles dynamically share the best information of the local particle, global particle and group particles. It is tested with a set of eight benchmark functions with different dimensions and compared with original PSO. Experimental results indicate that the DGLCPSO algorithm improves the search performance on the benchmark functions significantly, and shows the effectiveness of the algorithm to solve optimization problems.

  10. A Globally Convergent Parallel SSLE Algorithm for Inequality Constrained Optimization

    Zhijun Luo

    2014-01-01

    Full Text Available A new parallel variable distribution algorithm based on interior point SSLE algorithm is proposed for solving inequality constrained optimization problems under the condition that the constraints are block-separable by the technology of sequential system of linear equation. Each iteration of this algorithm only needs to solve three systems of linear equations with the same coefficient matrix to obtain the descent direction. Furthermore, under certain conditions, the global convergence is achieved.

  11. A Unified Differential Evolution Algorithm for Global Optimization

    Qiang, Ji; Mitchell, Chad

    2014-06-24

    Abstract?In this paper, we propose a new unified differential evolution (uDE) algorithm for single objective global optimization. Instead of selecting among multiple mutation strategies as in the conventional differential evolution algorithm, this algorithm employs a single equation as the mutation strategy. It has the virtue of mathematical simplicity and also provides users the flexbility for broader exploration of different mutation strategies. Numerical tests using twelve basic unimodal and multimodal functions show promising performance of the proposed algorithm in comparison to convential differential evolution algorithms.

  12. An Adaptive Unified Differential Evolution Algorithm for Global Optimization

    Qiang, Ji; Mitchell, Chad

    2014-11-03

    In this paper, we propose a new adaptive unified differential evolution algorithm for single-objective global optimization. Instead of the multiple mutation strate- gies proposed in conventional differential evolution algorithms, this algorithm employs a single equation unifying multiple strategies into one expression. It has the virtue of mathematical simplicity and also provides users the flexibility for broader exploration of the space of mutation operators. By making all control parameters in the proposed algorithm self-adaptively evolve during the process of optimization, it frees the application users from the burden of choosing appro- priate control parameters and also improves the performance of the algorithm. In numerical tests using thirteen basic unimodal and multimodal functions, the proposed adaptive unified algorithm shows promising performance in compari- son to several conventional differential evolution algorithms.

  13. A Novel Hybrid Firefly Algorithm for Global Optimization.

    Lina Zhang

    Full Text Available Global optimization is challenging to solve due to its nonlinearity and multimodality. Traditional algorithms such as the gradient-based methods often struggle to deal with such problems and one of the current trends is to use metaheuristic algorithms. In this paper, a novel hybrid population-based global optimization algorithm, called hybrid firefly algorithm (HFA, is proposed by combining the advantages of both the firefly algorithm (FA and differential evolution (DE. FA and DE are executed in parallel to promote information sharing among the population and thus enhance searching efficiency. In order to evaluate the performance and efficiency of the proposed algorithm, a diverse set of selected benchmark functions are employed and these functions fall into two groups: unimodal and multimodal. The experimental results show better performance of the proposed algorithm compared to the original version of the firefly algorithm (FA, differential evolution (DE and particle swarm optimization (PSO in the sense of avoiding local minima and increasing the convergence rate.

  14. A hybrid bird mating optimizer algorithm with teaching-learning-based optimization for global numerical optimization

    Qingyang Zhang

    2015-02-01

    Full Text Available Bird Mating Optimizer (BMO is a novel meta-heuristic optimization algorithm inspired by intelligent mating behavior of birds. However, it is still insufficient in convergence of speed and quality of solution. To overcome these drawbacks, this paper proposes a hybrid algorithm (TLBMO, which is established by combining the advantages of Teaching-learning-based optimization (TLBO and Bird Mating Optimizer (BMO. The performance of TLBMO is evaluated on 23 benchmark functions, and compared with seven state-of-the-art approaches, namely BMO, TLBO, Artificial Bee Bolony (ABC, Particle Swarm Optimization (PSO, Fast Evolution Programming (FEP, Differential Evolution (DE, Group Search Optimization (GSO. Experimental results indicate that the proposed method performs better than other existing algorithms for global numerical optimization.

  15. An Algorithm for Global Optimization Inspired by Collective Animal Behavior

    Erik Cuevas

    2012-01-01

    Full Text Available A metaheuristic algorithm for global optimization called the collective animal behavior (CAB is introduced. Animal groups, such as schools of fish, flocks of birds, swarms of locusts, and herds of wildebeest, exhibit a variety of behaviors including swarming about a food source, milling around a central locations, or migrating over large distances in aligned groups. These collective behaviors are often advantageous to groups, allowing them to increase their harvesting efficiency, to follow better migration routes, to improve their aerodynamic, and to avoid predation. In the proposed algorithm, the searcher agents emulate a group of animals which interact with each other based on the biological laws of collective motion. The proposed method has been compared to other well-known optimization algorithms. The results show good performance of the proposed method when searching for a global optimum of several benchmark functions.

  16. Global structural optimizations of surface systems with a genetic algorithm

    Chuang, Feng-Chuan

    2005-01-01

    Global structural optimizations with a genetic algorithm were performed for atomic cluster and surface systems including aluminum atomic clusters, Si magic clusters on the Si(111) 7 x 7 surface, silicon high-index surfaces, and Ag-induced Si(111) reconstructions. First, the global structural optimizations of neutral aluminum clusters Al n (n up to 23) were performed using a genetic algorithm coupled with a tight-binding potential. Second, a genetic algorithm in combination with tight-binding and first-principles calculations were performed to study the structures of magic clusters on the Si(111) 7 x 7 surface. Extensive calculations show that the magic cluster observed in scanning tunneling microscopy (STM) experiments consist of eight Si atoms. Simulated STM images of the Si magic cluster exhibit a ring-like feature similar to STM experiments. Third, a genetic algorithm coupled with a highly optimized empirical potential were used to determine the lowest energy structure of high-index semiconductor surfaces. The lowest energy structures of Si(105) and Si(114) were determined successfully. The results of Si(105) and Si(114) are reported within the framework of highly optimized empirical potential and first-principles calculations. Finally, a genetic algorithm coupled with Si and Ag tight-binding potentials were used to search for Ag-induced Si(111) reconstructions at various Ag and Si coverages. The optimized structural models of √3 x √3, 3 x 1, and 5 x 2 phases were reported using first-principles calculations. A novel model is found to have lower surface energy than the proposed double-honeycomb chained (DHC) model both for Au/Si(111) 5 x 2 and Ag/Si(111) 5 x 2 systems

  17. Globally convergent optimization algorithm using conservative convex separable diagonal quadratic approximations

    Groenwold, A.A.; Wood, D.W.; Etman, L.F.P.; Tosserams, S.

    2009-01-01

    We implement and test a globally convergent sequential approximate optimization algorithm based on (convexified) diagonal quadratic approximations. The algorithm resides in the class of globally convergent optimization methods based on conservative convex separable approximations developed by

  18. ABCluster: the artificial bee colony algorithm for cluster global optimization.

    Zhang, Jun; Dolg, Michael

    2015-10-07

    Global optimization of cluster geometries is of fundamental importance in chemistry and an interesting problem in applied mathematics. In this work, we introduce a relatively new swarm intelligence algorithm, i.e. the artificial bee colony (ABC) algorithm proposed in 2005, to this field. It is inspired by the foraging behavior of a bee colony, and only three parameters are needed to control it. We applied it to several potential functions of quite different nature, i.e., the Coulomb-Born-Mayer, Lennard-Jones, Morse, Z and Gupta potentials. The benchmarks reveal that for long-ranged potentials the ABC algorithm is very efficient in locating the global minimum, while for short-ranged ones it is sometimes trapped into a local minimum funnel on a potential energy surface of large clusters. We have released an efficient, user-friendly, and free program "ABCluster" to realize the ABC algorithm. It is a black-box program for non-experts as well as experts and might become a useful tool for chemists to study clusters.

  19. GMG: A Guaranteed, Efficient Global Optimization Algorithm for Remote Sensing.

    D' Helon, CD

    2004-08-18

    The monocular passive ranging (MPR) problem in remote sensing consists of identifying the precise range of an airborne target (missile, plane, etc.) from its observed radiance. This inverse problem may be set as a global optimization problem (GOP) whereby the difference between the observed and model predicted radiances is minimized over the possible ranges and atmospheric conditions. Using additional information about the error function between the predicted and observed radiances of the target, we developed GMG, a new algorithm to find the Global Minimum with a Guarantee. The new algorithm transforms the original continuous GOP into a discrete search problem, thereby guaranteeing to find the position of the global minimum in a reasonably short time. The algorithm is first applied to the golf course problem, which serves as a litmus test for its performance in the presence of both complete and degraded additional information. GMG is further assessed on a set of standard benchmark functions and then applied to various realizations of the MPR problem.

  20. Global Optimization of a Periodic System using a Genetic Algorithm

    Stucke, David; Crespi, Vincent

    2001-03-01

    We use a novel application of a genetic algorithm global optimizatin technique to find the lowest energy structures for periodic systems. We apply this technique to colloidal crystals for several different stoichiometries of binary and trinary colloidal crystals. This application of a genetic algorithm is decribed and results of likely candidate structures are presented.

  1. A branch and bound algorithm for the global optimization of Hessian Lipschitz continuous functions

    Fowkes, Jaroslav M.; Gould, Nicholas I. M.; Farmer, Chris L.

    2012-01-01

    We present a branch and bound algorithm for the global optimization of a twice differentiable nonconvex objective function with a Lipschitz continuous Hessian over a compact, convex set. The algorithm is based on applying cubic regularisation

  2. A Global Optimization Algorithm for Sum of Linear Ratios Problem

    Yuelin Gao

    2013-01-01

    Full Text Available We equivalently transform the sum of linear ratios programming problem into bilinear programming problem, then by using the linear characteristics of convex envelope and concave envelope of double variables product function, linear relaxation programming of the bilinear programming problem is given, which can determine the lower bound of the optimal value of original problem. Therefore, a branch and bound algorithm for solving sum of linear ratios programming problem is put forward, and the convergence of the algorithm is proved. Numerical experiments are reported to show the effectiveness of the proposed algorithm.

  3. A New Hybrid Whale Optimizer Algorithm with Mean Strategy of Grey Wolf Optimizer for Global Optimization

    Narinder Singh

    2018-03-01

    Full Text Available The quest for an efficient nature-inspired optimization technique has continued over the last few decades. In this paper, a hybrid nature-inspired optimization technique has been proposed. The hybrid algorithm has been constructed using Mean Grey Wolf Optimizer (MGWO and Whale Optimizer Algorithm (WOA. We have utilized the spiral equation of Whale Optimizer Algorithm for two procedures in the Hybrid Approach GWO (HAGWO algorithm: (i firstly, we used the spiral equation in Grey Wolf Optimizer algorithm for balance between the exploitation and the exploration process in the new hybrid approach; and (ii secondly, we also applied this equation in the whole population in order to refrain from the premature convergence and trapping in local minima. The feasibility and effectiveness of the hybrid algorithm have been tested by solving some standard benchmarks, XOR, Baloon, Iris, Breast Cancer, Welded Beam Design, Pressure Vessel Design problems and comparing the results with those obtained through other metaheuristics. The solutions prove that the newly existing hybrid variant has higher stronger stability, faster convergence rate and computational accuracy than other nature-inspired metaheuristics on the maximum number of problems and can successfully resolve the function of constrained nonlinear optimization in reality.

  4. A Simple But Effective Canonical Dual Theory Unified Algorithm for Global Optimization

    Zhang, Jiapu

    2011-01-01

    Numerical global optimization methods are often very time consuming and could not be applied for high-dimensional nonconvex/nonsmooth optimization problems. Due to the nonconvexity/nonsmoothness, directly solving the primal problems sometimes is very difficult. This paper presents a very simple but very effective canonical duality theory (CDT) unified global optimization algorithm. This algorithm has convergence is proved in this paper. More important, for this CDT-unified algorithm, numerous...

  5. Cloud Particles Differential Evolution Algorithm: A Novel Optimization Method for Global Numerical Optimization

    Wei Li

    2015-01-01

    Full Text Available We propose a new optimization algorithm inspired by the formation and change of the cloud in nature, referred to as Cloud Particles Differential Evolution (CPDE algorithm. The cloud is assumed to have three states in the proposed algorithm. Gaseous state represents the global exploration. Liquid state represents the intermediate process from the global exploration to the local exploitation. Solid state represents the local exploitation. The best solution found so far acts as a nucleus. In gaseous state, the nucleus leads the population to explore by condensation operation. In liquid state, cloud particles carry out macrolocal exploitation by liquefaction operation. A new mutation strategy called cloud differential mutation is introduced in order to solve a problem that the misleading effect of a nucleus may cause the premature convergence. In solid state, cloud particles carry out microlocal exploitation by solidification operation. The effectiveness of the algorithm is validated upon different benchmark problems. The results have been compared with eight well-known optimization algorithms. The statistical analysis on performance evaluation of the different algorithms on 10 benchmark functions and CEC2013 problems indicates that CPDE attains good performance.

  6. Avoiding spurious submovement decompositions: a globally optimal algorithm

    Rohrer, Brandon Robinson; Hogan, Neville

    2003-01-01

    Evidence for the existence of discrete submovements underlying continuous human movement has motivated many attempts to extract them. Although they produce visually convincing results, all of the methodologies that have been employed are prone to produce spurious decompositions. Examples of potential failures are given. A branch-and-bound algorithm for submovement extraction, capable of global nonlinear minimization (and hence capable of avoiding spurious decompositions), is developed and demonstrated.

  7. A Global Optimization Algorithm for Sum of Linear Ratios Problem

    Yuelin Gao; Siqiao Jin

    2013-01-01

    We equivalently transform the sum of linear ratios programming problem into bilinear programming problem, then by using the linear characteristics of convex envelope and concave envelope of double variables product function, linear relaxation programming of the bilinear programming problem is given, which can determine the lower bound of the optimal value of original problem. Therefore, a branch and bound algorithm for solving sum of linear ratios programming problem is put forward, and the c...

  8. A branch and bound algorithm for the global optimization of Hessian Lipschitz continuous functions

    Fowkes, Jaroslav M.

    2012-06-21

    We present a branch and bound algorithm for the global optimization of a twice differentiable nonconvex objective function with a Lipschitz continuous Hessian over a compact, convex set. The algorithm is based on applying cubic regularisation techniques to the objective function within an overlapping branch and bound algorithm for convex constrained global optimization. Unlike other branch and bound algorithms, lower bounds are obtained via nonconvex underestimators of the function. For a numerical example, we apply the proposed branch and bound algorithm to radial basis function approximations. © 2012 Springer Science+Business Media, LLC.

  9. An Evaluation of the Sniffer Global Optimization Algorithm Using Standard Test Functions

    Butler, Roger A. R.; Slaminka, Edward E.

    1992-03-01

    The performance of Sniffer—a new global optimization algorithm—is compared with that of Simulated Annealing. Using the number of function evaluations as a measure of efficiency, the new algorithm is shown to be significantly better at finding the global minimum of seven standard test functions. Several of the test functions used have many local minima and very steep walls surrounding the global minimum. Such functions are intended to thwart global minimization algorithms.

  10. Simulated Annealing-Based Krill Herd Algorithm for Global Optimization

    Gai-Ge Wang

    2013-01-01

    Full Text Available Recently, Gandomi and Alavi proposed a novel swarm intelligent method, called krill herd (KH, for global optimization. To enhance the performance of the KH method, in this paper, a new improved meta-heuristic simulated annealing-based krill herd (SKH method is proposed for optimization tasks. A new krill selecting (KS operator is used to refine krill behavior when updating krill’s position so as to enhance its reliability and robustness dealing with optimization problems. The introduced KS operator involves greedy strategy and accepting few not-so-good solutions with a low probability originally used in simulated annealing (SA. In addition, a kind of elitism scheme is used to save the best individuals in the population in the process of the krill updating. The merits of these improvements are verified by fourteen standard benchmarking functions and experimental results show that, in most cases, the performance of this improved meta-heuristic SKH method is superior to, or at least highly competitive with, the standard KH and other optimization methods.

  11. A Guiding Evolutionary Algorithm with Greedy Strategy for Global Optimization Problems

    Leilei Cao

    2016-01-01

    Full Text Available A Guiding Evolutionary Algorithm (GEA with greedy strategy for global optimization problems is proposed. Inspired by Particle Swarm Optimization, the Genetic Algorithm, and the Bat Algorithm, the GEA was designed to retain some advantages of each method while avoiding some disadvantages. In contrast to the usual Genetic Algorithm, each individual in GEA is crossed with the current global best one instead of a randomly selected individual. The current best individual served as a guide to attract offspring to its region of genotype space. Mutation was added to offspring according to a dynamic mutation probability. To increase the capability of exploitation, a local search mechanism was applied to new individuals according to a dynamic probability of local search. Experimental results show that GEA outperformed the other three typical global optimization algorithms with which it was compared.

  12. Self-adaptive global best harmony search algorithm applied to reactor core fuel management optimization

    Poursalehi, N.; Zolfaghari, A.; Minuchehr, A.; Valavi, K.

    2013-01-01

    Highlights: • SGHS enhanced the convergence rate of LPO using some improvements in comparison to basic HS and GHS. • SGHS optimization algorithm obtained averagely better fitness relative to basic HS and GHS algorithms. • Upshot of the SGHS implementation in the LPO reveals its flexibility, efficiency and reliability. - Abstract: The aim of this work is to apply the new developed optimization algorithm, Self-adaptive Global best Harmony Search (SGHS), for PWRs fuel management optimization. SGHS algorithm has some modifications in comparison with basic Harmony Search (HS) and Global-best Harmony Search (GHS) algorithms such as dynamically change of parameters. For the demonstration of SGHS ability to find an optimal configuration of fuel assemblies, basic Harmony Search (HS) and Global-best Harmony Search (GHS) algorithms also have been developed and investigated. For this purpose, Self-adaptive Global best Harmony Search Nodal Expansion package (SGHSNE) has been developed implementing HS, GHS and SGHS optimization algorithms for the fuel management operation of nuclear reactor cores. This package uses developed average current nodal expansion code which solves the multi group diffusion equation by employment of first and second orders of Nodal Expansion Method (NEM) for two dimensional, hexagonal and rectangular geometries, respectively, by one node per a FA. Loading pattern optimization was performed using SGHSNE package for some test cases to present the SGHS algorithm capability in converging to near optimal loading pattern. Results indicate that the convergence rate and reliability of the SGHS method are quite promising and practically, SGHS improves the quality of loading pattern optimization results relative to HS and GHS algorithms. As a result, it has the potential to be used in the other nuclear engineering optimization problems

  13. A global optimization algorithm inspired in the behavior of selfish herds.

    Fausto, Fernando; Cuevas, Erik; Valdivia, Arturo; González, Adrián

    2017-10-01

    In this paper, a novel swarm optimization algorithm called the Selfish Herd Optimizer (SHO) is proposed for solving global optimization problems. SHO is based on the simulation of the widely observed selfish herd behavior manifested by individuals within a herd of animals subjected to some form of predation risk. In SHO, individuals emulate the predatory interactions between groups of prey and predators by two types of search agents: the members of a selfish herd (the prey) and a pack of hungry predators. Depending on their classification as either a prey or a predator, each individual is conducted by a set of unique evolutionary operators inspired by such prey-predator relationship. These unique traits allow SHO to improve the balance between exploration and exploitation without altering the population size. To illustrate the proficiency and robustness of the proposed method, it is compared to other well-known evolutionary optimization approaches such as Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Firefly Algorithm (FA), Differential Evolution (DE), Genetic Algorithms (GA), Crow Search Algorithm (CSA), Dragonfly Algorithm (DA), Moth-flame Optimization Algorithm (MOA) and Sine Cosine Algorithm (SCA). The comparison examines several standard benchmark functions, commonly considered within the literature of evolutionary algorithms. The experimental results show the remarkable performance of our proposed approach against those of the other compared methods, and as such SHO is proven to be an excellent alternative to solve global optimization problems. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Hooke–Jeeves Method-used Local Search in a Hybrid Global Optimization Algorithm

    V. D. Sulimov

    2014-01-01

    Full Text Available Modern methods for optimization investigation of complex systems are based on development and updating the mathematical models of systems because of solving the appropriate inverse problems. Input data desirable for solution are obtained from the analysis of experimentally defined consecutive characteristics for a system or a process. Causal characteristics are the sought ones to which equation coefficients of mathematical models of object, limit conditions, etc. belong. The optimization approach is one of the main ones to solve the inverse problems. In the main case it is necessary to find a global extremum of not everywhere differentiable criterion function. Global optimization methods are widely used in problems of identification and computation diagnosis system as well as in optimal control, computing to-mography, image restoration, teaching the neuron networks, other intelligence technologies. Increasingly complicated systems of optimization observed during last decades lead to more complicated mathematical models, thereby making solution of appropriate extreme problems significantly more difficult. A great deal of practical applications may have the problem con-ditions, which can restrict modeling. As a consequence, in inverse problems the criterion functions can be not everywhere differentiable and noisy. Available noise means that calculat-ing the derivatives is difficult and unreliable. It results in using the optimization methods without calculating the derivatives.An efficiency of deterministic algorithms of global optimization is significantly restrict-ed by their dependence on the extreme problem dimension. When the number of variables is large they use the stochastic global optimization algorithms. As stochastic algorithms yield too expensive solutions, so this drawback restricts their applications. Developing hybrid algo-rithms that combine a stochastic algorithm for scanning the variable space with deterministic local search

  15. A Self Adaptive Differential Evolution Algorithm for Global Optimization

    Kumar, Pravesh; Pant, Millie

    This paper presents a new Differential Evolution algorithm based on hybridization of adaptive control parameters and trigonometric mutation. First we propose a self adaptive DE named ADE where choice of control parameter F and Cr is not fixed at some constant value but is taken iteratively. The proposed algorithm is further modified by applying trigonometric mutation in it and the corresponding algorithm is named as ATDE. The performance of ATDE is evaluated on the set of 8 benchmark functions and the results are compared with the classical DE algorithm in terms of average fitness function value, number of function evaluations, convergence time and success rate. The numerical result shows the competence of the proposed algorithm.

  16. The Global Optimal Algorithm of Reliable Path Finding Problem Based on Backtracking Method

    Liang Shen

    2017-01-01

    Full Text Available There is a growing interest in finding a global optimal path in transportation networks particularly when the network suffers from unexpected disturbance. This paper studies the problem of finding a global optimal path to guarantee a given probability of arriving on time in a network with uncertainty, in which the travel time is stochastic instead of deterministic. Traditional path finding methods based on least expected travel time cannot capture the network user’s risk-taking behaviors in path finding. To overcome such limitation, the reliable path finding algorithms have been proposed but the convergence of global optimum is seldom addressed in the literature. This paper integrates the K-shortest path algorithm into Backtracking method to propose a new path finding algorithm under uncertainty. The global optimum of the proposed method can be guaranteed. Numerical examples are conducted to demonstrate the correctness and efficiency of the proposed algorithm.

  17. PS-FW: A Hybrid Algorithm Based on Particle Swarm and Fireworks for Global Optimization

    Chen, Shuangqing; Wei, Lixin; Guan, Bing

    2018-01-01

    Particle swarm optimization (PSO) and fireworks algorithm (FWA) are two recently developed optimization methods which have been applied in various areas due to their simplicity and efficiency. However, when being applied to high-dimensional optimization problems, PSO algorithm may be trapped in the local optima owing to the lack of powerful global exploration capability, and fireworks algorithm is difficult to converge in some cases because of its relatively low local exploitation efficiency for noncore fireworks. In this paper, a hybrid algorithm called PS-FW is presented, in which the modified operators of FWA are embedded into the solving process of PSO. In the iteration process, the abandonment and supplement mechanism is adopted to balance the exploration and exploitation ability of PS-FW, and the modified explosion operator and the novel mutation operator are proposed to speed up the global convergence and to avoid prematurity. To verify the performance of the proposed PS-FW algorithm, 22 high-dimensional benchmark functions have been employed, and it is compared with PSO, FWA, stdPSO, CPSO, CLPSO, FIPS, Frankenstein, and ALWPSO algorithms. Results show that the PS-FW algorithm is an efficient, robust, and fast converging optimization method for solving global optimization problems. PMID:29675036

  18. Novel Adaptive Bacteria Foraging Algorithms for Global Optimization

    Ahmad N. K. Nasir

    2014-01-01

    Full Text Available This paper presents improved versions of bacterial foraging algorithm (BFA. The chemotaxis feature of bacteria through random motion is an effective strategy for exploring the optimum point in a search area. The selection of small step size value in the bacteria motion leads to high accuracy in the solution but it offers slow convergence. On the contrary, defining a large step size in the motion provides faster convergence but the bacteria will be unable to locate the optimum point hence reducing the fitness accuracy. In order to overcome such problems, novel linear and nonlinear mathematical relationships based on the index of iteration, index of bacteria, and fitness cost are adopted which can dynamically vary the step size of bacteria movement. The proposed algorithms are tested with several unimodal and multimodal benchmark functions in comparison with the original BFA. Moreover, the application of the proposed algorithms in modelling of a twin rotor system is presented. The results show that the proposed algorithms outperform the predecessor algorithm in all test functions and acquire better model for the twin rotor system.

  19. Memetic Algorithms to Solve a Global Nonlinear Optimization Problem. A Review

    M. K. Sakharov

    2015-01-01

    Full Text Available In recent decades, evolutionary algorithms have proven themselves as the powerful optimization techniques of search engine. Their popularity is due to the fact that they are easy to implement and can be used in all areas, since they are based on the idea of universal evolution. For example, in the problems of a large number of local optima, the traditional optimization methods, usually, fail in finding the global optimum. To solve such problems using a variety of stochastic methods, in particular, the so-called population-based algorithms, which are a kind of evolutionary methods. The main disadvantage of this class of methods is their slow convergence to the exact solution in the neighborhood of the global optimum, as these methods incapable to use the local information about the landscape of the function. This often limits their use in largescale real-world problems where the computation time is a critical factor.One of the promising directions in the field of modern evolutionary computation are memetic algorithms, which can be regarded as a combination of population search of the global optimum and local procedures for verifying solutions, which gives a synergistic effect. In the context of memetic algorithms, the meme is an implementation of the local optimization method to refine solution in the search.The concept of memetic algorithms provides ample opportunities for the development of various modifications of these algorithms, which can vary the frequency of the local search, the conditions of its end, and so on. The practically significant memetic algorithm modifications involve the simultaneous use of different memes. Such algorithms are called multi-memetic.The paper gives statement of the global problem of nonlinear unconstrained optimization, describes the most promising areas of AI modifications, including hybridization and metaoptimization. The main content of the work is the classification and review of existing varieties of

  20. A Local and Global Search Combined Particle Swarm Optimization Algorithm and Its Convergence Analysis

    Weitian Lin

    2014-01-01

    Full Text Available Particle swarm optimization algorithm (PSOA is an advantage optimization tool. However, it has a tendency to get stuck in a near optimal solution especially for middle and large size problems and it is difficult to improve solution accuracy by fine-tuning parameters. According to the insufficiency, this paper researches the local and global search combine particle swarm algorithm (LGSCPSOA, and its convergence and obtains its convergence qualification. At the same time, it is tested with a set of 8 benchmark continuous functions and compared their optimization results with original particle swarm algorithm (OPSOA. Experimental results indicate that the LGSCPSOA improves the search performance especially on the middle and large size benchmark functions significantly.

  1. Global WASF-GA: An Evolutionary Algorithm in Multiobjective Optimization to Approximate the Whole Pareto Optimal Front.

    Saborido, Rubén; Ruiz, Ana B; Luque, Mariano

    2017-01-01

    In this article, we propose a new evolutionary algorithm for multiobjective optimization called Global WASF-GA ( global weighting achievement scalarizing function genetic algorithm), which falls within the aggregation-based evolutionary algorithms. The main purpose of Global WASF-GA is to approximate the whole Pareto optimal front. Its fitness function is defined by an achievement scalarizing function (ASF) based on the Tchebychev distance, in which two reference points are considered (both utopian and nadir objective vectors) and the weight vector used is taken from a set of weight vectors whose inverses are well-distributed. At each iteration, all individuals are classified into different fronts. Each front is formed by the solutions with the lowest values of the ASF for the different weight vectors in the set, using the utopian vector and the nadir vector as reference points simultaneously. Varying the weight vector in the ASF while considering the utopian and the nadir vectors at the same time enables the algorithm to obtain a final set of nondominated solutions that approximate the whole Pareto optimal front. We compared Global WASF-GA to MOEA/D (different versions) and NSGA-II in two-, three-, and five-objective problems. The computational results obtained permit us to conclude that Global WASF-GA gets better performance, regarding the hypervolume metric and the epsilon indicator, than the other two algorithms in many cases, especially in three- and five-objective problems.

  2. Inversion of self-potential anomalies caused by simple-geometry bodies using global optimization algorithms

    Göktürkler, G; Balkaya, Ç

    2012-01-01

    Three naturally inspired meta-heuristic algorithms—the genetic algorithm (GA), simulated annealing (SA) and particle swarm optimization (PSO)—were used to invert some of the self-potential (SP) anomalies originated by some polarized bodies with simple geometries. Both synthetic and field data sets were considered. The tests with the synthetic data comprised of the solutions with both noise-free and noisy data; in the tests with the field data some SP anomalies observed over a copper belt (India), graphite deposits (Germany) and metallic sulfide (Turkey) were inverted. The model parameters included the electric dipole moment, polarization angle, depth, shape factor and origin of the anomaly. The estimated parameters were compared with those from previous studies using various optimization algorithms, mainly least-squares approaches, on the same data sets. During the test studies the solutions by GA, PSO and SA were characterized as being consistent with each other; a good starting model was not a requirement to reach the global minimum. It can be concluded that the global optimization algorithms considered in this study were able to yield compatible solutions with those from widely used local optimization algorithms. (paper)

  3. Efficient algorithms for multidimensional global optimization in genetic mapping of complex traits

    Kajsa Ljungberg

    2010-10-01

    Full Text Available Kajsa Ljungberg1, Kateryna Mishchenko2, Sverker Holmgren11Division of Scientific Computing, Department of Information Technology, Uppsala University, Uppsala, Sweden; 2Department of Mathematics and Physics, Mälardalen University College, Västerås, SwedenAbstract: We present a two-phase strategy for optimizing a multidimensional, nonconvex function arising during genetic mapping of quantitative traits. Such traits are believed to be affected by multiple so called QTL, and searching for d QTL results in a d-dimensional optimization problem with a large number of local optima. We combine the global algorithm DIRECT with a number of local optimization methods that accelerate the final convergence, and adapt the algorithms to problem-specific features. We also improve the evaluation of the QTL mapping objective function to enable exploitation of the smoothness properties of the optimization landscape. Our best two-phase method is demonstrated to be accurate in at least six dimensions and up to ten times faster than currently used QTL mapping algorithms.Keywords: global optimization, QTL mapping, DIRECT 

  4. Global optimization driven by genetic algorithms for disruption predictors based on APODIS architecture

    Rattá, G.A., E-mail: giuseppe.ratta@ciemat.es [Laboratorio Nacional de Fusión, CIEMAT, Madrid (Spain); Vega, J. [Laboratorio Nacional de Fusión, CIEMAT, Madrid (Spain); Murari, A. [Consorzio RFX, Associazione EURATOM/ENEA per la Fusione, Padua (Italy); Dormido-Canto, S. [Dpto. de Informática y Automática, Universidad Nacional de Educación a Distancia, Madrid (Spain); Moreno, R. [Laboratorio Nacional de Fusión, CIEMAT, Madrid (Spain)

    2016-11-15

    Highlights: • A global optimization method based on genetic algorithms was developed. • It allowed improving the prediction of disruptions using APODIS architecture. • It also provides the potential opportunity to develop a spectrum of future predictors using different training datasets. • The future analysis of how their structures reassemble and evolve in each test may help to improve the development of disruption predictors for ITER. - Abstract: Since year 2010, the APODIS architecture has proven its accuracy predicting disruptions in JET tokamak. Nevertheless, it has shown margins for improvements, fact indisputable after the enhanced performances achieved in posterior upgrades. In this article, a complete optimization driven by Genetic Algorithms (GA) is applied to it aiming at considering all possible combination of signals, signal features, quantity of models, their characteristics and internal parameters. This global optimization targets the creation of the best possible system with a reduced amount of required training data. The results harbor no doubts about the reliability of the global optimization method, allowing to outperform the ones of previous versions: 91.77% of predictions (89.24% with an anticipation higher than 10 ms) with a 3.55% of false alarms. Beyond its effectiveness, it also provides the potential opportunity to develop a spectrum of future predictors using different training datasets.

  5. Global optimization driven by genetic algorithms for disruption predictors based on APODIS architecture

    Rattá, G.A.; Vega, J.; Murari, A.; Dormido-Canto, S.; Moreno, R.

    2016-01-01

    Highlights: • A global optimization method based on genetic algorithms was developed. • It allowed improving the prediction of disruptions using APODIS architecture. • It also provides the potential opportunity to develop a spectrum of future predictors using different training datasets. • The future analysis of how their structures reassemble and evolve in each test may help to improve the development of disruption predictors for ITER. - Abstract: Since year 2010, the APODIS architecture has proven its accuracy predicting disruptions in JET tokamak. Nevertheless, it has shown margins for improvements, fact indisputable after the enhanced performances achieved in posterior upgrades. In this article, a complete optimization driven by Genetic Algorithms (GA) is applied to it aiming at considering all possible combination of signals, signal features, quantity of models, their characteristics and internal parameters. This global optimization targets the creation of the best possible system with a reduced amount of required training data. The results harbor no doubts about the reliability of the global optimization method, allowing to outperform the ones of previous versions: 91.77% of predictions (89.24% with an anticipation higher than 10 ms) with a 3.55% of false alarms. Beyond its effectiveness, it also provides the potential opportunity to develop a spectrum of future predictors using different training datasets.

  6. Chaos optimization algorithms based on chaotic maps with different probability distribution and search speed for global optimization

    Yang, Dixiong; Liu, Zhenjun; Zhou, Jilei

    2014-04-01

    Chaos optimization algorithms (COAs) usually utilize the chaotic map like Logistic map to generate the pseudo-random numbers mapped as the design variables for global optimization. Many existing researches indicated that COA can more easily escape from the local minima than classical stochastic optimization algorithms. This paper reveals the inherent mechanism of high efficiency and superior performance of COA, from a new perspective of both the probability distribution property and search speed of chaotic sequences generated by different chaotic maps. The statistical property and search speed of chaotic sequences are represented by the probability density function (PDF) and the Lyapunov exponent, respectively. Meanwhile, the computational performances of hybrid chaos-BFGS algorithms based on eight one-dimensional chaotic maps with different PDF and Lyapunov exponents are compared, in which BFGS is a quasi-Newton method for local optimization. Moreover, several multimodal benchmark examples illustrate that, the probability distribution property and search speed of chaotic sequences from different chaotic maps significantly affect the global searching capability and optimization efficiency of COA. To achieve the high efficiency of COA, it is recommended to adopt the appropriate chaotic map generating the desired chaotic sequences with uniform or nearly uniform probability distribution and large Lyapunov exponent.

  7. RDEL: Restart Differential Evolution algorithm with Local Search Mutation for global numerical optimization

    Ali Wagdy Mohamed

    2014-11-01

    Full Text Available In this paper, a novel version of Differential Evolution (DE algorithm based on a couple of local search mutation and a restart mechanism for solving global numerical optimization problems over continuous space is presented. The proposed algorithm is named as Restart Differential Evolution algorithm with Local Search Mutation (RDEL. In RDEL, inspired by Particle Swarm Optimization (PSO, a novel local mutation rule based on the position of the best and the worst individuals among the entire population of a particular generation is introduced. The novel local mutation scheme is joined with the basic mutation rule through a linear decreasing function. The proposed local mutation scheme is proven to enhance local search tendency of the basic DE and speed up the convergence. Furthermore, a restart mechanism based on random mutation scheme and a modified Breeder Genetic Algorithm (BGA mutation scheme is combined to avoid stagnation and/or premature convergence. Additionally, an exponent increased crossover probability rule and a uniform scaling factors of DE are introduced to promote the diversity of the population and to improve the search process, respectively. The performance of RDEL is investigated and compared with basic differential evolution, and state-of-the-art parameter adaptive differential evolution variants. It is discovered that the proposed modifications significantly improve the performance of DE in terms of quality of solution, efficiency and robustness.

  8. Robust video watermarking via optimization algorithm for quantization of pseudo-random semi-global statistics

    Kucukgoz, Mehmet; Harmanci, Oztan; Mihcak, Mehmet K.; Venkatesan, Ramarathnam

    2005-03-01

    In this paper, we propose a novel semi-blind video watermarking scheme, where we use pseudo-random robust semi-global features of video in the three dimensional wavelet transform domain. We design the watermark sequence via solving an optimization problem, such that the features of the mark-embedded video are the quantized versions of the features of the original video. The exact realizations of the algorithmic parameters are chosen pseudo-randomly via a secure pseudo-random number generator, whose seed is the secret key, that is known (resp. unknown) by the embedder and the receiver (resp. by the public). We experimentally show the robustness of our algorithm against several attacks, such as conventional signal processing modifications and adversarial estimation attacks.

  9. A Novel Global MPP Tracking of Photovoltaic System based on Whale Optimization Algorithm

    Santhan Kumar Cherukuri

    2016-11-01

    Full Text Available To harvest maximum amount of solar energy and to attain higher efficiency, photovoltaic generation (PVG systems are to be operated at their maximum power  point (MPP under both variable climatic and partial shaded condition (PSC. From literature most of conventional MPP tracking (MPPT methods are able to guarantee MPP successfully under uniform shading condition but fails to get global MPP as they may trap at local MPP under PSC, which adversely deteriorates the efficiency of Photovoltaic Generation (PVG system. In this paper a novel MPPT based on Whale Optimization Algorithm (WOA is proposed to analyze analytic modeling of PV system considering both series and shunt resistances for MPP tracking under PSC. The proposed algorithm is tested on 6S, 3S2P and 2S3P Photovoltaic array configurations for different shading patterns and results are presented. To compare the performance, GWO and PSO MPPT algorithms are also simulated and results are also presented.  From the results it is noticed that proposed MPPT method is superior to other MPPT methods with reference to accuracy and tracking speed. Article History: Received July 23rd 2016; Received in revised form September 15th 2016; Accepted October 1st 2016; Available online How to Cite This Article: Kumar, C.H.S and Rao, R.S. (2016 A Novel Global MPP Tracking of Photovoltaic System based on Whale Optimization Algorithm. Int. Journal of Renewable Energy Development, 5(3, 225-232. http://dx.doi.org/10.14710/ijred.5.3.225-232

  10. Group leaders optimization algorithm

    Daskin, Anmer; Kais, Sabre

    2011-03-01

    We present a new global optimization algorithm in which the influence of the leaders in social groups is used as an inspiration for the evolutionary technique which is designed into a group architecture. To demonstrate the efficiency of the method, a standard suite of single and multi-dimensional optimization functions along with the energies and the geometric structures of Lennard-Jones clusters are given as well as the application of the algorithm on quantum circuit design problems. We show that as an improvement over previous methods, the algorithm scales as N 2.5 for the Lennard-Jones clusters of N-particles. In addition, an efficient circuit design is shown for a two-qubit Grover search algorithm which is a quantum algorithm providing quadratic speedup over the classical counterpart.

  11. Microseismic event location using global optimization algorithms: An integrated and automated workflow

    Lagos, Soledad R.; Velis, Danilo R.

    2018-02-01

    We perform the location of microseismic events generated in hydraulic fracturing monitoring scenarios using two global optimization techniques: Very Fast Simulated Annealing (VFSA) and Particle Swarm Optimization (PSO), and compare them against the classical grid search (GS). To this end, we present an integrated and optimized workflow that concatenates into an automated bash script the different steps that lead to the microseismic events location from raw 3C data. First, we carry out the automatic detection, denoising and identification of the P- and S-waves. Secondly, we estimate their corresponding backazimuths using polarization information, and propose a simple energy-based criterion to automatically decide which is the most reliable estimate. Finally, after taking proper care of the size of the search space using the backazimuth information, we perform the location using the aforementioned algorithms for 2D and 3D usual scenarios of hydraulic fracturing processes. We assess the impact of restricting the search space and show the advantages of using either VFSA or PSO over GS to attain significant speed-ups.

  12. Characterization of PV panel and global optimization of its model parameters using genetic algorithm

    Ismail, M.S.; Moghavvemi, M.; Mahlia, T.M.I.

    2013-01-01

    Highlights: • Genetic Algorithm optimization ability had been utilized to extract parameters of PV panel model. • Effect of solar radiation and temperature variations was taken into account in fitness function evaluation. • We used Matlab-Simulink to simulate operation of the PV-panel to validate results. • Different cases were analyzed to ascertain which of them gives more accurate results. • Accuracy and applicability of this approach to be used as a valuable tool for PV modeling were clearly validated. - Abstract: This paper details an improved modeling technique for a photovoltaic (PV) module; utilizing the optimization ability of a genetic algorithm, with different parameters of the PV module being computed via this approach. The accurate modeling of any PV module is incumbent upon the values of these parameters, as it is imperative in the context of any further studies concerning different PV applications. Simulation, optimization and the design of the hybrid systems that include PV are examples of these applications. The global optimization of the parameters and the applicability for the entire range of the solar radiation and a wide range of temperatures are achievable via this approach. The Manufacturer’s Data Sheet information is used as a basis for the purpose of parameter optimization, with an average absolute error fitness function formulated; and a numerical iterative method used to solve the voltage-current relation of the PV module. The results of single-diode and two-diode models are evaluated in order to ascertain which of them are more accurate. Other cases are also analyzed in this paper for the purpose of comparison. The Matlab–Simulink environment is used to simulate the operation of the PV module, depending on the extracted parameters. The results of the simulation are compared with the Data Sheet information, which is obtained via experimentation in order to validate the reliability of the approach. Three types of PV modules

  13. Deterministic global optimization algorithm based on outer approximation for the parameter estimation of nonlinear dynamic biological systems.

    Miró, Anton; Pozo, Carlos; Guillén-Gosálbez, Gonzalo; Egea, Jose A; Jiménez, Laureano

    2012-05-10

    The estimation of parameter values for mathematical models of biological systems is an optimization problem that is particularly challenging due to the nonlinearities involved. One major difficulty is the existence of multiple minima in which standard optimization methods may fall during the search. Deterministic global optimization methods overcome this limitation, ensuring convergence to the global optimum within a desired tolerance. Global optimization techniques are usually classified into stochastic and deterministic. The former typically lead to lower CPU times but offer no guarantee of convergence to the global minimum in a finite number of iterations. In contrast, deterministic methods provide solutions of a given quality (i.e., optimality gap), but tend to lead to large computational burdens. This work presents a deterministic outer approximation-based algorithm for the global optimization of dynamic problems arising in the parameter estimation of models of biological systems. Our approach, which offers a theoretical guarantee of convergence to global minimum, is based on reformulating the set of ordinary differential equations into an equivalent set of algebraic equations through the use of orthogonal collocation methods, giving rise to a nonconvex nonlinear programming (NLP) problem. This nonconvex NLP is decomposed into two hierarchical levels: a master mixed-integer linear programming problem (MILP) that provides a rigorous lower bound on the optimal solution, and a reduced-space slave NLP that yields an upper bound. The algorithm iterates between these two levels until a termination criterion is satisfied. The capabilities of our approach were tested in two benchmark problems, in which the performance of our algorithm was compared with that of the commercial global optimization package BARON. The proposed strategy produced near optimal solutions (i.e., within a desired tolerance) in a fraction of the CPU time required by BARON.

  14. Artificial Bee Colony Algorithm Combined with Grenade Explosion Method and Cauchy Operator for Global Optimization

    Jian-Guo Zheng

    2015-01-01

    Full Text Available Artificial bee colony (ABC algorithm is a popular swarm intelligence technique inspired by the intelligent foraging behavior of honey bees. However, ABC is good at exploration but poor at exploitation and its convergence speed is also an issue in some cases. To improve the performance of ABC, a novel ABC combined with grenade explosion method (GEM and Cauchy operator, namely, ABCGC, is proposed. GEM is embedded in the onlooker bees’ phase to enhance the exploitation ability and accelerate convergence of ABCGC; meanwhile, Cauchy operator is introduced into the scout bees’ phase to help ABCGC escape from local optimum and further enhance its exploration ability. Two sets of well-known benchmark functions are used to validate the better performance of ABCGC. The experiments confirm that ABCGC is significantly superior to ABC and other competitors; particularly it converges to the global optimum faster in most cases. These results suggest that ABCGC usually achieves a good balance between exploitation and exploration and can effectively serve as an alternative for global optimization.

  15. Global shape optimization of airfoil using multi-objective genetic algorithm

    Lee, Ju Hee; Lee, Sang Hwan; Park, Kyoung Woo

    2005-01-01

    The shape optimization of an airfoil has been performed for an incompressible viscous flow. In this study, Pareto frontier sets, which are global and non-dominated solutions, can be obtained without various weighting factors by using the multi-objective genetic algorithm. An NACA0012 airfoil is considered as a baseline model, and the profile of the airfoil is parameterized and rebuilt with four Bezier curves. Two curves, from leading to maximum thickness, are composed of five control points and the rest, from maximum thickness to tailing edge, are composed of four control points. There are eighteen design variables and two objective functions such as the lift and drag coefficients. A generation is made up of forty-five individuals. After fifteenth evolutions, the Pareto individuals of twenty can be achieved. One Pareto, which is the best of the reduction of the drag force, improves its drag to 13% and lift-drag ratio to 2%. Another Pareto, however, which is focused on increasing the lift force, can improve its lift force to 61%, while sustaining its drag force, compared to those of the baseline model

  16. Global shape optimization of airfoil using multi-objective genetic algorithm

    Lee, Ju Hee; Lee, Sang Hwan [Hanyang Univ., Seoul (Korea, Republic of); Park, Kyoung Woo [Hoseo Univ., Asan (Korea, Republic of)

    2005-10-01

    The shape optimization of an airfoil has been performed for an incompressible viscous flow. In this study, Pareto frontier sets, which are global and non-dominated solutions, can be obtained without various weighting factors by using the multi-objective genetic algorithm. An NACA0012 airfoil is considered as a baseline model, and the profile of the airfoil is parameterized and rebuilt with four Bezier curves. Two curves, from leading to maximum thickness, are composed of five control points and the rest, from maximum thickness to tailing edge, are composed of four control points. There are eighteen design variables and two objective functions such as the lift and drag coefficients. A generation is made up of forty-five individuals. After fifteenth evolutions, the Pareto individuals of twenty can be achieved. One Pareto, which is the best of the reduction of the drag force, improves its drag to 13% and lift-drag ratio to 2%. Another Pareto, however, which is focused on increasing the lift force, can improve its lift force to 61%, while sustaining its drag force, compared to those of the baseline model.

  17. From the social learning theory to a social learning algorithm for global optimization

    Gong, Yue-Jiao; Zhang, Jun; Li, Yun

    2014-01-01

    Traditionally, the Evolutionary Computation (EC) paradigm is inspired by Darwinian evolution or the swarm intelligence of animals. Bandura's Social Learning Theory pointed out that the social learning behavior of humans indicates a high level of intelligence in nature. We found that such intelligence of human society can be implemented by numerical computing and be utilized in computational algorithms for solving optimization problems. In this paper, we design a novel and generic optimization...

  18. An Effective Hybrid Firefly Algorithm with Harmony Search for Global Numerical Optimization

    Lihong Guo

    2013-01-01

    Full Text Available A hybrid metaheuristic approach by hybridizing harmony search (HS and firefly algorithm (FA, namely, HS/FA, is proposed to solve function optimization. In HS/FA, the exploration of HS and the exploitation of FA are fully exerted, so HS/FA has a faster convergence speed than HS and FA. Also, top fireflies scheme is introduced to reduce running time, and HS is utilized to mutate between fireflies when updating fireflies. The HS/FA method is verified by various benchmarks. From the experiments, the implementation of HS/FA is better than the standard FA and other eight optimization methods.

  19. A Local and Global Search Combine Particle Swarm Optimization Algorithm for Job-Shop Scheduling to Minimize Makespan

    Zhigang Lian

    2010-01-01

    Full Text Available The Job-shop scheduling problem (JSSP is a branch of production scheduling, which is among the hardest combinatorial optimization problems. Many different approaches have been applied to optimize JSSP, but for some JSSP even with moderate size cannot be solved to guarantee optimality. The original particle swarm optimization algorithm (OPSOA, generally, is used to solve continuous problems, and rarely to optimize discrete problems such as JSSP. In OPSOA, through research I find that it has a tendency to get stuck in a near optimal solution especially for middle and large size problems. The local and global search combine particle swarm optimization algorithm (LGSCPSOA is used to solve JSSP, where particle-updating mechanism benefits from the searching experience of one particle itself, the best of all particles in the swarm, and the best of particles in neighborhood population. The new coding method is used in LGSCPSOA to optimize JSSP, and it gets all sequences are feasible solutions. Three representative instances are made computational experiment, and simulation shows that the LGSCPSOA is efficacious for JSSP to minimize makespan.

  20. A comparison of global optimization algorithms with standard benchmark functions and real-world applications using Energy Plus

    Kamph, Jerome Henri; Robinson, Darren; Wetter, Michael

    2009-09-01

    There is an increasing interest in the use of computer algorithms to identify combinations of parameters which optimise the energy performance of buildings. For such problems, the objective function can be multi-modal and needs to be approximated numerically using building energy simulation programs. As these programs contain iterative solution algorithms, they introduce discontinuities in the numerical approximation to the objective function. Metaheuristics often work well for such problems, but their convergence to a global optimum cannot be established formally. Moreover, different algorithms tend to be suited to particular classes of optimization problems. To shed light on this issue we compared the performance of two metaheuristics, the hybrid CMA-ES/HDE and the hybrid PSO/HJ, in minimizing standard benchmark functions and real-world building energy optimization problems of varying complexity. From this we find that the CMA-ES/HDE performs well on more complex objective functions, but that the PSO/HJ more consistently identifies the global minimum for simpler objective functions. Both identified similar values in the objective functions arising from energy simulations, but with different combinations of model parameters. This may suggest that the objective function is multi-modal. The algorithms also correctly identified some non-intuitive parameter combinations that were caused by a simplified control sequence of the building energy system that does not represent actual practice, further reinforcing their utility.

  1. Optimization algorithms and applications

    Arora, Rajesh Kumar

    2015-01-01

    Choose the Correct Solution Method for Your Optimization ProblemOptimization: Algorithms and Applications presents a variety of solution techniques for optimization problems, emphasizing concepts rather than rigorous mathematical details and proofs. The book covers both gradient and stochastic methods as solution techniques for unconstrained and constrained optimization problems. It discusses the conjugate gradient method, Broyden-Fletcher-Goldfarb-Shanno algorithm, Powell method, penalty function, augmented Lagrange multiplier method, sequential quadratic programming, method of feasible direc

  2. A stochastic algorithm for global optimization and for best populations: A test case of side chains in proteins

    Glick, Meir; Rayan, Anwar; Goldblum, Amiram

    2002-01-01

    The problem of global optimization is pivotal in a variety of scientific fields. Here, we present a robust stochastic search method that is able to find the global minimum for a given cost function, as well as, in most cases, any number of best solutions for very large combinatorial “explosive” systems. The algorithm iteratively eliminates variable values that contribute consistently to the highest end of a cost function's spectrum of values for the full system. Values that have not been eliminated are retained for a full, exhaustive search, allowing the creation of an ordered population of best solutions, which includes the global minimum. We demonstrate the ability of the algorithm to explore the conformational space of side chains in eight proteins, with 54 to 263 residues, to reproduce a population of their low energy conformations. The 1,000 lowest energy solutions are identical in the stochastic (with two different seed numbers) and full, exhaustive searches for six of eight proteins. The others retain the lowest 141 and 213 (of 1,000) conformations, depending on the seed number, and the maximal difference between stochastic and exhaustive is only about 0.15 Kcal/mol. The energy gap between the lowest and highest of the 1,000 low-energy conformers in eight proteins is between 0.55 and 3.64 Kcal/mol. This algorithm offers real opportunities for solving problems of high complexity in structural biology and in other fields of science and technology. PMID:11792838

  3. Nature-inspired optimization algorithms

    Yang, Xin-She

    2014-01-01

    Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning

  4. Hybrid Artificial Bee Colony Algorithm and Particle Swarm Search for Global Optimization

    Wang Chun-Feng

    2014-01-01

    Full Text Available Artificial bee colony (ABC algorithm is one of the most recent swarm intelligence based algorithms, which has been shown to be competitive to other population-based algorithms. However, there is still an insufficiency in ABC regarding its solution search equation, which is good at exploration but poor at exploitation. To overcome this problem, we propose a novel artificial bee colony algorithm based on particle swarm search mechanism. In this algorithm, for improving the convergence speed, the initial population is generated by using good point set theory rather than random selection firstly. Secondly, in order to enhance the exploitation ability, the employed bee, onlookers, and scouts utilize the mechanism of PSO to search new candidate solutions. Finally, for further improving the searching ability, the chaotic search operator is adopted in the best solution of the current iteration. Our algorithm is tested on some well-known benchmark functions and compared with other algorithms. Results show that our algorithm has good performance.

  5. A generalized global alignment algorithm.

    Huang, Xiaoqiu; Chao, Kun-Mao

    2003-01-22

    Homologous sequences are sometimes similar over some regions but different over other regions. Homologous sequences have a much lower global similarity if the different regions are much longer than the similar regions. We present a generalized global alignment algorithm for comparing sequences with intermittent similarities, an ordered list of similar regions separated by different regions. A generalized global alignment model is defined to handle sequences with intermittent similarities. A dynamic programming algorithm is designed to compute an optimal general alignment in time proportional to the product of sequence lengths and in space proportional to the sum of sequence lengths. The algorithm is implemented as a computer program named GAP3 (Global Alignment Program Version 3). The generalized global alignment model is validated by experimental results produced with GAP3 on both DNA and protein sequences. The GAP3 program extends the ability of standard global alignment programs to recognize homologous sequences of lower similarity. The GAP3 program is freely available for academic use at http://bioinformatics.iastate.edu/aat/align/align.html.

  6. Optimal Quadratic Programming Algorithms

    Dostal, Zdenek

    2009-01-01

    Quadratic programming (QP) is one technique that allows for the optimization of a quadratic function in several variables in the presence of linear constraints. This title presents various algorithms for solving large QP problems. It is suitable as an introductory text on quadratic programming for graduate students and researchers

  7. Global Optimization of Damping Ring Designs Using a Multi-Objective Evolutionary Algorithm

    Emery, Louis

    2005-01-01

    Several damping ring designs for the International Linear Collider have been proposed recently. Some of the specifications, such as circumference and bunch train, are not fixed yet. Designers must make a choice anyway, select a geometry type (dog-bone or circular), an arc cell type (TME or FODO), and optimize linear and nonlinear part of the optics. The design process include straightforward steps (usually the linear optics), and some steps not so straightforward (when nonlinear optics optimization is affected by the linear optics). A first attempt at automating this process for the linear optics is reported. We first recognize that the optics is defined by just a few primary parameters (e.g., phase advance per cell) that determine the rest (e.g., quadrupole strength). In addition to the exact specification of circumference, equilibrium emittance and damping time there are some other quantities which could be optimized that may conflict with each other. A multiobjective genetic optimizer solves this problem b...

  8. Honing process optimization algorithms

    Kadyrov, Ramil R.; Charikov, Pavel N.; Pryanichnikova, Valeria V.

