WorldWideScience

Sample records for global mapping mission

  1. Japanese Global Precipitation Measurement (GPM) mission status and application of satellite-based global rainfall map

    Science.gov (United States)

    Kachi, Misako; Shimizu, Shuji; Kubota, Takuji; Yoshida, Naofumi; Oki, Riko; Kojima, Masahiro; Iguchi, Toshio; Nakamura, Kenji

    2010-05-01

    . Collaboration with GCOM-W is not only limited to its participation to GPM constellation but also coordination in areas of algorithm development and validation in Japan. Generation of high-temporal and high-accurate global rainfall map is one of targets of the GPM mission. As a proto-type for GPM era, JAXA has developed and operates the Global Precipitation Map algorithm in near-real-time since October 2008, and hourly and 0.1-degree resolution binary data and images available at http://sharaku.eorc.jaxa.jp/GSMaP/ four hours after observation. The algorithms are based on outcomes from the Global Satellite Mapping for Precipitation (GSMaP) project, which was sponsored by the Japan Science and Technology Agency (JST) under the Core Research for Evolutional Science and Technology (CREST) framework between 2002 and 2007 (Okamoto et al., 2005; Aonashi et al., 2009; Ushio et al., 2009). Target of GSMaP project is to produce global rainfall maps that are highly accurate and in high temporal and spatial resolution through the development of rain rate retrieval algorithms based on reliable precipitation physical models by using several microwave radiometer data, and comprehensive use of precipitation radar and geostationary infrared imager data. Near-real-time GSMaP data is distributed via internet and utilized by end users. Purpose of data utilization by each user covers broad areas and in world wide; Science researches (model validation, data assimilation, typhoon study, etc.), weather forecast/service, flood warning and rain analysis over river basin, oceanographic condition forecast, agriculture, and education. Toward the GPM era, operational application should be further emphasized as well as science application. JAXA continues collaboration with hydrological communities to utilize satellite-based precipitation data as inputs to future flood prediction and warning system, as well as with meteorological agencies to proceed further data utilization in numerical weather prediction

  2. China's Mission in Surveying, Mapping and Geographic Information during Global Governance

    Science.gov (United States)

    Jia, D.; Xue, C.; Chen, X.

    2018-04-01

    In the new era, it is proposed that China should be transformed from a participant and a cooperator into a designer, an impeller and a leader, continue taking an effect of responsible great power, increase public product supply, perfect a global governance system and contribute to China's wisdom and China's schemes during global governance, thus surveying and mapping geographic information takes on great mission. On the one hand, we have to timely grasp global geographic information data resources to provide an important scientific data support for China's wisdom and China's schemes. On the other hand, we have to provide surveying and mapping geographic information infrastructure construction and public products for developing countries, support location services within a global territorial scope, and realize the smoothness of talent flow, material flow and information flow between China and countries in the world. Meanwhile, external assistance and international communication and cooperation of surveying and mapping geographic information are also enhanced, and popularization and application of a geographic information technology in underdeveloped countries and regions are promoted.

  3. A new planetary mapping for future space missions

    Science.gov (United States)

    Karachevtseva, Irina; Kokhanov, Alexander; Rodionova, Janna; Zubarev, Anatoliy; Nadezhdina, Irina; Kreslavsky, Mikhail; Oberst, Jürgen

    2015-04-01

    future missions, we have created various maps as results of first year research: new base maps of Ganymede, including a hypsometric map and a global surface map; the base and thematic maps of Phobos which were updated using new image data sets from Mars Express; a newest map of topographic roughness of Mercury (for north polar area) [2] and a map of topographic roughness of the Moon using laser altimeter data processing obtained by MESSENGER (MLA) and LRO (LOLA) for their comparative analyses; a new global hypsometric map of the Moon. Published version of the maps will be presented at the conference, and all data products using for mapping will be available via MExLab Geoportal (http://cartsrv.mexlab.ru/geoportal/#body/). Acknowledgments. This work was carried out in MIIGAiK and supported by Russian Science Foundation, project #14-22-00197. References: [1] http://mexlab.miigaik.ru/eng/ [2] Kreslavsky et al., Geophys. Res.Lett., 41, doi:10.1002/2014GL062162 [3] http://cartsrv.mexlab.ru/geoportal/#body/

  4. The First USGS Global Geologic Map of Europa

    Science.gov (United States)

    Leonard, E. J.; Patthoff, D. A.; Senske, D.; Collins, G. C.

    2017-12-01

    Understanding the global scale geology of Europa is paramount to gaining insight into the potential habitability of this icy world. To this end, work is ongoing to complete a global geological map at the scale of 1:15 million that incorporates data at all resolutions collected by the Voyager and Galileo missions. The results of this work will aid the Europa Clipper mission, now in formulation, by providing a framework for collaborative and synergistic science investigations. To understand global geologic and tectonic relations, a total of 10 geologic units have been defined. These include: Low Albedo Ridge Material (lam)—low albedo material that irregularly surrounds large (>20 km) ridge structures; Ridged plains (pr)—distributed over all latitudes and characterized by subparallel to cross-cutting ridges and troughs visible at high resolution (material (b)—linear to curvilinear zones with a distinct, abrupt albedo change from the surrounding region; Crater material (c), Continuous Crater Ejecta (ce) and Discontinuous Crater Ejecta (dce)—features associated with impact craters including the site of the impact, crater material, and the fall-out debris respectively; Low Albedo Chaos (chl), Mottled Albedo Chaos (chm) and High Albedo Chaos (chh)—disrupted terrain with a relatively uniform low albedo, patchy/variegated albedo, and uniform high albedo appearance respectively; Knobby Chaos (chk) - disrupted terrain with rough and blocky texture occurring in the high latitudes. In addition to the geologic units, our mapping also includes structural features—Ridges, Cycloids, Undifferentiated Linea, Crater Rims, Depression Margins, Dome Margins and Troughs. We also introduce a point feature (at the global scale), Microchaos, to denote small (material. The completed map will constrain the distribution of different Europa terrains and provide a general stratigraphic framework to assess the geologic history of Europa from the regional to the global scale. Here, we

  5. Can the Future EnMAP Mission Contribute to Urban Applications? A Literature Survey

    Directory of Open Access Journals (Sweden)

    Andreas Müller

    2011-08-01

    Full Text Available With urban populations and their footprints growing globally, the need to assess the dynamics of the urban environment increases. Remote sensing is one approach that can analyze these developments quantitatively with respect to spatially and temporally large scale changes. With the 2015 launch of the spaceborne EnMAP mission, a new hyperspectral sensor with high signal-to-noise ratio at medium spatial resolution, and a 21 day global revisit capability will become available. This paper presents the results of a literature survey on existing applications and image analysis techniques in the context of urban remote sensing in order to identify and outline potential contributions of the future EnMAP mission. Regarding urban applications, four frequently addressed topics have been identified: urban development and planning, urban growth assessment, risk and vulnerability assessment and urban climate. The requirements of four application fields and associated image processing techniques used to retrieve desired parameters and create geo-information products have been reviewed. As a result, we identified promising research directions enabling the use of EnMAP for urban studies. First and foremost, research is required to analyze the spectral information content of an EnMAP pixel used to support material-based land cover mapping approaches. This information can subsequently be used to improve urban indicators, such as imperviousness. Second, we identified the global monitoring of urban areas as a promising field of investigation taking advantage of EnMAP’s spatial coverage and revisit capability. However, owing to the limitations of EnMAPs spatial resolution for urban applications, research should also focus on hyperspectral resolution enhancement to enable retrieving material information on sub-pixel level.

  6. Geologic mapping of the Amirani-Gish Bar region of Io: Implications for the global geologic mapping of Io

    Science.gov (United States)

    Williams, D.A.; Keszthelyi, L.P.; Crown, D.A.; Jaeger, W.L.; Schenk, P.M.

    2007-01-01

    We produced the first geologic map of the Amirani-Gish Bar region of Io, the last of four regional maps generated from Galileo mission data. The Amirani-Gish Bar region has five primary types of geologic materials: plains, mountains, patera floors, flows, and diffuse deposits. The flows and patera floors are thought to be compositionally similar, but are subdivided based on interpretations regarding their emplacement environments and mechanisms. Our mapping shows that volcanic activity in the Amirani-Gish Bar region is dominated by the Amirani Eruptive Center (AEC), now recognized to be part of an extensive, combined Amirani-Maui flow field. A mappable flow connects Amirani and Maui, suggesting that Maui is fed from Amirani, such that the post-Voyager designation "Maui Eruptive Center" should be revised. Amirani contains at least four hot spots detected by Galileo, and is the source of widespread bright (sulfur?) flows and active dark (silicate?) flows being emplaced in the Promethean style (slowly emplaced, compound flow fields). The floor of Gish Bar Patera has been partially resurfaced by dark lava flows, although other parts of its floor are bright and appeared unchanged during the Galileo mission. This suggests that the floor did not undergo complete resurfacing as a lava lake as proposed for other ionian paterae. There are several other hot spots in the region that are the sources of both active dark flows (confined within paterae), and SO2- and S2-rich diffuse deposits. Mapped diffuse deposits around fractures on mountains and in the plains appear to serve as the source for gas venting without the release of magma, an association previously unrecognized in this region. The six mountains mapped in this region exhibit various states of degradation. In addition to gaining insight into this region of Io, all four maps are studied to assess the best methodology to use to produce a new global geologic map of Io based on the newly released, combined Galileo

  7. The Hydrosphere State (Hydros) Satellite Mission: An Earth System Pathfinder for Global Mapping of Soil Moisture and Land Freeze/Thaw

    Science.gov (United States)

    Entekhabi, D.; Njoku, E. G.; Spencer, M.; Kim, Y.; Smith, J.; McDonald, K. C.; vanZyl, J.; Houser, P.; Dorion, T.; Koster, R.; hide

    2004-01-01

    The Hydrosphere State Mission (Hydros) is a pathfinder mission in the National Aeronautics and Space Administration (NASA) Earth System Science Pathfinder Program (ESSP). The objective of the mission is to provide exploratory global measurements of the earth's soil moisture at 10-km resolution with two- to three-days revisit and land-surface freeze/thaw conditions at 3-km resolution with one- to two-days revisit. The mission builds on the heritage of ground-based and airborne passive and active low-frequency microwave measurements that have demonstrated and validated the effectiveness of the measurements and associated algorithms for estimating the amount and phase (frozen or thawed) of surface soil moisture. The mission data will enable advances in weather and climate prediction and in mapping processes that link the water, energy, and carbon cycles. The Hydros instrument is a combined radar and radiometer system operating at 1.26 GHz (with VV, HH, and HV polarizations) and 1.41 GHz (with H, V, and U polarizations), respectively. The radar and the radiometer share the aperture of a 6-m antenna with a look-angle of 39 with respect to nadir. The lightweight deployable mesh antenna is rotated at 14.6 rpm to provide a constant look-angle scan across a swath width of 1000 km. The wide swath provides global coverage that meet the revisit requirements. The radiometer measurements allow retrieval of soil moisture in diverse (nonforested) landscapes with a resolution of 40 km. The radar measurements allow the retrieval of soil moisture at relatively high resolution (3 km). The mission includes combined radar/radiometer data products that will use the synergy of the two sensors to deliver enhanced-quality 10-km resolution soil moisture estimates. In this paper, the science requirements and their traceability to the instrument design are outlined. A review of the underlying measurement physics and key instrument performance parameters are also presented.

  8. Geologic Mapping Results for Ceres from NASA's Dawn Mission

    Science.gov (United States)

    Williams, D. A.; Mest, S. C.; Buczkowski, D.; Scully, J. E. C.; Raymond, C. A.; Russell, C. T.

    2017-12-01

    NASA's Dawn Mission included a geologic mapping campaign during its nominal mission at dwarf planet Ceres, including production of a global geologic map and a series of 15 quadrangle maps to determine the variety of process-related geologic materials and the geologic history of Ceres. Our mapping demonstrates that all major planetary geologic processes (impact cratering, volcanism, tectonism, and gradation (weathering-erosion-deposition)) have occurred on Ceres. Ceres crust, composed of altered and NH3-bearing silicates, carbonates, salts and 30-40% water ice, preserves impact craters and all sizes and degradation states, and may represent the remains of the bottom of an ancient ocean. Volcanism is manifested by cryovolcanic domes, such as Ahuna Mons and Cerealia Facula, and by explosive cryovolcanic plume deposits such as the Vinalia Faculae. Tectonism is represented by several catenae extending from Ceres impact basins Urvara and Yalode, terracing in many larger craters, and many localized fractures around smaller craters. Gradation is manifested in a variety of flow-like features caused by mass wasting (landslides), ground ice flows, as well as impact ejecta lobes and melts. We have constructed a chronostratigraphy and geologic timescale for Ceres that is centered around major impact events. Ceres geologic periods include Pre-Kerwanan, Kerwanan, Yalodean/Urvaran, and Azaccan (the time of rayed craters, similar to the lunar Copernican). The presence of geologically young cryovolcanic deposits on Ceres surface suggests that there could be warm melt pockets within Ceres shallow crust and the dwarf planet remain geologically active.

  9. Towards a global land subsidence map

    NARCIS (Netherlands)

    Erkens, G.; Sutanudjaja, E. H.

    2015-01-01

    Land subsidence is a global problem, but a global land subsidence map is not available yet. Such map is crucial to raise global awareness of land subsidence, as land subsidence causes extensive damage (probably in the order of billions of dollars annually). With the global land subsidence map

  10. Global astrometry with the space interferometry mission

    Science.gov (United States)

    Boden, A.; Unwin, S.; Shao, M.

    1997-01-01

    The prospects for global astrometric measurements with the space interferometry mission (SIM) are discussed. The SIM mission will perform four microarcsec astrometric measurements on objects as faint as 20 mag using the optical interferometry technique with a 10 m baseline. The SIM satellite will perform narrow angle astrometry and global astrometry by means of an astrometric grid. The sensitivities of the SIM global astrometric performance and the grid accuracy versus instrumental parameters and sky coverage schemes are reported on. The problems in finding suitable astrometric grid objects to support microarcsec astrometry, and related ground-based observation programs are discussed.

  11. Airborne Lidar Simulator for the Lidar Surface Topography (LIST) Mission

    Science.gov (United States)

    Yu, Anthony W.; Krainak, Michael A.; Abshire, James B.; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis

    2010-01-01

    In 2007, the National Research Council (NRC) completed its first decadal survey for Earth science at the request of NASA, NOAA, and USGS. The Lidar Surface Topography (LIST) mission is one of fifteen missions recommended by NRC, whose primary objectives are to map global topography and vegetation structure at 5 m spatial resolution, and to acquire global surface height mapping within a few years. NASA Goddard conducted an initial mission concept study for the LIST mission in 2007, and developed the initial measurement requirements for the mission.

  12. The Geopotential Research Mission - Mapping the near earth gravity and magnetic fields

    Science.gov (United States)

    Taylor, P. T.; Keating, T.; Smith, D. E.; Langel, R. A.; Schnetzler, C. C.; Kahn, W. D.

    1983-01-01

    The Geopotential Research Mission (GRM), NASA's low-level satellite system designed to measure the gravity and magnetic fields of the earth, and its objectives are described. The GRM will consist of two, Shuttle launched, satellite systems (300 km apart) that will operate simultaneously at a 160 km circular-polar orbit for six months. Current mission goals include mapping the global geoid to 10 cm, measuring gravity-field anomalies to 2 mgal with a spatial resolution of 100 km, detecting crustal magnetic anomalies of 100 km wavelength with 1 nT accuracy, measuring the vectors components to + or - 5 arc sec and 5 nT, and computing the main dipole or core field to 5 nT with a 2 nT/year secular variation detection. Resource analysis and exploration geology are additional applications considered.

  13. Mapping the global land surface using 1 km AVHRR data

    Science.gov (United States)

    Lauer, D.T.; Eidenshink, J.C.

    1998-01-01

    The scientific requirements for mapping the global land surface using 1 km advanced very high resolution radiometer (AVHRR) data have been set forth by the U.S. Global Change Research Program; the International Geosphere Biosphere Programme (IGBP); The United Nations; the National Oceanic and Atmospheric Administration (NOAA); the Committee on Earth Observations Satellites; and the National Aeronautics and Space Administration (NASA) mission to planet Earth (MTPE) program. Mapping the global land surface using 1 km AVHRR data is an international effort to acquire, archive, process, and distribute 1 km AVHRR data to meet the needs of the international science community. A network of AVHRR receiving stations, along with data recorded by NOAA, has been acquiring daily global land coverage since April 1, 1992. A data set of over 70,000 AVHRR images is archived and distributed by the United States Geological Survey (USGS) EROS Data Center, and the European Space Agency. Under the guidance of the IGBP, processing standards have been developed for calibration, atmospheric correction, geometric registration, and the production of global 10-day maximum normalized difference vegetation index (NDVI) composites. The major uses of the composites are for the study of surface vegetation condition, mapping land cover, and deriving biophysical characteristics of terrestrial ecosystems. A time-series of 54 10-day global vegetation index composites for the period of April 1, 1992 through September 1993 has been produced. The production of a time-series of 33 10-day global vegetation index composites using NOAA-14 data for the period of February 1, 1995 through December 31, 1995 is underway. The data products are available from the USGS, in cooperation with NASA's MTPE program and other international organizations.

  14. Global Precipitation Measurement Mission: Architecture and Mission Concept

    Science.gov (United States)

    Bundas, David

    2005-01-01

    The Global Precipitation Measurement (GPM) Mission is a collaboration between the National Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA), and other partners, with the goal of monitoring the diurnal and seasonal variations in precipitation over the surface of the earth. These measurements will be used to improve current climate models and weather forecasting, and enable improved storm and flood warnings. This paper gives an overview of the mission architecture and addresses some of the key trades that have been completed, including the selection of the Core Observatory s orbit, orbit maintenance trades, and design issues related to meeting orbital debris requirements.

  15. Geodatabase model for global geologic mapping: concept and implementation in planetary sciences

    Science.gov (United States)

    Nass, Andrea

    2017-04-01

    One aim of the NASA Dawn mission is to generate global geologic maps of the asteroid Vesta and the dwarf planet Ceres. To accomplish this, the Dawn Science Team followed the technical recommendations for cartographic basemap production. The geological mapping campaign of Vesta was completed and published, but mapping of the dwarf planet Ceres is still ongoing. The tiling schema for the geological mapping is the same for both planetary bodies and for Ceres it is divided into two parts: four overview quadrangles (Survey Orbit, 415 m/pixel) and 15 more detailed quadrangles (High Altitude Mapping HAMO, 140 m/pixel). The first global geologic map was based on survey images (415 m/pixel). The combine 4 Survey quadrangles completed by HAMO data served as basis for generating a more detailed view of the geologic history and also for defining the chronostratigraphy and time scale of the dwarf planet. The most detailed view can be expected within the 15 mapping quadrangles based on HAMO resolution and completed by the Low Altitude Mapping (LAMO) data with 35 m/pixel. For the interpretative mapping process of each quadrangle one responsible mapper was assigned. Unifying the geological mapping of each quadrangle and bringing this together to regional and global valid statements is already a very time intensive task. However, another challenge that has to be accomplished is to consider how the 15 individual mappers can generate one homogenous GIS-based project (w.r.t. geometrical and visual character) thus produce a geologically-consistent final map. Our approach this challenge was already discussed for mapping of Vesta. To accommodate the map requirements regarding rules for data storage and database management, the computer-based GIS environment used for the interpretative mapping process must be designed in a way that it can be adjusted to the unique features of the individual investigation areas. Within this contribution the template will be presented that uses standards

  16. Towards large-scale mapping of urban three-dimensional structure using Landsat imagery and global elevation datasets

    Science.gov (United States)

    Wang, P.; Huang, C.

    2017-12-01

    The three-dimensional (3D) structure of buildings and infrastructures is fundamental to understanding and modelling of the impacts and challenges of urbanization in terms of energy use, carbon emissions, and earthquake vulnerabilities. However, spatially detailed maps of urban 3D structure have been scarce, particularly in fast-changing developing countries. We present here a novel methodology to map the volume of buildings and infrastructures at 30 meter resolution using a synergy of Landsat imagery and openly available global digital surface models (DSMs), including the Shuttle Radar Topography Mission (SRTM), ASTER Global Digital Elevation Map (GDEM), ALOS World 3D - 30m (AW3D30), and the recently released global DSM from the TanDEM-X mission. Our method builds on the concept of object-based height profile to extract height metrics from the DSMs and use a machine learning algorithm to predict height and volume from the height metrics. We have tested this algorithm in the entire England and assessed our result using Lidar measurements in 25 England cities. Our initial assessments achieved a RMSE of 1.4 m (R2 = 0.72) for building height and a RMSE of 1208.7 m3 (R2 = 0.69) for building volume, demonstrating the potential of large-scale applications and fully automated mapping of urban structure.

  17. Human and Robotic Mission to Small Bodies: Mapping, Planning and Exploration

    Science.gov (United States)

    Neffian, Ara V.; Bellerose, Julie; Beyer, Ross A.; Archinal, Brent; Edwards, Laurence; Lee, Pascal; Colaprete, Anthony; Fong, Terry

    2013-01-01

    This study investigates the requirements, performs a gap analysis and makes a set of recommendations for mapping products and exploration tools required to support operations and scientific discovery for near- term and future NASA missions to small bodies. The mapping products and their requirements are based on the analysis of current mission scenarios (rendezvous, docking, and sample return) and recommendations made by the NEA Users Team (NUT) in the framework of human exploration. The mapping products that sat- isfy operational, scienti c, and public outreach goals include topography, images, albedo, gravity, mass, density, subsurface radar, mineralogical and thermal maps. The gap analysis points to a need for incremental generation of mapping products from low (flyby) to high-resolution data needed for anchoring and docking, real-time spatial data processing for hazard avoidance and astronaut or robot localization in low gravity, high dynamic environments, and motivates a standard for coordinate reference systems capable of describing irregular body shapes. Another aspect investigated in this study is the set of requirements and the gap analysis for exploration tools that support visualization and simulation of operational conditions including soil interactions, environment dynamics, and communications coverage. Building robust, usable data sets and visualisation/simulation tools is the best way for mission designers and simulators to make correct decisions for future missions. In the near term, it is the most useful way to begin building capabilities for small body exploration without needing to commit to specific mission architectures.

  18. Recursive definition of global cellular-automata mappings

    DEFF Research Database (Denmark)

    Feldberg, Rasmus; Knudsen, Carsten; Rasmussen, Steen

    1994-01-01

    A method for a recursive definition of global cellular-automata mappings is presented. The method is based on a graphical representation of global cellular-automata mappings. For a given cellular-automaton rule the recursive algorithm defines the change of the global cellular-automaton mapping...... as the number of lattice sites is incremented. A proof of lattice size invariance of global cellular-automata mappings is derived from an approximation to the exact recursive definition. The recursive definitions are applied to calculate the fractal dimension of the set of reachable states and of the set...

  19. Advances in Global Water Cycle Science Made Possible by Global Precipitation Mission (GPM)

    Science.gov (United States)

    Smith, Eric A.; Starr, David OC. (Technical Monitor)

    2001-01-01

    Within this decade the internationally sponsored Global Precipitation Mission (GPM) will take an important step in creating a global precipitation observing system from space. One perspective for understanding the nature of GPM is that it will be a hierarchical system of datastreams from very high caliber combined dual frequency radar/passive microwave (PMW) rain-radiometer retrievals, to high caliber PMW rain-radiometer only retrievals, and on to blends of the former datastreams with other less-high caliber PMW-based and IR-based rain retrievals. Within the context of NASA's role in global water cycle science and its own Global Water & Energy Cycle (GWEC) program, GPM is the centerpiece mission for improving our understanding of the global water cycle from a space-based measurement perspective. One of the salient problems within our current understanding of the global water and energy cycle is determining whether a change in the rate of the water cycle is accompanying changes in global temperature. As there are a number of ways in which to define a rate-change of the global water cycle, it is not entirely clear as to what constitutes such a determination, This paper presents an overview of the Global Precipitation Mission and how its datasets can be used in a set of quantitative tests within the framework of the oceanic and continental water budget equations to determine comprehensively whether substantive rate changes do accompany perturbations in global temperatures and how such rate changes manifest themselves in both water storage and water flux transport processes.

  20. Globally Coupled Chaotic Maps with Constant Force

    International Nuclear Information System (INIS)

    Li Jinghui

    2008-01-01

    We investigate the motion of the globally coupled maps (logistic map) with a constant force. It is shown that the constant force can cause multi-synchronization for the globally coupled chaotic maps studied by us.

  1. Recursive definition of global cellular-automata mappings

    International Nuclear Information System (INIS)

    Feldberg, R.; Knudsen, C.; Rasmussen, S.

    1994-01-01

    A method for a recursive definition of global cellular-automata mappings is presented. The method is based on a graphical representation of global cellular-automata mappings. For a given cellular-automaton rule the recursive algorithm defines the change of the global cellular-automaton mapping as the number of lattice sites is incremented. A proof of lattice size invariance of global cellular-automata mappings is derived from an approximation to the exact recursive definition. The recursive definitions are applied to calculate the fractal dimension of the set of reachable states and of the set of fixed points of cellular automata on an infinite lattice

  2. GLOBAL MAPPING OF EARTH-LIKE EXOPLANETS FROM SCATTERED LIGHT CURVES

    International Nuclear Information System (INIS)

    Kawahara, Hajime; Fujii, Yuka

    2010-01-01

    Scattered lights from terrestrial exoplanets provide valuable information about their planetary surface. Applying the surface reconstruction method proposed by Fujii et al. to both diurnal and annual variations of scattered light, we develop a reconstruction method of land distribution with both longitudinal and latitudinal resolutions. We find that one can recover a global map of an idealized Earth-like planet on the following assumptions: (1) cloudlessness, (2) a face-on circular orbit, (3) known surface types and their reflectance spectra, (4) lack of atmospheric absorption, (5) known rotation rate, (6) a static map, and (7) the absence of a moon. Using the dependence of light curves on planetary obliquity, we also show that the obliquity can be measured by adopting the χ 2 minimization or the extended information criterion. We demonstrate the feasibility of our methodology by applying it to a multi-band photometry of a cloudless model Earth with future space missions such as the occulting ozone observatory (O3). We conclude that future space missions can estimate both the surface distribution and the obliquity at least for cloudless Earth-like planets within 5 pc.

  3. Global seafloor geomorphic features map: applications for ocean conservation and management

    Science.gov (United States)

    Harris, P. T.; Macmillan-Lawler, M.; Rupp, J.; Baker, E.

    2013-12-01

    Seafloor geomorphology, mapped and measured by marine scientists, has proven to be a very useful physical attribute for ocean management because different geomorphic features (eg. submarine canyons, seamounts, spreading ridges, escarpments, plateaus, trenches etc.) are commonly associated with particular suites of habitats and biological communities. Although we now have better bathymetric datasets than ever before, there has been little effort to integrate these data to create an updated map of seabed geomorphic features or habitats. Currently the best available global seafloor geomorphic features map is over 30 years old. A new global seafloor geomorphic features map (GSGM) has been created based on the analysis and interpretation of the SRTM (Shuttle Radar Topography Mission) 30 arc-second (~1 km) global bathymetry grid. The new map includes global spatial data layers for 29 categories of geomorphic features, defined by the International Hydrographic Organisation. The new geomorphic features map will allow: 1) Characterization of bioregions in terms of their geomorphic content (eg. GOODS bioregions, Large Marine Ecosystems (LMEs), ecologically or biologically significant areas (EBSA)); 2) Prediction of the potential spatial distribution of vulnerable marine ecosystems (VME) and marine genetic resources (MGR; eg. associated with hydrothermal vent communities, shelf-incising submarine canyons and seamounts rising to a specified depth); and 3) Characterization of national marine jurisdictions in terms of their inventory of geomorphic features and their global representativeness of features. To demonstrate the utility of the GSGM, we have conducted an analysis of the geomorphic feature content of the current global inventory of marine protected areas (MPAs) to assess the extent to which features are currently represented. The analysis shows that many features have very low representation, for example fans and rises have less than 1 per cent of their total area

  4. Mapping coastal sea level at high resolution with radar interferometry: the SWOT Mission

    Science.gov (United States)

    Fu, L. L.; Chao, Y.; Laignel, B.; Turki, I., Sr.

    2017-12-01

    The spatial resolution of the present constellation of radar altimeters in mapping two-dimensional sea surface height (SSH) variability is approaching 100 km (in wavelength). At scales shorter than 100 km, the eddies and fronts are responsible for the stirring and mixing of the ocean, especially important in the various coastal processes. A mission currently in development will make high-resolution measurement of the height of water over the ocean as well as on land. It is called Surface Water and Ocean Topography (SWOT), which is a joint mission of US NASA and French CNES, with contributions from Canada and UK. SWOT will carry a pair of interferometry radars and make 2-dimensional SSH measurements over a swath of 120 km with a nadir gap of 20 km in a 21-day repeat orbit. The synthetic aperture radar of SWOT will make SSH measurement at extremely high resolution of 10-70 m. SWOT will also carry a nadir looking conventional altimeter and make 1-dimensional SSH measurements along the nadir gap. The temporal sampling varies from 2 repeats per 21 days at the equator to more than 4 repeats at mid latitudes and more than 6 at high latitudes. This new mission will allow a continuum of fine-scale observations from the open ocean to the coasts, estuaries and rivers, allowing us to investigate a number of scientific and technical questions in the coastal and estuarine domain to assess the coastal impacts of regional sea level change, such as the interaction of sea level with river flow, estuary inundation, storm surge, coastal wetlands, salt water intrusion, etc. As examples, we will illustrate the potential impact of SWOT to the studies of the San Francisco Bay Delta, and the Seine River estuary, etc. Preliminary results suggest that the SWOT Mission will provide fundamental data to map the spatial variability of water surface elevations under different hydrodynamic conditions and at different scales (local, regional and global) to improve our knowledge of the complex

  5. The Europa Global Geologic Map

    Science.gov (United States)

    Leonard, E. J.; Patthoff, D. A.; Senske, D. A.; Collins, G. C.

    2018-06-01

    The Europa Global Geologic Map reveals three periods in Europa's surface history as well as an interesting distribution of microchaos. We will discuss the mapping and the interesting implications of our analysis of Europa's surface.

  6. Mars Relays Satellite Orbit Design Considerations for Global Support of Robotic Surface Missions

    Science.gov (United States)

    Hastrup, Rolf; Cesarone, Robert; Cook, Richard; Knocke, Phillip; McOmber, Robert

    1993-01-01

    This paper discusses orbit design considerations for Mars relay satellite (MRS)support of globally distributed robotic surface missions. The orbit results reported in this paper are derived from studies of MRS support for two types of Mars robotic surface missions: 1) the mars Environmental Survey (MESUR) mission, which in its current definition would deploy a global network of up to 16 small landers, and 2)a Small Mars Sample Return (SMSR) mission, which included four globally distributed landers, each with a return stage and one or two rovers, and up to four additional sets of lander/rover elements in an extended mission phase.

  7. A global map of dominant malaria vectors

    Directory of Open Access Journals (Sweden)

    Sinka Marianne E

    2012-04-01

    Full Text Available Abstract Background Global maps, in particular those based on vector distributions, have long been used to help visualise the global extent of malaria. Few, however, have been created with the support of a comprehensive and extensive evidence-based approach. Methods Here we describe the generation of a global map of the dominant vector species (DVS of malaria that makes use of predicted distribution maps for individual species or species complexes. Results Our global map highlights the spatial variability in the complexity of the vector situation. In Africa, An. gambiae, An. arabiensis and An. funestus are co-dominant across much of the continent, whereas in the Asian-Pacific region there is a highly complex situation with multi-species coexistence and variable species dominance. Conclusions The competence of the mapping methodology to accurately portray DVS distributions is discussed. The comprehensive and contemporary database of species-specific spatial occurrence (currently available on request will be made directly available via the Malaria Atlas Project (MAP website from early 2012.

  8. The First Global Geological Map of Mercury

    Science.gov (United States)

    Prockter, L. M.; Head, J. W., III; Byrne, P. K.; Denevi, B. W.; Kinczyk, M. J.; Fassett, C.; Whitten, J. L.; Thomas, R.; Ernst, C. M.

    2015-12-01

    Geological maps are tools with which to understand the distribution and age relationships of surface geological units and structural features on planetary surfaces. Regional and limited global mapping of Mercury has already yielded valuable science results, elucidating the history and distribution of several types of units and features, such as regional plains, tectonic structures, and pyroclastic deposits. To date, however, no global geological map of Mercury exists, and there is currently no commonly accepted set of standardized unit descriptions and nomenclature. With MESSENGER monochrome image data, we are undertaking the global geological mapping of Mercury at the 1:15M scale applying standard U.S. Geological Survey mapping guidelines. This map will enable the development of the first global stratigraphic column of Mercury, will facilitate comparisons among surface units distributed discontinuously across the planet, and will provide guidelines for mappers so that future mapping efforts will be consistent and broadly interpretable by the scientific community. To date we have incorporated three major datasets into the global geological map: smooth plains units, tectonic structures, and impact craters and basins >20 km in diameter. We have classified most of these craters by relative age on the basis of the state of preservation of morphological features and standard classification schemes first applied to Mercury by the Mariner 10 imaging team. Additional datasets to be incorporated include intercrater plains units and crater ejecta deposits. In some regions MESSENGER color data is used to supplement the monochrome data, to help elucidate different plains units. The final map will be published online, together with a peer-reviewed publication. Further, a digital version of the map, containing individual map layers, will be made publicly available for use within geographic information systems (GISs).

  9. Airborne Instrument Simulator for the Lidar Surface Topography (LIST) Mission

    Science.gov (United States)

    Yu, Anthony W.; Krainak, Michael A.; Harding, David J.; Abshire, James B.; Sun, Xiaoli; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis

    2010-01-01

    In 2007, the National Research Council (NRC) completed its first decadal survey for Earth science at the request of NASA, NOAA, and USGS. The Lidar Surface Topography (LIST) mission is one of fifteen missions recommended by NRC, whose primary objectives are to map global topography and vegetation structure at 5 m spatial resolution, and to acquire global coverage with a few years. NASA Goddard conducted an initial mission concept study for the LIST mission 2007, and developed the initial measurement requirements for the mission.

  10. Advances in Understanding Global Water Cycle with Advent of Global Precipitation Measurement (GPM) Mission

    Science.gov (United States)

    Smith, Eric A.; Starr, David (Technical Monitor)

    2002-01-01

    Within this decade the internationally organized Global Precipitation Measurement (GPM) Mission will take an important step in creating a global precipitation observing system from space. One perspective for understanding the nature of GPM is that it will be a hierarchical system of datastreams beginning with very high caliber combined dual frequency radar/passive microwave (PMW) rain-radiometer retrievals, to high caliber PMW rain-radiometer only retrievals, and then on to blends of the former datastreams with additional lower-caliber PMW-based and IR-based rain retrievals. Within the context of the now emerging global water & energy cycle (GWEC) programs of a number of research agencies throughout the world, GPM serves as a centerpiece space mission for improving our understanding of the global water cycle from a global measurement perspective. One of the salient problems within our current understanding of the global water and energy cycle is determining whether a change in the rate of the water cycle is accompanying changes in climate, e.g., climate warming. As there are a number of ways in which to define a rate-change of the global water cycle, it is not entirely clear as to what constitutes such a determination. This paper presents an overview of the GPM Mission and how its observations can be used within the framework of the oceanic and continental water budget equations to determine whether a given perturbation in precipitation is indicative of an actual rate change in the global water cycle, consistent with required responses in water storage and/or water flux transport processes, or whether it is the natural variability of a fixed rate cycle.

  11. Global Rapid Flood Mapping System with Spaceborne SAR Data

    Science.gov (United States)

    Yun, S. H.; Owen, S. E.; Hua, H.; Agram, P. S.; Fattahi, H.; Liang, C.; Manipon, G.; Fielding, E. J.; Rosen, P. A.; Webb, F.; Simons, M.

    2017-12-01

    As part of the Advanced Rapid Imaging and Analysis (ARIA) project for Natural Hazards, at NASA's Jet Propulsion Laboratory and California Institute of Technology, we have developed an automated system that produces derived products for flood extent map generation using spaceborne SAR data. The system takes user's input of area of interest polygons and time window for SAR data search (pre- and post-event). Then the system automatically searches and downloads SAR data, processes them to produce coregistered SAR image pairs, and generates log amplitude ratio images from each pair. Currently the system is automated to support SAR data from the European Space Agency's Sentinel-1A/B satellites. We have used the system to produce flood extent maps from Sentinel-1 SAR data for the May 2017 Sri Lanka floods, which killed more than 200 people and displaced about 600,000 people. Our flood extent maps were delivered to the Red Cross to support response efforts. Earlier we also responded to the historic August 2016 Louisiana floods in the United States, which claimed 13 people's lives and caused over $10 billion property damage. For this event, we made synchronized observations from space, air, and ground in close collaboration with USGS and NOAA. The USGS field crews acquired ground observation data, and NOAA acquired high-resolution airborne optical imagery within the time window of +/-2 hours of the SAR data acquisition by JAXA's ALOS-2 satellite. The USGS coordinates of flood water boundaries were used to calibrate our flood extent map derived from the ALOS-2 SAR data, and the map was delivered to FEMA for estimating the number of households affected. Based on the lessons learned from this response effort, we customized the ARIA system automation for rapid flood mapping and developed a mobile friendly web app that can easily be used in the field for data collection. Rapid automatic generation of SAR-based global flood maps calibrated with independent observations from

  12. Global trends in satellite-based emergency mapping

    Science.gov (United States)

    Voigt, Stefan; Giulio-Tonolo, Fabio; Lyons, Josh; Kučera, Jan; Jones, Brenda; Schneiderhan, Tobias; Platzeck, Gabriel; Kaku, Kazuya; Hazarika, Manzul Kumar; Czaran, Lorant; Li, Suju; Pedersen, Wendi; James, Godstime Kadiri; Proy, Catherine; Muthike, Denis Macharia; Bequignon, Jerome; Guha-Sapir, Debarati

    2016-01-01

    Over the past 15 years, scientists and disaster responders have increasingly used satellite-based Earth observations for global rapid assessment of disaster situations. We review global trends in satellite rapid response and emergency mapping from 2000 to 2014, analyzing more than 1000 incidents in which satellite monitoring was used for assessing major disaster situations. We provide a synthesis of spatial patterns and temporal trends in global satellite emergency mapping efforts and show that satellite-based emergency mapping is most intensively deployed in Asia and Europe and follows well the geographic, physical, and temporal distributions of global natural disasters. We present an outlook on the future use of Earth observation technology for disaster response and mitigation by putting past and current developments into context and perspective.

  13. Web Map Services (WMS) Global Mosaic

    Science.gov (United States)

    Percivall, George; Plesea, Lucian

    2003-01-01

    The WMS Global Mosaic provides access to imagery of the global landmass using an open standard for web mapping. The seamless image is a mosaic of Landsat 7 scenes; geographically-accurate with 30 and 15 meter resolutions. By using the OpenGIS Web Map Service (WMS) interface, any organization can use the global mosaic as a layer in their geospatial applications. Based on a trade study, an implementation approach was chosen that extends a previously developed WMS hosting a Landsat 5 CONUS mosaic developed by JPL. The WMS Global Mosaic supports the NASA Geospatial Interoperability Office goal of providing an integrated digital representation of the Earth, widely accessible for humanity's critical decisions.

  14. Compiling and Mapping Global Permeability of the Unconsolidated and Consolidated Earth: GLobal HYdrogeology MaPS 2.0 (GLHYMPS 2.0)

    Science.gov (United States)

    Huscroft, Jordan; Gleeson, Tom; Hartmann, Jens; Börker, Janine

    2018-02-01

    The spatial distribution of subsurface parameters such as permeability are increasingly relevant for regional to global climate, land surface, and hydrologic models that are integrating groundwater dynamics and interactions. Despite the large fraction of unconsolidated sediments on Earth's surface with a wide range of permeability values, current global, high-resolution permeability maps distinguish solely fine-grained and coarse-grained unconsolidated sediments. Representative permeability values are derived for a wide variety of unconsolidated sediments and applied to a new global map of unconsolidated sediments to produce the first geologically constrained, two-layer global map of shallower and deeper permeability. The new mean logarithmic permeability of the Earth's surface is -12.7 ± 1.7 m2 being 1 order of magnitude higher than that derived from previous maps, which is consistent with the dominance of the coarser sediments. The new data set will benefit a variety of scientific applications including the next generation of climate, land surface, and hydrology models at regional to global scales.

  15. Anti-Globalization or Alter-Globalization? Mapping the Political Ideology of the Global Justice Movement

    NARCIS (Netherlands)

    B. Steger, Manfred; Wilson, E.K.

    Steger, Manfred B. and Erin K. Wilson. (2012) Anti-Globalization or Alter-Globalization? Mapping the Political Ideology of the Global Justice Movement. International Studies Quarterly, doi: 10.1111/j.1468-2478.2012.00740.x?(c) 2012 International Studies Association Globalization has unsettled

  16. Advanced Safeguards Technology Road-map for the Global Nuclear Energy Partnership

    International Nuclear Information System (INIS)

    Miller, M.C.; Tobin, S.; Smith, L.E.; Ehinger, M.; Dougan, A.; Cipiti, B.; Bakel, A.; Bean, R.

    2008-01-01

    Strengthening the nonproliferation regime, including advanced safeguards, is a cornerstone of the Global Nuclear Energy Partnership (GNEP). To meet these challenges, the Safeguards Campaign was formed, whose mission is to provide research and technology development for the foundation of next generation safeguards systems for implementation in U.S. GNEP facilities. The Safeguards Campaign works closely with the Nuclear Nonproliferation and International Security department (NA-24) of NNSA (National Nuclear Safety Administration) to ensure that technology developed for domestic safeguards applications are optimum with respect to international safeguards use. A major milestone of the program this year has been the development of the advanced safeguards technology road-map. This paper will broadly describe the road-map, which provides a path to next generation safeguards systems including advanced instrumentation; process monitoring; data integration, protection, and analysis; and system level evaluation and knowledge extraction for real time applications. (authors)

  17. CRISM Multispectral and Hyperspectral Mapping Data - A Global Data Set for Hydrated Mineral Mapping

    Science.gov (United States)

    Seelos, F. P.; Hash, C. D.; Murchie, S. L.; Lim, H.

    2017-12-01

    The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) is a visible through short-wave infrared hyperspectral imaging spectrometer (VNIR S-detector: 364-1055 nm; IR L-detector: 1001-3936 nm; 6.55 nm sampling) that has been in operation on the Mars Reconnaissance Orbiter (MRO) since 2006. Over the course of the MRO mission, CRISM has acquired 290,000 individual mapping observation segments (mapping strips) with a variety of observing modes and data characteristics (VNIR/IR; 100/200 m/pxl; multi-/hyper-spectral band selection) over a wide range of observing conditions (atmospheric state, observation geometry, instrument state). CRISM mapping data coverage density varies primarily with latitude and secondarily due to seasonal and operational considerations. The aggregate global IR mapping data coverage currently stands at 85% ( 80% at the equator with 40% repeat sampling), which is sufficient spatial sampling density to support the assembly of empirically optimized radiometrically consistent mapping mosaic products. The CRISM project has defined a number of mapping mosaic data products (e.g. Multispectral Reduced Data Record (MRDR) map tiles) with varying degrees of observation-specific processing and correction applied prior to mosaic assembly. A commonality among the mosaic products is the presence of inter-observation radiometric discrepancies which are traceable to variable observation circumstances or associated atmospheric/photometric correction residuals. The empirical approach to radiometric reconciliation leverages inter-observation spatial overlaps and proximal relationships to construct a graph that encodes the mosaic structure and radiometric discrepancies. The graph theory abstraction allows the underling structure of the msaic to be evaluated and the corresponding optimization problem configured so it is well-posed. Linear and non-linear least squares optimization is then employed to derive a set of observation- and wavelength- specific model

  18. AN INITIATIVE FOR CONSTRUCTION OF NEW-GENERATION LUNAR GLOBAL CONTROL NETWORK USING MULTI-MISSION DATA

    Directory of Open Access Journals (Sweden)

    K. Di

    2017-07-01

    Full Text Available A lunar global control network provides geodetic datum and control points for mapping of the lunar surface. The widely used Unified Lunar Control Network 2005 (ULCN2005 was built based on a combined photogrammetric solution of Clementine images acquired in 1994 and earlier photographic data. In this research, we propose an initiative for construction of a new-generation lunar global control network using multi-mission data newly acquired in the 21st century, which have much better resolution and precision than the old data acquired in the last century. The new control network will be based on a combined photogrammetric solution of an extended global image and laser altimetry network. The five lunar laser ranging retro-reflectors, which can be identified in LROC NAC images and have cm level 3D position accuracy, will be used as absolute control points in the least squares photogrammetric adjustment. Recently, a new radio total phase ranging method has been developed and used for high-precision positioning of Chang’e-3 lander; this shall offer a new absolute control point. Systematic methods and key techniques will be developed or enhanced, including rigorous and generic geometric modeling of orbital images, multi-scale feature extraction and matching among heterogeneous multi-mission remote sensing data, optimal selection of images at areas of multiple image coverages, and large-scale adjustment computation, etc. Based on the high-resolution new datasets and developed new techniques, the new generation of global control network is expected to have much higher accuracy and point density than the ULCN2005.

  19. Phase synchronization in inhomogeneous globally coupled map lattices

    International Nuclear Information System (INIS)

    Ho Mingchung; Hung Yaochen; Jiang, I-M.

    2004-01-01

    The study of inhomogeneous-coupled chaotic systems has attracted a lot of attention recently. With simple definition of phase, we present the phase-locking behavior in ensembles of globally coupled non-identical maps. The inhomogeneous globally coupled maps consist of logistic map and tent map simultaneously. Average phase synchronization ratios, which are used to characterize the phase coherent phenomena, depend on different coupling coefficients and chaotic parameters. By using interdependence, the relationship between a single unit and the mean field is illustrated. Moreover, we take the effect of external noise and parameter mismatch into consideration and present the results by numerical simulation

  20. The EnMAP Spaceborne Imaging Spectroscopy Mission for Earth Observation

    Directory of Open Access Journals (Sweden)

    Luis Guanter

    2015-07-01

    Full Text Available Imaging spectroscopy, also known as hyperspectral remote sensing, is based on the characterization of Earth surface materials and processes through spectrally-resolved measurements of the light interacting with matter. The potential of imaging spectroscopy for Earth remote sensing has been demonstrated since the 1980s. However, most of the developments and applications in imaging spectroscopy have largely relied on airborne spectrometers, as the amount and quality of space-based imaging spectroscopy data remain relatively low to date. The upcoming Environmental Mapping and Analysis Program (EnMAP German imaging spectroscopy mission is intended to fill this gap. An overview of the main characteristics and current status of the mission is provided in this contribution. The core payload of EnMAP consists of a dual-spectrometer instrument measuring in the optical spectral range between 420 and 2450 nm with a spectral sampling distance varying between 5 and 12 nm and a reference signal-to-noise ratio of 400:1 in the visible and near-infrared and 180:1 in the shortwave-infrared parts of the spectrum. EnMAP images will cover a 30 km-wide area in the across-track direction with a ground sampling distance of 30 m. An across-track tilted observation capability will enable a target revisit time of up to four days at the Equator and better at high latitudes. EnMAP will contribute to the development and exploitation of spaceborne imaging spectroscopy applications by making high-quality data freely available to scientific users worldwide.

  1. The Interstellar Mapping and Acceleration Probe - A Mission to Discover the Origin of Particle Acceleration and its Fundamental Connection to the Global Interstellar Interaction

    Science.gov (United States)

    Schwadron, N.

    2017-12-01

    Our piece of cosmic real-estate, the heliosphere, is the domain of all human existence - an astrophysical case-history of the successful evolution of life in a habitable system. The Interstellar Boundary Explorer (IBEX) was the first mission to explore the global heliosphere and in concert with Voyager 1 and Voyager 2 is discovering a fundamentally new and uncharted physical domain of the outer heliosphere. In parallel, Cassini/INCA maps the global heliosphere at energies ( 5-55 keV) above those measured by IBEX. The enigmatic IBEX ribbon and the INCA belt were unanticipated discoveries demonstrating that much of what we know or think we understand about the outer heliosphere needs to be revised. The global structure of the heliosphere is highly complex and influenced by competing factors ranging from the local interstellar magnetic field, suprathermal populations both within and beyond the heliopause, and the detailed flow properties of the LISM. Global heliospheric structure and microphysics in turn influences the acceleration of energetic particles and creates feedbacks that modify the interstellar interaction as a whole. The next quantum leap enabled by IMAP will open new windows on the frontier of Heliophysics and probe the acceleration of suprathermal and higher energy particles at a time when the space environment is rapidly evolving. IMAP ultimately connects the acceleration processes observed directly at 1 AU with unprecedented sensitivity and temporal resolution with the global structure of our heliosphere. The remarkable synergy between IMAP, Voyager 1 and Voyager 2 will remain for at least the next decade as Voyager 1 pushes further into the interstellar domain and Voyager 2 moves through the heliosheath. IMAP, like ACE before it, will be a keystone of the Heliophysics System Observatory by providing comprehensive energetic particle, pickup ion, suprathermal ion, neutral atom, solar wind, solar wind heavy ion, and magnetic field observations to diagnose

  2. Global Land Survey Impervious Mapping Project Web Site

    Science.gov (United States)

    DeColstoun, Eric Brown; Phillips, Jacqueline

    2014-01-01

    The Global Land Survey Impervious Mapping Project (GLS-IMP) aims to produce the first global maps of impervious cover at the 30m spatial resolution of Landsat. The project uses Global Land Survey (GLS) Landsat data as its base but incorporates training data generated from very high resolution commercial satellite data and using a Hierarchical segmentation program called Hseg. The web site contains general project information, a high level description of the science, examples of input and output data, as well as links to other relevant projects.

  3. Setting the scene for SWOT: global maps of river reach hydrodynamic variables

    Science.gov (United States)

    Schumann, Guy J.-P.; Durand, Michael; Pavelsky, Tamlin; Lion, Christine; Allen, George

    2017-04-01

    Credible and reliable characterization of discharge from the Surface Water and Ocean Topography (SWOT) mission using the Manning-based algorithms needs a prior estimate constraining reach-scale channel roughness, base flow and river bathymetry. For some places, any one of those variables may exist locally or even regionally as a measurement, which is often only at a station, or sometimes as a basin-wide model estimate. However, to date none of those exist at the scale required for SWOT and thus need to be mapped at a continental scale. The prior estimates will be employed for producing initial discharge estimates, which will be used as starting-guesses for the various Manning-based algorithms, to be refined using the SWOT measurements themselves. A multitude of reach-scale variables were derived, including Landsat-based width, SRTM slope and accumulation area. As a possible starting point for building the prior database of low flow, river bathymetry and channel roughness estimates, we employed a variety of sources, including data from all GRDC records, simulations from the long-time runs of the global water balance model (WBM), and reach-based calculations from hydraulic geometry relationships as well as Manning's equation. Here, we present the first global maps of this prior database with some initial validation, caveats and prospective uses.

  4. Ice Sheet Roughness Estimation Based on Impulse Responses Acquired in the Global Ice Sheet Mapping Orbiter Mission

    Science.gov (United States)

    Niamsuwan, N.; Johnson, J. T.; Jezek, K. C.; Gogineni, P.

    2008-12-01

    The Global Ice Sheet Mapping Orbiter (GISMO) mission was developed to address scientific needs to understand the polar ice subsurface structure. This NASA Instrument Incubator Program project is a collaboration between Ohio State University, the University of Kansas, Vexcel Corporation and NASA. The GISMO design utilizes an interferometric SAR (InSAR) strategy in which ice sheet reflected signals received by a dual-antenna system are used to produce an interference pattern. The resulting interferogram can be used to filter out surface clutter so as to reveal the signals scattered from the base of the ice sheet. These signals are further processed to produce 3D-images representing basal topography of the ice sheet. In the past three years, the GISMO airborne field campaigns that have been conducted provide a set of useful data for studying geophysical properties of the Greenland ice sheet. While topography information can be obtained using interferometric SAR processing techniques, ice sheet roughness statistics can also be derived by a relatively simple procedure that involves analyzing power levels and the shape of the radar impulse response waveforms. An electromagnetic scattering model describing GISMO impulse responses has previously been proposed and validated. This model suggested that rms-heights and correlation lengths of the upper surface profile can be determined from the peak power and the decay rate of the pulse return waveform, respectively. This presentation will demonstrate a procedure for estimating the roughness of ice surfaces by fitting the GISMO impulse response model to retrieved waveforms from selected GISMO flights. Furthermore, an extension of this procedure to estimate the scattering coefficient of the glacier bed will be addressed as well. Planned future applications involving the classification of glacier bed conditions based on the derived scattering coefficients will also be described.

  5. Global Precipitation Measurement (GPM) Mission: Overview and Status

    Science.gov (United States)

    Hou, Arthur Y.

    2012-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. NASA and JAXA will deploy a Core Observatory in 2014 to serve as a reference satellite to unify precipitation measurements from the constellation of sensors. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will be the first dual-frequency radar in space to provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles. The DPR and GMI measurements will together provide a database that relates vertical hydrometeor profiles to multi-frequency microwave radiances over a variety of environmental conditions across the globe. This combined database will be used as a common transfer standard for improving the accuracy and consistency of precipitation retrievals from all constellation radiometers. For global coverage, GPM relies on existing satellite programs and new mission opportunities from a consortium of partners through bilateral agreements with either NASA or JAXA. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. In addition to the DPR and GMI on the Core Observatory, the baseline GPM constellation consists of the following sensors: (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer-2 (AMSR-2) on the GCOM-W1 satellite of JAXA, (3) the Multi-Frequency Microwave Scanning Radiometer (MADRAS) and the multi-channel microwave humidity sounder

  6. Mapping Priorities to Focus Cropland Mapping Activities: Fitness Assessment of Existing Global, Regional and National Cropland Maps

    Directory of Open Access Journals (Sweden)

    François Waldner

    2015-06-01

    Full Text Available Timely and accurate information on the global cropland extent is critical for applications in the fields of food security, agricultural monitoring, water management, land-use change modeling and Earth system modeling. On the one hand, it gives detailed location information on where to analyze satellite image time series to assess crop condition. On the other hand, it isolates the agriculture component to focus food security monitoring on agriculture and to assess the potential impacts of climate change on agricultural lands. The cropland class is often poorly captured in global land cover products due to its dynamic nature and the large variety of agro-systems. The overall objective was to evaluate the current availability of cropland datasets in order to propose a strategic planning and effort distribution for future cropland mapping activities and, therefore, to maximize their impact. Following a very comprehensive identification and collection of national to global land cover maps, a multi-criteria analysis was designed at the country level to identify the priority areas for cropland mapping. As a result, the analysis highlighted priority regions, such as Western Africa, Ethiopia, Madagascar and Southeast Asia, for the remote sensing community to focus its efforts. A Unified Cropland Layer at 250 m for the year 2014 was produced combining the fittest products. It was assessed using global validation datasets and yields an overall accuracy ranging from 82%–94%. Masking cropland areas with a global forest map reduced the commission errors from 46% down to 26%. Compared to the GLC-Share and the International Institute for Applied Systems Analysis-International Food Policy Research Institute (IIASA-IFPRI cropland maps, significant spatial disagreements were found, which might be attributed to discrepancies in the cropland definition. This advocates for a shared definition of cropland, as well as global validation datasets relevant for the

  7. American cities, global networks: mapping the multiple geographies of globalization in the Americas

    NARCIS (Netherlands)

    Toly, N.J.; Bouteligier, S.; Smith, G.; Gibson, B.

    2012-01-01

    The mapping of advanced producer and financial service firms across global cities began to increase understanding of the role of cities in global governance, the presence and influence of cities in the shifting architecture of global political economy, and the role of globalization in shaping the

  8. A Basketball Court-Size Global Map of Mars for Education and Public Outreach

    Science.gov (United States)

    Hill, J. R.; Christensen, P. R.

    2017-12-01

    The Thermal Emission Imaging System (THEMIS) onboard the 2001 Mars Odyssey spacecraft has acquired over 220,000 infrared images of the Martian surface at a resolution of 100 m/pixel since the start of science operations in February 2002. A global map was previously developed by mosaicking together over 24,000 high-quality full-resolution THEMIS daytime infrared images. Although the resulting map has been extremely valuable for scientific and mission operations applications, it has been difficult to communicate this value to students, citizen scientists and the general public, since their interactions with the map have been limited to computer-based geographic information system (GIS) interfaces. We determined that, in order to better communicate the value and importance of mapping the entire Martian surface at this resolution, people need to be able to physically interact with the map and experience its full scale. Therefore, the THEMIS Day IR Global Mosaic with Colorized MOLA Elevation will be printed on a 45ft x 90ft vinyl mat, which will allow observers to walk across and physically experience the map at approximately full resolution (printed at 200 pixels per inch). The size of the map was chosen to fit on a standard high school basketball court, so that a large number of schools will have a sufficiently large indoor surface on which to display the map for education events. The vinyl material and printing process selected for the map have been proven to be wear-resistant in similar applications, as long as everyone who walks on the map wears socks or similarly soft foot coverings. In order to make transportation easier, the map will be printed in two 45ft x 45ft sections, which will be joined together at events to create the full 45ft x 90ft map. The final stages of the map production will take place in early fall 2017, followed by initial education events at Arizona State University and local schools to test the educational activities associated with the map

  9. A New Synthetic Global Biomass Carbon Map for the year 2010

    Science.gov (United States)

    Spawn, S.; Lark, T.; Gibbs, H.

    2017-12-01

    Satellite technologies have facilitated a recent boom in high resolution, large-scale biomass estimation and mapping. These data are the input into a wide range of global models and are becoming the gold standard for required national carbon (C) emissions reporting. Yet their geographical and/or thematic scope may exclude some or all parts of a given country or region. Most datasets tend to focus exclusively on forest biomass. Grasslands and shrublands generally store less C than forests but cover nearly twice as much global land area and may represent a significant portion of a given country's biomass C stock. To address these shortcomings, we set out to create synthetic, global above- and below-ground biomass maps that combine recently-released satellite based data of standing forest biomass with novel estimates for non-forest biomass stocks that are typically neglected. For forests we integrated existing publicly available regional, global and biome-specific biomass maps and modeled below ground biomass using empirical relationships described in the literature. For grasslands, we developed models for both above- and below-ground biomass based on NPP, mean annual temperature and precipitation to extrapolate field measurements across the globe. Shrubland biomass was extrapolated from existing regional biomass maps using environmental factors to generate the first global estimate of shrub biomass. Our new synthetic map of global biomass carbon circa 2010 represents an update to the IPCC Tier-1 Global Biomass Carbon Map for the Year 2000 (Ruesch and Gibbs, 2008) using the best data currently available. In the absence of a single seamless remotely sensed map of global biomass, our synthetic map provides the only globally-consistent source of comprehensive biomass C data and is valuable for land change analyses, carbon accounting, and emissions modeling.

  10. Generation of real-time global ionospheric map based on the global GNSS stations with only a sparse distribution

    Science.gov (United States)

    Li, Zishen; Wang, Ningbo; Li, Min; Zhou, Kai; Yuan, Yunbin; Yuan, Hong

    2017-04-01

    The Earth's ionosphere is part of the atmosphere stretching from an altitude of about 50 km to more than 1000 km. When the Global Navigation Satellite System (GNSS) signal emitted from a satellite travels through the ionosphere before reaches a receiver on or near the Earth surface, the GNSS signal is significantly delayed by the ionosphere and this delay bas been considered as one of the major errors in the GNSS measurement. The real-time global ionospheric map calculated from the real-time data obtained by global stations is an essential method for mitigating the ionospheric delay for real-time positioning. The generation of an accurate global ionospheric map generally depends on the global stations with dense distribution; however, the number of global stations that can produce the real-time data is very limited at present, which results that the generation of global ionospheric map with a high accuracy is very different when only using the current stations with real-time data. In view of this, a new approach is proposed for calculating the real-time global ionospheric map only based on the current stations with real-time data. This new approach is developed on the basis of the post-processing and the one-day predicted global ionospheric map from our research group. The performance of the proposed approach is tested by the current global stations with the real-time data and the test results are also compared with the IGS-released final global ionospheric map products.

  11. Global and Local Gravity Field Models of the Moon Using GRAIL Primary and Extended Mission Data

    Science.gov (United States)

    Goossens, Sander; Lemoine, Frank G.; Sabaka, Terence J.; Nicholas, Joseph B.; Mazarico, Erwan; Rowlands, David D.; Loomis, Bryant D.; Chinn, Douglas S.; Neumann, Gregory A.; Smith, David E.; hide

    2015-01-01

    The Gravity Recovery and Interior Laboratory (GRAIL) mission was designed to map the structure of the lunar interior from crust to core and to advance the understanding of the Moon's thermal evolution by producing a high-quality, high-resolution map of the gravitational field of the Moon. The mission consisted of two spacecraft, which were launched in September 2011 on a Discovery-class NASA mission. Ka-band tracking between the two satellites was the single science instrument, augmented by tracking from Earth using the Deep Space Network (DSN).

  12. Seafloor 2030 - Building a Global Ocean Map through International Collaboration

    Science.gov (United States)

    Ferrini, V. L.; Wigley, R. A.; Falconer, R. K. H.; Jakobsson, M.; Allen, G.; Mayer, L. A.; Schmitt, T.; Rovere, M.; Weatherall, P.; Marks, K. M.

    2016-12-01

    With more than 85% of the ocean floor unmapped, a huge proportion of our planet remains unexplored. Creating a comprehensive map of seafloor bathymetry remains a true global challenge that can only be accomplished through collaboration and partnership between governments, industry, academia, research organizations and non-government organizations. The objective of Seafloor 2030 is to comprehensively map the global ocean floor to resolutions that enable exploration and improved understanding of ocean processes, while informing maritime policy and supporting the management of natural marine resources for a sustainable Blue Economy. Seafloor 2030 is the outcome of the Forum for Future of Ocean Floor Mapping held in Monaco in June 2016, which was held under the auspices of GEBCO and the Nippon Foundation of Japan. GEBCO is the only international organization mandated to map the global ocean floor and is guided by the International Hydrographic Organization (IHO) and the Intergovernmental Oceanographic Commission of UNESCO. The task of completely mapping the ocean floor will require new global coordination to ensure that both existing data are identified and that new mapping efforts are coordinated to help efficiently "map the gaps." Fundamental to achieving Seafloor 2030 will be greater access to data, tools and technology, particularly for developing and coastal nations. This includes bathymetric post-processing and analysis software, database technology, computing infrastructure and gridding techniques as well as the latest developments in seafloor mapping methods and emerging crowd-sourced bathymetry initiatives. The key to achieving this global bathymetric map is capacity building and education - including greater coordination between scientific research and industry and the effective engagement of international organizations such as the United Nations.

  13. Trends in the Global Small Satellite Ecosystem: Implications for Science Missions

    Science.gov (United States)

    Behrens, J.; Lal, B.

    2017-12-01

    Activity in the small satellite industry has increased in the recent years. New actors and nations have joined the evolving market globally in both the private and public sector. Progress in the smallsat sector has been driven, in part, by growing capabilities and falling costs of smallsats. Advancements include the miniaturization of technology for the small satellite platform, increased data processing capabilities, the ubiquitous presence of GPS enabling location and attitude determination, improvements in ground system costs and signal processing capabilities, and the deployment of inexpensive COTS parts. The emerging trends in the state of the art for smallsat technology, paired with planned smallsat constellation missions by both private and public actors, open the opportunity for new earth and remote sensing scientific endeavors. This presentation will characterize the drivers influencing the development of smallsat technology and the industry more generally. An overview will be provided for trends in the state of the art of smallsat technology, and secondary trends that influence the smallsat sector including infrastructure, demand, the satellite launch market, and the policy environment. These trends are mapped onto current and projected Earth observation needs, as identified by academic and governmental communities, to identify those that could be fulfilled by smallsats in the near and long term. A set of notional science missions that could be enabled, based on the various drivers identified, will be presented for both the near (3 years) and farther term (10 years).

  14. Euclid Mission: Mapping the Geometry of the Dark Universe. Mission and Consortium Status

    Science.gov (United States)

    Rhodes, Jason

    2011-01-01

    Euclid concept: (1) High-precision survey mission to map the geometry of the Dark Universe (2) Optimized for two complementary cosmological probes: (2a) Weak Gravitational Lensing (2b) Baryonic Acoustic Oscillations (2c) Additional probes: clusters, redshift space distortions, ISW (3) Full extragalactic sky survey with 1.2m telescope at L2: (3a) Imaging: (3a-1) High precision imaging at visible wavelengths (3a-2) Photometry/Imaging in the near-infrared (3b) Near Infrared Spectroscopy (4) Synergy with ground based surveys (5) Legacy science for a wide range of in astronomy

  15. Real-time Global Illumination by Simulating Photon Mapping

    DEFF Research Database (Denmark)

    Larsen, Bent Dalgaard

    2004-01-01

    This thesis introduces a new method for simulating photon mapping in realtime. The method uses a variety of both CPU and GPU based algorithms for speeding up the different elements in global illumination. The idea behind the method is to calculate each illumination element individually in a progr......This thesis introduces a new method for simulating photon mapping in realtime. The method uses a variety of both CPU and GPU based algorithms for speeding up the different elements in global illumination. The idea behind the method is to calculate each illumination element individually...... in a progressive and efficient manner. This has been done by analyzing the photon mapping method and by selecting efficient methods, either CPU based or GPU based, which replaces the original photon mapping algorithms. We have chosen to focus on the indirect illumination and the caustics. In our method we first...... divide the photon map into several photon maps in order to make local updates possible. Then indirect illumination is added using light maps that are selectively updated by using selective photon tracing on the CPU. The final gathering step is calculated by using fragment programs and GPU based...

  16. Multi-Synchronization Caused by Uniform Disorder for Globally Coupled Maps

    International Nuclear Information System (INIS)

    Jing-Hui, Li

    2008-01-01

    We investigate the motion of the globally coupled maps (logistic map) driven by uniform disorder. It is shown that this disorder can produce multi-synchronization for the globally coupled chaotic maps studied by us. The disorder determines the synchronized dynamics, leading to the emergence of a wide range of new collective behaviour in which the individual units in isolation are incapable of producing in the absence of the disorder. Our results imply that the disorder can tame the collective motion of the coupled chaotic maps

  17. Material Units, Structures/Landforms, and Stratigraphy for the Global Geologic Map of Ganymede (1:15M)

    Science.gov (United States)

    Patterson, G. Wesley; Head, James W.; Collins, Geoffrey C.; Pappalardo, Robert T.; Prockter, Louis M.; Lucchitta, Baerbel K.

    2008-01-01

    In the coming year a global geological map of Ganymede will be completed that represents the most recent understanding of the satellite on the basis of Galileo mission results. This contribution builds on important previous accomplishments in the study of Ganymede utilizing Voyager data and incorporates the many new discoveries that were brought about by examination of Galileo data. Material units have been defined, structural landforms have been identified, and an approximate stratigraphy has been determined utilizing a global mosaic of the surface with a nominal resolution of 1 km/pixel assembled by the USGS. This mosaic incorporates the best available Voyager and Galileo regional coverage and high resolution imagery (100-200 m/pixel) of characteristic features and terrain types obtained by the Galileo spacecraft. This map has given us a more complete understanding of: 1) the major geological processes operating on Ganymede, 2) the characteristics of the geological units making up its surface, 3) the stratigraphic relationships of geological units and structures, and 4) the geological history inferred from these relationships. A summary of these efforts is provided here.

  18. GEMMP - A Google Maps Enabled Mobile Mission Planning Tool for Autonomous Underwater Vehicles

    Directory of Open Access Journals (Sweden)

    Steven Seeley

    2012-05-01

    Full Text Available Many applications for mobile robotics involve operations in remote, outdoor environments. In these environments, it can be difficult to plan missions dynamically due to the lack of portability of existing mission planning software. Mobile platforms allow access to the Web from nearly anywhere while other features, like touch interfaces, simplify user interaction, and GPS integration allows developers and users to take advantage to location-based services. In this paper, we describe a prototype AUV mission planner developed on the Android platform, created to aid and enhance the capability of an existing AUV mission planner, VectorMap, developed and maintained by OceanServer Technology, by taking advantage of the capabilities of existing mobile computing technology.

  19. fMRI orientation decoding in V1 does not require global maps or globally coherent orientation stimuli.

    Science.gov (United States)

    Alink, Arjen; Krugliak, Alexandra; Walther, Alexander; Kriegeskorte, Nikolaus

    2013-01-01

    The orientation of a large grating can be decoded from V1 functional magnetic resonance imaging (fMRI) data, even at low resolution (3-mm isotropic voxels). This finding has suggested that columnar-level neuronal information might be accessible to fMRI at 3T. However, orientation decodability might alternatively arise from global orientation-preference maps. Such global maps across V1 could result from bottom-up processing, if the preferences of V1 neurons were biased toward particular orientations (e.g., radial from fixation, or cardinal, i.e., vertical or horizontal). Global maps could also arise from local recurrent or top-down processing, reflecting pre-attentive perceptual grouping, attention spreading, or predictive coding of global form. Here we investigate whether fMRI orientation decoding with 2-mm voxels requires (a) globally coherent orientation stimuli and/or (b) global-scale patterns of V1 activity. We used opposite-orientation gratings (balanced about the cardinal orientations) and spirals (balanced about the radial orientation), along with novel patch-swapped variants of these stimuli. The two stimuli of a patch-swapped pair have opposite orientations everywhere (like their globally coherent parent stimuli). However, the two stimuli appear globally similar, a patchwork of opposite orientations. We find that all stimulus pairs are robustly decodable, demonstrating that fMRI orientation decoding does not require globally coherent orientation stimuli. Furthermore, decoding remained robust after spatial high-pass filtering for all stimuli, showing that fine-grained components of the fMRI patterns reflect visual orientations. Consistent with previous studies, we found evidence for global radial and vertical preference maps in V1. However, these were weak or absent for patch-swapped stimuli, suggesting that global preference maps depend on globally coherent orientations and might arise through recurrent or top-down processes related to the perception of

  20. Visible and infrared mapping spectrometer (VIMS) - a facility instrument for planetary missions

    International Nuclear Information System (INIS)

    Wellman, J.B.; Duval, J.; Juergens, D.; Voss, J.

    1988-01-01

    A second-generation visible and IR mapping spectrometer (VIMS), selected for both the Mars Observer and Comet Rendezvous Asteroid Flyby (CRAF) missions, is described. VIMS is a scanning spectrometer with a focal plane consisting of linear arrays of visible and IR detectors, cooled by a radiative cooler. It is noted that a wide-angle scan using a full-aperture scan mirror was implemented for the Mars Observer; a narrow-angle scan using a scanning secondary mirror within a Cassegrain foreoptic was achieved for the CRAF mission. 11 references

  1. Advances In Understanding Global Water Cycle With Advent of GPM Mission

    Science.gov (United States)

    Smith, Eric A.

    2002-01-01

    During the coming decade, the internationally organized Global Precipitation Measurement (GPM) Mission will take an important step in creating a global precipitation observing system from space based on an international fleet of satellites operated as a constellation. One perspective for understanding the nature of GPM is that it will be a hierarchical system of datastreams beginning with very high caliber combined dual frequency radar/passive microwave (PMW) rain-radiometer retrievals, to high caliber PMW rain-radiometer only retrievals, and then on to blends of the former datastreams with additional lower-caliber PMW-based and IR-based rain retrievals. Within the context of the now emerging global water & energy cycle (GWEC) programs of a number of research agencies throughout the world, GPM serves as a centerpiece space mission for improving our understanding of the Earth's water cycle from a global measurement perspective and on down to regional scales and below. One of the salient problems within our current understanding of the global water and energy cycle is determining whether a change in the rate of the water cycle is accompanying changes in climate, e.g., climate warming. As there are a number of ways in which to define a rate-change of the global water cycle, it is not entirely clear as to what constitutes such a determination. This paper first presents an overview of the GPM Mission and how its overriding scientific objectives for climate, weather, and hydrology flow from the anticipated improvements that are being planned for the constellation-based measuring system. Next, the paper shows how the GPM observations can be used within the framework of the oceanic and continental water budget equations to determine whether a given perturbation in precipitation is indicative of an actual rate change in the water cycle, consistent with required responses in water storage and/or water flux transport processes, or whether it is simply part of the natural

  2. Mapping brain structure and function: cellular resolution, global perspective.

    Science.gov (United States)

    Zupanc, Günther K H

    2017-04-01

    A comprehensive understanding of the brain requires analysis, although from a global perspective, with cellular, and even subcellular, resolution. An important step towards this goal involves the establishment of three-dimensional high-resolution brain maps, incorporating brain-wide information about the cells and their connections, as well as the chemical architecture. The progress made in such anatomical brain mapping in recent years has been paralleled by the development of physiological techniques that enable investigators to generate global neural activity maps, also with cellular resolution, while simultaneously recording the organism's behavioral activity. Combination of the high-resolution anatomical and physiological maps, followed by theoretical systems analysis of the deduced network, will offer unprecedented opportunities for a better understanding of how the brain, as a whole, processes sensory information and generates behavior.

  3. When does the Hawking into Unruh mapping for global embeddings work?

    International Nuclear Information System (INIS)

    Paston, S.A.

    2014-01-01

    We discuss for which smooth global embeddings of a metric into a Minkowskian spacetime the Hawking into Unruh mapping takes place. There is a series of examples of global embeddings into the Minkowskian spacetime (GEMS) with such mapping for physically interesting metrics. These examples use Fronsdal-type embeddings for which timelines are hyperbolas. In the present work we show that for some new embeddings (non Fronsdal-type) of the Schwarzschild and Reissner-Nordström metrics there is no mapping. We give also the examples of hyperbolic and non hyperbolic type embeddings for the de Sitter metric for which there is no mapping. For the Minkowski metric where there is no Hawking radiation we consider a non trivial embedding with hyperbolic timelines, hence in the ambient space the Unruh effect takes place, and it follows that there is no mapping too. The considered examples show that the meaning of the Hawking into Unruh mapping for global embeddings remains still insufficiently clear and requires further investigations.

  4. Improvement of global and regional mean sea level derived from satellite altimetry multi missions

    Science.gov (United States)

    Ablain, M.; Faugere, Y.; Larnicol, G.; Picot, N.; Cazenave, A.; Benveniste, J.

    2012-04-01

    With the satellite altimetry missions, the global mean sea level (GMSL) has been calculated on a continual basis since January 1993. 'Verification' phases, during which the satellites follow each other in close succession (Topex/Poseidon--Jason-1, then Jason-1--Jason-2), help to link up these different missions by precisely determining any bias between them. Envisat, ERS-1 and ERS-2 are also used, after being adjusted on these reference missions, in order to compute Mean Sea Level at high latitudes (higher than 66°N and S), and also to improve spatial resolution by combining all these missions together. The global mean sea level (MSL) deduced from TOPEX/Poseidon, Jason-1 and Jason-2 provide a global rate of 3.2 mm from 1993 to 2010 applying the post glacial rebound (MSL aviso website http://www.jason.oceanobs.com/msl). Besides, the regional sea level trends bring out an inhomogeneous repartition of the ocean elevation with local MSL slopes ranging from + 8 mm/yr to - 8 mm/year. A study published in 2009 [Ablain et al., 2009] has shown that the global MSL trend unceratainty was estimated at +/-0.6 mm/year with a confidence interval of 90%. The main sources of errors at global and regional scales are due to the orbit calculation and the wet troposphere correction. But others sea-level components have also a significant impact on the long-term stability of MSL as for instance the stability of instrumental parameters and the atmospheric corrections. Thanks to recent studies performed in the frame of the SALP project (supported by CNES) and Sea-level Climate Change Initiative project (supported by ESA), strong improvements have been provided for the estimation of the global and regional MSL trends. In this paper, we propose to describe them; they concern the orbit calculation thanks to new gravity fields, the atmospheric corrections thanks to ERA-interim reanalyses, the wet troposphere corrections thanks to the stability improvement, and also empirical corrections

  5. Mapping global surface water inundation dynamics using synergistic information from SMAP, AMSR2 and Landsat

    Science.gov (United States)

    Du, J.; Kimball, J. S.; Galantowicz, J. F.; Kim, S.; Chan, S.; Reichle, R. H.; Jones, L. A.; Watts, J. D.

    2017-12-01

    A method to monitor global land surface water (fw) inundation dynamics was developed by exploiting the enhanced fw sensitivity of L-band (1.4 GHz) passive microwave observations from the Soil Moisture Active Passive (SMAP) mission. The L-band fw (fwLBand) retrievals were derived using SMAP H-polarization brightness temperature (Tb) observations and predefined L-band reference microwave emissivities for water and land endmembers. Potential soil moisture and vegetation contributions to the microwave signal were represented from overlapping higher frequency Tb observations from AMSR2. The resulting fwLBand global record has high temporal sampling (1-3 days) and 36-km spatial resolution. The fwLBand annual averages corresponded favourably (R=0.84, pretrievals showed favourable classification accuracy for water (commission error 31.84%; omission error 28.08%) and land (commission error 0.82%; omission error 0.99%) and seasonal wet and dry periods when compared to independent water maps derived from Landsat-8 imagery. The new fwLBand algorithms and continuing SMAP and AMSR2 operations provide for near real-time, multi-scale monitoring of global surface water inundation dynamics, potentially benefiting hydrological monitoring, flood assessments, and global climate and carbon modeling.

  6. Global mapping of ecosystem services and conservation priorities

    Science.gov (United States)

    Naidoo, R.; Balmford, A.; Costanza, R.; Fisher, B.; Green, R. E.; Lehner, B.; Malcolm, T. R.; Ricketts, T. H.

