WorldWideScience

Sample records for global gene profiling

  1. Global gene expression profile progression in Gaucher disease mouse models

    Directory of Open Access Journals (Sweden)

    Zhang Wujuan

    2011-01-01

    Full Text Available Abstract Background Gaucher disease is caused by defective glucocerebrosidase activity and the consequent accumulation of glucosylceramide. The pathogenic pathways resulting from lipid laden macrophages (Gaucher cells in visceral organs and their abnormal functions are obscure. Results To elucidate this pathogenic pathway, developmental global gene expression analyses were conducted in distinct Gba1 point-mutated mice (V394L/V394L and D409 V/null. About 0.9 to 3% of genes had altered expression patterns (≥ ± 1.8 fold change, representing several categories, but particularly macrophage activation and immune response genes. Time course analyses (12 to 28 wk of INFγ-regulated pro-inflammatory (13 and IL-4-regulated anti-inflammatory (11 cytokine/mediator networks showed tissue differential profiles in the lung and liver of the Gba1 mutant mice, implying that the lipid-storage macrophages were not functionally inert. The time course alterations of the INFγ and IL-4 pathways were similar, but varied in degree in these tissues and with the Gba1 mutation. Conclusions Biochemical and pathological analyses demonstrated direct relationships between the degree of tissue glucosylceramides and the gene expression profile alterations. These analyses implicate IFNγ-regulated pro-inflammatory and IL-4-regulated anti-inflammatory networks in differential disease progression with implications for understanding the Gaucher disease course and pathophysiology.

  2. Altered global gene expression profiles in human gastrointestinal epithelial Caco2 cells exposed to nanosilver

    Directory of Open Access Journals (Sweden)

    Saura C. Sahu

    Full Text Available Extensive consumer exposure to food- and cosmetics-related consumer products containing nanosilver is of public safety concern. Therefore, there is a need for suitable in vitro models and sensitive predictive rapid screening methods to assess their toxicity. Toxicogenomic profile showing subtle changes in gene expressions following nanosilver exposure is a sensitive toxicological endpoint for this purpose. We evaluated the Caco2 cells and global gene expression profiles as tools for predictive rapid toxicity screening of nanosilver. We evaluated and compared the gene expression profiles of Caco-2 cells exposed to 20 nm and 50 nm nanosilver at a concentration 2.5 μg/ml. The global gene expression analysis of Caco2 cells exposed to 20 nm nanosilver showed that a total of 93 genes were altered at 4 h exposure, out of which 90 genes were up-regulated and 3 genes were down-regulated. The 24 h exposure of 20 nm silver altered 15 genes in Caco2 cells, out of which 14 were up-regulated and one was down-regulated. The most pronounced changes in gene expression were detected at 4 h. The greater size (50 nm nanosilver at 4 h exposure altered more genes by more different pathways than the smaller (20 nm one. Metallothioneins and heat shock proteins were highly up-regulated as a result of exposure to both the nanosilvers. The cellular pathways affected by the nanosilver exposure is likely to lead to increased toxicity. The results of our study presented here suggest that the toxicogenomic characterization of Caco2 cells is a valuable in vitro tool for assessing toxicity of nanomaterials such as nanosilver. Keywords: Nanosilver, Silver nanoparticles, Nanoparticles, Toxicogenomics, DNA microarray, Global gene expression profiles, Caco2 cells

  3. Methods for simultaneously identifying coherent local clusters with smooth global patterns in gene expression profiles

    Directory of Open Access Journals (Sweden)

    Lee Yun-Shien

    2008-03-01

    Full Text Available Abstract Background The hierarchical clustering tree (HCT with a dendrogram 1 and the singular value decomposition (SVD with a dimension-reduced representative map 2 are popular methods for two-way sorting the gene-by-array matrix map employed in gene expression profiling. While HCT dendrograms tend to optimize local coherent clustering patterns, SVD leading eigenvectors usually identify better global grouping and transitional structures. Results This study proposes a flipping mechanism for a conventional agglomerative HCT using a rank-two ellipse (R2E, an improved SVD algorithm for sorting purpose seriation by Chen 3 as an external reference. While HCTs always produce permutations with good local behaviour, the rank-two ellipse seriation gives the best global grouping patterns and smooth transitional trends. The resulting algorithm automatically integrates the desirable properties of each method so that users have access to a clustering and visualization environment for gene expression profiles that preserves coherent local clusters and identifies global grouping trends. Conclusion We demonstrate, through four examples, that the proposed method not only possesses better numerical and statistical properties, it also provides more meaningful biomedical insights than other sorting algorithms. We suggest that sorted proximity matrices for genes and arrays, in addition to the gene-by-array expression matrix, can greatly aid in the search for comprehensive understanding of gene expression structures. Software for the proposed methods can be obtained at http://gap.stat.sinica.edu.tw/Software/GAP.

  4. Global gene expression profiling of individual human oocytes and embryos demonstrates heterogeneity in early development.

    Directory of Open Access Journals (Sweden)

    Lisa Shaw

    Full Text Available Early development in humans is characterised by low and variable embryonic viability, reflected in low fecundity and high rates of miscarriage, relative to other mammals. Data from assisted reproduction programmes provides additional evidence that this is largely mediated at the level of embryonic competence and is highly heterogeneous among embryos. Understanding the basis of this heterogeneity has important implications in a number of areas including: the regulation of early human development, disorders of pregnancy, assisted reproduction programmes, the long term health of children which may be programmed in early development, and the molecular basis of pluripotency in human stem cell populations. We have therefore investigated global gene expression profiles using polyAPCR amplification and microarray technology applied to individual human oocytes and 4-cell and blastocyst stage embryos. In order to explore the basis of any variability in detail, each developmental stage is replicated in triplicate. Our data show that although transcript profiles are highly stage-specific, within each stage they are relatively variable. We describe expression of a number of gene families and pathways including apoptosis, cell cycle and amino acid metabolism, which are variably expressed and may be reflective of embryonic developmental competence. Overall, our data suggest that heterogeneity in human embryo developmental competence is reflected in global transcript profiles, and that the vast majority of existing human embryo gene expression data based on pooled oocytes and embryos need to be reinterpreted.

  5. Global Gene Expression Profiling in Lung Tissues of Rat Exposed to Lunar Dust Particles

    Science.gov (United States)

    Yeshitla, Samrawit A.; Lam, Chiu-Wing; Kidane, Yared H.; Feiveson, Alan H.; Ploutz-Snyder, Robert; Wu, Honglu; James, John T.; Meyers, Valerie E.; Zhang, Ye

    2014-01-01

    The Moon's surface is covered by a layer of fine, potential reactive dust. Lunar dust contain about 1-2% respirable very fine dust (less than 3 micrometers). The habitable area of any lunar landing vehicle and outpost would inevitably be contaminated with lunar dust that could pose a health risk. The purpose of the study is to analyze the dynamics of global gene expression changes in lung tissues of rats exposed to lunar dust particles. F344 rats were exposed for 4 weeks (6h/d; 5d/wk) in nose-only inhalation chambers to concentrations of 0 (control air), 2.1, 6.8, 21, and 61 mg/m3 of lunar dust. Animals were euthanized at 1 day and 13 weeks after the last inhalation exposure. After being lavaged, lung tissue from each animal was collected and total RNA was isolated. Four samples of each dose group were analyzed using Agilent Rat GE v3 microarray to profile global gene expression of 44K transcripts. After background subtraction, normalization, and log transformation, t tests were used to compare the mean expression levels of each exposed group to the control group. Correction for multiple testing was made using the method of Benjamini, Krieger, and Yekuteli (1) to control the false discovery rate. Genes with significant changes of at least 1.75 fold were identified as genes of interest. Both low and high doses of lunar dust caused dramatic, dose-dependent global gene expression changes in the lung tissues. However, the responses of lung tissue to low dose lunar dust are distinguished from those of high doses, especially those associated with 61mg/m3 dust exposure. The data were further integrated into the Ingenuity system to analyze the gene ontology (GO), pathway distribution and putative upstream regulators and gene targets. Multiple pathways, functions, and upstream regulators have been identified in response to lunar dust induced damage in the lung tissue.

  6. Global analysis of gene expression profiles in developing physic nut (Jatropha curcas L.) seeds.

    Science.gov (United States)

    Jiang, Huawu; Wu, Pingzhi; Zhang, Sheng; Song, Chi; Chen, Yaping; Li, Meiru; Jia, Yongxia; Fang, Xiaohua; Chen, Fan; Wu, Guojiang

    2012-01-01

    Physic nut (Jatropha curcas L.) is an oilseed plant species with high potential utility as a biofuel. Furthermore, following recent sequencing of its genome and the availability of expressed sequence tag (EST) libraries, it is a valuable model plant for studying carbon assimilation in endosperms of oilseed plants. There have been several transcriptomic analyses of developing physic nut seeds using ESTs, but they have provided limited information on the accumulation of stored resources in the seeds. We applied next-generation Illumina sequencing technology to analyze global gene expression profiles of developing physic nut seeds 14, 19, 25, 29, 35, 41, and 45 days after pollination (DAP). The acquired profiles reveal the key genes, and their expression timeframes, involved in major metabolic processes including: carbon flow, starch metabolism, and synthesis of storage lipids and proteins in the developing seeds. The main period of storage reserves synthesis in the seeds appears to be 29-41 DAP, and the fatty acid composition of the developing seeds is consistent with relative expression levels of different isoforms of acyl-ACP thioesterase and fatty acid desaturase genes. Several transcription factor genes whose expression coincides with storage reserve deposition correspond to those known to regulate the process in Arabidopsis. The results will facilitate searches for genes that influence de novo lipid synthesis, accumulation and their regulatory networks in developing physic nut seeds, and other oil seeds. Thus, they will be helpful in attempts to modify these plants for efficient biofuel production.