    2018-03-01

    This article considers the relevance of honing processes for creating high-quality mechanical engineering products. The features of the honing process are revealed and such important concepts as the task for optimization of honing operations, the optimal structure of the honing working cycles, stepped and stepless honing cycles, simulation of processing and its purpose are emphasized. It is noted that the reliability of the mathematical model determines the quality parameters of the honing process control. An algorithm for continuous control of the honing process is proposed. The process model reliably describes the machining of a workpiece in a sufficiently wide area and can be used to operate the CNC machine CC743.

  9. Enhancing Artificial Bee Colony Algorithm with Self-Adaptive Searching Strategy and Artificial Immune Network Operators for Global Optimization

    Tinggui Chen

    2014-01-01

    Full Text Available Artificial bee colony (ABC algorithm, inspired by the intelligent foraging behavior of honey bees, was proposed by Karaboga. It has been shown to be superior to some conventional intelligent algorithms such as genetic algorithm (GA, artificial colony optimization (ACO, and particle swarm optimization (PSO. However, the ABC still has some limitations. For example, ABC can easily get trapped in the local optimum when handing in functions that have a narrow curving valley, a high eccentric ellipse, or complex multimodal functions. As a result, we proposed an enhanced ABC algorithm called EABC by introducing self-adaptive searching strategy and artificial immune network operators to improve the exploitation and exploration. The simulation results tested on a suite of unimodal or multimodal benchmark functions illustrate that the EABC algorithm outperforms ACO, PSO, and the basic ABC in most of the experiments.

  10. The global Minmax k-means algorithm.

    Wang, Xiaoyan; Bai, Yanping

    2016-01-01

    The global k -means algorithm is an incremental approach to clustering that dynamically adds one cluster center at a time through a deterministic global search procedure from suitable initial positions, and employs k -means to minimize the sum of the intra-cluster variances. However the global k -means algorithm sometimes results singleton clusters and the initial positions sometimes are bad, after a bad initialization, poor local optimal can be easily obtained by k -means algorithm. In this paper, we modified the global k -means algorithm to eliminate the singleton clusters at first, and then we apply MinMax k -means clustering error method to global k -means algorithm to overcome the effect of bad initialization, proposed the global Minmax k -means algorithm. The proposed clustering method is tested on some popular data sets and compared to the k -means algorithm, the global k -means algorithm and the MinMax k -means algorithm. The experiment results show our proposed algorithm outperforms other algorithms mentioned in the paper.

  11. An Efficient Algorithm for Unconstrained Optimization

    Sergio Gerardo de-los-Cobos-Silva

    2015-01-01

    Full Text Available This paper presents an original and efficient PSO algorithm, which is divided into three phases: (1 stabilization, (2 breadth-first search, and (3 depth-first search. The proposed algorithm, called PSO-3P, was tested with 47 benchmark continuous unconstrained optimization problems, on a total of 82 instances. The numerical results show that the proposed algorithm is able to reach the global optimum. This work mainly focuses on unconstrained optimization problems from 2 to 1,000 variables.

  12. LETTER TO THE EDITOR: Constant-time solution to the global optimization problem using Brüschweiler's ensemble search algorithm

    Protopopescu, V.; D'Helon, C.; Barhen, J.

    2003-06-01

    A constant-time solution of the continuous global optimization problem (GOP) is obtained by using an ensemble algorithm. We show that under certain assumptions, the solution can be guaranteed by mapping the GOP onto a discrete unsorted search problem, whereupon Brüschweiler's ensemble search algorithm is applied. For adequate sensitivities of the measurement technique, the query complexity of the ensemble search algorithm depends linearly on the size of the function's domain. Advantages and limitations of an eventual NMR implementation are discussed.

  13. New Optimization Algorithms in Physics

    Hartmann, Alexander K

    2004-01-01

    Many physicists are not aware of the fact that they can solve their problems by applying optimization algorithms. Since the number of such algorithms is steadily increasing, many new algorithms have not been presented comprehensively until now. This presentation of recently developed algorithms applied in physics, including demonstrations of how they work and related results, aims to encourage their application, and as such the algorithms selected cover concepts and methods from statistical physics to optimization problems emerging in theoretical computer science.

  14. Maximum-entropy clustering algorithm and its global convergence analysis

    2001-01-01

    Constructing a batch of differentiable entropy functions touniformly approximate an objective function by means of the maximum-entropy principle, a new clustering algorithm, called maximum-entropy clustering algorithm, is proposed based on optimization theory. This algorithm is a soft generalization of the hard C-means algorithm and possesses global convergence. Its relations with other clustering algorithms are discussed.

  15. Global alignment algorithms implementations | Fatumo ...

    In this paper, we implemented the two routes for sequence comparison, that is; the dotplot and Needleman-wunsch algorithm for global sequence alignment. Our algorithms were implemented in python programming language and were tested on Linux platform 1.60GHz, 512 MB of RAM SUSE 9.2 and 10.1 versions.

  16. Stochastic and global optimization

    Dzemyda, Gintautas; Šaltenis, Vydūnas; Zhilinskas, A; Mockus, Jonas

    2002-01-01

    ... and Effectiveness of Controlled Random Search E. M. T. Hendrix, P. M. Ortigosa and I. García 129 9. Discrete Backtracking Adaptive Search for Global Optimization B. P. Kristinsdottir, Z. B. Zabinsky and...

  17. Optimally stopped variational quantum algorithms

    Vinci, Walter; Shabani, Alireza

    2018-04-01

    Quantum processors promise a paradigm shift in high-performance computing which needs to be assessed by accurate benchmarking measures. In this article, we introduce a benchmark for the variational quantum algorithm (VQA), recently proposed as a heuristic algorithm for small-scale quantum processors. In VQA, a classical optimization algorithm guides the processor's quantum dynamics to yield the best solution for a given problem. A complete assessment of the scalability and competitiveness of VQA should take into account both the quality and the time of dynamics optimization. The method of optimal stopping, employed here, provides such an assessment by explicitly including time as a cost factor. Here, we showcase this measure for benchmarking VQA as a solver for some quadratic unconstrained binary optimization. Moreover, we show that a better choice for the cost function of the classical routine can significantly improve the performance of the VQA algorithm and even improve its scaling properties.

  18. Firefly Mating Algorithm for Continuous Optimization Problems

    Amarita Ritthipakdee

    2017-01-01

    Full Text Available This paper proposes a swarm intelligence algorithm, called firefly mating algorithm (FMA, for solving continuous optimization problems. FMA uses genetic algorithm as the core of the algorithm. The main feature of the algorithm is a novel mating pair selection method which is inspired by the following 2 mating behaviors of fireflies in nature: (i the mutual attraction between males and females causes them to mate and (ii fireflies of both sexes are of the multiple-mating type, mating with multiple opposite sex partners. A female continues mating until her spermatheca becomes full, and, in the same vein, a male can provide sperms for several females until his sperm reservoir is depleted. This new feature enhances the global convergence capability of the algorithm. The performance of FMA was tested with 20 benchmark functions (sixteen 30-dimensional functions and four 2-dimensional ones against FA, ALC-PSO, COA, MCPSO, LWGSODE, MPSODDS, DFOA, SHPSOS, LSA, MPDPGA, DE, and GABC algorithms. The experimental results showed that the success rates of our proposed algorithm with these functions were higher than those of other algorithms and the proposed algorithm also required fewer numbers of iterations to reach the global optima.

  19. A variable structure fuzzy neural network model of squamous dysplasia and esophageal squamous cell carcinoma based on a global chaotic optimization algorithm.

    Moghtadaei, Motahareh; Hashemi Golpayegani, Mohammad Reza; Malekzadeh, Reza

    2013-02-07

    Identification of squamous dysplasia and esophageal squamous cell carcinoma (ESCC) is of great importance in prevention of cancer incidence. Computer aided algorithms can be very useful for identification of people with higher risks of squamous dysplasia, and ESCC. Such method can limit the clinical screenings to people with higher risks. Different regression methods have been used to predict ESCC and dysplasia. In this paper, a Fuzzy Neural Network (FNN) model is selected for ESCC and dysplasia prediction. The inputs to the classifier are the risk factors. Since the relation between risk factors in the tumor system has a complex nonlinear behavior, in comparison to most of ordinary data, the cost function of its model can have more local optimums. Thus the need for global optimization methods is more highlighted. The proposed method in this paper is a Chaotic Optimization Algorithm (COA) proceeding by the common Error Back Propagation (EBP) local method. Since the model has many parameters, we use a strategy to reduce the dependency among parameters caused by the chaotic series generator. This dependency was not considered in the previous COA methods. The algorithm is compared with logistic regression model as the latest successful methods of ESCC and dysplasia prediction. The results represent a more precise prediction with less mean and variance of error. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Stochastic global optimization as a filtering problem

    Stinis, Panos

    2012-01-01

    We present a reformulation of stochastic global optimization as a filtering problem. The motivation behind this reformulation comes from the fact that for many optimization problems we cannot evaluate exactly the objective function to be optimized. Similarly, we may not be able to evaluate exactly the functions involved in iterative optimization algorithms. For example, we may only have access to noisy measurements of the functions or statistical estimates provided through Monte Carlo sampling. This makes iterative optimization algorithms behave like stochastic maps. Naive global optimization amounts to evolving a collection of realizations of this stochastic map and picking the realization with the best properties. This motivates the use of filtering techniques to allow focusing on realizations that are more promising than others. In particular, we present a filtering reformulation of global optimization in terms of a special case of sequential importance sampling methods called particle filters. The increasing popularity of particle filters is based on the simplicity of their implementation and their flexibility. We utilize the flexibility of particle filters to construct a stochastic global optimization algorithm which can converge to the optimal solution appreciably faster than naive global optimization. Several examples of parametric exponential density estimation are provided to demonstrate the efficiency of the approach.

  1. Hybrid Microgrid Configuration Optimization with Evolutionary Algorithms

    Lopez, Nicolas

    This dissertation explores the Renewable Energy Integration Problem, and proposes a Genetic Algorithm embedded with a Monte Carlo simulation to solve large instances of the problem that are impractical to solve via full enumeration. The Renewable Energy Integration Problem is defined as finding the optimum set of components to supply the electric demand to a hybrid microgrid. The components considered are solar panels, wind turbines, diesel generators, electric batteries, connections to the power grid and converters, which can be inverters and/or rectifiers. The methodology developed is explained as well as the combinatorial formulation. In addition, 2 case studies of a single objective optimization version of the problem are presented, in order to minimize cost and to minimize global warming potential (GWP) followed by a multi-objective implementation of the offered methodology, by utilizing a non-sorting Genetic Algorithm embedded with a monte Carlo Simulation. The method is validated by solving a small instance of the problem with known solution via a full enumeration algorithm developed by NREL in their software HOMER. The dissertation concludes that the evolutionary algorithms embedded with Monte Carlo simulation namely modified Genetic Algorithms are an efficient form of solving the problem, by finding approximate solutions in the case of single objective optimization, and by approximating the true Pareto front in the case of multiple objective optimization of the Renewable Energy Integration Problem.

  2. Combinatorial optimization theory and algorithms

    Korte, Bernhard

    2018-01-01

    This comprehensive textbook on combinatorial optimization places special emphasis on theoretical results and algorithms with provably good performance, in contrast to heuristics. It is based on numerous courses on combinatorial optimization and specialized topics, mostly at graduate level. This book reviews the fundamentals, covers the classical topics (paths, flows, matching, matroids, NP-completeness, approximation algorithms) in detail, and proceeds to advanced and recent topics, some of which have not appeared in a textbook before. Throughout, it contains complete but concise proofs, and also provides numerous exercises and references. This sixth edition has again been updated, revised, and significantly extended. Among other additions, there are new sections on shallow-light trees, submodular function maximization, smoothed analysis of the knapsack problem, the (ln 4+ɛ)-approximation for Steiner trees, and the VPN theorem. Thus, this book continues to represent the state of the art of combinatorial opti...

  3. Optimization algorithm based on densification and dynamic canonical descent

    Bousson, K.; Correia, S. D.

    2006-07-01

    Stochastic methods have gained some popularity in global optimization in that most of them do not assume the cost functions to be differentiable. They have capabilities to avoid being trapped by local optima, and may converge even faster than gradient-based optimization methods on some problems. The present paper proposes an optimization method, which reduces the search space by means of densification curves, coupled with the dynamic canonical descent algorithm. The performances of the new method are shown on several known problems classically used for testing optimization algorithms, and proved to outperform competitive algorithms such as simulated annealing and genetic algorithms.

  4. Optimal Pid Controller Design Using Adaptive Vurpso Algorithm

    Zirkohi, Majid Moradi

    2015-04-01

    The purpose of this paper is to improve theVelocity Update Relaxation Particle Swarm Optimization algorithm (VURPSO). The improved algorithm is called Adaptive VURPSO (AVURPSO) algorithm. Then, an optimal design of a Proportional-Integral-Derivative (PID) controller is obtained using the AVURPSO algorithm. An adaptive momentum factor is used to regulate a trade-off between the global and the local exploration abilities in the proposed algorithm. This operation helps the system to reach the optimal solution quickly and saves the computation time. Comparisons on the optimal PID controller design confirm the superiority of AVURPSO algorithm to the optimization algorithms mentioned in this paper namely the VURPSO algorithm, the Ant Colony algorithm, and the conventional approach. Comparisons on the speed of convergence confirm that the proposed algorithm has a faster convergence in a less computation time to yield a global optimum value. The proposed AVURPSO can be used in the diverse areas of optimization problems such as industrial planning, resource allocation, scheduling, decision making, pattern recognition and machine learning. The proposed AVURPSO algorithm is efficiently used to design an optimal PID controller.

  5. Improved hybrid optimization algorithm for 3D protein structure prediction.

    Zhou, Changjun; Hou, Caixia; Wei, Xiaopeng; Zhang, Qiang

    2014-07-01

    A new improved hybrid optimization algorithm - PGATS algorithm, which is based on toy off-lattice model, is presented for dealing with three-dimensional protein structure prediction problems. The algorithm combines the particle swarm optimization (PSO), genetic algorithm (GA), and tabu search (TS) algorithms. Otherwise, we also take some different improved strategies. The factor of stochastic disturbance is joined in the particle swarm optimization to improve the search ability; the operations of crossover and mutation that are in the genetic algorithm are changed to a kind of random liner method; at last tabu search algorithm is improved by appending a mutation operator. Through the combination of a variety of strategies and algorithms, the protein structure prediction (PSP) in a 3D off-lattice model is achieved. The PSP problem is an NP-hard problem, but the problem can be attributed to a global optimization problem of multi-extremum and multi-parameters. This is the theoretical principle of the hybrid optimization algorithm that is proposed in this paper. The algorithm combines local search and global search, which overcomes the shortcoming of a single algorithm, giving full play to the advantage of each algorithm. In the current universal standard sequences, Fibonacci sequences and real protein sequences are certified. Experiments show that the proposed new method outperforms single algorithms on the accuracy of calculating the protein sequence energy value, which is proved to be an effective way to predict the structure of proteins.

  6. Advances in stochastic and deterministic global optimization

    Zhigljavsky, Anatoly; Žilinskas, Julius

    2016-01-01

    Current research results in stochastic and deterministic global optimization including single and multiple objectives are explored and presented in this book by leading specialists from various fields. Contributions include applications to multidimensional data visualization, regression, survey calibration, inventory management, timetabling, chemical engineering, energy systems, and competitive facility location. Graduate students, researchers, and scientists in computer science, numerical analysis, optimization, and applied mathematics will be fascinated by the theoretical, computational, and application-oriented aspects of stochastic and deterministic global optimization explored in this book. This volume is dedicated to the 70th birthday of Antanas Žilinskas who is a leading world expert in global optimization. Professor Žilinskas's research has concentrated on studying models for the objective function, the development and implementation of efficient algorithms for global optimization with single and mu...

  7. Global optimization methods for engineering design

    Arora, Jasbir S.

    1990-01-01

    The problem is to find a global minimum for the Problem P. Necessary and sufficient conditions are available for local optimality. However, global solution can be assured only under the assumption of convexity of the problem. If the constraint set S is compact and the cost function is continuous on it, existence of a global minimum is guaranteed. However, in view of the fact that no global optimality conditions are available, a global solution can be found only by an exhaustive search to satisfy Inequality. The exhaustive search can be organized in such a way that the entire design space need not be searched for the solution. This way the computational burden is reduced somewhat. It is concluded that zooming algorithm for global optimizations appears to be a good alternative to stochastic methods. More testing is needed; a general, robust, and efficient local minimizer is required. IDESIGN was used in all numerical calculations which is based on a sequential quadratic programming algorithm, and since feasible set keeps on shrinking, a good algorithm to find an initial feasible point is required. Such algorithms need to be developed and evaluated.

  8. Parallel Evolutionary Optimization Algorithms for Peptide-Protein Docking

    Poluyan, Sergey; Ershov, Nikolay

    2018-02-01

    In this study we examine the possibility of using evolutionary optimization algorithms in protein-peptide docking. We present the main assumptions that reduce the docking problem to a continuous global optimization problem and provide a way of using evolutionary optimization algorithms. The Rosetta all-atom force field was used for structural representation and energy scoring. We describe the parallelization scheme and MPI/OpenMP realization of the considered algorithms. We demonstrate the efficiency and the performance for some algorithms which were applied to a set of benchmark tests.

  9. Algorithms for optimizing drug therapy

    Martin Lene

    2004-07-01

    Full Text Available Abstract Background Drug therapy has become increasingly efficient, with more drugs available for treatment of an ever-growing number of conditions. Yet, drug use is reported to be sub optimal in several aspects, such as dosage, patient's adherence and outcome of therapy. The aim of the current study was to investigate the possibility to optimize drug therapy using computer programs, available on the Internet. Methods One hundred and ten officially endorsed text documents, published between 1996 and 2004, containing guidelines for drug therapy in 246 disorders, were analyzed with regard to information about patient-, disease- and drug-related factors and relationships between these factors. This information was used to construct algorithms for identifying optimum treatment in each of the studied disorders. These algorithms were categorized in order to define as few models as possible that still could accommodate the identified factors and the relationships between them. The resulting program prototypes were implemented in HTML (user interface and JavaScript (program logic. Results Three types of algorithms were sufficient for the intended purpose. The simplest type is a list of factors, each of which implies that the particular patient should or should not receive treatment. This is adequate in situations where only one treatment exists. The second type, a more elaborate model, is required when treatment can by provided using drugs from different pharmacological classes and the selection of drug class is dependent on patient characteristics. An easily implemented set of if-then statements was able to manage the identified information in such instances. The third type was needed in the few situations where the selection and dosage of drugs were depending on the degree to which one or more patient-specific factors were present. In these cases the implementation of an established decision model based on fuzzy sets was required. Computer programs

  10. Engineering local optimality in quantum Monte Carlo algorithms

    Pollet, Lode; Van Houcke, Kris; Rombouts, Stefan M. A.

    2007-08-01

    Quantum Monte Carlo algorithms based on a world-line representation such as the worm algorithm and the directed loop algorithm are among the most powerful numerical techniques for the simulation of non-frustrated spin models and of bosonic models. Both algorithms work in the grand-canonical ensemble and can have a winding number larger than zero. However, they retain a lot of intrinsic degrees of freedom which can be used to optimize the algorithm. We let us guide by the rigorous statements on the globally optimal form of Markov chain Monte Carlo simulations in order to devise a locally optimal formulation of the worm algorithm while incorporating ideas from the directed loop algorithm. We provide numerical examples for the soft-core Bose-Hubbard model and various spin- S models.

  11. Global Optimization Based on the Hybridization of Harmony Search and Particle Swarm Optimization Methods

    A. P. Karpenko

    2014-01-01

    Full Text Available We consider a class of stochastic search algorithms of global optimization which in various publications are called behavioural, intellectual, metaheuristic, inspired by the nature, swarm, multi-agent, population, etc. We use the last term.Experience in using the population algorithms to solve challenges of global optimization shows that application of one such algorithm may not always effective. Therefore now great attention is paid to hybridization of population algorithms of global optimization. Hybrid algorithms unite various algorithms or identical algorithms, but with various values of free parameters. Thus efficiency of one algorithm can compensate weakness of another.The purposes of the work are development of hybrid algorithm of global optimization based on known algorithms of harmony search (HS and swarm of particles (PSO, software implementation of algorithm, study of its efficiency using a number of known benchmark problems, and a problem of dimensional optimization of truss structure.We set a problem of global optimization, consider basic algorithms of HS and PSO, give a flow chart of the offered hybrid algorithm called PSO HS , present results of computing experiments with developed algorithm and software, formulate main results of work and prospects of its development.

  12. Genetic algorithms and fuzzy multiobjective optimization

    Sakawa, Masatoshi

    2002-01-01

    Since the introduction of genetic algorithms in the 1970s, an enormous number of articles together with several significant monographs and books have been published on this methodology. As a result, genetic algorithms have made a major contribution to optimization, adaptation, and learning in a wide variety of unexpected fields. Over the years, many excellent books in genetic algorithm optimization have been published; however, they focus mainly on single-objective discrete or other hard optimization problems under certainty. There appears to be no book that is designed to present genetic algorithms for solving not only single-objective but also fuzzy and multiobjective optimization problems in a unified way. Genetic Algorithms And Fuzzy Multiobjective Optimization introduces the latest advances in the field of genetic algorithm optimization for 0-1 programming, integer programming, nonconvex programming, and job-shop scheduling problems under multiobjectiveness and fuzziness. In addition, the book treats a w...

  13. Multimodal optimization by using hybrid of artificial bee colony algorithm and BFGS algorithm

    Anam, S.

    2017-10-01

    Optimization has become one of the important fields in Mathematics. Many problems in engineering and science can be formulated into optimization problems. They maybe have many local optima. The optimization problem with many local optima, known as multimodal optimization problem, is how to find the global solution. Several metaheuristic methods have been proposed to solve multimodal optimization problems such as Particle Swarm Optimization (PSO), Genetics Algorithm (GA), Artificial Bee Colony (ABC) algorithm, etc. The performance of the ABC algorithm is better than or similar to those of other population-based algorithms with the advantage of employing a fewer control parameters. The ABC algorithm also has the advantages of strong robustness, fast convergence and high flexibility. However, it has the disadvantages premature convergence in the later search period. The accuracy of the optimal value cannot meet the requirements sometimes. Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is a good iterative method for finding a local optimum. Compared with other local optimization methods, the BFGS algorithm is better. Based on the advantages of the ABC algorithm and the BFGS algorithm, this paper proposes a hybrid of the artificial bee colony algorithm and the BFGS algorithm to solve the multimodal optimization problem. The first step is that the ABC algorithm is run to find a point. In the second step is that the point obtained by the first step is used as an initial point of BFGS algorithm. The results show that the hybrid method can overcome from the basic ABC algorithm problems for almost all test function. However, if the shape of function is flat, the proposed method cannot work well.

  14. A Linearized Relaxing Algorithm for the Specific Nonlinear Optimization Problem

    Mio Horai

    2016-01-01

    Full Text Available We propose a new method for the specific nonlinear and nonconvex global optimization problem by using a linear relaxation technique. To simplify the specific nonlinear and nonconvex optimization problem, we transform the problem to the lower linear relaxation form, and we solve the linear relaxation optimization problem by the Branch and Bound Algorithm. Under some reasonable assumptions, the global convergence of the algorithm is certified for the problem. Numerical results show that this method is more efficient than the previous methods.

  15. Solving Optimization Problems via Vortex Optimization Algorithm and Cognitive Development Optimization Algorithm

    Ahmet Demir

    2017-01-01

    Full Text Available In the fields which require finding the most appropriate value, optimization became a vital approach to employ effective solutions. With the use of optimization techniques, many different fields in the modern life have found solutions to their real-world based problems. In this context, classical optimization techniques have had an important popularity. But after a while, more advanced optimization problems required the use of more effective techniques. At this point, Computer Science took an important role on providing software related techniques to improve the associated literature. Today, intelligent optimization techniques based on Artificial Intelligence are widely used for optimization problems. The objective of this paper is to provide a comparative study on the employment of classical optimization solutions and Artificial Intelligence solutions for enabling readers to have idea about the potential of intelligent optimization techniques. At this point, two recently developed intelligent optimization algorithms, Vortex Optimization Algorithm (VOA and Cognitive Development Optimization Algorithm (CoDOA, have been used to solve some multidisciplinary optimization problems provided in the source book Thomas' Calculus 11th Edition and the obtained results have compared with classical optimization solutions. 

  16. FIREWORKS ALGORITHM FOR UNCONSTRAINED FUNCTION OPTIMIZATION PROBLEMS

    Evans BAIDOO

    2017-03-01

    Full Text Available Modern real world science and engineering problems can be classified as multi-objective optimisation problems which demand for expedient and efficient stochastic algorithms to respond to the optimization needs. This paper presents an object-oriented software application that implements a firework optimization algorithm for function optimization problems. The algorithm, a kind of parallel diffuse optimization algorithm is based on the explosive phenomenon of fireworks. The algorithm presented promising results when compared to other population or iterative based meta-heuristic algorithm after it was experimented on five standard benchmark problems. The software application was implemented in Java with interactive interface which allow for easy modification and extended experimentation. Additionally, this paper validates the effect of runtime on the algorithm performance.

  17. Simulated annealing algorithm for optimal capital growth

    Luo, Yong; Zhu, Bo; Tang, Yong

    2014-08-01

    We investigate the problem of dynamic optimal capital growth of a portfolio. A general framework that one strives to maximize the expected logarithm utility of long term growth rate was developed. Exact optimization algorithms run into difficulties in this framework and this motivates the investigation of applying simulated annealing optimized algorithm to optimize the capital growth of a given portfolio. Empirical results with real financial data indicate that the approach is inspiring for capital growth portfolio.

  18. Combinatorial optimization algorithms and complexity

    Papadimitriou, Christos H

    1998-01-01

    This clearly written, mathematically rigorous text includes a novel algorithmic exposition of the simplex method and also discusses the Soviet ellipsoid algorithm for linear programming; efficient algorithms for network flow, matching, spanning trees, and matroids; the theory of NP-complete problems; approximation algorithms, local search heuristics for NP-complete problems, more. All chapters are supplemented by thought-provoking problems. A useful work for graduate-level students with backgrounds in computer science, operations research, and electrical engineering.

  19. Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models.

    Gonglin Yuan

    Full Text Available Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspects of information: function value and gradient value. The two methods both possess some good properties, as follows: 1 βk ≥ 0 2 the search direction has the trust region property without the use of any line search method 3 the search direction has sufficient descent property without the use of any line search method. Under some suitable conditions, we establish the global convergence of the two algorithms. We conduct numerical experiments to evaluate our algorithms. The numerical results indicate that the first algorithm is effective and competitive for solving unconstrained optimization problems and that the second algorithm is effective for solving large-scale nonlinear equations.

  20. Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models.

    Yuan, Gonglin; Duan, Xiabin; Liu, Wenjie; Wang, Xiaoliang; Cui, Zengru; Sheng, Zhou

    2015-01-01

    Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspects of information: function value and gradient value. The two methods both possess some good properties, as follows: 1) βk ≥ 0 2) the search direction has the trust region property without the use of any line search method 3) the search direction has sufficient descent property without the use of any line search method. Under some suitable conditions, we establish the global convergence of the two algorithms. We conduct numerical experiments to evaluate our algorithms. The numerical results indicate that the first algorithm is effective and competitive for solving unconstrained optimization problems and that the second algorithm is effective for solving large-scale nonlinear equations.

  1. Optimal Fungal Space Searching Algorithms.

    Asenova, Elitsa; Lin, Hsin-Yu; Fu, Eileen; Nicolau, Dan V; Nicolau, Dan V

    2016-10-01

    Previous experiments have shown that fungi use an efficient natural algorithm for searching the space available for their growth in micro-confined networks, e.g., mazes. This natural "master" algorithm, which comprises two "slave" sub-algorithms, i.e., collision-induced branching and directional memory, has been shown to be more efficient than alternatives, with one, or the other, or both sub-algorithms turned off. In contrast, the present contribution compares the performance of the fungal natural algorithm against several standard artificial homologues. It was found that the space-searching fungal algorithm consistently outperforms uninformed algorithms, such as Depth-First-Search (DFS). Furthermore, while the natural algorithm is inferior to informed ones, such as A*, this under-performance does not importantly increase with the increase of the size of the maze. These findings suggest that a systematic effort of harvesting the natural space searching algorithms used by microorganisms is warranted and possibly overdue. These natural algorithms, if efficient, can be reverse-engineered for graph and tree search strategies.

  2. Characteristic statistic algorithm (CSA) for in-core loading pattern optimization

    Liu Zhihong; Hu Yongming; Shi Gong

    2007-01-01

    To solve the problem of PWR in-core loading pattern optimization, a more suitable global optimization algorithm, i.e., Characteristic statistic algorithm (CSA), is used. The searching process of this algorithm and how to apply it to this problem are presented. Loading pattern optimization code SCYCLE is developed. Two different problems on real PWR models are calculated and the results are compared with other algorithms. It is shown that SCYCLE has high efficiency and good global performance on this problem. (authors)

  3. Evolutionary global optimization, manifolds and applications

    Aguiar e Oliveira Junior, Hime

    2016-01-01

    This book presents powerful techniques for solving global optimization problems on manifolds by means of evolutionary algorithms, and shows in practice how these techniques can be applied to solve real-world problems. It describes recent findings and well-known key facts in general and differential topology, revisiting them all in the context of application to current optimization problems. Special emphasis is put on game theory problems. Here, these problems are reformulated as constrained global optimization tasks and solved with the help of Fuzzy ASA. In addition, more abstract examples, including minimizations of well-known functions, are also included. Although the Fuzzy ASA approach has been chosen as the main optimizing paradigm, the book suggests that other metaheuristic methods could be used as well. Some of them are introduced, together with their advantages and disadvantages. Readers should possess some knowledge of linear algebra, and of basic concepts of numerical analysis and probability theory....

  4. Global optimization and simulated annealing

    Dekkers, A.; Aarts, E.H.L.

    1988-01-01

    In this paper we are concerned with global optimization, which can be defined as the problem of finding points on a bounded subset of Rn in which some real valued functionf assumes its optimal (i.e. maximal or minimal) value. We present a stochastic approach which is based on the simulated annealing

  5. Global Optimization Ensemble Model for Classification Methods

    Anwar, Hina; Qamar, Usman; Muzaffar Qureshi, Abdul Wahab

    2014-01-01

    Supervised learning is the process of data mining for deducing rules from training datasets. A broad array of supervised learning algorithms exists, every one of them with its own advantages and drawbacks. There are some basic issues that affect the accuracy of classifier while solving a supervised learning problem, like bias-variance tradeoff, dimensionality of input space, and noise in the input data space. All these problems affect the accuracy of classifier and are the reason that there is no global optimal method for classification. There is not any generalized improvement method that can increase the accuracy of any classifier while addressing all the problems stated above. This paper proposes a global optimization ensemble model for classification methods (GMC) that can improve the overall accuracy for supervised learning problems. The experimental results on various public datasets showed that the proposed model improved the accuracy of the classification models from 1% to 30% depending upon the algorithm complexity. PMID:24883382

  6. Global Optimization Ensemble Model for Classification Methods

    Hina Anwar

    2014-01-01

    Full Text Available Supervised learning is the process of data mining for deducing rules from training datasets. A broad array of supervised learning algorithms exists, every one of them with its own advantages and drawbacks. There are some basic issues that affect the accuracy of classifier while solving a supervised learning problem, like bias-variance tradeoff, dimensionality of input space, and noise in the input data space. All these problems affect the accuracy of classifier and are the reason that there is no global optimal method for classification. There is not any generalized improvement method that can increase the accuracy of any classifier while addressing all the problems stated above. This paper proposes a global optimization ensemble model for classification methods (GMC that can improve the overall accuracy for supervised learning problems. The experimental results on various public datasets showed that the proposed model improved the accuracy of the classification models from 1% to 30% depending upon the algorithm complexity.

  7. Privacy Preservation in Distributed Subgradient Optimization Algorithms

    Lou, Youcheng; Yu, Lean; Wang, Shouyang

    2015-01-01

    Privacy preservation is becoming an increasingly important issue in data mining and machine learning. In this paper, we consider the privacy preserving features of distributed subgradient optimization algorithms. We first show that a well-known distributed subgradient synchronous optimization algorithm, in which all agents make their optimization updates simultaneously at all times, is not privacy preserving in the sense that the malicious agent can learn other agents' subgradients asymptotic...

  8. Solving global optimization problems on GPU cluster

    Barkalov, Konstantin; Gergel, Victor; Lebedev, Ilya [Lobachevsky State University of Nizhni Novgorod, Gagarin Avenue 23, 603950 Nizhni Novgorod (Russian Federation)

    2016-06-08

    The paper contains the results of investigation of a parallel global optimization algorithm combined with a dimension reduction scheme. This allows solving multidimensional problems by means of reducing to data-independent subproblems with smaller dimension solved in parallel. The new element implemented in the research consists in using several graphic accelerators at different computing nodes. The paper also includes results of solving problems of well-known multiextremal test class GKLS on Lobachevsky supercomputer using tens of thousands of GPU cores.

  9. Convex analysis and global optimization

    Tuy, Hoang

    2016-01-01

    This book presents state-of-the-art results and methodologies in modern global optimization, and has been a staple reference for researchers, engineers, advanced students (also in applied mathematics), and practitioners in various fields of engineering. The second edition has been brought up to date and continues to develop a coherent and rigorous theory of deterministic global optimization, highlighting the essential role of convex analysis. The text has been revised and expanded to meet the needs of research, education, and applications for many years to come. Updates for this new edition include: · Discussion of modern approaches to minimax, fixed point, and equilibrium theorems, and to nonconvex optimization; · Increased focus on dealing more efficiently with ill-posed problems of global optimization, particularly those with hard constraints;

  10. Reactive power dispatch considering voltage stability with seeker optimization algorithm

    Dai, Chaohua; Chen, Weirong; Zhang, Xuexia [The School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Zhu, Yunfang [Department of Computer and Communication Engineering, E' mei Campus, Southwest Jiaotong University, E' mei 614202 (China)

    2009-10-15

    Optimal reactive power dispatch (ORPD) has a growing impact on secure and economical operation of power systems. This issue is well known as a non-linear, multi-modal and multi-objective optimization problem where global optimization techniques are required in order to avoid local minima. In the last decades, computation intelligence-based techniques such as genetic algorithms (GAs), differential evolution (DE) algorithms and particle swarm optimization (PSO) algorithms, etc., have often been used for this aim. In this work, a seeker optimization algorithm (SOA) based method is proposed for ORPD considering static voltage stability and voltage deviation. The SOA is based on the concept of simulating the act of human searching where search direction is based on the empirical gradient by evaluating the response to the position changes and step length is based on uncertainty reasoning by using a simple Fuzzy rule. The algorithm's performance is studied with comparisons of two versions of GAs, three versions of DE algorithms and four versions of PSO algorithms on the IEEE 57 and 118-bus power systems. The simulation results show that the proposed approach performed better than the other listed algorithms and can be efficiently used for the ORPD problem. (author)

  11. Chemical optimization algorithm for fuzzy controller design

    Astudillo, Leslie; Castillo, Oscar

    2014-01-01

    In this book, a novel optimization method inspired by a paradigm from nature is introduced. The chemical reactions are used as a paradigm to propose an optimization method that simulates these natural processes. The proposed algorithm is described in detail and then a set of typical complex benchmark functions is used to evaluate the performance of the algorithm. Simulation results show that the proposed optimization algorithm can outperform other methods in a set of benchmark functions. This chemical reaction optimization paradigm is also applied to solve the tracking problem for the dynamic model of a unicycle mobile robot by integrating a kinematic and a torque controller based on fuzzy logic theory. Computer simulations are presented confirming that this optimization paradigm is able to outperform other optimization techniques applied to this particular robot application

  12. Modified Monkey Optimization Algorithm for Solving Optimal Reactive Power Dispatch Problem

    Kanagasabai Lenin

    2015-04-01

    Full Text Available In this paper, a novel approach Modified Monkey optimization (MMO algorithm for solving optimal reactive power dispatch problem has been presented. MMO is a population based stochastic meta-heuristic algorithm and it is inspired by intelligent foraging behaviour of monkeys. This paper improves both local leader and global leader phases.  The proposed (MMO algorithm has been tested in standard IEEE 30 bus test system and simulation results show the worthy performance of the proposed algorithm in reducing the real power loss.

  13. Conference on Convex Analysis and Global Optimization

    Pardalos, Panos

    2001-01-01

    There has been much recent progress in global optimization algo­ rithms for nonconvex continuous and discrete problems from both a theoretical and a practical perspective. Convex analysis plays a fun­ damental role in the analysis and development of global optimization algorithms. This is due essentially to the fact that virtually all noncon­ vex optimization problems can be described using differences of convex functions and differences of convex sets. A conference on Convex Analysis and Global Optimization was held during June 5 -9, 2000 at Pythagorion, Samos, Greece. The conference was honoring the memory of C. Caratheodory (1873-1950) and was en­ dorsed by the Mathematical Programming Society (MPS) and by the Society for Industrial and Applied Mathematics (SIAM) Activity Group in Optimization. The conference was sponsored by the European Union (through the EPEAEK program), the Department of Mathematics of the Aegean University and the Center for Applied Optimization of the University of Florida, by th...

  14. Distributed Algorithms for Time Optimal Reachability Analysis

    Zhang, Zhengkui; Nielsen, Brian; Larsen, Kim Guldstrand

    2016-01-01

    . We propose distributed computing to accelerate time optimal reachability analysis. We develop five distributed state exploration algorithms, implement them in \\uppaal enabling it to exploit the compute resources of a dedicated model-checking cluster. We experimentally evaluate the implemented...... algorithms with four models in terms of their ability to compute near- or proven-optimal solutions, their scalability, time and memory consumption and communication overhead. Our results show that distributed algorithms work much faster than sequential algorithms and have good speedup in general.......Time optimal reachability analysis is a novel model based technique for solving scheduling and planning problems. After modeling them as reachability problems using timed automata, a real-time model checker can compute the fastest trace to the goal states which constitutes a time optimal schedule...

  15. Genetic algorithms in loading pattern optimization

    Yilmazbayhan, A.; Tombakoglu, M.; Bekar, K. B.; Erdemli, A. Oe

    2001-01-01

    Genetic Algorithm (GA) based systems are used for the loading pattern optimization. The use of Genetic Algorithm operators such as regional crossover, crossover and mutation, and selection of initial population size for PWRs are discussed. Antithetic variates are used to generate the initial population. The performance of GA with antithetic variates is compared to traditional GA. The results of multi-cycle optimization are discussed for objective function taking into account cycle burn-up and discharge burn-up

  16. Scaling Sparse Matrices for Optimization Algorithms

    Gajulapalli Ravindra S; Lasdon Leon S

    2006-01-01

    To iteratively solve large scale optimization problems in various contexts like planning, operations, design etc., we need to generate descent directions that are based on linear system solutions. Irrespective of the optimization algorithm or the solution method employed for the linear systems, ill conditioning introduced by problem characteristics or the algorithm or both need to be addressed. In [GL01] we used an intuitive heuristic approach in scaling linear systems that improved performan...

  17. Evolutionary Algorithm for Optimal Vaccination Scheme

    Parousis-Orthodoxou, K J; Vlachos, D S

    2014-01-01

    The following work uses the dynamic capabilities of an evolutionary algorithm in order to obtain an optimal immunization strategy in a user specified network. The produced algorithm uses a basic genetic algorithm with crossover and mutation techniques, in order to locate certain nodes in the inputted network. These nodes will be immunized in an SIR epidemic spreading process, and the performance of each immunization scheme, will be evaluated by the level of containment that provides for the spreading of the disease

  18. Optimizing Raytracing Algorithm Using CUDA

    Sayed Ahmadreza Razian

    2017-11-01

    The results show that one can generate at least 11 frames per second in HD (720p resolution by GPU processor and GT 840M graphic card, using trace method. If better graphic card employ, this algorithm and program can be used to generate real-time animation.

  19. A Hybrid Backtracking Search Optimization Algorithm with Differential Evolution

    Lijin Wang

    2015-01-01

    Full Text Available The backtracking search optimization algorithm (BSA is a new nature-inspired method which possesses a memory to take advantage of experiences gained from previous generation to guide the population to the global optimum. BSA is capable of solving multimodal problems, but it slowly converges and poorly exploits solution. The differential evolution (DE algorithm is a robust evolutionary algorithm and has a fast convergence speed in the case of exploitive mutation strategies that utilize the information of the best solution found so far. In this paper, we propose a hybrid backtracking search optimization algorithm with differential evolution, called HBD. In HBD, DE with exploitive strategy is used to accelerate the convergence by optimizing one worse individual according to its probability at each iteration process. A suit of 28 benchmark functions are employed to verify the performance of HBD, and the results show the improvement in effectiveness and efficiency of hybridization of BSA and DE.

  20. Algorithms for optimization of branching gravity-driven water networks

    Dardani, Ian; Jones, Gerard F.

    2018-05-01

    The design of a water network involves the selection of pipe diameters that satisfy pressure and flow requirements while considering cost. A variety of design approaches can be used to optimize for hydraulic performance or reduce costs. To help designers select an appropriate approach in the context of gravity-driven water networks (GDWNs), this work assesses three cost-minimization algorithms on six moderate-scale GDWN test cases. Two algorithms, a backtracking algorithm and a genetic algorithm, use a set of discrete pipe diameters, while a new calculus-based algorithm produces a continuous-diameter solution which is mapped onto a discrete-diameter set. The backtracking algorithm finds the global optimum for all but the largest of cases tested, for which its long runtime makes it an infeasible option. The calculus-based algorithm's discrete-diameter solution produced slightly higher-cost results but was more scalable to larger network cases. Furthermore, the new calculus-based algorithm's continuous-diameter and mapped solutions provided lower and upper bounds, respectively, on the discrete-diameter global optimum cost, where the mapped solutions were typically within one diameter size of the global optimum. The genetic algorithm produced solutions even closer to the global optimum with consistently short run times, although slightly higher solution costs were seen for the larger network cases tested. The results of this study highlight the advantages and weaknesses of each GDWN design method including closeness to the global optimum, the ability to prune the solution space of infeasible and suboptimal candidates without missing the global optimum, and algorithm run time. We also extend an existing closed-form model of Jones (2011) to include minor losses and a more comprehensive two-part cost model, which realistically applies to pipe sizes that span a broad range typical of GDWNs of interest in this work, and for smooth and commercial steel roughness values.

  1. Algorithms for optimization of branching gravity-driven water networks

    I. Dardani

    2018-05-01

    Full Text Available The design of a water network involves the selection of pipe diameters that satisfy pressure and flow requirements while considering cost. A variety of design approaches can be used to optimize for hydraulic performance or reduce costs. To help designers select an appropriate approach in the context of gravity-driven water networks (GDWNs, this work assesses three cost-minimization algorithms on six moderate-scale GDWN test cases. Two algorithms, a backtracking algorithm and a genetic algorithm, use a set of discrete pipe diameters, while a new calculus-based algorithm produces a continuous-diameter solution which is mapped onto a discrete-diameter set. The backtracking algorithm finds the global optimum for all but the largest of cases tested, for which its long runtime makes it an infeasible option. The calculus-based algorithm's discrete-diameter solution produced slightly higher-cost results but was more scalable to larger network cases. Furthermore, the new calculus-based algorithm's continuous-diameter and mapped solutions provided lower and upper bounds, respectively, on the discrete-diameter global optimum cost, where the mapped solutions were typically within one diameter size of the global optimum. The genetic algorithm produced solutions even closer to the global optimum with consistently short run times, although slightly higher solution costs were seen for the larger network cases tested. The results of this study highlight the advantages and weaknesses of each GDWN design method including closeness to the global optimum, the ability to prune the solution space of infeasible and suboptimal candidates without missing the global optimum, and algorithm run time. We also extend an existing closed-form model of Jones (2011 to include minor losses and a more comprehensive two-part cost model, which realistically applies to pipe sizes that span a broad range typical of GDWNs of interest in this work, and for smooth and commercial steel

  2. Belief Propagation Algorithm for Portfolio Optimization Problems.

    Shinzato, Takashi; Yasuda, Muneki

    2015-01-01

    The typical behavior of optimal solutions to portfolio optimization problems with absolute deviation and expected shortfall models using replica analysis was pioneeringly estimated by S. Ciliberti et al. [Eur. Phys. B. 57, 175 (2007)]; however, they have not yet developed an approximate derivation method for finding the optimal portfolio with respect to a given return set. In this study, an approximation algorithm based on belief propagation for the portfolio optimization problem is presented using the Bethe free energy formalism, and the consistency of the numerical experimental results of the proposed algorithm with those of replica analysis is confirmed. Furthermore, the conjecture of H. Konno and H. Yamazaki, that the optimal solutions with the absolute deviation model and with the mean-variance model have the same typical behavior, is verified using replica analysis and the belief propagation algorithm.

  3. Belief Propagation Algorithm for Portfolio Optimization Problems.

    Takashi Shinzato

    Full Text Available The typical behavior of optimal solutions to portfolio optimization problems with absolute deviation and expected shortfall models using replica analysis was pioneeringly estimated by S. Ciliberti et al. [Eur. Phys. B. 57, 175 (2007]; however, they have not yet developed an approximate derivation method for finding the optimal portfolio with respect to a given return set. In this study, an approximation algorithm based on belief propagation for the portfolio optimization problem is presented using the Bethe free energy formalism, and the consistency of the numerical experimental results of the proposed algorithm with those of replica analysis is confirmed. Furthermore, the conjecture of H. Konno and H. Yamazaki, that the optimal solutions with the absolute deviation model and with the mean-variance model have the same typical behavior, is verified using replica analysis and the belief propagation algorithm.

  4. Algorithms for optimal dyadic decision trees

    Hush, Don [Los Alamos National Laboratory; Porter, Reid [Los Alamos National Laboratory

    2009-01-01

    A new algorithm for constructing optimal dyadic decision trees was recently introduced, analyzed, and shown to be very effective for low dimensional data sets. This paper enhances and extends this algorithm by: introducing an adaptive grid search for the regularization parameter that guarantees optimal solutions for all relevant trees sizes, revising the core tree-building algorithm so that its run time is substantially smaller for most regularization parameter values on the grid, and incorporating new data structures and data pre-processing steps that provide significant run time enhancement in practice.

  5. An algorithm for online optimization of accelerators

    Huang, Xiaobiao [SLAC National Accelerator Lab., Menlo Park, CA (United States); Corbett, Jeff [SLAC National Accelerator Lab., Menlo Park, CA (United States); Safranek, James [SLAC National Accelerator Lab., Menlo Park, CA (United States); Wu, Juhao [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2013-10-01

    We developed a general algorithm for online optimization of accelerator performance, i.e., online tuning, using the performance measure as the objective function. This method, named robust conjugate direction search (RCDS), combines the conjugate direction set approach of Powell's method with a robust line optimizer which considers the random noise in bracketing the minimum and uses parabolic fit of data points that uniformly sample the bracketed zone. Moreover, it is much more robust against noise than traditional algorithms and is therefore suitable for online application. Simulation and experimental studies have been carried out to demonstrate the strength of the new algorithm.

  6. Heterogeneous architecture to process swarm optimization algorithms

    Maria A. Dávila-Guzmán

    2014-01-01

    Full Text Available Since few years ago, the parallel processing has been embedded in personal computers by including co-processing units as the graphics processing units resulting in a heterogeneous platform. This paper presents the implementation of swarm algorithms on this platform to solve several functions from optimization problems, where they highlight their inherent parallel processing and distributed control features. In the swarm algorithms, each individual and dimension problem are parallelized by the granularity of the processing system which also offer low communication latency between individuals through the embedded processing. To evaluate the potential of swarm algorithms on graphics processing units we have implemented two of them: the particle swarm optimization algorithm and the bacterial foraging optimization algorithm. The algorithms’ performance is measured using the acceleration where they are contrasted between a typical sequential processing platform and the NVIDIA GeForce GTX480 heterogeneous platform; the results show that the particle swarm algorithm obtained up to 36.82x and the bacterial foraging swarm algorithm obtained up to 9.26x. Finally, the effect to increase the size of the population is evaluated where we show both the dispersion and the quality of the solutions are decreased despite of high acceleration performance since the initial distribution of the individuals can converge to local optimal solution.

  7. Food processing optimization using evolutionary algorithms | Enitan ...

    Evolutionary algorithms are widely used in single and multi-objective optimization. They are easy to use and provide solution(s) in one simulation run. They are used in food processing industries for decision making. Food processing presents constrained and unconstrained optimization problems. This paper reviews the ...

  8. Improved Global Ocean Color Using Polymer Algorithm

    Steinmetz, Francois; Ramon, Didier; Deschamps, ierre-Yves; Stum, Jacques

    2010-12-01

    A global ocean color product has been developed based on the use of the POLYMER algorithm to correct atmospheric scattering and sun glint and to process the data to a Level 2 ocean color product. Thanks to the use of this algorithm, the coverage and accuracy of the MERIS ocean color product have been significantly improved when compared to the standard product, therefore increasing its usefulness for global ocean monitor- ing applications like GLOBCOLOUR. We will present the latest developments of the algorithm, its first application to MODIS data and its validation against in-situ data from the MERMAID database. Examples will be shown of global NRT chlorophyll maps produced by CLS with POLYMER for operational applications like fishing or oil and gas industry, as well as its use by Scripps for a NASA study of the Beaufort and Chukchi seas.

  9. Glowworm swarm optimization theory, algorithms, and applications

    Kaipa, Krishnanand N

    2017-01-01

    This book provides a comprehensive account of the glowworm swarm optimization (GSO) algorithm, including details of the underlying ideas, theoretical foundations, algorithm development, various applications, and MATLAB programs for the basic GSO algorithm. It also discusses several research problems at different levels of sophistication that can be attempted by interested researchers. The generality of the GSO algorithm is evident in its application to diverse problems ranging from optimization to robotics. Examples include computation of multiple optima, annual crop planning, cooperative exploration, distributed search, multiple source localization, contaminant boundary mapping, wireless sensor networks, clustering, knapsack, numerical integration, solving fixed point equations, solving systems of nonlinear equations, and engineering design optimization. The book is a valuable resource for researchers as well as graduate and undergraduate students in the area of swarm intelligence and computational intellige...

  10. Gems of combinatorial optimization and graph algorithms

    Skutella, Martin; Stiller, Sebastian; Wagner, Dorothea

    2015-01-01

    Are you looking for new lectures for your course on algorithms, combinatorial optimization, or algorithmic game theory?  Maybe you need a convenient source of relevant, current topics for a graduate student or advanced undergraduate student seminar?  Or perhaps you just want an enjoyable look at some beautiful mathematical and algorithmic results, ideas, proofs, concepts, and techniques in discrete mathematics and theoretical computer science?   Gems of Combinatorial Optimization and Graph Algorithms is a handpicked collection of up-to-date articles, carefully prepared by a select group of international experts, who have contributed some of their most mathematically or algorithmically elegant ideas.  Topics include longest tours and Steiner trees in geometric spaces, cartograms, resource buying games, congestion games, selfish routing, revenue equivalence and shortest paths, scheduling, linear structures in graphs, contraction hierarchies, budgeted matching problems, and motifs in networks.   This ...

  11. Optimization in engineering models and algorithms

    Sioshansi, Ramteen

    2017-01-01

    This textbook covers the fundamentals of optimization, including linear, mixed-integer linear, nonlinear, and dynamic optimization techniques, with a clear engineering focus. It carefully describes classical optimization models and algorithms using an engineering problem-solving perspective, and emphasizes modeling issues using many real-world examples related to a variety of application areas. Providing an appropriate blend of practical applications and optimization theory makes the text useful to both practitioners and students, and gives the reader a good sense of the power of optimization and the potential difficulties in applying optimization to modeling real-world systems. The book is intended for undergraduate and graduate-level teaching in industrial engineering and other engineering specialties. It is also of use to industry practitioners, due to the inclusion of real-world applications, opening the door to advanced courses on both modeling and algorithm development within the industrial engineering ...

  12. Cloud Service Scheduling Algorithm Research and Optimization

    Hongyan Cui

    2017-01-01

    Full Text Available We propose a cloud service scheduling model that is referred to as the Task Scheduling System (TSS. In the user module, the process time of each task is in accordance with a general distribution. In the task scheduling module, we take a weighted sum of makespan and flowtime as the objective function and use an Ant Colony Optimization (ACO and a Genetic Algorithm (GA to solve the problem of cloud task scheduling. Simulation results show that the convergence speed and output performance of our Genetic Algorithm-Chaos Ant Colony Optimization (GA-CACO are optimal.

  13. Space mapping optimization algorithms for engineering design

    Koziel, Slawomir; Bandler, John W.; Madsen, Kaj

    2006-01-01

    A simple, efficient optimization algorithm based on space mapping (SM) is presented. It utilizes input SM to reduce the misalignment between the coarse and fine models of the optimized object over a region of interest, and output space mapping (OSM) to ensure matching of response and first...... to a benchmark problem. In comparison with SMIS, the models presented are simple and have a small number of parameters that need to be extracted. The new algorithm is applied to the optimization of coupled-line band-pass filter....

  14. Loading pattern optimization using ant colony algorithm

    Hoareau, Fabrice

    2008-01-01

    Electricite de France (EDF) operates 58 nuclear power plants (NPP), of the Pressurized Water Reactor type. The loading pattern optimization of these NPP is currently done by EDF expert engineers. Within this framework, EDF R and D has developed automatic optimization tools that assist the experts. LOOP is an industrial tool, developed by EDF R and D and based on a simulated annealing algorithm. In order to improve the results of such automatic tools, new optimization methods have to be tested. Ant Colony Optimization (ACO) algorithms are recent methods that have given very good results on combinatorial optimization problems. In order to evaluate the performance of such methods on loading pattern optimization, direct comparisons between LOOP and a mock-up based on the Max-Min Ant System algorithm (a particular variant of ACO algorithms) were made on realistic test-cases. It is shown that the results obtained by the ACO mock-up are very similar to those of LOOP. Future research will consist in improving these encouraging results by using parallelization and by hybridizing the ACO algorithm with local search procedures. (author)

  15. Multi-objective Reactive Power Optimization Based on Improved Particle Swarm Algorithm

    Cui, Xue; Gao, Jian; Feng, Yunbin; Zou, Chenlu; Liu, Huanlei

    2018-01-01

    In this paper, an optimization model with the minimum active power loss and minimum voltage deviation of node and maximum static voltage stability margin as the optimization objective is proposed for the reactive power optimization problems. By defining the index value of reactive power compensation, the optimal reactive power compensation node was selected. The particle swarm optimization algorithm was improved, and the selection pool of global optimal and the global optimal of probability (p-gbest) were introduced. A set of Pareto optimal solution sets is obtained by this algorithm. And by calculating the fuzzy membership value of the pareto optimal solution sets, individuals with the smallest fuzzy membership value were selected as the final optimization results. The above improved algorithm is used to optimize the reactive power of IEEE14 standard node system. Through the comparison and analysis of the results, it has been proven that the optimization effect of this algorithm was very good.

  16. Microwave tomography global optimization, parallelization and performance evaluation

    Noghanian, Sima; Desell, Travis; Ashtari, Ali

    2014-01-01

    This book provides a detailed overview on the use of global optimization and parallel computing in microwave tomography techniques. The book focuses on techniques that are based on global optimization and electromagnetic numerical methods. The authors provide parallelization techniques on homogeneous and heterogeneous computing architectures on high performance and general purpose futuristic computers. The book also discusses the multi-level optimization technique, hybrid genetic algorithm and its application in breast cancer imaging.