    2008-01-01

    Global efforts to conserve biodiversity have the potential to deliver economic benefits to people (i.e., “ecosystem services”). However, regions for which conservation benefits both biodiversity and ecosystem services cannot be identified unless ecosystem services can be quantified and valued and their areas of production mapped. Here we review the theory, data, and analyses needed to produce such maps and find that data availability allows us to quantify imperfect global proxies for only four ecosystem services. Using this incomplete set as an illustration, we compare ecosystem service maps with the global distributions of conventional targets for biodiversity conservation. Our preliminary results show that regions selected to maximize biodiversity provide no more ecosystem services than regions chosen randomly. Furthermore, spatial concordance among different services, and between ecosystem services and established conservation priorities, varies widely. Despite this lack of general concordance, “win–win” areas—regions important for both ecosystem services and biodiversity—can be usefully identified, both among ecoregions and at finer scales within them. An ambitious interdisciplinary research effort is needed to move beyond these preliminary and illustrative analyses to fully assess synergies and trade-offs in conserving biodiversity and ecosystem services. PMID:18621701

  7. Global Precipitation Measurement (GPM) Mission Core Spacecraft Systems Engineering Challenges

    Science.gov (United States)

    Bundas, David J.; ONeill, Deborah; Field, Thomas; Meadows, Gary; Patterson, Peter

    2006-01-01

    The Global Precipitation Measurement (GPM) Mission is a collaboration between the National Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA), and other US and international partners, with the goal of monitoring the diurnal and seasonal variations in precipitation over the surface of the earth. These measurements will be used to improve current climate models and weather forecasting, and enable improved storm and flood warnings. This paper gives an overview of the mission architecture and addresses the status of some key trade studies, including the geolocation budgeting, design considerations for spacecraft charging, and design issues related to the mitigation of orbital debris.

  8. On epochal mission of multicultural education in a perspective of globalization

    Institute of Scientific and Technical Information of China (English)

    Chen Shi-jian

    2006-01-01

    The development of modern societies accelerates the process of globalization,which in turn brings about a conspicuous diversity of cultures.Cultural difference and cultural diversity are characteristics of multiculturalism,which commits itself to the construction of favorable educational climates for multiple cultures.Such a progression has facilitated the development of education in a democratic and diverse way.Multicultural education develops rapidly and should undertake the new mission in the globalization era.In the perspective of globalization,multicultural education must aim at developing students' ability to adapt to a multicultural world.It should promote a combined growth of culture and world peace.

  9. Marketing Management: Monitoring the International Environment Factors Using Global Maps

    Directory of Open Access Journals (Sweden)

    Štěpán Kala

    2015-01-01

    Full Text Available The article discusses the issue of the global marketing environment in line with the factors determining its external conditions. The aim is to specify the marketing-environment indicators in the international context and interpret the use of geographical maps illustratively documenting the differences of particular parameters in various parts of the global market. The research-results help update the theoretical framework of global environment factors. These data are also important for practice. Many enterprises consider the question of optimising their sources and directing their goals towards the opportunities available thanks to global markets. The global environment mapping is thereby an important basis for the marketing activities whose implementation across national boundaries is going to be mainly influenced by peculiarities of the environment involving foreign markets and their changes.

  10. Systematical estimation of GPM-based global satellite mapping of precipitation products over China

    Science.gov (United States)

    Zhao, Haigen; Yang, Bogang; Yang, Shengtian; Huang, Yingchun; Dong, Guotao; Bai, Juan; Wang, Zhiwei

    2018-03-01

    As the Global Precipitation Measurement (GPM) Core Observatory satellite continues its mission, new version 6 products for Global Satellite Mapping of Precipitation (GSMaP) have been released. However, few studies have systematically evaluated the GSMaP products over mainland China. This study quantitatively evaluated three GPM-based GSMaP version 6 precipitation products for China and eight subregions referring to the Chinese daily Precipitation Analysis Product (CPAP). The GSMaP products included near-real-time (GSMaP_NRT), microwave-infrared reanalyzed (GSMaP_MVK), and gauge-adjusted (GSMaP_Gau) data. Additionally, the gauge-adjusted Integrated Multi-Satellite Retrievals for Global Precipitation Measurement Mission (IMERG_Gau) was also assessed and compared with GSMaP_Gau. The analyses of the selected daily products were carried out at spatiotemporal resolutions of 1/4° for the period of March 2014 to December 2015 in consideration of the resolution of CPAP and the consistency of the coverage periods of the satellite products. The results indicated that GSMaP_MVK and GSMaP_NRT performed comparably and underdetected light rainfall events (Pearson linear correlation coefficient (CC), fractional standard error (FSE), and root-mean-square error (RMSE) metrics during the summer. Compared with GSMaP_NRT and GSMaP_MVK, GSMaP_Gau possessed significantly improved metrics over mainland China and the eight subregions and performed better in terms of CC, RMSE, and FSE but underestimated precipitation to a greater degree than IMERG_Gau. As a quantitative assessment of the GPM-era GSMaP products, these validation results will supply helpful references for both end users and algorithm developers. However, the study findings need to be confirmed over a longer future study period when the longer-period IMERG retrospectively-processed data are available.

  11. JOICFP included in GII mission to Ghana. Global Issues Initiative.

    Science.gov (United States)

    1996-03-01

    Among countries in West Africa, Ghana is the main focus of the Global Issues Initiative (GII) on Population and AIDS and one of twelve priority countries selected for official development assistance (ODA) under the program. A ten-member project formulation mission sent to Ghana by the Ministry of Foreign Affairs (MOFA) of Japan was in the country during January 10-18. This mission was the first of its kind to be sent to Africa. It was led by the director of the Third Project Formulation Study Division, Project Formulation Study Department, Japan International Cooperation Agency (JICA), and included representatives of MOFA, JICA, and the Ministry of Health and Welfare, and an observer from UNAIDS. The mission's chief objective was to explore possibilities for Japanese cooperation in the areas of population, child health, and HIV/AIDS in line with the Mid-Term Health Strategy (MTHS) formulated in 1995 by the government of Ghana. The mission also explored the possibility of collaboration with major donors, international organizations, international agencies, and NGOs. The mission met with representatives of NGOs from population, women, AIDS, and health-related areas on January 13, who were then briefed upon Japan's Grant Assistance for Grassroots Project for local NGOs. Views were exchanged upon NGO activities.

  12. Mapping local and global variability in plant trait distributions

    Energy Technology Data Exchange (ETDEWEB)

    Butler, Ethan E.; Datta, Abhirup; Flores-Moreno, Habacuc; Chen, Ming; Wythers, Kirk R.; Fazayeli, Farideh; Banerjee, Arindam; Atkin, Owen K.; Kattge, Jens; Amiaud, Bernard; Blonder, Benjamin; Boenisch, Gerhard; Bond-Lamberty, Ben; Brown, Kerry A.; Byun, Chaeho; Campetella, Giandiego; Cerabolini, Bruno E. L.; Cornelissen, Johannes H. C.; Craine, Joseph M.; Craven, Dylan; de Vries, Franciska T.; Díaz, Sandra; Domingues, Tomas F.; Forey, Estelle; González-Melo, Andrés; Gross, Nicolas; Han, Wenxuan; Hattingh, Wesley N.; Hickler, Thomas; Jansen, Steven; Kramer, Koen; Kraft, Nathan J. B.; Kurokawa, Hiroko; Laughlin, Daniel C.; Meir, Patrick; Minden, Vanessa; Niinemets, Ülo; Onoda, Yusuke; Peñuelas, Josep; Read, Quentin; Sack, Lawren; Schamp, Brandon; Soudzilovskaia, Nadejda A.; Spasojevic, Marko J.; Sosinski, Enio; Thornton, Peter E.; Valladares, Fernando; van Bodegom, Peter M.; Williams, Mathew; Wirth, Christian; Reich, Peter B.

    2017-12-01

    Accurate trait-environment relationships and global maps of plant trait distributions represent a needed stepping stone in global biogeography and are critical constraints of key parameters for land models. Here, we use a global data set of plant traits to map trait distributions closely coupled to photosynthesis and foliar respiration: specific leaf area (SLA), and dry mass-based concentrations of leaf nitrogen (Nm) and phosphorus (Pm); We propose two models to extrapolate geographically sparse point data to continuous spatial surfaces. The first is a categorical model using species mean trait values, categorized into plant functional types (PFTs) and extrapolating to PFT occurrence ranges identified by remote sensing. The second is a Bayesian spatial model that incorporates information about PFT, location and environmental covariates to estimate trait distributions. Both models are further stratified by varying the number of PFTs; The performance of the models was evaluated based on their explanatory and predictive ability. The Bayesian spatial model leveraging the largest number of PFTs produced the best maps; The interpolation of full trait distributions enables a wider diversity of vegetation to be represented across the land surface. These maps may be used as input to Earth System Models and to evaluate other estimates of functional diversity.

  13. Global mapping of transposon location.

    Directory of Open Access Journals (Sweden)

    Abram Gabriel

    2006-12-01

    Full Text Available Transposable genetic elements are ubiquitous, yet their presence or absence at any given position within a genome can vary between individual cells, tissues, or strains. Transposable elements have profound impacts on host genomes by altering gene expression, assisting in genomic rearrangements, causing insertional mutations, and serving as sources of phenotypic variation. Characterizing a genome's full complement of transposons requires whole genome sequencing, precluding simple studies of the impact of transposition on interindividual variation. Here, we describe a global mapping approach for identifying transposon locations in any genome, using a combination of transposon-specific DNA extraction and microarray-based comparative hybridization analysis. We use this approach to map the repertoire of endogenous transposons in different laboratory strains of Saccharomyces cerevisiae and demonstrate that transposons are a source of extensive genomic variation. We also apply this method to mapping bacterial transposon insertion sites in a yeast genomic library. This unique whole genome view of transposon location will facilitate our exploration of transposon dynamics, as well as defining bases for individual differences and adaptive potential.

  14. The THEMIS Mission

    CERN Document Server

    Burch, J. L

    2009-01-01

    The THEMIS mission aims to determine the trigger and large-scale evolution of substorms by employing five identical micro-satellites which line up along the Earth's magnetotail to track the motion of particles, plasma, and waves from one point to another and for the first time, resolve space-time ambiguities in key regions of the magnetosphere on a global scale. The primary goal of THEMIS is to elucidate which magnetotail process is responsible for substorm onset at the region where substorm auroras map: (i) local disruption of the plasma sheet current (current disruption) or (ii) the interaction of the current sheet with the rapid influx of plasma emanating from reconnection. The probes also traverse the radiation belts and the dayside magnetosphere, allowing THEMIS to address additional baseline objectives. This volume describes the mission, the instrumentation, and the data derived from them.

  15. A Synopsis of Global Mapping of Freshwater Habitats and Biodiversity: Implications for Conservation

    Energy Technology Data Exchange (ETDEWEB)

    McManamay, Ryan A. [ORNL; Griffiths, Natalie A. [ORNL; DeRolph, Christopher R. [ORNL; Pracheil, Brenda M. [ORNL

    2018-01-01

    Accurately mapping freshwater habitats and biodiversity at high-resolutions across the globe is essential for assessing the vulnerability and threats to freshwater organisms and prioritizing conservation efforts. Since the 2000s, extensive efforts have been devoted to mapping global freshwater habitats (rivers, lakes, and wetlands), the spatial representation of which has changed dramatically over time with new geospatial data products and improved remote sensing technologies. Some of these mapping efforts, however, are still coarse representations of actual conditions. Likewise, the resolution and scope of global freshwater biodiversity compilation efforts have also increased, but are yet to mirror the spatial resolution and fidelity of mapped freshwater environments. In our synopsis, we find that efforts to map freshwater habitats have been conducted independently of those for freshwater biodiversity; subsequently, there is little congruence in the spatial representation and resolution of the two efforts. We suggest that global species distribution models are needed to fill this information gap; however, limiting data on habitat characteristics at scales that complement freshwater habitats has prohibited global high-resolution biogeography efforts. Emerging research trends, such as mapping habitat alteration in freshwater ecosystems and trait biogeography, show great promise in mechanistically linking global anthropogenic stressors to freshwater biodiversity decline and extinction risk.

  16. Global Geological Map of Venus

    Science.gov (United States)

    Ivanov, M. A.

    2008-09-01

    Introduction: The Magellan SAR images provide sufficient data to compile a geological map of nearly the entire surface of Venus. Such a global and selfconsistent map serves as the base to address the key questions of the geologic history of Venus. 1) What is the spectrum of units and structures that makes up the surface of Venus [1-3]? 2) What volcanic/tectonic processes do they characterize [4-7]? 3) Did these processes operated locally, regionally, or globally [8- 11]? 4) What are the relationships of relative time among the units [8]? 5) At which length-scale these relationships appear to be consistent [8-10]? 6) What is the absolute timing of formation of the units [12-14]? 7) What are the histories of volcanism, tectonics and the long-wavelength topography on Venus? 7) What model(s) of heat loss and lithospheric evolution [15-21] do these histories correspond to? The ongoing USGS program of Venus mapping has already resulted in a series of published maps at the scale 1:5M [e.g. 22-30]. These maps have a patch-like distribution, however, and are compiled by authors with different mapping philosophy. This situation not always results in perfect agreement between the neighboring areas and, thus, does not permit testing geological hypotheses that could be addressed with a self-consistent map. Here the results of global geological mapping of Venus at the scale 1:10M is presented. The map represents a contiguous area extending from 82.5oN to 82.5oS and comprises ~99% of the planet. Mapping procedure: The map was compiled on C2- MIDR sheets, the resolution of which permits identifying the basic characteristics of previously defined units. The higher resolution images were used during the mapping to clarify geologic relationships. When the map was completed, its quality was checked using published USGS maps [e.g., 22-30] and the catalogue of impact craters [31]. The results suggest that the mapping on the C2-base provided a highquality map product. Units and

  17. Tropical Rainfall Measuring Mission: Monitoring the Global Tropics for 3 Years and Beyond. 1.1

    Science.gov (United States)

    Shepherd, Marshall; Starr, David OC. (Technical Monitor)

    2001-01-01

    The Tropical Rainfall Measuring Mission (TRMM) was launched in November 1997 as a joint U.S.-Japanese mission to advance understanding of the global energy and water cycle by providing distributions of rainfall and latent heating over the global tropics. As a part of NASA's Earth System Enterprise, TRMM seeks to understand the mechanisms through which changes in tropical rainfall influence global circulation. Additionally, a goal is to improve the ability to model these processes in order to predict global circulations and rainfall variability at monthly and longer time scales. Such understanding has implications for assessing climate processes related to El Nino/La Nina and Global Warming. TRMM has also provided unexpected and exciting new knowledge and applications in areas related to hurricane monitoring, lightning, pollution, hydrology, and other areas. This CD-ROM includes a self-contained PowerPoint presentation that provides an overview of TRMM and significant science results; a set of data movies or animation; and listings of current TRMM-related publications in the literature.

  18. The Making of the 1:3M Geological Map Series of Mercury: Status and Updates

    Science.gov (United States)

    Galluzzi, V.; Guzzetta, L.; Mancinelli, P.; Giacomini, L.; Lewang, A. M.; Malliband, C.; Mosca, A.; Pegg, D.; Wright, J.; Ferranti, L.; Hiesinger, H.; Massironi, M.; Pauselli, C.; Rothery, D. A.; Palumbo, P.

    2018-05-01

    A complete global series of 1:3M-scale maps of Mercury is being prepared in support to the ESA/JAXA BepiColombo mission. Currently, 35% of Mercury has been mapped and 55% of the planet will be covered soon by the maps in progress.

  19. Titan's Topography and Shape at the End of the Cassini Mission

    Science.gov (United States)

    Corlies, P.; Hayes, A. G.; Birch, S. P. D.; Lorenz, R.; Stiles, B. W.; Kirk, R.; Poggiali, V.; Zebker, H.; Iess, L.

    2017-12-01

    With the conclusion of the Cassini mission, we present an updated topographic map of Titan, including all the available altimetry, SARtopo, and stereophotogrammetry topographic data sets available from the mission. We use radial basis functions to interpolate the sparse data set, which covers only ˜9% of Titan's global area. The most notable updates to the topography include higher coverage of the poles of Titan, improved fits to the global shape, and a finer resolution of the global interpolation. We also present a statistical analysis of the error in the derived products and perform a global minimization on a profile-by-profile basis to account for observed biases in the input data set. We find a greater flattening of Titan than measured, additional topographic rises in Titan's southern hemisphere and better constrain the possible locations of past and present liquids on Titan's surface.

  20. Mapping Global Research on International Higher Education

    Science.gov (United States)

    Kuzhabekova, Aliya; Hendel, Darwin D.; Chapman, David W.

    2015-01-01

    The purpose of the study is to map global research in international higher education. Specifically, the study uses bibliometric and social network analysis methods to identify key individuals, institutions, countries, and disciplines contributing to research in international higher education and to investigate patterns of connectivity among…

  1. Petascale Diagnostic Assessment of the Global Portfolio Rainfall Space Missions' Ability to Support Flood Forecasting

    Science.gov (United States)

    Reed, P. M.; Chaney, N.; Herman, J. D.; Wood, E. F.; Ferringer, M. P.

    2015-12-01

    This research represents a multi-institutional collaboration between Cornell University, The Aerospace Corporation, and Princeton University that has completed a Petascale diagnostic assessment of the current 10 satellite missions providing rainfall observations. Our diagnostic assessment has required four core tasks: (1) formally linking high-resolution astrodynamics design and coordination of space assets with their global hydrological impacts within a Petascale "many-objective" global optimization framework, (2) developing a baseline diagnostic evaluation of a 1-degree resolution global implementation of the Variable Infiltration Capacity (VIC) model to establish the required satellite observation frequencies and coverage to maintain acceptable global flood forecasts, (3) evaluating the limitations and vulnerabilities of the full suite of current satellite precipitation missions including the recently approved Global Precipitation Measurement (GPM) mission, and (4) conceptualizing the next generation spaced-based platforms for water cycle observation. Our team exploited over 100 Million hours of computing access on the 700,000+ core Blue Waters machine to radically advance our ability to discover and visualize key system tradeoffs and sensitivities. This project represents to our knowledge the first attempt to develop a 10,000 member Monte Carlo global hydrologic simulation at one degree resolution that characterizes the uncertain effects of changing the available frequencies of satellite precipitation on drought and flood forecasts. The simulation—optimization components of the work have set a theoretical baseline for the best possible frequencies and coverages for global precipitation given unlimited investment, broad international coordination in reconfiguring existing assets, and new satellite constellation design objectives informed directly by key global hydrologic forecasting requirements. Our research poses a step towards realizing the integrated

  2. Challenges and opportunities in mapping land use intensity globally

    DEFF Research Database (Denmark)

    Kuemmerle, Tobias; Erb, Karlheinz; Meyfroidt, Patrick

    2013-01-01

    Future increases in land-based production will need to focus more on sustainably intensifying existing production systems. Unfortunately, our understanding of the global patterns of land use intensity is weak, partly because land use intensity is a complex, multidimensional term, and partly becau...... challenges and opportunities for mapping land use intensity for cropland, grazing, and forestry systems, and identify key issues for future research....... we lack appropriate datasets to assess land use intensity across broad geographic extents. Here, we review the state of the art regarding approaches for mapping land use intensity and provide a comprehensive overview of available global-scale datasets on land use intensity. We also outline major...

  3. COBRAS/SAMBA: The European space mission to map the CBR anisotropy

    DEFF Research Database (Denmark)

    Bersanelli, M.; Mandolesi, N.; Cesarsky, C.

    1996-01-01

    COBRAS/SAMBA is an ESA mission designed for extensive, accurate mapping of the anisotropies of the Cosmic Background Radiation, with angular sensitivity from sub-degree scales up to and overlapping with the COBE-DMR resolution. This will allow a fun identification of the primordial density pertur...... perturbations which grew to form the large-scale structures observed in the present universe. Here we present the scientific goals and the key characteristics of the model payload and observation strategy....

  4. Global Rural-Urban Mapping Project (GRUMP), Alpha Version

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Rural-Urban Mapping Project (GRUMP), Alpha Version consists of estimates of human population for the years 1990, 1995, and 2000 by 30 arc-second (1km)...

  5. A global interaction network maps a wiring diagram of cellular function

    Science.gov (United States)

    Costanzo, Michael; VanderSluis, Benjamin; Koch, Elizabeth N.; Baryshnikova, Anastasia; Pons, Carles; Tan, Guihong; Wang, Wen; Usaj, Matej; Hanchard, Julia; Lee, Susan D.; Pelechano, Vicent; Styles, Erin B.; Billmann, Maximilian; van Leeuwen, Jolanda; van Dyk, Nydia; Lin, Zhen-Yuan; Kuzmin, Elena; Nelson, Justin; Piotrowski, Jeff S.; Srikumar, Tharan; Bahr, Sondra; Chen, Yiqun; Deshpande, Raamesh; Kurat, Christoph F.; Li, Sheena C.; Li, Zhijian; Usaj, Mojca Mattiazzi; Okada, Hiroki; Pascoe, Natasha; Luis, Bryan-Joseph San; Sharifpoor, Sara; Shuteriqi, Emira; Simpkins, Scott W.; Snider, Jamie; Suresh, Harsha Garadi; Tan, Yizhao; Zhu, Hongwei; Malod-Dognin, Noel; Janjic, Vuk; Przulj, Natasa; Troyanskaya, Olga G.; Stagljar, Igor; Xia, Tian; Ohya, Yoshikazu; Gingras, Anne-Claude; Raught, Brian; Boutros, Michael; Steinmetz, Lars M.; Moore, Claire L.; Rosebrock, Adam P.; Caudy, Amy A.; Myers, Chad L.; Andrews, Brenda; Boone, Charles

    2017-01-01

    We generated a global genetic interaction network for Saccharomyces cerevisiae, constructing over 23 million double mutants, identifying ~550,000 negative and ~350,000 positive genetic interactions. This comprehensive network maps genetic interactions for essential gene pairs, highlighting essential genes as densely connected hubs. Genetic interaction profiles enabled assembly of a hierarchical model of cell function, including modules corresponding to protein complexes and pathways, biological processes, and cellular compartments. Negative interactions connected functionally related genes, mapped core bioprocesses, and identified pleiotropic genes, whereas positive interactions often mapped general regulatory connections among gene pairs, rather than shared functionality. The global network illustrates how coherent sets of genetic interactions connect protein complex and pathway modules to map a functional wiring diagram of the cell. PMID:27708008

  6. The global thermospheric mapping study

    International Nuclear Information System (INIS)

    Oliver, W.L.; Salah, J.E.

    1988-01-01

    The Global Thermospheric Mapping Study (GTMS) is a multitechnique experimental pilot study of the Earth's thermosphere designed to map simultaneously its spatial and temporal morphology. This paper provides the background for the study and presents the analysis techniques employed at Millstone Hill and results to date on thermospheric structure and dynamics. The first latitudinal-temporal maps of exospheric temperature obtained from the incoherent scatter radar chain at 70W meridian are presented for the two solstice periods, revealing substantial seasonal differences between them. The observed structure shows a relatively depressed temperature at high latitude in summer in contrast to the mass spectrometer/incoherent scatter 1983 [MSIS-83] empirical model, which shows a maximum temperature at polar latitudes. The MSIS-83 model predictions are in good agreement with the observed latitudinal-temporal structure in winter. Comparison with the numerical predictions made for the June 26-28, 1984 period with the National Center for Atmospheric Research thermospheric general circulation model shows reasonable agreement in the latitudinal gradient but the observations indicate a cooler thermosphere by several hundred degrees. Neutral winds at mid-latitudes are presented showing the expected strong southward winds at night, which are found to be consistent with the temperature gradients observed in the latitudinal maps. There is good agreement in the June winds between the available numerical model calculations and the observations. Work performed elsewhere on the GTMS data base is summarized for completeness

  7. Order in the turbulent phase of globally coupled maps

    International Nuclear Information System (INIS)

    Perez, G.; Sinha, S.; Cerdeira, H.A.

    1991-04-01

    The very surprising broad peaks seen in the power spectra of the mean field in a globally coupled map system, indicating subtle coherences between the elements even in the ''turbulent'' phase, are investigated in detail with respect to number of elements coupled, nonlinearity and global coupling strength. We find that the peaks are determined by two distinct components: effective renormalization of the nonlinearity parameter in the local mapping and the strength of the mean field iteration term. We also demonstrate the influence of background noise on the peaks - which is quite counterintuitive, as the peaks become sharper with increase in strength of noise, up to a certain critical noise strength. (author). 11 refs, 10 figs

  8. Computer graphics aid mission operations. [NASA missions

    Science.gov (United States)

    Jeletic, James F.

    1990-01-01

    The application of computer graphics techniques in NASA space missions is reviewed. Telemetric monitoring of the Space Shuttle and its components is discussed, noting the use of computer graphics for real-time visualization problems in the retrieval and repair of the Solar Maximum Mission. The use of the world map display for determining a spacecraft's location above the earth and the problem of verifying the relative position and orientation of spacecraft to celestial bodies are examined. The Flight Dynamics/STS Three-dimensional Monitoring System and the Trajectroy Computations and Orbital Products System world map display are described, emphasizing Space Shuttle applications. Also, consideration is given to the development of monitoring systems such as the Shuttle Payloads Mission Monitoring System and the Attitude Heads-Up Display and the use of the NASA-Goddard Two-dimensional Graphics Monitoring System during Shuttle missions and to support the Hubble Space Telescope.

  9. A Continuously Updated, Global Land Classification Map, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to demonstrate a fully automatic capability for generating a global, high resolution (30 m) land classification map, with continuous updates from...

  10. Land cover mapping of North and Central America—Global Land Cover 2000

    Science.gov (United States)

    Latifovic, Rasim; Zhu, Zhi-Liang

    2004-01-01

    The Land Cover Map of North and Central America for the year 2000 (GLC 2000-NCA), prepared by NRCan/CCRS and USGS/EROS Data Centre (EDC) as a regional component of the Global Land Cover 2000 project, is the subject of this paper. A new mapping approach for transforming satellite observations acquired by the SPOT4/VGTETATION (VGT) sensor into land cover information is outlined. The procedure includes: (1) conversion of daily data into 10-day composite; (2) post-seasonal correction and refinement of apparent surface reflectance in 10-day composite images; and (3) extraction of land cover information from the composite images. The pre-processing and mosaicking techniques developed and used in this study proved to be very effective in removing cloud contamination, BRDF effects, and noise in Short Wave Infra-Red (SWIR). The GLC 2000-NCA land cover map is provided as a regional product with 28 land cover classes based on modified Federal Geographic Data Committee/Vegetation Classification Standard (FGDC NVCS) classification system, and as part of a global product with 22 land cover classes based on Land Cover Classification System (LCCS) of the Food and Agriculture Organisation. The map was compared on both areal and per-pixel bases over North and Central America to the International Geosphere–Biosphere Programme (IGBP) global land cover classification, the University of Maryland global land cover classification (UMd) and the Moderate Resolution Imaging Spectroradiometer (MODIS) Global land cover classification produced by Boston University (BU). There was good agreement (79%) on the spatial distribution and areal extent of forest between GLC 2000-NCA and the other maps, however, GLC 2000-NCA provides additional information on the spatial distribution of forest types. The GLC 2000-NCA map was produced at the continental level incorporating specific needs of the region.

  11. BikeMaps.org: A Global Tool for Collision and Near Miss Mapping.

    Science.gov (United States)

    Nelson, Trisalyn A; Denouden, Taylor; Jestico, Benjamin; Laberee, Karen; Winters, Meghan

    2015-01-01

    There are many public health benefits to cycling, such as chronic disease reduction and improved air quality. Real and perceived concerns about safety are primary barriers to new ridership. Due to limited forums for official reporting of cycling incidents, lack of comprehensive data is limiting our ability to study cycling safety and conduct surveillance. Our goal is to introduce BikeMaps.org, a new website developed by the authors for crowd-source mapping of cycling collisions and near misses. BikeMaps.org is a global mapping system that allows citizens to map locations of cycling incidents and report on the nature of the event. Attributes collected are designed for spatial modeling research on predictors of safety and risk, and to aid surveillance and planning. Released in October 2014, within 2 months the website had more than 14,000 visitors and mapping in 14 countries. Collisions represent 38% of reports (134/356) and near misses 62% (222/356). In our pilot city, Victoria, Canada, citizens mapped data equivalent to about 1 year of official cycling collision reports within 2 months via BikeMaps.org. Using report completeness as an indicator, early reports indicate that data are of high quality with 50% being fully attributed and another 10% having only one missing attribute. We are advancing this technology, with the development of a mobile App, improved data visualization, real-time altering of hazard reports, and automated open-source tools for data sharing. Researchers and citizens interested in utilizing the BikeMaps.org technology can get involved by encouraging citizen mapping in their region.

  12. Optimizing Orbit-Instrument Configuration for Global Precipitation Mission (GPM) Satellite Fleet

    Science.gov (United States)

    Smith, Eric A.; Adams, James; Baptista, Pedro; Haddad, Ziad; Iguchi, Toshio; Im, Eastwood; Kummerow, Christian; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Following the scientific success of the Tropical Rainfall Measuring Mission (TRMM) spearheaded by a group of NASA and NASDA scientists, their external scientific collaborators, and additional investigators within the European Union's TRMM Research Program (EUROTRMM), there has been substantial progress towards the development of a new internationally organized, global scale, and satellite-based precipitation measuring mission. The highlights of this newly developing mission are a greatly expanded scope of measuring capability and a more diversified set of science objectives. The mission is called the Global Precipitation Mission (GPM). Notionally, GPM will be a constellation-type mission involving a fleet of nine satellites. In this fleet, one member is referred to as the "core" spacecraft flown in an approximately 70 degree inclined non-sun-synchronous orbit, somewhat similar to TRMM in that it carries both a multi-channel polarized passive microwave radiometer (PMW) and a radar system, but in this case it will be a dual frequency Ku-Ka band radar system enabling explicit measurements of microphysical DSD properties. The remainder of fleet members are eight orbit-synchronized, sun-synchronous "constellation" spacecraft each carrying some type of multi-channel PMW radiometer, enabling no worse than 3-hour diurnal sampling over the entire globe. In this configuration the "core" spacecraft serves as a high quality reference platform for training and calibrating the PMW rain retrieval algorithms used with the "constellation" radiometers. Within NASA, GPM has advanced to the pre-formulation phase which has enabled the initiation of a set of science and technology studies which will help lead to the final mission design some time in the 2003 period. This presentation first provides an overview of the notional GPM program and mission design, including its organizational and programmatic concepts, scientific agenda, expected instrument package, and basic flight

  13. The Global Precipitation Measurement (GPM) Mission: Overview and U.S. Status

    Science.gov (United States)

    Hou, Arthur Y.; Azarbarzin, Ardeshir A.; Kakar, Ramesh K.; Neeck, Steven

    2011-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. The cornerstone of the GPM mission is the deployment of a Core Observatory in a 65 deg non-Sun-synchronous orbit to serve as a physics observatory and a transfer standard for inter-calibration of constellation radiometers. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The first space-borne dual-frequency radar will provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles needed for improving precipitation retrievals from passive microwave sensors. The combined use of DPR and GMI measurements will place greater constraints on radiometer retrievals to improve the accuracy and consistency of precipitation estimates from all constellation radiometers. The GPM constellation is envisioned to comprise five or more conical-scanning microwave radiometers and four or more cross-track microwave sounders on operational satellites. NASA and the Japan Aerospace Exploration Agency (JAXA) plan to launch the GPM Core in July 2013. NASA will provide a second radiometer to be flown on a partner-provided GPM Low-Inclination Observatory (L10) to improve near real-time monitoring of hurricanes and mid-latitude storms. NASA and the Brazilian Space Program (AEB/IPNE) are currently engaged in a one-year study on potential L10 partnership. JAXA will contribute to GPM data from the Global Change Observation Mission-Water (GCOM-W) satellite. Additional partnerships are under development to include microwave radiometers on the French-Indian Megha-Tropiques satellite and U.S. Defense Meteorological Satellite Program (DMSP) satellites, as well as cross

  14. The Global-Scale Observations of the Limb and Disk (GOLD) Mission

    Science.gov (United States)

    Eastes, R. W.; McClintock, W. E.; Burns, A. G.; Anderson, D. N.; Andersson, L.; Codrescu, M.; Correira, J. T.; Daniell, R. E.; England, S. L.; Evans, J. S.; Harvey, J.; Krywonos, A.; Lumpe, J. D.; Richmond, A. D.; Rusch, D. W.; Siegmund, O.; Solomon, S. C.; Strickland, D. J.; Woods, T. N.; Aksnes, A.; Budzien, S. A.; Dymond, K. F.; Eparvier, F. G.; Martinis, C. R.; Oberheide, J.

    2017-10-01

    The Earth's thermosphere and ionosphere constitute a dynamic system that varies daily in response to energy inputs from above and from below. This system can exhibit a significant response within an hour to changes in those inputs, as plasma and fluid processes compete to control its temperature, composition, and structure. Within this system, short wavelength solar radiation and charged particles from the magnetosphere deposit energy, and waves propagating from the lower atmosphere dissipate. Understanding the global-scale response of the thermosphere-ionosphere ( T-I) system to these drivers is essential to advancing our physical understanding of coupling between the space environment and the Earth's atmosphere. Previous missions have successfully determined how the "climate" of the T-I system responds. The Global-scale Observations of the Limb and Disk (GOLD) mission will determine how the "weather" of the T-I responds, taking the next step in understanding the coupling between the space environment and the Earth's atmosphere. Operating in geostationary orbit, the GOLD imaging spectrograph will measure the Earth's emissions from 132 to 162 nm. These measurements will be used image two critical variables—thermospheric temperature and composition, near 160 km—on the dayside disk at half-hour time scales. At night they will be used to image the evolution of the low latitude ionosphere in the same regions that were observed earlier during the day. Due to the geostationary orbit being used the mission observes the same hemisphere repeatedly, allowing the unambiguous separation of spatial and temporal variability over the Americas.

  15. Successes with the Global Precipitation Measurement (GPM) Mission

    Science.gov (United States)

    Skofronick-Jackson, Gail; Huffman, George; Stocker, Erich; Petersen, Walter

    2016-01-01

    Water is essential to our planet Earth. Knowing when, where and how precipitation falls is crucial for understanding the linkages between the Earth's water and energy cycles and is extraordinarily important for sustaining life on our planet during climate change. The Global Precipitation Measurement (GPM) Core Observatory spacecraft launched February 27, 2014, is the anchor to the GPM international satellite mission to unify and advance precipitation measurements from a constellation of research and operational sensors to provide "next-generation" precipitation products. GPM is currently a partnership between NASA and the Japan Aerospace Exploration Agency (JAXA). Status and successes in terms of spacecraft, instruments, retrieval products, validation, and impacts for science and society will be presented. Precipitation, microwave, satellite

  16. Trajectory design for a lunar mapping and near-Earth-asteroid flyby mission

    Science.gov (United States)

    Dunham, David W.; Farquhar, Robert W.

    1993-01-01

    In August, 1994, the unusual asteroid (1620) Geographos will pass very close to the Earth. This provides one of the best opportunities for a low-cost asteroid flyby mission that can be achieved with the help of a gravity assist from the Moon during the years 1994 and 1995. A Geographos flyby mission, including a lunar orbiting phase, was recommended to the Startegic Defense Initiative (SDI) Office when they were searching for ideas for a deep-space mission to test small imaging systems and other lightweight technologies. The goals for this mission, called Clementine, were defined to consist of a comprehensive lunar mapping phase before leaving the Earth-Moon system to encounter Geographos. This paper describes how the authors calculated a trajectory that met the mission goals within a reasonable total Delta-V budget. The paper also describes some refinements of the initially computed trajectory and alternative trajectories were investigated. The paper concludes with a list of trajectories to fly by other near-Earth asteroids during the two years following the Geographos opportunity. Some of these could be used if the Geographos schedule can not be met. If the 140 deg phase angle of the Geographos encounter turns out to be too risky, a flyby of (2120) Tantalus in January, 1995, has a much more favorable approach illumination. Tantalus apparently can be reached from the same lunar orbit needed to get to Geographos. However, both the flyby speed and distance from the Earth are much larger for Tantalus than for Geographos.

  17. A cognitive robotic system based on the Soar cognitive architecture for mobile robot navigation, search, and mapping missions

    Science.gov (United States)

    Hanford, Scott D.

    Most unmanned vehicles used for civilian and military applications are remotely operated or are designed for specific applications. As these vehicles are used to perform more difficult missions or a larger number of missions in remote environments, there will be a great need for these vehicles to behave intelligently and autonomously. Cognitive architectures, computer programs that define mechanisms that are important for modeling and generating domain-independent intelligent behavior, have the potential for generating intelligent and autonomous behavior in unmanned vehicles. The research described in this presentation explored the use of the Soar cognitive architecture for cognitive robotics. The Cognitive Robotic System (CRS) has been developed to integrate software systems for motor control and sensor processing with Soar for unmanned vehicle control. The CRS has been tested using two mobile robot missions: outdoor navigation and search in an indoor environment. The use of the CRS for the outdoor navigation mission demonstrated that a Soar agent could autonomously navigate to a specified location while avoiding obstacles, including cul-de-sacs, with only a minimal amount of knowledge about the environment. While most systems use information from maps or long-range perceptual capabilities to avoid cul-de-sacs, a Soar agent in the CRS was able to recognize when a simple approach to avoiding obstacles was unsuccessful and switch to a different strategy for avoiding complex obstacles. During the indoor search mission, the CRS autonomously and intelligently searches a building for an object of interest and common intersection types. While searching the building, the Soar agent builds a topological map of the environment using information about the intersections the CRS detects. The agent uses this topological model (along with Soar's reasoning, planning, and learning mechanisms) to make intelligent decisions about how to effectively search the building. Once the

  18. A global genetic interaction network maps a wiring diagram of cellular function.

    Science.gov (United States)

    Costanzo, Michael; VanderSluis, Benjamin; Koch, Elizabeth N; Baryshnikova, Anastasia; Pons, Carles; Tan, Guihong; Wang, Wen; Usaj, Matej; Hanchard, Julia; Lee, Susan D; Pelechano, Vicent; Styles, Erin B; Billmann, Maximilian; van Leeuwen, Jolanda; van Dyk, Nydia; Lin, Zhen-Yuan; Kuzmin, Elena; Nelson, Justin; Piotrowski, Jeff S; Srikumar, Tharan; Bahr, Sondra; Chen, Yiqun; Deshpande, Raamesh; Kurat, Christoph F; Li, Sheena C; Li, Zhijian; Usaj, Mojca Mattiazzi; Okada, Hiroki; Pascoe, Natasha; San Luis, Bryan-Joseph; Sharifpoor, Sara; Shuteriqi, Emira; Simpkins, Scott W; Snider, Jamie; Suresh, Harsha Garadi; Tan, Yizhao; Zhu, Hongwei; Malod-Dognin, Noel; Janjic, Vuk; Przulj, Natasa; Troyanskaya, Olga G; Stagljar, Igor; Xia, Tian; Ohya, Yoshikazu; Gingras, Anne-Claude; Raught, Brian; Boutros, Michael; Steinmetz, Lars M; Moore, Claire L; Rosebrock, Adam P; Caudy, Amy A; Myers, Chad L; Andrews, Brenda; Boone, Charles

    2016-09-23

    We generated a global genetic interaction network for Saccharomyces cerevisiae, constructing more than 23 million double mutants, identifying about 550,000 negative and about 350,000 positive genetic interactions. This comprehensive network maps genetic interactions for essential gene pairs, highlighting essential genes as densely connected hubs. Genetic interaction profiles enabled assembly of a hierarchical model of cell function, including modules corresponding to protein complexes and pathways, biological processes, and cellular compartments. Negative interactions connected functionally related genes, mapped core bioprocesses, and identified pleiotropic genes, whereas positive interactions often mapped general regulatory connections among gene pairs, rather than shared functionality. The global network illustrates how coherent sets of genetic interactions connect protein complex and pathway modules to map a functional wiring diagram of the cell. Copyright © 2016, American Association for the Advancement of Science.

  19. Exploring Frameworks to Integrate Globalization, Mission, and Higher Education: Case Study Inquiry at Two Higher Education Institutions in the Pacific Northwest

    Science.gov (United States)

    Gustafson, Jacqueline N.

    2011-01-01

    The purpose of this study was to explore the merits of three conceptual frameworks that emerged from a synthesis of literature related to globalization, mission, and higher education. The first framework, higher education and mission, included three frames: important, not important, and emergent. The second framework, globalization and higher…

  20. A new map of global urban extent from MODIS satellite data

    International Nuclear Information System (INIS)

    Schneider, A; Friedl, M A; Potere, D

    2009-01-01

    Although only a small percentage of global land cover, urban areas significantly alter climate, biogeochemistry, and hydrology at local, regional, and global scales. To understand the impact of urban areas on these processes, high quality, regularly updated information on the urban environment-including maps that monitor location and extent-is essential. Here we present results from efforts to map the global distribution of urban land use at 500 m spatial resolution using remotely sensed data from the Moderate Resolution Imaging Spectroradiometer (MODIS). Our approach uses a supervised decision tree classification algorithm that we process using region-specific parameters. An accuracy assessment based on sites from a stratified random sample of 140 cities shows that the new map has an overall accuracy of 93% (k = 0.65) at the pixel level and a high level of agreement at the city scale (R 2 = 0.90). Our results (available at http://sage.wisc.edu/urbanenvironment.html) also reveal that the land footprint of cities occupies less than 0.5% of the Earth's total land area.

  1. Progress towards GlobalSoilMap.net soil database of Denmark

    DEFF Research Database (Denmark)

    Adhikari, Kabindra; Bou Kheir, Rania; Greve, Mogens Humlekrog

    2012-01-01

    Denmark is an agriculture-based country where intensive mechanized cultivation has been practiced continuously for years leading to serious threats to the soils. Proper use and management of Danish soil resources, modeling and soil research activities need very detailed soil information. This study...... presents recent advancements in Digital Soil Mapping (DSM) activities in Denmark with an example of soil clay mapping using regression-based DSM techniques. Several environmental covariates were used to build regression rules and national scale soil prediction was made at 30 m resolution. Spatial...... content mapping, the plans for future soil mapping activities in support to GlobalSoilMap.net project initiatives are also included in this paper. Our study thought to enrich and update Danish soil database and Soil information system with new fine resolution soil property maps....

  2. Mapping wood density globally using remote sensing and climatological data

    Science.gov (United States)

    Moreno, A.; Camps-Valls, G.; Carvalhais, N.; Kattge, J.; Robinson, N.; Reichstein, M.; Allred, B. W.; Running, S. W.

    2017-12-01

    Wood density (WD) is defined as the oven-dry mass divided by fresh volume, varies between individuals, and describes the carbon investment per unit volume of stem. WD has been proven to be a key functional trait in carbon cycle research and correlates with numerous morphological, mechanical, physiological, and ecological properties. In spite of the utility and importance of this trait, there is a lack of an operational framework to spatialize plant WD measurements at a global scale. In this work, we present a consistent modular processing chain to derive global maps (500 m) of WD using modern machine learning techniques along with optical remote sensing data (MODIS/Landsat) and climate data using the Google Earth Engine platform. The developed approach uses a hierarchical Bayesian approach to fill in gaps in the plant measured WD data set to maximize its global representativeness. WD plant species are then aggregated to Plant Functional Types (PFT). The spatial abundance of PFT at 500 m spatial resolution (MODIS) is calculated using a high resolution (30 m) PFT map developed using Landsat data. Based on these PFT abundances, representative WD values are estimated for each MODIS pixel with nearby measured data. Finally, random forests are used to globally estimate WD from these MODIS pixels using remote sensing and climate. The validation and assessment of the applied methods indicate that the model explains more than 72% of the spatial variance of the calculated community aggregated WD estimates with virtually unbiased estimates and low RMSE (<15%). The maps thus offer new opportunities to study and analyze the global patterns of variation of WD at an unprecedented spatial coverage and spatial resolution.

  3. The Comet Radar Explorer Mission

    Science.gov (United States)

    Asphaug, Erik; Belton, Mike; Bockelee-Morvan, Dominique; Chesley, Steve; Delbo, Marco; Farnham, Tony; Gim, Yonggyu; Grimm, Robert; Herique, Alain; Kofman, Wlodek; Oberst, Juergen; Orosei, Roberto; Piqueux, Sylvain; Plaut, Jeff; Robinson, Mark; Sava, Paul; Heggy, Essam; Kurth, William; Scheeres, Dan; Denevi, Brett; Turtle, Elizabeth; Weissman, Paul

    2014-11-01

    Missions to cometary nuclei have revealed major geological surprises: (1) Global scale layers - do these persist through to the interior? Are they a record of primary accretion? (2) Smooth regions - are they landslides originating on the surface? Are they cryovolcanic? (3) Pits - are they impact craters or sublimation pits, or rooted in the interior? Unambiguous answers to these and other questions can be obtained by high definition 3D radar reflection imaging (RRI) of internal structure. RRI can answer many of the great unknowns in planetary science: How do primitive bodies accrete? Are cometary nuclei mostly ice? What drives their spectacular activity and evolution? The Comet Radar Explorer (CORE) mission will image the detailed internal structure of the nucleus of 10P/Tempel 2. This ~16 x 8 x 7 km Jupiter Family Comet (JFC), or its parent body, originated in the outer planets region possibly millions of years before planet formation. CORE arrives post-perihelion and observes the comet’s waning activity from safe distance. Once the nucleus is largely dormant, the spacecraft enters a ~20-km dedicated Radar Mapping Orbit (RMO). The exacting design of the RRI experiment and the precise navigation of RMO will achieve a highly focused 3D radar reflection image of internal structure, to tens of meters resolution, and tomographic images of velocity and attenuation to hundreds of meters resolution, tied to the gravity model and shape. Visible imagers will produce maps of the surface morphology, albedo, color, texture, and photometric response, and images for navigation and shape determination. The cameras will also monitor the structure and dynamics of the coma, and its dusty jets, allowing their correlation in 3D with deep interior structures and surface features. Repeated global high-resolution thermal images will probe the near-surface layers heated by the Sun. Derived maps of thermal inertia will be correlated with the radar boundary response, and photometry and

  4. GlobalSoilMap and Global Carbon Predictions

    DEFF Research Database (Denmark)

    Hempel, Jonathan; McBratney, Alex B.; Arrouays, Dominique

    consistently produced soil property information at 100 m resolution across the world. This information will aid in solving some of the key environment and societal issues of the day, including food security, global climate change land degradation and carbon sequestration. Data would be produced using mostly...... the storehouse of existing legacy soils data along with geographic information and a range of covariates. A range of modeling techniques is used dependant on the complexity of the background soil survey information. The key soil properties that would be most useful to the modeling community and other users are...... of soil property values throughout the depth of each profile. Maps have been produced at the country level in the Australia, Canada, Denmark, Nigeria, South Korea and the US and work is on-going in many other parts of the world....

  5. Global river flood hazard maps: hydraulic modelling methods and appropriate uses

    Science.gov (United States)

    Townend, Samuel; Smith, Helen; Molloy, James

    2014-05-01

    Flood hazard is not well understood or documented in many parts of the world. Consequently, the (re-)insurance sector now needs to better understand where the potential for considerable river flooding aligns with significant exposure. For example, international manufacturing companies are often attracted to countries with emerging economies, meaning that events such as the 2011 Thailand floods have resulted in many multinational businesses with assets in these regions incurring large, unexpected losses. This contribution addresses and critically evaluates the hydraulic methods employed to develop a consistent global scale set of river flood hazard maps, used to fill the knowledge gap outlined above. The basis of the modelling approach is an innovative, bespoke 1D/2D hydraulic model (RFlow) which has been used to model a global river network of over 5.3 million kilometres. Estimated flood peaks at each of these model nodes are determined using an empirically based rainfall-runoff approach linking design rainfall to design river flood magnitudes. The hydraulic model is used to determine extents and depths of floodplain inundation following river bank overflow. From this, deterministic flood hazard maps are calculated for several design return periods between 20-years and 1,500-years. Firstly, we will discuss the rationale behind the appropriate hydraulic modelling methods and inputs chosen to produce a consistent global scaled river flood hazard map. This will highlight how a model designed to work with global datasets can be more favourable for hydraulic modelling at the global scale and why using innovative techniques customised for broad scale use are preferable to modifying existing hydraulic models. Similarly, the advantages and disadvantages of both 1D and 2D modelling will be explored and balanced against the time, computer and human resources available, particularly when using a Digital Surface Model at 30m resolution. Finally, we will suggest some

  6. Student perceptions about the mission of dental schools to advance global dentistry and philanthropy.

    Science.gov (United States)

    Ivanoff, Chris S; Ivanoff, Athena E; Yaneva, Krassimira; Hottel, Timothy L; Proctor, Hannah L

    2013-10-01

    In this study, 491 dental students at one dental school in the United States and one in Bulgaria were surveyed to assess their perceptions about the mission of dental schools to advance global dentistry and philanthropy. The study included questions about prior involvement in charitable dental missions. Many respondents felt that their dental school does not advance global dentistry nor adequately teaches students the virtues of philanthropy and volunteerism. The majority agreed, however, that dental schools have a moral obligation to raise the level of oral health care worldwide and help underserved communities access basic dental care. They reported that an opportunity to spend a semester at a foreign dental school would enhance their dental education in ways that are not presently fulfilled; help them better understand cultural diversity; and teach them about philanthropy and volunteerism. In their opinion, international exchange programs that provide clinical rotations and field experiences in economically challenged and underserved areas of the world would a) foster the global advancement of dentistry; b) promote an appreciation for cultural diversity and socioeconomic disparity in the communities that graduates will be serving; and c) teach students the virtues of philanthropy and volunteerism. This study may contribute to understanding factors affecting student involvement in programs to advance global dentistry.

  7. Global gravity field from recent satellites (DTU15) - Arctic improvements

    DEFF Research Database (Denmark)

    Andersen, O. B.; Knudsen, P.; Kenyon, S.

    2017-01-01

    Global marine gravity field modelling using satellite altimetry is currently undergoing huge improvement with the completion of the Jason-1 end-of-life geodetic mission, but particularly with the continuing Cryosat-2 mission. These new satellites provide three times as many geodetic mission...... altimetric sea surface height observations as ever before. The impact of these new geodetic mission data is a dramatic improvement of particularly the shorter wavelength of the gravity field (10-20 km) which is now being mapped at significantly higher accuracy. The quality of the altimetric gravity field...... is in many places surpassing the quality of gravity fields derived using non-commercial marine gravity observations. Cryosat-2 provides for the first time altimetry throughout the Arctic Ocean up to 88°N. Here, the huge improvement in marine gravity mapping is shown through comparison with high quality...

  8. Global map of solar power production efficiency, considering micro climate factors

    Science.gov (United States)

    Hassanpour Adeh, E.; Higgins, C. W.

    2017-12-01

    Natural resources degradation and greenhouse gas emissions are creating a global crisis. Renewable energy is the most reliable option to mitigate this environmental dilemma. Abundancy of solar energy makes it highly attractive source of electricity. The existing global spatial maps of available solar energy are created with various models which consider the irradiation, latitude, cloud cover, elevation, shading and aerosols, and neglect the influence of local meteorological conditions. In this research, the influences of microclimatological variables on solar energy productivity were investigated with an in-field study at the Rabbit Hills solar arrays near Oregon State University. The local studies were extended to a global level, where global maps of solar power were produced, taking the micro climate variables into account. These variables included: temperature, relative humidity, wind speed, wind direction, solar radiation. The energy balance approach was used to synthesize the data and compute the efficiencies. The results confirmed that the solar power efficiency can be directly affected by the air temperature and wind speed.

  9. The Earth Observing System Terra Mission

    Science.gov (United States)

    Kaufman, Yoram J.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Langley's remarkable solar and lunar spectra collected from Mt. Whitney inspired Arrhenius to develop the first quantitative climate model in 1896. After the launch in Dec. 16 1999, NASA's Earth Observing AM Satellite (EOS-Terra) will repeat Langley's experiment, but for the entire planet, thus pioneering a wide array of calibrated spectral observations from space of the Earth System. Conceived in response to real environmental problems, EOS-Terra, in conjunction with other international satellite efforts, will fill a major gap in current efforts by providing quantitative global data sets with a resolution better than 1 km on the physical, chemical and biological elements of the earth system. Thus, like Langley's data, EOS-Terra can revolutionize climate research by inspiring a new generation of climate system models and enable us to assess the human impact on the environment. In the talk I shall review the historical perspective of the Terra mission and the key new elements of the mission. We expect to have first images that demonstrate the most innovative capability from EOS Terra 5 instruments: MODIS - 1.37 micron cirrus cloud channel; 250m daily coverage for clouds and vegetation change; 7 solar channels for land and aerosol studies; new fire channels; Chlorophyll fluorescence; MISR - first 9 multi angle views of clouds and vegetation; MOPITT - first global CO maps and C114 maps; ASTER - Thermal channels for geological studies with 15-90 m resolution.

  10. Improvement of Global and Regional Mean Sea Level Trends Derived from all Altimetry Missions.

    Science.gov (United States)

    Ablain, Michael; Benveniste, Jérôme; Faugere, Yannice; Larnicol, Gilles; Cazenave, Anny; Johannessen, Johnny A.; Stammer, Detlef; Timms, Gary

    2012-07-01

    The global mean sea level (GMSL) has been calculated on a continual basis since January 1993 using data from satellite altimetry missions. The global mean sea level (MSL) deduced from TOPEX/Poseidon, Jason-1 and Jason-2 is increasing with a global trend of 3.2 mm from 1993 to 2010 applying the post glacial rebound (MSL Aviso website http://www.jason.oceanobs.com/msl). Besides, the regional sea level trends bring out an inhomogeneous repartition of the ocean elevation with local MSL slopes ranging from +/- 8 mm/year. A study published in 2009 [Ablain et al., 2009] has shown that the global MSL trend uncertainty was estimated at +/-0.6 mm/year with a confidence interval of 90%. The main sources of errors at global and regional scales are due to the orbit calculation and the wet troposphere correction. But others sea-level components have also a significant impact on the long-term stability of MSL as for instance the stability of instrumental parameters and the atmospheric corrections. Thanks to recent studies performed in Sea Level Essential Climate Variable Project in the frame of the Climate Change Initiative, an ESA Programme, in addition to activities performed within the SALP/CNES, strong improvements have been provided for the estimation of the global and regional MSL trends. In this paper, we propose to describe them; they concern the orbit calculation thanks to new gravity fields, the atmospheric corrections thanks to ERA-interim reanalyses, the wet troposphere corrections thanks to the stability improvement, and also empirical corrections allowing us to link regional time series together better. These improvements are described at global and regional scale for all the altimetry missions.

  11. New Global Missions for Strategic Command

    National Research Council Canada - National Science Library

    Graham, David

    2002-01-01

    .... The focus of this White Paper is on the external decisions that will be needed to provide the Command with a clear mission, and the authority, resources and organizational support necessary to perform the mission...

  12. Local search for optimal global map generation using mid-decadal landsat images

    Science.gov (United States)

    Khatib, L.; Gasch, J.; Morris, Robert; Covington, S.

    2007-01-01

    NASA and the US Geological Survey (USGS) are seeking to generate a map of the entire globe using Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) sensor data from the "mid-decadal" period of 2004 through 2006. The global map is comprised of thousands of scene locations and, for each location, tens of different images of varying quality to chose from. Furthermore, it is desirable for images of adjacent scenes be close together in time of acquisition, to avoid obvious discontinuities due to seasonal changes. These characteristics make it desirable to formulate an automated solution to the problem of generating the complete map. This paper formulates a Global Map Generator problem as a Constraint Optimization Problem (GMG-COP) and describes an approach to solving it using local search. Preliminary results of running the algorithm on image data sets are summarized. The results suggest a significant improvement in map quality using constraint-based solutions. Copyright ?? 2007, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

  13. Advancing Wetlands Mapping and Monitoring with GNSS Reflectometry

    Science.gov (United States)

    Zuffada, Cinzia; Chew, Clara; Nghiem, Son V.; Shah, Rashmi; Podest, Erika; Bloom, A. Anthony; Koning, Alexandra; Small, Eric; Schimel, David; Reager, J. T.; Mannucci, Anthony; Williamson, Walton; Cardellach, Estel

    2016-08-01

    Wetland dynamics is crucial to address changes in both atmospheric methane (CH4) and terrestrial water storage. Yet, both spatial distribution and temporal variability of wetlands remain highly unconstrained despite the existence of remote sensing products from past and present satellite sensors. An innovative approach to mapping wetlands is offered by the Global Navigation Satellite System Reflectometry (GNSS-R), which is a bistatic radar concept that takes advantage of the ever increasing number of GNSS transmitting satellites to yield many randomly distributed measurements with broad-area global coverage and rapid revisit time. Hence, this communication presents the science motivation for mapping of wetlands and monitoring of their dynamics, and shows the relevance of the GNSS-R technique in this context, relative to and in synergy with other existing measurement systems. Additionally, the communication discusses results of our data analysis on wetlands in the Amazon, specifically from the initial analysis of satellite data acquired by the TechDemoSat-1 mission launched in 2014. Finally, recommendations are provided for the design of a GNSS-R mission specifically to address wetlands science issues.

  14. Mapping Global Forest Aboveground Biomass with Spaceborne LiDAR, Optical Imagery, and Forest Inventory Data

    Directory of Open Access Journals (Sweden)

    Tianyu Hu

    2016-07-01

    Full Text Available As a large carbon pool, global forest ecosystems are a critical component of the global carbon cycle. Accurate estimations of global forest aboveground biomass (AGB can improve the understanding of global carbon dynamics and help to quantify anthropogenic carbon emissions. Light detection and ranging (LiDAR techniques have been proven that can accurately capture both horizontal and vertical forest structures and increase the accuracy of forest AGB estimation. In this study, we mapped the global forest AGB density at a 1-km resolution through the integration of ground inventory data, optical imagery, Geoscience Laser Altimeter System/Ice, Cloud, and Land Elevation Satellite data, climate surfaces, and topographic data. Over 4000 ground inventory records were collected from published literatures to train the forest AGB estimation model and validate the resulting global forest AGB product. Our wall-to-wall global forest AGB map showed that the global forest AGB density was 210.09 Mg/ha on average, with a standard deviation of 109.31 Mg/ha. At the continental level, Africa (333.34 ± 63.80 Mg/ha and South America (301.68 ± 67.43 Mg/ha had higher AGB density. The AGB density in Asia, North America and Europe were 172.28 ± 94.75, 166.48 ± 84.97, and 132.97 ± 50.70 Mg/ha, respectively. The wall-to-wall forest AGB map was evaluated at plot level using independent plot measurements. The adjusted coefficient of determination (R2 and root-mean-square error (RMSE between our predicted results and the validation plots were 0.56 and 87.53 Mg/ha, respectively. At the ecological zone level, the R2 and RMSE between our map and Intergovernmental Panel on Climate Change suggested values were 0.56 and 101.21 Mg/ha, respectively. Moreover, a comprehensive comparison was also conducted between our forest AGB map and other published regional AGB products. Overall, our forest AGB map showed good agreements with these regional AGB products, but some of the regional

  15. Global Rural-Urban Mapping Project, Version 1 (GRUMPv1): Coastlines

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Rural-Urban Mapping Project, Version 1 (GRUMPv1) consists of estimates of human population for the years 1990, 1995, and 2000 by 30 arc-second (1km) grid...

  16. Global auroral imaging instrumentation for the dynamics explorer mission

    International Nuclear Information System (INIS)

    Frank, L.A.; Craven, J.D.; Ackerson, K.L.; English, M.R.; Eather, R.H.; Carovillano, R.L.

    1981-01-01

    The instrumentation for gaining global images of the auroral oval from the high-altitude spacecraft of the Dynamics Explorer Mission is described. Three spin-scan auroral imaging (SAI) photometers are expected to be able to effectively view the dim emissions from earth in the presence of strong stray light sources near their fields-of-view along the sunlit portion of the spacecraft orbit. A special optical design which includes an off-axis parabolic mirror as the focusing element and super-reflecting mirror surfaces is used to minimize the effects of stray light. The rotation of the spacecraft and an instrument scanning mirror provide the two-dimensional array of pixels comprising an image frame. (orig.)

  17. Next generation of global land cover characterization, mapping, and monitoring

    Science.gov (United States)

    Giri, Chandra; Pengra, Bruce; Long, J.; Loveland, Thomas R.

    2013-01-01

    Land cover change is increasingly affecting the biophysics, biogeochemistry, and biogeography of the Earth's surface and the atmosphere, with far-reaching consequences to human well-being. However, our scientific understanding of the distribution and dynamics of land cover and land cover change (LCLCC) is limited. Previous global land cover assessments performed using coarse spatial resolution (300 m–1 km) satellite data did not provide enough thematic detail or change information for global change studies and for resource management. High resolution (∼30 m) land cover characterization and monitoring is needed that permits detection of land change at the scale of most human activity and offers the increased flexibility of environmental model parameterization needed for global change studies. However, there are a number of challenges to overcome before producing such data sets including unavailability of consistent global coverage of satellite data, sheer volume of data, unavailability of timely and accurate training and validation data, difficulties in preparing image mosaics, and high performance computing requirements. Integration of remote sensing and information technology is needed for process automation and high-performance computing needs. Recent developments in these areas have created an opportunity for operational high resolution land cover mapping, and monitoring of the world. Here, we report and discuss these advancements and opportunities in producing the next generations of global land cover characterization, mapping, and monitoring at 30-m spatial resolution primarily in the context of United States, Group on Earth Observations Global 30 m land cover initiative (UGLC).

  18. The Lunar Orbiter Laser Altimeter (LOLA) on NASA's Lunar Reconnaissance Orbiter (LRO) mission

    Science.gov (United States)

    Riris, H.; Cavanaugh, J.; Sun, X.; Liiva, P.; Rodriguez, M.; Neuman, G.

    2017-11-01

    The Lunar Orbiter Laser Altimeter (LOLA) instrument [1-3] on NASA's Lunar Reconnaissance Orbiter (LRO) mission, launched on June 18th, 2009, from Kennedy Space Center, Florida, will provide a precise global lunar topographic map using laser altimetry. LOLA will assist in the selection of landing sites on the Moon for future robotic and human exploration missions and will attempt to detect the presence of water ice on or near the surface, which is one of the objectives of NASA's Exploration Program. Our present knowledge of the topography of the Moon is inadequate for determining safe landing areas for NASA's future lunar exploration missions. Only those locations, surveyed by the Apollo missions, are known with enough detail. Knowledge of the position and characteristics of the topographic features on the scale of a lunar lander are crucial for selecting safe landing sites. Our present knowledge of the rest of the lunar surface is at approximately 1 km kilometer level and in many areas, such as the lunar far side, is on the order of many kilometers. LOLA aims to rectify that and provide a precise map of the lunar surface on both the far and near side of the moon. LOLA uses short (6 ns) pulses from a single laser through a Diffractive Optical Element (DOE) to produce a five-beam pattern that illuminates the lunar surface. For each beam, LOLA measures the time of flight (range), pulse spreading (surface roughness), and transmit/return energy (surface reflectance). LOLA will produce a high-resolution global topographic model and global geodetic framework that enables precise targeting, safe landing, and surface mobility to carry out exploratory activities. In addition, it will characterize the polar illumination environment, and image permanently shadowed regions of the lunar surface to identify possible locations of surface ice crystals in shadowed polar craters.

  19. A comprehensive mission to planet Earth: Woods Hole Space Science and Applications Advisory Committee Planning Workshop

    Science.gov (United States)

    1991-01-01

    The NASA program Mission to Planet Earth (MTPE) is described in this set of visuals presented in Massachusetts on July 29, 1991. The problem presented in this document is that the earth system is changing and that human activity accelerates the rate of change resulting in increased greenhouse gases, decreasing levels of stratospheric ozone, acid rain, deforestation, decreasing biodiversity, and overpopulation. Various national and international organizations are coordinating global change research. The complementary space observations for this activity are sun-synchronous polar orbits, low-inclination, low altitude orbits, geostationary orbits, and ground measurements. The Geostationary Earth Observatory is the major proposed mission of MTPE. Other proposed missions are EOS Synthetic Aperture Radar, ARISTOTELES Magnetic Field Experiment, and the Global Topography Mission. Use of the NASA DC-8 aircraft is outlined as carrying out the Airborne Science and Applications Program. Approved Earth Probes Program include the Total Ozone Mapping Spectrometer (TOMS). Other packages for earth observation are described.

  20. Terrestrial Sediments of the Earth: Development of a Global Unconsolidated Sediments Map Database (GUM)

    Science.gov (United States)

    Börker, J.; Hartmann, J.; Amann, T.; Romero-Mujalli, G.

    2018-04-01

    Mapped unconsolidated sediments cover half of the global land surface. They are of considerable importance for many Earth surface processes like weathering, hydrological fluxes or biogeochemical cycles. Ignoring their characteristics or spatial extent may lead to misinterpretations in Earth System studies. Therefore, a new Global Unconsolidated Sediments Map database (GUM) was compiled, using regional maps specifically representing unconsolidated and quaternary sediments. The new GUM database provides insights into the regional distribution of unconsolidated sediments and their properties. The GUM comprises 911,551 polygons and describes not only sediment types and subtypes, but also parameters like grain size, mineralogy, age and thickness where available. Previous global lithological maps or databases lacked detail for reported unconsolidated sediment areas or missed large areas, and reported a global coverage of 25 to 30%, considering the ice-free land area. Here, alluvial sediments cover about 23% of the mapped total ice-free area, followed by aeolian sediments (˜21%), glacial sediments (˜20%), and colluvial sediments (˜16%). A specific focus during the creation of the database was on the distribution of loess deposits, since loess is highly reactive and relevant to understand geochemical cycles related to dust deposition and weathering processes. An additional layer compiling pyroclastic sediment is added, which merges consolidated and unconsolidated pyroclastic sediments. The compilation shows latitudinal abundances of sediment types related to climate of the past. The GUM database is available at the PANGAEA database (https://doi.org/10.1594/PANGAEA.884822).

  1. Performance of the Falling Snow Retrieval Algorithms for the Global Precipitation Measurement (GPM) Mission

    Science.gov (United States)

    Skofronick-Jackson, Gail; Munchak, Stephen J.; Ringerud, Sarah

    2016-01-01

    Retrievals of falling snow from space represent an important data set for understanding the Earth's atmospheric, hydrological, and energy cycles, especially during climate change. Estimates of falling snow must be captured to obtain the true global precipitation water cycle, snowfall accumulations are required for hydrological studies, and without knowledge of the frozen particles in clouds one cannot adequately understand the energy and radiation budgets. While satellite-based remote sensing provides global coverage of falling snow events, the science is relatively new and retrievals are still undergoing development with challenges remaining). This work reports on the development and testing of retrieval algorithms for the Global Precipitation Measurement (GPM) mission Core Satellite, launched February 2014.

  2. Efficient algorithms for multidimensional global optimization in genetic mapping of complex traits

    Directory of Open Access Journals (Sweden)

    Kajsa Ljungberg

    2010-10-01

    Full Text Available Kajsa Ljungberg1, Kateryna Mishchenko2, Sverker Holmgren11Division of Scientific Computing, Department of Information Technology, Uppsala University, Uppsala, Sweden; 2Department of Mathematics and Physics, Mälardalen University College, Västerås, SwedenAbstract: We present a two-phase strategy for optimizing a multidimensional, nonconvex function arising during genetic mapping of quantitative traits. Such traits are believed to be affected by multiple so called QTL, and searching for d QTL results in a d-dimensional optimization problem with a large number of local optima. We combine the global algorithm DIRECT with a number of local optimization methods that accelerate the final convergence, and adapt the algorithms to problem-specific features. We also improve the evaluation of the QTL mapping objective function to enable exploitation of the smoothness properties of the optimization landscape. Our best two-phase method is demonstrated to be accurate in at least six dimensions and up to ten times faster than currently used QTL mapping algorithms.Keywords: global optimization, QTL mapping, DIRECT 

  3. The Global Hidden Hunger Indices and Maps: An Advocacy Tool for Action

    Science.gov (United States)

    Muthayya, Sumithra; Rah, Jee Hyun; Sugimoto, Jonathan D.; Roos, Franz F.; Kraemer, Klaus; Black, Robert E.

    2013-01-01

    The unified global efforts to mitigate the high burden of vitamin and mineral deficiency, known as hidden hunger, in populations around the world are crucial to the achievement of most of the Millennium Development Goals (MDGs). We developed indices and maps of global hidden hunger to help prioritize program assistance, and to serve as an evidence-based global advocacy tool. Two types of hidden hunger indices and maps were created based on i) national prevalence data on stunting, anemia due to iron deficiency, and low serum retinol levels among preschool-aged children in 149 countries; and ii) estimates of Disability Adjusted Life Years (DALYs) attributed to micronutrient deficiencies in 136 countries. A number of countries in sub-Saharan Africa, as well as India and Afghanistan, had an alarmingly high level of hidden hunger, with stunting, iron deficiency anemia, and vitamin A deficiency all being highly prevalent. The total DALY rates per 100,000 population, attributed to micronutrient deficiencies, were generally the highest in sub-Saharan African countries. In 36 countries, home to 90% of the world’s stunted children, deficiencies of micronutrients were responsible for 1.5-12% of the total DALYs. The pattern and magnitude of iodine deficiency did not conform to that of other micronutrients. The greatest proportions of children with iodine deficiency were in the Eastern Mediterranean (46.6%), European (44.2%), and African (40.4%) regions. The current indices and maps provide crucial data to optimize the prioritization of program assistance addressing global multiple micronutrient deficiencies. Moreover, the indices and maps serve as a useful advocacy tool in the call for increased commitments to scale up effective nutrition interventions. PMID:23776712

  4. The global hidden hunger indices and maps: an advocacy tool for action.

    Science.gov (United States)

    Muthayya, Sumithra; Rah, Jee Hyun; Sugimoto, Jonathan D; Roos, Franz F; Kraemer, Klaus; Black, Robert E

    2013-01-01

    The unified global efforts to mitigate the high burden of vitamin and mineral deficiency, known as hidden hunger, in populations around the world are crucial to the achievement of most of the Millennium Development Goals (MDGs). We developed indices and maps of global hidden hunger to help prioritize program assistance, and to serve as an evidence-based global advocacy tool. Two types of hidden hunger indices and maps were created based on i) national prevalence data on stunting, anemia due to iron deficiency, and low serum retinol levels among preschool-aged children in 149 countries; and ii) estimates of Disability Adjusted Life Years (DALYs) attributed to micronutrient deficiencies in 136 countries. A number of countries in sub-Saharan Africa, as well as India and Afghanistan, had an alarmingly high level of hidden hunger, with stunting, iron deficiency anemia, and vitamin A deficiency all being highly prevalent. The total DALY rates per 100,000 population, attributed to micronutrient deficiencies, were generally the highest in sub-Saharan African countries. In 36 countries, home to 90% of the world's stunted children, deficiencies of micronutrients were responsible for 1.5-12% of the total DALYs. The pattern and magnitude of iodine deficiency did not conform to that of other micronutrients. The greatest proportions of children with iodine deficiency were in the Eastern Mediterranean (46.6%), European (44.2%), and African (40.4%) regions. The current indices and maps provide crucial data to optimize the prioritization of program assistance addressing global multiple micronutrient deficiencies. Moreover, the indices and maps serve as a useful advocacy tool in the call for increased commitments to scale up effective nutrition interventions.

  5. Insights from the correlation of the preliminary Geologic and Mineralogic maps of Vesta from the Dawn mission data

    Science.gov (United States)

    Frigeri, A.; De Sanctis, M. C.; Ammannito, E.; Yingst, R. A.; Mest, S.; Garry, B.; Magni, G.; Palomba, E.; Petro, N.; Tosi, F.; Williams, D.; Zambon, F.; Jaumann, R.; Pieters, C. M.; Raymond, C. A.; Russell, C. T.

    2012-04-01

    The Dawn mission to Vesta has greatly improved the quality and resolution of data available to explore the asteroid. Prior to the Dawn mission the best data available was the one from Hubble Space Telescope with a maximum resolution of 50 km per pixel. The survey phase of the mission has pushed spatial resolution up to about 100 meters per pixel by the Framing Camera on-board Dawn, and 700 meters per pixel for the VIR spectrometer, spanning the spectral range from the visible to infrared at 0.25-1 μm and 1-5 μm. The frames of the FC and VIR have been processed and mosaicked. A preliminary Geologic map has been produced by mapping units and structures over the FC mosaic and the DTM derived from stereo processing of visible imagery. We will present some examples of correlation between the preliminary geologic and VIR-derived mineralogic maps. The Dawn mission team is using Geographic Information System tools for locating frames and for data exchange among the team. The use of GIS tools and data formats significantly improves our ability to create and interpret geologic maps, and also improves the interoperability of high level data products among the instruments' team. VIR data have been synthesized into a series of spectral indicators that give indications on the mineralogical composition and the physical state of the surface. We ingested in GIS the the preliminary geologic map as units and structures and we projected the mosaics of spectral indicators in a common coordinate reference system. The first spectral indicators we started to look at were the Band Depth computed on pyroxene Band II and the Band Center also computed on Band II. The comparison of the preliminary geologic map and the mosaics of spectral indicators extracted from VIR data show promising aspects on both the geologic and mineralogic aspects. Geologic units are made up of bodies of rock that are interpreted to have been formed by a particular process or set of related processes over a discrete

  6. Density equalizing mapping of the global tuberculosis research architecture.

    Science.gov (United States)

    Groneberg, David A; Weber, Esther; Gerber, Alexander; Fischer, Axel; Klingelhoefer, Doris; Brueggmann, Doerthe

    2015-07-01

    Tuberculosis belongs to the lung infectious diseases with the highest impact on global burden of disease. Yet there is no concise scientometric study about tuberculosis research. Therefore, the NewQiS project elected this subject as focus of an in depth analysis to perform density equalizing mapping in combination with scientometrics. In this retrospective study all publications related to tuberculosis research listed in the Web of Science database between 1900 and 2012 were identified, analyzed and submitted to density equalizing mapping procedures. In total 58,319 entries on TBC were identified with the USA being the most productive country with 11,788 publications, followed by the United Kingdom (4202), India (3456), France (2541), South Africa (1840), Germany (1747) and China (1427). Concerning the citations rate Denmark leads with 43.7 citations per article, followed by Latvia (39.1), Gambia (38.3), Senegal (34.9), and the Netherlands (31.4). Chart techniques demonstrates a widely ramified international network with a focus the joint work of USA, the UK and South Africa. This is the first density equalizing and scientometric study that addresses tuberculosis research over a period of 112 years. It illustrates global tuberculosis research architecture and stresses the need for strengthening global research efforts and funding program. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Mapping 1995 global anthropogenic emissions of mercury

    Science.gov (United States)

    Pacyna, Jozef M.; Pacyna, Elisabeth G.; Steenhuisen, Frits; Wilson, Simon

    This paper presents maps of anthropogenic Hg emissions worldwide within a 1°×1° latitude/longitude grid system in 1995. As such, the paper is designed for modelers simulating the Hg transport within air masses and Hg deposition to aquatic and terrestrial ecosystems. Maps of total Hg emissions and its three main chemical species: elemental gaseous Hg, divalent gaseous Hg, and particle-associated Hg are presented. The main emissions occur in southeast Asia (particularly in China), South Africa, Central and Eastern Europe, and the Eastern United States. These are the regions where coal combustion is the main source of electricity and heat production. Waste incineration adds to these emissions in the Eastern United States. Emissions of total Hg and its three species are quite similar in terms of their (global) spatial distributions. They reflect the worldwide distribution of coal consumption in large power plants, industrial burners, and small combustion units, such as residential and commercial furnaces.

  8. AGM2015: Antineutrino Global Map 2015.

    Science.gov (United States)

    Usman, S M; Jocher, G R; Dye, S T; McDonough, W F; Learned, J G

    2015-09-01

    Every second greater than 10(25) antineutrinos radiate to space from Earth, shining like a faint antineutrino star. Underground antineutrino detectors have revealed the rapidly decaying fission products inside nuclear reactors, verified the long-lived radioactivity inside our planet, and informed sensitive experiments for probing fundamental physics. Mapping the anisotropic antineutrino flux and energy spectrum advance geoscience by defining the amount and distribution of radioactive power within Earth while critically evaluating competing compositional models of the planet. We present the Antineutrino Global Map 2015 (AGM2015), an experimentally informed model of Earth's surface antineutrino flux over the 0 to 11 MeV energy spectrum, along with an assessment of systematic errors. The open source AGM2015 provides fundamental predictions for experiments, assists in strategic detector placement to determine neutrino mass hierarchy, and aids in identifying undeclared nuclear reactors. We use cosmochemically and seismologically informed models of the radiogenic lithosphere/mantle combined with the estimated antineutrino flux, as measured by KamLAND and Borexino, to determine the Earth's total antineutrino luminosity at . We find a dominant flux of geo-neutrinos, predict sub-equal crust and mantle contributions, with ~1% of the total flux from man-made nuclear reactors.

  9. Carbon monoxide climatology derived from the trajectory mapping of global MOZAIC-IAGOS data

    Directory of Open Access Journals (Sweden)

    M. K. Osman

    2016-08-01

    Full Text Available A three-dimensional gridded climatology of carbon monoxide (CO has been developed by trajectory mapping of global MOZAIC-IAGOS in situ measurements from commercial aircraft data. CO measurements made during aircraft ascent and descent, comprising nearly 41 200 profiles at 148 airports worldwide from December 2001 to December 2012, are used. Forward and backward trajectories are calculated from meteorological reanalysis data in order to map the CO measurements to other locations and so to fill in the spatial domain. This domain-filling technique employs 15 800 000 calculated trajectories to map otherwise sparse MOZAIC-IAGOS data into a quasi-global field. The resulting trajectory-mapped CO data set is archived monthly from 2001 to 2012 on a grid of 5° longitude  ×  5° latitude  ×  1 km altitude, from the surface to 14 km altitude.The mapping product has been carefully evaluated, firstly by comparing maps constructed using only forward trajectories and using only backward trajectories. The two methods show similar global CO distribution patterns. The magnitude of their differences is most commonly 10 % or less and found to be less than 30 % for almost all cases. Secondly, the method has been validated by comparing profiles for individual airports with those produced by the mapping method when data from that site are excluded. While there are larger differences below 2 km, the two methods agree very well between 2 and 10 km with the magnitude of biases within 20 %. Finally, the mapping product is compared with global MOZAIC-IAGOS cruise-level data, which were not included in the trajectory-mapped data set, and with independent data from the NOAA aircraft flask sampling program. The trajectory-mapped MOZAIC-IAGOS CO values show generally good agreement with both independent data sets.Maps are also compared with version 6 data from the Measurements Of Pollution In The Troposphere (MOPITT satellite instrument

  10. Mission,System Design and Payload Aspects of ESA's Mercury Cornerstone Mission

    Science.gov (United States)

    Ferri, A.; Anselmi, A.; Scoon, G. E. N.