  7. Global analysis of transcriptome responses and gene expression profiles to cold stress of Jatropha curcas L.

    Science.gov (United States)

    Wang, Haibo; Zou, Zhurong; Wang, Shasha; Gong, Ming

    2013-01-01

    Jatropha curcas L., also called the Physic nut, is an oil-rich shrub with multiple uses, including biodiesel production, and is currently exploited as a renewable energy resource in many countries. Nevertheless, because of its origin from the tropical MidAmerican zone, J. curcas confers an inherent but undesirable characteristic (low cold resistance) that may seriously restrict its large-scale popularization. This adaptive flaw can be genetically improved by elucidating the mechanisms underlying plant tolerance to cold temperatures. The newly developed Illumina Hiseq™ 2000 RNA-seq and Digital Gene Expression (DGE) are deep high-throughput approaches for gene expression analysis at the transcriptome level, using which we carefully investigated the gene expression profiles in response to cold stress to gain insight into the molecular mechanisms of cold response in J. curcas. In total, 45,251 unigenes were obtained by assembly of clean data generated by RNA-seq analysis of the J. curcas transcriptome. A total of 33,363 and 912 complete or partial coding sequences (CDSs) were determined by protein database alignments and ESTScan prediction, respectively. Among these unigenes, more than 41.52% were involved in approximately 128 known metabolic or signaling pathways, and 4,185 were possibly associated with cold resistance. DGE analysis was used to assess the changes in gene expression when exposed to cold condition (12°C) for 12, 24, and 48 h. The results showed that 3,178 genes were significantly upregulated and 1,244 were downregulated under cold stress. These genes were then functionally annotated based on the transcriptome data from RNA-seq analysis. This study provides a global view of transcriptome response and gene expression profiling of J. curcas in response to cold stress. The results can help improve our current understanding of the mechanisms underlying plant cold resistance and favor the screening of crucial genes for genetically enhancing cold resistance

  8. Global analysis of transcriptome responses and gene expression profiles to cold stress of Jatropha curcas L.

    Directory of Open Access Journals (Sweden)

    Haibo Wang

    Full Text Available BACKGROUND: Jatropha curcas L., also called the Physic nut, is an oil-rich shrub with multiple uses, including biodiesel production, and is currently exploited as a renewable energy resource in many countries. Nevertheless, because of its origin from the tropical MidAmerican zone, J. curcas confers an inherent but undesirable characteristic (low cold resistance that may seriously restrict its large-scale popularization. This adaptive flaw can be genetically improved by elucidating the mechanisms underlying plant tolerance to cold temperatures. The newly developed Illumina Hiseq™ 2000 RNA-seq and Digital Gene Expression (DGE are deep high-throughput approaches for gene expression analysis at the transcriptome level, using which we carefully investigated the gene expression profiles in response to cold stress to gain insight into the molecular mechanisms of cold response in J. curcas. RESULTS: In total, 45,251 unigenes were obtained by assembly of clean data generated by RNA-seq analysis of the J. curcas transcriptome. A total of 33,363 and 912 complete or partial coding sequences (CDSs were determined by protein database alignments and ESTScan prediction, respectively. Among these unigenes, more than 41.52% were involved in approximately 128 known metabolic or signaling pathways, and 4,185 were possibly associated with cold resistance. DGE analysis was used to assess the changes in gene expression when exposed to cold condition (12°C for 12, 24, and 48 h. The results showed that 3,178 genes were significantly upregulated and 1,244 were downregulated under cold stress. These genes were then functionally annotated based on the transcriptome data from RNA-seq analysis. CONCLUSIONS: This study provides a global view of transcriptome response and gene expression profiling of J. curcas in response to cold stress. The results can help improve our current understanding of the mechanisms underlying plant cold resistance and favor the screening of

  9. Global analysis of gene expression profiles in developing physic nut (Jatropha curcas L. seeds.

    Directory of Open Access Journals (Sweden)

    Huawu Jiang

    Full Text Available BACKGROUND: Physic nut (Jatropha curcas L. is an oilseed plant species with high potential utility as a biofuel. Furthermore, following recent sequencing of its genome and the availability of expressed sequence tag (EST libraries, it is a valuable model plant for studying carbon assimilation in endosperms of oilseed plants. There have been several transcriptomic analyses of developing physic nut seeds using ESTs, but they have provided limited information on the accumulation of stored resources in the seeds. METHODOLOGY/PRINCIPAL FINDINGS: We applied next-generation Illumina sequencing technology to analyze global gene expression profiles of developing physic nut seeds 14, 19, 25, 29, 35, 41, and 45 days after pollination (DAP. The acquired profiles reveal the key genes, and their expression timeframes, involved in major metabolic processes including: carbon flow, starch metabolism, and synthesis of storage lipids and proteins in the developing seeds. The main period of storage reserves synthesis in the seeds appears to be 29-41 DAP, and the fatty acid composition of the developing seeds is consistent with relative expression levels of different isoforms of acyl-ACP thioesterase and fatty acid desaturase genes. Several transcription factor genes whose expression coincides with storage reserve deposition correspond to those known to regulate the process in Arabidopsis. CONCLUSIONS/SIGNIFICANCE: The results will facilitate searches for genes that influence de novo lipid synthesis, accumulation and their regulatory networks in developing physic nut seeds, and other oil seeds. Thus, they will be helpful in attempts to modify these plants for efficient biofuel production.

  10. Global Gene Expression Profiling of Human Genome Following Exposure to Sarin and Soman

    International Nuclear Information System (INIS)

    Gopalakrishnakone, P.; Pachiappan, A.; Srinivasan, K. N.; Loke, W. K.; Lee, F. K.

    2007-01-01

    Toxicogenomics merges genomics with toxicology is a rapidly expanding field on the assumption that the transcriptional responses of cells to different toxic exposure are sufficiently distinct robust and reproducible to discriminate toxin from different families/classes which can be called as 'fingerprints' or 'Atlases'. In this study chemical weapons sarin was studied in a time and dose dependent manner after exposure to human neuroblastoma cell line. (Sarin or GB) exerts its effect through inhibition of acetylcholinesterase activity and induction of delayed neurotoxicity in a dose [EC 50 50 ppm, (around 372.4 μM)] and time-dependent manner. The effect and/or the mechanism of single or repeated exposures to GB, however, are less clear and yet to be explored at cellular level. The present study aims to scrutinize, the global gene expression profile following sarin toxicity in neuronal cells using Affymetrix-GeneChips. A tim-course study on the effect of a single (3 or 24h) or repeated (24 or 48h) doses of sarin (5ppm) on SHSY5Y cells was carried out. Using GeneSpring (PCA) analysis, 550 genes whose expression was significantly (p less than 0.01) altered by at least 2.5-fold, were selected. The results indicate that the low-level single dose exposure do not always parallel acute toxicity, but can cause a reversible down-regulation of genes and a range of anti-cholinesterase effects. In contrast, repeated doses produced persistent irreversible down-regulation of genes related to neurodegenerative mechanism at 48h. Real-time PCR and western blot analysis confirmed the reduced expression of presenilin 1 (TMP21), 2 and dopa.decarboxylase (DDC) mRNA and proteins. Besides providing an in vitro experimental model for studies on the neuropathophysiology and brain cells this investigation indicate possible mechanisms by which sarin could mediate neuro-degeneration. A comparison will be made with similar study with soman. (author)

  11. Distinct differences in global gene expression profiles in non-implanted blastocysts and blastocysts resulting in live birth

    DEFF Research Database (Denmark)

    Kirkegaard, Kirstine Kjær; Fredsted, Palle Villesen; Jensen, Jacob Malte

    2015-01-01

    Results from animal models points towards the existence of a gene expression profile that is distinguishably different in viable embryos compared with non-viable embryos. Knowledge of human embryo transcripts is however limited, in particular with regard to how gene expression is related...... to clinical outcome. The purpose of the present study was therefore to determine the global gene expression profiles of human blastocysts. Next Generation Sequencing was used to identify genes that were differentially expressed in non-implanted embryos and embryos resulting in live birth. Three trophectoderm...

  12. In vitro analysis of integrated global high-resolution DNA methylation profiling with genomic imbalance and gene expression in osteosarcoma.

    Directory of Open Access Journals (Sweden)

    Bekim Sadikovic

    Full Text Available Genetic and epigenetic changes contribute to deregulation of gene expression and development of human cancer. Changes in DNA methylation are key epigenetic factors regulating gene expression and genomic stability. Recent progress in microarray technologies resulted in developments of high resolution platforms for profiling of genetic, epigenetic and gene expression changes. OS is a pediatric bone tumor with characteristically high level of numerical and structural chromosomal changes. Furthermore, little is known about DNA methylation changes in OS. Our objective was to develop an integrative approach for analysis of high-resolution epigenomic, genomic, and gene expression profiles in order to identify functional epi/genomic differences between OS cell lines and normal human osteoblasts. A combination of Affymetrix Promoter Tilling Arrays for DNA methylation, Agilent array-CGH platform for genomic imbalance and Affymetrix Gene 1.0 platform for gene expression analysis was used. As a result, an integrative high-resolution approach for interrogation of genome-wide tumour-specific changes in DNA methylation was developed. This approach was used to provide the first genomic DNA methylation maps, and to identify and validate genes with aberrant DNA methylation in OS cell lines. This first integrative analysis of global cancer-related changes in DNA methylation, genomic imbalance, and gene expression has provided comprehensive evidence of the cumulative roles of epigenetic and genetic mechanisms in deregulation of gene expression networks.

  13. Global analysis of gene expression profiles in physic nut (Jatropha curcas L.) seedlings exposed to salt stress.

    Science.gov (United States)

    Zhang, Lin; Zhang, Chao; Wu, Pingzhi; Chen, Yaping; Li, Meiru; Jiang, Huawu; Wu, Guojiang

    2014-01-01

    Salt stress interferes with plant growth and production. Plants have evolved a series of molecular and morphological adaptations to cope with this abiotic stress, and overexpression of salt response genes reportedly enhances the productivity of various crops. However, little is known about the salt responsive genes in the energy plant physic nut (Jatropha curcas L.). Thus, excavate salt responsive genes in this plant are informative in uncovering the molecular mechanisms for the salt response in physic nut. We applied next-generation Illumina sequencing technology to analyze global gene expression profiles of physic nut plants (roots and leaves) 2 hours, 2 days and 7 days after the onset of salt stress. A total of 1,504 and 1,115 genes were significantly up and down-regulated in roots and leaves, respectively, under salt stress condition. Gene ontology (GO) analysis of physiological process revealed that, in the physic nut, many "biological processes" were affected by salt stress, particular those categories belong to "metabolic process", such as "primary metabolism process", "cellular metabolism process" and "macromolecule metabolism process". The gene expression profiles indicated that the associated genes were responsible for ABA and ethylene signaling, osmotic regulation, the reactive oxygen species scavenging system and the cell structure in physic nut. The major regulated genes detected in this transcriptomic data were related to trehalose synthesis and cell wall structure modification in roots, while related to raffinose synthesis and reactive oxygen scavenger in leaves. The current study shows a comprehensive gene expression profile of physic nut under salt stress. The differential expression genes detected in this study allows the underling the salt responsive mechanism in physic nut with the aim of improving its salt resistance in the future.

  14. Global gene expression profiling of asymptomatic bacteriuria Escherichia coli during biofilm growth in human urine

    DEFF Research Database (Denmark)

    Hancock, Viktoria; Klemm, Per

    2007-01-01

    Urinary tract infection (UTI) is an important health problem worldwide, with many millions of cases each year, and Escherichia coli is the most common organism causing UTI in humans. Also, E. coli is responsible for most infections in patients with chronic indwelling bladder catheter. The two...... asymptomatic bacteriuria (ABU) E. coli strains 83972 and VR50 are significantly better biofilm formers in their natural growth medium, human urine, than the two uropathogenic E. coli isolates CFT073 and 536. We used DNA microarrays to monitor the expression profile during biofilm growth in urine of the two ABU...... strains 83972 and VR50. Significant differences in expression levels were seen between the biofilm expression profiles of the two strains with the corresponding planktonic expression profiles in morpholinepropanesulfonic acid minimal laboratory medium and human urine; 417 and 355 genes were up- and down...