  17. Differential harmony search algorithm to optimize PWRs loading pattern

    Poursalehi, N., E-mail: npsalehi@yahoo.com [Engineering Department, Shahid Beheshti University, G.C, P.O.Box: 1983963113, Tehran (Iran, Islamic Republic of); Zolfaghari, A.; Minuchehr, A. [Engineering Department, Shahid Beheshti University, G.C, P.O.Box: 1983963113, Tehran (Iran, Islamic Republic of)

    2013-04-15

    Highlights: ► Exploit of DHS algorithm in LP optimization reveals its flexibility, robustness and reliability. ► Upshot of our experiments with DHS shows that the search approach to optimal LP is quickly. ► On the average, the final band width of DHS fitness values is narrow relative to HS and GHS. -- Abstract: The objective of this work is to develop a core loading optimization technique using differential harmony search algorithm in the context of obtaining an optimal configuration of fuel assemblies in pressurized water reactors. To implement and evaluate the proposed technique, differential harmony search nodal expansion package for 2-D geometry, DHSNEP-2D, is developed. The package includes two modules; in the first modules differential harmony search (DHS) is implemented and nodal expansion code which solves two dimensional-multi group neutron diffusion equations using fourth degree flux expansion with one node per a fuel assembly is in the second module. For evaluation of DHS algorithm, classical harmony search (HS) and global-best harmony search (GHS) algorithms are also included in DHSNEP-2D in order to compare the outcome of techniques together. For this purpose, two PWR test cases have been investigated to demonstrate the DHS algorithm capability in obtaining near optimal loading pattern. Results show that the convergence rate of DHS and execution times are quite promising and also is reliable for the fuel management operation. Moreover, numerical results show the good performance of DHS relative to other competitive algorithms such as genetic algorithm (GA), classical harmony search (HS) and global-best harmony search (GHS) algorithms.

  18. Differential harmony search algorithm to optimize PWRs loading pattern

    Poursalehi, N.; Zolfaghari, A.; Minuchehr, A.

    2013-01-01

    Highlights: ► Exploit of DHS algorithm in LP optimization reveals its flexibility, robustness and reliability. ► Upshot of our experiments with DHS shows that the search approach to optimal LP is quickly. ► On the average, the final band width of DHS fitness values is narrow relative to HS and GHS. -- Abstract: The objective of this work is to develop a core loading optimization technique using differential harmony search algorithm in the context of obtaining an optimal configuration of fuel assemblies in pressurized water reactors. To implement and evaluate the proposed technique, differential harmony search nodal expansion package for 2-D geometry, DHSNEP-2D, is developed. The package includes two modules; in the first modules differential harmony search (DHS) is implemented and nodal expansion code which solves two dimensional-multi group neutron diffusion equations using fourth degree flux expansion with one node per a fuel assembly is in the second module. For evaluation of DHS algorithm, classical harmony search (HS) and global-best harmony search (GHS) algorithms are also included in DHSNEP-2D in order to compare the outcome of techniques together. For this purpose, two PWR test cases have been investigated to demonstrate the DHS algorithm capability in obtaining near optimal loading pattern. Results show that the convergence rate of DHS and execution times are quite promising and also is reliable for the fuel management operation. Moreover, numerical results show the good performance of DHS relative to other competitive algorithms such as genetic algorithm (GA), classical harmony search (HS) and global-best harmony search (GHS) algorithms

  19. Ant colony search algorithm for optimal reactive power optimization

    Lenin K.

    2006-01-01

    Full Text Available The paper presents an (ACSA Ant colony search Algorithm for Optimal Reactive Power Optimization and voltage control of power systems. ACSA is a new co-operative agents’ approach, which is inspired by the observation of the behavior of real ant colonies on the topic of ant trial formation and foraging methods. Hence, in the ACSA a set of co-operative agents called "Ants" co-operates to find good solution for Reactive Power Optimization problem. The ACSA is applied for optimal reactive power optimization is evaluated on standard IEEE, 30, 57, 191 (practical test bus system. The proposed approach is tested and compared to genetic algorithm (GA, Adaptive Genetic Algorithm (AGA.

  20. Optimization of Antennas using a Hybrid Genetic-Algorithm Space-Mapping Algorithm

    Pantoja, M.F.; Bretones, A.R.; Meincke, Peter

    2006-01-01

    A hybrid global-local optimization technique for the design of antennas is presented. It consists of the subsequent application of a Genetic Algorithm (GA) that employs coarse models in the simulations and a space mapping (SM) that refines the solution found in the previous stage. The technique...

  1. Algorithms for worst-case tolerance optimization

    Schjær-Jacobsen, Hans; Madsen, Kaj

    1979-01-01

    New algorithms are presented for the solution of optimum tolerance assignment problems. The problems considered are defined mathematically as a worst-case problem (WCP), a fixed tolerance problem (FTP), and a variable tolerance problem (VTP). The basic optimization problem without tolerances...... is denoted the zero tolerance problem (ZTP). For solution of the WCP we suggest application of interval arithmetic and also alternative methods. For solution of the FTP an algorithm is suggested which is conceptually similar to algorithms previously developed by the authors for the ZTP. Finally, the VTP...... is solved by a double-iterative algorithm in which the inner iteration is performed by the FTP- algorithm. The application of the algorithm is demonstrated by means of relatively simple numerical examples. Basic properties, such as convergence properties, are displayed based on the examples....

  2. Genetic Optimization Algorithm for Metabolic Engineering Revisited

    Tobias B. Alter

    2018-05-01

    Full Text Available To date, several independent methods and algorithms exist for exploiting constraint-based stoichiometric models to find metabolic engineering strategies that optimize microbial production performance. Optimization procedures based on metaheuristics facilitate a straightforward adaption and expansion of engineering objectives, as well as fitness functions, while being particularly suited for solving problems of high complexity. With the increasing interest in multi-scale models and a need for solving advanced engineering problems, we strive to advance genetic algorithms, which stand out due to their intuitive optimization principles and the proven usefulness in this field of research. A drawback of genetic algorithms is that premature convergence to sub-optimal solutions easily occurs if the optimization parameters are not adapted to the specific problem. Here, we conducted comprehensive parameter sensitivity analyses to study their impact on finding optimal strain designs. We further demonstrate the capability of genetic algorithms to simultaneously handle (i multiple, non-linear engineering objectives; (ii the identification of gene target-sets according to logical gene-protein-reaction associations; (iii minimization of the number of network perturbations; and (iv the insertion of non-native reactions, while employing genome-scale metabolic models. This framework adds a level of sophistication in terms of strain design robustness, which is exemplarily tested on succinate overproduction in Escherichia coli.

  3. Global optimization and sensitivity analysis

    Cacuci, D.G.

    1990-01-01

    A new direction for the analysis of nonlinear models of nuclear systems is suggested to overcome fundamental limitations of sensitivity analysis and optimization methods currently prevalent in nuclear engineering usage. This direction is toward a global analysis of the behavior of the respective system as its design parameters are allowed to vary over their respective design ranges. Presented is a methodology for global analysis that unifies and extends the current scopes of sensitivity analysis and optimization by identifying all the critical points (maxima, minima) and solution bifurcation points together with corresponding sensitivities at any design point of interest. The potential applicability of this methodology is illustrated with test problems involving multiple critical points and bifurcations and comprising both equality and inequality constraints

  4. Solving Unconstrained Global Optimization Problems via Hybrid Swarm Intelligence Approaches

    Jui-Yu Wu

    2013-01-01

    Full Text Available Stochastic global optimization (SGO algorithms such as the particle swarm optimization (PSO approach have become popular for solving unconstrained global optimization (UGO problems. The PSO approach, which belongs to the swarm intelligence domain, does not require gradient information, enabling it to overcome this limitation of traditional nonlinear programming methods. Unfortunately, PSO algorithm implementation and performance depend on several parameters, such as cognitive parameter, social parameter, and constriction coefficient. These parameters are tuned by using trial and error. To reduce the parametrization of a PSO method, this work presents two efficient hybrid SGO approaches, namely, a real-coded genetic algorithm-based PSO (RGA-PSO method and an artificial immune algorithm-based PSO (AIA-PSO method. The specific parameters of the internal PSO algorithm are optimized using the external RGA and AIA approaches, and then the internal PSO algorithm is applied to solve UGO problems. The performances of the proposed RGA-PSO and AIA-PSO algorithms are then evaluated using a set of benchmark UGO problems. Numerical results indicate that, besides their ability to converge to a global minimum for each test UGO problem, the proposed RGA-PSO and AIA-PSO algorithms outperform many hybrid SGO algorithms. Thus, the RGA-PSO and AIA-PSO approaches can be considered alternative SGO approaches for solving standard-dimensional UGO problems.

  5. A new hybrid optimization algorithm CRO-DE for optimal coordination of overcurrent relays in complex power systems

    Mohamed Zellagui

    2017-09-01

    Full Text Available The paper presents a new hybrid global optimization algorithm based on Chemical Reaction based Optimization (CRO and Di¤erential evolution (DE algorithm for nonlinear constrained optimization problems. This approach proposed for the optimal coordination and setting relays of directional overcurrent relays in complex power systems. In protection coordination problem, the objective function to be minimized is the sum of the operating time of all main relays. The optimization problem is subject to a number of constraints which are mainly focused on the operation of the backup relay, which should operate if a primary relay fails to respond to the fault near to it, Time Dial Setting (TDS, Plug Setting (PS and the minimum operating time of a relay. The hybrid global proposed optimization algorithm aims to minimize the total operating time of each protection relay. Two systems are used as case study to check the effeciency of the optimization algorithm which are IEEE 4-bus and IEEE 6-bus models. Results are obtained and presented for CRO and DE and hybrid CRO-DE algorithms. The obtained results for the studied cases are compared with those results obtained when using other optimization algorithms which are Teaching Learning-Based Optimization (TLBO, Chaotic Differential Evolution Algorithm (CDEA and Modiffied Differential Evolution Algorithm (MDEA, and Hybrid optimization algorithms (PSO-DE, IA-PSO, and BFOA-PSO. From analysing the obtained results, it has been concluded that hybrid CRO-DO algorithm provides the most optimum solution with the best convergence rate.

  6. Optimized Bayesian dynamic advising theory and algorithms

    Karny, Miroslav

    2006-01-01

    Written by one of the world's leading groups in the area of Bayesian identification, control, and decision making, this book provides the theoretical and algorithmic basis of optimized probabilistic advising. Starting from abstract ideas and formulations, and culminating in detailed algorithms, the book comprises a unified treatment of an important problem of the design of advisory systems supporting supervisors of complex processes. It introduces the theoretical and algorithmic basis of developed advising, relying on novel and powerful combination black-box modelling by dynamic mixture models

  7. A Dynamic Multistage Hybrid Swarm Intelligence Optimization Algorithm for Function Optimization

    Daqing Wu

    2012-01-01

    Full Text Available A novel dynamic multistage hybrid swarm intelligence optimization algorithm is introduced, which is abbreviated as DM-PSO-ABC. The DM-PSO-ABC combined the exploration capabilities of the dynamic multiswarm particle swarm optimizer (PSO and the stochastic exploitation of the cooperative artificial bee colony algorithm (CABC for solving the function optimization. In the proposed hybrid algorithm, the whole process is divided into three stages. In the first stage, a dynamic multiswarm PSO is constructed to maintain the population diversity. In the second stage, the parallel, positive feedback of CABC was implemented in each small swarm. In the third stage, we make use of the particle swarm optimization global model, which has a faster convergence speed to enhance the global convergence in solving the whole problem. To verify the effectiveness and efficiency of the proposed hybrid algorithm, various scale benchmark problems are tested to demonstrate the potential of the proposed multistage hybrid swarm intelligence optimization algorithm. The results show that DM-PSO-ABC is better in the search precision, and convergence property and has strong ability to escape from the local suboptima when compared with several other peer algorithms.

  8. Rethinking exchange market models as optimization algorithms

    Luquini, Evandro; Omar, Nizam

    2018-02-01

    The exchange market model has mainly been used to study the inequality problem. Although the human society inequality problem is very important, the exchange market models dynamics until stationary state and its capability of ranking individuals is interesting in itself. This study considers the hypothesis that the exchange market model could be understood as an optimization procedure. We present herein the implications for algorithmic optimization and also the possibility of a new family of exchange market models

  9. Optimizing Transmission Network Expansion Planning With The Mean Of Chaotic Differential Evolution Algorithm

    Ahmed R. Abdelaziz

    2015-08-01

    Full Text Available This paper presents an application of Chaotic differential evolution optimization approach meta-heuristics in solving transmission network expansion planning TNEP using an AC model associated with reactive power planning RPP. The reliabilityredundancy of network analysis optimization problems implicate selection of components with multiple choices and redundancy levels that produce maximum benefits can be subject to the cost weight and volume constraints is presented in this paper. Classical mathematical methods have failed in handling non-convexities and non-smoothness in optimization problems. As an alternative to the classical optimization approaches the meta-heuristics have attracted lot of attention due to their ability to find an almost global optimal solution in reliabilityredundancy optimization problems. Evolutionary algorithms EAs paradigms of evolutionary computation field are stochastic and robust meta-heuristics useful to solve reliabilityredundancy optimization problems. EAs such as genetic algorithm evolutionary programming evolution strategies and differential evolution are being used to find global or near global optimal solution. The Differential Evolution Algorithm DEA population-based algorithm is an optimal algorithm with powerful global searching capability but it is usually in low convergence speed and presents bad searching capability in the later evolution stage. A new Chaotic Differential Evolution algorithm CDE based on the cat map is recommended which combines DE and chaotic searching algorithm. Simulation results and comparisons show that the chaotic differential evolution algorithm using Cat map is competitive and stable in performance with other optimization approaches and other maps.

  10. ADORE-GA: Genetic algorithm variant of the ADORE algorithm for ROP detector layout optimization in CANDU reactors

    Kastanya, Doddy

    2012-01-01

    Highlights: ► ADORE is an algorithm for CANDU ROP Detector Layout Optimization. ► ADORE-GA is a Genetic Algorithm variant of the ADORE algorithm. ► Robustness test of ADORE-GA algorithm is presented in this paper. - Abstract: The regional overpower protection (ROP) systems protect CANDU® reactors against overpower in the fuel that could reduce the safety margin-to-dryout. The overpower could originate from a localized power peaking within the core or a general increase in the global core power level. The design of the detector layout for ROP systems is a challenging discrete optimization problem. In recent years, two algorithms have been developed to find a quasi optimal solution to this detector layout optimization problem. Both of these algorithms utilize the simulated annealing (SA) algorithm as their optimization engine. In the present paper, an alternative optimization algorithm, namely the genetic algorithm (GA), has been implemented as the optimization engine. The implementation is done within the ADORE algorithm. Results from evaluating the effects of using various mutation rates and crossover parameters are presented in this paper. It has been demonstrated that the algorithm is sufficiently robust in producing similar quality solutions.

  11. Multiobjective generalized extremal optimization algorithm for simulation of daylight illuminants

    Kumar, Srividya Ravindra; Kurian, Ciji Pearl; Gomes-Borges, Marcos Eduardo

    2017-10-01

    Daylight illuminants are widely used as references for color quality testing and optical vision testing applications. Presently used daylight simulators make use of fluorescent bulbs that are not tunable and occupy more space inside the quality testing chambers. By designing a spectrally tunable LED light source with an optimal number of LEDs, cost, space, and energy can be saved. This paper describes an application of the generalized extremal optimization (GEO) algorithm for selection of the appropriate quantity and quality of LEDs that compose the light source. The multiobjective approach of this algorithm tries to get the best spectral simulation with minimum fitness error toward the target spectrum, correlated color temperature (CCT) the same as the target spectrum, high color rendering index (CRI), and luminous flux as required for testing applications. GEO is a global search algorithm based on phenomena of natural evolution and is especially designed to be used in complex optimization problems. Several simulations have been conducted to validate the performance of the algorithm. The methodology applied to model the LEDs, together with the theoretical basis for CCT and CRI calculation, is presented in this paper. A comparative result analysis of M-GEO evolutionary algorithm with the Levenberg-Marquardt conventional deterministic algorithm is also presented.

  12. 4th International Conference on Frontiers in Global Optimization

    Pardalos, Panos

    2004-01-01

    Global Optimization has emerged as one of the most exciting new areas of mathematical programming. Global optimization has received a wide attraction from many fields in the past few years, due to the success of new algorithms for addressing previously intractable problems from diverse areas such as computational chemistry and biology, biomedicine, structural optimization, computer sciences, operations research, economics, and engineering design and control. This book contains refereed invited papers submitted at the 4th international confer­ ence on Frontiers in Global Optimization held at Santorini, Greece during June 8-12, 2003. Santorini is one of the few sites of Greece, with wild beauty created by the explosion of a volcano which is in the middle of the gulf of the island. The mystic landscape with its numerous mult-extrema, was an inspiring location particularly for researchers working on global optimization. The three previous conferences on "Recent Advances in Global Opti­ mization", "State-of-the-...

  13. Acceleration techniques in the univariate Lipschitz global optimization

    Sergeyev, Yaroslav D.; Kvasov, Dmitri E.; Mukhametzhanov, Marat S.; De Franco, Angela

    2016-10-01

    Univariate box-constrained Lipschitz global optimization problems are considered in this contribution. Geometric and information statistical approaches are presented. The novel powerful local tuning and local improvement techniques are described in the contribution as well as the traditional ways to estimate the Lipschitz constant. The advantages of the presented local tuning and local improvement techniques are demonstrated using the operational characteristics approach for comparing deterministic global optimization algorithms on the class of 100 widely used test functions.

  14. Global stereo matching algorithm based on disparity range estimation

    Li, Jing; Zhao, Hong; Gu, Feifei

    2017-09-01

    The global stereo matching algorithms are of high accuracy for the estimation of disparity map, but the time-consuming in the optimization process still faces a curse, especially for the image pairs with high resolution and large baseline setting. To improve the computational efficiency of the global algorithms, a disparity range estimation scheme for the global stereo matching is proposed to estimate the disparity map of rectified stereo images in this paper. The projective geometry in a parallel binocular stereo vision is investigated to reveal a relationship between two disparities at each pixel in the rectified stereo images with different baselines, which can be used to quickly obtain a predicted disparity map in a long baseline setting estimated by that in the small one. Then, the drastically reduced disparity ranges at each pixel under a long baseline setting can be determined by the predicted disparity map. Furthermore, the disparity range estimation scheme is introduced into the graph cuts with expansion moves to estimate the precise disparity map, which can greatly save the cost of computing without loss of accuracy in the stereo matching, especially for the dense global stereo matching, compared to the traditional algorithm. Experimental results with the Middlebury stereo datasets are presented to demonstrate the validity and efficiency of the proposed algorithm.

  15. An Elite Decision Making Harmony Search Algorithm for Optimization Problem

    Lipu Zhang

    2012-01-01

    Full Text Available This paper describes a new variant of harmony search algorithm which is inspired by a well-known item “elite decision making.” In the new algorithm, the good information captured in the current global best and the second best solutions can be well utilized to generate new solutions, following some probability rule. The generated new solution vector replaces the worst solution in the solution set, only if its fitness is better than that of the worst solution. The generating and updating steps and repeated until the near-optimal solution vector is obtained. Extensive computational comparisons are carried out by employing various standard benchmark optimization problems, including continuous design variables and integer variables minimization problems from the literature. The computational results show that the proposed new algorithm is competitive in finding solutions with the state-of-the-art harmony search variants.

  16. Genetic algorithm enhanced by machine learning in dynamic aperture optimization

    Li, Yongjun; Cheng, Weixing; Yu, Li Hua; Rainer, Robert

    2018-05-01

    With the aid of machine learning techniques, the genetic algorithm has been enhanced and applied to the multi-objective optimization problem presented by the dynamic aperture of the National Synchrotron Light Source II (NSLS-II) Storage Ring. During the evolution processes employed by the genetic algorithm, the population is classified into different clusters in the search space. The clusters with top average fitness are given "elite" status. Intervention on the population is implemented by repopulating some potentially competitive candidates based on the experience learned from the accumulated data. These candidates replace randomly selected candidates among the original data pool. The average fitness of the population is therefore improved while diversity is not lost. Maintaining diversity ensures that the optimization is global rather than local. The quality of the population increases and produces more competitive descendants accelerating the evolution process significantly. When identifying the distribution of optimal candidates, they appear to be located in isolated islands within the search space. Some of these optimal candidates have been experimentally confirmed at the NSLS-II storage ring. The machine learning techniques that exploit the genetic algorithm can also be used in other population-based optimization problems such as particle swarm algorithm.

  17. Advances in metaheuristic algorithms for optimal design of structures

    Kaveh, A

    2017-01-01

    This book presents efficient metaheuristic algorithms for optimal design of structures. Many of these algorithms are developed by the author and his colleagues, consisting of Democratic Particle Swarm Optimization, Charged System Search, Magnetic Charged System Search, Field of Forces Optimization, Dolphin Echolocation Optimization, Colliding Bodies Optimization, Ray Optimization. These are presented together with algorithms which were developed by other authors and have been successfully applied to various optimization problems. These consist of Particle Swarm Optimization, Big Bang-Big Crunch Algorithm, Cuckoo Search Optimization, Imperialist Competitive Algorithm, and Chaos Embedded Metaheuristic Algorithms. Finally a multi-objective optimization method is presented to solve large-scale structural problems based on the Charged System Search algorithm. The concepts and algorithms presented in this book are not only applicable to optimization of skeletal structures and finite element models, but can equally ...

  18. Advances in metaheuristic algorithms for optimal design of structures

    Kaveh, A

    2014-01-01

    This book presents efficient metaheuristic algorithms for optimal design of structures. Many of these algorithms are developed by the author and his colleagues, consisting of Democratic Particle Swarm Optimization, Charged System Search, Magnetic Charged System Search, Field of Forces Optimization, Dolphin Echolocation Optimization, Colliding Bodies Optimization, Ray Optimization. These are presented together with algorithms which were developed by other authors and have been successfully applied to various optimization problems. These consist of Particle Swarm Optimization, Big Bang-Big Crunch Algorithm, Cuckoo Search Optimization, Imperialist Competitive Algorithm, and Chaos Embedded Metaheuristic Algorithms. Finally a multi-objective optimization method is presented to solve large-scale structural problems based on the Charged System Search algorithm. The concepts and algorithms presented in this book are not only applicable to optimization of skeletal structures and finite element models, but can equally ...

  19. Stochastic search in structural optimization - Genetic algorithms and simulated annealing

    Hajela, Prabhat

    1993-01-01

    An account is given of illustrative applications of genetic algorithms and simulated annealing methods in structural optimization. The advantages of such stochastic search methods over traditional mathematical programming strategies are emphasized; it is noted that these methods offer a significantly higher probability of locating the global optimum in a multimodal design space. Both genetic-search and simulated annealing can be effectively used in problems with a mix of continuous, discrete, and integer design variables.

  20. Effects of Random Values for Particle Swarm Optimization Algorithm

    Hou-Ping Dai

    2018-02-01

    Full Text Available Particle swarm optimization (PSO algorithm is generally improved by adaptively adjusting the inertia weight or combining with other evolution algorithms. However, in most modified PSO algorithms, the random values are always generated by uniform distribution in the range of [0, 1]. In this study, the random values, which are generated by uniform distribution in the ranges of [0, 1] and [−1, 1], and Gauss distribution with mean 0 and variance 1 ( U [ 0 , 1 ] , U [ − 1 , 1 ] and G ( 0 , 1 , are respectively used in the standard PSO and linear decreasing inertia weight (LDIW PSO algorithms. For comparison, the deterministic PSO algorithm, in which the random values are set as 0.5, is also investigated in this study. Some benchmark functions and the pressure vessel design problem are selected to test these algorithms with different types of random values in three space dimensions (10, 30, and 100. The experimental results show that the standard PSO and LDIW-PSO algorithms with random values generated by U [ − 1 , 1 ] or G ( 0 , 1 are more likely to avoid falling into local optima and quickly obtain the global optima. This is because the large-scale random values can expand the range of particle velocity to make the particle more likely to escape from local optima and obtain the global optima. Although the random values generated by U [ − 1 , 1 ] or G ( 0 , 1 are beneficial to improve the global searching ability, the local searching ability for a low dimensional practical optimization problem may be decreased due to the finite particles.

  1. A Hybrid Harmony Search Algorithm Approach for Optimal Power Flow

    Mimoun YOUNES

    2012-08-01

    Full Text Available Optimal Power Flow (OPF is one of the main functions of Power system operation. It determines the optimal settings of generating units, bus voltage, transformer tap and shunt elements in Power System with the objective of minimizing total production costs or losses while the system is operating within its security limits. The aim of this paper is to propose a novel methodology (BCGAs-HSA that solves OPF including both active and reactive power dispatch It is based on combining the binary-coded genetic algorithm (BCGAs and the harmony search algorithm (HSA to determine the optimal global solution. This method was tested on the modified IEEE 30 bus test system. The results obtained by this method are compared with those obtained with BCGAs or HSA separately. The results show that the BCGAs-HSA approach can converge to the optimum solution with accuracy compared to those reported recently in the literature.

  2. Hybrid Algorithm of Particle Swarm Optimization and Grey Wolf Optimizer for Improving Convergence Performance

    Narinder Singh

    2017-01-01

    Full Text Available A newly hybrid nature inspired algorithm called HPSOGWO is presented with the combination of Particle Swarm Optimization (PSO and Grey Wolf Optimizer (GWO. The main idea is to improve the ability of exploitation in Particle Swarm Optimization with the ability of exploration in Grey Wolf Optimizer to produce both variants’ strength. Some unimodal, multimodal, and fixed-dimension multimodal test functions are used to check the solution quality and performance of HPSOGWO variant. The numerical and statistical solutions show that the hybrid variant outperforms significantly the PSO and GWO variants in terms of solution quality, solution stability, convergence speed, and ability to find the global optimum.

  3. Improvement of characteristic statistic algorithm and its application on equilibrium cycle reloading optimization

    Hu, Y.; Liu, Z.; Shi, X.; Wang, B.

    2006-01-01

    A brief introduction of characteristic statistic algorithm (CSA) is given in the paper, which is a new global optimization algorithm to solve the problem of PWR in-core fuel management optimization. CSA is modified by the adoption of back propagation neural network and fast local adjustment. Then the modified CSA is applied to PWR Equilibrium Cycle Reloading Optimization, and the corresponding optimization code of CSA-DYW is developed. CSA-DYW is used to optimize the equilibrium cycle of 18 month reloading of Daya bay nuclear plant Unit 1 reactor. The results show that CSA-DYW has high efficiency and good global performance on PWR Equilibrium Cycle Reloading Optimization. (authors)

  4. Setting value optimization method in integration for relay protection based on improved quantum particle swarm optimization algorithm

    Yang, Guo Sheng; Wang, Xiao Yang; Li, Xue Dong

    2018-03-01

    With the establishment of the integrated model of relay protection and the scale of the power system expanding, the global setting and optimization of relay protection is an extremely difficult task. This paper presents a kind of application in relay protection of global optimization improved particle swarm optimization algorithm and the inverse time current protection as an example, selecting reliability of the relay protection, selectivity, quick action and flexibility as the four requires to establish the optimization targets, and optimizing protection setting values of the whole system. Finally, in the case of actual power system, the optimized setting value results of the proposed method in this paper are compared with the particle swarm algorithm. The results show that the improved quantum particle swarm optimization algorithm has strong search ability, good robustness, and it is suitable for optimizing setting value in the relay protection of the whole power system.

  5. Development of GPT-based optimization algorithm

    White, J.R.; Chapman, D.M.; Biswas, D.

    1985-01-01

    The University of Lowell and Westinghouse Electric Corporation are involved in a joint effort to evaluate the potential benefits of generalized/depletion perturbation theory (GPT/DTP) methods for a variety of light water reactor (LWR) physics applications. One part of that work has focused on the development of a GPT-based optimization algorithm for the overall design, analysis, and optimization of LWR reload cores. The use of GPT sensitivity data in formulating the fuel management optimization problem is conceptually straightforward; it is the actual execution of the concept that is challenging. Thus, the purpose of this paper is to address some of the major difficulties, to outline our approach to these problems, and to present some illustrative examples of an efficient GTP-based optimization scheme

  6. Configurable intelligent optimization algorithm design and practice in manufacturing

    Tao, Fei; Laili, Yuanjun

    2014-01-01

    Presenting the concept and design and implementation of configurable intelligent optimization algorithms in manufacturing systems, this book provides a new configuration method to optimize manufacturing processes. It provides a comprehensive elaboration of basic intelligent optimization algorithms, and demonstrates how their improvement, hybridization and parallelization can be applied to manufacturing. Furthermore, various applications of these intelligent optimization algorithms are exemplified in detail, chapter by chapter. The intelligent optimization algorithm is not just a single algorit

  7. Computational Approaches to Simulation and Optimization of Global Aircraft Trajectories

    Ng, Hok Kwan; Sridhar, Banavar

    2016-01-01

    This study examines three possible approaches to improving the speed in generating wind-optimal routes for air traffic at the national or global level. They are: (a) using the resources of a supercomputer, (b) running the computations on multiple commercially available computers and (c) implementing those same algorithms into NASAs Future ATM Concepts Evaluation Tool (FACET) and compares those to a standard implementation run on a single CPU. Wind-optimal aircraft trajectories are computed using global air traffic schedules. The run time and wait time on the supercomputer for trajectory optimization using various numbers of CPUs ranging from 80 to 10,240 units are compared with the total computational time for running the same computation on a single desktop computer and on multiple commercially available computers for potential computational enhancement through parallel processing on the computer clusters. This study also re-implements the trajectory optimization algorithm for further reduction of computational time through algorithm modifications and integrates that with FACET to facilitate the use of the new features which calculate time-optimal routes between worldwide airport pairs in a wind field for use with existing FACET applications. The implementations of trajectory optimization algorithms use MATLAB, Python, and Java programming languages. The performance evaluations are done by comparing their computational efficiencies and based on the potential application of optimized trajectories. The paper shows that in the absence of special privileges on a supercomputer, a cluster of commercially available computers provides a feasible approach for national and global air traffic system studies.

  8. Warehouse stocking optimization based on dynamic ant colony genetic algorithm

    Xiao, Xiaoxu

    2018-04-01

    In view of the various orders of FAW (First Automotive Works) International Logistics Co., Ltd., the SLP method is used to optimize the layout of the warehousing units in the enterprise, thus the warehouse logistics is optimized and the external processing speed of the order is improved. In addition, the relevant intelligent algorithms for optimizing the stocking route problem are analyzed. The ant colony algorithm and genetic algorithm which have good applicability are emphatically studied. The parameters of ant colony algorithm are optimized by genetic algorithm, which improves the performance of ant colony algorithm. A typical path optimization problem model is taken as an example to prove the effectiveness of parameter optimization.

  9. Genetic algorithm optimization of atomic clusters

    Morris, J.R.; Deaven, D.M.; Ho, K.M.; Wang, C.Z.; Pan, B.C.; Wacker, J.G.; Turner, D.E.; Iowa State Univ., Ames, IA

    1996-01-01

    The authors have been using genetic algorithms to study the structures of atomic clusters and related problems. This is a problem where local minima are easy to locate, but barriers between the many minima are large, and the number of minima prohibit a systematic search. They use a novel mating algorithm that preserves some of the geometrical relationship between atoms, in order to ensure that the resultant structures are likely to inherit the best features of the parent clusters. Using this approach, they have been able to find lower energy structures than had been previously obtained. Most recently, they have been able to turn around the building block idea, using optimized structures from the GA to learn about systematic structural trends. They believe that an effective GA can help provide such heuristic information, and (conversely) that such information can be introduced back into the algorithm to assist in the search process

  10. Algorithm 896: LSA: Algorithms for Large-Scale Optimization

    Lukšan, Ladislav; Matonoha, Ctirad; Vlček, Jan

    2009-01-01

    Roč. 36, č. 3 (2009), 16-1-16-29 ISSN 0098-3500 R&D Pro jects: GA AV ČR IAA1030405; GA ČR GP201/06/P397 Institutional research plan: CEZ:AV0Z10300504 Keywords : algorithms * design * large-scale optimization * large-scale nonsmooth optimization * large-scale nonlinear least squares * large-scale nonlinear minimax * large-scale systems of nonlinear equations * sparse pro blems * partially separable pro blems * limited-memory methods * discrete Newton methods * quasi-Newton methods * primal interior-point methods Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.904, year: 2009

  11. Optimal algorithmic trading and market microstructure

    Labadie , Mauricio; Lehalle , Charles-Albert

    2010-01-01

    The efficient frontier is a core concept in Modern Portfolio Theory. Based on this idea, we will construct optimal trading curves for different types of portfolios. These curves correspond to the algorithmic trading strategies that minimize the expected transaction costs, i.e. the joint effect of market impact and market risk. We will study five portfolio trading strategies. For the first three (single-asset, general multi-asseet and balanced portfolios) we will assume that the underlyings fo...

  12. Optical flow optimization using parallel genetic algorithm

    Zavala-Romero, Olmo; Botella, Guillermo; Meyer-Bäse, Anke; Meyer Base, Uwe

    2011-06-01

    A new approach to optimize the parameters of a gradient-based optical flow model using a parallel genetic algorithm (GA) is proposed. The main characteristics of the optical flow algorithm are its bio-inspiration and robustness against contrast, static patterns and noise, besides working consistently with several optical illusions where other algorithms fail. This model depends on many parameters which conform the number of channels, the orientations required, the length and shape of the kernel functions used in the convolution stage, among many more. The GA is used to find a set of parameters which improve the accuracy of the optical flow on inputs where the ground-truth data is available. This set of parameters helps to understand which of them are better suited for each type of inputs and can be used to estimate the parameters of the optical flow algorithm when used with videos that share similar characteristics. The proposed implementation takes into account the embarrassingly parallel nature of the GA and uses the OpenMP Application Programming Interface (API) to speedup the process of estimating an optimal set of parameters. The information obtained in this work can be used to dynamically reconfigure systems, with potential applications in robotics, medical imaging and tracking.

  13. Genetic algorithm based separation cascade optimization

    Mahendra, A.K.; Sanyal, A.; Gouthaman, G.; Bera, T.K.

    2008-01-01

    The conventional separation cascade design procedure does not give an optimum design because of squaring-off, variation of flow rates and separation factor of the element with respect to stage location. Multi-component isotope separation further complicates the design procedure. Cascade design can be stated as a constrained multi-objective optimization. Cascade's expectation from the separating element is multi-objective i.e. overall separation factor, cut, optimum feed and separative power. Decision maker may aspire for more comprehensive multi-objective goals where optimization of cascade is coupled with the exploration of separating element optimization vector space. In real life there are many issues which make it important to understand the decision maker's perception of cost-quality-speed trade-off and consistency of preferences. Genetic algorithm (GA) is one such evolutionary technique that can be used for cascade design optimization. This paper addresses various issues involved in the GA based multi-objective optimization of the separation cascade. Reference point based optimization methodology with GA based Pareto optimality concept for separation cascade was found pragmatic and promising. This method should be explored, tested, examined and further developed for binary as well as multi-component separations. (author)

  14. Global Optimization of Nonlinear Blend-Scheduling Problems

    Pedro A. Castillo Castillo

    2017-04-01

    Full Text Available The scheduling of gasoline-blending operations is an important problem in the oil refining industry. This problem not only exhibits the combinatorial nature that is intrinsic to scheduling problems, but also non-convex nonlinear behavior, due to the blending of various materials with different quality properties. In this work, a global optimization algorithm is proposed to solve a previously published continuous-time mixed-integer nonlinear scheduling model for gasoline blending. The model includes blend recipe optimization, the distribution problem, and several important operational features and constraints. The algorithm employs piecewise McCormick relaxation (PMCR and normalized multiparametric disaggregation technique (NMDT to compute estimates of the global optimum. These techniques partition the domain of one of the variables in a bilinear term and generate convex relaxations for each partition. By increasing the number of partitions and reducing the domain of the variables, the algorithm is able to refine the estimates of the global solution. The algorithm is compared to two commercial global solvers and two heuristic methods by solving four examples from the literature. Results show that the proposed global optimization algorithm performs on par with commercial solvers but is not as fast as heuristic approaches.

  15. Optimized Data Indexing Algorithms for OLAP Systems

    Lucian BORNAZ

    2010-12-01

    Full Text Available The need to process and analyze large data volumes, as well as to convey the information contained therein to decision makers naturally led to the development of OLAP systems. Similarly to SGBDs, OLAP systems must ensure optimum access to the storage environment. Although there are several ways to optimize database systems, implementing a correct data indexing solution is the most effective and less costly. Thus, OLAP uses indexing algorithms for relational data and n-dimensional summarized data stored in cubes. Today database systems implement derived indexing algorithms based on well-known Tree, Bitmap and Hash indexing algorithms. This is because no indexing algorithm provides the best performance for any particular situation (type, structure, data volume, application. This paper presents a new n-dimensional cube indexing algorithm, derived from the well known B-Tree index, which indexes data stored in data warehouses taking in consideration their multi-dimensional nature and provides better performance in comparison to the already implemented Tree-like index types.

  16. Optimal configuration of power grid sources based on optimal particle swarm algorithm

    Wen, Yuanhua

    2018-04-01

    In order to optimize the distribution problem of power grid sources, an optimized particle swarm optimization algorithm is proposed. First, the concept of multi-objective optimization and the Pareto solution set are enumerated. Then, the performance of the classical genetic algorithm, the classical particle swarm optimization algorithm and the improved particle swarm optimization algorithm are analyzed. The three algorithms are simulated respectively. Compared with the test results of each algorithm, the superiority of the algorithm in convergence and optimization performance is proved, which lays the foundation for subsequent micro-grid power optimization configuration solution.

  17. New Dandelion Algorithm Optimizes Extreme Learning Machine for Biomedical Classification Problems

    Xiguang Li

    2017-01-01

    Full Text Available Inspired by the behavior of dandelion sowing, a new novel swarm intelligence algorithm, namely, dandelion algorithm (DA, is proposed for global optimization of complex functions in this paper. In DA, the dandelion population will be divided into two subpopulations, and different subpopulations will undergo different sowing behaviors. Moreover, another sowing method is designed to jump out of local optimum. In order to demonstrate the validation of DA, we compare the proposed algorithm with other existing algorithms, including bat algorithm, particle swarm optimization, and enhanced fireworks algorithm. Simulations show that the proposed algorithm seems much superior to other algorithms. At the same time, the proposed algorithm can be applied to optimize extreme learning machine (ELM for biomedical classification problems, and the effect is considerable. At last, we use different fusion methods to form different fusion classifiers, and the fusion classifiers can achieve higher accuracy and better stability to some extent.

  18. Advanced metaheuristic algorithms for laser optimization

    Tomizawa, H.

    2010-01-01

    A laser is one of the most important experimental tools. In synchrotron radiation field, lasers are widely used for experiments with Pump-Probe techniques. Especially for Xray-FELs, a laser has important roles as a seed light source or photo-cathode-illuminating light source to generate a high brightness electron bunch. The controls of laser pulse characteristics are required for many kinds of experiments. However, the laser should be tuned and customized for each requirement by laser experts. The automatic tuning of laser is required to realize with some sophisticated algorithms. The metaheuristic algorithm is one of the useful candidates to find one of the best solutions as acceptable as possible. The metaheuristic laser tuning system is expected to save our human resources and time for the laser preparations. I have shown successful results on a metaheuristic algorithm based on a genetic algorithm to optimize spatial (transverse) laser profiles and a hill climbing method extended with a fuzzy set theory to choose one of the best laser alignments automatically for each experimental requirement. (author)

  19. Deterministic global optimization an introduction to the diagonal approach

    Sergeyev, Yaroslav D

    2017-01-01

    This book begins with a concentrated introduction into deterministic global optimization and moves forward to present new original results from the authors who are well known experts in the field. Multiextremal continuous problems that have an unknown structure with Lipschitz objective functions and functions having the first Lipschitz derivatives defined over hyperintervals are examined. A class of algorithms using several Lipschitz constants is introduced which has its origins in the DIRECT (DIviding RECTangles) method. This new class is based on an efficient strategy that is applied for the search domain partitioning. In addition a survey on derivative free methods and methods using the first derivatives is given for both one-dimensional and multi-dimensional cases. Non-smooth and smooth minorants and acceleration techniques that can speed up several classes of global optimization methods with examples of applications and problems arising in numerical testing of global optimization algorithms are discussed...

  20. Hierarchical Artificial Bee Colony Algorithm for RFID Network Planning Optimization

    Lianbo Ma

    2014-01-01

    Full Text Available This paper presents a novel optimization algorithm, namely, hierarchical artificial bee colony optimization, called HABC, to tackle the radio frequency identification network planning (RNP problem. In the proposed multilevel model, the higher-level species can be aggregated by the subpopulations from lower level. In the bottom level, each subpopulation employing the canonical ABC method searches the part-dimensional optimum in parallel, which can be constructed into a complete solution for the upper level. At the same time, the comprehensive learning method with crossover and mutation operators is applied to enhance the global search ability between species. Experiments are conducted on a set of 10 benchmark optimization problems. The results demonstrate that the proposed HABC obtains remarkable performance on most chosen benchmark functions when compared to several successful swarm intelligence and evolutionary algorithms. Then HABC is used for solving the real-world RNP problem on two instances with different scales. Simulation results show that the proposed algorithm is superior for solving RNP, in terms of optimization accuracy and computation robustness.

  1. An External Archive-Guided Multiobjective Particle Swarm Optimization Algorithm.

    Zhu, Qingling; Lin, Qiuzhen; Chen, Weineng; Wong, Ka-Chun; Coello Coello, Carlos A; Li, Jianqiang; Chen, Jianyong; Zhang, Jun

    2017-09-01

    The selection of swarm leaders (i.e., the personal best and global best), is important in the design of a multiobjective particle swarm optimization (MOPSO) algorithm. Such leaders are expected to effectively guide the swarm to approach the true Pareto optimal front. In this paper, we present a novel external archive-guided MOPSO algorithm (AgMOPSO), where the leaders for velocity update are all selected from the external archive. In our algorithm, multiobjective optimization problems (MOPs) are transformed into a set of subproblems using a decomposition approach, and then each particle is assigned accordingly to optimize each subproblem. A novel archive-guided velocity update method is designed to guide the swarm for exploration, and the external archive is also evolved using an immune-based evolutionary strategy. These proposed approaches speed up the convergence of AgMOPSO. The experimental results fully demonstrate the superiority of our proposed AgMOPSO in solving most of the test problems adopted, in terms of two commonly used performance measures. Moreover, the effectiveness of our proposed archive-guided velocity update method and immune-based evolutionary strategy is also experimentally validated on more than 30 test MOPs.

  2. Hierarchical artificial bee colony algorithm for RFID network planning optimization.

    Ma, Lianbo; Chen, Hanning; Hu, Kunyuan; Zhu, Yunlong

    2014-01-01

    This paper presents a novel optimization algorithm, namely, hierarchical artificial bee colony optimization, called HABC, to tackle the radio frequency identification network planning (RNP) problem. In the proposed multilevel model, the higher-level species can be aggregated by the subpopulations from lower level. In the bottom level, each subpopulation employing the canonical ABC method searches the part-dimensional optimum in parallel, which can be constructed into a complete solution for the upper level. At the same time, the comprehensive learning method with crossover and mutation operators is applied to enhance the global search ability between species. Experiments are conducted on a set of 10 benchmark optimization problems. The results demonstrate that the proposed HABC obtains remarkable performance on most chosen benchmark functions when compared to several successful swarm intelligence and evolutionary algorithms. Then HABC is used for solving the real-world RNP problem on two instances with different scales. Simulation results show that the proposed algorithm is superior for solving RNP, in terms of optimization accuracy and computation robustness.

  3. Towards Enhancement of Performance of K-Means Clustering Using Nature-Inspired Optimization Algorithms

    Simon Fong

    2014-01-01

    Full Text Available Traditional K-means clustering algorithms have the drawback of getting stuck at local optima that depend on the random values of initial centroids. Optimization algorithms have their advantages in guiding iterative computation to search for global optima while avoiding local optima. The algorithms help speed up the clustering process by converging into a global optimum early with multiple search agents in action. Inspired by nature, some contemporary optimization algorithms which include Ant, Bat, Cuckoo, Firefly, and Wolf search algorithms mimic the swarming behavior allowing them to cooperatively steer towards an optimal objective within a reasonable time. It is known that these so-called nature-inspired optimization algorithms have their own characteristics as well as pros and cons in different applications. When these algorithms are combined with K-means clustering mechanism for the sake of enhancing its clustering quality by avoiding local optima and finding global optima, the new hybrids are anticipated to produce unprecedented performance. In this paper, we report the results of our evaluation experiments on the integration of nature-inspired optimization methods into K-means algorithms. In addition to the standard evaluation metrics in evaluating clustering quality, the extended K-means algorithms that are empowered by nature-inspired optimization methods are applied on image segmentation as a case study of application scenario.

  4. Towards enhancement of performance of K-means clustering using nature-inspired optimization algorithms.

    Fong, Simon; Deb, Suash; Yang, Xin-She; Zhuang, Yan

    2014-01-01

    Traditional K-means clustering algorithms have the drawback of getting stuck at local optima that depend on the random values of initial centroids. Optimization algorithms have their advantages in guiding iterative computation to search for global optima while avoiding local optima. The algorithms help speed up the clustering process by converging into a global optimum early with multiple search agents in action. Inspired by nature, some contemporary optimization algorithms which include Ant, Bat, Cuckoo, Firefly, and Wolf search algorithms mimic the swarming behavior allowing them to cooperatively steer towards an optimal objective within a reasonable time. It is known that these so-called nature-inspired optimization algorithms have their own characteristics as well as pros and cons in different applications. When these algorithms are combined with K-means clustering mechanism for the sake of enhancing its clustering quality by avoiding local optima and finding global optima, the new hybrids are anticipated to produce unprecedented performance. In this paper, we report the results of our evaluation experiments on the integration of nature-inspired optimization methods into K-means algorithms. In addition to the standard evaluation metrics in evaluating clustering quality, the extended K-means algorithms that are empowered by nature-inspired optimization methods are applied on image segmentation as a case study of application scenario.

  5. Towards Enhancement of Performance of K-Means Clustering Using Nature-Inspired Optimization Algorithms

    Deb, Suash; Yang, Xin-She

    2014-01-01

    Traditional K-means clustering algorithms have the drawback of getting stuck at local optima that depend on the random values of initial centroids. Optimization algorithms have their advantages in guiding iterative computation to search for global optima while avoiding local optima. The algorithms help speed up the clustering process by converging into a global optimum early with multiple search agents in action. Inspired by nature, some contemporary optimization algorithms which include Ant, Bat, Cuckoo, Firefly, and Wolf search algorithms mimic the swarming behavior allowing them to cooperatively steer towards an optimal objective within a reasonable time. It is known that these so-called nature-inspired optimization algorithms have their own characteristics as well as pros and cons in different applications. When these algorithms are combined with K-means clustering mechanism for the sake of enhancing its clustering quality by avoiding local optima and finding global optima, the new hybrids are anticipated to produce unprecedented performance. In this paper, we report the results of our evaluation experiments on the integration of nature-inspired optimization methods into K-means algorithms. In addition to the standard evaluation metrics in evaluating clustering quality, the extended K-means algorithms that are empowered by nature-inspired optimization methods are applied on image segmentation as a case study of application scenario. PMID:25202730

  6. Deriving the Normalized Min-Sum Algorithm from Cooperative Optimization

    Huang, Xiaofei

    2006-01-01

    The normalized min-sum algorithm can achieve near-optimal performance at decoding LDPC codes. However, it is a critical question to understand the mathematical principle underlying the algorithm. Traditionally, people thought that the normalized min-sum algorithm is a good approximation to the sum-product algorithm, the best known algorithm for decoding LDPC codes and Turbo codes. This paper offers an alternative approach to understand the normalized min-sum algorithm. The algorithm is derive...

  7. Optimal hydrogenerator governor tuning with a genetic algorithm

    Lansberry, J.E.; Wozniak, L.; Goldberg, D.E.

    1992-01-01

    Many techniques exist for developing optimal controllers. This paper investigates genetic algorithms as a means of finding optimal solutions over a parameter space. In particular, the genetic algorithm is applied to optimal tuning of a governor for a hydrogenerator plant. Analog and digital simulation methods are compared for use in conjunction with the genetic algorithm optimization process. It is shown that analog plant simulation provides advantages in speed over digital plant simulation. This speed advantage makes application of the genetic algorithm in an actual plant environment feasible. Furthermore, the genetic algorithm is shown to possess the ability to reject plant noise and other system anomalies in its search for optimizing solutions

  8. Low emittance lattice optimization using a multi-objective evolutionary algorithm

    Gao Weiwei; Wang Lin; Li Weimin; He Duohui

    2011-01-01

    A low emittance lattice design and optimization procedure are systematically studied with a non-dominated sorting-based multi-objective evolutionary algorithm which not only globally searches the low emittance lattice, but also optimizes some beam quantities such as betatron tunes, momentum compaction factor and dispersion function simultaneously. In this paper the detailed algorithm and lattice design procedure are presented. The Hefei light source upgrade project storage ring lattice, with fixed magnet layout, is designed to illustrate this optimization procedure. (authors)

  9. Queue and stack sorting algorithm optimization and performance analysis

    Qian, Mingzhu; Wang, Xiaobao

    2018-04-01

    Sorting algorithm is one of the basic operation of a variety of software development, in data structures course specializes in all kinds of sort algorithm. The performance of the sorting algorithm is directly related to the efficiency of the software. A lot of excellent scientific research queue is constantly optimizing algorithm, algorithm efficiency better as far as possible, the author here further research queue combined with stacks of sorting algorithms, the algorithm is mainly used for alternating operation queue and stack storage properties, Thus avoiding the need for a large number of exchange or mobile operations in the traditional sort. Before the existing basis to continue research, improvement and optimization, the focus on the optimization of the time complexity of the proposed optimization and improvement, The experimental results show that the improved effectively, at the same time and the time complexity and space complexity of the algorithm, the stability study corresponding research. The improvement and optimization algorithm, improves the practicability.

  10. Hybrid Optimization Algorithm of Particle Swarm Optimization and Cuckoo Search for Preventive Maintenance Period Optimization

    Jianwen Guo

    2016-01-01

    Full Text Available All equipment must be maintained during its lifetime to ensure normal operation. Maintenance is one of the critical roles in the success of manufacturing enterprises. This paper proposed a preventive maintenance period optimization model (PMPOM to find an optimal preventive maintenance period. By making use of the advantages of particle swarm optimization (PSO and cuckoo search (CS algorithm, a hybrid optimization algorithm of PSO and CS is proposed to solve the PMPOM problem. The test functions show that the proposed algorithm exhibits more outstanding performance than particle swarm optimization and cuckoo search. Experiment results show that the proposed algorithm has advantages of strong optimization ability and fast convergence speed to solve the PMPOM problem.

  11. Instrument design and optimization using genetic algorithms

    Hoelzel, Robert; Bentley, Phillip M.; Fouquet, Peter

    2006-01-01

    This article describes the design of highly complex physical instruments by using a canonical genetic algorithm (GA). The procedure can be applied to all instrument designs where performance goals can be quantified. It is particularly suited to the optimization of instrument design where local optima in the performance figure of merit are prevalent. Here, a GA is used to evolve the design of the neutron spin-echo spectrometer WASP which is presently being constructed at the Institut Laue-Langevin, Grenoble, France. A comparison is made between this artificial intelligence approach and the traditional manual design methods. We demonstrate that the search of parameter space is more efficient when applying the genetic algorithm, and the GA produces a significantly better instrument design. Furthermore, it is found that the GA increases flexibility, by facilitating the reoptimization of the design after changes in boundary conditions during the design phase. The GA also allows the exploration of 'nonstandard' magnet coil geometries. We conclude that this technique constitutes a powerful complementary tool for the design and optimization of complex scientific apparatus, without replacing the careful thought processes employed in traditional design methods

  12. Instrument design and optimization using genetic algorithms

    Hölzel, Robert; Bentley, Phillip M.; Fouquet, Peter

    2006-10-01

    This article describes the design of highly complex physical instruments by using a canonical genetic algorithm (GA). The procedure can be applied to all instrument designs where performance goals can be quantified. It is particularly suited to the optimization of instrument design where local optima in the performance figure of merit are prevalent. Here, a GA is used to evolve the design of the neutron spin-echo spectrometer WASP which is presently being constructed at the Institut Laue-Langevin, Grenoble, France. A comparison is made between this artificial intelligence approach and the traditional manual design methods. We demonstrate that the search of parameter space is more efficient when applying the genetic algorithm, and the GA produces a significantly better instrument design. Furthermore, it is found that the GA increases flexibility, by facilitating the reoptimization of the design after changes in boundary conditions during the design phase. The GA also allows the exploration of "nonstandard" magnet coil geometries. We conclude that this technique constitutes a powerful complementary tool for the design and optimization of complex scientific apparatus, without replacing the careful thought processes employed in traditional design methods.

  13. A global algorithm for estimating Absolute Salinity

    McDougall, T. J.; Jackett, D. R.; Millero, F. J.; Pawlowicz, R.; Barker, P. M.

    2012-12-01

    The International Thermodynamic Equation of Seawater - 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density) than does Practical Salinity. When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic), Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg-1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p) in the world ocean. To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811). In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally).

  14. Optimal Allocation of Generalized Power Sources in Distribution Network Based on Multi-Objective Particle Swarm Optimization Algorithm

    Li Ran

    2017-01-01

    Full Text Available Optimal allocation of generalized power sources in distribution network is researched. A simple index of voltage stability is put forward. Considering the investment and operation benefit, the stability of voltage and the pollution emissions of generalized power sources in distribution network, a multi-objective optimization planning model is established. A multi-objective particle swarm optimization algorithm is proposed to solve the optimal model. In order to improve the global search ability, the strategies of fast non-dominated sorting, elitism and crowding distance are adopted in this algorithm. Finally, tested the model and algorithm by IEEE-33 node system to find the best configuration of GP, the computed result shows that with the generalized power reasonable access to the active distribution network, the investment benefit and the voltage stability of the system is improved, and the proposed algorithm has better global search capability.

  15. A Feedback Optimal Control Algorithm with Optimal Measurement Time Points

    Felix Jost

    2017-02-01

    Full Text Available Nonlinear model predictive control has been established as a powerful methodology to provide feedback for dynamic processes over the last decades. In practice it is usually combined with parameter and state estimation techniques, which allows to cope with uncertainty on many levels. To reduce the uncertainty it has also been suggested to include optimal experimental design into the sequential process of estimation and control calculation. Most of the focus so far was on dual control approaches, i.e., on using the controls to simultaneously excite the system dynamics (learning as well as minimizing a given objective (performing. We propose a new algorithm, which sequentially solves robust optimal control, optimal experimental design, state and parameter estimation problems. Thus, we decouple the control and the experimental design problems. This has the advantages that we can analyze the impact of measurement timing (sampling independently, and is practically relevant for applications with either an ethical limitation on system excitation (e.g., chemotherapy treatment or the need for fast feedback. The algorithm shows promising results with a 36% reduction of parameter uncertainties for the Lotka-Volterra fishing benchmark example.

  16. Applications of metaheuristic optimization algorithms in civil engineering

    Kaveh, A

    2017-01-01

    The book presents recently developed efficient metaheuristic optimization algorithms and their applications for solving various optimization problems in civil engineering. The concepts can also be used for optimizing problems in mechanical and electrical engineering.

  17. A Global algorithm for linear radiosity

    Sbert Cassasayas, Mateu; Pueyo Sánchez, Xavier

    1993-01-01

    A linear algorithm for radiosity is presented, linear both in time and storage. The new algorithm is based on previous work by the authors and on the well known algorithms for progressive radiosity and Monte Carlo particle transport.