    1999-09-01

    Aim of this paper is to summarise the 1-year study performed by Alenia Aerospazio in close co-operation with the European Space Agency, on the Mercury Cornerstone System and Technology Study, as a part of Horizon 2000+ Scientific Programme plan. ESA's definition study towards a mission to Mercury conceives the launch of a S/C in 2009, on a two to three years journey, plus a one-year scientific observations and data take. The mission's primary objectives are manyfolded, aiming at approaching basic scientific questions on the origin and evolution of Mercury: identify and map the chemical and mineral composition of the surface, measure the topography of surface landforms, define the gravitational field, investigate particles and magnetic fields. The mission is also intended to resolve the librational state of the planet, in a system experiment requiring high accuracy inertial attitude (arcsecond level) and orbit (m-level) reconstitution. This experiment will allow to infer whether Mercury has a molten core, which is crucial to theories of magnetic field generation, and theories of the thermal history of terrestrial type planets. A hard-lander is planned to perform in-situ surface geochemical analysis. The mission is expected to provide scientists with a global portrait of Mercury returning about 1200 Gbits of scientific data, during a 1-year observation phase. The crucial aspects of the spacecraft design have to do with the high-temperature and high-radiation environment. Thermal control is achieved by a combination of orbit selection, attitude law, and special design provisions for IR shielding and HT insulation. Ad-hoc design provisions are envisaged for power and antenna mechanisms. Though the conceptual objectives of this industrial study focused on system architectures and enabling technologies for a "Cornerstone" class mission, in this paper emphasis is given on the scientific payload aspects.

  11. World Gravity Map: a set of global complete spherical Bouguer and isostatic anomaly maps and grids

    Science.gov (United States)

    Bonvalot, S.; Balmino, G.; Briais, A.; Kuhn, M.; Peyrefitte, A.; Vales, N.; Biancale, R.; Gabalda, G.; Reinquin, F.

    2012-04-01

    We present here a set of digital maps of the Earth's gravity anomalies (surface free air, Bouguer and isostatic), computed at Bureau Gravimetric International (BGI) as a contribution to the Global Geodetic Observing Systems (GGOS) and to the global geophysical maps published by the Commission for the Geological Map of the World (CGMW) with support of UNESCO and other institutions. The Bouguer anomaly concept is extensively used in geophysical interpretation to investigate the density distributions in the Earth's interior. Complete Bouguer anomalies (including terrain effects) are usually computed at regional scales by integrating the gravity attraction of topography elements over and beyond a given area (under planar or spherical approximations). Here, we developed and applied a worldwide spherical approach aimed to provide a set of homogeneous and high resolution gravity anomaly maps and grids computed at the Earth's surface, taking into account a realistic Earth model and reconciling geophysical and geodetic definitions of gravity anomalies. This first version (1.0) has been computed by spherical harmonics analysis / synthesis of the Earth's topography-bathymetry up to degree 10800. The detailed theory of the spherical harmonics approach is given in Balmino et al., (Journal of Geodesy, 2011). The Bouguer and terrain corrections have thus been computed in spherical geometry at 1'x1' resolution using the ETOPO1 topography/bathymetry, ice surface and bedrock models from the NOAA (National Oceanic and Atmospheric Administration) and taking into account precise characteristics (boundaries and densities) of major lakes, inner seas, polar caps and of land areas below sea level. Isostatic corrections have been computed according to the Airy-Heiskanen model in spherical geometry for a constant depth of compensation of 30km. The gravity information given here is provided by the Earth Geopotential Model (EGM2008), developed at degree 2160 by the National Geospatial

  12. DoD Global Information Grid Mission Assurance

    National Research Council Canada - National Science Library

    Bargar, Anthony

    2008-01-01

    ... for espionage and the criminal theft of data. GIG mission assurance works to ensure the DoD is able to accomplish its critical missions when networks, services, or information are unavailable, degraded, or distrusted...

  13. The 1:3M geologic map of Mercury: progress and updates

    Science.gov (United States)

    Galluzzi, Valentina; Guzzetta, Laura; Mancinelli, Paolo; Giacomini, Lorenza; Malliband, Christopher C.; Mosca, Alessandro; Wright, Jack; Ferranti, Luigi; Massironi, Matteo; Pauselli, Cristina; Rothery, David A.; Palumbo, Pasquale

    2017-04-01

    After the end of Mariner 10 mission a 1:5M geologic map of seven of the fifteen quadrangles of Mercury [Spudis and Guest, 1988] was produced. The NASA MESSENGER mission filled the gap by imaging 100% of the planet with a global average resolution of 200 m/pixel and this led to the production of a global 1:15M geologic map of the planet [Prockter et al., 2016]. Despite the quality gap between Mariner 10 and MESSENGER images, no global geological mapping project with a scale larger than 1:5M has been proposed so far. Here we present the status of an ongoing project for the geologic mapping of Mercury at an average output scale of 1:3M based on the available MESSENGER data. This project will lead to a fuller grasp of the planet's stratigraphy and surface history. Completing such a product for Mercury is an important goal in preparation for the forthcoming ESA/JAXA BepiColombo mission to aid selection of scientific targets and to provide context for interpretation of new data. At the time of this writing, H02 Victoria [Galluzzi et al., 2016], H03 Shakespeare [Guzzetta et al., 2016] and H04 Raditladi [Mancinelli et al., 2016] have been completed and H05 Hokusai [Rothery et al., 2017], H06 Kuiper [Giacomini et al., 2017], H07 Beethoven and H10 Derain [Malliband et al., 2017] are being mapped. The produced geologic maps were merged using the ESRI ArcGIS software adjusting discontinuous contacts along the quadrangle boundaries. Contact discrepancies were reviewed and discussed among the mappers of adjoining quadrangles in order to match the geological interpretation and provide a unique consistent stratigraphy. At the current stage, more than 20% of Mercury has now a complete 1:3M map and more than 40% of the planet will be covered soon by the maps that are being prepared. This research was supported by the Italian Space Agency (ASI) within the SIMBIOSYS project (ASI-INAF agreement no. I/022/10/0). References Galluzzi V. et al. (2016). Geology of the Victoria Quadrangle (H

  14. Global ocean tide mapping using TOPEX/Poseidon altimetry

    Science.gov (United States)

    Sanchez, Braulio V.; Cartwright, D. E.; Estes, R. H.; Williamson, R. G.; Colombo, O. L.

    1991-01-01

    The investigation's main goals are to produce accurate tidal maps of the main diurnal, semidiurnal, and long-period tidal components in the world's deep oceans. This will be done by the application of statistical estimation techniques to long time series of altimeter data provided by the TOPEX/POSEIDON mission, with additional information provided by satellite tracking data. In the prelaunch phase, we will use in our simulations and preliminary work data supplied by previous oceanographic missions, such as Seasat and Geosat. These results will be of scientific interest in themselves. The investigation will also be concerned with the estimation of new values, and their uncertainties, for tidal currents and for the physical parameters appearing in the Laplace tidal equations, such as bottom friction coefficients and eddy viscosity coefficients. This will be done by incorporating the altimetry-derived charts of vertical tides as boundary conditions in the integration of those equations. The methodology of the tidal representation will include the use of appropriate series expansions such as ocean-basin normal modes and spherical harmonics. The results of the investigation will be space-determined tidal models of coverage and accuracy superior to that of the present numerical models of the ocean tides, with the concomitant benefits to oceanography and associated disciplinary fields.

  15. MRSA: a density-equalizing mapping analysis of the global research architecture.

    Science.gov (United States)

    Addicks, Johann P; Uibel, Stefanie; Jensen, Anna-Maria; Bundschuh, Matthias; Klingelhoefer, Doris; Groneberg, David A

    2014-09-30

    Methicillin-resistant Staphylococcus aureus (MRSA) has evolved as an alarming public health thread due to its global spread as hospital and community pathogen. Despite this role, a scientometric analysis has not been performed yet. Therefore, the NewQIS platform was used to conduct a combined density-equalizing mapping and scientometric study. As database, the Web of Science was used, and all entries between 1961 and 2007 were analyzed. In total, 7671 entries were identified. Density equalizing mapping demonstrated a distortion of the world map for the benefit of the USA as leading country with a total output of 2374 publications, followed by the UK (1030) and Japan (862). Citation rate analysis revealed Portugal as leading country with a rate of 35.47 citations per article, followed by New Zealand and Denmark. Country cooperation network analyses showed 743 collaborations with US-UK being most frequent. Network citation analyses indicated the publications that arose from the cooperation of USA and France as well as USA and Japan as the most cited (75.36 and 74.55 citations per collaboration article, respectively). The present study provides the first combined density-equalizing mapping and scientometric analysis of MRSA research. It illustrates the global MRSA research architecture. It can be assumed that this highly relevant topic for public health will achieve even greater dimensions in the future.

  16. Mapping the global flow of steel: from steelmaking to end-use goods.

    Science.gov (United States)

    Cullen, Jonathan M; Allwood, Julian M; Bambach, Margarita D

    2012-12-18

    Our society is addicted to steel. Global demand for steel has risen to 1.4 billion tonnes a year and is set to at least double by 2050, while the steel industry generates nearly a 10th of the world's energy related CO₂ emissions. Meeting our 2050 climate change targets would require a 75% reduction in CO₂ emissions for every tonne of steel produced and finding credible solutions is proving a challenge. The starting point for understanding the environmental impacts of steel production is to accurately map the global steel supply chain and identify the biggest steel flows where actions can be directed to deliver the largest impact. In this paper we present a map of global steel, which for the first time traces steel flows from steelmaking, through casting, forming, and rolling, to the fabrication of final goods. The diagram reveals the relative scale of steel flows and shows where efforts to improve energy and material efficiency should be focused.

  17. Position Estimation and Local Mapping Using Omnidirectional Images and Global Appearance Descriptors

    Directory of Open Access Journals (Sweden)

    Yerai Berenguer

    2015-10-01

    Full Text Available This work presents some methods to create local maps and to estimate the position of a mobile robot, using the global appearance of omnidirectional images. We use a robot that carries an omnidirectional vision system on it. Every omnidirectional image acquired by the robot is described only with one global appearance descriptor, based on the Radon transform. In the work presented in this paper, two different possibilities have been considered. In the first one, we assume the existence of a map previously built composed of omnidirectional images that have been captured from previously-known positions. The purpose in this case consists of estimating the nearest position of the map to the current position of the robot, making use of the visual information acquired by the robot from its current (unknown position. In the second one, we assume that we have a model of the environment composed of omnidirectional images, but with no information about the location of where the images were acquired. The purpose in this case consists of building a local map and estimating the position of the robot within this map. Both methods are tested with different databases (including virtual and real images taking into consideration the changes of the position of different objects in the environment, different lighting conditions and occlusions. The results show the effectiveness and the robustness of both methods.

  18. Reconstruction of spatially detailed global map of NH4+ and NO3- application in synthetic nitrogen fertilizer

    Science.gov (United States)

    Nishina, Kazuya; Ito, Akihiko; Hanasaki, Naota; Hayashi, Seiji

    2017-02-01

    Currently, available historical global N fertilizer map as an input data to global biogeochemical model is still limited and existing maps were not considered NH4+ and NO3- in the fertilizer application rates. This paper provides a method for constructing a new historical global nitrogen fertilizer application map (0.5° × 0.5° resolution) for the period 1961-2010 based on country-specific information from Food and Agriculture Organization statistics (FAOSTAT) and various global datasets. This new map incorporates the fraction of NH4+ (and NO3-) in N fertilizer inputs by utilizing fertilizer species information in FAOSTAT, in which species can be categorized as NH4+- and/or NO3--forming N fertilizers. During data processing, we applied a statistical data imputation method for the missing data (19 % of national N fertilizer consumption) in FAOSTAT. The multiple imputation method enabled us to fill gaps in the time-series data using plausible values using covariates information (year, population, GDP, and crop area). After the imputation, we downscaled the national consumption data to a gridded cropland map. Also, we applied the multiple imputation method to the available chemical fertilizer species consumption, allowing for the estimation of the NH4+ / NO3- ratio in national fertilizer consumption. In this study, the synthetic N fertilizer inputs in 2000 showed a general consistency with the existing N fertilizer map (Potter et al., 2010) in relation to the ranges of N fertilizer inputs. Globally, the estimated N fertilizer inputs based on the sum of filled data increased from 15 to 110 Tg-N during 1961-2010. On the other hand, the global NO3- input started to decline after the late 1980s and the fraction of NO3- in global N fertilizer decreased consistently from 35 to 13 % over a 50-year period. NH4+-forming fertilizers are dominant in most countries; however, the NH4+ / NO3- ratio in N fertilizer inputs shows clear differences temporally and geographically. This

  19. Assessment of global and individual reproducibility of projective mapping with consumers

    OpenAIRE

    VIDAL, LETICIA; CADENA, RAFAEL SILVA; CORREA, SILVANA; ÁBALOS, ROSA A.; GÓMEZ, BEATRIZ; GIMÉNEZ, ANA; Varela, Paula; Ares, Gaston

    2014-01-01

    The popularity of projective mapping with consumers for sensory characterization has markedly increased in the last 5 years. To have confidence in this methodology,it is necessary to ensure that a similar product profile would emerge if the test was repeated. Also, deciding whether the study should be replicated or not is a key issue in test implementation. In this context, the aim of the present work was to evaluate global and individual reproducibility of projective mapping for sensory char...

  20. Global maps of the magnetic thickness and magnetization of the Earth’s lithosphere

    OpenAIRE

    Foteini Vervelidou; Erwan Thébault

    2015-01-01

    We have constructed global maps of the large-scale magnetic thickness and magnetization of Earth’s lithosphere. Deriving such large-scale maps based on lithospheric magnetic field measurements faces the challenge of the masking effect of the core field. In this study, the maps were obtained through analyses in the spectral domain by means of a new regional spatial power spectrum based on the Revised Spherical Cap Harmonic Analysis (R-SCHA) formalism. A series of regional spectral analyses wer...

  1. Global Precipitation Measurement. Report 2; Benefits of Partnering with GPM Mission

    Science.gov (United States)

    Stocker, Erich F.; Smith, Eric A. (Editor); Adams, W. James (Editor); Starr, David OC. (Technical Monitor)

    2002-01-01

    An important goal of the Global Precipitation Measurement (GPM) mission is to maximize participation by non-NASA partners both domestic and international. A consequence of this objective is the provision for NASA to provide sufficient incentives to achieve partner buy-in and commitment to the program. NASA has identified seven specific areas in which substantive incentives will be offered: (1) partners will be offered participation in governance of GPM mission science affairs including definition of data products; (2) partners will be offered use of NASA's TDRSS capability for uplink and downlink of commands and data in regards to partner provided spacecraft; (3) partners will be offered launch support for placing partner provided spacecraft in orbit conditional upon mutually agreeable co-manifest arrangements; (4) partners will be offered direct data access at the NASA-GPM server level rather than through standard data distribution channels; (5) partners will be offered the opportunity to serve as regional data archive and distribution centers for standard GPM data products; and (6) partners will be offered the option to insert their own specialized filtering and extraction software into the GPM data processing stream or to obtain specialized subsets and products over specific areas of interest (7) partners will be offered GPM developed software tools that can be run on their platforms. Each of these incentives, either individually or in combination, represents a significant advantage to partners who may wish to participate in the GPM mission.

  2. An Efficient Method for Mapping High-Resolution Global River Discharge Based on the Algorithms of Drainage Network Extraction

    Directory of Open Access Journals (Sweden)

    Jiaye Li

    2018-04-01

    Full Text Available River discharge, which represents the accumulation of surface water flowing into rivers and ultimately into the ocean or other water bodies, may have great impacts on water quality and the living organisms in rivers. However, the global knowledge of river discharge is still poor and worth exploring. This study proposes an efficient method for mapping high-resolution global river discharge based on the algorithms of drainage network extraction. Using the existing global runoff map and digital elevation model (DEM data as inputs, this method consists of three steps. First, the pixels of the runoff map and the DEM data are resampled into the same resolution (i.e., 0.01-degree. Second, the flow direction of each pixel of the DEM data (identified by the optimal flow path method used in drainage network extraction is determined and then applied to the corresponding pixel of the runoff map. Third, the river discharge of each pixel of the runoff map is calculated by summing the runoffs of all the pixels in the upstream of this pixel, similar to the upslope area accumulation step in drainage network extraction. Finally, a 0.01-degree global map of the mean annual river discharge is obtained. Moreover, a 0.5-degree global map of the mean annual river discharge is produced to display the results with a more intuitive perception. Compared against the existing global river discharge databases, the 0.01-degree map is of a generally high accuracy for the selected river basins, especially for the Amazon River basin with the lowest relative error (RE of 0.3% and the Yangtze River basin within the RE range of ±6.0%. However, it is noted that the results of the Congo and Zambezi River basins are not satisfactory, with RE values over 90%, and it is inferred that there may be some accuracy problems with the runoff map in these river basins.

  3. Improved mapping of tropospheric air quality gases based on the Copernicus Sentinel 5 Precursor/TROPOMI mission

    Science.gov (United States)

    Van Roozendael, Michel; De Smedt, Isabelle; Theys, Nicolas; Danckaert, Thomas; Yu, Huan; Lerot, Christophe; van Gent, Jeroen; Vlietinck, Jonas

    2017-04-01

    Scheduled for launch in summer 2017, the Sentinel 5 Precursor (S5P) mission having onboard the TROPOMI payload will fly on a sun-synchronous polar orbit and provide daily global early-afternoon observations of a number of key atmospheric trace gases at the unprecedented spatial resolution of 7x3.5 km2. By the early 2020's, S5P will be complemented by geostationary observations from the Sentinel 4 UVN instrument to be delivered at hourly resolution over Europe, and by mid-morning global observations from the low-earth orbiting Sentinel 5 mission. Altogether these missions will form a constellation serving the needs of the Copernicus Atmospheric Monitoring Services (CAMS). Owing to their unprecedented spatial resolution and spectral performance, TROPOMI/S5P and the subsequent Sentinel 4 and 5 missions will significantly push forward monitoring capabilities addressing anthropogenic and natural emissions of air quality-related trace gases. They will also extend the long-term datasets from past and existing UV-Vis sensors (GOME, SCIAMACHY, OMI, GOME-2, OMPS). In this presentation, we explore the potential of S5P to improve on several aspects of the monitoring of tropospheric pollutants, with a focus on the short-lived species NO2, SO2 and HCHO. Based on algorithms designed at BIRA as part of TROPOMI/S5P and S4/S5 level-2 development projects, and their application to the current OMI and GOME-2 sensors, we illustrate and discuss the expected ability of the new sensors to detect smaller scale point sources with better accuracy and selectivity. The retrieval challenges associated with higher resolution measurements are also addressed.

  4. Global Mapping of Provisioning Ecosystem Services

    Science.gov (United States)

    Bingham, Lisa; Straatsma, Menno; Karssenberg, Derek

    2016-04-01

    Attributing monetary value to ecosystem services for decision-making has become more relevant as a basis for decision-making. There are a number of problematic aspects of the calculations, including consistency of economy represented (e.g., purchasing price, production price) and determining which ecosystem subservices to include in a valuation. While several authors have proposed methods for calculating ecosystem services and calculations are presented for global and regional studies, the calculations are mostly broken down into biomes and regions without showing spatially explicit results. The key to decision-making for governments is to be able to make spatial-based decisions because a large spatial variation may exist within a biome or region. Our objective was to compute the spatial distribution of global ecosystem services based on 89 subservices. Initially, only the provisioning ecosystem service category is presented. The provisioning ecosystem service category was calculated using 6 ecosystem services (food, water, raw materials, genetic resources, medical resources, and ornaments) divided into 41 subservices. Global data sets were obtained from a variety of governmental and research agencies for the year 2005 because this is the most data complete and recent year available. All data originated either in tabular or grid formats and were disaggregated to 10 km cell length grids. A lookup table with production values by subservice by country were disaggregated over the economic zone (either marine, land, or combination) based on the spatial existence of the subservice (e.g. forest cover, crop land, non-arable land). Values express the production price in international dollars per hectare. The ecosystem services and the ecosystem service category(ies) maps may be used to show spatial variation of a service within and between countries as well as to specifically show the values within specific regions (e.g. countries, continents), biomes (e.g. coastal, forest

  5. Automatic Type Recognition and Mapping of Global Tropical Cyclone Disaster Chains (TDC

    Directory of Open Access Journals (Sweden)

    Ran Wang

    2016-10-01

    Full Text Available The catastrophic events caused by meteorological disasters are becoming more severe in the context of global warming. The disaster chains triggered by Tropical Cyclones induce the serious losses of population and economy. It is necessary to make the regional type recognition of Tropical Cyclone Disaster Chain (TDC effective in order to make targeted preventions. This study mainly explores the method of automatic recognition and the mapping of TDC and designs a software system. We constructed an automatic recognition system in terms of the characteristics of a hazard-formative environment based on the theory of a natural disaster system. The ArcEngine components enable an intelligent software system to present results by the automatic mapping approach. The study data comes from global metadata such as Digital Elevation Model (DEM, terrain slope, population density and Gross Domestic Product (GDP. The result shows that: (1 according to the characteristic of geomorphology type, we establish a type of recognition system for global TDC; (2 based on the recognition principle, we design a software system with the functions of automatic recognition and mapping; and (3 we validate the type of distribution in terms of real cases of TDC. The result shows that the automatic recognition function has good reliability. The study can provide the basis for targeted regional disaster prevention strategy, as well as regional sustainable development.

  6. Keyframes Global Map Establishing Method for Robot Localization through Content-Based Image Matching

    Directory of Open Access Journals (Sweden)

    Tianyang Cao

    2017-01-01

    Full Text Available Self-localization and mapping are important for indoor mobile robot. We report a robust algorithm for map building and subsequent localization especially suited for indoor floor-cleaning robots. Common methods, for example, SLAM, can easily be kidnapped by colliding or disturbed by similar objects. Therefore, keyframes global map establishing method for robot localization in multiple rooms and corridors is needed. Content-based image matching is the core of this method. It is designed for the situation, by establishing keyframes containing both floor and distorted wall images. Image distortion, caused by robot view angle and movement, is analyzed and deduced. And an image matching solution is presented, consisting of extraction of overlap regions of keyframes extraction and overlap region rebuild through subblocks matching. For improving accuracy, ceiling points detecting and mismatching subblocks checking methods are incorporated. This matching method can process environment video effectively. In experiments, less than 5% frames are extracted as keyframes to build global map, which have large space distance and overlap each other. Through this method, robot can localize itself by matching its real-time vision frames with our keyframes map. Even with many similar objects/background in the environment or kidnapping robot, robot localization is achieved with position RMSE <0.5 m.

  7. Mapping the global distribution of livestock.

    Science.gov (United States)

    Robinson, Timothy P; Wint, G R William; Conchedda, Giulia; Van Boeckel, Thomas P; Ercoli, Valentina; Palamara, Elisa; Cinardi, Giuseppina; D'Aietti, Laura; Hay, Simon I; Gilbert, Marius

    2014-01-01

    Livestock contributes directly to the livelihoods and food security of almost a billion people and affects the diet and health of many more. With estimated standing populations of 1.43 billion cattle, 1.87 billion sheep and goats, 0.98 billion pigs, and 19.60 billion chickens, reliable and accessible information on the distribution and abundance of livestock is needed for a many reasons. These include analyses of the social and economic aspects of the livestock sector; the environmental impacts of livestock such as the production and management of waste, greenhouse gas emissions and livestock-related land-use change; and large-scale public health and epidemiological investigations. The Gridded Livestock of the World (GLW) database, produced in 2007, provided modelled livestock densities of the world, adjusted to match official (FAOSTAT) national estimates for the reference year 2005, at a spatial resolution of 3 minutes of arc (about 5×5 km at the equator). Recent methodological improvements have significantly enhanced these distributions: more up-to date and detailed sub-national livestock statistics have been collected; a new, higher resolution set of predictor variables is used; and the analytical procedure has been revised and extended to include a more systematic assessment of model accuracy and the representation of uncertainties associated with the predictions. This paper describes the current approach in detail and presents new global distribution maps at 1 km resolution for cattle, pigs and chickens, and a partial distribution map for ducks. These digital layers are made publically available via the Livestock Geo-Wiki (http://www.livestock.geo-wiki.org), as will be the maps of other livestock types as they are produced.

  8. Quantifying Spatial Variation in Ecosystem Services Demand : A Global Mapping Approach

    NARCIS (Netherlands)

    Wolff, S.; Schulp, C. J E; Kastner, T.; Verburg, P. H.

    2017-01-01

    Understanding the spatial-temporal variability in ecosystem services (ES) demand can help anticipate externalities of land use change. This study presents new operational approaches to quantify and map demand for three non-commodity ES on a global scale: animal pollination, wild medicinal plants and

  9. Breaking new ground in mapping human settlements from space - The Global Urban Footprint

    Science.gov (United States)

    Esch, Thomas; Heldens, Wieke; Hirner, Andreas; Keil, Manfred; Marconcini, Mattia; Roth, Achim; Zeidler, Julian; Dech, Stefan; Strano, Emanuele

    2017-12-01

    Today, approximately 7.2 billion people inhabit the Earth and by 2050 this number will have risen to around nine billion, of which about 70% will be living in cities. The population growth and the related global urbanization pose one of the major challenges to a sustainable future. Hence, it is essential to understand drivers, dynamics, and impacts of the human settlements development. A key component in this context is the availability of an up-to-date and spatially consistent map of the location and distribution of human settlements. It is here that the Global Urban Footprint (GUF) raster map can make a valuable contribution. The new global GUF binary settlement mask shows a so far unprecedented spatial resolution of 0.4″ (∼ 12m) that provides - for the first time - a complete picture of the entirety of urban and rural settlements. The GUF has been derived by means of a fully automated processing framework - the Urban Footprint Processor (UFP) - that was used to analyze a global coverage of more than 180,000 TanDEM-X and TerraSAR-X radar images with 3 m ground resolution collected in 2011-2012. The UFP consists of five main technical modules for data management, feature extraction, unsupervised classification, mosaicking and post-editing. Various quality assessment studies to determine the absolute GUF accuracy based on ground truth data on the one hand and the relative accuracies compared to established settlements maps on the other hand, clearly indicate the added value of the new global GUF layer, in particular with respect to the representation of rural settlement patterns. The Kappa coefficient of agreement compared to absolute ground truth data, for instance, shows GUF accuracies which are frequently twice as high as those of established low resolution maps. Generally, the GUF layer achieves an overall absolute accuracy of about 85%, with observed minima around 65% and maxima around 98%. The GUF will be provided open and free for any scientific use in

  10. The planetary spatial data infrastructure for the OSIRIS-REx mission

    Science.gov (United States)

    DellaGiustina, D. N.; Selznick, S.; Nolan, M. C.; Enos, H. L.; Lauretta, D. S.

    2017-12-01

    The primary objective of the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission is to return a pristine sample of carbonaceous material from primitive asteroid (101955) Bennu. Understanding the geospatial context of Bennu is critical to choosing a sample-site and also linking the nature of the sample to the global properties of Bennu and the broader asteroid population. We established a planetary spatial data infrastructure (PSDI) support the primary objective of OSIRIS-REx. OSIRIS-REx is unique among planetary missions in that all remote sensing is performed to support the sample return objective. Prior to sampling, OSIRIS-REx will survey Bennu for nearly two years to select and document the most valuable primary and backup sample sites. During this period, the mission will combine coordinated observations from five science instruments into four thematic maps: deliverability, safety, sampleability, and scientific value. The deliverability map assesses the probability that the flight dynamics team can deliver the spacecraft to the desired location. The safety map indicates the probability that physical hazards are present at the sample-site. The sampleability map quantifies the probability that a sample can be successfully collected from the surface. Finally, the scientific value map shows the probability that the collected sample contains organics and volatiles and also places the sample site in a definitive geological context relative to Bennu's history. The OSIRIS-REx Science Processing and Operations Center (SPOC) serves as the operational PSDI for the mission. The SPOC is tasked with intake of all data from the spacecraft and other ground sources and assimilating these data into a single comprehensive system for processing and presentation. The SPOC centralizes all geographic data of Bennu in a relational database and ensures that standardization and provenance are maintained throughout proximity

  11. Post-Mission Quality Assurance Procedure for Survey-Grade Mobile Mapping Systems

    Science.gov (United States)

    Kerstinga, A. P.; Friess, P.

    2016-06-01

    Mobile Mapping Systems (MMS) consist of terrestrial-based moving platforms that integrate a set of imaging sensors (typically digital cameras and laser scanners) and a Position and Orientation System (POS), designed to collect data of the surrounding environment. MMS can be classified as "mapping-grade" or "survey-grade" depending on the system's attainable accuracy. Mapping-grade MMS produce geospatial data suitable for GIS applications (e.g., asset management) while survey-grade systems should satisfy high-accuracy applications such as engineering/design projects. The delivered accuracy of an MMS is dependent on several factors such as the accuracy of the system measurements and calibration parameters. It is critical, especially for survey-grade systems, to implement a robust Quality Assurance (QA) procedure to ensure the achievement of the expected accuracy. In this paper, a new post-mission QA procedure is presented. The presented method consists of a fully-automated self-calibration process that allows for the estimation of corrections to the system calibration parameters (e.g., boresight angles and lever-arm offsets relating the lidar sensor(s) to the IMU body frame) as well as corrections to the system measurements (e.g., post-processed trajectory position and orientation, scan angles and ranges). As for the system measurements, the major challenge for MMS is related to the trajectory determination in the presence of multipath signals and GNSS outages caused by buildings, underpasses and high vegetation. In the proposed self-calibration method, trajectory position errors are properly modelled while utilizing an efficient/meaningful trajectory segmentation technique. The validity of the proposed method is demonstrated using a dataset collected under unfavorable GNSS conditions.

  12. POST-MISSION QUALITY ASSURANCE PROCEDURE FOR SURVEY-GRADE MOBILE MAPPING SYSTEMS

    Directory of Open Access Journals (Sweden)

    A. P. Kerstinga

    2016-06-01

    Full Text Available Mobile Mapping Systems (MMS consist of terrestrial-based moving platforms that integrate a set of imaging sensors (typically digital cameras and laser scanners and a Position and Orientation System (POS, designed to collect data of the surrounding environment. MMS can be classified as “mapping-grade” or “survey-grade” depending on the system’s attainable accuracy. Mapping-grade MMS produce geospatial data suitable for GIS applications (e.g., asset management while survey-grade systems should satisfy high-accuracy applications such as engineering/design projects. The delivered accuracy of an MMS is dependent on several factors such as the accuracy of the system measurements and calibration parameters. It is critical, especially for survey-grade systems, to implement a robust Quality Assurance (QA procedure to ensure the achievement of the expected accuracy. In this paper, a new post-mission QA procedure is presented. The presented method consists of a fully-automated self-calibration process that allows for the estimation of corrections to the system calibration parameters (e.g., boresight angles and lever-arm offsets relating the lidar sensor(s to the IMU body frame as well as corrections to the system measurements (e.g., post-processed trajectory position and orientation, scan angles and ranges. As for the system measurements, the major challenge for MMS is related to the trajectory determination in the presence of multipath signals and GNSS outages caused by buildings, underpasses and high vegetation. In the proposed self-calibration method, trajectory position errors are properly modelled while utilizing an efficient/meaningful trajectory segmentation technique. The validity of the proposed method is demonstrated using a dataset collected under unfavorable GNSS conditions.

  13. Global mapping of miRNA-target interactions in cattle (Bos taurus)

    DEFF Research Database (Denmark)

    Scheel, Troels K H; Moore, Michael J; Luna, Joseph M

    2017-01-01

    With roles in development, cell proliferation and disease, micro-RNA (miRNA) biology is of great importance and a potential therapeutic target. Here we used cross-linking immunoprecipitation (CLIP) and ligation of miRNA-target chimeras on the Argonaute (AGO) protein to globally map miRNA interact...

  14. Mission operations update for the restructured Earth Observing System (EOS) mission

    Science.gov (United States)

    Kelly, Angelita Castro; Chang, Edward S.

    1993-01-01

    The National Aeronautics and Space Administration's (NASA) Earth Observing System (EOS) will provide a comprehensive long term set of observations of the Earth to the Earth science research community. The data will aid in determining global changes caused both naturally and through human interaction. Understanding man's impact on the global environment will allow sound policy decisions to be made to protect our future. EOS is a major component of the Mission to Planet Earth program, which is NASA's contribution to the U.S. Global Change Research Program. EOS consists of numerous instruments on multiple spacecraft and a distributed ground system. The EOS Data and Information System (EOSDIS) is the major ground system developed to support EOS. The EOSDIS will provide EOS spacecraft command and control, data processing, product generation, and data archival and distribution services for EOS spacecraft. Data from EOS instruments on other Earth science missions (e.g., Tropical Rainfall Measuring Mission (TRMM)) will also be processed, distributed, and archived in EOSDIS. The U.S. and various International Partners (IP) (e.g., the European Space Agency (ESA), the Ministry of International Trade and Industry (MITI) of Japan, and the Canadian Space Agency (CSA)) participate in and contribute to the international EOS program. The EOSDIS will also archive processed data from other designated NASA Earth science missions (e.g., UARS) that are under the broad umbrella of Mission to Planet Earth.

  15. From globally coupled maps to complex-systems biology

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Kunihiko, E-mail: kaneko@complex.c.u-tokyo.ac.jp [Research Center for Complex Systems Biology, Graduate School of Arts and Sciences, The University of Tokyo 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan)

    2015-09-15

    Studies of globally coupled maps, introduced as a network of chaotic dynamics, are briefly reviewed with an emphasis on novel concepts therein, which are universal in high-dimensional dynamical systems. They include clustering of synchronized oscillations, hierarchical clustering, chimera of synchronization and desynchronization, partition complexity, prevalence of Milnor attractors, chaotic itinerancy, and collective chaos. The degrees of freedom necessary for high dimensionality are proposed to equal the number in which the combinatorial exceeds the exponential. Future analysis of high-dimensional dynamical systems with regard to complex-systems biology is briefly discussed.

  16. Towards a Global High Resolution Peatland Map in 2020

    Science.gov (United States)

    Barthelmes, Alexandra; Barthelmes, Karen-Doreen; Joosten, Hans; Dommain, Rene; Margalef, Olga

    2015-04-01

    Some 3% of land area on planet Earth (approx. 4 million km2) is covered by peatlands. About 10% (~ 0.3 % of the land area) are drained and responsible for a disproportional 5 % of the global anthropogenic CO2 emissions (Victoria et al., 2012). Additionally, peatland drainage and degradation lead to land subsidence, soil degradation, water pollution, and enhanced susceptibility to fire (Holden et al., 2004; Joosten et al., 2012). The global importance of peatlands for carbon storage and climate change mitigation has currently been recognized in international policy - since 2008 organic soils are subject of discussion in the UN Framework Convention on Climate Change (UNFCCC) (Joosten, 2011). In May 2013 the European Parliament decided that the global post 2020 climate agreement should include the obligation to report emissions and removals from peatland drainage and rewetting. Implementation of such program, however, necessitates the rapid availability of reliable, comprehensive, high resolution, spatially explicit data on the extent and status of peatlands. For many reporting countries this requires an innovation in peatland mapping, i.e. the better and integrative use of novel, but already available methods and technologies. We developed an approach that links various science networks, methodologies and data bases, including those of peatland/landscape ecology for understanding where and how peatlands may occur, those of remote sensing for identifying possible locations, and those of pedology (legacy soil maps) and (palaeo-)ecology for ground truthing. Such integration of old field data, specialized knowledge, and modern RS and GIS technologies enables acquiring a rapid, comprehensive, detailed and rather reliable overview, even on a continental scale. We illustrate this approach with a high resolution overview of peatland distribution, area, status and greenhouse gas fluxes e.g. for the East African countries Rwanda, Burundi, Uganda and Zambia. Furthermore, we

  17. Telling Anthropocene Tales: Localizing the impacts of global change using data-driven story maps

    Science.gov (United States)

    Mychajliw, A.; Hadly, E. A.

    2016-12-01

    Navigating the Anthropocene requires innovative approaches for generating scientific knowledge and for its communication outside academia. The global, synergistic nature of the environmental challenges we face - climate change, human population growth, biodiversity loss, pollution, invasive species and diseases - highlight the need for public outreach strategies that incorporate multiple scales and perspectives in an easily understandable and rapidly accessible format. Data-driven story-telling maps are optimal in that they can display variable geographic scales and their intersections with the environmental challenges relevant to both scientists and non-scientists. Maps are a powerful way to present complex data to all stakeholders. We present an overview of best practices in community-engaged scientific story-telling and data translation for policy-makers by reviewing three Story Map projects that map the geographic impacts of global change across multiple spatial and policy scales: the entire United States, the state of California, and the town of Pescadero, California. We document a chain of translation from a primary scientific manscript to a policy document (Scientific Consensus Statement on Maintaining Humanity's Life Support Systems in the 21st Century) to a set of interactive ArcGIS Story Maps. We discuss the widening breadth of participants (students, community members) and audiences (White House, Governor's Office of California, California Congressional Offices, general public) involved. We highlight how scientists, through careful curation of popular news media articles and stakeholder interviews, can co-produce these communication modules with community partners such as non-governmental organizations and government agencies. The placement of scientific and citizen's everyday knowledge of global change into an appropriate geographic context allows for effective dissemination by political units such as congressional districts and agency management units

  18. Spatial and Global Sensory Suppression Mapping Encompassing the Central 10° Field in Anisometropic Amblyopia.

    Science.gov (United States)

    Li, Jingjing; Li, Jinrong; Chen, Zidong; Liu, Jing; Yuan, Junpeng; Cai, Xiaoxiao; Deng, Daming; Yu, Minbin

    2017-01-01

    We investigate the efficacy of a novel dichoptic mapping paradigm in evaluating visual function of anisometropic amblyopes. Using standard clinical measures of visual function (visual acuity, stereo acuity, Bagolini lenses, and neutral density filters) and a novel quantitative mapping technique, 26 patients with anisometropic amblyopia (mean age = 19.15 ± 4.42 years) were assessed. Two additional psychophysical interocular suppression measurements were tested with dichoptic global motion coherence and binocular phase combination tasks. Luminance reduction was achieved by placing neutral density filters in front of the normal eye. Our study revealed that suppression changes across the central 10° visual field by mean luminance modulation in amblyopes as well as normal controls. Using simulation and an elimination of interocular suppression, we identified a novel method to effectively reflect the distribution of suppression in anisometropic amblyopia. Additionally, the new quantitative mapping technique was in good agreement with conventional clinical measures, such as interocular acuity difference (P suppression with dichoptic mapping paradigm and the results of the other two psychophysical methods (suppression mapping versus binocular phase combination, P suppression mapping versus global motion coherence, P = 0.005). The dichoptic suppression mapping technique is an effective method to represent impaired visual function in patients with anisometropic amblyopia. It offers a potential in "micro-"antisuppression mapping tests and therapies for amblyopia.

  19. Li-Yorke chaos and synchronous chaos in a globally nonlocal coupled map lattice

    International Nuclear Information System (INIS)

    Khellat, Farhad; Ghaderi, Akashe; Vasegh, Nastaran

    2011-01-01

    Highlights: → A globally nonlocal coupled map lattice is introduced. → A sufficient condition for the existence of Li-Yorke chaos is determined. → A sufficient condition for synchronous behaviors is obtained. - Abstract: This paper investigates a globally nonlocal coupled map lattice. A rigorous proof to the existence of chaos in the scene of Li-Yorke in that system is presented in terms of the Marotto theorem. Analytical sufficient conditions under which the system is chaotic, and has synchronous behaviors are determined, respectively. The wider regions associated with chaos and synchronous behaviors are shown by simulations. Spatiotemporal chaos, synchronous chaos and some other synchronous behaviors such as fixed points, 2-cycles and 2 2 -cycles are also shown by simulations for some values of the parameters.

  20. The MESSENGER mission to Mercury: scientific objectives and implementation

    Science.gov (United States)

    Solomon, Sean C.; McNutt, Ralph L.; Gold, Robert E.; Acuña, Mario H.; Baker, Daniel N.; Boynton, William V.; Chapman, Clark R.; Cheng, Andrew F.; Gloeckler, George; Head, James W., III; Krimigis, Stamatios M.; McClintock, William E.; Murchie, Scott L.; Peale, Stanton J.; Phillips, Roger J.; Robinson, Mark S.; Slavin, James A.; Smith, David E.; Strom, Robert G.; Trombka, Jacob I.; Zuber, Maria T.

    2001-12-01

    Mercury holds answers to several critical questions regarding the formation and evolution of the terrestrial planets. These questions include the origin of Mercury's anomalously high ratio of metal to silicate and its implications for planetary accretion processes, the nature of Mercury's geological evolution and interior cooling history, the mechanism of global magnetic field generation, the state of Mercury's core, and the processes controlling volatile species in Mercury's polar deposits, exosphere, and magnetosphere. The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission has been designed to fly by and orbit Mercury to address all of these key questions. After launch by a Delta 2925H-9.5, two flybys of Venus, and two flybys of Mercury, orbit insertion is accomplished at the third Mercury encounter. The instrument payload includes a dual imaging system for wide and narrow fields-of-view, monochrome and color imaging, and stereo; X-ray and combined gamma-ray and neutron spectrometers for surface chemical mapping; a magnetometer; a laser altimeter; a combined ultraviolet-visible and visible-near-infrared spectrometer to survey both exospheric species and surface mineralogy; and an energetic particle and plasma spectrometer to sample charged species in the magnetosphere. During the flybys of Mercury, regions unexplored by Mariner 10 will be seen for the first time, and new data will be gathered on Mercury's exosphere, magnetosphere, and surface composition. During the orbital phase of the mission, one Earth year in duration, MESSENGER will complete global mapping and the detailed characterization of the exosphere, magnetosphere, surface, and interior.

  1. Fast mapping of global protein folding states by multivariate NMR:

    DEFF Research Database (Denmark)

    Malmendal, Anders; Underhaug, Jarl; Otzen, Daniel

    2010-01-01

    To obtain insight into the functions of proteins and their specific roles, it is important to establish efficient procedures for exploring the states that encapsulate their conformational space. Global Protein folding State mapping by multivariate NMR (GPS NMR) is a powerful high-throughput method......-lactalbumin in the presence of the anionic surfactant sodium dodecyl sulfate, SDS, and compare these with other surfactants, acid, denaturants and heat....

  2. Very High Spectral Resolution Imaging Spectroscopy: the Fluorescence Explorer (FLEX) Mission

    Science.gov (United States)

    Moreno, Jose F.; Goulas, Yves; Huth, Andreas; Middleton, Elizabeth; Miglietta, Franco; Mohammed, Gina; Nedbal, Ladislav; Rascher, Uwe; Verhoef, Wouter; Drusch, Matthias

    2016-01-01

    The Fluorescence Explorer (FLEX) mission has been recently selected as the 8th Earth Explorer by the European Space Agency (ESA). It will be the first mission specifically designed to measure from space vegetation fluorescence emission, by making use of very high spectral resolution imaging spectroscopy techniques. Vegetation fluorescence is the best proxy to actual vegetation photosynthesis which can be measurable from space, allowing an improved quantification of vegetation carbon assimilation and vegetation stress conditions, thus having key relevance for global mapping of ecosystems dynamics and aspects related with agricultural production and food security. The FLEX mission carries the FLORIS spectrometer, with a spectral resolution in the range of 0.3 nm, and is designed to fly in tandem with Copernicus Sentinel-3, in order to provide all the necessary spectral / angular information to disentangle emitted fluorescence from reflected radiance, and to allow proper interpretation of the observed fluorescence spatial and temporal dynamics.

  3. Global Appearance Applied to Visual Map Building and Path Estimation Using Multiscale Analysis

    Directory of Open Access Journals (Sweden)

    Francisco Amorós

    2014-01-01

    Full Text Available In this work we present a topological map building and localization system for mobile robots based on global appearance of visual information. We include a comparison and analysis of global-appearance techniques applied to wide-angle scenes in retrieval tasks. Next, we define multiscale analysis, which permits improving the association between images and extracting topological distances. Then, a topological map-building algorithm is proposed. At first, the algorithm has information only of some isolated positions of the navigation area in the form of nodes. Each node is composed of a collection of images that covers the complete field of view from a certain position. The algorithm solves the node retrieval and estimates their spatial arrangement. With these aims, it uses the visual information captured along some routes that cover the navigation area. As a result, the algorithm builds a graph that reflects the distribution and adjacency relations between nodes (map. After the map building, we also propose a route path estimation system. This algorithm takes advantage of the multiscale analysis. The accuracy in the pose estimation is not reduced to the nodes locations but also to intermediate positions between them. The algorithms have been tested using two different databases captured in real indoor environments under dynamic conditions.

  4. Mapping Impervious Surfaces Globally at 30m Resolution Using Landsat Global Land Survey Data

    Science.gov (United States)

    Brown de Colstoun, E.; Huang, C.; Wolfe, R. E.; Tan, B.; Tilton, J.; Smith, S.; Phillips, J.; Wang, P.; Ling, P.; Zhan, J.; Xu, X.; Taylor, M. P.

    2013-12-01

    Impervious surfaces, mainly artificial structures and roads, cover less than 1% of the world's land surface (1.3% over USA). Regardless of the relatively small coverage, impervious surfaces have a significant impact on the environment. They are the main source of the urban heat island effect, and affect not only the energy balance, but also hydrology and carbon cycling, and both land and aquatic ecosystem services. In the last several decades, the pace of converting natural land surface to impervious surfaces has increased. Quantitatively monitoring the growth of impervious surface expansion and associated urbanization has become a priority topic across both the physical and social sciences. The recent availability of consistent, global scale data sets at 30m resolution such as the Global Land Survey from the Landsat satellites provides an unprecedented opportunity to map global impervious cover and urbanization at this resolution for the first time, with unprecedented detail and accuracy. Moreover, the spatial resolution of Landsat is absolutely essential to accurately resolve urban targets such a buildings, roads and parking lots. With long term GLS data now available for the 1975, 1990, 2000, 2005 and 2010 time periods, the land cover/use changes due to urbanization can now be quantified at this spatial scale as well. In the Global Land Survey - Imperviousness Mapping Project (GLS-IMP), we are producing the first global 30 m spatial resolution impervious cover data set. We have processed the GLS 2010 data set to surface reflectance (8500+ TM and ETM+ scenes) and are using a supervised classification method using a regression tree to produce continental scale impervious cover data sets. A very large set of accurate training samples is the key to the supervised classifications and is being derived through the interpretation of high spatial resolution (~2 m or less) commercial satellite data (Quickbird and Worldview2) available to us through the unclassified

  5. High-resolution global maps of 21st-century forest cover change.

    Science.gov (United States)

    Hansen, M C; Potapov, P V; Moore, R; Hancher, M; Turubanova, S A; Tyukavina, A; Thau, D; Stehman, S V; Goetz, S J; Loveland, T R; Kommareddy, A; Egorov, A; Chini, L; Justice, C O; Townshend, J R G

    2013-11-15

    Quantification of global forest change has been lacking despite the recognized importance of forest ecosystem services. In this study, Earth observation satellite data were used to map global forest loss (2.3 million square kilometers) and gain (0.8 million square kilometers) from 2000 to 2012 at a spatial resolution of 30 meters. The tropics were the only climate domain to exhibit a trend, with forest loss increasing by 2101 square kilometers per year. Brazil's well-documented reduction in deforestation was offset by increasing forest loss in Indonesia, Malaysia, Paraguay, Bolivia, Zambia, Angola, and elsewhere. Intensive forestry practiced within subtropical forests resulted in the highest rates of forest change globally. Boreal forest loss due largely to fire and forestry was second to that in the tropics in absolute and proportional terms. These results depict a globally consistent and locally relevant record of forest change.

  6. EUCLID mission design

    Science.gov (United States)

    Wallner, Oswald; Ergenzinger, Klaus; Tuttle, Sean; Vaillon, L.; Johann, Ulrich

    2017-11-01

    EUCLID, a medium-class mission candidate of ESA's Cosmic Vision 2015-2025 Program, currently in Definition Phase (Phase A/B1), shall map the geometry of the Dark Universe by investigating dark matter distributions, the distance-redshift relationship, and the evolution of cosmic structures. EUCLID consists of a 1.2 m telescope and two scientific instruments for ellipticity and redshift measurements in the visible and nearinfrared wavelength regime. We present a design concept of the EUCLID mission which is fully compliant with the mission requirements. Preliminary concepts of the spacecraft and of the payload including the scientific instruments are discussed.

  7. Mapping 2000 2010 Impervious Surface Change in India Using Global Land Survey Landsat Data

    Science.gov (United States)

    Wang, Panshi; Huang, Chengquan; Brown De Colstoun, Eric C.

    2017-01-01

    Understanding and monitoring the environmental impacts of global urbanization requires better urban datasets. Continuous field impervious surface change (ISC) mapping using Landsat data is an effective way to quantify spatiotemporal dynamics of urbanization. It is well acknowledged that Landsat-based estimation of impervious surface is subject to seasonal and phenological variations. The overall goal of this paper is to map 200-02010 ISC for India using Global Land Survey datasets and training data only available for 2010. To this end, a method was developed that could transfer the regression tree model developed for mapping 2010 impervious surface to 2000 using an iterative training and prediction (ITP) approach An independent validation dataset was also developed using Google Earth imagery. Based on the reference ISC from the validation dataset, the RMSE of predicted ISC was estimated to be 18.4%. At 95% confidence, the total estimated ISC for India between 2000 and 2010 is 2274.62 +/- 7.84 sq km.

  8. FLEX (Fluorescence Explorer mission: Observation fluorescence as a new remote sensing technique to study the global terrestrial vegetation state

    Directory of Open Access Journals (Sweden)

    J. Moreno

    2014-06-01

    Full Text Available FLEX (Fluorescence EXplorer is a candidate for the 8th ESA’s Earth Explorer mission. Is the first space mission specifically designed for the estimation of vegetation fluorescence on a global scale. The mission is proposed to fly in tandem with the future ESA´s Sentinel-3 satellite. It is foreseen that the information obtained by Sentinel-3 will be supplemented with that provided by FLORIS (Fluorescence Imaging Spectrometer onboard FLEX. FLORIS will measure the radiance between 500 and 800 nm with a bandwidth between 0.1 nm and 2 nm, providing images with a 150 km swath and 300 m pixel size. This information will allow a detailed monitoring of vegetation dynamics, by improving the methods for the estimation of classical biophysical parameters, and by introducing a new one: fluorescence. This paper presents the current status of FLEX mission in A/B1 phase and the different ongoing studies, campaigns and projects carried out in support of the FLEX mission.

  9. The complete integration of MissionLab and CARMEN

    Directory of Open Access Journals (Sweden)

    FJ Serrano Rodriguez

    2017-05-01

    Full Text Available Nowadays, a major challenge in the development of advanced robotic systems is the creation of complex missions for groups of robots, with two main restrictions: complex programming activities not needed and the mission configuration time should be short (e.g. Urban Search And Rescue. With these ideas in mind, we analysed several robotic development environments, such as Robot Operating System (ROS, Open Robot Control Software (OROCOS, MissionLab, Carnegie Mellon Robot Navigation Toolkit (CARMEN and Player/Stage, which are helpful when creating autonomous robots. MissionLab provides high-level features (automatic mission creation, code generation and a graphical mission editor that are unavailable in other significant robotic development environments. It has however some weaknesses regarding its map-based capabilities. Creating, managing and taking advantage of maps for localization and navigation tasks are among CARMEN’s most significant features. This fact makes the integration of MissionLab with CARMEN both possible and interesting. This article describes the resulting robotic development environment, which makes it possible to work with several robots, and makes use of their map-based navigation capabilities. It will be shown that the proposed platform solves the proposed goal, that is, it simplifies the programmer’s job when developing control software for robot teams, and it further facilitates multi-robot deployment task in mission-critical situations.

  10. Mission Adaptive UAS Platform for Earth Science Resource Assessment

    Science.gov (United States)

    Dunagan, S.; Fladeland, M.; Ippolito, C.; Knudson, M.

    2015-01-01

    NASA Ames Research Center has led a number of important Earth science remote sensing missions including several directed at the assessment of natural resources. A key asset for accessing high risk airspace has been the 180 kg class SIERRA UAS platform, providing mission durations of up to 8 hrs at altitudes up to 3 km. Recent improvements to this mission capability are embodied in the incipient SIERRA-B variant. Two resource mapping problems having unusual mission characteristics requiring a mission adaptive capability are explored here. One example involves the requirement for careful control over solar angle geometry for passive reflectance measurements. This challenges the management of resources in the coastal ocean where solar angle combines with sea state to produce surface glint that can obscure the ocean color signal. Furthermore, as for all scanning imager applications, the primary flight control priority to fly the UAS directly to the next waypoint should compromise with the requirement to minimize roll and crab effects in the imagery. A second example involves the mapping of natural resources in the Earth's crust using precision magnetometry. In this case the vehicle flight path must be oriented to optimize magnetic flux gradients over a spatial domain having continually emerging features, while optimizing the efficiency of the spatial mapping task. These requirements were highlighted in several recent Earth Science missions including the October 2013 OCEANIA mission directed at improving the capability for hyperspectral reflectance measurements in the coastal ocean, and the Surprise Valley Mission directed at mapping sub-surface mineral composition and faults, using high-sensitivity magentometry. This paper reports the development of specific aircraft control approaches to incorporate the unusual and demanding requirements to manage solar angle, aircraft attitude and flight path orientation, and efficient (directly geo-rectified) surface and sub

  11. AQUARIUS: A Passive/Active Microwave Sensor to Monitor Sea Surface Salinity Globally from Space

    Science.gov (United States)

    LeVine, David; Lagerloef, Gary S. E.; Colomb, F. Raul; Chao, Yi

    2004-01-01

    Salinity is important for understanding ocean dynamics, energy exchange with the atmosphere and the global water cycle. Existing data is limited and much of the ocean has never even been sampled. Sea surface salinity can be measured remotely by satellite and a three year mission for this purpose called AquariudSAC-D has recently been selected by NASA's Earth System Science Pathfinder (ESSP) program. The objective is to map the salinity field globally with a spatial resolution of 100 km and a monthly average accuracy of 0.2 psu. The mission, scheduled for launch in 2008, is a partnership of the United States National Aeronautics and Space Agency (NASA) and the Argentine Comision National de Actividades Epaciales (CONAE).

  12. Tracking and data system support for the Mariner Mars 1971 mission. Volume 3: Orbit insertion through end of primary mission

    Science.gov (United States)

    Barnum, P. W.; Renzetti, N. A.; Textor, G. P.; Kelly, L. B.

    1973-01-01

    The Tracking and Data System (TDS) Support for the Mariner Mars 1971 Mission final report contains the deep space tracking and data acquisition activities in support of orbital operations. During this period a major NASA objective was accomplished: completion of the 180th revolution and 90th day of data gathering with the spacecraft about the planet Mars. Included are presentations of the TDS flight support pass chronology data for each of the Deep Space Stations used, and performance evaluation for the Deep Space Network Telemetry, Tracking, Command, and Monitor Systems. With the loss of Mariner 8 at launch, Mariner 9 assumed the mission plan of Mariner 8, which included the TV mapping cycles and a 12-hr orbital period. The mission plan was modified as a result of a severe dust storm on the surface of Mars, which delayed the start of the TV mapping cycles. Thus, the end of primary mission date was extended to complete the TV mapping cycles.

  13. A method of recovering the initial vectors of globally coupled map lattices based on symbolic dynamics

    International Nuclear Information System (INIS)

    Sun Li-Sha; Kang Xiao-Yun; Zhang Qiong; Lin Lan-Xin

    2011-01-01

    Based on symbolic dynamics, a novel computationally efficient algorithm is proposed to estimate the unknown initial vectors of globally coupled map lattices (CMLs). It is proved that not all inverse chaotic mapping functions are satisfied for contraction mapping. It is found that the values in phase space do not always converge on their initial values with respect to sufficient backward iteration of the symbolic vectors in terms of global convergence or divergence (CD). Both CD property and the coupling strength are directly related to the mapping function of the existing CML. Furthermore, the CD properties of Logistic, Bernoulli, and Tent chaotic mapping functions are investigated and compared. Various simulation results and the performances of the initial vector estimation with different signal-to-noise ratios (SNRs) are also provided to confirm the proposed algorithm. Finally, based on the spatiotemporal chaotic characteristics of the CML, the conditions of estimating the initial vectors using symbolic dynamics are discussed. The presented method provides both theoretical and experimental results for better understanding and characterizing the behaviours of spatiotemporal chaotic systems. (general)

  14. A method of recovering the initial vectors of globally coupled map lattices based on symbolic dynamics

    Science.gov (United States)

    Sun, Li-Sha; Kang, Xiao-Yun; Zhang, Qiong; Lin, Lan-Xin

    2011-12-01

    Based on symbolic dynamics, a novel computationally efficient algorithm is proposed to estimate the unknown initial vectors of globally coupled map lattices (CMLs). It is proved that not all inverse chaotic mapping functions are satisfied for contraction mapping. It is found that the values in phase space do not always converge on their initial values with respect to sufficient backward iteration of the symbolic vectors in terms of global convergence or divergence (CD). Both CD property and the coupling strength are directly related to the mapping function of the existing CML. Furthermore, the CD properties of Logistic, Bernoulli, and Tent chaotic mapping functions are investigated and compared. Various simulation results and the performances of the initial vector estimation with different signal-to-noise ratios (SNRs) are also provided to confirm the proposed algorithm. Finally, based on the spatiotemporal chaotic characteristics of the CML, the conditions of estimating the initial vectors using symbolic dynamics are discussed. The presented method provides both theoretical and experimental results for better understanding and characterizing the behaviours of spatiotemporal chaotic systems.

  15. Analytical Retrieval of Global Land Surface Emissivity Maps at AMSR-E passive microwave frequencies

    Science.gov (United States)

    Norouzi, H.; Temimi, M.; Khanbilvardi, R.

    2009-12-01

    Land emissivity is a crucial boundary condition in Numerical Weather Prediction (NWP) modeling. Land emissivity is also a key indicator of land surface and subsurface properties. The objective of this study, supported by NOAA-NESDIS, is to develop global land emissivity maps using AMSR-E passive microwave measurements along with several ancillary data. The International Satellite Cloud Climatology Project (ISCCP) database has been used to obtain several inputs for the proposed approach such as land surface temperature, cloud mask and atmosphere profile. The Community Radiative Transfer Model (CRTM) has been used to estimate upwelling and downwelling atmospheric contributions. Although it is well known that correction of the atmospheric effect on brightness temperature is required at higher frequencies (over 19 GHz), our preliminary results have shown that a correction at 10.7 GHz is also necessary over specific areas. The proposed approach is based on three main steps. First, all necessary data have been collected and processed. Second, a global cloud free composite of AMSR-E data and corresponding ancillary images is created. Finally, monthly composting of emissivity maps has been performed. AMSR-E frequencies at 6.9, 10.7, 18.7, 36.5 and 89.0 GHz have been used to retrieve the emissivity. Water vapor information obtained from ISCCP (TOVS data) was used to calculate upwelling, downwelling temperatures and atmospheric transmission in order to assess the consistency of those derived from the CRTM model. The frequent land surface temperature (LST) determination (8 times a day) in the ISCCP database has allowed us to assess the diurnal cycle effect on emissivity retrieval. Differences in magnitude and phase between thermal temperature and low frequencies microwave brightness temperature have been noticed. These differences seem to vary in space and time. They also depend on soil texture and thermal inertia. The proposed methodology accounts for these factors and

  16. Use of Satellite Remote Sensing Data in the Mapping of Global Landslide Susceptibility

    Science.gov (United States)

    Hong, Yang; Adler, Robert F.; Huffman, George J.

    2007-01-01

    Satellite remote sensing data has significant potential use in analysis of natural hazards such as landslides. Relying on the recent advances in satellite remote sensing and geographic information system (GIS) techniques, this paper aims to map landslide susceptibility over most of the globe using a GIs-based weighted linear combination method. First , six relevant landslide-controlling factors are derived from geospatial remote sensing data and coded into a GIS system. Next, continuous susceptibility values from low to high are assigned to each of the six factors. Second, a continuous scale of a global landslide susceptibility index is derived using GIS weighted linear combination based on each factor's relative significance to the process of landslide occurrence (e.g., slope is the most important factor, soil types and soil texture are also primary-level parameters, while elevation, land cover types, and drainage density are secondary in importance). Finally, the continuous index map is further classified into six susceptibility categories. Results show the hot spots of landslide-prone regions include the Pacific Rim, the Himalayas and South Asia, Rocky Mountains, Appalachian Mountains, Alps, and parts of the Middle East and Africa. India, China, Nepal, Japan, the USA, and Peru are shown to have landslide-prone areas. This first-cut global landslide susceptibility map forms a starting point to provide a global view of landslide risks and may be used in conjunction with satellite-based precipitation information to potentially detect areas with significant landslide potential due to heavy rainfall. 1

  17. Global maps of the CRUST 2.0 crustal components stripped gravity disturbances

    NARCIS (Netherlands)

    Tenzer, R.; Hamayun, K.; Vajda, P.

    2009-01-01

    We use the CRUST 2.0 crustal model and the EGM08 geopotential model to compile global maps of the gravity disturbances corrected for the gravitational effects (attractions) of the topography and of the density contrasts of the oceans, sediments, ice, and the remaining crust down to the Moho

  18. American cities, global networks: mapping the multiplegeographies of globalization in the Americas Cidades americanas, redes globais: mapeando as múltiplas geografias da globalização nas Américas

    Directory of Open Access Journals (Sweden)

    Noah Toly

    2012-06-01

    Full Text Available The mapping of advanced producer and financial service firms across global cities began to increase understandingof the role of cities in global governance, the presence and influence of cities in the shifting architectureof global political economy, and the role of globalization in shaping the landscape of local and regionalgovernance. The literature that emerged from such studies has also emphasized 1 increasing levelsof inequality in global cities and 2 attendant contests over local outcomes of globalization while seekingother ways of measuring and articulating the emergence of globalizing cities. Analyzing location strategiesin other sectors can speak to these issues. This paper extends methodology common to the global citiesliterature to map non-governmental organization (NGO and energy corporation offices in the Americas, focusingon the convergence and divergence of these networks with those of advanced producer and financialservices firms. Mapping all three sectors might reveal multiple geographies of globalization in the Americas.Because globalizing cities have become the centers of integrated world capital, radical poverty, and environmentalinjustice, studies of poverty in the Americas must take seriously the urban centers that increasinglyhave become the hub of economic and ideological flows. The urban location strategies of advanced producerand financial services, global NGOs, and global energy corporations must be understood in order to grapplemore fully with issues of inequality in American cities.

  19. Planetary Cartography and Mapping: where we are Today, and where we are Heading For?

    Science.gov (United States)

    Naß, A.; Di, K.; Elgner, S.; van Gasselt, S.; Hare, T.; Hargitai, H.; Karachevtseva, I.; Kersten, E.; Manaud, N.; Roatsch, T.; Rossi, A. P.; Skinner, J., Jr.; Wählisch, M.

    2017-07-01

    Planetary Cartography does not only provides the basis to support planning (e.g., landing-site selection, orbital observations, traverse planning) and to facilitate mission conduct during the lifetime of a mission (e.g., observation tracking and hazard avoidance). It also provides the means to create science products after successful termination of a planetary mission by distilling data into maps. After a mission's lifetime, data and higher level products like mosaics and digital terrain models (DTMs) are stored in archives - and eventually into maps and higher-level data products - to form a basis for research and for new scientific and engineering studies. The complexity of such tasks increases with every new dataset that has been put on this stack of information, and in the same way as the complexity of autonomous probes increases, also tools that support these challenges require new levels of sophistication. In planetary science, cartography and mapping have a history dating back to the roots of telescopic space exploration and are now facing new technological and organizational challenges with the rise of new missions, new global initiatives, organizations and opening research markets. The focus of this contribution is to summarize recent activities in Planetary Cartography, highlighting current issues the community is facing to derive the future opportunities in this field. By this we would like to invite cartographers/researchers to join this community and to start thinking about how we can jointly solve some of these challenges.

  20. Mapping vulnerability to multiple stressors: climate change and globalization in India

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Karen; Aandahl, Guro; Tompkins, Heather [CICERO, Oslo (NO)] (and others)

    2004-12-01

    There is growing recognition in the human dimensions research community that climate change impact studies must take into account the effects of other ongoing global changes. Yet there has been no systematic methodology to study climate change vulnerability in the context of multiple stressors. Using the example of Indian agriculture, this paper presents a methodology for investigating regional vulnerability to climate change in combination with other global stressors. This method, which relies on both vulnerability mapping and local- level case studies, may be used to assess differential vulnerability for any particular sector within a nation or region, and it can serve as a basis for targeting policy interventions. (Author)

  1. PACA_Rosetta67P: Global Amateur Observing Support for ESA/Rosetta Mission

    Science.gov (United States)

    Yanamandra-Fisher, Padma A.; Alexander, Claudia; Morales, Efrain; Feliciano-Rivera, Christiana

    2015-11-01

    The PACA (Professional - Amateur Collaborative Astronomy) Project is an ecosystem of several social media platforms (Facebook, Pinterest, Twitter, Flickr, Vimeo) that takes advantage of the global and immediate connectivity amongst amateur astronomers worldwide, that can be galvanized to participate in a given observing campaign. The PACA Project has participated in organized campaigns such as Comet Observing Campaign (CIOC_ISON) in 2013 and Comet Siding Spring (CIOC_SidingSpring)in 2014. Currently the PACA Project is supporting ESA/Rosetta mission with ground-based observations of the comet 67P/Churyumov-Gerasimenko (CG) through its perihelion in August 2015 and beyond; providing baseline observations of magnitude and evolution from locations around the globe. Comet 67P/CG will reach its brightest post-perihelion and pass closest to Earth in November 2015. We will present the various benefits of our professional - amateur collaboration: developing and building a core astronomer community; defining an observing campaign from basic information of the comet from its previous apparitions; coordinating with professionals and the mission to acquire observations, albeit low-resolution, but on a long timeline; while addressing the creation of several science products such as the variation of its magnitude over time and the changing morphology. We will present some of our results to date and compare with observations from professionals and previous apparations of the comet. We shall also highlight the challenges faced in building a successful collaborative partnership between the professional and amateur observers and their resolution. With the popularity of mobile platforms and instant connections with peers globally, the multi-faceted social universe has become a vital part of engagement of multiple communities for collaborative scientific partnerships and outreach. We shall also highlight other cometary observing campaigns that The PACA Project has initiated to evolve

  2. PAU-SA: A Synthetic Aperture Interferometric Radiometer Test Bed for Potential Improvements in Future Missions

    Directory of Open Access Journals (Sweden)

    Merce Vall-llosera

    2012-06-01

    Full Text Available The Soil Moisture and Ocean Salinity (SMOS mission is an Earth Explorer Opportunity mission from the European Space Agency (ESA. Its goal is to produce global maps of soil moisture and ocean salinity using the Microwave Imaging Radiometer by Aperture Synthesis (MIRAS. The purpose of the Passive Advanced Unit Synthetic Aperture (PAU-SA instrument is to study and test some potential improvements that could eventually be implemented in future missions using interferometric radiometers such as the Geoestacionary Atmosferic Sounder (GAS, the Precipitation and All-weather Temperature and Humidity (PATH and the Geostationary Interferometric Microwave Sounder (GIMS. Both MIRAS and PAU-SA are Y-shaped arrays with uniformly distributed antennas, but the receiver topology and the processing unit are quite different. The purpose of this work is to identify the elements in the MIRAS’s design susceptible of improvement and apply them in the PAU-SA instrument demonstrator, to test them in view of these future interferometric radiometer missions.

  3. Global Distribution of Active Volcanism on Io as Known at the End of the Galileo Mission

    Science.gov (United States)

    Lopes, Rosaly M. C.; Kamp. Lucas W.; Smythe, W. D.; Radebaugh, J.; Turtle, E.; Perry, J.; Bruno, B.

    2004-01-01

    Hot spots are manifestations of Io s mechanism of internal heating and heat transfer. Therefore, the global distribution of hot spots and their power output has important implications for how Io is losing heat. The end of the Galileo mission is an opportune time to revisit studies of the distribution of hot spots on Io, and to investigate the distribution of their power output.

  4. Single Image Super-Resolution Using Global Regression Based on Multiple Local Linear Mappings.

    Science.gov (United States)

    Choi, Jae-Seok; Kim, Munchurl

    2017-03-01

    Super-resolution (SR) has become more vital, because of its capability to generate high-quality ultra-high definition (UHD) high-resolution (HR) images from low-resolution (LR) input images. Conventional SR methods entail high computational complexity, which makes them difficult to be implemented for up-scaling of full-high-definition input images into UHD-resolution images. Nevertheless, our previous super-interpolation (SI) method showed a good compromise between Peak-Signal-to-Noise Ratio (PSNR) performances and computational complexity. However, since SI only utilizes simple linear mappings, it may fail to precisely reconstruct HR patches with complex texture. In this paper, we present a novel SR method, which inherits the large-to-small patch conversion scheme from SI but uses global regression based on local linear mappings (GLM). Thus, our new SR method is called GLM-SI. In GLM-SI, each LR input patch is divided into 25 overlapped subpatches. Next, based on the local properties of these subpatches, 25 different local linear mappings are applied to the current LR input patch to generate 25 HR patch candidates, which are then regressed into one final HR patch using a global regressor. The local linear mappings are learned cluster-wise in our off-line training phase. The main contribution of this paper is as follows: Previously, linear-mapping-based conventional SR methods, including SI only used one simple yet coarse linear mapping to each patch to reconstruct its HR version. On the contrary, for each LR input patch, our GLM-SI is the first to apply a combination of multiple local linear mappings, where each local linear mapping is found according to local properties of the current LR patch. Therefore, it can better approximate nonlinear LR-to-HR mappings for HR patches with complex texture. Experiment results show that the proposed GLM-SI method outperforms most of the state-of-the-art methods, and shows comparable PSNR performance with much lower

  5. Concepts of Operations for Asteroid Rendezvous Missions Focused on Resources Utilization

    Science.gov (United States)

    Mueller, Robert P.; Sibille, Laurent; Sanders, Gerald B.; Jones, Christopher A.

    2014-01-01

    Several asteroids are the targets of international robotic space missions currently manifested or in the planning stage. This global interest reflects a need to study these celestial bodies for the scientific information they provide about our solar system, and to better understand how to mitigate the collision threats some of them pose to Earth. Another important objective of these missions is providing assessments of the potential resources that asteroids could provide to future space architectures. In this paper, we examine a series of possible mission operations focused on advancing both our knowledge of the types of asteroids suited for different forms of resource extraction, and the capabilities required to extract those resources for mission enhancing and enabling uses such as radiation protection, propulsion, life support, shelter and manufacturing. An evolutionary development and demonstration approach is recommended within the framework of a larger campaign that prepares for the first landings of humans on Mars. As is the case for terrestrial mining, the development and demonstration approach progresses from resource prospecting (understanding the resource, and mapping the 'ore body'), mining/extraction feasibility and product assessment, pilot operations, to full in-situ resource utilization (ISRU). Opportunities to gather specific knowledge for ISRU via resource prospecting during science missions to asteroids are also examined to maximize the pace of development of needed ISRU capabilities and technologies for deep space missions.

  6. Globally optimal superconducting magnets part I: minimum stored energy (MSE) current density map.

    Science.gov (United States)

    Tieng, Quang M; Vegh, Viktor; Brereton, Ian M

    2009-01-01

    An optimal current density map is crucial in magnet design to provide the initial values within search spaces in an optimization process for determining the final coil arrangement of the magnet. A strategy for obtaining globally optimal current density maps for the purpose of designing magnets with coaxial cylindrical coils in which the stored energy is minimized within a constrained domain is outlined. The current density maps obtained utilising the proposed method suggests that peak current densities occur around the perimeter of the magnet domain, where the adjacent peaks have alternating current directions for the most compact designs. As the dimensions of the domain are increased, the current density maps yield traditional magnet designs of positive current alone. These unique current density maps are obtained by minimizing the stored magnetic energy cost function and therefore suggest magnet coil designs of minimal system energy. Current density maps are provided for a number of different domain arrangements to illustrate the flexibility of the method and the quality of the achievable designs.

  7. A new edition global map - Uranium deposits of the world

    International Nuclear Information System (INIS)

    Fairclough, M.

    2014-01-01

    In 1995 The International Atomic Energy Agency published a hard copy map entitled “World Distribution of Uranium Deposits” at a scale of 1:30 000 000. The map displayed data from agency information that was to become UDEPO database of uranium deposits, overlaid on a generalised geological map supplied by the Geological Survey of Canada. At that time, the database contained 582 deposits with a cut-off of 500 t U at an average grade of 0.03% U, and was generated over a period of half a decade by small group external experts. The experts developed a revised deposit classification scheme displayed on the map and in the accompanying guidebook in 1996. A revised and expanded UDEPO database was made widely available on the internet from 2004, and contained additional deposit information and a constantly increasing number of deposits (874 by the end of 2008 coinciding with a new UDEPO guidebook in 2009). Enhanced efforts by the IAEA and consultants of the UDEPO Working Group have now generated a database that has 1526 deposits with a more detailed classification subdivision utilised in a forthcoming IAEA UDEPO publication. The establishment of this classification scheme and the completion of a major phase of updating UDEPO has created an opportunity for creating a completely new edition of the Uranium Deposits Of The World Map using modern GIS techniques. Cartographic tools within GIS software have become very sophisticated, allowing better display of variably dense data through real-time manipulation of layers and symbology with the GIS dataset. Moreover, some of the results of this functionality can then be transferred to the data display aspects the online version of UDEPO as well as distributed as scale-independent digital version of the map. In parallel, a planned IAEA publication regarding global uranium provinces allows a more rigorous clustering of deposits for the purposes of showing particular metallogenic aspects in more detail. This also has an important

  8. Global Rural-Urban Mapping Project, Version 1 (GRUMPv1): Urban Extent Polygons, Revision 01

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary output of the Global Rural Urban Mapping Project, Version 1 (GRUMPv1) are a series of grids representing estimated population counts and density for the...

  9. Performance of Global-Appearance Descriptors in Map Building and Localization Using Omnidirectional Vision

    Directory of Open Access Journals (Sweden)

    Luis Payá

    2014-02-01

    Full Text Available Map building and localization are two crucial abilities that autonomous robots must develop. Vision sensors have become a widespread option to solve these problems. When using this kind of sensors, the robot must extract the necessary information from the scenes to build a representation of the environment where it has to move and to estimate its position and orientation with robustness. The techniques based on the global appearance of the scenes constitute one of the possible approaches to extract this information. They consist in representing each scene using only one descriptor which gathers global information from the scene. These techniques present some advantages comparing to other classical descriptors, based on the extraction of local features. However, it is important a good configuration of the parameters to reach a compromise between computational cost and accuracy. In this paper we make an exhaustive comparison among some global appearance descriptors to solve the mapping and localization problem. With this aim, we make use of several image sets captured in indoor environments under realistic working conditions. The datasets have been collected using an omnidirectional vision sensor mounted on the robot.

  10. Land Cover Mapping in Northern High Latitude Permafrost Regions with Satellite Data: Achievements and Remaining Challenges

    Directory of Open Access Journals (Sweden)

    Annett Bartsch

    2016-11-01

    Full Text Available Most applications of land cover maps that have been derived from satellite data over the Arctic require higher thematic detail than available in current global maps. A range of application studies has been reviewed, including up-scaling of carbon fluxes and pools, permafrost feature mapping and transition monitoring. Early land cover mapping studies were driven by the demand to characterize wildlife habitats. Later, in the 1990s, up-scaling of in situ measurements became central to the discipline of land cover mapping on local to regional scales at several sites across the Arctic. This includes the Kuparuk basin in Alaska, the Usa basin and the Lena Delta in Russia. All of these multi-purpose land cover maps have been derived from Landsat data. High resolution maps (from optical satellite data serve frequently as input for the characterization of periglacial features and also flux tower footprints in recent studies. The most used map to address circumpolar issues is the CAVM (Circum Arctic Vegetation Map based on AVHRR (1 km and has been manually derived. It provides the required thematic detail for many applications, but is confined to areas north of the treeline, and it is limited in spatial detail. A higher spatial resolution circumpolar land cover map with sufficient thematic content would be beneficial for a range of applications. Such a land cover classification should be compatible with existing global maps and applicable for multiple purposes. The thematic content of existing global maps has been assessed by comparison to the CAVM and regional maps. None of the maps provides the required thematic detail. Spatial resolution has been compared to used classes for local to regional applications. The required thematic detail increases with spatial resolution since coarser datasets are usually applied over larger areas covering more relevant landscape units. This is especially of concern when the entire Arctic is addressed. A spatial

  11. Chaos optimization algorithms based on chaotic maps with different probability distribution and search speed for global optimization

    Science.gov (United States)

    Yang, Dixiong; Liu, Zhenjun; Zhou, Jilei

    2014-04-01

    Chaos optimization algorithms (COAs) usually utilize the chaotic map like Logistic map to generate the pseudo-random numbers mapped as the design variables for global optimization. Many existing researches indicated that COA can more easily escape from the local minima than classical stochastic optimization algorithms. This paper reveals the inherent mechanism of high efficiency and superior performance of COA, from a new perspective of both the probability distribution property and search speed of chaotic sequences generated by different chaotic maps. The statistical property and search speed of chaotic sequences are represented by the probability density function (PDF) and the Lyapunov exponent, respectively. Meanwhile, the computational performances of hybrid chaos-BFGS algorithms based on eight one-dimensional chaotic maps with different PDF and Lyapunov exponents are compared, in which BFGS is a quasi-Newton method for local optimization. Moreover, several multimodal benchmark examples illustrate that, the probability distribution property and search speed of chaotic sequences from different chaotic maps significantly affect the global searching capability and optimization efficiency of COA. To achieve the high efficiency of COA, it is recommended to adopt the appropriate chaotic map generating the desired chaotic sequences with uniform or nearly uniform probability distribution and large Lyapunov exponent.