  15. Gene expression profiling--Opening the black box of plant ecosystem responses to global change

    Energy Technology Data Exchange (ETDEWEB)

    Leakey, A.D.B.; Ainsworth, E.A.; Bernard, S.M.; Markelz, R.J.C.; Ort, D.R.; Placella, S.A.P.; Rogers, A.; Smith, M.D.; Sudderth, E.A.; Weston, D.J.; Wullschleger, S.D.; Yuan, S.

    2009-11-01

    The use of genomic techniques to address ecological questions is emerging as the field of genomic ecology. Experimentation under environmentally realistic conditions to investigate the molecular response of plants to meaningful changes in growth conditions and ecological interactions is the defining feature of genomic ecology. Since the impact of global change factors on plant performance are mediated by direct effects at the molecular, biochemical and physiological scales, gene expression analysis promises important advances in understanding factors that have previously been consigned to the 'black box' of unknown mechanism. Various tools and approaches are available for assessing gene expression in model and non-model species as part of global change biology studies. Each approach has its own unique advantages and constraints. A first generation of genomic ecology studies in managed ecosystems and mesocosms have provided a testbed for the approach and have begun to reveal how the experimental design and data analysis of gene expression studies can be tailored for use in an ecological context.

  16. Characterization of the global profile of genes expressed in cervical epithelium by Serial Analysis of Gene Expression (SAGE

    Directory of Open Access Journals (Sweden)

    Piña-Sanchez Patricia

    2005-09-01

    Full Text Available Abstract Background Serial Analysis of Gene Expression (SAGE is a new technique that allows a detailed and profound quantitative and qualitative knowledge of gene expression profile, without previous knowledge of sequence of analyzed genes. We carried out a modification of SAGE methodology (microSAGE, useful for the analysis of limited quantities of tissue samples, on normal human cervical tissue obtained from a donor without histopathological lesions. Cervical epithelium is constituted mainly by cervical keratinocytes which are the targets of human papilloma virus (HPV, where persistent HPV infection of cervical epithelium is associated with an increase risk for developing cervical carcinomas (CC. Results We report here a transcriptome analysis of cervical tissue by SAGE, derived from 30,418 sequenced tags that provide a wealth of information about the gene products involved in normal cervical epithelium physiology, as well as genes not previously found in uterine cervix tissue involved in the process of epidermal differentiation. Conclusion This first comprehensive and profound analysis of uterine cervix transcriptome, should be useful for the identification of genes involved in normal cervix uterine function, and candidate genes associated with cervical carcinoma.

  17. Global gene expression profiling in human lung cells exposed to cobalt

    Energy Technology Data Exchange (ETDEWEB)

    Malard, V.; Berenguer, F.; Prat, O.; Ruat, S.; Steinmetz, G.; Quemeneur, E. [CEA VALRHO, Serv Biochim and Toxicol Nucl, DSV, iBEB, F-30207 Bagnols Sur Ceze (France)

    2007-06-06

    It has been estimated that more than 1 million workers in the United States are exposed to cobalt. Occupational exposure to {sup 59}Co occurs mainly via inhalation and leads to various lung diseases. Cobalt is classified by the IARC as a possible human carcinogen (group 2B). Although there is evidence for in vivo and in vitro toxicity, the mechanisms of cobalt-induced lung toxicity are not fully known. The purpose of this work was to identify potential signatures of acute cobalt exposure using a toxico-genomic approach. Data analysis focused on some cellular processes and protein targets that are thought to be relevant for carcinogenesis, transport and bio-marker research. Results: A time course transcriptome analysis was performed on A549 human pulmonary cells, leading to the identification of 85 genes which are repressed or induced in response to soluble 59 Co. A group of 29 of these genes, representing the main biological functions, was assessed by quantitative RT-PCR. The expression profiles of six of them were then tested by quantitative RT-PCR in a time-dependent manner and three modulations were confirmed by Western blotting. The 85 modulated genes include potential cobalt carriers (FBXL2, ZNT1, SLC12A5), tumor suppressors or transcription factors (MAZ, DLG1, MYC, AXL) and genes linked to the stress response (UBC, HSPCB, BN1P3L). We also identified nine genes coding for secreted proteins as candidates for bio-marker research. Of those, T1MP2 was found to be down-regulated and this modulation was confirmed, in a dose-dependent manner, at protein level in the supernatant of exposed cells. Conclusion: Most of these genes have never been described as related to cobalt stress and provide original hypotheses for further study of the effects of this metal ion on human lung epithelial cells. A putative bio-marker of cobalt toxicity was identified. (authors)

  18. Cross-species global and subset gene expression profiling identifies genes involved in prostate cancer response to selenium

    Directory of Open Access Journals (Sweden)

    Dhir Rajiv

    2004-08-01

    Full Text Available Abstract Background Gene expression technologies have the ability to generate vast amounts of data, yet there often resides only limited resources for subsequent validation studies. This necessitates the ability to perform sorting and prioritization of the output data. Previously described methodologies have used functional pathways or transcriptional regulatory grouping to sort genes for further study. In this paper we demonstrate a comparative genomics based method to leverage data from animal models to prioritize genes for validation. This approach allows one to develop a disease-based focus for the prioritization of gene data, a process that is essential for systems that lack significant functional pathway data yet have defined animal models. This method is made possible through the use of highly controlled spotted cDNA slide production and the use of comparative bioinformatics databases without the use of cross-species slide hybridizations. Results Using gene expression profiling we have demonstrated a similar whole transcriptome gene expression patterns in prostate cancer cells from human and rat prostate cancer cell lines both at baseline expression levels and after treatment with physiologic concentrations of the proposed chemopreventive agent Selenium. Using both the human PC3 and rat PAII prostate cancer cell lines have gone on to identify a subset of one hundred and fifty-four genes that demonstrate a similar level of differential expression to Selenium treatment in both species. Further analysis and data mining for two genes, the Insulin like Growth Factor Binding protein 3, and Retinoic X Receptor alpha, demonstrates an association with prostate cancer, functional pathway links, and protein-protein interactions that make these genes prime candidates for explaining the mechanism of Selenium's chemopreventive effect in prostate cancer. These genes are subsequently validated by western blots showing Selenium based induction and using

  19. A practical platform for blood biomarker study by using global gene expression profiling of peripheral whole blood.

    Directory of Open Access Journals (Sweden)

    Ze Tian

    Full Text Available Although microarray technology has become the most common method for studying global gene expression, a plethora of technical factors across the experiment contribute to the variable of genome gene expression profiling using peripheral whole blood. A practical platform needs to be established in order to obtain reliable and reproducible data to meet clinical requirements for biomarker study.We applied peripheral whole blood samples with globin reduction and performed genome-wide transcriptome analysis using Illumina BeadChips. Real-time PCR was subsequently used to evaluate the quality of array data and elucidate the mode in which hemoglobin interferes in gene expression profiling. We demonstrated that, when applied in the context of standard microarray processing procedures, globin reduction results in a consistent and significant increase in the quality of beadarray data. When compared to their pre-globin reduction counterparts, post-globin reduction samples show improved detection statistics, lowered variance and increased sensitivity. More importantly, gender gene separation is remarkably clearer in post-globin reduction samples than in pre-globin reduction samples. Our study suggests that the poor data obtained from pre-globin reduction samples is the result of the high concentration of hemoglobin derived from red blood cells either interfering with target mRNA binding or giving the pseudo binding background signal.We therefore recommend the combination of performing globin mRNA reduction in peripheral whole blood samples and hybridizing on Illumina BeadChips as the practical approach for biomarker study.

  20. Global oil company profiles

    International Nuclear Information System (INIS)

    1997-01-01

    Global Oil Company Profiles provides a comprehensive review of 50 of the top oil companies in the world. Each chapter is devoted to an individual company, providing an invaluable insight into the organisation, its structure and operations. Using the most recent data available, the report offers an up-to-date analysis of performance and future direction, as well as a unique benchmarking system for each company profiled. (author)

  1. Global gene expression profiling in PAI-1 knockout murine heart and kidney: molecular basis of cardiac-selective fibrosis.

    Directory of Open Access Journals (Sweden)

    Asish K Ghosh

    Full Text Available Fibrosis is defined as an abnormal matrix remodeling due to excessive synthesis and accumulation of extracellular matrix proteins in tissues during wound healing or in response to chemical, mechanical and immunological stresses. At present, there is no effective therapy for organ fibrosis. Previous studies demonstrated that aged plasminogen activator inhibitor-1 (PAI-1 knockout mice develop spontaneously cardiac-selective fibrosis without affecting any other organs. We hypothesized that differential expressions of profibrotic and antifibrotic genes in PAI-1 knockout hearts and unaffected organs lead to cardiac selective fibrosis. In order to address this prediction, we have used a genome-wide gene expression profiling of transcripts derived from aged PAI-1 knockout hearts and kidneys. The variations of global gene expression profiling were compared within four groups: wildtype heart vs. knockout heart; wildtype kidney vs. knockout kidney; knockout heart vs. knockout kidney and wildtype heart vs. wildtype kidney. Analysis of illumina-based microarray data revealed that several genes involved in different biological processes such as immune system processing, response to stress, cytokine signaling, cell proliferation, adhesion, migration, matrix organization and transcriptional regulation were affected in hearts and kidneys by the absence of PAI-1, a potent inhibitor of urokinase and tissue-type plasminogen activator. Importantly, the expressions of a number of genes, involved in profibrotic pathways including Ankrd1, Pi16, Egr1, Scx, Timp1, Timp2, Klf6, Loxl1 and Klotho, were deregulated in PAI-1 knockout hearts compared to wildtype hearts and PAI-1 knockout kidneys. While the levels of Ankrd1, Pi16 and Timp1 proteins were elevated during EndMT, the level of Timp4 protein was decreased. To our knowledge, this is the first comprehensive report on the influence of PAI-1 on global gene expression profiling in the heart and kidney and its implication

  2. Global gene expression profiling of brown to white adipose tissue transformation in sheep reveals novel transcriptional components linked to adipose remodeling

    DEFF Research Database (Denmark)

    Basse, Astrid L.; Dixen, Karen; Yadav, Rachita

    2015-01-01

    abundance and down-regulation of gene expression related to mitochondrial function and oxidative phosphorylation. Global gene expression profiling demonstrated that the time points grouped into three phases: a brown adipose phase, a transition phase and a white adipose phase. Between the brown adipose...

  3. Haloperidol induces pharmacoepigenetic response by modulating miRNA expression, global DNA methylation and expression profiles of methylation maintenance genes and genes involved in neurotransmission in neuronal cells.