  18. Optimization of wind farm turbines layout using an evolutive algorithm

    Gonzalez, Javier Serrano; Santos, Jesus Riquelme; Payan, Manuel Burgos; Gonzalez Rodriguez, Angel G.; Mora, Jose Castro

    2010-01-01

    The optimum wind farm configuration problem is discussed in this paper and an evolutive algorithm to optimize the wind farm layout is proposed. The algorithm's optimization process is based on a global wind farm cost model using the initial investment and the present value of the yearly net cash flow during the entire wind-farm life span. The proposed algorithm calculates the yearly income due to the sale of the net generated energy taking into account the individual wind turbine loss of production due to wake decay effects and it can deal with areas or terrains with non-uniform load-bearing capacity soil and different roughness length for every wind direction or restrictions such as forbidden areas or limitations in the number of wind turbines or the investment. The results are first favorably compared with those previously published and a second collection of test cases is used to proof the performance and suitability of the proposed evolutive algorithm to find the optimum wind farm configuration. (author)

  19. Bidirectional Dynamic Diversity Evolutionary Algorithm for Constrained Optimization

    Weishang Gao

    2013-01-01

    Full Text Available Evolutionary algorithms (EAs were shown to be effective for complex constrained optimization problems. However, inflexible exploration-exploitation and improper penalty in EAs with penalty function would lead to losing the global optimum nearby or on the constrained boundary. To determine an appropriate penalty coefficient is also difficult in most studies. In this paper, we propose a bidirectional dynamic diversity evolutionary algorithm (Bi-DDEA with multiagents guiding exploration-exploitation through local extrema to the global optimum in suitable steps. In Bi-DDEA potential advantage is detected by three kinds of agents. The scale and the density of agents will change dynamically according to the emerging of potential optimal area, which play an important role of flexible exploration-exploitation. Meanwhile, a novel double optimum estimation strategy with objective fitness and penalty fitness is suggested to compute, respectively, the dominance trend of agents in feasible region and forbidden region. This bidirectional evolving with multiagents can not only effectively avoid the problem of determining penalty coefficient but also quickly converge to the global optimum nearby or on the constrained boundary. By examining the rapidity and veracity of Bi-DDEA across benchmark functions, the proposed method is shown to be effective.

  20. Essays and surveys in global optimization

    Audet, Charles; Savard, Giles

    2005-01-01

    Global optimization aims at solving the most general problems of deterministic mathematical programming. In addition, once the solutions are found, this methodology is also expected to prove their optimality. With these difficulties in mind, global optimization is becoming an increasingly powerful and important methodology. This book is the most recent examination of its mathematical capability, power, and wide ranging solutions to many fields in the applied sciences.

  1. Optimizing human activity patterns using global sensitivity analysis.

    Fairchild, Geoffrey; Hickmann, Kyle S; Mniszewski, Susan M; Del Valle, Sara Y; Hyman, James M

    2014-12-01

    Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule's regularity for a population. We show how to tune an activity's regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimization problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. We use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations.

  2. Introduction to Nonlinear and Global Optimization

    Hendrix, E.M.T.; Tóth, B.

    2010-01-01

    This self-contained text provides a solid introduction to global and nonlinear optimization, providing students of mathematics and interdisciplinary sciences with a strong foundation in applied optimization techniques. The book offers a unique hands-on and critical approach to applied optimization

  3. Particle Swarm Optimization algorithms for geophysical inversion, practical hints

    Garcia Gonzalo, E.; Fernandez Martinez, J.; Fernandez Alvarez, J.; Kuzma, H.; Menendez Perez, C.

    2008-12-01

    PSO is a stochastic optimization technique that has been successfully used in many different engineering fields. PSO algorithm can be physically interpreted as a stochastic damped mass-spring system (Fernandez Martinez and Garcia Gonzalo 2008). Based on this analogy we present a whole family of PSO algorithms and their respective first order and second order stability regions. Their performance is also checked using synthetic functions (Rosenbrock and Griewank) showing a degree of ill-posedness similar to that found in many geophysical inverse problems. Finally, we present the application of these algorithms to the analysis of a Vertical Electrical Sounding inverse problem associated to a seawater intrusion in a coastal aquifer in South Spain. We analyze the role of PSO parameters (inertia, local and global accelerations and discretization step), both in convergence curves and in the a posteriori sampling of the depth of an intrusion. Comparison is made with binary genetic algorithms and simulated annealing. As result of this analysis, practical hints are given to select the correct algorithm and to tune the corresponding PSO parameters. Fernandez Martinez, J.L., Garcia Gonzalo, E., 2008a. The generalized PSO: a new door to PSO evolution. Journal of Artificial Evolution and Applications. DOI:10.1155/2008/861275.

  4. Application of a parallel genetic algorithm to the global optimization of medium-sized Au-Pd sub-nanometre clusters

    Hussein, Heider A.; Demiroglu, Ilker; Johnston, Roy L.

    2018-02-01

    To contribute to the discussion of the high activity and reactivity of Au-Pd system, we have adopted the BPGA-DFT approach to study the structural and energetic properties of medium-sized Au-Pd sub-nanometre clusters with 11-18 atoms. We have examined the structural behaviour and stability as a function of cluster size and composition. The study suggests 2D-3D crossover points for pure Au clusters at 14 and 16 atoms, whereas pure Pd clusters are all found to be 3D. For Au-Pd nanoalloys, the role of cluster size and the influence of doping were found to be extensive and non-monotonic in altering cluster structures. Various stability criteria (e.g. binding energies, second differences in energy, and mixing energies) are used to evaluate the energetics, structures, and tendency of segregation in sub-nanometre Au-Pd clusters. HOMO-LUMO gaps were calculated to give additional information on cluster stability and a systematic homotop search was used to evaluate the energies of the generated global minima of mono-substituted clusters and the preferred doping sites, as well as confirming the validity of the BPGA-DFT approach.

  5. A Hybrid Algorithm for Optimizing Multi- Modal Functions

    Li Qinghua; Yang Shida; Ruan Youlin

    2006-01-01

    A new genetic algorithm is presented based on the musical performance. The novelty of this algorithm is that a new genetic algorithm, mimicking the musical process of searching for a perfect state of harmony, which increases the robustness of it greatly and gives a new meaning of it in the meantime, has been developed. Combining the advantages of the new genetic algorithm, simplex algorithm and tabu search, a hybrid algorithm is proposed. In order to verify the effectiveness of the hybrid algorithm, it is applied to solving some typical numerical function optimization problems which are poorly solved by traditional genetic algorithms. The experimental results show that the hybrid algorithm is fast and reliable.

  6. Gravitation search algorithm: Application to the optimal IIR filter design

    Suman Kumar Saha

    2014-01-01

    Full Text Available This paper presents a global heuristic search optimization technique known as Gravitation Search Algorithm (GSA for the design of 8th order Infinite Impulse Response (IIR, low pass (LP, high pass (HP, band pass (BP and band stop (BS filters considering various non-linear characteristics of the filter design problems. This paper also adopts a novel fitness function in order to improve the stop band attenuation to a great extent. In GSA, law of gravity and mass interactions among different particles are adopted for handling the non-linear IIR filter design optimization problem. In this optimization technique, searcher agents are the collection of masses and interactions among them are governed by the Newtonian gravity and the laws of motion. The performances of the GSA based IIR filter designs have proven to be superior as compared to those obtained by real coded genetic algorithm (RGA and standard Particle Swarm Optimization (PSO. Extensive simulation results affirm that the proposed approach using GSA outperforms over its counterparts not only in terms of quality output, i.e., sharpness at cut-off, smaller pass band ripple, higher stop band attenuation, but also the fastest convergence speed with assured stability.

  7. A global algorithm for estimating Absolute Salinity

    T. J. McDougall

    2012-12-01

    Full Text Available The International Thermodynamic Equation of Seawater – 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density than does Practical Salinity.

    When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic, Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg−1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p in the world ocean.

    To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811. In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally.

  8. Design Optimization of Mechanical Components Using an Enhanced Teaching-Learning Based Optimization Algorithm with Differential Operator

    B. Thamaraikannan

    2014-01-01

    Full Text Available This paper studies in detail the background and implementation of a teaching-learning based optimization (TLBO algorithm with differential operator for optimization task of a few mechanical components, which are essential for most of the mechanical engineering applications. Like most of the other heuristic techniques, TLBO is also a population-based method and uses a population of solutions to proceed to the global solution. A differential operator is incorporated into the TLBO for effective search of better solutions. To validate the effectiveness of the proposed method, three typical optimization problems are considered in this research: firstly, to optimize the weight in a belt-pulley drive, secondly, to optimize the volume in a closed coil helical spring, and finally to optimize the weight in a hollow shaft. have been demonstrated. Simulation result on the optimization (mechanical components problems reveals the ability of the proposed methodology to find better optimal solutions compared to other optimization algorithms.

  9. Improved differential evolution algorithms for handling economic dispatch optimization with generator constraints

    Coelho, Leandro dos Santos; Mariani, Viviana Cocco

    2007-01-01

    Global optimization based on evolutionary algorithms can be used as the important component for many engineering optimization problems. Evolutionary algorithms have yielded promising results for solving nonlinear, non-differentiable and multi-modal optimization problems in the power systems area. Differential evolution (DE) is a simple and efficient evolutionary algorithm for function optimization over continuous spaces. It has reportedly outperformed search heuristics when tested over both benchmark and real world problems. This paper proposes improved DE algorithms for solving economic load dispatch problems that take into account nonlinear generator features such as ramp rate limits and prohibited operating zones in the power system operation. The DE algorithms and its variants are validated for two test systems consisting of 6 and 15 thermal units. Various DE approaches outperforms other state of the art algorithms reported in the literature in solving load dispatch problems with generator constraints

  10. KM-FCM: A fuzzy clustering optimization algorithm based on Mahalanobis distance

    Zhiwen ZU

    2018-04-01

    Full Text Available The traditional fuzzy clustering algorithm uses Euclidean distance as the similarity criterion, which is disadvantageous to the multidimensional data processing. In order to solve this situation, Mahalanobis distance is used instead of the traditional Euclidean distance, and the optimization of fuzzy clustering algorithm based on Mahalanobis distance is studied to enhance the clustering effect and ability. With making the initialization means by Heuristic search algorithm combined with k-means algorithm, and in terms of the validity function which could automatically adjust the optimal clustering number, an optimization algorithm KM-FCM is proposed. The new algorithm is compared with FCM algorithm, FCM-M algorithm and M-FCM algorithm in three standard data sets. The experimental results show that the KM-FCM algorithm is effective. It has higher clustering accuracy than FCM, FCM-M and M-FCM, recognizing high-dimensional data clustering well. It has global optimization effect, and the clustering number has no need for setting in advance. The new algorithm provides a reference for the optimization of fuzzy clustering algorithm based on Mahalanobis distance.

  11. Optimizing doped libraries by using genetic algorithms

    Tomandl, Dirk; Schober, Andreas; Schwienhorst, Andreas

    1997-01-01

    The insertion of random sequences into protein-encoding genes in combination with biologicalselection techniques has become a valuable tool in the design of molecules that have usefuland possibly novel properties. By employing highly effective screening protocols, a functionaland unique structure that had not been anticipated can be distinguished among a hugecollection of inactive molecules that together represent all possible amino acid combinations.This technique is severely limited by its restriction to a library of manageable size. Oneapproach for limiting the size of a mutant library relies on `doping schemes', where subsetsof amino acids are generated that reveal only certain combinations of amino acids in a proteinsequence. Three mononucleotide mixtures for each codon concerned must be designed, suchthat the resulting codons that are assembled during chemical gene synthesis represent thedesired amino acid mixture on the level of the translated protein. In this paper we present adoping algorithm that `reverse translates' a desired mixture of certain amino acids into threemixtures of mononucleotides. The algorithm is designed to optimally bias these mixturestowards the codons of choice. This approach combines a genetic algorithm with localoptimization strategies based on the downhill simplex method. Disparate relativerepresentations of all amino acids (and stop codons) within a target set can be generated.Optional weighing factors are employed to emphasize the frequencies of certain amino acidsand their codon usage, and to compensate for reaction rates of different mononucleotidebuilding blocks (synthons) during chemical DNA synthesis. The effect of statistical errors thataccompany an experimental realization of calculated nucleotide mixtures on the generatedmixtures of amino acids is simulated. These simulations show that the robustness of differentoptima with respect to small deviations from calculated values depends on their concomitantfitness. Furthermore

  12. BRAIN Journal - Solving Optimization Problems via Vortex Optimization Algorithm and Cognitive Development Optimization Algorithm

    Ahmet Demir; Utku Kose

    2016-01-01

    ABSTRACT In the fields which require finding the most appropriate value, optimization became a vital approach to employ effective solutions. With the use of optimization techniques, many different fields in the modern life have found solutions to their real-world based problems. In this context, classical optimization techniques have had an important popularity. But after a while, more advanced optimization problems required the use of more effective techniques. At this point, Computer Sc...

  13. Solving Optimization Problems via Vortex Optimization Algorithm and Cognitive Development Optimization Algorithm

    Ahmet Demir; Utku kose

    2017-01-01

    In the fields which require finding the most appropriate value, optimization became a vital approach to employ effective solutions. With the use of optimization techniques, many different fields in the modern life have found solutions to their real-world based problems. In this context, classical optimization techniques have had an important popularity. But after a while, more advanced optimization problems required the use of more effective techniques. At this point, Computer Science took an...

  14. Modified artificial bee colony algorithm for reactive power optimization

    Sulaiman, Noorazliza; Mohamad-Saleh, Junita; Abro, Abdul Ghani

    2015-05-01

    Bio-inspired algorithms (BIAs) implemented to solve various optimization problems have shown promising results which are very important in this severely complex real-world. Artificial Bee Colony (ABC) algorithm, a kind of BIAs has demonstrated tremendous results as compared to other optimization algorithms. This paper presents a new modified ABC algorithm referred to as JA-ABC3 with the aim to enhance convergence speed and avoid premature convergence. The proposed algorithm has been simulated on ten commonly used benchmarks functions. Its performance has also been compared with other existing ABC variants. To justify its robust applicability, the proposed algorithm has been tested to solve Reactive Power Optimization problem. The results have shown that the proposed algorithm has superior performance to other existing ABC variants e.g. GABC, BABC1, BABC2, BsfABC dan IABC in terms of convergence speed. Furthermore, the proposed algorithm has also demonstrated excellence performance in solving Reactive Power Optimization problem.

  15. On algorithm for building of optimal α-decision trees

    Alkhalid, Abdulaziz; Chikalov, Igor; Moshkov, Mikhail

    2010-01-01

    The paper describes an algorithm that constructs approximate decision trees (α-decision trees), which are optimal relatively to one of the following complexity measures: depth, total path length or number of nodes. The algorithm uses dynamic

  16. Filter Pattern Search Algorithms for Mixed Variable Constrained Optimization Problems

    Abramson, Mark A; Audet, Charles; Dennis, Jr, J. E

    2004-01-01

    .... This class combines and extends the Audet-Dennis Generalized Pattern Search (GPS) algorithms for bound constrained mixed variable optimization, and their GPS-filter algorithms for general nonlinear constraints...

  17. Application of colony complex algorithm to nuclear component optimization design

    Yan Changqi; Li Guijing; Wang Jianjun

    2014-01-01

    Complex algorithm (CA) has got popular application to the region of nuclear engineering. In connection with the specific features of the application of traditional complex algorithm (TCA) to the optimization design in engineering structures, an improved method, colony complex algorithm (CCA), was developed based on the optimal combination of many complexes, in which the disadvantages of TCA were overcame. The optimized results of benchmark function show that CCA has better optimizing performance than TCA. CCA was applied to the high-pressure heater optimization design, and the optimization effect is obvious. (authors)

  18. Optimal design of link systems using successive zooming genetic algorithm

    Kwon, Young-Doo; Sohn, Chang-hyun; Kwon, Soon-Bum; Lim, Jae-gyoo

    2009-07-01

    Link-systems have been around for a long time and are still used to control motion in diverse applications such as automobiles, robots and industrial machinery. This study presents a procedure involving the use of a genetic algorithm for the optimal design of single four-bar link systems and a double four-bar link system used in diesel engine. We adopted the Successive Zooming Genetic Algorithm (SZGA), which has one of the most rapid convergence rates among global search algorithms. The results are verified by experiment and the Recurdyn dynamic motion analysis package. During the optimal design of single four-bar link systems, we found in the case of identical input/output (IO) angles that the initial and final configurations show certain symmetry. For the double link system, we introduced weighting factors for the multi-objective functions, which minimize the difference between output angles, providing balanced engine performance, as well as the difference between final output angle and the desired magnitudes of final output angle. We adopted a graphical method to select a proper ratio between the weighting factors.

  19. Hybrid Firefly Variants Algorithm for Localization Optimization in WSN

    P. SrideviPonmalar

    2017-01-01

    Full Text Available Localization is one of the key issues in wireless sensor networks. Several algorithms and techniques have been introduced for localization. Localization is a procedural technique of estimating the sensor node location. In this paper, a novel three hybrid algorithms based on firefly is proposed for localization problem. Hybrid Genetic Algorithm-Firefly Localization Algorithm (GA-FFLA, Hybrid Differential Evolution-Firefly Localization Algorithm (DE-FFLA and Hybrid Particle Swarm Optimization -Firefly Localization Algorithm (PSO-FFLA are analyzed, designed and implemented to optimize the localization error. The localization algorithms are compared based on accuracy of estimation of location, time complexity and iterations required to achieve the accuracy. All the algorithms have hundred percent estimation accuracy but with variations in the number of firefliesr requirements, variation in time complexity and number of iteration requirements. Keywords: Localization; Genetic Algorithm; Differential Evolution; Particle Swarm Optimization

  20. Particle swarm optimizer for weighting factor selection in intensity-modulated radiation therapy optimization algorithms.

    Yang, Jie; Zhang, Pengcheng; Zhang, Liyuan; Shu, Huazhong; Li, Baosheng; Gui, Zhiguo

    2017-01-01

    In inverse treatment planning of intensity-modulated radiation therapy (IMRT), the objective function is typically the sum of the weighted sub-scores, where the weights indicate the importance of the sub-scores. To obtain a high-quality treatment plan, the planner manually adjusts the objective weights using a trial-and-error procedure until an acceptable plan is reached. In this work, a new particle swarm optimization (PSO) method which can adjust the weighting factors automatically was investigated to overcome the requirement of manual adjustment, thereby reducing the workload of the human planner and contributing to the development of a fully automated planning process. The proposed optimization method consists of three steps. (i) First, a swarm of weighting factors (i.e., particles) is initialized randomly in the search space, where each particle corresponds to a global objective function. (ii) Then, a plan optimization solver is employed to obtain the optimal solution for each particle, and the values of the evaluation functions used to determine the particle's location and the population global location for the PSO are calculated based on these results. (iii) Next, the weighting factors are updated based on the particle's location and the population global location. Step (ii) is performed alternately with step (iii) until the termination condition is reached. In this method, the evaluation function is a combination of several key points on the dose volume histograms. Furthermore, a perturbation strategy - the crossover and mutation operator hybrid approach - is employed to enhance the population diversity, and two arguments are applied to the evaluation function to improve the flexibility of the algorithm. In this study, the proposed method was used to develop IMRT treatment plans involving five unequally spaced 6MV photon beams for 10 prostate cancer cases. The proposed optimization algorithm yielded high-quality plans for all of the cases, without human

  1. Global optimality of the successive Maxbet algorithm

    Hanafi, M; Ten Berge, J.M.F.

    The Maxbet method is an alternative to the method of generalized canonical correlation analysis and of Procrustes analysis. Contrary to these methods, it does not maximize the inner products (covariances) between linear composites, but also takes their sums of squares (variances) into account. It is

  2. Modified Backtracking Search Optimization Algorithm Inspired by Simulated Annealing for Constrained Engineering Optimization Problems

    Hailong Wang

    2018-01-01

    Full Text Available The backtracking search optimization algorithm (BSA is a population-based evolutionary algorithm for numerical optimization problems. BSA has a powerful global exploration capacity while its local exploitation capability is relatively poor. This affects the convergence speed of the algorithm. In this paper, we propose a modified BSA inspired by simulated annealing (BSAISA to overcome the deficiency of BSA. In the BSAISA, the amplitude control factor (F is modified based on the Metropolis criterion in simulated annealing. The redesigned F could be adaptively decreased as the number of iterations increases and it does not introduce extra parameters. A self-adaptive ε-constrained method is used to handle the strict constraints. We compared the performance of the proposed BSAISA with BSA and other well-known algorithms when solving thirteen constrained benchmarks and five engineering design problems. The simulation results demonstrated that BSAISA is more effective than BSA and more competitive with other well-known algorithms in terms of convergence speed.

  3. GRAVITATIONAL LENS MODELING WITH GENETIC ALGORITHMS AND PARTICLE SWARM OPTIMIZERS

    Rogers, Adam; Fiege, Jason D.

    2011-01-01

    Strong gravitational lensing of an extended object is described by a mapping from source to image coordinates that is nonlinear and cannot generally be inverted analytically. Determining the structure of the source intensity distribution also requires a description of the blurring effect due to a point-spread function. This initial study uses an iterative gravitational lens modeling scheme based on the semilinear method to determine the linear parameters (source intensity profile) of a strongly lensed system. Our 'matrix-free' approach avoids construction of the lens and blurring operators while retaining the least-squares formulation of the problem. The parameters of an analytical lens model are found through nonlinear optimization by an advanced genetic algorithm (GA) and particle swarm optimizer (PSO). These global optimization routines are designed to explore the parameter space thoroughly, mapping model degeneracies in detail. We develop a novel method that determines the L-curve for each solution automatically, which represents the trade-off between the image χ 2 and regularization effects, and allows an estimate of the optimally regularized solution for each lens parameter set. In the final step of the optimization procedure, the lens model with the lowest χ 2 is used while the global optimizer solves for the source intensity distribution directly. This allows us to accurately determine the number of degrees of freedom in the problem to facilitate comparison between lens models and enforce positivity on the source profile. In practice, we find that the GA conducts a more thorough search of the parameter space than the PSO.

  4. Global Optimization for Bus Line Timetable Setting Problem

    Qun Chen

    2014-01-01

    Full Text Available This paper defines bus timetables setting problem during each time period divided in terms of passenger flow intensity; it is supposed that passengers evenly arrive and bus runs are set evenly; the problem is to determine bus runs assignment in each time period to minimize the total waiting time of passengers on platforms if the number of the total runs is known. For such a multistage decision problem, this paper designed a dynamic programming algorithm to solve it. Global optimization procedures using dynamic programming are developed. A numerical example about bus runs assignment optimization of a single line is given to demonstrate the efficiency of the proposed methodology, showing that optimizing buses’ departure time using dynamic programming can save computational time and find the global optimal solution.

  5. Comparison of Greedy Algorithms for Decision Tree Optimization

    Alkhalid, Abdulaziz; Chikalov, Igor; Moshkov, Mikhail

    2013-01-01

    This chapter is devoted to the study of 16 types of greedy algorithms for decision tree construction. The dynamic programming approach is used for construction of optimal decision trees. Optimization is performed relative to minimal values

  6. Design Optimization of Space Launch Vehicles Using a Genetic Algorithm

    Bayley, Douglas J

    2007-01-01

    .... A genetic algorithm (GA) was employed to optimize the design of the space launch vehicle. A cost model was incorporated into the optimization process with the goal of minimizing the overall vehicle cost...

  7. A hybrid GA-TS algorithm for open vehicle routing optimization of coal mines material

    Yu, S.W.; Ding, C.; Zhu, K.J. [China University of Geoscience, Wuhan (China)

    2011-08-15

    In the open vehicle routing problem (OVRP), the objective is to minimize the number of vehicles and the total distance (or time) traveled. This study primarily focuses on solving an open vehicle routing problem (OVRP) by applying a novel hybrid genetic algorithm and the Tabu search (GA-TS), which combines the GA's parallel computing and global optimization with TS's Tabu search skill and fast local search. Firstly, the proposed algorithm uses natural number coding according to the customer demands and the captivity of the vehicle for globe optimization. Secondly, individuals of population do TS local search with a certain degree of probability, namely, do the local routing optimization of all customer sites belong to one vehicle. The mechanism not only improves the ability of global optimization, but also ensures the speed of operation. The algorithm was used in Zhengzhou Coal Mine and Power Supply Co., Ltd.'s transport vehicle routing optimization.

  8. Algorithm comparison for schedule optimization in MR fingerprinting.

    Cohen, Ouri; Rosen, Matthew S

    2017-09-01

    In MR Fingerprinting, the flip angles and repetition times are chosen according to a pseudorandom schedule. In previous work, we have shown that maximizing the discrimination between different tissue types by optimizing the acquisition schedule allows reductions in the number of measurements required. The ideal optimization algorithm for this application remains unknown, however. In this work we examine several different optimization algorithms to determine the one best suited for optimizing MR Fingerprinting acquisition schedules. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. PROPOSAL OF ALGORITHM FOR ROUTE OPTIMIZATION

    Robert Ramon de Carvalho Sousa; Abimael de Jesus Barros Costa; Eliezé Bulhões de Carvalho; Adriano de Carvalho Paranaíba; Daylyne Maerla Gomes Lima Sandoval

    2016-01-01

    This article uses “Six Sigma” methodology for the elaboration of an algorithm for routing problems which is able to obtain more efficient results than those from Clarke and Wright´s (CW) algorithm (1964) in situations of random increase of product delivery demands, facing the incapability of service level increase . In some situations, the algorithm proposed obtained more efficient results than the CW algorithm. The key factor was a reduction in the number of mistakes (on...

  10. An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems

    Vivek Patel

    2012-08-01

    Full Text Available Nature inspired population based algorithms is a research field which simulates different natural phenomena to solve a wide range of problems. Researchers have proposed several algorithms considering different natural phenomena. Teaching-Learning-based optimization (TLBO is one of the recently proposed population based algorithm which simulates the teaching-learning process of the class room. This algorithm does not require any algorithm-specific control parameters. In this paper, elitism concept is introduced in the TLBO algorithm and its effect on the performance of the algorithm is investigated. The effects of common controlling parameters such as the population size and the number of generations on the performance of the algorithm are also investigated. The proposed algorithm is tested on 35 constrained benchmark functions with different characteristics and the performance of the algorithm is compared with that of other well known optimization algorithms. The proposed algorithm can be applied to various optimization problems of the industrial environment.

  11. Automatic Circuit Design and Optimization Using Modified PSO Algorithm

    Subhash Patel

    2016-04-01

    Full Text Available In this work, we have proposed modified PSO algorithm based optimizer for automatic circuit design. The performance of the modified PSO algorithm is compared with two other evolutionary algorithms namely ABC algorithm and standard PSO algorithm by designing two stage CMOS operational amplifier and bulk driven OTA in 130nm technology. The results show the robustness of the proposed algorithm. With modified PSO algorithm, the average design error for two stage op-amp is only 0.054% in contrast to 3.04% for standard PSO algorithm and 5.45% for ABC algorithm. For bulk driven OTA, average design error is 1.32% with MPSO compared to 4.70% with ABC algorithm and 5.63% with standard PSO algorithm.

  12. Optimal beneficiation of global resources

    Aloisi de Larderel, J. (Industry and Environment Office, Paris (France). United Nations Environment Programme)

    1989-01-01

    The growth of the world's population and related human activities are clearly leaving major effects on the environment and on the level of use of natural resources: forests are disappearing, air pollution is leading to acid rains, changes are occuring in the atmospheric ozone and global climate, more and more people lack access to reasonable safe supplies of water, soil pollution is becoming a problem, mineral and energy resources are increasingly being used. Producing more with less, producing more, polluting less, these are basic challenges that the world now faces. Low- and non-waste technologies are certainly one of the keys to those challenges.

  13. Efficient algorithms for extracting biological key pathways with global constraints

    Baumbach, Jan; Friedrich, T.; Kötzing, T.

    2012-01-01

    The integrated analysis of data of different types and with various interdependencies is one of the major challenges in computational biology. Recently, we developed KeyPathwayMiner, a method that combines biological networks modeled as graphs with disease-specific genetic expression data gained....... Here we present an alternative approach that avoids a certain bias towards hub nodes: We now aim for extracting all maximal connected sub-networks where all but at most K nodes are expressed in all cases but in total (!) at most L, i.e. accumulated over all cases and all nodes in a solution. We call...... this strategy GLONE (global node exceptions); the previous problem we call INES (individual node exceptions). Since finding GLONE-components is computationally hard, we developed an Ant Colony Optimization algorithm and implemented it with the KeyPathwayMiner Cytoscape framework as an alternative to the INES...

  14. Global synchronization algorithms for the Intel iPSC/860

    Seidel, Steven R.; Davis, Mark A.

    1992-01-01

    In a distributed memory multicomputer that has no global clock, global processor synchronization can only be achieved through software. Global synchronization algorithms are used in tridiagonal systems solvers, CFD codes, sequence comparison algorithms, and sorting algorithms. They are also useful for event simulation, debugging, and for solving mutual exclusion problems. For the Intel iPSC/860 in particular, global synchronization can be used to ensure the most effective use of the communication network for operations such as the shift, where each processor in a one-dimensional array or ring concurrently sends a message to its right (or left) neighbor. Three global synchronization algorithms are considered for the iPSC/860: the gysnc() primitive provided by Intel, the PICL primitive sync0(), and a new recursive doubling synchronization (RDS) algorithm. The performance of these algorithms is compared to the performance predicted by communication models of both the long and forced message protocols. Measurements of the cost of shift operations preceded by global synchronization show that the RDS algorithm always synchronizes the nodes more precisely and costs only slightly more than the other two algorithms.

  15. HEURISTIC OPTIMIZATION AND ALGORITHM TUNING APPLIED TO SORPTIVE BARRIER DESIGN

    While heuristic optimization is applied in environmental applications, ad-hoc algorithm configuration is typical. We use a multi-layer sorptive barrier design problem as a benchmark for an algorithm-tuning procedure, as applied to three heuristics (genetic algorithms, simulated ...

  16. New preconditioned conjugate gradient algorithms for nonlinear unconstrained optimization problems

    Al-Bayati, A.; Al-Asadi, N.

    1997-01-01

    This paper presents two new predilection conjugate gradient algorithms for nonlinear unconstrained optimization problems and examines their computational performance. Computational experience shows that the new proposed algorithms generally imp lone the efficiency of Nazareth's [13] preconditioned conjugate gradient algorithm. (authors). 16 refs., 1 tab

  17. An Improved Quantum-Behaved Particle Swarm Optimization Algorithm with Elitist Breeding for Unconstrained Optimization.

    Yang, Zhen-Lun; Wu, Angus; Min, Hua-Qing

    2015-01-01

    An improved quantum-behaved particle swarm optimization with elitist breeding (EB-QPSO) for unconstrained optimization is presented and empirically studied in this paper. In EB-QPSO, the novel elitist breeding strategy acts on the elitists of the swarm to escape from the likely local optima and guide the swarm to perform more efficient search. During the iterative optimization process of EB-QPSO, when criteria met, the personal best of each particle and the global best of the swarm are used to generate new diverse individuals through the transposon operators. The new generated individuals with better fitness are selected to be the new personal best particles and global best particle to guide the swarm for further solution exploration. A comprehensive simulation study is conducted on a set of twelve benchmark functions. Compared with five state-of-the-art quantum-behaved particle swarm optimization algorithms, the proposed EB-QPSO performs more competitively in all of the benchmark functions in terms of better global search capability and faster convergence rate.

  18. Teaching learning based optimization algorithm and its engineering applications

    Rao, R Venkata

    2016-01-01

    Describing a new optimization algorithm, the “Teaching-Learning-Based Optimization (TLBO),” in a clear and lucid style, this book maximizes reader insights into how the TLBO algorithm can be used to solve continuous and discrete optimization problems involving single or multiple objectives. As the algorithm operates on the principle of teaching and learning, where teachers influence the quality of learners’ results, the elitist version of TLBO algorithm (ETLBO) is described along with applications of the TLBO algorithm in the fields of electrical engineering, mechanical design, thermal engineering, manufacturing engineering, civil engineering, structural engineering, computer engineering, electronics engineering, physics and biotechnology. The book offers a valuable resource for scientists, engineers and practitioners involved in the development and usage of advanced optimization algorithms.

  19. Global-local optimization of flapping kinematics in hovering flight

    Ghommem, Mehdi; Hajj, M. R.; Mook, Dean T.; Stanford, Bret K.; Bé ran, Philip S.; Watson, Layne T.

    2013-01-01

    The kinematics of a hovering wing are optimized by combining the 2-d unsteady vortex lattice method with a hybrid of global and local optimization algorithms. The objective is to minimize the required aerodynamic power under a lift constraint. The hybrid optimization is used to efficiently navigate the complex design space due to wing-wake interference present in hovering aerodynamics. The flapping wing is chosen so that its chord length and flapping frequency match the morphological and flight properties of two insects with different masses. The results suggest that imposing a delay between the different oscillatory motions defining the flapping kinematics, and controlling the way through which the wing rotates at the end of each half stroke can improve aerodynamic power under a lift constraint. Furthermore, our optimization analysis identified optimal kinematics that agree fairly well with observed insect kinematics, as well as previously published numerical results.

  20. Global-local optimization of flapping kinematics in hovering flight

    Ghommem, Mehdi

    2013-06-01

    The kinematics of a hovering wing are optimized by combining the 2-d unsteady vortex lattice method with a hybrid of global and local optimization algorithms. The objective is to minimize the required aerodynamic power under a lift constraint. The hybrid optimization is used to efficiently navigate the complex design space due to wing-wake interference present in hovering aerodynamics. The flapping wing is chosen so that its chord length and flapping frequency match the morphological and flight properties of two insects with different masses. The results suggest that imposing a delay between the different oscillatory motions defining the flapping kinematics, and controlling the way through which the wing rotates at the end of each half stroke can improve aerodynamic power under a lift constraint. Furthermore, our optimization analysis identified optimal kinematics that agree fairly well with observed insect kinematics, as well as previously published numerical results.

  1. New Enhanced Artificial Bee Colony (JA-ABC5 Algorithm with Application for Reactive Power Optimization

    Noorazliza Sulaiman

    2015-01-01

    Full Text Available The standard artificial bee colony (ABC algorithm involves exploration and exploitation processes which need to be balanced for enhanced performance. This paper proposes a new modified ABC algorithm named JA-ABC5 to enhance convergence speed and improve the ability to reach the global optimum by balancing exploration and exploitation processes. New stages have been proposed at the earlier stages of the algorithm to increase the exploitation process. Besides that, modified mutation equations have also been introduced in the employed and onlooker-bees phases to balance the two processes. The performance of JA-ABC5 has been analyzed on 27 commonly used benchmark functions and tested to optimize the reactive power optimization problem. The performance results have clearly shown that the newly proposed algorithm has outperformed other compared algorithms in terms of convergence speed and global optimum achievement.

  2. New enhanced artificial bee colony (JA-ABC5) algorithm with application for reactive power optimization.

    Sulaiman, Noorazliza; Mohamad-Saleh, Junita; Abro, Abdul Ghani

    2015-01-01

    The standard artificial bee colony (ABC) algorithm involves exploration and exploitation processes which need to be balanced for enhanced performance. This paper proposes a new modified ABC algorithm named JA-ABC5 to enhance convergence speed and improve the ability to reach the global optimum by balancing exploration and exploitation processes. New stages have been proposed at the earlier stages of the algorithm to increase the exploitation process. Besides that, modified mutation equations have also been introduced in the employed and onlooker-bees phases to balance the two processes. The performance of JA-ABC5 has been analyzed on 27 commonly used benchmark functions and tested to optimize the reactive power optimization problem. The performance results have clearly shown that the newly proposed algorithm has outperformed other compared algorithms in terms of convergence speed and global optimum achievement.

  3. A novel hybrid algorithm of GSA with Kepler algorithm for numerical optimization

    Soroor Sarafrazi

    2015-07-01

    Full Text Available It is now well recognized that pure algorithms can be promisingly improved by hybridization with other techniques. One of the relatively new metaheuristic algorithms is Gravitational Search Algorithm (GSA which is based on the Newton laws. In this paper, to enhance the performance of GSA, a novel algorithm called “Kepler”, inspired by the astrophysics, is introduced. The Kepler algorithm is based on the principle of the first Kepler law. The hybridization of GSA and Kepler algorithm is an efficient approach to provide much stronger specialization in intensification and/or diversification. The performance of GSA–Kepler is evaluated by applying it to 14 benchmark functions with 20–1000 dimensions and the optimal approximation of linear system as a practical optimization problem. The results obtained reveal that the proposed hybrid algorithm is robust enough to optimize the benchmark functions and practical optimization problems.

  4. An efficient algorithm for global periodic orbits generation near irregular-shaped asteroids

    Shang, Haibin; Wu, Xiaoyu; Ren, Yuan; Shan, Jinjun

    2017-07-01

    Periodic orbits (POs) play an important role in understanding dynamical behaviors around natural celestial bodies. In this study, an efficient algorithm was presented to generate the global POs around irregular-shaped uniformly rotating asteroids. The algorithm was performed in three steps, namely global search, local refinement, and model continuation. First, a mascon model with a low number of particles and optimized mass distribution was constructed to remodel the exterior gravitational potential of the asteroid. Using this model, a multi-start differential evolution enhanced with a deflection strategy with strong global exploration and bypassing abilities was adopted. This algorithm can be regarded as a search engine to find multiple globally optimal regions in which potential POs were located. This was followed by applying a differential correction to locally refine global search solutions and generate the accurate POs in the mascon model in which an analytical Jacobian matrix was derived to improve convergence. Finally, the concept of numerical model continuation was introduced and used to convert the POs from the mascon model into a high-fidelity polyhedron model by sequentially correcting the initial states. The efficiency of the proposed algorithm was substantiated by computing the global POs around an elongated shoe-shaped asteroid 433 Eros. Various global POs with different topological structures in the configuration space were successfully located. Specifically, the proposed algorithm was generic and could be conveniently extended to explore periodic motions in other gravitational systems.

  5. ComprehensiveBench: a Benchmark for the Extensive Evaluation of Global Scheduling Algorithms

    Pilla, Laércio L.; Bozzetti, Tiago C.; Castro, Márcio; Navaux, Philippe O. A.; Méhaut, Jean-François

    2015-10-01

    Parallel applications that present tasks with imbalanced loads or complex communication behavior usually do not exploit the underlying resources of parallel platforms to their full potential. In order to mitigate this issue, global scheduling algorithms are employed. As finding the optimal task distribution is an NP-Hard problem, identifying the most suitable algorithm for a specific scenario and comparing algorithms are not trivial tasks. In this context, this paper presents ComprehensiveBench, a benchmark for global scheduling algorithms that enables the variation of a vast range of parameters that affect performance. ComprehensiveBench can be used to assist in the development and evaluation of new scheduling algorithms, to help choose a specific algorithm for an arbitrary application, to emulate other applications, and to enable statistical tests. We illustrate its use in this paper with an evaluation of Charm++ periodic load balancers that stresses their characteristics.

  6. Particle swarm optimization - Genetic algorithm (PSOGA) on linear transportation problem

    Rahmalia, Dinita

    2017-08-01

    Linear Transportation Problem (LTP) is the case of constrained optimization where we want to minimize cost subject to the balance of the number of supply and the number of demand. The exact method such as northwest corner, vogel, russel, minimal cost have been applied at approaching optimal solution. In this paper, we use heurisitic like Particle Swarm Optimization (PSO) for solving linear transportation problem at any size of decision variable. In addition, we combine mutation operator of Genetic Algorithm (GA) at PSO to improve optimal solution. This method is called Particle Swarm Optimization - Genetic Algorithm (PSOGA). The simulations show that PSOGA can improve optimal solution resulted by PSO.

  7. Software Piracy Detection Model Using Ant Colony Optimization Algorithm

    Astiqah Omar, Nor; Zakuan, Zeti Zuryani Mohd; Saian, Rizauddin

    2017-06-01

    Internet enables information to be accessible anytime and anywhere. This scenario creates an environment whereby information can be easily copied. Easy access to the internet is one of the factors which contribute towards piracy in Malaysia as well as the rest of the world. According to a survey conducted by Compliance Gap BSA Global Software Survey in 2013 on software piracy, found out that 43 percent of the software installed on PCs around the world was not properly licensed, the commercial value of the unlicensed installations worldwide was reported to be 62.7 billion. Piracy can happen anywhere including universities. Malaysia as well as other countries in the world is faced with issues of piracy committed by the students in universities. Piracy in universities concern about acts of stealing intellectual property. It can be in the form of software piracy, music piracy, movies piracy and piracy of intellectual materials such as books, articles and journals. This scenario affected the owner of intellectual property as their property is in jeopardy. This study has developed a classification model for detecting software piracy. The model was developed using a swarm intelligence algorithm called the Ant Colony Optimization algorithm. The data for training was collected by a study conducted in Universiti Teknologi MARA (Perlis). Experimental results show that the model detection accuracy rate is better as compared to J48 algorithm.

  8. An optimized algorithm for detecting and annotating regional differential methylation.

    Li, Sheng; Garrett-Bakelman, Francine E; Akalin, Altuna; Zumbo, Paul; Levine, Ross; To, Bik L; Lewis, Ian D; Brown, Anna L; D'Andrea, Richard J; Melnick, Ari; Mason, Christopher E

    2013-01-01

    DNA methylation profiling reveals important differentially methylated regions (DMRs) of the genome that are altered during development or that are perturbed by disease. To date, few programs exist for regional analysis of enriched or whole-genome bisulfate conversion sequencing data, even though such data are increasingly common. Here, we describe an open-source, optimized method for determining empirically based DMRs (eDMR) from high-throughput sequence data that is applicable to enriched whole-genome methylation profiling datasets, as well as other globally enriched epigenetic modification data. Here we show that our bimodal distribution model and weighted cost function for optimized regional methylation analysis provides accurate boundaries of regions harboring significant epigenetic modifications. Our algorithm takes the spatial distribution of CpGs into account for the enrichment assay, allowing for optimization of the definition of empirical regions for differential methylation. Combined with the dependent adjustment for regional p-value combination and DMR annotation, we provide a method that may be applied to a variety of datasets for rapid DMR analysis. Our method classifies both the directionality of DMRs and their genome-wide distribution, and we have observed that shows clinical relevance through correct stratification of two Acute Myeloid Leukemia (AML) tumor sub-types. Our weighted optimization algorithm eDMR for calling DMRs extends an established DMR R pipeline (methylKit) and provides a needed resource in epigenomics. Our method enables an accurate and scalable way of finding DMRs in high-throughput methylation sequencing experiments. eDMR is available for download at http://code.google.com/p/edmr/.

  9. Optimization of Grillages Using Genetic Algorithms for Integrating Matlab and Fortran Environments

    Darius Mačiūnas

    2012-12-01

    Full Text Available The purpose of the paper is to present technology applied for the global optimization of grillage-type pile foundations (further grillages. The goal of optimization is to obtain the optimal layout of pile placement in the grillages. The problem can be categorized as a topology optimization problem. The objective function is comprised of maximum reactive force emerging in a pile. The reactive force is minimized during the procedure of optimization during which variables enclose the positions of piles beneath connecting beams. Reactive forces in all piles are computed utilizing an original algorithm implemented in the Fortran programming language. The algorithm is integrated into the MatLab environment where the optimization procedure is executed utilizing a genetic algorithm. The article also describes technology enabling the integration of MatLab and Fortran environments. The authors seek to evaluate the quality of a solution to the problem analyzing experimental results obtained applying the proposed technology.

  10. Optimization of Grillages Using Genetic Algorithms for Integrating Matlab and Fortran Environments

    Darius Mačiūnas

    2013-02-01

    Full Text Available The purpose of the paper is to present technology applied for the global optimization of grillage-type pile foundations (further grillages. The goal of optimization is to obtain the optimal layout of pile placement in the grillages. The problem can be categorized as a topology optimization problem. The objective function is comprised of maximum reactive force emerging in a pile. The reactive force is minimized during the procedure of optimization during which variables enclose the positions of piles beneath connecting beams. Reactive forces in all piles are computed utilizing an original algorithm implemented in the Fortran programming language. The algorithm is integrated into the MatLab environment where the optimization procedure is executed utilizing a genetic algorithm. The article also describes technology enabling the integration of MatLab and Fortran environments. The authors seek to evaluate the quality of a solution to the problem analyzing experimental results obtained applying the proposed technology.

  11. A hybrid neural network – world cup optimization algorithm for melanoma detection

    Razmjooy Navid

    2018-03-01

    Full Text Available One of the most dangerous cancers in humans is Melanoma. However, early detection of melanoma can help us to cure it completely. This paper presents a new efficient method to detect malignancy in melanoma via images. At first, the extra scales are eliminated by using edge detection and smoothing. Afterwards, the proposed method can be utilized to segment the cancer images. Finally, the extra information is eliminated by morphological operations and used to focus on the area which melanoma boundary potentially exists. To do this, World Cup Optimization algorithm is utilized to optimize an MLP neural Networks (ANN. World Cup Optimization algorithm is a new meta-heuristic algorithm which is recently presented and has a good performance in some optimization problems. WCO is a derivative-free, Meta-Heuristic algorithm, mimicking the world’s FIFA competitions. World cup Optimization algorithm is a global search algorithm while gradient-based back propagation method is local search. In this proposed algorithm, multi-layer perceptron network (MLP employs the problem’s constraints and WCO algorithm attempts to minimize the root mean square error. Experimental results show that the proposed method can develop the performance of the standard MLP algorithm significantly.

  12. PROPOSAL OF ALGORITHM FOR ROUTE OPTIMIZATION

    Robert Ramon de Carvalho Sousa

    2016-06-01

    Full Text Available This article uses “Six Sigma” methodology for the elaboration of an algorithm for routing problems which is able to obtain more efficient results than those from Clarke and Wright´s (CW algorithm (1964 in situations of random increase of product delivery demands, facing the incapability of service level increase . In some situations, the algorithm proposed obtained more efficient results than the CW algorithm. The key factor was a reduction in the number of mistakes (one way routes and in the level of result variation.

  13. Genetic algorithms applied to nuclear reactor design optimization

    Pereira, C.M.N.A.; Schirru, R.; Martinez, A.S.

    2000-01-01

    A genetic algorithm is a powerful search technique that simulates natural evolution in order to fit a population of computational structures to the solution of an optimization problem. This technique presents several advantages over classical ones such as linear programming based techniques, often used in nuclear engineering optimization problems. However, genetic algorithms demand some extra computational cost. Nowadays, due to the fast computers available, the use of genetic algorithms has increased and its practical application has become a reality. In nuclear engineering there are many difficult optimization problems related to nuclear reactor design. Genetic algorithm is a suitable technique to face such kind of problems. This chapter presents applications of genetic algorithms for nuclear reactor core design optimization. A genetic algorithm has been designed to optimize the nuclear reactor cell parameters, such as array pitch, isotopic enrichment, dimensions and cells materials. Some advantages of this genetic algorithm implementation over a classical method based on linear programming are revealed through the application of both techniques to a simple optimization problem. In order to emphasize the suitability of genetic algorithms for design optimization, the technique was successfully applied to a more complex problem, where the classical method is not suitable. Results and comments about the applications are also presented. (orig.)

  14. A chaos wolf optimization algorithm with self-adaptive variable step-size

    Yong Zhu

    2017-10-01

    Full Text Available To explore the problem of parameter optimization for complex nonlinear function, a chaos wolf optimization algorithm (CWOA with self-adaptive variable step-size was proposed. The algorithm was based on the swarm intelligence of wolf pack, which fully simulated the predation behavior and prey distribution way of wolves. It possessed three intelligent behaviors such as migration, summons and siege. And the competition rule as “winner-take-all” and the update mechanism as “survival of the fittest” were also the characteristics of the algorithm. Moreover, it combined the strategies of self-adaptive variable step-size search and chaos optimization. The CWOA was utilized in parameter optimization of twelve typical and complex nonlinear functions. And the obtained results were compared with many existing algorithms, including the classical genetic algorithm, the particle swarm optimization algorithm and the leader wolf pack search algorithm. The investigation results indicate that CWOA possess preferable optimization ability. There are advantages in optimization accuracy and convergence rate. Furthermore, it demonstrates high robustness and global searching ability.

  15. A chaos wolf optimization algorithm with self-adaptive variable step-size

    Zhu, Yong; Jiang, Wanlu; Kong, Xiangdong; Quan, Lingxiao; Zhang, Yongshun

    2017-10-01

    To explore the problem of parameter optimization for complex nonlinear function, a chaos wolf optimization algorithm (CWOA) with self-adaptive variable step-size was proposed. The algorithm was based on the swarm intelligence of wolf pack, which fully simulated the predation behavior and prey distribution way of wolves. It possessed three intelligent behaviors such as migration, summons and siege. And the competition rule as "winner-take-all" and the update mechanism as "survival of the fittest" were also the characteristics of the algorithm. Moreover, it combined the strategies of self-adaptive variable step-size search and chaos optimization. The CWOA was utilized in parameter optimization of twelve typical and complex nonlinear functions. And the obtained results were compared with many existing algorithms, including the classical genetic algorithm, the particle swarm optimization algorithm and the leader wolf pack search algorithm. The investigation results indicate that CWOA possess preferable optimization ability. There are advantages in optimization accuracy and convergence rate. Furthermore, it demonstrates high robustness and global searching ability.

  16. Global search in photoelectron diffraction structure determination using genetic algorithms

    Viana, M L [Departamento de Fisica, Icex, UFMG, Belo Horizonte, Minas Gerais (Brazil); Muino, R Diez [Donostia International Physics Center DIPC, Paseo Manuel de Lardizabal 4, 20018 San Sebastian (Spain); Soares, E A [Departamento de Fisica, Icex, UFMG, Belo Horizonte, Minas Gerais (Brazil); Hove, M A Van [Department of Physics and Materials Science, City University of Hong Kong, Hong Kong (China); Carvalho, V E de [Departamento de Fisica, Icex, UFMG, Belo Horizonte, Minas Gerais (Brazil)

    2007-11-07

    Photoelectron diffraction (PED) is an experimental technique widely used to perform structural determinations of solid surfaces. Similarly to low-energy electron diffraction (LEED), structural determination by PED requires a fitting procedure between the experimental intensities and theoretical results obtained through simulations. Multiple scattering has been shown to be an effective approach for making such simulations. The quality of the fit can be quantified through the so-called R-factor. Therefore, the fitting procedure is, indeed, an R-factor minimization problem. However, the topography of the R-factor as a function of the structural and non-structural surface parameters to be determined is complex, and the task of finding the global minimum becomes tough, particularly for complex structures in which many parameters have to be adjusted. In this work we investigate the applicability of the genetic algorithm (GA) global optimization method to this problem. The GA is based on the evolution of species, and makes use of concepts such as crossover, elitism and mutation to perform the search. We show results of its application in the structural determination of three different systems: the Cu(111) surface through the use of energy-scanned experimental curves; the Ag(110)-c(2 x 2)-Sb system, in which a theory-theory fit was performed; and the Ag(111) surface for which angle-scanned experimental curves were used. We conclude that the GA is a highly efficient method to search for global minima in the optimization of the parameters that best fit the experimental photoelectron diffraction intensities to the theoretical ones.

  17. Evolutionary Algorithms for Boolean Queries Optimization

    Húsek, Dušan; Snášel, Václav; Neruda, Roman; Owais, S.S.J.; Krömer, P.

    2006-01-01

    Roč. 3, č. 1 (2006), s. 15-20 ISSN 1790-0832 R&D Projects: GA AV ČR 1ET100300414 Institutional research plan: CEZ:AV0Z10300504 Keywords : evolutionary algorithms * genetic algorithms * information retrieval * Boolean query Subject RIV: BA - General Mathematics

  18. Boolean Queries Optimization by Genetic Algorithms

    Húsek, Dušan; Owais, S.S.J.; Krömer, P.; Snášel, Václav

    2005-01-01

    Roč. 15, - (2005), s. 395-409 ISSN 1210-0552 R&D Projects: GA AV ČR 1ET100300414 Institutional research plan: CEZ:AV0Z10300504 Keywords : evolutionary algorithms * genetic algorithms * genetic programming * information retrieval * Boolean query Subject RIV: BB - Applied Statistics, Operational Research

  19. An optimization framework for process discovery algorithms

    Weijters, A.J.M.M.; Stahlbock, R.

    2011-01-01

    Today there are many process mining techniques that, based on an event log, allow for the automatic induction of a process model. The process mining algorithms that are able to deal with incomplete event logs, exceptions, and noise typically have many parameters to tune the algorithm. Therefore, the

  20. A Novel Consensus-Based Particle Swarm Optimization-Assisted Trust-Tech Methodology for Large-Scale Global Optimization.

    Zhang, Yong-Feng; Chiang, Hsiao-Dong

    2017-09-01

    A novel three-stage methodology, termed the "consensus-based particle swarm optimization (PSO)-assisted Trust-Tech methodology," to find global optimal solutions for nonlinear optimization problems is presented. It is composed of Trust-Tech methods, consensus-based PSO, and local optimization methods that are integrated to compute a set of high-quality local optimal solutions that can contain the global optimal solution. The proposed methodology compares very favorably with several recently developed PSO algorithms based on a set of small-dimension benchmark optimization problems and 20 large-dimension test functions from the CEC 2010 competition. The analytical basis for the proposed methodology is also provided. Experimental results demonstrate that the proposed methodology can rapidly obtain high-quality optimal solutions that can contain the global optimal solution. The scalability of the proposed methodology is promising.

  1. Hybrid particle swarm optimization algorithm and its application in nuclear engineering

    Liu, C.Y.; Yan, C.Q.; Wang, J.J.

    2014-01-01

    Highlights: • We propose a hybrid particle swarm optimization algorithm (HPSO). • Modified Nelder–Mead simplex search method is applied in HPSO. • The algorithm has a high search precision and rapidly calculation speed. • HPSO can be used in the nuclear engineering optimization design problems. - Abstract: A hybrid particle swarm optimization algorithm with a feasibility-based rule for solving constrained optimization problems has been developed in this research. Firstly, the global optimal solution zone can be obtained through particle swarm optimization process, and then the refined search of the global optimal solution will be achieved through the modified Nelder–Mead simplex algorithm. Simulations based on two well-studied benchmark problems demonstrate the proposed algorithm will be an efficient alternative to solving constrained optimization problems. The vertical electrical heating pressurizer is one of the key components in reactor coolant system. The mathematical model of pressurizer has been established in steady state. The optimization design of pressurizer weight has been carried out through HPSO algorithm. The results show the pressurizer weight can be reduced by 16.92%. The thermal efficiencies of conventional PWR nuclear power plants are about 31–35% so far, which are much lower than fossil fueled plants based in a steam cycle as PWR. The thermal equilibrium mathematic model for nuclear power plant secondary loop has been established. An optimization case study has been conducted to improve the efficiency of the nuclear power plant with the proposed algorithm. The results show the thermal efficiency is improved by 0.5%

  2. Enhanced Particle Swarm Optimization Algorithm: Efficient Training of ReaxFF Reactive Force Fields.

    Furman, David; Carmeli, Benny; Zeiri, Yehuda; Kosloff, Ronnie

    2018-05-04

    Particle swarm optimization is a powerful metaheuristic population-based global optimization algorithm. However, when applied to non-separable objective functions its performance on multimodal landscapes is significantly degraded. Here we show that a significant improvement in the search quality and efficiency on multimodal functions can be achieved by enhancing the basic rotation-invariant particle swarm optimization algorithm with isotropic Gaussian mutation operators. The new algorithm demonstrates a superior performance across several nonlinear, multimodal benchmark functions compared to the rotation-invariant Particle Swam Optimization (PSO) algorithm and the well-established simulated annealing and sequential one-parameter parabolic interpolation methods. A search for the optimal set of parameters for the dispersion interaction model in ReaxFF-lg reactive force field is carried out with respect to accurate DFT-TS calculations. The resulting optimized force field accurately describes the equations of state of several high-energy molecular crystals where such interactions are of crucial importance. The improved algorithm also presents a better performance compared to a Genetic Algorithm optimization method in the optimization of a ReaxFF-lg correction model parameters. The computational framework is implemented in a standalone C++ code that allows a straightforward development of ReaxFF reactive force fields.

