WorldWideScience

Sample records for global maize breeding

  1. Genetic resources in maize breeding

    Directory of Open Access Journals (Sweden)

    Anđelković Violeta

    2017-01-01

    Full Text Available Maize, wheat and rice are the most important cereals grown in the world. It is predicted that by 2025 maize is likely to become the crop with the greatest production globally. Conservation of maize germplasm provides the main resources for increased food and feed production. Conservation in gene banks (ex-situ is dominant strategy for maize conservation. More than 130 000 maize accessions, e.g. about 40% of total number, are stored in ten largest gene banks worldwide and Maize Research Institute Zemun Polje (MRIZP gene bank, with about 6000 accessions, is among them. Organized collecting missions started in 1961. in the former Yugoslavian territory, and up today, more than 2000 local maize landraces were stored. Pre-breeding activities that refer to identification of desirable traits from unadapted germplasm within genebank, result in materials expected to be included in breeding programs. Successful examples are LAMP, GEM and GENRES projects. At the end of XX century, at MRIZP genebank two pre-breeding activities were undertaken: eco-core and elite-core collections were created and landraces fulfilled particular criteria were chosen. In the last decade, MRIZP genebank collection was used for identification of sources for drought tolerance and improved grain quality. According to agronomic traits and general combining ability, two mini-core collections were created and included in commercial breeding programs.

  2. Biotechnology in maize breeding

    Directory of Open Access Journals (Sweden)

    Mladenović-Drinić Snežana

    2004-01-01

    Full Text Available Maize is one of the most important economic crops and the best studied and most tractable genetic system among monocots. The development of biotechnology has led to a great increase in our knowledge of maize genetics and understanding of the structure and behaviour of maize genomes. Conventional breeding practices can now be complemented by a number of new and powerful techniques. Some of these often referred to as molecular methods, enable scientists to see the layout of the entire genome of any organism and to select plants with preferred characteristics by "reading" at the molecular level, saving precious time and resources. DNA markers have provided valuable tools in various analyses ranging from phylogenetic analysis to the positional cloning of genes. Application of molecular markers for genetic studies of maize include: assessment of genetic variability and characterization of germ plasm, identification and fingerprinting of genotypes, estimation of genetic distance, detection of monogamic and quantitative trait loci, marker assisted selection, identification of sequence of useful candidate genes, etc. The development of high-density molecular maps which has been facilitated by PCR-based markers, have made the mapping and tagging of almost any trait possible and serve as bases for marker assisted selection. Sequencing of maize genomes would help to elucidate gene function, gene regulation and their expression. Modern biotechnology also includes an array of tools for introducing or deieting a particular gene or genes to produce plants with novel traits. Development of informatics and biotechnology are resulted in bioinformatic as well as in expansion of microarrey technique. Modern biotechnologies could complement and improve the efficiency of traditional selection and breeding techniques to enhance agricultural productivity.

  3. Breeding of speciality maize for industrial purposes

    OpenAIRE

    Pajić Zorica; Radosavljević Milica; Filipović Milomir; Todorović Goran; Srdić Jelena; Pavlov Milovan

    2010-01-01

    The breeding programme on speciality maize with specific traits was established at the Maize Research Institute, Zemun Polje, several decades ago. The initial material was collected, new methods applying to breeding of speciality maize, i.e. popping maize, sweet maize and white-seeded maize, were introduced. The aim was to enhance and improve variability of the initial material for breeding these three types of maize. Then, inbred lines of good combining abilities were developed and used as c...

  4. Spatial structure and climatic adaptation in African maize revealed by surveying SNP diversity in relation to global breeding and landrace panels.

    Directory of Open Access Journals (Sweden)

    Ola T Westengen

    Full Text Available BACKGROUND: Climate change threatens maize productivity in sub-Saharan Africa. To ensure food security, access to locally adapted genetic resources and varieties is an important adaptation measure. Most of the maize grown in Africa is a genetic mix of varieties introduced at different historic times following the birth of the trans-Atlantic economy, and knowledge about geographic structure and local adaptations is limited. METHODOLOGY: A panel of 48 accessions of maize representing various introduction routes and sources of historic and recent germplasm introductions in Africa was genotyped with the MaizeSNP50 array. Spatial genetic structure and genetic relationships in the African panel were analysed separately and in the context of a panel of 265 inbred lines representing global breeding material (based on 26,900 SNPs and a panel of 1127 landraces from the Americas (270 SNPs. Environmental association analysis was used to detect SNPs associated with three climatic variables based on the full 43,963 SNP dataset. CONCLUSIONS: The genetic structure is consistent between subsets of the data and the markers are well suited for resolving relationships and admixture among the accessions. The African accessions are structured in three clusters reflecting historical and current patterns of gene flow from the New World and within Africa. The Sahelian cluster reflects original introductions of Meso-American landraces via Europe and a modern introduction of temperate breeding material. The Western cluster reflects introduction of Coastal Brazilian landraces, as well as a Northeast-West spread of maize through Arabic trade routes across the continent. The Eastern cluster most strongly reflects gene flow from modern introduced tropical varieties. Controlling for population history in a linear model, we identify 79 SNPs associated with maximum temperature during the growing season. The associations located in genes of known importance for abiotic stress

  5. Breeding of maize types with specific traits at the Maize Research Institute, Zemun Polje

    OpenAIRE

    Pajić Zorica

    2007-01-01

    Maize is primarily grown as an energy crop, but the use of different specific versions, such as high-oil maize, high-lysine maize, waxy maize, white-seeded maize, popping maize and sweet maize, is quite extensive. Speciality maize, due to its traits and genetic control of these traits, requires a particular attention in handling breeding material during the processes of breeding. It is especially related to prevention of uncontrolled pollination. In order to provide successful selection for a...

  6. Ion beam biotechnology and its application to maize breeding

    International Nuclear Information System (INIS)

    Yu Lixia; Li Wenjian; Dong Xicun; Zhou Libin; Ma Shuang

    2008-01-01

    Since the mid of 1980's, ion beam had been widely used in mutagenic breeding of various crops. Ion beam biotechnology had provided a new way for improving corn variety and creating new germplasm resources, and had promoted the development of maize breeding. The ion beam characteristics, the mutagenic mechanism and its application in maize breeding were described. (authors)

  7. Breeding of maize types with specific traits at the Maize Research Institute, Zemun Polje

    Directory of Open Access Journals (Sweden)

    Pajić Zorica

    2007-01-01

    Full Text Available Maize is primarily grown as an energy crop, but the use of different specific versions, such as high-oil maize, high-lysine maize, waxy maize, white-seeded maize, popping maize and sweet maize, is quite extensive. Speciality maize, due to its traits and genetic control of these traits, requires a particular attention in handling breeding material during the processes of breeding. It is especially related to prevention of uncontrolled pollination. In order to provide successful selection for a certain trait, the following specific procedures in evaluation of the trait are necessary: the estimation of a popping volume and flake quality in popping maize; the determination of sugars and harvest maturity in sweet maize; the determination of oil in selected samples of high-oil maize types, and so forth. Breeding programmes for speciality maize, except high-amylose maize, have been implemented at the Maize Research Institute, Zemun Polje, Belgrade, for the last 45 years. A great number of high-yielding sweet maize hybrids, popping maize, high-oil and high-lysine, flint and white-seeded maize hybrids were developed during this 45-year period. Auspicious selection and breeding for these traits is facilitated by the abundant genetic variability and technical and technological possibilities necessary for successful selection.

  8. Combining Maize Base Germplasm for Cold Tolerance Breeding

    OpenAIRE

    Rodríguez Graña, Víctor Manuel; Butrón Gómez, Ana María; Sandoya Miranda, Germán; Ordás Pérez, Amando; Revilla Temiño, Pedro

    2007-01-01

    Early planting can contribute to increased grain yield of maize (Zea mays L.), but it requires cold tolerance. A limited number of cold-tolerant maize genotypes have been reported. The objectives of this study were to test a new strategy to improve cold tolerance in maize searching for broad x narrow genetic combinations that may be useful as base populations for breeding programs, to compare genotype performance under cold-controlled and field conditions, and to establish the major genetic e...

  9. Genomic-based-breeding tools for tropical maize improvement.

    Science.gov (United States)

    Chakradhar, Thammineni; Hindu, Vemuri; Reddy, Palakolanu Sudhakar

    2017-12-01

    Maize has traditionally been the main staple diet in the Southern Asia and Sub-Saharan Africa and widely grown by millions of resource poor small scale farmers. Approximately, 35.4 million hectares are sown to tropical maize, constituting around 59% of the developing worlds. Tropical maize encounters tremendous challenges besides poor agro-climatic situations with average yields recorded <3 tones/hectare that is far less than the average of developed countries. On the contrary to poor yields, the demand for maize as food, feed, and fuel is continuously increasing in these regions. Heterosis breeding introduced in early 90 s improved maize yields significantly, but genetic gains is still a mirage, particularly for crop growing under marginal environments. Application of molecular markers has accelerated the pace of maize breeding to some extent. The availability of array of sequencing and genotyping technologies offers unrivalled service to improve precision in maize-breeding programs through modern approaches such as genomic selection, genome-wide association studies, bulk segregant analysis-based sequencing approaches, etc. Superior alleles underlying complex traits can easily be identified and introgressed efficiently using these sequence-based approaches. Integration of genomic tools and techniques with advanced genetic resources such as nested association mapping and backcross nested association mapping could certainly address the genetic issues in maize improvement programs in developing countries. Huge diversity in tropical maize and its inherent capacity for doubled haploid technology offers advantage to apply the next generation genomic tools for accelerating production in marginal environments of tropical and subtropical world. Precision in phenotyping is the key for success of any molecular-breeding approach. This article reviews genomic technologies and their application to improve agronomic traits in tropical maize breeding has been reviewed in

  10. Accuracy of genomic selection in European maize elite breeding populations.

    Science.gov (United States)

    Zhao, Yusheng; Gowda, Manje; Liu, Wenxin; Würschum, Tobias; Maurer, Hans P; Longin, Friedrich H; Ranc, Nicolas; Reif, Jochen C

    2012-03-01

    Genomic selection is a promising breeding strategy for rapid improvement of complex traits. The objective of our study was to investigate the prediction accuracy of genomic breeding values through cross validation. The study was based on experimental data of six segregating populations from a half-diallel mating design with 788 testcross progenies from an elite maize breeding program. The plants were intensively phenotyped in multi-location field trials and fingerprinted with 960 SNP markers. We used random regression best linear unbiased prediction in combination with fivefold cross validation. The prediction accuracy across populations was higher for grain moisture (0.90) than for grain yield (0.58). The accuracy of genomic selection realized for grain yield corresponds to the precision of phenotyping at unreplicated field trials in 3-4 locations. As for maize up to three generations are feasible per year, selection gain per unit time is high and, consequently, genomic selection holds great promise for maize breeding programs.

  11. Breeding for Quality Protein Maize (QPM Varieties: A Review

    Directory of Open Access Journals (Sweden)

    Liliane N. Tandzi

    2017-11-01

    Full Text Available The nutritional evaluation of quality protein maize (QPM in feeding trials has proved its nutritional superiority over non-QPM varieties for human and livestock consumption. The present paper reviews some of the most recent achievements in development of QPM varieties using both conventional and molecular breeding under stressed and non-stressed environments. It is evident that numerous QPM varieties have been developed and released around the world over the past few decades. While the review points out some gaps in information or research efforts, challenges associated with adoption QPM varieties are highlighted and suggestions to overcome them are presented. The adoption of released varieties and challenges facing QPM production at the farmer level are also mentioned. Several breeding methods have been conventionally used to develop QPM varieties in stressed (drought, low soil nitrogen, resistance to grey leaf spot, Turcicum leaf blight, ear rot, and Striga and non-stressed environments. At least three genetic loci have been found to be implicated in controlling the levels of a protein synthesis factor correlated with lysine. They have been mapped on chromosomes 2, 4, and 7. While the use of molecular approaches will improve the efficiency and speed of variety development, the cost implications might limit the use of these technologies in the developing world. More emphasis should be given to breeding QPM for tolerance to environmental stresses, such as low soil pH, heat, and combined heat and drought stress. The post-harvest attack of QPM grains should also be considered. The adoption of QPM genotypes by farmers has been found to be limited mainly due to the minimal collaboration between maize breeders, farmers, agricultural extension workers, and other relevant stakeholders, as well as the need for isolating QPM varieties from normal maize. Therefore, there is need to use participatory plant breeding (PPB and/or participatory variety

  12. Molecular genetics: Step by step implementation in maize breeding

    Directory of Open Access Journals (Sweden)

    Konstantinov Kosana

    2007-01-01

    Full Text Available Efficiency in plant breeding is determined primarily by the ability to screen for genetic polymorphism, productivity and yield stability early in program. Dependent on the knowledge about the biochemical bases of the trait and nature of its genetic control, trait could be modified either through mutagenesis of genes controlling it or through the transfer of already existing mutant genes, controlling desired trait to different plant genotypes by classic crossing. Objective of this report is to present partly results on the investigation of the possibilities to apply ionizing radiations (fast neutrons, γ -rays and chemical mutagens (EI, iPMS, EMS, ENU to get maize and wheat mutants with increased amount and improved protein quality. Besides this approach in mutation breeding, results on the very early investigation of biochemical background of opaque -2 mutation including use of coupled cell - free RNA and protein synthesis containing components from both wild and opaque - 2 maize genotypes (chromatin, RNA polymerase, microsomall fraction, protein bodies will be presented. Partial results on opaque - 2 gene incorporation in different genetic background are reviewed. Part of report is dealing with different classes of molecular markers (proteins, RFLP, AFLP, RAPD, and SSR application in maize genome polymorphism investigation. Besides application of different molecular markers classes in the investigation of heterosis phenomena they are useful in biochemical pathway of important traits control determination as well. .

  13. Genetic Factors Involved in Fumonisin Accumulation in Maize Kernels and Their Implications in Maize Agronomic Management and Breeding.

    Science.gov (United States)

    Santiago, Rogelio; Cao, Ana; Butrón, Ana

    2015-08-20

    Contamination of maize with fumonisins depends on the environmental conditions; the maize resistance to contamination and the interaction between both factors. Although the effect of environmental factors is a determinant for establishing the risk of kernel contamination in a region, there is sufficient genetic variability among maize to develop resistance to fumonisin contamination and to breed varieties with contamination at safe levels. In addition, ascertaining which environmental factors are the most important in a region will allow the implementation of risk monitoring programs and suitable cultural practices to reduce the impact of such environmental variables. The current paper reviews all works done to address the influence of environmental variables on fumonisin accumulation, the genetics of maize resistance to fumonisin accumulation, and the search for the biochemical and/or structural mechanisms of the maize plant that could be involved in resistance to fumonisin contamination. We also explore the outcomes of breeding programs and risk monitoring of undertaken projects.

  14. Molecular breeding for developing drought tolerant and disease resistant maize in sub Saharan Africa

    Science.gov (United States)

    The International Maize and Wheat Improvement Center (CIMMYT), in collaboration with public and private partners, is working on developing and disseminating drought tolerant maize for sub Saharan Africa (SSA) using pedigree selection and molecular breeding. In this paper, we provide an overview of ...

  15. KASPTM genotyping technology and its use in gene­tic-breeding programs (a study of maize

    Directory of Open Access Journals (Sweden)

    Н. Е. Волкова

    2017-06-01

    Full Text Available Purpose. To review publications relating to the key point of the genotyping technology that is competitive allele-specific polymerase chain reaction (which is called now Kompetitive Allele Specific PCR, KASPTM and its use in various genetic-breeding researching (a study of maize. Results. The essence of KASP-genotyping, its advantages are highlighted. The requirements for matrix DNA are presented, since the success of the KASP-analysis depends on its qua­lity and quantity. Examples of global projects of plant breeding for increasing crop yields using the KASP genoty­ping technology are given. The results of KASP genotyping and their introduction into breeding and seed production, in particular, for determining genetic identity, genetic purity, origin check, marker-assisted selection, etc. are presented using maize as an example. It is demonstrated how geno­mic selection according to KASP genotyping technology can lead to rapid genetic enhancement of drought resistance in maize. Comparison of the effectiveness of creating lines with certain traits (for example, combination of high grain yield and drought resistance using traditional breeding approaches (phenotype selection and molecular genetic methods (selection by markers was proved that it takes four seasons (two years in case of greenhouses in order to unlock the potential of the plant genotype using traditional self-pollination, test-crossing and definitions, while using markers, the population was enriched with target alleles during one season. At the same time, there was no need for a stress factor. Conclusions. KASP genotyping technology is a high-precision and effective tool for modern genetics and breeding, which is successfully used to study genetic diversity, genetic relationship, population structure, gene­tic identity, genetic purity, origin check, quantitative locus mapping, allele mapping, marker-assisted selection, marker-assisted breeding. It is expedient and timely to

  16. Resistance Genes in Global Crop Breeding Networks.

    Science.gov (United States)

    Garrett, K A; Andersen, K F; Asche, F; Bowden, R L; Forbes, G A; Kulakow, P A; Zhou, B

    2017-10-01

    Resistance genes are a major tool for managing crop diseases. The networks of crop breeders who exchange resistance genes and deploy them in varieties help to determine the global landscape of resistance and epidemics, an important system for maintaining food security. These networks function as a complex adaptive system, with associated strengths and vulnerabilities, and implications for policies to support resistance gene deployment strategies. Extensions of epidemic network analysis can be used to evaluate the multilayer agricultural networks that support and influence crop breeding networks. Here, we evaluate the general structure of crop breeding networks for cassava, potato, rice, and wheat. All four are clustered due to phytosanitary and intellectual property regulations, and linked through CGIAR hubs. Cassava networks primarily include public breeding groups, whereas others are more mixed. These systems must adapt to global change in climate and land use, the emergence of new diseases, and disruptive breeding technologies. Research priorities to support policy include how best to maintain both diversity and redundancy in the roles played by individual crop breeding groups (public versus private and global versus local), and how best to manage connectivity to optimize resistance gene deployment while avoiding risks to the useful life of resistance genes. [Formula: see text] Copyright © 2017 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .

  17. Global maize production, utilization, and consumption.

    Science.gov (United States)

    Ranum, Peter; Peña-Rosas, Juan Pablo; Garcia-Casal, Maria Nieves

    2014-04-01

    Maize (Zea mays), also called corn, is believed to have originated in central Mexico 7000 years ago from a wild grass, and Native Americans transformed maize into a better source of food. Maize contains approximately 72% starch, 10% protein, and 4% fat, supplying an energy density of 365 Kcal/100 g and is grown throughout the world, with the United States, China, and Brazil being the top three maize-producing countries in the world, producing approximately 563 of the 717 million metric tons/year. Maize can be processed into a variety of food and industrial products, including starch, sweeteners, oil, beverages, glue, industrial alcohol, and fuel ethanol. In the last 10 years, the use of maize for fuel production significantly increased, accounting for approximately 40% of the maize production in the United States. As the ethanol industry absorbs a larger share of the maize crop, higher prices for maize will intensify demand competition and could affect maize prices for animal and human consumption. Low production costs, along with the high consumption of maize flour and cornmeal, especially where micronutrient deficiencies are common public health problems, make this food staple an ideal food vehicle for fortification. © 2014 New York Academy of Sciences. The World Health Organization retains copyright and all other rights in the manuscript of this article as submitted for publication.

  18. In-vitro mutation breeding technology in maize

    International Nuclear Information System (INIS)

    Nesticky, M.

    1988-08-01

    Gamma-irradiation and in-vitro culture, separately or combined, as a tool for inducing mutation in maize were evaluated. This type of research has been hampered in maize because (i) maize is a cross pollinating crop and highly heterozygous and (ii) embryogenesis and plant regeneration of plants from in-vitro culture have been difficult. In the present study, carefully designed and elaborated experiments were conducted using an inbred line CH1 31 which is capable of somatic embryogenesis for the subject of mutagenesis and another line Bu 8Ro 2 for the test cross partner. Results showed: 1) Both the regeneration of plants from in-vitro culture and gamma-irradiation induced a similar spectrum of morphological variation. Although the variation with somaclones was more frequent that radiation induced mutations under the conditions used, combination of explant irradiation and in-vitro culture gave the highest frequencies of genetic variation. 2) Some of the mutations in quantitative characters can be recogned in heterozygous state. 3) Mutation can cause variation in combining ability (extent of heterosis). 4) Efficiency at embryogenesis differs with genotypes of maize. 3 refs, 11 figs, 4 tabs

  19. RESOURCE ALLOCATION IN A MAIZE BREEDING PROGRAM FOR NATIVE RESISTANCE TO WESTERN CORN ROOTWORM

    Directory of Open Access Journals (Sweden)

    Ivan Brkić

    2012-06-01

    Full Text Available The objective of this study was to determine the optimum allocation of the number of plants sampled per plot and number of locations and years required for screening maize genotypes for reduced root damage caused by western corn rootworm (WCR larvae, major pest of maize in Croatia, Europe and in the USA. Field trials were conducted on two locations Eastern Croatia, a major maize production area with natural WCR occurrence under continuous maize growing conditions. The trials were set as an incomplete lattice block design in two replications in 2007, 2008 and 2009 including 128 genotypes from various maize gene-pools. Our results suggest that the effect of year and respective interactions including year were the most important factors in maize breeding programs for native resistance to WCR. Thus, screening germplasm for WCR resistance should be made in a multi-year experiment, but not necessarily as a multi-location experiment. Resource optimization should be done by reducing number of roots per plot to minimum 4 sampled plants due to small within-plot environmental variance.

  20. Setting Up Decision-Making Tools toward a Quality-Oriented Participatory Maize Breeding Program

    Science.gov (United States)

    Alves, Mara L.; Brites, Cláudia; Paulo, Manuel; Carbas, Bruna; Belo, Maria; Mendes-Moreira, Pedro M. R.; Brites, Carla; Bronze, Maria do Rosário; Gunjača, Jerko; Šatović, Zlatko; Vaz Patto, Maria C.

    2017-01-01

    Previous studies have reported promising differences in the quality of kernels from farmers' maize populations collected in a Portuguese region known to produce maize-based bread. However, several limitations have been identified in the previous characterizations of those populations, such as a limited set of quality traits accessed and a missing accurate agronomic performance evaluation. The objectives of this study were to perform a more detailed quality characterization of Portuguese farmers' maize populations; to estimate their agronomic performance in a broader range of environments; and to integrate quality, agronomic, and molecular data in the setting up of decision-making tools for the establishment of a quality-oriented participatory maize breeding program. Sixteen farmers' maize populations, together with 10 other maize populations chosen for comparison purposes, were multiplied in a common-garden experiment for quality evaluation. Flour obtained from each population was used to study kernel composition (protein, fat, fiber), flour's pasting behavior, and bioactive compound levels (carotenoids, tocopherols, phenolic compounds). These maize populations were evaluated for grain yield and ear weight in nine locations across Portugal; the populations' adaptability and stability were evaluated using additive main effects and multiplication interaction (AMMI) model analysis. The phenotypic characterization of each population was complemented with a molecular characterization, in which 30 individuals per population were genotyped with 20 microsatellites. Almost all farmers' populations were clustered into the same quality-group characterized by high levels of protein and fiber, low levels of carotenoids, volatile aldehydes, α- and δ-tocopherols, and breakdown viscosity. Within this quality-group, variability on particular quality traits (color and some bioactive compounds) could still be found. Regarding the agronomic performance, farmers' maize populations

  1. Setting Up Decision-Making Tools toward a Quality-Oriented Participatory Maize Breeding Program

    Directory of Open Access Journals (Sweden)

    Mara L. Alves

    2017-12-01

    Full Text Available Previous studies have reported promising differences in the quality of kernels from farmers' maize populations collected in a Portuguese region known to produce maize-based bread. However, several limitations have been identified in the previous characterizations of those populations, such as a limited set of quality traits accessed and a missing accurate agronomic performance evaluation. The objectives of this study were to perform a more detailed quality characterization of Portuguese farmers' maize populations; to estimate their agronomic performance in a broader range of environments; and to integrate quality, agronomic, and molecular data in the setting up of decision-making tools for the establishment of a quality-oriented participatory maize breeding program. Sixteen farmers' maize populations, together with 10 other maize populations chosen for comparison purposes, were multiplied in a common-garden experiment for quality evaluation. Flour obtained from each population was used to study kernel composition (protein, fat, fiber, flour's pasting behavior, and bioactive compound levels (carotenoids, tocopherols, phenolic compounds. These maize populations were evaluated for grain yield and ear weight in nine locations across Portugal; the populations' adaptability and stability were evaluated using additive main effects and multiplication interaction (AMMI model analysis. The phenotypic characterization of each population was complemented with a molecular characterization, in which 30 individuals per population were genotyped with 20 microsatellites. Almost all farmers' populations were clustered into the same quality-group characterized by high levels of protein and fiber, low levels of carotenoids, volatile aldehydes, α- and δ-tocopherols, and breakdown viscosity. Within this quality-group, variability on particular quality traits (color and some bioactive compounds could still be found. Regarding the agronomic performance, farmers

  2. Resistance to Aspergillus flavus in maize and peanut: Molecular biology, breeding, environmental stress, and future perspectives

    Directory of Open Access Journals (Sweden)

    Jake C. Fountain

    2015-06-01

    Full Text Available The colonization of maize (Zea mays L. and peanut (Arachis hypogaea L. by the fungal pathogen Aspergillus flavus results in the contamination of kernels with carcinogenic mycotoxins known as aflatoxins leading to economic losses and potential health threats to humans. The regulation of aflatoxin biosynthesis in various Aspergillus spp. has been extensively studied, and has been shown to be related to oxidative stress responses. Given that environmental stresses such as drought and heat stress result in the accumulation of reactive oxygen species (ROS within host plant tissues, host-derived ROS may play an important role in cross-kingdom communication between host plants and A. flavus. Recent technological advances in plant breeding have provided the tools necessary to study and apply knowledge derived from metabolomic, proteomic, and transcriptomic studies in the context of productive breeding populations. Here, we review the current understanding of the potential roles of environmental stress, ROS, and aflatoxin in the interaction between A. flavus and its host plants, and the current status in molecular breeding and marker discovery for resistance to A. flavus colonization and aflatoxin contamination in maize and peanut. We will also propose future directions and a working model for continuing research efforts linking environmental stress tolerance and aflatoxin contamination resistance in maize and peanut.

  3. BIOMETRICAL CHARACTERIZATION OF TEST SITES FOR MAIZE BREEDING

    Directory of Open Access Journals (Sweden)

    Domagoj Šimić

    2003-12-01

    Full Text Available Yield stability of genotypes and analysis of genotype×environment interaction (GEI as important objects in analyses of multienvironment trials are well documented in Croatia. However, little is known about suitability and biometrical characters of the sites where genotypes should be tested. Objectives of this study were in combined analysis of balanced maize trials i to compare test sites in joint linear regression analysis and ii to compare several stability models by clustering test sites in order to assess biometrical suitability of particular test sites. Partitioning of GEI sum of squares according to the symmetrical joint linear regression analysis revealed highly significant Tukey's test, heterogeneity of environmental regressions and residual deviations. Mean grain yields, within-macroenvironment error mean squares, and stability parameters varied considerably among 16 macroenvironments. The highest grain yields were recorded in Osijek in both years and in Varaždin in 1996, with more than 11 t ha-1 . It seems that Feričanci would be optimum test site with relatively high and consistent yield and high values of entry mean squares indicating satisfactory differentiation among cultivars. However, four clustering methods generally did not correspond. According to three out of four clustering methods, two macroenvironments of Feričanci provide similar results. Employing other methods such as shifted multiplicative models, which effectively eliminate significant rank-change interaction, appears to be more reasonable.

  4. Future Warming Increases Global Maize Yield Variability with Implications for Food Markets

    Science.gov (United States)

    Tigchelaar, M.; Battisti, D. S.; Naylor, R. L.; Ray, D. K.

    2017-12-01

    If current trends in population growth and dietary shifts continue, the world will need to produce about 70% more food by 2050, while earth's climate is rapidly changing. Rising temperatures in particular are projected to negatively impact agricultural production, as the world's staple crops perform poorly in extreme heat. Theoretical models suggest that as temperatures rise above plants' optimal temperature for performance, not only will mean yields decline rapidly, but the variability of yields will increase, even as interannual variations in climate remain unchanged. Here we use global datasets of maize production and climate variability combined with CMIP5 temperature projections to quantify how yield variability will change in major maize producing countries under 2°C and 4°C of global warming. Maize is the world's most produced crop, and is linked to other staple crops through substitution in consumption and production. We find that in warmer climates - absent any breeding gains in heat tolerance - the Coefficient of Variation (CV) of maize yields increases almost everywhere, to values much larger than present-day. This increase in CV is due both to an increase in the standard deviation of yields, and a decrease in mean yields. In locations where crop failures become the norm under high (4°C) warming (mostly in tropical, low-yield environments), the standard deviation of yields ultimately decreases. The probability that in any given year the most productive areas in the top three maize producing countries (United States, China, Brazil) have simultaneous production losses greater than 10% is virtually zero under present-day climate conditions, but increases to 12% under 2°C warming, and 89% under 4°C warming. This has major implications for global food markets and staple crop prices, affecting especially the 2.5 billion people that comprise the world's poor, who already spend the majority of their disposable income on food and are particularly vulnerable

  5. Genomic Prediction of Single Crosses in the Early Stages of a Maize Hybrid Breeding Pipeline

    Directory of Open Access Journals (Sweden)

    Dnyaneshwar C. Kadam

    2016-11-01

    Full Text Available Prediction of single-cross performance has been a major goal of plant breeders since the beginning of hybrid breeding. Recently, genomic prediction has shown to be a promising approach, but only limited studies have examined the accuracy of predicting single-cross performance. Moreover, no studies have examined the potential of predicting single crosses among random inbreds derived from a series of biparental families, which resembles the structure of germplasm comprising the initial stages of a hybrid maize breeding pipeline. The main objectives of this study were to evaluate the potential of genomic prediction for identifying superior single crosses early in the hybrid breeding pipeline and optimize its application. To accomplish these objectives, we designed and analyzed a novel population of single crosses representing the Iowa Stiff Stalk synthetic/non-Stiff Stalk heterotic pattern commonly used in the development of North American commercial maize hybrids. The performance of single crosses was predicted using parental combining ability and covariance among single crosses. Prediction accuracies were estimated using cross-validation and ranged from 0.28 to 0.77 for grain yield, 0.53 to 0.91 for plant height, and 0.49 to 0.94 for staygreen, depending on the number of tested parents of the single cross and genomic prediction method used. The genomic estimated general and specific combining abilities showed an advantage over genomic covariances among single crosses when one or both parents of the single cross were untested. Overall, our results suggest that genomic prediction of single crosses in the early stages of a hybrid breeding pipeline holds great potential to redesign hybrid breeding and increase its efficiency.

  6. Genetics of Resistance and Pathogenicity in the Maize/Setosphaeria turcica Pathosystem and Implications for Breeding

    Directory of Open Access Journals (Sweden)

    Ana L. Galiano-Carneiro

    2017-08-01

    Full Text Available Northern corn leaf blight (NCLB, the most devastating leaf pathogen in maize (Zea mays L., is caused by the heterothallic ascomycete Setosphaeria turcica. The pathogen population shows an extremely high genetic diversity in tropical and subtropical regions. Varietal resistance is the most efficient technique to control NCLB. Host resistance can be qualitative based on race-specific Ht genes or quantitative controlled by many genes with small effects. Quantitative resistance is moderately to highly effective and should be more durable combatting all races of the pathogen. Quantitative resistance must, however, be analyzed in many environments (= location × year combinations to select stable resistances. In the tropical and subtropical environments, quantitative resistance is the preferred option to manage NCLB epidemics. Resistance level can be increased in practical breeding programs by several recurrent selection cycles based on disease severity rating and/or by genomic selection. This review aims to address two important aspects of the NCLB pathosystem: the genetics of the fungus S. turcica and the modes of inheritance of the host plant maize, including successful breeding strategies regarding NCLB resistance. Both drivers of this pathosystem, pathogen, and host, must be taken into account to result in more durable resistance.

  7. Breeding approaches in simultaneous selection for multiple stress tolerance of maize in tropical environments

    Directory of Open Access Journals (Sweden)

    Denić M.

    2007-01-01

    Full Text Available Maize is the principal crop and major staple food in the most countries of Sub-Saharan Africa. However, due to the influence of abiotic and biotic stress factors, maize production faces serious constraints. Among the agro-ecological conditions, the main constraints are: lack and poor distribution of rainfall; low soil fertility; diseases (maize streak virus, downy mildew, leaf blights, rusts, gray leaf spot, stem/cob rots and pests (borers and storage pests. Among the socio-economic production constraints are: poor economy, serious shortage of trained manpower; insufficient management expertise, lack of use of improved varieties and poor cultivation practices. To develop desirable varieties, and thus consequently alleviate some of these constraints, appropriate breeding approaches and field-based methodologies in selection for multiple stress tolerance, were implemented. These approaches are mainly based on: a Crossing selected genotypes with more desirable stress tolerant and other agronomic traits; b Using the disease/pest spreader row method, combined with testing and selection of created progenies under strong to intermediate pressure of drought and low soil fertility in nurseries; and c Evaluation of the varieties developed in multi-location trials under low and "normal" inputs. These approaches provide testing and selection of large number of progenies, which is required for simultaneous selection for multiple stress tolerance. Data obtained revealed that remarkable improvement of the traits under selection was achieved. Biggest progress was obtained in selection for maize streak virus and downy mildew resistance, flintiness and earliness. In the case of drought stress, statistical analyses revealed significant negative correlation between yield and anthesis-silking interval, and between yield and days to silk, but positive correlation between yield and grain weight per ear.

  8. Farmers’ desired traits and selection criteria for maize varieties and their implications for maize breeding: A case study from KwaZulu-Natal Province, South Africa

    Directory of Open Access Journals (Sweden)

    Julia Sibiya

    2013-08-01

    Full Text Available Adoption of hybrids and improved varieties has remained low in the smallholder farming sector of South Africa, despite maize being the staple food crop for the majority of households. The objective of this study was to establish preferred maize characteristics by farmers which can be used as selection criteria by maize breeders in crop improvement. Data were collected from three villages of a selected smallholder farming area in South Africa using a survey covering 300 households and participatory rural appraisal methodology. Results indicated a limited selection of maize varieties grown by farmers in the area compared to other communities in Africa. More than 97% of the farmers grew a local landrace called Natal-8-row or IsiZulu. Hybrids and improved open pollinated varieties were planted by less than 40% of the farmers. The Natal-8-row landrace had characteristics similar to landraces from eastern and southern Africa and closely resembled Hickory King, a landrace still popular in Southern Africa. The local landrace was preferred for its taste, recycled seed, tolerance to abiotic stresses and yield stability. Preferred characteristics of maize varieties were high yield and prolificacy, disease resistance, early maturity, white grain colour, and drying and shelling qualities. Farmers were willing to grow hybrids if the cost of seed and other inputs were affordable and their preferences were considered. Our results show that breeding opportunities exist for improving the farmers’ local varieties and maize breeders can take advantage of these preferred traits and incorporate them into existing high yielding varieties.

  9. Breeding for culinary and nutritional quality of common bean (Phaseolus vulgaris L. in intercropping systems with maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Rodino A.P.

    1999-01-01

    Full Text Available Common bean (Phaseolus vulgaris L. is widely intercropped with maize (Zea mays L. in the North of Spain. Breeding beans for multiple cropping systems is important for the development of a productive and sustainable agriculture, and is mainly oriented to minimize intercrop competition and to stabilize complementarity with maize. Most agricultural research on intercropping to date has focused on the agronomic and overall yield effects of the different species, but characters related with socio-economic and food quality aspects are also important. The effect of intercropping beans with maize on food seed quality traits was studied for thirty-five bush bean varieties under different environments in Galicia (Northwestern Spain. Parameters determining Asturian (Northern Spain white bean commercial and culinary quality have also been evaluated in fifteen accessions. There are significant differences between varieties in the selected cropping systems (sole crop, intercrop with field maize and intercrop with sweet maize for dry and soaked seed weight, coat proportion, crude protein, crude fat and moisture. Different white bean accessions have been chosen according to their culinary quality. Under these environmental conditions it appears that intercropping systems with sweet maize give higher returns than sole cropping system. It is also suggested that the culinary and nutritional quality potential of some white bean accessions could be the base material in a breeding programme the objectives of which are to develop varieties giving seeds with high food quality.

  10. Farmers' adoption of maize (Zea mays L.). Hybrids and persistence of landraces in Southwest China: implications for policy and breeding

    NARCIS (Netherlands)

    Li, Jingsong; Lammerts Van Bueren, E.; Jiggins, Janice; Leeuwis, C.

    2012-01-01

    This paper examines changes in the distribution of maize hybrids and landraces in the mountainous areas of southwest China over 1998–2008, farmers’ reasons for cultivar adoption and the implications for national policies in relation to seed production and breeding, based on baseline data and a

  11. Use of Genomic Estimated Breeding Values Results in Rapid Genetic Gains for Drought Tolerance in Maize

    Directory of Open Access Journals (Sweden)

    B.S. Vivek

    2017-03-01

    Full Text Available More than 80% of the 19 million ha of maize ( L. in tropical Asia is rainfed and prone to drought. The breeding methods for improving drought tolerance (DT, including genomic selection (GS, are geared to increase the frequency of favorable alleles. Two biparental populations (CIMMYT-Asia Population 1 [CAP1] and CAP2 were generated by crossing elite Asian-adapted yellow inbreds (CML470 and VL1012767 with an African white drought-tolerant line, CML444. Marker effects of polymorphic single-nucleotide polymorphisms (SNPs were determined from testcross (TC performance of F families under drought and optimal conditions. Cycle 1 (C1 was formed by recombining the top 10% of the F families based on TC data. Subsequently, (i C2[PerSe_PS] was derived by recombining those C1 plants that exhibited superior per se phenotypes (phenotype-only selection, and (ii C2[TC-GS] was derived by recombining a second set of C1 plants with high genomic estimated breeding values (GEBVs derived from TC phenotypes of F families (marker-only selection. All the generations and their top crosses to testers were evaluated under drought and optimal conditions. Per se grain yields (GYs of C2[PerSe_PS] and that of C2[TC-GS] were 23 to 39 and 31 to 53% better, respectively, than that of the corresponding F population. The C2[TC-GS] populations showed superiority of 10 to 20% over C2[PerSe-PS] of respective populations. Top crosses of C2[TC-GS] showed 4 to 43% superiority of GY over that of C2[PerSe_PS] of respective populations. Thus, GEBV-enabled selection of superior phenotypes (without the target stress resulted in rapid genetic gains for DT.

  12. Maize production in terms of global climate changes

    Directory of Open Access Journals (Sweden)

    Bekavac Goran

    2010-01-01

    Full Text Available Climate changes and expected variability of climatic parameters represent a serious concern of the 21st century agriculture. At the global level, the further rise in temperature, changed quantity and distribution of precipitation, increased variability of climate parameters and the occurrence of extreme climate events are expected. In order to avoid, or at least reduce the negative effects of global climate change, several adaptation strategies are proposed. Adjustment of production technology and breeding for tolerance to changed environment are proposed as two most important adaptation measures.

  13. Global maize trade and food security: implications from a social network model.

    Science.gov (United States)

    Wu, Felicia; Guclu, Hasan

    2013-12-01

    In this study, we developed a social network model of the global trade of maize: one of the most important food, feed, and industrial crops worldwide, and critical to food security. We used this model to analyze patterns of maize trade among nations, and to determine where vulnerabilities in food security might arise if maize availability was decreased due to factors such as diversion to nonfood uses, climatic factors, or plant diseases. Using data on imports and exports from the U.N. Commodity Trade Statistics Database for each year from 2000 to 2009 inclusive, we summarized statistics on volumes of maize trade between pairs of nations for 217 nations. There is evidence of market segregation among clusters of nations; with three prominent clusters representing Europe, Brazil and Argentina, and the United States. The United States is by far the largest exporter of maize worldwide, whereas Japan and the Republic of Korea are the largest maize importers. In particular, the star-shaped cluster of the network that represents U.S. maize trade to other nations indicates the potential for food security risks because of the lack of trade these other nations conduct with other maize exporters. If a scenario arose in which U.S. maize could not be exported in as large quantities, maize supplies in many nations could be jeopardized. We discuss this in the context of recent maize ethanol production and its attendant impacts on food prices elsewhere worldwide. © 2013 Society for Risk Analysis.

  14. Diversity in global maize germplasm: Characterization and utilization

    Indian Academy of Sciences (India)

    2012-10-15

    Oct 15, 2012 ... maize farmers as well as to the scientific community are depicted in figure 1, and ..... best practices for maintaining the original genetic diversity of the gene bank ..... maize; in Studies in the neolithic and urban revolution: V.

  15. Global warming presents new challenges for maize pest management

    International Nuclear Information System (INIS)

    Diffenbaugh, Noah S; Krupke, Christian H; White, Michael A; Alexander, Corinne E

    2008-01-01

    It has been conjectured that global warming will increase the prevalence of insect pests in many agro-ecosystems. In this paper, we quantitatively assess four of the key pests of maize, one of the most important systems in North American grain production. Using empirically generated estimates of pest overwintering thresholds and degree-day requirements, along with climate change projections from a high-resolution climate model, we project potential future ranges for each of these pests in the United States. Our analysis suggests the possibility of increased winter survival and greater degree-day accumulations for each of the pests surveyed. We find that relaxed cold limitation could expand the range of all four pest taxa, including a substantial range expansion in the case of corn earworm (H. zea), a migratory, cold-intolerant pest. Because the corn earworm is a cosmopolitan pest that has shown resistance to insecticides, our results suggest that this expansion could also threaten other crops, including those in high-value areas of the western United States. Because managing significant additional pressure from this suite of established pests would require additional pest management inputs, the projected decreases in cold limitation and increases in heat accumulation have the potential to significantly alter the pest management landscape for North American maize production. Further, these range expansions could have substantial economic impacts through increased seed and insecticide costs, decreased yields, and the downstream effects of changes in crop yield variability.

  16. Genetic, Genomic, and Breeding Approaches to Further Explore Kernel Composition Traits and Grain Yield in Maize

    Science.gov (United States)

    Da Silva, Helena Sofia Pereira

    2009-01-01

    Maize ("Zea mays L.") is a model species well suited for the dissection of complex traits which are often of commercial value. The purpose of this research was to gain a deeper understanding of the genetic control of maize kernel composition traits starch, protein, and oil concentration, and also kernel weight and grain yield. Germplasm with…

  17. Diversity in global maize germplasm: Characterization and utilization

    Indian Academy of Sciences (India)

    Maize (Zea mays L.) is not only of worldwide importance as a food, feed and as a source of diverse industrially important products, but is also a model genetic organism with immense genetic diversity. Although it was first domesticated in Mexico, maize landraces are widely found across the continents. Several studies in ...

  18. Breeding blueberries for a changing global environment: a review

    Science.gov (United States)

    Lobos, Gustavo A.; Hancock, James F.

    2015-01-01

    Today, blueberries are recognized worldwide as one of the foremost health foods, becoming one of the crops with the highest productive and commercial projections. Over the last 100 years, the geographical area where highbush blueberries are grown has extended dramatically into hotter and drier environments. The expansion of highbush blueberry growing into warmer regions will be challenged in the future by increases in average global temperature and extreme fluctuations in temperature and rainfall patterns. Considerable genetic variability exists within the blueberry gene pool that breeders can use to meet these challenges, but traditional selection techniques can be slow and inefficient and the precise adaptations of genotypes often remain hidden. Marker assisted breeding (MAB) and phenomics could aid greatly in identifying those individuals carrying adventitious traits, increasing selection efficiency and shortening the rate of cultivar release. While phenomics have begun to be used in the breeding of grain crops in the last 10 years, their use in fruit breeding programs it is almost non-existent. PMID:26483803

  19. Breeding blueberries for a changing global environment: a review

    Directory of Open Access Journals (Sweden)

    Gustavo A. Lobos

    2015-09-01

    Full Text Available Today, blueberries are recognized worldwide as one of the foremost health foods, becoming one of the crops with the highest productive and commercial projections. Over the last hundred years, the geographical area where highbush blueberries are grown has extended dramatically into hotter and drier environments. The expansion of highbush blueberry growing into warmer regions will be challenged in the future by increases in average global temperature and extreme fluctuations in temperature and rainfall patterns. Considerable genetic variability exists within the blueberry gene pool that breeders can use to meet these challenges, but traditional selection techniques can be slow and inefficient and the precise adaptations of genotypes often remain hidden. Marker assisted breeding (MAB and phenomics could aid greatly in identifying those individuals carrying adventitious traits, increasing selection efficiency and shortening the rate of cultivar release. While phenomics have begun to be used in the breeding of grain crops in the last 10 years, their use in fruit breeding programs it is almost non-existent.

  20. The Potential of Tohono O'odham Z16 Maize as a New Breeding Germplasm for semi-Arid Areas of South East Kenya

    International Nuclear Information System (INIS)

    Shisanya, C.A.; Hornetz, B.

    1999-01-01

    The major objective of these study was to evaluate the potential of new maize variety in semi-arid environment of Southeast Kenya, with a view to making recommendations on its suitability for incorporation into the maize breeding programme at the national Dryland Farming Research Centre (NDFRC), Katumani, Kenya. Aspects like Phenology, crop water requirements and the diurnal leaf water potential (LWP) of Tohono O'odham Z16 (TOZ16) maize (Zea mays L.) were compared to those of locally grown varieties, Makueni DLC (MDLC) and Katumani composite B, (KCB) under two water treatments: irrigated and unirrigated, to determine its suitability for the maize breeding programme. The experiment design was randomized complete block design with four replicates per treatment. under irrigation treatment, TOZ16 attained physiological maturity within 70 days compared to 95 and 110 days for MDLC and KCB, respectively. under unirrigated treatment, leaf rolling was more pronounced with TOZ16 as compared to MDLC and KBC. These has been shown to be evidence for plant adaption to water stress and results in a marked reduction in effective leaf area thus reducing radiation load. MDLC and KBC are required ca. 41% and 52% more water than TOZ16, respectively. Under irrigation treatment, TOZ16 maize attained a minimum leaf water potential (LWP) of approximately-2.38 MPa compared to -2.85 and -3.00 MPa attained by MDLC and KBC respectively. The susceptibility of these latter two maize varieties to water stress was evidence by the fact that they quickly increased their hydrature level early in the morning compared to TOZ16 which tend to maintain its lower level for relatively longer period of time. Following these study it is strongly that TOZ16 be incorporated into the maize-breeding programme at NDFRC. The study shows that TOZ16 possesses physiological characteristics that could be positively exploited by plant breeders in the search of drought adapted maize cultivars for the semi-arid areas of

  1. Characterizing the population structure and genetic diversity of maize breeding germplasm in Southwest China using genome-wide SNP markers.

    Science.gov (United States)

    Zhang, Xiao; Zhang, Hua; Li, Lujiang; Lan, Hai; Ren, Zhiyong; Liu, Dan; Wu, Ling; Liu, Hailan; Jaqueth, Jennifer; Li, Bailin; Pan, Guangtang; Gao, Shibin

    2016-08-31

    Maize breeding germplasm used in Southwest China has high complexity because of the diverse ecological features of this area. In this study, the population structure, genetic diversity, and linkage disequilibrium decay distance of 362 important inbred lines collected from the breeding program of Southwest China were characterized using the MaizeSNP50 BeadChip with 56,110 single nucleotide polymorphisms (SNPs). With respect to population structure, two (Tropical and Temperate), three (Tropical, Stiff Stalk and non-Stiff Stalk), four [Tropical, group A germplasm derived from modern U.S. hybrids (PA), group B germplasm derived from modern U.S. hybrids (PB) and Reid] and six (Tropical, PB, Reid, Iowa Stiff Stalk Synthetic, PA and North) subgroups were identified. With increasing K value, the Temperate group showed pronounced hierarchical structure with division into further subgroups. The Genetic Diversity of each group was also estimated, and the Tropical group was more diverse than the Temperate group. Seven low-genetic-diversity and one high-genetic-diversity regions were collectively identified in the Temperate, Tropical groups, and the entire panel. SNPs with significant variation in allele frequency between the Tropical and Temperate groups were also evaluated. Among them, a region located at 130 Mb on Chromosome 2 showed the highest genetic diversity, including both number of SNPs with significant variation and the ratio of significant SNPs to total SNPs. Linkage disequilibrium decay distance in the Temperate group was greater (2.5-3 Mb) than that in the entire panel (0.5-0.75 Mb) and the Tropical group (0.25-0.5 Mb). A large region at 30-120 Mb of Chromosome 7 was concluded to be a region conserved during the breeding process by comparison between S37, which was considered a representative tropical line in Southwest China, and its 30 most similar derived lines. For the panel covered most of widely used inbred lines in Southwest China, this work

  2. Breeding for Increased Water Use Efficiency in Corn (Maize) Using a Low-altitude Unmanned Aircraft System

    Science.gov (United States)

    Shi, Y.; Veeranampalayam-Sivakumar, A. N.; Li, J.; Ge, Y.; Schnable, J. C.; Rodriguez, O.; Liang, Z.; Miao, C.

    2017-12-01

    Low-altitude aerial imagery collected by unmanned aircraft systems (UAS) at centimeter-level spatial resolution provides great potential to collect high throughput plant phenotyping (HTP) data and accelerate plant breeding. This study is focused on UAS-based HTP for breeding increased water use efficiency in corn in eastern Nebraska. The field trail is part of an effort by the Genomes to Fields consortium effort to grow and phenotype many of the same corn (maize) hybrids at approximately 40 locations across the United States and Canada in order to stimulate new research in crop modeling, the development of new plant phenotyping technologies and the identification of genetic loci that control the adaptation of specific corn (maize) lines to specific environments. It included approximately 250 maize hybrids primary generated using recently off patent material from major seed companies. These lines are the closest material to what farmers are growing today which can be legally used for research purposes and genotyped by the public sector. During the growing season, a hexacopter equipped with a multispectral and a RGB cameras was flown and used to image this 1-hectare field trial near Mead, NE. Sensor data from the UAS were correlated directly with grain yield, measured at the end of the growing season, and were also be used to quantify other traits of interest to breeders including flowering date, plant height, leaf orientation, canopy spectral, and stand count. The existing challenges of field data acquisition (to ensure data quality) and development of effective image processing algorithms (such as detecting corn tassels) will be discussed. The success of this study and others like it will speed up the process of phenotypic data collection, and provide more accurate and detailed trait data for plant biologists, plant breeders, and other agricultural scientists. Employing advanced UAS-based machine vision technologies in agricultural applications have the potential

  3. Improving sustainability of maize to ethanol processing by plant breeding and process optimization

    NARCIS (Netherlands)

    Slegers, P.M.; Torres Salvador, A.F.; Boxtel, van A.J.B.; Trindade, L.M.

    2017-01-01

    Efficient management of plant resources is essential for a sustainable biobased economy. The biomass conversion efficiency and sustainability performance depend greatly on the choice of feedstock and the applied processing technology. The aim of this research was to enhance the biomass use of maize

  4. Wheat Breeding Technologies for a Shifting Global Climate

    Data.gov (United States)

    US Agency for International Development — This dataset will contain phenotypic observations of a large number of wheat genotypes evaluated in 2016-2017 and 2017-2018 at the International Maize and Wheat...

  5. Livestock breeding for sustainability to mitigate global warming, with ...

    African Journals Online (AJOL)

    However, both genetic and epigenetic controls influence genetic expression and should be taken into account when formulating breeding programmes. Subsistence farmers keep livestock for multiple purposes and the formulation of breeding objectives/strategies will have to consider these dynamics. Keywords: Breeding ...

  6. Maize dependence or market integration? Caries prevalence among indigenous Maya communities with maize-based versus globalized economies.

    Science.gov (United States)

    Vega Lizama, Elma Maria; Cucina, Andrea

    2014-02-01

    The relationship between diet and oral health is widely known, yet data on dental caries prevalence is lacking for many indigenous groups with traditional or rapidly modernizing diets. This research documents caries prevalence in two Maya communities from northern Yucatán (Mexico) with significantly different levels of market integration, subsistence, and diet: Yalsihón, with a traditional, maize-based subsistence economy, and Dzilam, with access to globalized food markets. Each sample was subdivided by sex into 15-19, 20-24, and 25-30 years-of-age classes. Caries prevalence was considered separately both when the lesion affected the enamel superficially (grade 1+) and when it reached the dentin (grade 2+). In both villages, females of all age classes manifest more caries than males. Results show higher prevalence of caries at Dzilam than at Yalsihón, except for grade 1+ caries among 15-19-year-old males and grade 2+ caries among 15-19-year-old females. Though differences are not significant, earlier pregnancies among 15-19-year-old females at Yalsihón could be a causative factor. A survey indicated a more balanced diet at Yalsihón despite a heavier intake of maize than at Dzilam. Striking differences were documented in the ingestion of soda and globalized foods; sodas were virtually absent at Yalsihón, while at Dzilam they were ingested daily in great quantities. The decline in oral health at Dzilam is inferred to result from consumption of industrially processed foods and drinks, while a traditional diet leads to less caries despite daily heavy consumption of maize, which must be considered when interpreting caries rates in archaeological samples. Copyright © 2013 Wiley Periodicals, Inc.

  7. Yield risks in global maize markets: Historical evidence and projections in key regions of the world

    Directory of Open Access Journals (Sweden)

    Nelson B. Villoria

    2018-03-01

    Full Text Available Simultaneous worldwide crop failures stemming from a more unstable climate may reduce the scope for international trade to compensate food shortages and stabilize food prices across the various regions of the world. Understanding the effects of changes in crop productivity on global markets requires knowledge about the extent to which crop yields may be systematically related across producing and consuming centers. This short communication contributes to this knowledge by investigating the potential changes in the strength of two key sources of supply risks in global maize markets: yield variance and cross-country yield correlation. We focus on the largest producing and consuming countries of the world. We capitalize on yield projections from the Global Gridded Crop Model Intercomparison project. Exploratory analysis of the skill of the underlying GGCMI models in reproducing key moments of the distribution of observed yields reveals that they overstate observed variances but faithfully reproduce observed patterns of cross-country correlations. We find no evidence of an increase in the degree of cross-country dependency of maize yields. We also find a higher incidence of what would be considered extremely low maize yields by present-time standards stemming from the projected downward trend in yields levels toward mid-century. The weak dependency of maize yields across countries, an the possibility of reducing the higher incidence of extremes through policies aimed to reverse the climate-induced downward trends in yields, suggest that international trade can become a valuable tool to ameliorate the effects of more unstable crop yields. Keywords: Extremely low yields, Maize markets, Food prices, Agricultural yields, Systemic risk in agriculture, Global agriculture, AgMIP, Global gridded crop model intercomparison

  8. A predicted protein interactome identifies conserved global networks and disease resistance subnetworks in maize.

    Directory of Open Access Journals (Sweden)

    Matt eGeisler

    2015-06-01

    Full Text Available Interactomes are genome-wide roadmaps of protein-protein interactions. They have been produced for humans, yeast, the fruit fly, and Arabidopsis thaliana and have become invaluable tools for generating and testing hypotheses. A predicted interactome for Zea mays (PiZeaM is presented here as an aid to the research community for this valuable crop species. PiZeaM was built using a proven method of interologs (interacting orthologs that were identified using both one-to-one and many-to-many orthology between genomes of maize and reference species. Where both maize orthologs occurred for an experimentally determined interaction in the reference species, we predicted a likely interaction in maize. A total of 49,026 unique interactions for 6,004 maize proteins were predicted. These interactions are enriched for processes that are evolutionarily conserved, but include many otherwise poorly annotated proteins in maize. The predicted maize interactions were further analyzed by comparing annotation of interacting proteins, including different layers of ontology. A map of pairwise gene co-expression was also generated and compared to predicted interactions. Two global subnetworks were constructed for highly conserved interactions. These subnetworks showed clear clustering of proteins by function. Another subnetwork was created for disease response using a bait and prey strategy to capture interacting partners for proteins that respond to other organisms. Closer examination of this subnetwork revealed the connectivity between biotic and abiotic hormone stress pathways. We believe PiZeaM will provide a useful tool for the prediction of protein function and analysis of pathways for Z. mays researchers and is presented in this paper as a reference tool for the exploration of protein interactions in maize.