  12. High resolution global flood hazard map from physically-based hydrologic and hydraulic models.

    Science.gov (United States)

    Begnudelli, L.; Kaheil, Y.; McCollum, J.

    2017-12-01

    The global flood map published online at http://www.fmglobal.com/research-and-resources/global-flood-map at 90m resolution is being used worldwide to understand flood risk exposure, exercise certain measures of mitigation, and/or transfer the residual risk financially through flood insurance programs. The modeling system is based on a physically-based hydrologic model to simulate river discharges, and 2D shallow-water hydrodynamic model to simulate inundation. The model can be applied to large-scale flood hazard mapping thanks to several solutions that maximize its efficiency and the use of parallel computing. The hydrologic component of the modeling system is the Hillslope River Routing (HRR) hydrologic model. HRR simulates hydrological processes using a Green-Ampt parameterization, and is calibrated against observed discharge data from several publicly-available datasets. For inundation mapping, we use a 2D Finite-Volume Shallow-Water model with wetting/drying. We introduce here a grid Up-Scaling Technique (UST) for hydraulic modeling to perform simulations at higher resolution at global scale with relatively short computational times. A 30m SRTM is now available worldwide along with higher accuracy and/or resolution local Digital Elevation Models (DEMs) in many countries and regions. UST consists of aggregating computational cells, thus forming a coarser grid, while retaining the topographic information from the original full-resolution mesh. The full-resolution topography is used for building relationships between volume and free surface elevation inside cells and computing inter-cell fluxes. This approach almost achieves computational speed typical of the coarse grids while preserving, to a significant extent, the accuracy offered by the much higher resolution available DEM. The simulations are carried out along each river of the network by forcing the hydraulic model with the streamflow hydrographs generated by HRR. Hydrographs are scaled so that the peak

  13. The Global Evidence Mapping Initiative: Scoping research in broad topic areas

    Directory of Open Access Journals (Sweden)

    Tavender Emma

    2011-06-01

    Full Text Available Abstract Background Evidence mapping describes the quantity, design and characteristics of research in broad topic areas, in contrast to systematic reviews, which usually address narrowly-focused research questions. The breadth of evidence mapping helps to identify evidence gaps, and may guide future research efforts. The Global Evidence Mapping (GEM Initiative was established in 2007 to create evidence maps providing an overview of existing research in Traumatic Brain Injury (TBI and Spinal Cord Injury (SCI. Methods The GEM evidence mapping method involved three core tasks: 1. Setting the boundaries and context of the map: Definitions for the fields of TBI and SCI were clarified, the prehospital, acute inhospital and rehabilitation phases of care were delineated and relevant stakeholders (patients, carers, clinicians, researchers and policymakers who could contribute to the mapping were identified. Researchable clinical questions were developed through consultation with key stakeholders and a broad literature search. 2. Searching for and selection of relevant studies: Evidence search and selection involved development of specific search strategies, development of inclusion and exclusion criteria, searching of relevant databases and independent screening and selection by two researchers. 3. Reporting on yield and study characteristics: Data extraction was performed at two levels - 'interventions and study design' and 'detailed study characteristics'. The evidence map and commentary reflected the depth of data extraction. Results One hundred and twenty-nine researchable clinical questions in TBI and SCI were identified. These questions were then prioritised into high (n = 60 and low (n = 69 importance by the stakeholders involved in question development. Since 2007, 58 263 abstracts have been screened, 3 731 full text articles have been reviewed and 1 644 relevant neurotrauma publications have been mapped, covering fifty-three high priority

  14. The Global Evidence Mapping Initiative: scoping research in broad topic areas.

    Science.gov (United States)

    Bragge, Peter; Clavisi, Ornella; Turner, Tari; Tavender, Emma; Collie, Alex; Gruen, Russell L

    2011-06-17

    Evidence mapping describes the quantity, design and characteristics of research in broad topic areas, in contrast to systematic reviews, which usually address narrowly-focused research questions. The breadth of evidence mapping helps to identify evidence gaps, and may guide future research efforts. The Global Evidence Mapping (GEM) Initiative was established in 2007 to create evidence maps providing an overview of existing research in Traumatic Brain Injury (TBI) and Spinal Cord Injury (SCI). The GEM evidence mapping method involved three core tasks:1. Setting the boundaries and context of the map: Definitions for the fields of TBI and SCI were clarified, the prehospital, acute inhospital and rehabilitation phases of care were delineated and relevant stakeholders (patients, carers, clinicians, researchers and policymakers) who could contribute to the mapping were identified. Researchable clinical questions were developed through consultation with key stakeholders and a broad literature search. 2. Searching for and selection of relevant studies: Evidence search and selection involved development of specific search strategies, development of inclusion and exclusion criteria, searching of relevant databases and independent screening and selection by two researchers. 3. Reporting on yield and study characteristics: Data extraction was performed at two levels - 'interventions and study design' and 'detailed study characteristics'. The evidence map and commentary reflected the depth of data extraction. One hundred and twenty-nine researchable clinical questions in TBI and SCI were identified. These questions were then prioritised into high (n = 60) and low (n = 69) importance by the stakeholders involved in question development. Since 2007, 58 263 abstracts have been screened, 3 731 full text articles have been reviewed and 1 644 relevant neurotrauma publications have been mapped, covering fifty-three high priority questions. GEM Initiative evidence maps have a broad

  15. Global 30m 2000-2014 Surface Water Dynamics Map Derived from All Landsat 5, 7, and 8

    Science.gov (United States)

    Hudson, A.; Hansen, M.

    2015-12-01

    Water is critical for human life, agriculture, and ecosystems. A better understanding of where it is and how it is changing will enable better management of this valuable resource and guide protection of sensitive ecological areas. Global water maps have typically been representations of surface water at one given time. However, there is both seasonal and interannual variability: rivers meander, lakes disappear, floods arise. To address this ephemeral nature of water, in this study University of Maryland has developed a method that analyzes every Landsat 5, 7, and 8 scene from 1999-2015 to produce global seasonal maps (Winter, Spring, Summer, Fall) of surface water dynamics from 2000-2014. Each Landsat scene is automatically classified into land, water, cloud, haze, shadow, and snow via a decision tree algorithm. The land and water observations are aggregated per pixel into percent occurrence of water in a 3 year moving window for each meteorological season. These annual water percentages form a curve for each season that is discretized into a continuous 3 band RGB map. Frequency of water observation and type of surface water change (loss, gain, peak, or dip) is clearly seen through brightness and hue respectively. Additional data layers include: the year the change began, peak year, minimum year, and the year the change process ended. Currently these maps have been created for 18 1°x1° test tiles scattered around the world, and a portion of the September-November map over Bangladesh is shown below. The entire Landsat archive from 1999-2015 will be processed through a partnership with Google Earth Engine to complete the global product in the coming months. In areas where there is sufficient satellite data density (e.g. the United States), this project could be expanded to 1984-2015. This study provides both scientific researchers and the public an understandable, temporally rich, and globally consistent map showing surface water changes over time.

  16. The growth of partnership in mission in global mission history during ...

    African Journals Online (AJOL)

    Partnership in mission came to be a byword for developing missionary relationships during the twentieth century. During this time its meaning and practice changed, often imperceptibly. This is seen in the regular conferences of the International Missionary Conference and its successors which had their origin in the ...

  17. From Internationalism to Internationalisation: The Illusion of a Global Community in Higher Education

    Directory of Open Access Journals (Sweden)

    Graham Pike

    2012-09-01

    Full Text Available Both global education and international education are movements designedto promote the concepts of internationalism and global community innational education systems, but with different histories. While the former, agrassroots K-12 movement, has struggled to make headway against theforces of neoliberalism, the latter has thrived in a market-driven era inwhich revenue from international student mobility has offset decliningpublic funding of higher education in many developed countries. Currenttrends in the internationalisation of higher education have resulted inincreasing commercialisation and intensive competition for internationalstudents, fuelled by world rankings of elite universities. Tensions existbetween these trends and the more altruistic goals of internationaleducation proclaimed in institutional mission statements and governmentpolicies. An analytical matrix is offered as a tool with which highereducation institutions can map their internationalisation activities andassess the extent to which they match their stated policies and missions.While the rhetoric of international education purports to promote theconcept of a global community, the article suggests this claim may beillusory.

  18. Assessing Landslide Characteristics and Developing a Landslide Potential Hazard Map in Rwanda and Uganda Using NASA Earth Observations

    Science.gov (United States)

    Sinclair, L.; Conner, P.; le Roux, J.; Finley, T.

    2015-12-01

    The International Emergency Disasters Database indicates that a total of 482 people have been killed and another 27,530 have been affected by landslides in Rwanda and Uganda, although the actual numbers are thought to be much higher. Data for individual countries are poorly tracked, but hotspots for devastating landslides occur throughout Rwanda and Uganda due to the local topography and soil type, intense rainfall events, and deforestation. In spite of this, there has been little research in this region that utilizes satellite imagery to estimate areas susceptible to landslides. This project utilized Landsat 8 Operational Land Imager (OLI) data and Google Earth to identify landslides that occurred within the study area. These landslides were then added to SERVIR's Global Landslide Catalog (GLC). Next, Landsat 8 OLI, the Tropical Rainfall Measuring Mission (TRMM), the Global Precipitation Measurement (GPM), and Shuttle Radar Topography Mission Version 2 (SRTM V2) data were used to create a Landslide Susceptibility Map. This was combined with population data from the Socioeconomic Data and Applications Center (SEDAC) to create a Landslide Hazard map. A preliminary assessment of the relative performance of GPM and TRMM in identifying landslide conditions was also performed. The additions to the GLC, the Landslide Susceptibility Map, the Landslide Hazard Map, and the preliminary assessment of satellite rainfall performance will be used by SERVIR and the Regional Centre for Mapping of Resources for Development (RCMRD) for disaster risk management, land use planning, and determining landslide conditions and moisture thresholds.

  19. The growth of partnership in mission in global mission history during ...

    African Journals Online (AJOL)

    p1243322

    everywhere”. This kind of thinking undermined paternalistic “dominator” .... For Mott, the critical issue was: “If a church is truly indigenous, the church edifice is ... strong: The hour has come for passing from paternalism to partnership. It is something ...... cooperation in mission taking into consideration the experience acquired ...

  20. DoD Global Information Grid Mission Assurance

    National Research Council Canada - National Science Library

    Bargar, Anthony

    2008-01-01

    ...). However, the GIG was built for business efficiency instead of mission assurance against sophisticated adversaries who have demonstrated intent and proven their ability to use cyberspace as a tool...

  1. Spatial Mapping of NEO 2008 EV5 Using Small Satellite Formation Flying and Steresoscopic Technology

    Science.gov (United States)

    Gonzalez, Juan; Singh Derewa, Chrishma

    2016-10-01

    NASA is currently developing the first-ever robotic Asteroid Redirect Robotic Mission (ARRM) to the near-Earth asteroid 2008 EV5 with the objective to capture a multi-ton boulder from the asteroids surface and use its mass to redirect its parent into a CIS lunar orbit where astronauts will study its physical and chemical composition.A critical step towards achieving this mission is to effectively map the target asteroid, identify the candidate boulder for retrieval and characterize its critical parameters. Currently, ARRM utilizes a laser altimeter to characterize the height of the boulders and mapping for final autonomous control of the capture. The proposed Lava-Kusha mission provides the increased of stereoscopic imaging and mapping, not only the Earthward side of the asteroid which has been observed for possible landing sites, but mapping the whole asteroid. LKM will enhance the fidelity of the data collected by the laser altimeter and gather improved topographic data for future Orion missions to 2008 EV5 once in cis lunar space.LKM consists of two low cost small satellites (6U) as a part of the ARRM. They will launch with ARRM as an integrated part of the system. Once at the target, this formation of pathfinder satellites will image the mission critical boulder to ensure the system design can support its removal. LKM will conduct a series of flybys prior to ARRM's rendezvous. LKMs stereoscopic cameras will provide detailed surveys of the boulder's terrain and environment to ensure ARRM can operate safely, reach the location and interface with the boulder. The LKM attitude control and cold gas propulsion system will enable formation maintenance maneuvers for global mapping of asteroid 2008 EV5 at an altitude of 100 km to a high-spatial resolution imaging altitude of 5 km.LKM will demonstrate formation flying in deep space and the reliability of stereoscopic cameras to precisely identify a specific target and provide physical characterization of an asteroid. An

  2. PLANETARY CARTOGRAPHY AND MAPPING: WHERE WE ARE TODAY, AND WHERE WE ARE HEADING FOR?

    Directory of Open Access Journals (Sweden)

    A. Naß

    2017-07-01

    Full Text Available Planetary Cartography does not only provides the basis to support planning (e.g., landing-site selection, orbital observations, traverse planning and to facilitate mission conduct during the lifetime of a mission (e.g., observation tracking and hazard avoidance. It also provides the means to create science products after successful termination of a planetary mission by distilling data into maps. After a mission’s lifetime, data and higher level products like mosaics and digital terrain models (DTMs are stored in archives – and eventually into maps and higher-level data products – to form a basis for research and for new scientific and engineering studies. The complexity of such tasks increases with every new dataset that has been put on this stack of information, and in the same way as the complexity of autonomous probes increases, also tools that support these challenges require new levels of sophistication. In planetary science, cartography and mapping have a history dating back to the roots of telescopic space exploration and are now facing new technological and organizational challenges with the rise of new missions, new global initiatives, organizations and opening research markets. The focus of this contribution is to summarize recent activities in Planetary Cartography, highlighting current issues the community is facing to derive the future opportunities in this field. By this we would like to invite cartographers/researchers to join this community and to start thinking about how we can jointly solve some of these challenges.

  3. A preliminary global geologic map of Vesta based on Dawn Survey orbit data

    Science.gov (United States)

    Yingst, R.; Williams, D. A.; Garry, W. B.; Mest, S. C.; Petro, N. E.; Buczkowski, D.; Schenk, P.; Jaumann, R.; Pieters, C. M.; Roatsch, T.; Preusker, F.; Nathues, A.; LeCorre, L.; Reddy, V.; Russell, C. T.; Raymond, C. A.; DeSanctis, C.; Ammannito, E.; Filacchione, G.

    2011-12-01

    NASA's Dawn spacecraft arrived at the asteroid 4Vesta on July 15, 2011, and is now collecting imaging, spectroscopic, and elemental abundance data during its one-year orbital mission. As part of the geological analysis of the surface, we have utilized images and data from the Survey orbital sequence to produce a global map of Vesta's surface. Unit boundaries and feature characteristics were determined primarily from morphologic analysis of image data; projected Framing Camera (FC) images were used as the base map. Spectral information from FC and VIR are used to refine unit contacts and to separate compositional distinctions from differences arising from illumination or other factors. Those units that could be discerned both in morphology and in the color data were interpreted as geologically distinct units. Vesta's surface is highly-cratered; differences in color and albedo are possible indicators of varying thicknesses and areal extents of crater ejecta. The most prominent candidate impact feature dominates the south pole. This feature consists of a depression roughly circular in shape, with a central hill that is characterized by smoother texture and lower albedo distinctive from the lower-lying surrounding terrain. A complex network of deep troughs and ridges cuts through the floor of the feature. Many of these troughs trend north-south, while others appear circumferential to the hill and are truncated by or terminate at orthogonal ridges/grooves. Detailed mapping of these features will provide information on their orientations, possible origin(s), and their relationship, if any, to the central hill. The equator of Vesta is also girdled by a wide set of flat-floored troughs. Their orientation implies that their formation is related to the south polar structure. Several regions on Vesta have a concentration of craters displaying low-albedo interiors or exteriors. These craters may have an exogenic origin, or may be the result of excavation of a thin sub

  4. A globally complete map of supraglacial debris cover and a new toolkit for debris cover research

    Science.gov (United States)

    Herreid, Sam; Pellicciotti, Francesca

    2017-04-01

    A growing canon of literature is focused on resolving the processes and implications of debris cover on glaciers. However, this work is often confined to a handful of glaciers that were likely selected based on criteria optimizing their suitability to test a specific hypothesis or logistical ease. The role of debris cover in a glacier system is likely to not go overlooked in forthcoming research, yet the magnitude of this role at a global scale has not yet been fully described. Here, we present a map of debris cover for all glacierized regions on Earth including the Greenland Ice Sheet using 30 m Landsat data. This dataset will begin to open a wider context to the high quality, localized findings from the debris-covered glacier research community and help inform large-scale modeling efforts. A global map of debris cover also facilitates analysis attempting to isolate first order geomorphological and climate controls of supraglacial debris production. Furthering the objective of expanding the inclusion of debris cover in forthcoming research, we also present an under development suite of open-source, Python based tools. Requiring minimal and often freely available input data, we have automated the mapping of: i) debris cover, ii) ice cliffs, iii) debris cover evolution over the Landsat era and iv) glacier flow instabilities from altered debris structures. At the present time, debris extent is the only globally complete quantity but with the expanding repository of high quality global datasets and further tool development minimizing manual tasks and computational cost, we foresee all of these tools being applied globally in the near future.

  5. Low Thrust Trajectory Design for GSFC Missions

    Data.gov (United States)

    National Aeronautics and Space Administration — The Evolutionary Mission Trajectory Generator (EMTG) is a global trajectory optimization tool. EMTG is intended for use in designing interplanetary missions which...

  6. Surface Mineralogy Mapping of Ceres from the Dawn Mission

    Science.gov (United States)

    McCord, T. B.; Zambon, F.

    2017-12-01

    Ceres' surface composition is of special interest because it is a window into the interior state and the past evolution of this dwarf planet. Disk-integrated telescopic spectral observations indicated that Ceres' surface is hydroxylated, similar to but not exactly the same as some of the carbonaceous chondrite classes of meteorites. Furthermore, Ceres' bulk density is low, indicating significant water content. The Dawn mission in orbit around Ceres, provided a new and larger set of observations on the mineralogy, molecular and elemental composition, and their distributions in association with surface features and geology. A set of articles was prepared, from which this presentation is derived, that is the first treatment of the entire surface composition of Ceres using the complete High Altitude Mapping Orbit (HAMO) Dawn Ceres data set and the calibrations from all the Dawn instruments. This report provides a current and comprehensive view of Ceres' surface composition and integrates them into general conclusions. Ceres' surface composition shows a fairly uniform distribution of NH4- and Mg-phyllosilicates, carbonates, mixed with a dark component. The widespread presence of phyllosilicates, and salts on Ceres' surface is indicative of the presence of aqueous alteration processes, which involved the whole dwarf planet. There is also likely some contamination by low velocity infall, as seen on Vesta, but it is more difficult to distinguish this infall from native Ceres material, unlike for the Vesta case.

  7. Radiation effects on man health, environment, safety, security. Global Chernobyl mapping

    International Nuclear Information System (INIS)

    Bebeshko, V.; Bazyka, D.; Volovik, S.; Loganovsky, K.; Sushko, V.; Siedow, J.; Cohen, H.; Ginsburg, G.; Chao, N.; Chute, J.

    2007-01-01

    Complete text of publication follows. Objectives: Ionizing radiation is a primordial terrestrial and extraterrestrial background and archetypal environmental stress-factor for life origin, evolution, and existence. We all live in radiation world inevitably involving nuclear energy production, nuclear weapon, nuclear navy, radioactive waste, pertinent medical diagnostics and treatment, etc with connected certain probability of relevant accidents and terrorist attack, space and jet travels, high natural background radiation, etc - actual and potential sources of radiation exposures and effects. State-of- the art integral fundamental research on radiation effects on man health, environment, safety, and security (REMHESS) is nowadays paramount necessity and challenge. Methods and results: In given generalized conceptual framework unique 20 years Chernobyl multidimensional research and databases for radiation effects on man's all organism systems represent invaluable original basis and resources for mapping Chernobyl data and REMHESS challenge. Granted by DOE brand new Chernobyl Research and Service Project based on 'Sarcophagus-II' (Object 'Shelter') workers only one in radiation history baseline cohort, corresponding biorepository prospective dynamic data, integrated conceptual database system, and 'state of the art' 'omics' (genomics, proteomics, metabolomics) analysis is designed specifically for coherent addressing global REMHESS problems. In this connection 'Sarcophagus-II' is only one unique universal model. Conclusions: The fundamental goals of novel strategic Project and global Chernobyl mapping are to determine specific 'omics' signatures of radiation for man depending of exposure peculiarity to understand ultimate molecular mechanisms of radiation effects, gene environment interactions, etiology of organisms systems disorders and diseases, and to develop new biomarkers and countermeasures to protect man health in the framework of global REMHESS challenge

  8. CZMIL (coastal zone mapping and imaging lidar): from first flights to first mission through system validation

    Science.gov (United States)

    Feygels, Viktor I.; Park, Joong Yong; Wozencraft, Jennifer; Aitken, Jennifer; Macon, Christopher; Mathur, Abhinav; Payment, Andy; Ramnath, Vinod

    2013-06-01

    CZMIL is an integrated lidar-imagery system and software suite designed for highly automated generation of physical and environmental information products for coastal zone mapping in the framework of the US Army Corps of Engineers (USACE) National Coastal Mapping Program (NCMP). This paper presents the results of CZMIL system validation in turbid water conditions along the Gulf Coast of Mississippi and in relatively clear water conditions in Florida in late spring 2012. Results of the USACE May-October 2012 mission in Green Bay, WI and Lake Erie are presented. The system performance tests show that CZMIL successfully achieved 7-8m depth in Mississippi with Kd =0.46m-1 (Kd is the diffuse attenuation coefficient) and up to 41m in Florida when Kd=0.11m-1. Bathymetric accuracy of CZMIL was measured by comparing CZMIL depths with multi-beam sonar data from Cat Island, MS and from off the coast of Fort. Lauderdale, FL. Validation demonstrated that CZMIL meets USACE specifications (two standard deviation, 2σ, ~30 cm). To measure topographic accuracy we made direct comparisons of CZMIL elevations to GPS-surveyed ground control points and vehicle-based lidar scans of topographic surfaces. Results confirmed that CZMIL meets the USACE topographic requirements (2σ, ~15 cm). Upon completion of the Green Bay and Lake Erie mission there were 89 flights with 2231 flightlines. The general hours of aircraft engine time (which doesn't include all transit/ferry flights) was 441 hours with 173 hours of time on survey flightlines. The 4.8 billion (!) laser shots and 38.6 billion digitized waveforms covered over 1025 miles of shoreline.

  9. Regional to Global Assessments of Phytoplankton Dynamics From The SeaWiFS Mission

    Science.gov (United States)

    Siegel, David; Behrenfeld, Michael; Maritorena, Stephanie; McClain, Charles R.; Antoine, David; Bailey, Sean W.; Bontempi, Paula S.; Boss, Emmanuel S.; Dierssen, Heidi M.; Doney, Scott C.; hide

    2013-01-01

    Photosynthetic production of organic matter by microscopic oceanic phytoplankton fuels ocean ecosystems and contributes roughly half of the Earth's net primary production. For 13 years, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) mission provided the first consistent, synoptic observations of global ocean ecosystems. Changes in the surface chlorophyll concentration, the primary biological property retrieved from SeaWiFS, have traditionally been used as a metric for phytoplankton abundance and its distribution largely reflects patterns in vertical nutrient transport. On regional to global scales, chlorophyll concentrations covary with sea surface temperature (SST) because SST changes reflect light and nutrient conditions. However, the oceanmay be too complex to be well characterized using a single index such as the chlorophyll concentration. A semi-analytical bio-optical algorithm is used to help interpret regional to global SeaWiFS chlorophyll observations from using three independent, well-validated ocean color data products; the chlorophyll a concentration, absorption by CDM and particulate backscattering. First, we show that observed long-term, global-scale trends in standard chlorophyll retrievals are likely compromised by coincident changes in CDM. Second, we partition the chlorophyll signal into a component due to phytoplankton biomass changes and a component caused by physiological adjustments in intracellular chlorophyll concentrations to changes in mixed layer light levels. We show that biomass changes dominate chlorophyll signals for the high latitude seas and where persistent vertical upwelling is known to occur, while physiological processes dominate chlorophyll variability over much of the tropical and subtropical oceans. The SeaWiFS data set demonstrates complexity in the interpretation of changes in regional to global phytoplankton distributions and illustrates limitations for the assessment of phytoplankton dynamics using chlorophyll

  10. Global Mapping of Near-Earth Magnetic Fields Measured by KITSAT-1 and KITSAT-2

    Directory of Open Access Journals (Sweden)

    Yoo-Surn Pyo

    1994-06-01

    Full Text Available The magnetic field measurements from the KitSat-1 and KitSat-2 were tested by comparing with the IGRF model. The magnetic data have been collected by a three-axis fluxgate magnetometer on each satellite at an altitude of 1,325km and 820km, respectively. To avoid highly variable magnetic disturbances at the polar region, the field map has been drawn within the limits of 50 degrees in latitude. Each data is averaged over the square of 5x5 degrees in both latitude and longitude. In these results, the relatively quiet periods were selected and the sampling rate was 30 seconds. It is shown that the results from these measurements are consistent with the IGRF map over the global surface map.

  11. Towards the Development and Validation of a Global Field Size and Irrigation Map using Crowdsourcing, Mobile Apps and Google Earth Engine in support of GEOGLAM

    Science.gov (United States)

    Fritz, S.; Nordling, J.; See, L. M.; McCallum, I.; Perger, C.; Becker-Reshef, I.; Mucher, S.; Bydekerke, L.; Havlik, P.; Kraxner, F.; Obersteiner, M.

    2014-12-01

    The International Institute for Applied Systems Analysis (IIASA) has developed a global cropland extent map, which supports the monitoring and assessment activities of GEOGLAM (Group on Earth Observations Global Agricultural Monitoring Initiative). Through the European-funded SIGMA (Stimulating Innovation for Global Monitoring of Agriculture and its Impact on the Environment in support of GEOGLAM) project, IIASA is continuing to support GEOGLAM by providing cropland projections in the future and modelling environmental impacts on agriculture under various scenarios. In addition, IIASA is focusing on two specific elements within SIGMA: the development of a global field size and irrigation map; and mobile app development for in-situ data collection and validation of remotely-sensed products. Cropland field size is a very useful indicator for agricultural monitoring yet the information we have at a global scale is currently very limited. IIASA has already created a global map of field size at a 1 km resolution using crowdsourced data from Geo-Wiki as a first approximation. Using automatic classification of Landsat imagery and algorithms contained within Google Earth Engine, initial experimentation has shown that circular fields and landscape structures can easily be extracted. Not only will this contribute to improving the global map of field size, it can also be used to create a global map that contains a large proportion of the world's irrigated areas, which will be another useful contribution to GEOGLAM. The field size map will also be used to stratify and develop a global crop map in SIGMA. Mobile app development in support of in-situ data collection is another area where IIASA is currently working. An Android app has been built using the Open Data Toolkit (ODK) and extended further with spatial mapping capabilities called GeoODK. The app allows users to collect data on different crop types and delineate fields on the ground, which can be used to validate the

  12. Science Mission Definition Studies for TROPIX

    Science.gov (United States)

    Fennell, J. F.

    1997-01-01

    This document summarizes the results of mission definition studies for solar electric propulsion missions that have been carried out over the last approximately three years. The major output from the studies has been two proposals which were submitted to NASA in response to Announcements of Opportunity for missions and an ongoing Global Magnetospheric Dynamics mission study. The bulk of this report consists of copies of the proposals and preliminary materials from the GMD study that will be completed in the coming months.

  13. Landsat Data Continuity Mission

    Science.gov (United States)

    ,

    2012-01-01

    The Landsat Data Continuity Mission (LDCM) is a partnership formed between the National Aeronautics and Space Administration (NASA) and the U.S. Geological Survey (USGS) to place the next Landsat satellite in orbit in January 2013. The Landsat era that began in 1972 will become a nearly 41-year global land record with the successful launch and operation of the LDCM. The LDCM will continue the acquisition, archiving, and distribution of multispectral imagery affording global, synoptic, and repetitive coverage of the Earth's land surfaces at a scale where natural and human-induced changes can be detected, differentiated, characterized, and monitored over time. The mission objectives of the LDCM are to (1) collect and archive medium resolution (30-meter spatial resolution) multispectral image data affording seasonal coverage of the global landmasses for a period of no less than 5 years; (2) ensure that LDCM data are sufficiently consistent with data from the earlier Landsat missions in terms of acquisition geometry, calibration, coverage characteristics, spectral characteristics, output product quality, and data availability to permit studies of landcover and land-use change over time; and (3) distribute LDCM data products to the general public on a nondiscriminatory basis at no cost to the user.

  14. Progress in diode-pumped alexandrite lasers as a new resource for future space lidar missions

    Science.gov (United States)

    Damzen, M. J.; Thomas, G. M.; Teppitaksak, A.; Minassian, A.

    2017-11-01

    Satellite-based remote sensing using laser-based lidar techniques provides a powerful tool for global 3-D mapping of atmospheric species (e.g. CO2, ozone, clouds, aerosols), physical attributes of the atmosphere (e.g. temperature, wind speed), and spectral indicators of Earth features (e.g. vegetation, water). Such information provides a valuable source for weather prediction, understanding of climate change, atmospheric science and health of the Earth eco-system. Similarly, laser-based altimetry can provide high precision ground topography mapping and more complex 3-D mapping (e.g. canopy height profiling). The lidar technique requires use of cutting-edge laser technologies and engineered designs that are capable of enduring the space environment over the mission lifetime. The laser must operate with suitably high electrical-to-optical efficiency and risk reduction strategy adopted to mitigate against laser failure or excessive operational degradation of laser performance.

  15. The inner magnetosphere imager mission

    International Nuclear Information System (INIS)

    Johnson, L.; Herrmann, M.

    1993-01-01

    After 30 years of in situ measurements of the Earth's magnetosphere, scientists have assembled an incomplete picture of its global composition and dynamics. Imaging the magnetosphere from space will enable scientists to better understand the global shape of the inner magnetosphere, its components and processes. The proposed inner magnetosphere imager (IMI) mission will obtain the first simultaneous images of the component regions of the inner magnetosphere and will enable scientists to relate these global images to internal and external influences as well as local observations. To obtain simultaneous images of component regions of the inner magnetosphere, measurements will comprise: the ring current and inner plasma sheet using energetic neutral atoms; the plasmasphere using extreme ultraviolet; the electron and proton auroras using far ultraviolet (FUV) and x rays; and the geocorona using FUV. The George C. Marshall Space Flight Center (MSFC) is performing a concept definition study of the proposed mission. NASA's Office of Space Science and Applications has placed the IMI third in its queue of intermediate-class missions for launch in the 1990's. An instrument complement of approximately seven imagers will fly in an elliptical Earth orbit with a seven Earth Radii (R E ) altitude apogee and approximately 4,800-kin altitude perigee. Several spacecraft concepts were examined for the mission. The first concept utilizes a spinning spacecraft with a despun platform. The second concept splits the instruments onto a spin-stabilized spacecraft and a complementary three-axis stabilized spacecraft. Launch options being assessed for the spacecraft range from a Delta 11 for the single and dual spacecraft concepts to dual Taurus launches for the two smaller spacecraft. This paper will address the mission objectives, the spacecraft design considerations, the results of the MSFC concept definition study, and future mission plans

  16. One Mission-Centered, Market-Smart Globalization Response: A Case Study of the Georgia Tech-Emory University Biomedical Engineering Curricular Joint Venture

    Science.gov (United States)

    Burriss, Annie Hunt

    2010-01-01

    One innovative, higher-education response to globalization and changing fiscal realities is the curricular joint venture (CJV), a formal collaboration between academic institutions that leverages missions through new joint degrees and research not previously offered by collaborating institutions (Eckel, 2003). In 1997, a pioneering biomedical…

  17. Internationally coordinated multi-mission planning is now critical to sustain the space-based rainfall observations needed for managing floods globally

    International Nuclear Information System (INIS)

    Reed, Patrick M; Herman, Jonathan D; Chaney, Nathaniel W; Wood, Eric F; Ferringer, Matthew P

    2015-01-01

    At present 4 of 10 dedicated rainfall observing satellite systems have exceeded their design life, some by more than a decade. Here, we show operational implications for flood management of a ‘collapse’ of space-based rainfall observing infrastructure as well as the high-value opportunities for a globally coordinated portfolio of satellite missions and data services. Results show that the current portfolio of rainfall missions fails to meet operational data needs for flood management, even when assuming a perfectly coordinated data product from all current rainfall-focused missions (i.e., the full portfolio). In the full portfolio, satellite-based rainfall data deficits vary across the globe and may preclude climate adaptation in locations vulnerable to increasing flood risks. Moreover, removing satellites that are currently beyond their design life (i.e., the reduced portfolio) dramatically increases data deficits globally and could cause entire high intensity flood events to be unobserved. Recovery from the reduced portfolio is possible with internationally coordinated replenishment of as few as 2 of the 4 satellite systems beyond their design life, yielding rainfall data coverages that outperform the current full portfolio (i.e., an optimized portfolio of eight satellites can outperform ten satellites). This work demonstrates the potential for internationally coordinated satellite replenishment and data services to substantially enhance the cost-effectiveness, sustainability and operational value of space-based rainfall observations in managing evolving flood risks. (letter)

  18. Mapping Global Urban Dynamics from Nighttime Lights - 1992 to 2012

    Science.gov (United States)

    Xie, Yanhua

    Accurate, up-to-date, and consistent information of urban extent is indispensable for numerous applications central to urban planning, ecosystem management, and environmental assessment and monitoring. However, current large-scale urban extent products are not uniform with respect to urban definition, spatial resolution, thematic representation, and temporal frequency. To fill this gap, this study proposed a method to update and backdate global urban extent from currently available urban maps by using nighttime light (NTL) as the main indicator. The method followed three steps: (1) exploring the spatiotemporal variation of NTL thresholds for mapping urban dynamics from NTL time series and developing an object-based thresholding method (i.e., NTL-OUT method, Xie & Weng, 2016b); (2) spatiotemporally enhancing time-series Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) NTL data for detecting broad-scale urban changes (Xie & Weng, 2017); and (3) detecting global urban dynamics during the period between 1992 and 2012 (i.e., 1992, 1997, 2002, 2007, and 2012) from enhanced OLS NTL time series by using the NTL-OUT method. The results show that global urban extent almost doubled during the period from 1992 to 2012, increasing from 0.52 million to 0.98 million km 2, which accounts for 0.39% and 0.72% of the total global land area, respectively. Regionally, the urbanization level varies by continent, with Europe being the most urbanized, followed by North America, Asia, South America, Africa, and Australia-Oceania. In 1992, the urban extent varied from only 0.1% of total continental land area in Australia-Oceania and Africa to 1.18% in Europe. While the proportion of urban extent in North America increased slightly from 1992 to 2002 (i.e., 0.07%), urban extent increased 0.1% for both Asia and South America. In 2012, over 0.7% of the total land was covered by the human built environment, with 0.2% in Africa and Australia-Oceania and around 0

  19. Topographical Hill Shading Map Production Based Tianditu (map World)

    Science.gov (United States)

    Wang, C.; Zha, Z.; Tang, D.; Yang, J.

    2018-04-01

    TIANDITU (Map World) is the public version of National Platform for Common Geospatial Information Service, and the terrain service is an important channel for users on the platform. With the development of TIANDITU, topographical hill shading map production for providing and updating global terrain map on line becomes necessary for the characters of strong intuition, three-dimensional sense and aesthetic effect. As such, the terrain service of TIANDITU focuses on displaying the different scales of topographical data globally. And this paper mainly aims to research the method of topographical hill shading map production globally using DEM (Digital Elevation Model) data between the displaying scales about 1 : 140,000,000 to 1 : 4,000,000, corresponded the display level from 2 to 7 on TIANDITU website.

  20. Highlighting continued uncertainty in global land cover maps for the user community

    International Nuclear Information System (INIS)

    Fritz, Steffen; See, Linda; McCallum, Ian; Schill, Christian; Obersteiner, Michael; Van der Velde, Marijn; Boettcher, Hannes; Havlík, Petr; Achard, Frédéric

    2011-01-01

    In the last 10 years a number of new global datasets have been created and new, more sophisticated algorithms have been designed to classify land cover. GlobCover and MODIS v.5 are the most recent global land cover products available, where GlobCover (300 m) has the finest spatial resolution of other comparable products such as MODIS v.5 (500 m) and GLC-2000 (1 km). This letter shows that the thematic accuracy in the cropland domain has decreased when comparing these two latest products. This disagreement is also evident spatially when examining maps of cropland and forest disagreement between GLC-2000, MODIS and GlobCover. The analysis highlights the continued uncertainty surrounding these products, with a combined forest and cropland disagreement of 893 Mha (GlobCover versus MODIS v.5). This letter suggests that data sharing efforts and the provision of more in situ data for training, calibration and validation are very important conditions for improving future global land cover products.

  1. Low Thrust Trajectory Design for GSFC Missions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Evolutionary Mission Trajectory Generator (EMTG) is a global trajectory optimization tool. EMTG is intended for use in designing interplanetary missions which...

  2. Utilizing NASA Earth Observations to Assess Landslide Characteristics and Devlelop Susceptibility and Exposure Maps in Malawi

    Science.gov (United States)

    Klug, M.; Cissell, J.; Grossman, M.

    2017-12-01

    Malawi has become increasingly prone to landslides in the past few decades. This can be attributed to the terrain, types of soil and vegetation, increased human interference, and heavy flooding after long periods of drought. In addition to the floods and droughts, landslides cause extra stress to farmlands, thus exacerbating the current food security crisis in the country. It can be difficult to pinpoint just how many people are affected by landslides in Malawi because landslides often occur in rural areas or are grouped with other disasters, such as floods or earthquakes. This project created a Landslide Susceptibility Map to assess landslide-prone areas in Malawi using variables such as slope, distance to roads, distance to streams, soil type, and precipitation. These variables were derived using imagery from Landsat 8 Operational Land Imager (OLI), Shuttle Radar Topography Mission Version 3 (SRTM-v3), Global Precipitation Measurement (GPM), and Tropical Rainfall Measuring Mission (TRMM) satellites. Furthermore, this project created a Landslide Exposure Map to estimate how much of the local population lives in susceptible areas by intersecting population data with the Landslide Susceptibility Map. Additionally, an assessment of GPM and TRMM precipitation measurements was generated to better understand the reliability of both measurements for landslide monitoring. Finally, this project updated NASA SERVIR's Global Landslide Catalog (GLC) for Malawi by using WorldView data from Google Earth and Landsat 8 OLI. These end products were used by NASA SERVIR and the Regional Centre for Mapping of Resources for Development (RCMRD) for aiding in disaster management throughout Malawi.

  3. 4 Vesta in Color: High Resolution Mapping from Dawn Framing Camera Images

    Science.gov (United States)

    Reddy, V.; LeCorre, L.; Nathues, A.; Sierks, H.; Christensen, U.; Hoffmann, M.; Schroeder, S. E.; Vincent, J. B.; McSween, H. Y.; Denevi, B. W.; hide

    2011-01-01

    Rotational surface variations on asteroid 4 Vesta have been known from ground-based and HST observations, and they have been interpreted as evidence of compositional diversity. NASA s Dawn mission entered orbit around Vesta on July 16, 2011 for a year-long global characterization. The framing cameras (FC) onboard the Dawn spacecraft will image the asteroid in one clear (broad) and seven narrow band filters covering the wavelength range between 0.4-1.0 microns. We present color mapping results from the Dawn FC observations of Vesta obtained during Survey orbit (approx.3000 km) and High-Altitude Mapping Orbit (HAMO) (approx.950 km). Our aim is to create global color maps of Vesta using multi spectral FC images to identify the spatial extent of compositional units and link them with other available data sets to extract the basic mineralogy. While the VIR spectrometer onboard Dawn has higher spectral resolution (864 channels) allowing precise mineralogical assessment of Vesta s surface, the FC has three times higher spatial resolution in any given orbital phase. In an effort to extract maximum information from FC data we have developed algorithms using laboratory spectra of pyroxenes and HED meteorites to derive parameters associated with the 1-micron absorption band wing. These parameters will help map the global distribution of compositionally related units on Vesta s surface. Interpretation of these units will involve the integration of FC and VIR data.

  4. Hungarian contribution to the Global Soil Organic Carbon Map (GSOC17) using advanced machine learning algorithms and geostatistics

    Science.gov (United States)

    Szatmári, Gábor; Laborczi, Annamária; Takács, Katalin; Pásztor, László

    2017-04-01

    The knowledge about soil organic carbon (SOC) baselines and changes, and the detection of vulnerable hot spots for SOC losses and gains under climate change and changed land management is still fairly limited. Thus Global Soil Partnership (GSP) has been requested to develop a global SOC mapping campaign by 2017. GSPs concept builds on official national data sets, therefore, a bottom-up (country-driven) approach is pursued. The elaborated Hungarian methodology suits the general specifications of GSOC17 provided by GSP. The input data for GSOC17@HU mapping approach has involved legacy soil data bases, as well as proper environmental covariates related to the main soil forming factors, such as climate, organisms, relief and parent material. Nowadays, digital soil mapping (DSM) highly relies on the assumption that soil properties of interest can be modelled as a sum of a deterministic and stochastic component, which can be treated and modelled separately. We also adopted this assumption in our methodology. In practice, multiple regression techniques are commonly used to model the deterministic part. However, this global (and usually linear) models commonly oversimplify the often complex and non-linear relationship, which has a crucial effect on the resulted soil maps. Thus, we integrated machine learning algorithms (namely random forest and quantile regression forest) in the elaborated methodology, supposing then to be more suitable for the problem in hand. This approach has enable us to model the GSOC17 soil properties in that complex and non-linear forms as the soil itself. Furthermore, it has enable us to model and assess the uncertainty of the results, which is highly relevant in decision making. The applied methodology has used geostatistical approach to model the stochastic part of the spatial variability of the soil properties of interest. We created GSOC17@HU map with 1 km grid resolution according to the GSPs specifications. The map contributes to the GSPs

  5. The Sentinel-1 Mission: New Opportunities for Ice Sheet Observations

    Directory of Open Access Journals (Sweden)

    Thomas Nagler

    2015-07-01

    Full Text Available The Sentinel satellite constellation series, developed by the European Space Agency, represents the dedicated space component of the European Copernicus program, committed to long-term operational services in a wide range of application domains. Here, we address the potential of the Sentinel-1 mission for mapping and monitoring the surface velocity of glaciers and ice sheets. We present an ice velocity map of Greenland, derived from synthetic aperture radar (SAR data acquired in winter 2015 by Sentinel-1A, the first satellite of the Copernicus program in orbit. The map is assembled from about 900 SAR scenes acquired in Interferometric Wide swath (IW mode, applying the offset tracking technique. We discuss special features of IW mode data, describe the procedures for producing ice velocity maps, and assess the uncertainty of the ice motion product. We compare the Sentinel-1 ice motion product with velocity maps derived from high resolution SAR data of the TerraSAR-X mission and from PALSAR data. Beyond supporting operational services, the Sentinel-1 mission offers enhanced capabilities for comprehensive and long-term observation of key climate variables, such as the motion of ice masses.

  6. Examples of Sentinel-2A Mission Exploitation Results

    Science.gov (United States)

    Koetz, Benjamin; Hoersch, Bianca; Gascon, Ferran; Desnos, Yves-Louis; Seifert, Frank Martin; Paganini, Marc; Ramoino, Fabrizio; Arino, Olivier

    2017-04-01

    The Sentinel-2 Copernicus mission will bring significant breakthrough in the exploitation of space borne optical data. Sentinel-2 time series will transform land cover, agriculture, forestry, in-land water and costal EO applications from mapping to monitoring, from snapshot to time series data analysis, from image-based to pixel-based processing. The 5-days temporal revisiting of the Sentinel-2 satellites, when both units will be operated together, will usher us in a new era for time series analysis at high spatial resolutions (HR) of 10-20 meters. The monitoring of seasonal variations and processes in phenology and hydrology are examples of the many R&D areas to be studied. The mission's large swath and systematic acquisitions will further support unprecedented coverage at the national scale addressing information requirements of national to regional policies. Within ESA programs, such as the Data User Element (DUE), Scientific Exploitation of Operational Missions (SEOM) and Climate Change Initiative (CCI), several R&D activities are preparing the exploitation of the Sentinel-2 mission towards reliable measurements and monitoring of e.g. Essential Climate Variables and indicators for the Sustainable Development Goals. Early Sentinel-2 results will be presented related to a range of applications and scientific domains such as agricultural monitoring at national scale (DUE Sen2Agri), wetland extent and condition over African Ramsar sites (DUE GlobWetland-Africa), land cover mapping for climate change (CCI Land Cover), national land monitoring (Cadaster-Env), forest degradation (DUE ForMoSa), urban mapping (DUE EO4Urban), in-land water quality (DUE SPONGE), map of Mediterranean aquaculture (DUE SMART) and coral reef habitat mapping (SEOM S2-4Sci Coral). The above-mentioned activities are only a few examples from the very active international land imaging community building on the long-term Landsat and Spot heritage and knowledge.

  7. Global Attractivity Results for Mixed-Monotone Mappings in Partially Ordered Complete Metric Spaces

    Directory of Open Access Journals (Sweden)

    Kalabušić S

    2009-01-01

    Full Text Available We prove fixed point theorems for mixed-monotone mappings in partially ordered complete metric spaces which satisfy a weaker contraction condition than the classical Banach contraction condition for all points that are related by given ordering. We also give a global attractivity result for all solutions of the difference equation , where satisfies mixed-monotone conditions with respect to the given ordering.

  8. Global mapping of vertical injection profiles of wild-fire emission

    Science.gov (United States)

    Sofiev, M.; Vankevich, R.; Ermakova, T.; Hakkarainen, J.

    2012-08-01

    A problem of a characteristic vertical profile of smoke released from wild-land fires is considered. A methodology for bottom-up evaluation of this profile is suggested and a corresponding global dataset is calculated. The profile estimation is based on: (i) a semi-empirical formula for plume-top height recently suggested by the authors, (ii) MODIS satellite observations of active wild-land fires, and (iii) meteorological conditions evaluated at each fireplace using output of ECMWF weather prediction model. Plumes from all fires recorded globally during two arbitrarily picked years 2001 and 2008 are evaluated and their smoke injection profiles are estimated with a time step of 3 h. The resulting 4-dimensional dataset is split to day- and night-time subsets. Each of the subsets is projected to global grid with resolution 1° × 1° × 500 m, averaged to monthly level, and normalised with total emission. Evaluation of the obtained dataset was performed at several levels. Firstly, the quality of the semi-empirical formula for plume-top computations was evaluated using recent additions to the MISR fire plume-height dataset. Secondly, the obtained maps of injection profiles are compared with another global distribution available from literature. Thirdly, the upper percentiles of the profiles are compared with an independent dataset of space-based lidar CALIOP. Finally, the stability of the calculated profiles with regard to inter-annual variations of the fire activity and meteorological conditions is roughly estimated by comparing the sub-sets for 2001 and 2008.

  9. 52 Million Points and Counting: A New Stratification Approach for Mapping Global Marine Ecosystems

    Science.gov (United States)

    Wright, D. J.; Sayre, R.; Breyer, S.; Butler, K. A.; VanGraafeiland, K.; Goodin, K.; Kavanaugh, M.; Costello, M. J.; Cressie, N.; Basher, Z.; Harris, P. T.; Guinotte, J. M.

    2016-12-01

    We report progress on the Ecological Marine Units (EMU) project, a new undertaking commissioned by the Group on Earth Observations (GEO) as a means of developing a standardized and practical global ecosystems classification and map for the oceans, and thus a key outcome of the GEO Biodiversity Observation Network (GEO BON). The project is one of four components of the new GI-14 GEO Ecosystems Initiative within the GEO 2016 Transitional Work plan, and for eventual use by the Global Earth Observation System of Systems (GEOSS). The project is also the follow-on to a comprehensive Ecological Land Units project (ELU), also commissioned by GEO. The EMU is comprised of a global point mesh framework, created from 52,487,233 points from the NOAA World Ocean Atlas; spatial resolution is ¼° by ¼° by varying depth; temporal resolution is currently decadal; each point has x, y, z, as well as six attributes of chemical and physical oceanographic structure (temperature, salinity, dissolved oxygen, nitrate, silicate, phosphate) that are likely drivers of many ecosystem responses. We implemented a k-means statistical clustering of the point mesh (using the pseudo-F statistic to help determine the numbers of clusters), allowing us to identify and map 37 environmentally distinct 3D regions (candidate `ecosystems') within the water column. These units can be attributed according to their productivity, direction and velocity of currents, species abundance, global seafloor geomorphology (from Harris et al.), and much more. A series of data products for open access will share the 3D point mesh and EMU clusters at the surface, bottom, and within the water column, as well as 2D and 3D web apps for exploration of the EMUs and the original World Ocean Atlas data. Future plans include a global delineation of Ecological Coastal Units (ECU) at a much finer spatial resolution (not yet commenced), as well as global ecological freshwater ecosystems (EFUs; in earliest planning stages). We will

  10. Using Small UAS for Mission Simulation, Science Validation, and Definition

    Science.gov (United States)

    Abakians, H.; Donnellan, A.; Chapman, B. D.; Williford, K. H.; Francis, R.; Ehlmann, B. L.; Smith, A. T.

    2017-12-01

    Small Unmanned Aerial Systems (sUAS) are increasingly being used across JPL and NASA for science data collection, mission simulation, and mission validation. They can also be used as proof of concept for development of autonomous capabilities for Earth and planetary exploration. sUAS are useful for reconstruction of topography and imagery for a variety of applications ranging from fault zone morphology, Mars analog studies, geologic mapping, photometry, and estimation of vegetation structure. Imagery, particularly multispectral imagery can be used for identifying materials such as fault lithology or vegetation type. Reflectance maps can be produced for wetland or other studies. Topography and imagery observations are useful in radar studies such as from UAVSAR or the future NISAR mission to validate 3D motions and to provide imagery in areas of disruption where the radar measurements decorrelate. Small UAS are inexpensive to operate, reconfigurable, and agile, making them a powerful platform for validating mission science measurements, and also for providing surrogate data for existing or future missions.

  11. Interactive overlays: a new method for generating global journal maps from Web-of-Science data

    NARCIS (Netherlands)

    Leydesdorff, L.; Rafols, I.

    2012-01-01

    Recent advances in methods and techniques enable us to develop interactive overlays to a global map of science based on aggregated citation relations among the 9162 journals contained in the Science Citation Index and Social Science Citation Index 2009. We first discuss the pros and cons of the

  12. Forest biomass mapping from fusion of GEDI Lidar data and TanDEM-X InSAR data

    Science.gov (United States)

    Qi, W.; Hancock, S.; Armston, J.; Marselis, S.; Dubayah, R.

    2017-12-01

    Mapping forest above-ground biomass (hereafter biomass) can significantly improve our ability to assess the role of forest in terrestrial carbon budget and to analyze the ecosystem productivity. Global Ecosystem Dynamic Investigation (GEDI) mission will provide the most complete lidar observations of forest vertical structure and has the potential to provide global-scale forest biomass data at 1-km resolution. However, GEDI is intrinsically a sampling mission and will have a between-track spacing of 600 m. An increase in adjacent-swath distance and the presence of cloud cover may also lead to larger gaps between GEDI tracks. In order to provide wall-to-wall forest biomass maps, fusion algorithms of GEDI lidar data and TanDEM-X InSAR data were explored in this study. Relationship between biomass and lidar RH metrics was firstly developed and used to derive biomass values over GEDI tracks which were simulated using airborne lidar data. These GEDI biomass values were then averaged in each 1-km cell to represent the biomass density within that cell. Whereas for cells without any GEDI observations, regression models developed between GEDI-derived biomass and TDX InSAR variables were applied to predict biomass over those places. Based on these procedures, contiguous biomass maps were finally generated at 1-km resolution over three representative forest types. Uncertainties for these biomass maps were also estimated at 1 km following methods developed in Saarela et al. (2016). Our results indicated great potential of GEDI/TDX fusion for large-scale biomass mapping. Saarela, S., Holm, S., Grafstrom, A., Schnell, S., Naesset, E., Gregoire, T.G., Nelson, R.F., & Stahl, G. (2016). Hierarchical model-based inference for forest inventory utilizing three sources of information. Annals of Forest Science, 73, 895-910

  13. Derivation of a northern-hemispheric biomass map for use in global carbon cycle models

    Science.gov (United States)

    Thurner, Martin; Beer, Christian; Santoro, Maurizio; Carvalhais, Nuno; Wutzler, Thomas; Schepaschenko, Dmitry; Shvidenko, Anatoly; Kompter, Elisabeth; Levick, Shaun; Schmullius, Christiane

    2013-04-01

    Quantifying the state and the change of the World's forests is crucial because of their ecological, social and economic value. Concerning their ecological importance, forests provide important feedbacks on the global carbon, energy and water cycles. In addition to their influence on albedo and evapotranspiration, they have the potential to sequester atmospheric carbon dioxide and thus to mitigate global warming. The current state and inter-annual variability of forest carbon stocks remain relatively unexplored, but remote sensing can serve to overcome this shortcoming. While for the tropics wall-to-wall estimates of above-ground biomass have been recently published, up to now there was a lack of similar products covering boreal and temperate forests. Recently, estimates of forest growing stock volume (GSV) were derived from ENVISAT ASAR C-band data for latitudes above 30° N. Utilizing a wood density and a biomass compartment database, a forest carbon density map covering North-America, Europe and Asia with 0.01° resolution could be derived out of this dataset. Allometric functions between stem, branches, root and foliage biomass were fitted and applied for different leaf types (broadleaf, needleleaf deciduous, needleleaf evergreen forest). Additionally, this method enabled uncertainty estimation of the resulting carbon density map. Intercomparisons with inventory-based biomass products in Russia, Europe and the USA proved the high accuracy of this approach at a regional scale (r2 = 0.70 - 0.90). Based on the final biomass map, the forest carbon stocks and densities (excluding understorey vegetation) for three biomes were estimated across three continents. While 40.7 ± 15.7 Gt of carbon were found to be stored in boreal forests, temperate broadleaf/mixed forests and temperate conifer forests contain 24.5 ± 9.4 Gt(C) and 14.5 ± 4.8 Gt(C), respectively. In terms of carbon density, most of the carbon per area is stored in temperate conifer (62.1 ± 20.7 Mg

  14. Mapping Global Ocean Surface Albedo from Satellite Observations: Models, Algorithms, and Datasets

    Science.gov (United States)

    Li, X.; Fan, X.; Yan, H.; Li, A.; Wang, M.; Qu, Y.

    2018-04-01

    Ocean surface albedo (OSA) is one of the important parameters in surface radiation budget (SRB). It is usually considered as a controlling factor of the heat exchange among the atmosphere and ocean. The temporal and spatial dynamics of OSA determine the energy absorption of upper level ocean water, and have influences on the oceanic currents, atmospheric circulations, and transportation of material and energy of hydrosphere. Therefore, various parameterizations and models have been developed for describing the dynamics of OSA. However, it has been demonstrated that the currently available OSA datasets cannot full fill the requirement of global climate change studies. In this study, we present a literature review on mapping global OSA from satellite observations. The models (parameterizations, the coupled ocean-atmosphere radiative transfer (COART), and the three component ocean water albedo (TCOWA)), algorithms (the estimation method based on reanalysis data, and the direct-estimation algorithm), and datasets (the cloud, albedo and radiation (CLARA) surface albedo product, dataset derived by the TCOWA model, and the global land surface satellite (GLASS) phase-2 surface broadband albedo product) of OSA have been discussed, separately.

  15. On local and global aspects of the 1:4 resonance in the conservative cubic Hénon maps

    Science.gov (United States)

    Gonchenko, M.; Gonchenko, S. V.; Ovsyannikov, I.; Vieiro, A.

    2018-04-01

    We study the 1:4 resonance for the conservative cubic Hénon maps C± with positive and negative cubic terms. These maps show up different bifurcation structures both for fixed points with eigenvalues ±i and for 4-periodic orbits. While for C-, the 1:4 resonance unfolding has the so-called Arnold degeneracy [the first Birkhoff twist coefficient equals (in absolute value) to the first resonant term coefficient], the map C+ has a different type of degeneracy because the resonant term can vanish. In the last case, non-symmetric points are created and destroyed at pitchfork bifurcations and, as a result of global bifurcations, the 1:4 resonant chain of islands rotates by π/4. For both maps, several bifurcations are detected and illustrated.

  16. How well will the Surface Water and Ocean Topography (SWOT) mission observe global reservoirs?

    Science.gov (United States)

    Solander, Kurt C.; Reager, John T.; Famiglietti, James S.

    2016-03-01

    Accurate observations of global reservoir storage are critical to understand the availability of managed water resources. By enabling estimates of surface water area and height for reservoir sizes exceeding 250 m2 at a maximum repeat orbit of up to 21 days, the NASA Surface Water and Ocean Topography (SWOT) satellite mission (anticipated launch date 2020) is expected to greatly improve upon existing reservoir monitoring capabilities. It is thus essential that spatial and temporal measurement uncertainty for water bodies is known a priori to maximize the utility of SWOT observations as the data are acquired. In this study, we evaluate SWOT reservoir observations using a three-pronged approach that assesses temporal aliasing, errors due to specific reservoir spatial properties, and SWOT performance over actual reservoirs using a combination of in situ and simulated reservoir observations from the SWOTsim instrument simulator. Results indicate temporal errors to be less than 5% for the smallest reservoir sizes (100 km2). Surface area and height errors were found to be minimal (area SWOT, this study will be have important implications for future applications of SWOT reservoir measurements in global monitoring systems and models.

  17. Global map and spectroscopic analyses of Martian fluvial systems: paleoclimatic implications

    Science.gov (United States)

    Alemanno, Giulia; Orofino, Vincenzo; Mancarella, Francesca; Fonti, Sergio

    2017-04-01

    Currently environmental conditions on Mars do not allow the presence of liquid water on its surface for long periods of time. However, there are various evidences for past water flow at its surface. In fact, the ancient terrains of Mars are covered with fluvial and lacustrine features such as valley networks, longitudinal valleys and basin lakes. There are no doubts about the fact that the Martian valleys were originated by water flow. This led many researchers to think that probably, at the time of their formation, the conditions of atmospheric pressure and surface temperature were different from the present[1]. To infer the climate history of Mars from valley networks, a global approach is necessary. We produced a global map of Martian valleys. We manually mapped all the valleys (longer than 20 km) as vector-based polylines within the QGIS software, using THEMIS daytime IR (100 m/pixel), and where possible CTX images (up to 6 m/pixel), plus topographic MOLA data ( 500 m/pixel). Respect to the previous manual maps[1,2] data of higher image quality (new THEMIS mosaic) and topographic information allow us to identify new structures and more tributaries for a large number of systems. We also used the geologic map of Mars[3] in order to determine the valleys age distribution. Most valleys are too small for age determination from superposition of impact craters so we have assumed that a valley is as old as the terrain on which it has been carved[1]. Furthermore we are, currently, analyzing spectroscopic data from CRISM instrument (Compact Reconnaissance Imaging Spectrometer for Mars) onboard Mars Reconnaissance Orbiter, concerning the mapped valleys or associated basin lakes with the aim of assessing the mineralogy of these structures. Our attention is especially focused on the possible detection of any hydrated minerals (e.g. phyllosilicates, hydrated silica) or evaporites (e.g. carbonates, sulfates, chlorides). Phyllosilicates- bearing rocks are considered as an

  18. Mercury compositional units inferred by MDIS. A comparison with the geology in support to the BepiColombo mission

    Science.gov (United States)

    Zambon, Francesca; Carli, Cristian; Galluzzi, Valentina; Capaccioni, Fabrizio; Filacchione, Gianrico; Giacomini, Lorenza; Massirioni, Matteo; Palumbo, Pasquale

    2016-04-01

    Mercury has been explored by two spatial missions. Mariner 10 acquired 45% of the surface during three Hermean flybys in 1974, giving a first close view of the planet. The recent MESSENGER mission globally mapped the planet and contributed to understand many unsolved issues about Mercury (Solomon et al., 2007). Nevertheless, even after MESSENGER, Mercury surface composition remains still unclear, and the correlation between morphology and compositional heterogeneity is not yet well understood. Thanks to the Mercury Dual Imaging System (MDIS), onboard MESSENGER, a global coverage of Mercury surface with variable spatial resolution has been done. MDIS is equipped with a Narrow Angle Camera (NAC), dedicated to the high-resolution study of the surface morphology and a Wide Angle Camera (WAC) with 12 filters useful to investigate the surface composition (Hawkins et al., 2007). Several works were focused on the different terrains present on Mercury, in particular, Denevi et al. (2013) observes that ~27% of Hermean surface is covered by volcanic origin smooth plains. These plains show differences in composition associated to spectral slope variation. High-reflectance red plains (HRP), with spectral slope greater than the average and low-reflectance blue plains (LBP), with spectral slope lesser than the average has been identified. This spectral variations could be correlated with different chemical composition. The X-Ray Spectrometer (XRS) data show that HRP-type areas are associated with a low-Fe basalt-like composition, while the LBP are also Fe poor but are rich in Mg/Si and Ca/Si and with lower Al/Si and are interpreted as more ultramafic (Nittler et al., 2011; Weider et al., 2012; Denevi at al., 2013, Weider et al., 2014). In these work we produce high resolution multicolor mosaic to found a possible link between morphology and composition. The spectral properties have been used to define the principal units of Mercury's surface or to characterize other globally

  19. Future of Space Astronomy: A Global Road Map for the Next Decades

    Science.gov (United States)

    Ubertini, Pietro; Gehrels, Neil; Corbett, Ian; DeBernardis, Paolo; Machado, Marcos; Griffin, Matt; Hauser, Michael; Manchanda, Ravinder K.; Kawai, Nobuyuki; Zhang, Shuang-Nan; hide

    2012-01-01

    The use of space techniques continues to play a key role in the advance of astrophysics by providing access to the entire electromagnetic spectrum from the radio observations to the high energy gamma rays. The increasing size, complexity and cost of large space observatories places a growing emphasis on international collaboration. Furthermore, combining existing and future datasets from space and ground based observatories is an emerging mode of powerful and relatively inexpensive research to address problems that can only be tackled by the application of large multi-wavelength observations. If the present set of space and ground-based astronomy facilities today is impressive and complete, with space and ground based astronomy telescopes nicely complementing each other, the situation becomes concerning and critical in the next 10-20 years. In fact, only a few main space missions are planned, possibly restricted to JWST and, perhaps, WFIRST and SPICA, since no other main facilities are already recommended. A "Working Group on the Future of Space Astronomy" was established at the 38th COSPAR Assembly held in Bremen, Germany in July 2010. The purpose of this Working Group was to establish a roadmap for future major space missions to complement future large ground-based telescopes. This paper presents the results of this study including a number of recommendations and a road map for the next decades of Space Astronomy research.

  20. Contribution of GNSS CORS Infrastructure to the Mission of Modern Geodesy and Status of GNSS CORS in Thailand

    Directory of Open Access Journals (Sweden)

    Chalermchon Satirapod

    2011-01-01

    Full Text Available Geodesy is the science of measuring and mapping the geometry, orientation and gravity field of the Earth including the associated variations with time. Geodesy has also provided the foundation for high accuracy surveying and mapping. Modern Geodesy involves a range of space and terrestrial technologies that contribute to our knowledge of the solid earth, atmosphere and oceans. These technologies include: Global Positioning System/Global Navigation Satellite Systems (GPS/GNSS, Satellite Laser Ranging (SLR, Very Long Baseline Interferometry (VLBI, Satellite Altimetry, Gravity Mapping Missions such as GRACE, CHAMP and GOCE, satelliteborne Differential Interferometric Synthetic Aperture Radar (DInSAR, Absolute and Relative Gravimetry, and Precise Terrestrial Surveying (Levelling and Traversing. A variety of services have been established in recent years to ensure high accuracy and reliable geodetic products to support geoscientific research. The reference frame defined by Modern Geodesy is now the basis for most national and regional datums. Furthermore, the GPS/GNSS technology is a crucial geopositioning tool for both Geodesy and Surveying. There is therefore a blurring of the distinction between geodetic and surveying GPS/GNSS techniques, and increasingly the ground infrastructure of continuously operating reference stations (CORS receivers attempts to address the needs of both geodesists and other positioning professionals. Yet Geodesy is also striving to increase the level of accuracy by a factor of ten over the next decade in order to address the demands of “global change” studies. The Global Geodetic Observing System (GGOS is an important component of the International Association of Geodesy. GGOS aims to integrate all geodetic observations in order to generate a consistent high quality set of geodetic parameters for monitoring the phenomena and processes within the “System Earth”. Integration implies the inclusion of all relevant

  1. SoilGrids1km--global soil information based on automated mapping.

    Directory of Open Access Journals (Sweden)

    Tomislav Hengl

    Full Text Available BACKGROUND: Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing requirement for global soil information. Although several global soil information systems already exist, these tend to suffer from inconsistencies and limited spatial detail. METHODOLOGY/PRINCIPAL FINDINGS: We present SoilGrids1km--a global 3D soil information system at 1 km resolution--containing spatial predictions for a selection of soil properties (at six standard depths: soil organic carbon (g kg-1, soil pH, sand, silt and clay fractions (%, bulk density (kg m-3, cation-exchange capacity (cmol+/kg, coarse fragments (%, soil organic carbon stock (t ha-1, depth to bedrock (cm, World Reference Base soil groups, and USDA Soil Taxonomy suborders. Our predictions are based on global spatial prediction models which we fitted, per soil variable, using a compilation of major international soil profile databases (ca. 110,000 soil profiles, and a selection of ca. 75 global environmental covariates representing soil forming factors. Results of regression modeling indicate that the most useful covariates for modeling soils at the global scale are climatic and biomass indices (based on MODIS images, lithology, and taxonomic mapping units derived from conventional soil survey (Harmonized World Soil Database. Prediction accuracies assessed using 5-fold cross-validation were between 23-51%. CONCLUSIONS/SIGNIFICANCE: SoilGrids1km provide an initial set of examples of soil spatial data for input into global models at a resolution and consistency not previously available. Some of the main limitations of the current version of SoilGrids1km are: (1 weak relationships between soil properties/classes and explanatory variables due to scale mismatches, (2 difficulty to obtain covariates that capture soil forming factors, (3 low sampling density and spatial clustering of soil profile locations. However, as the SoilGrids system is

  2. AIM satellite-based research bridges the unique scientific aspects of the mission to informal education programs globally

    Science.gov (United States)

    Robinson, D.; Maggi, B.

    2003-04-01

    The Education and Public Outreach (EPO) component of the satellite-based research mission "Aeronomy of Ice In the Mesosphere" (AIM) will bridge the unique scientific aspects of the mission to informal education organizations. The informal education materials developed by the EPO will utilize AIM data and educate the public about the environmental implications associated with the data. This will assist with creating a scientifically literate workforce and in developing a citizenry capable of making educated decisions related to environmental policies and laws. The objective of the AIM mission is to understand the mechanisms that cause Polar Mesospheric Clouds (PMCs) to form, how their presence affects the atmosphere, and how change in the atmosphere affects them. PMCs are sometimes known as Noctilucent Clouds (NLCs) because of their visibility during the night from appropriate locations. The phenomenon of PMCs is an observable indicator of global change, a concern to all citizens. Recent sightings of these clouds over populated regions have compelled AIM educators to expand informal education opportunities to communities worldwide. Collaborations with informal organizations include: Museums/Science Centers; NASA Sun-Earth Connection Forum; Alaska Native Ways of Knowing Project; Amateur Noctilucent Cloud Observers Organization; National Parks Education Programs; After School Science Clubs; Public Broadcasting Associations; and National Public Radio. The Native Ways of Knowing Project is an excellent example of informal collaboration with the AIM EPO. This Alaska based project will assist native peoples of the state with photographing NLCs for the EPO website. It will also aid the EPO with developing materials for informal organizations that incorporate traditional native knowledge and science, related to the sky. Another AIM collaboration that will offer citizens lasting informal education opportunities is the one established with the United States National Parks

  3. A global map of rainfed cropland areas (GMRCA) at the end of last millennium using remote sensing

    Science.gov (United States)

    Biradar, C.M.; Thenkabail, P.S.; Noojipady, P.; Li, Y.; Dheeravath, V.; Turral, H.; Velpuri, M.; Gumma, M.K.; Gangalakunta, O.R.P.; Cai, X.L.; Xiao, X.; Schull, M.A.; Alankara, R.D.; Gunasinghe, S.; Mohideen, S.

    2009-01-01

    The overarching goal of this study was to produce a global map of rainfed cropland areas (GMRCA) and calculate country-by-country rainfed area statistics using remote sensing data. A suite of spatial datasets, methods and protocols for mapping GMRCA were described. These consist of: (a) data fusion and composition of multi-resolution time-series mega-file data-cube (MFDC), (b) image segmentation based on precipitation, temperature, and elevation zones, (c) spectral correlation similarity (SCS), (d) protocols for class identification and labeling through uses of SCS R2-values, bi-spectral plots, space-time spiral curves (ST-SCs), rich source of field-plot data, and zoom-in-views of Google Earth (GE), and (e) techniques for resolving mixed classes by decision tree algorithms, and spatial modeling. The outcome was a 9-class GMRCA from which country-by-country rainfed area statistics were computed for the end of the last millennium. The global rainfed cropland area estimate from the GMRCA 9-class map was 1.13 billion hectares (Bha). The total global cropland areas (rainfed plus irrigated) was 1.53 Bha which was close to national statistics compiled by FAOSTAT (1.51 Bha). The accuracies and errors of GMRCA were assessed using field-plot and Google Earth data points. The accuracy varied between 92 and 98% with kappa value of about 0.76, errors of omission of 2-8%, and the errors of commission of 19-36%. ?? 2008 Elsevier B.V.

  4. An accurate and rapid continuous wavelet dynamic time warping algorithm for unbalanced global mapping in nanopore sequencing

    KAUST Repository

    Han, Renmin; Li, Yu; Wang, Sheng; Gao, Xin

    2017-01-01

    Long-reads, point-of-care, and PCR-free are the promises brought by nanopore sequencing. Among various steps in nanopore data analysis, the global mapping between the raw electrical current signal sequence and the expected signal sequence from

  5. Validation of High Wind Retrievals from the Cyclone Global Navigation Satellite System (CYGNSS) Mission

    Science.gov (United States)

    McKague, D. S.; Ruf, C. S.; Balasubramaniam, R.; Clarizia, M. P.

    2017-12-01

    The Cyclone Global Navigation Satellite System (CYGNSS) mission, launched in December of 2016, provides all-weather observations of sea surface winds. Using GPS-based bistatic reflectometry, the CYGNSS satellites can estimate sea surface winds even through a hurricane eye wall. This, combined with the high temporal resolution of the CYGNSS constellation (median revisit time of 2.8 hours), yields unprecedented ability to estimate hurricane strength winds. While there are a number of other sources of sea surface wind estimates, such as buoys, dropsondes, passive and active microwave from aircraft and satellite, and models, the combination of all-weather, high accuracy, short revisit time, high spatial coverage, and continuous operation of the CYGNSS mission enables significant advances in the understanding, monitoring, and prediction of cyclones. Validating CYGNSS wind retrievals over the bulk of the global wind speed distribution, which peaks at around 7 meters per second, is relatively straight-forward, requiring spatial-temporal matching of observations with independent sources (such as those mentioned above). Validating CYGNSS wind retrievals for "high" winds (> 20 meters per second), though, is problematic. Such winds occur only in intense storms. While infrequent, making validation opportunities also infrequent and problematic due to their intense nature, such storms are important to study because of the high potential for damage and loss of life. This presentation will describe the efforts of the CYGNSS Calibration/Validation team to gather measurements of high sea surface winds for development and validation of the CYGNSS geophysical model function (GMF), which forms the basis of retrieving winds from CYGNSS observations. The bulk of these observations come from buoy measurements as well as aircraft ("hurricane hunter") measurements from passive microwave and dropsondes. These data are matched in space and time to CYGNSS observations for training of the

  6. HydroSHEDS: A global comprehensive hydrographic dataset

    Science.gov (United States)

    Wickel, B. A.; Lehner, B.; Sindorf, N.

    2007-12-01

    The Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales (HydroSHEDS) is an innovative product that, for the first time, provides hydrographic information in a consistent and comprehensive format for regional and global-scale applications. HydroSHEDS offers a suite of geo-referenced data sets, including stream networks, watershed boundaries, drainage directions, and ancillary data layers such as flow accumulations, distances, and river topology information. The goal of developing HydroSHEDS was to generate key data layers to support regional and global watershed analyses, hydrological modeling, and freshwater conservation planning at a quality, resolution and extent that had previously been unachievable. Available resolutions range from 3 arc-second (approx. 90 meters at the equator) to 5 minute (approx. 10 km at the equator) with seamless near-global extent. HydroSHEDS is derived from elevation data of the Shuttle Radar Topography Mission (SRTM) at 3 arc-second resolution. The original SRTM data have been hydrologically conditioned using a sequence of automated procedures. Existing methods of data improvement and newly developed algorithms have been applied, including void filling, filtering, stream burning, and upscaling techniques. Manual corrections were made where necessary. Preliminary quality assessments indicate that the accuracy of HydroSHEDS significantly exceeds that of existing global watershed and river maps. HydroSHEDS was developed by the Conservation Science Program of the World Wildlife Fund (WWF) in partnership with the U.S. Geological Survey (USGS), the International Centre for Tropical Agriculture (CIAT), The Nature Conservancy (TNC), and the Center for Environmental Systems Research (CESR) of the University of Kassel, Germany.

  7. PHOTOGRAMMETRIC MISSION PLANNER FOR RPAS

    Directory of Open Access Journals (Sweden)

    F. Gandor

    2015-08-01

    Full Text Available This paper presents a development of an open-source flight planning tool for Remotely Piloted Aircraft Systems (RPAS that is dedicated to high-precision photogrammetric mapping. This tool contains planning functions that are usually available in professional mapping systems for manned aircrafts as well as new features related to GPS signal masking in complex (e.g. mountainous terrain. The application is based on the open-source Java SDK (Software Development Kit World Wind from NASA that contains the main geospatial components facilitating the development itself. Besides standard planning functions known from other mission planners, we mainly focus on additional features dealing with safety and accuracy, such as GPS quality assessment. The need for the development came as a response for unifying mission planning across different platforms (e.g. rotary or fixed wing operating over terrain of different complexity. A special attention is given to the user interface, that is intuitive to use and cost-effective with respect to computer resources.

  8. Forest Biomass Mapping From Lidar and Radar Synergies

    Science.gov (United States)

    Sun, Guoqing; Ranson, K. Jon; Guo, Z.; Zhang, Z.; Montesano, P.; Kimes, D.

    2011-01-01

    The use of lidar and radar instruments to measure forest structure attributes such as height and biomass at global scales is being considered for a future Earth Observation satellite mission, DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice). Large footprint lidar makes a direct measurement of the heights of scatterers in the illuminated footprint and can yield accurate information about the vertical profile of the canopy within lidar footprint samples. Synthetic Aperture Radar (SAR) is known to sense the canopy volume, especially at longer wavelengths and provides image data. Methods for biomass mapping by a combination of lidar sampling and radar mapping need to be developed. In this study, several issues in this respect were investigated using aircraft borne lidar and SAR data in Howland, Maine, USA. The stepwise regression selected the height indices rh50 and rh75 of the Laser Vegetation Imaging Sensor (LVIS) data for predicting field measured biomass with a R(exp 2) of 0.71 and RMSE of 31.33 Mg/ha. The above-ground biomass map generated from this regression model was considered to represent the true biomass of the area and used as a reference map since no better biomass map exists for the area. Random samples were taken from the biomass map and the correlation between the sampled biomass and co-located SAR signature was studied. The best models were used to extend the biomass from lidar samples into all forested areas in the study area, which mimics a procedure that could be used for the future DESDYnI Mission. It was found that depending on the data types used (quad-pol or dual-pol) the SAR data can predict the lidar biomass samples with R2 of 0.63-0.71, RMSE of 32.0-28.2 Mg/ha up to biomass levels of 200-250 Mg/ha. The mean biomass of the study area calculated from the biomass maps generated by lidar- SAR synergy 63 was within 10% of the reference biomass map derived from LVIS data. The results from this study are preliminary, but do show the

  9. The Geospace Dynamics Observatory; a mission of discovery for Geospace

    Science.gov (United States)

    Spann, J. F.; Paxton, L.; Burch, J. L.; Reardon, P.; Habash Krause, L.; Gallagher, D. L.; Hopkins, R.

    2013-12-01

    capability for resolving the temporal evolution, over many days, in local time or latitude with a continuous view of Earth's global-scale evolution while simultaneously capturing the changes at scales smaller than are possible with other methods. GDO can provide the contextual measurements to support other investigations in space or from the ground or provide its own unique insights into the system. This combination of new capabilities found in GDO is a proven path to major scientific advances. A few examples of potential advances include: 1. Unparalleled advances in the connection of the upper atmosphere to the Sun. In the aurora and lower latitudes, extending the duration of uninterrupted images would advance understanding of the transfer of energy from the Sun to the upper atmosphere and the response of the space environment. 2. Advances in the influence of waves and tides on the upper atmosphere. Increasing both the signal to noise and the duration of the observations would reveal contributions that are not identifiable using other approaches. 3. The ability to probe the mechanisms that control the evolution of planetary atmospheres. The vantage point provided by this mission allows the flux of hydrogen (which is tied to the escape of water from a planet) to be mapped globally. It also allows unique observations of changes in the atmospheric structure and their causes.