  3. Genetic local search algorithm for optimization design of diffractive optical elements.

    Zhou, G; Chen, Y; Wang, Z; Song, H

    1999-07-10

    We propose a genetic local search algorithm (GLSA) for the optimization design of diffractive optical elements (DOE's). This hybrid algorithm incorporates advantages of both genetic algorithm (GA) and local search techniques. It appears better able to locate the global minimum compared with a canonical GA. Sample cases investigated here include the optimization design of binary-phase Dammann gratings, continuous surface-relief grating array generators, and a uniform top-hat focal plane intensity profile generator. Two GLSA's whose incorporated local search techniques are the hill-climbing method and the simulated annealing algorithm are investigated. Numerical experimental results demonstrate that the proposed algorithm is highly efficient and robust. DOE's that have high diffraction efficiency and excellent uniformity can be achieved by use of the algorithm we propose.

  4. Analog Circuit Design Optimization Based on Evolutionary Algorithms

    Mansour Barari

    2014-01-01

    Full Text Available This paper investigates an evolutionary-based designing system for automated sizing of analog integrated circuits (ICs. Two evolutionary algorithms, genetic algorithm and PSO (Parswal particle swarm optimization algorithm, are proposed to design analog ICs with practical user-defined specifications. On the basis of the combination of HSPICE and MATLAB, the system links circuit performances, evaluated through specific electrical simulation, to the optimization system in the MATLAB environment, for the selected topology. The system has been tested by typical and hard-to-design cases, such as complex analog blocks with stringent design requirements. The results show that the design specifications are closely met. Comparisons with available methods like genetic algorithms show that the proposed algorithm offers important advantages in terms of optimization quality and robustness. Moreover, the algorithm is shown to be efficient.

  5. Decoherence in optimized quantum random-walk search algorithm

    Zhang Yu-Chao; Bao Wan-Su; Wang Xiang; Fu Xiang-Qun

    2015-01-01

    This paper investigates the effects of decoherence generated by broken-link-type noise in the hypercube on an optimized quantum random-walk search algorithm. When the hypercube occurs with random broken links, the optimized quantum random-walk search algorithm with decoherence is depicted through defining the shift operator which includes the possibility of broken links. For a given database size, we obtain the maximum success rate of the algorithm and the required number of iterations through numerical simulations and analysis when the algorithm is in the presence of decoherence. Then the computational complexity of the algorithm with decoherence is obtained. The results show that the ultimate effect of broken-link-type decoherence on the optimized quantum random-walk search algorithm is negative. (paper)

  6. Optimization of Pressurizer Based on Genetic-Simplex Algorithm

    Wang, Cheng; Yan, Chang Qi; Wang, Jian Jun

    2014-01-01

    Pressurizer is one of key components in nuclear power system. It's important to control the dimension in the design of pressurizer through optimization techniques. In this work, a mathematic model of a vertical electric heating pressurizer was established. A new Genetic-Simplex Algorithm (GSA) that combines genetic algorithm and simplex algorithm was developed to enhance the searching ability, and the comparison among modified and original algorithms is conducted by calculating the benchmark function. Furthermore, the optimization design of pressurizer, taking minimization of volume and net weight as objectives, was carried out considering thermal-hydraulic and geometric constraints through GSA. The results indicate that the mathematical model is agreeable for the pressurizer and the new algorithm is more effective than the traditional genetic algorithm. The optimization design shows obvious validity and can provide guidance for real engineering design

  7. A Fuzzy Gravitational Search Algorithm to Design Optimal IIR Filters

    Danilo Pelusi

    2018-03-01

    Full Text Available The goodness of Infinite Impulse Response (IIR digital filters design depends on pass band ripple, stop band ripple and transition band values. The main problem is defining a suitable error fitness function that depends on these parameters. This fitness function can be optimized by search algorithms such as evolutionary algorithms. This paper proposes an intelligent algorithm for the design of optimal 8th order IIR filters. The main contribution is the design of Fuzzy Inference Systems able to tune key parameters of a revisited version of the Gravitational Search Algorithm (GSA. In this way, a Fuzzy Gravitational Search Algorithm (FGSA is designed. The optimization performances of FGSA are compared with those of Differential Evolution (DE and GSA. The results show that FGSA is the algorithm that gives the best compromise between goodness, robustness and convergence rate for the design of 8th order IIR filters. Moreover, FGSA assures a good stability of the designed filters.

  8. New reference trajectory optimization algorithm for a flight management system inspired in beam search

    Alejandro MURRIETA-MENDOZA

    2017-08-01

    Full Text Available With the objective of reducing the flight cost and the amount of polluting emissions released in the atmosphere, a new optimization algorithm considering the climb, cruise and descent phases is presented for the reference vertical flight trajectory. The selection of the reference vertical navigation speeds and altitudes was solved as a discrete combinatory problem by means of a graph-tree passing through nodes using the beam search optimization technique. To achieve a compromise between the execution time and the algorithm’s ability to find the global optimal solution, a heuristic methodology introducing a parameter called “optimism coefficient was used in order to estimate the trajectory’s flight cost at every node. The optimal trajectory cost obtained with the developed algorithm was compared with the cost of the optimal trajectory provided by a commercial flight management system(FMS. The global optimal solution was validated against an exhaustive search algorithm(ESA, other than the proposed algorithm. The developed algorithm takes into account weather effects, step climbs during cruise and air traffic management constraints such as constant altitude segments, constant cruise Mach, and a pre-defined reference lateral navigation route. The aircraft fuel burn was computed using a numerical performance model which was created and validated using flight test experimental data.

  9. A voting-based star identification algorithm utilizing local and global distribution

    Fan, Qiaoyun; Zhong, Xuyang; Sun, Junhua

    2018-03-01

    A novel star identification algorithm based on voting scheme is presented in this paper. In the proposed algorithm, the global distribution and local distribution of sensor stars are fully utilized, and the stratified voting scheme is adopted to obtain the candidates for sensor stars. The database optimization is employed to reduce its memory requirement and improve the robustness of the proposed algorithm. The simulation shows that the proposed algorithm exhibits 99.81% identification rate with 2-pixel standard deviations of positional noises and 0.322-Mv magnitude noises. Compared with two similar algorithms, the proposed algorithm is more robust towards noise, and the average identification time and required memory is less. Furthermore, the real sky test shows that the proposed algorithm performs well on the real star images.

  10. When do evolutionary algorithms optimize separable functions in parallel?

    Doerr, Benjamin; Sudholt, Dirk; Witt, Carsten

    2013-01-01

    is that evolutionary algorithms make progress on all subfunctions in parallel, so that optimizing a separable function does not take not much longer than optimizing the hardest subfunction-subfunctions are optimized "in parallel." We show that this is only partially true, already for the simple (1+1) evolutionary...... algorithm ((1+1) EA). For separable functions composed of k Boolean functions indeed the optimization time is the maximum optimization time of these functions times a small O(log k) overhead. More generally, for sums of weighted subfunctions that each attain non-negative integer values less than r = o(log1...

  11. Optimization of Nuclear Reactor power Distribution using Genetic Algorithm

    Kim, Hyu Chan

    1996-02-01

    The main purpose of study is to develop a computer code named as 'MGA-SCOUPE' which can determine an optimal fuel-loading pattern for the nuclear reactor. The developed code, MGA-SCOUPE, automatically lots of searches for the globally optimum solutions based upon the modified Genetic Algorithm(MGA). The optimization goal of the MGA-SCOUPE is (1) the minimization of the deviations in the power peaking factors both at BOC and EOC, and (2) the maximization of the average burnup ration at EOC of the total fuel assemblies. For the reactor core calculation module in the MGA-SCOUPE, the SCOUPE code was partially modified and used. It had been developed originally in MIT and has been used currently in Kyung Hee University. The application of the MGA-SCOUPE to KORI 4-4 Cycle Model show several satisfactory results. Among them, two dominant improvements compared with the SCOUPE code can be summarized as follow: - The MGA-SCOUPE removes the user-dependency problem of the SCOUPE in the optimal loading pattern searches. Therefore, the searching process in the MGA-SCOUPE can be easily automated. - The final fuel loading pattern obtained by the MGA-SCOUPE shows 25.8%, 18.7% reduced standard deviations of the power peaking factors both at BOC and EOC, and 45% increased avg. burnup ratio at EOC compare with those of the SCOUPE

  12. Energy Optimal Control Strategy of PHEV Based on PMP Algorithm

    Tiezhou Wu

    2017-01-01

    Full Text Available Under the global voice of “energy saving” and the current boom in the development of energy storage technology at home and abroad, energy optimal control of the whole hybrid electric vehicle power system, as one of the core technologies of electric vehicles, is bound to become a hot target of “clean energy” vehicle development and research. This paper considers the constraints to the performance of energy storage system in Parallel Hybrid Electric Vehicle (PHEV, from which lithium-ion battery frequently charges/discharges, PHEV largely consumes energy of fuel, and their are difficulty in energy recovery and other issues in a single cycle; the research uses lithium-ion battery combined with super-capacitor (SC, which is hybrid energy storage system (Li-SC HESS, working together with internal combustion engine (ICE to drive PHEV. Combined with PSO-PI controller and Li-SC HESS internal power limited management approach, the research proposes the PHEV energy optimal control strategy. It is based on revised Pontryagin’s minimum principle (PMP algorithm, which establishes the PHEV vehicle simulation model through ADVISOR software and verifies the effectiveness and feasibility. Finally, the results show that the energy optimization control strategy can improve the instantaneity of tracking PHEV minimum fuel consumption track, implement energy saving, and prolong the life of lithium-ion batteries and thereby can improve hybrid energy storage system performance.

  13. A hybrid artificial bee colony algorithm for numerical function optimization

    Alqattan, Zakaria N.; Abdullah, Rosni

    2015-02-01

    Artificial Bee Colony (ABC) algorithm is one of the swarm intelligence algorithms; it has been introduced by Karaboga in 2005. It is a meta-heuristic optimization search algorithm inspired from the intelligent foraging behavior of the honey bees in nature. Its unique search process made it as one of the most competitive algorithm with some other search algorithms in the area of optimization, such as Genetic algorithm (GA) and Particle Swarm Optimization (PSO). However, the ABC performance of the local search process and the bee movement or the solution improvement equation still has some weaknesses. The ABC is good in avoiding trapping at the local optimum but it spends its time searching around unpromising random selected solutions. Inspired by the PSO, we propose a Hybrid Particle-movement ABC algorithm called HPABC, which adapts the particle movement process to improve the exploration of the original ABC algorithm. Numerical benchmark functions were used in order to experimentally test the HPABC algorithm. The results illustrate that the HPABC algorithm can outperform the ABC algorithm in most of the experiments (75% better in accuracy and over 3 times faster).

  14. Optimum Performance-Based Seismic Design Using a Hybrid Optimization Algorithm

    S. Talatahari

    2014-01-01

    Full Text Available A hybrid optimization method is presented to optimum seismic design of steel frames considering four performance levels. These performance levels are considered to determine the optimum design of structures to reduce the structural cost. A pushover analysis of steel building frameworks subject to equivalent-static earthquake loading is utilized. The algorithm is based on the concepts of the charged system search in which each agent is affected by local and global best positions stored in the charged memory considering the governing laws of electrical physics. Comparison of the results of the hybrid algorithm with those of other metaheuristic algorithms shows the efficiency of the hybrid algorithm.

  15. On algorithm for building of optimal α-decision trees

    Alkhalid, Abdulaziz

    2010-01-01

    The paper describes an algorithm that constructs approximate decision trees (α-decision trees), which are optimal relatively to one of the following complexity measures: depth, total path length or number of nodes. The algorithm uses dynamic programming and extends methods described in [4] to constructing approximate decision trees. Adjustable approximation rate allows controlling algorithm complexity. The algorithm is applied to build optimal α-decision trees for two data sets from UCI Machine Learning Repository [1]. © 2010 Springer-Verlag Berlin Heidelberg.

  16. PSO Algorithm for an Optimal Power Controller in a Microgrid

    Al-Saedi, W.; Lachowicz, S.; Habibi, D.; Bass, O.

    2017-07-01

    This paper presents the Particle Swarm Optimization (PSO) algorithm to improve the quality of the power supply in a microgrid. This algorithm is proposed for a real-time selftuning method that used in a power controller for an inverter based Distributed Generation (DG) unit. In such system, the voltage and frequency are the main control objectives, particularly when the microgrid is islanded or during load change. In this work, the PSO algorithm is implemented to find the optimal controller parameters to satisfy the control objectives. The results show high performance of the applied PSO algorithm of regulating the microgrid voltage and frequency.

  17. Genetic Algorithm Optimized Neural Networks Ensemble as ...

    Marquardt algorithm by varying conditions such as inputs, hidden neurons, initialization, training sets and random Gaussian noise injection to ... Several such ensembles formed the population which was evolved to generate the fittest ensemble.

  18. Chaos Quantum-Behaved Cat Swarm Optimization Algorithm and Its Application in the PV MPPT

    Xiaohua Nie

    2017-01-01

    Full Text Available Cat Swarm Optimization (CSO algorithm was put forward in 2006. Despite a faster convergence speed compared with Particle Swarm Optimization (PSO algorithm, the application of CSO is greatly limited by the drawback of “premature convergence,” that is, the possibility of trapping in local optimum when dealing with nonlinear optimization problem with a large number of local extreme values. In order to surmount the shortcomings of CSO, Chaos Quantum-behaved Cat Swarm Optimization (CQCSO algorithm is proposed in this paper. Firstly, Quantum-behaved Cat Swarm Optimization (QCSO algorithm improves the accuracy of the CSO algorithm, because it is easy to fall into the local optimum in the later stage. Chaos Quantum-behaved Cat Swarm Optimization (CQCSO algorithm is proposed by introducing tent map for jumping out of local optimum in this paper. Secondly, CQCSO has been applied in the simulation of five different test functions, showing higher accuracy and less time consumption than CSO and QCSO. Finally, photovoltaic MPPT model and experimental platform are established and global maximum power point tracking control strategy is achieved by CQCSO algorithm, the effectiveness and efficiency of which have been verified by both simulation and experiment.

  19. Chaos Quantum-Behaved Cat Swarm Optimization Algorithm and Its Application in the PV MPPT.

    Nie, Xiaohua; Wang, Wei; Nie, Haoyao

    2017-01-01

    Cat Swarm Optimization (CSO) algorithm was put forward in 2006. Despite a faster convergence speed compared with Particle Swarm Optimization (PSO) algorithm, the application of CSO is greatly limited by the drawback of "premature convergence," that is, the possibility of trapping in local optimum when dealing with nonlinear optimization problem with a large number of local extreme values. In order to surmount the shortcomings of CSO, Chaos Quantum-behaved Cat Swarm Optimization (CQCSO) algorithm is proposed in this paper. Firstly, Quantum-behaved Cat Swarm Optimization (QCSO) algorithm improves the accuracy of the CSO algorithm, because it is easy to fall into the local optimum in the later stage. Chaos Quantum-behaved Cat Swarm Optimization (CQCSO) algorithm is proposed by introducing tent map for jumping out of local optimum in this paper. Secondly, CQCSO has been applied in the simulation of five different test functions, showing higher accuracy and less time consumption than CSO and QCSO. Finally, photovoltaic MPPT model and experimental platform are established and global maximum power point tracking control strategy is achieved by CQCSO algorithm, the effectiveness and efficiency of which have been verified by both simulation and experiment.

  20. A new hybrid meta-heuristic algorithm for optimal design of large-scale dome structures

    Kaveh, A.; Ilchi Ghazaan, M.

    2018-02-01

    In this article a hybrid algorithm based on a vibrating particles system (VPS) algorithm, multi-design variable configuration (Multi-DVC) cascade optimization, and an upper bound strategy (UBS) is presented for global optimization of large-scale dome truss structures. The new algorithm is called MDVC-UVPS in which the VPS algorithm acts as the main engine of the algorithm. The VPS algorithm is one of the most recent multi-agent meta-heuristic algorithms mimicking the mechanisms of damped free vibration of single degree of freedom systems. In order to handle a large number of variables, cascade sizing optimization utilizing a series of DVCs is used. Moreover, the UBS is utilized to reduce the computational time. Various dome truss examples are studied to demonstrate the effectiveness and robustness of the proposed method, as compared to some existing structural optimization techniques. The results indicate that the MDVC-UVPS technique is a powerful search and optimization method for optimizing structural engineering problems.

  1. An Enhanced Memetic Algorithm for Single-Objective Bilevel Optimization Problems.

    Islam, Md Monjurul; Singh, Hemant Kumar; Ray, Tapabrata; Sinha, Ankur

    2017-01-01

    Bilevel optimization, as the name reflects, deals with optimization at two interconnected hierarchical levels. The aim is to identify the optimum of an upper-level  leader problem, subject to the optimality of a lower-level follower problem. Several problems from the domain of engineering, logistics, economics, and transportation have an inherent nested structure which requires them to be modeled as bilevel optimization problems. Increasing size and complexity of such problems has prompted active theoretical and practical interest in the design of efficient algorithms for bilevel optimization. Given the nested nature of bilevel problems, the computational effort (number of function evaluations) required to solve them is often quite high. In this article, we explore the use of a Memetic Algorithm (MA) to solve bilevel optimization problems. While MAs have been quite successful in solving single-level optimization problems, there have been relatively few studies exploring their potential for solving bilevel optimization problems. MAs essentially attempt to combine advantages of global and local search strategies to identify optimum solutions with low computational cost (function evaluations). The approach introduced in this article is a nested Bilevel Memetic Algorithm (BLMA). At both upper and lower levels, either a global or a local search method is used during different phases of the search. The performance of BLMA is presented on twenty-five standard test problems and two real-life applications. The results are compared with other established algorithms to demonstrate the efficacy of the proposed approach.

  2. Multiobjective anatomy-based dose optimization for HDR-brachytherapy with constraint free deterministic algorithms

    Milickovic, N.; Lahanas, M.; Papagiannopoulou, M.; Zamboglou, N.; Baltas, D.

    2002-01-01

    In high dose rate (HDR) brachytherapy, conventional dose optimization algorithms consider multiple objectives in the form of an aggregate function that transforms the multiobjective problem into a single-objective problem. As a result, there is a loss of information on the available alternative possible solutions. This method assumes that the treatment planner exactly understands the correlation between competing objectives and knows the physical constraints. This knowledge is provided by the Pareto trade-off set obtained by single-objective optimization algorithms with a repeated optimization with different importance vectors. A mapping technique avoids non-feasible solutions with negative dwell weights and allows the use of constraint free gradient-based deterministic algorithms. We compare various such algorithms and methods which could improve their performance. This finally allows us to generate a large number of solutions in a few minutes. We use objectives expressed in terms of dose variances obtained from a few hundred sampling points in the planning target volume (PTV) and in organs at risk (OAR). We compare two- to four-dimensional Pareto fronts obtained with the deterministic algorithms and with a fast-simulated annealing algorithm. For PTV-based objectives, due to the convex objective functions, the obtained solutions are global optimal. If OARs are included, then the solutions found are also global optimal, although local minima may be present as suggested. (author)

  3. A Cooperative Harmony Search Algorithm for Function Optimization

    Gang Li

    2014-01-01

    Full Text Available Harmony search algorithm (HS is a new metaheuristic algorithm which is inspired by a process involving musical improvisation. HS is a stochastic optimization technique that is similar to genetic algorithms (GAs and particle swarm optimizers (PSOs. It has been widely applied in order to solve many complex optimization problems, including continuous and discrete problems, such as structure design, and function optimization. A cooperative harmony search algorithm (CHS is developed in this paper, with cooperative behavior being employed as a significant improvement to the performance of the original algorithm. Standard HS just uses one harmony memory and all the variables of the object function are improvised within the harmony memory, while the proposed algorithm CHS uses multiple harmony memories, so that each harmony memory can optimize different components of the solution vector. The CHS was then applied to function optimization problems. The results of the experiment show that CHS is capable of finding better solutions when compared to HS and a number of other algorithms, especially in high-dimensional problems.

  4. Global optimization framework for solar building design

    Silva, N.; Alves, N.; Pascoal-Faria, P.

    2017-07-01

    The generative modeling paradigm is a shift from static models to flexible models. It describes a modeling process using functions, methods and operators. The result is an algorithmic description of the construction process. Each evaluation of such an algorithm creates a model instance, which depends on its input parameters (width, height, volume, roof angle, orientation, location). These values are normally chosen according to aesthetic aspects and style. In this study, the model's parameters are automatically generated according to an objective function. A generative model can be optimized according to its parameters, in this way, the best solution for a constrained problem is determined. Besides the establishment of an overall framework design, this work consists on the identification of different building shapes and their main parameters, the creation of an algorithmic description for these main shapes and the formulation of the objective function, respecting a building's energy consumption (solar energy, heating and insulation). Additionally, the conception of an optimization pipeline, combining an energy calculation tool with a geometric scripting engine is presented. The methods developed leads to an automated and optimized 3D shape generation for the projected building (based on the desired conditions and according to specific constrains). The approach proposed will help in the construction of real buildings that account for less energy consumption and for a more sustainable world.

  5. Wolf Search Algorithm for Solving Optimal Reactive Power Dispatch Problem

    Kanagasabai Lenin

    2015-03-01

    Full Text Available This paper presents a new bio-inspired heuristic optimization algorithm called the Wolf Search Algorithm (WSA for solving the multi-objective reactive power dispatch problem. Wolf Search algorithm is a new bio – inspired heuristic algorithm which based on wolf preying behaviour. The way wolves search for food and survive by avoiding their enemies has been imitated to formulate the algorithm for solving the reactive power dispatches. And the speciality  of wolf is  possessing  both individual local searching ability and autonomous flocking movement and this special property has been utilized to formulate the search algorithm .The proposed (WSA algorithm has been tested on standard IEEE 30 bus test system and simulation results shows clearly about the good performance of the proposed algorithm .

  6. A novel optimization method, Effective Discrete Firefly Algorithm, for fuel reload design of nuclear reactors

    Poursalehi, N.; Zolfaghari, A.; Minuchehr, A.

    2015-01-01

    Highlights: • An advanced version of firefly algorithm, EDFA, is proposed for the core pattern optimization problem. • The movement of each firefly toward the best firefly with a dynamic probability is the major improvement of EDFA. • LPO results represent the faster convergence and better performance of EDFA in comparison to CFA and DFA. - Abstract: Inspired by fireflies behavior in nature, a firefly algorithm has been developed for solving optimization problems. In this approach, each firefly movement is based on absorption of the other one. For enhancing the performance of firefly algorithm in the optimization process of nuclear reactor loading pattern optimization (LPO), we introduce a new variant of firefly algorithm, i.e. Effective Discrete Firefly Algorithm (EDFA). In EDFA, a new behavior is the movement of fireflies to current global best position with a dynamic probability, i.e. the movement of each firefly can be determined to be toward the brighter or brightest firefly’s position in any iteration of the algorithm. In this paper, our optimization objectives for the LPO are the maximization of K eff along with the minimization of the power peaking factor (PPF). In order to represent the increase of convergence speed of EDFA, basic firefly algorithms including the continuous firefly algorithm (CFA) and the discrete firefly algorithm (DFA) also have been implemented. Loading pattern optimization results of two well-known problems confirm better performance of EDFA in obtaining nearly optimized fuel arrangements in comparison to CFA and DFA. All in all, we can suggest applying the EDFA to other optimization problems of nuclear engineering field in order to investigate its performance in gaining considered objectives

  7. Artificial bee colony algorithm for constrained possibilistic portfolio optimization problem

    Chen, Wei

    2015-07-01

    In this paper, we discuss the portfolio optimization problem with real-world constraints under the assumption that the returns of risky assets are fuzzy numbers. A new possibilistic mean-semiabsolute deviation model is proposed, in which transaction costs, cardinality and quantity constraints are considered. Due to such constraints the proposed model becomes a mixed integer nonlinear programming problem and traditional optimization methods fail to find the optimal solution efficiently. Thus, a modified artificial bee colony (MABC) algorithm is developed to solve the corresponding optimization problem. Finally, a numerical example is given to illustrate the effectiveness of the proposed model and the corresponding algorithm.

  8. Multiphase Return Trajectory Optimization Based on Hybrid Algorithm

    Yi Yang

    2016-01-01

    Full Text Available A hybrid trajectory optimization method consisting of Gauss pseudospectral method (GPM and natural computation algorithm has been developed and utilized to solve multiphase return trajectory optimization problem, where a phase is defined as a subinterval in which the right-hand side of the differential equation is continuous. GPM converts the optimal control problem to a nonlinear programming problem (NLP, which helps to improve calculation accuracy and speed of natural computation algorithm. Through numerical simulations, it is found that the multiphase optimal control problem could be solved perfectly.

  9. Genetic algorithm for neural networks optimization

    Setyawati, Bina R.; Creese, Robert C.; Sahirman, Sidharta

    2004-11-01

    This paper examines the forecasting performance of multi-layer feed forward neural networks in modeling a particular foreign exchange rates, i.e. Japanese Yen/US Dollar. The effects of two learning methods, Back Propagation and Genetic Algorithm, in which the neural network topology and other parameters fixed, were investigated. The early results indicate that the application of this hybrid system seems to be well suited for the forecasting of foreign exchange rates. The Neural Networks and Genetic Algorithm were programmed using MATLAB«.

  10. ProxImaL: efficient image optimization using proximal algorithms

    Heide, Felix; Diamond, Steven; Nieß ner, Matthias; Ragan-Kelley, Jonathan; Heidrich, Wolfgang; Wetzstein, Gordon

    2016-01-01

    domain-specific language and compiler for image optimization problems that makes it easy to experiment with different problem formulations and algorithm choices. The language uses proximal operators as the fundamental building blocks of a variety

  11. Solving Multiobjective Optimization Problems Using Artificial Bee Colony Algorithm

    Wenping Zou

    2011-01-01

    Full Text Available Multiobjective optimization has been a difficult problem and focus for research in fields of science and engineering. This paper presents a novel algorithm based on artificial bee colony (ABC to deal with multi-objective optimization problems. ABC is one of the most recently introduced algorithms based on the intelligent foraging behavior of a honey bee swarm. It uses less control parameters, and it can be efficiently used for solving multimodal and multidimensional optimization problems. Our algorithm uses the concept of Pareto dominance to determine the flight direction of a bee, and it maintains nondominated solution vectors which have been found in an external archive. The proposed algorithm is validated using the standard test problems, and simulation results show that the proposed approach is highly competitive and can be considered a viable alternative to solve multi-objective optimization problems.

  12. Optimal design of the heat pipe using TLBO (teaching–learning-based optimization) algorithm

    Rao, R.V.; More, K.C.

    2015-01-01

    Heat pipe is a highly efficient and reliable heat transfer component. It is a closed container designed to transfer a large amount of heat in system. Since the heat pipe operates on a closed two-phase cycle, the heat transfer capacity is greater than for solid conductors. Also, the thermal response time is less than with solid conductors. The three major elemental parts of the rotating heat pipe are: a cylindrical evaporator, a truncated cone condenser, and a fixed amount of working fluid. In this paper, a recently proposed new stochastic advanced optimization algorithm called TLBO (Teaching–Learning-Based Optimization) algorithm is used for single objective as well as multi-objective design optimization of heat pipe. It is easy to implement, does not make use of derivatives and it can be applied to unconstrained or constrained problems. Two examples of heat pipe are presented in this paper. The results of application of TLBO algorithm for the design optimization of heat pipe are compared with the NPGA (Niched Pareto Genetic Algorithm), GEM (Grenade Explosion Method) and GEO (Generalized External optimization). It is found that the TLBO algorithm has produced better results as compared to those obtained by using NPGA, GEM and GEO algorithms. - Highlights: • The TLBO (Teaching–Learning-Based Optimization) algorithm is used for the design and optimization of a heat pipe. • Two examples of heat pipe design and optimization are presented. • The TLBO algorithm is proved better than the other optimization algorithms in terms of results and the convergence

  13. Comparative performance of an elitist teaching-learning-based optimization algorithm for solving unconstrained optimization problems

    R. Venkata Rao

    2013-01-01

    Full Text Available Teaching-Learning-based optimization (TLBO is a recently proposed population based algorithm, which simulates the teaching-learning process of the class room. This algorithm requires only the common control parameters and does not require any algorithm-specific control parameters. In this paper, the effect of elitism on the performance of the TLBO algorithm is investigated while solving unconstrained benchmark problems. The effects of common control parameters such as the population size and the number of generations on the performance of the algorithm are also investigated. The proposed algorithm is tested on 76 unconstrained benchmark functions with different characteristics and the performance of the algorithm is compared with that of other well known optimization algorithms. A statistical test is also performed to investigate the results obtained using different algorithms. The results have proved the effectiveness of the proposed elitist TLBO algorithm.

  14. A new hybrid optimization method inspired from swarm intelligence: Fuzzy adaptive swallow swarm optimization algorithm (FASSO

    Mehdi Neshat

    2015-11-01

    Full Text Available In this article, the objective was to present effective and optimal strategies aimed at improving the Swallow Swarm Optimization (SSO method. The SSO is one of the best optimization methods based on swarm intelligence which is inspired by the intelligent behaviors of swallows. It has been able to offer a relatively strong method for solving optimization problems. However, despite its many advantages, the SSO suffers from two shortcomings. Firstly, particles movement speed is not controlled satisfactorily during the search due to the lack of an inertia weight. Secondly, the variables of the acceleration coefficient are not able to strike a balance between the local and the global searches because they are not sufficiently flexible in complex environments. Therefore, the SSO algorithm does not provide adequate results when it searches in functions such as the Step or Quadric function. Hence, the fuzzy adaptive Swallow Swarm Optimization (FASSO method was introduced to deal with these problems. Meanwhile, results enjoy high accuracy which are obtained by using an adaptive inertia weight and through combining two fuzzy logic systems to accurately calculate the acceleration coefficients. High speed of convergence, avoidance from falling into local extremum, and high level of error tolerance are the advantages of proposed method. The FASSO was compared with eleven of the best PSO methods and SSO in 18 benchmark functions. Finally, significant results were obtained.

  15. Search Parameter Optimization for Discrete, Bayesian, and Continuous Search Algorithms

    2017-09-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS SEARCH PARAMETER OPTIMIZATION FOR DISCRETE , BAYESIAN, AND CONTINUOUS SEARCH ALGORITHMS by...to 09-22-2017 4. TITLE AND SUBTITLE SEARCH PARAMETER OPTIMIZATION FOR DISCRETE , BAYESIAN, AND CON- TINUOUS SEARCH ALGORITHMS 5. FUNDING NUMBERS 6...simple search and rescue acts to prosecuting aerial/surface/submersible targets on mission. This research looks at varying the known discrete and

  16. Chaotically encoded particle swarm optimization algorithm and its applications

    Alatas, Bilal; Akin, Erhan

    2009-01-01

    This paper proposes a novel particle swarm optimization (PSO) algorithm, chaotically encoded particle swarm optimization algorithm (CENPSOA), based on the notion of chaos numbers that have been recently proposed for a novel meaning to numbers. In this paper, various chaos arithmetic and evaluation measures that can be used in CENPSOA have been described. Furthermore, CENPSOA has been designed to be effectively utilized in data mining applications.

  17. Advanced optimization of permanent magnet wigglers using a genetic algorithm

    Hajima, Ryoichi [Univ. of Tokyo (Japan)

    1995-12-31

    In permanent magnet wigglers, magnetic imperfection of each magnet piece causes field error. This field error can be reduced or compensated by sorting magnet pieces in proper order. We showed a genetic algorithm has good property for this sorting scheme. In this paper, this optimization scheme is applied to the case of permanent magnets which have errors in the direction of field. The result shows the genetic algorithm is superior to other algorithms.

  18. Advanced optimization of permanent magnet wigglers using a genetic algorithm

    Hajima, Ryoichi

    1995-01-01

    In permanent magnet wigglers, magnetic imperfection of each magnet piece causes field error. This field error can be reduced or compensated by sorting magnet pieces in proper order. We showed a genetic algorithm has good property for this sorting scheme. In this paper, this optimization scheme is applied to the case of permanent magnets which have errors in the direction of field. The result shows the genetic algorithm is superior to other algorithms

  19. MPC Toolbox with GPU Accelerated Optimization Algorithms

    Gade-Nielsen, Nicolai Fog; Jørgensen, John Bagterp; Dammann, Bernd

    2012-01-01

    The introduction of Graphical Processing Units (GPUs) in scientific computing has shown great promise in many different fields. While GPUs are capable of very high floating point performance and memory bandwidth, its massively parallel architecture requires algorithms to be reimplemented to suit...

  20. Bio Inspired Algorithms in Single and Multiobjective Reliability Optimization

    Madsen, Henrik; Albeanu, Grigore; Burtschy, Bernard

    2014-01-01

    Non-traditional search and optimization methods based on natural phenomena have been proposed recently in order to avoid local or unstable behavior when run towards an optimum state. This paper describes the principles of bio inspired algorithms and reports on Migration Algorithms and Bees...

  1. An Effective Hybrid Routing Algorithm in WSN: Ant Colony Optimization in combination with Hop Count Minimization

    Ailian Jiang

    2018-03-01

    Full Text Available Low cost, high reliability and easy maintenance are key criteria in the design of routing protocols for wireless sensor networks (WSNs. This paper investigates the existing ant colony optimization (ACO-based WSN routing algorithms and the minimum hop count WSN routing algorithms by reviewing their strengths and weaknesses. We also consider the critical factors of WSNs, such as energy constraint of sensor nodes, network load balancing and dynamic network topology. Then we propose a hybrid routing algorithm that integrates ACO and a minimum hop count scheme. The proposed algorithm is able to find the optimal routing path with minimal total energy consumption and balanced energy consumption on each node. The algorithm has unique superiority in terms of searching for the optimal path, balancing the network load and the network topology maintenance. The WSN model and the proposed algorithm have been implemented using C++. Extensive simulation experimental results have shown that our algorithm outperforms several other WSN routing algorithms on such aspects that include the rate of convergence, the success rate in searching for global optimal solution, and the network lifetime.

  2. The chaotic global best artificial bee colony algorithm for the multi-area economic/emission dispatch

    Secui, Dinu Calin

    2015-01-01

    This paper suggests a chaotic optimizing method, based on the GBABC (global best artificial bee colony algorithm), where the random sequences used in updating the solutions of this algorithm are replaced with chaotic sequences generated by chaotic maps. The new algorithm, called chaotic CGBABC (global best artificial bee colony algorithm), is used to solving the multi-area economic/emission dispatch problem taking into consideration the valve-point effects, the transmission line losses, multi-fuel sources, prohibited operating zones, tie line capacity and power transfer cost between different areas of the system. The behaviour of the CGBABC algorithm is studied considering ten chaotic maps both one-dimensional and bi-dimensional, with various probability density functions. The CGBABC algorithm's performance including a variety of chaotic maps is tested on five systems (6-unit, 10-unit, 16-unit, 40-unit and 120-unit) with different characteristics, constraints and sizes. The results comparison highlights a hierarchy in the chaotic maps included in the CGBABC algorithm and shows that it performs better than the classical ABC algorithm, the GBABC algorithm and other optimization techniques. - Highlights: • A chaotic global best ABC algorithm (CGBABC) is presented. • CGBABC is applied for solving the multi-area economic/emission dispatch problem. • Valve-point effects, multi-fuel sources, POZ, transmission losses were considered. • The algorithm is tested on five systems having 6, 10, 16, 40 and 120 thermal units. • CGBABC algorithm outperforms several optimization techniques.

  3. Optimal Sensor Placement for Latticed Shell Structure Based on an Improved Particle Swarm Optimization Algorithm

    Xun Zhang

    2014-01-01

    Full Text Available Optimal sensor placement is a key issue in the structural health monitoring of large-scale structures. However, some aspects in existing approaches require improvement, such as the empirical and unreliable selection of mode and sensor numbers and time-consuming computation. A novel improved particle swarm optimization (IPSO algorithm is proposed to address these problems. The approach firstly employs the cumulative effective modal mass participation ratio to select mode number. Three strategies are then adopted to improve the PSO algorithm. Finally, the IPSO algorithm is utilized to determine the optimal sensors number and configurations. A case study of a latticed shell model is implemented to verify the feasibility of the proposed algorithm and four different PSO algorithms. The effective independence method is also taken as a contrast experiment. The comparison results show that the optimal placement schemes obtained by the PSO algorithms are valid, and the proposed IPSO algorithm has better enhancement in convergence speed and precision.

  4. The Coral Reefs Optimization Algorithm: A Novel Metaheuristic for Efficiently Solving Optimization Problems

    Salcedo-Sanz, S.; Del Ser, J.; Landa-Torres, I.; Gil-López, S.; Portilla-Figueras, J. A.

    2014-01-01

    This paper presents a novel bioinspired algorithm to tackle complex optimization problems: the coral reefs optimization (CRO) algorithm. The CRO algorithm artificially simulates a coral reef, where different corals (namely, solutions to the optimization problem considered) grow and reproduce in coral colonies, fighting by choking out other corals for space in the reef. This fight for space, along with the specific characteristics of the corals' reproduction, produces a robust metaheuristic algorithm shown to be powerful for solving hard optimization problems. In this research the CRO algorithm is tested in several continuous and discrete benchmark problems, as well as in practical application scenarios (i.e., optimum mobile network deployment and off-shore wind farm design). The obtained results confirm the excellent performance of the proposed algorithm and open line of research for further application of the algorithm to real-world problems. PMID:25147860

  5. a new meta-heuristic optimization algorithm

    N Archana

    programming obtain optimal solution to the problem by rigorous methods supplemented by gradient information. Classical methods are good for solving problems with only ... ronment for their survival and apply the concepts in finding.

  6. A Hybrid Genetic-Algorithm Space-Mapping Tool for the Optimization of Antennas

    Pantoja, Mario Fernández; Meincke, Peter; Bretones, Amelia Rubio

    2007-01-01

    A hybrid global-local optimization technique for the design of antennas is presented. It consists of the subsequent application of a genetic algorithm (GA) that employs coarse models in the simulations and a space mapping (SM) that refines the solution found in the previous stage. The technique...

  7. Genetic particle swarm parallel algorithm analysis of optimization arrangement on mistuned blades

    Zhao, Tianyu; Yuan, Huiqun; Yang, Wenjun; Sun, Huagang

    2017-12-01

    This article introduces a method of mistuned parameter identification which consists of static frequency testing of blades, dichotomy and finite element analysis. A lumped parameter model of an engine bladed-disc system is then set up. A bladed arrangement optimization method, namely the genetic particle swarm optimization algorithm, is presented. It consists of a discrete particle swarm optimization and a genetic algorithm. From this, the local and global search ability is introduced. CUDA-based co-evolution particle swarm optimization, using a graphics processing unit, is presented and its performance is analysed. The results show that using optimization results can reduce the amplitude and localization of the forced vibration response of a bladed-disc system, while optimization based on the CUDA framework can improve the computing speed. This method could provide support for engineering applications in terms of effectiveness and efficiency.

  8. An Improved Marriage in Honey Bees Optimization Algorithm for Single Objective Unconstrained Optimization

    Yuksel Celik

    2013-01-01

    Full Text Available Marriage in honey bees optimization (MBO is a metaheuristic optimization algorithm developed by inspiration of the mating and fertilization process of honey bees and is a kind of swarm intelligence optimizations. In this study we propose improved marriage in honey bees optimization (IMBO by adding Levy flight algorithm for queen mating flight and neighboring for worker drone improving. The IMBO algorithm’s performance and its success are tested on the well-known six unconstrained test functions and compared with other metaheuristic optimization algorithms.

  9. A Multistrategy Optimization Improved Artificial Bee Colony Algorithm

    Wen Liu

    2014-01-01

    Full Text Available Being prone to the shortcomings of premature and slow convergence rate of artificial bee colony algorithm, an improved algorithm was proposed. Chaotic reverse learning strategies were used to initialize swarm in order to improve the global search ability of the algorithm and keep the diversity of the algorithm; the similarity degree of individuals of the population was used to characterize the diversity of population; population diversity measure was set as an indicator to dynamically and adaptively adjust the nectar position; the premature and local convergence were avoided effectively; dual population search mechanism was introduced to the search stage of algorithm; the parallel search of dual population considerably improved the convergence rate. Through simulation experiments of 10 standard testing functions and compared with other algorithms, the results showed that the improved algorithm had faster convergence rate and the capacity of jumping out of local optimum faster.

  10. Optimization of multi-objective micro-grid based on improved particle swarm optimization algorithm

    Zhang, Jian; Gan, Yang

    2018-04-01

    The paper presents a multi-objective optimal configuration model for independent micro-grid with the aim of economy and environmental protection. The Pareto solution set can be obtained by solving the multi-objective optimization configuration model of micro-grid with the improved particle swarm algorithm. The feasibility of the improved particle swarm optimization algorithm for multi-objective model is verified, which provides an important reference for multi-objective optimization of independent micro-grid.

  11. Proposal of Evolutionary Simplex Method for Global Optimization Problem

    Shimizu, Yoshiaki

    To make an agile decision in a rational manner, role of optimization engineering has been notified increasingly under diversified customer demand. With this point of view, in this paper, we have proposed a new evolutionary method serving as an optimization technique in the paradigm of optimization engineering. The developed method has prospects to solve globally various complicated problem appearing in real world applications. It is evolved from the conventional method known as Nelder and Mead’s Simplex method by virtue of idea borrowed from recent meta-heuristic method such as PSO. Mentioning an algorithm to handle linear inequality constraints effectively, we have validated effectiveness of the proposed method through comparison with other methods using several benchmark problems.

  12. Parameter estimation of fractional-order chaotic systems by using quantum parallel particle swarm optimization algorithm.

    Yu Huang

    Full Text Available Parameter estimation for fractional-order chaotic systems is an important issue in fractional-order chaotic control and synchronization and could be essentially formulated as a multidimensional optimization problem. A novel algorithm called quantum parallel particle swarm optimization (QPPSO is proposed to solve the parameter estimation for fractional-order chaotic systems. The parallel characteristic of quantum computing is used in QPPSO. This characteristic increases the calculation of each generation exponentially. The behavior of particles in quantum space is restrained by the quantum evolution equation, which consists of the current rotation angle, individual optimal quantum rotation angle, and global optimal quantum rotation angle. Numerical simulation based on several typical fractional-order systems and comparisons with some typical existing algorithms show the effectiveness and efficiency of the proposed algorithm.

  13. Adaptive symbiotic organisms search (SOS algorithm for structural design optimization

    Ghanshyam G. Tejani

    2016-07-01

    Full Text Available The symbiotic organisms search (SOS algorithm is an effective metaheuristic developed in 2014, which mimics the symbiotic relationship among the living beings, such as mutualism, commensalism, and parasitism, to survive in the ecosystem. In this study, three modified versions of the SOS algorithm are proposed by introducing adaptive benefit factors in the basic SOS algorithm to improve its efficiency. The basic SOS algorithm only considers benefit factors, whereas the proposed variants of the SOS algorithm, consider effective combinations of adaptive benefit factors and benefit factors to study their competence to lay down a good balance between exploration and exploitation of the search space. The proposed algorithms are tested to suit its applications to the engineering structures subjected to dynamic excitation, which may lead to undesirable vibrations. Structure optimization problems become more challenging if the shape and size variables are taken into account along with the frequency. To check the feasibility and effectiveness of the proposed algorithms, six different planar and space trusses are subjected to experimental analysis. The results obtained using the proposed methods are compared with those obtained using other optimization methods well established in the literature. The results reveal that the adaptive SOS algorithm is more reliable and efficient than the basic SOS algorithm and other state-of-the-art algorithms.

  14. A hybrid algorithm for instant optimization of beam weights in anatomy-based intensity modulated radiotherapy: a performance evaluation study

    Vaitheeswaran, Ranganathan; Sathiya Narayanan, V.K.; Bhangle, Janhavi R.; Nirhali, Amit; Kumar, Namita; Basu, Sumit; Maiya, Vikram

    2011-01-01

    The study aims to introduce a hybrid optimization algorithm for anatomy-based intensity modulated radiotherapy (AB-IMRT). Our proposal is that by integrating an exact optimization algorithm with a heuristic optimization algorithm, the advantages of both the algorithms can be combined, which will lead to an efficient global optimizer solving the problem at a very fast rate. Our hybrid approach combines Gaussian elimination algorithm (exact optimizer) with fast simulated annealing algorithm (a heuristic global optimizer) for the optimization of beam weights in AB-IMRT. The algorithm has been implemented using MATLAB software. The optimization efficiency of the hybrid algorithm is clarified by (i) analysis of the numerical characteristics of the algorithm and (ii) analysis of the clinical capabilities of the algorithm. The numerical and clinical characteristics of the hybrid algorithm are compared with Gaussian elimination method (GEM) and fast simulated annealing (FSA). The numerical characteristics include convergence, consistency, number of iterations and overall optimization speed, which were analyzed for the respective cases of 8 patients. The clinical capabilities of the hybrid algorithm are demonstrated in cases of (a) prostate and (b) brain. The analyses reveal that (i) the convergence speed of the hybrid algorithm is approximately three times higher than that of FSA algorithm (ii) the convergence (percentage reduction in the cost function) in hybrid algorithm is about 20% improved as compared to that in GEM algorithm (iii) the hybrid algorithm is capable of producing relatively better treatment plans in terms of Conformity Index (CI) (∼ 2% - 5% improvement) and Homogeneity Index (HI) (∼ 4% - 10% improvement) as compared to GEM and FSA algorithms (iv) the sparing of organs at risk in hybrid algorithm-based plans is better than that in GEM-based plans and comparable to that in FSA-based plans; and (v) the beam weights resulting from the hybrid algorithm are

  15. Competing intelligent search agents in global optimization

    Streltsov, S.; Vakili, P. [Boston Univ., MA (United States); Muchnik, I. [Rutgers Univ., Piscataway, NJ (United States)

    1996-12-31

    In this paper we present a new search methodology that we view as a development of intelligent agent approach to the analysis of complex system. The main idea is to consider search process as a competition mechanism between concurrent adaptive intelligent agents. Agents cooperate in achieving a common search goal and at the same time compete with each other for computational resources. We propose a statistical selection approach to resource allocation between agents that leads to simple and efficient on average index allocation policies. We use global optimization as the most general setting that encompasses many types of search problems, and show how proposed selection policies can be used to improve and combine various global optimization methods.

  16. AC-600 reactor reloading pattern optimization by using genetic algorithms

    Wu Hongchun; Xie Zhongsheng; Yao Dong; Li Dongsheng; Zhang Zongyao

    2000-01-01

    The use of genetic algorithms to optimize reloading pattern of the nuclear power plant reactor is proposed. And a new encoding and translating method is given. Optimization results of minimizing core power peak and maximizing cycle length for both low-leakage and out-in loading pattern of AC-600 reactor are obtained

  17. Concrete Plant Operations Optimization Using Combined Simulation and Genetic Algorithms

    Cao, Ming; Lu, Ming; Zhang, Jian-Ping

    2004-01-01

    This work presents a new approach for concrete plant operations optimization by combining a ready mixed concrete (RMC) production simulation tool (called HKCONSIM) with a genetic algorithm (GA) based optimization procedure. A revamped HKCONSIM computer system can be used to automate the simulation

  18. Application of a genetic algorithm to core reload pattern optimization

    Tanker, E.; Tanker, A.Z.

    1994-01-01

    A genetic algorithm is applied to reload pattern optimization of a PWR core. Evaluating all different distributions of a given batch load separately is found slow and ineffective. Allowing patterns from different distributions to combine reproduce, an optimized pattern better than that obtained from from linear programming is found, albeit in a longer time. (authors). 5 refs., 2 tabs

  19. Maintenance optimization in nuclear power plants through genetic algorithms

    Munoz, A.; Martorell, S.; Serradell, V.

    1999-01-01

    Establishing suitable scheduled maintenance tasks leads to optimizing the reliability of nuclear power plant safety systems. The articles addresses this subject, whilst endeavoring to tackle an overall optimization process for component availability and safety systems through the use of genetic algorithms. (Author) 20 refs

  20. Optimization Shape of Variable Capacitance Micromotor Using Differential Evolution Algorithm

    A. Ketabi

    2010-01-01

    Full Text Available A new method for optimum shape design of variable capacitance micromotor (VCM using Differential Evolution (DE, a stochastic search algorithm, is presented. In this optimization exercise, the objective function aims to maximize torque value and minimize the torque ripple, where the geometric parameters are considered to be the variables. The optimization process is carried out using a combination of DE algorithm and FEM analysis. Fitness value is calculated by FEM analysis using COMSOL3.4, and the DE algorithm is realized by MATLAB7.4. The proposed method is applied to a VCM with 8 poles at the stator and 6 poles at the rotor. The results show that the optimized micromotor using DE algorithm had higher torque value and lower torque ripple, indicating the validity of this methodology for VCM design.

  1. Optimizing graph algorithms on pregel-like systems

    Salihoglu, Semih

    2014-03-01

    We study the problem of implementing graph algorithms efficiently on Pregel-like systems, which can be surprisingly challenging. Standard graph algorithms in this setting can incur unnecessary inefficiencies such as slow convergence or high communication or computation cost, typically due to structural properties of the input graphs such as large diameters or skew in component sizes. We describe several optimization techniques to address these inefficiencies. Our most general technique is based on the idea of performing some serial computation on a tiny fraction of the input graph, complementing Pregel\\'s vertex-centric parallelism. We base our study on thorough implementations of several fundamental graph algorithms, some of which have, to the best of our knowledge, not been implemented on Pregel-like systems before. The algorithms and optimizations we describe are fully implemented in our open-source Pregel implementation. We present detailed experiments showing that our optimization techniques improve runtime significantly on a variety of very large graph datasets.

  2. PID controller tuning using metaheuristic optimization algorithms for benchmark problems

    Gholap, Vishal; Naik Dessai, Chaitali; Bagyaveereswaran, V.

    2017-11-01

    This paper contributes to find the optimal PID controller parameters using particle swarm optimization (PSO), Genetic Algorithm (GA) and Simulated Annealing (SA) algorithm. The algorithms were developed through simulation of chemical process and electrical system and the PID controller is tuned. Here, two different fitness functions such as Integral Time Absolute Error and Time domain Specifications were chosen and applied on PSO, GA and SA while tuning the controller. The proposed Algorithms are implemented on two benchmark problems of coupled tank system and DC motor. Finally, comparative study has been done with different algorithms based on best cost, number of iterations and different objective functions. The closed loop process response for each set of tuned parameters is plotted for each system with each fitness function.

  3. Stochastic Recursive Algorithms for Optimization Simultaneous Perturbation Methods

    Bhatnagar, S; Prashanth, L A

    2013-01-01

    Stochastic Recursive Algorithms for Optimization presents algorithms for constrained and unconstrained optimization and for reinforcement learning. Efficient perturbation approaches form a thread unifying all the algorithms considered. Simultaneous perturbation stochastic approximation and smooth fractional estimators for gradient- and Hessian-based methods are presented. These algorithms: • are easily implemented; • do not require an explicit system model; and • work with real or simulated data. Chapters on their application in service systems, vehicular traffic control and communications networks illustrate this point. The book is self-contained with necessary mathematical results placed in an appendix. The text provides easy-to-use, off-the-shelf algorithms that are given detailed mathematical treatment so the material presented will be of significant interest to practitioners, academic researchers and graduate students alike. The breadth of applications makes the book appropriate for reader from sim...

  4. Genetic algorithms for RDF chain query optimization

    Hogenboom, A.C.; Milea, D.V.; Frasincar, F.; Kaymak, U.; Calders, T.; Tuyls, K.; Pechenizkiy, M.

    2009-01-01

    The application of Semantic Web technologies in an Electronic Commerce environment implies a need for good support tools. Fast query engines are required for efficient real-time querying of large amounts of data, usually represented using RDF. We focus on optimizing a special class of SPARQL

  5. Efficient evolutionary algorithms for optimal control

    López Cruz, I.L.

    2002-01-01

    If optimal control problems are solved by means of gradient based local search methods, convergence to local solutions is likely. Recently, there has been an increasing interest in the use

  6. GLOBAL OPTIMIZATION METHODS FOR GRAVITATIONAL LENS SYSTEMS WITH REGULARIZED SOURCES

    Rogers, Adam; Fiege, Jason D.

    2012-01-01

    Several approaches exist to model gravitational lens systems. In this study, we apply global optimization methods to find the optimal set of lens parameters using a genetic algorithm. We treat the full optimization procedure as a two-step process: an analytical description of the source plane intensity distribution is used to find an initial approximation to the optimal lens parameters; the second stage of the optimization uses a pixelated source plane with the semilinear method to determine an optimal source. Regularization is handled by means of an iterative method and the generalized cross validation (GCV) and unbiased predictive risk estimator (UPRE) functions that are commonly used in standard image deconvolution problems. This approach simultaneously estimates the optimal regularization parameter and the number of degrees of freedom in the source. Using the GCV and UPRE functions, we are able to justify an estimation of the number of source degrees of freedom found in previous work. We test our approach by applying our code to a subset of the lens systems included in the SLACS survey.

  7. Bioinspired computation in combinatorial optimization: algorithms and their computational complexity

    Neumann, Frank; Witt, Carsten

    2012-01-01

    Bioinspired computation methods, such as evolutionary algorithms and ant colony optimization, are being applied successfully to complex engineering and combinatorial optimization problems, and it is very important that we understand the computational complexity of these algorithms. This tutorials...... problems. Classical single objective optimization is examined first. They then investigate the computational complexity of bioinspired computation applied to multiobjective variants of the considered combinatorial optimization problems, and in particular they show how multiobjective optimization can help...... to speed up bioinspired computation for single-objective optimization problems. The tutorial is based on a book written by the authors with the same title. Further information about the book can be found at www.bioinspiredcomputation.com....

  8. Online algorithms for optimal energy distribution in microgrids

    Wang, Yu; Nelms, R Mark

    2015-01-01

    Presenting an optimal energy distribution strategy for microgrids in a smart grid environment, and featuring a detailed analysis of the mathematical techniques of convex optimization and online algorithms, this book provides readers with essential content on how to achieve multi-objective optimization that takes into consideration power subscribers, energy providers and grid smoothing in microgrids. Featuring detailed theoretical proofs and simulation results that demonstrate and evaluate the correctness and effectiveness of the algorithm, this text explains step-by-step how the problem can b

  9. Simulated annealing algorithm for reactor in-core design optimizations

    Zhong Wenfa; Zhou Quan; Zhong Zhaopeng

    2001-01-01

    A nuclear reactor must be optimized for in core fuel management to make full use of the fuel, to reduce the operation cost and to flatten the power distribution reasonably. The author presents a simulated annealing algorithm. The optimized objective function and the punishment function were provided for optimizing the reactor physics design. The punishment function was used to practice the simulated annealing algorithm. The practical design of the NHR-200 was calculated. The results show that the K eff can be increased by 2.5% and the power distribution can be flattened

  10. Air data system optimization using a genetic algorithm

    Deshpande, Samir M.; Kumar, Renjith R.; Seywald, Hans; Siemers, Paul M., III

    1992-01-01

    An optimization method for flush-orifice air data system design has been developed using the Genetic Algorithm approach. The optimization of the orifice array minimizes the effect of normally distributed random noise in the pressure readings on the calculation of air data parameters, namely, angle of attack, sideslip angle and freestream dynamic pressure. The optimization method is applied to the design of Pressure Distribution/Air Data System experiment (PD/ADS) proposed for inclusion in the Aeroassist Flight Experiment (AFE). Results obtained by the Genetic Algorithm method are compared to the results obtained by conventional gradient search method.

  11. PWR loading pattern optimization using Harmony Search algorithm

    Poursalehi, N.; Zolfaghari, A.; Minuchehr, A.