  9. High bioavailablilty iron maize (Zea mays L.) developed through molecular breeding provides more absorbable iron in vitro (Caco-2 model) and in vivo (Gallus gallus)

    Science.gov (United States)

    2013-01-01

    Background Iron (Fe) deficiency is the most common micronutrient deficiency worldwide. Iron biofortification is a preventative strategy that alleviates Fe deficiency by improving the amount of absorbable Fe in crops. In the present study, we used an in vitro digestion/Caco 2 cell culture model as the guiding tool for breeding and development of two maize (Zea mays L.) lines with contrasting Fe bioavailability (ie. Low and High). Our objective was to confirm and validate the in vitro results and approach. Also, to compare the capacities of our two maize hybrid varieties to deliver Fe for hemoglobin (Hb) synthesis and to improve the Fe status of Fe deficient broiler chickens. Methods We compared the Fe-bioavailability between these two maize varieties with the presence or absence of added Fe in the maize based-diets. Diets were made with 75% (w/w) maize of either low or high Fe-bioavailability maize, with or without Fe (ferric citrate). Chicks (Gallus gallus) were fed the diets for 6 wk. Hb, liver ferritin and Fe related transporter/enzyme gene-expression were measured. Hemoglobin maintenance efficiency (HME) and total body Hb Fe values were used to estimate Fe bioavailability from the diets. Results DMT-1, DcytB and ferroportin expressions were higher (P < 0.05) in the "Low Fe" group than in the "High Fe" group (no added Fe), indicating lower Fe status and adaptation to less Fe-bioavailability. At times, Hb concentrations (d 21,28,35), HME (d 21), Hb-Fe (as from d 14) and liver ferritin were higher in the "High Fe" than in the "Low Fe" groups (P < 0.05), indicating greater Fe absorption from the diet and improved Fe status. Conclusions We conclude that the High Fe-bioavailability maize contains more bioavailable Fe than the Low Fe-bioavailability maize, presumably due to a more favorable matrix for absorption. Maize shows promise for Fe biofortification; therefore, human trials should be conducted to determine the efficacy of consuming the high bioavailable

  10. Use of wheat and maize protein mutants in breeding for improved protein quantity and quality

    International Nuclear Information System (INIS)

    Denic, M.; Dumanovic, J.; Misevic, D.; Konstantinov, K.; Fidler, D.; Stojanovic, Z.

    1984-01-01

    Selected offspring progenies (50 mutant lines) originating from mutation experiments with hexaploid wheat (cv. Bezostaya 1) were analysed for induced heritable variation in protein content, lysine content, grain yield and protein and lysine yields. Ten of these mutant lines were crossed with 11 local varieties. The protein and lysine contents were measured in the progenies of these crossings. The data showed better correlations of grain yield with protein and lysine yields than the protein and lysine contents with their corresponding yields. F 1 seeds showed higher lysine and protein contents than local varieties. Data with maize showed that: (1) the total endosperm protein content of modified opaque-2 types increases with an increase in the degree of normalization; (2) the lysine content in dry matter and protein in normalized o 2 kernels usually decreases with the increasing degree of normalization; (3) the lysine content in protein of modified o 2 kernels, is, in general, satisfactory up to the normalization of about 50% of endosperm. A desirable modification of o 2 endosperm within line A632o 2 was selected and crossed with o 2 lines. Most of the tested hybrids had a good protein quality, but endosperm modification was not evident in all hybrids. The o 2 gene was incorporated into high protein backgrounds. Besides a high protein content and quality, some of the hybrids tested had a comparable or higher yield than the o 2 check. (author)

  11. Breeding potential of S4 maize lines in topcrosses for agronomic and forage traits

    Directory of Open Access Journals (Sweden)

    Mariana Martins Marcondes

    2016-06-01

    Full Text Available This study aimed to evaluate the performance of 46 maize lines (S4 obtained from crosses between the commercial hybrids Penta x P30F53 in topcrosses with the commercial simple cross hybrid Dow8460 (tester and checks (hybrids Penta, P30F53, Dow8460 and Status. The grain yield was evaluated in two environments in Guarapuava, Paraná State, and the effects of genotype, environment and genotype x environment interaction were significant. The grain yield of the topcross hybrids ranged from 8,416 to 13,428 kg ha-1. The agronomic characteristics of the forage and the bromatological characteristics of the silage were evaluated in environment 1. The green mass yield of the forage ranged from 48,767 to 87,714 kg ha-1 and the dry mass yield ranged from 14,749 to 26,130 kg ha-1. The neutral detergent fiber content ranged from 44.85 to 58.45% and the acid detergent fiber content ranged from 28.28 to 37.06%. The relative feed value of the silage ranged between 100.5 and 138.5. The tester, hybrid Dow8460, was efficient to discriminate the relative performance of the S4 lines in the topcrosses.

  12. Breeding phenology and winter activity predict subsequent breeding success in a trans-global migratory seabird.

    Science.gov (United States)

    Shoji, A; Aris-Brosou, S; Culina, A; Fayet, A; Kirk, H; Padget, O; Juarez-Martinez, I; Boyle, D; Nakata, T; Perrins, C M; Guilford, T

    2015-10-01

    Inter-seasonal events are believed to connect and affect reproductive performance (RP) in animals. However, much remains unknown about such carry-over effects (COEs), in particular how behaviour patterns during highly mobile life-history stages, such as migration, affect RP. To address this question, we measured at-sea behaviour in a long-lived migratory seabird, the Manx shearwater (Puffinus puffinus) and obtained data for individual migration cycles over 5 years, by tracking with geolocator/immersion loggers, along with 6 years of RP data. We found that individual breeding and non-breeding phenology correlated with subsequent RP, with birds hyperactive during winter more likely to fail to reproduce. Furthermore, parental investment during one year influenced breeding success during the next, a COE reflecting the trade-off between current and future RP. Our results suggest that different life-history stages interact to influence RP in the next breeding season, so that behaviour patterns during winter may be important determinants of variation in subsequent fitness among individuals. © 2015 The Authors.

  13. Global nitrogen budgets in cereals: A 50-year assessment for maize, rice, and wheat production systems.

    Science.gov (United States)

    Ladha, J K; Tirol-Padre, A; Reddy, C K; Cassman, K G; Verma, Sudhir; Powlson, D S; van Kessel, C; de B Richter, Daniel; Chakraborty, Debashis; Pathak, Himanshu

    2016-01-18

    Industrially produced N-fertilizer is essential to the production of cereals that supports current and projected human populations. We constructed a top-down global N budget for maize, rice, and wheat for a 50-year period (1961 to 2010). Cereals harvested a total of 1551 Tg of N, of which 48% was supplied through fertilizer-N and 4% came from net soil depletion. An estimated 48% (737 Tg) of crop N, equal to 29, 38, and 25 kg ha(-1) yr(-1) for maize, rice, and wheat, respectively, is contributed by sources other than fertilizer- or soil-N. Non-symbiotic N2 fixation appears to be the major source of this N, which is 370 Tg or 24% of total N in the crop, corresponding to 13, 22, and 13 kg ha(-1) yr(-1) for maize, rice, and wheat, respectively. Manure (217 Tg or 14%) and atmospheric deposition (96 Tg or 6%) are the other sources of N. Crop residues and seed contribute marginally. Our scaling-down approach to estimate the contribution of non-symbiotic N2 fixation is robust because it focuses on global quantities of N in sources and sinks that are easier to estimate, in contrast to estimating N losses per se, because losses are highly soil-, climate-, and crop-specific.

  14. Past and prospects of forage maize breeding in Europe. II. History, germplasm evolution and correlative agronomic changes

    NARCIS (Netherlands)

    Barriere, Y.; Alber, D.; Dolstra, O.; Lapierre, C.; Motto, M.; Ordas, A.; Waes, Van J.; Vlasminkel, L.; Welcker, C.; Monod, J.P.

    2006-01-01

    Although maize was early recognized as an excellent forage plant soon after its introduction in Europe, during a long time it was only bred for grain traits. However, the first recommendations of maize varieties for specific forage use are probably those given in the French VILMORIN-ANDRIEUX

  15. Comparative assessment of maize lines produced by different breeding methods using both microbiological and metabolic profiling tools

    CSIR Research Space (South Africa)

    Barros, E

    2006-02-01

    Full Text Available This study is about the South African maize samples that have been analysed for mycotoxins, for presence of F.verticillioides and for metabolic profiling. 26 maize cultivars are used , and 50 kernels were plated on 10 PCNB agar plates using...

  16. Changes in drought tolerance in maize associated with fifty years of breeding for yield in the US Corn Belt [Zea mays L.

    International Nuclear Information System (INIS)

    Campos, H.; Cooper, M.; Edmeades, G.O.; Löffler, C.; Schussler, J.R.; Ibanez, M.

    2006-01-01

    Understanding the changes underlying past breeding progress may help to focus research efforts and accelerate future genetic gains. The major abiotic stress affecting maize production on a worldwide basis is drought. We addressed the improvements in drought tolerance over a 50-year period of hybrid breeding by evaluating, under targeted stress conditions, a set of 18 Pioneer-brand hybrids that had been released during the 1953-2001 period. Stress treatments were designed as overlapping windows of water deficit covering the pre-flowering to late grain filling development stages. Data were collected on grain yield, yield components and anthesis-silking interval (ASI) and were analyzed using a linear mixed model approach. Genetic gain was measured as the slope of the regression of the trait on the year of hybrid release. Significant, positive genetic gains of varying magnitude were observed for grain yield in all windows of stress evaluated. The largest genetic gains for grain yield were observed under conditions of full irrigation and severe flowering stress. ASI and barrenness, especially under stress at flowering, were significantly reduced by selection. Though flowering remains the most susceptible stage to drought in maize, selection has reduced its negative effects and susceptibility during early grain filling is now of similar importance in many modern hybrids. Yield under drought at flowering has more than kept pace with the increase in yield potential because of the emphasis breeders have placed on improved floral synchrony [it

  17. Global impact of induced mutation in plant breeding

    International Nuclear Information System (INIS)

    Bhatia, R.

    2001-01-01

    Sudden, heritable changes in the genetic material, DNA, are known as mutations. Selection of naturally occurring mutations in wild, ancestral species helped humans in the domestication and further improvement of today's crop plants. Although Charles Darwin was unaware in 1859 of variation and mutations in living organisms, his theory of evolution by natural selection assumed variability. Much later, it was established that mutations are the source of biodiversity, and the driving force for evolution. Gregor Mendel in 1865 also used several mutants in his experiments with garden pea to formulate the laws of inheritance. The term mutation itself was used for the first time by Hugo de Vries in 1901 in his mutation theory. Plant breeding based on the science of genetics, as practiced over the past 100 years, exploited the available genetic variability in the primary gene pool of crop plants, and sometimes in related species. This approach enlarged the yield potential of crops several fold. It also a) improved the stability of yield by incorporating resistance to various biotic and abiotic stresses; b) improved quality of the produce; and c) altered the adaptability of crop species, providing opportunities to grow new crops for food security outside their traditional range. Genetically improved seed (or other planting material) is the most significant input for developing sustainable cropping systems for food security and economic growth. Half of the increased productivity of today's crop plants comes from genetic improvements. The other half is contributed by inputs and management practices

  18. "New" seed in "old" China : impact of CIMMYT Collaborative Programme on maize breeding in South-Western China

    NARCIS (Netherlands)

    Song, Y.

    1998-01-01

    China is the most populated country with the most limited amount of arable land per head of the population in the world. Development and distribution of modern varieties of the three staples, rice, wheat and maize, to insure national food security, have been the core tasks and first

  19. Photosynthetic properties of erect leaf maize inbred lines as the efficient photo-model in breeding and seed production

    Directory of Open Access Journals (Sweden)

    Radenović Čedomir N.

    2003-01-01

    Full Text Available The initial idea of this study was a hypothesis that erect leaf maize inbred lines were characterized by properties of an efficient photo-model and that as such were very desirable in increasing the number of plants per area unit (plant density in the process of contemporary selection and seed production. The application of a non-invasive bioluminescence-photosynthetic method, suitable for the efficiency estimation of the photo-model, verified the hypothesis. Obtained photosynthetic properties of observed erect leaf maize inbred lines were based on the effects and characteristics of thermal processes of delayed chlorophyll fluorescence occurring in their thylakoid membranes. The temperature dependence of the delayed chlorophyll fluorescence intensity phase transitions (critical temperatures in the thylakoid membranes and activation energy are the principal parameters of the thermal processes. Based on obtained photosynthetic properties it is possible to select erect leaf maize inbred lines that are resistant and tolerant to high and very high temperatures, as well as, to drought. They could be good and efficient photo-models wherewith.

  20. Making better maize plants for sustainable grain production in a changing climate.

    Science.gov (United States)

    Gong, Fangping; Wu, Xiaolin; Zhang, Huiyong; Chen, Yanhui; Wang, Wei

    2015-01-01

    Achieving grain supply security with limited arable land is a major challenge in the twenty-first century, owing to the changing climate and increasing global population. Maize plays an increasingly vital role in global grain production. As a C4 plant, maize has a high yield potential. Maize is predicted to become the number one cereal in the world by 2020. However, maize production has plateaued in many countries, and hybrid and production technologies have been fully exploited. Thus, there is an urgent need to shape maize traits and architectures for increased stress tolerance and higher yield in a changing climate. Recent achievements in genomics, proteomics, and metabolomics have provided an unprecedented opportunity to make better maize. In this paper, we discuss the current challenges and potential of maize production, particularly in China. We also highlight the need for enhancing maize tolerance to drought and heat waves, summarize the elite shoot and root traits and phenotypes, and propose an ideotype for sustainable maize production in a changing climate. This will facilitate targeted maize improvement through a conventional breeding program combined with molecular techniques.

  1. Diversity of global rice markets and the science required for consumer-targeted rice breeding.

    Directory of Open Access Journals (Sweden)

    Mariafe Calingacion

    Full Text Available With the ever-increasing global demand for high quality rice in both local production regions and with Western consumers, we have a strong desire to understand better the importance of the different traits that make up the quality of the rice grain and obtain a full picture of rice quality demographics. Rice is by no means a 'one size fits all' crop. Regional preferences are not only striking, they drive the market and hence are of major economic importance in any rice breeding / improvement strategy. In this analysis, we have engaged local experts across the world to perform a full assessment of all the major rice quality trait characteristics and importantly, to determine how these are combined in the most preferred varieties for each of their regions. Physical as well as biochemical characteristics have been monitored and this has resulted in the identification of no less than 18 quality trait combinations. This complexity immediately reveals the extent of the specificity of consumer preference. Nevertheless, further assessment of these combinations at the variety level reveals that several groups still comprise varieties which consumers can readily identify as being different. This emphasises the shortcomings in the current tools we have available to assess rice quality and raises the issue of how we might correct for this in the future. Only with additional tools and research will we be able to define directed strategies for rice breeding which are able to combine important agronomic features with the demands of local consumers for specific quality attributes and hence, design new, improved crop varieties which will be awarded success in the global market.

  2. Diversity of Global Rice Markets and the Science Required for Consumer-Targeted Rice Breeding

    Science.gov (United States)

    Calingacion, Mariafe; Laborte, Alice; Nelson, Andrew; Resurreccion, Adoracion; Concepcion, Jeanaflor Crystal; Daygon, Venea Dara; Mumm, Roland; Reinke, Russell; Dipti, Sharifa; Bassinello, Priscila Zaczuk; Manful, John; Sophany, Sakhan; Lara, Karla Cordero; Bao, Jinsong; Xie, Lihong; Loaiza, Katerine; El-hissewy, Ahmad; Gayin, Joseph; Sharma, Neerja; Rajeswari, Sivakami; Manonmani, Swaminathan; Rani, N. Shobha; Kota, Suneetha; Indrasari, Siti Dewi; Habibi, Fatemeh; Hosseini, Maryam; Tavasoli, Fatemeh; Suzuki, Keitaro; Umemoto, Takayuki; Boualaphanh, Chanthkone; Lee, Huei Hong; Hung, Yiu Pang; Ramli, Asfaliza; Aung, Pa Pa; Ahmad, Rauf; Wattoo, Javed Iqbal; Bandonill, Evelyn; Romero, Marissa; Brites, Carla Moita; Hafeel, Roshni; Lur, Huu-Sheng; Cheaupun, Kunya; Jongdee, Supanee; Blanco, Pedro; Bryant, Rolfe; Thi Lang, Nguyen; Hall, Robert D.; Fitzgerald, Melissa

    2014-01-01

    With the ever-increasing global demand for high quality rice in both local production regions and with Western consumers, we have a strong desire to understand better the importance of the different traits that make up the quality of the rice grain and obtain a full picture of rice quality demographics. Rice is by no means a ‘one size fits all’ crop. Regional preferences are not only striking, they drive the market and hence are of major economic importance in any rice breeding / improvement strategy. In this analysis, we have engaged local experts across the world to perform a full assessment of all the major rice quality trait characteristics and importantly, to determine how these are combined in the most preferred varieties for each of their regions. Physical as well as biochemical characteristics have been monitored and this has resulted in the identification of no less than 18 quality trait combinations. This complexity immediately reveals the extent of the specificity of consumer preference. Nevertheless, further assessment of these combinations at the variety level reveals that several groups still comprise varieties which consumers can readily identify as being different. This emphasises the shortcomings in the current tools we have available to assess rice quality and raises the issue of how we might correct for this in the future. Only with additional tools and research will we be able to define directed strategies for rice breeding which are able to combine important agronomic features with the demands of local consumers for specific quality attributes and hence, design new, improved crop varieties which will be awarded success in the global market. PMID:24454799

  3. A global population redistribution in a migrant shorebird detected with continent-wide qualitative breeding survey data

    NARCIS (Netherlands)

    Rakhimberdiev, E.; Verkuil, Y.I.; Saveliev, A.A.; Vaisanen, R.A.; Karagicheva, J.; Soloviev, M.Y.; Tomkovich, P.S.; Piersma, T.

    2011-01-01

    Aim Over the last two decades, thousands of northward migrating ruffs (Philomachus pugnax) have disappeared from western European staging sites. These migratory ruffs were partly temperate breeding birds, but most individuals head towards the Eurasian Arctic tundras where 95% of the global

  4. A global population redistribution in a migrant shorebird detected with continent-wide qualitative breeding survey data

    NARCIS (Netherlands)

    Rakhimberdiev, Eldar; Verkuil, Yvonne I.; Saveliev, Anatoly A.; Vaisanen, Risto A.; Karagicheva, Julia; Soloviev, Mikhail Y.; Tomkovich, Pavel S.; Piersma, Theunis; Väisänen, Risto A.; Richardson, David

    Aim Over the last two decades, thousands of northward migrating ruffs (Philomachus pugnax) have disappeared from western European staging sites. These migratory ruffs were partly temperate breeding birds, but most individuals head towards the Eurasian Arctic tundras where 95% of the global

  5. Characterization of Indian and exotic quality protein maize (QPM ...

    African Journals Online (AJOL)

    Polymorphism analysis and genetic diversity of normal maize and quality protein maize (QPM) inbreds among locally well adapted germplasm is a prerequisite for hybrid maize breeding program. The diversity analyses of 48 maize accessions including Indian and exotic germplasm using 75 simple sequence repeat (SSR) ...

  6. Selection for drought tolerance in two tropical maize populations ...

    African Journals Online (AJOL)

    Drought is a major factor limiting maize (Zea mays L.) yield in much of the world. The need to breed maize cultivars with improved drought tolerance is apparent. This study compared two maize populations, ZM601 and ZM607 for drought tolerance during flowering, the most drought-vulnerable period for the maize plant.

  7. Analysis of Maize versus Ethanol Production in Nebraska, United States and International Agricultural Droughts: Lessons for Global Food Security

    Science.gov (United States)

    Boken, V.; Tenkorang, F.

    2012-04-01

    Nebraska is one of the eight main corn (maize) belt states of the United States. Maize is the major crop of Nebraska with an average annual production of about 38 million tons (about 12% of U.S. production), which contributes billions of dollars to the state's economy. The yield of maize has increased significantly over the past century - from 1.6 t/ha in 1900 to 10.4 t/ha in 2010. While the majority of maize (about 40%) is currently used for animal feed and ethanol production, only about six percent is exported. It is estimated that about one billion people accounting for about 15% population of the world live in chronic hunger because of low agricultural productivity and drought. Most of these people depend on the U.S. for grains including maize. If a greater quantity of maize is diverted to ethanol production, considerably less quantity of maize would be available for export to developing countries where it could be used for human consumption and to mitigate hunger and improve food security. This paper presents analysis of maize production in Nebraska for the past three decades and examines how its commercialization for ethanol production has affected its exports in the face of drought at an international level.

  8. Global transcriptome analysis of the maize (Zea mays L.) inbred line 08LF during leaf senescence initiated by pollination-prevention.

    Science.gov (United States)

    Wu, Liancheng; Li, Mingna; Tian, Lei; Wang, Shunxi; Wu, Liuji; Ku, Lixia; Zhang, Jun; Song, Xiaoheng; Liu, Haiping; Chen, Yanhui

    2017-01-01

    In maize (Zea mays), leaf senescence acts as a nutrient recycling process involved in proteins, lipids, and nucleic acids degradation and transport to the developing sink. However, the molecular mechanisms of pre-maturation associated with pollination-prevention remain unclear in maize. To explore global gene expression changes during the onset and progression of senescence in maize, the inbred line 08LF, with severe early senescence caused by pollination prevention, was selected. Phenotypic observation showed that the onset of leaf senescence of 08LF plants occurred approximately 14 days after silking (DAS) by pollination prevention. Transcriptional profiling analysis of the leaf at six developmental stages during induced senescence revealed that a total of 5,432 differentially expressed genes (DEGs) were identified, including 2314 up-regulated genes and 1925 down-regulated genes. Functional annotation showed that the up-regulated genes were mainly enriched in multi-organism process and nitrogen compound transport, whereas down-regulated genes were involved in photosynthesis. Expression patterns and pathway enrichment analyses of early-senescence related genes indicated that these DEGs are involved in complex regulatory networks, especially in the jasmonic acid pathway. In addition, transcription factors from several families were detected, particularly the CO-like, NAC, ERF, GRAS, WRKY and ZF-HD families, suggesting that these transcription factors might play important roles in driving leaf senescence in maize as a result of pollination-prevention.

  9. In vitro haploid zygotic embryogenesis due to pollination with maize pollen and induced in vitro androgenesis in Czech wheat breeding genotypes

    Czech Academy of Sciences Publication Activity Database

    Vagera, Jiří; Nesvadba, Z.; Martinek, P.; Ohnoutková, Ludmila

    2001-01-01

    Roč. 47, č. 5 (2001), s. 193-200 ISSN 0370-663X R&D Projects: GA ČR GA521/01/1383; GA ČR GV521/96/K117 Institutional research plan: CEZ:AV0Z5038910 Keywords : haploid zygote * embryogenesis * maize pollen Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.237, year: 2001

  10. Maize sugary enhancer1 (se1) is a presence-absence variant of a previously uncharacterized gene and development of educational videos to raise the profile of plant breeding and improve curricula

    Science.gov (United States)

    Haro von Mogel, Karl J.

    Carbohydrate metabolism is a biologically, economically, and culturally important process in crop plants. Humans have selected many crop species such as maize (Zea mays L.) in ways that have resulted in changes to carbohydrate metabolic pathways, and understanding the underlying genetics of this pathway is therefore exceedingly important. A previously uncharacterized starch metabolic pathway mutant, sugary enhancer1 (se1), is a recessive modifier of sugary1 (su1) sweet corn that increases the sugar content while maintaining an appealing creamy texture. This allele has been incorporated into many sweet corn varieties since its discovery in the 1970s, however, testing for the presence of this allele has been difficult. A genetic stock was developed that allowed the presence of se1 to be visually scored in segregating ears, which were used to genetically map se1 to the deletion of a single gene model located on the distal end of the long arm of chromosome 2. An analysis of homology found that this gene is specific to monocots, and the gene is expressed in the endosperm and developing leaf. The se1 allele increased water soluble polysaccharide (WSP) and decreased amylopectin in maize endosperm, but there was no overall effect on starch content in mature leaves due to se1. This discovery will lead to a greater understanding of starch metabolism, and the marker developed will assist in breeding. There is a present need for increased training for plant breeders to meet the growing needs of the human population. To raise the profile of plant breeding among young students, a series of videos called Fields of Study was developed. These feature interviews with plant breeders who talk about what they do as plant breeders and what they enjoy about their chosen profession. To help broaden the education of students in college biology courses, and assist with the training of plant breeders, a second video series, Pollination Methods was developed. Each video focuses on one or two

  11. [Effects of plastic film mulching and nitrogen application rate on net global warming potential in semiarid rain-fed maize cropland].

    Science.gov (United States)

    Liu, Jian Can; Wang, Ze Lin; Yue, Shan Chao; Li, Shi Qing

    2018-04-01

    A one-year field experiment was conducted to evaluate the effects of plastic film mulching (FM) and nitrogen application rates applied to rain-fed maize fields on net global warming potential (Net GWP) and greenhouse gas intensity (GHGI) at the Changwu Agricultural and Ecological Experimental Station. Both GWP and GHGI were affected by the plastic film mulching and nitrogen application rate. Under the FM treatment, maize yield ranged from 1643 to 16699 kg·hm -2 , the net GWP (CO 2 -eq) ranged from 595 to 4376 kg·hm -2 ·a -1 , and the GHGI (CO 2 -eq) ranged from 213 to 358 kg·t -1 . The grain yield of maize, net GWP and GHGI for the UM (no mulching) treatment were 956 to 8821 kg·hm -2 , 342 to 4004 kg·hm -2 ·a -1 and 204 to 520 kg·t -1 , respectively. The results suggested that plastic film mulching could simultaneously improve grain yield and decrease GHGI in rain-fed cropland along with nitrogen fertilizer of 250 kg·hm -2 .

  12. A road map for the realization of global-scale thorium breeding fuel cycle by single molten-fluoride flow

    International Nuclear Information System (INIS)

    Furukawa, K.; Arakawa, K.; Erbay, L. B.

    2007-01-01

    For global survival in this century, we urgently need to launch a completely new global nuclear fission industry. To get worldwide public acceptance of nuclear energy, improvements are essential not only on safety, radio-waste management and economy but also especially nuclear proliferation resistance and safeguards. However, such global fission industry cannot replace the present fossil fuel industry in the next 50 years, unless the doubling-time of nuclear energy is less than 10 years, preferably 5-7 years. Such a doubling-time cannot be established by any kind of classical 'Fission Breeding Power Station' concept. We need a symbiotic system which couples fission power reactors with a system which can convert fertile thorium to fissile U-233, such as a spallation or D/T fusion (if and when it becomes available). For such a purpose, THORIMS-NES [Thorium Molten-Salt Nuclear Energy Synergetic System] has been proposed, which is composed of simple thermal fission power stations (FUJI) and fissile producing Accelerator Molten-Salt Breeder (AMSB). Its system functions are very ambitious, delicate and complex, but can be realized in the form of simple hardware applying the multifunctional 'single-phase molten-fluoride' circulation system. This system has no difficulties relating with 'radiation-damage', 'heat-removal' and 'chemical processing' owing to the simple 'idealistic ionic liquid' character. FUJI is size-flexible (economical even in smaller sizes), fuel self-sustaining without any continuous chemical processing and without core-graphite replacement, and AMSB is based on a single-fluid molten-salt target/blanket concept, which solves most engineering difficulties such as radiation-damage, heat-removal etc., except high-current proton accelerator development. Several AMSBs are accommodated in the regional centers (several ten sites in the world) with batch chemical processing plants including radio-waste management. The integrated thorium breeding fuel cycle is

  13. Diversity of global rice markets and the science required for consumer-targeted rice breeding

    Science.gov (United States)

    With the ever-increasing global demand for high quality rice in both local production regions and with Western consumers, we have a strong desire to understand better the importance of different quality traits that make up the rice grain and obtain a full picture of rice quality demographics. Rice ...

  14. Analysis of recombination QTLs, segregation distortion, and epistasis for fitness in maize multiple populations using ultra-high-density markers

    Science.gov (United States)

    Understanding the maize genomic features would be useful for the study of genetic diversity and evolution and for maize breeding. Here, we used two maize nested association mapping (NAM) populations separately derived in China (CN-NAM) and the US (US-NAM) to explore the maize genomic features. The t...

  15. A New Breed of Database System: Volcano Global Risk Identification and Analysis Project (VOGRIPA)

    Science.gov (United States)

    Crosweller, H. S.; Sparks, R. S.; Siebert, L.

    2009-12-01

    VOGRIPA originated as part of the Global Risk Identification Programme (GRIP) that is being co-ordinated from the Earth Institute of Columbia University under the auspices of the United Nations and World Bank. GRIP is a five-year programme aiming at improving global knowledge about risk from natural hazards and is part of the international response to the catastrophic 2004 Asian tsunami. VOGRIPA is also a formal IAVCEI project. The objectives of VOGRIPA are to create a global database of volcanic activity, hazards and vulnerability information that can be analysed to identify locations at high risk from volcanism, gaps in knowledge about hazards and risk, and will allow scientists and disaster managers at specific locations to analyse risk within a global context of systematic information. It is this added scope of risk and vulnerability as well as hazard which sets VOGRIPA apart from most previous databases. The University of Bristol is the central coordinating centre for the project, which is an international partnership including the Smithsonian Institution, the Geological Survey of Japan, the Earth Observatory of Singapore (Chris Newhall), the British Geological Survey, the University of Buffalo (SUNY) and Munich Re. The partnership is intended to grow and any individuals or institutions who are able to contribute resources to VOGRIPA objectives are welcome to participate. Work has already begun (funded principally by Munich Re) on populating a database of large magnitude explosive eruptions reaching back to the Quaternary, with extreme-value statistics being used to evaluate the magnitude-frequency relationship of such events, and also an assessment of how the quality of records affect the results. The following 4 years of funding from the European Research Council for VOGRIPA will be used to establish further international collaborations in order to develop different aspects of the database, with the data being accessible online once it is sufficiently

  16. Soil water capture trends over 50 years of single-cross maize (Zea mays L.) breeding in the US corn-belt.

    Science.gov (United States)

    Reyes, Andres; Messina, Carlos D; Hammer, Graeme L; Liu, Lu; van Oosterom, Erik; Lafitte, Renee; Cooper, Mark

    2015-12-01

    Breeders have successfully improved maize (Zea mays L.) grain yield for the conditions of the US corn-belt over the past 80 years, with the past 50 years utilizing single-cross hybrids. Long-term improvement for grain yield under water-limited conditions has also been reported. Grain yield under water-limited conditions depends on water use, water use efficiency, and harvest index. It has been hypothesized that long-term genetic gain for yield could be due, in part, to increased water capture from the soil. This hypothesis was tested using a set of elite single-cross hybrids that were released by DuPont Pioneer between 1963 and 2009. Eighteen hybrids were grown in the field during 2010 and 2011 growing seasons at Woodland, CA, USA. Crops grew predominantly on stored soil water and drought stress increased as the season progressed. Soil water content was measured to 300cm depth throughout the growing season. Significant water extraction occurred to a depth of 240-300cm and seasonal water use was calculated from the change in soil water over this rooting zone. Grain yield increased significantly with year of commercialization, but no such trend was observed for total water extraction. Therefore, the measured genetic gain for yield for the period represented by this set of hybrids must be related to either increased efficiency of water use or increased carbon partitioning to the grain, rather than increased soil water uptake. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Global spread of mouse-adapted Staphylococcus aureus lineages CC1, CC15, and CC88 among mouse breeding facilities.

    Science.gov (United States)

    Mrochen, Daniel M; Grumann, Dorothee; Schulz, Daniel; Gumz, Janine; Trübe, Patricia; Pritchett-Corning, Kathleen; Johnson, Sarah; Nicklas, Werner; Kirsch, Petra; Martelet, Karine; Brandt, Jens van den; Berg, Sabine; Bröker, Barbara M; Wiles, Siouxsie; Holtfreter, Silva

    2017-11-20

    We previously reported that laboratory mice from all global vendors are frequently colonized with Staphylococcus aureus (S. aureus). Genotyping of a snap sample of murine S. aureus isolates from Charles River, US, showed that mice were predominantly colonized with methicillin-sensitive CC88 strains. Here, we expanded our view and investigated whether laboratory mice from other global animal facilities are colonized with similar strains or novel S. aureus lineages, and whether the murine S. aureus isolates show features of host adaptation. In total, we genotyped 230 S. aureus isolates from various vendor facilities of laboratory mice around the globe (Charles River facilities in the USA, Canada, France, and Germany; another US facility) and university- or company-associated breeding facilities in Germany, China and New Zealand. Spa typing was performed to analyse the clonal relationship of the isolates. Moreover, multiplex PCRs were performed for human-specific virulence factors, the immune-evasion cluster (IEC) and superantigen genes (SAg). We found a total of 58 different spa types that clustered into 15 clonal complexes (CCs). Three of these S. aureus lineages had spread globally among laboratory mice and accounted for three quarters of the isolates: CC1 (13.5%), CC15 (14.3%), and CC88 (47.0%). Compared to human colonizing isolates of the same lineages, the murine isolates frequently lacked IEC genes and SAg genes on mobile genetic elements, implying long-term adaptation to the murine host. In conclusion, laboratory mice from various vendors are colonized with host-adapted S. aureus-strains of a few lineages, predominantly the CC88 lineage. S. aureus researchers must be cautioned that S. aureus colonization might be a relevant confounder in infection and vaccination studies and are therefore advised to screen their mice before experimentation. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  18. Prediction of maize phenotype based on whole-genome single nucleotide polymorphisms using deep belief networks

    Science.gov (United States)

    Rachmatia, H.; Kusuma, W. A.; Hasibuan, L. S.

    2017-05-01

    Selection in plant breeding could be more effective and more efficient if it is based on genomic data. Genomic selection (GS) is a new approach for plant-breeding selection that exploits genomic data through a mechanism called genomic prediction (GP). Most of GP models used linear methods that ignore effects of interaction among genes and effects of higher order nonlinearities. Deep belief network (DBN), one of the architectural in deep learning methods, is able to model data in high level of abstraction that involves nonlinearities effects of the data. This study implemented DBN for developing a GP model utilizing whole-genome Single Nucleotide Polymorphisms (SNPs) as data for training and testing. The case study was a set of traits in maize. The maize dataset was acquisitioned from CIMMYT’s (International Maize and Wheat Improvement Center) Global Maize program. Based on Pearson correlation, DBN is outperformed than other methods, kernel Hilbert space (RKHS) regression, Bayesian LASSO (BL), best linear unbiased predictor (BLUP), in case allegedly non-additive traits. DBN achieves correlation of 0.579 within -1 to 1 range.

  19. Modern maize hybrids in Northeast China exhibit increased yield potential and resource use efficiency despite adverse climate change.

    Science.gov (United States)

    Chen, Xiaochao; Chen, Fanjun; Chen, Yanling; Gao, Qiang; Yang, Xiaoli; Yuan, Lixing; Zhang, Fusuo; Mi, Guohua

    2013-03-01

    The impact of global changes on food security is of serious concern. Breeding novel crop cultivars adaptable to climate change is one potential solution, but this approach requires an understanding of complex adaptive traits for climate-change conditions. In this study, plant growth, nitrogen (N) uptake, and yield in relation to climatic resource use efficiency of nine representative maize cultivars released between 1973 and 2000 in China were investigated in a 2-year field experiment under three N applications. The Hybrid-Maize model was used to simulate maize yield potential in the period from 1973 to 2011. During the past four decades, the total thermal time (growing degree days) increased whereas the total precipitation and sunshine hours decreased. This climate change led to a reduction of maize potential yield by an average of 12.9% across different hybrids. However, the potential yield of individual hybrids increased by 118.5 kg ha(-1)  yr(-1) with increasing year of release. From 1973 to 2000, the use efficiency of sunshine hours, thermal time, and precipitation resources increased by 37%, 40%, and 41%, respectively. The late developed hybrids showed less reduction in yield potential in current climate conditions than old cultivars, indicating some adaptation to new conditions. Since the mid-1990s, however, the yield impact of climate change exhibited little change, and even a slight worsening for new cultivars. Modern breeding increased ear fertility and grain-filling rate, and delayed leaf senescence without modification in net photosynthetic rate. The trade-off associated with delayed leaf senescence was decreased grain N concentration rather than increased plant N uptake, therefore N agronomic efficiency increased simultaneously. It is concluded that modern maize hybrids tolerate the climatic changes mainly by constitutively optimizing plant productivity. Maize breeding programs in the future should pay more attention to cope with the limiting

  20. Genotypic variation for maize weevil resistance in eastern and ...

    African Journals Online (AJOL)

    ACSS

    Uganda Journal of Agricultural Sciences by National Agricultural Research Organisation ... damage, median development period, Dobie's index of susceptibility, and ... resistance and grain yield, suggesting that breeding for maize weevil ...

  1. Sub-Saharan African maize-based foods

    NARCIS (Netherlands)

    Ekpa, Onu; Palacios-Rojas, Natalia; Kruseman, Gideon; Fogliano, Vincenzo; Linnemann, Anita R.

    2018-01-01

    The demand for maize in Sub-Saharan Africa will triple by 2050 due to rapid population growth, while challenges from climate change will threaten agricultural productivity. Most maize breeding programmes have focused on improving agronomic properties and have paid relatively little attention to

  2. Maize global transcriptomics reveals pervasive leaf diurnal rhythms but rhythms in developing ears are largely limited to the core oscillator.

    Directory of Open Access Journals (Sweden)

    Kevin R Hayes

    Full Text Available BACKGROUND: Plant diurnal rhythms are vital environmental adaptations to coordinate internal physiological responses to alternating day-night cycles. A comprehensive view of diurnal biology has been lacking for maize (Zea mays, a major world crop. METHODOLOGY: A photosynthetic tissue, the leaf, and a non-photosynthetic tissue, the developing ear, were sampled under natural field conditions. Genome-wide transcript profiling was conducted on a high-density 105 K Agilent microarray to investigate diurnal rhythms. CONCLUSIONS: In both leaves and ears, the core oscillators were intact and diurnally cycling. Maize core oscillator genes are found to be largely conserved with their Arabidopsis counterparts. Diurnal gene regulation occurs in leaves, with some 23% of expressed transcripts exhibiting a diurnal cycling pattern. These transcripts can be assigned to over 1700 gene ontology functional terms, underscoring the pervasive impact of diurnal rhythms on plant biology. Considering the peak expression time for each diurnally regulated gene, and its corresponding functional assignment, most gene functions display temporal enrichment in the day, often with distinct patterns, such as dawn or midday preferred, indicating that there is a staged procession of biological events undulating with the diurnal cycle. Notably, many gene functions display a bimodal enrichment flanking the midday photosynthetic maximum, with an initial peak in mid-morning followed by another peak during the afternoon/evening. In contrast to leaves, in developing ears as few as 47 gene transcripts are diurnally regulated, and this set of transcripts includes primarily the core oscillators. In developing ears, which are largely shielded from light, the core oscillator therefore is intact with little outward effect on transcription.

  3. Crop maize evapotranspiration; 2: ratios between the evapotranspiration to class A pan evaporation, to the reference evapotranspiration and to global solar radiation, at three sowing dates

    International Nuclear Information System (INIS)

    Matzenauer, R.; Bergamashi, H.; Berlato, M.A.

    1998-01-01

    Water availability is the most limiting factor for growth and grain yield of maize in the State of Rio Grande do Sul, Brazil, reducing frequently this production. Therefore, studies involving the determination of the water requirements are important for irrigation management to minimize the water availability problem. The main objective of this study was to calculate ratios between the maize crop evapotranspiration (ETm) to the class A pan evaporation (Eo), to the reference evapotranspiration (ETo) and to global solar radiation (Rs), in order to obtain ralations between ETm/Eo, ETm/ETo and ETm/Rs, at different crop stages for three different sowing dates. Field experiments were carried out at the Experimental Station of Taquari/RS, 29°48’ of south latitude, 51°49’of west longitude, and 76m of altitude, from 1976/77 to 1988/89. ETm was measured using drainage lysimeters (Thornthwaite-Mather type). The average ratio between ETm and Eo for whole crop cycle (from sowing to physiological maturity) was 0.66, 0.72, and 0.68, respectively, in crops sown on September, October, and November. The average ratio between ETm and ETo for whole crop cycle was 0.74, 0.81, and 0.8, in crops sown on September, October, and November, while the average ratio between ETm and Rs was 0.45, 0.51, and 0.49 for the same sowing dates. The higher average values of crop coefficients occured from tasseling to the milk grain stage, when ETm/Eo was 0.81, 0.92, and 0.81; ETm/ETo was 0.97, 1.05, and 0.96, whereas ETm/Rs was 0.6, 0.68, and 0.6 for crops sown on September, October, and November, respectively [pt

  4. A Genome-Wide Association Study Reveals Genes Associated with Fusarium Ear Rot Resistance in a Maize Core Diversity Panel

    Science.gov (United States)

    Zila, Charles T.; Samayoa, L. Fernando; Santiago, Rogelio; Butrón, Ana; Holland, James B.

    2013-01-01

    Fusarium ear rot is a common disease of maize that affects food and feed quality globally. Resistance to the disease is highly quantitative, and maize breeders have difficulty incorporating polygenic resistance alleles from unadapted donor sources into elite breeding populations without having a negative impact on agronomic performance. Identification of specific allele variants contributing to improved resistance may be useful to breeders by allowing selection of resistance alleles in coupling phase linkage with favorable agronomic characteristics. We report the results of a genome-wide association study to detect allele variants associated with increased resistance to Fusarium ear rot in a maize core diversity panel of 267 inbred lines evaluated in two sets of environments. We performed association tests with 47,445 single-nucleotide polymorphisms (SNPs) while controlling for background genomic relationships with a mixed model and identified three marker loci significantly associated with disease resistance in at least one subset of environments. Each associated SNP locus had relatively small additive effects on disease resistance (±1.1% on a 0–100% scale), but nevertheless were associated with 3 to 12% of the genotypic variation within or across environment subsets. Two of three identified SNPs colocalized with genes that have been implicated with programmed cell death. An analysis of associated allele frequencies within the major maize subpopulations revealed enrichment for resistance alleles in the tropical/subtropical and popcorn subpopulations compared with other temperate breeding pools. PMID:24048647

  5. Analysis of genetic and cultural conservation value of three indigenous Croatian cattle breeds in a local and global context.

    Science.gov (United States)

    Ramljak, J; Ivanković, A; Veit-Kensch, C E; Förster, M; Medugorac, I

    2011-02-01

    It is widely accepted that autochthonous cattle breeds can be important genetic resources for unforeseeable environmental conditions in the future. Apart from that, they often represent local culture and tradition and thus assist in the awareness of ethnic identity of a country. In Croatia, there are only three indigenous cattle breeds, Croatian Buša, Slavonian Syrmian Podolian and Istrian Cattle. All of them are threatened but specialized in a particular habitat and production system. We analysed 93 microsatellites in 51 animals of each breed to get thorough information about genetic diversity and population structure. We further set them within an existing frame of additional 16 breeds that have been genotyped for the same marker set and cover a geographical area from the domestication centre near Anatolia, through the Balkan and alpine regions, to the north-west of Europe. The cultural value was evaluated regarding the role in landscape, gastronomy, folklore and handicraft. The overall results recognize Croatian Buša being partly admixed but harbouring an enormous genetic diversity comparable with other traditional unselected Buša breeds in the Anatolian and Balkan areas. The Podolian cattle showed the lowest genetic diversity at the highest genetic distance to all remaining breeds but are playing an important role as part of the cultural landscape and thus contribute to the tourist industry. The genetic diversity of the Istrian cattle was found in the middle range of this study. It is already included in the tourist industry as a local food speciality. Current and future conservation strategies are discussed. © 2010 Blackwell Verlag GmbH.

  6. Historical genomics of North American maize

    NARCIS (Netherlands)

    Heerwaarden, van J.; Hufford, M.B.; Ross-Ibarra, J.

    2012-01-01

    Since the advent of modern plant breeding in the 1930s, North American maize has undergone a dramatic adaptation to high-input agriculture. Despite the importance of genetic contributions to historical yield increases, little is known about the underlying genomic changes. Here we use high-density

  7. The transcriptome landscape of early maize meiosis

    Science.gov (United States)

    Meiosis, particularly meiotic recombination, is a major factor affecting yield and breeding of plants. To gain insight into the transcriptome landscape during early initiation steps of meiotic recombination, we profiled early prophase I meiocytes from maize using RNA-seq. Our analyses of genes prefe...

  8. Romanian maize

    DEFF Research Database (Denmark)

    Sauer, Johannes; Balint, Borbala

    This research aims at shedding empirical light on the relative efficiency of small-scale maize producers in Romania. Farmers in transition countries still face heavily distorted price systems resulting from imperfect market conditions and socioeconomic and institutional constraints. To capture...

  9. Zoos through the Lens of the IUCN Red List: A Global Metapopulation Approach to Support Conservation Breeding Programs

    OpenAIRE

    Conde, Dalia A.; Colchero, Fernando; Gusset, Markus; Pearce-Kelly, Paul; Byers, Onnie; Flesness, Nate; Browne, Robert K.; Jones, Owen R.

    2013-01-01

    Given current extinction trends, the number of species requiring conservation breeding programs (CBPs) is likely to increase dramatically. To inform CBP policies for threatened terrestrial vertebrates, we evaluated the number and representation of threatened vertebrate species on the IUCN Red List held in the ISIS zoo network and estimated the complexity of their management as metapopulations. Our results show that 695 of the 3,955 (23%) terrestrial vertebrate species in ISIS zoos are threate...

  10. The cultural heritage of pastoralism - local knowledge, state identity and the global perspective: the example of local breeds in Morocco.

    Science.gov (United States)

    Ben Hounet, Y; Brisebarre, A-M; Guinand, S

    2016-11-01

    Over the past few decades, the heritage designation process has come to impact on the way of life of many nomadic pastoralists across the world. Since the Convention Concerning the Protection of the World Cultural and Natural Heritage was adopted in 1972, policies for the conservation of protected areas have been implemented under the aegis of the United Nations Educational, Scientific and Cultural Organization (UNESCO), especially in countries of the South, with a varying impact on the practices and perceptions of pastoral communities. Heritage policies were further extended by the establishment of the list of Intangible Cultural Heritage (the Convention was adopted by the UNESCO General Conference in October 2003 and came into force in 2006) and the list of Cultural Landscapes (adoption in 1992, with the first site listed in 1993). This enthusiasm for heritage, which is felt by States and local communities alike, provides an opportunity to study the contradictions and changing perceptions of the nomadic and pastoral identity. In this context of wholesale heritage designation, it is interesting to examine how local knowledge - especially that on hardy animal breeds - is promoted and safeguarded. The authors focus on the case of Morocco, where the national association of sheep and goat breeders (ANOC) oversees breed selection and health policy for local breeds, in order to demonstrate that greater recognition of farmers' knowledge and their ability to identify hardy animals can ensure the sustainability of farms in both South and North from a socio-economic, genetic and health standpoint.

  11. Developing Inset Resistant Maize Varieties for Food Security in Kenya

    International Nuclear Information System (INIS)

    Mugo, S.

    2002-01-01

    The Insect Resistant Maize for Africa (IRMA) project aims at increasing maize production and food security through development and deployment of stem borer resistant maize germplasm developed using conventional and through biotechnology methods such as Bt maize. Bt maize offers farmers an effective and practical option for controlling stem borers. It was recognized that the development and routine use of Bt maize will require addressing relevant bio-safety, environmental, and community concerns and research and information gathering activities are in place to address these concerns and research and information gathering activities are in place to address these concerns. Suitable Bt gene have been acquired or synthesized and back-crossed into elite maize germplasm at CIMMYT-Mexico, and the effective Cry-proteins against the major maize stem borers in Kenya were identified to better target pests. Stem borer resistant maize germplasm is being developed through conventional breeding, using locally adapted and exotic germplasm. for safe and effective deployment of Bt maize,studies on its impacts on target and non-target arthropods as well as studies on the effects of Bt maize on key non-target arthropods as well as studies on gene flow are underway. Insect resistance management strategies are being developed through quantifying the effectiveness, ???. Socioeconomic impact studies are revealing factors in the society that may influence the adoption of Bt maize in Kenya. Also, baseline data, essential for the monitoring and evaluation of the Bt maize technology in Kenya, has been established. Technology transfer and capacity building, creating awareness and communications have received attention in the project. This paper describes the major research activities as they relate to development of the stem bore resistant maize germplasm

  12. Effect of organic fertilizers on maize production in Eastern Georgia

    Science.gov (United States)

    Jolokhava, Tamar; Kenchiashvili, Naira; Tarkhnishvili, Maia; Ghambashidze, Giorgi

    2016-04-01

    Maize remains to be the most important cereal crop in Georgia. Total area of arable land under cereal crops production equals to 184 thousands hectares (FAO statistical yearbook, 2014), from which maize takes the biggest share. Leading position of maize among other cereal crops is caused by its dual purpose as food and feed product. In Spite of a relatively high production of maize to other cereals there is still a high demand on it, especially as feed for animal husbandry. The same tendency is seen in organic production, where producers of livestock and poultry products require organically grown maize, the average yield of which is much less than those produced conventionally. Therefore, it is important to increase productivity of maize in organic farms. Current study aimed to improve maize yield using locally produced organic fertilizers and to compare them to the effect of mineral fertilizers. The study was carried out in Eastern Georgia under dry subtropical climate conditions on local hybrid of maize. This is the first attempt to use hybrid maize (developed with organic plant breeding method) in organic field trials in Georgia. The results shown, that grain yield from two different types of organic fertilizers reached 70% of the yields achieved with industrial mineral fertilizers. As on farm level differences between organic and conventional maize production are much severe, the results from the field trials seems to be promising for future improvement of organic cereal crop production.

  13. Integrating Plant Science and Crop Modeling: Assessment of the Impact of Climate Change on Soybean and Maize Production.

    Science.gov (United States)

    Fodor, Nándor; Challinor, Andrew; Droutsas, Ioannis; Ramirez-Villegas, Julian; Zabel, Florian; Koehler, Ann-Kristin; Foyer, Christine H

    2017-11-01

    Increasing global CO2 emissions have profound consequences for plant biology, not least because of direct influences on carbon gain. However, much remains uncertain regarding how our major crops will respond to a future high CO2 world. Crop model inter-comparison studies have identified large uncertainties and biases associated with climate change. The need to quantify uncertainty has drawn the fields of plant molecular physiology, crop breeding and biology, and climate change modeling closer together. Comparing data from different models that have been used to assess the potential climate change impacts on soybean and maize production, future yield losses have been predicted for both major crops. When CO2 fertilization effects are taken into account significant yield gains are predicted for soybean, together with a shift in global production from the Southern to the Northern hemisphere. Maize production is also forecast to shift northwards. However, unless plant breeders are able to produce new hybrids with improved traits, the forecasted yield losses for maize will only be mitigated by agro-management adaptations. In addition, the increasing demands of a growing world population will require larger areas of marginal land to be used for maize and soybean production. We summarize the outputs of crop models, together with mitigation options for decreasing the negative impacts of climate on the global maize and soybean production, providing an overview of projected land-use change as a major determining factor for future global crop production. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  14. Slave Breeding

    OpenAIRE

    Sutch, Richard

    1986-01-01

    This paper reviews the historical work on slave breeding in the ante-bellum United States. Slave breeding consisted of interference in the sexual life of slaves by their owners with the intent and result of increasing the number of slave children born. The weight of evidence suggests that slave breeding occurred in sufficient force to raise the rate of growth of the American slave population despite evidence that only a minority of slave-owners engaged in such practices.

  15. Maize, tropical (Zea mays L.).

    Science.gov (United States)

    Assem, Shireen K

    2015-01-01

    Maize (Zea mays L.) is the third most important food crop globally after wheat and rice. In sub-Saharan Africa, tropical maize has traditionally been the main staple of the diet; 95 % of the maize grown is consumed directly as human food and as an important source of income for the resource-poor rural population. The biotechnological approach to engineer biotic and abiotic traits implies the availability of an efficient plant transformation method. The production of genetically transformed plants depends both on the ability to integrate foreign genes into target cells and the efficiency with which plants are regenerated. Maize transformation and regeneration through immature embryo culture is the most efficient system to regenerate normal transgenic plants. However, this system is highly genotype dependent. Genotypes adapted to tropic areas are difficult to regenerate. Therefore, transformation methods used with model genotypes adapted to temperate areas are not necessarily efficient with tropical lines. Agrobacterium-mediated transformation is the method of choice since it has been first achieved in 1996. In this report, we describe a transformation method used successfully with several tropical maize lines. All the steps of transformation and regeneration are described in details. This protocol can be used with a wide variety of tropical lines. However, some modifications may be needed with recalcitrant lines.

  16. Zoos through the lens of the IUCN Red List: a global metapopulation approach to support conservation breeding programs

    DEFF Research Database (Denmark)

    Conde, Dalia Amor; Colchero, Fernando; Pearce-Kelly, Paul

    2013-01-01

    and other institutions, alongside the development of international agreements that facilitate cross-border movement of zoo animals. To maximize the effectiveness of integrated conservation actions that include CBPs, it is fundamental that the non-zoo conservation community acknowledges and integrates......Given current extinction trends, the number of species requiring conservation breeding programs (CBPs) is likely to increase dramatically. To inform CBP policies for threatened terrestrial vertebrates, we evaluated the number and representation of threatened vertebrate species on the IUCN Red List...... that may require CBPs is currently low and the spatial distribution of these zoo populations makes management difficult. Although the zoo community may have the will and the logistical potential to contribute to conservation actions, including CBPs, to do so will require greater collaboration between zoos...

  17. Impact of selection on maize root traits and rhizosphere interactions

    Science.gov (United States)

    Schmidt, J. E.; Gaudin, A. C. M.

    2017-12-01

    Effects of domestication and breeding on maize have been well-characterized aboveground, but impacts on root traits and rhizosphere processes remain unclear. Breeding in high-inorganic-input environments may have negatively affected the ability of modern maize to acquire nutrients through foraging and microbial interactions in marginal and/or organically managed soils. Twelve maize genotypes representing a selection gradient (teosintes, landraces, open-pollinated parents of modern elite germplasm, and modern hybrids released 1934-2015) were grown in three soils varying in intensity of long-term management (unfertilized, organic, conventional) in the greenhouse. Recruitment of rhizosphere microbial communities, nutrient acquisition, and plant productivity were affected by genotype-by-soil interactions. Maize genotypes exhibit significant variation in their ability to obtain nutrients from soils of different management history, indicating the potential for re-integration of beneficial root and rhizosphere traits to increase adaptation to low-input agroecosystems.

  18. Development of cold and drought tolerant short-season maize germplasm for fuel and feed utilization

    Directory of Open Access Journals (Sweden)

    Marcelo J Carena

    2013-04-01

    Full Text Available Maize has become a profitable alternative for North Dakota (ND farmers and ranchers. However, U.S. northern industry hybrids still lack cold and drought stress tolerance as well as adequate grain quality for ethanol and feedstock products. Moreover, there is a need to increase the value of feedstock operations before and after ethanol utilization. The ND maize breeding program initiated the development of hybrids with high quality protein content through the Early Quality Protein Maize for Feedstock (EarlyQPMF project. The North Dakota State University (NDSU maize breeding program acts as a genetic provider to foundation seed companies, retailer seed companies, processing industry, and breeders nationally and internationally. In the past 10 years, NDSU was awarded 9 PVP maize certificates and released 38 maize products. Within those, 13 inbred lines were exclusively released to a foundation seed company for commercial purposes. In addition, 2 hybrids were identified for commercial production in central and western ND.

  19. Zoos through the Lens of the IUCN Red List: A Global Metapopulation Approach to Support Conservation Breeding Programs

    Science.gov (United States)

    Conde, Dalia A.; Colchero, Fernando; Gusset, Markus; Pearce-Kelly, Paul; Byers, Onnie; Flesness, Nate; Browne, Robert K.; Jones, Owen R.

    2013-01-01

    Given current extinction trends, the number of species requiring conservation breeding programs (CBPs) is likely to increase dramatically. To inform CBP policies for threatened terrestrial vertebrates, we evaluated the number and representation of threatened vertebrate species on the IUCN Red List held in the ISIS zoo network and estimated the complexity of their management as metapopulations. Our results show that 695 of the 3,955 (23%) terrestrial vertebrate species in ISIS zoos are threatened. Only two of the 59 taxonomic orders show a higher proportion of threatened species in ISIS zoos than would be expected if species were selected at random. In addition, for most taxa, the management of a zoo metapopulation of more than 250 individuals will require the coordination of a cluster of 11 to 24 ISIS zoos within a radius of 2,000 km. Thus, in the zoo network, the representation of species that may require CBPs is currently low and the spatial distribution of these zoo populations makes management difficult. Although the zoo community may have the will and the logistical potential to contribute to conservation actions, including CBPs, to do so will require greater collaboration between zoos and other institutions, alongside the development of international agreements that facilitate cross-border movement of zoo animals. To maximize the effectiveness of integrated conservation actions that include CBPs, it is fundamental that the non-zoo conservation community acknowledges and integrates the expertise and facilities of zoos where it can be helpful. PMID:24348999

  20. Zoos through the lens of the IUCN Red List: a global metapopulation approach to support conservation breeding programs.

    Science.gov (United States)

    Conde, Dalia A; Colchero, Fernando; Gusset, Markus; Pearce-Kelly, Paul; Byers, Onnie; Flesness, Nate; Browne, Robert K; Jones, Owen R

    2013-01-01

    Given current extinction trends, the number of species requiring conservation breeding programs (CBPs) is likely to increase dramatically. To inform CBP policies for threatened terrestrial vertebrates, we evaluated the number and representation of threatened vertebrate species on the IUCN Red List held in the ISIS zoo network and estimated the complexity of their management as metapopulations. Our results show that 695 of the 3,955 (23%) terrestrial vertebrate species in ISIS zoos are threatened. Only two of the 59 taxonomic orders show a higher proportion of threatened species in ISIS zoos than would be expected if species were selected at random. In addition, for most taxa, the management of a zoo metapopulation of more than 250 individuals will require the coordination of a cluster of 11 to 24 ISIS zoos within a radius of 2,000 km. Thus, in the zoo network, the representation of species that may require CBPs is currently low and the spatial distribution of these zoo populations makes management difficult. Although the zoo community may have the will and the logistical potential to contribute to conservation actions, including CBPs, to do so will require greater collaboration between zoos and other institutions, alongside the development of international agreements that facilitate cross-border movement of zoo animals. To maximize the effectiveness of integrated conservation actions that include CBPs, it is fundamental that the non-zoo conservation community acknowledges and integrates the expertise and facilities of zoos where it can be helpful.