    Directory of Open Access Journals (Sweden)

    Babu Swathy

    Full Text Available Haloperidol has been extensively used in various psychiatric conditions. It has also been reported to induce severe side effects. We aimed to evaluate whether haloperidol can influence host methylome, and if so what are the possible mechanisms for it in neuronal cells. Impact on host methylome and miRNAs can have wide spread alterations in gene expression, which might possibly help in understanding how haloperidol may impact treatment response or induce side effects.SK-N-SH, a neuroblasoma cell line was treated with haloperidol at 10μm concentration for 24 hours and global DNA methylation was evaluated. Methylation at global level is maintained by methylation maintenance machinery and certain miRNAs. Therefore, the expression of methylation maintenance genes and their putative miRNA expression profiles were assessed. These global methylation alterations could result in gene expression changes. Therefore genes expressions for neurotransmitter receptors, regulators, ion channels and transporters were determined. Subsequently, we were also keen to identify a strong candidate miRNA based on biological and in-silico approach which can reflect on the pharmacoepigenetic trait of haloperidol and can also target the altered neuroscience panel of genes used in the study.Haloperidol induced increase in global DNA methylation which was found to be associated with corresponding increase in expression of various epigenetic modifiers that include DNMT1, DNMT3A, DNMT3B and MBD2. The expression of miR-29b that is known to putatively regulate the global methylation by modulating the expression of epigenetic modifiers was observed to be down regulated by haloperidol. In addition to miR-29b, miR-22 was also found to be downregulated by haloperidol treatment. Both these miRNA are known to putatively target several genes associated with various epigenetic modifiers, pharmacogenes and neurotransmission. Interestingly some of these putative target genes involved in

  4. Haloperidol induces pharmacoepigenetic response by modulating miRNA expression, global DNA methylation and expression profiles of methylation maintenance genes and genes involved in neurotransmission in neuronal cells.

    Science.gov (United States)

    Swathy, Babu; Banerjee, Moinak

    2017-01-01

    Haloperidol has been extensively used in various psychiatric conditions. It has also been reported to induce severe side effects. We aimed to evaluate whether haloperidol can influence host methylome, and if so what are the possible mechanisms for it in neuronal cells. Impact on host methylome and miRNAs can have wide spread alterations in gene expression, which might possibly help in understanding how haloperidol may impact treatment response or induce side effects. SK-N-SH, a neuroblasoma cell line was treated with haloperidol at 10μm concentration for 24 hours and global DNA methylation was evaluated. Methylation at global level is maintained by methylation maintenance machinery and certain miRNAs. Therefore, the expression of methylation maintenance genes and their putative miRNA expression profiles were assessed. These global methylation alterations could result in gene expression changes. Therefore genes expressions for neurotransmitter receptors, regulators, ion channels and transporters were determined. Subsequently, we were also keen to identify a strong candidate miRNA based on biological and in-silico approach which can reflect on the pharmacoepigenetic trait of haloperidol and can also target the altered neuroscience panel of genes used in the study. Haloperidol induced increase in global DNA methylation which was found to be associated with corresponding increase in expression of various epigenetic modifiers that include DNMT1, DNMT3A, DNMT3B and MBD2. The expression of miR-29b that is known to putatively regulate the global methylation by modulating the expression of epigenetic modifiers was observed to be down regulated by haloperidol. In addition to miR-29b, miR-22 was also found to be downregulated by haloperidol treatment. Both these miRNA are known to putatively target several genes associated with various epigenetic modifiers, pharmacogenes and neurotransmission. Interestingly some of these putative target genes involved in neurotransmission

  5. Global gas company profiles

    International Nuclear Information System (INIS)

    1997-01-01

    This report provides a detailed assessment of 60 of the top gas companies form around the world, analysing them according to their internal dynamics and in relation to their competitors. It devotes each chapter to an individual company, providing invaluable insight into the organisation's operational background, financial performance and strategic goals. Using the most up-to-date information available, Global Gas Company Profiles allows you to make detailed analysis of each company's performance and future direction. (author)

  6. Global alteration in gene expression profiles of deciduas from women with idiopathic recurrent pregnancy loss.

    Science.gov (United States)

    Krieg, S A; Fan, X; Hong, Y; Sang, Q-X; Giaccia, A; Westphal, L M; Lathi, R B; Krieg, A J; Nayak, N R

    2012-09-01

    Recurrent pregnancy loss (RPL) occurs in ∼5% of women. However, the etiology is still poorly understood. Defects in decidualization of the endometrium during early pregnancy contribute to several pregnancy complications, such as pre-eclampsia and intrauterine growth restriction (IUGR), and are believed to be important in the pathogenesis of idiopathic RPL. We performed microarray analysis to identify gene expression alterations in the deciduas of idiopathic RPL patients. Control patients had one antecedent term delivery, but were undergoing dilation and curettage for current aneuploid miscarriage. Gene expression differences were evaluated using both pathway and gene ontology (GO) analysis. Selected genes were validated using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). A total of 155 genes were found to be significantly dysregulated in the deciduas of RPL patients (>2-fold change, P genes up-regulated and 133 genes down-regulated. GO analysis linked a large percentage of genes to discrete biological functions, including immune response (23%), cell signaling (18%) and cell invasion (17.1%), and pathway analysis revealed consistent changes in both the interleukin 1 (IL-1) and IL-8 pathways. All genes in the IL-8 pathway were up-regulated while genes in the IL-1 pathway were down-regulated. Although both pathways can promote inflammation, IL-1 pathway activity is important for normal implantation. Additionally, genes known to be critical for degradation of the extracellular matrix, including matrix metalloproteinase 26 and serine peptidase inhibitor Kazal-type 1, were also highly up-regulated. In this first microarray approach to decidual gene expression in RPL patients, our data suggest that dysregulation of genes associated with cell invasion and immunity may contribute significantly to idiopathic recurrent miscarriage.

  7. Suppressing Sorbitol Synthesis Substantially Alters the Global Expression Profile of Stress Response Genes in Apple (Malus domestica) Leaves.

    Science.gov (United States)

    Wu, Ting; Wang, Yi; Zheng, Yi; Fei, Zhangjun; Dandekar, Abhaya M; Xu, Kenong; Han, Zhenhai; Cheng, Lailiang

    2015-09-01

    Sorbitol is a major product of photosynthesis in apple (Malus domestica) that is involved in carbohydrate metabolism and stress tolerance. However, little is known about how the global transcript levels in apple leaves respond to decreased sorbitol synthesis. In this study we used RNA sequencing (RNA-seq) profiling to characterize the transcriptome of leaves from transgenic lines of the apple cultivar 'Greensleeves' exhibiting suppressed expression of aldose-6-phosphate reductase (A6PR) to gain insights into sorbitol function and the consequences of decreased sorbitol synthesis on gene expression. We observed that, although the leaves of the low sorbitol transgenic lines accumulate higher levels of various primary metabolites, only very limited changes were found in the levels of transcripts associated with primary metabolism. We suggest that this is indicative of post-transcriptional and/or post-translational regulation of primary metabolite accumulation and central carbon metabolism. However, we identified significantly enriched gene ontology terms belonging to the 'stress related process' category in the antisense lines (P-value sorbitol plays a role in the responses of apple trees to abiotic and biotic stresses. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Global gene expression profiles of MT knockout and wild-type mice in the condition of doxorubicin-induced cardiomyopathy.

    Science.gov (United States)

    Shuai, Yi; Guo, Jun; Dong, Yansheng; Zhong, Weijian; Xiao, Ping; Zhou, Tong; Zhang, Lishi; Peng, Shuangqing

    2011-01-15

    Increasing evidence from in vivo and in vitro studies has indicated that MT exerts protective effects against DOX-induced cardiotoxicity; however the underlying precise mechanisms still remain an enigma. Therefore, the present study was designed using MT knockout mice in concert with genomic approaches to explore the possible molecular and cellular mechanisms in terms of the genetic network changes. MT-I/II null (MT⁻/⁻) mice and corresponding wild-type mice (MT+/+) were administrated with a single dose of DOX (15 mg/kg, i.p.) or equal volume of saline. Animals were sacrificed on the 4th day after DOX administration and samples were collected for further analyses. Global gene expression profiles of cardiac mRNA from two genotype mice revealed that 381 characteristically MT-responsive genes were identified between MT+/+ mice and MT⁻/⁻ mice in response to DOX, including fos, ucp3, car3, atf3, map3k6, etc. Functional analysis implied MAPK signaling pathway, p53 signaling pathway, Jak-STAT signaling pathway, PPAR signaling pathway, Wnt signaling pathway, etc. might be involved to mediate the protection of DOX cardiomyopathy by MT. Results from the present study not only validated the previously reported possible mechanisms of MT protection against DOX toxicity, but also provided new clues into the molecular mechanisms involved in this process. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  9. Changes in global gene expression profiles induced by HPV 16 E6 oncoprotein variants in cervical carcinoma C33-A cells

    International Nuclear Information System (INIS)

    Zacapala-Gómez, Ana Elvira; Del Moral-Hernández, Oscar; Villegas-Sepúlveda, Nicolás; Hidalgo-Miranda, Alfredo; Romero-Córdoba, Sandra Lorena

    2016-01-01

    We analyzed the effects of the expression of HPV 16 E6 oncoprotein variants (AA-a, AA-c, E-A176/G350, E-C188/G350, E-G350), and the E-Prototype in global gene expression profiles in an in vitro model. E6 gene was cloned into an expression vector fused to GFP and was transfected in C33-A cells. Affymetrix GeneChip Human Transcriptome Array 2.0 platform was used to analyze the expression of over 245,000 coding transcripts. We found that HPV16 E6 variants altered the expression of 387 different genes in comparison with E-Prototype. The altered genes are involved in cellular processes related to the development of cervical carcinoma, such as adhesion, angiogenesis, apoptosis, differentiation, cell cycle, proliferation, transcription and protein translation. Our results show that polymorphic changes in HPV16 E6 natural variants are sufficient to alter the overall gene expression profile in C33-A cells, explaining in part the observed differences in oncogenic potential of HPV16 variants. - Highlights: • Amino acid changes in HPV16 E6 variants modulate the transciption of specific genes. • This is the first comparison of global gene expression profile of HPV 16 E6 variants. • Each HPV 16 E6 variant appears to have its own molecular signature.