    2013-01-01

    Highlights: ► Numerical results reveal that the HS method is reliable. ► The great advantage of HS is significant gain in computational cost. ► On the average, the final band width of search fitness values is narrow. ► Our experiments show that the search approaches the optimal value fast. - Abstract: In this paper a core reloading technique using Harmony Search, HS, is presented in the context of finding an optimal configuration of fuel assemblies, FA, in pressurized water reactors. To implement and evaluate the proposed technique a Harmony Search along Nodal Expansion Code for 2-D geometry, HSNEC2D, is developed to obtain nearly optimal arrangement of fuel assemblies in PWR cores. This code consists of two sections including Harmony Search algorithm and Nodal Expansion modules using fourth degree flux expansion which solves two dimensional-multi group diffusion equations with one node per fuel assembly. Two optimization test problems are investigated to demonstrate the HS algorithm capability in converging to near optimal loading pattern in the fuel management field and other subjects. Results, convergence rate and reliability of the method are quite promising and show the HS algorithm performs very well and is comparable to other competitive algorithms such as Genetic Algorithm and Particle Swarm Intelligence. Furthermore, implementation of nodal expansion technique along HS causes considerable reduction of computational time to process and analysis optimization in the core fuel management problems

  12. Optimization of Algorithms Using Extensions of Dynamic Programming

    AbouEisha, Hassan M.

    2017-04-09

    We study and answer questions related to the complexity of various important problems such as: multi-frontal solvers of hp-adaptive finite element method, sorting and majority. We advocate the use of dynamic programming as a viable tool to study optimal algorithms for these problems. The main approach used to attack these problems is modeling classes of algorithms that may solve this problem using a discrete model of computation then defining cost functions on this discrete structure that reflect different complexity measures of the represented algorithms. As a last step, dynamic programming algorithms are designed and used to optimize those models (algorithms) and to obtain exact results on the complexity of the studied problems. The first part of the thesis presents a novel model of computation (element partition tree) that represents a class of algorithms for multi-frontal solvers along with cost functions reflecting various complexity measures such as: time and space. It then introduces dynamic programming algorithms for multi-stage and bi-criteria optimization of element partition trees. In addition, it presents results based on optimal element partition trees for famous benchmark meshes such as: meshes with point and edge singularities. New improved heuristics for those benchmark meshes were ob- tained based on insights of the optimal results found by our algorithms. The second part of the thesis starts by introducing a general problem where different problems can be reduced to and show how to use a decision table to model such problem. We describe how decision trees and decision tests for this table correspond to adaptive and non-adaptive algorithms for the original problem. We present exact bounds on the average time complexity of adaptive algorithms for the eight elements sorting problem. Then bounds on adaptive and non-adaptive algorithms for a variant of the majority problem are introduced. Adaptive algorithms are modeled as decision trees whose depth

  13. A superlinear interior points algorithm for engineering design optimization

    Herskovits, J.; Asquier, J.

    1990-01-01

    We present a quasi-Newton interior points algorithm for nonlinear constrained optimization. It is based on a general approach consisting of the iterative solution in the primal and dual spaces of the equalities in Karush-Kuhn-Tucker optimality conditions. This is done in such a way to have primal and dual feasibility at each iteration, which ensures satisfaction of those optimality conditions at the limit points. This approach is very strong and efficient, since at each iteration it only requires the solution of two linear systems with the same matrix, instead of quadratic programming subproblems. It is also particularly appropriate for engineering design optimization inasmuch at each iteration a feasible design is obtained. The present algorithm uses a quasi-Newton approximation of the second derivative of the Lagrangian function in order to have superlinear asymptotic convergence. We discuss theoretical aspects of the algorithm and its computer implementation.

  14. Two-Phase Algorithm for Optimal Camera Placement

    Jun-Woo Ahn

    2016-01-01

    Full Text Available As markers for visual sensor networks have become larger, interest in the optimal camera placement problem has continued to increase. The most featured solution for the optimal camera placement problem is based on binary integer programming (BIP. Due to the NP-hard characteristic of the optimal camera placement problem, however, it is difficult to find a solution for a complex, real-world problem using BIP. Many approximation algorithms have been developed to solve this problem. In this paper, a two-phase algorithm is proposed as an approximation algorithm based on BIP that can solve the optimal camera placement problem for a placement space larger than in current studies. This study solves the problem in three-dimensional space for a real-world structure.

  15. OPTIMIZATION OF LONG RURAL FEEDERS USING A GENETIC ALGORITHM

    Wishart, Michael; Ledwich, Gerard; Ghosh, Arindam; Ivanovich, Grujica

    2010-01-01

    This paper describes the optimization of conductor size and the voltage regulator location and magnitude of long rural distribution lines. The optimization minimizes the lifetime cost of the lines, including capital costs and losses while observing voltage drop and operational constraints using a Genetic Algorithm (GA). The GA optimization is applied to a real Single Wire Earth Return (SWER) network in regional Queensland and results are presented.

  16. Support vector machines optimization based theory, algorithms, and extensions

    Deng, Naiyang; Zhang, Chunhua

    2013-01-01

    Support Vector Machines: Optimization Based Theory, Algorithms, and Extensions presents an accessible treatment of the two main components of support vector machines (SVMs)-classification problems and regression problems. The book emphasizes the close connection between optimization theory and SVMs since optimization is one of the pillars on which SVMs are built.The authors share insight on many of their research achievements. They give a precise interpretation of statistical leaning theory for C-support vector classification. They also discuss regularized twi

  17. A homotopy algorithm for digital optimal projection control GASD-HADOC

    Collins, Emmanuel G., Jr.; Richter, Stephen; Davis, Lawrence D.

    1993-01-01

    The linear-quadratic-gaussian (LQG) compensator was developed to facilitate the design of control laws for multi-input, multi-output (MIMO) systems. The compensator is computed by solving two algebraic equations for which standard closed-loop solutions exist. Unfortunately, the minimal dimension of an LQG compensator is almost always equal to the dimension of the plant and can thus often violate practical implementation constraints on controller order. This deficiency is especially highlighted when considering control-design for high-order systems such as flexible space structures. This deficiency motivated the development of techniques that enable the design of optimal controllers whose dimension is less than that of the design plant. A homotopy approach based on the optimal projection equations that characterize the necessary conditions for optimal reduced-order control. Homotopy algorithms have global convergence properties and hence do not require that the initializing reduced-order controller be close to the optimal reduced-order controller to guarantee convergence. However, the homotopy algorithm previously developed for solving the optimal projection equations has sublinear convergence properties and the convergence slows at higher authority levels and may fail. A new homotopy algorithm for synthesizing optimal reduced-order controllers for discrete-time systems is described. Unlike the previous homotopy approach, the new algorithm is a gradient-based, parameter optimization formulation and was implemented in MATLAB. The results reported may offer the foundation for a reliable approach to optimal, reduced-order controller design.

  18. A DE-Based Scatter Search for Global Optimization Problems

    Kun Li

    2015-01-01

    Full Text Available This paper proposes a hybrid scatter search (SS algorithm for continuous global optimization problems by incorporating the evolution mechanism of differential evolution (DE into the reference set updated procedure of SS to act as the new solution generation method. This hybrid algorithm is called a DE-based SS (SSDE algorithm. Since different kinds of mutation operators of DE have been proposed in the literature and they have shown different search abilities for different kinds of problems, four traditional mutation operators are adopted in the hybrid SSDE algorithm. To adaptively select the mutation operator that is most appropriate to the current problem, an adaptive mechanism for the candidate mutation operators is developed. In addition, to enhance the exploration ability of SSDE, a reinitialization method is adopted to create a new population and subsequently construct a new reference set whenever the search process of SSDE is trapped in local optimum. Computational experiments on benchmark problems show that the proposed SSDE is competitive or superior to some state-of-the-art algorithms in the literature.

  19. Optimal Placement Algorithms for Virtual Machines

    Bellur, Umesh; Rao, Chetan S; SD, Madhu Kumar

    2010-01-01

    Cloud computing provides a computing platform for the users to meet their demands in an efficient, cost-effective way. Virtualization technologies are used in the clouds to aid the efficient usage of hardware. Virtual machines (VMs) are utilized to satisfy the user needs and are placed on physical machines (PMs) of the cloud for effective usage of hardware resources and electricity in the cloud. Optimizing the number of PMs used helps in cutting down the power consumption by a substantial amo...

  20. Academic Training: Evolutionary Heuristic Optimization: Genetic Algorithms and Estimation of Distribution Algorithms - Lecture series

    Françoise Benz

    2004-01-01

    ACADEMIC TRAINING LECTURE REGULAR PROGRAMME 1, 2, 3 and 4 June From 11:00 hrs to 12:00 hrs - Main Auditorium bldg. 500 Evolutionary Heuristic Optimization: Genetic Algorithms and Estimation of Distribution Algorithms V. Robles Forcada and M. Perez Hernandez / Univ. de Madrid, Spain In the real world, there exist a huge number of problems that require getting an optimum or near-to-optimum solution. Optimization can be used to solve a lot of different problems such as network design, sets and partitions, storage and retrieval or scheduling. On the other hand, in nature, there exist many processes that seek a stable state. These processes can be seen as natural optimization processes. Over the last 30 years several attempts have been made to develop optimization algorithms, which simulate these natural optimization processes. These attempts have resulted in methods such as Simulated Annealing, based on natural annealing processes or Evolutionary Computation, based on biological evolution processes. Geneti...

  1. Academic Training: Evolutionary Heuristic Optimization: Genetic Algorithms and Estimation of Distribution Algorithms - Lecture serie

    Françoise Benz

    2004-01-01

    ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch ACADEMIC TRAINING LECTURE REGULAR PROGRAMME 1, 2, 3 and 4 June From 11:00 hrs to 12:00 hrs - Main Auditorium bldg. 500 Evolutionary Heuristic Optimization: Genetic Algorithms and Estimation of Distribution Algorithms V. Robles Forcada and M. Perez Hernandez / Univ. de Madrid, Spain In the real world, there exist a huge number of problems that require getting an optimum or near-to-optimum solution. Optimization can be used to solve a lot of different problems such as network design, sets and partitions, storage and retrieval or scheduling. On the other hand, in nature, there exist many processes that seek a stable state. These processes can be seen as natural optimization processes. Over the last 30 years several attempts have been made to develop optimization algorithms, which simulate these natural optimization processes. These attempts have resulted in methods such as Simulated Annealing, based on nat...

  2. Design of an optimization algorithm for clinical use

    Gustafsson, Anders

    1995-01-01

    Radiation therapy optimization has received much attention in the past few years. In combination with biological objective functions, the different optimization schemes has shown a potential to considerably increase the treatment outcome. With improved radiobiological models and increased computer capacity, radiation therapy optimization has now reached a stage where implementation in a clinical treatment planning system is realistic. A radiation therapy optimization method has been investigated with respect to its feasibility as a tool in a clinical 3D treatment planning system. The optimization algorithm is a constrained iterative gradient method. Photon dose calculation is performed using the clinically validated pencil-beam based algorithm of the clinical treatment planning system. Dose calculation within the optimization scheme is very time consuming and measures are required to decrease the calculation time. Different methods for more effective dose calculation within the optimization scheme have been investigated. The optimization results for adaptive sampling of calculation points, and secondary effect approximations in the dose calculation algorithm are compared with the optimization result for accurate dose calculation in all voxels of interest

  3. The PBIL algorithm applied to a nuclear reactor design optimization

    Machado, Marcelo D.; Medeiros, Jose A.C.C.; Lima, Alan M.M. de; Schirru, Roberto [Instituto Alberto Luiz Coimbra de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ-RJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear. Lab. de Monitoracao de Processos]. E-mails: marcelo@lmp.ufrj.br; canedo@lmp.ufrj.br; alan@lmp.ufrj.br; schirru@lmp.ufrj.br

    2007-07-01

    The Population-Based Incremental Learning (PBIL) algorithm is a method that combines the mechanism of genetic algorithm with the simple competitive learning, creating an important tool to be used in the optimization of numeric functions and combinatory problems. PBIL works with a set of solutions to the problems, called population, whose objective is create a probability vector, containing real values in each position, that when used in a decoding procedure gives subjects that present the best solutions for the function to be optimized. In this work a new form of learning for algorithm PBIL is developed, having aimed at to reduce the necessary time for the optimization process. This new algorithm will be used in the nuclear reactor design optimization. The optimization problem consists in adjusting several reactor cell parameters, such as dimensions, enrichment and materials, in order to minimize the average peak-factor in a 3-enrichment zone reactor, considering some restrictions. In this optimization is used the computational code HAMMER, and the results compared with other methods of optimization by artificial intelligence. (author)

  4. The PBIL algorithm applied to a nuclear reactor design optimization

    Machado, Marcelo D.; Medeiros, Jose A.C.C.; Lima, Alan M.M. de; Schirru, Roberto

    2007-01-01

    The Population-Based Incremental Learning (PBIL) algorithm is a method that combines the mechanism of genetic algorithm with the simple competitive learning, creating an important tool to be used in the optimization of numeric functions and combinatory problems. PBIL works with a set of solutions to the problems, called population, whose objective is create a probability vector, containing real values in each position, that when used in a decoding procedure gives subjects that present the best solutions for the function to be optimized. In this work a new form of learning for algorithm PBIL is developed, having aimed at to reduce the necessary time for the optimization process. This new algorithm will be used in the nuclear reactor design optimization. The optimization problem consists in adjusting several reactor cell parameters, such as dimensions, enrichment and materials, in order to minimize the average peak-factor in a 3-enrichment zone reactor, considering some restrictions. In this optimization is used the computational code HAMMER, and the results compared with other methods of optimization by artificial intelligence. (author)

  5. Sequential unconstrained minimization algorithms for constrained optimization

    Byrne, Charles

    2008-01-01

    The problem of minimizing a function f(x):R J → R, subject to constraints on the vector variable x, occurs frequently in inverse problems. Even without constraints, finding a minimizer of f(x) may require iterative methods. We consider here a general class of iterative algorithms that find a solution to the constrained minimization problem as the limit of a sequence of vectors, each solving an unconstrained minimization problem. Our sequential unconstrained minimization algorithm (SUMMA) is an iterative procedure for constrained minimization. At the kth step we minimize the function G k (x)=f(x)+g k (x), to obtain x k . The auxiliary functions g k (x):D subset of R J → R + are nonnegative on the set D, each x k is assumed to lie within D, and the objective is to minimize the continuous function f:R J → R over x in the set C = D-bar, the closure of D. We assume that such minimizers exist, and denote one such by x-circumflex. We assume that the functions g k (x) satisfy the inequalities 0≤g k (x)≤G k-1 (x)-G k-1 (x k-1 ), for k = 2, 3, .... Using this assumption, we show that the sequence {(x k )} is decreasing and converges to f(x-circumflex). If the restriction of f(x) to D has bounded level sets, which happens if x-circumflex is unique and f(x) is closed, proper and convex, then the sequence {x k } is bounded, and f(x*)=f(x-circumflex), for any cluster point x*. Therefore, if x-circumflex is unique, x* = x-circumflex and {x k } → x-circumflex. When x-circumflex is not unique, convergence can still be obtained, in particular cases. The SUMMA includes, as particular cases, the well-known barrier- and penalty-function methods, the simultaneous multiplicative algebraic reconstruction technique (SMART), the proximal minimization algorithm of Censor and Zenios, the entropic proximal methods of Teboulle, as well as certain cases of gradient descent and the Newton–Raphson method. The proof techniques used for SUMMA can be extended to obtain related results

  6. Optimization of externalities using DTM measures: a Pareto optimal multi objective optimization using the evolutionary algorithm SPEA2+

    Wismans, Luc Johannes Josephus; van Berkum, Eric C.; Bliemer, Michiel; Allkim, T.P.; van Arem, Bart

    2010-01-01

    Multi objective optimization of externalities of traffic is performed solving a network design problem in which Dynamic Traffic Management measures are used. The resulting Pareto optimal set is determined by employing the SPEA2+ evolutionary algorithm.

  7. Fast optimization algorithms and the cosmological constant

    Bao, Ning; Bousso, Raphael; Jordan, Stephen; Lackey, Brad

    2017-11-01

    Denef and Douglas have observed that in certain landscape models the problem of finding small values of the cosmological constant is a large instance of a problem that is hard for the complexity class NP (Nondeterministic Polynomial-time). The number of elementary operations (quantum gates) needed to solve this problem by brute force search exceeds the estimated computational capacity of the observable Universe. Here we describe a way out of this puzzling circumstance: despite being NP-hard, the problem of finding a small cosmological constant can be attacked by more sophisticated algorithms whose performance vastly exceeds brute force search. In fact, in some parameter regimes the average-case complexity is polynomial. We demonstrate this by explicitly finding a cosmological constant of order 10-120 in a randomly generated 1 09-dimensional Arkani-Hamed-Dimopoulos-Kachru landscape.

  8. Economic dispatch optimization algorithm based on particle diffusion

    Han, Li; Romero, Carlos E.; Yao, Zheng

    2015-01-01

    Highlights: • A dispatch model that considers fuel, emissions control and wind power cost is built. • An optimization algorithm named diffusion particle optimization (DPO) is proposed. • DPO was used to analyze the impact of wind power risk and emissions on dispatch. - Abstract: Due to the widespread installation of emissions control equipment in fossil fuel-fired power plants, the cost of emissions control needs to be considered, together with the plant fuel cost, in providing economic power dispatch of those units to the grid. On the other hand, while using wind power decreases the overall power generation cost for the power grid, it poses a risk to a traditional grid, because of its inherent stochastic characteristics. Therefore, an economic dispatch optimization model needs to consider all of the fuel cost, emissions control cost and wind power cost for each of the generating unit conforming the fleet that meets the required grid power demand. In this study, an optimization algorithm referred as diffusion particle optimization (DPO) is proposed to solve such complex optimization problem. In this algorithm, Brownian motion theory is used to guide the movement of particles so that the particles can search for an optimal solution over the entire definition region. Several benchmark functions and power grid system data were used to test the performance of DPO, and compared to traditional algorithms used for economic dispatch optimization, such as, particle swarm optimization and artificial bee colony algorithm. It was found that DPO has less probability to be trapped in local optimums. According to results of different power systems DPO was able to find economic dispatch solutions with lower costs. DPO was also used to analyze the impact of wind power risk and fossil unit emissions coefficients on power dispatch. The result are encouraging for the use of DPO as a dynamic tool for economic dispatch of the power grid.

  9. Segment-based dose optimization using a genetic algorithm

    Cotrutz, Cristian; Xing Lei

    2003-01-01

    Intensity modulated radiation therapy (IMRT) inverse planning is conventionally done in two steps. Firstly, the intensity maps of the treatment beams are optimized using a dose optimization algorithm. Each of them is then decomposed into a number of segments using a leaf-sequencing algorithm for delivery. An alternative approach is to pre-assign a fixed number of field apertures and optimize directly the shapes and weights of the apertures. While the latter approach has the advantage of eliminating the leaf-sequencing step, the optimization of aperture shapes is less straightforward than that of beamlet-based optimization because of the complex dependence of the dose on the field shapes, and their weights. In this work we report a genetic algorithm for segment-based optimization. Different from a gradient iterative approach or simulated annealing, the algorithm finds the optimum solution from a population of candidate plans. In this technique, each solution is encoded using three chromosomes: one for the position of the left-bank leaves of each segment, the second for the position of the right-bank and the third for the weights of the segments defined by the first two chromosomes. The convergence towards the optimum is realized by crossover and mutation operators that ensure proper exchange of information between the three chromosomes of all the solutions in the population. The algorithm is applied to a phantom and a prostate case and the results are compared with those obtained using beamlet-based optimization. The main conclusion drawn from this study is that the genetic optimization of segment shapes and weights can produce highly conformal dose distribution. In addition, our study also confirms previous findings that fewer segments are generally needed to generate plans that are comparable with the plans obtained using beamlet-based optimization. Thus the technique may have useful applications in facilitating IMRT treatment planning

  10. Optimization of Multiple Traveling Salesman Problem Based on Simulated Annealing Genetic Algorithm

    Xu Mingji

    2017-01-01

    Full Text Available It is very effective to solve the multi variable optimization problem by using hierarchical genetic algorithm. This thesis analyzes both advantages and disadvantages of hierarchical genetic algorithm and puts forward an improved simulated annealing genetic algorithm. The new algorithm is applied to solve the multiple traveling salesman problem, which can improve the performance of the solution. First, it improves the design of chromosomes hierarchical structure in terms of redundant hierarchical algorithm, and it suggests a suffix design of chromosomes; Second, concerning to some premature problems of genetic algorithm, it proposes a self-identify crossover operator and mutation; Third, when it comes to the problem of weak ability of local search of genetic algorithm, it stretches the fitness by mixing genetic algorithm with simulated annealing algorithm. Forth, it emulates the problems of N traveling salesmen and M cities so as to verify its feasibility. The simulation and calculation shows that this improved algorithm can be quickly converged to a best global solution, which means the algorithm is encouraging in practical uses.

  11. COOMA: AN OBJECT-ORIENTED STOCHASTIC OPTIMIZATION ALGORITHM

    Stanislav Alexandrovich Tavridovich

    2017-09-01

    Full Text Available Stochastic optimization methods such as genetic algorithm, particle swarm optimization algorithm, and others are successfully used to solve optimization problems. They are all based on similar ideas and need minimal adaptation when being implemented. But several factors complicate the application of stochastic search methods in practice: multimodality of the objective function, optimization with constraints, finding the best parameter configuration of the algorithm, the increasing of the searching space, etc. This paper proposes a new Cascade Object Optimization and Modification Algorithm (COOMA which develops the best ideas of known stochastic optimization methods and can be applied to a wide variety of real-world problems described in the terms of object-oriented models with practically any types of parameters, variables, and associations between objects. The objects of different classes are organized in pools and pools form the hierarchical structure according to the associations between classes. The algorithm is also executed according to the pool structure: the methods of the upper-level pools before changing their objects call the analogous methods of all their subpools. The algorithm starts with initialization step and then passes through a number of iterations during which the objects are modified until the stop criteria are satisfied. The objects are modified using movement, replication and mutation operations. Two-level version of COOMA realizes a built-in self-adaptive mechanism. The optimization statistics for a number of test problems shows that COOMA is able to solve multi-level problems (with objects of different associated classes, problems with multimodal fitness functions and systems of constraints. COOMA source code on Java is available on request.

  12. Optimal Design of a Centrifugal Compressor Impeller Using Evolutionary Algorithms

    Soo-Yong Cho

    2012-01-01

    Full Text Available An optimization study was conducted on a centrifugal compressor. Eight design variables were chosen from the control points for the Bezier curves which widely influenced the geometric variation; four design variables were selected to optimize the flow passage between the hub and the shroud, and other four design variables were used to improve the performance of the impeller blade. As an optimization algorithm, an artificial neural network (ANN was adopted. Initially, the design of experiments was applied to set up the initial data space of the ANN, which was improved during the optimization process using a genetic algorithm. If a result of the ANN reached a higher level, that result was re-calculated by computational fluid dynamics (CFD and was applied to develop a new ANN. The prediction difference between the ANN and CFD was consequently less than 1% after the 6th generation. Using this optimization technique, the computational time for the optimization was greatly reduced and the accuracy of the optimization algorithm was increased. The efficiency was improved by 1.4% without losing the pressure ratio, and Pareto-optimal solutions of the efficiency versus the pressure ratio were obtained through the 21st generation.

  13. A perturbed martingale approach to global optimization

    Sarkar, Saikat [Computational Mechanics Lab, Department of Civil Engineering, Indian Institute of Science, Bangalore 560012 (India); Roy, Debasish, E-mail: royd@civil.iisc.ernet.in [Computational Mechanics Lab, Department of Civil Engineering, Indian Institute of Science, Bangalore 560012 (India); Vasu, Ram Mohan [Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012 (India)

    2014-08-01

    A new global stochastic search, guided mainly through derivative-free directional information computable from the sample statistical moments of the design variables within a Monte Carlo setup, is proposed. The search is aided by imparting to the directional update term additional layers of random perturbations referred to as ‘coalescence’ and ‘scrambling’. A selection step, constituting yet another avenue for random perturbation, completes the global search. The direction-driven nature of the search is manifest in the local extremization and coalescence components, which are posed as martingale problems that yield gain-like update terms upon discretization. As anticipated and numerically demonstrated, to a limited extent, against the problem of parameter recovery given the chaotic response histories of a couple of nonlinear oscillators, the proposed method appears to offer a more rational, more accurate and faster alternative to most available evolutionary schemes, prominently the particle swarm optimization. - Highlights: • Evolutionary global optimization is posed as a perturbed martingale problem. • Resulting search via additive updates is a generalization over Gateaux derivatives. • Additional layers of random perturbation help avoid trapping at local extrema. • The approach ensures efficient design space exploration and high accuracy. • The method is numerically assessed via parameter recovery of chaotic oscillators.

  14. An Improved Multi-Objective Artificial Bee Colony Optimization Algorithm with Regulation Operators

    Jiuyuan Huo

    2017-02-01

    Full Text Available To achieve effective and accurate optimization for multi-objective optimization problems, a multi-objective artificial bee colony algorithm with regulation operators (RMOABC inspired by the intelligent foraging behavior of honey bees was proposed in this paper. The proposed algorithm utilizes the Pareto dominance theory and takes advantage of adaptive grid and regulation operator mechanisms. The adaptive grid technique is used to adaptively assess the Pareto front maintained in an external archive and the regulation operator is used to balance the weights of the local search and the global search in the evolution of the algorithm. The performance of RMOABC was evaluated in comparison with other nature inspired algorithms includes NSGA-II and MOEA/D. The experiments results demonstrated that the RMOABC approach has better accuracy and minimal execution time.

  15. A Combination of Genetic Algorithm and Particle Swarm Optimization for Vehicle Routing Problem with Time Windows.

    Xu, Sheng-Hua; Liu, Ji-Ping; Zhang, Fu-Hao; Wang, Liang; Sun, Li-Jian

    2015-08-27

    A combination of genetic algorithm and particle swarm optimization (PSO) for vehicle routing problems with time windows (VRPTW) is proposed in this paper. The improvements of the proposed algorithm include: using the particle real number encoding method to decode the route to alleviate the computation burden, applying a linear decreasing function based on the number of the iterations to provide balance between global and local exploration abilities, and integrating with the crossover operator of genetic algorithm to avoid the premature convergence and the local minimum. The experimental results show that the proposed algorithm is not only more efficient and competitive with other published results but can also obtain more optimal solutions for solving the VRPTW issue. One new well-known solution for this benchmark problem is also outlined in the following.

  16. A kind of balance between exploitation and exploration on kriging for global optimization of expensive functions

    Dong, Huachao; Song, Baowei; Wang, Peng; Huang, Shuai

    2015-01-01

    In this paper, a novel kriging-based algorithm for global optimization of computationally expensive black-box functions is presented. This algorithm utilizes a multi-start approach to find all of the local optimal values of the surrogate model and performs searches within the neighboring area around these local optimal positions. Compared with traditional surrogate-based global optimization method, this algorithm provides another kind of balance between exploitation and exploration on kriging-based model. In addition, a new search strategy is proposed and coupled into this optimization process. The local search strategy employs a kind of improved 'Minimizing the predictor' method, which dynamically adjusts search direction and radius until finds the optimal value. Furthermore, the global search strategy utilizes the advantage of kriging-based model in predicting unexplored regions to guarantee the reliability of the algorithm. Finally, experiments on 13 test functions with six algorithms are set up and the results show that the proposed algorithm is very promising.

  17. An Improved Fruit Fly Optimization Algorithm Inspired from Cell Communication Mechanism

    Chuncai Xiao

    2015-01-01

    Full Text Available Fruit fly optimization algorithm (FOA invented recently is a new swarm intelligence method based on fruit fly’s foraging behaviors and has been shown to be competitive with existing evolutionary algorithms, such as particle swarm optimization (PSO algorithm. However, there are still some disadvantages in the FOA, such as low convergence precision, easily trapped in a local optimum value at the later evolution stage. This paper presents an improved FOA based on the cell communication mechanism (CFOA, by considering the information of the global worst, mean, and best solutions into the search strategy to improve the exploitation. The results from a set of numerical benchmark functions show that the CFOA outperforms the FOA and the PSO in most of the experiments. Further, the CFOA is applied to optimize the controller for preoxidation furnaces in carbon fibers production. Simulation results demonstrate the effectiveness of the CFOA.

  18. Nuclear reactors project optimization based on neural network and genetic algorithm

    Pereira, Claudio M.N.A.; Schirru, Roberto; Martinez, Aquilino S.

    1997-01-01

    This work presents a prototype of a system for nuclear reactor core design optimization based on genetic algorithms and artificial neural networks. A neural network is modeled and trained in order to predict the flux and the neutron multiplication factor values based in the enrichment, network pitch and cladding thickness, with average error less than 2%. The values predicted by the neural network are used by a genetic algorithm in this heuristic search, guided by an objective function that rewards the high flux values and penalizes multiplication factors far from the required value. Associating the quick prediction - that may substitute the reactor physics calculation code - with the global optimization capacity of the genetic algorithm, it was obtained a quick and effective system for nuclear reactor core design optimization. (author). 11 refs., 8 figs., 3 tabs

  19. Application of an improved PSO algorithm to optimal tuning of PID gains for water turbine governor

    Fang Hongqing; Chen Long; Shen Zuyi

    2011-01-01

    In this paper, an improved particle swarm optimization (IPSO) algorithm is proposed. Besides the individual best position and the global best position, a nominal average position of the swarm is introduced in IPSO. The performance of IPSO is compared to different PSO variants with five well-known benchmark functions. The experimental results show that the proposed IPSO algorithm improves the searching performance on the benchmark functions. And then, IPSO, as well as other PSO variants, is applied to optimal tuning of Proportional-Integral-Derivative (PID) gains for a typical PID control system of water turbine governor. The computer simulation results of an actual hydro power plant in China show that IPSO algorithm has stable convergence characteristic and good computational ability, and it is an effective and easily implemented method for optimal tuning of PID gains of water turbine governor.

  20. Otsu Based Optimal Multilevel Image Thresholding Using Firefly Algorithm

    N. Sri Madhava Raja

    2014-01-01

    Full Text Available Histogram based multilevel thresholding approach is proposed using Brownian distribution (BD guided firefly algorithm (FA. A bounded search technique is also presented to improve the optimization accuracy with lesser search iterations. Otsu’s between-class variance function is maximized to obtain optimal threshold level for gray scale images. The performances of the proposed algorithm are demonstrated by considering twelve benchmark images and are compared with the existing FA algorithms such as Lévy flight (LF guided FA and random operator guided FA. The performance assessment comparison between the proposed and existing firefly algorithms is carried using prevailing parameters such as objective function, standard deviation, peak-to-signal ratio (PSNR, structural similarity (SSIM index, and search time of CPU. The results show that BD guided FA provides better objective function, PSNR, and SSIM, whereas LF based FA provides faster convergence with relatively lower CPU time.

  1. A Hybrid Genetic Algorithm Approach for Optimal Power Flow

    Sydulu Maheswarapu

    2011-08-01

    Full Text Available This paper puts forward a reformed hybrid genetic algorithm (GA based approach to the optimal power flow. In the approach followed here, continuous variables are designed using real-coded GA and discrete variables are processed as binary strings. The outcomes are compared with many other methods like simple genetic algorithm (GA, adaptive genetic algorithm (AGA, differential evolution (DE, particle swarm optimization (PSO and music based harmony search (MBHS on a IEEE30 bus test bed, with a total load of 283.4 MW. Its found that the proposed algorithm is found to offer lowest fuel cost. The proposed method is found to be computationally faster, robust, superior and promising form its convergence characteristics.

  2. Artificial root foraging optimizer algorithm with hybrid strategies

    Yang Liu

    2017-02-01

    Full Text Available In this work, a new plant-inspired optimization algorithm namely the hybrid artificial root foraging optimizion (HARFO is proposed, which mimics the iterative root foraging behaviors for complex optimization. In HARFO model, two innovative strategies were developed: one is the root-to-root communication strategy, which enables the individual exchange information with each other in different efficient topologies that can essentially improve the exploration ability; the other is co-evolution strategy, which can structure the hierarchical spatial population driven by evolutionary pressure of multiple sub-populations that ensure the diversity of root population to be well maintained. The proposed algorithm is benchmarked against four classical evolutionary algorithms on well-designed test function suites including both classical and composition test functions. Through the rigorous performance analysis that of all these tests highlight the significant performance improvement, and the comparative results show the superiority of the proposed algorithm.

  3. Optimization on robot arm machining by using genetic algorithms

    Liu, Tung-Kuan; Chen, Chiu-Hung; Tsai, Shang-En

    2007-12-01

    In this study, an optimization problem on the robot arm machining is formulated and solved by using genetic algorithms (GAs). The proposed approach adopts direct kinematics model and utilizes GA's global search ability to find the optimum solution. The direct kinematics equations of the robot arm are formulated and can be used to compute the end-effector coordinates. Based on these, the objective of optimum machining along a set of points can be evolutionarily evaluated with the distance between machining points and end-effector positions. Besides, a 3D CAD application, CATIA, is used to build up the 3D models of the robot arm, work-pieces and their components. A simulated experiment in CATIA is used to verify the computation results first and a practical control on the robot arm through the RS232 port is also performed. From the results, this approach is proved to be robust and can be suitable for most machining needs when robot arms are adopted as the machining tools.

  4. A Swarm Optimization Genetic Algorithm Based on Quantum-Behaved Particle Swarm Optimization.

    Sun, Tao; Xu, Ming-Hai

    2017-01-01

    Quantum-behaved particle swarm optimization (QPSO) algorithm is a variant of the traditional particle swarm optimization (PSO). The QPSO that was originally developed for continuous search spaces outperforms the traditional PSO in search ability. This paper analyzes the main factors that impact the search ability of QPSO and converts the particle movement formula to the mutation condition by introducing the rejection region, thus proposing a new binary algorithm, named swarm optimization genetic algorithm (SOGA), because it is more like genetic algorithm (GA) than PSO in form. SOGA has crossover and mutation operator as GA but does not need to set the crossover and mutation probability, so it has fewer parameters to control. The proposed algorithm was tested with several nonlinear high-dimension functions in the binary search space, and the results were compared with those from BPSO, BQPSO, and GA. The experimental results show that SOGA is distinctly superior to the other three algorithms in terms of solution accuracy and convergence.

  5. Comparison Performance of Genetic Algorithm and Ant Colony Optimization in Course Scheduling Optimizing

    Imam Ahmad Ashari

    2016-11-01

    Full Text Available Scheduling problems at the university is a complex type of scheduling problems. The scheduling process should be carried out at every turn of the semester's. The core of the problem of scheduling courses at the university is that the number of components that need to be considered in making the schedule, some of the components was made up of students, lecturers, time and a room with due regard to the limits and certain conditions so that no collision in the schedule such as mashed room, mashed lecturer and others. To resolve a scheduling problem most appropriate technique used is the technique of optimization. Optimization techniques can give the best results desired. Metaheuristic algorithm is an algorithm that has a lot of ways to solve the problems to the very limit the optimal solution. In this paper, we use a genetic algorithm and ant colony optimization algorithm is an algorithm metaheuristic to solve the problem of course scheduling. The two algorithm will be tested and compared to get performance is the best. The algorithm was tested using data schedule courses of the university in Semarang. From the experimental results we conclude that the genetic algorithm has better performance than the ant colony optimization  algorithm in solving the case of course scheduling.

  6. Using neural networks to speed up optimization algorithms

    Bazan, M

    2000-01-01

    The paper presents the application of radial-basis-function (RBF) neural networks to speed up deterministic search algorithms used for the design and optimization of superconducting LHC magnets. The optimization of the iron yoke of the main dipoles requires a number of numerical field computations per trial solution as the field quality depends on the excitation of the magnets. This results in computation times of about 30 minutes for each objective function evaluation (on a DEC-Alpha 600/333) and only the most robust (deterministic) optimization algorithms can be applied. Using a RBF function approximator, the achieved speed-up of the search algorithm is in the order of 25% for problems with two parameters and about 18% for problems with three and five design variables. (13 refs).

  7. Swarm algorithms with chaotic jumps for optimization of multimodal functions

    Krohling, Renato A.; Mendel, Eduardo; Campos, Mauro

    2011-11-01

    In this article, the use of some well-known versions of particle swarm optimization (PSO) namely the canonical PSO, the bare bones PSO (BBPSO) and the fully informed particle swarm (FIPS) is investigated on multimodal optimization problems. A hybrid approach which consists of swarm algorithms combined with a jump strategy in order to escape from local optima is developed and tested. The jump strategy is based on the chaotic logistic map. The hybrid algorithm was tested for all three versions of PSO and simulation results show that the addition of the jump strategy improves the performance of swarm algorithms for most of the investigated optimization problems. Comparison with the off-the-shelf PSO with local topology (l best model) has also been performed and indicates the superior performance of the standard PSO with chaotic jump over the standard both using local topology (l best model).

  8. Optimal Grid Scheduling Using Improved Artificial Bee Colony Algorithm

    T. Vigneswari; M. A. Maluk Mohamed

    2015-01-01

    Job Scheduling plays an important role for efficient utilization of grid resources available across different domains and geographical zones. Scheduling of jobs is challenging and NPcomplete. Evolutionary / Swarm Intelligence algorithms have been extensively used to address the NP problem in grid scheduling. Artificial Bee Colony (ABC) has been proposed for optimization problems based on foraging behaviour of bees. This work proposes a modified ABC algorithm, Cluster Hete...

  9. Optimization algorithms intended for self-tuning feedwater heater model

    Czop, P; Barszcz, T; Bednarz, J

    2013-01-01

    This work presents a self-tuning feedwater heater model. This work continues the work on first-principle gray-box methodology applied to diagnostics and condition assessment of power plant components. The objective of this work is to review and benchmark the optimization algorithms regarding the time required to achieve the best model fit to operational power plant data. The paper recommends the most effective algorithm to be used in the model adjustment process.

  10. Optimal Power Flow by Interior Point and Non Interior Point Modern Optimization Algorithms

    Marcin Połomski

    2013-03-01

    Full Text Available The idea of optimal power flow (OPF is to determine the optimal settings for control variables while respecting various constraints, and in general it is related to power system operational and planning optimization problems. A vast number of optimization methods have been applied to solve the OPF problem, but their performance is highly dependent on the size of a power system being optimized. The development of the OPF recently has tracked significant progress both in numerical optimization techniques and computer techniques application. In recent years, application of interior point methods to solve OPF problem has been paid great attention. This is due to the fact that IP methods are among the fastest algorithms, well suited to solve large-scale nonlinear optimization problems. This paper presents the primal-dual interior point method based optimal power flow algorithm and new variant of the non interior point method algorithm with application to optimal power flow problem. Described algorithms were implemented in custom software. The experiments show the usefulness of computational software and implemented algorithms for solving the optimal power flow problem, including the system model sizes comparable to the size of the National Power System.

  11. A priority-based heuristic algorithm (PBHA for optimizing integrated process planning and scheduling problem

    Muhammad Farhan Ausaf

    2015-12-01

    Full Text Available Process planning and scheduling are two important components of a manufacturing setup. It is important to integrate them to achieve better global optimality and improved system performance. To find optimal solutions for integrated process planning and scheduling (IPPS problem, numerous algorithm-based approaches exist. Most of these approaches try to use existing meta-heuristic algorithms for solving the IPPS problem. Although these approaches have been shown to be effective in optimizing the IPPS problem, there is still room for improvement in terms of quality of solution and algorithm efficiency, especially for more complicated problems. Dispatching rules have been successfully utilized for solving complicated scheduling problems, but haven’t been considered extensively for the IPPS problem. This approach incorporates dispatching rules with the concept of prioritizing jobs, in an algorithm called priority-based heuristic algorithm (PBHA. PBHA tries to establish job and machine priority for selecting operations. Priority assignment and a set of dispatching rules are simultaneously used to generate both the process plans and schedules for all jobs and machines. The algorithm was tested for a series of benchmark problems. The proposed algorithm was able to achieve superior results for most complex problems presented in recent literature while utilizing lesser computational resources.

  12. A Parallel Particle Swarm Optimization Algorithm Accelerated by Asynchronous Evaluations

    Venter, Gerhard; Sobieszczanski-Sobieski, Jaroslaw

    2005-01-01

    A parallel Particle Swarm Optimization (PSO) algorithm is presented. Particle swarm optimization is a fairly recent addition to the family of non-gradient based, probabilistic search algorithms that is based on a simplified social model and is closely tied to swarming theory. Although PSO algorithms present several attractive properties to the designer, they are plagued by high computational cost as measured by elapsed time. One approach to reduce the elapsed time is to make use of coarse-grained parallelization to evaluate the design points. Previous parallel PSO algorithms were mostly implemented in a synchronous manner, where all design points within a design iteration are evaluated before the next iteration is started. This approach leads to poor parallel speedup in cases where a heterogeneous parallel environment is used and/or where the analysis time depends on the design point being analyzed. This paper introduces an asynchronous parallel PSO algorithm that greatly improves the parallel e ciency. The asynchronous algorithm is benchmarked on a cluster assembled of Apple Macintosh G5 desktop computers, using the multi-disciplinary optimization of a typical transport aircraft wing as an example.

  13. Kriging-based algorithm for nuclear reactor neutronic design optimization

    Kempf, Stephanie; Forget, Benoit; Hu, Lin-Wen

    2012-01-01

    Highlights: ► A Kriging-based algorithm was selected to guide research reactor optimization. ► We examined impacts of parameter values upon the algorithm. ► The best parameter values were incorporated into a set of best practices. ► Algorithm with best practices used to optimize thermal flux of concept. ► Final design produces thermal flux 30% higher than other 5 MW reactors. - Abstract: Kriging, a geospatial interpolation technique, has been used in the present work to drive a search-and-optimization algorithm which produces the optimum geometric parameters for a 5 MW research reactor design. The technique has been demonstrated to produce an optimal neutronic solution after a relatively small number of core calculations. It has additionally been successful in producing a design which significantly improves thermal neutron fluxes by 30% over existing reactors of the same power rating. Best practices for use of this algorithm in reactor design were identified and indicated the importance of selecting proper correlation functions.

  14. Genetic Algorithm Optimizes Q-LAW Control Parameters

    Lee, Seungwon; von Allmen, Paul; Petropoulos, Anastassios; Terrile, Richard

    2008-01-01

    A document discusses a multi-objective, genetic algorithm designed to optimize Lyapunov feedback control law (Q-law) parameters in order to efficiently find Pareto-optimal solutions for low-thrust trajectories for electronic propulsion systems. These would be propellant-optimal solutions for a given flight time, or flight time optimal solutions for a given propellant requirement. The approximate solutions are used as good initial solutions for high-fidelity optimization tools. When the good initial solutions are used, the high-fidelity optimization tools quickly converge to a locally optimal solution near the initial solution. Q-law control parameters are represented as real-valued genes in the genetic algorithm. The performances of the Q-law control parameters are evaluated in the multi-objective space (flight time vs. propellant mass) and sorted by the non-dominated sorting method that assigns a better fitness value to the solutions that are dominated by a fewer number of other solutions. With the ranking result, the genetic algorithm encourages the solutions with higher fitness values to participate in the reproduction process, improving the solutions in the evolution process. The population of solutions converges to the Pareto front that is permitted within the Q-law control parameter space.

  15. Optimizing the Shunting Schedule of Electric Multiple Units Depot Using an Enhanced Particle Swarm Optimization Algorithm

    Jiaxi Wang

    2016-01-01

    Full Text Available The shunting schedule of electric multiple units depot (SSED is one of the essential plans for high-speed train maintenance activities. This paper presents a 0-1 programming model to address the problem of determining an optimal SSED through automatic computing. The objective of the model is to minimize the number of shunting movements and the constraints include track occupation conflicts, shunting routes conflicts, time durations of maintenance processes, and shunting running time. An enhanced particle swarm optimization (EPSO algorithm is proposed to solve the optimization problem. Finally, an empirical study from Shanghai South EMU Depot is carried out to illustrate the model and EPSO algorithm. The optimization results indicate that the proposed method is valid for the SSED problem and that the EPSO algorithm outperforms the traditional PSO algorithm on the aspect of optimality.

  16. Optimizing the Shunting Schedule of Electric Multiple Units Depot Using an Enhanced Particle Swarm Optimization Algorithm

    Jin, Junchen

    2016-01-01

    The shunting schedule of electric multiple units depot (SSED) is one of the essential plans for high-speed train maintenance activities. This paper presents a 0-1 programming model to address the problem of determining an optimal SSED through automatic computing. The objective of the model is to minimize the number of shunting movements and the constraints include track occupation conflicts, shunting routes conflicts, time durations of maintenance processes, and shunting running time. An enhanced particle swarm optimization (EPSO) algorithm is proposed to solve the optimization problem. Finally, an empirical study from Shanghai South EMU Depot is carried out to illustrate the model and EPSO algorithm. The optimization results indicate that the proposed method is valid for the SSED problem and that the EPSO algorithm outperforms the traditional PSO algorithm on the aspect of optimality. PMID:27436998

  17. The Optimal Wavelengths for Light Absorption Spectroscopy Measurements Based on Genetic Algorithm-Particle Swarm Optimization

    Tang, Ge; Wei, Biao; Wu, Decao; Feng, Peng; Liu, Juan; Tang, Yuan; Xiong, Shuangfei; Zhang, Zheng

    2018-03-01

    To select the optimal wavelengths in the light extinction spectroscopy measurement, genetic algorithm-particle swarm optimization (GAPSO) based on genetic algorithm (GA) and particle swarm optimization (PSO) is adopted. The change of the optimal wavelength positions in different feature size parameters and distribution parameters is evaluated. Moreover, the Monte Carlo method based on random probability is used to identify the number of optimal wavelengths, and good inversion effects of the particle size distribution are obtained. The method proved to have the advantage of resisting noise. In order to verify the feasibility of the algorithm, spectra with bands ranging from 200 to 1000 nm are computed. Based on this, the measured data of standard particles are used to verify the algorithm.

  18. Optimization of phononic filters via genetic algorithms

    Hussein, M I [University of Colorado, Department of Aerospace Engineering Sciences, Boulder, Colorado 80309-0429 (United States); El-Beltagy, M A [Cairo University, Faculty of Computers and Information, 5 Dr. Ahmed Zewail Street, 12613 Giza (Egypt)

    2007-12-15

    A phononic crystal is commonly characterized by its dispersive frequency spectrum. With appropriate spatial distribution of the constituent material phases, spectral stop bands could be generated. Moreover, it is possible to control the number, the width, and the location of these bands within a frequency range of interest. This study aims at exploring the relationship between unit cell configuration and frequency spectrum characteristics. Focusing on 1D layered phononic crystals, and longitudinal wave propagation in the direction normal to the layering, the unit cell features of interest are the number of layers and the material phase and relative thickness of each layer. An evolutionary search for binary- and ternary-phase cell designs exhibiting a series of stop bands at predetermined frequencies is conducted. A specially formulated representation and set of genetic operators that break the symmetries in the problem are developed for this purpose. An array of optimal designs for a range of ratios in Young's modulus and density are obtained and the corresponding objective values (the degrees to which the resulting bands match the predetermined targets) are examined as a function of these ratios. It is shown that a rather complex filtering objective could be met with a high degree of success. Structures composed of the designed phononic crystals are excellent candidates for use in a wide range of applications including sound and vibration filtering.

  19. Optimization of phononic filters via genetic algorithms

    Hussein, M I; El-Beltagy, M A

    2007-01-01

    A phononic crystal is commonly characterized by its dispersive frequency spectrum. With appropriate spatial distribution of the constituent material phases, spectral stop bands could be generated. Moreover, it is possible to control the number, the width, and the location of these bands within a frequency range of interest. This study aims at exploring the relationship between unit cell configuration and frequency spectrum characteristics. Focusing on 1D layered phononic crystals, and longitudinal wave propagation in the direction normal to the layering, the unit cell features of interest are the number of layers and the material phase and relative thickness of each layer. An evolutionary search for binary- and ternary-phase cell designs exhibiting a series of stop bands at predetermined frequencies is conducted. A specially formulated representation and set of genetic operators that break the symmetries in the problem are developed for this purpose. An array of optimal designs for a range of ratios in Young's modulus and density are obtained and the corresponding objective values (the degrees to which the resulting bands match the predetermined targets) are examined as a function of these ratios. It is shown that a rather complex filtering objective could be met with a high degree of success. Structures composed of the designed phononic crystals are excellent candidates for use in a wide range of applications including sound and vibration filtering

  20. A dynamic inertia weight particle swarm optimization algorithm

    Jiao Bin; Lian Zhigang; Gu Xingsheng

    2008-01-01

    Particle swarm optimization (PSO) algorithm has been developing rapidly and has been applied widely since it was introduced, as it is easily understood and realized. This paper presents an improved particle swarm optimization algorithm (IPSO) to improve the performance of standard PSO, which uses the dynamic inertia weight that decreases according to iterative generation increasing. It is tested with a set of 6 benchmark functions with 30, 50 and 150 different dimensions and compared with standard PSO. Experimental results indicate that the IPSO improves the search performance on the benchmark functions significantly

  1. Radial optimization of a BWR fuel cell using genetic algorithms

    Martin del Campo M, C.; Carmona H, R.; Oropeza C, I.P.

    2006-01-01

    The development of the application of the Genetic Algorithms (GA) to the optimization of the radial distribution of enrichment in a cell of fuel of a BWR (Boiling Water Reactor) is presented. The optimization process it was ties to the HELIOS simulator, which is a transport code of neutron simulation of fuel cells that has been validated for the calculation of nuclear banks for BWRs. With heterogeneous radial designs can improve the radial distribution of the power, for what the radial design of fuel has a strong influence in the global design of fuel recharges. The optimum radial distribution of fuel bars is looked for with different enrichments of U 235 and contents of consumable poison. For it is necessary to define the representation of the solution, the objective function and the implementation of the specific optimization process to the solution of the problem. The optimization process it was coded in 'C' language, it was automated the creation of the entrances to the simulator, the execution of the simulator and the extraction, in the exit of the simulator, of the parameters that intervene in the objective function. The objective function includes four parameters: average enrichment of the cell, average gadolinia concentration of the cell, peak factor of radial power and k-infinite multiplication factor. To be able to calculate the parameters that intervene in the objective function, the one evaluation process of GA was ties to the HELIOS code executed in a Compaq Alpha workstation. It was applied to the design of a fuel cell of 10 x 10 that it can be employee in the fuel assemble designs that are used at the moment in the Laguna Verde Nucleo electric Central. Its were considered 10 different fuel compositions which four contain gadolinia. Three heuristic rules that consist in prohibiting the placement of bars with gadolinia in the ends of the cell, to place the compositions with the smallest enrichment in the corners of the cell and to fix the placement of

  2. A decoupled power flow algorithm using particle swarm optimization technique

    Acharjee, P.; Goswami, S.K.

    2009-01-01

    A robust, nondivergent power flow method has been developed using the particle swarm optimization (PSO) technique. The decoupling properties between the power system quantities have been exploited in developing the power flow algorithm. The speed of the power flow algorithm has been improved using a simple perturbation technique. The basic power flow algorithm and the improvement scheme have been designed to retain the simplicity of the evolutionary approach. The power flow is rugged, can determine the critical loading conditions and also can handle the flexible alternating current transmission system (FACTS) devices efficiently. Test results on standard test systems show that the proposed method can find the solution when the standard power flows fail.

  3. A Convergent Differential Evolution Algorithm with Hidden Adaptation Selection for Engineering Optimization

    Zhongbo Hu

    2014-01-01

    Full Text Available Many improved differential Evolution (DE algorithms have emerged as a very competitive class of evolutionary computation more than a decade ago. However, few improved DE algorithms guarantee global convergence in theory. This paper developed a convergent DE algorithm in theory, which employs a self-adaptation scheme for the parameters and two operators, that is, uniform mutation and hidden adaptation selection (haS operators. The parameter self-adaptation and uniform mutation operator enhance the diversity of populations and guarantee ergodicity. The haS can automatically remove some inferior individuals in the process of the enhancing population diversity. The haS controls the proposed algorithm to break the loop of current generation with a small probability. The breaking probability is a hidden adaptation and proportional to the changes of the number of inferior individuals. The proposed algorithm is tested on ten engineering optimization problems taken from IEEE CEC2011.

  4. Parallel optimization of IDW interpolation algorithm on multicore platform

    Guan, Xuefeng; Wu, Huayi

    2009-10-01

    Due to increasing power consumption, heat dissipation, and other physical issues, the architecture of central processing unit (CPU) has been turning to multicore rapidly in recent years. Multicore processor is packaged with multiple processor cores in the same chip, which not only offers increased performance, but also presents significant challenges to application developers. As a matter of fact, in GIS field most of current GIS algorithms were implemented serially and could not best exploit the parallelism potential on such multicore platforms. In this paper, we choose Inverse Distance Weighted spatial interpolation algorithm (IDW) as an example to study how to optimize current serial GIS algorithms on multicore platform in order to maximize performance speedup. With the help of OpenMP, threading methodology is introduced to split and share the whole interpolation work among processor cores. After parallel optimization, execution time of interpolation algorithm is greatly reduced and good performance speedup is achieved. For example, performance speedup on Intel Xeon 5310 is 1.943 with 2 execution threads and 3.695 with 4 execution threads respectively. An additional output comparison between pre-optimization and post-optimization is carried out and shows that parallel optimization does to affect final interpolation result.

  5. Genetic Algorithm and its Application in Optimal Sensor Layout

    Xiang-Yang Chen

    2015-05-01

    Full Text Available This paper aims at the problem of multi sensor station distribution, based on multi- sensor systems of different types as the research object, in the analysis of various types of sensors with different application background, different indicators of demand, based on the different constraints, for all kinds of multi sensor station is studied, the application of genetic algorithms as a tool for the objective function of the models optimization, then the optimal various types of multi sensor station distribution plan, improve the performance of the system, and achieved good military effect. In the field of application of sensor radar, track measuring instrument, the satellite, passive positioning equipment of various types, specific problem, use care indicators and station arrangement between the mathematical model of geometry, using genetic algorithm to get the optimization results station distribution, to solve a variety of practical problems provides useful help, but also reflects the improved genetic algorithm in electronic weapon system based on multi sensor station distribution on the applicability and effectiveness of the optimization; finally the genetic algorithm for integrated optimization of multi sensor station distribution using the good to the training exercise tasks based on actual in, and have achieved good military effect.

  6. Seven-Spot Ladybird Optimization: A Novel and Efficient Metaheuristic Algorithm for Numerical Optimization

    Peng Wang

    2013-01-01

    Full Text Available This paper presents a novel biologically inspired metaheuristic algorithm called seven-spot ladybird optimization (SLO. The SLO is inspired by recent discoveries on the foraging behavior of a seven-spot ladybird. In this paper, the performance of the SLO is compared with that of the genetic algorithm, particle swarm optimization, and artificial bee colony algorithms by using five numerical benchmark functions with multimodality. The results show that SLO has the ability to find the best solution with a comparatively small population size and is suitable for solving optimization problems with lower dimensions.

  7. Nuclear fuel management optimization using adaptive evolutionary algorithms with heuristics

    Axmann, J.K.; Van de Velde, A.

    1996-01-01

    Adaptive Evolutionary Algorithms in combination with expert knowledge encoded in heuristics have proved to be a robust and powerful optimization method for the design of optimized PWR fuel loading pattern. Simple parallel algorithmic structures coupled with a low amount of communications between computer processor units in use makes it possible for workstation clusters to be employed efficiently. The extension of classic evolution strategies not only by new and alternative methods but also by the inclusion of heuristics with effects on the exchange probabilities of the fuel assemblies at specific core positions leads to the RELOPAT optimization code of the Technical University of Braunschweig. In combination with the new, neutron-physical 3D nodal core simulator PRISM developed by SIEMENS the PRIMO loading pattern optimization system has been designed. Highly promising results in the recalculation of known reload plans for German PWR's new lead to a commercially usable program. (author)

  8. Exergetic optimization of turbofan engine with genetic algorithm method

    Turan, Onder [Anadolu University, School of Civil Aviation (Turkey)], e-mail: onderturan@anadolu.edu.tr

    2011-07-01

    With the growth of passenger numbers, emissions from the aeronautics sector are increasing and the industry is now working on improving engine efficiency to reduce fuel consumption. The aim of this study is to present the use of genetic algorithms, an optimization method based on biological principles, to optimize the exergetic performance of turbofan engines. The optimization was carried out using exergy efficiency, overall efficiency and specific thrust of the engine as evaluation criteria and playing on pressure and bypass ratio, turbine inlet temperature and flight altitude. Results showed exergy efficiency can be maximized with higher altitudes, fan pressure ratio and turbine inlet temperature; the turbine inlet temperature is the most important parameter for increased exergy efficiency. This study demonstrated that genetic algorithms are effective in optimizing complex systems in a short time.