  1. Zoos through the lens of the IUCN Red List: a global metapopulation approach to support conservation breeding programs.

    Directory of Open Access Journals (Sweden)

    Dalia A Conde

    Full Text Available Given current extinction trends, the number of species requiring conservation breeding programs (CBPs is likely to increase dramatically. To inform CBP policies for threatened terrestrial vertebrates, we evaluated the number and representation of threatened vertebrate species on the IUCN Red List held in the ISIS zoo network and estimated the complexity of their management as metapopulations. Our results show that 695 of the 3,955 (23% terrestrial vertebrate species in ISIS zoos are threatened. Only two of the 59 taxonomic orders show a higher proportion of threatened species in ISIS zoos than would be expected if species were selected at random. In addition, for most taxa, the management of a zoo metapopulation of more than 250 individuals will require the coordination of a cluster of 11 to 24 ISIS zoos within a radius of 2,000 km. Thus, in the zoo network, the representation of species that may require CBPs is currently low and the spatial distribution of these zoo populations makes management difficult. Although the zoo community may have the will and the logistical potential to contribute to conservation actions, including CBPs, to do so will require greater collaboration between zoos and other institutions, alongside the development of international agreements that facilitate cross-border movement of zoo animals. To maximize the effectiveness of integrated conservation actions that include CBPs, it is fundamental that the non-zoo conservation community acknowledges and integrates the expertise and facilities of zoos where it can be helpful.

  2. Ornamental Plant Breeding

    Directory of Open Access Journals (Sweden)

    Flávia Barbosa Silva Botelho

    2015-04-01

    Full Text Available World’s ornamental plant market, including domestic market of several countries and its exports, is currently evaluated in 107 billion dollars yearly. Such estimate highlights the importance of the sector in the economy of the countries, as well as its important social role, as it represents one of the main activities, which contributes to income and employment. Therefore a well-structured plant breeding program, which is connected with consumers’ demands, is required in order to fulfill these market needs globally. Activities related to pre-breeding, conventional breeding, and breeding by biotechnological techniques constitute the basis for the successful development of new ornamental plant cultivars. Techniques that involve tissue culture, protoplast fusion and genetic engineering greatly aid conventional breeding (germplasm introduction, plant selection and hybridization, aiming the obtention of superior genotypes. Therefore it makes evident, in the literature, the successful employment of genetic breeding, since it aims to develop plants with commercial value that are also competitive with the ones available in the market.

  3. Studies on performance of some open-pollinated maize cultivars in ...

    African Journals Online (AJOL)

    Plant density and nitrogen (N) fertilizer responses of one local and three improved open-pollinated cultivars of maize (Zea mays L.) developed in different eras of maize breeding were studied on sandy-loam Alfisols in the Guinea savanna zone of Ghana in 1992 and 1993. A split-plot design was used in which plant ...

  4. Farmer perceptions on maize cultivars in the marginal eastern belt of ...

    African Journals Online (AJOL)

    Productivity of maize (Zea mays) is low in the small-holder sector of Zimbabwe because the crop is grown under stress-prone environments and limited resources. The objective of this study was to investigate farmer perceptions on maize cultivars and their implications for breeding. Participatory rural appraisal and ...

  5. Testing public Bt maize events for control of stem borers in the first ...

    African Journals Online (AJOL)

    Transgenic maize (Zea mays L), developed using modified genes from the bacterium Bacillus thuringiensis (Bt), controls stem borers without observable negative effects to humans, livestock or the environment, and is now sown on 134 million hectares globally. Bt maize could contribute to increasing maize production in ...

  6. Harnessing maize biodiversity

    Science.gov (United States)

    Maize is a remarkably diverse species, adapted to a wide range of climatic conditions and farming practices. The latitudinal range of maize is immense, ranging from 54°N in Alberta, Canada, to 45°S in the province of Chubut, Argentina. In terms of altitude, maize is cultivated from sea level to 4000...

  7. Status and prospects of maize research in Nepal

    Directory of Open Access Journals (Sweden)

    Govind KC

    2015-12-01

    Full Text Available Food and nutritional securities are the major threats coupled with declining factor productivity and climate change effects in Nepal. Maize being the principal food crops of the majority of the hill people and source of animal feed for ever growing livestock industries in Terai of Nepal. Despite the many efforts made to increase the maize productivity in the country, the results are not much encouraging. Many of the maize based technologies developed and recommended for the farmers to date are not fully adopted. Therefore, problem is either on technology development or on dissemination or on both. Considering the above facts, some of the innovative and modern approaches of plant breeding and crop management technologies to increase the maize yield need to be developed and disseminated. There is a need for location-specific maize production technologies, especially for lowland winter maize, marginal upland maize production system, and resource poor farmers. Research efforts can be targeted to address both yield potential and on-farm yields by reducing the impacts of abiotic and biotic constraints. Therefore, in order to streamline the future direction of maize research in Nepal, an attempt has been made in this article to highlight the present status and future prospects with few key pathways.

  8. Marker-assisted selection in maize: current status, potential, limitations and perspectives from the private and public sectors

    International Nuclear Information System (INIS)

    Ragot, M.; Lee, M.

    2007-01-01

    More than twenty-five years after the advent of DNA markers, marker-assisted selection (MAS) has become a routine component of some private maize breeding programmes. Line conversion has been one of the most productive applications of MAS in maize breeding, reducing time to market and resulting in countless numbers of commercial products. Recently, applications of MAS for forward breeding have been shown to increase significantly the rate of genetic gain when compared with conventional breeding. Costs associated with MAS are still very high. Further improvements in marker technologies, data handling and analysis, phenotyping and nursery operations are needed to realize the full benefits of MAS for private maize breeding programmes and to allow the transfer of proven approaches and protocols to public breeding programmes in developing countries. (author)

  9. Aflatoxins and fumonisin contamination of marketed maize, maize ...

    African Journals Online (AJOL)

    Aflatoxins and fumonisin contamination of marketed maize, maize bran and maize used as animal feed in northern ... PROMOTING ACCESS TO AFRICAN RESEARCH ... African Journal of Food, Agriculture, Nutrition and Development.

  10. Genetic diversity in South African maize (Zea mays L.) genotypes as ...

    African Journals Online (AJOL)

    Charlotte Mienie

    varied between 6 and 36 per locus for the total population screened. When looking at the separate populations tested, the mean number of alleles per locus was the highest for the yellow maize breeding lines, which also had the highest entries in the screening program (Table. 2). In PCoA of the RD of the breeding lines, the ...

  11. Towards Better Simulation of US Maize Yield Responses to Climate in the Community Earth System Model

    Science.gov (United States)

    Peng, B.; Guan, K.; Chen, M.; Lawrence, D. M.; Jin, Z.; Bernacchi, C.; Ainsworth, E. A.; DeLucia, E. H.; Lombardozzi, D. L.; Lu, Y.

    2017-12-01

    Global food security is undergoing continuing pressure from increased population and climate change despites the potential advancement in breeding and management technologies. Earth system models (ESMs) are essential tools to study the impacts of historical and future climate on regional and global food production, as well as to assess the effectiveness of possible adaptations and their potential feedback to climate. Here we developed an improved maize representation within the Community Earth System Model (CESM) by combining the strengths of both the Community Land Model version 4.5 (CLM4.5) and the Agricultural Production Systems sIMulator (APSIM) models. Specifically, we modified the maize planting scheme, incorporated the phenology scheme adopted from the APSIM model, added a new carbon allocation scheme into CLM4.5, and improved the estimation of canopy structure parameters including leaf area index (LAI) and canopy height. Unique features of the new model (CLM-APSIM) include more detailed phenology stages, an explicit implementation of the impacts of various abiotic environmental stresses (including nitrogen, water, temperature and heat stresses) on maize phenology and carbon allocation, as well as an explicit simulation of grain number and grain size. We conducted a regional simulation of this new model over the US Corn Belt during 1990 to 2010. The simulated maize yield as well as its responses to climate (growing season mean temperature and precipitation) are benchmarked with data from UADA NASS statistics. Our results show that the CLM-APSIM model outperforms the CLM4.5 in simulating county-level maize yield production and reproduces more realistic yield responses to climate variations than CLM4.5. However, some critical processes (such as crop failure due to frost and inundation and suboptimal growth condition due to biotic stresses) are still missing in both CLM-APSIM and CLM4.5, making the simulated yield responses to climate slightly deviate from the

  12. Aflatoxin Accumulation in a Maize Diallel Cross

    Directory of Open Access Journals (Sweden)

    W. Paul Williams

    2015-06-01

    Full Text Available Aflatoxins, produced by the fungus Aspergillus flavus, occur naturally in maize. Contamination of maize grain with aflatoxin is a major food and feed safety problem and greatly reduces the value of the grain. Plant resistance is generally considered a highly desirable approach to reduction or elimination of aflatoxin in maize grain. In this investigation, a diallel cross was produced by crossing 10 inbred lines with varying degrees of resistance to aflatoxin accumulation in all possible combinations. Three lines that previously developed and released as sources of resistance to aflatoxin accumulation were included as parents. The 10 parental inbred lines and the 45 single crosses making up the diallel cross were evaluated for aflatoxin accumulation in field tests conducted in 2013 and 2014. Plants were inoculated with an A. flavus spore suspension seven days after silk emergence. Ears were harvested approximately 60 days later and concentration of aflatoxin in the grain determined. Parental inbred lines Mp717, Mp313E, and Mp719 exhibited low levels (3–12 ng/g of aflatoxin accumulation. In the diallel analysis, both general and specific combining ability were significant sources of variation in the inheritance of resistance to aflatoxin accumulation. General combining ability effects for reduced aflatoxin accumulation were greatest for Mp494, Mp719, and Mp717. These lines should be especially useful in breeding for resistance to aflatoxin accumulation. Breeding strategies, such as reciprocal recurrent selection, would be appropriate.

  13. Comparative genetic diversity in a sample of pony breeds from the U.K. and North America: a case study in the conservation of global genetic resources.

    Science.gov (United States)

    Winton, Clare L; Plante, Yves; Hind, Pamela; McMahon, Robert; Hegarty, Matthew J; McEwan, Neil R; Davies-Morel, Mina C G; Morgan, Charly M; Powell, Wayne; Nash, Deborah M

    2015-08-01

    Most species exist as subdivided ex situ daughter population(s) derived from a single original group of individuals. Such subdivision occurs for many reasons both natural and manmade. Traditional British and Irish pony breeds were introduced to North America (U.S.A. and Canada) within the last 150 years, and subsequently equivalent breed societies were established. We have analyzed selected U.K. and North American equivalent pony populations as a case study for understanding the relationship between putative source and derived subpopulations. Diversity was measured using mitochondrial DNA and a panel of microsatellite markers. Genetic signatures differed between the North American subpopulations according to historical management processes. Founder effect and stochastic drift was apparent, particularly pronounced in some breeds, with evidence of admixture of imported mares of different North American breeds. This demonstrates the importance of analysis of subpopulations to facilitate understanding the genetic effects of past management practices and to lead to informed future conservation strategies.

  14. Extensive tissue-specific transcriptomic plasticity in maize primary roots upon water deficit.

    Science.gov (United States)

    Opitz, Nina; Marcon, Caroline; Paschold, Anja; Malik, Waqas Ahmed; Lithio, Andrew; Brandt, Ronny; Piepho, Hans-Peter; Nettleton, Dan; Hochholdinger, Frank

    2016-02-01

    Water deficit is the most important environmental constraint severely limiting global crop growth and productivity. This study investigated early transcriptome changes in maize (Zea mays L.) primary root tissues in response to moderate water deficit conditions by RNA-Sequencing. Differential gene expression analyses revealed a high degree of plasticity of the water deficit response. The activity status of genes (active/inactive) was determined by a Bayesian hierarchical model. In total, 70% of expressed genes were constitutively active in all tissues. In contrast, deficit-responsive genes (1915) were consistently regulated in all tissues, while >75% (1501 genes) were specifically regulated in a single root tissue. Water deficit-responsive genes were most numerous in the cortex of the mature root zone and in the elongation zone. The most prominent functional categories among differentially expressed genes in all tissues were 'transcriptional regulation' and 'hormone metabolism', indicating global reprogramming of cellular metabolism as an adaptation to water deficit. Additionally, the most significant transcriptomic changes in the root tip were associated with cell wall reorganization, leading to continued root growth despite water deficit conditions. This study provides insight into tissue-specific water deficit responses and will be a resource for future genetic analyses and breeding strategies to develop more drought-tolerant maize cultivars. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Genomic variation in recently collected maize landraces from Mexico

    Directory of Open Access Journals (Sweden)

    María Clara Arteaga

    2016-03-01

    Full Text Available The present dataset comprises 36,931 SNPs genotyped in 46 maize landraces native to Mexico as well as the teosinte subspecies Zea maiz ssp. parviglumis and ssp. mexicana. These landraces were collected directly from farmers mostly between 2006 and 2010. We accompany these data with a short description of the variation within each landrace, as well as maps, principal component analyses and neighbor joining trees showing the distribution of the genetic diversity relative to landrace, geographical features and maize biogeography. High levels of genetic variation were detected for the maize landraces (HE = 0.234 to 0.318 (mean 0.311, while slightly lower levels were detected in Zea m. mexicana and Zea m. parviglumis (HE = 0.262 and 0.234, respectively. The distribution of genetic variation was better explained by environmental variables given by the interaction of altitude and latitude than by landrace identity. This dataset is a follow up product of the Global Native Maize Project, an initiative to update the data on Mexican maize landraces and their wild relatives, and to generate information that is necessary for implementing the Mexican Biosafety Law. Keywords: Maize, Teosinte, Maize SNP50K BeadChip, Mexican landraces, Proyecto Global de Maíces Nativos

  16. Chemical and nutritional values of maize and maize products ...

    African Journals Online (AJOL)

    Maize and maize products in selected grain markets within Kaduna, Nigeria, were obtained and investigated for proximate and mineral composition analysis using Atomic Absorption Spectrophotometer (AAS) and flame photometer. Proximate composition of maize and maize products were in the range of 11.6- 20 .0% ...

  17. Resistance of maize varieties to the maize weevil Sitophilus zeamais

    African Journals Online (AJOL)

    This study aimed at evaluating commonly used maize varieties, collected from Melkasa and Bako Agricultural Research Centers and Haramaya University, Ethiopia, against the maize weevil Sitophilus zeamais Motsch., one of the most important cosmopolitan stored product pests in maize. A total of 13 improved maize ...

  18. Differential resistance reaction of maize genotypes to maize stem borer (Chilo partellus Swinhoe at Chitwan, Nepal

    Directory of Open Access Journals (Sweden)

    Ghanashyam Bhandari

    2016-12-01

    Full Text Available Maize stem borer (MSB, Chilo partellus Swinhoe, Lepidoptera: Pyralidae is one of the most important insect pest of maize in Nepal. Host plant resistance is the cost-effective, ecologically sound and stable approach to reduce damage by stem borers. Forty four maize genotypes were screened for resistance to maize stem borer at the research field of National Maize Research Program, Rampur during spring seasons (March to June of two consecutive years 2013 and 2014. The maize genotypes were evaluated in randomized complete block design with three replications and data were collected on foliar damage rating, tunnel length and number of exit holes made by the borer. The foliar damage and tunnel length damage were significant for genotypes for both the years. The exit holes were not significant in 2013 but significant in 2014 ranging from 2-6 scale. The foliar rating ranged from 2 to 5.5 in 2013 and 1.1 to 4.5 in 2014 on a 1-9 rating scale. The highly resistant genotypes (10 cm scale. The least susceptible genotypes (<5 cm were RampurSO3F8, RampurSO3FQ02 and RampurS10F18. The genotypes having least exit holes (2.0 in 2014 were RampurSO3F8, RampurSO3FQ02, RampurS10F18. Thus less damage parameters were observed in R-POP-2, RML-5/RML-8, RampurSO3F8, RampurSO3FQ02 and RampurS10F18 and therefore they can be used as parents or as sources of resistance in breeding program.

  19. POTENTIAL OF COMMERCIAL MAIZE HYBRIDS TO GENERATE INBRED LINES IN BREEDING PROGRAMS POTENCIAL DE HÍBRIDOS COMERCIAIS DE MILHO PARA OBTENÇÃO DE LINHAGENS EM PROGRAMAS DE MELHORAMENTO

    Directory of Open Access Journals (Sweden)

    Maria Elisa Ayres Guidetti Zagatto Paterniani

    2010-08-01

    Full Text Available

    With the objective of identifying the best commercial hybrids to extract maize lines, a top cross scheme of 49 endogamic partial lines (S3 was carried out with the IA33 tester. The resultant hybrids were evaluated for grain yield, in Campinas, Mococa, and Palmital (São Paulo State, Brazil, in two agricultural years (2005/2006 and 2006/2007, in a randomized block design, with three replications, in two experiments (TC1 and TC2. Individual and group variance analysis and a grouped analysis of the experiments with common treatments were carried out, for each place. The top cross hybrids were grouped according to the line origins. Afterwards, orthogonal contrasts were carried out by using the Student’s t test, in order to compare the hybrid groups. It was verified that the use of commercial hybrids to extract lines is an interesting strategy. In general, it was also verified that the top cross hybrid groups, whose lines originated from the AG1051, Master, and XL357 hybrids, obtained high yield, with a higher potential for lines extraction.

    KEY-WORDS: Zea mays L.; top cross hybrids; partially endogamic lines (S3.

    O presente trabalho teve por objetivo identificar os melhores híbridos comerciais para extração de linhagens de milho. Para isto, foram

  20. Cluster Analysis of Maize Inbred Lines

    Directory of Open Access Journals (Sweden)

    Jiban Shrestha

    2016-12-01

    Full Text Available The determination of diversity among inbred lines is important for heterosis breeding. Sixty maize inbred lines were evaluated for their eight agro morphological traits during winter season of 2011 to analyze their genetic diversity. Clustering was done by average linkage method. The inbred lines were grouped into six clusters. Inbred lines grouped into Clusters II had taller plants with maximum number of leaves. The cluster III was characterized with shorter plants with minimum number of leaves. The inbred lines categorized into cluster V had early flowering whereas the group into cluster VI had late flowering time. The inbred lines grouped into the cluster III were characterized by higher value of anthesis silking interval (ASI and those of cluster VI had lower value of ASI. These results showed that the inbred lines having widely divergent clusters can be utilized in hybrid breeding programme.

  1. Radiation preservation of maize

    International Nuclear Information System (INIS)

    Wasito.

    1980-01-01

    Radiation preservation of maize was carried out. Radiation doses and sources, shielding materials, packaging materials, chemical radiation effects, biological radiation effects, were discussed. Experimental methods, samples and accessories were also presented. (SMN)

  2. Maize forage aptitude: Combining ability of inbred lines and stability of hybrids

    Directory of Open Access Journals (Sweden)

    Luis Máximo Bertoia

    2014-12-01

    Full Text Available Breeding of forage maize should combine improvement achieved for grain with the specific needs of forage hybrids. Production stability is important when maize is used for silage if the planting area is not in the ideal agronomic environment. The objectives of the present research were: (i to quantify environmental and genetic and their interaction effects on maize silage traits; (ii to identify possible heterotic groups for forage aptitude and suggest the formation of potential heterotic patterns, and (iii to identify suitable inbred line combinations for producing hybrids with forage aptitude. Forty-five hybrids derived from diallelic crosses (without reciprocals among ten inbred lines of maize were evaluated in this study. Combined ANOVA over environments showed differences between genotypes (G, environments (E, and their interactions (GEI. Heritability (H2, and genotypic and phenotypic correlations were estimated to evaluate the variation in and relationships between forage traits. Postdictive and predictive AMMI models were fitted to determine the importance of each source of variation, G, E, and GEI, and to select genotypes simultaneously on yield, quality and stability. A predominance of additive effects was found in the evaluated traits. The heterotic pattern Reid-BSSS × Argentine flint was confirmed for ear yield (EY and harvest index (HI. High and broad genetic variation was found for stover and whole plant traits. Some inbred lines had genes with differential breeding aptitude for ear and stover. Stover and ear yield should be the main breeding objectives in maize forage breeding.

  3. "Omics" of maize stress response for sustainable food production: opportunities and challenges.

    Science.gov (United States)

    Gong, Fangping; Yang, Le; Tai, Fuju; Hu, Xiuli; Wang, Wei

    2014-12-01

    Maize originated in the highlands of Mexico approximately 8700 years ago and is one of the most commonly grown cereal crops worldwide, followed by wheat and rice. Abiotic stresses (primarily drought, salinity, and high and low temperatures), together with biotic stresses (primarily fungi, viruses, and pests), negatively affect maize growth, development, and eventually production. To understand the response of maize to abiotic and biotic stresses and its mechanism of stress tolerance, high-throughput omics approaches have been used in maize stress studies. Integrated omics approaches are crucial for dissecting the temporal and spatial system-level changes that occur in maize under various stresses. In this comprehensive analysis, we review the primary types of stresses that threaten sustainable maize production; underscore the recent advances in maize stress omics, especially proteomics; and discuss the opportunities, challenges, and future directions of maize stress omics, with a view to sustainable food production. The knowledge gained from studying maize stress omics is instrumental for improving maize to cope with various stresses and to meet the food demands of the exponentially growing global population. Omics systems science offers actionable potential solutions for sustainable food production, and we present maize as a notable case study.

  4. Maize (Zea mays L.).

    Science.gov (United States)

    Frame, Bronwyn; Warnberg, Katey; Main, Marcy; Wang, Kan

    2015-01-01

    Agrobacterium tumefaciens-mediated transformation is an effective method for introducing genes into maize. In this chapter, we describe a detailed protocol for genetic transformation of the maize genotype Hi II. Our starting plant material is immature embryos cocultivated with an Agrobacterium strain carrying a standard binary vector. In addition to step-by-step laboratory transformation procedures, we include extensive details in growing donor plants and caring for transgenic plants in the greenhouse.

  5. Dissection of Recombination Attributes for Multiple Maize Populations Using a Common SNP Assay

    Directory of Open Access Journals (Sweden)

    Haiying Guan

    2017-11-01

    Full Text Available Recombination is a vital characteristic for quantitative trait loci mapping and breeding to enhance the yield potential of maize. However, recombination characteristics in globally used segregating populations have never been evaluated at similar genetic marker densities. This study aimed to divulge the characteristics of recombination events, recombinant chromosomal segments, and recombination frequency for four dissimilar populations. These populations were doubled haploid (DH, recombination inbred line (RIL, intermated B73xMo17 (IBM, and multi-parent advanced generation inter-cross (MAGIC, using the Illumina MaizeSNP50 BeadChip to provide markers. Our results revealed that the average number of recombination events was 16, 41, 72, and 86 per line in DH, RIL, IBM, and MAGIC populations, respectively. Accordingly, the average length of recombinant chromosomal segments was 84.8, 47.3, 29.2, and 20.4 Mb in DH, RIL, IBM, and MAGIC populations, respectively. Furtherly, the recombination frequency varied in different genomic regions and population types [DH (0–12.7 cM/Mb, RIL (0–15.5 cM/Mb, IBM (0–24.1 cM/Mb, MAGIC (0–42.3 cM/Mb]. Utilizing different sub-sets of lines, the recombination bin number and size were analyzed in each population. Additionally, different sub-sets of markers and lines were employed to estimate the recombination bin number and size via formulas for relationship in these populations. The relationship between recombination events and recombination bin length was also examined. Our results contribute to determining the most suitable number of genetic markers, lines in each population, and population type for successful mapping and breeding.

  6. Characterizing drought stress and trait influence on maize yield under current and future conditions.

    Science.gov (United States)

    Harrison, Matthew T; Tardieu, François; Dong, Zhanshan; Messina, Carlos D; Hammer, Graeme L

    2014-03-01

    Global climate change is predicted to increase temperatures, alter geographical patterns of rainfall and increase the frequency of extreme climatic events. Such changes are likely to alter the timing and magnitude of drought stresses experienced by crops. This study used new developments in the classification of crop water stress to first characterize the typology and frequency of drought-stress patterns experienced by European maize crops and their associated distributions of grain yield, and second determine the influence of the breeding traits anthesis-silking synchrony, maturity and kernel number on yield in different drought-stress scenarios, under current and future climates. Under historical conditions, a low-stress scenario occurred most frequently (ca. 40%), and three other stress types exposing crops to late-season stresses each occurred in ca. 20% of cases. A key revelation shown was that the four patterns will also be the most dominant stress patterns under 2050 conditions. Future frequencies of low drought stress were reduced by ca. 15%, and those of severe water deficit during grain filling increased from 18% to 25%. Despite this, effects of elevated CO2 on crop growth moderated detrimental effects of climate change on yield. Increasing anthesis-silking synchrony had the greatest effect on yield in low drought-stress seasonal patterns, whereas earlier maturity had the greatest effect in crops exposed to severe early-terminal drought stress. Segregating drought-stress patterns into key groups allowed greater insight into the effects of trait perturbation on crop yield under different weather conditions. We demonstrate that for crops exposed to the same drought-stress pattern, trait perturbation under current climates will have a similar impact on yield as that expected in future, even though the frequencies of severe drought stress will increase in future. These results have important ramifications for breeding of maize and have implications for

  7. Breeds of cattle

    NARCIS (Netherlands)

    Buchanan, David S.; Lenstra, Johannes A.

    2015-01-01

    This chapter gives an overview on the different breeds of cattle (Bos taurus and B. indicus). Cattle breeds are presented and categorized according to utility and mode of origin. Classification and phylogeny of breeds are also discussed. Furthermore, a description of cattle breeds is provided.

  8. Present state and problems of mutation breeding

    Energy Technology Data Exchange (ETDEWEB)

    Balint, A. (Agrartudomanyi Egyetem, Goedoelloe (Hungary))

    1983-09-01

    The major achievements and problems of mutation breeding are discussed according to recent international references. Examples for the production of microorganism resistant tobacco, maize, cabbage, disease resistant sugar cane and some freeze resistant plants are listed. Special opportunities offered by mutation to increase photosynthesis and to improve yields are discussed. The significance of the new techniques to produce induced mutants by means of tissue cultures, to fix N/sub 2/ for leguminosae and to affect the activities of N/sub 2/ fixing microorganisms is emphasized.

  9. Globalization

    Directory of Open Access Journals (Sweden)

    Tulio Rosembuj

    2006-12-01

    Full Text Available There is no singular globalization, nor is the result of an individual agent. We could start by saying that global action has different angles and subjects who perform it are different, as well as its objectives. The global is an invisible invasion of materials and immediate effects.

  10. Globalization

    OpenAIRE

    Tulio Rosembuj

    2006-01-01

    There is no singular globalization, nor is the result of an individual agent. We could start by saying that global action has different angles and subjects who perform it are different, as well as its objectives. The global is an invisible invasion of materials and immediate effects.

  11. A(maize)ing attraction: gravid Anopheles arabiensis are attracted and oviposit in response to maize pollen odours.

    Science.gov (United States)

    Wondwosen, Betelehem; Hill, Sharon R; Birgersson, Göran; Seyoum, Emiru; Tekie, Habte; Ignell, Rickard

    2017-01-23

    Maize cultivation contributes to the prevalence of malaria mosquitoes and exacerbates malaria transmission in sub-Saharan Africa. The pollen from maize serves as an important larval food source for Anopheles mosquitoes, and females that are able to detect breeding sites where maize pollen is abundant may provide their offspring with selective advantages. Anopheles mosquitoes are hypothesized to locate, discriminate among, and select such sites using olfactory cues, and that synthetic volatile blends can mimic these olfactory-guided behaviours. Two-port olfactometer and two-choice oviposition assays were used to assess the attraction and oviposition preference of gravid Anopheles arabiensis to the headspace of the pollen from two maize cultivars (BH-660 and ZM-521). Bioactive compounds were identified using combined gas chromatography and electroantennographic detection from the headspace of the cultivar found to be most attractive (BH-660). Synthetic blends of the volatile compounds were then assessed for attraction and oviposition preference of gravid An. arabiensis, as above. Here the collected headspace volatiles from the pollen of two maize cultivars was shown to differentially attract and stimulate oviposition in gravid An. arabiensis. Furthermore, a five-component synthetic maize pollen odour blend was identified, which elicited the full oviposition behavioural repertoire of the gravid mosquitoes. The cues identified from maize pollen provide important substrates for the development of novel control measures that modulate gravid female behaviour. Such measures are irrespective of indoor or outdoor feeding and resting patterns, thus providing a much-needed addition to the arsenal of tools that currently target indoor biting mosquitoes.

  12. Advances and prospects for induced mutation breeding in Helongjiang Province

    International Nuclear Information System (INIS)

    Sun Guangzu

    1995-12-01

    Induced mutation breeding employed on soybean, spring wheat, maize, millet, fiber flax, chinese cabbage, kidney been and garlic in Heilongjiang province. Thirty-six new varieties had introduced and released from 1980 to 1994, made up 20.6% of total released varieties for the same period, accumulated cultivated area of 3.746 million hm 2 , and increased the income of formers to US dollar 168 million; 72 mutants having specific and utilizing values and traits have also been bred in the province. Basic research such as radiation breeding in combination with distant hybridization, biotechnology, and application new induced factors, improving selection methods, have been achieved; 91 articles have been published. These researches play an important role for increasing induced mutation breeding. Three items of suggestion to develop induced mutation breeding are made. (1 tab.)

  13. Results of the use of induced mutants in maize breeding

    International Nuclear Information System (INIS)

    Balint, A.; Kovacs, Gezane; Hajos, Laszlone; Geczki, I.

    1979-01-01

    The investigated mutagens have the same effect on the increasing of protein content. In the case of WF9 mutants no essential improvement can be found compared with the untreated co trol selected for protein. ''Lines'' flowering 16-19 days earlier than controls were produced; the most effective agent of this production is the fast neutron. Mutation caused a significant change in their combining ability, but there were more negative variants than positive ones. Three hybrids with stronger stalk than that of MvSc 620 were obtained. Stalk standing ability of mutants did not improve. The flowering date of lines (male) is in r=+0.5672 +++ correlation to the yield of their test hybrid. Mutant lines in SC test cross seemed to be stable. The correlation of the yield of two years is r=+0.8659. The correlation of both the yield of test hybrids to the protein content of mutant lines (r=0.2307) and the flowering date of lines to their protein content (r=-0.3032) is loose. The earliest mutant line of WF9, which produced low crop (5000 kg/ha) when crossed with N6, gave a high-yielding hybrid when crossed with other lines. The average yield of eight combinations was 10050 kg/ha and the highest yield was 11680 kg/ha. (author)

  14. Correlation and path analysis on main agronomic traits of progeny from space mutation maize inbred lines

    International Nuclear Information System (INIS)

    Zhang Caibo; Wu Zhangdong; Xu Wei; Rong Tingzhao; Cao Moju

    2013-01-01

    In order to discover and utilize the valuable resources from spaceflight mutagenesis maize offspring effectively, cross combinations derived from the offspring of three different maize inbred lines induced by space flight were made to investigate the yield and related agronomic traits under different environmental conditions. Correlation and path analysis indicated that the factors affecting the yield of combinations varied with different mutagenic materials and environmental effects with larger effect coming from environment. Therefore, different selection strategies should be chosen for different induced maize. For the 08-641 mutagenic material, the 100-kernel weight should be first considered to select while taking into account the number of rows per ear and kernels per row. For the RP125 mutagenic material, the kernels per row should be first selected, and then to select the 100-kernels weight and the number of rows per ear traits. For 18-599 mutagenic material, the 100-seed weight should be first selected, then the plant height, ear diameter, ear height, kernels rate and other traits should be selected in different environments. Combined with field resistance, plant types and other traits, excellent maize inbred lines with high yield potential from space mutagenesis offspring were selected. Thus study has obtained some breeding materials useful for further breeding purpose, and provide a reference method as how to use the spaceflight induced materials for for maize breeding. (authors)

  15. Organic breeding: New trend in plant breeding

    Directory of Open Access Journals (Sweden)

    Berenji Janoš

    2009-01-01

    Full Text Available Organic breeding is a new trend in plant breeding aimed at breeding of organic cultivars adapted to conditions and expectations of organic plant production. The best proof for the need of organic cultivars is the existence of interaction between the performances of genotypes with the kind of production (conventional or organic (graph. 1. The adaptation to low-input conditions of organic production by more eddicient uptake and utilization of plant nutrients is especially important for organic cultivars. One of the basic mechanism of weed control in organic production is the competition of organic cultivars and weeds i.e. the enhanced ability of organic cultivars to suppress the weeds. Resistance/tolerance to diseases and pests is among the most important expectations toward the organic cultivars. In comparison with the methods of conventional plant breeding, in case of organic plant breeding limitations exist in choice of methods for creation of variability and selection classified as permitted, conditionally permitted and banned. The use of genetically modified organisms and their derivated along with induced mutations is not permitted in organic production. The use of molecular markers in organic plant breeding is the only permitted modern method of biotechnology. It is not permitted to patent the breeding material of organic plant breeding or the organic cultivars. .

  16. Globalization

    OpenAIRE

    Andru?cã Maria Carmen

    2013-01-01

    The field of globalization has highlighted an interdependence implied by a more harmonious understanding determined by the daily interaction between nations through the inducement of peace and the management of streamlining and the effectiveness of the global economy. For the functioning of the globalization, the developing countries that can be helped by the developed ones must be involved. The international community can contribute to the institution of the development environment of the gl...

  17. Stacked Bt maize and arthropod predators: exposure to insecticidal Cry proteins and potential hazards

    Czech Academy of Sciences Publication Activity Database

    Svobodová, Zdeňka; Shu, Y.; Skoková Habuštová, Oxana; Romeis, J.; Meissle, M.

    2017-01-01

    Roč. 284, č. 1859 (2017), č. článku 20170440. ISSN 0962-8452 Institutional support: RVO:60077344 Keywords : Bt maize * Cry proteins * environmental risk assessment Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection OBOR OECD: Agronomy, plant breeding and plant protection Impact factor: 4.940, year: 2016 http://rspb.royalsocietypublishing.org/content/284/1859/20170440

  18. Seeds, hands and lands : maize genetic resources of highland Guatemala in space and time

    NARCIS (Netherlands)

    Etten, van J.

    2006-01-01

    Crop genetic resources are an important aspect of agricultural production. Agricultural innovation through plant breeding is generally seen as an efficient means to support food security and economic development in poor areas. Modern varieties of maize, a major cereal and the subject of this study,

  19. Genomic variation in recently collected maize landraces from Mexico

    Science.gov (United States)

    Arteaga, María Clara; Moreno-Letelier, Alejandra; Mastretta-Yanes, Alicia; Vázquez-Lobo, Alejandra; Breña-Ochoa, Alejandra; Moreno-Estrada, Andrés; Eguiarte, Luis E.; Piñero, Daniel

    2015-01-01

    The present dataset comprises 36,931 SNPs genotyped in 46 maize landraces native to Mexico as well as the teosinte subspecies Zea maiz ssp. parviglumis and ssp. mexicana. These landraces were collected directly from farmers mostly between 2006 and 2010. We accompany these data with a short description of the variation within each landrace, as well as maps, principal component analyses and neighbor joining trees showing the distribution of the genetic diversity relative to landrace, geographical features and maize biogeography. High levels of genetic variation were detected for the maize landraces (HE = 0.234 to 0.318 (mean 0.311), while slightly lower levels were detected in Zea m. mexicana and Zea m. parviglumis (HE = 0.262 and 0.234, respectively). The distribution of genetic variation was better explained by environmental variables given by the interaction of altitude and latitude than by landrace identity. This dataset is a follow up product of the Global Native Maize Project, an initiative to update the data on Mexican maize landraces and their wild relatives, and to generate information that is necessary for implementing the Mexican Biosafety Law. PMID:26981357

  20. Genetic characterization of early maturing maize hybrids (Zea mays L. obtained by protein and RAPD markers

    Directory of Open Access Journals (Sweden)

    Bauer Iva

    2005-01-01

    Full Text Available Knowledge of maize germplasm genetic diversity is important for planning breeding programmes, germplasm conservation per se etc. Genetic variability of maize hybrids grown in the fields is also very important because genetic uniformity implies risks of genetic vulnerability to stress factors and can cause great losts in yield. Early maturing maize hybrids are characterized by shorter vegetation period and they are grown in areas with shorter vegetation season. Because of different climatic conditions in these areas lines and hybrids are developed with different features in respect to drought resistance and disease resistance. The objective of our study was to characterize set of early maturing maize hybrids with protein and RAPD markers and to compare this clasification with their pedigree information. RAPD markers gave significantly higher rate of polymorphism than protein markers. Better corelation was found among pedigree information and protein markers.

  1. Introgression of genetic material from Zea mays ssp. Mexicana into cultivated maize was facilitated by tissue culture

    International Nuclear Information System (INIS)

    Wang, L.; Gu, X.; Qu, M.; Luan, J.; Zhang, J.

    2012-01-01

    Zea mays ssp. mexicana, a wild relative of cultivated maize (Z. mays ssp. mays), is a useful gene resource for maize breeding. In this study, two populations were generated by conventional breeding scheme (population I) or tissue culture regime (population II), respectively, to introgress genetic material of Z. mays ssp. mexicana into maize. Karyotype analysis showed that the arm ratios of 10 pairs of chromosomes in parent maize Ye515 and derivative lines from 2 different populations with 26% and 38% chromosome variation frequencies, respectively. Alien chromatin was detected in the root tip cells of progeny plants through genomic in situ hybridization (GISH). There were 3.3 chromosomes carrying alien chromatin on average in population I and 6.5 in population II. The hybridization signals were located mainly at the terminal or sub terminal regions of the chromosomes and the sizes were notably variant among lines. Based on those results, it is concluded that the introgression of genetic material from Z. mays ssp. mexicana into cultivated maize was facilitated by tissue culture, and subsequently some excellent materials for maize breeding were created. (author)

  2. A Comprehensive Analysis of Alternative Splicing in Paleopolyploid Maize

    Directory of Open Access Journals (Sweden)

    Wenbin Mei

    2017-05-01

    Full Text Available Identifying and characterizing alternative splicing (AS enables our understanding of the biological role of transcript isoform diversity. This study describes the use of publicly available RNA-Seq data to identify and characterize the global diversity of AS isoforms in maize using the inbred lines B73 and Mo17, and a related species, sorghum. Identification and characterization of AS within maize tissues revealed that genes expressed in seed exhibit the largest differential AS relative to other tissues examined. Additionally, differences in AS between the two genotypes B73 and Mo17 are greatest within genes expressed in seed. We demonstrate that changes in the level of alternatively spliced transcripts (intron retention and exon skipping do not solely reflect differences in total transcript abundance, and we present evidence that intron retention may act to fine-tune gene expression across seed development stages. Furthermore, we have identified temperature sensitive AS in maize and demonstrate that drought-induced changes in AS involve distinct sets of genes in reproductive and vegetative tissues. Examining our identified AS isoforms within B73 × Mo17 recombinant inbred lines (RILs identified splicing QTL (sQTL. The 43.3% of cis-sQTL regulated junctions are actually identified as alternatively spliced junctions in our analysis, while 10 Mb windows on each side of 48.2% of trans-sQTLs overlap with splicing related genes. Using sorghum as an out-group enabled direct examination of loss or conservation of AS between homeologous genes representing the two subgenomes of maize. We identify several instances where AS isoforms that are conserved between one maize homeolog and its sorghum ortholog are absent from the second maize homeolog, suggesting that these AS isoforms may have been lost after the maize whole genome duplication event. This comprehensive analysis provides new insights into the complexity of AS in maize.

  3. Intercropping Maize With Legumes for Sustainable Highland Maize Production

    Directory of Open Access Journals (Sweden)

    Adirek Punyalue

    2018-02-01

    Full Text Available Residue burning to prepare soil for maize growing deprives the soil of both protective cover and organic matter, and it exacerbates environmental issues such as Southeast Asia's haze problem. This paper reports on a study that evaluated the effectiveness of maize/legume intercropping as an alternative to maize cultivation with residue burning. Cowpea (Vigna unguiculata, mung bean (V. radiata, rice bean (V. umbellata, and lablab (Lablab purpureus were sown into a standing maize crop 30 days before harvest, and the results were compared with a maize crop grown using residue burning as the method for land preparation at Pang Da Agricultural Station in Chiang Mai, Thailand, in a replicated trial conducted over 3 growing seasons from 2012 to 2014. Intercropping increased maize grain yield by 31–53% and left 70–170% more residue containing 113–230% more nitrogen than the maize sown after residue burning, depending on the legume, and decreased weed dry weight by two-thirds after 2 seasons. Soil biodiversity was enriched by the intercrops, with a doubling in the spore density of arbuscular mycorrhizal fungi in the root-zone soil and increased abundance, diversity (Shannon index, and richness of the soil macrofauna. The abundance of soil animals increased with crop residue dry weight (r = 0.90, P < 0.05 and nitrogen content (r = 0.98, P < 0.01. The effect of intercropping on maize grain yield and accumulation of residue and nitrogen were then confirmed in a participatory experiment involving farmers in 2 highland villages in the Phrao and Chiang Dao districts of Chiang Mai Province with maize and rice bean in 2015. The effects of maize/legume intercropping—increased nitrogen accumulation and crop residue, enhanced soil biodiversity, suppression of weeds, and protection of the soil surface, which enabled the maize to be sown without land clearing with fire—should all contribute to sustainable highland maize production.

  4. Development of maizeSNP3072, a high-throughput compatible SNP array, for DNA fingerprinting identification of Chinese maize varieties.

    Science.gov (United States)

    Tian, Hong-Li; Wang, Feng-Ge; Zhao, Jiu-Ran; Yi, Hong-Mei; Wang, Lu; Wang, Rui; Yang, Yang; Song, Wei

    2015-01-01

    Single nucleotide polymorphisms (SNPs) are abundant and evenly distributed throughout the maize ( Zea mays L.) genome. SNPs have several advantages over simple sequence repeats, such as ease of data comparison and integration, high-throughput processing of loci, and identification of associated phenotypes. SNPs are thus ideal for DNA fingerprinting, genetic diversity analysis, and marker-assisted breeding. Here, we developed a high-throughput and compatible SNP array, maizeSNP3072, containing 3072 SNPs developed from the maizeSNP50 array. To improve genotyping efficiency, a high-quality cluster file, maizeSNP3072_GT.egt, was constructed. All 3072 SNP loci were localized within different genes, where they were distributed in exons (43 %), promoters (21 %), 3' untranslated regions (UTRs; 22 %), 5' UTRs (9 %), and introns (5 %). The average genotyping failure rate using these SNPs was only 6 %, or 3 % using the cluster file to call genotypes. The genotype consistency of repeat sample analysis on Illumina GoldenGate versus Infinium platforms exceeded 96.4 %. The minor allele frequency (MAF) of the SNPs averaged 0.37 based on data from 309 inbred lines. The 3072 SNPs were highly effective for distinguishing among 276 examined hybrids. Comparative analysis using Chinese varieties revealed that the 3072SNP array showed a better marker success rate and higher average MAF values, evaluation scores, and variety-distinguishing efficiency than the maizeSNP50K array. The maizeSNP3072 array thus can be successfully used in DNA fingerprinting identification of Chinese maize varieties and shows potential as a useful tool for germplasm resource evaluation and molecular marker-assisted breeding.

  5. Globalization

    DEFF Research Database (Denmark)

    Plum, Maja

    Globalization is often referred to as external to education - a state of affair facing the modern curriculum with numerous challenges. In this paper it is examined as internal to curriculum; analysed as a problematization in a Foucaultian sense. That is, as a complex of attentions, worries, ways...... of reasoning, producing curricular variables. The analysis is made through an example of early childhood curriculum in Danish Pre-school, and the way the curricular variable of the pre-school child comes into being through globalization as a problematization, carried forth by the comparative practices of PISA...

  6. Globalization

    OpenAIRE

    F. Gerard Adams

    2008-01-01

    The rapid globalization of the world economy is causing fundamental changes in patterns of trade and finance. Some economists have argued that globalization has arrived and that the world is “flat†. While the geographic scope of markets has increased, the author argues that new patterns of trade and finance are a result of the discrepancies between “old†countries and “new†. As the differences are gradually wiped out, particularly if knowledge and technology spread worldwide, the t...

  7. Influence of some environmental factors on maize productivity in ...

    African Journals Online (AJOL)

    Temperature, humidity and direction of the prevailing wind are parts of significant environmental factors, which have greater impact on crop productivity, especially with the recent global climate change. These were researched into on maize seeds planted at three different furrow orientations on the field; Or. 900, Or. 600 and ...

  8. Maize kernel evolution:From teosinte to maize

    Science.gov (United States)

    Maize is the most productive and highest value commodity in the US and around the world: over 1 billion tons were produced each year in 2013 and 2014. Together, maize, rice and wheat comprise over 60% of the world’s caloric intake, with wide regional variability in the importance of each crop. The i...

  9. The evaluation of heterosis for romanian maize germplasm

    International Nuclear Information System (INIS)

    Dorina, B.

    2015-01-01

    In this study, five inbred maize lines and ten F1 cross combinations were evaluated in a completely randomized block, in three recursions, placed in unirrigable conditions at the Agricultural Research Development Station (ARDS) Simnic, in 2009. After the heterosis of the F1 cross combinations was evaluated, high genetic differences between parents were noticed. The obtained results suggested that among the six studied parameters, only two the grain yield and the plant heights are relevant for an objective evaluation of heterosis phenomenon. It is recommended that the 4 x 5 and 1 x 5 cross combinations which recorded (for most of the analyzed parameters) the highest degrees of occurrence, both for heterosis over mid parent and for heterobeltiosis, should be used in the maize breeding program to exploit the hybrid vigor. (author)

  10. Genomic Selection in Plant Breeding: Methods, Models, and Perspectives.

    Science.gov (United States)

    Crossa, José; Pérez-Rodríguez, Paulino; Cuevas, Jaime; Montesinos-López, Osval; Jarquín, Diego; de Los Campos, Gustavo; Burgueño, Juan; González-Camacho, Juan M; Pérez-Elizalde, Sergio; Beyene, Yoseph; Dreisigacker, Susanne; Singh, Ravi; Zhang, Xuecai; Gowda, Manje; Roorkiwal, Manish; Rutkoski, Jessica; Varshney, Rajeev K

    2017-11-01

    Genomic selection (GS) facilitates the rapid selection of superior genotypes and accelerates the breeding cycle. In this review, we discuss the history, principles, and basis of GS and genomic-enabled prediction (GP) as well as the genetics and statistical complexities of GP models, including genomic genotype×environment (G×E) interactions. We also examine the accuracy of GP models and methods for two cereal crops and two legume crops based on random cross-validation. GS applied to maize breeding has shown tangible genetic gains. Based on GP results, we speculate how GS in germplasm enhancement (i.e., prebreeding) programs could accelerate the flow of genes from gene bank accessions to elite lines. Recent advances in hyperspectral image technology could be combined with GS and pedigree-assisted breeding. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Genomic dairy cattle breeding

    DEFF Research Database (Denmark)

    Mark, Thomas; Sandøe, Peter

    2010-01-01

    the thoughts of breeders and other stakeholders on how to best make use of genomic breeding in the future. Intensive breeding has played a major role in securing dramatic increases in milk yield since the Second World War. Until recently, the main focus in dairy cattle breeding was on production traits...... it less accountable to the concern of private farmers for the welfare of their animals. It is argued that there is a need to mobilise a wide range of stakeholders to monitor developments and maintain pressure on breeding companies so that they are aware of the need to take precautionary measures to avoid...

  12. Blé Poitou”, beginning of a participatory project for co-breeding (wheat and legumes)

    OpenAIRE

    Serpolay-Besson , Estelle; Goldringer , Isabelle; Aubin , Thibaud

    2012-01-01

    A group of farmers of the Poitou region in France, already expert in on-farm maize population selection, would like to acquire the same know-how with wheat and legume in co-breeding. They asked INRA to build a participatory breeding project with them with this view. The first year was dedicated to the cultivation and common evaluation of several varieties on a platform. More than having learnt how to breed wheat, the farmers say they have learnt how to observe wheat and are now able to do on-...

  13. PUBLIC SECTOR PLANT BREEDING IN A PRIVATIZING WORLD

    OpenAIRE

    Thirtle, Colin G.; Srinivasan, Chittur S.; Heisey, Paul W.

    2001-01-01

    Intellectual property protection, globalization, and pressure on public budgets in many industrialized countries have shifted the balance of plant breeding activity from the public to the private sector. Several economic factors influence the relative shares of public versus private sector plant breeding activity, with varying results over time, over country, and over crop. The private sector, for example, dominates corn breeding throughout the industrialized world, but public and private act...

  14. Maize variety and method of production

    Science.gov (United States)

    Pauly, Markus; Hake, Sarah; Kraemer, Florian J

    2014-05-27

    The disclosure relates to a maize plant, seed, variety, and hybrid. More specifically, the disclosure relates to a maize plant containing a Cal-1 allele, whose expression results in increased cell wall-derived glucan content in the maize plant. The disclosure also relates to crossing inbreds, varieties, and hybrids containing the Cal-1 allele to produce novel types and varieties of maize plants.

  15. Rapid Cycling Genomic Selection in a Multiparental Tropical Maize Population.

    Science.gov (United States)

    Zhang, Xuecai; Pérez-Rodríguez, Paulino; Burgueño, Juan; Olsen, Michael; Buckler, Edward; Atlin, Gary; Prasanna, Boddupalli M; Vargas, Mateo; San Vicente, Félix; Crossa, José

    2017-07-05

    Genomic selection (GS) increases genetic gain by reducing the length of the selection cycle, as has been exemplified in maize using rapid cycling recombination of biparental populations. However, no results of GS applied to maize multi-parental populations have been reported so far. This study is the first to show realized genetic gains of rapid cycling genomic selection (RCGS) for four recombination cycles in a multi-parental tropical maize population. Eighteen elite tropical maize lines were intercrossed twice, and self-pollinated once, to form the cycle 0 (C 0 ) training population. A total of 1000 ear-to-row C 0 families was genotyped with 955,690 genotyping-by-sequencing SNP markers; their testcrosses were phenotyped at four optimal locations in Mexico to form the training population. Individuals from families with the best plant types, maturity, and grain yield were selected and intermated to form RCGS cycle 1 (C 1 ). Predictions of the genotyped individuals forming cycle C 1 were made, and the best predicted grain yielders were selected as parents of C 2 ; this was repeated for more cycles (C 2 , C 3 , and C 4 ), thereby achieving two cycles per year. Multi-environment trials of individuals from populations C 0, C 1 , C 2 , C 3 , and C 4 , together with four benchmark checks were evaluated at two locations in Mexico. Results indicated that realized grain yield from C 1 to C 4 reached 0.225 ton ha -1 per cycle, which is equivalent to 0.100 ton ha -1  yr -1 over a 4.5-yr breeding period from the initial cross to the last cycle. Compared with the original 18 parents used to form cycle 0 (C 0 ), genetic diversity narrowed only slightly during the last GS cycles (C 3 and C 4 ). Results indicate that, in tropical maize multi-parental breeding populations, RCGS can be an effective breeding strategy for simultaneously conserving genetic diversity and achieving high genetic gains in a short period of time. Copyright © 2017 Zhang et al.

  16. Genome sequence of a 5,310-year-old maize cob provides insights into the early stages of maize domestication

    DEFF Research Database (Denmark)

    Ramos Madrigal, Jazmin; Smith, Bruce D.; Moreno Mayar, José Victor

    2016-01-01

    The complex evolutionary history of maize (Zea mays L. ssp. mays) has been clarified with genomic-level data from modern landraces and wild teosinte grasses [1, 2], augmenting archaeological findings that suggest domestication occurred between 10,000 and 6,250 years ago in southern Mexico [3, 4......]. Maize rapidly evolved under human selection, leading to conspicuous phenotypic transformations, as well as adaptations to varied environments [5]. Still, many questions about the domestication process remain unanswered because modern specimens do not represent the full range of past diversity due...... to abandonment of unproductive lineages, genetic drift, on-going natural selection, and recent breeding activity. To more fully understand the history and spread of maize, we characterized the draft genome of a 5,310-year-old archaeological cob excavated in the Tehuacan Valley of Mexico. We compare this ancient...

  17. Some aspects of cultivation and utilization of waxy maize (Zea mays L. ssp. ceratina

    Directory of Open Access Journals (Sweden)

    Agnieszka Klimek-Kopyra

    2012-10-01

    Full Text Available This paper is a review of available literature on Zea mays L.ssp.ceratina. It contains information on the origin, cul- tivation and utilization of waxy maize in the world and can be a contribution to the development of new research on maize cultivation and starch processing technology. Maize, as an old and economically important cereal, played an enormous role in the ancient civilisations of the New World. Among the maize subspecies compared, Z. mays ssp. indurata and Z. mays ssp. indentata are now the most important in Poland. The subspecies Z. mays ssp. saccharata has a marginal role, while Z. mays ssp. ceratina has not been hitherto cultivated. Decisions to introduce the subspecies Z. mays ssp. ceratina into cultivation are based on different grounds, taking into account both agro-climatic conditions and industrial uses of grain processing products. The growing demand for maize grain, stimulated by the increased demand for maize starch and oil in the global market as raw materials that are important in food production, is an impulse for the development of agrobiological research. The development of the starch industry, associated with the demand for industrial starch, will probably contribute to increased interest in this subspecies in Central Europe, also including Poland. Waxy maize grain can be a major ingredient of high-energy feeds for livestock, replacing in this role the type of maize that has been grown for this purpose until now. A great advantage of waxy maize is its specific structure of starch, due to its unique and high amylopectin content (95-98%, which creates unlimited possibilities of industrial use. Currently, waxy maize acreage in Europe does not exceed 2% of the maize crop area in this continent.

  18. SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines

    Directory of Open Access Journals (Sweden)

    Smith Oscar

    2002-10-01

    Full Text Available Abstract Background Recent studies of ancestral maize populations indicate that linkage disequilibrium tends to dissipate rapidly, sometimes within 100 bp. We set out to examine the linkage disequilibrium and diversity in maize elite inbred lines, which have been subject to population bottlenecks and intense selection by breeders. Such population events are expected to increase the amount of linkage disequilibrium, but reduce diversity. The results of this study will inform the design of genetic association studies. Results We examined the frequency and distribution of DNA polymorphisms at 18 maize genes in 36 maize inbreds, chosen to represent most of the genetic diversity in U.S. elite maize breeding pool. The frequency of nucleotide changes is high, on average one polymorphism per 31 bp in non-coding regions and 1 polymorphism per 124 bp in coding regions. Insertions and deletions are frequent in non-coding regions (1 per 85 bp, but rare in coding regions. A small number (2–8 of distinct and highly diverse haplotypes can be distinguished at all loci examined. Within genes, SNP loci comprising the haplotypes are in linkage disequilibrium with each other. Conclusions No decline of linkage disequilibrium within a few hundred base pairs was found in the elite maize germplasm. This finding, as well as the small number of haplotypes, relative to neutral expectation, is consistent with the effects of breeding-induced bottlenecks and selection on the elite germplasm pool. The genetic distance between haplotypes is large, indicative of an ancient gene pool and of possible interspecific hybridization events in maize ancestry.

  19. Tritium breeding in fusion reactors

    International Nuclear Information System (INIS)

    Abdou, M.A.

    1982-10-01

    Key technological problems that influence tritium breeding in fusion blankets are reviewed. The breeding potential of candidate materials is evaluated and compared to the tritium breeding requirements. The sensitivity of tritium breeding to design and nuclear data parameters is reviewed. A framework for an integrated approach to improve tritium breeding prediction is discussed with emphasis on nuclear data requirements

  20. Participatory breeding: tool for conservation of neglected and underutilized crops

    Directory of Open Access Journals (Sweden)

    Creucí Maria Caetano

    2015-08-01

    Full Text Available Although a significant number of plant species to be recognized as food, only a small fraction meets the protein demand of the world population. Breeding crops, with a very narrow genetic base, most likely will not counteract the adverse effects of climate change. On the contrary, the crops named as underutilized, neglected, orphaned, obsolete or minor, may contain the answers in their genomes to ensure safety and nutrition and food sovereignty of populations. Duly adapted to extreme growing conditions, these local varieties, such as indigenous and landraces of Colombian maize, are part of the cultural heritage of many ethnic groups or original peoples, that select, use and conserve these varieties. Besides these, another concept refers to the promising resources, also little used, although for different reasons. Therefore, Participatory Plant Breeding is a tool to promote traditional local varieties or underutilized crops, to meet the needs of communities. In the PPB, members of the production chain (farmers, breeders, technicians and others work together in the process of development of varieties, in a decentralized and participatory process. A PB program with Colombian maize germplasm resulted in the promotion of some local varieties. Alongside, new maize landraces to Colombia were described.