  10. Changes in global gene expression profiles induced by HPV 16 E6 oncoprotein variants in cervical carcinoma C33-A cells

    Energy Technology Data Exchange (ETDEWEB)

    Zacapala-Gómez, Ana Elvira, E-mail: zak_ana@yahoo.com.mx [Laboratorio de Biomedicina Molecular, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro., México (Mexico); Del Moral-Hernández, Oscar, E-mail: odelmoralh@gmail.com [Laboratorio de Biomedicina Molecular, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro., México (Mexico); Villegas-Sepúlveda, Nicolás, E-mail: nvillega@cinvestav.mx [Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, D.F., México (Mexico); Hidalgo-Miranda, Alfredo, E-mail: ahidalgo@inmegen.gob.mx [Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F., México (Mexico); Romero-Córdoba, Sandra Lorena, E-mail: sromero_cordoba@hotmail.com [Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F., México (Mexico); and others

    2016-01-15

    We analyzed the effects of the expression of HPV 16 E6 oncoprotein variants (AA-a, AA-c, E-A176/G350, E-C188/G350, E-G350), and the E-Prototype in global gene expression profiles in an in vitro model. E6 gene was cloned into an expression vector fused to GFP and was transfected in C33-A cells. Affymetrix GeneChip Human Transcriptome Array 2.0 platform was used to analyze the expression of over 245,000 coding transcripts. We found that HPV16 E6 variants altered the expression of 387 different genes in comparison with E-Prototype. The altered genes are involved in cellular processes related to the development of cervical carcinoma, such as adhesion, angiogenesis, apoptosis, differentiation, cell cycle, proliferation, transcription and protein translation. Our results show that polymorphic changes in HPV16 E6 natural variants are sufficient to alter the overall gene expression profile in C33-A cells, explaining in part the observed differences in oncogenic potential of HPV16 variants. - Highlights: • Amino acid changes in HPV16 E6 variants modulate the transciption of specific genes. • This is the first comparison of global gene expression profile of HPV 16 E6 variants. • Each HPV 16 E6 variant appears to have its own molecular signature.

  11. Global gene expression in larval zebrafish (Danio rerio) exposed to selective serotonin reuptake inhibitors (fluoxetine and sertraline) reveals unique expression profiles and potential biomarkers of exposure

    International Nuclear Information System (INIS)

    Park, June-Woo; Heah, Tze Ping; Gouffon, Julia S.; Henry, Theodore B.; Sayler, Gary S.

    2012-01-01

    Larval zebrafish (Danio rerio) were exposed (96 h) to selective serotonin reuptake inhibitors (SSRIs) fluoxetine and sertraline and changes in transcriptomes analyzed by Affymetrix GeneChip ® Zebrafish Array were evaluated to enhance understanding of biochemical pathways and differences between these SSRIs. The number of genes differentially expressed after fluoxetine exposure was 288 at 25 μg/L and 131 at 250 μg/L; and after sertraline exposure was 33 at 25 μg/L and 52 at 250 μg/L. Same five genes were differentially regulated in both SSRIs indicating shared molecular pathways. Among these, the gene coding for FK506 binding protein 5, annotated to stress response regulation, was highly down-regulated in all treatments (results confirmed by qRT-PCR). Gene ontology analysis indicated at the gene expression level that regulation of stress response and cholinesterase activities were influenced by these SSRIs, and suggested that changes in transcription of these genes could be used as biomarkers of SSRI exposure. - Highlights: ► Exposure of zebrafish to selective serotonin reuptake inhibitors (SSRIs). ► Fluoxetine and sertraline generate different global gene expression profiles. ► Genes linked to stress response and acetylcholine esterase affected by both SSRIs. - Global gene expression profiles in zebrafish exposed to selective serotonin reuptake inhibitors.

  12. Global gene expression profiling of brown to white adipose tissue transformation in sheep reveals novel transcriptional components linked to adipose remodeling

    DEFF Research Database (Denmark)

    Basse, Astrid L.; Dixen, Karen; Yadav, Rachita

    2015-01-01

    . Conclusions: Using global gene expression profiling of the postnatal BAT to WAT transformation in sheep, we provide novel insight into adipose tissue plasticity in a large mammal, including identification of novel transcriptional components linked to adipose tissue remodeling. Moreover, our data set provides...... NR1H3, MYC, KLF4, ESR1, RELA and BCL6, which were linked to the overall changes in gene expression during the adipose tissue remodeling. Finally, the perirenal adipose tissue expressed both brown and brite/beige adipocyte marker genes at birth, the expression of which changed substantially over time...

  13. Global analysis of gene expression profiles in physic nut (Jatropha curcas L.) seedlings exposed to drought stress.

    Science.gov (United States)

    Zhang, Chao; Zhang, Lin; Zhang, Sheng; Zhu, Shuang; Wu, Pingzhi; Chen, Yaping; Li, Meiru; Jiang, Huawu; Wu, Guojiang

    2015-01-21

    Physic nut (Jatropha curcas L.) is a small perennial tree or large shrub, which is well-adapted to semi-arid regions and is considered to have potential as a crop for biofuel production. It is now regarded as an excellent model for studying biofuel plants. However, our knowledge about the molecular responses of this species to drought stress is currently limited. In this study, genome-wide transcriptional profiles of roots and leaves of 8-week old physic nut seedlings were analyzed 1, 4 and 7 days after withholding irrigation. We observed a total of 1533 and 2900 differentially expressed genes (DEGs) in roots and leaves, respectively. Gene Ontology analysis showed that the biological processes enriched in droughted plants relative to unstressed plants were related to biosynthesis, transport, nucleobase-containing compounds, and cellular protein modification. The genes found to be up-regulated in roots were related to abscisic acid (ABA) synthesis and ABA signal transduction, and to the synthesis of raffinose. Genes related to ABA signal transduction, and to trehalose and raffinose synthesis, were up-regulated in leaves. Endoplasmic reticulum (ER) stress response genes were significantly up-regulated in leaves under drought stress, while a number of genes related to wax biosynthesis were also up-regulated in leaves. Genes related to unsaturated fatty acid biosynthesis were down-regulated and polyunsaturated fatty acids were significantly reduced in leaves 7 days after withholding irrigation. As drought stress increased, genes related to ethylene synthesis, ethylene signal transduction and chlorophyll degradation were up-regulated, and the chlorophyll content of leaves was significantly reduced by 7 days after withholding irrigation. This study provides us with new insights to increase our understanding of the response mechanisms deployed by physic nut seedlings under drought stress. The genes and pathways identified in this study also provide much information of

  14. A global analysis of protein expression profiles in Sinorhizobium meliloti: discovery of new genes for nodule occupancy and stress adaptation.

    Science.gov (United States)

    Djordjevic, Michael A; Chen, Han Cai; Natera, Siria; Van Noorden, Giel; Menzel, Christian; Taylor, Scott; Renard, Clotilde; Geiger, Otto; Weiller, Georg F

    2003-06-01

    A proteomic examination of Sinorhizobium meliloti strain 1021 was undertaken using a combination of 2-D gel electrophoresis, peptide mass fingerprinting, and bioinformatics. Our goal was to identify (i) putative symbiosis- or nutrient-stress-specific proteins, (ii) the biochemical pathways active under different conditions, (iii) potential new genes, and (iv) the extent of posttranslational modifications of S. meliloti proteins. In total, we identified the protein products of 810 genes (13.1% of the genome's coding capacity). The 810 genes generated 1,180 gene products, with chromosomal genes accounting for 78% of the gene products identified (18.8% of the chromosome's coding capacity). The activity of 53 metabolic pathways was inferred from bioinformatic analysis of proteins with assigned Enzyme Commission numbers. Of the remaining proteins that did not encode enzymes, ABC-type transporters composed 12.7% and regulatory proteins 3.4% of the total. Proteins with up to seven transmembrane domains were identified in membrane preparations. A total of 27 putative nodule-specific proteins and 35 nutrient-stress-specific proteins were identified and used as a basis to define genes and describe processes occurring in S. meliloti cells in nodules and under stress. Several nodule proteins from the plant host were present in the nodule bacteria preparations. We also identified seven potentially novel proteins not predicted from the DNA sequence. Post-translational modifications such as N-terminal processing could be inferred from the data. The posttranslational addition of UMP to the key regulator of nitrogen metabolism, PII, was demonstrated. This work demonstrates the utility of combining mass spectrometry with protein arraying or separation techniques to identify candidate genes involved in important biological processes and niche occupations that may be intransigent to other methods of gene expression profiling.

  15. Effects of aging and calorie restriction on the global gene expression profiles of mouse testis and ovary

    Directory of Open Access Journals (Sweden)

    Longo Dan L

    2008-06-01

    Full Text Available Abstract Background The aging of reproductive organs is not only a major social issue, but of special interest in aging research. A long-standing view of 'immortal germ line versus mortal soma' poses an important question of whether the reproductive tissues age in similar ways to the somatic tissues. As a first step to understand this phenomenon, we examine global changes in gene expression patterns by DNA microarrays in ovaries and testes of C57BL/6 mice at 1, 6, 16, and 24 months of age. In addition, we compared a group of mice on ad libitum (AL feeding with a group on lifespan-extending 40% calorie restriction (CR. Results We found that gene expression changes occurred in aging gonads, but were generally different from those in somatic organs during aging. For example, only two functional categories of genes previously associated with aging in muscle, kidney, and brain were confirmed in ovary: genes associated with complement activation were upregulated, and genes associated with mitochondrial electron transport were downregulated. The bulk of the changes in gonads were mostly related to gonad-specific functions. Ovaries showed extensive gene expression changes with age, especially in the period when ovulation ceases (from 6 to 16 months, whereas testes showed only limited age-related changes. The same trend was seen for the effects of CR: CR-mediated reversal of age-associated gene expression changes, reported in somatic organs previously, was limited to a small number of genes in gonads. Instead, in both ovary and testis, CR caused small and mostly gonad-specific effects: suppression of ovulation in ovary and activation of testis-specific genes in testis. Conclusion Overall, the results are consistent with unique modes of aging and its modification by CR in testis and ovary.

  16. Global gene expression profiling related to temperature-sensitive growth abnormalities in interspecific crosses between tetraploid wheat and Aegilops tauschii.

    Directory of Open Access Journals (Sweden)

    Ryusuke Matsuda

    Full Text Available Triploid wheat hybrids between tetraploid wheat and Aegilops tauschii sometimes show abnormal growth phenotypes, and the growth abnormalities inhibit generation of wheat synthetic hexaploids. In type II necrosis, one of the growth abnormalities, necrotic cell death accompanied by marked growth repression occurs only under low temperature conditions. At normal temperature, the type II necrosis lines show grass-clump dwarfism with no necrotic symptoms, excess tillers, severe dwarfism and delayed flowering. Here, we report comparative expression analyses to elucidate the molecular mechanisms of the temperature-dependent phenotypic plasticity in the triploid wheat hybrids. We compared gene and small RNA expression profiles in crown tissues to characterize the temperature-dependent phenotypic plasticity. No up-regulation of defense-related genes was observed under the normal temperature, and down-regulation of wheat APETALA1-like MADS-box genes, considered to act as flowering promoters, was found in the grass-clump dwarf lines. Some microRNAs, including miR156, were up-regulated, whereas the levels of transcripts of the miR156 target genes SPLs, known to inhibit tiller and branch number, were reduced in crown tissues of the grass-clump dwarf lines at the normal temperature. Unusual expression of the miR156/SPLs module could explain the grass-clump dwarf phenotype. Dramatic alteration of gene expression profiles, including miRNA levels, in crown tissues is associated with the temperature-dependent phenotypic plasticity in type II necrosis/grass-clump dwarf wheat hybrids.