  9. A Hybrid Multiobjective Discrete Particle Swarm Optimization Algorithm for a SLA-Aware Service Composition Problem

    Hao Yin

    2014-01-01

    Full Text Available For SLA-aware service composition problem (SSC, an optimization model for this algorithm is built, and a hybrid multiobjective discrete particle swarm optimization algorithm (HMDPSO is also proposed in this paper. According to the characteristic of this problem, a particle updating strategy is designed by introducing crossover operator. In order to restrain particle swarm’s premature convergence and increase its global search capacity, the swarm diversity indicator is introduced and a particle mutation strategy is proposed to increase the swarm diversity. To accelerate the process of obtaining the feasible particle position, a local search strategy based on constraint domination is proposed and incorporated into the proposed algorithm. At last, some parameters in the algorithm HMDPSO are analyzed and set with relative proper values, and then the algorithm HMDPSO and the algorithm HMDPSO+ incorporated by local search strategy are compared with the recently proposed related algorithms on different scale cases. The results show that algorithm HMDPSO+ can solve the SSC problem more effectively.

  10. Amodified probabilistic genetic algorithm for the solution of complex constrained optimization problems

    Vorozheikin, A.; Gonchar, T.; Panfilov, I.; Sopov, E.; Sopov, S.

    2009-01-01

    A new algorithm for the solution of complex constrained optimization problems based on the probabilistic genetic algorithm with optimal solution prediction is proposed. The efficiency investigation results in comparison with standard genetic algorithm are presented.

  11. Efficient solution to the stagnation problem of the particle swarm optimization algorithm for phase diversity.

    Qi, Xin; Ju, Guohao; Xu, Shuyan

    2018-04-10

    The phase diversity (PD) technique needs optimization algorithms to minimize the error metric and find the global minimum. Particle swarm optimization (PSO) is very suitable for PD due to its simple structure, fast convergence, and global searching ability. However, the traditional PSO algorithm for PD still suffers from the stagnation problem (premature convergence), which can result in a wrong solution. In this paper, the stagnation problem of the traditional PSO algorithm for PD is illustrated first. Then, an explicit strategy is proposed to solve this problem, based on an in-depth understanding of the inherent optimization mechanism of the PSO algorithm. Specifically, a criterion is proposed to detect premature convergence; then a redistributing mechanism is proposed to prevent premature convergence. To improve the efficiency of this redistributing mechanism, randomized Halton sequences are further introduced to ensure the uniform distribution and randomness of the redistributed particles in the search space. Simulation results show that this strategy can effectively solve the stagnation problem of the PSO algorithm for PD, especially for large-scale and high-dimension wavefront sensing and noisy conditions. This work is further verified by an experiment. This work can improve the robustness and performance of PD wavefront sensing.

  12. Improved Differential Evolution Algorithm for Wireless Sensor Network Coverage Optimization

    Xing Xu

    2014-04-01

    Full Text Available In order to serve for the ecological monitoring efficiency of Poyang Lake, an improved hybrid algorithm, mixed with differential evolution and particle swarm optimization, is proposed and applied to optimize the coverage problem of wireless sensor network. And then, the affect of the population size and the number of iterations on the coverage performance are both discussed and analyzed. The four kinds of statistical results about the coverage rate are obtained through lots of simulation experiments.

  13. Optimization of heat pump using fuzzy logic and genetic algorithm

    Sahin, Arzu Sencan [Sueleyman Demirel University, Technology Faculty, Isparta (Turkey); Kilic, Bayram; Kilic, Ulas [Bucak Emin Guelmez Vocational School, Mehmet Akif Ersoy University, Bucak (Turkey)

    2011-12-15

    Heat pumps offer economical alternatives of recovering heat from different sources for use in various industrial, commercial and residential applications. In this study, single-stage air-source vapor compression heat pump system has been optimized using genetic algorithm (GA) and fuzzy logic (FL). The necessary thermodynamic properties for optimization were calculated by FL. Thermodynamic properties obtained with FL were compared with actual results. Then, the optimum working conditions of heat pump system were determined by the GA. (orig.)

  14. Eddy current testing probe optimization using a parallel genetic algorithm

    Dolapchiev Ivaylo

    2008-01-01

    Full Text Available This paper uses the developed parallel version of Michalewicz's Genocop III Genetic Algorithm (GA searching technique to optimize the coil geometry of an eddy current non-destructive testing probe (ECTP. The electromagnetic field is computed using FEMM 2D finite element code. The aim of this optimization was to determine coil dimensions and positions that improve ECTP sensitivity to physical properties of the tested devices.

  15. Optimization of broadband semiconductor chirped mirrors with genetic algorithm

    Dems, M.; Wnuk, P.; Wasylczyk, P.; Zinkiewicz, L.; Wojcik-Jedlinska, A.; Reginski, K.; Hejduk, K.; Jasik, A.

    2016-01-01

    Genetic algorithm was applied for optimization of dispersion properties in semiconductor Bragg reflectors for applications in femtosecond lasers. Broadband, large negative group-delay dispersion was achieved in the optimized design: The group-delay dispersion (GDD) as large as −3500 fs2 was theoretically obtained over a 10-nm bandwidth. The designed structure was manufactured and tested, providing GDD −3320 fs2 over a 7-nm bandwidth. The mirror performance was ...

  16. THE APPLICATION OF AN EVOLUTIONARY ALGORITHM TO THE OPTIMIZATION OF A MESOSCALE METEOROLOGICAL MODEL

    Werth, D.; O' Steen, L.

    2008-02-11

    We show that a simple evolutionary algorithm can optimize a set of mesoscale atmospheric model parameters with respect to agreement between the mesoscale simulation and a limited set of synthetic observations. This is illustrated using the Regional Atmospheric Modeling System (RAMS). A set of 23 RAMS parameters is optimized by minimizing a cost function based on the root mean square (rms) error between the RAMS simulation and synthetic data (observations derived from a separate RAMS simulation). We find that the optimization can be efficient with relatively modest computer resources, thus operational implementation is possible. The optimization efficiency, however, is found to depend strongly on the procedure used to perturb the 'child' parameters relative to their 'parents' within the evolutionary algorithm. In addition, the meteorological variables included in the rms error and their weighting are found to be an important factor with respect to finding the global optimum.

  17. Global Optimization using Interval Analysis : Interval Optimization for Aerospace Applications

    Van Kampen, E.

    2010-01-01

    Optimization is an important element in aerospace related research. It is encountered for example in trajectory optimization problems, such as: satellite formation flying, spacecraft re-entry optimization and airport approach and departure optimization; in control optimization, for example in

  18. Optimal planning of electric vehicle charging station at the distribution system using hybrid optimization algorithm

    Awasthi, Abhishek; Venkitusamy, Karthikeyan; Padmanaban, Sanjeevikumar

    2017-01-01

    India's ever increasing population has made it necessary to develop alternative modes of transportation with electric vehicles being the most preferred option. The major obstacle is the deteriorating impact on the utility distribution system brought about by improper setup of these charging...... stations. This paper deals with the optimal planning (siting and sizing) of charging station infrastructure in the city of Allahabad, India. This city is one of the upcoming smart cities, where electric vehicle transportation pilot project is going on under Government of India initiative. In this context......, a hybrid algorithm based on genetic algorithm and improved version of conventional particle swarm optimization is utilized for finding optimal placement of charging station in the Allahabad distribution system. The particle swarm optimization algorithm re-optimizes the received sub-optimal solution (site...

  19. A Novel Path Planning for Robots Based on Rapidly-Exploring Random Tree and Particle Swarm Optimizer Algorithm

    Zhou Feng

    2013-09-01

    Full Text Available A based on Rapidly-exploring Random Tree(RRT and Particle Swarm Optimizer (PSO for path planning of the robot is proposed.First the grid method is built to describe the working space of the mobile robot,then the Rapidly-exploring Random Tree algorithm is used to obtain the global navigation path,and the Particle Swarm Optimizer algorithm is adopted to get the better path.Computer experiment results demonstrate that this novel algorithm can plan an optimal path rapidly in a cluttered environment.The successful obstacle avoidance is achieved,and the model is robust and performs reliably.

  20. Competitive Swarm Optimizer Based Gateway Deployment Algorithm in Cyber-Physical Systems

    Shuqiang Huang

    2017-01-01

    Full Text Available Wireless sensor network topology optimization is a highly important issue, and topology control through node selection can improve the efficiency of data forwarding, while saving energy and prolonging lifetime of the network. To address the problem of connecting a wireless sensor network to the Internet in cyber-physical systems, here we propose a geometric gateway deployment based on a competitive swarm optimizer algorithm. The particle swarm optimization (PSO algorithm has a continuous search feature in the solution space, which makes it suitable for finding the geometric center of gateway deployment; however, its search mechanism is limited to the individual optimum (pbest and the population optimum (gbest; thus, it easily falls into local optima. In order to improve the particle search mechanism and enhance the search efficiency of the algorithm, we introduce a new competitive swarm optimizer (CSO algorithm. The CSO search algorithm is based on an inter-particle competition mechanism and can effectively avoid trapping of the population falling into a local optimum. With the improvement of an adaptive opposition-based search and its ability to dynamically parameter adjustments, this algorithm can maintain the diversity of the entire swarm to solve geometric K-center gateway deployment problems. The simulation results show that this CSO algorithm has a good global explorative ability as well as convergence speed and can improve the network quality of service (QoS level of cyber-physical systems by obtaining a minimum network coverage radius. We also find that the CSO algorithm is more stable, robust and effective in solving the problem of geometric gateway deployment as compared to the PSO or Kmedoids algorithms.

  1. Competitive Swarm Optimizer Based Gateway Deployment Algorithm in Cyber-Physical Systems.

    Huang, Shuqiang; Tao, Ming

    2017-01-22

    Wireless sensor network topology optimization is a highly important issue, and topology control through node selection can improve the efficiency of data forwarding, while saving energy and prolonging lifetime of the network. To address the problem of connecting a wireless sensor network to the Internet in cyber-physical systems, here we propose a geometric gateway deployment based on a competitive swarm optimizer algorithm. The particle swarm optimization (PSO) algorithm has a continuous search feature in the solution space, which makes it suitable for finding the geometric center of gateway deployment; however, its search mechanism is limited to the individual optimum (pbest) and the population optimum (gbest); thus, it easily falls into local optima. In order to improve the particle search mechanism and enhance the search efficiency of the algorithm, we introduce a new competitive swarm optimizer (CSO) algorithm. The CSO search algorithm is based on an inter-particle competition mechanism and can effectively avoid trapping of the population falling into a local optimum. With the improvement of an adaptive opposition-based search and its ability to dynamically parameter adjustments, this algorithm can maintain the diversity of the entire swarm to solve geometric K -center gateway deployment problems. The simulation results show that this CSO algorithm has a good global explorative ability as well as convergence speed and can improve the network quality of service (QoS) level of cyber-physical systems by obtaining a minimum network coverage radius. We also find that the CSO algorithm is more stable, robust and effective in solving the problem of geometric gateway deployment as compared to the PSO or Kmedoids algorithms.

  2. Competitive Swarm Optimizer Based Gateway Deployment Algorithm in Cyber-Physical Systems

    Huang, Shuqiang; Tao, Ming

    2017-01-01

    Wireless sensor network topology optimization is a highly important issue, and topology control through node selection can improve the efficiency of data forwarding, while saving energy and prolonging lifetime of the network. To address the problem of connecting a wireless sensor network to the Internet in cyber-physical systems, here we propose a geometric gateway deployment based on a competitive swarm optimizer algorithm. The particle swarm optimization (PSO) algorithm has a continuous search feature in the solution space, which makes it suitable for finding the geometric center of gateway deployment; however, its search mechanism is limited to the individual optimum (pbest) and the population optimum (gbest); thus, it easily falls into local optima. In order to improve the particle search mechanism and enhance the search efficiency of the algorithm, we introduce a new competitive swarm optimizer (CSO) algorithm. The CSO search algorithm is based on an inter-particle competition mechanism and can effectively avoid trapping of the population falling into a local optimum. With the improvement of an adaptive opposition-based search and its ability to dynamically parameter adjustments, this algorithm can maintain the diversity of the entire swarm to solve geometric K-center gateway deployment problems. The simulation results show that this CSO algorithm has a good global explorative ability as well as convergence speed and can improve the network quality of service (QoS) level of cyber-physical systems by obtaining a minimum network coverage radius. We also find that the CSO algorithm is more stable, robust and effective in solving the problem of geometric gateway deployment as compared to the PSO or Kmedoids algorithms. PMID:28117735

  3. The global kernel k-means algorithm for clustering in feature space.

    Tzortzis, Grigorios F; Likas, Aristidis C

    2009-07-01

    Kernel k-means is an extension of the standard k -means clustering algorithm that identifies nonlinearly separable clusters. In order to overcome the cluster initialization problem associated with this method, we propose the global kernel k-means algorithm, a deterministic and incremental approach to kernel-based clustering. Our method adds one cluster at each stage, through a global search procedure consisting of several executions of kernel k-means from suitable initializations. This algorithm does not depend on cluster initialization, identifies nonlinearly separable clusters, and, due to its incremental nature and search procedure, locates near-optimal solutions avoiding poor local minima. Furthermore, two modifications are developed to reduce the computational cost that do not significantly affect the solution quality. The proposed methods are extended to handle weighted data points, which enables their application to graph partitioning. We experiment with several data sets and the proposed approach compares favorably to kernel k -means with random restarts.

  4. Some Studies on Forming Optimization with Genetic Algorithm

    Ganesh Marotrao KAKANDIKAR

    2012-07-01

    Full Text Available Forming is a compression-tension process involving wide spectrum of operations andflow conditions. The result of the process depends on the large number of parameters and theirinterdependence. The selection of various parameters is still based on trial and error methods. In thispaper the authors present a new approach to optimize the geometry parameters of circularcomponents, process parameters such as blank holder pressure and coefficient of friction etc. Theoptimization problem has been formulated with the objective of optimizing the maximum formingload required in Forming. Genetic algorithm is used as a tool for the optimization: to optimize thedrawing load and to optimize the process parameters. A finite element analysis simulation softwareFast Form Advanced is used for the validations of the results after optimization with prior results.

  5. The optimal algorithm for Multi-source RS image fusion.

    Fu, Wei; Huang, Shui-Guang; Li, Zeng-Shun; Shen, Hao; Li, Jun-Shuai; Wang, Peng-Yuan

    2016-01-01

    In order to solve the issue which the fusion rules cannot be self-adaptively adjusted by using available fusion methods according to the subsequent processing requirements of Remote Sensing (RS) image, this paper puts forward GSDA (genetic-iterative self-organizing data analysis algorithm) by integrating the merit of genetic arithmetic together with the advantage of iterative self-organizing data analysis algorithm for multi-source RS image fusion. The proposed algorithm considers the wavelet transform of the translation invariance as the model operator, also regards the contrast pyramid conversion as the observed operator. The algorithm then designs the objective function by taking use of the weighted sum of evaluation indices, and optimizes the objective function by employing GSDA so as to get a higher resolution of RS image. As discussed above, the bullet points of the text are summarized as follows.•The contribution proposes the iterative self-organizing data analysis algorithm for multi-source RS image fusion.•This article presents GSDA algorithm for the self-adaptively adjustment of the fusion rules.•This text comes up with the model operator and the observed operator as the fusion scheme of RS image based on GSDA. The proposed algorithm opens up a novel algorithmic pathway for multi-source RS image fusion by means of GSDA.

  6. Quantum Behaved Particle Swarm Optimization Algorithm Based on Artificial Fish Swarm

    Yumin, Dong; Li, Zhao

    2014-01-01

    Quantum behaved particle swarm algorithm is a new intelligent optimization algorithm; the algorithm has less parameters and is easily implemented. In view of the existing quantum behaved particle swarm optimization algorithm for the premature convergence problem, put forward a quantum particle swarm optimization algorithm based on artificial fish swarm. The new algorithm based on quantum behaved particle swarm algorithm, introducing the swarm and following activities, meanwhile using the a...

  7. A tabu search evalutionary algorithm for multiobjective optimization: Application to a bi-criterion aircraft structural reliability problem

    Long, Kim Chenming

    Real-world engineering optimization problems often require the consideration of multiple conflicting and noncommensurate objectives, subject to nonconvex constraint regions in a high-dimensional decision space. Further challenges occur for combinatorial multiobjective problems in which the decision variables are not continuous. Traditional multiobjective optimization methods of operations research, such as weighting and epsilon constraint methods, are ill-suited to solving these complex, multiobjective problems. This has given rise to the application of a wide range of metaheuristic optimization algorithms, such as evolutionary, particle swarm, simulated annealing, and ant colony methods, to multiobjective optimization. Several multiobjective evolutionary algorithms have been developed, including the strength Pareto evolutionary algorithm (SPEA) and the non-dominated sorting genetic algorithm (NSGA), for determining the Pareto-optimal set of non-dominated solutions. Although numerous researchers have developed a wide range of multiobjective optimization algorithms, there is a continuing need to construct computationally efficient algorithms with an improved ability to converge to globally non-dominated solutions along the Pareto-optimal front for complex, large-scale, multiobjective engineering optimization problems. This is particularly important when the multiple objective functions and constraints of the real-world system cannot be expressed in explicit mathematical representations. This research presents a novel metaheuristic evolutionary algorithm for complex multiobjective optimization problems, which combines the metaheuristic tabu search algorithm with the evolutionary algorithm (TSEA), as embodied in genetic algorithms. TSEA is successfully applied to bicriteria (i.e., structural reliability and retrofit cost) optimization of the aircraft tail structure fatigue life, which increases its reliability by prolonging fatigue life. A comparison for this

  8. FSD-HSO Optimization Algorithm for Closed Fringes Interferogram Demodulation

    Ulises H. Rodriguez-Marmolejo

    2016-01-01

    Full Text Available Due to the physical nature of the interference phenomenon, extracting the phase of an interferogram is a known sinusoidal modulation problem. In order to solve this problem, a new hybrid mathematical optimization model for phase extraction is established. The combination of frequency guide sequential demodulation and harmony search optimization algorithms is used for demodulating closed fringes patterns in order to find the phase of interferogram applications. The proposed algorithm is tested in four sets of different synthetic interferograms, finding a range of average relative error in phase reconstructions of 0.14–0.39 rad. For reference, experimental results are compared with the genetic algorithm optimization technique, obtaining a reduction in the error up to 0.1448 rad. Finally, the proposed algorithm is compared with a very known demodulation algorithm, using a real interferogram, obtaining a relative error of 1.561 rad. Results are shown in patterns with complex fringes distribution.

  9. Hard decoding algorithm for optimizing thresholds under general Markovian noise

    Chamberland, Christopher; Wallman, Joel; Beale, Stefanie; Laflamme, Raymond

    2017-04-01

    Quantum error correction is instrumental in protecting quantum systems from noise in quantum computing and communication settings. Pauli channels can be efficiently simulated and threshold values for Pauli error rates under a variety of error-correcting codes have been obtained. However, realistic quantum systems can undergo noise processes that differ significantly from Pauli noise. In this paper, we present an efficient hard decoding algorithm for optimizing thresholds and lowering failure rates of an error-correcting code under general completely positive and trace-preserving (i.e., Markovian) noise. We use our hard decoding algorithm to study the performance of several error-correcting codes under various non-Pauli noise models by computing threshold values and failure rates for these codes. We compare the performance of our hard decoding algorithm to decoders optimized for depolarizing noise and show improvements in thresholds and reductions in failure rates by several orders of magnitude. Our hard decoding algorithm can also be adapted to take advantage of a code's non-Pauli transversal gates to further suppress noise. For example, we show that using the transversal gates of the 5-qubit code allows arbitrary rotations around certain axes to be perfectly corrected. Furthermore, we show that Pauli twirling can increase or decrease the threshold depending upon the code properties. Lastly, we show that even if the physical noise model differs slightly from the hypothesized noise model used to determine an optimized decoder, failure rates can still be reduced by applying our hard decoding algorithm.

  10. Environmental Optimization Using the WAste Reduction Algorithm (WAR)

    Traditionally chemical process designs were optimized using purely economic measures such as rate of return. EPA scientists developed the WAste Reduction algorithm (WAR) so that environmental impacts of designs could easily be evaluated. The goal of WAR is to reduce environme...

  11. Optimization of composite panels using neural networks and genetic algorithms

    Ruijter, W.; Spallino, R.; Warnet, Laurent; de Boer, Andries

    2003-01-01

    The objective of this paper is to present first results of a running study on optimization of aircraft components (composite panels of a typical vertical tail plane) by using Genetic Algorithms (GA) and Neural Networks (NN). The panels considered are standardized to some extent but still there is a

  12. Use of multiple objective evolutionary algorithms in optimizing surveillance requirements

    Martorell, S.; Carlos, S.; Villanueva, J.F.; Sanchez, A.I; Galvan, B.; Salazar, D.; Cepin, M.

    2006-01-01

    This paper presents the development and application of a double-loop Multiple Objective Evolutionary Algorithm that uses a Multiple Objective Genetic Algorithm to perform the simultaneous optimization of periodic Test Intervals (TI) and Test Planning (TP). It takes into account the time-dependent effect of TP performed on stand-by safety-related equipment. TI and TP are part of the Surveillance Requirements within Technical Specifications at Nuclear Power Plants. It addresses the problem of multi-objective optimization in the space of dependable variables, i.e. TI and TP, using a novel flexible structure of the optimization algorithm. Lessons learnt from the cases of application of the methodology to optimize TI and TP for the High-Pressure Injection System are given. The results show that the double-loop Multiple Objective Evolutionary Algorithm is able to find the Pareto set of solutions that represents a surface of non-dominated solutions that satisfy all the constraints imposed on the objective functions and decision variables. Decision makers can adopt then the best solution found depending on their particular preference, e.g. minimum cost, minimum unavailability

  13. Numerical Optimization Algorithms and Software for Systems Biology

    Saunders, Michael

    2013-02-02

    The basic aims of this work are: to develop reliable algorithms for solving optimization problems involving large stoi- chiometric matrices; to investigate cyclic dependency between metabolic and macromolecular biosynthetic networks; and to quantify the significance of thermodynamic constraints on prokaryotic metabolism.

  14. Hybrid Robust Multi-Objective Evolutionary Optimization Algorithm

    2009-03-10

    xfar by xint. Else, generate a new individual, using the Sobol pseudo- random sequence generator within the upper and lower bounds of the variables...12. Deb, K., Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley & Sons. 2002. 13. Sobol , I. M., "Uniformly Distributed Sequences

  15. 2-Phase NSGA II: An Optimized Reward and Risk Measurements Algorithm in Portfolio Optimization

    Seyedeh Elham Eftekharian

    2017-11-01

    Full Text Available Portfolio optimization is a serious challenge for financial engineering and has pulled down special attention among investors. It has two objectives: to maximize the reward that is calculated by expected return and to minimize the risk. Variance has been considered as a risk measure. There are many constraints in the world that ultimately lead to a non–convex search space such as cardinality constraint. In conclusion, parametric quadratic programming could not be applied and it seems essential to apply multi-objective evolutionary algorithm (MOEA. In this paper, a new efficient multi-objective portfolio optimization algorithm called 2-phase NSGA II algorithm is developed and the results of this algorithm are compared with the NSGA II algorithm. It was found that 2-phase NSGA II significantly outperformed NSGA II algorithm.

  16. Parameter optimization of electrochemical machining process using black hole algorithm

    Singh, Dinesh; Shukla, Rajkamal

    2017-12-01

    Advanced machining processes are significant as higher accuracy in machined component is required in the manufacturing industries. Parameter optimization of machining processes gives optimum control to achieve the desired goals. In this paper, electrochemical machining (ECM) process is considered to evaluate the performance of the considered process using black hole algorithm (BHA). BHA considers the fundamental idea of a black hole theory and it has less operating parameters to tune. The two performance parameters, material removal rate (MRR) and overcut (OC) are considered separately to get optimum machining parameter settings using BHA. The variations of process parameters with respect to the performance parameters are reported for better and effective understanding of the considered process using single objective at a time. The results obtained using BHA are found better while compared with results of other metaheuristic algorithms, such as, genetic algorithm (GA), artificial bee colony (ABC) and bio-geography based optimization (BBO) attempted by previous researchers.

  17. RCQ-GA: RDF Chain Query Optimization Using Genetic Algorithms

    Hogenboom, Alexander; Milea, Viorel; Frasincar, Flavius; Kaymak, Uzay

    The application of Semantic Web technologies in an Electronic Commerce environment implies a need for good support tools. Fast query engines are needed for efficient querying of large amounts of data, usually represented using RDF. We focus on optimizing a special class of SPARQL queries, the so-called RDF chain queries. For this purpose, we devise a genetic algorithm called RCQ-GA that determines the order in which joins need to be performed for an efficient evaluation of RDF chain queries. The approach is benchmarked against a two-phase optimization algorithm, previously proposed in literature. The more complex a query is, the more RCQ-GA outperforms the benchmark in solution quality, execution time needed, and consistency of solution quality. When the algorithms are constrained by a time limit, the overall performance of RCQ-GA compared to the benchmark further improves.

  18. Research reactor loading pattern optimization using estimation of distribution algorithms

    Jiang, S. [Dept. of Earth Science and Engineering, Applied Modeling and Computation Group AMCG, Imperial College, London, SW7 2AZ (United Kingdom); Ziver, K. [Dept. of Earth Science and Engineering, Applied Modeling and Computation Group AMCG, Imperial College, London, SW7 2AZ (United Kingdom); AMCG Group, RM Consultants, Abingdon (United Kingdom); Carter, J. N.; Pain, C. C.; Eaton, M. D.; Goddard, A. J. H. [Dept. of Earth Science and Engineering, Applied Modeling and Computation Group AMCG, Imperial College, London, SW7 2AZ (United Kingdom); Franklin, S. J.; Phillips, H. J. [Imperial College, Reactor Centre, Silwood Park, Buckhurst Road, Ascot, Berkshire, SL5 7TE (United Kingdom)

    2006-07-01

    A new evolutionary search based approach for solving the nuclear reactor loading pattern optimization problems is presented based on the Estimation of Distribution Algorithms. The optimization technique developed is then applied to the maximization of the effective multiplication factor (K{sub eff}) of the Imperial College CONSORT research reactor (the last remaining civilian research reactor in the United Kingdom). A new elitism-guided searching strategy has been developed and applied to improve the local convergence together with some problem-dependent information based on the 'stand-alone K{sub eff} with fuel coupling calculations. A comparison study between the EDAs and a Genetic Algorithm with Heuristic Tie Breaking Crossover operator has shown that the new algorithm is efficient and robust. (authors)

  19. A Novel Spectrum Scheduling Scheme with Ant Colony Optimization Algorithm

    Liping Liu

    2018-01-01

    Full Text Available Cognitive radio is a promising technology for improving spectrum utilization, which allows cognitive users access to the licensed spectrum while primary users are absent. In this paper, we design a resource allocation framework based on graph theory for spectrum assignment in cognitive radio networks. The framework takes into account the constraints that interference for primary users and possible collision among cognitive users. Based on the proposed model, we formulate a system utility function to maximize the system benefit. Based on the proposed model and objective problem, we design an improved ant colony optimization algorithm (IACO from two aspects: first, we introduce differential evolution (DE process to accelerate convergence speed by monitoring mechanism; then we design a variable neighborhood search (VNS process to avoid the algorithm falling into the local optimal. Simulation results demonstrate that the improved algorithm achieves better performance.

  20. Research reactor loading pattern optimization using estimation of distribution algorithms

    Jiang, S.; Ziver, K.; Carter, J. N.; Pain, C. C.; Eaton, M. D.; Goddard, A. J. H.; Franklin, S. J.; Phillips, H. J.

    2006-01-01

    A new evolutionary search based approach for solving the nuclear reactor loading pattern optimization problems is presented based on the Estimation of Distribution Algorithms. The optimization technique developed is then applied to the maximization of the effective multiplication factor (K eff ) of the Imperial College CONSORT research reactor (the last remaining civilian research reactor in the United Kingdom). A new elitism-guided searching strategy has been developed and applied to improve the local convergence together with some problem-dependent information based on the 'stand-alone K eff with fuel coupling calculations. A comparison study between the EDAs and a Genetic Algorithm with Heuristic Tie Breaking Crossover operator has shown that the new algorithm is efficient and robust. (authors)

  1. Optimization of a predictive controller of a pressurized water reactor Xenon oscillation using the particle swarm optimization algorithm

    Medeiros, Jose Antonio Carlos Canedo; Machado, Marcelo Dornellas; Lima, Alan Miranda M. de; Schirru, Roberto

    2007-01-01

    Predictive control systems are control systems that use a model of the controlled system (plant), used to predict the future behavior of the plant allowing the establishment of an anticipative control based on a future condition of the plant, and an optimizer that, considering a future time horizon of the plant output and a recent horizon of the control action, determines the controller's outputs to optimize a performance index of the controlled plant. The predictive control system does not require analytical models of the plant; the model of predictor of the plant can be learned from historical data of operation of the plant. The optimizer of the predictive controller establishes the strategy of the control: the minimization of a performance index (objective function) is done so that the present and future control actions are computed in such a way to minimize the objective function. The control strategy, implemented by the optimizer, induces the formation of an optimal control mechanism whose effect is to reduce the stabilization time, the 'overshoot' and 'undershoot', minimize the control actuation so that a compromise among those objectives is attained. The optimizer of the predictive controller is usually implemented using gradient-based algorithms. In this work we use the Particle Swarm Optimization algorithm (PSO) in the optimizer component of a predictive controller applied in the control of the xenon oscillation of a pressurized water reactor (PWR). The PSO is a stochastic optimization technique applied in several disciplines, simple and capable of providing a global optimal for high complexity problems and difficult to be optimized, providing in many cases better results than those obtained by other conventional and/or other artificial optimization techniques. (author)

  2. Optimal reservoir operation policies using novel nested algorithms

    Delipetrev, Blagoj; Jonoski, Andreja; Solomatine, Dimitri

    2015-04-01

    Historically, the two most widely practiced methods for optimal reservoir operation have been dynamic programming (DP) and stochastic dynamic programming (SDP). These two methods suffer from the so called "dual curse" which prevents them to be used in reasonably complex water systems. The first one is the "curse of dimensionality" that denotes an exponential growth of the computational complexity with the state - decision space dimension. The second one is the "curse of modelling" that requires an explicit model of each component of the water system to anticipate the effect of each system's transition. We address the problem of optimal reservoir operation concerning multiple objectives that are related to 1) reservoir releases to satisfy several downstream users competing for water with dynamically varying demands, 2) deviations from the target minimum and maximum reservoir water levels and 3) hydropower production that is a combination of the reservoir water level and the reservoir releases. Addressing such a problem with classical methods (DP and SDP) requires a reasonably high level of discretization of the reservoir storage volume, which in combination with the required releases discretization for meeting the demands of downstream users leads to computationally expensive formulations and causes the curse of dimensionality. We present a novel approach, named "nested" that is implemented in DP, SDP and reinforcement learning (RL) and correspondingly three new algorithms are developed named nested DP (nDP), nested SDP (nSDP) and nested RL (nRL). The nested algorithms are composed from two algorithms: 1) DP, SDP or RL and 2) nested optimization algorithm. Depending on the way we formulate the objective function related to deficits in the allocation problem in the nested optimization, two methods are implemented: 1) Simplex for linear allocation problems, and 2) quadratic Knapsack method in the case of nonlinear problems. The novel idea is to include the nested

  3. Joint global optimization of tomographic data based on particle swarm optimization and decision theory

    Paasche, H.; Tronicke, J.

    2012-04-01

    In many near surface geophysical applications multiple tomographic data sets are routinely acquired to explore subsurface structures and parameters. Linking the model generation process of multi-method geophysical data sets can significantly reduce ambiguities in geophysical data analysis and model interpretation. Most geophysical inversion approaches rely on local search optimization methods used to find an optimal model in the vicinity of a user-given starting model. The final solution may critically depend on the initial model. Alternatively, global optimization (GO) methods have been used to invert geophysical data. They explore the solution space in more detail and determine the optimal model independently from the starting model. Additionally, they can be used to find sets of optimal models allowing a further analysis of model parameter uncertainties. Here we employ particle swarm optimization (PSO) to realize the global optimization of tomographic data. PSO is an emergent methods based on swarm intelligence characterized by fast and robust convergence towards optimal solutions. The fundamental principle of PSO is inspired by nature, since the algorithm mimics the behavior of a flock of birds searching food in a search space. In PSO, a number of particles cruise a multi-dimensional solution space striving to find optimal model solutions explaining the acquired data. The particles communicate their positions and success and direct their movement according to the position of the currently most successful particle of the swarm. The success of a particle, i.e. the quality of the currently found model by a particle, must be uniquely quantifiable to identify the swarm leader. When jointly inverting disparate data sets, the optimization solution has to satisfy multiple optimization objectives, at least one for each data set. Unique determination of the most successful particle currently leading the swarm is not possible. Instead, only statements about the Pareto

  4. A Cultural Algorithm for Optimal Design of Truss Structures

    Shahin Jalili

    Full Text Available Abstract A cultural algorithm was utilized in this study to solve optimal design of truss structures problem achieving minimum weight objective under stress and deflection constraints. The algorithm is inspired by principles of human social evolution. It simulates the social interaction between the peoples and their beliefs in a belief space. Cultural Algorithm (CA utilizes the belief space and population space which affects each other based on acceptance and influence functions. The belief space of CA consists of different knowledge components. In this paper, only situational and normative knowledge components are used within the belief space. The performance of the method is demonstrated through four benchmark design examples. Comparison of the obtained results with those of some previous studies demonstrates the efficiency of this algorithm.

  5. ProxImaL: efficient image optimization using proximal algorithms

    Heide, Felix

    2016-07-11

    Computational photography systems are becoming increasingly diverse, while computational resources-for example on mobile platforms-are rapidly increasing. As diverse as these camera systems may be, slightly different variants of the underlying image processing tasks, such as demosaicking, deconvolution, denoising, inpainting, image fusion, and alignment, are shared between all of these systems. Formal optimization methods have recently been demonstrated to achieve state-of-the-art quality for many of these applications. Unfortunately, different combinations of natural image priors and optimization algorithms may be optimal for different problems, and implementing and testing each combination is currently a time-consuming and error-prone process. ProxImaL is a domain-specific language and compiler for image optimization problems that makes it easy to experiment with different problem formulations and algorithm choices. The language uses proximal operators as the fundamental building blocks of a variety of linear and nonlinear image formation models and cost functions, advanced image priors, and noise models. The compiler intelligently chooses the best way to translate a problem formulation and choice of optimization algorithm into an efficient solver implementation. In applications to the image processing pipeline, deconvolution in the presence of Poisson-distributed shot noise, and burst denoising, we show that a few lines of ProxImaL code can generate highly efficient solvers that achieve state-of-the-art results. We also show applications to the nonlinear and nonconvex problem of phase retrieval.

  6. Modified Discrete Grey Wolf Optimizer Algorithm for Multilevel Image Thresholding

    Linguo Li

    2017-01-01

    Full Text Available The computation of image segmentation has become more complicated with the increasing number of thresholds, and the option and application of the thresholds in image thresholding fields have become an NP problem at the same time. The paper puts forward the modified discrete grey wolf optimizer algorithm (MDGWO, which improves on the optimal solution updating mechanism of the search agent by the weights. Taking Kapur’s entropy as the optimized function and based on the discreteness of threshold in image segmentation, the paper firstly discretizes the grey wolf optimizer (GWO and then proposes a new attack strategy by using the weight coefficient to replace the search formula for optimal solution used in the original algorithm. The experimental results show that MDGWO can search out the optimal thresholds efficiently and precisely, which are very close to the result examined by exhaustive searches. In comparison with the electromagnetism optimization (EMO, the differential evolution (DE, the Artifical Bee Colony (ABC, and the classical GWO, it is concluded that MDGWO has advantages over the latter four in terms of image segmentation quality and objective function values and their stability.

  7. Fast globally optimal segmentation of 3D prostate MRI with axial symmetry prior.

    Qiu, Wu; Yuan, Jing; Ukwatta, Eranga; Sun, Yue; Rajchl, Martin; Fenster, Aaron

    2013-01-01

    We propose a novel global optimization approach to segmenting a given 3D prostate T2w magnetic resonance (MR) image, which enforces the inherent axial symmetry of the prostate shape and simultaneously performs a sequence of 2D axial slice-wise segmentations with a global 3D coherence prior. We show that the proposed challenging combinatorial optimization problem can be solved globally and exactly by means of convex relaxation. With this regard, we introduce a novel coupled continuous max-flow model, which is dual to the studied convex relaxed optimization formulation and leads to an efficient multiplier augmented algorithm based on the modern convex optimization theory. Moreover, the new continuous max-flow based algorithm was implemented on GPUs to achieve a substantial improvement in computation. Experimental results using public and in-house datasets demonstrate great advantages of the proposed method in terms of both accuracy and efficiency.

  8. A novel optimization method, Gravitational Search Algorithm (GSA), for PWR core optimization

    Mahmoudi, S.M.; Aghaie, M.; Bahonar, M.; Poursalehi, N.

    2016-01-01

    Highlights: • The Gravitational Search Algorithm (GSA) is introduced. • The advantage of GSA is verified in Shekel’s Foxholes. • Reload optimizing in WWER-1000 and WWER-440 cases are performed. • Maximizing K eff , minimizing PPFs and flattening power density is considered. - Abstract: In-core fuel management optimization (ICFMO) is one of the most challenging concepts of nuclear engineering. In recent decades several meta-heuristic algorithms or computational intelligence methods have been expanded to optimize reactor core loading pattern. This paper presents a new method of using Gravitational Search Algorithm (GSA) for in-core fuel management optimization. The GSA is constructed based on the law of gravity and the notion of mass interactions. It uses the theory of Newtonian physics and searcher agents are the collection of masses. In this work, at the first step, GSA method is compared with other meta-heuristic algorithms on Shekel’s Foxholes problem. In the second step for finding the best core, the GSA algorithm has been performed for three PWR test cases including WWER-1000 and WWER-440 reactors. In these cases, Multi objective optimizations with the following goals are considered, increment of multiplication factor (K eff ), decrement of power peaking factor (PPF) and power density flattening. It is notable that for neutronic calculation, PARCS (Purdue Advanced Reactor Core Simulator) code is used. The results demonstrate that GSA algorithm have promising performance and could be proposed for other optimization problems of nuclear engineering field.

  9. On the Performance of Linear Decreasing Inertia Weight Particle Swarm Optimization for Global Optimization

    Arasomwan, Martins Akugbe; Adewumi, Aderemi Oluyinka

    2013-01-01

    Linear decreasing inertia weight (LDIW) strategy was introduced to improve on the performance of the original particle swarm optimization (PSO). However, linear decreasing inertia weight PSO (LDIW-PSO) algorithm is known to have the shortcoming of premature convergence in solving complex (multipeak) optimization problems due to lack of enough momentum for particles to do exploitation as the algorithm approaches its terminal point. Researchers have tried to address this shortcoming by modifying LDIW-PSO or proposing new PSO variants. Some of these variants have been claimed to outperform LDIW-PSO. The major goal of this paper is to experimentally establish the fact that LDIW-PSO is very much efficient if its parameters are properly set. First, an experiment was conducted to acquire a percentage value of the search space limits to compute the particle velocity limits in LDIW-PSO based on commonly used benchmark global optimization problems. Second, using the experimentally obtained values, five well-known benchmark optimization problems were used to show the outstanding performance of LDIW-PSO over some of its competitors which have in the past claimed superiority over it. Two other recent PSO variants with different inertia weight strategies were also compared with LDIW-PSO with the latter outperforming both in the simulation experiments conducted. PMID:24324383

  10. Joint optimization of algorithmic suites for EEG analysis.

    Santana, Eder; Brockmeier, Austin J; Principe, Jose C

    2014-01-01

    Electroencephalogram (EEG) data analysis algorithms consist of multiple processing steps each with a number of free parameters. A joint optimization methodology can be used as a wrapper to fine-tune these parameters for the patient or application. This approach is inspired by deep learning neural network models, but differs because the processing layers for EEG are heterogeneous with different approaches used for processing space and time. Nonetheless, we treat the processing stages as a neural network and apply backpropagation to jointly optimize the parameters. This approach outperforms previous results on the BCI Competition II - dataset IV; additionally, it outperforms the common spatial patterns (CSP) algorithm on the BCI Competition III dataset IV. In addition, the optimized parameters in the architecture are still interpretable.

  11. Optimization of image processing algorithms on mobile platforms

    Poudel, Pramod; Shirvaikar, Mukul

    2011-03-01

    This work presents a technique to optimize popular image processing algorithms on mobile platforms such as cell phones, net-books and personal digital assistants (PDAs). The increasing demand for video applications like context-aware computing on mobile embedded systems requires the use of computationally intensive image processing algorithms. The system engineer has a mandate to optimize them so as to meet real-time deadlines. A methodology to take advantage of the asymmetric dual-core processor, which includes an ARM and a DSP core supported by shared memory, is presented with implementation details. The target platform chosen is the popular OMAP 3530 processor for embedded media systems. It has an asymmetric dual-core architecture with an ARM Cortex-A8 and a TMS320C64x Digital Signal Processor (DSP). The development platform was the BeagleBoard with 256 MB of NAND RAM and 256 MB SDRAM memory. The basic image correlation algorithm is chosen for benchmarking as it finds widespread application for various template matching tasks such as face-recognition. The basic algorithm prototypes conform to OpenCV, a popular computer vision library. OpenCV algorithms can be easily ported to the ARM core which runs a popular operating system such as Linux or Windows CE. However, the DSP is architecturally more efficient at handling DFT algorithms. The algorithms are tested on a variety of images and performance results are presented measuring the speedup obtained due to dual-core implementation. A major advantage of this approach is that it allows the ARM processor to perform important real-time tasks, while the DSP addresses performance-hungry algorithms.

  12. Design Optimization of Tilting-Pad Journal Bearing Using a Genetic Algorithm

    Hamit Saruhan

    2004-01-01

    Full Text Available This article focuses on the use of genetic algorithms in developing an efficient optimum design method for tilting pad bearings. The approach optimizes based on minimum film thickness, power loss, maximum film temperature, and a global objective. Results for a five tilting-pad preloaded bearing are presented to provide a comparison with more traditional optimum design methods such as the gradient-based global criterion method, and also to provide insight into the potential of genetic algorithms in the design of rotor bearings. Genetic algorithms are efficient search techniques based on the idea of natural selection and genetics. These robust methods have gained recognition as general problem solving techniques in many applications.

  13. Energy Link Optimization in a Wireless Power Transfer Grid under Energy Autonomy Based on the Improved Genetic Algorithm

    Zhihao Zhao

    2016-08-01

    Full Text Available In this paper, an optimization method is proposed for the energy link in a wireless power transfer grid, which is a regional smart microgrid comprised of distributed devices equipped with wireless power transfer technology in a certain area. The relevant optimization model of the energy link is established by considering the wireless power transfer characteristics and the grid characteristics brought in by the device repeaters. Then, a concentration adaptive genetic algorithm (CAGA is proposed to optimize the energy link. The algorithm avoided the unification trend by introducing the concentration mechanism and a new crossover method named forward order crossover, as well as the adaptive parameter mechanism, which are utilized together to keep the diversity of the optimization solution groups. The results show that CAGA is feasible and competitive for the energy link optimization in different situations. This proposed algorithm performs better than its counterparts in the global convergence ability and the algorithm robustness.

  14. District Heating Network Design and Configuration Optimization with Genetic Algorithm

    Li, Hongwei; Svendsen, Svend

    2013-01-01

    In this paper, the configuration of a district heating network which connects from the heating plant to the end users is optimized. Each end user in the network represents a building block. The connections between the heat generation plant and the end users are represented with mixed integer...... and the pipe friction and heat loss formulations are non-linear. In order to find the optimal district heating network configuration, genetic algorithm which handles the mixed integer nonlinear programming problem is chosen. The network configuration is represented with binary and integer encoding...... and it is optimized in terms of the net present cost. The optimization results indicates that the optimal DH network configuration is determined by multiple factors such as the consumer heating load, the distance between the heating plant to the consumer, the design criteria regarding the pressure and temperature...

  15. GENETIC ALGORITHM BASED CONCEPT DESIGN TO OPTIMIZE NETWORK LOAD BALANCE

    Ashish Jain

    2012-07-01

    Full Text Available Multiconstraints optimal network load balancing is an NP-hard problem and it is an important part of traffic engineering. In this research we balance the network load using classical method (brute force approach and dynamic programming is used but result shows the limitation of this method but at a certain level we recognized that the optimization of balanced network load with increased number of nodes and demands is intractable using the classical method because the solution set increases exponentially. In such case the optimization techniques like evolutionary techniques can employ for optimizing network load balance. In this paper we analyzed proposed classical algorithm and evolutionary based genetic approach is devise as well as proposed in this paper for optimizing the balance network load.

  16. Research on optimization algorithms and applications. Progress report, July 1, 1997 - June 30, 1998

    Zhang, Y.

    1998-06-01

    The project had a productive first year with five technical reports produced or in preparation. The major works accomplished include the following: (1) the authors have conducted investigations on algorithms for global optimization of zero-to-small residual least squares problems, which is important in x-ray crystallography. Numerical results have demonstrated the effectiveness of their algorithms on many test problems; (2) they have investigated a fundamental question concerning the behavior of Newton's method on equivalent systems. This investigation provides guidance to the proper choice of formulations in solving some optimization problems; (3) they have developed and tested new and promising interior-point algorithms for the maximum-volume ellipsoid problem

  17. New hybrid genetic particle swarm optimization algorithm to design multi-zone binary filter.

    Lin, Jie; Zhao, Hongyang; Ma, Yuan; Tan, Jiubin; Jin, Peng

    2016-05-16

    The binary phase filters have been used to achieve an optical needle with small lateral size. Designing a binary phase filter is still a scientific challenge in such fields. In this paper, a hybrid genetic particle swarm optimization (HGPSO) algorithm is proposed to design the binary phase filter. The HGPSO algorithm includes self-adaptive parameters, recombination and mutation operations that originated from the genetic algorithm. Based on the benchmark test, the HGPSO algorithm has achieved global optimization and fast convergence. In an easy-to-perform optimizing procedure, the iteration number of HGPSO is decreased to about a quarter of the original particle swarm optimization process. A multi-zone binary phase filter is designed by using the HGPSO. The long depth of focus and high resolution are achieved simultaneously, where the depth of focus and focal spot transverse size are 6.05λ and 0.41λ, respectively. Therefore, the proposed HGPSO can be applied to the optimization of filter with multiple parameters.

  18. Short-Term Wind Speed Forecasting Using Support Vector Regression Optimized by Cuckoo Optimization Algorithm

    Jianzhou Wang

    2015-01-01

    Full Text Available This paper develops an effectively intelligent model to forecast short-term wind speed series. A hybrid forecasting technique is proposed based on recurrence plot (RP and optimized support vector regression (SVR. Wind caused by the interaction of meteorological systems makes itself extremely unsteady and difficult to forecast. To understand the wind system, the wind speed series is analyzed using RP. Then, the SVR model is employed to forecast wind speed, in which the input variables are selected by RP, and two crucial parameters, including the penalties factor and gamma of the kernel function RBF, are optimized by various optimization algorithms. Those optimized algorithms are genetic algorithm (GA, particle swarm optimization algorithm (PSO, and cuckoo optimization algorithm (COA. Finally, the optimized SVR models, including COA-SVR, PSO-SVR, and GA-SVR, are evaluated based on some criteria and a hypothesis test. The experimental results show that (1 analysis of RP reveals that wind speed has short-term predictability on a short-term time scale, (2 the performance of the COA-SVR model is superior to that of the PSO-SVR and GA-SVR methods, especially for the jumping samplings, and (3 the COA-SVR method is statistically robust in multi-step-ahead prediction and can be applied to practical wind farm applications.

  19. Optimization in Quaternion Dynamic Systems: Gradient, Hessian, and Learning Algorithms.

    Xu, Dongpo; Xia, Yili; Mandic, Danilo P

    2016-02-01

    The optimization of real scalar functions of quaternion variables, such as the mean square error or array output power, underpins many practical applications. Solutions typically require the calculation of the gradient and Hessian. However, real functions of quaternion variables are essentially nonanalytic, which are prohibitive to the development of quaternion-valued learning systems. To address this issue, we propose new definitions of quaternion gradient and Hessian, based on the novel generalized Hamilton-real (GHR) calculus, thus making a possible efficient derivation of general optimization algorithms directly in the quaternion field, rather than using the isomorphism with the real domain, as is current practice. In addition, unlike the existing quaternion gradients, the GHR calculus allows for the product and chain rule, and for a one-to-one correspondence of the novel quaternion gradient and Hessian with their real counterparts. Properties of the quaternion gradient and Hessian relevant to numerical applications are also introduced, opening a new avenue of research in quaternion optimization and greatly simplified the derivations of learning algorithms. The proposed GHR calculus is shown to yield the same generic algorithm forms as the corresponding real- and complex-valued algorithms. Advantages of the proposed framework are illuminated over illustrative simulations in quaternion signal processing and neural networks.

  20. Designing Artificial Neural Networks Using Particle Swarm Optimization Algorithms.

    Garro, Beatriz A; Vázquez, Roberto A

    2015-01-01

    Artificial Neural Network (ANN) design is a complex task because its performance depends on the architecture, the selected transfer function, and the learning algorithm used to train the set of synaptic weights. In this paper we present a methodology that automatically designs an ANN using particle swarm optimization algorithms such as Basic Particle Swarm Optimization (PSO), Second Generation of Particle Swarm Optimization (SGPSO), and a New Model of PSO called NMPSO. The aim of these algorithms is to evolve, at the same time, the three principal components of an ANN: the set of synaptic weights, the connections or architecture, and the transfer functions for each neuron. Eight different fitness functions were proposed to evaluate the fitness of each solution and find the best design. These functions are based on the mean square error (MSE) and the classification error (CER) and implement a strategy to avoid overtraining and to reduce the number of connections in the ANN. In addition, the ANN designed with the proposed methodology is compared with those designed manually using the well-known Back-Propagation and Levenberg-Marquardt Learning Algorithms. Finally, the accuracy of the method is tested with different nonlinear pattern classification problems.

  1. Optimization in optical systems revisited: Beyond genetic algorithms

    Gagnon, Denis; Dumont, Joey; Dubé, Louis

    2013-05-01

    Designing integrated photonic devices such as waveguides, beam-splitters and beam-shapers often requires optimization of a cost function over a large solution space. Metaheuristics - algorithms based on empirical rules for exploring the solution space - are specifically tailored to those problems. One of the most widely used metaheuristics is the standard genetic algorithm (SGA), based on the evolution of a population of candidate solutions. However, the stochastic nature of the SGA sometimes prevents access to the optimal solution. Our goal is to show that a parallel tabu search (PTS) algorithm is more suited to optimization problems in general, and to photonics in particular. PTS is based on several search processes using a pool of diversified initial solutions. To assess the performance of both algorithms (SGA and PTS), we consider an integrated photonics design problem, the generation of arbitrary beam profiles using a two-dimensional waveguide-based dielectric structure. The authors acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC).

  2. Optimal control of hybrid qubits: Implementing the quantum permutation algorithm

    Rivera-Ruiz, C. M.; de Lima, E. F.; Fanchini, F. F.; Lopez-Richard, V.; Castelano, L. K.

    2018-03-01

    The optimal quantum control theory is employed to determine electric pulses capable of producing quantum gates with a fidelity higher than 0.9997, when noise is not taken into account. Particularly, these quantum gates were chosen to perform the permutation algorithm in hybrid qubits in double quantum dots (DQDs). The permutation algorithm is an oracle based quantum algorithm that solves the problem of the permutation parity faster than a classical algorithm without the necessity of entanglement between particles. The only requirement for achieving the speedup is the use of a one-particle quantum system with at least three levels. The high fidelity found in our results is closely related to the quantum speed limit, which is a measure of how fast a quantum state can be manipulated. Furthermore, we model charge noise by considering an average over the optimal field centered at different values of the reference detuning, which follows a Gaussian distribution. When the Gaussian spread is of the order of 5 μ eV (10% of the correct value), the fidelity is still higher than 0.95. Our scheme also can be used for the practical realization of different quantum algorithms in DQDs.

  3. Dynamic statistical optimization of GNSS radio occultation bending angles: advanced algorithm and performance analysis

    Li, Y.; Kirchengast, G.; Scherllin-Pirscher, B.; Norman, R.; Yuan, Y. B.; Fritzer, J.; Schwaerz, M.; Zhang, K.

    2015-08-01

    We introduce a new dynamic statistical optimization algorithm to initialize ionosphere-corrected bending angles of Global Navigation Satellite System (GNSS)-based radio occultation (RO) measurements. The new algorithm estimates background and observation error covariance matrices with geographically varying uncertainty profiles and realistic global-mean correlation matrices. The error covariance matrices estimated by the new approach are more accurate and realistic than in simplified existing approaches and can therefore be used in statistical optimization to provide optimal bending angle profiles for high-altitude initialization of the subsequent Abel transform retrieval of refractivity. The new algorithm is evaluated against the existing Wegener Center Occultation Processing System version 5.6 (OPSv5.6) algorithm, using simulated data on two test days from January and July 2008 and real observed CHAllenging Minisatellite Payload (CHAMP) and Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) measurements from the complete months of January and July 2008. The following is achieved for the new method's performance compared to OPSv5.6: (1) significant reduction of random errors (standard deviations) of optimized bending angles down to about half of their size or more; (2) reduction of the systematic differences in optimized bending angles for simulated MetOp data; (3) improved retrieval of refractivity and temperature profiles; and (4) realistically estimated global-mean correlation matrices and realistic uncertainty fields for the background and observations. Overall the results indicate high suitability for employing the new dynamic approach in the processing of long-term RO data into a reference climate record, leading to well-characterized and high-quality atmospheric profiles over the entire stratosphere.