  10. Embodied HANPP. Mapping the spatial disconnect between global biomass production and consumption

    International Nuclear Information System (INIS)

    Erb, Karl-Heinz; Krausmann, Fridolin; Haberl, Helmut; Lucht, Wolfgang

    2009-01-01

    Biomass trade results in a growing spatial disconnect between environmental impacts due to biomass production and the places where biomass is being consumed. The pressure on ecosystems resulting from the production of traded biomass, however, is highly variable between regions and products. We use the concept of embodied human appropriation of net primary production (HANPP) to map the spatial disconnect between net-producing and net-consuming regions. Embodied HANPP comprises total biomass withdrawals and land use induced changes in productivity resulting from the provision of biomass products. International net transfers of embodied HANPP are of global significance, amounting to 1.7 PgC/year. Sparsely populated regions are mainly net producers, densely populated regions net consumers, independent of development status. Biomass consumption and trade are expected to surge over the next decades, suggesting a need to sustainably manage supply and demand of products of ecosystems on a global level. (author)

  11. A Climatology of Global Aerosol Mixtures to Support Sentinel-5P and Earthcare Mission Applications

    Science.gov (United States)

    Taylor, M.; Kazadzis, S.; Amaridis, V.; Kahn, R. A.

    2015-11-01

    Since constraining aerosol type with satellite remote sensing continues to be a challenge, we present a newly derived global climatology of aerosol mixtures to support atmospheric composition studies that are planned for Sentinel-5P and EarthCARE.The global climatology is obtained via application of iterative cluster analysis to gridded global decadal and seasonal mean values of the aerosol optical depth (AOD) of sulfate, biomass burning, mineral dust and marine aerosol as a proportion of the total AOD at 500nm output from the Goddard Chemistry Aerosol Radiation and Transport (GOCART). For both the decadal and seasonal means, the number of aerosol mixtures (clusters) identified is ≈10. Analysis of the percentage contribution of the component aerosol types to each mixture allowed development of a straightforward naming convention and taxonomy, and assignment of primary colours for the generation of true colour-mixing and easy-to-interpret maps of the spatial distribution of clusters across the global grid. To further help characterize the mixtures, aerosol robotic network (AERONET) Level 2.0 Version 2 inversion products were extracted from each cluster‟s spatial domain and used to estimate climatological values of key optical and microphysical parameters.The aerosol type climatology represents current knowledge that would be enhanced, possibly corrected, and refined by high temporal and spectral resolution, cloud-free observations produced by Sentinel-5P and EarthCARE instruments. The global decadal mean and seasonal gridded partitions comprise a preliminary reference framework and global climatology that can help inform the choice of components and mixtures in aerosol retrieval algorithms used by instruments such as TROPOMI and ATLID, and to test retrieval results.

  12. Mapping the global football field: a sociological model of transnational forces within the world game.

    Science.gov (United States)

    Giulianotti, Richard; Robertson, Roland

    2012-06-01

    This paper provides a sociological model of the key transnational political and economic forces that are shaping the 'global football field'. The model draws upon, and significantly extends, the theory of the 'global field' developed previously by Robertson. The model features four quadrants, each of which contains a dominant operating principle, an 'elemental reference point', and an 'elemental theme'. The quadrants contain, first, neo-liberalism, associated with the individual and elite football clubs; second, neo-mercantilism, associated with nation-states and national football systems; third, international relations, associated with international governing bodies; and fourth, global civil society, associated with diverse institutions that pursue human development and/or social justice. We examine some of the interactions and tensions between the major institutional and ideological forces across the four quadrants. We conclude by examining how the weakest quadrant, featuring global civil society, may gain greater prominence within football. In broad terms, we argue that our four-fold model may be utilized to map and to examine other substantive research fields with reference to globalization. © London School of Economics and Political Science 2012.

  13. Water Cycle Missions for the Next Decade

    Science.gov (United States)

    Houser, P. R.

    2013-12-01

    The global water cycle describes the circulation of water as a vital and dynamic substance in its liquid, solid, and vapor phases as it moves through the atmosphere, oceans and land. Life in its many forms exists because of water, and modern civilization depends on learning how to live within the constraints imposed by the availability of water. The scientific challenge posed by the need to observe the global water cycle is to integrate in situ and space-borne observations to quantify the key water-cycle state variables and fluxes. The vision to address that challenge is a series of Earth observation missions that will measure the states, stocks, flows, and residence times of water on regional to global scales followed by a series of coordinated missions that will address the processes, on a global scale, that underlie variability and changes in water in all its three phases. The accompanying societal challenge is to foster the improved use of water data and information as a basis for enlightened management of water resources, to protect life and property from effects of extremes in the water cycle. A major change in thinking about water science that goes beyond its physics to include its role in ecosystems and society is also required. Better water-cycle observations, especially on the continental and global scales, will be essential. Water-cycle predictions need to be readily available globally to reduce loss of life and property caused by water-related natural hazards. Building on the 2007 Earth Science Decadal Survey, NASA's Plan for a Climate-Centric Architecture for Earth Observations and Applications from Space , and the 2012 Chapman Conference on Remote Sensing of the Terrestrial Water Cycle, a workshop was held in April 2013 to gather wisdom and determine how to prepare for the next generation of water cycle missions in support of the second Earth Science Decadal Survey. This talk will present the outcomes of the workshop including the intersection between

  14. Polycystic ovary syndrome: analysis of the global research architecture using density equalizing mapping.

    Science.gov (United States)

    Brüggmann, Dörthe; Berges, Lea; Klingelhöfer, Doris; Bauer, Jan; Bendels, Michael; Louwen, Frank; Jaque, Jenny; Groneberg, David A

    2017-06-01

    Polycystic ovary syndrome (PCOS) is the most common cause of female infertility worldwide. Although the related research output is constantly growing, no detailed global map of the scientific architecture has so far been created encompassing quantitative, qualitative, socioeconomic and gender aspects. We used the NewQIS platform to assess all PCOS-related publications indexed between 1900 and 2014 in the Web of Science, and applied density equalizing mapping projections, scientometric techniques and economic benchmarking procedures. A total of 6261 PCOS-specific publications and 703 international research collaborations were found. The USA was identified as the most active country in total and collaborative research activity. In the socioeconomic analysis, the USA was also ranked first (25.49 PCOS-related publications per gross domestic product [GDP]/capita), followed by the UK, Italy and Greece. When research activity was related to population size, Scandinavian countries and Greece were leading the field. For many highly productive countries, gender analysis revealed a high ratio of female scientists working on PCOS with the exception of Japan. In this study, we have created the first picture of global PCOS research, which largely differs from other gynaecologic conditions and indicates that most related research and collaborations originate from high-income countries. Copyright © 2017 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  15. NASA's Soil Moisture Active and Passive (SMAP) Mission

    Science.gov (United States)

    Kellogg, Kent; Njoku, Eni; Thurman, Sam; Edelstein, Wendy; Jai, Ben; Spencer, Mike; Chen, Gun-Shing; Entekhabi, Dara; O'Neill, Peggy; Piepmeier, Jeffrey; hide

    2010-01-01

    The Soil Moisture Active-Passive (SMAP) Mission is one of the first Earth observation satellites being formulated by NASA in response to the 2007 National Research Council s Decadal Survey. SMAP will make global measurements of soil moisture at the Earth's land surface and its freeze-thaw state. These measurements will allow significantly improved estimates of water, energy and carbon transfers between the land and atmosphere. Soil moisture measurements are also of great importance in assessing flooding and monitoring drought. Knowledge gained from SMAP observations can help mitigate these natural hazards, resulting in potentially great economic and social benefits. SMAP observations of soil moisture and freeze/thaw timing over the boreal latitudes will also reduce a major uncertainty in quantifying the global carbon balance and help to resolve an apparent missing carbon sink over land. The SMAP mission concept will utilize an L-band radar and radiometer sharing a rotating 6-meter mesh reflector antenna flying in a 680 km polar orbit with an 8-day exact ground track repeat aboard a 3-axis stabilized spacecraft to provide high-resolution and high-accuracy global maps of soil moisture and freeze/thaw state every two to three days. In addition, the SMAP project will use these surface observations with advanced modeling and data assimilation to provide estimates of deeper root-zone soil moisture and net ecosystem exchange of carbon. SMAP recently completed its Phase A Mission Concept Study Phase for NASA and transitioned into Phase B (Formulation and Detailed Design). A number of significant accomplishments occurred during this initial phase of mission development. The SMAP project held several open meetings to solicit community feedback on possible science algorithms, prepared preliminary draft Algorithm Theoretical Basis Documents (ATBDs) for each mission science product, and established a prototype algorithm testbed to enable testing and evaluation of the

  16. FIREX mission requirements document for renewable resources

    Science.gov (United States)

    Carsey, F.; Dixon, T.

    1982-01-01

    The initial experimental program and mission requirements for a satellite synthetic aperture radar (SAR) system FIREX (Free-Flying Imaging Radar Experiment) for renewable resources is described. The spacecraft SAR is a C-band and L-band VV polarized system operating at two angles of incidence which is designated as a research instrument for crop identification, crop canopy condition assessments, soil moisture condition estimation, forestry type and condition assessments, snow water equivalent and snow wetness assessments, wetland and coastal land type identification and mapping, flood extent mapping, and assessment of drainage characteristics of watersheds for water resources applications. Specific mission design issues such as the preferred incidence angles for vegetation canopy measurements and the utility of a dual frequency (L and C-band) or dual polarization system as compared to the baseline system are addressed.

  17. Results from Navigator GPS Flight Testing for the Magnetospheric MultiScale Mission

    Science.gov (United States)

    Lulich, Tyler D.; Bamford, William A.; Wintermitz, Luke M. B.; Price, Samuel R.

    2012-01-01

    The recent delivery of the first Goddard Space Flight Center (GSFC) Navigator Global Positioning System (GPS) receivers to the Magnetospheric MultiScale (MMS) mission spacecraft is a high water mark crowning a decade of research and development in high-altitude space-based GPS. Preceding MMS delivery, the engineering team had developed receivers to support multiple missions and mission studies, such as Low Earth Orbit (LEO) navigation for the Global Precipitation Mission (GPM), above the constellation navigation for the Geostationary Operational Environmental Satellite (GOES) proof-of-concept studies, cis-Lunar navigation with rapid re-acquisition during re-entry for the Orion Project and an orbital demonstration on the Space Shuttle during the Hubble Servicing Mission (HSM-4).

  18. Moon Trek: An Interactive Web Portal for Current and Future Lunar Missions

    Science.gov (United States)

    Day, B.; Law, E.

    2017-09-01

    NASA's Moon Trek (https://moontrek.jpl.nasa.gov) is the successor to and replacement for NASA's Lunar Mapping and Modeling Portal (LMMP). Released in 2017, Moon Trek features a new interface with improved ways to access, visualize, and analyse data. Moon Trek provides a web-based Portal and a suite of interactive visualization and analysis tools to enable mission planners, lunar scientists, and engineers to access mapped lunar data products from past and current lunar missions.

  19. Mapping the global depth to bedrock for land surface modelling

    Science.gov (United States)

    Shangguan, W.; Hengl, T.; Yuan, H.; Dai, Y. J.; Zhang, S.

    2017-12-01

    Depth to bedrock serves as the lower boundary of land surface models, which controls hydrologic and biogeochemical processes. This paper presents a framework for global estimation of Depth to bedrock (DTB). Observations were extracted from a global compilation of soil profile data (ca. 130,000 locations) and borehole data (ca. 1.6 million locations). Additional pseudo-observations generated by expert knowledge were added to fill in large sampling gaps. The model training points were then overlaid on a stack of 155 covariates including DEM-based hydrological and morphological derivatives, lithologic units, MODIS surfacee reflectance bands and vegetation indices derived from the MODIS land products. Global spatial prediction models were developed using random forests and Gradient Boosting Tree algorithms. The final predictions were generated at the spatial resolution of 250m as an ensemble prediction of the two independently fitted models. The 10-fold cross-validation shows that the models explain 59% for absolute DTB and 34% for censored DTB (depths deep than 200 cm are predicted as 200 cm). The model for occurrence of R horizon (bedrock) within 200 cm does a good job. Visual comparisons of predictions in the study areas where more detailed maps of depth to bedrock exist show that there is a general match with spatial patterns from similar local studies. Limitation of the data set and extrapolation in data spare areas should not be ignored in applications. To improve accuracy of spatial prediction, more borehole drilling logs will need to be added to supplement the existing training points in under-represented areas.

  20. Global mapping of stratigraphy of an old-master painting using sparsity-based terahertz reflectometry.

    Science.gov (United States)

    Dong, Junliang; Locquet, Alexandre; Melis, Marcello; Citrin, D S

    2017-11-08

    The process by which art paintings are produced typically involves the successive applications of preparatory and paint layers to a canvas or other support; however, there is an absence of nondestructive modalities to provide a global mapping of the stratigraphy, information that is crucial for evaluation of its authenticity and attribution, for insights into historical or artist-specific techniques, as well as for conservation. We demonstrate sparsity-based terahertz reflectometry can be applied to extract a detailed 3D mapping of the layer structure of the 17th century easel painting Madonna in Preghiera by the workshop of Giovanni Battista Salvi da Sassoferrato, in which the structure of the canvas support, the ground, imprimatura, underpainting, pictorial, and varnish layers are identified quantitatively. In addition, a hitherto unidentified restoration of the varnish has been found. Our approach unlocks the full promise of terahertz reflectometry to provide a global and detailed account of an easel painting's stratigraphy by exploiting the sparse deconvolution, without which terahertz reflectometry in the past has only provided a meager tool for the characterization of paintings with paint-layer thicknesses smaller than 50 μm. The proposed modality can also be employed across a broad range of applications in nondestructive testing and biomedical imaging.

  1. The multifractal structure of satellite sea surface temperature maps can be used to obtain global maps of streamlines

    Directory of Open Access Journals (Sweden)

    A. Turiel

    2009-10-01

    Full Text Available Nowadays Earth observation satellites provide information about many relevant variables of the ocean-climate system, such as temperature, moisture, aerosols, etc. However, to retrieve the velocity field, which is the most relevant dynamical variable, is still a technological challenge, specially in the case of oceans. New processing techniques, emerged from the theory of turbulent flows, have come to assist us in this task. In this paper, we show that multifractal techniques applied to new Sea Surface Temperature satellite products opens the way to build maps of ocean currents with unprecedented accuracy. With the application of singularity analysis, we show that global ocean circulation patterns can be retrieved in a daily basis. We compare these results with high-quality altimetry-derived geostrophic velocities, finding a quite good correspondence of the observed patterns both qualitatively and quantitatively; and this is done for the first time on a global basis, even for less active areas. The implications of this findings from the perspective both of theory and of operational applications are discussed.

  2. Topex/Poseidon: A United States/France mission. Oceanography from space: The oceans and climate

    Science.gov (United States)

    1992-01-01

    The TOPEX/POSEIDON space mission, sponsored by NASA and France's space agency, the Centre National d'Etudes Spatiales (CNES), will give new observations of the Earth from space to gain a quantitative understanding of the role of ocean currents in climate change. Rising atmospheric concentrations of carbon dioxide and other 'greenhouse gases' produced as a result of human activities could generate a global warming, followed by an associated rise in sea level. The satellite will use radar altimetry to measure sea-surface height and will be tracked by three independent systems to yield accurate topographic maps over the dimensions of entire ocean basins. The satellite data, together with the Tropical Ocean and Global Atmosphere (TOGA) program and the World Ocean Circulation Experiment (WOCE) measurements, will be analyzed by an international scientific team. By merging the satellite observations with TOGA and WOCE findings, the scientists will establish the extensive data base needed for the quantitative description and computer modeling of ocean circulation. The ocean models will eventually be coupled with atmospheric models to lay the foundation for predictions of global climate change.

  3. Mapping Palaeohydrography in Deserts: Contribution from Space-Borne Imaging Radar

    Directory of Open Access Journals (Sweden)

    Philippe Paillou

    2017-03-01

    Full Text Available Space-borne Synthetic Aperture Radar (SAR has the capability to image subsurface features down to several meters in arid regions. A first demonstration of this capability was performed in the Egyptian desert during the early eighties, thanks to the first Shuttle Imaging Radar mission. Global coverage provided by recent SARs, such as the Japanese ALOS/PALSAR sensor, allowed the mapping of vast ancient hydrographic systems in Northern Africa. We present a summary of palaeohydrography results obtained using PALSAR data over large deserts such as the Sahara and the Gobi. An ancient river system was discovered in eastern Lybia, connecting in the past the Kufrah oasis to the Mediterranean Sea, and the terminal part of the Tamanrasett river was mapped in western Mauritania, ending with a large submarine canyon. In southern Mongolia, PALSAR images combined with topography analysis allowed the mapping of the ancient Ulaan Nuur lake. We finally show the potentials of future low frequency SAR sensors by comparing L-band (1.25 GHz and P-band (435 MHz airborne SAR acquisitions over a desert site in southern Tunisia.

  4. Theoretical model simulations for the global Thermospheric Mapping Study (TMS) periods

    Science.gov (United States)

    Rees, D.; Fuller-Rowell, T. J.

    Theoretical and semiempirical models of the solar UV/EUV and of the geomagnetic driving forces affecting the terrestrial mesosphere and thermosphere have been used to generate a series of representative numerical time-dependent and global models of the thermosphere, for the range of solar and geoamgnetic activity levels which occurred during the three Thermospheric Mapping Study periods. The simulations obtained from these numerical models are compared with observations, and with the results of semiempirical models of the thermosphere. The theoretical models provide a record of the magnitude of the major driving forces which affected the thermosphere during the study periods, and a baseline against which the actual observed structure and dynamics can be compared.

  5. Determination of atmospheric parameters to estimate global radiation in areas of complex topography: Generation of global irradiation map

    Energy Technology Data Exchange (ETDEWEB)

    Batlles, F.J.; Bosch, J.L. [Dpto. Fisica Aplicada, Universidad de Almeria, 04120 Almeria (Spain); Tovar-Pescador, J. [Dpto. Fisica, Universidad de Jaen, 23071 Jaen (Spain); Martinez-Durban, M. [Dpto. Ingenieria Lenguajes y Computacion, Universidad de Almeria, 04120 Almeria (Spain); Ortega, R. [Dpto. Edafologia y Quimica Agricola, Universidad de Almeria, 04120 Almeria (Spain); Miralles, I. [Dpto. Edafologia y Quimica Agricola, Universidad de Granada, 28071 Granada (Spain)

    2008-02-15

    Incoming shortwave solar radiation is an important parameter in environmental applications. A detailed spatial and temporal analysis of global solar radiation on the earth surface is needed in many applications, ranging from solar energy uses to the study of agricultural, forest and biological processes. At local scales, the topography is the most important factor in the distribution of solar radiation on the surface. The variability of the elevation, the surface orientation and the obstructions due to elevations are a source of great local differences in insolation and, consequently, in other variables as ground temperature. For this reason, several models based on GIS techniques have been recently developed, integrating topography to obtain the solar radiation on the surface. In this work, global radiation is analyzed with the Solar Analyst, a model implemented on ArcView, that computes the topographic parameters: altitude, latitude, slope and orientation (azimuth) and shadow effects. Solar Analyst uses as input parameters the diffuse fraction and the transmittance. These parameters are not usually available in radiometric networks in mountainous areas. In this work, a method to obtain both parameters from global radiation is proposed. Global radiation data obtained in two networks of radiometric stations is used: one located in Sierra Magina Natural Park (Spain) with 11 stations and another one located on the surroundings of Sierra Nevada Natural Park (Spain) with 14 stations. Daily solar irradiation is calculated from a digital terrain model (DTM), the daily diffuse fraction, K, and daily atmospheric transmittivity, {tau}. Results provided by the model have been compared with measured values. An overestimation for high elevations is observed, whereas low altitudes present underestimation. The best performance was also reported during summer months, and the worst results were obtained during winter. Finally, a yearly global solar irradiation map has been

  6. Aquarius and the Aquarius/SAC-D Mission

    Science.gov (United States)

    LeVine, D. M.; Lagerloef, G. S. E.; Torrusio, S.

    2010-01-01

    Aquarius is a combination L-band radiometer and scatterometer designed to map the salinity field at the ocean surface from space. It will be flown on the Aquarius/SAC-D mission, a partnership between the USA space agency (NASA) and Argentine space agency (CONAE). The mission is composed of two parts: (a) The Aquarius instrument being developed as part of NASA.s Earth System Science Pathfinder (ESSP) program; and (b) SAC-D the fourth spacecraft service platform in the CONAE Satellite de Aplicaciones Cientificas (SAC) program. The primary focus of the mission is to monitor the seasonal and interannual variations of the salinity field in the open ocean. The mission also meets the needs of the Argentine space program for monitoring the environment and for hazard detection and includes several instruments related to these goals.

  7. GHRSST L2P Gridded Global Subskin Sea Surface Temperature from the Tropical Rainfall Mapping Mission (TRMM) Microwave Imager (TMI) (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) is a well calibrated passive microwave radiometer, similar to SSM/I, that contains lower...

  8. The Bering small vehicle asteroid mission concept

    DEFF Research Database (Denmark)

    Michelsen, Rene; Andersen, Anja; Haack, Henning

    2004-01-01

    targets. The dilemma obviously being the resolution versus distance and the statistics versus DeltaV requirements. Using advanced instrumentation and onboard autonomy, we have developed a space mission concept whose goal is to map the flux, size, and taxonomy distributions of asteroids. The main focus....... Although the telescope based research offers precise orbital information, it is limited to the brighter, larger objects, and taxonomy as well as morphology resolution is limited. Conversely, dedicated missions offer detailed surface mapping in radar, visual, and prompt gamma, but only for a few selected......The study of asteroids is traditionally performed by means of large Earth based telescopes, by means of which orbital elements and spectral properties are acquired. Space borne research, has so far been limited to a few occasional flybys and a couple of dedicated flights to a single selected target...

  9. Mapping of land cover in Northern California with simulated HyspIRI images

    Science.gov (United States)

    Clark, M. L.; Kilham, N. E.

    2014-12-01

    Land-cover maps are important science products needed for natural resource and ecosystem service management, biodiversity conservation planning, and assessing human-induced and natural drivers of land change. Most land-cover maps at regional to global scales are produced with remote sensing techniques applied to multispectral satellite imagery with 30-500 m pixel sizes (e.g., Landsat, MODIS). Hyperspectral, or imaging spectrometer, imagery measuring the visible to shortwave infrared regions (i.e., full range) of the spectrum have shown improved capacity to map plant species and coarser land-cover associations, yet techniques have not been widely tested at regional and greater spatial scales. The Hyperspectral Infrared Imager (HyspIRI) mission is a full-range hyperspectral and thermal satellite being considered for development by NASA (hyspiri.jpl.nasa.gov). A hyperspectral satellite, such as HyspIRI, will provide detailed spectral and temporal information at global scales that could greatly improve our ability to map land cover with greater class detail and spatial and temporal accuracy than possible with conventional multispectral satellites. The broad goal of our research is to assess multi-temporal, HyspIRI-like satellite imagery for improved land cover mapping across a range of environmental and anthropogenic gradients in California. In this study, we mapped FAO Land Cover Classification System (LCCS) classes over 30,000 km2 in Northern California using multi-temporal HyspIRI imagery simulated from the AVIRIS airborne sensor. The Random Forests classification was applied to predictor variables derived from the multi-temporal hyperspectral data and accuracies were compared to that from Landsat 8 OLI. Results indicate increased mapping accuracy using HyspIRI multi-temporal imagery, particularly in discriminating different forest life-form types, such as mixed conifer and broadleaf forests and open- and closed-canopy forests.

  10. Miocene Soil Database: Global paleosol and climate maps of the Middle Miocene Thermal Maximum

    Science.gov (United States)

    Metzger, C. A.

    2013-12-01

    Paleosols, which record past climatic, biologic, and atmospheric conditions, can be used as a proxy to understand ancient terrestrial landscapes, paleoclimate, and paleoenvironment. In addition, the middle Miocene thermal maximum (~16 Ma) provides an ancient analog for understanding the effects of current and future climate change on soil and ecosystem regimes, as it contains records of shifts similar in magnitude to expected global climate change. The Miocene Soil Database (MSDB) combines new paleosol data from Australia and Argentina with existing and previously uncollated paleosol data from the literature and the Paleobiology Database. These data (n = 507) were then used to derive a paleogeographic map of climatically significant soil types zones during the Middle Miocene. The location of each diagnostic paleosol type (Aridisol, Alfisol, Mollisol, Histosol, Oxisol, and Ultisol) was plotted and compared with the extent of these soil types in the modern environment. The middle Miocene soil map highlights the extension of tropical soils (Oxisols, Ultisols), accompanied by thermophilic flora and fauna, into northern and southern mid-latitudes. Peats, lignites, and Histosols of wetlands were also more abundant at higher latitudes, especially in the northern hemisphere, during the middle Miocene. The paleosol changes reflect that the Middle Miocene was a peak of global soil productivity and carbon sequestration, with replacement of unproductive Aridisols and Gelisols with more productive Oxisols, Alfisols, Mollisols and Histosols. With expansion to include additional data such as soil texture, moisture, or vegetation type, the MSDB has the potential to provide an important dataset for computer models of Miocene climate shifts as well as future land use considerations of soils in times of global change.

  11. A novel multispectral glacier mapping method and its performance in Greenland

    Science.gov (United States)

    Citterio, M.; Fausto, R. S.; Ahlstrom, A. P.; Andersen, S. B.

    2014-12-01

    Multispectral land surface classification methods are widely used for mapping glacier outlines. Significant post-classification manual editing is typically required, and mapping glacier outlines over larger regions remains a rather labour intensive task. In this contribution we introduce a novel method for mapping glacier outlines from multispectral satellite imagery, requiring only minor manual editing.Over the last decade GLIMS (Global Land Ice Measurements from Space) improved the availability of glacier outlines, and in 2012 the Randolph Glacier Inventory (RGI) attained global coverage by compiling existing and new data sources in the wake of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5). With the launch of Landsat 8 in 2013 and the upcoming ESA (European Space Agency) Sentinel 2 missions, the availability of multispectral imagery may grow faster than our ability to process it into timely and reliable glacier outline products. Improved automatic classification methods would enable a full exploitation of these new data sources.We outline the theoretical basis of the proposed classification algorithm, provide a step by step walk-through from raw imagery to finished ice cover grids and vector glacier outlines, and evaluate the performance of the new method in mapping the outlines of glaciers, ice caps and the Greenland Ice Sheet from Landsat 8 OLI imagery. The classification output is compared against manually digitized ice margin positions, the RGI vectors, and the PROMICE (Programme for Monitoring of the Greenland Ice Sheet) aerophotogrammetric map of Greenland ice masses over a sector of the Disko Island surge cluster in West Greenland, the Qassimiut ice sheet lobe in South Greenland, and the A.P. Olsen ice cap in NE Greenland.

  12. Temporal resolution requirements of satellite constellations for 30 m global burned area mapping

    Science.gov (United States)

    Melchiorre, A.; Boschetti, L.

    2017-12-01

    Global burned area maps have been generated systematically with daily, coarse resolution satellite data (Giglio et al. 2013). The production of moderate resolution (10 - 30 m) global burned area products would meet the needs of several user communities: improved carbon emission estimations due to heterogeneous landscapes and for local scale air quality and fire management applications (Mouillot et al. 2014; van der Werf et al. 2010). While the increased spatial resolution reduces the influence of mixed burnt/unburnt pixels and it would increase the spectral separation of burned areas, moderate resolution satellites have reduced temporal resolution (10 - 16 days). Fire causes a land-cover change spectrally visible for a period ranging from a few weeks in savannas to over a year in forested ecosystems (Roy et al. 2010); because clouds, smoke, and other optically thick aerosols limit the number of available observations (Roy et al. 2008; Smith and Wooster 2005), burned areas might disappear before they are observed by moderate resolution sensors. Data fusion from a constellation of different sensors has been proposed to overcome these limits (Boschetti et al. 2015; Roy 2015). In this study, we estimated the probability of moderate resolution satellites and virtual constellations (including Landsat-8/9, Sentinel-2A/B) to provide sufficient observations for burned area mapping globally, and by ecosystem. First, we estimated the duration of the persistence of the signal associated with burned areas by combining the MODIS Global Burned Area and the Nadir BRDF-Adjusted Reflectance Product by characterizing the post-fire trends in reflectance to determine the length of the period in which the burn class is spectrally distinct from the unburned and, therefore, detectable. The MODIS-Terra daily cloud data were then used to estimate the probability of cloud cover. The cloud probability was used at each location to estimate the minimum revisit time needed to obtain at least one

  13. Ka-band SAR interferometry studies for the SWOT mission

    Science.gov (United States)

    Fernandez, D. E.; Fu, L.; Rodriguez, E.; Hodges, R.; Brown, S.

    2008-12-01

    The primary objective of the NRC Decadal Survey recommended SWOT (Surface Water and Ocean Topography) Mission is to measure the water elevation of the global oceans, as well as terrestrial water bodies (such as rivers, lakes, reservoirs, and wetlands), to answer key scientific questions on the kinetic energy of ocean circulation, the spatial and temporal variability of the world's surface freshwater storage and discharge, and to provide societal benefits on predicting climate change, coastal zone management, flood prediction, and water resources management. The SWOT mission plans to carry the following suite of microwave instruments: a Ka-band interferometer, a dual-frequency nadir altimeter, and a multi-frequency water-vapor radiometer dedicated to measuring wet tropospheric path delay to correct the radar measurements. We are currently funded by the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP) to reduce the risk of the main technological drivers of SWOT, by addressing the following technologies: the Ka-band radar interferometric antenna design, the on-board interferometric SAR processor, and the internally calibrated high-frequency radiometer. The goal is to significantly enhance the readiness level of the new technologies required for SWOT, while laying the foundations for the next-generation missions to map water elevation for studying Earth. The first two technologies address the challenges of the Ka-band SAR interferometry, while the high- frequency radiometer addresses the requirement for small-scale wet tropospheric corrections for coastal zone applications. In this paper, we present the scientific rational, need and objectives behind these technology items currently under development.

  14. Réduction globale des émissions de mercure dans les exploitations ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    28 avr. 2016 ... La Convention de Minamata sur le mercure constitue le fer de lance des efforts déployés à l'échelle mondiale pour réduire les émissions. Elle fournit des mécanismes de contrôle et de réduction des émissions visant tous les processus de production et de transformation ainsi que toutes les industries ...

  15. Landslide susceptibility mapping on a global scale using the method of logistic regression

    Directory of Open Access Journals (Sweden)

    L. Lin

    2017-08-01

    Full Text Available This paper proposes a statistical model for mapping global landslide susceptibility based on logistic regression. After investigating explanatory factors for landslides in the existing literature, five factors were selected for model landslide susceptibility: relative relief, extreme precipitation, lithology, ground motion and soil moisture. When building the model, 70 % of landslide and nonlandslide points were randomly selected for logistic regression, and the others were used for model validation. To evaluate the accuracy of predictive models, this paper adopts several criteria including a receiver operating characteristic (ROC curve method. Logistic regression experiments found all five factors to be significant in explaining landslide occurrence on a global scale. During the modeling process, percentage correct in confusion matrix of landslide classification was approximately 80 % and the area under the curve (AUC was nearly 0.87. During the validation process, the above statistics were about 81 % and 0.88, respectively. Such a result indicates that the model has strong robustness and stable performance. This model found that at a global scale, soil moisture can be dominant in the occurrence of landslides and topographic factor may be secondary.

  16. Global-scale Observations of the Limb and Disk (GOLD) Mission: Science from Geostationary Orbit on-board a Commercial Communications Satellite

    Science.gov (United States)

    Eastes, R.; Deaver, T.; Krywonos, A.; Lankton, M. R.; McClintock, W. E.; Pang, R.

    2011-12-01

    Geostationary orbits are ideal for many science investigations of the Earth system on global scales. These orbits allow continuous observations of the same geographic region, enabling spatial and temporal changes to be distinguished and eliminating the ambiguity inherent to observations from low Earth orbit (LEO). Just as observations from geostationary orbit have revolutionized our understanding of changes in the troposphere, they will dramatically improve our understanding of the space environment at higher altitudes. However, geostationary orbits are infrequently used for science missions because of high costs. Geostationary satellites are large, typically weighing tons. Consequently, devoting an entire satellite to a science mission requires a large financial commitment, both for the spacecraft itself and for sufficient science instrumentation to justify a dedicated spacecraft. Furthermore, the small number of geostationary satellites produced for scientific missions increases the costs of each satellite. For these reasons, it is attractive to consider flying scientific instruments on satellites operated by commercial companies, some of whom have fleets of ~40 satellites. However, scientists' lack of understanding of the capabilities of commercial spacecraft as well as commercial companies' concerns about risks to their primary mission have impeded the cooperation necessary for the shared use of a spacecraft. Working with a commercial partner, the GOLD mission has successfully overcome these issues. Our experience indicates that there are numerous benefits to flying on commercial communications satellites (e.g., it is possible to downlink large amounts of data) and the costs are low if the experimental requirements adequately match the capabilities and available resources of the host spacecraft. Consequently, affordable access to geostationary orbit aboard a communications satellite now appears possible for science payloads.

  17. The 1997 remote sensing mission to Kazakhstan

    International Nuclear Information System (INIS)

    Steinmaus, K.; Robert, B.; Berezin, S.A.

    1997-01-01

    In June and July of 1997, the US Department of Energy, in cooperation with the Republic of Kazakhstan Ministry of Science - Academy of Science conducted a remote sensing mission to Kazakhstan. The mission was conducted as a technology demonstration under a Memorandum of Understanding between the United States Department of Energy and the Republic of Kazakhstan's Ministry of science - Academy of Science. The mission was performed using a US Navy P-3 Orion aircraft and imaging capabilities developed by the Department of Energy's Office of Non-proliferation and National Security. The imaging capabilities consisted of two imaging pods - a synthetic aperture radar (SAR) pod and a multi sensor imaging pod (MSI). Seven experiments were conducted to demonstrate how remote sensing can be used to support city planning, land cover mapping, mineral exploration, and non-proliferation monitoring. Results of the mission will be presented

  18. Global Near Real-Time MODIS and Landsat Flood Mapping and Product Delivery

    Science.gov (United States)

    Policelli, F. S.; Slayback, D. A.; Tokay, M. M.; Brakenridge, G. R.

    2014-12-01

    Flooding is the most destructive, frequent, and costly natural disaster faced by modern society, and is increasing in frequency and damage (deaths, displacements, and financial costs) as populations increase and climate change generates more extreme weather events. When major flooding events occur, the disaster management community needs frequently updated and easily accessible information to better understand the extent of flooding and coordinate response efforts. With funding from NASA's Applied Sciences program, we developed and are now operating a near real-time global flood mapping system to help provide flood extent information within 24-48 hours of events. The principal element of the system applies a water detection algorithm to MODIS imagery, which is processed by the LANCE (Land Atmosphere Near real-time Capability for EOS) system at NASA Goddard within a few hours of satellite overpass. Using imagery from both the Terra (10:30 AM local time overpass) and Aqua (1:30 PM) platforms allows the system to deliver an initial daily assessment of flood extent by late afternoon, and more robust assessments after accumulating cloud-free imagery over several days. Cloud cover is the primary limitation in detecting surface water from MODIS imagery. Other issues include the relatively coarse scale of the MODIS imagery (250 meters) for some events, the difficulty of detecting flood waters in areas with continuous canopy cover, confusion of shadow (cloud or terrain) with water, and accurately identifying detected water as flood as opposed to normal water extent. We are working on improvements to address these limitations. We have also begun delivery of near real time water maps at 30 m resolution from Landsat imagery. Although Landsat is not available daily globally, but only every 8 days if imagery from both operating platforms (Landsat 7 and 8) is accessed, it can provide useful higher resolution data on water extent when a clear acquisition coincides with an active

  19. Prime mission results of the dual-frequency precipitation radar on the global precipitation measurement core spacecraft and the version 5 GPM standard products

    Science.gov (United States)

    Furukawa, K.; Nio, T.; Oki, R.; Kubota, T.; Iguchi, T.

    2017-09-01

    The Dual-frequency Precipitation Radar (DPR) on the Global Precipitation Measurement (GPM) core satellite was developed by Japan Aerospace Exploration Agency (JAXA) and National Institute of Information and Communications Technology (NICT). The objective of the GPM mission is to observe global precipitation more frequently and accurately. The GPM core satellite is a joint product of National Aeronautics and Space Administration (NASA), JAXA and NICT. NASA developed the satellite bus and the GPM Microwave Imager (GMI), and JAXA and NICT developed the DPR. The inclination of the GPM core satellite is 65 degrees, and the nominal flight altitude is 407 km. The non-sunsynchronous circular orbit is necessary for measuring the diurnal change of rainfall. The DPR consists of two radars, which are Ku-band precipitation radar (KuPR) and Ka-band precipitation radar (KaPR). GPM core observatory was successfully launched by H2A launch vehicle on Feb. 28, 2014. DPR orbital check out was completed in May 2014. DPR products were released to the public on Sep. 2, 2014 and Normal Observation Operation period was started. JAXA is continuing DPR trend monitoring, calibration and validation operations to confirm that DPR keeps its function and performance on orbit. The results of DPR trend monitoring, calibration and validation show that DPR kept its function and performance on orbit during the 3 years and 2 months prime mission period. The DPR Prime mission period was completed in May 2017. The version 5 GPM products were released to the public in 2017. JAXA confirmed that GPM/DPR total system performance and the GPM version 5 products achieved the success criteria and the performance indicators that were defined for the JAXA GPM/DPR mission.

  20. Global land cover mapping at 30 m resolution: A POK-based operational approach

    Science.gov (United States)

    Chen, Jun; Chen, Jin; Liao, Anping; Cao, Xin; Chen, Lijun; Chen, Xuehong; He, Chaoying; Han, Gang; Peng, Shu; Lu, Miao; Zhang, Weiwei; Tong, Xiaohua; Mills, Jon

    2015-05-01

    Global Land Cover (GLC) information is fundamental for environmental change studies, land resource management, sustainable development, and many other societal benefits. Although GLC data exists at spatial resolutions of 300 m and 1000 m, a 30 m resolution mapping approach is now a feasible option for the next generation of GLC products. Since most significant human impacts on the land system can be captured at this scale, a number of researchers are focusing on such products. This paper reports the operational approach used in such a project, which aims to deliver reliable data products. Over 10,000 Landsat-like satellite images are required to cover the entire Earth at 30 m resolution. To derive a GLC map from such a large volume of data necessitates the development of effective, efficient, economic and operational approaches. Automated approaches usually provide higher efficiency and thus more economic solutions, yet existing automated classification has been deemed ineffective because of the low classification accuracy achievable (typically below 65%) at global scale at 30 m resolution. As a result, an approach based on the integration of pixel- and object-based methods with knowledge (POK-based) has been developed. To handle the classification process of 10 land cover types, a split-and-merge strategy was employed, i.e. firstly each class identified in a prioritized sequence and then results are merged together. For the identification of each class, a robust integration of pixel-and object-based classification was developed. To improve the quality of the classification results, a knowledge-based interactive verification procedure was developed with the support of web service technology. The performance of the POK-based approach was tested using eight selected areas with differing landscapes from five different continents. An overall classification accuracy of over 80% was achieved. This indicates that the developed POK-based approach is effective and feasible

  1. DYNAMIC: A Decadal Survey and NASA Roadmap Mission

    Science.gov (United States)

    Paxton, L. J.; Oberheide, J.

    2016-12-01

    In this talk we will review the DYNAMIC mission science and implementation plans. DYNAMIC is baselined as a two satellite mission to delineate the dynamical behavior and structure of the ionosphere, thermosphere and mesosphere system. DYNAMIC was considered the top priority in the Decadal Survey upper atmosphere missions by the AIMI panel. The NASA Heliophysics Roadmap recommended that consideration be given to flying DYNAMIC as the STP 5 (next STP mission) rather than IMAP given the time-lag between the Decadal Survey recommendations and the flight of the STP 5 mission. It certainly seems as though STP 5 will be the IMAP mission. In that case what is the status of DYNAMIC? DYNAMIC could be STP 6 or some portion of the DYNAMIC mission could be executed as the next MidEx mission. In this talk we discuss the DYNAMIC science questions and goals and how they might be addressed. We note that DYNAMIC is not a mission just for the space community. DYNAMIC will enable new groundbased investigations and provide a global context for the long and rich history of groundbased observations of the dynamical state of the ITM system. Issues include: How and to what extent do waves and tides in the lower atmosphere contribute to the variability and mean state of the IT system? [Mission driver: Must have two spacecraft separated in local solar time in near polar orbits] How does the AIM system respond to outside forcing? [Mission Driver: Must measure high latitude inputs] How do neutral-plasma interactions produce neutral and ionospheric density changes over regional and global scales? [Mission Driver: Must measure all major species (O, N2, O2, H, He) and their ions] What part of the IT response occurs in the form of aurorally generated waves? [Mission Driver: Must measure small and mesoscale phenomena at high latitudes] What is the relative importance of thermal expansion, upwelling and advection in defining total mass density changes? [Mission Driver: Must determine the mid

  2. Mapping 1995 global anthropogenic emissions of mercury

    NARCIS (Netherlands)

    Pacyna, Jozef M.; Pacyna, Elisabeth G.; Steenhuisen, Frits; Wilson, Simon

    2003-01-01

    This paper presents maps of anthropogenic Hg emissions worldwide within a 1degrees x 1degrees latitude/longitude grid system in 1995. As such, the paper is designed for modelers simulating the Hg transport within air masses and Hg deposition to aquatic and terrestrial ecosystems. Maps of total Hg

  3. Fostering Application Opportunites for the NASA Soil Moisture Active Passive (SMAP) Mission

    Science.gov (United States)

    Moran, M. Susan; O'Neill, Peggy E.; Entekhabi, Dara; Njoku, Eni G.; Kellogg, Kent H.

    2010-01-01

    The NASA Soil Moisture Active Passive (SMAP) Mission will provide global observations of soil moisture and freeze/thaw state from space. We outline how priority applications contributed to the SMAP mission measurement requirements and how the SMAP mission plans to foster applications and applied science.

  4. Archaeological field survey automation: concurrent multisensor site mapping and automated analysis

    Science.gov (United States)

    Józefowicz, Mateusz; Sokolov, Oleksandr; Meszyński, Sebastian; Siemińska, Dominika; Kołosowski, Przemysław

    2016-04-01

    ABM SE develops mobile robots (rovers) used for analog research of Mars exploration missions. The rovers are all-terrain exploration platforms, carrying third-party payloads: scientific instrumentation. "Wisdom" ground penetrating radar for Exomars mission has been tested onboard, as well as electrical resistivity module and other devices. Robot has operated in various environments, such as Central European countryside, Dachstein ice caves or Sahara, Morocco (controlled remotely via satellite from Toruń, Poland. Currently ABM SE works on local and global positioning system for a Mars rover basing on image and IMU data. This is performed under a project from ESA. In the next Mars rover missions a Mars GIS model will be build, including an acquired GPR profile, DEM and regular image data, integrated into a concurrent 3D terrain model. It is proposed to use similar approach in surveys of archaeological sites, especially those, where solid architecture remains can be expected at shallow depths or being partially exposed. It is possible to deploy a rover that will concurrently map a selected site with GPR, 2D and 3D cameras to create a site model. The rover image processing algorithms are capable of automatic tracing of distinctive features (such as exposed structure remains on a desert ground, differences in color of the ground, etc.) and to mark regularities on a created map. It is also possible to correlate the 3D map with an aerial photo taken under any angle to achieve interpretation synergy. Currently the algorithms are an interpretation aid and their results must be confirmed by a human. The advantages of a rover over traditional approaches, such as a manual cart or a drone include: a) long hours of continuous work or work in unfavorable environment, such as high desert, frozen water pools or large areas, b) concurrent multisensory data acquisition, c) working from the ground level enables capturing of sites obstructed from the air (trees), d) it is possible to

  5. A global high resolution mean sea surface from multi mission satellite altimetry

    DEFF Research Database (Denmark)

    Knudsen, Per

    1999-01-01

    Satellite altimetry from the GEOSAT and the ERS-1 geodetic missions provide altimeter data with a very dense coverage. Hence, the heights of the sea surface may be recovered very detailed. Satellite altimetry from the 35 days repeat cycle mission of the ERS satellites and, especially, from the 10...

  6. Titan Orbiter Aerorover Mission with Enceladus Science (TOAMES)

    Science.gov (United States)

    Sittler, E.; Cooper, J.; Mahaffy, P.; Fairbrother, D.; de Pater, I.; Schulze-Makuch, D.; Pitman, J.

    2007-08-01

    organic chemistry on the surface. The Aerorover will probably use a "hot air" Montgolfier balloon concept using the waste heat from the MMRTG ~1-2 kwatts. New technologies will need to be developed and miniaturization will be required to maintain functionality while controlling mass, power and cost. Duty cycling will be used. The Aerorover will have all the instruments needed to sample Titan's atmosphere and surface with possible methane lakes-rivers. It will e.g., use multi-spectral imagers and for last 6 months of mission, balloon payload will land on surface at predetermined site to take core samples of the surface and use seismometers to help probe the interior. All remote (and active) sensors on the orbiter will share a ~1 meter telescope, called MIDAS (Multiple Instrument Distributed Aperture Sensor). MIDAS observations in stable orbit at Titan can provide full global maps of Titan's surface and could additionally provide long term observations of the Saturn system including Enceladus for extended mission phases over many years, potentially for decades. Experience from the Hubble Space Telescope has shown strong public interest and commitment to exciting generational missions.

  7. SoilGrids1km — Global Soil Information Based on Automated Mapping

    Science.gov (United States)

    Hengl, Tomislav; de Jesus, Jorge Mendes; MacMillan, Robert A.; Batjes, Niels H.; Heuvelink, Gerard B. M.; Ribeiro, Eloi; Samuel-Rosa, Alessandro; Kempen, Bas; Leenaars, Johan G. B.; Walsh, Markus G.; Gonzalez, Maria Ruiperez

    2014-01-01

    Background Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing requirement for global soil information. Although several global soil information systems already exist, these tend to suffer from inconsistencies and limited spatial detail. Methodology/Principal Findings We present SoilGrids1km — a global 3D soil information system at 1 km resolution — containing spatial predictions for a selection of soil properties (at six standard depths): soil organic carbon (g kg−1), soil pH, sand, silt and clay fractions (%), bulk density (kg m−3), cation-exchange capacity (cmol+/kg), coarse fragments (%), soil organic carbon stock (t ha−1), depth to bedrock (cm), World Reference Base soil groups, and USDA Soil Taxonomy suborders. Our predictions are based on global spatial prediction models which we fitted, per soil variable, using a compilation of major international soil profile databases (ca. 110,000 soil profiles), and a selection of ca. 75 global environmental covariates representing soil forming factors. Results of regression modeling indicate that the most useful covariates for modeling soils at the global scale are climatic and biomass indices (based on MODIS images), lithology, and taxonomic mapping units derived from conventional soil survey (Harmonized World Soil Database). Prediction accuracies assessed using 5–fold cross-validation were between 23–51%. Conclusions/Significance SoilGrids1km provide an initial set of examples of soil spatial data for input into global models at a resolution and consistency not previously available. Some of the main limitations of the current version of SoilGrids1km are: (1) weak relationships between soil properties/classes and explanatory variables due to scale mismatches, (2) difficulty to obtain covariates that capture soil forming factors, (3) low sampling density and spatial clustering of soil profile locations. However, as the Soil

  8. A 1.4-Billion Pixel Map of the Seafloor: BOEM's Mission to Visualize Dynamic Geology and Identify Natural Seep Sites in the Gulf of Mexico

    Science.gov (United States)

    Kramer, K.; Shedd, W. W.

    2017-12-01

    In May, 2017, the U.S. Department of the Interior's Bureau of Ocean Energy Management (BOEM) published a high-resolution seafloor map of the northern Gulf of Mexico region. The new map, derived from 3-D seismic surveys, provides the scientific community with enhanced resolution and reveals previously undiscovered and poorly resolved geologic features of the continental slope, salt minibasin province, abyssal plain, Mississippi Fan, and the Florida Shelf and Escarpment. It becomes an even more powerful scientific tool when paired with BOEM's public database of 35,000 seafloor features, identifying natural hydrocarbon seeps, hard grounds, mud volcanoes, sediment flows, pockmarks, slumps, and many others. BOEM has mapped the Gulf of Mexico seafloor since 1998 in a regulatory mission to identify natural oil and gas seeps and protect the coral and chemosynthetic communities growing at those sites. The nineteen-year mapping effort, still ongoing, resulted in the creation of the 1.4-billion pixel map and the seafloor features database. With these tools and continual collaboration with academia, professional scientific institutions, and the offshore energy industry, BOEM will continue to incorporate new data to update and expand these two resources on a regular basis. They can be downloaded for free from BOEM's website at https://www.boem.gov/Gulf-of-Mexico-Deepwater-Bathymetry/ and https://www.boem.gov/Seismic-Water-Bottom-Anomalies-Map-Gallery/.

  9. The role of extreme orbits in the global organization of periodic regions in parameter space for one dimensional maps

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Diogo Ricardo da, E-mail: diogo_cost@hotmail.com [Departamento de Física, UNESP – Universidade Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil); Hansen, Matheus [Departamento de Física, UNESP – Universidade Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil); Instituto de Física, Univ. São Paulo, Rua do Matão, Cidade Universitária, 05314-970, São Paulo – SP (Brazil); Guarise, Gustavo [Departamento de Física, UNESP – Universidade Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil); Medrano-T, Rene O. [Departamento de Ciências Exatas e da Terra, UNIFESP – Universidade Federal de São Paulo, Rua São Nicolau, 210, Centro, 09913-030, Diadema, SP (Brazil); Department of Mathematics, Imperial College London, London SW7 2AZ (United Kingdom); Leonel, Edson D. [Departamento de Física, UNESP – Universidade Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil); Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, 34151 Trieste (Italy)

    2016-04-22

    We show that extreme orbits, trajectories that connect local maximum and minimum values of one dimensional maps, play a major role in the parameter space of dissipative systems dictating the organization for the windows of periodicity, hence producing sets of shrimp-like structures. Here we solve three fundamental problems regarding the distribution of these sets and give: (i) their precise localization in the parameter space, even for sets of very high periods; (ii) their local and global distributions along cascades; and (iii) the association of these cascades to complicate sets of periodicity. The extreme orbits are proved to be a powerful indicator to investigate the organization of windows of periodicity in parameter planes. As applications of the theory, we obtain some results for the circle map and perturbed logistic map. The formalism presented here can be extended to many other different nonlinear and dissipative systems. - Highlights: • Extreme orbits and the organization of periodic regions in parameter space. • One-dimensional dissipative mappings. • The circle map and also a time perturbed logistic map were studied.

  10. The role of extreme orbits in the global organization of periodic regions in parameter space for one dimensional maps

    International Nuclear Information System (INIS)

    Costa, Diogo Ricardo da; Hansen, Matheus; Guarise, Gustavo; Medrano-T, Rene O.; Leonel, Edson D.

    2016-01-01

    We show that extreme orbits, trajectories that connect local maximum and minimum values of one dimensional maps, play a major role in the parameter space of dissipative systems dictating the organization for the windows of periodicity, hence producing sets of shrimp-like structures. Here we solve three fundamental problems regarding the distribution of these sets and give: (i) their precise localization in the parameter space, even for sets of very high periods; (ii) their local and global distributions along cascades; and (iii) the association of these cascades to complicate sets of periodicity. The extreme orbits are proved to be a powerful indicator to investigate the organization of windows of periodicity in parameter planes. As applications of the theory, we obtain some results for the circle map and perturbed logistic map. The formalism presented here can be extended to many other different nonlinear and dissipative systems. - Highlights: • Extreme orbits and the organization of periodic regions in parameter space. • One-dimensional dissipative mappings. • The circle map and also a time perturbed logistic map were studied.

  11. NASA Lunar and Planetary Mapping and Modeling

    Science.gov (United States)

    Day, B. H.; Law, E.

    2016-12-01

    NASA's Lunar and Planetary Mapping and Modeling Portals provide web-based suites of interactive visualization and analysis tools to enable mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, and Vesta. New portals for additional planetary bodies are being planned. This presentation will recap significant enhancements to these toolsets during the past year and look forward to the results of the exciting work currently being undertaken. Additional data products and tools continue to be added to the Lunar Mapping and Modeling Portal (LMMP). These include both generalized products as well as polar data products specifically targeting potential sites for the Resource Prospector mission. Current development work on LMMP also includes facilitating mission planning and data management for lunar CubeSat missions, and working with the NASA Astromaterials Acquisition and Curation Office's Lunar Apollo Sample database in order to help better visualize the geographic contexts from which samples were retrieved. A new user interface provides, among other improvements, significantly enhanced 3D visualizations and navigation. Mars Trek, the project's Mars portal, has now been assigned by NASA's Planetary Science Division to support site selection and analysis for the Mars 2020 Rover mission as well as for the Mars Human Landing Exploration Zone Sites. This effort is concentrating on enhancing Mars Trek with data products and analysis tools specifically requested by the proposing teams for the various sites. Also being given very high priority by NASA Headquarters is Mars Trek's use as a means to directly involve the public in these upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars. The portals also serve as

  12. FLO1K, global maps of mean, maximum and minimum annual streamflow at 1 km resolution from 1960 through 2015

    Science.gov (United States)

    Barbarossa, Valerio; Huijbregts, Mark A. J.; Beusen, Arthur H. W.; Beck, Hylke E.; King, Henry; Schipper, Aafke M.

    2018-03-01

    Streamflow data is highly relevant for a variety of socio-economic as well as ecological analyses or applications, but a high-resolution global streamflow dataset is yet lacking. We created FLO1K, a consistent streamflow dataset at a resolution of 30 arc seconds (~1 km) and global coverage. FLO1K comprises mean, maximum and minimum annual flow for each year in the period 1960-2015, provided as spatially continuous gridded layers. We mapped streamflow by means of artificial neural networks (ANNs) regression. An ensemble of ANNs were fitted on monthly streamflow observations from 6600 monitoring stations worldwide, i.e., minimum and maximum annual flows represent the lowest and highest mean monthly flows for a given year. As covariates we used the upstream-catchment physiography (area, surface slope, elevation) and year-specific climatic variables (precipitation, temperature, potential evapotranspiration, aridity index and seasonality indices). Confronting the maps with independent data indicated good agreement (R2 values up to 91%). FLO1K delivers essential data for freshwater ecology and water resources analyses at a global scale and yet high spatial resolution.

  13. Statistical Maps of Ground Magnetic Disturbance Derived from Global Geospace Models

    Science.gov (United States)

    Rigler, E. J.; Wiltberger, M. J.; Love, J. J.

    2017-12-01

    Electric currents in space are the principal driver of magnetic variations measured at Earth's surface. These in turn induce geoelectric fields that present a natural hazard for technological systems like high-voltage power distribution networks. Modern global geospace models can reasonably simulate large-scale geomagnetic response to solar wind variations, but they are less successful at deterministic predictions of intense localized geomagnetic activity that most impacts technological systems on the ground. Still, recent studies have shown that these models can accurately reproduce the spatial statistical distributions of geomagnetic activity, suggesting that their physics are largely correct. Since the magnetosphere is a largely externally driven system, most model-measurement discrepancies probably arise from uncertain boundary conditions. So, with realistic distributions of solar wind parameters to establish its boundary conditions, we use the Lyon-Fedder-Mobarry (LFM) geospace model to build a synthetic multivariate statistical model of gridded ground magnetic disturbance. From this, we analyze the spatial modes of geomagnetic response, regress on available measurements to fill in unsampled locations on the grid, and estimate the global probability distribution of extreme magnetic disturbance. The latter offers a prototype geomagnetic "hazard map", similar to those used to characterize better-known geophysical hazards like earthquakes and floods.

  14. Geological Mapping of the Debussy Quadrangle (H-14) Preliminary Results

    Science.gov (United States)

    Pegg, D. L.; Rothery, D. A.; Balme, M. R.; Conway, S. J.

    2018-05-01

    We present the current status of geological mapping of the Debussy quadrangle. Mapping underway as part of a program to map the entire planet at a scale of 1:3M using MESSENGER data in preparation for the BepiColombo mission.

  15. GlobalSoilMap France: High-resolution spatial modelling the soils of France up to two meter depth.

    Science.gov (United States)

    Mulder, V L; Lacoste, M; Richer-de-Forges, A C; Arrouays, D

    2016-12-15

    This work presents the first GlobalSoilMap (GSM) products for France. We developed an automatic procedure for mapping the primary soil properties (clay, silt, sand, coarse elements, pH, soil organic carbon (SOC), cation exchange capacity (CEC) and soil depth). The procedure employed a data-mining technique and a straightforward method for estimating the 90% confidence intervals (CIs). The most accurate models were obtained for pH, sand and silt. Next, CEC, clay and SOC were found reasonably accurate predicted. Coarse elements and soil depth were the least accurate of all models. Overall, all models were considered robust; important indicators for this were 1) the small difference in model diagnostics between the calibration and cross-validation set, 2) the unbiased mean predictions, 3) the smaller spatial structure of the prediction residuals in comparison to the observations and 4) the similar performance compared to other developed GlobalSoilMap products. Nevertheless, the confidence intervals (CIs) were rather wide for all soil properties. The median predictions became less reliable with increasing depth, as indicated by the increase of CIs with depth. In addition, model accuracy and the corresponding CIs varied depending on the soil variable of interest, soil depth and geographic location. These findings indicated that the CIs are as informative as the model diagnostics. In conclusion, the presented method resulted in reasonably accurate predictions for the majority of the soil properties. End users can employ the products for different purposes, as was demonstrated with some practical examples. The mapping routine is flexible for cloud-computing and provides ample opportunity to be further developed when desired by its users. This allows regional and international GSM partners with fewer resources to develop their own products or, otherwise, to improve the current routine and work together towards a robust high-resolution digital soil map of the world

  16. Phytoplankton global mapping from space with a support vector machine algorithm

    Science.gov (United States)

    de Boissieu, Florian; Menkes, Christophe; Dupouy, Cécile; Rodier, Martin; Bonnet, Sophie; Mangeas, Morgan; Frouin, Robert J.

    2014-11-01

    In recent years great progress has been made in global mapping of phytoplankton from space. Two main trends have emerged, the recognition of phytoplankton functional types (PFT) based on reflectance normalized to chlorophyll-a concentration, and the recognition of phytoplankton size class (PSC) based on the relationship between cell size and chlorophyll-a concentration. However, PFTs and PSCs are not decorrelated, and one approach can complement the other in a recognition task. In this paper, we explore the recognition of several dominant PFTs by combining reflectance anomalies, chlorophyll-a concentration and other environmental parameters, such as sea surface temperature and wind speed. Remote sensing pixels are labeled thanks to coincident in-situ pigment data from GeP&CO, NOMAD and MAREDAT datasets, covering various oceanographic environments. The recognition is made with a supervised Support Vector Machine classifier trained on the labeled pixels. This algorithm enables a non-linear separation of the classes in the input space and is especially adapted for small training datasets as available here. Moreover, it provides a class probability estimate, allowing one to enhance the robustness of the classification results through the choice of a minimum probability threshold. A greedy feature selection associated to a 10-fold cross-validation procedure is applied to select the most discriminative input features and evaluate the classification performance. The best classifiers are finally applied on daily remote sensing datasets (SeaWIFS, MODISA) and the resulting dominant PFT maps are compared with other studies. Several conclusions are drawn: (1) the feature selection highlights the weight of temperature, chlorophyll-a and wind speed variables in phytoplankton recognition; (2) the classifiers show good results and dominant PFT maps in agreement with phytoplankton distribution knowledge; (3) classification on MODISA data seems to perform better than on SeaWIFS data

  17. Using Esri Story Map Technology to Demonstrate SERVIR Global Success Stories

    Science.gov (United States)

    Adams, E. C.; Flores, A.; Muench, R.; Coulter, D.; Limaye, A. S.; Irwin, D.

    2016-12-01

    A joint development initiative of the National Aeronautics and Space Administration (NASA) and the United States Agency for International Development (USAID), SERVIR works in partnership with leading regional organizations world-wide to help developing countries build their capacity to use information provided by Earth observing satellites and geospatial technologies for managing climate and weather risks, food security and agriculture, land use change, water resources, and natural disaster response. The SERVIR network currently includes 4 regional hubs: Eastern and Southern Africa, Hindu-Kush-Himalaya, the Lower Mekong region, and West Africa, and has completed project activities in the Mesoamerica region. SERVIR has activities in over 40 countries, has developed 70 custom tools, and has collaborated with 155 institutions to apply current state of the art science and technology to decision making. Many of these efforts have the potential to continue to influence decision-making at new institutions throughout the globe; however, engaging those stakeholders and society while maintaining a global brand identity is challenging. Esri story map technologies have allowed the SERVIR network to highlight the applications of SERVIR projects. Conventional communication approaches have been used in SERVIR to share success stories of our geospatial projects; however, the power of Esri story telling offers a great opportunity to convey effectively the impacts of the geospatial solutions provided through SERVIR to end users. This paper will present use cases of how Esri story map technologies are being used across the SERVIR network to effectively communicate science to SERVIR users and general public. The easy to use design templates and interactive user interface are ideal for highlighting SERVIR's diverse products. In addition, the SERVIR team hopes to continue using story maps for project outreach and user engagement.

  18. Dawn Mission Update

    Science.gov (United States)

    Sykes, M. V.; Russell, C. T.; Coradini, A.; Christensen, U.; de Sanctis, M. C.; Feldman, W. C.; Jaumann, R.; Keller, U.; Konopliv, A. S.; McCord, T. B.; McFadden, L. A.; McSween, H. Y.; Mottola, S.; Neukum, G.; Pieters, C. M.; Prettyman, T. H.; Raymond, C. A.; Smith, D. E.; Williams, B. G.; Wise, J.; Zuber, M. T.

    2004-11-01

    Dawn, the ninth Discovery mission, will be the first spacecraft to rendezvous with two solar system bodies, the main belt asteroids Vesta and Ceres. This is made possible by utilizing ion propulsion to reach its targets and to maneuver into (and depart) orbits about these bodies. Vesta and Ceres are two terrestrial protoplanets that have survived since the earliest epoch of the solar system and will provide important insights into planet building processes and their evolution under very different circumstances, with and without water. Dawn carries a double framing camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron detector. At Vesta our studies will include the volcanic emplacement of basalts, its differentiation, the possible exposure of its interior near the south pole. At Ceres our studies will include the role of water in its evolution, hydration processes on its surface, and the possible existence of a subsurface ocean. The mission has passed its critical design review and is scheduled to be launched in June 2006 with arrival at Vesta in 2011 and Ceres in 2015. Operation strategies will be presented. Groundbased observations of Vesta, Ceres, and Vesta family members over broad wavelengths, periods and phases will play an important role in detailed mission planning.

  19. Utilization of Ancillary Data Sets for Conceptual SMAP Mission Algorithm Development and Product Generation

    Science.gov (United States)

    O'Neill, P.; Podest, E.

    2011-01-01

    The planned Soil Moisture Active Passive (SMAP) mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council's Decadal Survey, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond [1]. Scheduled to launch late in 2014, the proposed SMAP mission would provide high resolution and frequent revisit global mapping of soil moisture and freeze/thaw state, utilizing enhanced Radio Frequency Interference (RFI) mitigation approaches to collect new measurements of the hydrological condition of the Earth's surface. The SMAP instrument design incorporates an L-band radar (3 km) and an L band radiometer (40 km) sharing a single 6-meter rotating mesh antenna to provide measurements of soil moisture and landscape freeze/thaw state [2]. These observations would (1) improve our understanding of linkages between the Earth's water, energy, and carbon cycles, (2) benefit many application areas including numerical weather and climate prediction, flood and drought monitoring, agricultural productivity, human health, and national security, (3) help to address priority questions on climate change, and (4) potentially provide continuity with brightness temperature and soil moisture measurements from ESA's SMOS (Soil Moisture Ocean Salinity) and NASA's Aquarius missions. In the planned SMAP mission prelaunch time frame, baseline algorithms are being developed for generating (1) soil moisture products both from radiometer measurements on a 36 km grid and from combined radar/radiometer measurements on a 9 km grid, and (2) freeze/thaw products from radar measurements on a 3 km grid. These retrieval algorithms need a variety of global ancillary data, both static and dynamic, to run the retrieval models, constrain the retrievals, and provide flags for indicating retrieval quality. The choice of which ancillary dataset to use for a particular SMAP product would be based on a number of factors

  20. A CONTENT ANALYSIS OF THE MISSION STATEMENTS OF IRAN, TURKEY, INDIA AND UNITED STATES PHARMACEUTICAL COMPANIES

    Directory of Open Access Journals (Sweden)

    Shahriar AZIZI

    2014-06-01

    Full Text Available Pharmaceutical companies play a critical role in healthcare economy. Articulating mission statement of a Pharmaceutical company results in guiding strategies and activities of the firm. In this survey, mission statements of Iranian, Turkish, Indian and American pharmaceutical companies are analyzed. By using content analysis, frequencies of nine elements of the mission statement according to Fred R. David including: customers, product/service, market, technology, survival/growth/profitability, philosophy, self-perception, public image and employee were investigated. 98 mission statements of pharmaceutical companies (32 iranain companies, 16 Turkish companies, 30 Indian companies, and 20 American companies were analyzed. Simple correspondence analysis was used to extract the perceptual map. Results indicate that two dimensions of perceptual map include: focus of mission (throughput or input/output, and focus of mission elements (market or support. Iranian companies placed on the quarter of throughput /support, American and Turkish companies placed on the quarter of throughput/market. Indian companies placed on the quarter of input and output/market.

  1. A Framework for Mapping Global Evapotranspiration using 375-m VIIRS LST

    Science.gov (United States)

    Hain, C.; Anderson, M. C.; Schull, M. A.; Neale, C. M. U.

    2017-12-01

    As the world's water resources come under increasing tension due to dual stressors of climate change and population growth, accurate knowledge of water consumption through evapotranspiration (ET) over a range in spatial scales will be critical in developing adaptation strategies. Remote sensing methods for monitoring consumptive water use are becoming increasingly important, especially in areas of food insecurity. One method to estimate ET from satellite-based methods, the Atmosphere Land Exchange Inverse (ALEXI) model uses the change in morning land surface temperature to estimate the partitioning of sensible/latent heat fluxes which are then used to estimate daily ET. This presentation will outline several recent enhancements to the ALEXI modeling system, with a focus on global ET and drought monitoring. Until recently, ALEXI has been limited to areas with high resolution temporal sampling of geostationary sensors. The use of geostationary sensors makes global mapping a complicated process, especially for real-time applications, as data from as many as five different sensors are required to be ingested and harmonized to create a global mosaic. However, our research team has developed a new and novel method of using twice-daily observations from polar-orbiting sensors such as MODIS and VIIRS to estimate the mid-morning rise in LST that is used to drive the energy balance estimations within ALEXI. This allows the method to be applied globally using a single sensor rather than a global compositing of all available geostationary data. Other advantages of this new method include the higher spatial resolution provided by MODIS and VIIRS and the increased sampling at high latitudes where oblique view angles limit the utility of geostationary sensors. Improvements to the spatial resolution of the thermal infrared wavelengths on the VIIRS instrument, as compared to MODIS (375-m VIIRS vs. 1-km MODIS), allows for a much higher resolution ALEXI product than has been

  2. The Big Picture: Imaging of the Global Geospace Environment by the TWINS Mission

    Science.gov (United States)

    Goldstein, J.; McComas, D. J.

    2018-03-01

    Encircling our planet at distances of 2.5 to 8 Earth radii is a dynamic plasma population known as the ring current (RC). During geomagnetic storms, the solar wind's interaction with Earth's magnetic field pumps petaJoules of energy into the RC, energizing and transporting particles. To measure the global geospace response, RC imaging is performed by capturing energetic neutral atoms (ENAs) created by charge exchange between geospace ions and the neutral exosphere. The H exosphere is itself imaged via its geocoronal Lyman-α glow. Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) is a stereoscopic ENA and Lyman-α imaging mission that has recorded the deep minimum of solar cycle (SC) 23 and the moderate maximum of SC 24, observing geospace conditions ranging from utterly quiet to major storms. This review covers TWINS studies of the geospace response published during 2013 to 2017. Stereo ENA imaging has revealed new dimensionality and structure of RC ions. Continuous coverage by two imagers has allowed monitoring storms from start to finish. Deconvolution of the low-altitude signal has extended ENA analysis and revealed causal connections between the trapped and precipitating ion populations. ENA-based temperature and composition analyses have been refined, validated, and applied to an unprecedented sequence of solar activity changes in SC 23 and SC 24. Geocoronal imaging has revealed a surprising amount of time variability and structure in the neutral H exosphere, driven by both Sun and solar wind. Global models have been measurably improved. Routine availability of simultaneous in situ measurements has fostered huge leaps forward in the areas of ENA validation and cross-scale studies.

  3. mapKITE: A NEW PARADIGM FOR SIMULTANEOUS AERIAL AND TERRESTRIAL GEODATA ACQUISITION AND MAPPING

    Directory of Open Access Journals (Sweden)

    P. Molina

    2016-06-01

    Full Text Available We introduce a new mobile, simultaneous terrestrial and aerial, geodata collection and post-processing method: mapKITE. By combining two mapping technologies such as terrestrial mobile mapping and unmanned aircraft aerial mapping, geodata are simultaneously acquired from air and ground. More in detail, a mapKITE geodata acquisition system consists on an unmanned aircraft and a terrestrial vehicle, which hosts the ground control station. By means of a real-time navigation system on the terrestrial vehicle, real-time waypoints are sent to the aircraft from the ground. By doing so, the aircraft is linked to the terrestrial vehicle through a “virtual tether,” acting as a “mapping kite.” In the article, we entail the concept of mapKITE as well as the various technologies and techniques involved, from aircraft guidance and navigation based on IMU and GNSS, optical cameras for mapping and tracking, sensor orientation and calibration, etc. Moreover, we report of a new measurement introduced in mapKITE, that is, point-and-scale photogrammetric measurements [of image coordinates and scale] for optical targets of known size installed on the ground vehicle roof. By means of accurate posteriori trajectory determination of the terrestrial vehicle, mapKITE benefits then from kinematic ground control points which are photogrametrically observed by point-and-scale measures. Initial results for simulated configurations show that these measurements added to the usual Integrated Sensor Orientation ones reduce or even eliminate the need of conventional ground control points –therefore, lowering mission costs– and enable selfcalibration of the unmanned aircraft interior orientation parameters in corridor configurations, in contrast to the situation of traditional corridor configurations. Finally, we report about current developments of the first mapKITE prototype, developed under the European Union Research and Innovation programme Horizon 2020. The first

  4. Global Ionosphere Mapping and Differential Code Bias Estimation during Low and High Solar Activity Periods with GIMAS Software

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2018-05-01

    Full Text Available Ionosphere research using the Global Navigation Satellite Systems (GNSS techniques is a hot topic, with their unprecedented high temporal and spatial sampling rate. We introduced a new GNSS Ionosphere Monitoring and Analysis Software (GIMAS in order to model the global ionosphere vertical total electron content (VTEC maps and to estimate the GPS and GLObalnaya NAvigatsionnaya Sputnikovaya Sistema (GLONASS satellite and receiver differential code biases (DCBs. The GIMAS-based Global Ionosphere Map (GIM products during low (day of year from 202 to 231, in 2008 and high (day of year from 050 to 079, in 2014 solar activity periods were investigated and assessed. The results showed that the biases of the GIMAS-based VTEC maps relative to the International GNSS Service (IGS Ionosphere Associate Analysis Centers (IAACs VTEC maps ranged from −3.0 to 1.0 TECU (TEC unit (1 TECU = 1 × 1016 electrons/m2. The standard deviations (STDs ranged from 0.7 to 1.9 TECU in 2008, and from 2.0 to 8.0 TECU in 2014. The STDs at a low latitude were significantly larger than those at middle and high latitudes, as a result of the ionospheric latitudinal gradients. When compared with the Jason-2 VTEC measurements, the GIMAS-based VTEC maps showed a negative systematic bias of about −1.8 TECU in 2008, and a positive systematic bias of about +2.2 TECU in 2014. The STDs were about 2.0 TECU in 2008, and ranged from 2.2 to 8.5 TECU in 2014. Furthermore, the aforementioned characteristics were strongly related to the conditions of the ionosphere variation and the geographic latitude. The GPS and GLONASS satellite and receiver P1-P2 DCBs were compared with the IAACs DCBs. The root mean squares (RMSs were 0.16–0.20 ns in 2008 and 0.13–0.25 ns in 2014 for the GPS satellites and 0.26–0.31 ns in 2014 for the GLONASS satellites. The RMSs of receiver DCBs were 0.21–0.42 ns in 2008 and 0.33–1.47 ns in 2014 for GPS and 0.67–0.96 ns in 2014 for GLONASS. The monthly

  5. Global Precipitation Measurement Poster

    Science.gov (United States)

    Azarbarzin, Art

    2010-01-01

    This poster presents an overview of the Global Precipitation Measurement (GPM) constellation of satellites which are designed to measure the Earth's precipitation. It includes the schedule of launches for the various satellites in the constellation, and the coverage of the constellation, It also reviews the mission capabilities, and the mission science objectives.

  6. Development of new historical global Nitrogen fertilizer map and the evaluation of their impacts on terrestrial N cycling and the evaluation of their impacts on terrestrial N cycling

    Science.gov (United States)

    Nishina, K.; Ito, A.; Hayashi, S.

    2015-12-01

    The use of synthetic nitrogen fertilizer was rapidly growing up after the birth of Haber-Bosch process in the early 20th century. The recent N loading derived from these sources on terrestrial ecosystems was estimated 2 times higher than biogenic N fixation in terrestrial ecosystems (Gruber et al., 2009). However, there are still large uncertainties in cumulative N impacts on terrestrial impact at global scale. In this study, to assess historical N impacts at global scale, we made a new global N fertilizer input map, which was a spatial-temporal explicit map (during 1960-2010) and considered the fraction of NH4+ and NO3- in the N fertilizer inputs. With the developed N fertilizer map, we evaluated historical N20 cycling changes by land-use changes and N depositions in N cycling using ecosystem model 'VISIT'. Prior to the downscaling processes for global N fertilizer map, we applied the statistical data imputation to FAOSTAT data due to there existing many missing data especially in developing countries. For the data imputation, we used multiple data imputation method proposed by Honaker & King (2010). The statistics of various types of synthetic fertilizer consumption are available in FAOSTAT, which can be sorted by the content of NH4+ and NO3-, respectively. To downscaling the country by country N fertilizer consumptions data to the 0.5˚x 0.5˚ grid-based map, we used historical land-use map in Earthstat (Rumankutty et al., 1999). Before the assignment of N fertilizer in each grid, we weighted the double cropping regions to be more N fertilizer input on to these regions. Using M3-Crops Data (Monfreda et al., 2008), we picked up the dominant cropping species in each grid cell. After that, we used Crop Calendar in SAGE dataset (Sacks et al., 2010) and determined schedule of N fertilizer input in each grid cell using dominant crop calendar. Base fertilizer was set to be 7 days before transplanting and second fertilizer to be 30 days after base fertilizer application

  7. Features of annual and semiannual variations derived from the global ionospheric maps of total electron content

    Directory of Open Access Journals (Sweden)

    B. Zhao

    2008-01-01

    Full Text Available In the present work we use the NASA-JPL global ionospheric maps of total electron content (TEC, firstly to construct TEC maps (TEC vs. magnetic local time MLT, and magnetic latitude MLAT in the interval from 1999 to 2005. These TEC maps were, in turn, used to estimate the annual-to-mean amplitude ratio, A1, and the semiannual-to-mean amplitude ratio, A2, as well as the latitudinal symmetrical and asymmetrical parts, A' and A" of A1. Thus, we investigated in detail the TEC climatology from maps of these indices, with an emphasis on the quantitative presentation for local time and latitudinal changes in the seasonal, annual and semiannual anomalies of the ionospheric TEC. Then we took the TEC value at 14:00 LT to examine various anomalies at a global scale following the same procedure. Results reveal similar features appearing in NmF2, such as that the seasonal anomaly is more significant in the near-pole regions than in the far-pole regions and the reverse is true for the semiannual anomaly; the winter anomaly has least a chance to be observed at the South America and South Pacific areas. The most impressive feature is that the equinoctial asymmetry is most prominent at the East Asian and South Australian areas. Through the analysis of the TIMED GUVI columnar [O/N2] data, we have investigated to what extent the seasonal, annual and semiannual variations can be explained by their counterparts in [O/N2]. Results revealed that the [O/N2] variation is a major contributor to the daytime winter anomaly of TEC, and it also contributes to some of the semiannual and annual anomalies. The contribution to the anomalies unexplained by the [O/N2] data could possibly be due to the dynamics associated with thermospheric winds and electric fields.

  8. Science Experiments of a Jupiter Trojan asteroid in the Solar Power Sail Mission

    Science.gov (United States)

    Okada, T.; Kebukawa, Y.; Aoki, J.; Kawai, Y.; Ito, M.; Yano, H.; Okamoto, C.; Matsumoto, J.; Bibring, J. P.; Ulamec, S.; Jaumann, R.; Iwata, T.; Mori, O.; Kawaguchi, J.

    2017-12-01

    A Jupiter Trojan asteroid mission using a large area solar power sail (SPS) is under study in JAXA in collaboration with DLR and CNES. The asteroid will be investigated through remote sensing, followed by in situ in-depth observations on the asteroid with a lander. A sample-return is also studied as an option. LUCY has been selected as the NASA's future Discovery class mission which aims at understanding the diversity of Jupiter Trojans by multiple flybys, complementally to the SPS mission. The SPS is a candidate of the next medium class space science mission in Japan. The 1.4-ton spacecraft will carry a 100-kg class lander and 20-kg mission payloads on it. Its launch is expected in mid 2020s, and will take at least 11 years to visit a Jupiter Trojan asteroid. During the cruise phase, science experiments will be performed such as an infrared astronomy, a very long baseline gamma ray interferometry, and dust and magnetic field measurements. A classical static model of solar system suggests that the Jupiter Trojans were formed around the Jupiter region, while a dynamical model such as Nice model indicates that they formed at the far end of the solar system and then scattered inward due to a dynamical migration of giant planets. The physical, mineralogical, organics and isotopic distribution in the heliocentric distance could solve their origin and evolution of the solar system. A global mapping of the asteroid from the mothership will be conducted such as high-resolved imaging, NIR and TIR imaging spectrometry, and radar soundings. The lander will characterize the asteroid with geological, mineralogical, and geophysical observations using a panoramic camera, an infrared hyperspectral imager, a magnetometer, and a thermal radiometer. These samples will be measured by a high resolved mass spectrometer (HRMS) to investigate isotopic ratios of hydrogen, nitrogen, oxygen, as well as organic species.