  17. Global gene expression profiles in brain regions reflecting abnormal neuronal and glial functions targeting myelin sheaths after 28-day exposure to cuprizone in rats

    International Nuclear Information System (INIS)

    Abe, Hajime; Saito, Fumiyo; Tanaka, Takeshi; Mizukami, Sayaka; Watanabe, Yousuke; Imatanaka, Nobuya; Akahori, Yumi; Yoshida, Toshinori; Shibutani, Makoto

    2016-01-01

    Both developmental and postpubertal cuprizone (CPZ) exposure impairs hippocampal neurogenesis in rats. We previously found that developmental CPZ exposure alters the expression of genes related to neurogenesis, myelination, and synaptic transmission in specific brain regions of offspring. Here, we examined neuronal and glial toxicity profiles in response to postpubertal CPZ exposure by using expression microarray analysis in the hippocampal dentate gyrus, corpus callosum, cerebral cortex, and cerebellar vermis of 5-week-old male rats exposed to 0, 120, and 600 mg/kg CPZ for 28 days. Genes showing transcript upregulation were subjected to immunohistochemical analysis. We found transcript expression alterations at 600 mg/kg for genes related to synaptic transmission, Ache and Prima1, and cell cycle regulation, Tfap4 and Cdkn1a, in the dentate gyrus, which showed aberrant neurogenesis in the subgranular zone. This dose downregulated myelination-related genes in multiple brain regions, whereas KLOTHO + oligodendrocyte density was decreased only in the corpus callosum. The corpus callosum showed an increase in transcript levels for inflammatory response-related genes and in the number of CD68 + microglia, MT + astrocytes, and TUNEL + apoptotic cells. These results suggest that postpubertal CPZ exposure targets synaptic transmission and cell cycle regulation to affect neurogenesis in the dentate gyrus. CPZ suppressed myelination in multiple brain regions and KLOTHO-mediated oligodendrocyte maturation only in the corpus callosum. The increased number of CD68 + microglia, MT + astrocytes, and TUNEL + apoptotic cells in the corpus callosum may be involved in the induction of KLOTHO + oligodendrocyte death and be a protective mechanism against myelin damage following CPZ exposure. - Highlights: • Target gene expression profiles were examined in rats after 28-day CPZ exposure. • Multiple brain region-specific global gene expression profiling was performed. • CPZ

  18. Effects of the antimicrobial peptide gomesin on the global gene expression profile, virulence and biofilm formation of Xylella fastidiosa.

    Science.gov (United States)

    Fogaça, Andréa C; Zaini, Paulo A; Wulff, Nelson A; da Silva, Patrícia I P; Fázio, Marcos A; Miranda, Antônio; Daffre, Sirlei; da Silva, Aline M

    2010-05-01

    In the xylem vessels of susceptible hosts, such as citrus trees, Xylella fastidiosa forms biofilm-like colonies that can block water transport, which appears to correlate to disease symptoms. Besides aiding host colonization, bacterial biofilms play an important role in resistance against antimicrobial agents, for instance antimicrobial peptides (AMPs). Here, we show that gomesin, a potent AMP from a tarantula spider, modulates X. fastidiosa gene expression profile upon 60 min of treatment with a sublethal concentration. DNA microarray hybridizations revealed that among the upregulated coding sequences, some are related to biofilm production. In addition, we show that the biofilm formed by gomesin-treated bacteria is thicker than that formed by nontreated cells or cells exposed to streptomycin. We have also observed that the treatment of X. fastidiosa with a sublethal concentration of gomesin before inoculation in tobacco plants correlates with a reduction in foliar symptoms, an effect possibly due to the trapping of bacterial cells to fewer xylem vessels, given the enhancement in biofilm production. These results warrant further investigation of how X. fastidiosa would respond to the AMPs produced by citrus endophytes and by the insect vector, leading to a better understanding of the mechanism of action of these molecules on bacterial virulence.

  19. Global gene expression profiling displays a network of dysregulated genes in non-atherosclerotic arterial tissue from patients with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Skov Vibe

    2012-02-01

    Full Text Available Abstract Background Generalized arterial alterations, such as endothelial dysfunction, medial matrix accumulations, and calcifications are associated with type 2 diabetes (T2D. These changes may render the vessel wall more susceptible to injury; however, the molecular characteristics of such diffuse pre-atherosclerotic changes in diabetes are only superficially known. Methods To identify the molecular alterations of the generalized arterial disease in T2D, DNA microarrays were applied to examine gene expression changes in normal-appearing, non-atherosclerotic arterial tissue from 10 diabetic and 11 age-matched non-diabetic men scheduled for a coronary by-pass operation. Gene expression changes were integrated with GO-Elite, GSEA, and Cytoscape to identify significant biological pathways and networks. Results Global pathway analysis revealed differential expression of gene-sets representing matrix metabolism, triglyceride synthesis, inflammation, insulin signaling, and apoptosis. The network analysis showed a significant cluster of dysregulated genes coding for both intra- and extra-cellular proteins associated with vascular cell functions together with genes related to insulin signaling and matrix remodeling. Conclusions Our results identify pathways and networks involved in the diffuse vasculopathy present in non-atherosclerotic arterial tissue in patients with T2D and confirmed previously observed mRNA-alterations. These abnormalities may play a role for the arterial response to injury and putatively for the accelerated atherogenesis among patients with diabetes.

  20. Case study on the utility of hepatic global gene expression profiling in the risk assessment of the carcinogen furan

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Anna Francina, E-mail: Francina.Jackson@hc-sc.gc.ca [Environmental Health Science and Research Bureau, Health Canada, Ottawa K1A 0K9 (Canada); Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa K1S 5B6 (Canada); Williams, Andrew, E-mail: Andrew.Williams@hc-sc.gc.ca [Environmental Health Science and Research Bureau, Health Canada, Ottawa K1A 0K9 (Canada); Recio, Leslie, E-mail: lrecio@ils-inc.com [ILS, Inc., P.O. Box 13501, Research Triangle Park, NC 27709 (United States); Waters, Michael D., E-mail: mwaters@ils-inc.com [ILS, Inc., P.O. Box 13501, Research Triangle Park, NC 27709 (United States); Lambert, Iain B., E-mail: Iain.Lambert@carleton.ca [Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa K1S 5B6 (Canada); Yauk, Carole L., E-mail: Carole.Yauk@hc-sc.gc.ca [Environmental Health Science and Research Bureau, Health Canada, Ottawa K1A 0K9 (Canada)

    2014-01-01

    Furan is a chemical hepatocarcinogen in mice and rats. Its previously postulated cancer mode of action (MOA) is chronic cytotoxicity followed by sustained regenerative proliferation; however, its molecular basis is unknown. To this end, we conducted toxicogenomic analysis of B3C6F1 mouse livers following three week exposures to non-carcinogenic (0, 1, 2 mg/kg bw) or carcinogenic (4 and 8 mg/kg bw) doses of furan. We saw enrichment for pathways responsible for cytotoxicity: stress-activated protein kinase (SAPK) and death receptor (DR5 and TNF-alpha) signaling, and proliferation: extracellular signal-regulated kinases (ERKs) and TNF-alpha. We also noted the involvement of NF-kappaB and c-Jun in response to furan, which are genes that are known to be required for liver regeneration. Furan metabolism by CYP2E1 produces cis-2-butene-1,4-dial (BDA), which is required for ensuing cytotoxicity and oxidative stress. NRF2 is a master regulator of gene expression during oxidative stress and we suggest that chronic NFR2 activity and chronic inflammation may represent critical transition events between the adaptive (regeneration) and adverse (cancer) outcomes. Another objective of this study was to demonstrate the applicability of toxicogenomics data in quantitative risk assessment. We modeled benchmark doses for our transcriptional data and previously published cancer data, and observed consistency between the two. Margin of exposure values for both transcriptional and cancer endpoints were also similar. In conclusion, using furan as a case study we have demonstrated the value of toxicogenomics data in elucidating dose-dependent MOA transitions and in quantitative risk assessment. - Highlights: • Global gene expression changes in furan-exposed mouse livers were analyzed. • A molecular mode of action for furan-induced hepatocarcinogenesis is proposed. • Key pathways include NRF2, SAPK, ERK and death receptor signaling. • Important roles for TNF-alpha, c-Jun, and NF

  1. Case study on the utility of hepatic global gene expression profiling in the risk assessment of the carcinogen furan

    International Nuclear Information System (INIS)

    Jackson, Anna Francina; Williams, Andrew; Recio, Leslie; Waters, Michael D.; Lambert, Iain B.; Yauk, Carole L.

    2014-01-01

    Furan is a chemical hepatocarcinogen in mice and rats. Its previously postulated cancer mode of action (MOA) is chronic cytotoxicity followed by sustained regenerative proliferation; however, its molecular basis is unknown. To this end, we conducted toxicogenomic analysis of B3C6F1 mouse livers following three week exposures to non-carcinogenic (0, 1, 2 mg/kg bw) or carcinogenic (4 and 8 mg/kg bw) doses of furan. We saw enrichment for pathways responsible for cytotoxicity: stress-activated protein kinase (SAPK) and death receptor (DR5 and TNF-alpha) signaling, and proliferation: extracellular signal-regulated kinases (ERKs) and TNF-alpha. We also noted the involvement of NF-kappaB and c-Jun in response to furan, which are genes that are known to be required for liver regeneration. Furan metabolism by CYP2E1 produces cis-2-butene-1,4-dial (BDA), which is required for ensuing cytotoxicity and oxidative stress. NRF2 is a master regulator of gene expression during oxidative stress and we suggest that chronic NFR2 activity and chronic inflammation may represent critical transition events between the adaptive (regeneration) and adverse (cancer) outcomes. Another objective of this study was to demonstrate the applicability of toxicogenomics data in quantitative risk assessment. We modeled benchmark doses for our transcriptional data and previously published cancer data, and observed consistency between the two. Margin of exposure values for both transcriptional and cancer endpoints were also similar. In conclusion, using furan as a case study we have demonstrated the value of toxicogenomics data in elucidating dose-dependent MOA transitions and in quantitative risk assessment. - Highlights: • Global gene expression changes in furan-exposed mouse livers were analyzed. • A molecular mode of action for furan-induced hepatocarcinogenesis is proposed. • Key pathways include NRF2, SAPK, ERK and death receptor signaling. • Important roles for TNF-alpha, c-Jun, and NF

  2. Global gene expression profiles in brain regions reflecting abnormal neuronal and glial functions targeting myelin sheaths after 28-day exposure to cuprizone in rats

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Hajime [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Saito, Fumiyo [Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004 (Japan); Tanaka, Takeshi; Mizukami, Sayaka; Watanabe, Yousuke [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Imatanaka, Nobuya; Akahori, Yumi [Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004 (Japan); Yoshida, Toshinori [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Shibutani, Makoto, E-mail: mshibuta@cc.tuat.ac.jp [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan)