  1. Association and linkage analysis of aluminum tolerance genes in maize.

    Directory of Open Access Journals (Sweden)

    Allison M Krill

    Full Text Available BACKGROUND: Aluminum (Al toxicity is a major worldwide constraint to crop productivity on acidic soils. Al becomes soluble at low pH, inhibiting root growth and severely reducing yields. Maize is an important staple food and commodity crop in acidic soil regions, especially in South America and Africa where these soils are very common. Al exclusion and intracellular tolerance have been suggested as two important mechanisms for Al tolerance in maize, but little is known about the underlying genetics. METHODOLOGY: An association panel of 282 diverse maize inbred lines and three F2 linkage populations with approximately 200 individuals each were used to study genetic variation in this complex trait. Al tolerance was measured as net root growth in nutrient solution under Al stress, which exhibited a wide range of variation between lines. Comparative and physiological genomics-based approaches were used to select 21 candidate genes for evaluation by association analysis. CONCLUSIONS: Six candidate genes had significant results from association analysis, but only four were confirmed by linkage analysis as putatively contributing to Al tolerance: Zea mays AltSB like (ZmASL, Zea mays aluminum-activated malate transporter2 (ALMT2, S-adenosyl-L-homocysteinase (SAHH, and Malic Enzyme (ME. These four candidate genes are high priority subjects for follow-up biochemical and physiological studies on the mechanisms of Al tolerance in maize. Immediately, elite haplotype-specific molecular markers can be developed for these four genes and used for efficient marker-assisted selection of superior alleles in Al tolerance maize breeding programs.

  2. Tritium breeding materials

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Johnson, C.E.; Abdou, M.

    1984-03-01

    Tritium breeding materials are essential to the operation of D-T fusion facilities. Both of the present options - solid ceramic breeding materials and liquid metal materials are reviewed with emphasis not only on their attractive features but also on critical materials issues which must be resolved

  3. Tritium breeding materials

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Johnson, C.E.; Abdou, M.A.

    1984-01-01

    Tritium breeding materials are essential to the operation of D-T fusion facilities. Both of the present options - solid ceramic breeding materials and liquid metal materials are reviewed with emphasis not only on their attractive features but also on critical materials issues which must be resolved

  4. indigenous cattle breeds

    African Journals Online (AJOL)

    Received 31 August 1996; accepted 20 March /998. Mitochondrial DNA cleavage patterns from representative animals of the Afrikaner and Nguni sanga cattle breeds, indigenous to Southern Africa, were compared to the mitochondrial DNA cleavage patterns of the Brahman (zebu) and the Jersey. (taurine) cattle breeds.

  5. Advances in Maize Transformation Technologies and Development of Transgenic Maize.

    Science.gov (United States)

    Yadava, Pranjal; Abhishek, Alok; Singh, Reeva; Singh, Ishwar; Kaul, Tanushri; Pattanayak, Arunava; Agrawal, Pawan K

    2016-01-01

    Maize is the principal grain crop of the world. It is also the crop where genetic engineering has been employed to a great extent to improve its various traits. The ability to transform maize is a crucial step for application of gene technology in maize improvement. There have been constant improvements in the maize transformation technologies over past several years. The choice of genotype and the explant material to initiate transformation and the different types of media to be used in various stages of tissue culture can have significant impact on the outcomes of the transformation efforts. Various methods of gene transfer, like the particle bombardment, protoplast transformation, Agrobacterium -mediated, in planta transformation, etc., have been tried and improved over years. Similarly, various selection systems for retrieval of the transformants have been attempted. The commercial success of maize transformation and transgenic development is unmatched by any other crop so far. Maize transformation with newer gene editing technologies is opening up a fresh dimension in transformation protocols and work-flows. This review captures the various past and recent facets in improvement in maize transformation technologies and attempts to present a comprehensive updated picture of the current state of the art in this area.

  6. Tritium breeding blanket

    International Nuclear Information System (INIS)

    Smith, D.; Billone, M.; Gohar, Y.; Baker, C.; Mori, S.; Kuroda, T.; Maki, K.; Takatsu, H.; Yoshida, H.; Raffray, A.; Sviatoslavsky, I.; Simbolotti, G.; Shatalov, G.

    1991-01-01

    The terms of reference for ITER provide for incorporation of a tritium breeding blanket with a breeding ratio as close to unity as practical. A breeding blanket is required to assure an adequate supply of tritium to meet the program objectives. Based on specified design criteria, a ceramic breeder concept with water coolant and an austenitic steel structure has been selected as the first option and lithium-lead blanket concept has been chosen as an alternate option. The first wall, blanket, and shield are integrated into a single unit with separate cooling systems. The design makes extensive use of beryllium to enhance the tritium breeding ratio. The design goals with a tritium breeding ratio of 0.8--0.9 have been achieved and the R ampersand D requirements to qualify the design have been identified. 4 refs., 8 figs., 2 tabs

  7. Maize germplasm of eastern Croatia with native resistance to western corn rootworm (Diabrotica virgifera virgifera LeConte

    Directory of Open Access Journals (Sweden)

    Brkić Andrija

    2017-01-01

    Full Text Available The western corn rootworm (Diabrotica virgifera virgifera LeConte; WCR is a serious maize pest in Croatia. The species was first registered in Europe in the early 1990s and since then became one of the most dangerous maize pests, especially in parts of Central and Southeast Europe. Larvae that feed on the maize roots cause the most serious damages in maize fields. Management of this pest is difficult and expensive, with possible serious impact on the environment. Native (or host-plant resistance of maize against WCR could provide new economically and ecologically sustainable options in WCR management. Main goal of this study was to assess the variability of maize germplasm, correlations among resistance traits, and detect potential sources of resistance that could be used in breeding programs in order to develop hybrids with higher level of resistance against WCR. To our knowledge, the first native resistant hybrid is yet to be registered. Results showed great variability of estimated germplasm. Effect of the genotype was significant in all environments, as well as many interactions between genotype and the environment. Significant interactions emphasize the importance of the environment in WCR native resistance research. Significant positive correlations among all traits were detected. Several inbred lines were selected as a potentially useful germplasm for resistance breeding programs.

  8. MaizeGDB: The Maize Genetics and Genomics Database.

    Science.gov (United States)

    Harper, Lisa; Gardiner, Jack; Andorf, Carson; Lawrence, Carolyn J

    2016-01-01

    MaizeGDB is the community database for biological information about the crop plant Zea mays. Genomic, genetic, sequence, gene product, functional characterization, literature reference, and person/organization contact information are among the datatypes stored at MaizeGDB. At the project's website ( http://www.maizegdb.org ) are custom interfaces enabling researchers to browse data and to seek out specific information matching explicit search criteria. In addition, pre-compiled reports are made available for particular types of data and bulletin boards are provided to facilitate communication and coordination among members of the community of maize geneticists.

  9. High-Throughput Phenotyping and QTL Mapping Reveals the Genetic Architecture of Maize Plant Growth1[OPEN

    Science.gov (United States)

    Huang, Chenglong; Wu, Di; Qiao, Feng; Li, Wenqiang; Duan, Lingfeng; Wang, Ke; Xiao, Yingjie; Chen, Guoxing; Liu, Qian; Yang, Wanneng

    2017-01-01

    With increasing demand for novel traits in crop breeding, the plant research community faces the challenge of quantitatively analyzing the structure and function of large numbers of plants. A clear goal of high-throughput phenotyping is to bridge the gap between genomics and phenomics. In this study, we quantified 106 traits from a maize (Zea mays) recombinant inbred line population (n = 167) across 16 developmental stages using the automatic phenotyping platform. Quantitative trait locus (QTL) mapping with a high-density genetic linkage map, including 2,496 recombinant bins, was used to uncover the genetic basis of these complex agronomic traits, and 988 QTLs have been identified for all investigated traits, including three QTL hotspots. Biomass accumulation and final yield were predicted using a combination of dissected traits in the early growth stage. These results reveal the dynamic genetic architecture of maize plant growth and enhance ideotype-based maize breeding and prediction. PMID:28153923

  10. National Breeding System of Dairy Cattle Husbandry

    Directory of Open Access Journals (Sweden)

    Anneke Anggraeni

    1999-05-01

    Full Text Available The husbandry of domestic dairy cattle as one of the components of livestock sub-sector development is hopefully to increase numerously the capacity and the quality on its milk production, to gradually meet national milk demand and face the competitiveness at the global. The achievement of this purpose should be supported by the production of dairy breeding stock in good quality and sufficient number to increase efficiency of both quantity and quality of domestic milk production. One of important aspect that should be prepared is in determining national breeding system of dairy cattle that can function effectively as guidance and regulation for producing, distributing, and using dairy cattle as “domestic breeding stock”. As in other livestock, breeding system of dairy cattle basically constituted of three main subsystems, i.e. production , distribution and marketing, and quality establishment subsystem. The paper discusses some aspects of these three subsystems to give considerable input in preparing the national concept of dairy cattle breeding system. enterprise (Animal Production 1(2: 43-55 (1999 KeyWords: dairy cattle, breeding stock, milk production.

  11. National Breeding System of Dairy Cattle Husbandry

    Directory of Open Access Journals (Sweden)

    K Diwyanto

    1999-05-01

    Full Text Available The husbandry of domestic dairy cattle as one of the components of  livestock sub-sector development is hopefully to increase numerously the capacity and the quality on its milk production, to gradually meet national milk demand and face the competitiveness at the global. The achievement of this purpose should be supported by the production of dairy breeding stock in good quality and sufficient number to increase efficiency of both quantity and quality of domestic milk production. One of important aspect that should be prepared is in determining national breeding system of dairy cattle that can function effectively as guidance and regulation for producing, distributing, and using dairy cattle as “domestic breeding stock”. As in other livestock, breeding system of dairy cattle basically constituted of three main subsystems, i.e. production , distribution and marketing, and quality establishment subsystem. The paper discusses some aspects of these three subsystems to give considerable input in preparing the national concept of dairy cattle breeding system. enterprise (Animal Production 1(2: 43-55 (1999   KeyWords: dairy cattle, breeding stock, milk production.

  12. Welfare in horse breeding

    DEFF Research Database (Denmark)

    Campbell, M.L.H.; Sandøe, Peter

    2015-01-01

    and identifies areas in which data is lacking. We suggest that all methods of horse breeding are associated with potential welfare problems, but also that the judicious use of ARTs can sometimes help to address those problems. We discuss how negative welfare effects could be identified and limited and how...... positive welfare effects associated with breeding might be maximised. Further studies are needed to establish an evidence base about how stressful or painful various breeding procedures are for the animals involved, and what the lifetime welfare implications of ARTs are for future animal generations....

  13. Stability Performance of Inductively Coupled Plasma Mass Spectrometry-Phenotyped Kernel Minerals Concentration and Grain Yield in Maize in Different Agro-Climatic Zones.

    Science.gov (United States)

    Mallikarjuna, Mallana Gowdra; Thirunavukkarasu, Nepolean; Hossain, Firoz; Bhat, Jayant S; Jha, Shailendra K; Rathore, Abhishek; Agrawal, Pawan Kumar; Pattanayak, Arunava; Reddy, Sokka S; Gularia, Satish Kumar; Singh, Anju Mahendru; Manjaiah, Kanchikeri Math; Gupta, Hari Shanker

    2015-01-01

    Deficiency of iron and zinc causes micronutrient malnutrition or hidden hunger, which severely affects ~25% of global population. Genetic biofortification of maize has emerged as cost effective and sustainable approach in addressing malnourishment of iron and zinc deficiency. Therefore, understanding the genetic variation and stability of kernel micronutrients and grain yield of the maize inbreds is a prerequisite in breeding micronutrient-rich high yielding hybrids to alleviate micronutrient malnutrition. We report here, the genetic variability and stability of the kernel micronutrients concentration and grain yield in a set of 50 maize inbred panel selected from the national and the international centres that were raised at six different maize growing regions of India. Phenotyping of kernels using inductively coupled plasma mass spectrometry (ICP-MS) revealed considerable variability for kernel minerals concentration (iron: 18.88 to 47.65 mg kg(-1); zinc: 5.41 to 30.85 mg kg(-1); manganese: 3.30 to 17.73 mg kg(-1); copper: 0.53 to 5.48 mg kg(-1)) and grain yield (826.6 to 5413 kg ha(-1)). Significant positive correlation was observed between kernel iron and zinc within (r = 0.37 to r = 0.52, p kernel minerals concentration and grain yield. Most of the variation was contributed by genotype main effect for kernel iron (39.6%), manganese (41.34%) and copper (41.12%), and environment main effects for both kernel zinc (40.5%) and grain yield (37.0%). Genotype main effect plus genotype-by-environment interaction (GGE) biplot identified several mega environments for kernel minerals and grain yield. Comparison of stability parameters revealed AMMI stability value (ASV) as the better representative of the AMMI stability parameters. Dynamic stability parameter GGE distance (GGED) showed strong and positive correlation with both mean kernel concentrations and grain yield. Inbreds (CM-501, SKV-775, HUZM-185) identified from the present investigation will be useful in

  14. Stability Performance of Inductively Coupled Plasma Mass Spectrometry-Phenotyped Kernel Minerals Concentration and Grain Yield in Maize in Different Agro-Climatic Zones.

    Directory of Open Access Journals (Sweden)

    Mallana Gowdra Mallikarjuna

    Full Text Available Deficiency of iron and zinc causes micronutrient malnutrition or hidden hunger, which severely affects ~25% of global population. Genetic biofortification of maize has emerged as cost effective and sustainable approach in addressing malnourishment of iron and zinc deficiency. Therefore, understanding the genetic variation and stability of kernel micronutrients and grain yield of the maize inbreds is a prerequisite in breeding micronutrient-rich high yielding hybrids to alleviate micronutrient malnutrition. We report here, the genetic variability and stability of the kernel micronutrients concentration and grain yield in a set of 50 maize inbred panel selected from the national and the international centres that were raised at six different maize growing regions of India. Phenotyping of kernels using inductively coupled plasma mass spectrometry (ICP-MS revealed considerable variability for kernel minerals concentration (iron: 18.88 to 47.65 mg kg(-1; zinc: 5.41 to 30.85 mg kg(-1; manganese: 3.30 to 17.73 mg kg(-1; copper: 0.53 to 5.48 mg kg(-1 and grain yield (826.6 to 5413 kg ha(-1. Significant positive correlation was observed between kernel iron and zinc within (r = 0.37 to r = 0.52, p < 0.05 and across locations (r = 0.44, p < 0.01. Variance components of the additive main effects and multiplicative interactions (AMMI model showed significant genotype and genotype × environment interaction for kernel minerals concentration and grain yield. Most of the variation was contributed by genotype main effect for kernel iron (39.6%, manganese (41.34% and copper (41.12%, and environment main effects for both kernel zinc (40.5% and grain yield (37.0%. Genotype main effect plus genotype-by-environment interaction (GGE biplot identified several mega environments for kernel minerals and grain yield. Comparison of stability parameters revealed AMMI stability value (ASV as the better representative of the AMMI stability parameters. Dynamic stability

  15. Grain quality of drought tolerant accessions within the MRI Zemun Polje maize germplasm collection

    Directory of Open Access Journals (Sweden)

    Jelena Vančetović

    2014-01-01

    Full Text Available Maize Research Institute Zemun Polje (MRI gene bank created an elite drought tolerant core collection of 40 accessions, based on field trials and general combining ability with inbred lines from the main heterotic groups (Lancaster, Iowa Stiff Stalk Synthetic - BSSS and Iodent. A total of seven genetic groups were identified. Seven accessions showed good combining abilities with three testers from chosen heterotic groups, thus forming a dinstinctive genetic group (Unknown. In the present research, accessions with drought tolerance were also analyzed for grain quality, as these two traits are becoming highly important due to global warming and population growth. Kernel macronutrients contents (oil, protein and starch were determined using Near Infrared Spectroscopy (NIR. Oil, protein and starch contents were significantly higher in introduced populations than in landraces for 0.43%, 0.12% and 0.85%, respectively (p<0.01. The greatest progress from the selection based on the expected genetic gain (ΔG for 5% selection intensity would be obtained for oil (14.74% followed by protein (10.14%. Landraces showed the least potential for the grain quality improvement due to the lowest expected ΔG for the three macronutrients. The differences between macronutrient content among genetic groups defined them as potentially favourable sources for a specific trait. According to ΔG values, the greatest progress in breeding would be accomplished for increased oil content with accessions from the Unknown group. Identification of the accessions with several favorable traits is valuable for simultaneous breeding for drought tolerance and grain quality.

  16. Grain quality of drought tolerant accessions within the MRI Zemun Polje maize germplasm collection

    Energy Technology Data Exchange (ETDEWEB)

    Vancetovic, J.; Ignjatovic-Micic, D.; Bozinovic, S.; Babbic, M.; Filipovic, M.; Grcic, N.; Andjelkovic, V.

    2014-06-01

    Maize Research Institute Zemun Polje (MRI) gene bank created an elite drought tolerant core collection of 40 accessions, based on field trials and general combining ability with inbred lines from the main heterotic groups (Lancaster, Iowa Stiff Stalk Synthetic . BSSS and Iodent). A total of seven genetic groups were identified. Seven accessions showed good combining abilities with three testers from chosen heterotic groups, thus forming a distinctive genetic group (Unknown). In the present research, accessions with drought tolerance were also analyzed for grain quality, as these two traits are becoming highly important due to global warming and population growth. Kernel macronutrients contents (oil, protein and starch) were determined using Near Infrared Spectroscopy (NIR). Oil, protein and starch contents were significantly higher in introduced populations than in landraces for 0.43%, 0.12% and 0.85%, respectively (p < 0.01). The greatest progress from the selection based on the expected genetic gain ({Delta}G) for 5% selection intensity would be obtained for oil (14.74%) followed by protein (10.14%). Landraces showed the least potential for the grain quality improvement due to the lowest expected {Delta}G for the three macronutrients. The differences between macronutrient content among genetic groups defined them as potentially favourable sources for a specific trait. According to {Delta}G values, the greatest progress in breeding would be accomplished for increased oil content with accessions from the Unknown group. Identification of the accessions with several favorable traits is valuable for simultaneous breeding for drought tolerance and grain quality. (Author)

  17. An integrated functional approach to dissect systemic responses in maize to arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Gerlach, Nina; Schmitz, Jessica; Polatajko, Aleksandra; Schlüter, Urte; Fahnenstich, Holger; Witt, Sandra; Fernie, Alisdair R; Uroic, Kalle; Scholz, Uwe; Sonnewald, Uwe; Bucher, Marcel

    2015-08-01

    Most terrestrial plants benefit from the symbiosis with arbuscular mycorrhizal fungi (AMF) mainly under nutrient-limited conditions. Here the crop plant Zea mays was grown with and without AMF in a bi-compartmented system separating plant and phosphate (Pi) source by a hyphae-permeable membrane. Thus, Pi was preferentially taken up via the mycorrhizal Pi uptake pathway while other nutrients were ubiquitously available. To study systemic effects of mycorrhizal Pi uptake on leaf status, leaves of these plants that display an increased biomass in the presence of AMF were subjected to simultaneous ionomic, transcriptomic and metabolomic analyses. We observed robust changes of the leaf elemental composition, that is, increase of P, S and Zn and decrease of Mn, Co and Li concentration in mycorrhizal plants. Although changes in anthocyanin and lipid metabolism point to an improved P status, a global increase in C versus N metabolism highlights the redistribution of metabolic pools including carbohydrates and amino acids. Strikingly, an induction of systemic defence gene expression and concomitant accumulation of secondary metabolites such as the terpenoids alpha- and beta-amyrin suggest priming of mycorrhizal maize leaves as a mycorrhiza-specific response. This work emphasizes the importance of AM symbiosis for the physiological status of plant leaves and could lead to strategies for optimized breeding of crop species with high growth potential. © 2015 John Wiley & Sons Ltd.

  18. Garlic breeding system innovations

    NARCIS (Netherlands)

    Zheng, S.J.; Kamenetsky, R.; Féréol, L.; Barandiaran, X.; Rabinowitch, H.D.; Chovelon, V.; Kik, C.

    2007-01-01

    This review outlines innovative methods for garlic breeding improvement and discusses the techniques used to increase variation like mutagenesis and in vitro techniques, as well as the current developments in florogenesis, sexual hybridization, genetic transformation and mass propagation. Sexual

  19. Birds - Breeding [ds60

    Data.gov (United States)

    California Natural Resource Agency — This data set provides access to information gathered on annual breeding bird surveys in California using a map layer developed by the Department. This data layer...

  20. Measurements of water uptake of maize roots: insights for traits that influence water transport from the soil

    Science.gov (United States)

    Ahmed, Mutez A.; Zarebanadkouki, Mohsen; Kroener, Eva; Carminati, Andrea

    2015-04-01

    Water availability is a primary constraint to the global crop production. Although maize (Zea mays L.) is one of the most important crops worldwide, there is limited information on the function of different root segments and types in extracting water from soils. Aim of this study was to investigate the location of water uptake in maize roots. We used neutron radiography to: 1) image the spatial distribution of maize roots in soil and 2) trace the transport of injected deuterated water (D2O) in soil and roots. Maize plants were grown in aluminum containers (40×38×1 cm) filled with sandy soil. The soil was partitioned into different compartments using 1-cm-thick layers of coarse sand. When the plants were two weeks-old we injected D2O into selected soil compartments. The experiments were performed during the day (transpiring plants) and night (non transpiring plants). The transport of D2O into roots was simulated using a convection-diffusion numerical model of D2O transport into roots. By fitting the observed D2O transport we quantified the diffusion coefficient and the water uptake of the different root segments. The maize root architecture consisted of a primary root, 4-5 seminal roots and many lateral roots connected to the primary and seminal roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. Both during day and night measurements, D2O entered more quickly into lateral roots than into primary and seminal roots. The quick transport of D2O into laterals was caused by the small radius of lateral roots. The diffusion coefficient of lateral roots (4.68×10-7cm2s-1)was similar to that of the distal segments of seminal roots (4.72×10-7cm2s-1) and higher than of the proximal segments (1.42×10-7cm2s-1). Water uptake of lateral roots (1.64×10-5cms-1)was much higher than that of the distal segments of seminal roots (1.18×10-12cms-1). Water uptake of the proximal seminal segments was negligible. We conclude that the function of lateral

  1. Short communication: QTL mapping for ear tip-barrenness in maize

    Energy Technology Data Exchange (ETDEWEB)

    Ding, J.; Ma, J.; Chen, J.; Ai, T.; Li, Z.; Tian, Z.; Wu, S.; Chen, W.; Wu, J.

    2016-11-01

    Barren tip on corn ear is an important agronomic trait in maize, which is highly associated with grain yield. Understanding the genetic basis of tip-barrenness may help to reduce the ear tip-barrenness in breeding programs. In this study, ear tip-barrenness was evaluated in two environments in a F2:3 population, and it showed significant genotypic variation for ear tip-barrenness in both environments. Using mixed-model composite interval mapping method, three additive effects quantitative trait loci (QTL) for ear tip-barrenness were mapped on chromosomes 2, 3 and 6, respectively. They explained 16.6% of the phenotypic variation, and no significant QTL × Environment interactions and digenic interactions were detected. The results indicated that additive effect was the main genetic basis for ear tip-barrenness in maize. This is the first report of QTL mapped for ear tip-barrenness in maize. (Author)

  2. Evaluation of genotype x environment interactions in maize hybrids using GGE biplot analysis

    Directory of Open Access Journals (Sweden)

    Fatma Aykut Tonk

    2011-01-01

    Full Text Available Seventeen hybrid maize genotypes were evaluated at four different locations in 2005 and 2006 cropping seasonsunder irrigated conditions in Turkey. The analysis of variance showed that mean squares of environments (E, genotypes (G andGE interactions (GEI were highly significant and accounted for 74, 7 and 19 % of treatment combination sum squares, respectively.To determine the effects of GEI on grain yield, the data were subjected to the GGE biplot analysis. Maize hybrid G16 can be proposedas reliably growing in test locations for high grain yield. Also, only the Yenisehir location could be best representative of overalllocations for deciding about which experimental hybrids can be recommended for grain yield in this study. Consequently, using ofgrain yield per plant instead of grain yield per plot in hybrid maize breeding programs could be preferred by private companies dueto some advantages.

  3. Deregulation of Lesotho's maize market

    OpenAIRE

    van Schalkwyk, Herman D.; van Zyl, Johan; Botha, P.W.; Bayley, B.

    1997-01-01

    During the past year, there have been major policy reforms in Lesotho and South Africa with respect to maize pricing and marketing. In Lesotho the impact of deregulation on producers, consumers and government revenues was substantially lower than it should have been, and as a result Lesotho was not able to reap the full benefits of these changes. This is partly because information on the changes to the maize marketing system did not reach the potential beneficiaries of the new system. Free an...

  4. What drives cooperative breeding?

    Directory of Open Access Journals (Sweden)

    Walter D Koenig

    2017-06-01

    Full Text Available Cooperative breeding, in which more than a pair of conspecifics cooperate to raise young at a single nest or brood, is widespread among vertebrates but highly variable in its geographic distribution. Particularly vexing has been identifying the ecological correlates of this phenomenon, which has been suggested to be favored in populations inhabiting both relatively stable, productive environments and in populations living under highly variable and unpredictable conditions. Griesser et al. provide a novel approach to this problem, performing a phylogenetic analysis indicating that family living is an intermediate step between nonsocial and cooperative breeding birds. They then examine the ecological and climatic conditions associated with these different social systems, concluding that cooperative breeding emerges when family living is favored in highly productive environments, followed secondarily by selection for cooperative breeding when environmental conditions deteriorate and within-year variability increases. Combined with recent work addressing the fitness consequences of cooperative breeding, Griesser et al.'s contribution stands to move the field forward by demonstrating that the evolution of complex adaptations such as cooperative breeding may only be understood when each of the steps leading to it are identified and carefully integrated.

  5. EFSA Panel on Genetically Modified Organisms (GMO); Scientific Opinion on application (EFSAGMO- NL-2007-39) for the placing on the market of insect resistant and herbicide tolerant genetically modified maize MON89034 x MON88017 for food and feed uses, import and processing under Regulation (EC

    DEFF Research Database (Denmark)

    Sørensen, Ilona Kryspin

    This opinion reports on an evaluation of a risk assessment for placing on the market the genetically modified herbicide tolerant and insect resistant maize MON89034 x MON88017 for food and feed uses, import and processing. Conventional breeding methods were used in the production of maize MON89034...

  6. Foraging in maize field areas: A risky business?

    Science.gov (United States)

    Boily, Monique; Aras, Philippe; Jumarie, Catherine

    2017-12-01

    In Quebec, Canada, the cultivation of maize dominates the agricultural territory. This crop requires a sustained supply of fertilizers from different sources: chemical, natural or from residual materials (sludge). These amendments contain metallic trace elements, which may lead to metal-contaminated maize pollen, a possible source of prooxidants for the foraging bees. Our objective was to determine whether maize fields environment influences the oxidation processes and the accumulation of metals in bees. A few days prior to pollen shedding, beehives were installed in maize fields: one organically grown (site A) and three conventionally grown (sites B, C and D). Soil, maize pollen and bees were analyzed for metal content. Every 15days, bees were collected and analyzed for peroxidation of lipids, metallothionein-like proteins (MTLPs), proteins, retinoids and lipophilic antioxidants (carotenoids and α-tocopherol). The compound β-carotene was the most abundant in bees from all sites, followed by α-carotene, β-cryptoxanthin, α-cryptoxanthin, zeaxanthin and lutein. Retinaldehyde and retinol varied according to times and sites without demonstrating clear trends. However, significant differences between sites were noted in 13-cis-retinoic acid and two retinoic acid metabolites measured in bees, suggesting alteration in the reduction-oxidation processes. In line with these results, the level of lipid peroxidation was globally higher in sites B, C and D compared with the organic site. Higher concentrations of metals were observed in soil and pollen from the field A, but bees metal contents were equal or less than those measured in bees from other sites. Higher bee MTLP levels were measured in sites B, C and D. For most sampling times, the discriminant analysis revealed that the conditions were distinguished by the oxidation processes in bees. Our data suggest that bees foraging in conventionally grown maize fields are at risk of increased oxidative damages which can

  7. Evaluation of the Morpho-physiology characteristics of maize inbred lines introduced from CIMMYT to identify the best candidates for planting in acidic soil in Jasinga, Indonesia

    Science.gov (United States)

    Lubis, K.; Sutjahjo, S. H.; Syukur, M.; Trikoesoemaningtyas

    2016-08-01

    Technological developments and climate change have affected crop planting strategies. For example, maize production has expanded to sub-optimal lands, including acidic soil common in areas like Indonesia. Breeding programs have created inbred lines of maize introduced from CIMMYT; they were tested locally in acidic soils to determine their adaptability and tolerance mechanisms. Breeds CLA 46 and NEI 9008 were found to be excellent candidates for acidic soil due to their ASI, high number of grains per year, and suitable dry seed weight.

  8. The present state and problems of mutation breeding

    International Nuclear Information System (INIS)

    Balint, Andor

    1983-01-01

    The major achievements and problems of mutation breeding are discussed according to recent international references. Examples for the production of microorganism resistant tobacco, maize, cabbage, disease resistant sugar cane and some freeze resistant plants are listed. Special opportunities offered by mutation to increase photosynthesis and to improve yields are discussed. The significance of the new techniques to produce induced mutants by means of tissue cultures, to fix N 2 for leguminosae and to affect the activities of N 2 fixing microorganisms is emphasized. (V.N.)

  9. Developments in breeding cereals for organic agriculture

    DEFF Research Database (Denmark)

    Wolfe, M.S.; Baresel, J.P.; Desclaux, D.

    2008-01-01

    into the crop can be helped by diversification within the crop, allowing complementation and compensation among plants. Although the problems of breeding cereals for organic farming systems are large, there is encouraging progress. This lies in applications of ecology to organic crop production, innovations......The need for increased sustainability of performance in cereal varieties, particularly in organic agriculture (OA), is limited by the lack of varieties adapted to organic conditions. Here, the needs for breeding are reviewed in the context of three major marketing types, global, regional, local......, in European OA. Currently, the effort is determined, partly, by the outcomes from trials that compare varieties under OA and CA (conventional agriculture) conditions. The differences are sufficiently large and important to warrant an increase in appropriate breeding. The wide range of environments within OA...

  10. Molecular Basis of Resistance to Fusarium Ear Rot in Maize

    Directory of Open Access Journals (Sweden)

    Alessandra Lanubile

    2017-10-01

    Full Text Available The impact of climate change has been identified as an emerging issue for food security and safety, and the increased incidence of mycotoxin contamination in maize over the last two decades is considered a potential emerging hazard. Disease control by chemical and agronomic approaches is often ineffective and increases the cost of production; for this reason the exploitation of genetic resistance is the most sustainable method for reducing contamination. The review focuses on the significant advances that have been made in the development of transcriptomic, genetic and genomic information for maize, Fusarium verticillioides molds, and their interactions, over recent years. Findings from transcriptomic studies have been used to outline a specific model for the intracellular signaling cascade occurring in maize cells against F. verticillioides infection. Several recognition receptors, such as receptor-like kinases and R genes, are involved in pathogen perception, and trigger down-stream signaling networks mediated by mitogen-associated protein kinases. These signals could be orchestrated primarily by hormones, including salicylic acid, auxin, abscisic acid, ethylene, and jasmonic acid, in association with calcium signaling, targeting multiple transcription factors that in turn promote the down-stream activation of defensive response genes, such as those related to detoxification processes, phenylpropanoid, and oxylipin metabolic pathways. At the genetic and genomic levels, several quantitative trait loci (QTL and single-nucleotide polymorphism markers for resistance to Fusarium ear rot deriving from QTL mapping and genome-wide association studies are described, indicating the complexity of this polygenic trait. All these findings will contribute to identifying candidate genes for resistance and to applying genomic technologies for selecting resistant maize genotypes and speeding up a strategy of breeding to contrast disease, through plants

  11. IMAZAPYR-RESISTANT MAIZE TECHNOLOGY ADOPTION FOR ...

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    decisions by protecting maize (Zea mays L.) crop in western Kenya from Striga. Key Words: Adopters, Zea ... Africa, efficient and profitable production of maize is severely constrained by ..... gap by understanding its source. African. Journal of ...

  12. Utility of RNA Sequencing for Analysis of Maize Reproductive Transcriptomes

    Directory of Open Access Journals (Sweden)

    Rebecca M. Davidson

    2011-11-01

    Full Text Available Transcriptome sequencing is a powerful method for studying global expression patterns in large, complex genomes. Evaluation of sequence-based expression profiles during reproductive development would provide functional annotation to genes underlying agronomic traits. We generated transcriptome profiles for 12 diverse maize ( L. reproductive tissues representing male, female, developing seed, and leaf tissues using high throughput transcriptome sequencing. Overall, ∼80% of annotated genes were expressed. Comparative analysis between sequence and hybridization-based methods demonstrated the utility of ribonucleic acid sequencing (RNA-seq for expression determination and differentiation of paralagous genes (∼85% of maize genes. Analysis of 4975 gene families across reproductive tissues revealed expression divergence is proportional to family size. In all pairwise comparisons between tissues, 7 (pre- vs. postemergence cobs to 48% (pollen vs. ovule of genes were differentially expressed. Genes with expression restricted to a single tissue within this study were identified with the highest numbers observed in leaves, endosperm, and pollen. Coexpression network analysis identified 17 gene modules with complex and shared expression patterns containing many previously described maize genes. The data and analyses in this study provide valuable tools through improved gene annotation, gene family characterization, and a core set of candidate genes to further characterize maize reproductive development and improve grain yield potential.

  13. Bridging the phenotypic and genetic data useful for integrated breeding through a data annotation using the Crop Ontology developed by the crop communities of practice

    Directory of Open Access Journals (Sweden)

    Rosemary eShrestha

    2012-08-01

    Full Text Available The Crop Ontology (CO of the Generation Challenge Program (GCP (http://cropontology.org/ is developed for the Integrated Breeding Platform (https://www.integratedbreeding.net/ by several centers of The Consultative Group on International Agricultural Research (CGIAR: Bioversity, CIMMYT, CIP, ICRISAT, IITA, and IRRI. Integrated breeding necessitates that breeders access genotypic and phenotypic data related to a given trait. The Crop Ontology provides validated trait names used by the crop communities of practice for harmonizing the annotation of phenotypic and genotypic data and thus supporting data accessibility and discovery through web queries. The trait information is completed by the description of the measurement methods and scales, and images. The trait dictionaries used to produce the Integrated Breeding (IB fieldbooks are synchronized with the Crop Ontology terms for an automatic annotation of the phenotypic data measured in the field. The IB fieldbook provides breeders with direct access to the CO to get additional descriptive information on the traits. Ontologies and trait dictionaries are online for cassava, chickpea, common bean, groundnut, maize, Musa, potato, rice, sorghum and wheat. Online curation and annotation tools facilitate (http://cropontology.org direct maintenance of the trait information and production of trait dictionaries by the crop communities. An important feature is the cross referencing of CO terms with the Crop database trait ID and with their synonyms in Plant Ontology and Trait Ontology. Web links between cross referenced terms in CO provide online access to data annotated with similar ontological terms, particularly the genetic data in Gramene (University of Cornell or the evaluation and climatic data in the Global Repository of evaluation trials of the Climate Change, Agriculture and Food Security programme (CCAFS. Cross-referencing and annotation will be further applied in the Integrated Breeding Platform.

  14. A model of a successful utilization of a high genetic potential of maize yield

    Directory of Open Access Journals (Sweden)

    Pavlov Milovan

    2008-01-01

    Full Text Available The principle of a system, defined as a ZP system, implying corresponding relationship among research, seed production and seed marketing, is that each segment within the system has its tasks and responsibilities, as well as, a clear interest. This system was established at the Maize Research Institute, Zemun Polje, almost half a century ago. The crucial characteristic is that this system encompasses obtained results of scientific accomplishments (patent - a released hybrid, optimal utilisation of the environmental conditions, facilities for seed drying, processing and packing, staff and transport capacities. The ZP system provides the economic interest of all participants in studies and the maize seed production. The fundamental base of the quality seed production within the ZP system is a multidisciplinary programme on maize breeding, as well as, 535 released hybrids with standard and specific traits. According to regulations in foreign countries, approximately 100 ZP maize hybrids have been released abroad. Agroecological conditions in Serbia are favorable for the development of the best genotypes and the production of basic and certified maize seed. There 10 processing plants that apply recent technologies in the maize seed processing procedure. Several generations of experts have been trained and gained experience within the maize seed production. Three seed testing laboratories have been accredited by the International Seed Testing Association. According to regulations in Serbia, monitoring of seed production under field conditions, and further on, during the processing practice is done only by designate authorities. This study presents one of successful systems of the seed production organization applicable in countries with similar conditions.

  15. Development of breeding objectives for beef cattle breeding ...

    African Journals Online (AJOL)

    Mnr J F Kluyts

    However, to solve the simultaneous equations the ... The aggregate breeding value represents a fundamental concept, the breeding objective, which is ..... Two properties characterise a linear programming problem. The first is additivity, ...

  16. Maize Bioactive Peptides against Cancer

    Science.gov (United States)

    Díaz-Gómez, Jorge L.; Castorena-Torres, Fabiola; Preciado-Ortiz, Ricardo E.; García-Lara, Silverio

    2017-06-01

    Cancer is one of the main chronic degenerative diseases worldwide. In recent years, consumption of whole-grain cereals and their derived food products has been associated with reduction risks of various types of cancer. Cereals main biomolecules includes proteins, peptides, and amino acids present in different quantities within the grain. The nutraceutical properties associated with peptides exerts biological functions that promote health and prevent this disease. In this review, we report the current status and advances on maize peptides regarding bioactive properties that have been reported such as antioxidant, antihypertensive, hepatoprotective, and anti-tumour activities. We also highlighted its biological potential through which maize bioactive peptides exert anti-cancer activity. Finally, we analyse and emphasize the possible areas of application for maize peptides.

  17. Conservation priorities of Iberoamerican pig breeds and their ancestors based on microsatellite information.

    Science.gov (United States)

    Cortés, O; Martinez, A M; Cañon, J; Sevane, N; Gama, L T; Ginja, C; Landi, V; Zaragoza, P; Carolino, N; Vicente, A; Sponenberg, P; Delgado, J V

    2016-07-01

    Criollo pig breeds are descendants from pigs brought to the American continent starting with Columbus second trip in 1493. Pigs currently play a key role in social economy and community cultural identity in Latin America. The aim of this study was to establish conservation priorities among a comprehensive group of Criollo pig breeds based on a set of 24 microsatellite markers and using different criteria. Spain and Portugal pig breeds, wild boar populations of different European geographic origins and commercial pig breeds were included in the analysis as potential genetic influences in the development of Criollo pig breeds. Different methods, differing in the weight given to within- and between-breed genetic variability, were used in order to estimate the contribution of each breed to global genetic diversity. As expected, the partial contribution to total heterozygosity gave high priority to Criollo pig breeds, whereas Weitzman procedures prioritized Iberian Peninsula breeds. With the combined within- and between-breed approaches, different conservation priorities were achieved. The Core Set methodologies highly prioritized Criollo pig breeds (Cr. Boliviano, Cr. Pacifico, Cr. Cubano and Cr. Guadalupe). However, weighing the between- and within-breed components with FST and 1-FST, respectively, resulted in higher contributions of Iberian breeds. In spite of the different conservation priorities according to the methodology used, other factors in addition to genetic information also need to be considered in conservation programmes, such as the economic, cultural or historical value of the breeds involved.

  18. Sugar beet breeding

    Science.gov (United States)

    Sugar beet is a recent crop developed solely for extraction of the sweetener sucrose. Breeding and improvement of Beta vulgaris for sugar has a rich historical record. Sugar beet originated from fodder beet in the 1800s, and selection has increased sugar content from 4 to 6% then to over 18% today. ...

  19. Penguin breeding in Edinburgh

    NARCIS (Netherlands)

    Gillespie, T.H.; F.R.S.E.,; F.Z.S.,

    1939-01-01

    The Scottish National Zoological Park at Edinburgh has been notably successful in keeping and breeding penguins. It is happy in possessing as a friend and benefactor, Mr Theodore E. Salvesen, head of the firm of Christian Salvesen & Co., Leith, to whose interest and generosity it owes the great

  20. Beyond breeding area management

    DEFF Research Database (Denmark)

    Pedersen, Lykke; Thorup, Kasper; Tøttrup, Anders P.

    Every year, billions of songbirds migrate thousands of kilometres between their European breeding grounds and African overwintering area. As migratory birds are dependent on resources at a number of sites varying in both space and time, they are likely to be more vulnerable to environmental chang...... and provide important information for conservation management of migratory birds....

  1. Plant breeding and genetics

    Science.gov (United States)

    The ultimate goal of plant breeding is to develop improved crops. Improvements can be made in crop productivity, crop processing and marketing, and/or consumer quality. The process of developing an improved cultivar begins with intercrossing lines with high performance for the traits of interest, th...

  2. Mutation breeding in mangosteen

    International Nuclear Information System (INIS)

    Mohd Khalid Mohd Zain

    2002-01-01

    Mangosteen the queen of the tropical fruits is apomitic and only a cultivar is reported and it reproduces asexually. Conventional breeding is not possible and the other methods to create variabilities are through genetic engineering and mutation breeding. The former technique is still in the infantry stage in mangosteen research while the latter has been an established tool in breeding to improve cultivars. In this mutation breeding seeds of mangosteen were irradiated using gamma rays and the LD 50 for mangosteen was determined and noted to be very low at 10 Gy. After sowing in the seedbed, the seedlings were transplanted in polybags and observed in the nursery bed for about one year before planted in the field under old oil palm trees in Station MARDI, Kluang. After evaluation and screening, about 120 mutant mangosteen plants were selected and planted in Kluang. The plants were observed and some growth data taken. There were some mutant plants that have good growth vigour and more vigorous that the control plants. The trial are now in the fourth year and the plants are still in the juvenile stage. (Author)

  3. Plant Breeding Goes Microbial

    NARCIS (Netherlands)

    Wei, Zhong; Jousset, Alexandre

    Plant breeding has traditionally improved traits encoded in the plant genome. Here we propose an alternative framework reaching novel phenotypes by modifying together genomic information and plant-associated microbiota. This concept is made possible by a novel technology that enables the

  4. Putting the Function in Maize Genomics

    Directory of Open Access Journals (Sweden)

    Stephen P. Moose

    2009-07-01

    Full Text Available The 51st Maize Genetics Conference was held March 12–15, 2009 at Pheasant Run Resort in St. Charles, Illinois. Nearly 500 attendees participated in a scientific program (available at covering a wide range of topics which integrate the rich biology of maize with recent discoveries in our understanding of the highly dynamic maize genome. Among the many research themes highlighted at the conference, the historical emphasis on studying the tremendous phenotypic diversity of maize now serves as the foundation for maize as a leading experimental system to characterize the mechanisms that generate variation in complex plant genomes and associate evolutionary change with phenotypes of interest.

  5. Mutation breeding newsletter. No. 45

    International Nuclear Information System (INIS)

    2001-07-01

    This issue of the Mutation Breeding newsletter contains 39 articles dealing with radiation induced mutations and chemical mutagenesis techniques in plant breeding programs with the aims of improving crop productivity and disease resistance as well as exploring genetic variabilities

  6. Attraction, Feeding Preference, and Performance of Spodoptera frugiperda Larvae (Lepidoptera: Noctuidae) Reared on Two Varieties of Maize.

    Science.gov (United States)

    De La Rosa-Cancino, Wilmar; Rojas, Julio C; Cruz-Lopez, Leopolodo; Castillo, Alfredo; Malo, Edi A

    2016-04-01

    The fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), is an economically important pest of maize and other crops in the Americas. Studies suggest that modern varieties of maize lost some of their natural defense mechanisms against herbivores during domestication and agricultural selection. In the present study, we evaluated the attraction, feeding preference (host fidelity and consumption rate), and performance of S. frugiperda larvae reared on hybrid (Pioneer P4063W) and landrace (Tuxpeño) varieties of maize. We also evaluated the damage caused by S. frugiperda to Pioneer and Tuxpeño maize plants in the field. We found that fifth-instar larvae were more attracted to Pioneer plants than to Tuxpeño plants in a Y-tube olfactometer. Additionally, the fall armyworm larvae showed more fidelity to Pioneer leaves than to Tuxpeño leaves. However, the larval consumption rate was similar for both types of maize plants. The life cycle of S. frugiperda was significantly longer when the larvae were reared on Tuxpeño leaves than on Pioneer leaves. In the field, the Pioneer variety was infested with more S. frugiperda larvae than the Tuxpeño variety. Thus, our results provide evidence that modern varieties of maize may have lost some of their defensive traits during selective breeding. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Production of antihypertensive peptides by enzymatic zein hydrolysate from maize-zea mays ssp. mexicana introgression line

    International Nuclear Information System (INIS)

    Wang, L.; Zhang, X.; Qiao, Y.; Qu, M.

    2014-01-01

    Teosintes are essential gene reservoir for maize breeding improvement, among which Zea mays ssp. mexicana has many valuable traits deserved to be transferred into maize genetic background. In this study, one maize-teosinte introgression line SD00100 was selected from the population of Zea mays ssp. mexicana as wild parent. This introgression line manifested the outstanding agricultural traits similar to maize parent Ye 515 and alien genetic material was identified by genomic in situ hybridization (GISH). To produce bioactive peptides with potent angiotensin converting enzyme (ACE) inhibitory activity, zein extracted from endosperm meal was then undergone enzymatic hydrolysis with thermolysin and the hydrolysate was then filtered through a 3 kDa cut-off membrane. ACE inhibitory activity of permeate from Ye 515 and SD00100 was evaluated by RP-HPLC. The IC50 values of the peptides obtained from maize parent and the introgression line were 96.9 micro g/ml and 22.9 micro g/ml, respectively, with significant difference between them. Our results showed that an outstanding inbred maize line was obtained for production of antihypertensive peptides as well as for further development of functional food. (author)

  8. Effects of airborne black carbon pollution on maize

    Science.gov (United States)

    Illes, Bernadett; Anda, Angela; Soos, Gabor

    2013-04-01

    The black carbon (BC) changes the radiation balance of the Earth and contributes to global warming. The airborne BC deposited on the surface of plant, changing the radiation balance, water balance and the total dry matter (TDM) content of plant. The objective of our study was to investigate the impact of soot originated from motor vehicle exhaust on maize. The field experiment was carried out in Keszthely Agrometeorological Research Station (Hungary) in three consecutive years (2010, 2011, 2012) of growing season. The test plant was the maize hybrid Sperlona (FAO 340) with short growing season. The BC was chemically "pure", which means that it is free any contaminants (e.g. heavy metals). The BC was coming from the Hankook Tyre Company (Dunaújváros, Hungary), where used that for improve the wear resistance of tires. We used a motorised sprayer of SP 415 type to spray the BC onto the leaf surface. The leaf area index (LAI) was measured each week on the same 12 sample maize in each treatment using an LI 3000A automatic planimeter (LI-COR, Lincoln, NE). Albedo was measured by pyranometers of the CMA-11 type (Kipp & Zonen, Vaisala), what we placed the middle of the plot of 0.3 ha. The effects of BC were studied under two different water supplies: evapotranspirometers of Thornthwaite type were used for "ad libitum" treatment and rainfed treatment in field plots. In 2010 and 2012, a big difference was not observed in the case of LAI in the effects of BC. However, in 2011 there was a significant difference. The LAI of the BC polluted maize was higher (10-15%, P<0.05), than the LAI of the control maize in the rainfed plot and in the ET chambers, respectively. The albedo of the BC contaminated maize decreased (15-30%, P<0.05) in all three years. We also detected that the green plant surface of maize increased on BC contaminated treatment. These results may suggest that the plant is able to absorb the additional carbon source through the leaves. The albedo decreased

  9. Methods to classify maize cultivars in use efficiency and response to nitrogen

    Directory of Open Access Journals (Sweden)

    Cleiton Lacerda Godoy

    2013-10-01

    Full Text Available n plant breeding programs that aim to obtain cultivars with nitrogen (N use efficiency, the focus is on methods of selection and experimental procedures that present low cost, fast response, high repeatability, and can be applied to a large number of cultivars. Thus, the objectives of this study were to classify maize cultivars regarding their use efficiency and response to N in a breeding program, and to validate the methodology with contrasting doses of the nutrient. The experimental design was a randomized block with the treatments arranged in a split-plot scheme with three replicates and five N doses (0, 30, 60, 120 and 200 kg ha-1 in the plots, and six cultivars in subplots. We compared a method examining the efficiency and response (ER with two contrasting doses of N. After that, the analysis of variance, mean comparison and regression analysis were performed. In conclusion, the method of the use efficiency and response based on two N levels classifies the cultivars in the same way as the regression analysis, and it is appropriate in plant breeding routine. Thus, it is necessary to identify the levels of N required to discriminate maize cultivars in conditions of low and high N availability in plant breeding programs that aim to obtain efficient and responsive cultivars. Moreover, the analysis of the interaction genotype x environment at experiments with contrasting doses is always required, even when the interaction is not significant.

  10. Quantitative trait loci mapping of western corn rootworm (Coleoptera: Chrysomelidae) host plant resistance in two populations of doubled haploid lines in maize (Zea mays L.)

    Science.gov (United States)

    Over the last 70 years, more than 12,000 maize accessions have been screened for their level of resistance to western corn rootworm, Diabrotica virgifera virgifera LeConte, larval feeding. Less than 1% of this germplasm was selected for initiating recurrent selection or other breeding programs. Sele...

  11. Creation of a high yielding recombinant maize hybrid for the production of a microbicide for the prevention of HIV-1 transmission

    CSIR Research Space (South Africa)

    Barros, E

    2010-06-01

    Full Text Available The aim of this study was to use conventional breeding to increase the production in maize of the human monoclonal antibody 2G12, known to have potential therapeutic properties in the prevention of HIV-1 transmission. The recombinant antibody...

  12. Maize starch biphasic pasting curves

    CSIR Research Space (South Africa)

    Nelles, EM

    2000-05-01

    Full Text Available (150–500 rev/min). The second pasting peak is attributed to the formation of complexes between amylose and low levels of lipid present in maize starch. When lipid was partially removed by extraction with methanol-chloroform (1: 3 v/v), the second...

  13. Using observed warming to identify hazards to Mozambique maize production

    Science.gov (United States)

    Funk, Christopher C.; Harrison, Laura; Eilerts, Gary

    2011-01-01

    New Perspectives on Crop Yield Constraints because of Climate Change. Climate change impact assessments usually focus on changes to precipitation because most global food production is from rainfed cropping systems; however, other aspects of climate change may affect crop growth and potential yields.A recent (2011) study by the University of California, Santa Barbara (UCSB) Climate Hazards Group, determined that climate change may be affecting Mozambique's primary food crop in a usually overlooked, but potentially significant way (Harrison and others, 2011). The study focused on the direct relation between maize crop development and growing season temperature. It determined that warming during the past three decades in Mozambique may be causing more frequent crop stress and yield reductions in that country's maize crop, independent of any changes occurring in rainfall. This report summarizes the findings and conclusions of that study.

  14. Mutation breeding in peas

    Energy Technology Data Exchange (ETDEWEB)

    Jaranowski, J [Institute of Genetics and Plant Breeding, Academy of Agriculture, Poznan (Poland); Micke, A [Joint FAO/IAEA Division of Isotope and Radiation Applications of Atomic Energy for Food and Agricultural Development, International Atomic Energy Agency, Vienna (Austria)

    1985-02-01

    The pea as an ancient crop plant still today has wide uses and is an import source of food protein. It is also an important object for genetic studies and as such has been widely used in mutation induction experiments. However, in comparison with cereals this ancient crop plant (like several other grain legumes) has gained relatively little from advances in breeding. The review focuses on the prospects of genetic improvement of pea by induced mutations, discusses principles and gives methodological information. (author)

  15. Mutation breeding in peas

    International Nuclear Information System (INIS)

    Jaranowski, J.; Micke, A.

    1985-01-01

    The pea as an ancient crop plant still today has wide uses and is an import source of food protein. It is also an important object for genetic studies and as such has been widely used in mutation induction experiments. However, in comparison with cereals this ancient crop plant (like several other grain legumes) has gained relatively little from advances in breeding. The review focuses on the prospects of genetic improvement of pea by induced mutations, discusses principles and gives methodological information. (author)

  16. Overexpression of a modiifed AM79 aroA gene in transgenic maize confers high tolerance to glyphosate

    Institute of Scientific and Technical Information of China (English)

    REN Zhen-jing; CAO Gao-yi; ZHANG Yu-wen; LIU Yan; LIU Yun-jun

    2015-01-01

    It has previously been shown that a bacterial 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) encoding gene AM79 aroA can be a candidate gene to develop glyphosate-tolerant transgenic crops (Cao et al. 2012). In this study, AM79 aroA was redesigned using the plant biased codons and eliminating the motifs which would lead to the instability of mRNA, to create a synthetic gene that would be expressed highly in plant cel s. The redesigned and artiifcial y synthesized gene, named as mAM79, was cloned into plant expression vector pM3301UbiSpAM79, where mAM79 is fused with signal peptide sequence of pea rib-1,5-bisphospate carboxylase (rbcS) smal subunit and control ed by ubiquitin promoter. The plasmid was transformed into maize (Zea mays) immature embryos using Agrobacterium-mediated transformation method. Total 74 regenerated plants were obtained and PCR analysis showed that these transgenic plants had the integration of mAM79. Southern blot analysis was performed on the genomic DNA from four transgenic lines, and the result showed that one or two copies of mAM79 were integrated into maize genome. RT-PCR analysis result indicated that mAM79 was highly transcribed in transgenic maize plants. When sprayed with glyphosate, transgenic maize line AM85 and AM72 could tolerate 4-fold of commercial usage of glyphosate;however, al the non-transgenic maize plants were kil ed by glyphosate. The results in this study conifrmed that mAM79 could be used to develop glyphosate-tolerant maize, and the obtained transgenic maize lines could be used for the breeding of glyphosate-tolerant maize.

  17. Plant breeding and genetics newsletter. No. 13

    International Nuclear Information System (INIS)

    2004-06-01

    This issue reports on the creation of the Agency's Subprogramme of Sustainable Intensification of Crop Production Systems (E1) through the merger of the Soils and Plant Breeding and Genetics Subprogrammes together with part of the Entomology Subprogramme activities. Implementation of a new Coordinated Research Project (CRP) on the Effects of Mutagenic Agents on the DNA Sequence in Plants, and the successful submission of a new CRP proposal on Pyramiding of Mutated Genes Contributing to Crop Quality and Resistance to Stress Affecting Quality were among the major activities of our Subprogramme during the last six months. We actively participated in the International Year of Rice (IYR 2004) events such as the Meeting of the Informal International Working Group on the International Year of Rice (IIWG) and the FAO Rice Conference on Rice in Global Markets and Sustainable Production Systems (Rome, Italy), both in February this year. A lot of work has been concentrated this last semester on the preparation of Programme and Budget for the biennium 2006-2007 and the appraisal of TC proposals for the biennium 2005-2006. The Mutation Breeding Newsletter and the Mutation Breeding Review will merge to become the Mutation Breeding Newsletter and Reviews (MBN and R). Starting at the end of July, the MBN and R will appear on a regular basis

  18. The Genetic Basis of Natural Variation in Kernel Size and Related Traits Using a Four-Way Cross Population in Maize.

    Science.gov (United States)

    Chen, Jiafa; Zhang, Luyan; Liu, Songtao; Li, Zhimin; Huang, Rongrong; Li, Yongming; Cheng, Hongliang; Li, Xiantang; Zhou, Bo; Wu, Suowei; Chen, Wei; Wu, Jianyu; Ding, Junqiang

    2016-01-01

    Kernel size is an important component of grain yield in maize breeding programs. To extend the understanding on the genetic basis of kernel size traits (i.e., kernel length, kernel width and kernel thickness), we developed a set of four-way cross mapping population derived from four maize inbred lines with varied kernel sizes. In the present study, we investigated the genetic basis of natural variation in seed size and other components of maize yield (e.g., hundred kernel weight, number of rows per ear, number of kernels per row). In total, ten QTL affecting kernel size were identified, three of which (two for kernel length and one for kernel width) had stable expression in other components of maize yield. The possible genetic mechanism behind the trade-off of kernel size and yield components was discussed.

  19. Effects of crossing of domestic breed with beef breeds on the quality of meat in PR China and Republic of Serbia

    OpenAIRE

    Aleksić, S.; Fang, Sun; Di, Liu; Petrović, M.M.; Pantelić, V.; Stanišić, N.; Ostojić-Andrić, D.; Petričević, M.; Nikšić, D.; Delić, N.

    2013-01-01

    This paper presents the results of crossing Domestic Spotted breed with beef cattle breeds in the People's Republic of China and the Republic of Serbia. China is a big country of beef production and consumption. In 2012, beef production in China was 5,540,000 tons, which accounted for 9.7% of the global beef production, ranking the third in the world. The main sources of China’s beef are from crossbreeding cattle (native breed crossbred with foreign beef ca...