  4. Optimization of tokamak plasma equilibrium shape using parallel genetic algorithms

    Zhulin An; Bin Wu; Lijian Qiu

    2006-01-01

    In the device of non-circular cross sectional tokamaks, the plasma equilibrium shape has a strong influence on the confinement and MHD stability. The plasma equilibrium shape is determined by the configuration of the poloidal field (PF) system. Usually there are many PF systems that could support the specified plasma equilibrium, the differences are the number of coils used, their positions, sizes and currents. It is necessary to find the optimal choice that meets the engineering constrains, which is often done by a constrained optimization. The Genetic Algorithms (GAs) based method has been used to solve the problem of the optimization, but the time complexity limits the algorithms to become widely used. Due to the large search space that the optimization has, it takes several hours to get a nice result. The inherent parallelism in GAs can be exploited to enhance their search efficiency. In this paper, we introduce a parallel genetic algorithms (PGAs) based approach which can reduce the computational time. The algorithm has a master-slave structure, the slave explore the search space separately and return the results to the master. A program is also developed, and it can be running on any computers which support massage passing interface. Both the algorithm and the program are detailed discussed in the paper. We also include an application that uses the program to determine the positions and currents of PF coils in EAST. The program reach the target value within half an hour and yield a speedup rate of 5.21 on 8 CPUs. (author)

  5. Fine-Tuning ADAS Algorithm Parameters for Optimizing Traffic ...

    With the development of the Connected Vehicle technology that facilitates wirelessly communication among vehicles and road-side infrastructure, the Advanced Driver Assistance Systems (ADAS) can be adopted as an effective tool for accelerating traffic safety and mobility optimization at various highway facilities. To this end, the traffic management centers identify the optimal ADAS algorithm parameter set that enables the maximum improvement of the traffic safety and mobility performance, and broadcast the optimal parameter set wirelessly to individual ADAS-equipped vehicles. After adopting the optimal parameter set, the ADAS-equipped drivers become active agents in the traffic stream that work collectively and consistently to prevent traffic conflicts, lower the intensity of traffic disturbances, and suppress the development of traffic oscillations into heavy traffic jams. Successful implementation of this objective requires the analysis capability of capturing the impact of the ADAS on driving behaviors, and measuring traffic safety and mobility performance under the influence of the ADAS. To address this challenge, this research proposes a synthetic methodology that incorporates the ADAS-affected driving behavior modeling and state-of-the-art microscopic traffic flow modeling into a virtually simulated environment. Building on such an environment, the optimal ADAS algorithm parameter set is identified through an optimization programming framework to enable th

  6. APPLICATION OF GENETIC ALGORITHMS FOR ROBUST PARAMETER OPTIMIZATION

    N. Belavendram

    2010-12-01

    Full Text Available Parameter optimization can be achieved by many methods such as Monte-Carlo, full, and fractional factorial designs. Genetic algorithms (GA are fairly recent in this respect but afford a novel method of parameter optimization. In GA, there is an initial pool of individuals each with its own specific phenotypic trait expressed as a ‘genetic chromosome’. Different genes enable individuals with different fitness levels to reproduce according to natural reproductive gene theory. This reproduction is established in terms of selection, crossover and mutation of reproducing genes. The resulting child generation of individuals has a better fitness level akin to natural selection, namely evolution. Populations evolve towards the fittest individuals. Such a mechanism has a parallel application in parameter optimization. Factors in a parameter design can be expressed as a genetic analogue in a pool of sub-optimal random solutions. Allowing this pool of sub-optimal solutions to evolve over several generations produces fitter generations converging to a pre-defined engineering optimum. In this paper, a genetic algorithm is used to study a seven factor non-linear equation for a Wheatstone bridge as the equation to be optimized. A comparison of the full factorial design against a GA method shows that the GA method is about 1200 times faster in finding a comparable solution.

  7. Optimization of multicast optical networks with genetic algorithm

    Lv, Bo; Mao, Xiangqiao; Zhang, Feng; Qin, Xi; Lu, Dan; Chen, Ming; Chen, Yong; Cao, Jihong; Jian, Shuisheng

    2007-11-01

    In this letter, aiming to obtain the best multicast performance of optical network in which the video conference information is carried by specified wavelength, we extend the solutions of matrix games with the network coding theory and devise a new method to solve the complex problems of multicast network switching. In addition, an experimental optical network has been testified with best switching strategies by employing the novel numerical solution designed with an effective way of genetic algorithm. The result shows that optimal solutions with genetic algorithm are accordance with the ones with the traditional fictitious play method.

  8. A Degree Distribution Optimization Algorithm for Image Transmission

    Jiang, Wei; Yang, Junjie

    2016-09-01

    Luby Transform (LT) code is the first practical implementation of digital fountain code. The coding behavior of LT code is mainly decided by the degree distribution which determines the relationship between source data and codewords. Two degree distributions are suggested by Luby. They work well in typical situations but not optimally in case of finite encoding symbols. In this work, the degree distribution optimization algorithm is proposed to explore the potential of LT code. Firstly selection scheme of sparse degrees for LT codes is introduced. Then probability distribution is optimized according to the selected degrees. In image transmission, bit stream is sensitive to the channel noise and even a single bit error may cause the loss of synchronization between the encoder and the decoder. Therefore the proposed algorithm is designed for image transmission situation. Moreover, optimal class partition is studied for image transmission with unequal error protection. The experimental results are quite promising. Compared with LT code with robust soliton distribution, the proposed algorithm improves the final quality of recovered images obviously with the same overhead.

  9. Algorithms for optimal sequencing of dynamic multileaf collimators

    Kamath, Srijit; Sahni, Sartaj; Palta, Jatinder; Ranka, Sanjay

    2004-01-01

    Dynamic multileaf collimator (DMLC) intensity modulated radiation therapy (IMRT) is used to deliver intensity modulated beams using a multileaf collimator (MLC), with the leaves in motion. DMLC-IMRT requires the conversion of a radiation intensity map into a leaf sequence file that controls the movement of the MLC while the beam is on. It is imperative that the intensity map delivered using the leaf sequence file be as close as possible to the intensity map generated by the dose optimization algorithm, while satisfying hardware constraints of the delivery system. Optimization of the leaf-sequencing algorithm has been the subject of several recent investigations. In this work, we present a systematic study of the optimization of leaf-sequencing algorithms for dynamic multileaf collimator beam delivery and provide rigorous mathematical proofs of optimized leaf sequence settings in terms of monitor unit (MU) efficiency under the most common leaf movement constraints that include leaf interdigitation constraint. Our analytical analysis shows that leaf sequencing based on unidirectional movement of the MLC leaves is as MU efficient as bi-directional movement of the MLC leaves

  10. Algorithms for optimal sequencing of dynamic multileaf collimators

    Kamath, Srijit [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Sahni, Sartaj [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Palta, Jatinder [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); Ranka, Sanjay [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States)

    2004-01-07

    Dynamic multileaf collimator (DMLC) intensity modulated radiation therapy (IMRT) is used to deliver intensity modulated beams using a multileaf collimator (MLC), with the leaves in motion. DMLC-IMRT requires the conversion of a radiation intensity map into a leaf sequence file that controls the movement of the MLC while the beam is on. It is imperative that the intensity map delivered using the leaf sequence file be as close as possible to the intensity map generated by the dose optimization algorithm, while satisfying hardware constraints of the delivery system. Optimization of the leaf-sequencing algorithm has been the subject of several recent investigations. In this work, we present a systematic study of the optimization of leaf-sequencing algorithms for dynamic multileaf collimator beam delivery and provide rigorous mathematical proofs of optimized leaf sequence settings in terms of monitor unit (MU) efficiency under the most common leaf movement constraints that include leaf interdigitation constraint. Our analytical analysis shows that leaf sequencing based on unidirectional movement of the MLC leaves is as MU efficient as bi-directional movement of the MLC leaves.

  11. Optimization of high harmonic generation by genetic algorithm

    Constance Valentin; Olga Boyko; Gilles Rey; Brigitte Mercier; Evaggelos Papalazarou; Laure Antonucci; Philippe Balcou

    2006-01-01

    Complete test of publication follows. High Harmonic Generation (HHG) is very sensitive to pulse shape of the fundamental laser. We have first used an Acousto-Optic Programmable Dispersive Filter (AOPDF) in order to modify the spectral phase and second, a deformable mirror in order to modify the wavefront. We have optimized harmonic signal using a genetic algorithm coupled with both setups. We show the influence of macroscopic parameters for optimization process. Genetic algorithms have been already used to modify pulse shapes of the fundamental laser in order to optimize high harmonic signals, in order to change the emission wavelength of one harmonic or to modify the fundamental wavefront to optimize harmonic signals. For the first time, we present a systematic study of the optimization of harmonic signals using the AOPDF. Signal optimizations by a factor 2 to 10 have been measured depending of parameters of generation. For instance, one of the interesting result concerns the effect of macroscopic parameters as position of the entrance of the cell with respect to the focus of the IR laser when we change the pulse shapes. For instance, the optimization is higher when the cell entrance is above the focus where the intensity gradients are higher. Although the spectral phase of the IR laser is important for the response of one atom, the optimization depends also of phase-matching and especially of the effect intensity gradients. Other systematic studies have been performed as well as measurements of temporal profiles and wavefronts of the IR beam. These studies allow bringing out the behaviour of high harmonic generation with respect to the optimization process.

  12. Practical mathematical optimization basic optimization theory and gradient-based algorithms

    Snyman, Jan A

    2018-01-01

    This textbook presents a wide range of tools for a course in mathematical optimization for upper undergraduate and graduate students in mathematics, engineering, computer science, and other applied sciences. Basic optimization principles are presented with emphasis on gradient-based numerical optimization strategies and algorithms for solving both smooth and noisy discontinuous optimization problems. Attention is also paid to the difficulties of expense of function evaluations and the existence of multiple minima that often unnecessarily inhibit the use of gradient-based methods. This second edition addresses further advancements of gradient-only optimization strategies to handle discontinuities in objective functions. New chapters discuss the construction of surrogate models as well as new gradient-only solution strategies and numerical optimization using Python. A special Python module is electronically available (via springerlink) that makes the new algorithms featured in the text easily accessible and dir...

  13. Engineering application of in-core fuel management optimization code with CSA algorithm

    Liu, Zhihong; Hu, Yongming [INET, Tsinghua university, Beijing 100084 (China)

    2009-06-15

    PWR in-core loading (reloading) pattern optimization is a complex combined problem. An excellent fuel management optimization code can greatly improve the efficiency of core reloading design, and bring economic and safety benefits. Today many optimization codes with experiences or searching algorithms (such as SA, GA, ANN, ACO) have been developed, while how to improve their searching efficiency and engineering usability still needs further research. CSA (Characteristic Statistic Algorithm) is a global optimization algorithm with high efficiency developed by our team. The performance of CSA has been proved on many problems (such as Traveling Salesman Problems). The idea of CSA is to induce searching direction by the statistic distribution of characteristic values. This algorithm is quite suitable for fuel management optimization. Optimization code with CSA has been developed and was used on many core models. The research in this paper is to improve the engineering usability of CSA code according to all the actual engineering requirements. Many new improvements have been completed in this code, such as: 1. Considering the asymmetry of burn-up in one assembly, the rotation of each assembly is considered as new optimization variables in this code. 2. Worth of control rods must satisfy the given constraint, so some relative modifications are added into optimization code. 3. To deal with the combination of alternate cycles, multi-cycle optimization is considered in this code. 4. To confirm the accuracy of optimization results, many identifications of the physics calculation module in this code have been done, and the parameters of optimization schemes are checked by SCIENCE code. The improved optimization code with CSA has been used on Qinshan nuclear plant of China. The reloading of cycle 7, 8, 9 (12 months, no burnable poisons) and the 18 months equilibrium cycle (with burnable poisons) reloading are optimized. At last, many optimized schemes are found by CSA code

  14. Hybrid Genetic Algorithm Optimization for Case Based Reasoning Systems

    Mohamed, A.H.

    2008-01-01

    The success of a CBR system largely depen ds on an effective retrieval of useful prior case for the problem. Nearest neighbor and induction are the main CBR retrieval algorithms. Each of them can be more suitable in different situations. Integrated the two retrieval algorithms can catch the advantages of both of them. But, they still have some limitations facing the induction retrieval algorithm when dealing with a noisy data, a large number of irrelevant features, and different types of data. This research utilizes a hybrid approach using genetic algorithms (GAs) to case-based induction retrieval of the integrated nearest neighbor - induction algorithm in an attempt to overcome these limitations and increase the overall classification accuracy. GAs can be used to optimize the search space of all the possible subsets of the features set. It can deal with the irrelevant and noisy features while still achieving a significant improvement of the retrieval accuracy. Therefore, the proposed CBR-GA introduces an effective general purpose retrieval algorithm that can improve the performance of CBR systems. It can be applied in many application areas. CBR-GA has proven its success when applied for different problems in real-life

  15. Identification of metabolic system parameters using global optimization methods

    Gatzke Edward P

    2006-01-01

    Full Text Available Abstract Background The problem of estimating the parameters of dynamic models of complex biological systems from time series data is becoming increasingly important. Methods and results Particular consideration is given to metabolic systems that are formulated as Generalized Mass Action (GMA models. The estimation problem is posed as a global optimization task, for which novel techniques can be applied to determine the best set of parameter values given the measured responses of the biological system. The challenge is that this task is nonconvex. Nonetheless, deterministic optimization techniques can be used to find a global solution that best reconciles the model parameters and measurements. Specifically, the paper employs branch-and-bound principles to identify the best set of model parameters from observed time course data and illustrates this method with an existing model of the fermentation pathway in Saccharomyces cerevisiae. This is a relatively simple yet representative system with five dependent states and a total of 19 unknown parameters of which the values are to be determined. Conclusion The efficacy of the branch-and-reduce algorithm is illustrated by the S. cerevisiae example. The method described in this paper is likely to be widely applicable in the dynamic modeling of metabolic networks.

  16. Global optimization numerical strategies for rate-independent processes

    Benešová, Barbora

    2011-01-01

    Roč. 50, č. 2 (2011), s. 197-220 ISSN 0925-5001 R&D Projects: GA ČR GAP201/10/0357 Grant - others:GA MŠk(CZ) LC06052 Program:LC Institutional research plan: CEZ:AV0Z20760514 Keywords : rate-independent processes * numerical global optimization * energy estimates based algorithm Subject RIV: BA - General Mathematics Impact factor: 1.196, year: 2011 http://math.hnue.edu.vn/portal/rss.viewpage.php?id=0000037780&ap=L3BvcnRhbC9ncmFiYmVyLnBocD9jYXRpZD0xMDEyJnBhZ2U9Mg==

  17. Optimization of reconstruction algorithms using Monte Carlo simulation

    Hanson, K.M.

    1989-01-01

    A method for optimizing reconstruction algorithms is presented that is based on how well a specified task can be performed using the reconstructed images. Task performance is numerically assessed by a Monte Carlo simulation of the complete imaging process including the generation of scenes appropriate to the desired application, subsequent data taking, reconstruction, and performance of the stated task based on the final image. The use of this method is demonstrated through the optimization of the Algebraic Reconstruction Technique (ART), which reconstructs images from their projections by an iterative procedure. The optimization is accomplished by varying the relaxation factor employed in the updating procedure. In some of the imaging situations studied, it is found that the optimization of constrained ART, in which a non-negativity constraint is invoked, can vastly increase the detectability of objects. There is little improvement attained for unconstrained ART. The general method presented may be applied to the problem of designing neutron-diffraction spectrometers. (author)

  18. Optimal Parameter Selection of Power System Stabilizer using Genetic Algorithm

    Chung, Hyeng Hwan; Chung, Dong Il; Chung, Mun Kyu [Dong-AUniversity (Korea); Wang, Yong Peel [Canterbury Univeristy (New Zealand)

    1999-06-01

    In this paper, it is suggested that the selection method of optimal parameter of power system stabilizer (PSS) with robustness in low frequency oscillation for power system using real variable elitism genetic algorithm (RVEGA). The optimal parameters were selected in the case of power system stabilizer with one lead compensator, and two lead compensator. Also, the frequency responses characteristics of PSS, the system eigenvalues criterion and the dynamic characteristics were considered in the normal load and the heavy load, which proved usefulness of RVEGA compare with Yu's compensator design theory. (author). 20 refs., 15 figs., 8 tabs.

  19. Parallel Algorithms for Graph Optimization using Tree Decompositions

    Sullivan, Blair D [ORNL; Weerapurage, Dinesh P [ORNL; Groer, Christopher S [ORNL

    2012-06-01

    Although many $\\cal{NP}$-hard graph optimization problems can be solved in polynomial time on graphs of bounded tree-width, the adoption of these techniques into mainstream scientific computation has been limited due to the high memory requirements of the necessary dynamic programming tables and excessive runtimes of sequential implementations. This work addresses both challenges by proposing a set of new parallel algorithms for all steps of a tree decomposition-based approach to solve the maximum weighted independent set problem. A hybrid OpenMP/MPI implementation includes a highly scalable parallel dynamic programming algorithm leveraging the MADNESS task-based runtime, and computational results demonstrate scaling. This work enables a significant expansion of the scale of graphs on which exact solutions to maximum weighted independent set can be obtained, and forms a framework for solving additional graph optimization problems with similar techniques.

  20. Optimal Design of a Hydrogen Community by Genetic Algorithms

    Rodolfo Dufo Lopez; Jose Luis Bernal Agustin; Luis Correas Uson; Ismael Aso Aguarta

    2006-01-01

    A study was conducted for the implementation of two Hydrogen Communities, following the recommendations of the HY-COM initiative of the European Commission. The proposed communities find their place in the municipality of Sabinanigo (Aragon, Spain). Two cases are analyzed, one off-grid village house near Sabinanigo, and a house situated in the town proper. The study was carried out with the HOGA program, Hybrid Optimization by Genetic Algorithms. A description is provided for the algorithms. The off-grid study deals with a hybrid pv-wind system with hydrogen storage for AC supply to an isolated house. The urban study is related to hydrogen production by means of hybrid renewable sources available locally (photovoltaic, wind and hydro). These complement the existing industrial electrolysis processes, in order to cater for the energy requirements of a small fleet of municipal hydrogen-powered vehicles. HOGA was used to optimize both hybrid systems. Dimensioning and deployment estimations are also provided. (authors)

  1. Optimal Design of a Hydrogen Community by Genetic Algorithms

    Rodolfo Dufo Lopeza; Jose Luis Bernal Agustin; Luis Correas Uson; Ismael Aso Aguarta

    2006-01-01

    A study was conducted for the implementation of two Hydrogen Communities, following the recommendations of the HY-COM initiative of the European Commission. The proposed communities find their place in the municipality of Sabinanigo (Aragon, Spain). Two cases are analyzed, one off-grid village house near Sabinanigo, and a house situated in the town proper. The study was carried out with the HOGA program, Hybrid Optimization by Genetic Algorithms. A description is provided for the algorithms. The off-grid study deals with a hybrid PV-wind system with hydrogen storage for AC supply to an isolated house. The urban study is related to hydrogen production by means of hybrid renewable sources available locally (photovoltaic, wind and hydro). These complement the existing industrial electrolysis processes, in order to cater for the energy requirements of a small fleet of municipal hydrogen-powered vehicles. HOGA was used to optimize both hybrid systems. Dimensioning and deployment estimations are also provided. (authors)

  2. Sustainable logistics and transportation optimization models and algorithms

    Gakis, Konstantinos; Pardalos, Panos

    2017-01-01

    Focused on the logistics and transportation operations within a supply chain, this book brings together the latest models, algorithms, and optimization possibilities. Logistics and transportation problems are examined within a sustainability perspective to offer a comprehensive assessment of environmental, social, ethical, and economic performance measures. Featured models, techniques, and algorithms may be used to construct policies on alternative transportation modes and technologies, green logistics, and incentives by the incorporation of environmental, economic, and social measures. Researchers, professionals, and graduate students in urban regional planning, logistics, transport systems, optimization, supply chain management, business administration, information science, mathematics, and industrial and systems engineering will find the real life and interdisciplinary issues presented in this book informative and useful.

  3. Time Optimized Algorithm for Web Document Presentation Adaptation

    Pan, Rong; Dolog, Peter

    2010-01-01

    Currently information on the web is accessed through different devices. Each device has its own properties such as resolution, size, and capabilities to display information in different format and so on. This calls for adaptation of information presentation for such platforms. This paper proposes...... content-optimized and time-optimized algorithms for information presentation adaptation for different devices based on its hierarchical model. The model is formalized in order to experiment with different algorithms.......Currently information on the web is accessed through different devices. Each device has its own properties such as resolution, size, and capabilities to display information in different format and so on. This calls for adaptation of information presentation for such platforms. This paper proposes...

  4. Optimal interconnection trees in the plane theory, algorithms and applications

    Brazil, Marcus

    2015-01-01

    This book explores fundamental aspects of geometric network optimisation with applications to a variety of real world problems. It presents, for the first time in the literature, a cohesive mathematical framework within which the properties of such optimal interconnection networks can be understood across a wide range of metrics and cost functions. The book makes use of this mathematical theory to develop efficient algorithms for constructing such networks, with an emphasis on exact solutions.  Marcus Brazil and Martin Zachariasen focus principally on the geometric structure of optimal interconnection networks, also known as Steiner trees, in the plane. They show readers how an understanding of this structure can lead to practical exact algorithms for constructing such trees.  The book also details numerous breakthroughs in this area over the past 20 years, features clearly written proofs, and is supported by 135 colour and 15 black and white figures. It will help graduate students, working mathematicians, ...

  5. Experimental Methods for the Analysis of Optimization Algorithms

    , computational experiments differ from those in other sciences, and the last decade has seen considerable methodological research devoted to understanding the particular features of such experiments and assessing the related statistical methods. This book consists of methodological contributions on different...... in algorithm design, statistical design, optimization and heuristics, and most chapters provide theoretical background and are enriched with case studies. This book is written for researchers and practitioners in operations research and computer science who wish to improve the experimental assessment......In operations research and computer science it is common practice to evaluate the performance of optimization algorithms on the basis of computational results, and the experimental approach should follow accepted principles that guarantee the reliability and reproducibility of results. However...

  6. Genetic algorithms for optimal design and control of adaptive structures

    Ribeiro, R; Dias-Rodrigues, J; Vaz, M

    2000-01-01

    Future High Energy Physics experiments require the use of light and stable structures to support their most precise radiation detection elements. These large structures must be light, highly stable, stiff and radiation tolerant in an environment where external vibrations, high radiation levels, material aging, temperature and humidity gradients are not negligible. Unforeseen factors and the unknown result of the coupling of environmental conditions, together with external vibrations, may affect the position stability of the detectors and their support structures compromising their physics performance. Careful optimization of static and dynamic behavior must be an essential part of the engineering design. Genetic Algorithms ( GA) belong to the group of probabilistic algorithms, combining elements of direct and stochastic search. They are more robust than existing directed search methods with the advantage of maintaining a population of potential solutions. There is a class of optimization problems for which Ge...

  7. Genetic algorithm trajectory plan optimization for EAMA: EAST Articulated Maintenance Arm

    Wu, Jing, E-mail: wujing@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, 350 Shushanhu Rd., Hefei, Anhui (China); Lappeenranta University of Technology, Skinnarilankatu 34, Lappeenranta (Finland); Wu, Huapeng [Lappeenranta University of Technology, Skinnarilankatu 34, Lappeenranta (Finland); Song, Yuntao; Cheng, Yong; Zhao, Wenglong [Institute of Plasma Physics, Chinese Academy of Sciences, 350 Shushanhu Rd., Hefei, Anhui (China); Wang, Yongbo [Lappeenranta University of Technology, Skinnarilankatu 34, Lappeenranta (Finland)

    2016-11-01

    Highlights: • A redundant 10-DOF serial-articulated robot for EAST assembly and maintains is presented. • A trajectory optimization algorithm of the robot is developed. • A minimum jerk objective is presented to suppress machining vibration of the robot. - Abstract: EAMA (EAST Articulated Maintenance Arm) is an articulated serial manipulator with 7 degrees of freedom (DOF) articulated arm followed by 3-DOF gripper, total length is 8.867 m, works in experimental advanced superconductor tokamak (EAST) vacuum vessel (VV) to perform blanket inspection and remote maintenance tasks. This paper presents a trajectory optimization method which aims to pursue the 7-DOF articulated arm a stable movement, which keeps the mounted inspection camera anti-vibration. Based on dynamics analysis, trajectory optimization algorithm adopts multi-order polynomial interpolation in joint space and high order geometry Jacobian transform. The object of optimization algorithm is to suppress end-effector movement vibration by minimizing jerk RMS (root mean square) value. The proposed solution has such characteristics which can satisfy kinematic constraints of EAMA’s motion and ensure the arm running under the absolute values of velocity, acceleration and jerk boundaries. GA (genetic algorithm) is employed to find global and robust solution for this problem.

  8. Multi-objective optimization with estimation of distribution algorithm in a noisy environment.

    Shim, Vui Ann; Tan, Kay Chen; Chia, Jun Yong; Al Mamun, Abdullah

    2013-01-01

    Many real-world optimization problems are subjected to uncertainties that may be characterized by the presence of noise in the objective functions. The estimation of distribution algorithm (EDA), which models the global distribution of the population for searching tasks, is one of the evolutionary computation techniques that deals with noisy information. This paper studies the potential of EDAs; particularly an EDA based on restricted Boltzmann machines that handles multi-objective optimization problems in a noisy environment. Noise is introduced to the objective functions in the form of a Gaussian distribution. In order to reduce the detrimental effect of noise, a likelihood correction feature is proposed to tune the marginal probability distribution of each decision variable. The EDA is subsequently hybridized with a particle swarm optimization algorithm in a discrete domain to improve its search ability. The effectiveness of the proposed algorithm is examined via eight benchmark instances with different characteristics and shapes of the Pareto optimal front. The scalability, hybridization, and computational time are rigorously studied. Comparative studies show that the proposed approach outperforms other state of the art algorithms.

  9. A Hybrid Optimization Algorithm for Low RCS Antenna Design

    W. Shao

    2012-12-01

    Full Text Available In this article, a simple and efficient method is presented to design low radar cross section (RCS patch antennas. This method consists of a hybrid optimization algorithm, which combines a genetic algorithm (GA with tabu search algorithm (TSA, and electromagnetic field solver. The TSA, embedded into the GA frame, defines the acceptable neighborhood region of parameters and screens out the poor-scoring individuals. Thus, the repeats of search are avoided and the amount of time-consuming electromagnetic simulations is largely reduced. Moreover, the whole design procedure is auto-controlled by programming the VBScript language. A slot patch antenna example is provided to verify the accuracy and efficiency of the proposed method.

  10. Logic hybrid simulation-optimization algorithm for distillation design

    Caballero Suárez, José Antonio

    2014-01-01

    In this paper, we propose a novel algorithm for the rigorous design of distillation columns that integrates a process simulator in a generalized disjunctive programming formulation. The optimal distillation column, or column sequence, is obtained by selecting, for each column section, among a set of column sections with different number of theoretical trays. The selection of thermodynamic models, properties estimation etc., are all in the simulation environment. All the numerical issues relat...

  11. Nonsmooth Optimization Algorithms, System Theory, and Software Tools

    1993-04-13

    Optimization Algorithms, System Theory , and Scftware Tools" AFOSR-90-OO68 L AUTHOR($) Elijah Polak -Professor and Principal Investigator 7. PERFORMING...NSN 754Q-01-2W0-S500 Standard Form 295 (69O104 Draft) F’wsa*W by hA Sit 230.1""V AFOSR-90-0068 NONSMO0 TH OPTIMIZA TION A L GORI THMS, SYSTEM THEORY , AND

  12. Experimental methods for the analysis of optimization algorithms

    Bartz-Beielstein, Thomas; Paquete, Luis; Preuss, Mike

    2010-01-01

    In operations research and computer science it is common practice to evaluate the performance of optimization algorithms on the basis of computational results, and the experimental approach should follow accepted principles that guarantee the reliability and reproducibility of results. However, computational experiments differ from those in other sciences, and the last decade has seen considerable methodological research devoted to understanding the particular features of such experiments and assessing the related statistical methods. This book consists of methodological contributions on diffe

  13. MICRONEEDLE STRUCTURE DESIGN AND OPTIMIZATION USING GENETIC ALGORITHM

    N. A. ISMAIL; S. C. NEOH; N. SABANI; B. N. TAIB

    2015-01-01

    This paper presents a Genetic Algorithm (GA) based microneedle design and analysis. GA is an evolutionary optimization technique that mimics the natural biological evolution. The design of microneedle structure considers the shape of microneedle, material used, size of the array, the base of microneedle, the lumen base, the height of microneedle, the height of the lumen, and the height of the drug container or reservoir. The GA is executed in conjunction with ANSYS simulation system to assess...

  14. Agent assisted interactive algorithm for computationally demanding multiobjective optimization problems

    Ojalehto, Vesa; Podkopaev, Dmitry; Miettinen, Kaisa

    2015-01-01

    We generalize the applicability of interactive methods for solving computationally demanding, that is, time-consuming, multiobjective optimization problems. For this purpose we propose a new agent assisted interactive algorithm. It employs a computationally inexpensive surrogate problem and four different agents that intelligently update the surrogate based on the preferences specified by a decision maker. In this way, we decrease the waiting times imposed on the decision maker du...

  15. Optimized design of embedded DSP system hardware supporting complex algorithms

    Li, Yanhua; Wang, Xiangjun; Zhou, Xinling

    2003-09-01

    The paper presents an optimized design method for a flexible and economical embedded DSP system that can implement complex processing algorithms as biometric recognition, real-time image processing, etc. It consists of a floating-point DSP, 512 Kbytes data RAM, 1 Mbytes FLASH program memory, a CPLD for achieving flexible logic control of input channel and a RS-485 transceiver for local network communication. Because of employing a high performance-price ratio DSP TMS320C6712 and a large FLASH in the design, this system permits loading and performing complex algorithms with little algorithm optimization and code reduction. The CPLD provides flexible logic control for the whole DSP board, especially in input channel, and allows convenient interface between different sensors and DSP system. The transceiver circuit can transfer data between DSP and host computer. In the paper, some key technologies are also introduced which make the whole system work efficiently. Because of the characters referred above, the hardware is a perfect flat for multi-channel data collection, image processing, and other signal processing with high performance and adaptability. The application section of this paper presents how this hardware is adapted for the biometric identification system with high identification precision. The result reveals that this hardware is easy to interface with a CMOS imager and is capable of carrying out complex biometric identification algorithms, which require real-time process.

  16. Genetic algorithms and Monte Carlo simulation for optimal plant design

    Cantoni, M.; Marseguerra, M.; Zio, E.

    2000-01-01

    We present an approach to the optimal plant design (choice of system layout and components) under conflicting safety and economic constraints, based upon the coupling of a Monte Carlo evaluation of plant operation with a Genetic Algorithms-maximization procedure. The Monte Carlo simulation model provides a flexible tool, which enables one to describe relevant aspects of plant design and operation, such as standby modes and deteriorating repairs, not easily captured by analytical models. The effects of deteriorating repairs are described by means of a modified Brown-Proschan model of imperfect repair which accounts for the possibility of an increased proneness to failure of a component after a repair. The transitions of a component from standby to active, and vice versa, are simulated using a multiplicative correlation model. The genetic algorithms procedure is demanded to optimize a profit function which accounts for the plant safety and economic performance and which is evaluated, for each possible design, by the above Monte Carlo simulation. In order to avoid an overwhelming use of computer time, for each potential solution proposed by the genetic algorithm, we perform only few hundreds Monte Carlo histories and, then, exploit the fact that during the genetic algorithm population evolution, the fit chromosomes appear repeatedly many times, so that the results for the solutions of interest (i.e. the best ones) attain statistical significance

  17. Optimization of Key Parameters of Energy Management Strategy for Hybrid Electric Vehicle Using DIRECT Algorithm

    Jingxian Hao

    2016-11-01

    Full Text Available The rule-based logic threshold control strategy has been frequently used in energy management strategies for hybrid electric vehicles (HEVs owing to its convenience in adjusting parameters, real-time performance, stability, and robustness. However, the logic threshold control parameters cannot usually ensure the best vehicle performance at different driving cycles and conditions. For this reason, the optimization of key parameters is important to improve the fuel economy, dynamic performance, and drivability. In principle, this is a multiparameter nonlinear optimization problem. The logic threshold energy management strategy for an all-wheel-drive HEV is comprehensively analyzed and developed in this study. Seven key parameters to be optimized are extracted. The optimization model of key parameters is proposed from the perspective of fuel economy. The global optimization method, DIRECT algorithm, which has good real-time performance, low computational burden, rapid convergence, is selected to optimize the extracted key parameters globally. The results show that with the optimized parameters, the engine operates more at the high efficiency range resulting into a fuel savings of 7% compared with non-optimized parameters. The proposed method can provide guidance for calibrating the parameters of the vehicle energy management strategy from the perspective of fuel economy.

  18. Annealing evolutionary stochastic approximation Monte Carlo for global optimization

    Liang, Faming

    2010-04-08

    In this paper, we propose a new algorithm, the so-called annealing evolutionary stochastic approximation Monte Carlo (AESAMC) algorithm as a general optimization technique, and study its convergence. AESAMC possesses a self-adjusting mechanism, whose target distribution can be adapted at each iteration according to the current samples. Thus, AESAMC falls into the class of adaptive Monte Carlo methods. This mechanism also makes AESAMC less trapped by local energy minima than nonadaptive MCMC algorithms. Under mild conditions, we show that AESAMC can converge weakly toward a neighboring set of global minima in the space of energy. AESAMC is tested on multiple optimization problems. The numerical results indicate that AESAMC can potentially outperform simulated annealing, the genetic algorithm, annealing stochastic approximation Monte Carlo, and some other metaheuristics in function optimization. © 2010 Springer Science+Business Media, LLC.

  19. Optimization of Multipurpose Reservoir Operation with Application Particle Swarm Optimization Algorithm

    Elahe Fallah Mehdipour

    2012-12-01

    Full Text Available Optimal operation of multipurpose reservoirs is one of the complex and sometimes nonlinear problems in the field of multi-objective optimization. Evolutionary algorithms are optimization tools that search decision space using simulation of natural biological evolution and present a set of points as the optimum solutions of problem. In this research, application of multi-objective particle swarm optimization (MOPSO in optimal operation of Bazoft reservoir with different objectives, including generating hydropower energy, supplying downstream demands (drinking, industry and agriculture, recreation and flood control have been considered. In this regard, solution sets of the MOPSO algorithm in bi-combination of objectives and compromise programming (CP using different weighting and power coefficients have been first compared that the MOPSO algorithm in all combinations of objectives is more capable than the CP to find solution with appropriate distribution and these solutions have dominated the CP solutions. Then, ending points of solution set from the MOPSO algorithm and nonlinear programming (NLP results have been compared. Results showed that the MOPSO algorithm with 0.3 percent difference from the NLP results has more capability to present optimum solutions in the ending points of solution set.

  20. Comparison of different chaotic maps in particle swarm optimization algorithm for long-term cascaded hydroelectric system scheduling

    He Yaoyao; Zhou Jianzhong; Xiang Xiuqiao; Chen Heng; Qin Hui

    2009-01-01

    The goal of this paper is to present a novel chaotic particle swarm optimization (CPSO) algorithm and compares the efficiency of three one-dimensional chaotic maps within symmetrical region for long-term cascaded hydroelectric system scheduling. The introduced chaotic maps improve the global optimal capability of CPSO algorithm. Moreover, a piecewise linear interpolation function is employed to transform all constraints into restrict upriver water level for implementing the maximum of objective function. Numerical results and comparisons demonstrate the effect and speed of different algorithms on a practical hydro-system.

  1. Cost optimization model and its heuristic genetic algorithms

    Liu Wei; Wang Yongqing; Guo Jilin

    1999-01-01

    Interest and escalation are large quantity in proportion to the cost of nuclear power plant construction. In order to optimize the cost, the mathematics model of cost optimization for nuclear power plant construction was proposed, which takes the maximum net present value as the optimization goal. The model is based on the activity networks of the project and is an NP problem. A heuristic genetic algorithms (HGAs) for the model was introduced. In the algorithms, a solution is represented with a string of numbers each of which denotes the priority of each activity for assigned resources. The HGAs with this encoding method can overcome the difficulty which is harder to get feasible solutions when using the traditional GAs to solve the model. The critical path of the activity networks is figured out with the concept of predecessor matrix. An example was computed with the HGAP programmed in C language. The results indicate that the model is suitable for the objectiveness, the algorithms is effective to solve the model

  2. Finding optimal vaccination strategies for pandemic influenza using genetic algorithms.

    Patel, Rajan; Longini, Ira M; Halloran, M Elizabeth

    2005-05-21

    In the event of pandemic influenza, only limited supplies of vaccine may be available. We use stochastic epidemic simulations, genetic algorithms (GA), and random mutation hill climbing (RMHC) to find optimal vaccine distributions to minimize the number of illnesses or deaths in the population, given limited quantities of vaccine. Due to the non-linearity, complexity and stochasticity of the epidemic process, it is not possible to solve for optimal vaccine distributions mathematically. However, we use GA and RMHC to find near optimal vaccine distributions. We model an influenza pandemic that has age-specific illness attack rates similar to the Asian pandemic in 1957-1958 caused by influenza A(H2N2), as well as a distribution similar to the Hong Kong pandemic in 1968-1969 caused by influenza A(H3N2). We find the optimal vaccine distributions given that the number of doses is limited over the range of 10-90% of the population. While GA and RMHC work well in finding optimal vaccine distributions, GA is significantly more efficient than RMHC. We show that the optimal vaccine distribution found by GA and RMHC is up to 84% more effective than random mass vaccination in the mid range of vaccine availability. GA is generalizable to the optimization of stochastic model parameters for other infectious diseases and population structures.

  3. Optimizing SRF Gun Cavity Profiles in a Genetic Algorithm Framework

    Hofler, Alicia; Evtushenko, Pavel; Marhauser, Frank

    2009-01-01

    Automation of DC photoinjector designs using a genetic algorithm (GA) based optimization is an accepted practice in accelerator physics. Allowing the gun cavity field profile shape to be varied can extend the utility of this optimization methodology to superconducting and normal conducting radio frequency (SRF/RF) gun based injectors. Finding optimal field and cavity geometry configurations can provide guidance for cavity design choices and verify existing designs. We have considered two approaches for varying the electric field profile. The first is to determine the optimal field profile shape that should be used independent of the cavity geometry, and the other is to vary the geometry of the gun cavity structure to produce an optimal field profile. The first method can provide a theoretical optimal and can illuminate where possible gains can be made in field shaping. The second method can produce more realistically achievable designs that can be compared to existing designs. In this paper, we discuss the design and implementation for these two methods for generating field profiles for SRF/RF guns in a GA based injector optimization scheme and provide preliminary results.

  4. Interior point algorithms: guaranteed optimality for fluence map optimization in IMRT

    Aleman, Dionne M [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, ON M5S 3G8 (Canada); Glaser, Daniel [Division of Optimization and Systems Theory, Department of Mathematics, Royal Institute of Technology, Stockholm (Sweden); Romeijn, H Edwin [Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI 48109-2117 (United States); Dempsey, James F, E-mail: aleman@mie.utoronto.c, E-mail: romeijn@umich.ed, E-mail: jfdempsey@viewray.co [ViewRay, Inc. 2 Thermo Fisher Way, Village of Oakwood, OH 44146 (United States)

    2010-09-21

    One of the most widely studied problems of the intensity-modulated radiation therapy (IMRT) treatment planning problem is the fluence map optimization (FMO) problem, the problem of determining the amount of radiation intensity, or fluence, of each beamlet in each beam. For a given set of beams, the fluences of the beamlets can drastically affect the quality of the treatment plan, and thus it is critical to obtain good fluence maps for radiation delivery. Although several approaches have been shown to yield good solutions to the FMO problem, these solutions are not guaranteed to be optimal. This shortcoming can be attributed to either optimization model complexity or properties of the algorithms used to solve the optimization model. We present a convex FMO formulation and an interior point algorithm that yields an optimal treatment plan in seconds, making it a viable option for clinical applications.

  5. Interior point algorithms: guaranteed optimality for fluence map optimization in IMRT

    Aleman, Dionne M; Glaser, Daniel; Romeijn, H Edwin; Dempsey, James F

    2010-01-01

    One of the most widely studied problems of the intensity-modulated radiation therapy (IMRT) treatment planning problem is the fluence map optimization (FMO) problem, the problem of determining the amount of radiation intensity, or fluence, of each beamlet in each beam. For a given set of beams, the fluences of the beamlets can drastically affect the quality of the treatment plan, and thus it is critical to obtain good fluence maps for radiation delivery. Although several approaches have been shown to yield good solutions to the FMO problem, these solutions are not guaranteed to be optimal. This shortcoming can be attributed to either optimization model complexity or properties of the algorithms used to solve the optimization model. We present a convex FMO formulation and an interior point algorithm that yields an optimal treatment plan in seconds, making it a viable option for clinical applications.

  6. Optimal Design of Pumped Pipeline Systems Using Genetic Algorithm and Mathematical Optimization

    Mohammadhadi Afshar

    2007-12-01

    Full Text Available In recent years, much attention has been paid to the optimal design of pipeline systems. In this study, the problem of pipeline system optimal design has been solved through genetic algorithm and mathematical optimization. Pipe diameters and their thicknesses are considered as decision variables to be designed in a manner that water column separation and excessive pressures are avoided in the event of pump failure. Capabilities of the genetic algorithm and the mathematical programming method are compared for the problem under consideration. For simulation of transient streams, explicit characteristic method is used in which devices such as pumps are defined as boundary conditions of the equations defining the hydraulic behavior of pipe segments. The problem of optimal design of pipeline systems is a constrained problem which is converted to an unconstrained optimization problem using an external penalty function approach. The efficiency of the proposed approaches is verified in one example and the results are presented.

  7. Polar Bear Optimization Algorithm: Meta-Heuristic with Fast Population Movement and Dynamic Birth and Death Mechanism

    Dawid Połap

    2017-09-01

    Full Text Available In the proposed article, we present a nature-inspired optimization algorithm, which we called Polar Bear Optimization Algorithm (PBO. The inspiration to develop the algorithm comes from the way polar bears hunt to survive in harsh arctic conditions. These carnivorous mammals are active all year round. Frosty climate, unfavorable to other animals, has made polar bears adapt to the specific mode of exploration and hunting in large areas, not only over ice but also water. The proposed novel mathematical model of the way polar bears move in the search for food and hunt can be a valuable method of optimization for various theoretical and practical problems. Optimization is very similar to nature, similarly to search for optimal solutions for mathematical models animals search for optimal conditions to develop in their natural environments. In this method. we have used a model of polar bear behaviors as a search engine for optimal solutions. Proposed simulated adaptation to harsh winter conditions is an advantage for local and global search, while birth and death mechanism controls the population. Proposed PBO was evaluated and compared to other meta-heuristic algorithms using sample test functions and some classical engineering problems. Experimental research results were compared to other algorithms and analyzed using various parameters. The analysis allowed us to identify the leading advantages which are rapid recognition of the area by the relevant population and efficient birth and death mechanism to improve global and local search within the solution space.

  8. Simulated Stochastic Approximation Annealing for Global Optimization With a Square-Root Cooling Schedule

    Liang, Faming; Cheng, Yichen; Lin, Guang

    2014-01-01

    cooling schedule, for example, a square-root cooling schedule, while guaranteeing the global optima to be reached when the temperature tends to zero. The new algorithm has been tested on a few benchmark optimization problems, including feed-forward neural

  9. Optimization of neural network algorithm of the land market description

    M. A. Karpovich

    2016-01-01

    Full Text Available The advantages of neural network technology is shown in comparison of traditional descriptions of dynamically changing systems, which include a modern land market. The basic difficulty arising in the practical implementation of neural network models of the land market and construction products is revealed It is the formation of a representative set of training and test examples. The requirements which are necessary for the correct description of the current economic situation has been determined, it consists in the fact that Train-paid-set in the feature space should not has the ranges with a low density of observations. The methods of optimization of empirical array, which allow to avoid the long-range extrapolation of data from range of concentration of the set of examples are formulated. It is shown that a radical method of optimization a set of training and test examples enclosing to collect supplemantary information, is associated with significant costs time and resources for the economic problems and the ratio of cost / efficiency is less efficient than an algorithm optimization neural network models the earth market fixed set of empirical data. Algorithm of optimization based on the transformation of arrays of information which represents the expansion of the ranges of concentration of the set of examples and compression the ranges of low density of observations is analyzed in details. The significant reduction in the relative error of land price description is demonstrated on the specific example of Voronezh region market of lands which intend for road construction, it makes the using of radical method of empirical optimization of the array costeffective with accounting the significant absolute value of the land. The high economic efficiency of the proposed algorithms is demonstrated.

  10. Multi-objective hybrid PSO-APO algorithm based security constrained optimal power flow with wind and thermal generators

    Kiran Teeparthi

    2017-04-01

    Full Text Available In this paper, a new low level with teamwork heterogeneous hybrid particle swarm optimization and artificial physics optimization (HPSO-APO algorithm is proposed to solve the multi-objective security constrained optimal power flow (MO-SCOPF problem. Being engaged with the environmental and total production cost concerns, wind energy is highly penetrating to the main grid. The total production cost, active power losses and security index are considered as the objective functions. These are simultaneously optimized using the proposed algorithm for base case and contingency cases. Though PSO algorithm exhibits good convergence characteristic, fails to give near optimal solution. On the other hand, the APO algorithm shows the capability of improving diversity in search space and also to reach a near global optimum point, whereas, APO is prone to premature convergence. The proposed hybrid HPSO-APO algorithm combines both individual algorithm strengths, to get balance between global and local search capability. The APO algorithm is improving diversity in the search space of the PSO algorithm. The hybrid optimization algorithm is employed to alleviate the line overloads by generator rescheduling during contingencies. The standard IEEE 30-bus and Indian 75-bus practical test systems are considered to evaluate the robustness of the proposed method. The simulation results reveal that the proposed HPSO-APO method is more efficient and robust than the standard PSO and APO methods in terms of getting diverse Pareto optimal solutions. Hence, the proposed hybrid method can be used for the large interconnected power system to solve MO-SCOPF problem with integration of wind and thermal generators.

  11. Secure Scientific Applications Scheduling Technique for Cloud Computing Environment Using Global League Championship Algorithm

    Abdulhamid, Shafi’i Muhammad; Abd Latiff, Muhammad Shafie; Abdul-Salaam, Gaddafi; Hussain Madni, Syed Hamid

    2016-01-01

    Cloud computing system is a huge cluster of interconnected servers residing in a datacenter and dynamically provisioned to clients on-demand via a front-end interface. Scientific applications scheduling in the cloud computing environment is identified as NP-hard problem due to the dynamic nature of heterogeneous resources. Recently, a number of metaheuristics optimization schemes have been applied to address the challenges of applications scheduling in the cloud system, without much emphasis on the issue of secure global scheduling. In this paper, scientific applications scheduling techniques using the Global League Championship Algorithm (GBLCA) optimization technique is first presented for global task scheduling in the cloud environment. The experiment is carried out using CloudSim simulator. The experimental results show that, the proposed GBLCA technique produced remarkable performance improvement rate on the makespan that ranges between 14.44% to 46.41%. It also shows significant reduction in the time taken to securely schedule applications as parametrically measured in terms of the response time. In view of the experimental results, the proposed technique provides better-quality scheduling solution that is suitable for scientific applications task execution in the Cloud Computing environment than the MinMin, MaxMin, Genetic Algorithm (GA) and Ant Colony Optimization (ACO) scheduling techniques. PMID:27384239

  12. Secure Scientific Applications Scheduling Technique for Cloud Computing Environment Using Global League Championship Algorithm.

    Abdulhamid, Shafi'i Muhammad; Abd Latiff, Muhammad Shafie; Abdul-Salaam, Gaddafi; Hussain Madni, Syed Hamid

    2016-01-01

    Cloud computing system is a huge cluster of interconnected servers residing in a datacenter and dynamically provisioned to clients on-demand via a front-end interface. Scientific applications scheduling in the cloud computing environment is identified as NP-hard problem due to the dynamic nature of heterogeneous resources. Recently, a number of metaheuristics optimization schemes have been applied to address the challenges of applications scheduling in the cloud system, without much emphasis on the issue of secure global scheduling. In this paper, scientific applications scheduling techniques using the Global League Championship Algorithm (GBLCA) optimization technique is first presented for global task scheduling in the cloud environment. The experiment is carried out using CloudSim simulator. The experimental results show that, the proposed GBLCA technique produced remarkable performance improvement rate on the makespan that ranges between 14.44% to 46.41%. It also shows significant reduction in the time taken to securely schedule applications as parametrically measured in terms of the response time. In view of the experimental results, the proposed technique provides better-quality scheduling solution that is suitable for scientific applications task execution in the Cloud Computing environment than the MinMin, MaxMin, Genetic Algorithm (GA) and Ant Colony Optimization (ACO) scheduling techniques.

  13. Real parameter optimization by an effective differential evolution algorithm

    Ali Wagdy Mohamed

    2013-03-01

    Full Text Available This paper introduces an Effective Differential Evolution (EDE algorithm for solving real parameter optimization problems over continuous domain. The proposed algorithm proposes a new mutation rule based on the best and the worst individuals among the entire population of a particular generation. The mutation rule is combined with the basic mutation strategy through a linear decreasing probability rule. The proposed mutation rule is shown to promote local search capability of the basic DE and to make it faster. Furthermore, a random mutation scheme and a modified Breeder Genetic Algorithm (BGA mutation scheme are merged to avoid stagnation and/or premature convergence. Additionally, the scaling factor and crossover of DE are introduced as uniform random numbers to enrich the search behavior and to enhance the diversity of the population. The effectiveness and benefits of the proposed modifications used in EDE has been experimentally investigated. Numerical experiments on a set of bound-constrained problems have shown that the new approach is efficient, effective and robust. The comparison results between the EDE and several classical differential evolution methods and state-of-the-art parameter adaptive differential evolution variants indicate that the proposed EDE algorithm is competitive with , and in some cases superior to, other algorithms in terms of final solution quality, efficiency, convergence rate, and robustness.

  14. A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Yudong Zhang

    2015-01-01

    Full Text Available Particle swarm optimization (PSO is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO, population topology (as fully connected, von Neumann, ring, star, random, etc., hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization, extensions (to multiobjective, constrained, discrete, and binary optimization, theoretical analysis (parameter selection and tuning, and convergence analysis, and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms. On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms.

  15. Energy loss optimization of run-off-road wheels applying imperialist competitive algorithm

    Hamid Taghavifar

    2014-08-01

    Full Text Available The novel imperialist competitive algorithm (ICA has presented outstanding fitness on various optimization problems. Application of meta-heuristics has been a dynamic studying interest of the reliability optimization to determine idleness and reliability constituents. The application of a meta-heuristic evolutionary optimization method, imperialist competitive algorithm (ICA, for minimization of energy loss due to wheel rolling resistance in a soil bin facility equipped with single-wheel tester is discussed. The required data were collected thorough various designed experiments in the controlled soil bin environment. Local and global searching of the search space proposed that the energy loss could be reduced to the minimum amount of 15.46 J at the optimized input variable configuration of wheel load at 1.2 kN, tire inflation pressure of 296 kPa and velocity of 2 m/s. Meanwhile, genetic algorithm (GA, particle swarm optimization (PSO and hybridized GA–PSO approaches were benchmarked among the broad spectrum of meta-heuristics to find the outperforming approach. It was deduced that, on account of the obtained results, ICA can achieve optimum configuration with superior accuracy in less required computational time.

  16. A hardware-algorithm co-design approach to optimize seizure detection algorithms for implantable applications.

    Raghunathan, Shriram; Gupta, Sumeet K; Markandeya, Himanshu S; Roy, Kaushik; Irazoqui, Pedro P

    2010-10-30

    Implantable neural prostheses that deliver focal electrical stimulation upon demand are rapidly emerging as an alternate therapy for roughly a third of the epileptic patient population that is medically refractory. Seizure detection algorithms enable feedback mechanisms to provide focally and temporally specific intervention. Real-time feasibility and computational complexity often limit most reported detection algorithms to implementations using computers for bedside monitoring or external devices communicating with the implanted electrodes. A comparison of algorithms based on detection efficacy does not present a complete picture of the feasibility of the algorithm with limited computational power, as is the case with most battery-powered applications. We present a two-dimensional design optimization approach that takes into account both detection efficacy and hardware cost in evaluating algorithms for their feasibility in an implantable application. Detection features are first compared for their ability to detect electrographic seizures from micro-electrode data recorded from kainate-treated rats. Circuit models are then used to estimate the dynamic and leakage power consumption of the compared features. A score is assigned based on detection efficacy and the hardware cost for each of the features, then plotted on a two-dimensional design space. An optimal combination of compared features is used to construct an algorithm that provides maximal detection efficacy per unit hardware cost. The methods presented in this paper would facilitate the development of a common platform to benchmark seizure detection algorithms for comparison and feasibility analysis in the next generation of implantable neuroprosthetic devices to treat epilepsy. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Multi-Objective Optimization of Grillages Applying the Genetic Algorithm

    Darius Mačiūnas

    2012-01-01

    Full Text Available The article analyzes the optimization of grillage-type foundations seeking for the least possible reactive forces in the poles for a given number of poles and for the least possible bending moments of absolute values in the connecting beams of the grillage. Therefore, we suggest using a compromise objective function (to be minimized that consists of the maximum reactive force arising in all poles and the maximum bending moment of the absolute value in connecting beams; both components include the given weights. The variables of task design are pole positions under connecting beams. The optimization task is solved applying the algorithm containing all the initial data of the problem. Reactive forces and bending moments are calculated using an original program (finite element method is applied. This program is integrated into the optimization algorithm using the “black-box” principle. The “black-box” finite element program sends back the corresponding value of the objective function. Numerical experiments revealed the optimal quantity of points to compute bending moments. The obtained results show a certain ratio of weights in the objective function where the contribution of reactive forces and bending moments to the objective function are equivalent. This solution can serve as a pilot project for more detailed design.Article in Lithuanian

  18. Chaos Time Series Prediction Based on Membrane Optimization Algorithms

    Meng Li

    2015-01-01

    Full Text Available This paper puts forward a prediction model based on membrane computing optimization algorithm for chaos time series; the model optimizes simultaneously the parameters of phase space reconstruction (τ,m and least squares support vector machine (LS-SVM (γ,σ by using membrane computing optimization algorithm. It is an important basis for spectrum management to predict accurately the change trend of parameters in the electromagnetic environment, which can help decision makers to adopt an optimal action. Then, the model presented in this paper is used to forecast band occupancy rate of frequency modulation (FM broadcasting band and interphone band. To show the applicability and superiority of the proposed model, this paper will compare the forecast model presented in it with conventional similar models. The experimental results show that whether single-step prediction or multistep prediction, the proposed model performs best based on three error measures, namely, normalized mean square error (NMSE, root mean square error (RMSE, and mean absolute percentage error (MAPE.

  19. A Novel Adaptive Particle Swarm Optimization Algorithm with Foraging Behavior in Optimization Design

    Liu Yan

    2018-01-01

    Full Text Available The method of repeated trial and proofreading is generally used to the convention reducer design, but these methods is low efficiency and the size of the reducer is often large. Aiming the problems, this paper presents an adaptive particle swarm optimization algorithm with foraging behavior, in this method, the bacterial foraging process is introduced into the adaptive particle swarm optimization algorithm, which can provide the function of particle chemotaxis, swarming, reproduction, elimination and dispersal, to improve the ability of local search and avoid premature behavior. By test verification through typical function and the application of the optimization design in the structure of the reducer with discrete and continuous variables, the results are shown that the new algorithm has the advantages of good reliability, strong searching ability and high accuracy. It can be used in engineering design, and has a strong applicability.

  20. A Swarm Optimization Algorithm for Multimodal Functions and Its Application in Multicircle Detection

    Erik Cuevas

    2013-01-01

    Full Text Available In engineering problems due to physical and cost constraints, the best results, obtained by a global optimization algorithm, cannot be realized always. Under such conditions, if multiple solutions (local and global are known, the implementation can be quickly switched to another solution without much interrupting the design process. This paper presents a new swarm multimodal optimization algorithm named as the collective animal behavior (CAB. Animal groups, such as schools of fish, flocks of birds, swarms of locusts, and herds of wildebeest, exhibit a variety of behaviors including swarming about a food source, milling around a central location, or migrating over large distances in aligned groups. These collective behaviors are often advantageous to groups, allowing them to increase their harvesting efficiency to follow better migration routes, to improve their aerodynamic, and to avoid predation. In the proposed algorithm, searcher agents emulate a group of animals which interact with each other based on simple biological laws that are modeled as evolutionary operators. Numerical experiments are conducted to compare the proposed method with the state-of-the-art methods on benchmark functions. The proposed algorithm has been also applied to the engineering problem of multi-circle detection, achieving satisfactory results.