    2016-11-01

    Both developmental and postpubertal cuprizone (CPZ) exposure impairs hippocampal neurogenesis in rats. We previously found that developmental CPZ exposure alters the expression of genes related to neurogenesis, myelination, and synaptic transmission in specific brain regions of offspring. Here, we examined neuronal and glial toxicity profiles in response to postpubertal CPZ exposure by using expression microarray analysis in the hippocampal dentate gyrus, corpus callosum, cerebral cortex, and cerebellar vermis of 5-week-old male rats exposed to 0, 120, and 600 mg/kg CPZ for 28 days. Genes showing transcript upregulation were subjected to immunohistochemical analysis. We found transcript expression alterations at 600 mg/kg for genes related to synaptic transmission, Ache and Prima1, and cell cycle regulation, Tfap4 and Cdkn1a, in the dentate gyrus, which showed aberrant neurogenesis in the subgranular zone. This dose downregulated myelination-related genes in multiple brain regions, whereas KLOTHO{sup +} oligodendrocyte density was decreased only in the corpus callosum. The corpus callosum showed an increase in transcript levels for inflammatory response-related genes and in the number of CD68{sup +} microglia, MT{sup +} astrocytes, and TUNEL{sup +} apoptotic cells. These results suggest that postpubertal CPZ exposure targets synaptic transmission and cell cycle regulation to affect neurogenesis in the dentate gyrus. CPZ suppressed myelination in multiple brain regions and KLOTHO-mediated oligodendrocyte maturation only in the corpus callosum. The increased number of CD68{sup +} microglia, MT{sup +} astrocytes, and TUNEL{sup +} apoptotic cells in the corpus callosum may be involved in the induction of KLOTHO{sup +} oligodendrocyte death and be a protective mechanism against myelin damage following CPZ exposure. - Highlights: • Target gene expression profiles were examined in rats after 28-day CPZ exposure. • Multiple brain region-specific global gene expression

  3. Comparative Global Gene Expression Profiles of Wild-Type Yersinia pestis CO92 and Its Braun Lipoprotein Mutant at Flea and Human Body Temperatures

    Directory of Open Access Journals (Sweden)

    Cristi L. Galindo

    2010-01-01

    Full Text Available Braun/murein lipoprotein (Lpp is involved in inflammatory responses and septic shock. We previously characterized a Δlpp mutant of Yersinia pestis CO92 and found that this mutant was defective in surviving in macrophages and was attenuated in a mouse inhalation model of plague when compared to the highly virulent wild-type (WT bacterium. We performed global transcriptional profiling of WT Y. pestis and its Δlpp mutant using microarrays. The organisms were cultured at 26 and 37 degrees Celsius to simulate the flea vector and mammalian host environments, respectively. Our data revealed vastly different effects of lpp mutation on the transcriptomes of Y. pestis grown at 37 versus 26C. While the absence of Lpp resulted mainly in the downregulation of metabolic genes at 26C, the Y. pestis Δlpp mutant cultured at 37C exhibited profound alterations in stress response and virulence genes, compared to WT bacteria. We investigated one of the stress-related genes (htrA downregulated in the Δlpp mutant relative to WT Y. pestis. Indeed, complementation of the Δlpp mutant with the htrA gene restored intracellular survival of the Y. pestis Δlpp mutant. Our results support a role for Lpp in Y. pestis adaptation to the host environment, possibly via transcriptional activation of htrA.

  4. Gene transcription profiles, global DNA methylation and potential transgenerational epigenetic effects related to Zn exposure history in Daphnia magna

    International Nuclear Information System (INIS)

    Vandegehuchte, Michiel B.; De Coninck, Dieter; Vandenbrouck, Tine; De Coen, Wim M.; Janssen, Colin R.

    2010-01-01

    A reduced level of DNA methylation has recently been described in both Zn-exposed and non-exposed offspring of Daphnia magna exposed to Zn. The hypothesis examined in this study is that DNA hypomethylation has an effect on gene transcription. A second hypothesis is that accumulative epigenetic effects can affect gene transcription in non-exposed offspring from parents with an exposure history of more than one generation. Transcriptional gene regulation was studied with a cDNA microarray. In the exposed and non-exposed hypomethylated daphnids, a large proportion of common genes were similarly up- or down-regulated, indicating a possible effect of the DNA hypomethylation. Two of these genes can be mechanistically involved in DNA methylation reduction. The similar transcriptional regulation of two and three genes in the F 0 and F 1 exposed daphnids on one hand and their non-exposed offspring on the other hand, could be the result of a one-generation temporary transgenerational epigenetic effect, which was not accumulative. - Zn-induced DNA hypomethylation is related to gene transcription in Daphnia magna and Zn exposure potentially induced limited temporary transgenerational effects on gene transcription.

  5. Effects of drought stress on global gene expression profile in leaf and root samples of Dongxiang wild rice (Oryza rufipogon).

    Science.gov (United States)

    Zhang, Fantao; Zhou, Yi; Zhang, Meng; Luo, Xiangdong; Xie, Jiankun

    2017-06-30

    Drought is a serious constraint to rice production throughout the world, and although Dongxiang wild rice ( Oryza rufipogon , DXWR) possesses a high degree of drought resistance, the underlying mechanisms of this trait remains unclear. In the present study, cDNA libraries were constructed from the leaf and root tissues of drought-stressed and untreated DXWR seedlings, and transcriptome sequencing was performed with the goal of elucidating the molecular mechanisms involved in drought-stress response. The results indicated that 11231 transcripts were differentially expressed in the leaves (4040 up-regulated and 7191 down-regulated) and 7025 transcripts were differentially expressed in the roots (3097 up-regulated and 3928 down-regulated). Among these differentially expressed genes (DEGs), the detection of many transcriptional factors and functional genes demonstrated that multiple regulatory pathways were involved in drought resistance. Meanwhile, the DEGs were also annotated with gene ontology (GO) terms and key pathways via functional classification and Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway mapping, respectively. A set of the most interesting candidate genes was then identified by combining the DEGs with previously identified drought-resistant quantitative trait loci (QTL). The present work provides abundant genomic information for functional dissection of the drought resistance of DXWR, and findings will further help the current understanding of the biological regulatory mechanisms of drought resistance in plants and facilitate the breeding of new drought-resistant rice cultivars. © 2017 The Author(s).

  6. Huntington's disease and its therapeutic target genes: a global functional profile based on the HD Research Crossroads database.

    Science.gov (United States)

    Kalathur, Ravi Kiran Reddy; Hernández-Prieto, Miguel A; Futschik, Matthias E

    2012-06-28

    Huntington's disease (HD) is a fatal progressive neurodegenerative disorder caused by the expansion of the polyglutamine repeat region in the huntingtin gene. Although the disease is triggered by the mutation of a single gene, intensive research has linked numerous other genes to its pathogenesis. To obtain a systematic overview of these genes, which may serve as therapeutic targets, CHDI Foundation has recently established the HD Research Crossroads database. With currently over 800 cataloged genes, this web-based resource constitutes the most extensive curation of genes relevant to HD. It provides us with an unprecedented opportunity to survey molecular mechanisms involved in HD in a holistic manner. To gain a synoptic view of therapeutic targets for HD, we have carried out a variety of bioinformatical and statistical analyses to scrutinize the functional association of genes curated in the HD Research Crossroads database. In particular, enrichment analyses were performed with respect to Gene Ontology categories, KEGG signaling pathways, and Pfam protein families. For selected processes, we also analyzed differential expression, using published microarray data. Additionally, we generated a candidate set of novel genetic modifiers of HD by combining information from the HD Research Crossroads database with previous genome-wide linkage studies. Our analyses led to a comprehensive identification of molecular mechanisms associated with HD. Remarkably, we not only recovered processes and pathways, which have frequently been linked to HD (such as cytotoxicity, apoptosis, and calcium signaling), but also found strong indications for other potentially disease-relevant mechanisms that have been less intensively studied in the context of HD (such as the cell cycle and RNA splicing, as well as Wnt and ErbB signaling). For follow-up studies, we provide a regularly updated compendium of molecular mechanism, that are associated with HD, at http://hdtt.sysbiolab.eu Additionally

  7. Huntington's Disease and its therapeutic target genes: a global functional profile based on the HD Research Crossroads database

    Directory of Open Access Journals (Sweden)

    Kalathur Ravi Kiran

    2012-06-01

    Full Text Available Abstract Background Huntington’s disease (HD is a fatal progressive neurodegenerative disorder caused by the expansion of the polyglutamine repeat region in the huntingtin gene. Although the disease is triggered by the mutation of a single gene, intensive research has linked numerous other genes to its pathogenesis. To obtain a systematic overview of these genes, which may serve as therapeutic targets, CHDI Foundation has recently established the HD Research Crossroads database. With currently over 800 cataloged genes, this web-based resource constitutes the most extensive curation of genes relevant to HD. It provides us with an unprecedented opportunity to survey molecular mechanisms involved in HD in a holistic manner. Methods To gain a synoptic view of therapeutic targets for HD, we have carried out a variety of bioinformatical and statistical analyses to scrutinize the functional association of genes curated in the HD Research Crossroads database. In particular, enrichment analyses were performed with respect to Gene Ontology categories, KEGG signaling pathways, and Pfam protein families. For selected processes, we also analyzed differential expression, using published microarray data. Additionally, we generated a candidate set of novel genetic modifiers of HD by combining information from the HD Research Crossroads database with previous genome-wide linkage studies. Results Our analyses led to a comprehensive identification of molecular mechanisms associated with HD. Remarkably, we not only recovered processes and pathways, which have frequently been linked to HD (such as cytotoxicity, apoptosis, and calcium signaling, but also found strong indications for other potentially disease-relevant mechanisms that have been less intensively studied in the context of HD (such as the cell cycle and RNA splicing, as well as Wnt and ErbB signaling. For follow-up studies, we provide a regularly updated compendium of molecular mechanism, that are

  8. Analysis of global gene expression profile of rice in response to methylglyoxal indicates its possible role as a stress signal molecule

    Directory of Open Access Journals (Sweden)

    Charanpreet eKaur

    2015-09-01

    Full Text Available Methylglyoxal (MG is a toxic metabolite produced primarily as a byproduct of glycolysis. Being a potent glycating agent, it can readily bind macromolecules like DNA, RNA or proteins, modulating their expression and activity. In plants, despite the known inhibitory effects of MG on growth and development, still limited information is available about the molecular mechanisms and response pathways elicited upon elevation in MG levels. To gain insight into the molecular basis of MG response, we have investigated changes in global gene expression profiles in rice upon exposure to exogenous MG using GeneChip microarrays. Initially, growth of rice seedlings was monitored in response to increasing MG concentrations which could retard plant growth in a dose-dependent manner. Upon exposure to 10 mM concentration of MG, a total of 1685 probe sets were up- or down-regulated by more than 1.5-fold in shoot tissues within 16 h. These were classified into ten functional categories. The genes involved in signal transduction such as, protein kinases and transcription factors, were significantly over-represented in the perturbed transcriptome, of which several are known to be involved in abiotic and biotic stress response indicating a cross-talk between MG-responsive and stress-responsive signal transduction pathways. Through in silico studies, we could predict 7-8 bp long conserved motif as a possible MG-responsive element (MGRE in the 1 kb upstream region of genes that were more than ten-fold up- or down-regulated in the analysis. Since several perturbations were found in signaling cascades in response to MG, we hereby suggest that it plays an important role in signal transduction probably acting as a stress signal molecule.