  20. Domesticated, Genetically Engineered, and Wild Plant Relatives Exhibit Unintended Phenotypic Differences: A Comparative Meta-Analysis Profiling Rice, Canola, Maize, Sunflower, and Pumpkin

    Directory of Open Access Journals (Sweden)

    Alejandra Hernández-Terán

    2017-12-01

    Full Text Available Agronomic management of plants is a powerful evolutionary force acting on their populations. The management of cultivated plants is carried out by the traditional process of human selection or plant breeding and, more recently, by the technologies used in genetic engineering (GE. Even though crop modification through GE is aimed at specific traits, it is possible that other non-target traits can be affected by genetic modification due to the complex regulatory processes of plant metabolism and development. In this study, we conducted a meta-analysis profiling the phenotypic consequences of plant breeding and GE, and compared modified cultivars with wild relatives in five crops of global economic and cultural importance: rice, maize, canola, sunflower, and pumpkin. For these five species, we analyzed the literature with documentation of phenotypic traits that are potentially related to fitness for the same species in comparable conditions. The information was analyzed to evaluate whether the different processes of modification had influenced the phenotype in such a way as to cause statistical differences in the state of specific phenotypic traits or grouping of the organisms depending on their genetic origin [wild, domesticated with genetic engineering (domGE, and domesticated without genetic engineering (domNGE]. In addition, we tested the hypothesis that, given that transgenic plants are a construct designed to impact, in many cases, a single trait of the plant (e.g., lepidopteran resistance, the phenotypic differences between domGE and domNGE would be either less (or inexistent than between the wild and domesticated relatives (either domGE or domNGE. We conclude that (1 genetic modification (either by selective breeding or GE can be traced phenotypically when comparing wild relatives with their domesticated relatives (domGE and domNGE and (2 the existence and the magnitude of the phenotypic differences between domGE and domNGE of the same crop

  1. Extraction and characterization of natural cellulose fibers from maize tassel

    CSIR Research Space (South Africa)

    Maepa, CE

    2015-04-01

    Full Text Available This article reports on the extraction and characterization of novel natural cellulose fibers obtained from the maize (tassel) plant. Cellulose was extracted from the agricultural residue (waste biomaterial) of maize tassel. The maize tassel fibers...

  2. Aflatoxin levels in maize and maize products during the 2004 food ...

    African Journals Online (AJOL)

    Aflatoxin levels in maize and maize products during the 2004 food poisoning ... district were received at the National Public Health Laboratory Services (NPHLS). On analysis, they were found to be highly contaminated with aflatoxin B1.

  3. Transcriptomic response of maize primary roots to low temperatures at seedling emergence.

    Science.gov (United States)

    Di Fenza, Mauro; Hogg, Bridget; Grant, Jim; Barth, Susanne

    2017-01-01

    Maize ( Zea mays ) is a C 4 tropical cereal and its adaptation to temperate climates can be problematic due to low soil temperatures at early stages of establishment. In the current study we have firstly investigated the physiological response of twelve maize varieties, from a chilling condition adapted gene pool, to sub-optimal growth temperature during seedling emergence. To identify transcriptomic markers of cold tolerance in already adapted maize genotypes, temperature conditions were set below the optimal growth range in both control and low temperature groups. The conditions were as follows; control (18 °C for 16 h and 12 °C for 8 h) and low temperature (12 °C for 16 h and 6 °C for 8 h). Four genotypes were identified from the condition adapted gene pool with significant contrasting chilling tolerance. Picker and PR39B29 were the more cold-tolerant lines and Fergus and Codisco were the less cold-tolerant lines. These four varieties were subjected to microarray analysis to identify differentially expressed genes under chilling conditions. Exposure to low temperature during establishment in the maize varieties Picker, PR39B29, Fergus and Codisco, was reflected at the transcriptomic level in the varieties Picker and PR39B29. No significant changes in expression were observed in Fergus and Codisco following chilling stress. A total number of 64 genes were differentially expressed in the two chilling tolerant varieties. These two varieties exhibited contrasting transcriptomic profiles, in which only four genes overlapped. We observed that maize varieties possessing an enhanced root growth ratio under low temperature were more tolerant, which could be an early and inexpensive measure for germplasm screening under controlled conditions. We have identified novel cold inducible genes in an already adapted maize breeding gene pool. This illustrates that further varietal selection for enhanced chilling tolerance is possible in an already preselected gene pool.

  4. Transcriptomic response of maize primary roots to low temperatures at seedling emergence

    Directory of Open Access Journals (Sweden)

    Mauro Di Fenza

    2017-01-01

    Full Text Available Background Maize (Zea mays is a C4 tropical cereal and its adaptation to temperate climates can be problematic due to low soil temperatures at early stages of establishment. Methods In the current study we have firstly investigated the physiological response of twelve maize varieties, from a chilling condition adapted gene pool, to sub-optimal growth temperature during seedling emergence. To identify transcriptomic markers of cold tolerance in already adapted maize genotypes, temperature conditions were set below the optimal growth range in both control and low temperature groups. The conditions were as follows; control (18 °C for 16 h and 12 °C for 8 h and low temperature (12 °C for 16 h and 6 °C for 8 h. Four genotypes were identified from the condition adapted gene pool with significant contrasting chilling tolerance. Results Picker and PR39B29 were the more cold-tolerant lines and Fergus and Codisco were the less cold-tolerant lines. These four varieties were subjected to microarray analysis to identify differentially expressed genes under chilling conditions. Exposure to low temperature during establishment in the maize varieties Picker, PR39B29, Fergus and Codisco, was reflected at the transcriptomic level in the varieties Picker and PR39B29. No significant changes in expression were observed in Fergus and Codisco following chilling stress. A total number of 64 genes were differentially expressed in the two chilling tolerant varieties. These two varieties exhibited contrasting transcriptomic profiles, in which only four genes overlapped. Discussion We observed that maize varieties possessing an enhanced root growth ratio under low temperature were more tolerant, which could be an early and inexpensive measure for germplasm screening under controlled conditions. We have identified novel cold inducible genes in an already adapted maize breeding gene pool. This illustrates that further varietal selection for enhanced chilling

  5. Synergy between root hydrotropic response and root biomass in maize (Zea mays L.) enhances drought avoidance.

    Science.gov (United States)

    Eapen, Delfeena; Martínez-Guadarrama, Jesús; Hernández-Bruno, Oralia; Flores, Leonardo; Nieto-Sotelo, Jorge; Cassab, Gladys I

    2017-12-01

    Roots of higher plants change their growth direction in response to moisture, avoiding drought and gaining maximum advantage for development. This response is termed hydrotropism. There have been few studies of root hydrotropism in grasses, particularly in maize. Our goal was to test whether an enhanced hydrotropic response of maize roots correlates with a better adaptation to drought and partial/lateral irrigation in field studies. We developed a laboratory bioassay for testing hydrotropic response in primary roots of 47 maize elite DTMA (Drought Tolerant Maize for Africa) hybrids. After phenotyping these hybrids in the laboratory, selected lines were tested in the field. Three robust and three weak hybrids were evaluated employing three irrigation procedures: normal irrigation, partial lateral irrigation and drought. Hybrids with a robust hydrotropic response showed growth and developmental patterns, under drought and partial lateral irrigation, that differed from weak hydrotropic responders. A correlation between root crown biomass and grain yield in hybrids with robust hydrotropic response was detected. Hybrids with robust hydrotropic response showed earlier female flowering whereas several root system traits, such as projected root area, median width, maximum width, skeleton width, skeleton nodes, average tip diameter, rooting depth skeleton, thinner aboveground crown roots, as well as stem diameter, were considerably higher than in weak hydrotropic responders in the three irrigation procedures utilized. These results demonstrate the benefit of intensive phenotyping of hydrotropism in primary roots since maize plants that display a robust hydrotropic response grew better under drought and partial lateral irrigation, indicating that a selection for robust hydrotropism might be a promising breeding strategy to improve drought avoidance in maize. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Genome-wide association study identifies candidate genes for starch content regulation in maize kernels

    Directory of Open Access Journals (Sweden)

    Na Liu

    2016-07-01

    Full Text Available Kernel starch content is an important trait in maize (Zea mays L. as it accounts for 65% to 75% of the dry kernel weight and positively correlates with seed yield. A number of starch synthesis-related genes have been identified in maize in recent years. However, many loci underlying variation in starch content among maize inbred lines still remain to be identified. The current study is a genome-wide association study that used a set of 263 maize inbred lines. In this panel, the average kernel starch content was 66.99%, ranging from 60.60% to 71.58% over the three study years. These inbred lines were genotyped with the SNP50 BeadChip maize array, which is comprised of 56,110 evenly spaced, random SNPs. Population structure was controlled by a mixed linear model (MLM as implemented in the software package TASSEL. After the statistical analyses, four SNPs were identified as significantly associated with starch content (P ≤ 0.0001, among which one each are located on chromosomes 1 and 5 and two are on chromosome 2. Furthermore, 77 candidate genes associated with starch synthesis were found within the 100-kb intervals containing these four QTLs, and four highly associated genes were within 20-kb intervals of the associated SNPs. Among the four genes, Glucose-1-phosphate adenylyltransferase (APS1; Gene ID GRMZM2G163437 is known as an important regulator of kernel starch content. The identified SNPs, QTLs, and candidate genes may not only be readily used for germplasm improvement by marker-assisted selection in breeding, but can also elucidate the genetic basis of starch content. Further studies on these identified candidate genes may help determine the molecular mechanisms regulating kernel starch content in maize and other important cereal crops.

  7. Refuge or reservoir? The potential impacts of the biofuel crop Miscanthus x giganteus on a major pest of maize.

    Directory of Open Access Journals (Sweden)

    Joseph L Spencer

    Full Text Available BACKGROUND: Interest in the cultivation of biomass crops like the C4 grass Miscanthus x giganteus (Miscanthus is increasing as global demand for biofuel grows. In the US, Miscanthus is promoted as a crop well-suited to the Corn Belt where it could be cultivated on marginal land interposed with maize and soybean. Interactions (direct and indirect of Miscanthus, maize, and the major Corn Belt pest of maize, the western corn rootworm, (Diabrotica virgifera virgifera LeConte, WCR are unknown. Adding a perennial grass/biomass crop to this system is concerning since WCR is adapted to the continuous availability of its grass host, maize (Zea mays. METHODOLOGY/PRINCIPAL FINDINGS: In a greenhouse and field study, we investigated WCR development and oviposition on Miscanthus. The suitability of Miscanthus for WCR development varied across different WCR populations. Data trends indicate that WCR populations that express behavioural resistance to crop rotation performed as well on Miscanthus as on maize. Over the entire study, total adult WCR emergence from Miscanthus (212 WCR was 29.6% of that from maize (717 WCR. Adult dry weight was 75-80% that of WCR from maize; female emergence patterns on Miscanthus were similar to females developing on maize. There was no difference in the mean no. of WCR eggs laid at the base of Miscanthus and maize in the field. CONCLUSIONS/SIGNIFICANCE: Field oviposition and significant WCR emergence from Miscanthus raises many questions about the nature of likely interactions between Miscanthus, maize and WCR and the potential for Miscanthus to act as a refuge or reservoir for Corn Belt WCR. Responsible consideration of the benefits and risks associated with Corn Belt Miscanthus are critical to protecting an agroecosystem that we depend on for food, feed, and increasingly, fuel. Implications for European agroecosystems in which Miscanthus is being proposed are also discussed in light of the WCR's recent invasion into Europe.

  8. Environmental assessment of untreated manure use, manure digestion and codigestion with silage maize : Deliverable for the 'EU-AGRO-BIOGAS' project

    NARCIS (Netherlands)

    Vries, de J.W.; Corre, W.J.; Dooren, van H.J.C.

    2010-01-01

    This report describes the environmental impact of untreated manure use, manure digestion, and co-digestion with silage maize for energy production. The life cycle assessment methodology was used. Environmental indicators included were, global warming potential, energy use, eutrophication,

  9. Characterization of recombination features and the genetic basis in multiple cattle breeds.

    Science.gov (United States)

    Shen, Botong; Jiang, Jicai; Seroussi, Eyal; Liu, George E; Ma, Li

    2018-04-27

    Crossover generated by meiotic recombination is a fundamental event that facilitates meiosis and sexual reproduction. Comparative studies have shown wide variation in recombination rate among species, but the characterization of recombination features between cattle breeds has not yet been performed. Cattle populations in North America count millions, and the dairy industry has genotyped millions of individuals with pedigree information that provide a unique opportunity to study breed-level variations in recombination. Based on large pedigrees of Jersey, Ayrshire and Brown Swiss cattle with genotype data, we identified over 3.4 million maternal and paternal crossover events from 161,309 three-generation families. We constructed six breed- and sex-specific genome-wide recombination maps using 58,982 autosomal SNPs for two sexes in the three dairy cattle breeds. A comparative analysis of the six recombination maps revealed similar global recombination patterns between cattle breeds but with significant differences between sexes. We confirmed that male recombination map is 10% longer than the female map in all three cattle breeds, consistent with previously reported results in Holstein cattle. When comparing recombination hotspot regions between cattle breeds, we found that 30% and 10% of the hotspots were shared between breeds in males and females, respectively, with each breed exhibiting some breed-specific hotspots. Finally, our multiple-breed GWAS found that SNPs in eight loci affected recombination rate and that the PRDM9 gene associated with hotspot usage in multiple cattle breeds, indicating a shared genetic basis for recombination across dairy cattle breeds. Collectively, our results generated breed- and sex-specific recombination maps for multiple cattle breeds, provided a comprehensive characterization and comparison of recombination patterns between breeds, and expanded our understanding of the breed-level variations in recombination features within an

  10. Assessment of maize stem borer damage on hybrid maize varieties in Chitwan, Nepal

    OpenAIRE

    Buddhi Bahadur Achhami; Santa Bahadur BK; Ghana Shyam Bhandari

    2015-01-01

    Maize is the second most important cereal crop in Nepal. However, national figure of grain production still remains below than the world's average grain production per unit area. Thus, this experiment was designed to determine the suitable time of maize planting, and to assess the peak period of one of the major insects, maize stem borer, in Chitwan condition. The results showed that plant damage percentage as per the maize planting month varies significantly, and the average plant damage per...

  11. Adaptability and stability of maize varieties using mixed model methodology

    Directory of Open Access Journals (Sweden)

    Walter Fernandes Meirelles

    2012-01-01

    Full Text Available The objective of this study was to evaluate the performance, adaptability and stability of corn cultivars simultaneously in unbalanced experiments, using the method of harmonic means of the relative performance of genetic values. The grain yield of 45 cultivars, including hybrids and varieties, was evaluated in 49 environments in two growing seasons. In the 2007/2008 growing season, 36 cultivars were evaluated and in 2008/2009 25 cultivars, of which 16 were used in both seasons. Statistical analyses were performed based on mixed models, considering genotypes as random and replications within environments as fixed factors. The experimental precision in the combined analyses was high (accuracy estimates > 92 %. Despite the existence of genotype x environment interaction, hybrids and varieties with high adaptability and stability were identified. Results showed that the method of harmonic means of the relative performance of genetic values is a suitable method for maize breeding programs.

  12. High-Throughput Phenotyping and QTL Mapping Reveals the Genetic Architecture of Maize Plant Growth.

    Science.gov (United States)

    Zhang, Xuehai; Huang, Chenglong; Wu, Di; Qiao, Feng; Li, Wenqiang; Duan, Lingfeng; Wang, Ke; Xiao, Yingjie; Chen, Guoxing; Liu, Qian; Xiong, Lizhong; Yang, Wanneng; Yan, Jianbing

    2017-03-01

    With increasing demand for novel traits in crop breeding, the plant research community faces the challenge of quantitatively analyzing the structure and function of large numbers of plants. A clear goal of high-throughput phenotyping is to bridge the gap between genomics and phenomics. In this study, we quantified 106 traits from a maize ( Zea mays ) recombinant inbred line population ( n = 167) across 16 developmental stages using the automatic phenotyping platform. Quantitative trait locus (QTL) mapping with a high-density genetic linkage map, including 2,496 recombinant bins, was used to uncover the genetic basis of these complex agronomic traits, and 988 QTLs have been identified for all investigated traits, including three QTL hotspots. Biomass accumulation and final yield were predicted using a combination of dissected traits in the early growth stage. These results reveal the dynamic genetic architecture of maize plant growth and enhance ideotype-based maize breeding and prediction. © 2017 American Society of Plant Biologists. All Rights Reserved.

  13. Evaluation of the combining ability of mutant maize lines

    Directory of Open Access Journals (Sweden)

    V. Valkova

    2016-09-01

    Full Text Available Abstract. The study shows the results of a preliminary evaluation of the combining ability for grain yield of 17 mutant maize lines. For the purpose the top cross method for early testing and the mathematical model of Savchenko for analysis of the general and the specific combining ability were used. The lines were tested on three testers with high general combining ability that belong to two genetic groups: K 46 52 and XM 552 from SSS and N 192 – Lancaster. For the purposes of evaluation of the productive abilities of the received top cross two preliminary varietal experiments were carried out at the experimental field of Maize Research Institute, Knezha As a result of the conducted experimental work and the analysis it was found that the highest general combining ability have lines XM 11 6 and XM 12 1. These lines can be included as components of high-yielding synthetics or as testers in analyzing crosses to determine general combining ability in early stages of the selection process. The above lines with high specific combining ability – XM 11 13 and XM 11 46 are suitable for inclusion in combinations to develop high-yielding hybrids. Three of the tested lines XM 11 7 11 XM 10 and XM 11 11 have both high GCA and SCA. These lines can be used in corresponding breeding in the selection programs.

  14. Flooding tolerance in interspecific introgression lines containing chromosome segments from teosinte (Zea nicaraguensis) in maize (Zea mays subsp. mays)

    Science.gov (United States)

    Mano, Y.; Omori, F.

    2013-01-01

    Background and Aims Nicaraguan teosinte (Zea nicaraguensis), a species found in frequently flooded areas, provides useful germplasm for breeding flooding-tolerant maize (Z. mays subsp. mays). The objective of this study was to select flooding-tolerant lines using a library of introgression lines (ILs), each containing a chromosome segment from Z. nicaraguensis in the maize inbred line Mi29. Methods To produce the ILs, a single F1 plant derived from a cross between maize Mi29 and Z. nicaraguensis was backcrossed to Mi29 three times, self-pollinated four times and genotyped using simple sequence repeat markers. Flooding tolerance was evaluated at the seedling stage under reducing soil conditions. Key Results By backcrossing and selfing, a series of 45 ILs were developed covering nearly the entire maize genome. Five flooding-tolerant lines were identified from among the ILs by evaluating leaf injury. Among these, line IL#18, containing a Z. nicaraguensis chromosome segment on the long arm of chromosome 4, showed the greatest tolerance to flooding, suggesting the presence of a major quantitative trait locus (QTL) in that region. The presence of the QTL was verified by examining flooding tolerance in a population segregating for the candidate region of chromosome 4. There was no significant relationship between the capacity to form constitutive aerenchyma and flooding tolerance in the ILs, indicating the presence of other factors related to flooding tolerance under reducing soil conditions. Conclusions A flooding-tolerant genotype, IL#18, was identified; this genotype should be useful for maize breeding. In addition, because the chromosome segments of Z. nicaraguensis in the ILs cover nearly the entire genome and Z. nicaraguensis possesses several unique traits related to flooding tolerance, the ILs should be valuable material for additional QTL detection and the development of flooding-tolerant maize lines. PMID:23877074

  15. Flooding tolerance in interspecific introgression lines containing chromosome segments from teosinte (Zea nicaraguensis) in maize (Zea mays subsp. mays).

    Science.gov (United States)

    Mano, Y; Omori, F

    2013-10-01

    Nicaraguan teosinte (Zea nicaraguensis), a species found in frequently flooded areas, provides useful germplasm for breeding flooding-tolerant maize (Z. mays subsp. mays). The objective of this study was to select flooding-tolerant lines using a library of introgression lines (ILs), each containing a chromosome segment from Z. nicaraguensis in the maize inbred line Mi29. To produce the ILs, a single F1 plant derived from a cross between maize Mi29 and Z. nicaraguensis was backcrossed to Mi29 three times, self-pollinated four times and genotyped using simple sequence repeat markers. Flooding tolerance was evaluated at the seedling stage under reducing soil conditions. By backcrossing and selfing, a series of 45 ILs were developed covering nearly the entire maize genome. Five flooding-tolerant lines were identified from among the ILs by evaluating leaf injury. Among these, line IL#18, containing a Z. nicaraguensis chromosome segment on the long arm of chromosome 4, showed the greatest tolerance to flooding, suggesting the presence of a major quantitative trait locus (QTL) in that region. The presence of the QTL was verified by examining flooding tolerance in a population segregating for the candidate region of chromosome 4. There was no significant relationship between the capacity to form constitutive aerenchyma and flooding tolerance in the ILs, indicating the presence of other factors related to flooding tolerance under reducing soil conditions. A flooding-tolerant genotype, IL#18, was identified; this genotype should be useful for maize breeding. In addition, because the chromosome segments of Z. nicaraguensis in the ILs cover nearly the entire genome and Z. nicaraguensis possesses several unique traits related to flooding tolerance, the ILs should be valuable material for additional QTL detection and the development of flooding-tolerant maize lines.

  16. "Achieving Mexico’s Maize Potential"

    OpenAIRE

    Antonio Turrent Fernández; Timothy A. Wise; Elise Garvey

    2012-01-01

    Rising agricultural prices, combined with growing import dependence, have driven Mexico’s food import bill over $20 billion per year and increased its agricultural trade deficit. Mexico imports one-third of its maize, overwhelmingly from the United States, but three million producers grow most of the country’s white maize, which is used primarily for tortillas and many other pluricultural products for human consumption. Yield gaps are large among the country’s small to medium-scale maize farm...

  17. Breeding and maintaining high-quality insects

    DEFF Research Database (Denmark)

    Jensen, Kim; Kristensen, Torsten Nygård; Heckmann, Lars-Henrik

    2017-01-01

    Insects have a large potential for sustainably enhancing global food and feed production, and commercial insect production is a rising industry of high economic value. Insects suitable for production typically have fast growth, short generation time, efficient nutrient utilization, high...... reproductive potential, and thrive at high density. Insects may cost-efficiently convert agricultural and industrial food by-products into valuable protein once the technology is finetuned. However, since insect mass production is a new industry, the technology needed to efficiently farm these animals is still...... in a starting phase. Here, we discuss the challenges and precautions that need to be considered when breeding and maintaining high-quality insect populations for food and feed. This involves techniques typically used in domestic animal breeding programs including maintaining genetically healthy populations...

  18. Genetics of resistance to stored grain weevil (Sitophilus oryzae L. in maize

    Directory of Open Access Journals (Sweden)

    Rajkumar Zunjare

    2015-12-01

    Full Text Available Stored grain weevil (Sitophilus oryzae has emerged as important storage grain pest of maize, causing substantial economic losses. Owing to high costs and environmental hazards of pesticides, host plant resistance holds promise for effective control of weevils. In the present study, a set of experimental maize hybrids generated using line × tester mating design were evaluated against S. oryzae. Significant variation for grain weight loss (GWL (6.0–49.1%, number of insect progeny emerged (NIP (17.8–203.3, grain hardness (GH (263.1–495.4 N, and pericarp thickness (PT (60.3–161.0 μm was observed. Strong positive association was observed between GWL and NIP. GH and PT did not show any correlation with GWL and NIP. Additive and non-additive gene actions were important for both GWL and NIP. Promising inbreds and experimental crosses identified can be effectively utilized in the resistance breeding programme. In majority of promising crosses having desirable SCA effects, one of the parents had desirable GCA effects, indicating that selection of inbred parents based on per se performance for generating resistant crosses may be possible. The commercial hybrid checks were highly susceptible compared to experimental hybrids. The inbreds and experimental hybrids identified hold promise in developing weevil resistant maize cultivars offering sustainable solution to management of weevils in maize.

  19. The genetic architecture of leaf number and its genetic relationship to flowering time in maize.

    Science.gov (United States)

    Li, Dan; Wang, Xufeng; Zhang, Xiangbo; Chen, Qiuyue; Xu, Guanghui; Xu, Dingyi; Wang, Chenglong; Liang, Yameng; Wu, Lishuan; Huang, Cheng; Tian, Jinge; Wu, Yaoyao; Tian, Feng

    2016-04-01

    The number of leaves and their distributions on plants are critical factors determining plant architecture in maize (Zea mays), and leaf number is frequently used as a measure of flowering time, a trait that is key to local environmental adaptation. Here, using a large set of 866 maize-teosinte BC2 S3 recombinant inbred lines genotyped by using 19,838 single nucleotide polymorphism markers, we conducted a comprehensive genetic dissection to assess the genetic architecture of leaf number and its genetic relationship to flowering time. We demonstrated that the two components of total leaf number, the number of leaves above (LA) and below (LB) the primary ear, were under relatively independent genetic control and might be subject to differential directional selection during maize domestication and improvement. Furthermore, we revealed that flowering time and leaf number are commonly regulated at a moderate level. The pleiotropy of the genes ZCN8, dlf1 and ZmCCT on leaf number and flowering time were validated by near-isogenic line analysis. Through fine mapping, qLA1-1, a major-effect locus that specifically affects LA, was delimited to a region with severe recombination suppression derived from teosinte. This study provides important insights into the genetic basis of traits affecting plant architecture and adaptation. The genetic independence of LA from LB enables the optimization of leaf number for ideal plant architecture breeding in maize. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  20. The Mechanisms of Maize Resistance to Fusarium verticillioides by comprehensive analysis of RNA-seq Data

    Directory of Open Access Journals (Sweden)

    Yanping Wang

    2016-11-01

    Full Text Available Fusarium verticillioides is the most commonly reported fungal species responsible for ear rot of maize which substantially reduces grain yield. It also results in a substantial accumulation of mycotoxins that give rise to toxic response when ingested by animals and humans. For inefficient control by chemical and agronomic measures, it thus becomes more desirable to select more resistant varieties. However, the molecular mechanisms underlying the infection process remain poorly understood, which hampers the application of quantitative resistance in breeding programs. Here, we reveal the disease-resistance mechanism of the maize inbred line of BT-1 which displays high resistance to ear rot using RNA high throughput sequencing. By analyzing RNA-seq data from the BT-1 kernels before and after F. verticillioides inoculation, we found that transcript levels of genes associated with key pathways are dramatically changed compared with the control treatment. Differential gene expression in ear rot resistant and susceptible maize was confirmed by RNA microarray and qRT-PCR analyses. Further investigation suggests that the small heat shock protein family, some secondary metabolites, and the signaling pathways of abscisic acid (ABA, jasmonic acid (JA or salicylic acids (SA may be involved in the pathogen-associated molecular pattern-triggered immunity against F. verticillioides. These data will not only provide new insights into the molecular resistant mechanisms against fungi invading, but may also result in the identification of key molecular factors associated with ear rot resistance in maize.

  1. Adapting to warmer climate through prolonged maize grain filling period in the US Midwest

    Science.gov (United States)

    Zhu, P.; Zhuang, Q.; Jin, Z.

    2017-12-01

    Climate warming is expected to negatively impact the US food productivity. How to adapt to the future warmer environment and meet the rising food requirement becomes unprecedented urgent. Continuous satellite observational data provides an opportunity to examine the historic responses of crop plants to climate variation. Here 16 years crop growing phases information across US Midwest is generated based on satellite observations. We found a prolonged grain-filling period during 2000-2015, which could partly explain the increasing trend in Midwest maize yield. This longer grain-filling period might be resulted from the adoption of longer maturity group varieties or more resistant varieties to temperature variation. Other management practice changes like advance in planting date could be also an effective way of adapting future warmer climate through lowering the possibility of exposure to heat and drought stresses. If the progress in breeding technology enables the maize grain-filling period to prolong with the current rate, the maize grain filling length could be longer and maize yield in Midwest could adapt to future climate despite of the warming.

  2. A review on threat of gray leaf spot disease of maize in Asia

    Directory of Open Access Journals (Sweden)

    Narayan Bahadur Dhami

    2015-12-01

    Full Text Available Biotic and biotic constraints are yield limiting factors in maize producing regions. Among these gray leaf spot is a yield limiting foliar disease of maize in high land regions of Asia. This review is done from related different national and international journals, thesis, books, research papers etc. The objectives of this review are to become familiar with genetics and inheritance, epidemiology, symptoms and disease management strategies etc. High relative humidity, temperature, minimum tillage and maize monoculture are important factors responsible for disease development. The sibling species of Cercospora zeae-maydis (Tehon and Daniels, 1925 Group I and Group II and Cercospora sorghai var. maydis (Chupp, 1954 are associated with this disease. Pathogens colonize in maize debris. Conidia are the source of inoculums for disease spread. Severe blighting of leaves reduces sugars, stalk lodging and causes premature death of plants resulting in yield losses of up to 100%. Disease management through cultural practices is provisional. The use of fungicides for emergencies is effective however; their prohibitive cost and detrimental effects on the environment are negative consequences. The inheritance of tolerance is quantitative with small additive effects. The introgression of resistant genes among the crosses of resistant germplasm enhances the resistance. The crosses of resistant and susceptible germplasm possess greater stability than the crosses of susceptible and resistant germplasm. The development of gray leaf spot tolerant populations through tolerance breeding principle is an economical and sustainable approach to manage the disease.

  3. Materials for breeding blankets

    International Nuclear Information System (INIS)

    Mattas, R.F.; Billone, M.C.

    1995-09-01

    There are several candidate concepts for tritium breeding blankets that make use of a number of special materials. These materials can be classified as Primary Blanket Materials, which have the greatest influence in determining the overall design and performance, and Secondary Blanket Materials, which have key functions in the operation of the blanket but are less important in establishing the overall design and performance. The issues associated with the blanket materials are specified and several examples of materials performance are given. Critical data needs are identified

  4. Materials for breeding blankets

    International Nuclear Information System (INIS)

    Mattas, R.F.; Billone, M.C.

    1996-01-01

    There are several candidate concepts for tritium breeding blankets that make use of a number of special materials. These materials can be classified as primary blanket materials, which have the greatest influence in determining the overall design and performance, and secondary blanket materials, which have key functions in the operation of the blanket but are less important in establishing the overall design and performance. The issues associated with the blanket materials are specified and several examples of materials performance are given. Critical data needs are identified. (orig.)

  5. Disseminating genetically modified (GM) maize technology to ...

    African Journals Online (AJOL)

    Disseminating genetically modified (GM) maize technology to smallholder farmers in the Eastern Cape province of South Africa: extension personnel's awareness of stewardship requirements and dissemination practices.

  6. Investigation of total seed storage proteins of pakistani and japanese maize (zea mays l.) through sds-page markers

    International Nuclear Information System (INIS)

    Shinwari, Z.K.

    2014-01-01

    The assessment of genetic diversity among the members of a species is of vital importance for successful breeding and adaptability. In the present study 83 genotypes of maize of Pakistani and Japanese origin were evaluated for the total seed storage proteins using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) through vertical slab unit. The total protein subunits were separated on 12% polyacrylamide gel using standard protocols. A total of 18 protein subunits were noted out of which 7 (39%) were monomorphic and 11 (61%) were polymorphic, with molecular weight ranging from 10 to 122 kDa. Coefficients of similarity among the accessions ranged between 0.89 and 1.00. The dendrogram obtained through UPGMA clustering method showed two main clusters: 1 and 2. First cluster comprised of 9 genotypes including Sahiwal-2002, while second cluster contained 74 genotypes including Aaiti-2002 and Sadaf. Over all a low level of polymorphism was observed in total seed storage protein patterns of maize genotypes from Pakistan as well as Japan. It is inferred from the present study that more genotypes of maize could be brought under study and more advanced biochemical techniques with more reliable results could be followed to bring assessment of genetic diversity of maize for planning breeding programs. (author)

  7. Genomic Predictability of Interconnected Biparental Maize Populations

    Science.gov (United States)

    Riedelsheimer, Christian; Endelman, Jeffrey B.; Stange, Michael; Sorrells, Mark E.; Jannink, Jean-Luc; Melchinger, Albrecht E.

    2013-01-01

    Intense structuring of plant breeding populations challenges the design of the training set (TS) in genomic selection (GS). An important open question is how the TS should be constructed from multiple related or unrelated small biparental families to predict progeny from individual crosses. Here, we used a set of five interconnected maize (Zea mays L.) populations of doubled-haploid (DH) lines derived from four parents to systematically investigate how the composition of the TS affects the prediction accuracy for lines from individual crosses. A total of 635 DH lines genotyped with 16,741 polymorphic SNPs were evaluated for five traits including Gibberella ear rot severity and three kernel yield component traits. The populations showed a genomic similarity pattern, which reflects the crossing scheme with a clear separation of full sibs, half sibs, and unrelated groups. Prediction accuracies within full-sib families of DH lines followed closely theoretical expectations, accounting for the influence of sample size and heritability of the trait. Prediction accuracies declined by 42% if full-sib DH lines were replaced by half-sib DH lines, but statistically significantly better results could be achieved if half-sib DH lines were available from both instead of only one parent of the validation population. Once both parents of the validation population were represented in the TS, including more crosses with a constant TS size did not increase accuracies. Unrelated crosses showing opposite linkage phases with the validation population resulted in negative or reduced prediction accuracies, if used alone or in combination with related families, respectively. We suggest identifying and excluding such crosses from the TS. Moreover, the observed variability among populations and traits suggests that these uncertainties must be taken into account in models optimizing the allocation of resources in GS. PMID:23535384

  8. Split application of glyphosate in herbicide-tolerant maize provides efficient weed control and favors beneficial epigeic arthropods

    Czech Academy of Sciences Publication Activity Database

    Svobodová, Zdeňka; Skoková Habuštová, Oxana; Holec, J.; Holec, M.; Boháč, J.; Jursík, M.; Soukup, J.; Sehnal, František

    2018-01-01

    Roč. 251, JAN 01 (2018), s. 171-179 ISSN 0167-8809 Grant - others:GA ČR(CZ) L200961652 Institutional support: RVO:60077344 Keywords : herbicide-tolerant maize * weed management * conventional tillage Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection OBOR OECD: Agronomy, plant breeding and plant protection Impact factor: 4.099, year: 2016 http://www.sciencedirect.com/science/article/pii/S0167880917304188

  9. Bridging the phenotypic and genetic data useful for integrated breeding through a data annotation using the Crop Ontology developed by the crop communities of practice

    Science.gov (United States)

    Shrestha, Rosemary; Matteis, Luca; Skofic, Milko; Portugal, Arllet; McLaren, Graham; Hyman, Glenn; Arnaud, Elizabeth

    2012-01-01

    The Crop Ontology (CO) of the Generation Challenge Program (GCP) (http://cropontology.org/) is developed for the Integrated Breeding Platform (IBP) (http://www.integratedbreeding.net/) by several centers of The Consultative Group on International Agricultural Research (CGIAR): bioversity, CIMMYT, CIP, ICRISAT, IITA, and IRRI. Integrated breeding necessitates that breeders access genotypic and phenotypic data related to a given trait. The CO provides validated trait names used by the crop communities of practice (CoP) for harmonizing the annotation of phenotypic and genotypic data and thus supporting data accessibility and discovery through web queries. The trait information is completed by the description of the measurement methods and scales, and images. The trait dictionaries used to produce the Integrated Breeding (IB) fieldbooks are synchronized with the CO terms for an automatic annotation of the phenotypic data measured in the field. The IB fieldbook provides breeders with direct access to the CO to get additional descriptive information on the traits. Ontologies and trait dictionaries are online for cassava, chickpea, common bean, groundnut, maize, Musa, potato, rice, sorghum, and wheat. Online curation and annotation tools facilitate (http://cropontology.org) direct maintenance of the trait information and production of trait dictionaries by the crop communities. An important feature is the cross referencing of CO terms with the Crop database trait ID and with their synonyms in Plant Ontology (PO) and Trait Ontology (TO). Web links between cross referenced terms in CO provide online access to data annotated with similar ontological terms, particularly the genetic data in Gramene (University of Cornell) or the evaluation and climatic data in the Global Repository of evaluation trials of the Climate Change, Agriculture and Food Security programme (CCAFS). Cross-referencing and annotation will be further applied in the IBP. PMID:22934074

  10. Characterization of the maize lipoxygenase gene family in relation to aflatoxin accumulation resistance

    Science.gov (United States)

    Oluwaseun F. Ogunola; Leigh K. Hawkins; Erik Mylroie; Michael V. Kolomiets; Eli Borrego; Juliet D. Tang; Paul W. Williams; Marilyn L. Warburton

    2017-01-01

    Maize (Zea mays L.) is a globally important staple food crop prone to contamination by aflatoxin, a carcinogenic secondary metabolite produced by the fungus Aspergillus flavus. An efficient approach to reduce accumulation of aflatoxin is the development of germplasm resistant to colonization and toxin...

  11. Comparison of the effect of liquid humic fertilizers on yield of maize ...

    African Journals Online (AJOL)

    PC

    2012-03-13

    Mar 13, 2012 ... rice around the world. The global production of maize .... in genotypes such as Golden West and Single Cross. 704. However, peat based .... Golden West. Genotype ZP677 (with a mean value of 15.48) and genotype ZP434 (with a mean value of 13.49) had the highest and lowest values of number per ear, ...

  12. A large scale joint analysis of flowering time reveals independent temperate adaptations in maize

    Science.gov (United States)

    Modulating days to flowering is a key mechanism in plants for adapting to new environments, and variation in days to flowering drives population structure by limiting mating. To elucidate the genetic architecture of flowering across maize, a quantitative trait, we mapped flowering in five global pop...

  13. Radiation mutation breeding

    International Nuclear Information System (INIS)

    Song, Hi Sup; Kim, Jae Sung; Kim, Jin Kyu; Shin, In Chul; Lim, Young Taek

    1998-04-01

    In order to develop an advanced technical knowledge for the selection of better mutants, some of the crops were irradiated and the mutation rate, the survival rate and the method for selction of a mutant were studied. Furthermore, this study aimed to obtain basic data applicable to the development of genetic resources by evaluation and analysis the specific character for selection of the superior mutant and its plant breeding. 1. selection of the mutant with a superior resistance against environment in the principal crops 1) New varieties of mutant rices such as Wonpyeongbyeo, Wongwangbyeo, Winmibyeo, and heogseon chalbeyeo (sticky forma) were registered in the national variety list and made an application to crop variety protection right. They are under review now. 2) We also keep on studying on the number of a grain of 8 lines of excellent mutant rice for the purpose of improvement of breeding . 3) We selected 3 lines which have a resistance to pod and stem blight in large soybean, 31 lines with small grain size and higher yield, 112 lines of soybean of cooking, 7 lines of low lipoxygenase content, and 12 lines with decreased phytic acid content by 20 % compared to the previous level. 2. Selection of advanced Mugunwha (Rose of Sharon) mutant 1) Bagseul, a new variety of mutant, was developed and 30 plantlets of it are being proliferated. 2) Fifty-three lines of a mutant having a various morphologies were selected

  14. Radiation mutation breeding

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hi Sup; Kim, Jae Sung; Kim, Jin Kyu; Shin, In Chul; Lim, Young Taek

    1998-04-01

    In order to develop an advanced technical knowledge for the selection of better mutants, some of the crops were irradiated and the mutation rate, the survival rate and the method for selction of a mutant were studied. Furthermore, this study aimed to obtain basic data applicable to the development of genetic resources by evaluation and analysis the specific character for selection of the superior mutant and its plant breeding. 1. selection of the mutant with a superior resistance against environment in the principal crops 1) New varieties of mutant rices such as Wonpyeongbyeo, Wongwangbyeo, Winmibyeo, and heogseon chalbeyeo (sticky forma) were registered in the national variety list and made an application to crop variety protection right. They are under review now. 2) We also keep on studying on the number of a grain of 8 lines of excellent mutant rice for the purpose of improvement of breeding . 3) We selected 3 lines which have a resistance to pod and stem blight in large soybean, 31 lines with small grain size and higher yield, 112 lines of soybean of cooking, 7 lines of low lipoxygenase content, and 12 lines with decreased phytic acid content by 20 % compared to the previous level. 2. Selection of advanced Mugunwha (Rose of Sharon) mutant 1) Bagseul, a new variety of mutant, was developed and 30 plantlets of it are being proliferated. 2) Fifty-three lines of a mutant having a various morphologies were selected.

  15. Breeds in danger of extintion and biodiversity

    OpenAIRE

    A. Blasco

    2008-01-01

    Some arguments currently used to support breed conservation are examined. The central point is that we cannot conserve all breeds because we do not have financial resources enough to keep everything (mainly in developing countries) and in many cases we do not have special reasons to conserve breeds. A breed is a human product and it should not be confused with specie. A breed can be generated or transformed. We can create synthetic breeds with the best characteristics of several breeds. Selec...

  16. The iojap gene in maize

    Energy Technology Data Exchange (ETDEWEB)

    Martienssen, Robert

    2001-12-01

    The classical maize mutant iojap (Iodent japonica) has variegated green and white leaves. Green sectors have cells with normal chloroplasts whereas white sectors have cells where plastids fail to differentiate. These mutant plastids, when transmitted through the female gametophyte, do not recover in the presence of wild type Iojap. We cloned the Ij locus, and we have investigated the mechanism of epigenetic inheritance and phenotypic expression. More recently, a modifier of this type of variegation, ''Inhibitor of striate'', has also been cloned. Both the iojap and inhibitor of striate proteins have homologs in bacteria and are members of ancient conserved families found in multiple species. These tools can be used to address fundamental questions of inheritance and variegation associated with this classical conundrum of maize genetics. Since the work of Rhoades there has been considerable speculation concerning the nature of the Iojap gene product, the origin of leaf variegation and the mechanism behind the material inheritance of defective plastids. This has made Iojap a textbook paradigm for cytoplasmic inheritance and nuclear-organellar interaction for almost 50 years. Cloning of the Iojap gene in maize, and homologs in other plants and bacteria, provides a new means to address the origin of heteroplastidity, variegation and cytoplasmic inheritance in higher plants.

  17. Proteomics of Maize Root Development.

    Science.gov (United States)

    Hochholdinger, Frank; Marcon, Caroline; Baldauf, Jutta A; Yu, Peng; Frey, Felix P

    2018-01-01

    Maize forms a complex root system with structurally and functionally diverse root types that are formed at different developmental stages to extract water and mineral nutrients from soil. In recent years proteomics has been intensively applied to identify proteins involved in shaping the three-dimensional architecture and regulating the function of the maize root system. With the help of developmental mutants, proteomic changes during the initiation and emergence of shoot-borne, lateral and seminal roots have been examined. Furthermore, root hairs were surveyed to understand the proteomic changes during the elongation of these single cell type structures. In addition, primary roots have been used to study developmental changes of the proteome but also to investigate the proteomes of distinct tissues such as the meristematic zone, the elongation zone as well as stele and cortex of the differentiation zone. Moreover, subcellular fractions of the primary root including cell walls, plasma membranes and secreted mucilage have been analyzed. Finally, the superior vigor of hybrid seedling roots compared to their parental inbred lines was studied on the proteome level. In summary, these studies provide novel insights into the complex proteomic interactions of the elaborate maize root system during development.

  18. Proteomics of Maize Root Development

    Directory of Open Access Journals (Sweden)

    Frank Hochholdinger

    2018-03-01

    Full Text Available Maize forms a complex root system with structurally and functionally diverse root types that are formed at different developmental stages to extract water and mineral nutrients from soil. In recent years proteomics has been intensively applied to identify proteins involved in shaping the three-dimensional architecture and regulating the function of the maize root system. With the help of developmental mutants, proteomic changes during the initiation and emergence of shoot-borne, lateral and seminal roots have been examined. Furthermore, root hairs were surveyed to understand the proteomic changes during the elongation of these single cell type structures. In addition, primary roots have been used to study developmental changes of the proteome but also to investigate the proteomes of distinct tissues such as the meristematic zone, the elongation zone as well as stele and cortex of the differentiation zone. Moreover, subcellular fractions of the primary root including cell walls, plasma membranes and secreted mucilage have been analyzed. Finally, the superior vigor of hybrid seedling roots compared to their parental inbred lines was studied on the proteome level. In summary, these studies provide novel insights into the complex proteomic interactions of the elaborate maize root system during development.

  19. Mutation breeding newsletter. No. 43

    International Nuclear Information System (INIS)

    1997-10-01

    This issue of the Newsletter includes articles dealing with radiation induced mutation based plant breeding research findings aimed at improving productivity, disease resistance and tolerance of stress conditions

  20. Breeding and genetics symposium

    NARCIS (Netherlands)

    Sae-Lim, P.; Kause, A.; Mulder, H.A.; Olesen, I.

    2017-01-01

    Aquaculture is the fastest growing food production sector and it contributes significantly to global food security. Based on Food and Agriculture Organization (FAO) of the United Nations, aquaculture production must increase significantly to meet the future global demand for aquatic foods in

  1. Textbook animal breeding : animal breeding andgenetics for BSc students

    NARCIS (Netherlands)

    Oldenbroek, Kor; Waaij, van der Liesbeth

    2014-01-01

    This textbook contains teaching material on animal breeding and genetics for BSc students. The text book started as an initiative of the Dutch Universities for Applied (Agricultural) Sciences. The textbook is made available by the Animal Breeding and Genomics Centre (ABGC) of Wageningen UR

  2. Array-based genotyping and genetic dissimilarity analysis of a set of maize inbred lines belonging to different heterotic groups

    Directory of Open Access Journals (Sweden)

    Jambrović Antun

    2014-01-01

    Full Text Available Here we describe the results of the detailed array-based genotyping obtained by using the Illumina MaizeSNP50 BeadChip of eleven inbred lines belonging to different heterotic groups relevant for maize breeding in Southeast Europe - European Corn Belt. The objectives of this study were to assess the utility of the MaizeSNP50 BeadChip platform by determining its descriptive power and to assess genetic dissimilarity of the inbred lines. The distribution of the SNPs was found not completely uniform among chromosomes, but average call rate was very high (97.9% and number of polymorphic loci was 33200 out of 50074 SNPs with known mapping position indicating descriptive power of the MaizeSNP50 BeadChip. The dendrogram obtained from UPGMA cluster analysis as well as principal component analysis (PCA confirmed pedigree information, undoubtedly distinguishing lines according to their background in two population varieties of Reid Yellow Dent and Lancaster Sure Crop. Dissimilarity analysis showed that all of the inbred lines could be distinguished from each other. Whereas cluster analysis did not definitely differentiate Mo17 and Ohio inbred lines, PCA revealed clear genetic differences between them. The studied inbred lines were confirmed to be genetically diverse, representing a large proportion of the genetic variation occurring in two maize heterotic groups.

  3. Decomposition and fertilizing effects of maize stover and chromolaena odorata on maize yield

    International Nuclear Information System (INIS)

    Tetteh, F.M.; Safo, E.Y.; Quansah, C.

    2008-01-01

    The quality, rates of decomposition and the fertilizing effect of chromolaena odorata, and maize stover were determined in field experiments as surface application or buried in litter bags. Studies on the effect of plant materials of contrasting qualities (maize stover and C. odorata) applied sole (10 Mg ha -1 ) and mixed, on maize grain and biomass yield were also conducted on the Asuansi (Ferric Acrisol) soil series. Total nitrogen content of the residues ranged from 0.85% in maize stover to 3.50% in C. odorata. Organic carbon ranged from 34.90% in C. odorata to 48.50% in maize stover. Phosphorus ranged from 0.10% in maize stover to 0.76% in C. odorata. In the wet season, the decomposition rate constants (k) were 0.0319 day -1 for C. odorata, and 0.0081 for maize stover. In the dry season, the k values were 0.0083 for C. odorata, and 0.0072 day -1 for maize stover. Burying of the plant materials reduced the half-life (t 50 ) periods from 18 to 10 days for C. odorata, and 45 to 20 days for maize stover. Maize grain yield of 2556 kg ha -1 was obtained in sole C. odorata (10 Mg ha -1 ) compared with 2167 kg ha -1 for maize stover. Mixing of maize stover and C. odorata residues improved the nutrient content as well as nutrient release by the mixtures resulting in greater maize grain yields in the mixtures than the sole maize stover treatment. It is recommended that C. odorata be used as green manure, mulching or composting material to improve fertility. (au)

  4. PERFORMANCE OF MAIZE (ZEA MAYS) CULTIVARS AS ...

    African Journals Online (AJOL)

    IBUKUN

    reported to have low remobilisation efficiency and reduced plasticity of seed weight to assimilate availability ... have indicated that the use of organo-mineral fertiliser in maize and melon gave high relative .... The soil physical and chemical characteristics of ..... yield in maize by examining genetic improvement and heterosis.

  5. (SSR) markers for drought tolerance in maize

    African Journals Online (AJOL)

    Maize is moderately sensitive to drought. Drought affects virtually all aspects of maize growth in varying degrees at all stages, from germination to maturity. Tolerance to drought is genetically and physiologically complicated and inherited quantitatively. Application of molecular-marker aided selection technique for ...

  6. Next generation breeding.

    Science.gov (United States)

    Barabaschi, Delfina; Tondelli, Alessandro; Desiderio, Francesca; Volante, Andrea; Vaccino, Patrizia; Valè, Giampiero; Cattivelli, Luigi

    2016-01-01

    The genomic revolution of the past decade has greatly improved our understanding of the genetic make-up of living organisms. The sequencing of crop genomes has completely changed our vision and interpretation of genome organization and evolution. Re-sequencing allows the identification of an unlimited number of markers as well as the analysis of germplasm allelic diversity based on allele mining approaches. High throughput marker technologies coupled with advanced phenotyping platforms provide new opportunities for discovering marker-trait associations which can sustain genomic-assisted breeding. The availability of genome sequencing information is enabling genome editing (site-specific mutagenesis), to obtain gene sequences desired by breeders. This review illustrates how next generation sequencing-derived information can be used to tailor genomic tools for different breeders' needs to revolutionize crop improvement. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Over-breeding

    International Nuclear Information System (INIS)

    Schuh, S.A.

    1991-01-01

    The Greenhouse Effect has fuzzy parameters, as do the consequences of acid rain, accidental nuclear fallout, deforestation, even the depletion of oil and natural gas reserves, and other threatening calamities. But the consequences of human over-breeding do not fall within fuzzy parameters. Reliable demographic studies predict a world population by the year 2020 of twice the present four billion or so living human beings. Some of us will see that year. But the population will again have doubled by the year 2090: sixteen billion people. The author suggests in this paper some morally permissible steps that might be taken to circumvent what otherwise is most assuredly an impending world tragedy. We have an ethical obligation to future generations. They have the moral right to a qualitatively fulfilling life, not just on allotted number of years. Some of my suggestions will not be palatable to some readers. But I urge those readers seriously to consider and if possible, hopefully, to propose alternatives

  8. Assessing spatiotemporal variation of drought and its impact on maize yield in Northeast China

    Science.gov (United States)

    Guo, Enliang; Liu, Xingpeng; Zhang, Jiquan; Wang, Yongfang; Wang, Cailin; Wang, Rui; Li, Danjun

    2017-10-01

    In the context of global climate change, drought has become an important factor that affects the maize yield in China. To analyse the impact of drought on maize yield loss in Northeast China in current and future climate scenarios, the Composite Meteorological Drought Index (CI) is introduced to reconstruct the following drought indicators: drought accumulative days (DAD), drought accumulative intensity (DAI), and consecutive drought days (CDD). These three drought indicators are used to describe the three-dimensional characteristics of drought in this study. Sen's slope method and three-dimensional copula functions are adopted to analyse the variety of drought features, and Ensemble Empirical Mode Decomposition (EEMD) is used to analyse the variations in maize yield. A temporal assessment of the standardized yield residuals series (SYRS) of maize from 1961 to 2014 is conducted. A panel regression model is applied to demonstrate the drought impact on maize yield at various growth stages under the RCP4.5 scenario. The results show that the drought risk level for midwest Jilin Province, western Liaoning, and eastern Heilongjiang increase with global warming in the current scenario. The shorter three-dimensional joint return periods, 44-80 yr, were mainly located in western Jilin Province, Liaodong Peninsula, and northwestern Liaoning. Eastern Heilongjiang has a slightly longer joint return period of 80-100 yr. The SYRS shows a strong statistical correlation with drought indicator variations; drought-prone regions exhibit strong positive correlations. In comparison, excess precipitation regions show strong negative correlations with drought indicators in most growth stages. Drought indicators have a relatively strong association with SYRS at the milky-mature maize growth stage, and the occurrence of drought during this period primarily determines the maize yield changes in the future. Maize yield changes are -2.04%, -2.65% and -1.57% for Liaoning, Jilin, and

  9. Inbreeding depression of 28 maize elite open pollinated varieties

    Directory of Open Access Journals (Sweden)

    Cleso Antônio Patto Pacheco

    2002-01-01

    Full Text Available The study of inbreeding depression is important for breeding strategies such as use of inbred progenies or extraction of inbreed lines. A diallel of 28 maize open-pollinated varieties was evaluated in 10 environments in the early 1990s. At the same time, S1 populations for each of the 28 varieties were evaluated in the same 10 experiments (environments. Yield reductions of the populations from S0 to S1 (mean of the 10 environments, varied from 34.6% (CMS-01 to 59.2% (CMS-30, with an average of 49.1%. Inbreeding depression was greater in populations with a wider genetic base, which had never been exposed to inbreeding (CMS-30, BR-107, PH4, Cunha, Saracura, Nitrodent, and Nitroflint. Inbred lines with greater yield means should be obtained from the BR-105, BR-111, CMS-01, CMS-03, BR-106, CMS-14c, and CMS-28 populations. The use of parameter estimates generated by analysis of inbreeding depression, allow to make inferences about frequencies of deleterious alleles in the population. The frequencies of favorable alleles in the parents can be obtained by diallel analysis. The association of these two types of information, can provide a better interpretation of the genetic parameters and also can improve the process of selection of parents for either an intra- or an inter-populational breeding program.

  10. Induced cytomictic diversity in maize (Zea mays L.) inbred.

    Science.gov (United States)

    Rai, Prashant Kumar; Kumar, Girjesh; Tripathi, Avinash

    2010-01-01

    Mutation breeding has been used for improving oligogenic and polygenic characters, disease resistance and quantitative characters including yielding ability. The cytological stability of maize inbred lines is an important consideration in view of their extensive use in genetics and plant breeding research. Investigation in Zea mays L. confirms that the migration of chromosomes is a real event that cannot be misunderstood as an artifact produced by fixation or mechanical injuries. During present investigation, we found that out of six inbred lines of Zea mays L. viz. CM-135, CM-136, CM-137, CM-138, CM-142 and CM-213 at various treatment doses of gamma irradiations viz. 200, 400 and 600 Gy, some of the plants of inbred line CM- 138 at 200 Gy dose displayed characteristic cytoplasmic connections during all the stages of meiosis. Four plants from this treatment set were found to be engaged in a rare phenomenon reported as "Cytomixis". It elucidates that in inbred of Zea mays L., induced cytomixis through gamma rays treatment may be considered to be a possible source of production of aneuploid and polyploid gametes. This phenomenon may have several applications in Zea mays L. improvement in the sense of diversity and ever yield potential.

  11. Evaluation of Maize Germplasm for Resistance to Aflatoxin Accumulation

    Directory of Open Access Journals (Sweden)

    Michael H. Blanco

    2012-03-01

    Full Text Available Aflatoxin contamination of maize grain threatens human food and animal feed safety. Breeding for reduced grain aflatoxin accumulation is one of the best strategies presently available to lower grain aflatoxin accumulation. Previously identified sources of germplasm with reduced grain aflatoxin accumulation are excessively tall and late maturing. The objective of this research was to screen germplasm and identify potential sources of aflatoxin resistance. KO679Y and CUBA117:S15-101-001-B-B-B-B inbreds were evaluated for aflatoxin accumulation alongside resistant and susceptible checks with both performing well. These two lines were also evaluated in various crosses. KO679Y performed especially well in crosses with Mp494 and Mp717, resulting in low ear rot and very low aflatoxin levels, but not well in other crosses. A breeding cross including CUBA117:S15-101-001-B-B-B-B as a parent accumulated low levels of aflatoxin both years it was evaluated. Lines resulting from these crosses are being advanced for further evaluation and improvement. KO679Y and CUBA117:S15-101-001-B-B-B-B may prove useful for breeders seeking germplasm sources for ear rot and mycotoxin reduction, especially KO679Y which matures a week earlier and is approximately 25% shorter than current lines resistant to grain aflatoxin accumulation.

  12. Exploring maize-legume intercropping systems in Southwest Mexico

    NARCIS (Netherlands)

    Flores-Sanchez, D.; Pastor, A.V.; Lantinga, E.A.; Rossing, W.A.H.; Kropff, M.J.

    2013-01-01

    Maize yields in continuous maize production systems of smallholders in the Costa Chica, a region in Southwest Mexico, are low despite consistent inputs of fertilizers and herbicides. This study was aimed at investigating the prospects of intercropping maize (Zea mays L.) and maize-roselle (Hibiscus

  13. Consumer preferences for maize products in urban Kenya.

    Science.gov (United States)

    De Groote, Hugo; Kimenju, Simon Chege

    2012-06-01

    New maize varieties have been biofortified with provitamin A, mainly a-carotene, which renders the grain yellow or orange. Unfortunately, many African consumers prefer white maize. The maize consumption patterns in Africa are, however, not known. To determine which maize products African consumers prefer to purchase and which maize preparations they prefer to eat. A survey of 600 consumers was conducted in Nairobi, Kenya, at three types of maize outlets: posho mills (small hammer mills), kiosks, and supermarkets. Clients of posho mills had lower incomes and less education than those of kiosks and supermarkets. The preferred maize product of the posho-mill clients was artisanal maize meal; the preferred product of the others was industrial maize meal. Maize is the preferred staple for lunch and dinner, eaten as a stiff porridge (ugali), followed by boiled maize and beans (githeri), regardless of socioeconomic background. For breakfast, only half the consumers prefer maize, mostly as a soft porridge (uji). This proportion is higher in low-income groups. Consumers show a strong preference for white maize over yellow, mostly for its organoleptic characteristics, and show less interest in biofortified maize. Maize is the major food staple in Nairobi, mostly eaten in a few distinct preparations. For biofortified yellow maize to be accepted, a strong public awareness campaign to inform consumers is needed, based on a sensory evaluation and the mass media, in particular on radio in the local language.