  9. Mapping the Recent US Hurricanes Triggered Flood Events in Near Real Time

    Science.gov (United States)

    Shen, X.; Lazin, R.; Anagnostou, E. N.; Wanik, D. W.; Brakenridge, G. R.

    2017-12-01

    Synthetic Aperture Radar (SAR) observations is the only reliable remote sensing data source to map flood inundation during severe weather events. Unfortunately, since state-of-art data processing algorithms cannot meet the automation and quality standard of a near-real-time (NRT) system, quality controlled inundation mapping by SAR currently depends heavily on manual processing, which limits our capability to quickly issue flood inundation maps at global scale. Specifically, most SAR-based inundation mapping algorithms are not fully automated, while those that are automated exhibit severe over- and/or under-detection errors that limit their potential. These detection errors are primarily caused by the strong overlap among the SAR backscattering probability density functions (PDF) of different land cover types. In this study, we tested a newly developed NRT SAR-based inundation mapping system, named Radar Produced Inundation Diary (RAPID), using Sentinel-1 dual polarized SAR data over recent flood events caused by Hurricanes Harvey, Irma, and Maria (2017). The system consists of 1) self-optimized multi-threshold classification, 2) over-detection removal using land-cover information and change detection, 3) under-detection compensation, and 4) machine-learning based correction. Algorithm details are introduced in another poster, H53J-1603. Good agreements were obtained by comparing the result from RAPID with visual interpretation of SAR images and manual processing from Dartmouth Flood Observatory (DFO) (See Figure 1). Specifically, the over- and under-detections that is typically noted in automated methods is significantly reduced to negligible levels. This performance indicates that RAPID can address the automation and accuracy issues of current state-of-art algorithms and has the potential to apply operationally on a number of satellite SAR missions, such as SWOT, ALOS, Sentinel etc. RAPID data can support many applications such as rapid assessment of damage

  10. The Global Geodetic Observing System: Recent Activities and Accomplishments

    Science.gov (United States)

    Gross, R. S.

    2017-12-01

    The Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG) provides the basis on which future advances in geosciences can be built. By considering the Earth system as a whole (including the geosphere, hydrosphere, cryosphere, atmosphere and biosphere), monitoring Earth system components and their interactions by geodetic techniques and studying them from the geodetic point of view, the geodetic community provides the global geosciences community with a powerful tool consisting mainly of high-quality services, standards and references, and theoretical and observational innovations. The mission of GGOS is: (a) to provide the observations needed to monitor, map and understand changes in the Earth's shape, rotation and mass distribution; (b) to provide the global frame of reference that is the fundamental backbone for measuring and consistently interpreting key global change processes and for many other scientific and societal applications; and (c) to benefit science and society by providing the foundation upon which advances in Earth and planetary system science and applications are built. The goals of GGOS are: (1) to be the primary source for all global geodetic information and expertise serving society and Earth system science; (2) to actively promote, sustain, improve, and evolve the integrated global geodetic infrastructure needed to meet Earth science and societal requirements; (3) to coordinate with the international geodetic services that are the main source of key parameters and products needed to realize a stable global frame of reference and to observe and study changes in the dynamic Earth system; (4) to communicate and advocate the benefits of GGOS to user communities, policy makers, funding organizations, and society. In order to accomplish its mission and goals, GGOS depends on the IAG Services, Commissions, and Inter-Commission Committees. The Services provide the infrastructure and products on which all contributions

  11. Global Lightning Climatology from the Tropical Rainfall Measuring Mission (TRMM), Lightning Imaging Sensor (LIS) and the Optical Transient Detector (OTD)

    Science.gov (United States)

    Cecil, Daniel J.; Buechler, Dennis E.; Blakeslee, Richard J.

    2015-01-01

    The Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) has been collecting observations of total lightning in the global tropics and subtropics (roughly 38 deg S - 38 deg N) since December 1997. A similar instrument, the Optical Transient Detector, operated from 1995-2000 on another low earth orbit satellite that also saw high latitudes. Lightning data from these instruments have been used to create gridded climatologies and time series of lightning flash rate. These include a 0.5 deg resolution global annual climatology, and lower resolution products describing the annual cycle and the diurnal cycle. These products are updated annually. Results from the update through 2013 will be shown at the conference. The gridded products are publicly available for download. Descriptions of how each product can be used will be discussed, including strengths, weaknesses, and caveats about the smoothing and sampling used in various products.

  12. Global multi-resolution terrain elevation data 2010 (GMTED2010)

    Science.gov (United States)

    Danielson, Jeffrey J.; Gesch, Dean B.

    2011-01-01

    In 1996, the U.S. Geological Survey (USGS) developed a global topographic elevation model designated as GTOPO30 at a horizontal resolution of 30 arc-seconds for the entire Earth. Because no single source of topographic information covered the entire land surface, GTOPO30 was derived from eight raster and vector sources that included a substantial amount of U.S. Defense Mapping Agency data. The quality of the elevation data in GTOPO30 varies widely; there are no spatially-referenced metadata, and the major topographic features such as ridgelines and valleys are not well represented. Despite its coarse resolution and limited attributes, GTOPO30 has been widely used for a variety of hydrological, climatological, and geomorphological applications as well as military applications, where a regional, continental, or global scale topographic model is required. These applications have ranged from delineating drainage networks and watersheds to using digital elevation data for the extraction of topographic structure and three-dimensional (3D) visualization exercises (Jenson and Domingue, 1988; Verdin and Greenlee, 1996; Lehner and others, 2008). Many of the fundamental geophysical processes active at the Earth's surface are controlled or strongly influenced by topography, thus the critical need for high-quality terrain data (Gesch, 1994). U.S. Department of Defense requirements for mission planning, geographic registration of remotely sensed imagery, terrain visualization, and map production are similarly dependent on global topographic data. Since the time GTOPO30 was completed, the availability of higher-quality elevation data over large geographic areas has improved markedly. New data sources include global Digital Terrain Elevation Data (DTEDRegistered) from the Shuttle Radar Topography Mission (SRTM), Canadian elevation data, and data from the Ice, Cloud, and land Elevation Satellite (ICESat). Given the widespread use of GTOPO30 and the equivalent 30-arc

  13. Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus.

    Science.gov (United States)

    Leta, Samson; Beyene, Tariku Jibat; De Clercq, Eva M; Amenu, Kebede; Kraemer, Moritz U G; Revie, Crawford W

    2018-02-01

    The objective of this study was to map the global risk of the major arboviral diseases transmitted by Aedes aegypti and Aedes albopictus by identifying areas where the diseases are reported, either through active transmission or travel-related outbreaks, as well as areas where the diseases are not currently reported but are nonetheless suitable for the vector. Data relating to five arboviral diseases (Zika, dengue fever, chikungunya, yellow fever, and Rift Valley fever (RVF)) were extracted from some of the largest contemporary databases and paired with data on the known distribution of their vectors, A. aegypti and A. albopictus. The disease occurrence data for the selected diseases were compiled from literature dating as far back as 1952 to as recent as 2017. The resulting datasets were aggregated at the country level, except in the case of the USA, where state-level data were used. Spatial analysis was used to process the data and to develop risk maps. Out of the 250 countries/territories considered, 215 (86%) are potentially suitable for the survival and establishment of A. aegypti and/or A. albopictus. A. albopictus has suitability foci in 197 countries/territories, while there are 188 that are suitable for A. aegypti. There is considerable variation in the suitability range among countries/territories, but many of the tropical regions of the world provide high suitability over extensive areas. Globally, 146 (58.4%) countries/territories reported at least one arboviral disease, while 123 (49.2%) reported more than one of the above diseases. The overall numbers of countries/territories reporting autochthonous vector-borne occurrences of Zika, dengue, chikungunya, yellow fever, and RVF, were 85, 111, 106, 43, and 39, respectively. With 215 countries/territories potentially suitable for the most important arboviral disease vectors and more than half of these reporting cases, arboviral diseases are indeed a global public health threat. The increasing proportion of

  14. Crop Mapping Using PROBA-V Time Series Data at the Yucheng and Hongxing Farm in China

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    2016-11-01

    Full Text Available PROBA-V is a new global vegetation monitoring satellite launched in the second quarter of 2013 that provides data with a 100 m to 1 km spatial resolution and a daily to 10-day temporal resolution in the visible and near infrared (VNIR bands. A major mission of the PROBA-V satellite is global agriculture monitoring, in which the accuracy of crop mapping plays a key role. In countries such as China, crop fields are typically small, in assorted shapes and with various management approaches, which deem traditional methods of crop identification ineffective, and accuracy is highly dependent on image resolution and acquisition time. The five-day temporal and 100 m spatial resolution PROBA-V data make it possible to automatically identify crops using time series phenological information. This paper takes advantage of the improved spatial and temporal resolution of the PROBA-V data, to map crops at the Yucheng site in Shandong Province and the Hongxing farm in Heilongjiang province of China. First, the Swets filter algorithm was employed to eliminate noisy pixels and fill in data gaps on time series data during the growing season. Then, the crops are classified based on the Iterative Self-Organizing Data Analysis Technique (ISODATA clustering, the maximum likelihood method (MLC and similarity analysis. The mapping results were validated using field-collected crop type polygons and high resolution crop maps based on GaoFen-1 satellite (GF-1 data in 16 m resolution. Our study showed that, for the Yucheng site, the cropping system is simple, mainly dominated by winter wheat–maize rotation. The overall accuracy of crop identification was 73.39% which was slightly better than the result derived from MODIS data. For the Hongxing farm, the cropping system is more complex (i.e., more than three types of crops were planted. The overall accuracy of the crop mapping by PROBA-V was 73.29% which was significantly higher than the MODIS product (46.81%. This study

  15. Evaluation of NPP-VIIRS Nighttime Light Data for Mapping Global Fossil Fuel Combustion CO2 Emissions: A Comparison with DMSP-OLS Nighttime Light Data.

    Science.gov (United States)

    Ou, Jinpei; Liu, Xiaoping; Li, Xia; Li, Meifang; Li, Wenkai

    2015-01-01

    Recently, the stable light products and radiance calibrated products from Defense Meteorological Satellite Program's (DMSP) Operational Linescan System (OLS) have been useful for mapping global fossil fuel carbon dioxide (CO2) emissions at fine spatial resolution. However, few studies on this subject were conducted with the new-generation nighttime light data from the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor on the Suomi National Polar-orbiting Partnership (NPP) Satellite, which has a higher spatial resolution and a wider radiometric detection range than the traditional DMSP-OLS nighttime light data. Therefore, this study performed the first evaluation of the potential of NPP-VIIRS data in estimating the spatial distributions of global CO2 emissions (excluding power plant emissions). Through a disaggregating model, three global emission maps were then derived from population counts and three different types of nighttime lights data (NPP-VIIRS, the stable light data and radiance calibrated data of DMSP-OLS) for a comparative analysis. The results compared with the reference data of land cover in Beijing, Shanghai and Guangzhou show that the emission areas of map from NPP-VIIRS data have higher spatial consistency of the artificial surfaces and exhibit a more reasonable distribution of CO2 emission than those of other two maps from DMSP-OLS data. Besides, in contrast to two maps from DMSP-OLS data, the emission map from NPP-VIIRS data is closer to the Vulcan inventory and exhibits a better agreement with the actual statistical data of CO2 emissions at the level of sub-administrative units of the United States. This study demonstrates that the NPP-VIIRS data can be a powerful tool for studying the spatial distributions of CO2 emissions, as well as the socioeconomic indicators at multiple scales.

  16. Evaluation of NPP-VIIRS Nighttime Light Data for Mapping Global Fossil Fuel Combustion CO2 Emissions: A Comparison with DMSP-OLS Nighttime Light Data.

    Directory of Open Access Journals (Sweden)

    Jinpei Ou

    Full Text Available Recently, the stable light products and radiance calibrated products from Defense Meteorological Satellite Program's (DMSP Operational Linescan System (OLS have been useful for mapping global fossil fuel carbon dioxide (CO2 emissions at fine spatial resolution. However, few studies on this subject were conducted with the new-generation nighttime light data from the Visible Infrared Imaging Radiometer Suite (VIIRS sensor on the Suomi National Polar-orbiting Partnership (NPP Satellite, which has a higher spatial resolution and a wider radiometric detection range than the traditional DMSP-OLS nighttime light data. Therefore, this study performed the first evaluation of the potential of NPP-VIIRS data in estimating the spatial distributions of global CO2 emissions (excluding power plant emissions. Through a disaggregating model, three global emission maps were then derived from population counts and three different types of nighttime lights data (NPP-VIIRS, the stable light data and radiance calibrated data of DMSP-OLS for a comparative analysis. The results compared with the reference data of land cover in Beijing, Shanghai and Guangzhou show that the emission areas of map from NPP-VIIRS data have higher spatial consistency of the artificial surfaces and exhibit a more reasonable distribution of CO2 emission than those of other two maps from DMSP-OLS data. Besides, in contrast to two maps from DMSP-OLS data, the emission map from NPP-VIIRS data is closer to the Vulcan inventory and exhibits a better agreement with the actual statistical data of CO2 emissions at the level of sub-administrative units of the United States. This study demonstrates that the NPP-VIIRS data can be a powerful tool for studying the spatial distributions of CO2 emissions, as well as the socioeconomic indicators at multiple scales.

  17. THE USE OF MULTIPLE DATA SOURCES IN THE PROCESS OF TOPOGRAPHIC MAPS UPDATING

    Directory of Open Access Journals (Sweden)

    A. Cantemir

    2016-06-01

    Full Text Available The methods used in the process of updating maps have evolved and become more complex, especially upon the development of the digital technology. At the same time, the development of technology has led to an abundance of available data that can be used in the updating process. The data sources came in a great variety of forms and formats from different acquisition sensors. Satellite images provided by certain satellite missions are now available on space agencies portals. Images stored in archives of satellite missions such us Sentinel, Landsat and other can be downloaded free of charge.The main advantages are represented by the large coverage area and rather good spatial resolution that enables the use of these images for the map updating at an appropriate scale. In our study we focused our research of these images on 1: 50.000 scale map. DEM that are globally available could represent an appropriate input for watershed delineation and stream network generation, that can be used as support for hydrography thematic layer update. If, in addition to remote sensing aerial photogrametry and LiDAR data are ussed, the accuracy of data sources is enhanced. Ortophotoimages and Digital Terrain Models are the main products that can be used for feature extraction and update. On the other side, the use of georeferenced analogical basemaps represent a significant addition to the process. Concerning the thematic maps, the classic representation of the terrain by contour lines derived from DTM, remains the best method of surfacing the earth on a map, nevertheless the correlation with other layers such as Hidrography are mandatory. In the context of the current national coverage of the Digital Terrain Model, one of the main concerns of the National Center of Cartography, through the Cartography and Photogrammetry Department, is represented by the exploitation of the available data in order to update the layers of the Topographic Reference Map 1:5000, known as

  18. Multipurpose prevention technologies for sexual and reproductive health: mapping global needs for introduction of new preventive products.

    Science.gov (United States)

    Schelar, Erin; Polis, Chelsea B; Essam, Timothy; Looker, Katharine J; Bruni, Laia; Chrisman, Cara J; Manning, Judy

    2016-01-01

    Worldwide, women face sexual and reproductive health (SRH) risks including unintended pregnancy and sexually transmitted infections (STIs) including HIV. Multipurpose prevention technologies (MPTs) combine protection against two or more SRH risks into one product. Male and female condoms are the only currently available MPT products, but several other forms of MPTs are in development. We examined the global distribution of selected SRH issues to determine where various risks have the greatest geographical overlap. We examined four indicators relevant to MPTs in development: HIV prevalence, herpes simplex virus type 2 prevalence (HSV-2), human papillomavirus prevalence (HPV) and the proportion of women with unmet need for modern contraception. Using ArcGIS Desktop, we mapped these indicators individually and in combination on choropleth and graduated symbol maps. We conducted a principal components analysis to reduce data and enable visual mapping of all four indicators on one graphic to identify overlap. Our findings document the greatest overlapping risks in Sub-Saharan Africa, and we specify countries in greatest need by specific MPT indication. These results can inform strategic planning for MPT introduction, market segmentation and demand generation; data limitations also highlight the need for improved (non-HIV) STI surveillance globally. MPTs are products in development with the potential to empower women to prevent two or more SRH risks. Geographic analysis of overlapping SRH risks demonstrates particularly high need in Sub-Saharan Africa. This study can help to inform strategic planning for MPT introduction, market segmentation and demand generation. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Wide angle view of MOCR activity during STS-3 mission

    Science.gov (United States)

    1982-01-01

    Wide angle view of Mission Operation Control Room (MOCR) activity during Day 2 of STS-3 mission. This view shows many of th consoles, tracking map, and Eidophor-controlled data screens. Flight controllers in the foreground are (l.r.) R. John Rector and Chares L. Dumie. They are seated at the EECOM console. The 'thermodillo' contraption, used by flight controllers to indicate the Shuttle's position in relation to the sun for various tests, can be seen at right (28732); closeup view of the 'thermodillo'. The position of the armadillo's tail indicates position of the orbiter in relation to sun (28733); Mission Specialist/Astronaut Sally K. Ride, STS-3 orbit team spacecraft communicator (CAPCOM), talks to flight director during mission control center activity. Mission Specialist/Astronaut George D. Nelson, backup orbit team CAPCOM, watches the monitor at his console (28734).

  20. Scientific motivation for ADM/Aeolus mission

    Science.gov (United States)

    Källén, Erland

    2018-04-01

    The ADM/Aeolus wind lidar mission will provide a global coverage of atmospheric wind profiles. Atmospheric wind observations are required for initiating weather forecast models and for predicting and monitoring long term climate change. Improved knowledge of the global wind field is widely recognised as fundamental to advancing the understanding and prediction of weather and climate. In particular over tropical areas there is a need for better wind data leading to improved medium range (3-10 days) weather forecasts over the whole globe.

  1. Generating Multi-Destination Maps.

    Science.gov (United States)

    Zhang, Junsong; Fan, Jiepeng; Luo, Zhenshan

    2017-08-01

    Multi-destination maps are a kind of navigation maps aimed to guide visitors to multiple destinations within a region, which can be of great help to urban visitors. However, they have not been developed in the current online map service. To address this issue, we introduce a novel layout model designed especially for generating multi-destination maps, which considers the global and local layout of a multi-destination map. We model the layout problem as a graph drawing that satisfies a set of hard and soft constraints. In the global layout phase, we balance the scale factor between ROIs. In the local layout phase, we make all edges have good visibility and optimize the map layout to preserve the relative length and angle of roads. We also propose a perturbation-based optimization method to find an optimal layout in the complex solution space. The multi-destination maps generated by our system are potential feasible on the modern mobile devices and our result can show an overview and a detail view of the whole map at the same time. In addition, we perform a user study to evaluate the effectiveness of our method, and the results prove that the multi-destination maps achieve our goals well.

  2. Global impact of Danish drama series

    DEFF Research Database (Denmark)

    Jensen, Pia Majbritt

    2016-01-01

    In recent years Danish TV series have experienced a global export boom. This article maps the regional and global export patterns over the last fifteen years in order to assess the international impact of Danish TV drama.......In recent years Danish TV series have experienced a global export boom. This article maps the regional and global export patterns over the last fifteen years in order to assess the international impact of Danish TV drama....

  3. Brain SPECT analysis using statistical parametric mapping in patients with transient global amnesia

    Energy Technology Data Exchange (ETDEWEB)

    Kim, E. N.; Sohn, H. S.; Kim, S. H; Chung, S. K.; Yang, D. W. [College of Medicine, The Catholic Univ. of Korea, Seoul (Korea, Republic of)

    2001-07-01

    This study investigated alterations in regional cerebral blood flow (rCBF) in patients with transient global amnesia (TGA) using statistical parametric mapping 99 (SPM99). Noninvasive rCBF measurements using 99mTc-ethyl cysteinate dimer (ECD) SPECT were performed on 8 patients with TGA and 17 age matched controls. The relative rCBF maps in patients with TGA and controls were compared. In patients with TGA, significantly decreased rCBF was found along the left superior temporal extending to left parietal region of the brain and left thalamus. There were areas of increased rCBF in the right temporal, right frontal region and right thalamus. We could demonstrate decreased perfusion in left cerebral hemisphere and increased perfusion in right cerebral hemisphere in patients with TGA using SPM99. The reciprocal change of rCBF between right and left cerebral hemisphere in patients with TGA might suggest that imbalanced neuronal activity between the bilateral hemispheres may be important role in the pathogenesis of the TGA. For quantitative SPECT analysis in TGA patients, we recommend SPM99 rather than the ROI method because of its definitive advantages.

  4. Brain SPECT analysis using statistical parametric mapping in patients with transient global amnesia

    International Nuclear Information System (INIS)

    Kim, E. N.; Sohn, H. S.; Kim, S. H; Chung, S. K.; Yang, D. W.

    2001-01-01

    This study investigated alterations in regional cerebral blood flow (rCBF) in patients with transient global amnesia (TGA) using statistical parametric mapping 99 (SPM99). Noninvasive rCBF measurements using 99mTc-ethyl cysteinate dimer (ECD) SPECT were performed on 8 patients with TGA and 17 age matched controls. The relative rCBF maps in patients with TGA and controls were compared. In patients with TGA, significantly decreased rCBF was found along the left superior temporal extending to left parietal region of the brain and left thalamus. There were areas of increased rCBF in the right temporal, right frontal region and right thalamus. We could demonstrate decreased perfusion in left cerebral hemisphere and increased perfusion in right cerebral hemisphere in patients with TGA using SPM99. The reciprocal change of rCBF between right and left cerebral hemisphere in patients with TGA might suggest that imbalanced neuronal activity between the bilateral hemispheres may be important role in the pathogenesis of the TGA. For quantitative SPECT analysis in TGA patients, we recommend SPM99 rather than the ROI method because of its definitive advantages

  5. Google Moon Lunar Mapping Data

    Data.gov (United States)

    National Aeronautics and Space Administration — A collection of lunar maps and charts. This tool is an exciting new way to explore the story of the Apollo missions, still the only time mankind has set foot on...

  6. Mapping the global health employment market: an analysis of global health jobs.

    Science.gov (United States)

    Keralis, Jessica M; Riggin-Pathak, Brianne L; Majeski, Theresa; Pathak, Bogdan A; Foggia, Janine; Cullinen, Kathleen M; Rajagopal, Abbhirami; West, Heidi S

    2018-02-27

    The number of university global health training programs has grown in recent years. However, there is little research on the needs of the global health profession. We therefore set out to characterize the global health employment market by analyzing global health job vacancies. We collected data from advertised, paid positions posted to web-based job boards, email listservs, and global health organization websites from November 2015 to May 2016. Data on requirements for education, language proficiency, technical expertise, physical location, and experience level were analyzed for all vacancies. Descriptive statistics were calculated for the aforementioned job characteristics. Associations between technical specialty area and requirements for non-English language proficiency and overseas experience were calculated using Chi-square statistics. A qualitative thematic analysis was performed on a subset of vacancies. We analyzed the data from 1007 global health job vacancies from 127 employers. Among private and non-profit sector vacancies, 40% (n = 354) were for technical or subject matter experts, 20% (n = 177) for program directors, and 16% (n = 139) for managers, compared to 9.8% (n = 87) for entry-level and 13.6% (n = 120) for mid-level positions. The most common technical focus area was program or project management, followed by HIV/AIDS and quantitative analysis. Thematic analysis demonstrated a common emphasis on program operations, relations, design and planning, communication, and management. Our analysis shows a demand for candidates with several years of experience with global health programs, particularly program managers/directors and technical experts, with very few entry-level positions accessible to recent graduates of global health training programs. It is unlikely that global health training programs equip graduates to be competitive for the majority of positions that are currently available in this field.

  7. Mars Trek: An Interactive Web Portal for Current and Future Missions to Mars

    Science.gov (United States)

    Law, E.; Day, B.

    2017-09-01

    NASA's Mars Trek (https://marstrek.jpl.nasa.gov) provides a web-based Portal and a suite of interactive visualization and analysis tools to enable mission planners, lunar scientists, and engineers to access mapped data products from past and current missions to Mars. During the past year, the capabilities and data served by Mars Trek have been significantly expanded beyond its original design as a public outreach tool. At the request of NASA's Science Mission Directorate and Human Exploration Operations Mission Directorate, Mars Trek's technology and capabilities are now being extended to support site selection and analysis activities for the first human missions to Mars.

  8. Mars Trek: An Interactive Web Portal for Current and Future Missions to Mars

    Science.gov (United States)

    Law, E.; Day, B.

    2017-01-01

    NASA's Mars Trek (https://marstrek.jpl.nasa.gov) provides a web-based Portal and a suite of interactive visualization and analysis tools to enable mission planners, lunar scientists, and engineers to access mapped data products from past and current missions to Mars. During the past year, the capabilities and data served by Mars Trek have been significantly expanded beyond its original design as a public outreach tool. At the request of NASA's Science Mission Directorate and Human Exploration Operations Mission Directorate, Mars Trek's technology and capabilities are now being extended to support site selection and analysis activities for the first human missions to Mars.

  9. Diagnosis of Acute Global Myocarditis Using Cardiac MRI with Quantitative T1 and T2 Mapping: Case Report and Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chul Hwan [Department of Radiology and Research Institute of Radiological Science, Yonsei University Health System, Seoul 135-720 (Korea, Republic of); Choi, Eui-Young [Division of Cardiology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 135-720 (Korea, Republic of); Greiser, Andreas [Healthcare Sector, Siemens AG, Erlangen D-91052 (Germany); Paek, Mun Young [Siemens Ltd., Seoul 120-837 (Korea, Republic of); Hwang, Sung Ho; Kim, Tae Hoon [Department of Radiology and Research Institute of Radiological Science, Yonsei University Health System, Seoul 135-720 (Korea, Republic of)

    2013-07-01

    The diagnosis of myocarditis can be challenging given that symptoms, clinical exam findings, electrocardiogram results, biomarkers, and echocardiogram results are often non-specific. Endocardial biopsy is an established method for diagnosing myocarditis, but carries the risk of complications and false negative results. Cardiac magnetic resonance imaging (MRI) has become the primary non-invasive imaging tool in patients with suspected myocarditis. Myocarditis can be diagnosed by using three tissue markers including edema, hyperemia/capillary leak, and necrosis/fibrosis. The interpretation of cardiac MR findings can be confusing, especially when the myocardium is diffusely involved. Using T1 and T2 maps, the diagnosis of myocarditis can be made even in cases of global myocarditis with the help of quantitative analysis. We herein describe a case of acute global myocarditis which was diagnosed by using quantitative T1 and T2 mapping.

  10. Evidence and mapping of extinction debts for global forest-dwelling reptiles, amphibians and mammals

    Science.gov (United States)

    Chen, Youhua; Peng, Shushi

    2017-03-01

    Evidence of extinction debts for the global distributions of forest-dwelling reptiles, mammals and amphibians was tested and the debt magnitude was estimated and mapped. By using different correlation tests and variable importance analysis, the results showed that spatial richness patterns for the three forest-dwelling terrestrial vertebrate groups had significant and stronger correlations with past forest cover area and other variables in the 1500 s, implying the evidence for extinction debts. Moreover, it was likely that the extinction debts have been partially paid, given that their global richness patterns were also significantly correlated with contemporary forest variables in the 2000 s (but the absolute magnitudes of the correlation coefficients were usually smaller than those calculated for historical forest variables). By utilizing species-area relationships, spatial extinction-debt magnitudes for the three vertebrate groups at the global scale were estimated and the hotspots of extinction debts were identified. These high-debt hotspots were generally situated in areas that did not spatially overlap with hotspots of species richness or high extinction-risk areas based on IUCN threatened status to a large extent. This spatial mismatch pattern suggested that necessary conservation efforts should be directed toward high-debt areas that are still overlooked.

  11. Production and global transport of Titan's sand particles

    Science.gov (United States)

    Barnes, Jason W.; Lorenz, Ralph D.; Radebaugh, Jani; Hayes, Alexander G.; Arnold, Karl; Chandler, Clayton

    2015-06-01

    Previous authors have suggested that Titan's individual sand particles form by either sintering or by lithification and erosion. We suggest two new mechanisms for the production of Titan's organic sand particles that would occur within bodies of liquid: flocculation and evaporitic precipitation. Such production mechanisms would suggest discrete sand sources in dry lakebeds. We search for such sources, but find no convincing candidates with the present Cassini Visual and Infrared Mapping Spectrometer coverage. As a result we propose that Titan's equatorial dunes may represent a single, global sand sea with west-to-east transport providing sources and sinks for sand in each interconnected basin. The sand might then be transported around Xanadu by fast-moving Barchan dune chains and/or fluvial transport in transient riverbeds. A river at the Xanadu/Shangri-La border could explain the sharp edge of the sand sea there, much like the Kuiseb River stops the Namib Sand Sea in southwest Africa on Earth. Future missions could use the composition of Titan's sands to constrain the global hydrocarbon cycle.

  12. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC)

    Science.gov (United States)

    Liu, Zhong; Ostrenga, D.; Vollmer, B.; Deshong, B.; Greene, M.; Teng, W.; Kempler, S. J.

    2015-01-01

    On February 27, 2014, the NASA Global Precipitation Measurement (GPM) mission was launched to provide the next-generation global observations of rain and snow (http:pmm.nasa.govGPM). The GPM mission consists of an international network of satellites in which a GPM Core Observatory satellite carries both active and passive microwave instruments to measure precipitation and serve as a reference standard, to unify precipitation measurements from a constellation of other research and operational satellites. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 16 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available include the following: 1. Level-1 GPM Microwave Imager (GMI) and partner radiometer products. 2. Goddard Profiling Algorithm (GPROF) GMI and partner products. 3. Integrated Multi-satellitE Retrievals for GPM (IMERG) products. (early, late, and final)A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http:disc.sci.gsfc.nasa.govgpm). Data services that are currently and to-be available include Google-like Mirador (http:mirador.gsfc.nasa.gov) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http:giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time aggregation; regridding; data

  13. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC)

    Science.gov (United States)

    Ostrenga, D.; Liu, Z.; Vollmer, B.; Teng, W. L.; Kempler, S. J.

    2014-12-01

    On February 27, 2014, the NASA Global Precipitation Measurement (GPM) mission was launched to provide the next-generation global observations of rain and snow (http://pmm.nasa.gov/GPM). The GPM mission consists of an international network of satellites in which a GPM "Core Observatory" satellite carries both active and passive microwave instruments to measure precipitation and serve as a reference standard, to unify precipitation measurements from a constellation of other research and operational satellites. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 16 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available include the following: Level-1 GPM Microwave Imager (GMI) and partner radiometer products Goddard Profiling Algorithm (GPROF) GMI and partner products Integrated Multi-satellitE Retrievals for GPM (IMERG) products (early, late, and final) A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http://disc.sci.gsfc.nasa.gov/gpm). Data services that are currently and to-be available include Google-like Mirador (http://mirador.gsfc.nasa.gov/) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http://giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time aggregation; regridding

  14. Global Precipitation Measurement (GPM) Mission: Precipitation Processing System (PPS) GPM Mission Gridded Text Products Provide Surface Precipitation Retrievals

    Science.gov (United States)

    Stocker, Erich Franz; Kelley, O.; Kummerow, C.; Huffman, G.; Olson, W.; Kwiatkowski, J.

    2015-01-01

    In February 2015, the Global Precipitation Measurement (GPM) mission core satellite will complete its first year in space. The core satellite carries a conically scanning microwave imager called the GPM Microwave Imager (GMI), which also has 166 GHz and 183 GHz frequency channels. The GPM core satellite also carries a dual frequency radar (DPR) which operates at Ku frequency, similar to the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar, and a new Ka frequency. The precipitation processing system (PPS) is producing swath-based instantaneous precipitation retrievals from GMI, both radars including a dual-frequency product, and a combined GMIDPR precipitation retrieval. These level 2 products are written in the HDF5 format and have many additional parameters beyond surface precipitation that are organized into appropriate groups. While these retrieval algorithms were developed prior to launch and are not optimal, these algorithms are producing very creditable retrievals. It is appropriate for a wide group of users to have access to the GPM retrievals. However, for researchers requiring only surface precipitation, these L2 swath products can appear to be very intimidating and they certainly do contain many more variables than the average researcher needs. Some researchers desire only surface retrievals stored in a simple easily accessible format. In response, PPS has begun to produce gridded text based products that contain just the most widely used variables for each instrument (surface rainfall rate, fraction liquid, fraction convective) in a single line for each grid box that contains one or more observations.This paper will describe the gridded data products that are being produced and provide an overview of their content. Currently two types of gridded products are being produced: (1) surface precipitation retrievals from the core satellite instruments GMI, DPR, and combined GMIDPR (2) surface precipitation retrievals for the partner constellation

  15. Mapping global health research investments, time for new thinking--a Babel Fish for research data.

    Science.gov (United States)

    Terry, Robert F; Allen, Liz; Gardner, Charles A; Guzman, Javier; Moran, Mary; Viergever, Roderik F

    2012-09-01

    Today we have an incomplete picture of how much the world is spending on health and disease-related research and development (R&D). As such it is difficult to align, or even begin to coordinate, health R&D investments with international public health priorities. Current efforts to track and map global health research investments are complex, resource-intensive, and caveat-laden. An ideal situation would be for all research funding to be classified using a set of common standards and definitions. However, the adoption of such a standard by everyone is not a realistic, pragmatic or even necessary goal. It is time for new thinking informed by the innovations in automated online translation - e.g. Yahoo's Babel Fish. We propose a feasibility study to develop a system that can translate and map the diverse research classification systems into a common standard, allowing the targeting of scarce research investments to where they are needed most.

  16. Mapping global health research investments, time for new thinking - A Babel Fish for research data

    Science.gov (United States)

    2012-01-01

    Today we have an incomplete picture of how much the world is spending on health and disease-related research and development (R&D). As such it is difficult to align, or even begin to coordinate, health R&D investments with international public health priorities. Current efforts to track and map global health research investments are complex, resource-intensive, and caveat-laden. An ideal situation would be for all research funding to be classified using a set of common standards and definitions. However, the adoption of such a standard by everyone is not a realistic, pragmatic or even necessary goal. It is time for new thinking informed by the innovations in automated online translation - e.g. Yahoo's Babel Fish. We propose a feasibility study to develop a system that can translate and map the diverse research classification systems into a common standard, allowing the targeting of scarce research investments to where they are needed most. PMID:22938160

  17. Knowledge Map of Facilities Management

    DEFF Research Database (Denmark)

    Nenonen, Suvi; Jensen, Per Anker; Lindahl, Göran

    2014-01-01

    both the research community and FM-practitioners can develop new models for identifying knowledge needs and gaps and to improve knowledge sharing and knowledge flow and thus the fulfilment of their mission and goals. Knowledge maps can also help in organizing research activities and analysing......Purpose This paper aims to draft a knowledge map of the fragmented and multidisciplinary research of and relevant to FM. Facilities management knowledge map is a tool for presenting what relevant data and knowledge, a.k.a. knowledge, resides in different disciplines. Knowledge mapping is a step...... in creating an inventory of knowledge (i.e. the knowledge base) and developing/improving the processes of knowledge sharing in research, education and practice. Theory Knowledge mapping is discussed in terms of knowledge management. The research is connected to knowledge mapping in the facilities management...

  18. GEMMP - A Google Maps Enabled Mobile Mission Planning Tool for Autonomous Underwater Vehicles

    OpenAIRE

    Steven Seeley; Ramprasad Balasubramanian

    2012-01-01

    Many applications for mobile robotics involve operations in remote, outdoor environments. In these environments, it can be difficult to plan missions dynamically due to the lack of portability of existing mission planning software. Mobile platforms allow access to the Web from nearly anywhere while other features, like touch interfaces, simplify user interaction, and GPS integration allows developers and users to take advantage to location-based services. In this paper, we describe a prototype...

  19. Rapid-response flood mapping during Hurricanes Harvey, Irma and Maria by the Global Flood Partnership (GFP)

    Science.gov (United States)

    Cohen, S.; Alfieri, L.; Brakenridge, G. R.; Coughlan, E.; Galantowicz, J. F.; Hong, Y.; Kettner, A.; Nghiem, S. V.; Prados, A. I.; Rudari, R.; Salamon, P.; Trigg, M.; Weerts, A.

    2017-12-01

    The Global Flood Partnership (GFP; https://gfp.jrc.ec.europa.eu) is a multi-disciplinary group of scientists, operational agencies and flood risk managers focused on developing efficient and effective global flood management tools. Launched in 2014, its aim is to establish a partnership for global flood forecasting, monitoring and impact assessment to strengthen preparedness and response and to reduce global disaster losses. International organizations, the private sector, national authorities, universities and research agencies contribute to the GFP on a voluntary basis and benefit from a global network focused on flood risk reduction. At the onset of Hurricane Harvey, GFP was `activated' using email requests via its mailing service. Soon after, flood inundation maps, based on remote sensing analysis and modeling, were shared by different agencies, institutions, and individuals. These products were disseminated, to varying degrees of effectiveness, to federal, state and local agencies via emails and data-sharing services. This generated a broad data-sharing network which was utilized at the early stages of Hurricane Irma's impact, just two weeks after Harvey. In this presentation, we will describe the extent and chronology of the GFP response to both Hurricanes Harvey, Irma and Maria. We will assess the potential usefulness of this effort for event managers in various types of organizations and discuss future improvements to be implemented.

  20. The new worlds observer: The astrophysics strategic mission concept study

    Directory of Open Access Journals (Sweden)

    Cash W.

    2011-07-01

    Full Text Available We present some results of the Astrophysics Strategic Mission Concept Study for the New Worlds Observer (NWO. We show that the use of starshades is the most effective and affordable path to mapping and understanding our neighboring planetary systems, to opening the search for life outside our solar system, while serving the needs of the greater astronomy community. A starshade-based mission can be implemented immediately with a near term program of technology demonstration.

  1. Ordered and isomorphic mapping of periodic structures in the parametrically forced logistic map

    Energy Technology Data Exchange (ETDEWEB)

    Maranhão, Dariel M., E-mail: dariel@ifsp.edu.br [Departamento de Ciências e Matemática, Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, São Paulo (Brazil); Diretoria de Informática, Universidade Nove de Julho, São Paulo (Brazil)

    2016-09-23

    Highlights: • A direct description of the internal structure of a periodic window in terms of winding numbers is proposed. • Periodic structures in parameter spaces are mapped in a recurrent and isomorphic way. • Sequences of winding numbers show global and local organization of periodic domains. - Abstract: We investigate the periodic domains found in the parametrically forced logistic map, the classical logistic map when its control parameter changes dynamically. Phase diagrams in two-parameter spaces reveal intricate periodic structures composed of patterns of intersecting superstable orbits curves, defining the cell of a periodic window. Cells appear multifoliated and ordered, and they are isomorphically mapped when one changes the map parameters. Also, we identify the characteristics of simplest cell and apply them to other more complex, discussing how the topography on parameter space is affected. By use of the winding number as defined in periodically forced oscillators, we show that the hierarchical organization of the periodic domains is manifested in global and local scales.

  2. Okeanos Explorer (EX1602): Mission System Shakedown/CAPSTONE Mapping

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Operations will use the ship’s deep water mapping systems (Kongsberg EM302 multibeam sonar, EK60 split-beam fisheries sonars, Knudsen 3260 chirp sub-bottom...

  3. Mission-directed path planning for planetary rover exploration

    Science.gov (United States)

    Tompkins, Paul

    2005-07-01

    Robotic rovers uniquely benefit planetary exploration---they enable regional exploration with the precision of in-situ measurements, a combination impossible from an orbiting spacecraft or fixed lander. Mission planning for planetary rover exploration currently utilizes sophisticated software for activity planning and scheduling, but simplified path planning and execution approaches tailored for localized operations to individual targets. This approach is insufficient for the investigation of multiple, regionally distributed targets in a single command cycle. Path planning tailored for this task must consider the impact of large scale terrain on power, speed and regional access; the effect of route timing on resource availability; the limitations of finite resource capacity and other operational constraints on vehicle range and timing; and the mutual influence between traverses and upstream and downstream stationary activities. Encapsulating this reasoning in an efficient autonomous planner would allow a rover to continue operating rationally despite significant deviations from an initial plan. This research presents mission-directed path planning that enables an autonomous, strategic reasoning capability for robotic explorers. Planning operates in a space of position, time and energy. Unlike previous hierarchical approaches, it treats these dimensions simultaneously to enable globally-optimal solutions. The approach calls on a near incremental search algorithm designed for planning and re-planning under global constraints, in spaces of higher than two dimensions. Solutions under this method specify routes that avoid terrain obstacles, optimize the collection and use of rechargable energy, satisfy local and global mission constraints, and account for the time and energy of interleaved mission activities. Furthermore, the approach efficiently re-plans in response to updates in vehicle state and world models, and is well suited to online operation aboard a robot

  4. Practical indoor mobile robot navigation using hybrid maps

    DEFF Research Database (Denmark)

    Özkil, Ali Gürcan; Fan, Zhun; Xiao, Jizhong

    2011-01-01

    This paper presents a practical navigation scheme for indoor mobile robots using hybrid maps. The method makes use of metric maps for local navigation and a topological map for global path planning. Metric maps are generated as 2D occupancy grids by a range sensor to represent local information...... about partial areas. The global topological map is used to indicate the connectivity of the 'places-of-interests' in the environment and the interconnectivity of the local maps. Visual tags on the ceiling to be detected by the robot provide valuable information and contribute to reliable localization...... robot and evaluated in a hospital environment....

  5. Establishing a Supervised Classification of Global Blue Carbon Mangrove Ecosystems

    Science.gov (United States)

    Baltezar, P.

    2016-12-01

    Understanding change in mangroves over time will aid forest management systems working to protect them from over exploitation. Mangroves are one of the most carbon dense terrestrial ecosystems on the planet and are therefore a high priority for sustainable forest management. Although they represent 1% of terrestrial cover, they could account for about 10% of global carbon emissions. The foundation of this analysis uses remote sensing to establish a supervised classification of mangrove forests for discrete regions in the Zambezi Delta of Mozambique and the Rufiji Delta of Tanzania. Open-source mapping platforms provided a dynamic space for analyzing satellite imagery in the Google Earth Engine (GEE) coding environment. C-Band Synthetic Aperture Radar data from Sentinel 1 was used in the model as a mask by optimizing SAR parameters. Exclusion metrics identified within Global Land Surface Temperature data from MODIS and the Shuttle Radar Topography Mission were used to accentuate mangrove features. Variance was accounted for in exclusion metrics by statistically calculating thresholds for radar, thermal, and elevation data. Optical imagery from the Landsat 8 archive aided a quality mosaic in extracting the highest spectral index values most appropriate for vegetative mapping. The enhanced radar, thermal, and digital elevation imagery were then incorporated into the quality mosaic. Training sites were selected from Google Earth imagery and used in the classification with a resulting output of four mangrove cover map models for each site. The model was assessed for accuracy by observing the differences between the mangrove classification models to the reference maps. Although the model was over predicting mangroves in non-mangrove regions, it was more accurately classifying mangrove regions established by the references. Future refinements will expand the model with an objective degree of accuracy.

  6. The Spartan 1 mission

    Science.gov (United States)

    Cruddace, Raymond G.; Fritz, G. G.; Shrewsberry, D. J.; Brandenstein, D. J.; Creighton, D. C.; Gutschewski, G.; Lucid, S. W.; Nagel, J. M.; Fabian, J. M.; Zimmerman, D.

    1989-01-01

    The first Spartan mission is documented. The Spartan program, an outgrowth of a joint Naval Research Laboratory (NRL)/National Aeronautics and Space Administration (NASA)-Goddard Space Flight Center (GSFC) development effort, was instituted by NASA for launching autonomous, recoverable payloads from the space shuttle. These payloads have a precise pointing system and are intended to support a wide range of space-science observations and experiments. The first Spartan, carrying an NRL X-ray astronomy instrument, was launched by the orbiter Discovery (STS51G) on June 20, 1985 and recovered successfully 45 h later, on June 22. During this period, Spartan 1 conducted a preprogrammed series of observations of two X-ray sources: the Perseus cluster of galaxies and the center of our galaxy. The mission was successful from both on engineering and a scientific viewpoint. Only one problem was encountered, the attitude control system (ACS) shut down earlier than planned because of high attitude control system gas consumption. A preplanned emergency mode then placed Spartan 1 into a stable, safe condition and allowed a safe recovery. The events are described of the mission and presents X-ray maps of the two observed sources, which were produced from the flight data.

  7. Global trends in research related to social media in psychology: mapping and bibliometric analysis.

    Science.gov (United States)

    Zyoud, Sa'ed H; Sweileh, Waleed M; Awang, Rahmat; Al-Jabi, Samah W

    2018-01-01

    Social media, defined as interactive Web applications, have been on the rise globally, particularly among adults. The objective of this study was to investigate the trend of the literature related to the most used social network worldwide (i.e. Facebook, Twitter, LinkedIn, Snapchat, and Instagram) in the field of psychology. Specifically, this study will assess the growth in publications, citation analysis, international collaboration, author productivity, emerging topics and the mapping of frequent terms in publications pertaining to social media in the field of psychology. Publications related to social media in the field of psychology published between 2004 and 2014 were obtained from the Web of Science. The records extracted were analysed for bibliometric characteristics such as the growth in publications, citation analysis, international collaboration, emerging topics and the mapping of frequent terms in publications pertaining to social media in the field of psychology. VOSviewer v.1.6.5 was used to construct scientific maps. Overall, 959 publications were retrieved during the period between 2004 and 2015. The number of research publications in social media in the field of psychology showed a steady upward growth. Publications from the USA accounted for 57.14% of the total publications and the highest h -index (48).The most common document type was research articles (873; 91.03%). Over 99.06% of the publications were published in English. Computers in Human Behavior was the most prolific journal. The University of Wisconsin - Madison ranked first in terms of the total publications (n = 39). A visualisation analysis showed that personality psychology, experimental psychology, psychological risk factors, and developmental psychology were continual concerns of the research. This is the first study reporting the global trends in the research related to social media in the psychology field. Based on the raw data from the Web of Science, publication

  8. SPHEREx: Playing Nicely with Other Missions

    Science.gov (United States)

    Werner, Michael; SPHEREx Science Team

    2018-01-01

    SPHEREx, a mission in NASA's Medium Explorer (MIDEX) program that was selected for a competitive Phase A study in August 2017, is an all-sky survey satellite designed to address all three science goals of NASA's Astrophysics Division. SPHEREx is a wide-field spectral imager, and it would produce the first all-sky near-infrared spectral survey, using a passively cooled telescope with a wide field-of-view for large mapping speed. The SPHEREx spectra would have resolving power R=41 at wavelengths from 0.75 to 4.2um, and R=135 from 4.2 to 5um. The spectra resolution is provided by Linear Variable Filters placed directly over the four SPHEREx H2RG detector arrays. SPHEREx would be sensitive enough to obtain spectra of essentially all near-infrared sources from the WISE survey. During its two-year mission, SPHEREx, to be launched in 2022, would produce four complete all-sky spectral maps that would serve as a rich archive for the astronomy community.SPHEREx would be tremendously synergistic with numerous other missions and facilities [NASA and non-NASA] which will be operating in the coming decade. SPHEREx observations could pick out the most promising and exciting targets for investigation from JWST. From the opposite perspective, SPHEREx statistical samples could be used to refine the conclusions derived from JWST’s indepth studies of a few members of an interesting class of objects. SPHEREx and GAIA spectrophotometry, incorporating photometry from WISE and GALEX as well as GAIA astrometry, could lead to the determination of the radii of main sequence stars, and their transiting exoplanets discovered by TESS, with 1% accuracy. SPHEREx low redshift spectra of millions of galaxies could be used to validate and calibrate the photometric nredshift scale being adopted by WFIRST and Euclid, improving the precision of the dark energy measures being returned by those missions. The poster will briefly address SPHEREx synergisms with these and other missions ranging from LSST

  9. Global Warming: Discussion for EOS Science Writers Workshop

    Science.gov (United States)

    Hansen, James E

    1999-01-01

    The existence of global warming this century is no longer an issue of scientific debate. But there are many important questions about the nature and causes of long-term climate change, th roles of nature and human-made climate forcings and unforced (chaotic) climate variability, the practical impacts of climate change, and what, if anything, should be done to reduce global warming, Global warming is not a uniform increase of temperature, but rather involves at complex geographically varying climate change. Understanding of global warming will require improved observations of climate change itself and the forcing factors that can lead to climate change. The NASA Terra mission and other NASA Earth Science missions will provide key measurement of climate change and climate forcings. The strategy to develop an understanding of the causes and predictability of long-term climate change must be based on combination of observations with models and analysis. The upcoming NASA missions will make important contributions to the required observations.

  10. The Role of Geologic Mapping in NASA PDSI Planning

    Science.gov (United States)

    Williams, D. A.; Skinner, J. A.; Radebaugh, J.

    2017-12-01

    Geologic mapping is an investigative process designed to derive the geologic history of planetary objects at local, regional, hemispheric or global scales. Geologic maps are critical products that aid future exploration by robotic spacecraft or human missions, support resource exploration, and provide context for and help guide scientific discovery. Creation of these tools, however, can be challenging in that, relative to their terrestrial counterparts, non-terrestrial planetary geologic maps lack expansive field-based observations. They rely, instead, on integrating diverse data types wth a range of spatial scales and areal coverage. These facilitate establishment of geomorphic and geologic context but are generally limited with respect to identifying outcrop-scale textural details and resolving temporal and spatial changes in depositional environments. As a result, planetary maps should be prepared with clearly defined contact and unit descriptions as well as a range of potential interpretations. Today geologic maps can be made from images obtained during the traverses of the Mars rovers, and for every new planetary object visited by NASA orbital or flyby spacecraft (e.g., Vesta, Ceres, Titan, Enceladus, Pluto). As Solar System Exploration develops and as NASA prepares to send astronauts back to the Moon and on to Mars, the importance of geologic mapping will increase. In this presentation, we will discuss the past role of geologic mapping in NASA's planetary science activities and our thoughts on the role geologic mapping will have in exploration in the coming decades. Challenges that planetary mapping must address include, among others: 1) determine the geologic framework of all Solar System bodies through the systematic development of geologic maps at appropriate scales, 2) develop digital Geographic Information Systems (GIS)-based mapping techniques and standards to assist with communicating map information to the scientific community and public, 3) develop

  11. Stochasticity in the Josephson map

    International Nuclear Information System (INIS)

    Nomura, Y.; Ichikawa, Y.H.; Filippov, A.T.

    1996-04-01

    The Josephson map describes nonlinear dynamics of systems characterized by standard map with the uniform external bias superposed. The intricate structures of the phase space portrait of the Josephson map are examined on the basis of the tangent map associated with the Josephson map. Numerical observation of the stochastic diffusion in the Josephson map is examined in comparison with the renormalized diffusion coefficient calculated by the method of characteristic function. The global stochasticity of the Josephson map occurs at the values of far smaller stochastic parameter than the case of the standard map. (author)

  12. THE GLOBAL TANDEM-X DEM: PRODUCTION STATUS AND FIRST VALIDATION RESULTS

    Directory of Open Access Journals (Sweden)

    M. Huber

    2012-07-01

    Full Text Available The TanDEM-X mission will derive a global digital elevation model (DEM with satellite SAR interferometry. Two radar satellites (TerraSAR-X and TanDEM-X will map the Earth in a resolution and accuracy with an absolute height error of 10m and a relative height error of 2m for 90% of the data. In order to fulfill the height requirements in general two global coverages are acquired and processed. Besides the final TanDEM-X DEM, an intermediate DEM with reduced accuracy is produced after the first coverage is completed. The last step in the whole workflow for generating the TanDEM-X DEM is the calibration of remaining systematic height errors and the merge of single acquisitions to 1°x1° DEM tiles. In this paper the current status of generating the intermediate DEM and first validation results based on GPS tracks, laser scanning DEMs, SRTM data and ICESat points are shown for different test sites.

  13. The Double Star mission

    Directory of Open Access Journals (Sweden)

    Liu

    2005-11-01

    Full Text Available The Double Star Programme (DSP was first proposed by China in March, 1997 at the Fragrant Hill Workshop on Space Science, Beijing, organized by the Chinese Academy of Science. It is the first mission in collaboration between China and ESA. The mission is made of two spacecraft to investigate the magnetospheric global processes and their response to the interplanetary disturbances in conjunction with the Cluster mission. The first spacecraft, TC-1 (Tan Ce means "Explorer", was launched on 29 December 2003, and the second one, TC-2, on 25 July 2004 on board two Chinese Long March 2C rockets. TC-1 was injected in an equatorial orbit of 570x79000 km altitude with a 28° inclination and TC-2 in a polar orbit of 560x38000 km altitude. The orbits have been designed to complement the Cluster mission by maximizing the time when both Cluster and Double Star are in the same scientific regions. The two missions allow simultaneous observations of the Earth magnetosphere from six points in space. To facilitate the comparison of data, half of the Double Star payload is made of spare or duplicates of the Cluster instruments; the other half is made of Chinese instruments. The science operations are coordinated by the Chinese DSP Scientific Operations Centre (DSOC in Beijing and the European Payload Operations Service (EPOS at RAL, UK. The spacecraft and ground segment operations are performed by the DSP Operations and Management Centre (DOMC and DSOC in China, using three ground station, in Beijing, Shanghai and Villafranca.

  14. First Jason-1 and OSTM/Jason-2 Tandem Global View

    Science.gov (United States)

    2009-01-01

    This is the first global map of ocean surface topography produced with data from the new interleaved tandem mission of the Jason-1 and Ocean Surface Topography Mission (OSTM)/Jason-2 satellites. In January 2009, Jason-1 was maneuvered into orbit on the opposite side of Earth from its successor, OSTM/Jason-2 satellite. It takes 10 days for the satellites to cover the globe and return to any one place over the ocean. So, in this new tandem configuration, Jason-1 flies over the same region of the ocean that OSTM/Jason-2 flew over five days earlier. Its ground tracks fall mid-way between those of Jason-2, which are about 315 kilometers (195 miles) apart at the equator. Working together, the two spacecraft measure the surface topography of the ocean twice as often as would be possible with one satellite, and over a 10-day period, they return twice the amount of detailed measurements. Combining data from the two satellites makes it possible to map smaller, more rapidly changing features than one satellite could alone. This image shows sea-level anomaly data from the first 14 days of the interleaved orbit of Jason-1 and OSTM/Jason-2, the period beginning on Feb. 20, 2009. An anomaly is a departure from a value averaged over a long period of time. Red and yellow are regions where sea levels are higher than normal. Purple and dark blue show where sea levels are lower. A higher-than-normal sea surface is usually a sign of warm waters below, while lower sea levels indicate cooler than normal temperatures. The small-sized patches of highs and lows are ocean eddies, the storms of ocean weather that carry most of the energy of ocean circulation. These are not well observed with only one satellite. Jason-1 is a joint mission of NASA and the French space agency, CNES. The U.S. portion of the Jason-1 mission is managed by JPL for NASA's Science Mission Directorate, Washington, D.C. OSTM/Jason 2 is an international endeavor with responsibility for satellite development and launch

  15. Political Globalization and Foreign Direct Investment Inflows in Turkey

    Directory of Open Access Journals (Sweden)

    Cem Doğan

    2016-06-01

    Full Text Available This article examines the impact of political globalization on foreign direct investment inflows to Turkey. Existence of foreign missions in a country, membership in international organizations, participation in U.N. Security Council Missions, and International Treaties are all seen as indicators political globalization. Using different econometric techniques, this study aims to find out whether any empirical relationship between political globalization and FDI exists. The analysis in this article covers the period in Turkey between 1970-2012. The results of cointegration analysis provide no an evidence of a long-run or short run any relationship political globalization and FDI.

  16. Indexing, screening, coding and cataloging of earth resources aircraft mission data

    Science.gov (United States)

    1977-01-01

    Tasks completed are as follows: (1) preparation of large Area Crop Inventory experiment for data base entry;(2) preparation of Earth Observations Aircraft Flight summary reports for publication; (3) updating of the aircraft mission index coverage map and Ames aircraft flight map; (4) Prepared of Earth Observation Helicopter Flight reports for publication; and (5) indexing of LANDSAT imagery. (6) formulation of phase 3 biowindows 1, 2, 3, and 4 listings by country, footprint, and acqusition dates; (7) preparation of flight summary reports; and (8) preparation of an Alaska state index coverage map.

  17. The Lunar Reconnaissance Orbiter, a Planning Tool for Missions to the Moon

    Science.gov (United States)

    Keller, J. W.; Petro, N. E.

    2017-12-01

    The Lunar Reconnaissance Orbiter Mission was conceived as a one year exploration mission to pave the way for a return to the lunar surface, both robotically and by humans. After a year in orbit LRO transitioned to a science mission but has operated in a duel role of science and exploration ever since. Over the years LRO has compiled a wealth of data that can and is being used for planning future missions to the Moon by NASA, other national agencies and by private enterprises. While collecting this unique and unprecedented data set, LRO's science investigations have uncovered new questions that motivate new missions and targets. Examples include: when did volcanism on the Moon cease, motivating a sample return mission from an irregular mare patch such as Ina-D; or, is there significant water ice sequestered near the poles outside of the permanently shaded regions? In this presentation we will review the data products, tools and maps that are available for mission planning, discuss how the operating LRO mission can further enhance future missions, and suggest new targets motivated by LRO's scientific investigations.

  18. Using a Mixed Methods Content Analysis to Analyze Mission Statements from Colleges of Engineering

    Science.gov (United States)

    Creamer, Elizabeth G.; Ghoston, Michelle

    2013-01-01

    A mixed method design was used to conduct a content analysis of the mission statements of colleges of engineering to map inductively derived codes with the EC 2000 outcomes and to test if any of the codes were significantly associated with institutions with reasonably strong representation of women. Most institution's (25 of 48) mission statement…

  19. The GMES Sentinel-5 mission for operational atmospheric monitoring: status and developments

    Science.gov (United States)

    Sierk, Bernd; Bezy, Jean-Loup; Caron, Jerôme; Meynard, Roland; Veihelmann, Ben; Ingmann, Paul

    2017-11-01

    Sentinel-5 is an atmospheric monitoring mission planned in the frame of the joint EU/ESA initiative Global Monitoring for Environment and Security (GMES). The objective of the mission, planned to be launched in 2020, is the operational monitoring of trace gas concentrations for atmospheric chemistry and climate applications.

  20. The role of extreme orbits in the global organization of periodic regions in parameter space for one dimensional maps

    Science.gov (United States)

    da Costa, Diogo Ricardo; Hansen, Matheus; Guarise, Gustavo; Medrano-T, Rene O.; Leonel, Edson D.

    2016-04-01

    We show that extreme orbits, trajectories that connect local maximum and minimum values of one dimensional maps, play a major role in the parameter space of dissipative systems dictating the organization for the windows of periodicity, hence producing sets of shrimp-like structures. Here we solve three fundamental problems regarding the distribution of these sets and give: (i) their precise localization in the parameter space, even for sets of very high periods; (ii) their local and global distributions along cascades; and (iii) the association of these cascades to complicate sets of periodicity. The extreme orbits are proved to be a powerful indicator to investigate the organization of windows of periodicity in parameter planes. As applications of the theory, we obtain some results for the circle map and perturbed logistic map. The formalism presented here can be extended to many other different nonlinear and dissipative systems.

  1. A Globally Stable Lyapunov Pointing and Rate Controller for the Magnetospheric MultiScale Mission (MMS)

    Science.gov (United States)

    Shah, Neerav

    2011-01-01

    The Magnetospheric MultiScale Mission (MMS) is scheduled to launch in late 2014. Its primary goal is to discover the fundamental plasma physics processes of reconnection in the Earth's magnetosphere. Each of the four MMS spacecraft is spin-stabilized at a nominal rate of 3 RPM. Traditional spin-stabilized spacecraft have used a number of separate modes to control nutation, spin rate, and precession. To reduce the number of modes and simplify operations, the Delta-H control mode is designed to accomplish nutation control, spin rate control, and precession control simultaneously. A nonlinear design technique, Lyapunov's method, is used to design the Delta-H control mode. A global spin rate controller selected as the baseline controller for MMS, proved to be insufficient due to an ambiguity in the attitude. Lyapunov's design method was used to solve this ambiguity, resulting in a controller that meets the design goals. Simulation results show the advantage of the pointing and rate controller for maneuvers larger than 90 deg and provide insight into the performance of this controller.

  2. Trust: The Key to the Success of Mission Command in the Joint Force

    Science.gov (United States)

    2015-05-18

    Malaysia , Kuala Lumpur: International Conference on ISO9000. Schmidt, Todd A. “Design, Mission Command and the Network: Enabling Organization...trust.pdf. Steele , Dennis. “Setting the Azimuth for Joint Force 2020: Globally Integrated Operations and Mission Command.” Army Magazine, November

  3. Early Calibration Results of CYGNSS Mission

    Science.gov (United States)

    Balasubramaniam, R.; Ruf, C. S.; McKague, D. S.; Clarizia, M. P.; Gleason, S.

    2017-12-01

    The first of its kind, GNSS-R complete orbital mission, CYGNSS was successfully launched on Dec 15 2016. The goal of this mission is to accurately forecast the intensification of tropical cyclones by modelling its inner core. The 8 micro observatories of CYGNSS carry a passive instrument called Delay Doppler Mapping Instrument (DDMI). The DDMIs form a 2D representation called the Delay-Doppler Map (DDM) of the forward scattered power signal. Each DDMI outputs 4 DDMs per second which are compressed and sent to the ground resulting in a total of 32 sea-surface measurements produced by the CYGNSS constellation per second. These are subsequently used in the Level-2 wind retrieval algorithm to extract wind speed information. In this paper, we perform calibration and validation of CYGNSS measurements for accurate extraction of wind speed information. The calibration stage involves identification and correction for dependence of the CYGNSS observables namely Normalised Bistatic Radar Cross Section and Leading Edge Slope of the Integrated Delay Waveform over instrument parameters, geometry etc. The validation stage involves training of the Geophysical Model Function over a multitude of ground truth sources during the Atlantic hurricane season and also refined validation of high wind speed data products.

  4. Energetic neutral atom and interstellar flow observations with IBEX: Implications for the global heliosphere

    Energy Technology Data Exchange (ETDEWEB)

    Schwadron, N. A., E-mail: nschwadron@unh.edu [University of New Hampshire, Durham NH, 03824 (United States); Southwest Research Institute, San Antonio, TX, 78238 (United States); McComas, D. J.; Desai, M. I.; Fuselier, S. A. [Southwest Research Institute, San Antonio, TX, 78238 (United States); University of Texas, San Antonio, TX, 78249 (United States); Christian, E. R. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Funsten, H. O. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Moebius, E. [University of New Hampshire, Durham NH, 03824 (United States); Reno, M.; Scherrer, J.; Zirnstein, E. [Southwest Research Institute, San Antonio, TX, 78238 (United States)

    2016-03-25

    Since launch in Oct. 2008, IBEX, with its two energetic neutral atom (ENA) cameras, has provided humankind with the first-ever global images of the complex boundary separating the heliosphere from the local interstellar medium (LISM). IBEX’s energy-resolved all-sky maps, collected every six months, are yielding remarkable new insights into the heliospheres structure as it is shaped by the combined forces of the local interstellar flow, the local interstellar magnetic field (LISMF), and the evolving solar wind. IBEX has also acquired the first images of ENAs backscattered from the surface of the moon as well as global images of the magnetospheric response to solar wind disturbances. IBEX thus addresses all three Heliophysics science objectives set forth in the 2014 Science Plan for NASAs Science Mission Directorate (SMD) as well as the goals in the recent Solar and Space Physics Decadal Survey (NRC 2012). In addition, with the information it provides on the properties of the LISM and the LISMF, IBEX represents a unique bridge between heliophysics and astrophysics, and fills in critical knowledge for understanding the habitability of exoplanetary systems and the future habitability of Earth and the solar system. Because of the few-year time lag due to solar wind and ENA transport, IBEX observed the solar wind/ LISM interaction characteristic of declining phase/solar minimum conditions. In the continuing mission, IBEX captures the response of the interstellar boundaries to the changing structure of the solar wind in its transition toward the “mini” solar maximum and possibly the decline into the next solar minimum. The continuing IBEX mission affords never-to-be-repeated opportunities to coordinate global imaging of the heliospheric boundary with in-situ measurements by the Voyagers as they pass beyond the heliopause and start to directly sample the LISM.

  5. FORMOSAT-3/COSMIC Spacecraft Constellation System, Mission Results, and Prospect for Follow-On Mission

    Directory of Open Access Journals (Sweden)

    Chen-Joe Fong

    2009-01-01

    Full Text Available The FORMOSAT-3/COSMIC spacecraft constellation consisting of six LEO satellites is the world's first operational GPS Radio Occultation (RO mission. The mission is jointly developed by Taiwan¡¦s National Space Organization (NSPO and the United States¡¦UCAR in collaboration with NSF, USAF, NOAA, NASA, NASA's Jet Propulsion Laboratory, and the US Naval Research Laboratory. The FORMOSAT-3/COSMIC satellites were successfully launched from Vandenberg US AFB in California at 0140 UTC 15 April 2006 into the same orbit plane of the designated 516 km altitude. The mission goal is to deploy the six satellites into six orbit planes at 800 km altitude with a 30-degree separation for evenly distributed global coverage. All six FORMOSAT-3/COSMIC satellites are currently maintaining a satisfactory good state-of-health. Five out of six satellites have reached their final mission orbit of 800 km as of November 2007. The data as received by FORMOSAT-3/COSMIC satellites constellation have been processed in near real time into 2500 good ionospheric profiles and 1800 good atmospheric profiles per day. These have outnumbered the worldwide radiosondes (~900 mostly over land launched from the ground per day. The processed atmospheric RO data have been assimilated into the Numerical Weather Prediction (NWP models for real-time weather prediction and typhoon/hurricane forecasting by many major weather centers in the world. This paper describes the FORMOSAT-3/COSMIC satellite constellation system performance and the mission results that span the period from April 2006 to October 2007; and reviews the prospect of a future follow-on mission.

  6. A Lithology Based Map Unit Schema For Onegeology Regional Geologic Map Integration

    Science.gov (United States)

    Moosdorf, N.; Richard, S. M.

    2012-12-01

    A system of lithogenetic categories for a global lithological map (GLiM, http://www.ifbm.zmaw.de/index.php?id=6460&L=3) has been compiled based on analysis of lithology/genesis categories for regional geologic maps for the entire globe. The scheme is presented for discussion and comment. Analysis of units on a variety of regional geologic maps indicates that units are defined based on assemblages of rock types, as well as their genetic type. In this compilation of continental geology, outcropping surface materials are dominantly sediment/sedimentary rock; major subdivisions of the sedimentary category include clastic sediment, carbonate sedimentary rocks, clastic sedimentary rocks, mixed carbonate and clastic sedimentary rock, colluvium and residuum. Significant areas of mixed igneous and metamorphic rock are also present. A system of global categories to characterize the lithology of regional geologic units is important for Earth System models of matter fluxes to soils, ecosystems, rivers and oceans, and for regional analysis of Earth surface processes at global scale. Because different applications of the classification scheme will focus on different lithologic constituents in mixed units, an ontology-type representation of the scheme that assigns properties to the units in an analyzable manner will be pursued. The OneGeology project is promoting deployment of geologic map services at million scale for all nations. Although initial efforts are commonly simple scanned map WMS services, the intention is to move towards data-based map services that categorize map units with standard vocabularies to allow use of a common map legend for better visual integration of the maps (e.g. see OneGeology Europe, http://onegeology-europe.brgm.fr/ geoportal/ viewer.jsp). Current categorization of regional units with a single lithology from the CGI SimpleLithology (http://resource.geosciml.org/201202/ Vocab2012html/ SimpleLithology201012.html) vocabulary poorly captures the

  7. The Role of Public Interaction with the Juno Mission: Contextual Information about the Atmosphere and Target Selection for the JunoCam

    Science.gov (United States)

    Orton, G. S.; Hansen, C. J.; Momary, T.; Bolton, S. J.

    2016-12-01

    Among the many "firsts" of the Juno mission is the open enlistment of the public in the operation of its visible camera, JunoCam. Although the scientific thrust of the Juno mission is largely focused on innovative approaches to understanding the structure and composition of the interior of Jupiter, JunoCam was added to the payload largely to function in the role of education and public outreach (E/PO). For the first time, the public will be able to engage in the discussion and choice of targets for a major NASA mission, other than two images of Jupiter's polar regions that will be made on each orbit. The discussion about which "electable" features to image is enabled by a continuously updated map of Jupiter's cloud system while Jupiter is far enough from the sun to be observable by the amateur community. This map is created bi-weekly from a set of images uploaded by a world-wide network of amateur astronomers, ranging from very devoted astrophotographers to telescope and video `hobbyists'. Juno therefore engages the world-wide amateur-astronomy community as a vast network of co-investigators, whose products stimulate conversation and global public awareness of Jupiter and Juno's investigative role. Contributed images also provide a temporal context to inform the Juno atmospheric investigation team of the state and evolution of the atmosphere. These bi-weekly maps provide the focus for ongoing discussion about various planetary features over a long time frame. Approximately two weeks before Juno's closest approach to Jupiter on each orbit, starting in mid-November of 2016, the atmospheric features that have been under discussion and will be in the field of view of the instrument nominated for voting, and the public will vote on where to point JunoCam's "elective" features (each orbit will otherwise image the north polar region and south polar region from a non-oblique viewpoint for the first time in over 40 years since the passage of Pioneer 11. The Juno mission

  8. ESA strategy for human exploration and the Lunar Lander Mission

    Science.gov (United States)

    Gardini, B.

    As part of ESAs Aurora Exploration programme, the Agency has defined, since 2001, a road map for exploration in which, alongside robotic exploration missions, the International Space Station (ISS) and the Moon play an essential role on the way to other destinations in the Solar System, ultimately to a human mission to Mars in a more distant future. In the frame of the Human Spaceflight programme the first European Lunar Lander Mission, with a launch date on 2018, has been defined, targeting the lunar South Pole region to capitalize on unique illumination conditions and provide the opportunity to carry out scientific investigations in a region of the Moon not explored so far. The Phase B1 industrial study, recently initiated, will consolidate the mission design and prepare the ground for the approval of the full mission development phase at the 2012 ESA Council at Ministerial. This paper describes the mission options which have been investigated in the past Phase A studies and presents the main activities foreseen in the Phase B1 to consolidate the mission design, including a robust bread-boards and technology development programme. In addition, the approach to overcoming the mission's major technical and environmental challenges and the activities to advance the definition of the payload elements will be described.

  9. A working environment for digital planetary data processing and mapping using ISIS and GRASS GIS

    Science.gov (United States)

    Frigeri, A.; Hare, T.; Neteler, M.; Coradini, A.; Federico, C.; Orosei, R.

    2011-01-01

    Since the beginning of planetary exploration, mapping has been fundamental to summarize observations returned by scientific missions. Sensor-based mapping has been used to highlight specific features from the planetary surfaces by means of processing. Interpretative mapping makes use of instrumental observations to produce thematic maps that summarize observations of actual data into a specific theme. Geologic maps, for example, are thematic interpretative maps that focus on the representation of materials and processes and their relative timing. The advancements in technology of the last 30 years have allowed us to develop specialized systems where the mapping process can be made entirely in the digital domain. The spread of networked computers on a global scale allowed the rapid propagation of software and digital data such that every researcher can now access digital mapping facilities on his desktop. The efforts to maintain planetary missions data accessible to the scientific community have led to the creation of standardized digital archives that facilitate the access to different datasets by software capable of processing these data from the raw level to the map projected one. Geographic Information Systems (GIS) have been developed to optimize the storage, the analysis, and the retrieval of spatially referenced Earth based environmental geodata; since the last decade these computer programs have become popular among the planetary science community, and recent mission data start to be distributed in formats compatible with these systems. Among all the systems developed for the analysis of planetary and spatially referenced data, we have created a working environment combining two software suites that have similar characteristics in their modular design, their development history, their policy of distribution and their support system. The first, the Integrated Software for Imagers and Spectrometers (ISIS) developed by the United States Geological Survey

  10. The Role of the Photogeologic Mapping in the Morocco 2013 Mars Analog Field Simulation (Austrian Space Forum)

    Science.gov (United States)

    Losiak, Anna; Orgel, Csilla; Moser, Linda; MacArthur, Jane; Gołębiowska, Izabela; Wittek, Steffen; Boyd, Andrea; Achorner, Isabella; Rampey, Mike; Bartenstein, Thomas; Jones, Natalie; Luger, Ulrich; Sans, Alejandra; Hettrich, Sebastian

    2013-04-01

    The MARS2013 mission: The Austrian Space Forum together with multiple scientific partners will conduct a Mars analog field simulation. The project takes place between 1st and 28th of February 2013 in the northern Sahara near Erfoud. During the simulation a field crew (consisting of suited analog astronauts and a support team) will conduct several experiments while being managed by the Mission Support Center (MSC) located in Innsbruck, Austria. The aim of the project is to advance preparation of the future human Mars missions by testing: 1) the mission design with regard to operational and engineering challenges (e.g., how to work efficiently with introduced time delay in communication between field team and MSC), 2) scientific instruments (e.g., rovers) and 3) human performance in conditions analogous to those that will be encountered on Mars. The Role of Geological Mapping: Remote Science Support team (RSS) is responsible for processing science data obtained in the field. The RSS is also in charge of preparing a set of maps to enable planning activities of the mission (including the development of traverses) [1, 2]. The usage of those maps will increase the time-cost efficiency of the entire mission. The RSS team members do not have any prior knowledge about the area where the simulation is taking place and the analysis is fully based on remote sensing satellite data (Landsat, GoogleEarth) and a digital elevation model (ASTER GDEM)from the orbital data. The maps design: The set of maps (covering area 5 km X 5 km centered on the Mission Base Camp) was designed to simplify the process of site selection for the daily traverse planning. Additionally, the maps will help to accommodate the need of the field crew for the increased autonomy in the decision making process, forced by the induced time delay between MSC and "Mars". The set of provided maps should allow the field team to orientate and navigate in the explored areas as well as make informed decisions about

  11. Biocultural research in global mental health: mapping idioms of distress onto blood pressure in a population survey.

    Science.gov (United States)

    Sancilio, Amelia; Eggerman, Mark; Panter-Brick, Catherine

    2017-01-01

    Biocultural research remains a challenge in the field of global mental health. We sought to test associations between blood pressure and idioms of distress in a population survey. We drew on a randomly selected sample of 991 adults (498 men, 493 women) in Afghanistan, for whom physiological and psychosocial data were systematically collected. Assessment of mental health (Self-Reported Questionnaire, Afghan Symptom Checklist) included conceptualizations of distress related to pressure (fishar), anxiety, and dysphoria, as well as dimensions of negative affect and aggression. We used principal component analysis to map survey responses to fishar, and multiple regressions to examine associations with systolic/diastolic blood pressure, controlling for age, body mass index, and wealth, and differentiating by gender, mental health, and medication. The Afghan sample averaged 129/80 mmHg, with 27.14% of hypertensive individuals. SBP showed inverse associations with reports of low fishar (β = -4.58, P < .001) and high fishar (β = 6.90, P < .001), as did DPB with low fishar (β = -1.55, P < .001) and high fishar (β = 3.77, P < .001). Low and high fishar responses accounted for substantial proportions of SBP data variation (R 2  = 20% and R 2  = 24%), especially in adults on blood pressure medication (R 2  = 58% and R 2  = 49%). Subjective reports of fishar map onto physiological blood pressure more robustly than other conceptualizations of mental distress related to anxiety, dysphoria, negative affect, or aggression. Our results point to the utility of mapping biological and cultural measures of stress and distress, advancing biopsychosocial understandings of wellbeing in global mental health surveys. © 2016 Wiley Periodicals, Inc.

  12. DAWN GRAND MAP CERES HYDROGEN MAP V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — A global map of the concentration of hydrogen within the regolith of asteroid 1 Ceres on twenty-degree quasi-equal-area pixels is provided. Hydrogen concentrations...

  13. Automatically Annotated Mapping for Indoor Mobile Robot Applications

    DEFF Research Database (Denmark)

    Özkil, Ali Gürcan; Howard, Thomas J.

    2012-01-01

    This paper presents a new and practical method for mapping and annotating indoor environments for mobile robot use. The method makes use of 2D occupancy grid maps for metric representation, and topology maps to indicate the connectivity of the ‘places-of-interests’ in the environment. Novel use...... localization and mapping in topology space, and fuses camera and robot pose estimations to build an automatically annotated global topo-metric map. It is developed as a framework for a hospital service robot and tested in a real hospital. Experiments show that the method is capable of producing globally...... consistent, automatically annotated hybrid metric-topological maps that is needed by mobile service robots....