  14. ROOT VEGETABLES, BREEDING TRENDS, RESULTS

    Directory of Open Access Journals (Sweden)

    M. I. Fedorova

    2017-01-01

    Full Text Available The main advantage of root vegetables is their unique specificity and high economic importance. The benefits and medicinal properties of root vegetables being highly demanded by the market requirements to the commodity are highlighted in the article. The main directions of breeding program for root vegetable crops, including species of Apiaceae family with carrot, parsnips; Chenopodioideae family with red beet; Brassicaceae family with radish, Daikon, Raphanus sativus L. var. lobo Sazonova & Stank, turnip and rutabaga. Initial breeding accessions of carrot, red beet, radish, Daikon, Raphanus sativus L. var. lobo Sazonova & Stank, turnip and rutabaga have been selected out to be used for breeding program for heterosis. The mf and ms breeding lines were developed, and with the use of them the new gene pool was created. Variety supporting breeding program and methods were also proposed. 

  15. Achievements in NS rapeseed hybrids breeding

    Directory of Open Access Journals (Sweden)

    Marjanović-Jeromela Ana

    2016-01-01

    Full Text Available The increased production of oilseed rape (Brassica napus L. is evident on a global scale, but also in Serbia in the last decade. Rapeseed is used primarily for vegetable oil and processing industry, but also as a source of protein for animal feed and green manure. Following the cultivation of varieties, breeding and cultivation of hybrid rapeseed started in the 1990's, to take advantage of heterosis in F1 generation, while protecting the breeder's rights during seed commercialization. The breeding of hybrid oilseed rape requires high quality starting material (lines with good combining abilities for introduction of male sterility. Ogura sterility system is primarily used at the Institute of Field and Vegetable Crops, Novi Sad, Serbia. To use this system, separate lines are modified with genes for cytoplasmic male sterility (cms female line - mother line and restoration of fertility (Rf male lines - father line. In order to maintain the sterility of the mother line it is necessary to produce a maintainer line of cytoplasmic male sterility. Creation of these lines and hybrids at the Institute of Field and Vegetable Crops was successfully monitored with intense use of cytogenetic laboratory methods. The structure and vitality of pollen, including different phases during meiosis were checked so that cms stability was confirmed during the introduction of these genes into different lines. Rapeseed breeding program in Serbia resulted in numerous varieties through collaboration of researchers engaged in breeding and genetics of this plant species. So far, in addition to 12 varieties of winter rapeseed and two varieties of spring rapeseed, a new hybrid of winter rapeseed NS Ras was registered in Serbia. NS Ras is an early-maturing hybrid characterized by high seed yield and oil content. Average yield of NS Ras for two seasons and three sites was 4256 kg ha-1 of seed and 1704 kg ha-1 of oil. Three promising winter rapeseed hybrids are in the process of

  16. Deletion of an Endoplasmic Reticulum Stress Response Element in a ZmPP2C-A Gene Facilitates Drought Tolerance of Maize Seedlings.

    Science.gov (United States)

    Xiang, Yanli; Sun, Xiaopeng; Gao, Shan; Qin, Feng; Dai, Mingqiu

    2017-03-06

    Drought is a major abiotic stress that causes the yearly yield loss of maize, a crop cultured worldwide. Breeding drought-tolerant maize cultivars is a priority requirement of world agriculture. Clade A PP2C phosphatases (PP2C-A), which are conserved in most plant species, play important roles in abscisic acid (ABA) signaling and plant drought response. However, natural variations of PP2C-A genes that are directly associated with drought tolerance remain to be elucidated. Here, we conducted a candidate gene association analysis of the ZmPP2C-A gene family in a maize panel consisting of 368 varieties collected worldwide, and identified a drought responsive gene ZmPP2C-A10 that is tightly associated with drought tolerance. We found that the degree of drought tolerance of maize cultivars negatively correlates with the expression levels of ZmPP2C-A10. ZmPP2C-A10, like its Arabidopsis orthologs, interacts with ZmPYL ABA receptors and ZmSnRK2 kinases, suggesting that ZmPP2C-A10 is involved in mediating ABA signaling in maize. Transgenic studies in maize and Arabidopsis confirmed that ZmPP2C-A10 functions as a negative regulator of drought tolerance. Further, a causal natural variation, deletion allele-338, which bears a deletion of ERSE (endoplasmic reticulum stress response element) in the 5'-UTR region of ZmPP2C-A10, was detected. This deletion causes the loss of endoplasmic reticulum (ER) stress-induced expression of ZmPP2C-A10, leading to increased plant drought tolerance. Our study provides direct evidence linking ER stress signaling with drought tolerance and genetic resources that can be used directly in breeding drought-tolerant maize cultivars. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Risk Adjusted Production Efficiency of Maize Farmers in Ethiopia: Implication for Improved Maize Varieties Adoption

    Directory of Open Access Journals (Sweden)

    Sisay Diriba Lemessa

    2017-09-01

    Full Text Available This study analyzes the technical efficiency and production risk of 862 maize farmers in major maize producing regions of Ethiopia. It employs the stochastic frontier approach (SFA to estimate the level of technical efficiencies of stallholder farmers. The stochastic frontier approach (SFA uses flexible risk properties to account for production risk. Thus, maize production variability is assessed from two perspectives, the production risk and the technical efficiency. The study also attempts to determine the socio-economic and farm characteristics that influence technical efficiency of maize production in the study area. The findings of the study showed the existence of both production risk and technical inefficiency in maize production process. Input variables (amounts per hectare such as fertilizer and labor positively influence maize output. The findings also show that farms in the study area exhibit decreasing returns to scale. Fertilizer and ox plough days reduce output risk while labor and improved seed increase output risk. The mean technical efficiency for maize farms is 48 percent. This study concludes that production risk and technical inefficiency prevents the maize farmers from realizing their frontier output. The best factors that improve the efficiency of the maize farmers in the study area include: frequency of extension contact, access to credit and use of intercropping. It was also realized that altitude and terracing in maize farms had influence on farmer efficiency.

  18. Structural, functional and evolutionary characterization of major drought transcription factors families in maize

    Science.gov (United States)

    Mittal, Shikha; Banduni, Pooja; Mallikarjuna, Mallana G.; Rao, Atmakuri R.; Jain, Prashant A.; Dash, Prasanta K.; Thirunavukkarasu, Nepolean

    2018-05-01

    Drought is one of the major threats to maize production. In order to improve the production and to breed tolerant hybrids, understanding the genes and regulatory mechanisms during drought stress is important. Transcription factors (TFs) play a major role in gene regulation and many TFs have been identified in response to drought stress. In our experiment, a set of 15 major TF families comprising 1436 genes was structurally and functionally characterized using in-silico tools and a gene expression assay. All 1436 genes were mapped on 10 chromosome of maize. The functional annotation indicated the involvement of these genes in ABA signaling, ROS scavenging, photosynthesis, stomatal regulation, and sucrose metabolism. Duplication was identified as the primary force in divergence and expansion of TF families. Phylogenetic relationship was developed individually for each TF family as well as combined TF families. Phylogenetic analysis grouped the TF family of genes into TF-specific and mixed groups. Phylogenetic analysis of genes belonging to various TF families suggested that the origin of TFs occurred in the lineage of maize evolution. Gene structure analysis revealed that more number of genes were intron-rich as compared to intronless genes. Drought-responsive CRE’s such as ABREA, ABREB, DRE1 and DRECRTCOREAT have been identified. Expression and interaction analyses identified leaf-specific bZIP TF, GRMZM2G140355, as a potential contributor toward drought tolerance in maize. We also analyzed protein-protein interaction network of 269 drought-responsive genes belonging to different drought-related TFs. The information generated on structural and functional characteristics, expression and interaction of the drought-related TF families will be useful to decipher the drought tolerance mechanisms and to derive drought-tolerant genotypes in maize.

  19. Genetic variation and relationships of old maize genotypes (Zea mays l. detected using SDS-page

    Directory of Open Access Journals (Sweden)

    Martin Vivodík

    2016-11-01

    Full Text Available The assessment of genetic diversity among the members of a species is of vital importance for successful breeding and adaptability. In the present study 40 old genotypes of maize from Hungary, Union of Soviet Socialist Republics, Poland, Czechoslovakia, Yugoslavia and Slovak Republic  were evaluated for the total seed storage proteins using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE through vertical slab unit. The number of total scorable protein bands was twentythree as a result of SDS-PAGE technique but those that were not cosistent in reproducibility and showed occasional variation in sharpness and density were not considered. Out of twentythree polypeptide bands, 6 (31% were commonly present in all accessions and considered as monomorphic, while 17 (65% showed variations and considered as polymorphic. On the basis of banding profiles of proteins of different kDa, gel was divided into zones A, B and C. The major protein bands were lied in zones A and B, while minor bands were present in zones C. In zone A out of 10 protein bands, 1 were monomorphic and 9 were polymorphic. In zone B out of 8 protein bands, 3 was monomorphic and 5 was polymorphic and in zone C out of 5 protein bands, 2 were monomorphic whereas 3 polymorphic. The dendrogram tree demonstrated the relationship among the forty registered old maize genotypes according to the similarity index, using UPGMA cluster analysis. The dendrogram was divided into two main clusters. The first one contained eleven genotypes from maize, while the second cluster contained the twentynine genotypes of maize. Similarly the present study of genetic variability in the seed storage polypeptide determined by SDS-PAGE technique proved that it is fruitful to identify genetic diversity among accessions of maize

  20. Comparative Histological and Transcriptional Analysis of Maize Kernels Infected with Aspergillus flavus and Fusarium verticillioides

    Directory of Open Access Journals (Sweden)

    Xiaomei Shu

    2017-12-01

    Full Text Available Aspergillus flavus and Fusarium verticillioides infect maize kernels and contaminate them with the mycotoxins aflatoxin, and fumonisin, respectively. Genetic resistance in maize to these fungi and to mycotoxin contamination has been difficult to achieve due to lack of identified resistance genes. The objective of this study was to identify new candidate resistance genes by characterizing their temporal expression in response to infection and comparing expression of these genes with genes known to be associated with plant defense. Fungal colonization and transcriptional changes in kernels inoculated with each fungus were monitored at 4, 12, 24, 48, and 72 h post inoculation (hpi. Maize kernels responded by differential gene expression to each fungus within 4 hpi, before the fungi could be observed visually, but more genes were differentially expressed between 48 and 72 hpi, when fungal colonization was more extensive. Two-way hierarchal clustering analysis grouped the temporal expression profiles of the 5,863 differentially expressed maize genes over all time points into 12 clusters. Many clusters were enriched for genes previously associated with defense responses to either A. flavus or F. verticillioides. Also within these expression clusters were genes that lacked either annotation or assignment to functional categories. This study provided a comprehensive analysis of gene expression of each A. flavus and F. verticillioides during infection of maize kernels, it identified genes expressed early and late in the infection process, and it provided a grouping of genes of unknown function with similarly expressed defense related genes that could inform selection of new genes as targets in breeding strategies.

  1. Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize.

    Science.gov (United States)

    Wei, Kai-Fa; Chen, Juan; Chen, Yan-Feng; Wu, Ling-Juan; Xie, Dao-Xin

    2012-04-01

    The WRKY transcription factors function in plant growth and development, and response to the biotic and abiotic stresses. Although many studies have focused on the functional identification of the WRKY transcription factors, much less is known about molecular phylogenetic and global expression analysis of the complete WRKY family in maize. In this study, we identified 136 WRKY proteins coded by 119 genes in the B73 inbred line from the complete genome and named them in an orderly manner. Then, a comprehensive phylogenetic analysis of five species was performed to explore the origin and evolutionary patterns of these WRKY genes, and the result showed that gene duplication is the major driving force for the origin of new groups and subgroups and functional divergence during evolution. Chromosomal location analysis of maize WRKY genes indicated that 20 gene clusters are distributed unevenly in the genome. Microarray-based expression analysis has revealed that 131 WRKY transcripts encoded by 116 genes may participate in the regulation of maize growth and development. Among them, 102 transcripts are stably expressed with a coefficient of variation (CV) value of WRKY genes with the CV value of >15% are further analysed to discover new organ- or tissue-specific genes. In addition, microarray analyses of transcriptional responses to drought stress and fungal infection showed that maize WRKY proteins are involved in stress responses. All these results contribute to a deep probing into the roles of WRKY transcription factors in maize growth and development and stress tolerance.

  2. The Environmental Mitigation Potential of Photovoltaic-Powered Irrigation in the Production of South African Maize

    Directory of Open Access Journals (Sweden)

    Sarah Wettstein

    2017-09-01

    Full Text Available Agriculture is under pressure to reduce its environmental impact. The use of renewable energy sources has potential to decrease these impacts. Maize is one of the most significant crops in South Africa and approximately 241,000 hectares are irrigated. This irrigation is most commonly powered by grid electricity generated using coal. However, South Africa has high solar irradiation, which could be used to generate photovoltaic electricity. The aim of this study was to determine the environmental mitigation potential of replacing grid-powered irrigation in South African maize production with photovoltaic irrigation systems using Life Cycle Assessment. The study included the value chain of maize production from cultivation to storage. Replacing grid electricity with photovoltaic-generated electricity leads to a 34% reduction in the global warming potential of maize produced under irrigation, and—applied at a national level—could potentially reduce South Africa’s greenhouse gas emissions by 536,000 t CO2-eq. per year. Non-renewable energy demand, freshwater eutrophication, acidification, and particulate matter emissions are also significantly lowered. Replacing grid electricity with renewable energy in irrigation has been shown to be an effective means of reducing the environmental impacts associated with South African maize production.

  3. One size fits all? : optimization of rainbow trout breeding program under diverse preferences and genotype-by-environment interaction

    NARCIS (Netherlands)

    Sae-Lim, P.

    2013-01-01

    Global fish breeders distribute improved animal material to several continents to be farmed under diverse environments, and for very different market conditions. When establishing a global breeding program, there is a need to assess whether or not a single breeding objective satisfies the

  4. Cereal Crop Proteomics: Systemic Analysis of Crop Drought Stress Responses Towards Marker-Assisted Selection Breeding

    Directory of Open Access Journals (Sweden)

    Arindam Ghatak

    2017-06-01

    Full Text Available Sustainable crop production is the major challenge in the current global climate change scenario. Drought stress is one of the most critical abiotic factors which negatively impact crop productivity. In recent years, knowledge about molecular regulation has been generated to understand drought stress responses. For example, information obtained by transcriptome analysis has enhanced our knowledge and facilitated the identification of candidate genes which can be utilized for plant breeding. On the other hand, it becomes more and more evident that the translational and post-translational machinery plays a major role in stress adaptation, especially for immediate molecular processes during stress adaptation. Therefore, it is essential to measure protein levels and post-translational protein modifications to reveal information about stress inducible signal perception and transduction, translational activity and induced protein levels. This information cannot be revealed by genomic or transcriptomic analysis. Eventually, these processes will provide more direct insight into stress perception then genetic markers and might build a complementary basis for future marker-assisted selection of drought resistance. In this review, we survey the role of proteomic studies to illustrate their applications in crop stress adaptation analysis with respect to productivity. Cereal crops such as wheat, rice, maize, barley, sorghum and pearl millet are discussed in detail. We provide a comprehensive and comparative overview of all detected protein changes involved in drought stress in these crops and have summarized existing knowledge into a proposed scheme of drought response. Based on a recent proteome study of pearl millet under drought stress we compare our findings with wheat proteomes and another recent study which defined genetic marker in pearl millet.

  5. INTEGRATED WEED CONTROL IN MAIZE.

    Science.gov (United States)

    Latré, J; Dewitte, K; Derycke, V; De Roo, B; Haesaert, G

    2015-01-01

    Integrated pest management has been implemented as a general practice by EU legislation. As weed control actually is the most important crop protection measure in maize for Western Europe, the new legislation will have its impact. The question is of course which systems can be successfully implemented in practice with respect to labour efficiency and economical parameters. During 3 successive growing seasons (2007, 2008, 2009) weed control in maize was evaluated, the main focus was put on different techniques of integrated weed control and was compared with chemical weed control. Additionally, during 4 successive growing seasons (2011, 2012, 2013 and 2014) two objects based on integrated weed control and two objects based on mechanical weed control were compared to about twenty different objects of conventional chemical weed control. One of the objects based on mechanical weed control consisted of treatment with the flex-tine harrow before and after emergence in combination with chemical weed control at a reduced rate in 3-4 leave stage. The second one consisted of broadcast mechanical treatments before and after emergence followed by a final in-row application of herbicides and an inter-row cultivation at 6-7(8) leave stage. All trials were conducted on the Experimental farm of Bottelare HoGent-UGent on a sandy loam soil. Maize was growing in 1/3 crop rotation. The effect on weed growth as well as the economic impact of the different applications was evaluated. Combining chemical and mechanical weed control is a possible option in conventional farming but the disadvantages must be taken into account. A better planned weed control based on the real present weed-population in combination with a carefully thought-out choice of herbicides should also be considered as an IPM--approach.

  6. Germplasm Enhancement of Maize - Strategies & Synergy with Maize Curation

    Science.gov (United States)

    The importance of access to and utilization of genetic plant resources for improvement of modern cultivars is widely recognized. Industry recognized the challenges of incorporating diversity into their elite breeding pools because of lack of adaptation and undesirable agronomic traits associat...

  7. Mutation breeding in chickpea

    International Nuclear Information System (INIS)

    2009-01-01

    Chickpea is an important food legume in Turkey. Turkey is one of the most important gene centers in the world for legumes. The most widely known characteristic of chickpea is that it is an important vegetable protein source used in human and animal nutrition. However, the dry grains of chickpea, has 2-3 times more protein than our traditional food of wheat. In addition, cheakpea is also energy source because of its high carbohydrate content. It is very rich in some vitamin and mineral basis. In the plant breeding, mutation induction has become an effective way of supplementing existing germplasm and improving cultivars. Many successful examples of mutation induction have proved that mutation breeding is an effective and important approach to food legume improvement. The induced mutation technique in chickpea has proved successful and good results have been attained. Realizing the potential of induced mutations, a mutation breeding programme was initiated at the Nuclear Agriculture Section of the Saraykoey Nuclear Research and Training Center in 1994. The purpose of the study was to obtain high yielding chickpea mutants with large seeds, good cooking quality and high protein content. Beside this some characters such as higher adaptation ability, tolerant to cold and drought, increased machinery harvest type, higher yield, resistant to diseases especially to antracnose and pest were investigated too. Parents varieties were ILC-482, AK-7114 and AKCIN-91 (9 % seed moisture content and germination percentage 98 %) in these experiments. The irradiation doses were 0 (control), 50, 100, 150, 200, 250, 300, 350, 400, 500 ve 600 Gy for greenhouse experiments and 0 (control), 50, 100, 150, 200, 250, 300, 350 ve 400 Gy for field experiments, respectively. One thousand seeds for per treatment were sown in the field for the M 1 . At maturity, 3500 single plants were harvested and 20 seeds were taken from each M 1 plant and planted in the following season. During plant growth

  8. Carbaryl residues in maize products

    International Nuclear Information System (INIS)

    Zayed, S.M.A.D.; Mansour, S.A.; Mostafa, I.Y.; Hassan, A.

    1976-01-01

    The 14 C-labelled insecticide carbaryl was synthesized from [1- 14 C]-1-naphthol at a specific activity of 3.18mCig -1 . Maize plants were treated with the labelled insecticide under simulated conditions of agricultural practice. Mature plants were harvested and studied for distribution of total residues in untreated grains as popularly roasted and consumed, and in the corn oil and corn germ products. Total residues found under these conditions in the respective products were 0.2, 0.1, 0.45 and 0.16ppm. (author)

  9. Effects of maize planting patterns on the performance of cassava ...

    African Journals Online (AJOL)

    sola

    The design was a split-plot arrangement, laid out in a randomized ... significant differences (P<0.05) between the treatments in the growth and yield parameters of maize. The mean effects of companion crops on maize leaf area were 0.61, 0.60, 0.60 and 0.52 m2/plant for sole maize, maize / melon, maize / cassava and.

  10. Stress Sensitivity Is Associated with Differential Accumulation of Reactive Oxygen and Nitrogen Species in Maize Genotypes with Contrasting Levels of Drought Tolerance

    Science.gov (United States)

    Yang, Liming; Fountain, Jake C.; Wang, Hui; Ni, Xinzhi; Ji, Pingsheng; Lee, Robert D.; Kemerait, Robert C.; Scully, Brian T.; Guo, Baozhu

    2015-01-01

    Drought stress decreases crop growth, yield, and can further exacerbate pre-harvest aflatoxin contamination. Tolerance and adaptation to drought stress is an important trait of agricultural crops like maize. However, maize genotypes with contrasting drought tolerances have been shown to possess both common and genotype-specific adaptations to cope with drought stress. In this research, the physiological and metabolic response patterns in the leaves of maize seedlings subjected to drought stress were investigated using six maize genotypes including: A638, B73, Grace-E5, Lo964, Lo1016, and Va35. During drought treatments, drought-sensitive maize seedlings displayed more severe symptoms such as chlorosis and wilting, exhibited significant decreases in photosynthetic parameters, and accumulated significantly more reactive oxygen species (ROS) and reactive nitrogen species (RNS) than tolerant genotypes. Sensitive genotypes also showed rapid increases in enzyme activities involved in ROS and RNS metabolism. However, the measured antioxidant enzyme activities were higher in the tolerant genotypes than in the sensitive genotypes in which increased rapidly following drought stress. The results suggest that drought stress causes differential responses to oxidative and nitrosative stress in maize genotypes with tolerant genotypes with slower reaction and less ROS and RNS production than sensitive ones. These differential patterns may be utilized as potential biological markers for use in marker assisted breeding. PMID:26492235

  11. Stress Sensitivity Is Associated with Differential Accumulation of Reactive Oxygen and Nitrogen Species in Maize Genotypes with Contrasting Levels of Drought Tolerance

    Directory of Open Access Journals (Sweden)

    Liming Yang

    2015-10-01

    Full Text Available Drought stress decreases crop growth, yield, and can further exacerbate pre-harvest aflatoxin contamination. Tolerance and adaptation to drought stress is an important trait of agricultural crops like maize. However, maize genotypes with contrasting drought tolerances have been shown to possess both common and genotype-specific adaptations to cope with drought stress. In this research, the physiological and metabolic response patterns in the leaves of maize seedlings subjected to drought stress were investigated using six maize genotypes including: A638, B73, Grace-E5, Lo964, Lo1016, and Va35. During drought treatments, drought-sensitive maize seedlings displayed more severe symptoms such as chlorosis and wilting, exhibited significant decreases in photosynthetic parameters, and accumulated significantly more reactive oxygen species (ROS and reactive nitrogen species (RNS than tolerant genotypes. Sensitive genotypes also showed rapid increases in enzyme activities involved in ROS and RNS metabolism. However, the measured antioxidant enzyme activities were higher in the tolerant genotypes than in the sensitive genotypes in which increased rapidly following drought stress. The results suggest that drought stress causes differential responses to oxidative and nitrosative stress in maize genotypes with tolerant genotypes with slower reaction and less ROS and RNS production than sensitive ones. These differential patterns may be utilized as potential biological markers for use in marker assisted breeding.

  12. Breeding of ozone resistant rice: Relevance, approaches and challenges

    International Nuclear Information System (INIS)

    Frei, Michael

    2015-01-01

    Tropospheric ozone concentrations have been rising across Asia, and will continue to rise during the 21st century. Ozone affects rice yields through reductions in spikelet number, spikelet fertility, and grain size. Moreover, ozone leads to changes in rice grain and straw quality. Therefore the breeding of ozone tolerant rice varieties is warranted. The mapping of quantitative trait loci (QTL) using bi-parental populations identified several tolerance QTL mitigating symptom formation, grain yield losses, or the degradation of straw quality. A genome-wide association study (GWAS) demonstrated substantial natural genotypic variation in ozone tolerance in rice, and revealed that the genetic architecture of ozone tolerance in rice is dominated by multiple medium and small effect loci. Transgenic approaches targeting tolerance mechanisms such as antioxidant capacity are also discussed. It is concluded that the breeding of ozone tolerant rice can contribute substantially to the global food security, and is feasible using different breeding approaches. - Highlights: • Tropospheric ozone affects millions of hectares of rice land. • Ozone affects rice yield and quality. • Breeding approaches to adapt rice to high ozone are discussed. • Challenges in the breeding of ozone resistant rice are discussed. - This review summarizes the effects of tropospheric ozone on rice and outlines approaches and challenges in the breeding of adapted varieties

  13. Genome Wide Association Study for Drought, Aflatoxin Resistance, and Important Agronomic Traits of Maize Hybrids in the Sub-Tropics

    Science.gov (United States)

    Farfan, Ivan D. Barrero; De La Fuente, Gerald N.; Murray, Seth C.; Isakeit, Thomas; Huang, Pei-Cheng; Warburton, Marilyn; Williams, Paul; Windham, Gary L.; Kolomiets, Mike

    2015-01-01

    The primary maize (Zea mays L.) production areas are in temperate regions throughout the world and this is where most maize breeding is focused. Important but lower yielding maize growing regions such as the sub-tropics experience unique challenges, the greatest of which are drought stress and aflatoxin contamination. Here we used a diversity panel consisting of 346 maize inbred lines originating in temperate, sub-tropical and tropical areas testcrossed to stiff-stalk line Tx714 to investigate these traits. Testcross hybrids were evaluated under irrigated and non-irrigated trials for yield, plant height, ear height, days to anthesis, days to silking and other agronomic traits. Irrigated trials were also inoculated with Aspergillus flavus and evaluated for aflatoxin content. Diverse maize testcrosses out-yielded commercial checks in most trials, which indicated the potential for genetic diversity to improve sub-tropical breeding programs. To identify genomic regions associated with yield, aflatoxin resistance and other important agronomic traits, a genome wide association analysis was performed. Using 60,000 SNPs, this study found 10 quantitative trait variants for grain yield, plant and ear height, and flowering time after stringent multiple test corrections, and after fitting different models. Three of these variants explained 5–10% of the variation in grain yield under both water conditions. Multiple identified SNPs co-localized with previously reported QTL, which narrows the possible location of causal polymorphisms. Novel significant SNPs were also identified. This study demonstrated the potential to use genome wide association studies to identify major variants of quantitative and complex traits such as yield under drought that are still segregating between elite inbred lines. PMID:25714370

  14. RosBREED: Enabling marker-assisted breeding in Rosaceae

    NARCIS (Netherlands)

    Iezzoni, A.F.; Weebadde, C.; Luby, J.; Yue, C.; Weg, van de W.E.; Fazio, G.; Main, D.; Peace, C.P.; Bassil, N.V.; McFerson, J.

    2010-01-01

    Genomics research has not yet been translated into routine practical application in breeding Rosaceae fruit crops (peach, apple, strawberry, cherry, apricot, pear, raspberry, etc.). Through dedicated efforts of many researchers worldwide, a wealth of genomics resources has accumulated, including EST

  15. Mutation breeding in jute

    International Nuclear Information System (INIS)

    Joshua, D.C.

    1980-01-01

    Mutagenic studies in jute in general dealt with the morphological abnormalities of the M 1 generation in great detail. Of late, induction of a wide spectrum of viable mutations have been reported in different varieties of both the species. Mutations affecting several traits of agronomic importance such as, plant height, time of flowering, fibre yield and quality, resistance to pests and diseases are also available. Cytological analysis of a large collection of induced mutants resulted in the isolation of seven trisomics in an olitorius variety. Several anatomical parameters which are the components of fibre yield, have also received attention. Some mutants with completely altered morphology were used for interpreting the evolution of leaf shape in Tiliaceas and related families. A capsularis variety developed using mutation breeding technique has been released for cultivation. Several others, including derivatives of inter-mutant hybridization have been found to perform well at different locations in the All India Coordinated Trials. Presently, chemical mutagenesis and induction of mutants of physiological significance are receiving considerable attention. The induced variability is being used in genetic and linkage studies. (author)

  16. Mutation breeding in chickpea

    International Nuclear Information System (INIS)

    Sagel, Z.; Tutluer, M. I.; Peskircioglu, H.; Kantoglu, Y.; Kunter, B.

    2009-01-01

    Chickpea is an important food legume in Turkey. Turkey is one of the most important gene centers in the world for legumes. Realizing the potential of induced mutations, a mutation breeding programme was initiated at the Nuclear Agriculture Section of the Saraykoy Nuclear Research and Training Center in 1994. The purpose of the study was to obtain high yielding chickpea mutants with large seeds, good cooking quality and high protein content. Beside this some characters such as higher adaptation ability, tolerant to cold and drought, increased machinery harvest type, higher yield, resistant to diseases especially to antracnose and pest were investigated too. Parent varieties were ILC-482, AK-7114 and AKCIN-91 had been used in these experiments. The irradiation doses were 0 (control), 50, 100, 150, 200, 250, 300, 350 and 400 Gy for field experiments, respectively. As a result of these experiments, two promising mutant lines were chosen and given to the Seed Registration and Certification Center for official registration These two promising mutants were tested at five different locations of Turkey, in 2004 and 2005 years. After 2 years of registration experiments one of outstanding mutants was officially released as mutant chickpea variety under the name TAEK-SAGEL, in 2006. Some basic characteristics of this mutant are; earliness (95-100 day), high yield capacity (180-220 kg/da), high seed protein (22-25 %), first pot height (20-25 cm), 100 seeds weight (42-48 g), cooking time (35-40 min) and resistance to Ascochyta blight.

  17. Stem characteristics of two forage maize (Zea mays L.) cultivars varying in whole plant digestibility. IV. Changes during the growing season in anatomy and chemical composition in relation to fermentation characteristics of a lower internode

    NARCIS (Netherlands)

    Boon, E.J.M.C.; Struik, P.C.; Engels, F.M.; Cone, J.W.

    2012-01-01

    Improving digestibility of forage maize (Zea mays L.) through breeding is important to optimize the efficiency of ruminant's rations. It can partly be achieved by improving the digestibility of stem tissue, a genetically complex and diverse trait changing drastically during the growing season. We

  18. Screening of promising maize genotypes against maize weevil (Sitophilus zeamais Motschulky) in storage condition

    OpenAIRE

    Ram B Paneru; Resham B Thapa

    2017-01-01

    The maize weevil (Sitophilus zeamais Motschulsky) is a serious pest of economic importance in stored grains. It causes major damage to stored maize grain thereby reducing its weight, quality and germination. An experiment was conducted in randomized complete block design (RCBD) with 3 replications to screen 32 maize genotypes against maize weevil in no-choice and free-choice conditions at Entomology Division, Khumaltar, Lalitpur (Room temperature: Maximum 24-32°C and Minimum 18-27°C). The fin...

  19. Mutation breeding newsletter. No. 22

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  20. Mutation breeding newsletter. No. 34

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-07-01

    This issue of the Newsletter presents abstracts and short communications of research results on radiation and chemical induced mutation breeding projects. Positive traits such as disease resistance and increased productivity are highlighted.

  1. Mutation breeding newsletter. No. 29

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-02-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  2. Mutation breeding newsletter. No. 15

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-02-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  3. Mutation breeding newsletter. No. 5

    International Nuclear Information System (INIS)

    1975-02-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  4. Mutation breeding newsletter. No. 15

    International Nuclear Information System (INIS)

    1980-02-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  5. Mutation breeding newsletter. No. 14

    International Nuclear Information System (INIS)

    1979-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  6. Mutation breeding newsletter. No. 16

    International Nuclear Information System (INIS)

    1980-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  7. Mutation breeding newsletter. No. 12

    International Nuclear Information System (INIS)

    1978-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  8. Mutation breeding newsletter. No. 28

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-09-01

    This issue of the Newsletter presents reports and research abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  9. Mutation breeding newsletter. No. 29

    International Nuclear Information System (INIS)

    1987-02-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  10. Mutation breeding newsletter. No. 9

    International Nuclear Information System (INIS)

    1977-01-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  11. Mutation breeding newsletter. No. 7

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-01-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  12. Mutation Breeding Newsletter. No. 37

    International Nuclear Information System (INIS)

    1991-01-01

    This newsletter contains a brief account of FAO/IAEA meetings held in 1990 on plant breeding involving the use of induced mutations. It also features a list of commercially available plant cultivars produced by such techniques. Refs and tabs

  13. Mutation breeding newsletter. No. 4

    International Nuclear Information System (INIS)

    1974-08-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  14. Mutation breeding newsletter. No. 18

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  15. Mutation breeding newsletter. No. 9

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-01-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  16. Mutation breeding newsletter. No. 34

    International Nuclear Information System (INIS)

    1989-07-01

    This issue of the Newsletter presents abstracts and short communications of research results on radiation and chemical induced mutation breeding projects. Positive traits such as disease resistance and increased productivity are highlighted

  17. Mutation breeding newsletter. No. 24

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-07-01

    This issue of the Newsletter presents reports and research abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  18. Mutation breeding newsletter. No. 32

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  19. Mutation breeding newsletter. No. 36

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-07-01

    This issue of the Newsletter presents abstracts and short communications of research results on radiation and chemical induced mutation breeding projects. Positive traits such as disease resistance and increased productivity are highlighted.

  20. Mutation breeding newsletter. No. 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1974-01-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  1. Mutation breeding newsletter. No. 33

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-01-01

    This issue of the newsletter reports a number of research news and research abstracts on application of radiation induced mutation techniques to increase mutagenesis and mutation frequency in plant breeding projects.

  2. Mutation breeding newsletter. No. 3

    International Nuclear Information System (INIS)

    1974-01-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  3. Mutation breeding newsletter. No. 11

    International Nuclear Information System (INIS)

    1978-02-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  4. Mutation breeding newsletter. No. 6

    International Nuclear Information System (INIS)

    1975-08-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  5. Mutation breeding newsletter. No. 1

    International Nuclear Information System (INIS)

    1972-05-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  6. Mutation breeding newsletter. No. 31

    International Nuclear Information System (INIS)

    1988-03-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  7. Mutation breeding newsletter. No. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1972-05-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  8. Mutation breeding newsletter. No. 25

    International Nuclear Information System (INIS)

    1985-01-01

    This issue of the Newsletter presents reports and research abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  9. Mutation breeding newsletter. No. 32

    International Nuclear Information System (INIS)

    1988-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  10. Mutation breeding newsletter. No. 5

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-02-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  11. Mutation breeding newsletter. No. 20

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  12. Mutation breeding newsletter. No. 28

    International Nuclear Information System (INIS)

    1986-09-01

    This issue of the Newsletter presents reports and research abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  13. Mutation breeding newsletter. No. 17

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  14. Mutation breeding newsletter. No. 16

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  15. Mutation breeding newsletter. No. 8

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-09-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  16. Mutation breeding newsletter. No. 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1974-08-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  17. Mutation breeding newsletter. No. 12

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  18. Mutation breeding newsletter. No. 6

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-08-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  19. Mutation breeding newsletter. No. 10

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  20. Mutation breeding newsletter. No. 14

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  1. Mutation breeding newsletter. No. 36

    International Nuclear Information System (INIS)

    1990-07-01

    This issue of the Newsletter presents abstracts and short communications of research results on radiation and chemical induced mutation breeding projects. Positive traits such as disease resistance and increased productivity are highlighted

  2. Tricolored Blackbird - Breeding [ds20

    Data.gov (United States)

    California Natural Resource Agency — These data come from observations of breeding tricolored blackbirds throughout their range in California. NAD27 coordinates are given in the data for each record....

  3. Mutation breeding newsletter. No. 19

    International Nuclear Information System (INIS)

    1982-01-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  4. Mutation breeding newsletter. No. 7

    International Nuclear Information System (INIS)

    1976-01-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  5. Mutation breeding newsletter. No. 24

    International Nuclear Information System (INIS)

    1984-07-01

    This issue of the Newsletter presents reports and research abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  6. Mutation breeding newsletter. No. 20

    International Nuclear Information System (INIS)

    1982-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  7. Mutation breeding newsletter. No. 18

    International Nuclear Information System (INIS)

    1981-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  8. Mutation breeding newsletter. No. 31

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-03-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  9. Mutation breeding newsletter. No. 27

    International Nuclear Information System (INIS)

    1986-02-01

    This issue of the Newsletter presents reports and research abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  10. Mutation breeding newsletter. No. 33

    International Nuclear Information System (INIS)

    1989-01-01

    This issue of the newsletter reports a number of research news and research abstracts on application of radiation induced mutation techniques to increase mutagenesis and mutation frequency in plant breeding projects

  11. Mutation breeding newsletter. No. 26

    International Nuclear Information System (INIS)

    1985-10-01

    This issue of the Newsletter presents reports and research abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  12. Mutation breeding newsletter. No. 17

    International Nuclear Information System (INIS)

    1981-03-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  13. Mutation breeding newsletter. No. 30

    International Nuclear Information System (INIS)

    1987-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  14. Bee Queen Breeding Methods - Review

    Directory of Open Access Journals (Sweden)

    Silvia Patruica

    2016-05-01

    Full Text Available The biological potential of a bee family is mainly generated by the biological value of the queen. Whether we grow queens widely or just for our own apiaries, we must consider the acquisition of high-quality biological material, and also the creation of optimal feeding and caring conditions, in order to obtain high genetic value queens. Queen breeding technology starts with the setting of hoeing families, nurse families, drone-breeding families – necessary for the pairing of young queens, and also of the families which will provide the bees used to populate the nuclei where the next queens will hatch. The complex of requirements for the breeding of good, high-production queens is sometimes hard to met, under the application of artificial methods. The selection of breeding method must rely on all these requirements and on the beekeeper’s level of training.

  15. Mutation breeding newsletter. No. 13

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-02-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  16. Mutation breeding newsletter. No. 30

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  17. Mutation breeding newsletter. No. 19

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-01-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  18. Mutation breeding newsletter. No. 26

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-10-01

    This issue of the Newsletter presents reports and research abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  19. Mutation breeding newsletter. No. 25

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-01-01

    This issue of the Newsletter presents reports and research abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  20. Mutation breeding newsletter. No. 23

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-01-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  1. Mutation breeding newsletter. No. 27

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-02-01

    This issue of the Newsletter presents reports and research abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  2. Mutation breeding newsletter. No. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1973-02-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  3. Mutation breeding newsletter. No. 11

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-02-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  4. Mutation breeding newsletter. No. 23

    International Nuclear Information System (INIS)

    1983-01-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  5. Mutation breeding newsletter. No. 2

    International Nuclear Information System (INIS)

    1973-02-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  6. Mutation breeding newsletter. No. 10

    International Nuclear Information System (INIS)

    1977-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  7. Mutation breeding newsletter. No. 8

    International Nuclear Information System (INIS)

    1976-09-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  8. Mutation breeding newsletter. No. 13

    International Nuclear Information System (INIS)

    1979-02-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  9. Mutation breeding newsletter. No. 22

    International Nuclear Information System (INIS)

    1983-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  10. Susceptibility and aversion of Spodoptera frugiperda (Lepidoptera: Noctuidae) to Cry1F Bt maize and considerations for insect resistance management.

    Science.gov (United States)

    Binning, Rachel R; Coats, Joel; Kong, Xiaoxiao; Hellmich, Richard L

    2014-02-01

    Bacillus thuringiensis (Bt) maize was developed primarily for North American pests such as European corn borer (Ostrinia nubilalis (Hübner)). However, most Bt maize products are also cultivated outside of North America, where the primary pests may be different and may have lower susceptibility to Bt toxins. Fall armyworm (Spodoptera frugiperda JE Smith) is an important pest and primary target of Bt maize in Central and South America. S. frugiperda susceptibility to Cry1F (expressed in event TC1507) is an example of a pest-by-toxin interaction that does not meet the high-dose definition. In this study, the behavioral and toxic response of S. frugiperda to Cry1F maize was investigated by measuring the percentage of time naive third instars spent feeding during a 3-min exposure. S. frugiperda also were exposed as third instars to Cry1F maize for 14 d to measure weight gain and survival. S. frugiperda demonstrated an initial, postingestive aversive response to Cry1F maize, and few larvae survived the 14 d exposure. The role of susceptibility and avoidance are discussed in the context of global IRM refuge strategy development for Bt products.

  11. Mutation breeding in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Neto, A T; Menten, J O.M. [Centro de Energia Nuclear na Agricultura, Piracicaba (Brazil); Ando, A

    1980-03-01

    How mutation induction is used for plant breeding in Brazil is reported. For upland rice, the combined treatment with gamma-ray and mutagens (ethylene imine or ethylmethane sulfonate) has been used on the variety, Dourado Precoce, and some mutants with shortculm length and/or earliness without altering the productivity have been obtained. A project on the quantitative and qualitative protein improvement in upland rice was also started in 1979. In corn, the effect of gamma-irradiation on heterosis has been analyzed, and it was found that the single hybrids from two parental lines derived from irradiated seeds had increased ear productivity. For beans (Phaseolus yulgaris), gamma-irradiation and chemical mutagens have been used to induce the mutants with different seed color, disease resistance to golden mosaic virus and Xanthomonas phaseoli, earliness, high productivity and high protein content. Some mutants with partly improved characters have been obtained in these experiments. Two varieties of wheat tolerant to aluminum toxicity have been obtained, but the one showed high lodging due to its unfavorable plant height, and the other was highly susceptible to culm rust. Therefore, irradiation experiments have been started to improve these characters. The projects involving the use of gamma-irradiation have been tested to obtain the mutant lines insensitive to photoperiod and resistant to bud-blight in soybean, the mutant lines resistant to mosaic virus in papaya, the photoperiod-insensitive mutants in sorghum, the mosaic virus resistant and non-flowering mutants in sugar cane, and the Fusarium and nematode-resistant mutants in black pepper.

  12. Genomic Selection for Drought Tolerance Using Genome-Wide SNPs in Maize

    Directory of Open Access Journals (Sweden)

    Thirunavukkarasu Nepolean

    2017-04-01

    Full Text Available Traditional breeding strategies for selecting superior genotypes depending on phenotypic traits have proven to be of limited success, as this direct selection is hindered by low heritability, genetic interactions such as epistasis, environmental-genotype interactions, and polygenic effects. With the advent of new genomic tools, breeders have paved a way for selecting superior breeds. Genomic selection (GS has emerged as one of the most important approaches for predicting genotype performance. Here, we tested the breeding values of 240 maize subtropical lines phenotyped for drought at different environments using 29,619 cured SNPs. Prediction accuracies of seven genomic selection models (ridge regression, LASSO, elastic net, random forest, reproducing kernel Hilbert space, Bayes A and Bayes B were tested for their agronomic traits. Though prediction accuracies of Bayes B, Bayes A and RKHS were comparable, Bayes B outperformed the other models by predicting highest Pearson correlation coefficient in all three environments. From Bayes B, a set of the top 1053 significant SNPs with higher marker effects was selected across all datasets to validate the genes and QTLs. Out of these 1053 SNPs, 77 SNPs associated with 10 drought-responsive transcription factors. These transcription factors were associated with different physiological and molecular functions (stomatal closure, root development, hormonal signaling and photosynthesis. Of several models, Bayes B has been shown to have the highest level of prediction accuracy for our data sets. Our experiments also highlighted several SNPs based on their performance and relative importance to drought tolerance. The result of our experiments is important for the selection of superior genotypes and candidate genes for breeding drought-tolerant maize hybrids.

  13. Mutations induced in plant breeding

    International Nuclear Information System (INIS)

    Barriga B, P.

    1984-01-01

    The most significant aspects of the use of ionizing radiations in plant breeding are reviewed. Aspects such as basic principles of mutation, expression and selection in obtention of mutants, methods for using induced mutations and sucess achieved with this methodology in plant breeding are reviewed. Results obtained in a program of induced mutation on wheat for high content of protein and lysine at the Universidad Austral de Chile are presented. (Author)

  14. Mutations induced in plant breeding

    Energy Technology Data Exchange (ETDEWEB)

    Barriga B, P. (Universidad Austral de Chile, Valdivia. Inst. de Produccion y Sanidad Vegetal)

    1984-10-01

    The most significant aspects of the use of ionizing radiations in plant breeding are reviewed. Aspects such as basic principles of mutation, expression and selection in obtention of mutants, methods for using induced mutations and sucess achieved with this methodology in plant breeding are reviewed. Results obtained in a program of induced mutation on wheat for high content of protein and lysine at the Universidad Austral de Chile are presented.

  15. Mutation breeding in malting barley

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, Makoto; Sanada, Matsuyoshi

    1984-03-01

    The released varieties of malting barley through mutation breeding is more than ten in number, including foreign varieties. In Japan four varieties has been released so far. We started mutation breeding in 1956 together with cross breeding that we employed before. Until now, Gamma 4, Amagi Nijo 1 and Fuji Nijo 2 have been produced from the direct use of induced mutations and Nirasaki Nijo 8 from the indirect use of them. Mutation breeding has been used mainly in the partial improvement of agronomic characteristics since the selection for malting quality was very complicated. As the variety bred by induced mutation is usually equivalent to the original variety in malting quality, both this new variety and the original one could be cultivated in the same area without any problem on later malt production. Particularly when one farmer cultivates barley in an extensive acreage, he can harvest at the best time according to the different maturing time of each variety. From these points of view, mutation breeding is an efficient tool in malting barley breeding. Mutagens we have used so far are X-rays, ..gamma..-rays, neutron and chemicals such as dES. From our experience in selection, the low dose of radiation and chemical mutagens are more effective in selection of point mutation than the high dose of radiation which tends to produce many abnormal but few practical mutants. (author).

  16. Efficient Breeding by Genomic Mating.

    Science.gov (United States)

    Akdemir, Deniz; Sánchez, Julio I

    2016-01-01

    Selection in breeding programs can be done by using phenotypes (phenotypic selection), pedigree relationship (breeding value selection) or molecular markers (marker assisted selection or genomic selection). All these methods are based on truncation selection, focusing on the best performance of parents before mating. In this article we proposed an approach to breeding, named genomic mating, which focuses on mating instead of truncation selection. Genomic mating uses information in a similar fashion to genomic selection but includes information on complementation of parents to be mated. Following the efficiency frontier surface, genomic mating uses concepts of estimated breeding values, risk (usefulness) and coefficient of ancestry to optimize mating between parents. We used a genetic algorithm to find solutions to this optimization problem and the results from our simulations comparing genomic selection, phenotypic selection and the mating approach indicate that current approach for breeding complex traits is more favorable than phenotypic and genomic selection. Genomic mating is similar to genomic selection in terms of estimating marker effects, but in genomic mating the genetic information and the estimated marker effects are used to decide which genotypes should be crossed to obtain the next breeding population.

  17. Ultra-low-density genotype panels for breed assignment of Angus and Hereford cattle.

    Science.gov (United States)

    Judge, M M; Kelleher, M M; Kearney, J F; Sleator, R D; Berry, D P

    2017-06-01

    300 SNPs (selected using the global index method), the correlation between predicted and actual breed proportion was 0.993 and 0.995 in the Angus and Hereford validation populations, respectively. When SNP panels optimised for breed prediction in one population were used to predict the breed proportion of a separate population, the correlation between predicted and actual breed proportion was 0.034 and 0.044 weaker in the Hereford and Angus populations, respectively (using the 300 SNP panel). It is necessary to include at least 300 to 400 SNPs (per breed) on genotype panels to accurately predict breed proportion from biological samples.

  18. Genomic Dissection of Leaf Angle in Maize (Zea mays L. Using a Four-Way Cross Mapping Population.

    Directory of Open Access Journals (Sweden)

    Junqiang Ding

    Full Text Available Increasing grain yield by the selection for optimal plant architecture has been the key focus in modern maize breeding. As a result, leaf angle, an important determinant of plant architecture, has been significantly improved to adapt to the ever-increasing plant density in maize production over the past several decades. To extend our understanding on the genetic mechanisms of leaf angle in maize, we developed the first four-way cross mapping population, consisting of 277 lines derived from four maize inbred lines with varied leaf angles. The four-way cross mapping population together with the four parental lines were evaluated for leaf angle in two environments. In this study, we reported linkage maps built in the population and quantitative trait loci (QTL on leaf angle detected by inclusive composite interval mapping (ICIM. ICIM applies a two-step strategy to effectively separate the cofactor selection from the interval mapping, which controls the background additive and dominant effects at the same time. A total of 14 leaf angle QTL were identified, four of which were further validated in near-isogenic lines (NILs. Seven of the 14 leaf angle QTL were found to overlap with the published leaf angle QTL or genes, and the remaining QTL were unique to the four-way population. This study represents the first example of QTL mapping using a four-way cross population in maize, and demonstrates that the use of specially designed four-way cross is effective in uncovering the basis of complex and polygenetic trait like leaf angle in maize.

  19. Heterosis expression in crosses between maize populations: ear yield

    Directory of Open Access Journals (Sweden)

    Silva Ricardo Machado da

    2003-01-01

    Full Text Available The phenomenon of heterosis has been exploited extensively in maize (Zea mays L. breeding. The objective of this study was to evaluate the genetic potential of ten maize populations for ear yield following the diallel mating scheme. Six parental populations were obtained through phenotypic selection of open-pollinated ears in Rio Verde, GO, Brazil, (GO populations and four parental populations were synthesized in Piracicaba, SP, Brazil (GN populations: GO-D (DENTADO, GO- F (FLINT, GO-A (AMARELO, GO-B (BRANCO, GO-L (LONGO, GO-G (GROSSO, GN-01, GN-02, GN-03 and GN-04. Experiments were carried out in three environments: Anhembi (SP and Rio Verde (GO in 1998/99 (normal season crop and Piracicaba (SP in 1999 (off-season crop. All experiments were in completely randomized blocks with six replications. Analysis of variance grouped over environments showed high significance for heterosis and its components, although mid-parent heterosis and average heterosis were of low expression. The interaction treatments x environments was not significant. Total mid-parent heterosis effects ranged from de -4.3% to 17.3% with an average heterosis of 3.37%. Population with the highest yield (7.4 t ha-1 and with the highest effect of population (v i = 0.746 was GN-03, while the highest yielding cross was GO-B x GN-03 with 7,567 t ha-1. The highest specific heterosis effect (s ii' = 0.547 was observed in the cross GO-B x GN-03.

  20. Apparent in vivo nutrient digestibility of maize silages in horses

    Directory of Open Access Journals (Sweden)

    Adriana PÍŠOVÁ

    2016-12-01

    Full Text Available The aim of the experiment was to analyzed coefficients of digestibility of the maize silage nutrients in horse feeding. Horses of Slovak warmblood breed engaged in the research were 2.5 ± 0.5 years old. Horses in boxes without bedding to avoid eating it and excrement contamination were stabled. Horses individually with ad libitum access to water were housed. The boxes with trough for corn silage were equiped. The corn silage contained 362.3 g of dry matter, 74.1 g of crude protein, 27.1 g of crude fat and 948.2 g of organic matter in kg of dry matter. The feed twice a day, in the morning and in the evening was given. The feed intake and leftovers were weighed every day. Excrements immediately after excreting to avoid urine contamination into plastic containers were collected and weighed. The content of nutrients in the feed intake and in the excrements were analysed. In analysed samples the gravimetric dry matter amount by drying at 103 ± 2 °C, crude protein content by Kjeldahl method, fat content by extraction method according to Soxhlett – Henkel, ash content by burning the sample at 530 ± 20 °C in muffle furnace and organic matter content by calculation were determined. Coefficients of apparent digestibility in percent from taken in and excreted nutrients were calculated. In maize silage for horse feeding an average coefficient of digestibility of dry matter 61.94%, of crude protein 56.03%, of crude fat 72.34% and of organic matter 65.19% was found.

  1. Breeding phenology of African Black Oystercatchers Haematopus ...

    African Journals Online (AJOL)

    The timing of the start and duration of breeding and the effect of these on breeding productivity were analysed for African Black Oystercatchers Haematopus moquini on Robben Island, South Africa, over three breeding seasons from 2001 to 2004. African Black Oystercatchers have a long breeding season, from November ...

  2. Over-expression of zmarg encoding an arginase improves grain production in maize

    International Nuclear Information System (INIS)

    Hong, D.; Tian, Y.; Meng, X.; Zhang, P.

    2016-01-01

    Arginase, as one of the three key enzymes in nitrogen catabolism, the physiological role of Arg catabolism in cereal crops has not been fully clarified. Studies have shown that arginase-encoding genes play a key role in providing nitrogen to developing seedlings in many plant species.Yield is a primary trait in many crop breeding programs, which can be increased by modification of genes related to photosynthesis, nitrogen assimilation, carbon distribution, plant architecture, and transcriptional networks controlling plant development. In the present study, a maize arginase gene ZmARG was cloned and introduced into maize inbred lines by Agrobacterium tumefaciens- mediated transformation. Putative transgenic plants were confirmed by PCR, Southern blotting RT-PCR analysis. The expression of the ZmARG gene increased arginase activity in several tissues in transgenic lines. Transgenic maize plants had significantly higher ear weight and 100-seed weight as compared with wild-type control. Our results suggested that ZmARG was a potential target gene for crop yield improvement. (author)

  3. Population structure and strong divergent selection shape phenotypic diversification in maize landraces.

    Science.gov (United States)

    Pressoir, G; Berthaud, J

    2004-02-01

    To conserve the long-term selection potential of maize, it is necessary to investigate past and present evolutionary processes that have shaped quantitative trait variation. Understanding the dynamics of quantitative trait evolution is crucial to future crop breeding. We characterized population differentiation of maize landraces from the State of Oaxaca, Mexico for quantitative traits and molecular markers. Qst values were much higher than Fst values obtained for molecular markers. While low values of Fst (0.011 within-village and 0.003 among-villages) suggest that considerable gene flow occurred among the studied populations, high levels of population differentiation for quantitative traits were observed (ie an among-village Qst value of 0.535 for kernel weight). Our results suggest that although quantitative traits appear to be under strong divergent selection, a considerable amount of gene flow occurs among populations. Furthermore, we characterized nonproportional changes in the G matrix structure both within and among villages that are consequences of farmer selection. As a consequence of these differences in the G matrix structure, the response to multivariate selection will be different from one population to another. Large changes in the G matrix structure could indicate that farmers select for genes of major and pleiotropic effect. Farmers' decision and selection strategies have a great impact on phenotypic diversification in maize landraces.

  4. Testing the link between genome size and growth rate in maize

    Directory of Open Access Journals (Sweden)

    Maud I. Tenaillon

    2016-09-01

    Full Text Available Little is known about the factors driving within species Genome Size (GS variation. GS may be shaped indirectly by natural selection on development and adaptative traits. Because GS variation is particularly pronounced in maize, we have sampled 83 maize inbred lines from three well described genetic groups adapted to contrasted climate conditions: inbreds of tropical origin, Flint inbreds grown in temperate climates, and Dent inbreds distributed in the Corn Belt. As a proxy for growth rate, we measured the Leaf Elongation Rate maximum during nighttime (LERmax as well as GS in all inbred lines. In addition we combined available and new nucleotide polymorphism data at 29,090 sites to characterize the genetic structure of our panel. We found significant variation for both LERmax and GS among groups defined by our genetic structuring. Tropicals displayed larger GS than Flints while Dents exhibited intermediate values. LERmax followed the opposite trend with greater growth rate in Flints than in Tropicals. In other words, LERmax and GS exhibited a significantly negative correlation (r = − 0.27. However, this correlation was driven by among-group variation rather than within-group variation—it was no longer significant after controlling for structure and kinship among inbreds. Our results indicate that selection on GS may have accompanied ancient maize diffusion from its center of origin, with large DNA content excluded from temperate areas. Whether GS has been targeted by more intense selection during modern breeding within groups remains an open question.

  5. Isoenzymatic variation in the germplasm of Brazilian races of maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Gimenes Marcos Aparecido

    2000-01-01

    Full Text Available There are more than 200 races of maize (Zea mays L. divided into three groups (ancient commercial races, the recent commercial races, and indigenous races. Although the indigenous races have no commercial value, they have many important characteristics which can be incorporated into maize breeding programs. Most Brazilian indigenous germplasm race stocks were collected at least 40 years ago, and nothing is known of the genetic variability present in this germplasm. The genetic variability was assayed in 15 populations from four indigenous races of maize (Caingang, Entrelaçado, Lenha and Moroti and five indigenous cultivars, using five isoenzymatic systems encoded by 14 loci. The analysis revealed a low level of variability among the samples studied. Overall, the mean number of alleles/polymorphic locus was three, 64.3% of the loci analyzed being polymorphic and the estimated heterozygosity was 0.352. The mean number of alleles/polymorphic locus per population was 1.6. A mean of 47.5% of the loci were polymorphic. The mean expected heterozygosity was 0.195, the mean genetic identity was 0.821 and the proportion of total genetic diversity partitioned among populations (Gst was 0.156. A founder effect could explain the low variability detected.

  6. Abiotic stress growth conditions induce different responses in kernel iron concentration across genotypically distinct maize inbred varieties

    Science.gov (United States)

    Kandianis, Catherine B.; Michenfelder, Abigail S.; Simmons, Susan J.; Grusak, Michael A.; Stapleton, Ann E.

    2013-01-01

    The improvement of grain nutrient profiles for essential minerals and vitamins through breeding strategies is a target important for agricultural regions where nutrient poor crops like maize contribute a large proportion of the daily caloric intake. Kernel iron concentration in maize exhibits a broad range. However, the magnitude of genotype by environment (GxE) effects on this trait reduces the efficacy and predictability of selection programs, particularly when challenged with abiotic stress such as water and nitrogen limitations. Selection has also been limited by an inverse correlation between kernel iron concentration and the yield component of kernel size in target environments. Using 25 maize inbred lines for which extensive genome sequence data is publicly available, we evaluated the response of kernel iron density and kernel mass to water and nitrogen limitation in a managed field stress experiment using a factorial design. To further understand GxE interactions we used partition analysis to characterize response of kernel iron and weight to abiotic stressors among all genotypes, and observed two patterns: one characterized by higher kernel iron concentrations in control over stress conditions, and another with higher kernel iron concentration under drought and combined stress conditions. Breeding efforts for this nutritional trait could exploit these complementary responses through combinations of favorable allelic variation from these already well-characterized genetic stocks. PMID:24363659

  7. Diallel crossing among maize populations for resistance to fall armyworm

    Directory of Open Access Journals (Sweden)

    Alvarez María del Pilar

    2002-01-01

    Full Text Available Among the insects infecting the maize (Zea mays L. crop in Brazil, the fall armyworm (Spodoptera frugiperda Smith, 1797, Lepdoptera: Noctuidae is considered one of the most important because it causes the highest damage to yield. Genetic resistance to the fall armyworm has be an effective control strategy. The main objective of this work was to evaluate new germplasm sources for resistance to the fall armyworm, the key pest for the maize crop in Brazil. A partial diallel design between 20 varieties of Brazilian germplasm and nine exotic and semi-exotic varieties of different origin was used. The 180 crosses and 29 parental varieties along with two commercial checks were evaluated in three locations in the State of São Paulo State (Brasil. Fall armyworm resistance (FAWR under artificial and natural infestations, grain yield (GY, and plant height (PH were analyzed. The populations CMS14C and MIRT, and hybrid São José x MIRT showed the highest resistance, with values of 1.8, 1.7 and 1.4, respectively. Populations PMI9401 and PR91B, and the hybrid CMS14C x (B97xITU had best yields, with 4893, 3858 and 5677 kg ha-1, respectively. Heterosis ranged from -28% to 47% for FAWR and from -21% to 125% for GY, with mean values of -0,43% and 31%, respectively. Genotype by environment interaction was not significant for FAWR. The effects of varieties and heterosis were significant for all traits, showing that both additive and dominance effects may be important as sources of variation. For FAWR, only specific heterosis presented significance, suggesting strong genetic divergence between specific pairs of parental populations. Brasilian populations PMI9302 and São José, and the exotic population PR91B presented high performance per se, and also in croses for FAWR and GY. Crosses PMI9401 x (Cuba110 x EsalqPB1 and São José x MIRT presented high specific heterosis effects for both characters. These populations can be useful to be introgressed in maize

  8. Recent advances in the development of quality protein maize germplasm at the Centro International de Mejoramiento de Maiz y Trigo

    International Nuclear Information System (INIS)

    Vasal, S.K.; Villegas, E.; Tang, C.Y.

    1984-01-01

    The paper reviews past difficulties in the acceptance of quality protein maize (QPM) materials by farmers because of several crucial problems plaguing these materials. The breeding strategy used at the Centro Internacional de Mejoramiento de Maiz y Trigo (CIMMYT) over the past several years is described in detail. The strategy is based on the combined use of two genetic systems involving the opaque-2 gene and genetic modifiers. Inheritance of modifiers, some considerations in the exploitation and their role in circumventing the problems facing QPM materials are discussed. Progress is reported in overcoming the problems of yield, seed appearance, ear rot and the dry-down ability in QPM materials. Using hard endosperm QPM donor stocks, a wide array of QPM germplasm has been developed through the conversion programme and the development of QPM gene pools. To make the best use of available QPM germplasm, the current efforts in the management and handling of the germplasm are outlined. In the back-up stages, eight tropical and six subtropical QPM pools will be handled. In addition, six tropical and four subtropical advanced QPM populations were formed. These will be subjected to a rigorous international progency testing programme for improved yield, general adaptation and the stability of modifiers. Experimental data from international tests are presented, indicating the superior performance of several QPM materials. The objectives of some exploratory projects in QPM research are explained. Renewed interest in QPM research is being shown and the outlook for commercial exploitation of QPM materials in some countries seems very promising. (author)

  9. Maize cob losses and their effects on the poverty status of maize

    African Journals Online (AJOL)

    This study analysed fresh maize cob losses and its effect on the poverty status of maize farmers in Edo State,. Nigeria. The specific .... is the poverty gap for ... Total cost. 162,367.48. 100.00. Returns. Total expected yield (N). 327,966.63. _.

  10. Identification of resistance to Maize rayado fino virus in maize inbred lines

    Science.gov (United States)

    Maize rayado fino virus (MRFV) is one of the most important virus diseases of maize in America. Severe yield losses, ranging from 10 to 50% in landraces to nearly 100% in contemporary cultivars, have been reported. Resistance has been reported in populations, but few inbred lines have been identifie...

  11. Breeding performance in the Italian chicken breed Mericanel della Brianza

    Directory of Open Access Journals (Sweden)

    Stefano P. Marelli

    2010-11-01

    Full Text Available In Italy, 90 local avian breeds were described, the majority (61% were classified extinct and only 8.9 % still diffused. Therefore, efforts for conservation of Italian avian breeds are urgently required. The aim of this study was to record the breeding performance of the Italian breed Mericanel della Brianza and multiply a small population, in order to develop a conservation program. Fourteen females and 8 males were available at the beginning of the reproductive season in 2009 and organized in 8 families (1 male/1-2 females kept in floor pens. Birds received a photoperiod of 14L:10D and fed ad libitum. Breeding performance was recorded from March to June. Egg production and egg weight were recorded daily; eggs were set every 2 weeks and fertility, embryo mortality and hatchability were recorded. Mean egg production was 37% and mean egg weight was 34±3.49 g. High fertility values were recorded in the first three settings, from 94 to 87%, and the overall mean fertility value was 81.6%. Overall hatchability was only 49.6% due to a high proportion of dead embryos. Embryo mortality occurred mainly between day 2 and 7 of incubation and during hatch. Highest hatchability values were recorded in setting 1 and 2, 69 and 60% respectively, and a great decrease was found in the following settings. Great variations in egg production, fertility, hatchability and embryo mortality were found among families. The present results are the basic knowledge on reproductive parameters necessary to improve the reproductive efficiency of the breed within a conservation plan.

  12. Evolution, plant breeding and biodiversity

    Directory of Open Access Journals (Sweden)

    Salvatore Ceccarelli

    2011-11-01

    Full Text Available This paper deals with changes in biodiversity during the course of evolution, plant domestication and plant breeding. It shows than man has had a strong influence on the progressive decrease of biodiversity, unconscious at first and deliberate in modern times. The decrease in biodiversity in the agricultures of the North causes a severe threat to food security and is in contrasts with the conservation of biodiversity which is part of the culture of several populations in the South. The concluding section of the paper shows that man could have guided evolution in a different way and shows an example of participatory plant breeding, a type of breeding which is done in collaboration with farmers and is based on selection for specific adaptation. Even though participatory plant breeding has been practiced for only about 20 years and by relatively few groups, the effects on both biodiversity and crop production are impressive. Eventually the paper shows how participatory plant breeding can be developed into ‘evolutionary plant breeding’ to cope in a dynamic way with climate changes.

  13. CASSAVA BREEDING I: THE VALUE OF BREEDING VALUE

    Directory of Open Access Journals (Sweden)

    Hernán Ceballos

    2016-08-01

    Full Text Available Breeding cassava relies on several selection stages (single row trial-SRT; preliminary; advanced; and uniform yield trials - UYT. This study uses data from 14 years of evaluations. From more than 20,000 genotypes initially evaluated only 114 reached the last stage. The objective was to assess how the data at SRT could be used to predict the probabilities of genotypes reaching the UYT. Phenotypic data from each genotype at SRT was integrated into the selection index (SIN used by the cassava breeding program. Average SIN from all the progenies derived from each progenitor was then obtained. Average SIN is an approximation of the breeding value of each progenitor. Data clearly suggested that some genotypes were better progenitors than others (e.g. high number of their progenies reaching the UYT, suggesting important variation in breeding values of progenitors. However, regression of average SIN of each parental genotype on the number of their respective progenies reaching UYT resulted in a negligible coefficient of determination (r2 = 0.05. Breeding value (e.g. average SIN at SRT was not efficient predicting which genotypes were more likely to reach the UYT stage. Number of families and progenies derived from a given progenitor were more efficient predicting the probabilities of the progeny from a given parent reaching the UYT stage. Large within-family genetic variation tends to mask the true breeding value of each progenitor. The use of partially inbred progenitors (e.g. S1 or S2 genotypes would reduce the within-family genetic variation thus making the assessment of breeding value more accurate. Moreover, partial inbreeding of progenitors can improve the breeding value of the original (S0 parental material and sharply accelerate genetic gains. For instance, homozygous S1 genotypes for the dominant resistance to cassava mosaic disease could be generated and selected. All gametes from these selected S1 genotypes would carry the desirable allele

  14. Exploring Identity-By-Descent Segments and Putative Functions Using Different Foundation Parents in Maize.

    Directory of Open Access Journals (Sweden)

    Xun Wu

    Full Text Available Maize foundation parents (FPs play no-alternative roles in hybrid breeding because they were widely used in the development of new lines and hybrids. The combination of different identity-by-descent (IBD segments and genes could account for the formation patterns of different FPs, and knowledge of these IBD regions would provide an extensive foundation for the development of new candidate FP lines in future maize breeding. In this paper, a panel of 304 elite lines derived from FPs, i.e., B73, 207, Mo17, and Huangzaosi (HZS, was collected and analyzed using 43,252 single nucleotide polymorphism (SNP markers. Most IBD segments specific to particular FP groups were identified, including 116 IBD segments in B73, 105 in Mo17, 111 in 207, and 190 in HZS. In these regions, 423 quantitative trait nucleotides (QTNs associated with 15 agronomic traits and 804 candidate genes were identified. Some known adaptation-related genes, e.g., dwarf8 and vgt1 in HZS, zcn8 and epc in Mo17, and ZmCCT in 207, were validated as being tightly linked to particular IBD segments. In addition, numerous new candidate genes were also identified. For example, GRMZM2G154278 in HZS, which belongs to the cell cycle control family, was closely linked to a QTN of the ear height/plant height (EH/PH trait; GRMZM2G051943 in 207, which encodes an endochitinase precursor (EP chitinase, was closely linked to a QTN for kernel density; and GRMZM2G170586 in Mo17 was closely linked to a QTN for ear diameter. Complex correlations among these genes were also found. Many IBD segments and genes were included in the formation of FP lines, and complex regulatory networks exist among them. These results provide new insights on the genetic basis of complex traits and provide new candidate IBD regions or genes for the improvement of special traits in maize production.

  15. Responsible decision-making for plant research and breeding innovations in the European Union

    DEFF Research Database (Denmark)

    Eriksson, Ulf Dennis; Chatzopoulou, Sevasti

    2017-01-01

    Plant research and breeding has made substantial technical progress over the past few decades, indicating a potential for tremendous societal impact. Due to this potential, the development of policies and legislation on plant breeding and the technical progress should preferably involve all...... relevant stakeholders. However, we argue here that there is a substantial imbalance in the European Union (EU) regarding the influence of the various stakeholder groups on policy makers. We use evidence from three examples in order to show that the role of science is overlooked: 1) important delays...... in the decision process concerning the authorization of genetically modified (GM) maize events, 2) the significance attributed to non-scientific reasons in new legislation concerning the prohibition of GM events in EU member states, and 3) failure of the European Commission to deliver legal guidance to new plant...

  16. Exploring karyotype diversity of Argentinian Guaraní maize landraces: Relationship among South American maize.

    Directory of Open Access Journals (Sweden)

    María Florencia Realini

    Full Text Available In Argentina there are two different centers of maize diversity, the Northeastern (NEA and the Northwestern (NWA regions of the country. In NEA, morphological studies identified 15 landraces cultivated by the Guaraní communities in Misiones Province. In the present study we analyzed the karyotype diversity of 20 populations of Guaraní maize landraces through classical and molecular cytogenetic analyses. Our results demonstrate significant intra and inter-populational variation in the percentage, number, size, chromosome position and frequencies of the heterochromatic blocks, which are called knobs. Knob sequence analysis (180-bp and TR-1 did not show significant differences among Guaraní populations. B chromosomes were not detected, and abnormal 10 (AB10 chromosomes were found with low frequency (0.1≥f ≤0.40 in six populations. Our results allowed karyotypic characterization of each analyzed population, defining for the first time the chromosomal constitution of maize germplasm from NEA. The multivariate analysis (PCoA and UPGMA of karyotype parameters allowed the distinction between two populations groups: the Popcorn and the Floury maize populations. These results are in agreement with previously published microsatellite and morphological/phenological studies. Finally, we compared our karyotype results with those previously reported for NWA and Central Region of South America maize. Our data suggest that there are important differences between maize from NEA and NWA at the karyotype level, supporting the hypothesis that there are two pathways of input of South America maize. Our results also confirm the existence of two centers of diversification of Argentinian native maize, NWA and NEA. This work contributes new knowledge about maize diversity, which is relevant for future plans to improve commercial maize, and for conservation of agrobiodiversity.

  17. Environmental life cycle assessments of producing maize, grass-clover, ryegrass and winter wheat straw for biorefinery

    DEFF Research Database (Denmark)

    Parajuli, Ranjan; Kristensen, Ib Sillebak; Knudsen, Marie Trydeman

    2017-01-01

    The aim of this study is to assess the potential environmental impacts of producing maize, grass-clover, ryegrass, and straw from winter wheat as biomass feedstocks for biorefinery. The Life Cycle Assessment (LCA) method included the following impact categories: Global Warming Potential (GWP100),...

  18. Inter- and intraspecific variation in leaf economic traits in wheat and maize.

    Science.gov (United States)

    Martin, Adam R; Hale, Christine E; Cerabolini, Bruno E L; Cornelissen, Johannes H C; Craine, Joseph; Gough, William A; Kattge, Jens; Tirona, Cairan K F

    2018-02-01

    Leaf Economics Spectrum (LES) trait variation underpins multiple agroecological processes and many prominent crop yield models. While there are numerous independent studies assessing trait variation in crops, to date there have been no comprehensive assessments of intraspecific trait variation (ITV) in LES traits for wheat and maize: the world's most widespread crops. Using trait databases and peer-reviewed literature, we compiled over 700 records of specific leaf area (SLA), maximum photosynthetic rates ( A max ) and leaf nitrogen (N) concentrations, for wheat and maize. We evaluated intraspecific LES trait variation, and intraspecific trait-environment relationships. While wheat and maize occupy the upper 90th percentile of LES trait values observed across a global species pool, ITV ranged widely across the LES in wheat and maize. Fertilization treatments had strong impacts on leaf N, while plant developmental stage (here standardized as the number of days since planting) had strong impacts on A max ; days since planting, N fertilization and irrigation all influenced SLA. When controlling for these factors, intraspecific responses to temperature and precipitation explained 39.4 and 43.7 % of the variation in A max and SLA, respectively, but only 5.4 % of the variation in leaf N. Despite a long history of domestication in these species, ITV in wheat and maize among and within cultivars remains large. Intraspecific trait variation is a critical consideration to refine regional to global models of agroecosystem structure, function and food security. Considerable opportunities and benefits exist for consolidating a crop trait database for a wider range of domesticated plant species.

  19. Evaluation of 99 S/sub 1/ lines of maize for inbreeding depression

    International Nuclear Information System (INIS)

    Ahmad, M.; Khan, S.; Ahmad, F.; Shah, N.H.; Akhtar, N.

    2010-01-01

    The research was conducted to evaluate the performance of S1 lines for inbreeding depression regarding different parameters, using maize variety Azam. The maize variety was self-pollinated for one generation in spring season and in the next sowing season 99 S1 lines obtained from selfing was sown with a parental line. Days to silking, pollen-shedding, plant height , ear-height, ear-length, ear-diameter, number of ears/row, kernel rows/ear and 100 kernel weight showed inbreeding depression with varying degrees while yield kg/ha showed severe inbreeding depression with an average of 362.08 kg/ha. Average value of inbreeding depression for days to silking and pollen-shedding was calculated as 2.02 and 2.21 days, respectively. Average values of inbreeding depression for plant height and ear-height were recorded as 21.50 cm and 4.87 cm, respectively. While, for earlength, ear-diameter, number of ears/row, kernel rows/ear and 100 grain weight, the average value of inbreeding depression was recorded as 1.80 cm, 0.2 cm, 2.5, 2.11 and 3.89 g, respectively. Grain yield was positively and significantly correlated with plant height, ear height and yield components. Maturity traits were positively and significantly linked with each other. It is concluded that by subjecting the maize to self-pollination nearly all the lines were affected; however, some lines were affected severely and others tolerated inbreeding to some extent. The lines showing tolerance against inbreeding depression was selected for further maize breeding. (author)

  20. Locally processed roasted-maize-based weaning foods fortified with ...

    African Journals Online (AJOL)

    Locally processed roasted-maize-based weaning foods fortified with legumes: factors ... African Journal of Food, Agriculture, Nutrition and Development ... Tom Brown (roasted-maize porridge) is one of the traditional weaning foods in Ghana.

  1. Aflatoxin variations in maize flour and grains collected from various ...

    African Journals Online (AJOL)

    In Kenya, maize remains an important staple food in every household. ... upper limit is 10ppb, indicating good manufacturing practices (GMP) by the millers. ... In summary, the study found aflatoxin contamination in maize grains especially in ...

  2. the influence of farmers' adoption behaviour on maize production ...

    African Journals Online (AJOL)

    p2333147

    The main cash crops grown in the country include coffee, sisal, cashew, cotton, tobacco ... Among these food crops, maize is the most important cereal food crop, and ... promoting recommended maize production practices in a package form.

  3. Importance of husk covering on field infestation of maize by ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-10-20

    Oct 20, 2008 ... An experiment was conducted to determine the importance of husk covering on field infestation of maize by the maize ... high yielding plants with no consideration for resistance ..... provided financial support for the study.

  4. Factors Affecting the Efficiency of Maize Marketing in Vandeikya ...

    African Journals Online (AJOL)

    Factors Affecting the Efficiency of Maize Marketing in Vandeikya Local Government Area of Benue State, Nigeria. ... Two hundred maize marketers were selected from Vandeikya Local Area (LGA) of ... EMAIL FULL TEXT EMAIL FULL TEXT

  5. participatory evaluation of drought tolerant maize varieties in the ...

    African Journals Online (AJOL)

    User

    ). Maize production provides livelihoods for millions of subsistence farmers in WCA, thus, increasing the productivity of maize-based cropping sys- tems could increase and stabilize rural incomes, alleviate poverty and reduce food insecurity in.

  6. Leaf transpiration efficiency of some drought-resistant maize lines

    Science.gov (United States)

    Field measurements of leaf gas exchange in maize often indicate stomatal conductances higher than required to provide substomatal carbon dioxide concentrations saturating to photosynthesis. Thus maize leaves often operate at lower transpiration efficiency (TE) than potentially achievable for specie...

  7. Breeding quinoa (Chenopodium quinoa Willd.)

    DEFF Research Database (Denmark)

    Zurita-Silva, Andrés; Fuentes, Francisco; Zamora, Pablo

    2014-01-01

    scale. In the Andes, quinoa has until recently been marginally grown by small-scale Andean farmers, leading to minor interest in the crop from urban consumers and the industry. Quinoa breeding programs were not initiated until the 1960s in the Andes, and elsewhere from the 1970s onwards. New molecular...... tools available for the existing quinoa breeding programs, which are critically examined in this review, will enable us to tackle the limitations of allotetraploidy and genetic specificities. The recent progress, together with the declaration of "The International Year of the Quinoa" by the Food...

  8. Strategic Marketing Problems in the Uganda Maize Seed Industry

    OpenAIRE

    Larson, Donald W.; Mbowa, Swaibu

    2004-01-01

    Strategic marketing issues and challenges face maize seed marketing firms as farmers increasingly adopt hybrid varieties in a modernizing third world country such as Uganda. The maize seed industry of Uganda has changed dramatically from a government owned, controlled, and operated industry to a competitive market oriented industry with substantial private firm investment and participation. The new maize seed industry is young, dynamic, growing and very competitive. The small maize seed marke...

  9. Molecular identification of livestock breeds: a tool for modern conservation biology.

    Science.gov (United States)

    Yaro, Mohammed; Munyard, Kylie A; Stear, Michael J; Groth, David M

    2017-05-01

    Global livestock genetic diversity includes all of the species, breeds and strains of domestic animals, and their variations. Although a recent census indicated that there were 40 species and over 8000 breeds of domestic animals; for the purpose of conservation biology the diversity between and within breeds rather than species is regarded to be of crucial importance. This domestic animal genetic diversity has developed through three main evolutionary events, from speciation (about 3 million years ago) through domestication (about 12000 years ago) to specialised breeding (starting about 200 years ago). These events and their impacts on global animal genetic resources have been well documented in the literature. The key importance of global domestic animal resources in terms of economic, scientific and cultural heritage has also been addressed. In spite of their importance, there is a growing number of reports on the alarming erosion of domestic animal genetic resources. This erosion of is happening in spite of several global conservation initiatives designed to mitigate it. Herein we discuss these conservation interventions and highlight their strengths and weaknesses. However, pivotal to the success of these conservation initiatives is the reliability of the genetic assignment of individual members to a target breed. Finally, we discuss the prospect of using improved breed identification methodologies to develop a reliable breed-specific molecular identification tool that is easily applicable to populations of livestock breeds in various ecosystems. These identification tools, when developed, will not only facilitate the regular monitoring of threatened or endangered breed populations, but also enhance the development of more efficient and sustainable livestock production systems. © 2016 Cambridge Philosophical Society.

  10. Extensive tissue-specific transcriptomic plasticity in maize primary roots upon water deficit

    OpenAIRE

    Opitz, Nina; Marcon, Caroline; Paschold, Anja; Malik, Waqas Ahmed; Lithio, Andrew; Brandt, Ronny; Piepho, Hans-Peter; Nettleton, Dan; Hochholdinger, Frank

    2015-01-01

    Water deficit is the most important environmental constraint severely limiting global crop growth and productivity. This study investigated early transcriptome changes in maize (Zea mays L.) primary root tissues in response to moderate water deficit conditions by RNA-Sequencing. Differential gene expression analyses revealed a high degree of plasticity of the water deficit response. The activity status of genes (active/inactive) was determined by a Bayesian hierarchical model. In total, 70% o...

  11. Risk Assessment of Maize Drought Disaster in Agro-Pastoral Transitional Zone in North China

    Science.gov (United States)

    Jia, H.; Pan, D.

    2017-12-01

    Agricultural drought is one of the focuses of global concern and one of the natural disasters that affect the agriculture production mostly in China. Farming-pastoral zones in China are located in the monsoon fringe area, precipitation of which is extremely unstable, and drought occurs frequently. The agro-pastoral transitional zone in North China is one of the main producing areas of northern spring maize in northern China, and maize is the second largest grain crop in the region. An assessment of the risk of drought disaster in this region is therefore important in ensuring a reduction in such disasters and an increase in food security. A risk assessment model, EPIC (Environmental Policy Integrated Climate) model, for maize drought disasters based on the Erosion Productivity Impact Calculator crop model is proposed for areas with the topographic characteristics of agro-pastoral transitional zone in North China. The results showed that the hazard risk level for the maize zone of agro-pastoral transitional zone in North China is generally high. Most hazard index values were between 0.4 and 0.5, accounting for 48.77% of total study area. The high-risk areas were mainly distributed in Ordos Plateau (South of Inner Mongolia Autonomous region), South of Ningxia Hui Autonomous Region and Center of Gansu Province. These results provide a scientific basis and support for the reduction of agricultural drought disasters and an increase in food security in the agro-pastoral transitional zone in North China.

  12. Nitrogen effects on maize yield following groundnut in rotation on ...

    African Journals Online (AJOL)

    Rotating maize (Zea mays L.) with groundnut (Arachis hypogaea L.) has been proposed as a way to maintain soil fertility and prevent maize productivity declines in the smallholder cropping systems of sub-humid Zimbabwe. Field experiments with fertilizer-N on maize in rotation with groundnut were conducted at three ...

  13. Intercropping maize with cassava or cowpea in Ghana | Ennin ...

    African Journals Online (AJOL)

    Maize/cassava and maize/cowpea intercrops were evaluated in southern Ghana, over a 5-year period to determine the optimum combination of component crop varieties and component plant population densities to optimize productivity of maize-based intercropping systems. Results indicated that some cowpea varieties ...

  14. The economic implication of substituting cocoa pod husk for maize ...

    African Journals Online (AJOL)

    This saving was found to bridge the deficit between demand and supply as given by supplementation done by importing maize. The study concluded that by utilizing CPH in compounding various livestock feed rations, the high price of maize arising from excessive demand can be reduced. The limiting role of maize in ...

  15. Developing a database for maize variety in Nigeria | Daniel | Moor ...

    African Journals Online (AJOL)

    Performance data of maize varieties at different locations needs to be accurate and accessible to stimulate the improvement of the Nigerian maize seed system. This paper describes a database model to implement a simple computerized information system for maize varieties and their performance at various locations in ...

  16. Review: Maize research and production in Nigeria | Iken | African ...

    African Journals Online (AJOL)

    Maize (Zea mays) is a major important cereal being cultivated in the rainforest and the derived Savannah zones of Nigeria. Land races, improved high yielding and pest and diseases resistant varieties of maize have been developed. Key words: Maize, Zea mays, Nigeria. African Journal of Biotechnology Vol.3(6) 2004: 302- ...

  17. quixotic coupling between irrigation system and maize-cowpea

    African Journals Online (AJOL)

    ACSS

    number row-1 and maize grain yield, respectively. The ridge ... Key Words: Furrow irrigation, water use efficiency, Zea mays. RÉSUMÉ ... important in arid and semi-arid regions, with ... as maize) canopy is not able to intercept all the solar radiation during the growth period. ... Intercropping maize and legumes considerably ...

  18. Quantitative trait loci for resistance to Maize rayado fino virus

    Science.gov (United States)

    Maize rayado fino virus (MRFV) causes one of the most important virus diseases of maize in regions of Mexico, Central and South America, where it causes moderate to severe yield losses. The virus is found from the southern United States. to northern Argentina where its vector, the maize leafhopper D...

  19. Oven-drying reduces ruminal starch degradation in maize kernels

    NARCIS (Netherlands)

    Ali, M.; Cone, J.W.; Hendriks, W.H.; Struik, P.C.

    2014-01-01

    The degradation of starch largely determines the feeding value of maize (Zea mays L.) for dairy cows. Normally, maize kernels are dried and ground before chemical analysis and determining degradation characteristics, whereas cows eat and digest fresh material. Drying the moist maize kernels

  20. Mixed cropping of groundnuts and maize in East Java

    NARCIS (Netherlands)

    Hoof, van W.C.H.

    1987-01-01

    Mixed cropping of groundnuts and maize in East Java was studied by means of a survey of farming practice and by field experiments. The influence of different sowing times and plant density of maize on the development and yield of groundnuts and maize were the main topics in this thesis. Plant

  1. Maize and the Malnutrition Conundrum in South Africa | BOOYENS ...

    African Journals Online (AJOL)

    In this paper, the author gives an overview of the factors leading to maize becoming a staple food among black people in South Africa. The purported relationship between maize consumption and malnutrition, proposals as well as experimental and practical efforts to correct the dietary deficiencies of maize are briefly ...

  2. How yield relates to ash content, Delta 13C and Delta 18O in maize grown under different water regimes.

    Science.gov (United States)

    Cabrera-Bosquet, Llorenç; Sánchez, Ciro; Araus, José Luis

    2009-11-01

    Stable isotopes have proved a valuable phenotyping tool when breeding for yield potential and drought adaptation; however, the cost and technical skills involved in isotope analysis limit its large-scale application in breeding programmes. This is particularly so for Delta(18)O despite the potential relevance of this trait in C(4) crops. The accumulation of minerals (measured as ash content) has been proposed as an inexpensive way to evaluate drought adaptation and yield in C(3) cereals, but little is known of the usefulness of this measure in C(4) cereals such as maize (Zea mays). The present study investigates how yield relates to ash content, Delta(13)C and Delta(18)O, and evaluates the use of ash content as an alternative or complementary criterion to stable isotopes in assessing yield potential and drought resistance in maize. A set of tropical maize hybrids developed by CIMMYT were subjected to different water availabilities, in order to induce water stress during the reproductive stages under field conditions. Ash content and Delta(13)C were determined in leaves and kernels. In addition, Delta(18)O was measured in kernels. Water regime significantly affected yield, ash content and stable isotopes. The results revealed a close relationship between ash content in leaves and the traits informing about plant water status. Ash content in kernels appeared to reflect differences in sink-source balance. Genotypic variation in grain yield was mainly explained by the combination of ash content and Delta(18)O, whilst Delta(13)C did not explain a significant percentage of such variation. Ash content in leaves and kernels proved a useful alternative or complementary criterion to Delta(18)O in kernels for assessing yield performance in maize grown under drought conditions.

  3. Maize production in mid hills of Nepal: from food to feed security

    OpenAIRE

    Krishna Prasad Timsina; Yuga Nath Ghimire; Jeevan Lamichhane

    2016-01-01

    This study was undertaken in 2016 to analyze the production and utilization of maize in Nepal. Sixty maize growers from Kavre and Lamjung districts were selected using purposive, cluster and simple random sampling techniques. Similarly, six feed industries and five maize experts from Chitwan district were also interviewed. Study shows 56% of the total areas were used for maize production and 50% of the maize areas were covered by hybrid maize. There was no practice of contract maize productio...

  4. Rose breeding: past, present, prospects

    NARCIS (Netherlands)

    Vries, de D.P.; Dubois, L.A.M.

    1996-01-01

    In this review the PAST, PRESENT and PROSPECT will be considered as three separate periods in the history of the breeding and development of rose cultivars. The recurring theme is the genetic variation. This theme was chosen because there is justified doubt as to sufficient genetic variation

  5. Mutation breeding in vegetable crops

    International Nuclear Information System (INIS)

    Yamaguchi, Takashi

    1984-01-01

    Vegetables breed by seeds and vegetative organs. In main vegetables, the differentiation of clopping types, the adoption of monoculture and year-round production and shipment are carried out, adapting to various socio-economic and cultivation conditions. Protected agriculture has advanced mainly for fruit vegetables, and the seeds for sale have become almost hybrid varieties. Reflecting the situation like this, the demand for breeding is diversified and characteristic, and the case of applying mutation breeding seems to be many. The present status of the mutation breeding of vegetables is not yet well under way, but about 40 raised varieties have been published in the world. The characters introduced by induced mutation and irradiation were compact form, harvesting aptitude, the forms and properties of stems and leaves, anti-lodging property, the size, form and uniformity of fruits, male sterility and so on. The radiation sources used were mostly gamma ray or X-ray, but sometimes, combined irradiation was used. As the results obtained in Japan, burdocks as an example of gamma ray irradiation to seeds, tomatoes as an example of inducing the compound resistance against disease injury and lettuces as an example of internal beta irradiation are reported. (Kako, I.)

  6. Induced mutations in sesame breeding

    International Nuclear Information System (INIS)

    Ashri, A.

    2001-01-01

    The scope of induced mutations in sesame (Sesamum indicum L.) breeding is reviewed. So far in Egypt, India, Iraq, Rep. of Korea, and Sri Lanka, 14 officially released varieties have been developed through induced mutations: 12 directly and 2 through cross breeding (one using the 'dt45' induced mutant from Israel). For another variety released in China there are no details. The induced mutations approach was adopted primarily in order to obtain genetic variability that was not available in the germplasm collection. The mutagens commonly applied have been gamma rays, EMS and sodium azide. Sesame seeds can withstand high mutagen doses, and there are genotypic differences in sensitivity between varieties. The mutants induced in the above named countries and others include better yield, improved seed retention, determinate habit, modified plant architecture and size, more uniform and shorter maturation period, earliness, resistance to diseases, genic male sterility, seed coat color, higher oil content and modified fatty acids composition. Some of the induced mutants have already given rise to improved varieties, the breeding value of other mutants is now being assessed and still others can serve as useful markers in genetic studies and breeding programmes. (author)

  7. Genetic diversity of five local Swedish chicken breeds detected by microsatellite markers.

    Directory of Open Access Journals (Sweden)

    Abiye Shenkut Abebe

    Full Text Available This study aimed at investigating the genetic diversity, relationship and population structure of 110 local Swedish chickens derived from five breeds (Gotlandshöna, Hedemorahöna, Öländsk dvärghöna, Skånsk blommehöna, and Bohuslän- Dals svarthöna, in the rest of the paper the shorter name Svarthöna is used using 24 microsatellite markers. In total, one hundred thirteen alleles were detected in all populations, with a mean of 4.7 alleles per locus. For the five chicken breeds, the observed and expected heterozygosity ranged from 0.225 to 0.408 and from 0.231 to 0.515, with the lowest scores for the Svarthöna and the highest scores for the Skånsk blommehöna breeds, respectively. Similarly, the average within breed molecular kinship varied from 0.496 to 0.745, showing high coancestry, with Skånsk blommehöna having the lowest and Svarthöna the highest coancestry. Furthermore, all breeds showed significant deviations from Hardy-Weinberg expectations. Across the five breeds, the global heterozygosity deficit (FIT was 0.545, population differentiation index (FST was 0.440, and the global inbreeding of individuals within breed (FIS was 0.187. The phylogenetic relationships of chickens were examined using neighbor-joining trees constructed at the level of breeds and individual samples. The neighbor-joining tree constructed at breed level revealed two main clusters, with Hedemorahöna and Öländsk dvärghöna breeds in one cluster, and Gotlandshöna and Svarthöna breeds in the second cluster leaving the Skånsk blommehöna in the middle. Based on the results of the STRUCTURE analysis, the most likely number of clustering of the five breeds was at K = 4, with Hedemorahöna, Gotlandshöna and Svarthöna breeds forming their own distinct clusters, while Öländsk dvärghöna and Skånsk blommehöna breeds clustered together. Losses in the overall genetic diversity of local Swedish chickens due to breeds extinction varied from -1.46% to -6

  8. Modern Breeding Methods for Improving Protein Quality and Quantity in Plants

    Energy Technology Data Exchange (ETDEWEB)

    Dumanovic, J.; Ehrenberg, L. [Institute for the Application of Nuclear Energy in Agriculture, Veterinary Medicine and Forestry, Belgrade, Yugoslavia (Serbia)

    1968-07-01

    Against the background of the world's urgent need for increased protein production and for an improved quality of vegetable proteins, the ability of plant breeding to contribute to this need is discussed. With examples especially from maize and wheat, existing variations in protein content and protein composition are surveyed, together with the interdependence of these characteristics and their co-variation with the yield. It is shown that plant breeding has a great potential for improving the world's food situation. It is also shown that more rapid achievements are possible than is generally considered to be characteristic of plant-breeding techniques. Special emphasis is stressed on: (a) The capacity of mutation breeding, alone and in conjunction with other methods, to contribute to an increased production of high quality protein; (b) The necessity for the success of programmes whereby fast, cheap, and if possible non-destructive analytical procedures are developed to determine protein and amino acids; (c) The importance of the close collaboration of plant breeders with specialists in related subjects such as soil fertilization, physiology and nutrition, food technology, and biochemistry; (d) The importance of international co-operation and co-ordination. (author)

  9. Effect of two Spanish breeds and diet on beef quality including consumer preferences.

    Science.gov (United States)

    Ripoll, Guillermo; Blanco, Mireia; Albertí, Pere; Panea, Begoña; Joy, Margalida; Casasús, Isabel

    2014-03-30

    Farmers in dry mountain areas are changing their management strategies to improve livestock farming efficiency, by using different forages or different breeds. The effect of breed (Parda de Montaña vs. Pirenaica) and finishing diet (grazing on meadows vs. a total mixed ration (50% alfalfa, 40% maize grain, 10% straw)) on carcass characteristics and meat quality of steers was studied. Parda de Montaña had a greater (P < 0.01) amount of intramuscular fat than Pirenaica. The finishing diet did not influence carcass fat color, but fatty acid composition was slightly affected. Finishing steers on a total mixed ration increased the percentage of fat of the 10th rib (P < 0.001). Supplementation with concentrates increased the diet energy concentration and also increased the dressing percentage. Both breeds had similar carcass characteristics. Consumers preferred beef from the Pirenaica breed because of its greater tenderness. Consumers did not differentiate between beef from animals fed different finishing diets. However, consumers who like meat very much preferred meat aged in a cooler at 4 °C for 15 days rather than 8 days. © 2013 Society of Chemical Industry.

  10. Maize lethal necrosis (MLN), an emerging threat to maize-based food security in sub-Saharan Africa

    Science.gov (United States)

    In sub-Saharan Africa, maize is a staple food and key determinant of food security for smallholder farming communities. Pest and disease outbreaks are key constraints to maize productivity. In September 2011, a serious disease outbreak, later diagnosed as maize lethal necrosis (MLN), was reported on...

  11. Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers.

    Science.gov (United States)

    Crossa, José; Campos, Gustavo de Los; Pérez, Paulino; Gianola, Daniel; Burgueño, Juan; Araus, José Luis; Makumbi, Dan; Singh, Ravi P; Dreisigacker, Susanne; Yan, Jianbing; Arief, Vivi; Banziger, Marianne; Braun, Hans-Joachim

    2010-10-01

    The availability of dense molecular markers has made possible the use of genomic selection (GS) for plant breeding. However, the evaluation of models for GS in real plant populations is very limited. This article evaluates the performance of parametric and semiparametric models for GS using wheat (Triticum aestivum L.) and maize (Zea mays) data in which different traits were measured in several environmental conditions. The findings, based on extensive cross-validations, indicate that models including marker information had higher predictive ability than pedigree-based models. In the wheat data set, and relative to a pedigree model, gains in predictive ability due to inclusion of markers ranged from 7.7 to 35.7%. Correlation between observed and predictive values in the maize data set achieved values up to 0.79. Estimates of marker effects were different across environmental conditions, indicating that genotype × environment interaction is an important component of genetic variability. These results indicate that GS in plant breeding can be an effective strategy for selecting among lines whose phenotypes have yet to be observed.

  12. DNA Microarray as Part of a Genomic-Assisted Breeding Approach

    DEFF Research Database (Denmark)

    Vincze, Éva; Bowra, Steve

    2010-01-01

    ) is the ‘umbrella' term used to describe a suite of tools now being applied to plant breeding. In the context of genomic-assisted breeding, we will briefly discuss in the second section of this chapter the molecular genetic-based tools underpinning GAB (understanding gene expression, candidate gene selection......In the struggle to achieve global food security, crop breeding retains an important role in crop production. A current trend is the diversification of the aims of crop production, to include an increased awareness of aspects and consequences of food quality. The added emphasis on food and feed...... quality made crop breeding more challenging and required a combination of new tools. We illustrate these concepts by taking examples from barley, one of the most ancient of domesticated grains with a diverse profile of utilisation (feed, brewing, new nutritional uses). Genomic-assisted breeding (GAB...

  13. MaizeGDB: The Maize Model Organism Database for Basic, Translational, and Applied Research

    OpenAIRE

    Lawrence, Carolyn J.; Harper, Lisa C.; Schaeffer, Mary L.; Sen, Taner Z.; Seigfried, Trent E.; Campbell, Darwin A.

    2008-01-01

    In 2001 maize became the number one production crop in the world with the Food and Agriculture Organization of the United Nations reporting over 614 million tonnes produced. Its success is due to the high productivity per acre in tandem with a wide variety of commercial uses. Not only is maize an excellent source of food, feed, and fuel, but also its by-products are used in the production of various commercial products. Maize's unparalleled success in agriculture stems from basic research, th...

  14. Evaluation of maize inbred lines for resistance to pre-harvest aflatoxin and fumonisin contamination in the field

    Directory of Open Access Journals (Sweden)

    Baozhu Guo

    2017-06-01

    Full Text Available Two important mycotoxins, aflatoxin and fumonisin, are among the most potent naturally occurring carcinogens, contaminating maize (Zea mays and affecting crop yield and quality. Resistance of maize to pre-harvest mycotoxin contamination, specifically aflatoxin produced by Aspergillus flavus and fumonisin produced by Fusarium verticillioides, is a goal in breeding programs that screen for these important traits with the aim of developing resistant commercial hybrids. We conducted two years of field evaluations on 87 inbred lines originating primarily in China and Mexico and not previously screened for resistance. The objectives of our study were to identify resistant germplasm for breeding purposes and to examine possible relationships between resistances to the two mycotoxins. Aflatoxin and fumonisin were present in samples harvested from all lines in both years. Concentrations of total aflatoxin ranged from 52.00 ± 20.00 to 1524.00 ± 396.00 μg kg−1, while those of fumonisin ranged from 0.60 ± 0.06 to 124.00 ± 19.50 mg kg−1. The inbred lines TUN15, TUN61, TUN37, CY2, and TUN49 showed the lowest aflatoxin accumulation and CN1, GT601, TUN09, TUN61, and MP717 the lowest fumonisin accumulation. TUN61 showed the lowest accumulation of both mycotoxins. This study confirmed previous observations that high levels of aflatoxin can coexist with fumonisin, with 55 maize lines showing a positive correlation coefficient between the concentrations of aflatoxin and fumonisin and 32 lines showing a negative correlation coefficient. These selected lines, particularly TUN61, may provide sources of resistance to mycotoxin contamination in breeding programs. However, the mechanism of resistance in this germplasm remains to be identified. Future research should also address factors that influence the fungus–plant interaction, such as herbivory and environmental stress.

  15. QTL Mapping of Kernel Number-Related Traits and Validation of One Major QTL for Ear Length in Maize.

    Science.gov (United States)

    Huo, Dongao; Ning, Qiang; Shen, Xiaomeng; Liu, Lei; Zhang, Zuxin

    2016-01-01

    The kernel number is a grain yield component and an important maize breeding goal. Ear length, kernel number per row and ear row number are highly correlated with the kernel number per ear, which eventually determines the ear weight and grain yield. In this study, two sets of F2:3 families developed from two bi-parental crosses sharing one inbred line were used to identify quantitative trait loci (QTL) for four kernel number-related traits: ear length, kernel number per row, ear row number and ear weight. A total of 39 QTLs for the four traits were identified in the two populations. The phenotypic variance explained by a single QTL ranged from 0.4% to 29.5%. Additionally, 14 overlapping QTLs formed 5 QTL clusters on chromosomes 1, 4, 5, 7, and 10. Intriguingly, six QTLs for ear length and kernel number per row overlapped in a region on chromosome 1. This region was designated qEL1.10 and was validated as being simultaneously responsible for ear length, kernel number per row and ear weight in a near isogenic line-derived population, suggesting that qEL1.10 was a pleiotropic QTL with large effects. Furthermore, the performance of hybrids generated by crossing 6 elite inbred lines with two near isogenic lines at qEL1.10 showed the breeding value of qEL1.10 for the improvement of the kernel number and grain yield of maize hybrids. This study provides a basis for further fine mapping, molecular marker-aided breeding and functional studies of kernel number-related traits in maize.

  16. Comparative Analysis of CDPK Family in Maize, Arabidopsis, Rice, and Sorghum Revealed Potential Targets for Drought Tolerance Improvement

    Directory of Open Access Journals (Sweden)

    Shikha Mittal

    2017-12-01

    through different ABA and MAPK signaling cascades. These selected candidate genes could be targeted in development of drought tolerant genotypes in maize, rice, and sorghum through appropriate breeding approaches. Our comparative experiments of CDPK genes could also be extended in the drought stress breeding programmes of the related species.

  17. Decomposing global crop yield variability

    Science.gov (United States)

    Ben-Ari, Tamara; Makowski, David

    2014-11-01

    Recent food crises have highlighted the need to better understand the between-year variability of agricultural production. Although increasing future production seems necessary, the globalization of commodity markets suggests that the food system would also benefit from enhanced supplies stability through a reduction in the year-to-year variability. Here, we develop an analytical expression decomposing global crop yield interannual variability into three informative components that quantify how evenly are croplands distributed in the world, the proportion of cultivated areas allocated to regions of above or below average variability and the covariation between yields in distinct world regions. This decomposition is used to identify drivers of interannual yield variations for four major crops (i.e., maize, rice, soybean and wheat) over the period 1961-2012. We show that maize production is fairly spread but marked by one prominent region with high levels of crop yield interannual variability (which encompasses the North American corn belt in the USA, and Canada). In contrast, global rice yields have a small variability because, although spatially concentrated, much of the production is located in regions of below-average variability (i.e., South, Eastern and South Eastern Asia). Because of these contrasted land use allocations, an even cultivated land distribution across regions would reduce global maize yield variance, but increase the variance of global yield rice. Intermediate results are obtained for soybean and wheat for which croplands are mainly located in regions with close-to-average variability. At the scale of large world regions, we find that covariances of regional yields have a negligible contribution to global yield variance. The proposed decomposition could be applied at any spatial and time scales, including the yearly time step. By addressing global crop production stability (or lack thereof) our results contribute to the understanding of a key

  18. Breeding for behavioural change in farm animails

    DEFF Research Database (Denmark)

    Sandøe, Peter; D'eath, RB; Lawrence, AB

    2009-01-01

    In farm animal breeding, behavioural traits are rarely included in selection programmes despite their potential to improve animal production and welfare. Breeding goals have been broadened beyond production traits in most farm animal species to include health and functional traits...

  19. Breeding for behavioural change in farm animals

    DEFF Research Database (Denmark)

    D'Eath, R.B.; Conington, J.; Lawrence, A.B.

    2010-01-01

    In farm animal breeding, behavioural traits are rarely included in selection programmes despite their potential to improve animal production and welfare. Breeding goals have been broadened beyond production traits in most farm animal species to include health and functional traits...

  20. Pedigree analysis of an ostrich breeding flock

    African Journals Online (AJOL)

    p2492989

    among dairy cattle breeds in the US was reported to be 161, 61, 65, 39 and 30 for the Ayrshire, Brown ... Knowledge of these parameters could help the industry when formulating breeding programmes. ..... In 'Ratites in a competitive world.

  1. Single-Event Transgene Product Levels Predict Levels in Genetically Modified Breeding Stacks.

    Science.gov (United States)

    Gampala, Satyalinga Srinivas; Fast, Brandon J; Richey, Kimberly A; Gao, Zhifang; Hill, Ryan; Wulfkuhle, Bryant; Shan, Guomin; Bradfisch, Greg A; Herman, Rod A

    2017-09-13

    The concentration of transgene products (proteins and double-stranded RNA) in genetically modified (GM) crop tissues is measured to support food, feed, and environmental risk assessments. Measurement of transgene product concentrations in breeding stacks of previously assessed and approved GM events is required by many regulatory authorities to evaluate unexpected transgene interactions that might affect expression. Research was conducted to determine how well concentrations of transgene products in single GM events predict levels in breeding stacks composed of these events. The concentrations of transgene products were compared between GM maize, soybean, and cotton breeding stacks (MON-87427 × MON-89034 × DAS-Ø15Ø7-1 × MON-87411 × DAS-59122-7 × DAS-40278-9 corn, DAS-81419-2 × DAS-44406-6 soybean, and DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 × MON-88913-8 × DAS-81910-7 cotton) and their component single events (MON-87427, MON-89034, DAS-Ø15Ø7-1, MON-87411, DAS-59122-7, and DAS-40278-9 corn, DAS-81419-2, and DAS-44406-6 soybean, and DAS-21023-5, DAS-24236-5, SYN-IR102-7, MON-88913-8, and DAS-81910-7 cotton). Comparisons were made within a crop and transgene product across plant tissue types and were also made across transgene products in each breeding stack for grain/seed. Scatter plots were generated comparing expression in the stacks to their component events, and the percent of variability accounted for by the line of identity (y = x) was calculated (coefficient of identity, I 2 ). Results support transgene concentrations in single events predicting similar concentrations in breeding stacks containing the single events. Therefore, food, feed, and environmental risk assessments based on concentrations of transgene products in single GM events are generally applicable to breeding stacks composed of these events.

  2. Summary of current NEACRP views on fast reactor breeding assessment

    International Nuclear Information System (INIS)

    Barre, J.

    1980-01-01

    The global breeding gain (GBC), which may be divided into internal breeding gain (IBG) and external breeding gain (EGB), is dealt with for mixed oxide fuelled LMFBR. Relative contributions of core and blankets to GBG are indicated for three power levels (250, 500 and 1200 MWe). Reactor physics studies are performed to reduce uncertainties on GBC. The studies are of three types, depending on countries. The mock-up approach consists of measuring on one critical assembly, typical of the considered power reactor, the GBG at one time of life of the plant, usually the beginning of life configuration (absorbers in) and trying to obtain bias factors. Parametric analysis of the neutron balance and data adjustment in which global parameters of the neutron balance are measured systematically is the approach followed in the UK and France for all configurations of the reactor, especially for integral parameters related to GBG. Analysis of irradiated fuels involves the measurements of the variation of fuel isotopic compositions versus burn-up with two main goals: accurate measurement of captive ratios and global check of the GBG calculation. (UK)

  3. Nutrient composition, ruminal degradability and whole tract digestibility of whole crop maize silage from nine current varieties.

    Science.gov (United States)

    Gruber, Leonhard; Terler, Georg; Knaus, Wilhelm

    2018-04-01

    Since maize silage is an important forage in cattle nutrition, it is important to know its nutritive value. Much effort is put into breeding maize, and several new varieties are introduced on the market every year. This requires periodical analyses of the nutritive value of current maize varieties for the formulation of cattle rations. The aim of this study was to examine the nutritive value of whole crop maize silage (WCMS) from nine maize varieties in 3 consecutive years. For the analysis of nutrient composition and ruminal degradability of organic matter (OM), crude protein (CP), neutral detergent fibre (aNDFom) and non-fibre carbohydrates (NFC), varieties were harvested at three harvest dates (50%, 55% and 60% dry matter content in ear). Due to capacity limitations, the digestibility of WCMS was tested only for the middle harvest date. The CP and acid detergent fibre (ADFom) content was affected (p content was not influenced by variety. With advancing maturity, CP, aNDFom and ADFom content declined while NFC content increased. Variety influenced effective ruminal degradability (ED) of nutrients, except for CP. The ED of all examined nutrients decreased as maturity advanced from first to third harvest date. Digestibility of OM, ADFom and NFC was significantly and digestibility of aNDFom was tendentially (p = 0.064) influenced by variety. Additionally, an effect of year and a harvest date × year interaction was found for almost all examined parameters. In conclusion, variety, harvest date and year influence the nutritive value of WCMS. A comparison with earlier studies shows that current varieties have a higher fibre digestibility and a slower-ripening stover compared to older varieties.

  4. Seeds that give: Participatory plant breeding

    International Development Research Centre (IDRC) Digital Library (Canada)

    IDRC

    Faced with a unique economic crisis, Cuba's national agriculture system was near collapse ... tion, and distribution of improved maize and bean seeds. A secondary but ... ers rate 50 percent of the newly introduced varieties to be superior to ...

  5. Transcriptomic Profiling of the Maize (Zea mays L.) Leaf Response to Abiotic Stresses at the Seedling Stage.

    Science.gov (United States)

    Li, Pengcheng; Cao, Wei; Fang, Huimin; Xu, Shuhui; Yin, Shuangyi; Zhang, Yingying; Lin, Dezhou; Wang, Jianan; Chen, Yufei; Xu, Chenwu; Yang, Zefeng

    2017-01-01

    Abiotic stresses, including drought, salinity, heat, and cold, negatively affect maize ( Zea mays L.) development and productivity. To elucidate the molecular mechanisms of resistance to abiotic stresses in maize, RNA-seq was used for global transcriptome profiling of B73 seedling leaves exposed to drought, salinity, heat, and cold stress. A total of 5,330 differentially expressed genes (DEGs) were detected in differential comparisons between the control and each stressed sample, with 1,661, 2,019, 2,346, and 1,841 DEGs being identified in comparisons of the control with salinity, drought, heat, and cold stress, respectively. Functional annotations of DEGs suggested that the stress response was mediated by pathways involving hormone metabolism and signaling, transcription factors (TFs), very-long-chain fatty acid biosynthesis and lipid signaling, among others. Of the obtained DEGs (5,330), 167 genes are common to these four abiotic stresses, including 10 up-regulated TFs (five ERFs, two NACs, one ARF, one MYB, and one HD-ZIP) and two down-regulated TFs (one b-ZIP and one MYB-related), which suggested that common mechanisms may be initiated in response to different abiotic stresses in maize. This study contributes to a better understanding of the molecular mechanisms of maize leaf responses to abiotic stresses and could be useful for developing maize cultivars resistant to abiotic stresses.

  6. Sustainable potato production: global case studies

    Science.gov (United States)

    Potato (Solanum tuberosum L.) is grown in over 100 countries throughout the world. As a staple food, potato is the fourth most important crop after rice, wheat, and maize, and has historically contributed to food and nutrition security in the world. Global interest in potato increased sharply in 200...

  7. Exploring Maize Intensification with the Global Yield Gap Atlas

    NARCIS (Netherlands)

    Grassini, Patricio; Cassman, Kenneth G.; Ittersum, van M.K.

    2017-01-01

    Trade-off analysis has become an increasingly important approach far evaluating system level outcomes of agricultural production and for prioritising and taigeting management interventions in multi-functional agricultural landscapes. We review the strengths and weakness of different techniques

  8. Plant breeding and genetics newsletter. No. 2

    International Nuclear Information System (INIS)

    1998-12-01

    This is the second issue of the Plant Breeding and Genetics Newsletter. The Newsletter will inform you about current activities of the FAO/IAEA sub-programme on plant breeding and genetics which is implemented by the Plant Breeding and Genetics Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture (Vienna) in close collaboration with the Plant Breeding Unit of the FAO/IAEA Agriculture and Biotechnology Laboratory (Seibersdorf)

  9. Plant breeding and genetics newsletter. No. 1

    International Nuclear Information System (INIS)

    1998-05-01

    This is the first issue of the Plant Breeding and Genetics Newsletter. The Newsletter will inform you about current activities of the FAO/IAEA sub-programme on plant breeding and genetics which is implemented by the Plant Breeding and Genetics Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture (Vienna) in close collaboration with the Plant Breeding Unit of the FAO/IAEA Agriculture and Biotechnology Laboratory (Seibersdorf)

  10. Genomics-assisted breeding in fruit trees

    OpenAIRE

    Iwata, Hiroyoshi; Minamikawa, Mai F.; Kajiya-Kanegae, Hiromi; Ishimori, Motoyuki; Hayashi, Takeshi

    2016-01-01

    Recent advancements in genomic analysis technologies have opened up new avenues to promote the efficiency of plant breeding. Novel genomics-based approaches for plant breeding and genetics research, such as genome-wide association studies (GWAS) and genomic selection (GS), are useful, especially in fruit tree breeding. The breeding of fruit trees is hindered by their long generation time, large plant size, long juvenile phase, and the necessity to wait for the physiological maturity of the pl...

  11. Carbaryl residues in maize and processed products

    International Nuclear Information System (INIS)

    Qureshi, M.J.; Sattar, A. Jr.; Naqvi, M.H.

    1981-01-01

    Carbaryl residues in two local maize varieties were determined using a colorimetric method. No significant differences were observed for residues of the two varieties which ranged between 12.0 to 13.75 mg/kg in the crude oil, and averaged 1.04 and 0.67 mg/kg in the flour and cake respectively. In whole maize plants, carbaryl residues declined to approximately 2 mg/kg 35 days after treatment. Cooking in aqueous, oil or aqueous-oil media led to 63-83% loss of carbaryl residues, after 30 minutes. (author)

  12. Selective breeding in organic dairy production

    NARCIS (Netherlands)

    Nauta, W.J.

    2009-01-01

    Organic dairy farming started to take off in the early 1990s, when the European Union laid down organic standards for animal production. Until now, however, only incidental steps have been taken towards organic breeding and organic farmers mainly use breeding stock from conventional breeding

  13. Breeding in a den of thieves

    NARCIS (Netherlands)

    Fouw, de Jimmy; Bom, Roeland A.; Klaassen, Raymond H.G.; Müskens, Gerard J.D.M.; Vries, de Peter P.; Popov, Igor Yu; Kokorev, Yakov I.; Ebbinge, Bart; Nolet, Bart A.

    2016-01-01

    Breeding success of many Arctic-breeding bird populations varies with lemming cycles due to prey switching behavior of generalist predators. Several bird species breed on islands to escape from generalist predators like Arctic fox Vulpes lagopus, but little is known about how these species

  14. A simple language to script and simulate breeding schemes: the breeding scheme language

    Science.gov (United States)

    It is difficult for plant breeders to determine an optimal breeding strategy given that the problem involves many factors, such as target trait genetic architecture and breeding resource availability. There are many possible breeding schemes for each breeding program. Although simulation study may b...