  14. Satellite SAR interferometric techniques applied to emergency mapping

    Science.gov (United States)

    Stefanova Vassileva, Magdalena; Riccardi, Paolo; Lecci, Daniele; Giulio Tonolo, Fabio; Boccardo Boccardo, Piero; Chiesa, Giuliana; Angeluccetti, Irene

    2017-04-01

    This paper aim to investigate the capabilities of the currently available SAR interferometric algorithms in the field of emergency mapping. Several tests have been performed exploiting the Copernicus Sentinel-1 data using the COTS software ENVI/SARscape 5.3. Emergency Mapping can be defined as "creation of maps, geo-information products and spatial analyses dedicated to providing situational awareness emergency management and immediate crisis information for response by means of extraction of reference (pre-event) and crisis (post-event) geographic information/data from satellite or aerial imagery". The conventional differential SAR interferometric technique (DInSAR) and the two currently available multi-temporal SAR interferometric approaches, i.e. Permanent Scatterer Interferometry (PSI) and Small BAseline Subset (SBAS), have been applied to provide crisis information useful for the emergency management activities. Depending on the considered Emergency Management phase, it may be distinguished between rapid mapping, i.e. fast provision of geospatial data regarding the area affected for the immediate emergency response, and monitoring mapping, i.e. detection of phenomena for risk prevention and mitigation activities. In order to evaluate the potential and limitations of the aforementioned SAR interferometric approaches for the specific rapid and monitoring mapping application, five main factors have been taken into account: crisis information extracted, input data required, processing time and expected accuracy. The results highlight that DInSAR has the capacity to delineate areas affected by large and sudden deformations and fulfills most of the immediate response requirements. The main limiting factor of interferometry is the availability of suitable SAR acquisition immediately after the event (e.g. Sentinel-1 mission characterized by 6-day revisiting time may not always satisfy the immediate emergency request). PSI and SBAS techniques are suitable to produce

  15. A global map of travel time to cities to assess inequalities in accessibility in 2015

    Science.gov (United States)

    Weiss, D. J.; Nelson, A.; Gibson, H. S.; Temperley, W.; Peedell, S.; Lieber, A.; Hancher, M.; Poyart, E.; Belchior, S.; Fullman, N.; Mappin, B.; Dalrymple, U.; Rozier, J.; Lucas, T. C. D.; Howes, R. E.; Tusting, L. S.; Kang, S. Y.; Cameron, E.; Bisanzio, D.; Battle, K. E.; Bhatt, S.; Gething, P. W.

    2018-01-01

    The economic and man-made resources that sustain human wellbeing are not distributed evenly across the world, but are instead heavily concentrated in cities. Poor access to opportunities and services offered by urban centres (a function of distance, transport infrastructure, and the spatial distribution of cities) is a major barrier to improved livelihoods and overall development. Advancing accessibility worldwide underpins the equity agenda of ‘leaving no one behind’ established by the Sustainable Development Goals of the United Nations. This has renewed international efforts to accurately measure accessibility and generate a metric that can inform the design and implementation of development policies. The only previous attempt to reliably map accessibility worldwide, which was published nearly a decade ago, predated the baseline for the Sustainable Development Goals and excluded the recent expansion in infrastructure networks, particularly in lower-resource settings. In parallel, new data sources provided by Open Street Map and Google now capture transportation networks with unprecedented detail and precision. Here we develop and validate a map that quantifies travel time to cities for 2015 at a spatial resolution of approximately one by one kilometre by integrating ten global-scale surfaces that characterize factors affecting human movement rates and 13,840 high-density urban centres within an established geospatial-modelling framework. Our results highlight disparities in accessibility relative to wealth as 50.9% of individuals living in low-income settings (concentrated in sub-Saharan Africa) reside within an hour of a city compared to 90.7% of individuals in high-income settings. By further triangulating this map against socioeconomic datasets, we demonstrate how access to urban centres stratifies the economic, educational, and health status of humanity.

  16. A global map of travel time to cities to assess inequalities in accessibility in 2015.

    Science.gov (United States)

    Weiss, D J; Nelson, A; Gibson, H S; Temperley, W; Peedell, S; Lieber, A; Hancher, M; Poyart, E; Belchior, S; Fullman, N; Mappin, B; Dalrymple, U; Rozier, J; Lucas, T C D; Howes, R E; Tusting, L S; Kang, S Y; Cameron, E; Bisanzio, D; Battle, K E; Bhatt, S; Gething, P W

    2018-01-18

    The economic and man-made resources that sustain human wellbeing are not distributed evenly across the world, but are instead heavily concentrated in cities. Poor access to opportunities and services offered by urban centres (a function of distance, transport infrastructure, and the spatial distribution of cities) is a major barrier to improved livelihoods and overall development. Advancing accessibility worldwide underpins the equity agenda of 'leaving no one behind' established by the Sustainable Development Goals of the United Nations. This has renewed international efforts to accurately measure accessibility and generate a metric that can inform the design and implementation of development policies. The only previous attempt to reliably map accessibility worldwide, which was published nearly a decade ago, predated the baseline for the Sustainable Development Goals and excluded the recent expansion in infrastructure networks, particularly in lower-resource settings. In parallel, new data sources provided by Open Street Map and Google now capture transportation networks with unprecedented detail and precision. Here we develop and validate a map that quantifies travel time to cities for 2015 at a spatial resolution of approximately one by one kilometre by integrating ten global-scale surfaces that characterize factors affecting human movement rates and 13,840 high-density urban centres within an established geospatial-modelling framework. Our results highlight disparities in accessibility relative to wealth as 50.9% of individuals living in low-income settings (concentrated in sub-Saharan Africa) reside within an hour of a city compared to 90.7% of individuals in high-income settings. By further triangulating this map against socioeconomic datasets, we demonstrate how access to urban centres stratifies the economic, educational, and health status of humanity.

  17. Massively Clustered CubeSats NCPS Demo Mission

    Science.gov (United States)

    Robertson, Glen A.; Young, David; Kim, Tony; Houts, Mike

    2013-01-01

    Technologies under development for the proposed Nuclear Cryogenic Propulsion Stage (NCPS) will require an un-crewed demonstration mission before they can be flight qualified over distances and time frames representative of a crewed Mars mission. In this paper, we describe a Massively Clustered CubeSats platform, possibly comprising hundreds of CubeSats, as the main payload of the NCPS demo mission. This platform would enable a mechanism for cost savings for the demo mission through shared support between NASA and other government agencies as well as leveraged commercial aerospace and academic community involvement. We believe a Massively Clustered CubeSats platform should be an obvious first choice for the NCPS demo mission when one considers that cost and risk of the payload can be spread across many CubeSat customers and that the NCPS demo mission can capitalize on using CubeSats developed by others for its own instrumentation needs. Moreover, a demo mission of the NCPS offers an unprecedented opportunity to invigorate the public on a global scale through direct individual participation coordinated through a web-based collaboration engine. The platform we describe would be capable of delivering CubeSats at various locations along a trajectory toward the primary mission destination, in this case Mars, permitting a variety of potential CubeSat-specific missions. Cameras on various CubeSats can also be used to provide multiple views of the space environment and the NCPS vehicle for video monitoring as well as allow the public to "ride along" as virtual passengers on the mission. This collaborative approach could even initiate a brand new Science, Technology, Engineering and Math (STEM) program for launching student developed CubeSat payloads beyond Low Earth Orbit (LEO) on future deep space technology qualification missions. Keywords: Nuclear Propulsion, NCPS, SLS, Mars, CubeSat.

  18. FINESSE & CASE: Two Proposed Transiting Exoplanet Missions

    Science.gov (United States)

    Zellem, Robert Thomas; FINESSE and CASE Science Team

    2018-01-01

    The FINESSE mission concept and the proposed CASE Mission of Opportunity, both recently selected by NASA’s Explorer program to proceed to Step 2, would conduct the first characterizations of exoplanet atmospheres for a statistically significant population. FINESSE would determine whether our Solar System is typical or exceptional, the key characteristics of the planet formation mechanism, and what establishes global planetary climate by spectroscopically surveying 500 exoplanets, ranging from terrestrials with extended atmospheres to sub-Neptunes to gas giants. FINESSE’s broad, instantaneous spectral coverage from 0.5-5 microns and capability to survey hundreds of exoplanets would enable follow-up exploration of TESS discoveries and provide a broader context for interpreting detailed JWST observations. Similarly, CASE, a NASA Mission of Opportunity contribution to ESA’s dedicated transiting exoplanet spectroscopy mission ARIEL, would observe 1000 warm transiting gas giants, Neptunes, and super-Earths, using visible to near-IR photometry and spectroscopy. CASE would quantify the occurrence rate of atmospheric aerosols (clouds and hazes) and measure the geometric albedos of the targets in the ARIEL survey. Thus, with the selection of either of these two missions, NASA would ensure access to critical data for the U.S. exoplanet science community.

  19. Schwarz-Christoffel Conformal Mapping based Grid Generation for Global Oceanic Circulation Models

    Science.gov (United States)

    Xu, Shiming

    2015-04-01

    We propose new grid generation algorithms for global ocean general circulation models (OGCMs). Contrary to conventional, analytical forms based dipolar or tripolar grids, the new algorithm are based on Schwarz-Christoffel (SC) conformal mapping with prescribed boundary information. While dealing with the conventional grid design problem of pole relocation, it also addresses more advanced issues of computational efficiency and the new requirements on OGCM grids arisen from the recent trend of high-resolution and multi-scale modeling. The proposed grid generation algorithm could potentially achieve the alignment of grid lines to coastlines, enhanced spatial resolution in coastal regions, and easier computational load balance. Since the generated grids are still orthogonal curvilinear, they can be readily 10 utilized in existing Bryan-Cox-Semtner type ocean models. The proposed methodology can also be applied to the grid generation task for regional ocean modeling when complex land-ocean distribution is present.

  20. Maps of the Martian Landing Sites and Rover Traverses: Viking 1 and 2, Mars Pathfinder, and Phoenix Landers, and the Mars Exploration Rovers.

    Science.gov (United States)

    Parker, T. J.; Calef, F. J., III; Deen, R. G.; Gengl, H.

    2016-12-01

    The traverse maps produced tactically for the MER and MSL rover missions are the first step in placing the observations made by each vehicle into a local and regional geologic context. For the MER, Phoenix and MSL missions, 25cm/pixel HiRISE data is available for accurately localizing the vehicles. Viking and Mars Pathfinder, however, relied on Viking Orbiter images of several tens of m/pixel to triangulate to horizon features visible both from the ground and from orbit. After Pathfinder, MGS MOC images became available for these landing sites, enabling much better correlations to horizon features and localization predictions to be made, that were then corroborated with HiRISE images beginning 9 years ago. By combining topography data from MGS, Mars Express, and stereo processing of MRO CTX and HiRISE images into orthomosaics (ORRs) and digital elevation models (DEMs), it is possible to localize all the landers and rover positions to an accuracy of a few tens of meters with respect to the Mars global control net, and to better than half a meter with respect to other features within a HiRISE orthomosaic. JPL's MIPL produces point clouds of the MER Navcam stereo images that can be processed into 1cm/pixel ORR/DEMs that are then georeferenced to a HiRISE/CTX base map and DEM. This allows compilation of seamless mosaics of the lander and rover camera-based ORR/DEMs with the HiRISE ORR/DEM that can be viewed in 3 dimensions with GIS programs with that capability. We are re-processing the Viking Lander, Mars Pathfinder, and Phoenix lander data to allow similar ORR/DEM products to be made for those missions. For the fixed landers and Spirit, we will compile merged surface/CTX/HiRISE ORR/DEMs, that will enable accurate local and regional mapping of these landing sites, and allow comparisons of the results from these missions to be made with current and future surface missions.

  1. Updating the Geologic Maps of the Apollo 15, 16, and 17 Landing Sites

    Science.gov (United States)

    Garry, W. B.; Mest, S. C.; Yingst, R. A.; Ostrach, L. R.; Petro, N. E.; Cohen, B. A.

    2018-06-01

    Our team is funded through NASA's Planetary Data Archiving, Restoration, and Tools (PDART) program to produce two new USGS Special Investigation Maps (SIM) for the Apollo 15, 16, and 17 missions: a regional map (1:200K) and a landing-site map (1:24K).

  2. The Role of Public Interaction with the Juno Mission: Documentation, Discussion, Selection and Processing of JunoCam Images of Jovian Cloud Features

    Science.gov (United States)

    Orton, Glenn; Hansen, Candice; Momary, Thomas; Bolton, Scott

    2017-04-01

    Among the many "firsts" of the Juno mission is the open enlistment of the public in the operation of its visible camera, JunoCam. Although the scientific thrust of the Juno mission is largely focused on innovative approaches to understanding the structure and composition of Jupiter's interior, JunoCam was added to the payload largely to function in the role of education and public outreach (E/PO). For the first time, the public was able to engage in the discussion and choice of targets for a major NASA mission. The discussion about which features to image is enabled by a continuously updated map of Jupiter's cloud system while Jupiter is far enough from the sun to be observable by non-professional astronomers. Contributors range from very devoted astrophotographers to telescope and video 'hobbyists'. Juno therefore engages the world-wide amateur-astronomy community as a vast network of co-investigators, whose products stimulate conversation and global public awareness of Jupiter and Juno's investigative role. Contributed images also provide a temporal context to inform the Juno atmospheric investigation team of the state and evolution of the atmosphere. The contributed images are used to create s global map on a bi-weekly basis. These bi-weekly maps provide the focus for ongoing discussion about various planetary features over a long time frame. Approximately two weeks before Juno's closest approach to Jupiter on each orbit ("perijove" or PJ), starting in mid-November of 2016 in preparation for PJ3 on December 11, the atmospheric features that have been under discussion and available to JunoCam on that perijove were nominated for voting, and the public at large voted on where to point JunoCam's "elective" features. In addition, JunoCam provides the first close-up images of Jupiter's polar regions from a non-oblique viewpoint for the first time in over 40 years since the passage of Pioneer 11 over Jupiter's north pole. The Juno mission science team also provides

  3. Statistical characterization of global Sea Surface Salinity for SMOS level 3 and 4 products

    Science.gov (United States)

    Gourrion, J.; Aretxabaleta, A. L.; Ballabrera, J.; Mourre, B.

    2009-04-01

    The Soil Moisture and Ocean Salinity (SMOS) mission of the European Space Agency will soon provide sea surface salinity (SSS) estimates to the scientific community. Because of the numerous geophysical contamination sources and the instrument complexity, the salinity products will have a low signal to noise ratio at level 2 (individual estimates??) that is expected to increase up to mission requirements (0.1 psu) at level 3 (global maps with regular distribution) after spatio-temporal accumulation of the observations. Geostatistical methods such as Optimal Interpolation are being implemented at the level 3/4 production centers to operate this noise reduction step. The methodologies require auxiliary information about SSS statistics that, under Gaussian assumption, consist in the mean field and the covariance of the departures from it. The present study is a contribution to the definition of the best estimates for mean field and covariances to be used in the near-future SMOS level 3 and 4 products. We use complementary information from sparse in-situ observations and imperfect outputs from state-of-art model simulations. Various estimates of the mean field are compared. An alternative is the use of a SSS climatology such as the one provided by the World Ocean Atlas 2005. An historical SSS dataset from the World Ocean Database 2005 is reanalyzed and combined with the recent global observations obtained by the Array for Real-Time Geostrophic Oceanography (ARGO). Regional tendencies in the long-term temporal evolution of the near-surface ocean salinity are evident, suggesting that the use of a SSS climatology to describe the current mean field may introduce biases of magnitude similar to the precision goal. Consequently, a recent SSS dataset may be preferred to define the mean field needed for SMOS level 3 and 4 production. The in-situ observation network allows a global mapping of the low frequency component of the variability, i.e. decadal, interannual and seasonal

  4. Global Analysis of Nonlinear Dynamics

    CERN Document Server

    Luo, Albert

    2012-01-01

    Global Analysis of Nonlinear Dynamics collects chapters on recent developments in global analysis of non-linear dynamical systems with a particular emphasis on cell mapping methods developed by Professor C.S. Hsu of the University of California, Berkeley. This collection of contributions prepared by a diverse group of internationally recognized researchers is intended to stimulate interests in global analysis of complex and high-dimensional nonlinear dynamical systems, whose global properties are largely unexplored at this time. This book also: Presents recent developments in global analysis of non-linear dynamical systems Provides in-depth considerations and extensions of cell mapping methods Adopts an inclusive style accessible to non-specialists and graduate students Global Analysis of Nonlinear Dynamics is an ideal reference for the community of nonlinear dynamics in different disciplines including engineering, applied mathematics, meteorology, life science, computational science, and medicine.  

  5. Landsat: A global land-imaging mission

    Science.gov (United States)

    ,

    2012-01-01

    Across four decades since 1972, Landsat satellites have continuously acquired space-based images of the Earth's land surface, coastal shallows, and coral reefs. The Landsat Program, a joint effort of the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA), was established to routinely gather land imagery from space. NASA develops remote-sensing instruments and spacecraft, then launches and validates the performance of the instruments and satellites. The USGS then assumes ownership and operation of the satellites, in addition to managing all ground reception, data archiving, product generation, and distribution. The result of this program is a long-term record of natural and human induced changes on the global landscape.

  6. On the Use of Global Flood Forecasts and Satellite-Derived Inundation Maps for Flood Monitoring in Data-Sparse Regions

    Directory of Open Access Journals (Sweden)

    Beatriz Revilla-Romero

    2015-11-01

    Full Text Available Early flood warning and real-time monitoring systems play a key role in flood risk reduction and disaster response decisions. Global-scale flood forecasting and satellite-based flood detection systems are currently operating, however their reliability for decision-making applications needs to be assessed. In this study, we performed comparative evaluations of several operational global flood forecasting and flood detection systems, using 10 major flood events recorded over 2012–2014. Specifically, we evaluated the spatial extent and temporal characteristics of flood detections from the Global Flood Detection System (GFDS and the Global Flood Awareness System (GloFAS. Furthermore, we compared the GFDS flood maps with those from NASA’s two Moderate Resolution Imaging Spectroradiometer (MODIS sensors. Results reveal that: (1 general agreement was found between the GFDS and MODIS flood detection systems, (2 large differences exist in the spatio-temporal characteristics of the GFDS detections and GloFAS forecasts, and (3 the quantitative validation of global flood disasters in data-sparse regions is highly challenging. Overall, satellite remote sensing provides useful near real-time flood information that can be useful for risk management. We highlight the known limitations of global flood detection and forecasting systems, and propose ways forward to improve the reliability of large-scale flood monitoring tools.

  7. The Venus Emissivity Mapper - gaining a global perspective on the surface composition of Venus

    Science.gov (United States)

    Helbert, Joern; Dyar, Melinda; Widemann, Thomas; Marcq, Emmanuel; Maturilli, Alessandro; Mueller, Nils; Kappel, David; Ferrari, Sabrina; D'Amore, Mario; Tsang, Constantine; Arnold, Gabriele; Smrekar, Suzanne; VEM Team

    2017-10-01

    The permanent cloud cover of Venus prohibits observations of the surface with traditional imaging techniques over much of the EM spectral range, leading to the false notion that information about the composition of Venus’ surface could only be derived from lander missions. However, harsh environmental conditions on the surface cause landed missions to be sole site, highly complex, and riskier than orbiting missions.It is now known that 5 transparency windows occur in the Venus atmosphere, ranging from 0.86 µm to 1.18 µm. Recent advances in high temperature laboratory spectroscopy at the PSL at DLR these windows are highly diagnostic for surface mineralogy. Mapping of the southern hemisphere of Venus with VIRTIS on VEX in the 1.02 µm band was a proof-of-concept for an orbital remote sensing approach to surface composition and weathering studies[1-3]. The Venus Emissivity Mapper [4] proposed for the NASA’s Venus Origins Explorer (VOX) and the ESA EnVision proposal builds on these recent advances. It is the first flight instrument specially designed with a sole focus on mapping the surface of Venus using the narrow atmospheric windows around 1 µm. Operating in situ from Venus orbit, VEM will provide a global map of surface composition as well as redox state of the surface, providing a comprehensive picture of surface-atmosphere interaction and support for landing site selection. Continuous observation of the thermal emission of the Venus will provide tight constraints on the current day volcanic activity[5]. This is complemented by measurements of atmospheric water vapor abundance as well as cloud microphysics and dynamics. These data will allow for accurate correction of atmospheric interference on the surface measurements, which provide highly valuable science on their own. A mission combining VEM with a high-resolution radar mapper such as VOX or EnVision in a low circular orbit will provide key insights into the divergent evolution of Venus.1. Smrekar, S

  8. Mitigating Adverse Effects of a Human Mission on Possible Martian Indigenous Ecosystems

    Science.gov (United States)

    Lupisella, M. L.

    2000-07-01

    Although human beings are, by most standards, the most capable agents to search for and detect extraterrestrial life, we are also potentially the most harmful. While there has been substantial work regarding forward contamination with respect to robotic missions, the issue of potential adverse effects on possible indigenous Martian ecosystems, such as biological contamination, due to a human mission has remained relatively unexplored and may require our attention now as this presentation will try to demonstrate by exploring some of the relevant scientific questions, mission planning challenges, and policy issues. An informal, high-level mission planning decision tree will be discussed and is included as the next page of this abstract. Some of the questions to be considered are: (1) To what extent could contamination due to a human presence compromise possible indigenous life forms? (2) To what extent can we control contamination? For example, will it be local or global? (3) What are the criteria for assessing the biological status of Mars, both regionally and globally? For example, can we adequately extrapolate from a few strategic missions such as sample return missions? (4) What should our policies be regarding our mission planning and possible interaction with what are likely to be microbial forms of extraterrestrial life? (5) Central to the science and mission planning issues is the role and applicability of terrestrial analogs, such as Lake Vostok for assessing drilling issues, and modeling techniques. Central to many of the policy aspects are scientific value, international law, public concern, and ethics. Exploring this overall issue responsibly requires an examination of all these aspects and how they interrelate. A chart is included, titled 'Mission Planning Decision Tree for Mitigating Adverse Effects to Possible Indigenous Martian Ecosystems due to a Human Mission'. It outlines what questions scientists should ask and answer before sending humans to Mars.

  9. Global Correlation and Non-Correlation of Topography with Color and Reflectance on Pluto

    Science.gov (United States)

    Schenk, Paul M.; Beyer, Ross A.; Moore, Jeffrey M.; Young, Leslie; Ennico, Kimberly; Olkin, Catherine; Weaver, Harold A.; Stern, S. Alan; New Horizons Geology and Geophysics Team

    2017-10-01

    A key objective of the New Horizons mission at Pluto in July 2015 was completion of global maps of surface brightness and color patterns (covering 78% of surface) and topography (covering ~42%) of Pluto and its large moon Charon. The first calibrated and registered versions of these maps have now been completed for posting in the PDS this fall (with a peer-reviewed report on these products to be submitted). Rich in detail, investigation into the roles of local topography and insolation are ongoing (e.g., Lewis et al., 2017). Here we focus on the data sets and links between elevation and global color and brightness patterns and the global mapping revealed by them. In the “north,” yellowish deposits correlate with non-depressed portions of an eroded polar topographic dome ~600 km wide & 2-3 km high (e.g., Young et al., 2017). The broad dark band along the equator forming Cthulhu Macula to the west of Sputnik Planitia is topographically indistinguishable from the vast smooth lightly cratered plains to the north, indicating that latitude is the primary control, not topography. The curious lack of dark material along the equatorial band east of Sputnik Planitia may be partly due to topography of Eastern Tombaugh Regio, which is ~500 m above eroded plains the north and Cthulhu Macula itself. To the south of Cthulhu Macula, plains are slightly brighter, which correlates with a modest rise in topography of Macula, however, an abrupt increase in reflectance correlates with the edge of elevated plateau that rises 2-3 km above the plains. The areas with the strongest signature in the CH4-band are associated with bladed terrain, the highest standing geologic unit in absolute elevation. Similar colored amoeboid-shaped units are evident along the equator in the low-resolution mapping areas, indicating their probable occurrence elsewhere. Thus, while many of Pluto’s major color and albedo features correlate well with topography and are thus controlled by it, some

  10. PROBA-V, the small saellite for global vegetation monitoring

    Science.gov (United States)

    Deronde, Bart; Benhadj, Iskander; Clarijs, Dennis; Dierckx, Wouter; Dries, Jan; Sterckx, Sindy; van Roey, Tom; Wolters, erwin

    2015-04-01

    PROBA-V, the small satellite for global vegetation monitoring Bart Deronde, Iskander Benhadj, Dennis Clarijs, Wouter Dierckx, Jan Dries, Sindy Sterck, Tom Van Roey, Erwin Wolters (VITO NV) Exactly one year ago, in December 2013, VITO (Flemish Institute for Technological Research) started up the real time operations of PROBA-V. This miniaturised ESA (European Space Agency) satellite was launched by ESA's Vega rocket from Kourou, French-Guyana on May 7th, 2013. After six months of commissioning the mission was taken into operations. Since mid-December 2013 PROBA-V products are processed on an operational basis and distributed to a worldwide user community. PROVA-V is tasked with a full-scale mission: to map land cover and vegetation growth across the entire planet every two days. It is flying a lighter but fully functional redesign of the 'VEGETATION' imaging instruments previously flown on France's full-sized SPOT-4 and SPOT-5 satellites, which have been observing Earth since 1998. PROBA-V, entirely built by a Belgian consortium, continues this valuable and uninterrupted time series with daily products at 300 m and 1 km resolution. Even 100 m products will become available early 2015, delivering a global coverage every 5 days. The blue, red, near-infrared and mid-infrared wavebands allow PROBA-V to distinguish between different types of land cover/use and plant species, including crops. Vital uses of these data include day-by-day tracking of vegetation development, alerting authorities to crop failures, monitoring inland water resources and tracing the steady spread of deserts and deforestation. As such the data is also highly valuable to study climate change and the global carbon cycle. In this presentation we will discuss the in-flight results, one year after launch, from the User Segment (i.e. the processing facility) point of view. The focus will be on geometric and radiometric accuracy and stability. Furthermore, we will elaborate on the lessons learnt from the

  11. Using Hadoop MapReduce for Parallel Genetic Algorithms: A Comparison of the Global, Grid and Island Models.

    Science.gov (United States)

    Ferrucci, Filomena; Salza, Pasquale; Sarro, Federica

    2017-06-29

    The need to improve the scalability of Genetic Algorithms (GAs) has motivated the research on Parallel Genetic Algorithms (PGAs), and different technologies and approaches have been used. Hadoop MapReduce represents one of the most mature technologies to develop parallel algorithms. Based on the fact that parallel algorithms introduce communication overhead, the aim of the present work is to understand if, and possibly when, the parallel GAs solutions using Hadoop MapReduce show better performance than sequential versions in terms of execution time. Moreover, we are interested in understanding which PGA model can be most effective among the global, grid, and island models. We empirically assessed the performance of these three parallel models with respect to a sequential GA on a software engineering problem, evaluating the execution time and the achieved speedup. We also analysed the behaviour of the parallel models in relation to the overhead produced by the use of Hadoop MapReduce and the GAs' computational effort, which gives a more machine-independent measure of these algorithms. We exploited three problem instances to differentiate the computation load and three cluster configurations based on 2, 4, and 8 parallel nodes. Moreover, we estimated the costs of the execution of the experimentation on a potential cloud infrastructure, based on the pricing of the major commercial cloud providers. The empirical study revealed that the use of PGA based on the island model outperforms the other parallel models and the sequential GA for all the considered instances and clusters. Using 2, 4, and 8 nodes, the island model achieves an average speedup over the three datasets of 1.8, 3.4, and 7.0 times, respectively. Hadoop MapReduce has a set of different constraints that need to be considered during the design and the implementation of parallel algorithms. The overhead of data store (i.e., HDFS) accesses, communication, and latency requires solutions that reduce data store

  12. Mapping global diversity patterns for migratory birds.

    Directory of Open Access Journals (Sweden)

    Marius Somveille

    Full Text Available Nearly one in five bird species has separate breeding and overwintering distributions, and the regular migrations of these species cause a substantial seasonal redistribution of avian diversity across the world. However, despite its ecological importance, bird migration has been largely ignored in studies of global avian biodiversity, with few studies having addressed it from a macroecological perspective. Here, we analyse a dataset on the global distribution of the world's birds in order to examine global spatial patterns in the diversity of migratory species, including: the seasonal variation in overall species diversity due to migration; the contribution of migratory birds to local bird diversity; and the distribution of narrow-range and threatened migratory birds. Our analyses reveal a striking asymmetry between the Northern and Southern hemispheres, evident in all of the patterns investigated. The highest migratory bird diversity was found in the Northern Hemisphere, with high inter-continental turnover in species composition between breeding and non-breeding seasons, and extensive regions (at high latitudes where migratory birds constitute the majority of the local avifauna. Threatened migratory birds are concentrated mainly in Central and Southern Asia, whereas narrow-range migratory species are mainly found in Central America, the Himalayas and Patagonia. Overall, global patterns in the diversity of migratory birds indicate that bird migration is mainly a Northern Hemisphere phenomenon. The asymmetry between the Northern and Southern hemispheres could not have easily been predicted from the combined results of regional scale studies, highlighting the importance of a global perspective.

  13. Integrated science and engineering for the OSIRIS-REx asteroid sample return mission

    Science.gov (United States)

    Lauretta, D.

    2014-07-01

    Introduction: The Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) asteroid sample return mission will survey near-Earth asteroid (101955) Bennu to understand its physical, mineralogical, and chemical properties, assess its resource potential, refine the impact hazard, and return a sample of this body to the Earth [1]. This mission is scheduled for launch in 2016 and will rendezvous with the asteroid in 2018. Sample return to the Earth follows in 2023. The OSIRIS-REx mission has the challenge of visiting asteroid Bennu, characterizing it at global and local scales, then selecting the best site on the asteroid surface to acquire a sample for return to the Earth. Minimizing the risk of exploring an unknown world requires a tight integration of science and engineering to inform flight system and mission design. Defining the Asteroid Environment: We have performed an extensive astronomical campaign in support of OSIRIS-REx. Lightcurve and phase function observations were obtained with UA Observatories telescopes located in southeastern Arizona during the 2005--2006 and 2011--2012 apparitions [2]. We observed Bennu using the 12.6-cm radar at the Arecibo Observatory in 1999, 2005, and 2011 and the 3.5-cm radar at the Goldstone tracking station in 1999 and 2005 [3]. We conducted near-infrared measurements using the NASA Infrared Telescope Facility at the Mauna Kea Observatory in Hawaii in September 2005 [4]. Additional spectral observations were obtained in July 2011 and May 2012 with the Magellan 6.5-m telescope [5]. We used the Spitzer space telescope to observe Bennu in May 2007 [6]. The extensive knowledge gained as a result of our telescopic characterization of Bennu was critical in the selection of this object as the OSIRIS-REx mission target. In addition, we use these data, combined with models of the asteroid, to constrain over 100 different asteroid parameters covering orbital, bulk, rotational, radar

  14. Micro-Pressure Sensors for Future Mars Missions

    Science.gov (United States)

    Catling, David C.

    1996-01-01

    The joint research interchange effort was directed at the following principal areas: u further development of NASA-Ames' Mars Micro-meteorology mission concept as a viable NASA space mission especially with regard to the science and instrument specifications u interaction with the flight team from NASA's New Millennium 'Deep-Space 2' (DS-2) mission with regard to selection and design of micro-pressure sensors for Mars u further development of micro-pressure sensors suitable for Mars The research work undertaken in the course of the Joint Research Interchange should be placed in the context of an ongoing planetary exploration objective to characterize the climate system on Mars. In particular, a network of small probes globally-distributed on the surface of the planet has often been cited as the only way to address this particular science goal. A team from NASA Ames has proposed such a mission called the Micrometeorology mission, or 'Micro-met' for short. Surface pressure data are all that are required, in principle, to calculate the Martian atmospheric circulation, provided that simultaneous orbital measurements of the atmosphere are also obtained. Consequently, in the proposed Micro-met mission a large number of landers would measure barometric pressure at various locations around Mars, each equipped with a micro-pressure sensor. Much of the time on the JRI was therefore spent working with the engineers and scientists concerned with Micro-met to develop this particular mission concept into a more realistic proposition.

  15. Open land use map

    OpenAIRE

    Mildorf, T.; Charvát, K.; Jezek, J.; Templer, Simon; Malewski, Christian

    2014-01-01

    Open Land Use Map is an initiative that has been started by the Plan4business project and that will be extended as part of the SDI4Apps project in the future. This service aims to create an improved worldwide land use map. The initial map will be prepared using the CORINE Land Cover, Global Cover dataset and Open Street Map. Contributors, mainly volunteers, will able to change the geometry and assign up-to-date land use according to the HILUCS specification. For certain regions more detailed ...

  16. Global terrestrial water storage connectivity revealed using complex climate network analyses

    Science.gov (United States)

    Sun, A. Y.; Chen, J.; Donges, J.

    2015-07-01

    Terrestrial water storage (TWS) exerts a key control in global water, energy, and biogeochemical cycles. Although certain causal relationship exists between precipitation and TWS, the latter quantity also reflects impacts of anthropogenic activities. Thus, quantification of the spatial patterns of TWS will not only help to understand feedbacks between climate dynamics and the hydrologic cycle, but also provide new insights and model calibration constraints for improving the current land surface models. This work is the first attempt to quantify the spatial connectivity of TWS using the complex network theory, which has received broad attention in the climate modeling community in recent years. Complex networks of TWS anomalies are built using two global TWS data sets, a remote sensing product that is obtained from the Gravity Recovery and Climate Experiment (GRACE) satellite mission, and a model-generated data set from the global land data assimilation system's NOAH model (GLDAS-NOAH). Both data sets have 1° × 1° grid resolutions and cover most global land areas except for permafrost regions. TWS networks are built by first quantifying pairwise correlation among all valid TWS anomaly time series, and then applying a cutoff threshold derived from the edge-density function to retain only the most important features in the network. Basinwise network connectivity maps are used to illuminate connectivity of individual river basins with other regions. The constructed network degree centrality maps show the TWS anomaly hotspots around the globe and the patterns are consistent with recent GRACE studies. Parallel analyses of networks constructed using the two data sets reveal that the GLDAS-NOAH model captures many of the spatial patterns shown by GRACE, although significant discrepancies exist in some regions. Thus, our results provide further measures for constraining the current land surface models, especially in data sparse regions.

  17. Globalland30 Mapping Capacity of Land Surface Water in Thessaly, Greece

    Directory of Open Access Journals (Sweden)

    Ioannis Manakos

    2014-12-01

    Full Text Available The National Geomatics Center of China (NGCC produced Global Land Cover (GlobalLand30 maps with 30 m spatial resolution for the years 2000 and 2009–2010, responding to the need for harmonized, accurate, and high-resolution global land cover data. This study aims to assess the mapping accuracy of the land surface water layer of GlobalLand30 for 2009–2010. A representative Mediterranean region, situated in Greece, is considered as the case study area, with 2009 as the reference year. The assessment is realized through an object-based comparison of the GlobalLand30 water layer with the ground truth and visually interpreted data from the Hellenic Cadastre fine spatial resolution (0.5 m orthophoto map layer. GlobCover 2009, GlobCorine 2009, and GLCNMO 2008 corresponding thematic layers are utilized to show and quantify the progress brought along with the increment of the spatial resolution, from 500 m to 300 m and finally to 30 m with the newly produced GlobalLand30 maps. GlobalLand30 detected land surface water areas show a 91.9% overlap with the reference data, while the coarser resolution products are restricted to lower accuracies. Validation is extended to the drainage network elements, i.e., rivers and streams, where GlobalLand30 outperforms the other global map products, as well.

  18. An Analysis of Historical Global Warming and Social Engagement

    OpenAIRE

    Train, Joseph; Roizenman, David; Damiani, Seth; Rochwerg, Ronny

    2018-01-01

    The goal of this paper is to determine whether there is a correlation between awareness of global warming, and where global warming occurs. This theory is carried out by analyzing maps containing various forms of data that have to do with global warming, such as precipitation and surface temperature, and comparing it with a map of engagement from tweets which mention global warming. This paper found that there is no solid correlation between mentioning global warming in tweets and global warm...

  19. Sequential assimilation of multi-mission dynamical topography into a global finite-element ocean model

    Directory of Open Access Journals (Sweden)

    S. Skachko

    2008-12-01

    Full Text Available This study focuses on an accurate estimation of ocean circulation via assimilation of satellite measurements of ocean dynamical topography into the global finite-element ocean model (FEOM. The dynamical topography data are derived from a complex analysis of multi-mission altimetry data combined with a referenced earth geoid. The assimilation is split into two parts. First, the mean dynamic topography is adjusted. To this end an adiabatic pressure correction method is used which reduces model divergence from the real evolution. Second, a sequential assimilation technique is applied to improve the representation of thermodynamical processes by assimilating the time varying dynamic topography. A method is used according to which the temperature and salinity are updated following the vertical structure of the first baroclinic mode. It is shown that the method leads to a partially successful assimilation approach reducing the rms difference between the model and data from 16 cm to 2 cm. This improvement of the mean state is accompanied by significant improvement of temporal variability in our analysis. However, it remains suboptimal, showing a tendency in the forecast phase of returning toward a free run without data assimilation. Both the mean difference and standard deviation of the difference between the forecast and observation data are reduced as the result of assimilation.

  20. Estimating Global Cropland Extent with Multi-year MODIS Data

    Directory of Open Access Journals (Sweden)

    Christopher O. Justice

    2010-07-01

    Full Text Available This study examines the suitability of 250 m MODIS (MODerate Resolution Imaging Spectroradiometer data for mapping global cropland extent. A set of 39 multi-year MODIS metrics incorporating four MODIS land bands, NDVI (Normalized Difference Vegetation Index and thermal data was employed to depict cropland phenology over the study period. Sub-pixel training datasets were used to generate a set of global classification tree models using a bagging methodology, resulting in a global per-pixel cropland probability layer. This product was subsequently thresholded to create a discrete cropland/non-cropland indicator map using data from the USDA-FAS (Foreign Agricultural Service Production, Supply and Distribution (PSD database describing per-country acreage of production field crops. Five global land cover products, four of which attempted to map croplands in the context of multiclass land cover classifications, were subsequently used to perform regional evaluations of the global MODIS cropland extent map. The global probability layer was further examined with reference to four principle global food crops: corn, soybeans, wheat and rice. Overall results indicate that the MODIS layer best depicts regions of intensive broadleaf crop production (corn and soybean, both in correspondence with existing maps and in associated high probability matching thresholds. Probability thresholds for wheat-growing regions were lower, while areas of rice production had the lowest associated confidence. Regions absent of agricultural intensification, such as Africa, are poorly characterized regardless of crop type. The results reflect the value of MODIS as a generic global cropland indicator for intensive agriculture production regions, but with little sensitivity in areas of low agricultural intensification. Variability in mapping accuracies between areas dominated by different crop types also points to the desirability of a crop-specific approach rather than attempting

  1. Updated global soil map for the Weather Research and Forecasting model and soil moisture initialization for the Noah land surface model

    Science.gov (United States)

    DY, C. Y.; Fung, J. C. H.

    2016-08-01

    A meteorological model requires accurate initial conditions and boundary conditions to obtain realistic numerical weather predictions. The land surface controls the surface heat and moisture exchanges, which can be determined by the physical properties of the soil and soil state variables, subsequently exerting an effect on the boundary layer meteorology. The initial and boundary conditions of soil moisture are currently obtained via National Centers for Environmental Prediction FNL (Final) Operational Global Analysis data, which are collected operationally in 1° by 1° resolutions every 6 h. Another input to the model is the soil map generated by the Food and Agriculture Organization of the United Nations - United Nations Educational, Scientific and Cultural Organization (FAO-UNESCO) soil database, which combines several soil surveys from around the world. Both soil moisture from the FNL analysis data and the default soil map lack accuracy and feature coarse resolutions, particularly for certain areas of China. In this study, we update the global soil map with data from Beijing Normal University in 1 km by 1 km grids and propose an alternative method of soil moisture initialization. Simulations of the Weather Research and Forecasting model show that spinning-up the soil moisture improves near-surface temperature and relative humidity prediction using different types of soil moisture initialization. Explanations of that improvement and improvement of the planetary boundary layer height in performing process analysis are provided.

  2. Advancing Lidar Sensors Technologies for Next Generation Landing Missions

    Science.gov (United States)

    Amzajerdian, Farzin; Hines, Glenn D.; Roback, Vincent E.; Petway, Larry B.; Barnes, Bruce W.; Brewster, Paul F.; Pierrottet, Diego F.; Bulyshev, Alexander

    2015-01-01

    Missions to solar systems bodies must meet increasingly ambitious objectives requiring highly reliable "precision landing", and "hazard avoidance" capabilities. Robotic missions to the Moon and Mars demand landing at pre-designated sites of high scientific value near hazardous terrain features, such as escarpments, craters, slopes, and rocks. Missions aimed at paving the path for colonization of the Moon and human landing on Mars need to execute onboard hazard detection and precision maneuvering to ensure safe landing near previously deployed assets. Asteroid missions require precision rendezvous, identification of the landing or sampling site location, and navigation to the highly dynamic object that may be tumbling at a fast rate. To meet these needs, NASA Langley Research Center (LaRC) has developed a set of advanced lidar sensors under the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. These lidar sensors can provide precision measurement of vehicle relative proximity, velocity, and orientation, and high resolution elevation maps of the surface during the descent to the targeted body. Recent flights onboard Morpheus free-flyer vehicle have demonstrated the viability of ALHAT lidar sensors for future landing missions to solar system bodies.

  3. GPS test range mission planning

    Science.gov (United States)

    Roberts, Iris P.; Hancock, Thomas P.

    The principal features of the Test Range User Mission Planner (TRUMP), a PC-resident tool designed to aid in deploying and utilizing GPS-based test range assets, are reviewed. TRUMP features time history plots of time-space-position information (TSPI); performance based on a dynamic GPS/inertial system simulation; time history plots of TSPI data link connectivity; digital terrain elevation data maps with user-defined cultural features; and two-dimensional coverage plots of ground-based test range assets. Some functions to be added during the next development phase are discussed.

  4. Software engineering processes for Class D missions

    Science.gov (United States)

    Killough, Ronnie; Rose, Debi

    2013-09-01

    Software engineering processes are often seen as anathemas; thoughts of CMMI key process areas and NPR 7150.2A compliance matrices can motivate a software developer to consider other career fields. However, with adequate definition, common-sense application, and an appropriate level of built-in flexibility, software engineering processes provide a critical framework in which to conduct a successful software development project. One problem is that current models seem to be built around an underlying assumption of "bigness," and assume that all elements of the process are applicable to all software projects regardless of size and tolerance for risk. This is best illustrated in NASA's NPR 7150.2A in which, aside from some special provisions for manned missions, the software processes are to be applied based solely on the criticality of the software to the mission, completely agnostic of the mission class itself. That is, the processes applicable to a Class A mission (high priority, very low risk tolerance, very high national significance) are precisely the same as those applicable to a Class D mission (low priority, high risk tolerance, low national significance). This paper will propose changes to NPR 7150.2A, taking mission class into consideration, and discuss how some of these changes are being piloted for a current Class D mission—the Cyclone Global Navigation Satellite System (CYGNSS).

  5. SAC-C Mission and the Morning Constellation

    Science.gov (United States)

    Colomb, F. R.; Alonso, C.; Hofmann, C.; Frulla, L.; Nollmann, I.; Milovich, J.; Kuba, J.; Ares, F.; Kalemkarian, M.

    2002-01-01

    SAC-C is an international Earth observing satellite mission conceived as a partnership between CONAE and NASA, but with additional support in instrumentation and satellite development from the Danish DSRI, the Italian ASI, the French CNES and the Brazilian INPE. A Delta II rocket successfully launched it on November 21st, 2000, from Vandenberg AFB, California, USA. SAC-C has been designed primarily to fulfill the requirements of countries with large extension of territory or scarcely populated like Argentina. Its design is a good compromise between resolution and swath width that makes SAC-C an appropriate tool for global and high dynamic phenomena studies. There are ten instruments on board of SAC-C that will perform different studies, the Multispectral Medium Resolution Scanner (MMRS), provided by CONAE, Argentina, will help in the studies about desertification processes evaluation and their evolution in time (i.e., Patagonia, Argentina), to identify and predict agriculture production, to monitor flood areas and to make studies in coastal and fluvial areas. The MMRS will be associated with a High Resolution Technological Camera (HRTC), also provided by CONAE that will permit improvement in the MMRS resolution in the areas where it will be required. A High Sensitivity Technological Camera (HSTC) is also included in the mission. SAC-C also carries instruments to monitor the condition and dynamics of the terrestrial and marine biosphere and environment (GPS OccuLtation and Passive reflection Experiment (GOLPE)) from NASA/JPL. The Magnetic Mapping Payload, (MMP) developed by the Danish Space Research Institute helps to better understand the Earth's magnetic field and related Sun -Earth interactions .Italian Star Tracker (IST) and Italian Navigation Experiment (INES) developed by the Italian Space Agency, constitute a technological payload that will permit testing a fully autonomous system for attitude and orbit determination. Influence of space radiation on advanced

  6. An archiving system for Planetary Mapping Data - Availability of derived information and knowledge in Planetary Science!

    Science.gov (United States)

    Nass, A.

    2017-12-01

    Since the late 1950s a huge number of planetary missions started to explore our solar system. The data resulting from this robotic exploration and remote sensing varies in data type, resolution and target. After data preprocessing, and referencing, the released data are available for the community on different portals and archiving systems, e.g. PDS or PSA. One major usage for these data is mapping, i.e. the extraction and filtering of information by combining and visualizing different kind of base data. Mapping itself is conducted either for mission planning (e.g. identification of landing site) or fundamental research (e.g. reconstruction of surface). The mapping results for mission planning are directly managed within the mission teams. The derived data for fundamental research - also describable as maps, diagrams, or analysis results - are mainly project-based and exclusively available in scientific papers. Within the last year, first steps have been taken to ensure a sustainable use of these derived data by finding an archiving system comparable to the data portals, i.e. reusable, well-documented, and sustainable. For the implementation three tasks are essential. Two tasks have been treated in the past 1. Comparability and interoperability has been made possible by standardized recommendations for visual, textual, and structural description of mapping data. 2. Interoperability between users, information- and graphic systems is possible by templates and guidelines for digital GIS-based mapping. These two steps are adapted e.g. within recent mapping projects for the Dawn mission. The third task hasn`t been implemented thus far: Establishing an easily detectable and accessible platform that holds already acquired information and published mapping results for future investigations or mapping projects. An archive like this would support the scientific community significantly by a constant rise of knowledge and understanding based on recent discussions within

  7. DAWN GRAND MAP CERES SMOOTHED HYDROGEN MAP V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — A smoothed, global map of the concentration of hydrogen within the regolith of asteroid 1 Ceres on two-degree equal-angle pixels is provided. Hydrogen concentrations...

  8. A Global Map of Lipid-Binding Proteins and Their Ligandability in Cells.

    Science.gov (United States)

    Niphakis, Micah J; Lum, Kenneth M; Cognetta, Armand B; Correia, Bruno E; Ichu, Taka-Aki; Olucha, Jose; Brown, Steven J; Kundu, Soumajit; Piscitelli, Fabiana; Rosen, Hugh; Cravatt, Benjamin F

    2015-06-18

    Lipids play central roles in physiology and disease, where their structural, metabolic, and signaling functions often arise from interactions with proteins. Here, we describe a set of lipid-based chemical proteomic probes and their global interaction map in mammalian cells. These interactions involve hundreds of proteins from diverse functional classes and frequently occur at sites of drug action. We determine the target profiles for several drugs across the lipid-interaction proteome, revealing that its ligandable content extends far beyond traditionally defined categories of druggable proteins. In further support of this finding, we describe a selective ligand for the lipid-binding protein nucleobindin-1 (NUCB1) and show that this compound perturbs the hydrolytic and oxidative metabolism of endocannabinoids in cells. The described chemical proteomic platform thus provides an integrated path to both discover and pharmacologically characterize a wide range of proteins that participate in lipid pathways in cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Mapping Global Flows of Chemicals: From Fossil Fuel Feedstocks to Chemical Products.

    Science.gov (United States)

    Levi, Peter G; Cullen, Jonathan M

    2018-02-20

    Chemical products are ubiquitous in modern society. The chemical sector is the largest industrial energy consumer and the third largest industrial emitter of carbon dioxide. The current portfolio of mitigation options for the chemical sector emphasizes upstream "supply side" solutions, whereas downstream mitigation options, such as material efficiency, are given comparatively short shrift. Key reasons for this are the scarcity of data on the sector's material flows, and the highly intertwined nature of its complex supply chains. We provide the most up to date, comprehensive and transparent data set available publicly, on virgin production routes in the chemical sector: from fossil fuel feedstocks to chemical products. We map global mass flows for the year 2013 through a complex network of transformation processes, and by taking account of secondary reactants and by-products, we maintain a full mass balance throughout. The resulting data set partially addresses the dearth of publicly available information on the chemical sector's supply chain, and can be used to prioritise downstream mitigation options.

  10. NASA Global Hawk: A New Tool for Earth Science Research

    Science.gov (United States)

    Hall, Phill

    2009-01-01

    This slide presentation reviews the Global Hawk, a unmanned aerial vehicle (UAV) that NASA plans to use for Earth Sciences research. The Global Hawk is the world's first fully autonomous high-altitude, long-endurance aircraft, and is capable of conducting long duration missions. Plans are being made for the use of the aircraft on missions in the Arctic, Pacific and Western Atlantic Oceans. There are slides showing the Global Hawk Operations Center (GHOC), Flight Control and Air Traffic Control Communications Architecture, and Payload Integration and Accommodations on the Global Hawk. The first science campaign, planned for a study of the Pacific Ocean, is reviewed.

  11. Lidar instruments for ESA Earth observation missions

    Science.gov (United States)

    Hélière, Arnaud; Armandillo, Errico; Durand, Yannig; Culoma, Alain; Meynart, Roland

    2017-11-01

    The idea of deploying a lidar system on an Earthorbiting satellite stems from the need for continuously providing profiles of our atmospheric structure with high accuracy and resolution and global coverage. Interest in this information for climatology, meteorology and the atmospheric sciences in general is huge. Areas of application range from the determination of global warming and greenhouse effects, to monitoring the transport and accumulation of pollutants in the different atmospheric regions (such as the recent fires in Southeast Asia), to the assessment of the largely unknown microphysical properties and the structural dynamics of the atmosphere itself. Spaceborne lidar systems have been the subject of extensive investigations by the European Space Agency since mid 1970's, resulting in mission and instrument concepts, such as ATLID, the cloud backscatter lidar payload of the EarthCARE mission, ALADIN, the Doppler wind lidar of the Atmospheric Dynamics Mission (ADM) and more recently a water vapour Differential Absorption Lidar considered for the WALES mission. These studies have shown the basic scientific and technical feasibility of spaceborne lidars, but they have also demonstrated their complexity from the instrument viewpoint. As a result, the Agency undertook technology development in order to strengthen the instrument maturity. This is the case for ATLID, which benefited from a decade of technology development and supporting studies and is now studied in the frame of the EarthCARE mission. ALADIN, a Direct Detection Doppler Wind Lidar operating in the Ultra -Violet, will be the 1st European lidar to fly in 2007 as payload of the Earth Explorer Core Mission ADM. WALES currently studied at the level of a phase A, is based upon a lidar operating at 4 wavelengths in near infrared and aims to profile the water vapour in the lower part of the atmosphere with high accuracy and low bias. Lastly, the European Space Agency is extending the lidar instrument field

  12. VESsel GENeration Analysis (VESGEN): Innovative Vascular Mappings for Astronaut Exploration Health Risks and Human Terrestrial Medicine

    Science.gov (United States)

    Parsons-Wingerter, Patricia; Kao, David; Valizadegan, Hamed; Martin, Rodney; Murray, Matthew C.; Ramesh, Sneha; Sekaran, Srinivaas

    2017-01-01

    Currently, astronauts face significant health risks in future long-duration exploration missions such as colonizing the Moon and traveling to Mars. Numerous risks include greatly increased radiation exposures beyond the low earth orbit (LEO) of the ISS, and visual and ocular impairments in response to microgravity environments. The cardiovascular system is a key mediator in human physiological responses to radiation and microgravity. Moreover, blood vessels are necessarily involved in the progression and treatment of vascular-dependent terrestrial diseases such as cancer, coronary vessel disease, wound-healing, reproductive disorders, and diabetes. NASA developed an innovative, globally requested beta-level software, VESsel GENeration Analysis (VESGEN) to map and quantify vascular remodeling for application to astronaut and terrestrial health challenges. VESGEN mappings of branching vascular trees and networks are based on a weighted multi-parametric analysis derived from vascular physiological branching rules. Complex vascular branching patterns are determined by biological signaling mechanisms together with the fluid mechanics of multi-phase laminar blood flow.

  13. Cancer Risk Map for the Surface of Mars

    Science.gov (United States)

    Kim, Myung-Hee Y.; Cucinotta, Francis A.

    2011-01-01

    We discuss calculations of the median and 95th percentile cancer risks on the surface of Mars for different solar conditions. The NASA Space Radiation Cancer Risk 2010 model is used to estimate gender and age specific cancer incidence and mortality risks for astronauts exploring Mars. Organ specific fluence spectra and doses for large solar particle events (SPE) and galactic cosmic rays (GCR) at various levels of solar activity are simulated using the HZETRN/QMSFRG computer code, and the 2010 version of the Badhwar and O Neill GCR model. The NASA JSC propensity model of SPE fluence and occurrence is used to consider upper bounds on SPE fluence for increasing mission lengths. In the transport of particles through the Mars atmosphere, a vertical distribution of Mars atmospheric thickness is calculated from the temperature and pressure data of Mars Global Surveyor, and the directional cosine distribution is implemented to describe the spherically distributed atmospheric distance along the slant path at each elevation on Mars. The resultant directional shielding by Mars atmosphere at each elevation is coupled with vehicle and body shielding for organ dose estimates. Astronaut cancer risks are mapped on the global topography of Mars, which was measured by the Mars Orbiter Laser Altimeter. Variation of cancer risk on the surface of Mars is due to a 16-km elevation range, and the large difference is obtained between the Tharsis Montes (Ascraeus, Pavonis, and Arsia) and the Hellas impact basin. Cancer incidence risks are found to be about 2-fold higher than mortality risks with a disproportionate increase in skin and thyroid cancers for all astronauts and breast cancer risk for female astronauts. The number of safe days on Mars to be below radiation limits at the 95th percent confidence level is reported for several Mission design scenarios.

  14. A cartography and GIS consultancy mission to the Agricultural Research Institute (ARI) in Mlingano, Tanzania, september 1999

    NARCIS (Netherlands)

    Schuiling, C.

    2000-01-01

    The Agricultural Research Institute (ARI) in Mlingano, Tanzania made a start with GIS activities at the end of 1998. After purchasing GIS hardware and software and basic training courses, Alterra was invited to carry out a consultancy mission to solvepractical problems with map projection, map

  15. Understanding NEOs: The Role of Characterization Missions

    Science.gov (United States)

    Morrison, David

    2007-10-01

    NEOs are important from multiple perspectives, including science, hazard mitigation, space resources, and as targets for human missions. Much can be learned from ground-based studies, especially with radar, but the unique value of in situ investigation has been shown by missions such as NEAR-Shoemaker and Hayabusa to asteroids Eros and Itokawa, and Deep Impact and Stardust to comets. The next mission targets are likely to be NEAs in the subkilometer size range. Because these smaller objects are much more numerous, they are the objects we most need to understand from a defense perspective, and they are also the most likely targets for early human missions. However, there are unique challenges in sending spacecraft to investigate sub-km asteroids. Reconnaissance flybys are of little use, orbiting requires active control, and landing on such a low-gravity surface is perhaps better described as docking. Yet we need to operate close to the target, and probably to land, to obtain crucial information about interior structure. This paper deals primarily with small landers like the Near Earth Asteroid Trailblazer Mission (NEAT) studied at Ames Research Center. The NEAT objectives are to provide global reconnaissance (shape, mass, density, dynamical state), in situ surface characterization, and long-term precision tracking. Alternative approaches use deep-penetrating radar and electromagnetic sounding to probe interior structure. A third class of missions is ballistic impactors such as the ESA Don Quijote, which test one of the technologies for deflecting small asteroids. If the targets are selected for their accessibility, such missions could be implemented with low-cost launchers such as Pegasus, Falcon, or Minotaur. Such missions will have high science return. But from the perspective of defense, we have not yet developed a consensus strategy for the role of such characterization missions.

  16. TOWARDS CONSISTENT MAPPING OF URBAN STRUCTURES – GLOBAL HUMAN SETTLEMENT LAYER AND LOCAL CLIMATE ZONES

    Directory of Open Access Journals (Sweden)

    B. Bechtel

    2016-06-01

    Full Text Available Although more than half of the Earth’s population live in urban areas, we know remarkably little about most cities and what we do know is incomplete (lack of coverage and inconsistent (varying definitions and scale. While there have been considerable advances in the derivation of a global urban mask using satellite information, the complexity of urban structures, the heterogeneity of materials, and the multiplicity of spectral properties have impeded the derivation of universal urban structural types (UST. Further, the variety of UST typologies severely limits the comparability of such studies and although a common and generic description of urban structures is an essential requirement for the universal mapping of urban structures, such a standard scheme is still lacking. More recently, there have been two developments in urban mapping that have the potential for providing a standard approach: the Local Climate Zone (LCZ scheme (used by the World Urban Database and Access Portal Tools project and the Global Human Settlement Layer (GHSL methodology by JRC. In this paper the LCZ scheme and the GHSL LABEL product were compared for selected cities. The comparison between both datasets revealed a good agreement at city and coarse scale, while the contingency at pixel scale was limited due to the mismatch in grid resolution and typology. At a 1 km scale, built-up as well as open and compact classes showed very good agreement in terms of correlation coefficient and mean absolute distance, spatial pattern, and radial distribution as a function of distance from town, which indicates that a decomposition relevant for modelling applications could be derived from both. On the other hand, specific problems were found for both datasets, which are discussed along with their general advantages and disadvantages as a standard for UST classification in urban remote sensing.

  17. Interstellar Mapping and Acceleration Probe (IMAP)

    International Nuclear Information System (INIS)

    Schwadron, N. A.; Moebius, E.; Spence, H. E.; Opher, M.; Kasper, J.; Zurbuchen, T. H.; Mewaldt, R.

    2016-01-01

    Our piece of cosmic real estate, the heliosphere, is the domain of all human existence – an astrophysical case history of the successful evolution of life in a habitable system. By exploring our global heliosphere and its myriad interactions, we develop key physical knowledge of the interstellar interactions that influence exoplanetary habitability as well as the distant history and destiny of our solar system and world. IBEX is the first mission to explore the global heliosphere and in concert with Voyager 1 and Voyager 2 is discovering a fundamentally new and uncharted physical domain of the outer heliosphere. In parallel, Cassini/INCA maps the global heliosphere at energies (∼5-55 keV) above those measured by IBEX. The enigmatic IBEX ribbon and the INCA belt were unanticipated discoveries demonstrating that much of what we know or think we understand about the outer heliosphere needs to be revised. This paper summarizes the next quantum leap enabled by IMAP that will open new windows on the frontier of Heliophysics at a time when the space environment is rapidly evolving. IMAP with 100 times the combined resolution and sensitivity of IBEX and INCA will discover the substructure of the IBEX ribbon and will reveal, with unprecedented resolution, global maps of our heliosphere. The remarkable synergy between IMAP, Voyager 1 and Voyager 2 will remain for at least the next decade as Voyager 1 pushes further into the interstellar domain and Voyager 2 moves through the heliosheath. Voyager 2 moves outward in the same region of sky covered by a portion of the IBEX ribbon. Voyager 2’s plasma measurements will create singular opportunities for discovery in the context of IMAP's global measurements. IMAP, like ACE before, will be a keystone of the Heliophysics System Observatory by providing comprehensive measurements of interstellar neutral atoms and pickup ions, the solar wind distribution, composition, and magnetic field, as well as suprathermal ion

  18. Global Trends in Space Access and Utilization

    Science.gov (United States)

    Rahman, Shamim A.; Keim, Nicholas S.; Zeender, Peter E.

    2010-01-01

    In the not-so-distant past, space access and air/space technology superiority were within the purview of the U.S. and former Soviet Union's respective space agencies, both vying for global leadership in space exploitation. In more recent years, with the emergence of the European Space Agency (ESA) member countries and Asian countries joining the family of space-faring nations, it is truer now more than ever that space access and utilization has become a truly global enterprise. In fact, according to the Space Report 2007, this enterprise is a $251-billion economy. It is possible to gauge the vitality of worldwide efforts from open sources in today's transparent, media-based society. In particular, print and web broadcasters regularly report and catalog global space activities for defense and civil purposes. For the purposes of this paper, a representative catalog of missions is used to illustrate the nature of the emerging "globalization." This paper highlights global trends in terms of not only the providers of space access, but also the end-users for the various recently accomplished missions. With well over 50 launches per year, in recent years, the launch-log reveals a surprising percentage of "cooperative or co-dependent missions" where different agencies, countries, and/or commercial entities are so engaged presumably to the benefit of all who participate. Statistics are cited and used to show that recently over d0% of the 50-plus missions involved multiple nations working collectively to deliver payloads to orbit. Observers, space policy professionals, and space agency leaders have eloquently proposed that it might require the combined resources and talents of multiple nations to advance human exploration goals beyond low earth orbit. This paper does not intend to offer new information with respect to whether international collaboration is necessary but to observe that, in continuing to monitor global trends, the results seem to support the thesis that a

  19. Communication dated 23 June 2009 received from the Permanent Mission of the United States of America with regard to Global Initiative to Combat Nuclear Terrorism Plenary Meeting

    International Nuclear Information System (INIS)

    2009-01-01

    The Secretariat has received a communication dated 23 June 2009 from the Permanent Mission of the United States of America transmitting the 16 June 2009 message from President Barack Obama to the Global Initiative to Combat Nuclear Terrorism (GICNT) Plenary Meeting held in the Hague on 16-17 June 2009. As requested in that communication, the abovementioned message is herewith circulated for the information of all Member States

  20. A review of the US Global Change Research Program and NASA's Mission to Planet Earth/Earth Observing System

    Science.gov (United States)

    Moore, Berrien, III; Anderson, James G.; Costanza, Robert; Gates, W. Lawrence; Grew, Priscilla C.; Leinen, Margaret S.; Mayewski, Paul A.; McCarthy, James J.; Sellers, Piers J.

    1995-01-01

    This report reflects the results of a ten-day workshop convened at the Scripps Institution of Oceanography July 19-28, 1995. The workshop was convened as the first phase of a two part review of the U.S. Global Change Research Program (USGCRP). The workshop was organized to provide a review of the scientific foundations and progress to date in the USGCRP and an assessment of the implications of new scientific insights for future USGCRP and Mission to Planet Earth/Earth Observing System (MTPE/EOS) activities; a review of the role of NASA's MTPE/EOS program in the USGCRP observational strategy; a review of the EOS Data and Information System (EOSDIS) as a component of USGCRP data management activities; and an assessment of whether recent developments in the following areas lead to a need to readjust MTPE/EOS plans. Specific consideration was given to: proposed convergence of U.S. environmental satellite systems and programs, evolving international plans for Earth observation systems, advances in technology, and potential expansion of the role of the private sector. The present report summarizes the findings and recommendations developed by the Committee on Global Change Research on the basis of the presentations, background materials, working group deliberations, and plenary discussions of the workshop. In addition, the appendices include summaries prepared by the six working groups convened in the course of the workshop.

  1. Vision-based map building and trajectory planning to enable autonomous flight through urban environments

    Science.gov (United States)

    Watkins, Adam S.

    The desire to use Unmanned Air Vehicles (UAVs) in a variety of complex missions has motivated the need to increase the autonomous capabilities of these vehicles. This research presents autonomous vision-based mapping and trajectory planning strategies for a UAV navigating in an unknown urban environment. It is assumed that the vehicle's inertial position is unknown because GPS in unavailable due to environmental occlusions or jamming by hostile military assets. Therefore, the environment map is constructed from noisy sensor measurements taken at uncertain vehicle locations. Under these restrictions, map construction becomes a state estimation task known as the Simultaneous Localization and Mapping (SLAM) problem. Solutions to the SLAM problem endeavor to estimate the state of a vehicle relative to concurrently estimated environmental landmark locations. The presented work focuses specifically on SLAM for aircraft, denoted as airborne SLAM, where the vehicle is capable of six degree of freedom motion characterized by highly nonlinear equations of motion. The airborne SLAM problem is solved with a variety of filters based on the Rao-Blackwellized particle filter. Additionally, the environment is represented as a set of geometric primitives that are fit to the three-dimensional points reconstructed from gathered onboard imagery. The second half of this research builds on the mapping solution by addressing the problem of trajectory planning for optimal map construction. Optimality is defined in terms of maximizing environment coverage in minimum time. The planning process is decomposed into two phases of global navigation and local navigation. The global navigation strategy plans a coarse, collision-free path through the environment to a goal location that will take the vehicle to previously unexplored or incompletely viewed territory. The local navigation strategy plans detailed, collision-free paths within the currently sensed environment that maximize local coverage

  2. Underwater Multi-Vehicle Trajectory Alignment and Mapping Using Acoustic and Optical Constraints

    Directory of Open Access Journals (Sweden)

    Ricard Campos

    2016-03-01

    Full Text Available Multi-robot formations are an important advance in recent robotic developments, as they allow a group of robots to merge their capacities and perform surveys in a more convenient way. With the aim of keeping the costs and acoustic communications to a minimum, cooperative navigation of multiple underwater vehicles is usually performed at the control level. In order to maintain the desired formation, individual robots just react to simple control directives extracted from range measurements or ultra-short baseline (USBL systems. Thus, the robots are unaware of their global positioning, which presents a problem for the further processing of the collected data. The aim of this paper is two-fold. First, we present a global alignment method to correct the dead reckoning trajectories of multiple vehicles to resemble the paths followed during the mission using the acoustic messages passed between vehicles. Second, we focus on the optical mapping application of these types of formations and extend the optimization framework to allow for multi-vehicle geo-referenced optical 3D mapping using monocular cameras. The inclusion of optical constraints is not performed using the common bundle adjustment techniques, but in a form improving the computational efficiency of the resulting optimization problem and presenting a generic process to fuse optical reconstructions with navigation data. We show the performance of the proposed method on real datasets collected within the Morph EU-FP7 project.

  3. NASA's Solar System Treks: Online Portals for Planetary Mapping and Modeling

    Science.gov (United States)

    Day, Brian

    2017-01-01

    NASA's Solar System Treks are a suite of web-based of lunar and planetary mapping and modeling portals providing interactive visualization and analysis tools enabling mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, Vesta, and more. New portals for additional planetary bodies are being planned. This presentation will recap significant enhancements to these toolsets during the past year and look ahead to future features and releases. Moon Trek is a new portal replacing its predecessor, the Lunar Mapping and Modeling Portal (LMMP), that significantly upgrades and builds upon the capabilities of LMMP. It features greatly improved navigation, 3D visualization, fly-overs, performance, and reliability. Additional data products and tools continue to be added. These include both generalized products as well as polar data products specifically targeting potential sites for NASA's Resource Prospector mission as well as for missions being planned by NASA's international partners. The latest release of Mars Trek includes new tools and data products requested by NASA's Planetary Science Division to support site selection and analysis for Mars Human Landing Exploration Zone Sites. Also being given very high priority by NASA Headquarters is Mars Trek's use as a means to directly involve the public in upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars. Phobos Trek, the latest effort in the Solar System Treks suite, is being developed in coordination with the International Phobos/Deimos Landing Site Working Group, with landing site selection and analysis for JAXA's MMX (Martian Moons eXploration) mission as a primary driver.

  4. NASA's Solar System Treks: Online Portals for Planetary Mapping and Modeling

    Science.gov (United States)

    Day, B. H.; Law, E.

    2017-12-01

    NASA's Solar System Treks are a suite of web-based of lunar and planetary mapping and modeling portals providing interactive visualization and analysis tools enabling mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, Vesta, and more. New portals for additional planetary bodies are being planned. This presentation will recap significant enhancements to these toolsets during the past year and look ahead to future features and releases. Moon Trek is a new portal replacing its predecessor, the Lunar Mapping and Modeling Portal (LMMP), that significantly upgrades and builds upon the capabilities of LMMP. It features greatly improved navigation, 3D visualization, fly-overs, performance, and reliability. Additional data products and tools continue to be added. These include both generalized products as well as polar data products specifically targeting potential sites for NASA's Resource Prospector mission as well as for missions being planned by NASA's international partners. The latest release of Mars Trek includes new tools and data products requested by NASA's Planetary Science Division to support site selection and analysis for Mars Human Landing Exploration Zone Sites. Also being given very high priority by NASA Headquarters is Mars Trek's use as a means to directly involve the public in upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars. Phobos Trek, the latest effort in the Solar System Treks suite, is being developed in coordination with the International Phobos/Deimos Landing Site Working Group, with landing site selection and analysis for JAXA's MMX mission as a primary driver.

  5. Remote Sensing of Aerosol in the Terrestrial Atmosphere from Space: New Missions

    Science.gov (United States)

    Milinevsky, G.; Yatskiv, Ya.; Degtyaryov, O.; Syniavskyi, I.; Ivanov, Yu.; Bovchaliuk, A.; Mishchenko, M.; Danylevsky, V.; Sosonkin, M.; Bovchaliuk, V.

    2015-01-01

    The distribution and properties of atmospheric aerosols on a global scale are not well known in terms of determination of their effects on climate. This mostly is due to extreme variability of aerosol concentrations, properties, sources, and types. Aerosol climate impact is comparable to the effect of greenhouse gases, but its influence is more difficult to measure, especially with respect to aerosol microphysical properties and the evaluation of anthropogenic aerosol effect. There are many satellite missions studying aerosol distribution in the terrestrial atmosphere, such as MISR/Terra, OMI/Aura, AVHHR, MODIS/Terra and Aqua, CALIOP/CALIPSO. To improve the quality of data and climate models, and to reduce aerosol climate forcing uncertainties, several new missions are planned. The gap in orbital instruments for studying aerosol microphysics has arisen after the Glory mission failed during launch in 2011. In this review paper, we describe several planned aerosol space missions, including the Ukrainian project Aerosol-UA that obtains data using a multi-channel scanning polarimeter and wide-angle polarimetric camera. The project is designed for remote sensing of the aerosol microphysics and cloud properties on a global scale.

  6. Mapping Global Potential Risk of Mango Sudden Decline Disease Caused by Ceratocystis fimbriata

    Science.gov (United States)

    Oliveira, Leonardo S. S.; Alfenas, Acelino C.; Neven, Lisa G.; Al-Sadi, Abdullah M.

    2016-01-01

    The Mango Sudden Decline (MSD), also referred to as Mango Wilt, is an important disease of mango in Brazil, Oman and Pakistan. This fungus is mainly disseminated by the mango bark beetle, Hypocryphalus mangiferae (Stebbing), by infected plant material, and the infested soils where it is able to survive for long periods. The best way to avoid losses due to MSD is to prevent its establishment in mango production areas. Our objectives in this study were to: (1) predict the global potential distribution of MSD, (2) identify the mango growing areas that are under potential risk of MSD establishment, and (3) identify climatic factors associated with MSD distribution. Occurrence records were collected from Brazil, Oman and Pakistan where the disease is currently known to occur in mango. We used the correlative maximum entropy based model (MaxEnt) algorithm to assess the global potential distribution of MSD. The MaxEnt model predicted suitable areas in countries where the disease does not already occur in mango, but where mango is grown. Among these areas are the largest mango producers in the world including India, China, Thailand, Indonesia, and Mexico. The mean annual temperature, precipitation of coldest quarter, precipitation seasonality, and precipitation of driest month variables contributed most to the potential distribution of MSD disease. The mango bark beetle vector is known to occur beyond the locations where MSD currently exists and where the model predicted suitable areas, thus showing a high likelihood for disease establishment in areas predicted by our model. Our study is the first to map the potential risk of MSD establishment on a global scale. This information can be used in designing strategies to prevent introduction and establishment of MSD disease, and in preparation of efficient pest risk assessments and monitoring programs. PMID:27415625

  7. System engineering of complex optical systems for mission assurance and affordability

    Science.gov (United States)

    Ahmad, Anees

    2017-08-01

    Affordability and reliability are equally important as the performance and development time for many optical systems for military, space and commercial applications. These characteristics are even more important for the systems meant for space and military applications where total lifecycle costs must be affordable. Most customers are looking for high performance optical systems that are not only affordable but are designed with "no doubt" mission assurance, reliability and maintainability in mind. Both US military and commercial customers are now demanding an optimum balance between performance, reliability and affordability. Therefore, it is important to employ a disciplined systems design approach for meeting the performance, cost and schedule targets while keeping affordability and reliability in mind. The US Missile Defense Agency (MDA) now requires all of their systems to be engineered, tested and produced according to the Mission Assurance Provisions (MAP). These provisions or requirements are meant to ensure complex and expensive military systems are designed, integrated, tested and produced with the reliability and total lifecycle costs in mind. This paper describes a system design approach based on the MAP document for developing sophisticated optical systems that are not only cost-effective but also deliver superior and reliable performance during their intended missions.

  8. Family Medicine Global Health Fellowship Competencies: A Modified Delphi Study.

    Science.gov (United States)

    Rayess, Fadya El; Filip, Anna; Doubeni, Anna; Wilson, Calvin; Haq, Cynthia; Debay, Marc; Anandarajah, Gowri; Heffron, Warren; Jayasekera, Neil; Larson, Paul; Dahlman, Bruce; Valdman, Olga; Hunt, Vince

    2017-02-01

    Many US medical schools and family medicine departments have responded to a growing interest in global health by developing global health fellowships. However, there are no guidelines or consensus statements outlining competencies for global health fellows. Our objective was to develop a mission and core competencies for Family Medicine Global Health Fellowships. A modified Delphi technique was used to develop consensus on fellowship competencies. A panel, comprised of 13 members with dual expertise in global health and medical education, undertook an iterative consensus process, followed by peer review, from April to December 2014. The panel developed a mission statement and identified six domains for family medicine global health fellowships: patient care, medical knowledge, professionalism, communication and leadership, teaching, and scholarship. Each domain includes a set of core and program-specific competencies. The family medicine global health competencies are intended to serve as an educational framework for the design, implementation, and evaluation of individual family medicine global health fellowship programs.

  9. Geologic Map of the Mylitta Fluctus Quadrangle (V-61), Venus

    Science.gov (United States)

    Ivanov, Mikhail A.; Head, James W.

    2006-01-01

    INTRODUCTION The Magellan Mission The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphere on October 12, 1994. Magellan Mission objectives included: (1) improving knowledge of the geological processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology, and (2) improving the knowledge of the geophysics of Venus by analysis of Venusian gravity. The Magellan spacecraft carried a 12.6-cm radar system to map the surface of Venus. The transmitter and receiver systems were used to collect three data sets: (1) synthetic aperture radar (SAR) images of the surface, (2) passive microwave thermal emission observations, and (3) measurements of the backscattered power at small angles of incidence, which were processed to yield altimetric data. Radar imaging, altimetric, and radiometric mapping of the Venusian surface was done in mission cycles 1, 2, and 3 from September 1990 until September 1992. Ninety-eight percent of the surface was mapped with radar resolution on the order of 120 meters. The SAR observations were projected to a 75-m nominal horizontal resolution, and these full-resolution data compose the image base used in geologic mapping. The primary polarization mode was horizontal-transmit, horizontal-receive (HH), but additional data for selected areas were collected for the vertical polarization sense. Incidence angles varied between about 20? and 45?. High resolution Doppler tracking of the spacecraft took place from September 1992 through October 1994 (mission cycles 4, 5, 6). Approximately 950 orbits of high-resolution gravity observations were obtained between September 1992 and May 1993 while Magellan was in an elliptical orbit with a periapsis near 175 km and an apoapsis near 8,000 km. An additional 1,500 orbits were obtained following orbit-circularization in mid-1993. These data exist as a 75? by 75? harmonic field.

  10. Approach of simultaneous localization and mapping based on local maps for robot

    Institute of Scientific and Technical Information of China (English)

    CHEN Bai-fan; CAI Zi-xing; HU De-wen

    2006-01-01

    An extended Kalman filter approach of simultaneous localization and mapping(SLAM) was proposed based on local maps.A local frame of reference was established periodically at the position of the robot, and then the observations of the robot and landmarks were fused into the global frame of reference. Because of the independence of the local map, the approach does not cumulate the estimate and calculation errors which are produced by SLAM using Kalman filter directly. At the same time, it reduces the computational complexity. This method is proven correct and feasible in simulation experiments.

  11. STS-61 mission director's post-mission report

    Science.gov (United States)

    Newman, Ronald L.

    1995-01-01

    To ensure the success of the complex Hubble Space Telescope servicing mission, STS-61, NASA established a number of independent review groups to assess management, design, planning, and preparation for the mission. One of the resulting recommendations for mission success was that an overall Mission Director be appointed to coordinate management activities of the Space Shuttle and Hubble programs and to consolidate results of the team reviews and expedite responses to recommendations. This report presents pre-mission events important to the experience base of mission management, with related Mission Director's recommendations following the event(s) to which they apply. All Mission Director's recommendations are presented collectively in an appendix. Other appendixes contain recommendations from the various review groups, including Payload Officers, the JSC Extravehicular Activity (EVA) Section, JSC EVA Management Office, JSC Crew and Thermal Systems Division, and the STS-61 crew itself. This report also lists mission events in chronological order and includes as an appendix a post-mission summary by the lead Payload Deployment and Retrieval System Officer. Recommendations range from those pertaining to specific component use or operating techniques to those for improved management, review, planning, and safety procedures.

  12. Mapping global precipitation with satellite borne microwave radiometer and infrared radiometer using Kalman filter

    International Nuclear Information System (INIS)

    Noda, S.; Sasashige, K.; Katagami, D.; Ushio, T.; Kubota, T.; Okamoto, K.; Iida, Y.; Kida, S.; Shige, S.; Shimomura, S.; Aonashi, K.; Inoue, T.; Morimoto, T.; Kawasaki, Z.