  15. Emperor penguins breeding on iceshelves.

    Directory of Open Access Journals (Sweden)

    Peter T Fretwell

    Full Text Available We describe a new breeding behaviour discovered in emperor penguins; utilizing satellite and aerial-survey observations four emperor penguin breeding colonies have been recorded as existing on ice-shelves. Emperors have previously been considered as a sea-ice obligate species, with 44 of the 46 colonies located on sea-ice (the other two small colonies are on land. Of the colonies found on ice-shelves, two are newly discovered, and these have been recorded on shelves every season that they have been observed, the other two have been recorded both on ice-shelves and sea-ice in different breeding seasons. We conduct two analyses; the first using synthetic aperture radar data to assess why the largest of the four colonies, for which we have most data, locates sometimes on the shelf and sometimes on the sea-ice, and find that in years where the sea-ice forms late, the colony relocates onto the ice-shelf. The second analysis uses a number of environmental variables to test the habitat marginality of all emperor penguin breeding sites. We find that three of the four colonies reported in this study are in the most northerly, warmest conditions where sea-ice is often sub-optimal. The emperor penguin's reliance on sea-ice as a breeding platform coupled with recent concerns over changed sea-ice patterns consequent on regional warming, has led to their designation as "near threatened" in the IUCN red list. Current climate models predict that future loss of sea-ice around the Antarctic coastline will negatively impact emperor numbers; recent estimates suggest a halving of the population by 2052. The discovery of this new breeding behaviour at marginal sites could mitigate some of the consequences of sea-ice loss; potential benefits and whether these are permanent or temporary need to be considered and understood before further attempts are made to predict the population trajectory of this iconic species.

  16. Predicting stem borer density in maize using RapidEye data and generalized linear models

    Science.gov (United States)

    Abdel-Rahman, Elfatih M.; Landmann, Tobias; Kyalo, Richard; Ong'amo, George; Mwalusepo, Sizah; Sulieman, Saad; Ru, Bruno Le

    2017-05-01

    Average maize yield in eastern Africa is 2.03 t ha-1 as compared to global average of 6.06 t ha-1 due to biotic and abiotic constraints. Amongst the biotic production constraints in Africa, stem borers are the most injurious. In eastern Africa, maize yield losses due to stem borers are currently estimated between 12% and 21% of the total production. The objective of the present study was to explore the possibility of RapidEye spectral data to assess stem borer larva densities in maize fields in two study sites in Kenya. RapidEye images were acquired for the Bomet (western Kenya) test site on the 9th of December 2014 and on 27th of January 2015, and for Machakos (eastern Kenya) a RapidEye image was acquired on the 3rd of January 2015. Five RapidEye spectral bands as well as 30 spectral vegetation indices (SVIs) were utilized to predict per field maize stem borer larva densities using generalized linear models (GLMs), assuming Poisson ('Po') and negative binomial ('NB') distributions. Root mean square error (RMSE) and ratio prediction to deviation (RPD) statistics were used to assess the models performance using a leave-one-out cross-validation approach. The Zero-inflated NB ('ZINB') models outperformed the 'NB' models and stem borer larva densities could only be predicted during the mid growing season in December and early January in both study sites, respectively (RMSE = 0.69-1.06 and RPD = 8.25-19.57). Overall, all models performed similar when all the 30 SVIs (non-nested) and only the significant (nested) SVIs were used. The models developed could improve decision making regarding controlling maize stem borers within integrated pest management (IPM) interventions.

  17. Solar-Induced Fluorescence of Maize Across A Water Stress Gradient in the Midwestern USA

    Science.gov (United States)

    Miao, G.; Guan, K.; Suyker, A.; Yang, X.; Benarcchi, C. J.; Gamon, J. A.; Berry, J. A.; DeLucia, E.; Franz, T.; Arkebauer, T. J.; Zygielbaum, A. I.; Walter-Shea, E. A.; Moore, C.; Zhang, Y.; Kim, H.; Hmimina, G.

    2017-12-01

    In the coming decades, agricultural ecosystems will be challenged by rising temperatures, changing rainfall patterns, and increasing extreme weather. Understanding how crops respond to weather variability and how humans manage agriculture to mitigate and adapt to climate change is critical for improving agricultural sustainability and supporting increasing global food demands. Accurately estimating gross primary productivity (GPP) of crops is of importance to evaluate their sustainability and capability but remains a challenge. The recent development of solar-induced fluorescence (SIF) technology is stimulating studies to use SIF to approximate GPP. It has been observed that agricultural lands have remarkably high SIF and the SIF signal could be used as an indicator of vegetation stress, which is particularly valuable for improved monitoring of crop productivity and stress. To investigate the applicability of SIF for detecting maize stress and estimating GPP, we deployed three FluoSpec2 systems in 2017 at three long-term eddy covariance flux sites across the US Corn Belt, a rain-fed maize field (AmeriFlux sites US-NE3) and an irrigated maize field (US-NE2) at Mead, Nebraska and a rain-fed maize field at Urbana, Illinois. Together these form a water stress gradient. Variations in GPP, SIF, photosynthetic efficiency (LUE), SIF yield (SIFy), and relationships between GPP and SIF, LUE and SIFy will be compared as indications of the difference in maize growth across the water stress gradient. More importantly, differences in GPP and SIF signals will be examined over multiple growth stages to assess the potential of SIF in identifying the growth stages that are mostly affected by water stress and the ones that play the most important roles on the crop yield.

  18. Application of Doubled Haploid (DH) Technique in Mutation and Conventional Wheat Breeding in Kenya

    International Nuclear Information System (INIS)

    Njau, P.N.

    2002-01-01

    Wheat is the second most important staple cereal in Kenya after maize.over the last six years wheat improvement for various stresses and agronomic characteristics have been undertaken through various biotechnological approaches which have been used as complements to the traditional breeding methods. The prime objective in any breeding program is the prevention of the debilitating effects of breeding. In self-pollinated crops such as wheat selection is more efficient homozygous lines than in segregating population. During repeated selfing, to develop homozygousity the vigour of the F1 of M1 plats is lost. Application of biotechnology in crop movement has been suggested as the useful tool in a faster variety development. The double haploid (DH) technique does not only shorten the time of developing homozygous lines but also maintains the heterosis of the F 1 , increase the selection of the efficiency of selection in mutants and increase the effectiveness of selection. in this study DHs were developed from F1 and M4 generation developed from drought tolerance.This was accomplished through the following step: (i)F 1 crosses were produced by crossing three drought tolerant varieties namely Kenya Mbweha, Duma and Ngamia with two highly yielding commercial varieties namely Kenya Chiriku and Kwale in 1998 while mutants were developed through gamma ray irradiation in 1995. (ii) The haploids were produced through chromosome elimination by crossing the F 1 s and the M 4 with maize pollen and (iii) the Double Haploid (DH) were produced by treating the haploid with colchicine. Twenty DH lines were produced from F 1 haploid and 5 from M 4 ones. The DH technique tend to increase uniformity, stability and distinctiveness of the mutants and the segregating populations. Most of the DHs showed wide variation indicating high potential of selection for various agronomic characteristics. Heterosis was realized on a number of characteristics in the DH lines. Through this technique the

  19. Sequencing, assembly, and annotation of Maize B104 : A maize transformation resource

    Science.gov (United States)

    Maize transformation is complicated. Most lines are not readily cultured and transformed, making the germplasm available for genome engineering extremely limited. Developing a better understanding of the genomic regions responsible for differences in culturability and transformability would be a goo...

  20. Extent of linkage disequilibrium in the domestic cat, Felis silvestris catus, and its breeds.

    Directory of Open Access Journals (Sweden)

    Hasan Alhaddad

    Full Text Available Domestic cats have a unique breeding history and can be used as models for human hereditary and infectious diseases. In the current era of genome-wide association studies, insights regarding linkage disequilibrium (LD are essential for efficient association studies. The objective of this study is to investigate the extent of LD in the domestic cat, Felis silvestris catus, particularly within its breeds. A custom illumina GoldenGate Assay consisting of 1536 single nucleotide polymorphisms (SNPs equally divided over ten 1 Mb chromosomal regions was developed, and genotyped across 18 globally recognized cat breeds and two distinct random bred populations. The pair-wise LD descriptive measure (r(2 was calculated between the SNPs in each region and within each population independently. LD decay was estimated by determining the non-linear least-squares of all pair-wise estimates as a function of distance using established models. The point of 50% decay of r(2 was used to compare the extent of LD between breeds. The longest extent of LD was observed in the Burmese breed, where the distance at which r(2 ≈ 0.25 was ∼380 kb, comparable to several horse and dog breeds. The shortest extent of LD was found in the Siberian breed, with an r(2 ≈ 0.25 at approximately 17 kb, comparable to random bred cats and human populations. A comprehensive haplotype analysis was also conducted. The haplotype structure of each region within each breed mirrored the LD estimates. The LD of cat breeds largely reflects the breeds' population history and breeding strategies. Understanding LD in diverse populations will contribute to an efficient use of the newly developed SNP array for the cat in the design of genome-wide association studies, as well as to the interpretation of results for the fine mapping of disease and phenotypic traits.

  1. Bacterial endophytes from wild maize suppress Fusarium graminearum in modern maize and inhibit mycotoxin accumulation

    Directory of Open Access Journals (Sweden)

    Walaa Kamel Mousa

    2015-10-01

    Full Text Available Wild maize (teosinte has been reported to be less susceptible to pests than their modern maize (corn relatives. Endophytes, defined as microbes that inhabit plants without causing disease, are known for their ability to antagonize plant pests and pathogens. We hypothesized that the wild relatives of modern maize may host endophytes that combat pathogens. Fusarium graminearum is the fungus that causes Gibberella Ear Rot (GER in modern maize and produces the mycotoxin, deoxynivalenol (DON. In this study, 215 bacterial endophytes, previously isolated from diverse maize genotypes including wild teosintes, traditional landraces and modern varieties, were tested for their ability to antagonize F. graminearum in vitro. Candidate endophytes were then tested for their ability to suppress GER in modern maize in independent greenhouse trials. The results revealed that three candidate endophytes derived from wild teosintes were most potent in suppressing F. graminearum in vitro and GER in a modern maize hybrid. These wild teosinte endophytes could suppress a broad spectrum of fungal pathogens of modern crops in vitro. The teosinte endophytes also suppressed DON mycotoxin during storage to below acceptable safety threshold levels. A fourth, less robust anti-fungal strain was isolated from a modern maize hybrid. Three of the anti-fungal endophytes were predicted to be Paenibacillus polymyxa, along with one strain of Citrobacter. Microscopy studies suggested a fungicidal mode of action by all four strains. Molecular and biochemical studies showed that the P. polymyxa strains produced the previously characterized anti-Fusarium compound, fusaricidin. Our results suggest that the wild relatives of modern crops may serve as a valuable reservoir for endophytes in the ongoing fight against serious threats to modern agriculture. We discuss the possible impact of crop evolution and domestication on endophytes in the context of plant defense.

  2. Occurrence of toxigenic fungi in maize and maize-gluten meal from Pakistan

    Directory of Open Access Journals (Sweden)

    Muhammad Kashif SALEEMI

    2012-05-01

    Full Text Available The present study was designed to isolate and identify toxigenic mycoflora of maize and maize-gluten meal. A total of 82 samples of maize and 8 samples of maize-gluten meal were collected from Faisalabad district of Pakistan over a period of two years. These samples were inoculated on different culture media. Fungal contamination of maize and maize-gluten was 56% and 75% of samples, respectively. Isolation frequencies of different genera isolated from maize were Aspergillus 33%; Penicillium 28%; Fusarium 10%; and Alternaria 1%. Isolation frequency among species was maximum for P. verrucosum, followed by A. niger aggregates, A. ochraceous, A. flavus, P. chrysogenum, A. parasiticus, A. carbonarius, Fusarium spp. and Alternaria spp. Relative density of Aspergillus isolates was maximum for A. niger aggregates and A. ochraceous (30% each followed by A. flavus (26%, A. parasiticus (11% and A. carbonarius (3%. Percentage of toxigenic fungi among Aspergillus isolates was 52%. Aflatoxigenic isolates of A. flavus and A. parasiticus were 43 and 67% and ochratoxigenic isolates of A. carbonarius, A. ochraceous and A. niger aggregates were 100, 63 and 38%, respectively. Aspergillus parasiticus produced higher concentrations of AFB1 (maximum 1374.23 ng g-1 than A. flavus (maximum 635.50 ng g-1. Ochratoxin A production potential of A. ochraceous ranged from 1.81 to 9523.1 ng g-1, while in A. niger aggregates it was 1.30 to 1758.6 ng g-1. Isolation frequencies of fungal genera from maize-gluten meal were Aspergillus (63% and Penicillium (50%. A. flavus was the most frequently isolated species. Percentage of toxigenic fungi among Aspergillus isolates was 40%. Aflatoxigenic isolates of A. flavus were 33% and ochratoxigenic isolates of A. ochraceous were 100%.

  3. Current trends in plant breeding

    International Nuclear Information System (INIS)

    Jalani, B.S.; Rajanaidu, N.

    2000-01-01

    The current world population is 6 billion and it is likely to reach 7 billion in 2010 and 8 billion 2025. Sufficient food must be produced for the ever increasing human population. The available suitable land for intensive agriculture is limited. We have to produce more food from less land, pesticide, labour and water resources. Hence, increase in crop productivity are essential to feed the world in the next century. Plant breeding provides the avenue to increase the food production to feed the growing world population. Development of a cultivar involves (I) Construction of a genetic model (II) creating a gene pool (III) selection among plants and (IV) testing the selected genotypes for adaptation to the biotic and abiotic environments (Frey, 1999). This paper discusses the trends in plant breeding using the oil palm as a model. It covers (i) genetic resources (ii) physiological traits (III) exploitation of genotype x environment interaction (IV) oil palm clones, and (v) biotechnology application. (Author)

  4. To breed or not to breed: a seabird's response to extreme climatic events

    OpenAIRE

    Cubaynes, Sarah; Doherty, Paul F.; Schreiber, E. A.; Gimenez, Olivier

    2010-01-01

    Intermittent breeding is an important life-history strategy that has rarely been quantified in the wild and for which drivers remain unclear. It may be the result of a trade-off between survival and reproduction, with individuals skipping breeding when breeding conditions are below a certain threshold. Heterogeneity in individual quality can also lead to heterogeneity in intermittent breeding. We modelled survival, recruitment and breeding probability of the red-footed booby (Sula sula), usin...

  5. Mutation breeding newsletter. No. 38

    International Nuclear Information System (INIS)

    1991-12-01

    This issue contains a number of contributions from readers describing experiments in plant breeding (the individual items are indexed separately) and a report on the 30th Gamma-Field Symposium held in Tsukuba, Japan in July 1991. Also included is a list of officially released mutant varieties of seed-propagated crops taken from the FAO/IAEA database of mutant varieties. It is planned to organize a database on available crop plant mutant variety germplasm collections. Refs, figs and tabs

  6. Mutation breeding newsletter. No. 41

    International Nuclear Information System (INIS)

    1994-07-01

    This newsletter contains short descriptions of research methods for the use of radiation to induce mutations and facilitate plant breeding. This method is used to develop species of plants that can survive in harsh climates and thus provide a food supply for humans and animals. Some of the mutants discussed include a salt tolerant barley, a disease resistant shrub, a cold tolerant chickpea, a highly productive Canavalia virosa and productive tomato. Refs, figs and tabs

  7. Does hatching failure breed infidelity?

    OpenAIRE

    Malika Ihle; Bart Kempenaers; Wolfgang Forstmeier

    2013-01-01

    In socially monogamous species, the reasons for female infidelity are still controversial. It has been suggested that females could seek extra-pair copulations as an insurance against hatching failure caused by male infertility or incompatibility. In species where couples breed repeatedly, females could use previous hatching success as a cue to assess their partner’s infertility (or incompatibility). Hence, it has been predicted that females should increase their infidelity after experiencing...

  8. Genomic selection in plant breeding.

    Science.gov (United States)

    Newell, Mark A; Jannink, Jean-Luc

    2014-01-01

    Genomic selection (GS) is a method to predict the genetic value of selection candidates based on the genomic estimated breeding value (GEBV) predicted from high-density markers positioned throughout the genome. Unlike marker-assisted selection, the GEBV is based on all markers including both minor and major marker effects. Thus, the GEBV may capture more of the genetic variation for the particular trait under selection.

  9. Screening of promising maize genotypes against maize weevil (Sitophilus zeamais Motschulky in storage condition

    Directory of Open Access Journals (Sweden)

    Ram B Paneru

    2017-12-01

    Full Text Available The maize weevil (Sitophilus zeamais Motschulsky is a serious pest of economic importance in stored grains. It causes major damage to stored maize grain thereby reducing its weight, quality and germination. An experiment was conducted in randomized complete block design (RCBD with 3 replications to screen 32 maize genotypes against maize weevil in no-choice and free-choice conditions at Entomology Division, Khumaltar, Lalitpur (Room temperature: Maximum 24-32°C and Minimum 18-27°C. The findings showed that the maize genotypes had different response to maize weevil damage ranging from susceptible to tolerance. The genotypes Manakamana-3, Lumle White POP Corn and Ganesh-2 showed their tolerance to S. zeamais as evidenced by lower number of weevil emerged/attracted, lower amount of grain debris release and lower proportion of bored grains, while the genotype ZM-627 was the most susceptible to weevil damage in both tests. The other remaining genotypes were intermediate types. This information is useful to improve grain protection in storage and varietal improvement/release program.

  10. Mutation breeding in vegetable crops

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Takashi

    1984-03-01

    Vegetables breed by seeds and vegetative organs. In main vegetables, the differentiation of clopping types, the adoption of monoculture and year-round production and shipment are carried out, adapting to various socio-economic and cultivation conditions. Protected agriculture has advanced mainly for fruit vegetables, and the seeds for sale have become almost hybrid varieties. Reflecting this situation, the demand for breeding is diversified and characteristic. The present status of mutation breeding of vegetables is not yet well under way, but reports of about 40 raised varieties have been published in the world. The characters introduced by induced mutation and irradiation are compact form, harvesting aptitude, the forms and properties of stems and leaves, anti-lodging property, the size, form and uniformity of fruits, male sterility and so on. The radiation sources used were mostly gamma ray or X-ray, but sometimes, combined irradiation was used. Results obtained in Japan include: burdocks as an example to gamma ray irradiation of seeds; tomatoes as an example of inducing compound resistance against disease injury; and lettuce as an example of internal beta irradiation. (Kako, I.).

  11. SOYBEAN - MOLECULAR ASPECTS OF BREEDING

    Directory of Open Access Journals (Sweden)

    Aleksandra Sudarić

    2012-12-01

    Full Text Available The book Soybean: Molecular Aspects of Breeding focuses recent progress in our understanding of the genetics and molecular biology of soybean. This book is divided into four parts and contains 22 chapters. Part I, Molecular Biology and Biotechnology focuses advances in molecular biology and laboratory procedures that have been developed recently to manipulate DNA. Part II, Breeding for abiotic stress covers proteomics approaches form as a powerful tool for investigating the molecular mechanisms of the plant responses to various types of abiotic stresses. Part III, Breeding for biotic stress addresses issues related to application of molecular based strategies in order to increase soybean resistance to various biotic factors. Part IV, Recent Technology reviews recent technologies into the realm of soybean monitoring, processing and product use. While the information accumulated in this book is of primary interest for plant breeders, valuable insights are also offered to agronomists, molecular biologists, physiologists, plant pathologists, food scientists and students. The book is a result of efforts made by many experts from different countries (USA, Japan, Croatia, Serbia, China, Canada, Malawi, Iran, Hong Kong, Brasil, Mexico.

  12. The HAP Complex Governs Fumonisin Biosynthesis and Maize Kernel Pathogenesis in Fusarium verticillioides.

    Science.gov (United States)

    Ridenour, John B; Smith, Jonathon E; Bluhm, Burton H

    2016-09-01

    Contamination of maize ( Zea mays ) with fumonisins produced by the fungus Fusarium verticillioides is a global concern for food safety. Fumonisins are a group of polyketide-derived secondary metabolites linked to esophageal cancer and neural tube birth defects in humans and numerous toxicoses in livestock. Despite the importance of fumonisins in global maize production, the regulation of fumonisin biosynthesis during kernel pathogenesis is poorly understood. The HAP complex is a conserved, heterotrimeric transcriptional regulator that binds the consensus sequence CCAAT to modulate gene expression. Recently, functional characterization of the Hap3 subunit linked the HAP complex to the regulation of secondary metabolism and stalk rot pathogenesis in F. verticillioides . Here, we determine the involvement of HAP3 in fumonisin biosynthesis and kernel pathogenesis. Deletion of HAP3 suppressed fumonisin biosynthesis on both nonviable and live maize kernels and impaired pathogenesis in living kernels. Transcriptional profiling via RNA sequencing indicated that the HAP complex regulates at least 1,223 genes in F. verticillioides , representing nearly 10% of all predicted genes. Disruption of the HAP complex caused the misregulation of biosynthetic gene clusters underlying the production of secondary metabolites, including fusarins. Taken together, these results reveal that the HAP complex is a central regulator of fumonisin biosynthesis and kernel pathogenesis and works as both a positive and negative regulator of secondary metabolism in F. verticillioides .

  13. Food Crops Breeding in Sri Lanka - Achievements and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Jayawardena, S D.L.; Peiris, R [Central Agricultural Research Institute, Gannoruwa, Peradeniya (Sierra Leone)

    1988-12-31

    Since Rice is the staple food in Sri Lanka strong emphasis has been given for the improvement of Rice in Sri Lanka. Over the last three decades 36 high yielding rice varieties have been developed. The present yield potential of Sri Lanka`s best varieties have been recorded to be be around 10 mt/ha. At present more than 90% of the total paddy extent is grown with modern high yielding rice varieties and as a result the national paddy production has increased from 1.8 mt/ha to 3.5 mt/ha. Induced mutations is used in plant breeding. Use of radiation to produce haploids and for production of transitory sexuality in apomicts have been done. Under the coarse grains and millet varietal program, maize have recorded increasing attention owing to the fact that is is used for human consumption and as feed grain for poultry. Promising varieties of Soya bean, cowpea, mung bean, black gram and ground nut have been recommended for cultivation. Research attention has also been directed towards Root and Tuber crops which have great potential in providong food for the rapidly increasing population in Sri Lanka. Potato is the most important and popular tuber crop. A number of improved varieties with respect to a number of local fruit crops such as banana, sweet orange, lemonime, avocado, pineapple, rambutan, grapes.have been introduced. New improved varieties of indigenous vegetables such as tomato, brinjal etc. have been produced. Chillies and onions with desirable qualities also have been identified. Mutation breeding provides a novel approach to the plant breeders for raising the productivity of crop plants, thus complementing conventional methods. Any way the use of induced mutations in crop improvement has not been properly exploited in Sri Lanka as yet.

  14. Food Crops Breeding in Sri Lanka - Achievements and challenges

    International Nuclear Information System (INIS)

    Jayawardena, S.D.L.; Peiris, R.

    1988-01-01

    Since Rice is the staple food in Sri Lanka strong emphasis has been given for the improvement of Rice in Sri Lanka. Over the last three decades 36 high yielding rice varieties have been developed. The present yield potential of Sri Lanka's best varieties have been recorded to be be around 10 mt/ha. At present more than 90% of the total paddy extent is grown with modern high yielding rice varieties and as a result the national paddy production has increased from 1.8 mt/ha to 3.5 mt/ha. Induced mutations is used in plant breeding. Use of radiation to produce haploids and for production of transitory sexuality in apomicts have been done. Under the coarse grains and millet varietal program, maize have recorded increasing attention owing to the fact that is is used for human consumption and as feed grain for poultry. Promising varieties of Soya bean, cowpea, mung bean, black gram and ground nut have been recommended for cultivation. Research attention has also been directed towards Root and Tuber crops which have great potential in providong food for the rapidly increasing population in Sri Lanka. Potato is the most important and popular tuber crop. A number of improved varieties with respect to a number of local fruit crops such as banana, sweet orange, lemonime, avocado, pineapple, rambutan, grapes.have been introduced. New improved varieties of indigenous vegetables such as tomato, brinjal etc. have been produced. Chillies and onions with desirable qualities also have been identified. Mutation breeding provides a novel approach to the plant breeders for raising the productivity of crop plants, thus complementing conventional methods. Any way the use of induced mutations in crop improvement has not been properly exploited in Sri Lanka as yet

  15. Hormonal responses during early embryogenesis in maize.

    Science.gov (United States)

    Chen, Junyi; Lausser, Andreas; Dresselhaus, Thomas

    2014-04-01

    Plant hormones have been shown to regulate key processes during embryogenesis in the model plant Arabidopsis thaliana, but the mechanisms that determine the peculiar embryo pattern formation of monocots are largely unknown. Using the auxin and cytokinin response markers DR5 and TCSv2 (two-component system, cytokinin-responsive promoter version #2), as well as the auxin efflux carrier protein PIN1a (PINFORMED1a), we have studied the hormonal response during early embryogenesis (zygote towards transition stage) in the model and crop plant maize. Compared with the hormonal response in Arabidopsis, we found that detectable hormone activities inside the developing maize embryo appeared much later. Our observations indicate further an important role of auxin, PIN1a and cytokinin in endosperm formation shortly after fertilization. Apparent auxin signals within adaxial endosperm cells and cytokinin responses in the basal endosperm transfer layer as well as chalazal endosperm are characteristic for early seed development in maize. Moreover, auxin signalling in endosperm cells is likely to be involved in exogenous embryo patterning as auxin responses in the endosperm located around the embryo proper correlate with adaxial embryo differentiation and outgrowth. Overall, the comparison between Arabidopsis and maize hormone response and flux suggests intriguing mechanisms in monocots that are used to direct their embryo patterning, which is significantly different from that of eudicots.

  16. INSECT AND MYCOFLORA INTERACTIONS IN MAIZE FLOUR ...

    African Journals Online (AJOL)

    Fusarium moniliforme had the highest occurrence of 36.7%, 28.1% and 33.3% while Aspergillus flavus/parasiticus had a frequency of 3.2%, 3.1% and 3% on primary isolation media of czapek dox agar (CDA), potato dextrose agar (PDA) and sabouraud dextrose agar (SDA) respectively, in maize flour without T. castaneum.

  17. Zealactones. Novel natural strigolactones from maize

    NARCIS (Netherlands)

    Charnikhova, Tatsiana V.; Gaus, Katharina; Lumbroso, Alexandre; Sanders, Mark; Vincken, Jean Paul; Mesmaeker, de Alain; Ruyter-Spira, Carolien P.; Screpanti, Claudio; Bouwmeester, Harro J.

    2017-01-01

    In the root exudate and root extracts of maize hybrid cv NK Falkone seven putative strigolactones were detected using UPLC-TQ-MS-MS. All seven compounds displayed MS-MS-fragmentation common for strigolactones and particularly the presence of a fragment of m/z 97 Da, which may indicate the

  18. RESOURCE UTILISATION IN SOYBEAN/MAIZE INTERCROPS ...

    African Journals Online (AJOL)

    Soybean and maize may be planted as intercrops in alternating single rows in forage production systems to take advantage of available solar radiation and greater dry matter yields. Key Words: Nitrogen, row arrangement, photosynthetic active radiation, productivity. Résumé Des études des champs étaient conduites en ...

  19. Estimation of leaf area in tropical maize

    NARCIS (Netherlands)

    Elings, A.

    2000-01-01

    Leaf area development of six tropical maize cultivars grown in 1995 and 1996 in several tropical environments in Mexico (both favourable and moisture-and N-limited) was observed and analysed. First, the validity of a bell-shaped curve describing the area of individual leaves as a function of leaf

  20. Semen quality of Italian local pig breeds

    Directory of Open Access Journals (Sweden)

    G. Gandini

    2010-01-01

    Full Text Available From 1996 to 1999 a conservation programme was carried out within the framework of EC contract “European gene banking project for the pig genetic resources” (Ollivier et al., 2001 in the Italian local pig breeds. The aims of the program included the primary characterization of the breeds, i.e. information on the organization in charge of the breed, breeding population numbers, breed description and qualifications, and field trials on productive and reproductive performances. In this context the “Semen Bank of Italian local pig breeds” was built. A total of 30,835 straws of four Italian local pig breeds (Cinta Senese, Casertana, Mora Romagnola and Nero Siciliano, collected from 42 sires, have been stored. In this work semen quality traits, lipid composition and freezability of the four Italian local pig breeds are reported.

  1. Digital Counts of Maize Plants by Unmanned Aerial Vehicles (UAVs

    Directory of Open Access Journals (Sweden)

    Friederike Gnädinger

    2017-05-01

    Full Text Available Precision phenotyping, especially the use of image analysis, allows researchers to gain information on plant properties and plant health. Aerial image detection with unmanned aerial vehicles (UAVs provides new opportunities in precision farming and precision phenotyping. Precision farming has created a critical need for spatial data on plant density. The plant number reflects not only the final field emergence but also allows a more precise assessment of the final yield parameters. The aim of this work is to advance UAV use and image analysis as a possible high-throughput phenotyping technique. In this study, four different maize cultivars were planted in plots with different seeding systems (in rows and equidistantly spaced and different nitrogen fertilization levels (applied at 50, 150 and 250 kg N/ha. The experimental field, encompassing 96 plots, was overflown at a 50-m height with an octocopter equipped with a 10-megapixel camera taking a picture every 5 s. Images were recorded between BBCH 13–15 (it is a scale to identify the phenological development stage of a plant which is here the 3- to 5-leaves development stage when the color of young leaves differs from older leaves. Close correlations up to R2 = 0.89 were found between in situ and image-based counted plants adapting a decorrelation stretch contrast enhancement procedure, which enhanced color differences in the images. On average, the error between visually and digitally counted plants was ≤5%. Ground cover, as determined by analyzing green pixels, ranged between 76% and 83% at these stages. However, the correlation between ground cover and digitally counted plants was very low. The presence of weeds and blurry effects on the images represent possible errors in counting plants. In conclusion, the final field emergence of maize can rapidly be assessed and allows more precise assessment of the final yield parameters. The use of UAVs and image processing has the potential to

  2. The 50th Annual Maize Genetics Conference

    Energy Technology Data Exchange (ETDEWEB)

    Cone, Karen

    2014-03-26

    The 50th Annual Maize Genetics Conference was held February 27 - March 2, 2008 at the Marriott Wardman Park Hotel in Washington, D.C. As the golden anniversary of the Conference and coinciding with the release of a draft of the maize genome sequence, this was a special meeting. To publicize this unique occasion, meeting organizers hosted a press conference, which was attended by members of the press representing science and non-science publications, and an evening reception at the Smithsonian National Museum of Natural History, where the draft sequence was announced and awards were presented to Dr. Mary Clutter and Senator Kit Bond to thank them for their outstanding contributions to maize genetics and genomics research. As usual, the Conference provided an invigorating forum for exchange of recent research results in many areas of maize genetics, e.g., cytogenetics, development, molecular genetics, transposable element biology, biochemical genetics, and genomics. Results were shared via both oral and poster presentations. Invited talks were given by four distinguished geneticists: Vicki Chandler, University of Arizona; John Doebley, University of Wisconsin; Susan Wessler, University of Georgia; and Richard Wilson, Washington University. There were 46 short talks and 241 poster presentations. The Conference was attended by over 500 participants. This included a large number of first-time participants in the meeting and an increasingly visible presence by individuals from underrepresented groups. Although we do not have concrete counts, there seem to be more African American, African and Hispanic/Latino attendees coming to the meeting than in years past. In addition, this meeting attracted many participants from outside the U.S. Student participation continues to be hallmark of the spirit of free exchange and cooperation characteristic of the maize genetics community. With the generous support provided by DOE, USDA NSF, and corporate/private donors, organizers were

  3. Assessing the Impact of Climatic Variability and Change on Maize Production in the Midwestern USA

    Science.gov (United States)

    Andresen, J.; Jain, A. K.; Niyogi, D. S.; Alagarswamy, G.; Biehl, L.; Delamater, P.; Doering, O.; Elias, A.; Elmore, R.; Gramig, B.; Hart, C.; Kellner, O.; Liu, X.; Mohankumar, E.; Prokopy, L. S.; Song, C.; Todey, D.; Widhalm, M.

    2013-12-01

    Weather and climate remain among the most important uncontrollable factors in agricultural production systems. In this study, three process-based crop simulation models were used to identify the impacts of climate on the production of maize in the Midwestern U.S.A. during the past century. The 12-state region is a key global production area, responsible for more than 80% of U.S. domestic and 25% of total global production. The study is a part of the Useful to Useable (U2U) Project, a USDA NIFA-sponsored project seeking to improve the resilience and profitability of farming operations in the region amid climate variability and change. Three process-based crop simulation models were used in the study: CERES-Maize (DSSAT, Hoogenboom et al., 2012), the Hybrid-Maize model (Yang et al., 2004), and the Integrated Science Assessment Model (ISAM, Song et al., 2013). Model validation was carried out with individual plot and county observations. The models were run with 4 to 50 km spatial resolution gridded weather data for representative soils and cultivars, 1981-2012, to examine spatial and temporal yield variability within the region. We also examined the influence of different crop models and spatial scales on regional scale yield estimation, as well as a yield gap analysis between observed and attainable yields. An additional study was carried out with the CERES-Maize model at 18 individual site locations 1901-2012 to examine longer term historical trends. For all simulations, all input variables were held constant in order to isolate the impacts of climate. In general, the model estimates were in good agreement with observed yields, especially in central sections of the region. Regionally, low precipitation and soil moisture stress were chief limitations to simulated crop yields. The study suggests that at least part of the observed yield increases in the region during recent decades have occurred as the result of wetter, less stressful growing season weather conditions.

  4. Studies on the traditional methods of production of maize tuwo (a ...

    African Journals Online (AJOL)

    African Journal of Food, Agriculture, Nutrition and Development ... on the quality characteristics of maize tuwo (a Nigerian nonfermented maize dumpling) ... The sequential mixing of flour and water during maize tuwo preparation should also ...

  5. Quantitative Trait Loci Mapping of Western Corn Rootworm (Coleoptera: Chrysomelidae) Host Plant Resistance in Two Populations of Doubled Haploid Lines in Maize (Zea mays L.).

    Science.gov (United States)

    Bohn, Martin O; Marroquin, Juan J; Flint-Garcia, Sherry; Dashiell, Kenton; Willmot, David B; Hibbard, Bruce E

    2018-02-09

    Over the last 70 yr, more than 12,000 maize accessions have been screened for their level of resistance to western corn rootworm, Diabrotica virgifera virgifera (LeConte; Coleoptera: Chrysomelidae), larval feeding. Less than 1% of this germplasm was selected for initiating recurrent selection or other breeding programs. Selected genotypes were mostly characterized by large root systems and superior root regrowth after root damage caused by western corn rootworm larvae. However, no hybrids claiming native (i.e., host plant) resistance to western corn rootworm larval feeding are currently commercially available. We investigated the genetic basis of western corn rootworm resistance in maize materials with improved levels of resistance using linkage disequilibrium mapping approaches. Two populations of topcrossed doubled haploid maize lines (DHLs) derived from crosses between resistant and susceptible maize lines were evaluated for their level of resistance in three to four different environments. For each DHL topcross an average root damage score was estimated and used for quantitative trait loci (QTL) analysis. We found genomic regions contributing to western corn rootworm resistance on all maize chromosomes, except for chromosome 4. Models fitting all QTL simultaneously explained about 30 to 50% of the genotypic variance for root damage scores in both mapping populations. Our findings confirm the complex genetic structure of host plant resistance against western corn rootworm larval feeding in maize. Interestingly, three of these QTL regions also carry genes involved in ascorbate biosynthesis, a key compound we hypothesize is involved in the expression of western corn rootworm resistance. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. The combined and separate impacts of climate extremes on the current and future US rainfed maize and soybean production under elevated CO2.

    Science.gov (United States)

    Jin, Zhenong; Zhuang, Qianlai; Wang, Jiali; Archontoulis, Sotirios V; Zobel, Zachary; Kotamarthi, Veerabhadra R

    2017-07-01

    Heat and drought are two emerging climatic threats to the US maize and soybean production, yet their impacts on yields are collectively determined by the magnitude of climate change and rising atmospheric CO 2 concentrations. This study quantifies the combined and separate impacts of high temperature, heat and drought stresses on the current and future US rainfed maize and soybean production and for the first time characterizes spatial shifts in the relative importance of individual stress. Crop yields are simulated using the Agricultural Production Systems Simulator (APSIM), driven by high-resolution (12 km) dynamically downscaled climate projections for 1995-2004 and 2085-2094. Results show that maize and soybean yield losses are prominent in the US Midwest by the late 21st century under both Representative Concentration Pathway (RCP) 4.5 and RCP8.5 scenarios, and the magnitude of loss highly depends on the current vulnerability and changes in climate extremes. Elevated atmospheric CO 2 partially but not completely offsets the yield gaps caused by climate extremes, and the effect is greater in soybean than in maize. Our simulations suggest that drought will continue to be the largest threat to US rainfed maize production under RCP4.5 and soybean production under both RCP scenarios, whereas high temperature and heat stress take over the dominant stress of drought on maize under RCP8.5. We also reveal that shifts in the geographic distributions of dominant stresses are characterized by the increase in concurrent stresses, especially for the US Midwest. These findings imply the importance of considering heat and drought stresses simultaneously for future agronomic adaptation and mitigation strategies, particularly for breeding programs and crop management. The modeling framework of partitioning the total effects of climate change into individual stress impacts can be applied to the study of other crops and agriculture systems. © 2017 John Wiley & Sons Ltd.

  7. Effect of Trait Heritability, Training Population Size and Marker Density on Genomic Prediction Accuracy Estimation in 22 bi-parental Tropical Maize Populations.

    Science.gov (United States)

    Zhang, Ao; Wang, Hongwu; Beyene, Yoseph; Semagn, Kassa; Liu, Yubo; Cao, Shiliang; Cui, Zhenhai; Ruan, Yanye; Burgueño, Juan; San Vicente, Felix; Olsen, Michael; Prasanna, Boddupalli M; Crossa, José; Yu, Haiqiu; Zhang, Xuecai

    2017-01-01

    Genomic selection is being used increasingly in plant breeding to accelerate genetic gain per unit time. One of the most important applications of genomic selection in maize breeding is to predict and select the best un-phenotyped lines in bi-parental populations based on genomic estimated breeding values. In the present study, 22 bi-parental tropical maize populations genotyped with low density SNPs were used to evaluate the genomic prediction accuracy ( r MG ) of the six trait-environment combinations under various levels of training population size (TPS) and marker density (MD), and assess the effect of trait heritability ( h 2 ), TPS and MD on r MG estimation. Our results showed that: (1) moderate r MG values were obtained for different trait-environment combinations, when 50% of the total genotypes was used as training population and ~200 SNPs were used for prediction; (2) r MG increased with an increase in h 2 , TPS and MD, both correlation and variance analyses showed that h 2 is the most important factor and MD is the least important factor on r MG estimation for most of the trait-environment combinations; (3) predictions between pairwise half-sib populations showed that the r MG values for all the six trait-environment combinations were centered around zero, 49% predictions had r MG values above zero; (4) the trend observed in r MG differed with the trend observed in r MG / h , and h is the square root of heritability of the predicted trait, it indicated that both r MG and r MG / h values should be presented in GS study to show the accuracy of genomic selection and the relative accuracy of genomic selection compared with phenotypic selection, respectively. This study provides useful information to maize breeders to design genomic selection workflow in their breeding programs.

  8. Effect of Trait Heritability, Training Population Size and Marker Density on Genomic Prediction Accuracy Estimation in 22 bi-parental Tropical Maize Populations

    Directory of Open Access Journals (Sweden)

    Ao Zhang

    2017-11-01

    Full Text Available Genomic selection is being used increasingly in plant breeding to accelerate genetic gain per unit time. One of the most important applications of genomic selection in maize breeding is to predict and select the best un-phenotyped lines in bi-parental populations based on genomic estimated breeding values. In the present study, 22 bi-parental tropical maize populations genotyped with low density SNPs were used to evaluate the genomic prediction accuracy (rMG of the six trait-environment combinations under various levels of training population size (TPS and marker density (MD, and assess the effect of trait heritability (h2, TPS and MD on rMG estimation. Our results showed that: (1 moderate rMG values were obtained for different trait-environment combinations, when 50% of the total genotypes was used as training population and ~200 SNPs were used for prediction; (2 rMG increased with an increase in h2, TPS and MD, both correlation and variance analyses showed that h2 is the most important factor and MD is the least important factor on rMG estimation for most of the trait-environment combinations; (3 predictions between pairwise half-sib populations showed that the rMG values for all the six trait-environment combinations were centered around zero, 49% predictions had rMG values above zero; (4 the trend observed in rMG differed with the trend observed in rMG/h, and h is the square root of heritability of the predicted trait, it indicated that both rMG and rMG/h values should be presented in GS study to show the accuracy of genomic selection and the relative accuracy of genomic selection compared with phenotypic selection, respectively. This study provides useful information to maize breeders to design genomic selection workflow in their breeding programs.

  9. Breeds in danger of extintion and biodiversity

    Directory of Open Access Journals (Sweden)

    A. Blasco

    2008-07-01

    Full Text Available Some arguments currently used to support breed conservation are examined. The central point is that we cannot conserve all breeds because we do not have financial resources enough to keep everything (mainly in developing countries and in many cases we do not have special reasons to conserve breeds. A breed is a human product and it should not be confused with specie. A breed can be generated or transformed. We can create synthetic breeds with the best characteristics of several breeds. Selection is not exhausting genetic variability (there are several experiments showing that, and genetic variability within breeds is large. We need reasons to keep breeds in danger in extinction. A breed is a tool, and we can decide to keep it when it is useful because it is specially adapted to some environments (although in this case it should not be in danger of extinction, it can be useful in crossbreeding to shorten the way of obtaining response to selection, or it has some extreme values for traits that may be useful in the future (in this case we have to define clearly which traits and how we expect the future to be. We can add cultural reasons when we have money enough to spend in culture.

  10. Environmental stability and the evolution of cooperative breeding in hornbills

    Science.gov (United States)

    Gonzalez, Juan-Carlos T.; Sheldon, Ben C.; Tobias, Joseph A.

    2013-01-01

    Reproductive cooperation in social animals has been the focus of intensive research, yet the role of environmental factors in promoting such cooperation remains uncertain. A recent global analysis suggested that cooperative breeding in birds is a ‘bet-hedging’ strategy associated with climatic uncertainty, but it is unclear whether this mechanism applies generally or is restricted to the insectivorous passerines that predominate as cooperative breeders at the global scale. Here, we use a phylogenetic framework to assess the effect of climate on the evolution of cooperation in hornbills (Bucerotidae), an avian family characterized by frugivory and carnivory. We show that, in contrast to the global pattern, cooperative reproduction is positively associated with both inter- and intra-annual climatic stability. This reversed relationship implies that hornbills are relatively insensitive to climatic fluctuations, perhaps because of their dietary niche or increased body mass, both of which may remove the need for bet-hedging. We conclude that the relationship between climatic variability and cooperative breeding is inconsistent across taxa, and potentially mediated by life-history variation. These findings help to explain the mixed results of previous studies and highlight the likely shortcomings of global datasets inherently biased towards particular categories. PMID:23926149

  11. Genetic diversity of the floury race of maize Avati Morotî from the Guaraní tribe in Paraguay

    Energy Technology Data Exchange (ETDEWEB)

    Orlando Noldin, O.; Revilla, P.; Ordás, B.

    2016-11-01

    Avati Morotî is a race of floury maize widely used by the Guarani people in South America, whose variability and potential value for breeding has been neglected so far. The objective of this research was to explore the genetic variability within the main Paraguayan race Avati Morotî. We studied the genetic variability available in the 20 accessions of Paraguayan Avati Morotî included in the South American core collection made by CIMMYT. Thirty individuals per accession were genotyped with 30 SSR (simple sequence repeat); we determined genetic diversity and made a cluster analysis in order to define genetic relationships among accessions. Mean of polymorphic loci (0.96), alleles per locus (3.57), alleles per polymorphic locus (3.65), expected (0.48) and observed (0.43) heterozygosity, and coefficient of consanguinity (0.12) revealed that Avati Morotî contains a genetic diversity comparable to the most variable maize races of maize. The cluster analysis classified the 20 populations in eight groups, five of them with a single accession, and a large group representing a central pool of germplasm. These results indicate that there is a large variability available in this race, and encourage the collection of more samples of Avati Morotî, particularly in marginal areas that were scarcely sampled. (Author)

  12. Plant Breeding and Genetics Newsletter, No. 38, January 2017

    International Nuclear Information System (INIS)

    2017-01-01

    This year significant progress was made on the discovery of mutations using next generation sequencing for different crops, including rice and banana. Also, a program for the development of molecular markers for important traits has been initiated to translate the molecular knowledge on mutant traits into applications for plant breeding and to enable wider utilization of available useful mutant germplasm by Member States. A semi-dwarf mutant trait in sorghum was chosen in the pilot phase. In October 2016, a film crew visited the Agency’s Laboratories in Seibersdorf, including PBGL, in the context of a National Geographics project on the application of nuclear technologies to help address global challenges such as food, agriculture and climate change. In December 2016 a 22-minute documentary was aired on the National Geographics Channel in Belgium, the Netherlands and France highlighting the work at PBGL and the contribution of plant mutation breeding to food security and climate-smart agriculture.

  13. Breeding schemes in reindeer husbandry

    Directory of Open Access Journals (Sweden)

    Lars Rönnegård

    2003-04-01

    Full Text Available The objective of the paper was to investigate annual genetic gain from selection (G, and the influence of selection on the inbreeding effective population size (Ne, for different possible breeding schemes within a reindeer herding district. The breeding schemes were analysed for different proportions of the population within a herding district included in the selection programme. Two different breeding schemes were analysed: an open nucleus scheme where males mix and mate between owner flocks, and a closed nucleus scheme where the males in non-selected owner flocks are culled to maximise G in the whole population. The theory of expected long-term genetic contributions was used and maternal effects were included in the analyses. Realistic parameter values were used for the population, modelled with 5000 reindeer in the population and a sex ratio of 14 adult females per male. The standard deviation of calf weights was 4.1 kg. Four different situations were explored and the results showed: 1. When the population was randomly culled, Ne equalled 2400. 2. When the whole population was selected on calf weights, Ne equalled 1700 and the total annual genetic gain (direct + maternal in calf weight was 0.42 kg. 3. For the open nucleus scheme, G increased monotonically from 0 to 0.42 kg as the proportion of the population included in the selection programme increased from 0 to 1.0, and Ne decreased correspondingly from 2400 to 1700. 4. In the closed nucleus scheme the lowest value of Ne was 1300. For a given proportion of the population included in the selection programme, the difference in G between a closed nucleus scheme and an open one was up to 0.13 kg. We conclude that for mass selection based on calf weights in herding districts with 2000 animals or more, there are no risks of inbreeding effects caused by selection.

  14. Biochar helps enhance maize productivity and reduce greenhouse gas emissions under balanced fertilization in a rainfed low fertility inceptisol.

    Science.gov (United States)

    Zhang, Dengxiao; Pan, Genxing; Wu, Gang; Kibue, Grace Wanjiru; Li, Lianqing; Zhang, Xuhui; Zheng, Jinwei; Zheng, Jufeng; Cheng, Kun; Joseph, Stephen; Liu, Xiaoyu

    2016-01-01

    Maize production plays an important role in global food security, especially in arid and poor-soil regions. Its production is also increasing in China in terms of both planting area and yield. However, maize productivity in rainfed croplands is constrained by low soil fertility and moisture insufficiency. To increase the maize yield, local farmers use NPK fertilizer. However, the fertilization regime (CF) they practice is unbalanced with too much nitrogen in proportion to both phosphorus and potassium, which has led to low fertilizer use efficiency and excessive greenhouse gases emissions. A two-year field experiment was conducted to assess whether a high yielding but low greenhouse gases emission system could be developed by the combination of balanced fertilization (BF) and biochar amendment in a rainfed farmland located in the Northern region of China. Biochar was applied at rates of 0, 20, and 40 t/ha. Results show that BF and biochar increased maize yield and partial nutrient productivity and decreased nitrous oxide (N2O) emission. Under BF the maize yield was 23.7% greater than under CF. N2O emissions under BF were less than half that under CF due to a reduced N fertilizer application rate. Biochar amendment decreased N2O by more than 31% under CF, while it had no effect on N2O emissions under BF. Thus BF was effective at maintaining a high maize yield and reducing greenhouse gases emissions. If combined with biochar amendment, BF would be a good way of sustaining low carbon agriculture in rainfed areas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Genetic Engineering of Maize (Zea mays L.) with Improved Grain Nutrients.

    Science.gov (United States)

    Guo, Xiaotong; Duan, Xiaoguang; Wu, Yongzhen; Cheng, Jieshan; Zhang, Juan; Zhang, Hongxia; Li, Bei

    2018-02-21

    Cell-wall invertase plays important roles in the grain filling of crop plants. However, its functions in the improvement of grain nutrients have not been investigated. In this work, the stable expression of cell-wall-invertase-encoding genes from different plant species and the contents of total starch, protein, amino acid, nitrogen, lipid, and phosphorus were examined in transgenic maize plants. High expressions of the cell-wall-invertase gene conferred enhanced invertase activity and sugar content in transgenic plants, leading to increased grain yield and improved grain nutrients. Transgenic plants with high expressions of the transgene produced more total starch, protein, nitrogen, and essential amino acids in the seeds. Overall, the results indicate that the cell-wall-invertase gene can be used as a potential candidate for the genetic breeding of grain crops with both improved grain yield and quality.

  16. Population ecology of rodents of maize fields and grassland in central Ethiopia

    DEFF Research Database (Denmark)

    Bekel'e, Afework; Leirs, Herwig

    1997-01-01

    We report on the presence of rodents in grassland and maize fields in central Ethiopia, during the course of a 21-month study by means of removal and capture-recapture trapping. In both habitats, the small mammal fauna consisted of the same species but in different relative proportions: Arvicanthis...... dembeensis, Mastomys erythroleucus, Tatera robusta, Rattus rattus, Mus mahomet and Crocidura olivieri. A. dembeensis and M. erythroleucus were the dominant species. Densities were generally low throughout the study period, but at the end of the breeding season in the second year of the study, the numbers...... dynamics in the study area are linked to rainfall patterns and this information can be used to develop forecasting models....

  17. RNA interference can rebalance the nitrogen sink of maize seeds without losing hard endosperm.

    Directory of Open Access Journals (Sweden)

    Yongrui Wu

    Full Text Available BACKGROUND: One of the goals of plant breeding is to create crops to provide better nutrition for humans and livestock. Insufficient intake of protein is one of the most severe factors affecting the growth and development of children in developing countries. More than a century ago, in 1896, Hopkins initiated the well-known Illinois long-term selection for maize seed protein concentration, yielding four protein strains. By continuously accumulating QTLs, Illinois High Protein (IHP reached a protein level 2.5-fold higher than normal maize, with the most increased fraction being the zein protein, which was shown to contain no lysine soon after the long-term selection program initiated. Therefore, IHP is of little value for feeding humans and monogastric animals. Although high-lysine lines of non-vitreous mutants were based on reduced zeins, the kernel soft texture precluded their practical use. Kernel hardness in opaque 2 (o2 could be restored in quality protein maize (QPM with quantitative trait loci called o2 modifiers (Mo2s, but those did not increase total protein levels. METHODS: The most predominant zeins are the 22- and 19-kDa α-zeins. To achieve a combination of desired traits, we used RNA interference (RNAi against both α-zeins in IHP and evaluated the silencing effect by SDS-PAGE. Total protein, amino acid composition and kernel texture were analyzed. CONCLUSIONS: The α-zeins were dramatically reduced, but the high total seed protein level remained unchanged by complementary increase of non-zein proteins. Moreover, the residual zein levels still allowed for a vitreous hard seed. Such dramatic rebalancing of the nitrogen sink could have a major impact in world food supply.

  18. Meiotic transmission of an in vitro-assembled autonomous maize minichromosome.

    Directory of Open Access Journals (Sweden)

    Shawn R Carlson

    2007-10-01

    Full Text Available Autonomous chromosomes are generated in yeast (yeast artificial chromosomes and human fibrosarcoma cells (human artificial chromosomes by introducing purified DNA fragments that nucleate a kinetochore, replicate, and segregate to daughter cells. These autonomous minichromosomes are convenient for manipulating and delivering DNA segments containing multiple genes. In contrast, commercial production of transgenic crops relies on methods that integrate one or a few genes into host chromosomes; extensive screening to identify insertions with the desired expression level, copy number, structure, and genomic location; and long breeding programs to produce varieties that carry multiple transgenes. As a step toward improving transgenic crop production, we report the development of autonomous maize minichromosomes (MMCs. We constructed circular MMCs by combining DsRed and nptII marker genes with 7-190 kb of genomic maize DNA fragments containing satellites, retroelements, and/or other repeats commonly found in centromeres and using particle bombardment to deliver these constructs into embryogenic maize tissue. We selected transformed cells, regenerated plants, and propagated their progeny for multiple generations in the absence of selection. Fluorescent in situ hybridization and segregation analysis demonstrated that autonomous MMCs can be mitotically and meiotically maintained. The MMC described here showed meiotic segregation ratios approaching Mendelian inheritance: 93% transmission as a disome (100% expected, 39% transmission as a monosome crossed to wild type (50% expected, and 59% transmission in self crosses (75% expected. The fluorescent DsRed reporter gene on the MMC was expressed through four generations, and Southern blot analysis indicated the encoded genes were intact. This novel approach for plant transformation can facilitate crop biotechnology by (i combining several trait genes on a single DNA fragment, (ii arranging genes in a defined

  19. Independent introductions and admixtures have contributed to adaptation of European maize and its American counterparts.

    Directory of Open Access Journals (Sweden)

    Jean-Tristan Brandenburg

    2017-03-01

    Full Text Available Through the local selection of landraces, humans have guided the adaptation of crops to a vast range of climatic and ecological conditions. This is particularly true of maize, which was domesticated in a restricted area of Mexico but now displays one of the broadest cultivated ranges worldwide. Here, we sequenced 67 genomes with an average sequencing depth of 18x to document routes of introduction, admixture and selective history of European maize and its American counterparts. To avoid the confounding effects of recent breeding, we targeted germplasm (lines directly derived from landraces. Among our lines, we discovered 22,294,769 SNPs and between 0.9% to 4.1% residual heterozygosity. Using a segmentation method, we identified 6,978 segments of unexpectedly high rate of heterozygosity. These segments point to genes potentially involved in inbreeding depression, and to a lesser extent to the presence of structural variants. Genetic structuring and inferences of historical splits revealed 5 genetic groups and two independent European introductions, with modest bottleneck signatures. Our results further revealed admixtures between distinct sources that have contributed to the establishment of 3 groups at intermediate latitudes in North America and Europe. We combined differentiation- and diversity-based statistics to identify both genes and gene networks displaying strong signals of selection. These include genes/gene networks involved in flowering time, drought and cold tolerance, plant defense and starch properties. Overall, our results provide novel insights into the evolutionary history of European maize and highlight a major role of admixture in environmental adaptation, paralleling recent findings in humans.

  20. Photosynthesis and chlorophyll fluorescence reaction to different shade stresses of weak light sensitive maize

    International Nuclear Information System (INIS)

    Wang, J.; Li, F.; Shi, Z.; Huang, H.; Jia, S.

    2017-01-01

    A split-plot experimental study was conducted to evaluate the effect of different shade stresses on photosynthesis and chlorophyll fluorescence of maize leaves.The experiment was designed on the south farm of Special Corn Institute, Shenyang Agricultural University, China.Data was collected from the day maize tasseled (Jul. 21) to the beginning of grouting (Aug.12 ) under 18%, 28%, 38%, 60%, and 75% shade stress to determine indexes such as photosynthesis and chlorophyll fluorescence after 15 days of shade treatment. Pairs of near-isogenic lines (NILs) of Shennong 98A (a barren stalk inbred line) and Shennong 98B (an un-barren stalk inbred line) were used as experimental materials to further reveal photosynthetic mechanisms of weak light sensitive maize when exposed to weak light conditions. Thus, a foundation was established for high density-resistant (shade resistant) corn breeding,while identifying weak light sensitive varieties. After shading treatment, chlorophyll a and total chlorophyll content of both varieties increased, chlorophyll b content first increased, followed by a decrease, while the net photosynthetic rate and stomatal conductance showed a gradually decreasing trend. The changing trends of photochemical quenching coefficient(qp) and effective quantum yield of PSII photochemistry (FPSII)were similar, FPSII and qP increased significantly as shading stress increased from 18% to 38%;however, FPSII and qP declined significantly under 60% and 75% shading stresses. The changing trend of NPQ was opposite to FPSII and qP. A comparison of both inbred lines showed that photosynthesis and chlorophyll fluorescence characteristics of Shennong 98B were superior to Shennong 98A. This study revealed the relationships between weak light sensitive lines and shade intensities by comparing differences in photosynthesis and chlorophyll fluorescence parameters. (author)