    2007-01-01

    Estimates of precipitation at a high time and space resolution are required for many important applications. In this paper, a new global precipitation map with high spatial (0.1 degree) and temporal (1 hour) resolution using Kalman filter technique is presented and evaluated. Infrared radiometer data, which are available globally nearly everywhere and nearly all the time from geostationary orbit, are used with the several microwave radiometers aboard the LEO satellites. IR data is used as a means to move the precipitation estimates from microwave observation during periods when microwave data are not available at a given location. Moving vector is produced by computing correlations on successive images of IR data. When precipitation is moved, the Kalman filter is applied for improving the moving technique in this research. The new approach showed a better score than the technique without Kalman filter. The correlation coefficient was 0.1 better than without the Kalman filter about 6 hours after the last microwave overpasses, and the RMS error was improved about 0.1 mm/h with the Kalman filter technique. This approach is unique in that 1) the precipitation estimates from the microwave radiometer is mainly used, 2) the IR temperature in every hour is also used for the precipitation estimates based on the Kalman filter theory

  13. Global Citizenship in Intercultural Communication: Spatial Awareness of Globalization through Map Your Consumption

    Science.gov (United States)

    Kuehl, Rebecca A.; Hungerford, Hilary

    2017-01-01

    Courses: This teaching unit is for intercultural communication but could be used for any course related to globalization, including public speaking, popular culture and communication, or environmental communication. Additionally, the teaching unit is well-suited for other disciplines, including geography, environmental studies, and global studies.…

  14. Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle

    Science.gov (United States)

    Roma-Dollase, David; Hernández-Pajares, Manuel; Krankowski, Andrzej; Kotulak, Kacper; Ghoddousi-Fard, Reza; Yuan, Yunbin; Li, Zishen; Zhang, Hongping; Shi, Chuang; Wang, Cheng; Feltens, Joachim; Vergados, Panagiotis; Komjathy, Attila; Schaer, Stefan; García-Rigo, Alberto; Gómez-Cama, José M.

    2018-06-01

    In the context of the International GNSS Service (IGS), several IGS Ionosphere Associated Analysis Centers have developed different techniques to provide global ionospheric maps (GIMs) of vertical total electron content (VTEC) since 1998. In this paper we present a comparison of the performances of all the GIMs created in the frame of IGS. Indeed we compare the classical ones (for the ionospheric analysis centers CODE, ESA/ESOC, JPL and UPC) with the new ones (NRCAN, CAS, WHU). To assess the quality of them in fair and completely independent ways, two assessment methods are used: a direct comparison to altimeter data (VTEC-altimeter) and to the difference of slant total electron content (STEC) observed in independent ground reference stations (dSTEC-GPS). The main conclusion of this study, performed during one solar cycle, is the consistency of the results between so many different GIM techniques and implementations.

  15. Xenon Acquisition Strategies for High-Power Electric Propulsion NASA Missions

    Science.gov (United States)

    Herman, Daniel A.; Unfried, Kenneth G.

    2015-01-01

    The benefits of high-power solar electric propulsion (SEP) for both NASA's human and science exploration missions combined with the technology investment from the Space Technology Mission Directorate have enabled the development of a 50kW-class SEP mission. NASA mission concepts developed, including the Asteroid Redirect Robotic Mission, and those proposed by contracted efforts for the 30kW-class demonstration have a range of xenon propellant loads from 100's of kg up to 10,000 kg. A xenon propellant load of 10 metric tons represents greater than 10% of the global annual production rate of xenon. A single procurement of this size with short-term delivery can disrupt the xenon market, driving up pricing, making the propellant costs for the mission prohibitive. This paper examines the status of the xenon industry worldwide, including historical xenon supply and pricing. The paper discusses approaches for acquiring on the order of 10 MT of xenon propellant considering realistic programmatic constraints to support potential near-term NASA missions. Finally, the paper will discuss acquisitions strategies for mission campaigns utilizing multiple high-power solar electric propulsion vehicles requiring 100's of metric tons of xenon over an extended period of time where a longer term acquisition approach could be implemented.

  16. Mission Mars India's quest for the red planet

    CERN Document Server

    Lele, Ajey

    2014-01-01

    The objective of the book is to find an answer to the rationale behind the human quest for the Mars exploration. As a comprehensive assessment for this query is undertaken, it is realized that the basic question ‘Why Mars?’ seeks various responses from technological, economic and geopolitical to strategic perspectives. The book is essentially targeted to understand India’s desire to reach Mars. In the process, it also undertakes some implicit questioning of Mars programmes of various other states essentially to facilitate the setting up of the context for an assessment.   The book is divided into two parts: Part I: This covers both science and politics associated with Mars missions in global scenario and discusses the salient features of various Mars Missions undertaken by various countries. Part II: This provides details in regards to India’s Mars Mission.

  17. Necklace maps

    NARCIS (Netherlands)

    Speckmann, B.; Verbeek, K.A.B.

    2010-01-01

    Statistical data associated with geographic regions is nowadays globally available in large amounts and hence automated methods to visually display these data are in high demand. There are several well-established thematic map types for quantitative data on the ratio-scale associated with regions:

  18. The medical mission and modern cultural competency training.

    Science.gov (United States)

    Campbell, Alex; Sullivan, Maura; Sherman, Randy; Magee, William P

    2011-01-01

    Culture has increasingly appreciated clinical consequences on the patient-physician relationship, and governing bodies of medical education are widely expanding educational programs to train providers in culturally competent care. A recent study demonstrated the value an international surgical mission in modern surgical training, while fulfilling the mandate of educational growth through six core competencies. This report further examines the impact of international volunteerism on surgical residents, and demonstrates that such experiences are particularly suited to education in cultural competency. Twenty-one resident physicians who participated in the inaugural Operation Smile Regan Fellowship were surveyed one year after their experiences. One hundred percent strongly agreed that participation in an international surgical mission was a quality educational experience and 94.7% deemed the experience a valuable part of their residency training. In additional to education in each of the ACGME core competencies, results demonstrate valuable training in cultural competence. A properly structured and proctored experience for surgical residents in international volunteerism is an effective instruction tool in the modern competency-based residency curriculum. These endeavors provide a unique understanding of the global burden of surgical disease, a deeper appreciation for global public health issues, and increased cultural sensitivity. A surgical mission experience should be widely available to surgery residents. Copyright © 2010 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  19. Understanding map projections: Chapter 15

    Science.gov (United States)

    Usery, E. Lynn; Kent, Alexander J.; Vujakovic, Peter

    2018-01-01

    It has probably never been more important in the history of cartography than now that people understand how maps work. With increasing globalization, for example, world maps provide a key format for the transmission of information, but are often poorly used. Examples of poor understanding and use of projections and the resultant maps are many; for instance, the use of rectangular world maps in the United Kingdom press to show Chinese and Korean missile ranges as circles, something which can only be achieved on equidistant projections and then only from one launch point (Vujakovic, 2014).

  20. PoPSat: The Polar Precipitation Satellite Mission

    Science.gov (United States)

    Binder, Matthias J.; Agten, Dries; Arago-Higueras, Nadia; Borderies, Mary; Diaz-Schümmer, Carlos; Jamali, Maryam; Jimenez-Lluva, David; Kiefer, Joshua; Larsson, Anna; Lopez-Gilabert, Lola; Mione, Michele; Mould, Toby JD; Pavesi, Sara; Roth, Georg; Tomicic, Maja

    2017-04-01

    The terrestrial water cycle is one of many unique regulatory systems on planet Earth. It is directly responsible for sustaining biological life on land and human populations by ensuring sustained crop yields. However, this delicate balanced system continues to be influenced significantly by a changing climate, which has had drastic impacts particularly on the polar regions. Precipitation is a key process in the weather and climate system, due to its storage, transport and release of latent heat in the atmosphere. It has been extensively investigated in low latitudes, in which detailed models have been established for weather prediction. However, a gap has been left in higher latitudes above 65°, which show the strongest response to climate changes and where increasing precipitations have been foreseen in the future. In order to establish a global perspective of atmospheric processes, space observation of high-latitude areas is crucial to produce globally consistent data. The increasing demand for those data has driven a critical need to devise a mission which fills the gaps in current climate models. The authors propose the Polar Precipitation Satellite (PoPSat), an innovative satellite mission to provide enhanced observation of light and medium precipitation, focusing on snowfall and light rain in high latitudes. PoPSat is the first mission aimed to provide high resolution 3D structural information about snow and light precipitation systems and cloud structure in the covered areas. The satellite is equipped with a dual band (Ka and W band) phased-array radar. These antennas provide a horizontal resolution of 2 km and 4 km respectively which will exceed all other observations made to date at high-latitudes, while providing the additional capability to monitor snowfall. The data gathered will be compatible and complementary with measurements made during previous missions. PoPSat has been designed to fly on a sun-synchronous, dawn-dusk orbit at 460 km. This orbit

  1. Meeting the challenge of mapping peatlands with remotely sensed data

    Directory of Open Access Journals (Sweden)

    O. N. Krankina

    2008-12-01

    Full Text Available Boreal peatlands play a major role in carbon and water cycling and other global environmental processes but understanding this role is constrained by inconsistent representation of peatlands on, or omission from, many global land cover maps. The comparison of several widely used global and continental-scale databases on peatland distribution with a detailed map for the St. Petersburg region of Russia showed significant under-reporting of peatland area, or even total omission. Analysis of the spatial agreement and disagreement with the detailed regional map indicated that the error of comission (overestimation was significantly lower than the error of omission (underestimation which means, that overall, peatlands were correctly classified as such in coarse resolution datasets but a large proportion (74–99% was overlooked. The coarse map resolution alone caused significant omission of peatlands in the study region. In comparison to categorical maps, continuous field mapping approach utilizing MODIS sensor data showed potential for a greatly improved representation of peatlands on coarse resolution maps. Analysis of spectral signatures of peatlands with different types of surface vegetation suggested that improved mapping of boreal peatlands on categorical maps is feasible. The lower reflectance of treeless peatlands in the near- and shortwave-infrared parts of the electromagnetic spectrum is consistent with the spectral signature of sphagnum mosses. However, when trees are present, the canopy architecture appears to be more important in defining the overall spectral reflectance of peatlands. A research focus on developing remote sensing methods for boreal peatlands is needed for adequate characterization of their global distribution.

  2. The Application of LENR to Synergistic Mission Capabilities

    Science.gov (United States)

    Wells, Douglas P.; Mavris, Dimitri N.

    2014-01-01

    This paper presents an overview of several missions that exploit the capabilities of a Low Energy Nuclear Reaction (LENR) aircraft propulsion system. LENR is a form of nuclear energy and potentially has over 4,000 times the energy density of chemical energy sources. It does not have any harmful emissions or radiation which makes it extremely appealing. The global reliance on crude oil for aircraft energy creates the opportunity for a revolutionary change with LENR. LENR will impact aircraft performance capabilities, military capabilities, the environment, the economy, and society. Although there is a lot of interest in LENR, there is no proven theory that explains it. Some of the technical challenges are thermal runaway and start-up time. This paper does not explore the feasibility of LENR and assumes that a system is available. A non-dimensional aircraft mass (NAM) ratio diagram is used to explore the aircraft system design space. The NAM ratio diagram shows that LENR can enable long range and high speed missions. The design space exploration led to the conclusion that LENR aircraft would be well suited for high altitude long endurance (HALE) missions, including communications relay and scientific missions for hurricane tracking and other weather phenomena, military intelligence, surveillance, and reconnaissance (ISR) and airspace denial missions, supersonic passenger transport aircraft, and international cargo transport. This paper describes six of those missions.

  3. Geologic mapping of the Hi’iaka and Shamshu regions of Io

    Science.gov (United States)

    Bunte, Melissa K.; Williams, David A.; Greeley, Ronald; Jaeger, Windy L.

    2010-06-01

    We produced regional geologic maps of the Hi'iaka and Shamshu regions of Io's antijovian hemisphere using Galileo mission data to assess the geologic processes that are involved in the formation of Io's mountains and volcanic centers. Observations reveal that these regions are characterized by several types of volcanic activity and features whose orientation and texture indicate tectonic activity. Among the volcanic features are multiple hotspots and volcanic vents detected by Galileo, one at each of the major paterae: Hi'iaka, Shamshu, and Tawhaki. We mapped four primary types of geologic units: flows, paterae floors, plains, and mountains. The flows and patera floors are similar, but are subdivided based upon emplacement environments and mechanisms. The floors of Hi'iaka and Shamshu Paterae have been partially resurfaced by dark lava flows, although portions of the paterae floors appear bright and unchanged during the Galileo mission; this suggests that the floors did not undergo complete resurfacing as flooding lava lakes. However, the paterae do contain compound lava flow fields and show the greatest activity near the paterae walls, a characteristic of Pele type lava lakes. Mountain materials are tilted crustal blocks that exhibit varied degrees of degradation. Lineated mountains have characteristic en echelon grooves that likely formed as a result of gravitational sliding. Undivided mountains are partially grooved but exhibit evidence of slumping and are generally lower elevation than the lineated units. Debris lobes and aprons are representative of mottled mountain materials. We have explored the possibility that north and south Hi'iaka Mons were originally one structure. We propose that strike-slip faulting and subsequent rifting separated the mountain units and created a depression which, by further extension during the rifting event, became Hi'iaka Patera. This type of rifting and depression formation is similar to the mechanism of formation of terrestrial

  4. Mission Operations Planning and Scheduling System (MOPSS)

    Science.gov (United States)

    Wood, Terri; Hempel, Paul

    2011-01-01

    MOPSS is a generic framework that can be configured on the fly to support a wide range of planning and scheduling applications. It is currently used to support seven missions at Goddard Space Flight Center (GSFC) in roles that include science planning, mission planning, and real-time control. Prior to MOPSS, each spacecraft project built its own planning and scheduling capability to plan satellite activities and communications and to create the commands to be uplinked to the spacecraft. This approach required creating a data repository for storing planning and scheduling information, building user interfaces to display data, generating needed scheduling algorithms, and implementing customized external interfaces. Complex scheduling problems that involved reacting to multiple variable situations were analyzed manually. Operators then used the results to add commands to the schedule. Each architecture was unique to specific satellite requirements. MOPSS is an expert system that automates mission operations and frees the flight operations team to concentrate on critical activities. It is easily reconfigured by the flight operations team as the mission evolves. The heart of the system is a custom object-oriented data layer mapped onto an Oracle relational database. The combination of these two technologies allows a user or system engineer to capture any type of scheduling or planning data in the system's generic data storage via a GUI.

  5. Mars Pathfinder and Mars Global Surveyor Outreach Compilation

    Science.gov (United States)

    1999-09-01

    This videotape is a compilation of the best NASA JPL (Jet Propulsion Laboratory) videos of the Mars Pathfinder and Mars Global Surveyor missions. The mission is described using animation and narration as well as some actual footage of the entire sequence of mission events. Included within these animations are the spacecraft orbit insertion; descent to the Mars surface; deployment of the airbags and instruments; and exploration by Sojourner, the Mars rover. JPL activities at spacecraft control during significant mission events are also included at the end. The spacecraft cameras pan the surrounding Mars terrain and film Sojourner traversing the surface and inspecting rocks. A single, brief, processed image of the Cydonia region (Mars face) at an oblique angle from the Mars Global Surveyor is presented. A description of the Mars Pathfinder mission, instruments, landing and deployment process, Mars approach, spacecraft orbit insertion, rover operation are all described using computer animation. Actual color footage of Sojourner as well as a 360 deg pan of the Mars terrain surrounding the spacecraft is provided. Lower quality black and white photography depicting Sojourner traversing the Mars surface and inspecting Martian rocks also is included.

  6. NCEP SST Analysis

    Science.gov (United States)

    Organization Search Go Search Polar Go MMAB SST Analysis Main page About MMAB Our Mission Our Personnel EMC Branches Global Climate & Weather Modeling Mesoscale Modeling Marine Modeling and Analysis Contact EMC (RTG_SST_HR) analysis For a regional map, click the desired area in the global SST analysis and anomaly maps

  7. (abstract) Science-Project Interaction in the Low-Cost Mission

    Science.gov (United States)

    Wall, Stephen D.

    1994-01-01

    Large, complex, and highly optimized missions have performed most of the preliminary reconnaisance of the solar system. As a result we have now mapped significant fractions of its total surface (or surface-equivalent) area. Now, however, scientific exploration of the solar system is undergoing a major change in scale, and existing missions find it necessary to limit costs while fulfilling existing goals. In the future, NASA's Discovery program will continue the reconnaisance, exploration, and diagnostic phases of planetary research using lower cost missions, which will include lower cost mission operations systems (MOS). Historically, one of the more expensive functions of MOS has been its interaction with the science community. Traditional MOS elements that this interaction have embraced include mission planning, science (and engineering) event conflict resolution, sequence optimization and integration, data production (e.g., assembly, enhancement, quality assurance, documentation, archive), and other science support services. In the past, the payoff from these efforts has been that use of mission resources has been highly optimized, constraining resources have been generally completely consumed, and data products have been accurate and well documented. But because these functions are expensive we are now challenged to reduce their cost while preserving the benefits. In this paper, we will consider ways of revising the traditional MOS approach that might save project resources while retaining a high degree of service to the Projects' customers. Pre-launch, science interaction can be made simplier by limiting numbers of instruments and by providing greater redundancy in mission plans. Post launch, possibilities include prioritizing data collection into a few categories, easing requirements on real-time of quick-look data delivery, and closer integration of scientists into the mission operation.

  8. A new space technology for ocean observation: the SMOS mission

    Directory of Open Access Journals (Sweden)

    Jordi Font

    2012-09-01

    Full Text Available Capability for sea surface salinity observation was an important gap in ocean remote sensing in the last few decades of the 20th century. New technological developments during the 1990s at the European Space Agency led to the proposal of SMOS (Soil Moisture and Ocean Salinity, an Earth explorer opportunity mission based on the use of a microwave interferometric radiometer, MIRAS (Microwave Imaging Radiometer with Aperture Synthesis. SMOS, the first satellite ever addressing the observation of ocean salinity from space, was successfully launched in November 2009. The determination of salinity from the MIRAS radiometric measurements at 1.4 GHz is a complex procedure that requires high performance from the instrument and accurate modelling of several physical processes that impact on the microwave emission of the ocean’s surface. This paper introduces SMOS in the ocean remote sensing context, and summarizes the MIRAS principles of operation and the SMOS salinity retrieval approach. It describes the Spanish SMOS high-level data processing centre (CP34 and the SMOS Barcelona Expert Centre on Radiometric Calibration and Ocean Salinity (SMOS-BEC, and presents a preliminary validation of global sea surface salinity maps operationally produced by CP34.

  9. An Image Matching Algorithm Integrating Global SRTM and Image Segmentation for Multi-Source Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Xiao Ling

    2016-08-01

    Full Text Available This paper presents a novel image matching method for multi-source satellite images, which integrates global Shuttle Radar Topography Mission (SRTM data and image segmentation to achieve robust and numerous correspondences. This method first generates the epipolar lines as a geometric constraint assisted by global SRTM data, after which the seed points are selected and matched. To produce more reliable matching results, a region segmentation-based matching propagation is proposed in this paper, whereby the region segmentations are extracted by image segmentation and are considered to be a spatial constraint. Moreover, a similarity measure integrating Distance, Angle and Normalized Cross-Correlation (DANCC, which considers geometric similarity and radiometric similarity, is introduced to find the optimal correspondences. Experiments using typical satellite images acquired from Resources Satellite-3 (ZY-3, Mapping Satellite-1, SPOT-5 and Google Earth demonstrated that the proposed method is able to produce reliable and accurate matching results.

  10. IAEA Sends International Fact-finding Expert Mission to Japan

    International Nuclear Information System (INIS)

    2011-01-01

    Full text: The International Atomic Energy Agency will dispatch an international expert fact-finding mission to Japan. Based upon the agreement between the IAEA and the Government of Japan, the mission, comprising nearly 20 international and IAEA experts from a dozen countries, will visit Japan between 24 May and 2 June 2011. Under the leadership of Mr. Mike Weightman, HM Chief Inspector of Nuclear Installations of the United Kingdom, the mission will conduct fact-finding activities at Tokyo Electric Power Company's Fukushima Dai-ichi Nuclear Power Station (NPS) site and in other locations. The expert mission will make a preliminary assessment of the safety issues linked with TEPCO's Fukushima Dai-ichi NPS accident following the Great East Japan Earthquake and Tsunami. During the mission, areas that need further exploration or assessment based on the IAEA safety standards will also be identified. In the course of the IAEA mission, the international experts will become acquainted with the Japanese lessons learned from the accident and will share their experience and expertise in their fields of competence with the Japanese authorities. Mr. Weightman will present the mission's report at the Ministerial Conference on Nuclear Safety organised by the IAEA in Vienna from 20 to 24 June 2011, as an important input in the process of reviewing and strengthening the global nuclear safety framework that will be launched by the Conference. (IAEA)

  11. Acoustic Communications Considerations for Collaborative Simultaneous Localization and Mapping

    Science.gov (United States)

    2014-12-01

    Mission Operations (NEEMO) off the coast of Key Largo, Florida, in September 2013. The mission used the REMUS vehicles to map a simulated asteroid ...Simplifications and assumptions about sound propagation in one area of the world may not hold true for another area simply based on physical conditions...rays follows a curvilinear path as previously discussed in Section II.B.3. If , at the point of transmission, we consider the acoustic message to be a

  12. Mission Applications Support at NASA: Coastal Applications of SWOT Mission Data

    Science.gov (United States)

    Srinivasan, M. M.; Peterson, C. A.; Chao, Y.

    2014-12-01

    The Surface Water and Ocean Topography (SWOT) mission is an international collaboration of two scientific communities focused on a better understanding of the world's oceans and its terrestrial surface waters. SWOT will produce the first global survey of Earth's surface water by measuring sea surface height and the heights, slopes, and inundated areas of rivers, lakes, and wetlands. These coastal, lake and river measurements will be useful for monitoring the hydrologic cycle, flooding, and climate impacts of a changing environment. NASA and their French, Canadian and the United Kingdom space agency partners are developing new wide swath altimetry technology that will cover most of the world's ocean and surface freshwater bodies, and will have the capability to make observations with unprecedented resolution compared to existing technologies and will have the capability of measuring how water bodies change over time. Along with existing altimetry datasets, simulated SWOT data sets are being planned to assess the quality and potential value of anticipated SWOT measurements to both oceanography and hydrology applications. With the surface water measurements anticipated from SWOT, a broad range of applications may inform coastal managers and marine operators of offshore conditions and currents relevant to their regions. One study proposed to the NASA ASP would highlight coastal and estuary applications potential of the future SWOT mission. This study would promote the use of remote sensing measurements to improve the understanding, monitoring and management of estuaries and deltas for a broad range of users. In addition, the AirSWOT airborne mission to demonstrate the wide swath technology of SWOT is providing preliminary data products in inland and coastal regions that may be useful for early assessment by users of the future value of SWOT. NASA's Applied Sciences Program (ASP), along with the international SWOT project teams, is supporting a program that promotes

  13. Prospective Ukrainian lunar orbiter mission

    Science.gov (United States)

    Shkuratov, Y.; Litvinenko, L.; Shulga, V.; Yatskiv, Y.; Kislyuk, V.

    Ukraine has launch vehicles that are able to deliver about 300 kg to the lunar orbit. Future Ukrainian lunar program may propose a polar orbiter. This orbiter should fill principal information gaps in our knowledge about the Moon after Clementine and Lunar Prospector missions and the future missions, like Smart-1, Lunar-A, and Selene. We consider that this can be provided by radar studies of the Moon with supporting optical polarimetric observations from lunar polar orbit. These experiments allow one to better understand global structure of the lunar surface in a wide range of scales, from microns to kilometers. We propose three instruments for the prospective lunar orbiter. They are: a synthetic aperture imaging radar (SAR), ground-penetrating radar (GPR), and imaging polarimeter (IP). The main purpose of SAR is to study with high resolution (50 m) the permanently shadowed sites in the lunar polar regions. These sites are cold traps for volatiles, and have a potential of resource utilization. Possible presence of water ice in the regolith in the sites makes them interesting for permanent manned bases on the Moon. Radar imaging and mapping of other interesting regions could be also planned. Multi-frequencies multi-polarization soun d ing of the lunar surface with GPR can provide information about internal structure of the lunar surface from meters to several hundred meters deep. GPR can be used for measuring the megaregolith layer properties, detection of cryptomaria, and studies of internal structure of the largest craters. IP will be a CCD camera with an additional suite of polarizers. Modest spatial resolution (100 m) should provide a total coverage or a large portion of the lunar surface in oblique viewing basically at large phase angles. Polarization degree at large (>90°) phase angles bears information about characteristic size of the regolith particles. Additional radiophysical experiments are considered with the use of the SAR system, e.g., bistatic radar

  14. Hydrologic Derivatives for Modeling and Analysis—A new global high-resolution database

    Science.gov (United States)

    Verdin, Kristine L.

    2017-07-17

    The U.S. Geological Survey has developed a new global high-resolution hydrologic derivative database. Loosely modeled on the HYDRO1k database, this new database, entitled Hydrologic Derivatives for Modeling and Analysis, provides comprehensive and consistent global coverage of topographically derived raster layers (digital elevation model data, flow direction, flow accumulation, slope, and compound topographic index) and vector layers (streams and catchment boundaries). The coverage of the data is global, and the underlying digital elevation model is a hybrid of three datasets: HydroSHEDS (Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales), GMTED2010 (Global Multi-resolution Terrain Elevation Data 2010), and the SRTM (Shuttle Radar Topography Mission). For most of the globe south of 60°N., the raster resolution of the data is 3 arc-seconds, corresponding to the resolution of the SRTM. For the areas north of 60°N., the resolution is 7.5 arc-seconds (the highest resolution of the GMTED2010 dataset) except for Greenland, where the resolution is 30 arc-seconds. The streams and catchments are attributed with Pfafstetter codes, based on a hierarchical numbering system, that carry important topological information. This database is appropriate for use in continental-scale modeling efforts. The work described in this report was conducted by the U.S. Geological Survey in cooperation with the National Aeronautics and Space Administration Goddard Space Flight Center.

  15. THE RAILMAPPER – A DEDICATED MOBILE LIDAR MAPPING SYSTEM FOR RAILWAY NETWORKS

    Directory of Open Access Journals (Sweden)

    J. Kremer

    2012-07-01

    Full Text Available The Mobile LiDAR Mapping System StreetMapper from IGI and 3D Laser Mapping (Bingham Nottingham, UK is mounted on a large variety of road vehicles to cover different mission specifications. In addition to the operation on the road, the system finds its applications on other kinds of vehicles, like boats or trains. The modular and flexible system concept even allows utilizing the same LiDAR Mapping system for Mobile Mapping on the ground and for airborne missions on helicopters, respectively. Besides this general flexibility, each application has its own special requirements. Special hardware and software components are needed to complete the core components, like the laser scanner and the GNSS/IMU systems, to build a dedicated system for the chosen task. Compared to the typical dynamics of a road vehicle mounted Mobile Mapping system, a dedicated rail mapping system operates under conditions that are much more challenging for a high accuracy GNSS/IMU trajectory determination. Furthermore, the typical rail mapping tasks, like the exact measurement of the rail track geometry, require the operation of the most accurate laser scanners and of specialized post-processing software. In this paper, the RailMapper, a specialized Mobile Mapping system for railway surveys is presented. The system is described with focus on the railway specific requirements and results of practical surveys are given.

  16. Visual-based simultaneous localization and mapping and global positioning system correction for geo-localization of a mobile robot

    International Nuclear Information System (INIS)

    Berrabah, Sid Ahmed; Baudoin, Yvan; Sahli, Hichem

    2011-01-01

    This paper introduces an approach combining visual-based simultaneous localization and mapping (V-SLAM) and global positioning system (GPS) correction for accurate multi-sensor localization of an outdoor mobile robot in geo-referenced maps. The proposed framework combines two extended Kalman filters (EKF); the first one, referred to as the integration filter, is dedicated to the improvement of the GPS localization based on data from an inertial navigation system and wheels' encoders. The second EKF implements the V-SLAM process. The linear and angular velocities in the dynamic model of the V-SLAM EKF filter are given by the GPS/INS/Encoders integration filter. On the other hand, the output of the V-SLAM EKF filter is used to update the dynamics estimation in the integration filter and therefore the geo-referenced localization. This solution increases the accuracy and the robustness of the positioning during GPS outage and allows SLAM in less featured environments

  17. On the use of Schwarz-Christoffel conformal mappings to the grid generation for global ocean models

    Science.gov (United States)

    Xu, S.; Wang, B.; Liu, J.

    2015-10-01

    In this article we propose two grid generation methods for global ocean general circulation models. Contrary to conventional dipolar or tripolar grids, the proposed methods are based on Schwarz-Christoffel conformal mappings that map areas with user-prescribed, irregular boundaries to those with regular boundaries (i.e., disks, slits, etc.). The first method aims at improving existing dipolar grids. Compared with existing grids, the sample grid achieves a better trade-off between the enlargement of the latitudinal-longitudinal portion and the overall smooth grid cell size transition. The second method addresses more modern and advanced grid design requirements arising from high-resolution and multi-scale ocean modeling. The generated grids could potentially achieve the alignment of grid lines to the large-scale coastlines, enhanced spatial resolution in coastal regions, and easier computational load balance. Since the grids are orthogonal curvilinear, they can be easily utilized by the majority of ocean general circulation models that are based on finite difference and require grid orthogonality. The proposed grid generation algorithms can also be applied to the grid generation for regional ocean modeling where complex land-sea distribution is present.

  18. Plan estratégico para Mission Produce 2016-2020

    OpenAIRE

    Arroyo Panduro, Enrique Manuel; Palacios Ruiz, Julio César; Safra Montoya, Willie

    2015-01-01

    Mission Produce es un productor, importador y distribuidor global de paltas Hass. Al 2015, la empresa tiene operaciones en México, Chile, Perú y los Estados Unidos. Más del 90% de las ventas de palta de Mission se realizan en los Estados Unidos y Canadá, el 6% en Japón y el resto en Europa, Singapur y China. En 2013, la empresa vendió el equivalente a un total de 176 mil toneladas a nivel mundial, siendo el 70% clientes minoritas, el 15% mayoristas, el 13% de servicios de alimentos y el 2% co...

  19. Mars Exploration 2003 to 2013 - An Integrated Perspective: Time Sequencing the Missions

    Science.gov (United States)

    Briggs, G.; McKay, C.

    2000-01-01

    The science goals for the Mars exploration program, together with the HEDS precursor environmental and technology needs, serve as a solid starting point for re-planning the program in an orderly way. Most recently, the community has recognized the significance of subsurface sampling as a key component in "following the water". Accessing samples from hundreds and even thousands of meters beneath the surface is a challenge that will call for technology development and for one or more demonstration missions. Recent mission failures and concerns about the complexity of the previously planned MSR missions indicate that, before we are ready to undertake sample return and deep sampling, the Mars exploration program needs to include: 1) technology development missions; and 2) basic landing site assessment missions. These precursor missions should demonstrate the capability for reliable & accurate soft landing and in situ propellant production. The precursor missions will need to carry out close-up site observations, ground-penetrating radar mapping from orbit and conduct seismic surveys. Clearly the programs should be planned as a single, continuous exploration effort. A prudent minimum list of missions, including surface rovers with ranges of more than 10 km, can be derived from the numerous goals and requirements; they can be sequenced in an orderly way to ensure that time is available to feed forward the results of the precursor missions. One such sequence of missions is proposed for the decade beginning in 2003.

  20. On the efficiency of chaos optimization algorithms for global optimization

    International Nuclear Information System (INIS)

    Yang Dixiong; Li Gang; Cheng Gengdong

    2007-01-01

    Chaos optimization algorithms as a novel method of global optimization have attracted much attention, which were all based on Logistic map. However, we have noticed that the probability density function of the chaotic sequences derived from Logistic map is a Chebyshev-type one, which may affect the global searching capacity and computational efficiency of chaos optimization algorithms considerably. Considering the statistical property of the chaotic sequences of Logistic map and Kent map, the improved hybrid chaos-BFGS optimization algorithm and the Kent map based hybrid chaos-BFGS algorithm are proposed. Five typical nonlinear functions with multimodal characteristic are tested to compare the performance of five hybrid optimization algorithms, which are the conventional Logistic map based chaos-BFGS algorithm, improved Logistic map based chaos-BFGS algorithm, Kent map based chaos-BFGS algorithm, Monte Carlo-BFGS algorithm, mesh-BFGS algorithm. The computational performance of the five algorithms is compared, and the numerical results make us question the high efficiency of the chaos optimization algorithms claimed in some references. It is concluded that the efficiency of the hybrid optimization algorithms is influenced by the statistical property of chaotic/stochastic sequences generated from chaotic/stochastic algorithms, and the location of the global optimum of nonlinear functions. In addition, it is inappropriate to advocate the high efficiency of the global optimization algorithms only depending on several numerical examples of low-dimensional functions

  1. Aedes aegypti Global Suitability Maps Using a Water Container Energy Balance Model for Dengue Risk Applications

    Science.gov (United States)

    Steinhoff, D.

    2015-12-01

    Dengue infections are estimated to total nearly 400 million per year worldwide, with both the geographic range and the magnitude of infections having increased in the past 50 years. The primary dengue vector mosquito Aedes aegypti is closely associated with humans. It lives exclusively in urban and semi-urban areas, preferentially bites humans, and spends its developmental stages in artificial water containers. Climate regulates the development of Ae. aegypti immature mosquitoes in artificial containers. Potential containers for Ae. aegypti immature development include, but are not limited to, small sundry items (e.g., bottles, cans, plastic containers), buckets, tires, barrels, tanks, and cisterns. Successful development of immature mosquitoes from eggs to larvae, pupae, and eventually adults is largely dependent on the availability of water and the thermal properties of the water in the containers. Recent work has shown that physics-based approaches toward modeling container water properties are promising for resolving the complexities of container water dynamics and the effects on immature mosquito development. An energy balance container model developed by the author, termed the Water Height And Temperature in Container Habitats Energy Model (WHATCH'EM), solves for water temperature and height for user-specified containers with readily available weather data. Here we use WHATCH'EM with NASA Earth Science products used as input to construct global suitability maps based on established water temperature ranges for immature Ae. aegypti mosquitoes. A proxy for dengue risk is provided from habitat suitability, but also population estimates, as Ae. aegypti is closely associated with human activity. NASA gridded Global Population of the World data is used to mask out rural areas with low dengue risk. Suitability maps are illustrated for a variety of containers (size, material, color) and shading scenarios.

  2. CarbonSat: ESA's Earth Explorer 8 Candidate Mission

    Science.gov (United States)

    Meijer, Y. J.; Ingmann, P.; Löscher, A.

    2012-04-01

    The CarbonSat candidate mission is part of ESA's Earth Explorer Programme. In 2010, two candidate opportunity missions had been selected for feasibility and preliminary definition studies. The missions, called FLEX and CarbonSat, are now in competition to become ESA's eighth Earth Explorer, both addressing key climate and environmental change issues. In this presentation we will provide a mission overview of CarbonSat with a focus on science. CarbonSat's primary mission objective is the quantification and monitoring of CO2 and CH4 sources and sinks from the local to the regional scale for i) a better understanding of the processes that control carbon cycle dynamics and ii) an independent estimate of local greenhouse gas emissions (fossil fuel, geological CO2 and CH4, etc.) in the context of international treaties. A second priority objective is the monitoring/derivation of CO2 and CH4 fluxes on regional to global scale. These objectives will be achieved by a unique combination of frequent, high spatial resolution (2 x 2 km2) observations of XCO2 and XCH4 coupled to inverse modelling schemes. The required random error of a single measurement at ground-pixel resolution is of the order of between 1 and 3 ppm for XCO2 and between 9 and 17 ppb for XCH4. High spatial resolution is essential in order to maximize the probability for clear-sky observations and to identify flux hot spots. Ideally, CarbonSat shall have a wide swath allowing a 6-day global repeat cycle. The CarbonSat observations will enable CO2 emissions from coal-fired power plants, localized industrial complexes, cities, and other large emitters to be objectively assessed at a global scale. Similarly, the monitoring of natural gas pipelines and compressor station leakage will become feasible. The detection and quantification of the substantial geological greenhouse gas emission sources such as seeps, volcanoes and mud volcanoes will be achieved for the first time. CarbonSat's Greenhouse Gas instrument will

  3. Lunar Penetrating Radar onboard the Chang'e-3 mission

    Science.gov (United States)

    Fang, Guang-You; Zhou, Bin; Ji, Yi-Cai; Zhang, Qun-Ying; Shen, Shao-Xiang; Li, Yu-Xi; Guan, Hong-Fei; Tang, Chuan-Jun; Gao, Yun-Ze; Lu, Wei; Ye, Sheng-Bo; Han, Hai-Dong; Zheng, Jin; Wang, Shu-Zhi

    2014-12-01

    Lunar Penetrating Radar (LPR) is one of the important scientific instruments onboard the Chang'e-3 spacecraft. Its scientific goals are the mapping of lunar regolith and detection of subsurface geologic structures. This paper describes the goals of the mission, as well as the basic principles, design, composition and achievements of the LPR. Finally, experiments on a glacier and the lunar surface are analyzed.

  4. IBEX Discoveries of the Global Heliosphere from Energetic Neutral Atoms and Preparations for IMAP

    Science.gov (United States)

    Schwadron, N.

    2015-12-01

    Our piece of cosmic real-estate, the heliosphere, is the domain of all human existence -- an astrophysical case-history of the successful evolution of life in a habitable system. By exploring our global heliosphere and its myriad interactions, we develop key physical knowledge of the interstellar interactions that influence exoplanetary habitability as well the history and destiny of our solar system. IBEX was the first mission to explore the global heliosphere and in concert with Voyager 1 and Voyager 2 is discovering a fundamentally new and uncharted physical domain of the outer heliosphere. In parallel, Cassini/INCA maps the global heliosphere at energies (~5-55 KeV) above those measured by IBEX. The enigmatic IBEX ribbon and the INCA belt were unanticipated discoveries demonstrating that much of what we know or think we understand about the outer heliosphere needs to be revised. Remarkably, the combination of observations of the ribbon, the belt and the globally distributed flux have provided a picture not only of the global heliosphere, but also the interstellar magnetic field, which has a strength and direction that can be directly compared to Voyager 1 observations. Currently, unraveling the interstellar magnetic field and its influences on the flows and structure of the heliosheath is an area of remarkably rapid discovery. The next quantum leap enabled by IMAP will open new windows on the frontier of Heliophysics at a time when the space environment is rapidly evolving. IMAP, like ACE before it, will be a keystone of the Heliophysics System Observatory. IMAP with 100 times the combined resolution and sensitivity of IBEX and INCA will discover the substructure of the IBEX ribbon and will reveal in unprecedented resolution global maps of our heliosphere. The remarkable synergy between IMAP, Voyager 1 and Voyager 2 will remain for at least the next decade as Voyager1 pushes further into the interstellar domain and Voyager 2 moves through the heliosheath.

  5. Mission to Planet Earth

    International Nuclear Information System (INIS)

    Wilson, G.S.; Backlund, P.W.

    1992-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the earth and how it works as a system. Increased understanding of the earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment. 8 refs

  6. Mission to Planet Earth

    Science.gov (United States)

    Tilford, Shelby G.; Asrar, Ghassem; Backlund, Peter W.

    1994-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the Earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic Earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the Earth and how it works as a system. Increased understanding of the Earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment.

  7. Pellet bed reactor for nuclear propelled vehicles: Part 2: Missions and vehicle integration trades

    International Nuclear Information System (INIS)

    Haloulakos, V.E.

    1991-01-01

    Mission and vehicle integration tradeoffs involving the use of the pellet bed reactor (PBR) for nuclear powered vehicles is discussed, with much of the information being given in viewgraph form. Information is given on propellant tank geometries, shield weight requirements for conventional tank configurations, effective specific impulse, radiation mapping, radiation dose rate after shutdown, space transfer vehicle design data, a Mars mission summary, sample pellet bed nuclear orbit transfer vehicle mass breakdown, and payload fraction vs. velocity increment

  8. Pellet bed reactor for nuclear propelled vehicles: Part 2: Missions and vehicle integration trades

    Science.gov (United States)

    Haloulakos, V. E.

    1991-01-01

    Mission and vehicle integration tradeoffs involving the use of the pellet bed reactor (PBR) for nuclear powered vehicles is discussed, with much of the information being given in viewgraph form. Information is given on propellant tank geometries, shield weight requirements for conventional tank configurations, effective specific impulse, radiation mapping, radiation dose rate after shutdown, space transfer vehicle design data, a Mars mission summary, sample pellet bed nuclear orbit transfer vehicle mass breakdown, and payload fraction vs. velocity increment.

  9. Tank waste remediation system retrieval and disposal mission key enabling assumptions

    International Nuclear Information System (INIS)

    Baldwin, J.H.

    1998-01-01

    An overall systems approach has been applied to develop action plans to support the retrieval and immobilization waste disposal mission. The review concluded that the systems and infrastructure required to support the mission are known. Required systems are either in place or plans have been developed. An analysis of the programmatic, management and technical activities necessary to declare Readiness to Proceed with execution of the mission demonstrates that the system, people, and hardware will be on line and ready to support the private contractors. The systems approach included defining the retrieval and immobilized waste disposal mission requirements and evaluating the readiness of the TWRS contractor to supply waste feed to the private contractors in June 2002. The Phase 1 feed delivery requirements from the Private Contractor Request for Proposals were reviewed, transfer piping routes were mapped on it, existing systems were evaluated, and upgrade requirements were defined. Technical Basis Reviews were completed to define work scope in greater detail, cost estimates and associated year by year financial analyses were completed. Personnel training, qualifications, management systems and procedures were reviewed and shown to be in place and ready to support the Phase 1B mission. Key assumptions and risks that could negatively impact mission success were evaluated and appropriate mitigative actions plans were planned and scheduled

  10. Titan Orbiter with Aerorover Mission (TOAM)

    Science.gov (United States)

    Sittler, Edward C.; Cooper, J. F.; Mahaffey, P.; Esper, J.; Fairbrother, D.; Farley, R.; Pitman, J.; Kojiro, D. R.; TOAM Team

    2006-12-01

    We propose to develop a new mission to Titan called Titan Orbiter with Aerorover Mission (TOAM). This mission is motivated by the recent discoveries of Titan, its atmosphere and its surface by the Huygens Probe, and a combination of in situ, remote sensing and radar mapping measurements of Titan by the Cassini orbiter. Titan is a body for which Astrobiology (i.e., prebiotic chemistry) will be the primary science goal of any future missions to it. TOAM is planned to use an orbiter and balloon technology (i.e., aerorover). Aerobraking will be used to put payload into orbit around Titan. The Aerorover will probably use a hot air balloon concept using the waste heat from the MMRTG 500 watts. Orbiter support for the Aerorover is unique to our approach for Titan. Our strategy to use an orbiter is contrary to some studies using just a single probe with balloon. Autonomous operation and navigation of the Aerorover around Titan will be required, which will include descent near to the surface to collect surface samples for analysis (i.e., touch and go technique). The orbiter can provide both relay station and GPS roles for the Aerorover. The Aerorover will have all the instruments needed to sample Titan’s atmosphere, surface, possible methane lakes-rivers, use multi-spectral imagers for surface reconnaissance; to take close up surface images; take core samples and deploy seismometers during landing phase. Both active and passive broadband remote sensing techniques will be used for surface topography, winds and composition measurements.

  11. Virtual Mission First Results Supporting the WATER HM Satellite Concept

    Science.gov (United States)

    Alsdorf, D.; Andreadis, K.; Lettenmaier, D.; Moller, D.; Rodriguez, E.; Bates, P.; Mognard, N.; Participants, W.

    2007-12-01

    Surface fresh water is essential for life, yet we have surprisingly poor knowledge of its variability in space and time. Similarly, ocean circulation and ocean-atmosphere interactions fundamentally drive weather and climate variability, yet the global ocean current and eddy field (e.g., the Gulf Stream) that affects ocean circulation is poorly known. The Water And Terrestrial Elevation Recovery Hydrosphere Mapper satellite mission concept (WATER HM or SWOT per the NRC Decadal Survey) is a swath-based interferometric-altimeter designed to acquire elevations of ocean and terrestrial water surfaces at unprecedented spatial and temporal resolutions. WATER HM will have tremendous implications for estimation of the global water cycle, water management, ocean and coastal circulation, and assessment of many water-related impacts from climate change (e.g., sea level rise, carbon evasion, etc.). We describe a hydrological "virtual mission" (VM) for WATER HM which consists of: (a) A hydrodynamic-instrument simulation model that maps variations in water levels along river channels and across floodplains. These are then assimilated to estimate discharge and to determine trade-offs between resolutions and mission costs. (b) Measurements from satellites to determine feasibility of existing platforms for measuring storage changes and estimating discharge. First results demonstrate that: (1) Ensemble Kalman filtering of VM simulations recover water depth and discharge, reducing the discharge RMSE from 23.2% to 10.0% over an 84- day simulation period, relative to a simulation without assimilation. The filter also shows that an 8-day overpass frequency produces discharge relative errors of 10.0%, while 16-day and 32-day frequencies result in errors of 12.1% and 16.9%, respectively. (2) SRTM measurements of water surfaces along the Mississippi, Missouri, Ohio, and Amazon rivers, as well as smaller tributaries, show height standard deviations of 5 meters or greater (SRTM is the

  12. THE MICROSOFT GLOBAL ORTHO PROGRAM

    Directory of Open Access Journals (Sweden)

    W. Walcher

    2012-07-01

    Full Text Available Wide area and thus continental mapping extending beyond national borders is a novel concept in civilian photogrammetry. The Microsoft Global Ortho Program was launched in the Spring of 2009 as a result of Microsoft's need for global geo-data at a high geometric resolution and radiometric excellence. By fall of 2012 more than 10 million km2 of the USA and 14 European countries will have been covered by seamless 30 cm GSD color-, 60 cm GSD false-color infrared ortho-mosaics and a 1 meter GSD digital surface model. The ortho-maps are being published to Microsoft's Bing Maps Internet mapping portal. The Global Ortho Program was designed for highly and unprecedented automated mapping of essentially entire continents. In 2011, exclusive of flight operations, the product output per person has been measured in excess of 275,000 square km per year. We describe research efforts that made this achievement possible. Those include a specially designed aerial sensor (Ultracam G, logistics simulation for fight planning and optimization, in-flight blur detection and subsequent automatic blur removal, modeling and removal of atmospheric and environmental conditions, automated shear detection and DTM refinement, an IT architecture to process >200,000 aerial images/day, and for creating over 1,000,000 km2 ortho-imagery and DSM data in 24 hours. While addressing these issues, we provide ideas how this might affect the future of spatial infrastructure initiatives.

  13. Saharasar: An Interactive SAR Image Database for Desert Mapping

    Science.gov (United States)

    Lopez, S.; Paillou, Ph.

    2017-06-01

    We present a dedicated tool for accessing radar images acquired by the ALOS/PALSAR mission over Sahara and Arabia. We developed a dedicated web site, using the Mapserver web mapping server and the Cesium javascript library.

  14. Uav-Mapping - a User Report

    Science.gov (United States)

    Mayr, W.

    2011-09-01

    This paper reports on first hand experiences in operating an unmanned airborne system (UAS) for mapping purposes in the environment of a mapping company. Recently, a multitude of activities in UAVs is visible, and there is growing interest in the commercial, industrial, and academic mapping user communities and not only in those. As an introduction, the major components of an UAS are identified. The paper focuses on a 1.1kg UAV which is integrated and gets applied on a day-to-day basis as part of an UAS in standard aerial imaging tasks for more than two years already. We present the unmanned airborne vehicle in some detail as well as the overall system components such as autopilot, ground station, flight mission planning and control, and first level image processing. The paper continues with reporting on experiences gained in setting up constraints such a system needs to fulfill. Further on, operational aspects with emphasis on unattended flight mission mode are presented. Various examples show the applicability of UAS in geospatial tasks, proofing that UAS are capable delivering reliably e.g. orthomosaics, digital surface models and more. Some remarks on achieved accuracies give an idea on obtainable qualities. A discussion about safety features puts some light on important matters when entering unmanned flying activities and rounds up this paper. Conclusions summarize the state of the art of an operational UAS from the point of the view of the author.

  15. Scientific Achievements of Global ENA Imaging and Future Outlook

    Science.gov (United States)

    Brandt, P. C.; Stephens, G. K.; Hsieh, S. Y. W.; Demajistre, R.; Gkioulidou, M.

    2017-12-01

    Energetic Neutral Atom (ENA) imaging is the only technique that can capture the instantaneous global state of energetic ion distributions in planetary magnetospheres and from the heliosheath. In particular at Earth, ENA imaging has been used to diagnose the morphology and dynamics of the ring current and plasma sheet down to several minutes time resolution and is therefore a critical tool to validate global ring current physics models. However, this requires a detailed understanding for how ENAs are produced from the ring current and inversion techniques that are thoroughly validated against in-situ measurements. To date, several missions have carried out planetary and heliospheric ENA imaging including Cassini, JUICE, IBEX of the heliosphere, and POLAR, Astrid-1, Double Star, TWINS and IMAGE of the terrestrial magnetosphere. Because of their path-finding successes, a future global-imaging mission concept, MEDICI, has been recommended in the Heliophysics Decadal Survey. Its core mission consists of two satellites in one circular, near-polar orbit beyond the radiation belts at around 8 RE, with ENA, EUV and FUV cameras. This recommendation has driven the definition of smaller mission concepts that address specific science aspects of the MEDICI concept. In this presentation, we review the past scientific achievements of ENA imaging with a focus on the terrestrial magnetosphere from primarily the NASA IMAGE and the TWINS missions. The highlighted achievements include the storm, sub-storm and quiet-time morphology, dynamics and pitch-angle distributions of the ring current, global differential acceleration of protons versus O+ ions, the structure of the global electrical current systems associated with the plasma pressure of protons and O+ ions up to around 200 keV, and the relation between ring current and plasmasphere. We discuss the need for future global observations of the ring current, plasma sheet and magnetosheath ion distributions based and derive their

  16. Design and characterization of a low cost CubeSat multi-band optical receiver to map water ice on the lunar surface for the Lunar Flashlight mission

    Science.gov (United States)

    Vinckier, Quentin; Crabtree, Karlton; Paine, Christopher G.; Hayne, Paul O.; Sellar, Glenn R.

    2017-08-01

    Lunar Flashlight is an innovative NASA CubeSat mission dedicated to mapping water ice in the permanently shadowed regions of the Moon, which may act as cold traps for volatiles. To this end, a multi-band reflectometer will be sent to orbit the Moon. This instrument consists of an optical receiver aligned with four lasers, each of which emits sequentially at a different wavelength in the near-infrared between 1 μm and 2 μm. The receiver measures the laser light reflected from the lunar surface; continuum/absorption band ratios are then analyzed to quantify water ice in the illuminated spot. Here, we present the current state of the optical receiver design. To optimize the optical signal-to-noise ratio, we have designed the receiver so as to maximize the laser signal collected, while minimizing the stray light reaching the detector from solarilluminated areas of the lunar surface outside the field-of-view, taking into account the complex lunar topography. Characterization plans are also discussed. This highly mass- and volume-constrained mission will demonstrate several firsts, including being one of the first CubeSats performing science measurements beyond low Earth orbit.

  17. Advances in Astromaterials Curation: Supporting Future Sample Return Missions

    Science.gov (United States)

    Evans, C. A.; Zeigler, R. A.; Fries, M. D..; Righter, K.; Allton, J. H.; Zolensky, M. E.; Calaway, M. J.; Bell, M. S.

    2015-01-01

    discoveries about the evolution of the solar system (e.g. [3] and references contained therein), and serve the global scientific community as ground truth for current and planned missions such as NASA's Dawn mission to Vesta and Ceres, and the future OSIRIS REx mission to asteroid Bennu [1,3

  18. Variations and Trends in Global and Regional Precipitation Based on the 22-year GPCP (Global Precipitation Climatology Project) and Three-year TRMM (Tropical Rainfall Measuring Mission) Data Sets

    Science.gov (United States)

    Adler, R.; Curtis, S.; Huffman, G.; Bolvin, D.; Nelkin, E.

    2001-05-01

    This paper gives an overview of the analysis of global precipitation over the last few decades and the impact of the new TRMM precipitation observations. The 20+ year, monthly, globally complete precipitation analysis of the World Climate Research Program's (WCRP/GEWEX) Global Precipitation Climatology Project (GPCP) is used to study global and regional variations and trends and is compared to the much shorter TRMM(Tropical Rainfall Measuring Mission) tropical data set. The GPCP data set shows no significant trend in global precipitation over the twenty years, unlike the positive trend in global surface temperatures over the past century. The global trend analysis must be interpreted carefully, however, because the inhomogeneity of the data set makes detecting a small signal very difficult, especially over this relatively short period. The relation of global (and tropical) total precipitation and ENSO events is quantified with no significant signal when land and ocean are combined. Identifying regional trends in precipitation may be more practical. From 1979 to 2000 the tropics have pattern of regional rainfall trends that has an ENSO-like pattern with features of both the El Nino and La Nina. This feature is related to a possible trend in the frequency of ENSO events (either El Nino or La Nina) over the past 20 years. Monthly anomalies of precipitation are related to ENSO variations with clear signals extending into middle and high latitudes of both hemispheres. The El Nino and La Nina mean anomalies are near mirror images of each other and when combined produce an ENSO signal with significant spatial continuity over large distances. A number of the features are shown to extend into high latitudes. Positive anomalies extend in the Southern Hemisphere (S.H.) from the Pacific southeastward across Chile and Argentina into the south Atlantic Ocean. In the Northern Hemisphere (N.H.) the counterpart feature extends across the southern U.S. and Atlantic Ocean into Europe

  19. Global Atmosphere Watch Workshop on Measurement-Model ...

    Science.gov (United States)

    The World Meteorological Organization’s (WMO) Global Atmosphere Watch (GAW) Programme coordinates high-quality observations of atmospheric composition from global to local scales with the aim to drive high-quality and high-impact science while co-producing a new generation of products and services. In line with this vision, GAW’s Scientific Advisory Group for Total Atmospheric Deposition (SAG-TAD) has a mandate to produce global maps of wet, dry and total atmospheric deposition for important atmospheric chemicals to enable research into biogeochemical cycles and assessments of ecosystem and human health effects. The most suitable scientific approach for this activity is the emerging technique of measurement-model fusion for total atmospheric deposition. This technique requires global-scale measurements of atmospheric trace gases, particles, precipitation composition and precipitation depth, as well as predictions of the same from global/regional chemical transport models. The fusion of measurement and model results requires data assimilation and mapping techniques. The objective of the GAW Workshop on Measurement-Model Fusion for Global Total Atmospheric Deposition (MMF-GTAD), an initiative of the SAG-TAD, was to review the state-of-the-science and explore the feasibility and methodology of producing, on a routine retrospective basis, global maps of atmospheric gas and aerosol concentrations as well as wet, dry and total deposition via measurement-model

  20. Trajectory Design for the Lunar Polar Hydrogen Mapper Mission

    Science.gov (United States)

    Genova, Anthony L.; Dunham, David W.

    2017-01-01

    The presented trajectory was designed for the Lunar Polar Hydrogen Mapper (LunaH-Map) 6U CubeSat, which was awarded a ride on NASAs Space Launch System (SLS) with Exploration Mission 1 (EM-1) via NASAs 2015 SIMPLEX proposal call. After deployment from EM-1s upper stage (which is planned to enter heliocentric space via a lunar flyby), the LunaH-Map CubeSat will alter its trajectory via its low-thrust ion engine to target a lunar flyby that yields a Sun-Earth-Moon weak stability boundary transfer to set up a ballistic lunar capture. Finally, the orbit energy is lowered to reach the required quasi-frozen science orbit with periselene above the lunar south pole.

  1. Asteroid Kinetic Impactor Missions

    Science.gov (United States)

    Chesley, Steven

    2015-08-01

    Asteroid impact missions can be carried out as a relatively low-cost add-ons to most asteroid rendezvous missions and such impact experiments have tremendous potential, both scientifically and in the arena of planetary defense.The science returns from an impactor demonstration begin with the documentation of the global effects of the impact, such as changes in orbit and rotation state, the creation and dissipation of an ejecta plume and debris disk, and morphological changes across the body due to the transmission of seismic waves, which might induce landslides and toppling of boulders, etc. At a local level, an inspection of the impact crater and ejecta blanket reveals critical material strength information, as well as spectral differences between the surface and subsurface material.From the planetary defense perspective, an impact demonstration will prove humankind’s capacity to alter the orbit of a potentially threatening asteroid. This technological leap comes in two parts. First, terminal guidance systems that can deliver an impactor with small errors relative to the ~100-200 meter size of a likely impactor have yet to be demonstrated in a deep space environment. Second, the response of an asteroid to such an impact is only understood theoretically due to the potentially significant dependence on the momentum carried by escaping ejecta, which would tend to enhance the deflection by tens of percent and perhaps as much as a factor of a few. A lack of validated understanding of momentum enhancement is a significant obstacle in properly sizing a real-world impactor deflection mission.This presentation will describe the drivers for asteroid impact demonstrations and cover the range of such concepts, starting with ESA’s pioneering Don Quijote mission concept and leading to a brief description of concepts under study at the present time, including the OSIRIS-REx/ISIS, BASiX/KIX and AIM/DART (AIDA) concepts.

  2. The SENTINEL-3 Mission: Overview and Status

    Science.gov (United States)

    Benveniste, J.; Mecklenburg, S.

    2015-12-01

    The Copernicus Programme, being Europe's Earth Observation and Monitoring Programme led by the European Union, aims to provide, on a sustainable basis, reliable and timely services related to environmental and security issues. The Sentinel-3 mission forms part of the Copernicus Space Component. Its main objectives, building on the heritage and experience of the European Space Agency's (ESA) ERS and ENVISAT missions, are to measure sea-surface topography, sea- and land-surface temperature and ocean- and land-surface colour in support of ocean forecasting systems, and for environmental and climate monitoring. The series of Sentinel-3 satellites will ensure global, frequent and near-real time ocean, ice and land monitoring, with the provision of observation data in routine, long term (up to 20 years of operations) and continuous fashion, with a consistent quality and a high level of reliability and availability. The Sentinel-3 missions will be jointly operated by ESA and EUMETSAT. ESA will be responsible for the operations, maintenance and evolution of the Sentinel-3 ground segment on land related products and EUMETSAT for the marine products. The Sentinel-3 ground segment systematically acquires, processes and distributes a set of pre-defined core data products. Sentinel-3A is foreseen to be launched at the beginning of November 2015. The paper will give an overview on the mission, its instruments and objectives, the data products provided, the mechanisms to access the mission's data, and if available first results.

  3. An algorithm for reliability analysis of phased-mission systems

    International Nuclear Information System (INIS)

    Ma, Y.; Trivedi, K.S.

    1999-01-01

    The purpose of this paper is to describe an efficient Boolean algebraic algorithm that provides exact solution to the unreliability of a multi-phase mission system where the configurations are described through fault trees. The algorithm extends and improves the Boolean method originally proposed by Somani and Trivedi. By using the Boolean algebraic method, we provide an efficient modeling approach which avoids the state space explosion and the mapping problems that are encountered by the Markov chain approach. To calculate the exact solution of the phased-mission system with deterministic phase durations, we introduce the sum of disjoint phase products (SDPP) formula, which is a phased-extension of the sum of disjoint products (SDP) formula. Computationally, the algorithm is quite efficient because it calls an SDP generation algorithm in the early stage of the SDPP computation. In this way, the phase products generated in the early stage of the SDPP formula are guaranteed to be disjoint. Consequently, the number of the intermediate phase products is greatly reduced. In this paper, we also consider the transient analysis of the phased-mission system. Special care is needed to account for the possible latent failures at the mission phase change times. If there are more stringent success criteria just after a mission phase change time, an unreliability jump would occur at that time. Finally, the algorithm has been implemented in the software package SHARPE. With SHARPE, the complexities of the phased-mission system is made transparent to the potential users. The user can conveniently specify a phased-mission model at a high level (through fault trees) and analyze the system quantitatively

  4. Twenty Years of Progress on Global Ocean Tides: The Impact of Satellite Altimetry

    Science.gov (United States)

    Egbert, Gary; Ray, Richard

    2012-01-01

    At the dawn of the era of high-precision altimetry, before the launch of TOPEX/Poseidon, ocean tides were properly viewed as a source of noise--tidal variations in ocean height would represent a very substantial fraction of what the altimeter measures, and would have to be accurately predicted and subtracted if altimetry were to achieve its potential for ocean and climate studies. But to the extent that the altimetry could be severely contaminated by tides, it also represented an unprecedented global-scale tidal data set. These new data, together with research stimulated by the need for accurate tidal corrections, led to a renaissance in tidal studies in the oceanographic community. In this paper we review contributions of altimetry to tidal science over the past 20 years, emphasizing recent progress. Mapping of tides has now been extended from the early focus on major constituents in the open ocean to include minor constituents, (e.g., long-period tides; non-linear tides in shelf waters, and in the open ocean), and into shallow and coastal waters. Global and spatially local estimates of tidal energy balance have been refined, and the role of internal tide conversion in dissipating barotropic tidal energy is now well established through modeling, altimetry, and in situ observations. However, energy budgets for internal tides, and the role of tidal dissipation in vertical ocean mixing remain controversial topics. Altimetry may contribute to resolving some of these important questions through improved mapping of low-mode internal tides. This area has advanced significantly in recent years, with several global maps now available, and progress on constraining temporally incoherent components. For the future, new applications of altimetry (e.g., in the coastal ocean, where barotropic tidal models remain inadequate), and new mission concepts (studies of the submesoscale with SWOT, which will require correction for internal tides) may bring us full circle, again pushing

  5. Morphology in the total electron content under geomagnetic disturbed conditions: results from global ionosphere maps

    Directory of Open Access Journals (Sweden)

    Zhao Biqiang

    2007-07-01

    Full Text Available Using 8-year global ionosphere maps (GIMs of TEC products from the Jet Propulsion Laboratory (JPL, we make a statistical study on the morphology of the global ionospheric behaviors with respect to the geomagnetic disturbances. Results show that the behaviors of TEC during geomagnetic storm present clear seasonal and local time variations under geomagnetic control in a similar way as those of NmF2 (Field and Rishbeth, 1997. A negative phase of TEC occurs with high probability in the summer hemisphere and most prominent near the geomagnetic poles, while a positive phase is obvious in the winter hemisphere and in the far pole region. A negative storm effect toward lower latitudes tends to occur from post-midnight to the morning sector and recedes to high latitude in the afternoon. A positive storm effect is separated by geomagnetic latitudes and magnetic local time. Furthermore, ionospheric responses at different local time sectors with respect to the storm commencement shows very different developing processes corresponding to the evolution of the geomagnetic storm. A daytime positive storm effect is shown to be more prominent in the American region than those in the Asian and European regions, which may suggest a longitudinal effect of the ionospheric storm.

  6. Morphology in the total electron content under geomagnetic disturbed conditions: results from global ionosphere maps

    Directory of Open Access Journals (Sweden)

    Z. Biqiang

    2007-07-01

    Full Text Available Using 8-year global ionosphere maps (GIMs of TEC products from the Jet Propulsion Laboratory (JPL, we make a statistical study on the morphology of the global ionospheric behaviors with respect to the geomagnetic disturbances. Results show that the behaviors of TEC during geomagnetic storm present clear seasonal and local time variations under geomagnetic control in a similar way as those of NmF2 (Field and Rishbeth, 1997. A negative phase of TEC occurs with high probability in the summer hemisphere and most prominent near the geomagnetic poles, while a positive phase is obvious in the winter hemisphere and in the far pole region. A negative storm effect toward lower latitudes tends to occur from post-midnight to the morning sector and recedes to high latitude in the afternoon. A positive storm effect is separated by geomagnetic latitudes and magnetic local time. Furthermore, ionospheric responses at different local time sectors with respect to the storm commencement shows very different developing processes corresponding to the evolution of the geomagnetic storm. A daytime positive storm effect is shown to be more prominent in the American region than those in the Asian and European regions, which may suggest a longitudinal effect of the ionospheric storm.

  7. Accuracy analysis of the 2014–2015 Global Shuttle Radar ...

    Indian Academy of Sciences (India)

    1KIIT University, Bhubaneswar 751 024, India. 2Continental ... Global Shuttle Radar Topography Mission (SRTM) data products have been widely used in Earth. Sciences ..... tional GNSS Service in a changing landscape of Global. Navigation ...

  8. Current trends in satellite based emergency mapping - the need for harmonisation

    Science.gov (United States)

    Voigt, Stefan

    2013-04-01

    During the past years, the availability and use of satellite image data to support disaster management and humanitarian relief organisations has largely increased. The automation and data processing techniques are greatly improving as well as the capacity in accessing and processing satellite imagery in getting better globally. More and more global activities via the internet and through global organisations like the United Nations or the International Charter Space and Major Disaster engage in the topic, while at the same time, more and more national or local centres engage rapid mapping operations and activities. In order to make even more effective use of this very positive increase of capacity, for the sake of operational provision of analysis results, for fast validation of satellite derived damage assessments, for better cooperation in the joint inter agency generation of rapid mapping products and for general scientific use, rapid mapping results in general need to be better harmonized, if not even standardized. In this presentation, experiences from various years of rapid mapping gained by the DLR Center for satellite based Crisis Information (ZKI) within the context of the national activities, the International Charter Space and Major Disasters, GMES/Copernicus etc. are reported. Furthermore, an overview on how automation, quality assurance and optimization can be achieved through standard operation procedures within a rapid mapping workflow is given. Building on this long term rapid mapping experience, and building on the DLR initiative to set in pace an "International Working Group on Satellite Based Emergency Mapping" current trends in rapid mapping are discussed and thoughts on how the sharing of rapid mapping information can be optimized by harmonizing analysis results and data structures are presented. Such an harmonization of analysis procedures, nomenclatures and representations of data as well as meta data are the basis to better cooperate within

  9. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Uganda

    International Nuclear Information System (INIS)

    1985-01-01

    A full report has been compiled describing the findings of the International Uranium Resources Evaluation Project (IUREP) Orientation Phase Mission to Uganda. The Mission suggest that the speculative uranium resources of the country could be within the very wide range of 0 to 105 000 tonnes of uranium metal. The Mission finds that most of these speculative resources are related to Proterozoic unconformities and to Cenozoic sandstones of the Western Rift Valley. Some potential is also associated with Post-tectonic granites. The Mission recommends to rehabilitate the Geological Survey of Uganda in order to enable it to conduct and support a uranium exploration programme for unconformity related and for standstone hosted uranium deposits. Recommended exploration methods encompass geological mapping and compilation, an airborne gamma-ray spectrometer survey north of 1 deg. North latitude, stream sediment sampling, and ground scintillometric surveys in favourable areas. Follow up work should include VLF-EM surveys, emanometry and drilling. (author)

  10. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Somalia

    International Nuclear Information System (INIS)

    1985-01-01

    A full report has been compiled describing the findings of the International Uranium Resources Evaluation Project (IUREP) Orientation Phase Mission to Somalia. The Mission suggests that in addition to the reasonably assured resources (RAR) of 5 000 t uranium and estimated additional resources (EAR) of 11 000 t uranium in calcrete deposits, the speculative resources (SR) could be within the wide range of 0 - 150 000 t uranium. The majority of these speculative resources are related to sandstone and calcrete deposits. The potential for magmatic hydrothermal deposits is relatively small. The Mission recommends an exploration programme of about US$ 22 000 000 to test the uranium potential of the country which is thought to be excellent. The Mission also suggests a reorganization of the Somalia Geological Survey in order to improve its efficiency. Recommended methods include geological mapping, Landsat imagery interpretation, airborne and ground scintillometer surveys, and geochemistry. Follow-up radiometric surveys, exploration geophysics, mineralogical studies, trenching and drilling are proposed in favourable areas. (author)

  11. Hurricanes Harvey and Irma - High-Resolution Flood Mapping and Monitoring from Sentinel SAR with the Depolarization Reduction Algorithm for Global Observations of InundatioN (DRAGON)

    Science.gov (United States)

    Nghiem, S. V.; Brakenridge, G. R.; Nguyen, D. T.

    2017-12-01

    Hurricane Harvey inflicted historical catastrophic flooding across extensive regions around Houston and southeast Texas after making landfall on 25 August 2017. The Federal Emergency Management Agency (FEMA) requested urgent supports for flood mapping and monitoring in an emergency response to the extreme flood situation. An innovative satellite remote sensing method, called the Depolarization Reduction Algorithm for Global Observations of inundatioN (DRAGON), has been developed and implemented for use with Sentinel synthetic aperture radar (SAR) satellite data at a resolution of 10 meters to identify, map, and monitor inundation including pre-existing water bodies and newly flooded areas. Results from this new method are hydrologically consistent and have been verified with known surface waters (e.g., coastal ocean, rivers, lakes, reservoirs, etc.), with clear-sky high-resolution WorldView images (where waves can be seen on surface water in inundated areas within a small spatial coverage), and with other flood maps from the consortium of Global Flood Partnership derived from multiple satellite datasets (including clear-sky Landsat and MODIS at lower resolutions). Figure 1 is a high-resolution (4K UHD) image of a composite inundation map for the region around Rosharon (in Brazoria County, south of Houston, Texas). This composite inundation map reveals extensive flooding on 29 August 2017 (four days after Hurricane Harvey made landfall), and the inundation was still persistent in most of the west and south of Rosharon one week later (5 September 2017) while flooding was reduced in the east of Rosharon. Hurricane Irma brought flooding to a number of areas in Florida. As of 10 September 2017, Sentinel SAR flood maps reveal inundation in the Florida Panhandle and over lowland surfaces on several islands in the Florida Keys. However, Sentinel SAR results indicate that flooding along the Florida coast was not extreme despite Irma was a Category-5 hurricane that might

  12. A Korean perspective on megachurches as missional churches

    Directory of Open Access Journals (Sweden)

    Cornelius J.P. Niemandt

    2015-03-01

    Full Text Available Both the megachurch and the missional church are on-going global phenomena. Working from the premise that the church has to be missional, this article operates from a Korean perspective and researches whether a megachurch can be missional. The megachurch is not simply a very large church in terms of membership or the physical size of its building(s � because of the influence of the interaction between socio-cultural, historical, and theological backgrounds, the megachurch has its own missiological and ecclesiological perspectives. The megachurch understands that the growth of an individual church implies the expansion of the kingdom of God, which means that the individual church has a responsibility to be both functionally and structurally sound, in order to ensure the efficient growth of the kingdom. This is an influential tendency that is found not only in larger size churches, but in all churches who are trying to achieve the quantitative growth of the church by way of evangelisation. The Korean megachurches, represented by the Poongsunghan Church, display these characteristics. The missional church is not simply a mission-driven church, sending many missionaries to other countries; the missional church believes that all churches are sent to the world by God, who wants to reconcile the whole universe with himself. The implication of this is that the church has to restore its missional essence in order to be able to participate in the mission of God. Thus, the missional church is a reforming movement that witnesses to God�s rule by recovering its apostolic nature. The characteristics of this movement are clearly visible in one of the case studies � the Bundang Woori Church. The importance of the missional movement for Korean churches is emphasised.Interdisciplinary and/or interdisciplinary implications: The research is a case study of Korean megachurches from a missional perspective. The research represents a critique of practises in

  13. Graphic User Interface Design for Mapping, Information, Display, and Analysis Systems

    National Research Council Canada - National Science Library

    Lowell, James

    2000-01-01

    This thesis evaluates both the interface design process and the map-based mission planning tools of the Loosely Coupled Components Research Group, Naval Postgraduate School, for human factors usability...

  14. Globally Consistent Indoor Mapping via a Decoupling Rotation and Translation Algorithm Applied to RGB-D Camera Output

    Directory of Open Access Journals (Sweden)

    Yuan Liu

    2017-10-01

    Full Text Available This paper presents a novel RGB-D 3D reconstruction algorithm for the indoor environment. The method can produce globally-consistent 3D maps for potential GIS applications. As the consumer RGB-D camera provides a noisy depth image, the proposed algorithm decouples the rotation and translation for a more robust camera pose estimation, which makes full use of the information, but also prevents inaccuracies caused by noisy depth measurements. The uncertainty in the image depth is not only related to the camera device, but also the environment; hence, a novel uncertainty model for depth measurements was developed using Gaussian mixture applied to multi-windows. The plane features in the indoor environment contain valuable information about the global structure, which can guide the convergence of camera pose solutions, and plane and feature point constraints are incorporated in the proposed optimization framework. The proposed method was validated using publicly-available RGB-D benchmarks and obtained good quality trajectory and 3D models, which are difficult for traditional 3D reconstruction algorithms.

  15. Taking the Measure of the Universe: Cosmology from the WMAP Mission

    Science.gov (United States)

    Hinshaw, Gary F.

    2007-01-01

    The data from the first three years of operation of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature anisotropy and new full-sky maps of the polarization. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. These and other aspects of the mission will be discussed.

  16. Potential of EnMAP spaceborne imaging spectroscopy for the prediction of common surface soil properties and expected accuracy

    Science.gov (United States)

    Chabrillat, Sabine; Foerster, Saskia; Steinberg, Andreas; Stevens, Antoine; Segl, Karl

    2016-04-01

    There is a renewed awareness of the finite nature of the world's soil resources, growing concern about soil security, and significant uncertainties about the carrying capacity of the planet. As a consequence, soil scientists are being challenged to provide regular assessments of soil conditions from local through to global scales. However, only a few countries have the necessary survey and monitoring programs to meet these new needs and existing global data sets are out-of-date. A particular issue is the clear demand for a new area-wide regional to global coverage with accurate, up-to-date, and spatially referenced soil information as expressed by the modeling scientific community, farmers and land users, and policy and decision makers. Soil spectroscopy from remote sensing observations based on studies from the laboratory scale to the airborne scale has been shown to be a proven method for the quantitative prediction of key soil surface properties in local areas for exposed soils in appropriate surface conditions such as low vegetation cover and low water content. With the upcoming launch of the next generation of hyperspectral satellite sensors in the next 3 to 5 years (EnMAP, HISUI, PRISMA, SHALOM), a great potential for the global mapping and monitoring of soil properties is appearing. Nevertheless, the capabilities to extend the soil properties current spectral modeling from local to regional scales are still to be demonstrated using robust methods. In particular, three central questions are at the forefront of research nowadays: a) methodological developments toward improved algorithms and operational tools for the extraction of soil properties, b) up scaling from the laboratory into space domain, and c) demonstration of the potential of upcoming satellite systems and expected accuracy of soil maps. In this study, airborne imaging spectroscopy data from several test sites are used to simulate EnMAP satellite images at 30 m scale. Then, different soil

  17. Landing Site Selection and Surface Traverse Planning using the Lunar Mapping & Modeling Portal

    Science.gov (United States)

    Law, E.; Chang, G.; Bui, B.; Sadaqathullah, S.; Kim, R.; Dodge, K.; Malhotra, S.

    2013-12-01

    Introduction: The Lunar Mapping and Modeling Portal (LMMP), is a web-based Portal and a suite of interactive visualization and analysis tools for users to access mapped lunar data products (including image mosaics, digital elevation models, etc.) from past and current lunar missions (e.g., Lunar Reconnaissance Orbiter, Apollo, etc.), and to perform in-depth analyses to support lunar surface mission planning and system design for future lunar exploration and science missions. It has been widely used by many scientists mission planners, as well as educators and public outreach (e.g., Google Lunar XPRICE teams, RESOLVE project, museums etc.) This year, LMMP was used by the Lunar and Planetary Institute (LPI)'s Lunar Exploration internship program to perform lighting analysis and local hazard assessments, such as, slope, surface roughness and crater/boulder distribution to research landing sites and surface pathfinding and traversal. Our talk will include an overview of LMMP, a demonstration of the tools as well as a summary of the LPI Lunar Exploration summer interns' experience in using those tools.

  18. Mission locale, vision globale : utopie et vie sociale dans les missions jésuites en Amazonie au XVIIe siècle

    OpenAIRE

    Guzmán, Décio de Alencar

    2015-01-01

    Penser les missions jésuites au XVIIe siècle, c’est penser le monde des prophéties du « Cinquième Empire » d’Antônio Vieira. Cela signifie aussi penser l’expérience missionnaire vécue par cet « homme-monde ». En tant que tel, Vieira projeta vers l’avenir des réalités politiques entièrement neuves imaginées par lui et qui n’avaient jamais existé avant. En arrivant au Maragnon, en 1653, Antônio Vieira, supérieur de la Mission des pères de la Compagnie de Jésus, commença son expérience avec l’es...

  19. Stellar compass for the Clementine Mission

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, B. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    A CCD sensor with 42 x 28 degrees FOV and 576 x 384 pixels was built by the Advanced Technology Program (ATP) in the Physics Department at LLNL. That sensor, called the StarTracker camera, is used on the Clementine Lunar Mapping mission between January and May, 1994. Together with the Stellar Compass software, the StarTracker camera provided a way of identifying its orientation to within about 150 microradians in camera body pitch and yaw. This presentation will be an overview of basically how the Stellar Compass software works, along with showing some of its performance results.

  20. Instrument demonstration effort for the CLARREO mission

    Science.gov (United States)

    Grandmont, Frédéric; Moreau, Louis; Bourque, Hugo; Taylor, Joe; Girard, Frédéric; Larouche, Martin; Veilleux, James

    2017-11-01

    NASA and other national agencies ask the National Research Council (NRC) once every decade to look out ten or more years into the future and prioritize research areas, observations, and notional missions to make those observations. The latest such scientific community consultation referred to as the Decadal Survey (DS), was completed in 2007 [1]. DS thematic panels developed 35 missions from more than 100 missions proposed, from which the DS Executive Committee synthesized 17 missions, with suggested order presented in three time-phased blocks. The first block with aim for near term launch (2010-2013) included four missions. The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission is one of them. The CLARREO mission was classified as a Small Mission to be contained in a 300 M US$ budgetary envelope. CLARREO will provide a benchmark climate record that is global, accurate in perpetuity, tested against independent strategies that reveal systematic errors, and pinned to international standards. The long term objective thus suggests that NOAA or NASA will fly the CLARREO instrument suite on an operational basis following the first scientific experiment The CLARREO missions will conduct the following observations: 1. Absolute spectrally-resolved measurements of terrestrial thermal emission with an absolute accuracy of 0.1 K in brightness temperature (3σ or 99% confidence limits.) The measurements should cover most of the thermal spectrum. 2. Absolute spectrally-resolved measurements of the solar radiation reflected from Earth. The measurements should cover the part of the solar spectrum most important to climate, including the near-ultraviolet, visible, and near-infrared. 3. Independent measurements of atmospheric temperature, pressure, and humidity using Global Positioning System (GPS) occultation measurements of atmospheric refraction. 4. Serve as a high accuracy calibration standard for use by the broadband CERES instruments on-orbit. Following