  9. Transcriptomic profiling of interacting nasal staphylococci species reveals global changes in gene and non-coding RNA expression

    DEFF Research Database (Denmark)

    Hermansen, Grith Miriam Maigaard; Sazinas, Pavelas; Kofod, Ditte

    2018-01-01

    Interspecies interactions between bacterial pathogens and the commensal microbiota can influence disease outcome. In the nasal cavities, Staphylococcus epidermidis has been shown to be a determining factor for Staphylococcus aureus colonization and biofilm formation. However, the interaction...... between S. epidermidis and S. aureus has mainly been described by phenotypic analysis, and little is known about how this interaction modulates gene expression.This study aimed to determine the interactome of nasal S. aureus and S. epidermidis isolates to understand the molecular effect of interaction...... also identified putative non-coding RNAs (ncRNAs) and, interestingly, detected a putative ncRNA transcribed antisense to esp, the serine protease of S. epidermidis, that has previously been shown to inhibit nasal colonization of S. aureus. In our study, the gene encoding Esp and the antisense nc...

  10. Comparison of global gene expression profiles of microdissected human foetal Leydig cells with their normal and hyperplastic adult equivalents

    DEFF Research Database (Denmark)

    Lottrup, Grete; Belling, Kirstine González-Izarzugaza; Leffers, Henrik

    2017-01-01

    the normally clustered and hyperplastic ALCs.WHAT IS KNOWN ALREADY: LCs are the primary androgen producing cells in males throughout development and appear in chronologically distinct populations; FLCs, neonatal LCs and ALCs. ALCs are responsible for progression through puberty and for maintenance...... of reproductive functions in adulthood. In patients with reproductive problems, such as infertility or testicular cancer, and especially in men with high gonadotrophin levels, LC function is often impaired, and LCs may cluster abnormally into hyperplastic micronodules (defined as clusters of > 15 LCs in a cross...... with reproductive disorders possibly reflect subtle changes in the expression of many genes rather than regulatory changes of single genes or pathways. The study provides new insights into the development and maturation of human LCs by the identification of a number of potential functional markers for FLC and ALC....

  11. Global gene expression profiling of the asymptomatic bacteriuria Escherichia coli strain 83972 in the human urinary tract

    DEFF Research Database (Denmark)

    Hancock, Viktoria; Klemm, Per

    2006-01-01

    Urinary tract infections (UTIs) are an important health problem worldwide, with many million cases each year. Escherichia coli is the most common organism causing UTIs in humans. The asymptomatic bacteriuria E. coli strain 83972 is an excellent colonizer of the human urinary tract, where it causes...... long-term bladder colonization. The strain has been used for prophylactic purposes in patients prone to more severe and recurrent UTIs. For this study, we used DNA microarrays to monitor the expression profile of strain 83972 in the human urinary tract. Significant differences in expression levels were...

  12. Genes versus environment: geography and phylogenetic relationships shape the chemical profiles of stingless bees on a global scale

    Science.gov (United States)

    Leonhardt, Sara D.; Rasmussen, Claus; Schmitt, Thomas

    2013-01-01

    Chemical compounds are highly important in the ecology of animals. In social insects, compounds on the body surface represent a particularly interesting trait, because they comprise different compound classes that are involved in different functions, such as communication, recognition and protection, all of which can be differentially affected by evolutionary processes. Here, we investigate the widely unknown and possibly antagonistic influence of phylogenetic and environmental factors on the composition of the cuticular chemistry of tropical stingless bees. We chose stingless bees because some species are unique in expressing not only self-produced compounds, but also compounds that are taken up from the environment. By relating the cuticular chemistry of 40 bee species from all over the world to their molecular phylogeny and geographical occurrence, we found that distribution patterns of different groups of compounds were differentially affected by genetic relatedness and biogeography. The ability to acquire environmental compounds was, for example, highly correlated with the bees' phylogeny and predominated in evolutionarily derived species. Owing to the presence of environmentally derived compounds, those species further expressed a higher chemical and thus functional diversity. In Old World species, chemical similarity of both environmentally derived and self-produced compounds was particularly high among sympatric species, even when they were less related to each other than to allopatric species, revealing a strong environmental effect even on largely genetically determined compounds. Thus, our findings do not only reveal an unexpectedly strong influence of the environment on the cuticular chemistry of stingless bees, but also demonstrate that even within one morphological trait (an insect's cuticular profile), different components (compound classes) can be differentially affected by different drivers (relatedness and biogeography), depending on the

  13. Comparison of global brain gene expression profiles between inbred long-sleep and inbred short-sleep mice by high-density gene array hybridization.

    Science.gov (United States)

    Xu, Y; Ehringer, M; Yang, F; Sikela, J M

    2001-06-01

    Inbred long-sleep (ILS) and short-sleep (ISS) mice show significant central nervous system-mediated differences in sleep time for sedative dose of ethanol and are frequently used as a rodent model for ethanol sensitivity. In this study, we have used complementary DNA (cDNA) array hybridization methodology to identify genes that are differentially expressed between the brains of ILS and ISS mice. To carry out this analysis, we used both the gene discovery array (GDA) and the Mouse GEM 1 Microarray. GDA consists of 18,378 nonredundant mouse cDNA clones on a single nylon filter. Complex probes were prepared from total brain mRNA of ILS or ISS mice by using reverse transcription and 33P labeling. The labeled probes were hybridized in parallel to the gene array filters. Data from GDA experiments were analyzed with SQL-Plus and Oracle 8. The GEM microarray includes 8,730 sequence-verified clones on a glass chip. Two fluorescently labeled probes were used to hybridize a microarray simultaneously. Data from GEM experiments were analyzed by using the GEMTools software package (Incyte). Differentially expressed genes identified from each method were confirmed by relative quantitative reverse transcription-polymerase chain reaction (RT-PCR). A total of 41 genes or expressed sequence tags (ESTs) display significant expression level differences between brains of ILS and ISS mice after GDA, GEM1 hybridization, and quantitative RT-PCR confirmation. Among them, 18 clones were expressed higher in ILS mice, and 23 clones were expressed higher in ISS mice. The individual gene or EST's function and mapping information have been analyzed. This study identified 41 genes that are differentially expressed between brains of ILS and ISS mice. Some of them may have biological relevance in mediation of phenotypic variation between ILS and ISS mice for ethanol sensitivity. This study also demonstrates that parallel gene expression comparison with high-density cDNA arrays is a rapid and

  14. Global capital markets: An updated profile

    Directory of Open Access Journals (Sweden)

    Filipović Miroslava

    2007-01-01

    Full Text Available More than two decades after the beginning of the financial revolution globalization of capital flows still attracts considerable attention, from both practitioners and academics. The aim of this paper is to contribute to understanding of some aspects of the global capital scene, as well as to emphasize certain developments which might illustrate its changing profile. Several fundamental perspectives profile the global capital market. A quantitative review provides a sense of sheer volumes, trends, origins and destinations of capital flows; an assessment of the global capital market’s degree of integration follows. The emergence of new (types of actors is another important aspect of the global processes, while illustrations of new market products and emerging segments may add new perspectives on the profile of the global capital market. Finally, the paper concludes with a brief overview of digitalization of the financial supply chain.

  15. Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain

    Science.gov (United States)

    Nguyen, AnhThu; Rauch, Tibor A.; Pfeifer, Gerd P.; Hu, Valerie W.

    2010-01-01

    Autism is currently considered a multigene disorder with epigenetic influences. To investigate the contribution of DNA methylation to autism spectrum disorders, we have recently completed large-scale methylation profiling by CpG island microarray analysis of lymphoblastoid cell lines derived from monozygotic twins discordant for diagnosis of autism and their nonautistic siblings. Methylation profiling revealed many candidate genes differentially methylated between discordant MZ twins as well as between both twins and nonautistic siblings. Bioinformatics analysis of the differentially methylated genes demonstrated enrichment for high-level functions including gene transcription, nervous system development, cell death/survival, and other biological processes implicated in autism. The methylation status of 2 of these candidate genes, BCL-2 and retinoic acid-related orphan receptor alpha (RORA), was further confirmed by bisulfite sequencing and methylation-specific PCR, respectively. Immunohistochemical analyses of tissue arrays containing slices of the cerebellum and frontal cortex of autistic and age- and sex-matched control subjects revealed decreased expression of RORA and BCL-2 proteins in the autistic brain. Our data thus confirm the role of epigenetic regulation of gene expression via differential DNA methylation in idiopathic autism, and furthermore link molecular changes in a peripheral cell model with brain pathobiology in autism.—Nguyen, A., Rauch, T. A., Pfeifer, G. P., Hu, V. W. Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain. PMID:20375269

  16. Global gene expression profile induced by the UV-filter 2-ethyl-hexyl-4-trimethoxycinnamate (EHMC) in zebrafish (Danio rerio)

    International Nuclear Information System (INIS)

    Zucchi, Sara; Oggier, Daniela M.; Fent, Karl

    2011-01-01

    Residues of the UV-filter 2-ethyl-hexyl-4-trimethoxycinnamate (EHMC) are ubiquitously found in aquatic biota but potential adverse effects in fish are fairly unknown. To identify molecular effects and modes of action of EHMC we applied a gene expression profiling in zebrafish using whole genome microarrays. Transcriptome analysis and validation of targeted genes were performed after 14 days of exposure of male zebrafish. Concentrations of 2.2 μg/L and 890 μg/L EHMC lead to alteration of 1096 and 1137 transcripts, respectively, belonging to many pathways. Genes involved in lipid metabolism and estrogenic pathway (vtg1), lipid biosynthesis (ptgds), vitamin A metabolic process (rbp2a), DNA damage and apoptosis (gadd45b), and regulation of cell growth (igfbp1a) were investigated by qRT-PCR analysis in whole body, liver, brain and testis. The analysis showed tissue-specific gene profiles and revealed that EHMC slightly affects the transcription of genes involved in hormonal pathways including vtg1, esr1, esr2b, ar, cyp19b and hsd17β3. - Highlights: → The UV-filter EHMC accumulates in biota and shows expressional changes in fish. → Molecular effects of EHMC are demonstrated by microarrays and qRT-PCR in zebrafish. → Expressional changes in zebrafish occur at environmentally relevant concentrations. → The expressional changes point to interference of EHMC with the sex hormone system. → Additionally, many pathways are affected demonstrating multiple activities of EHMC. - Gene expression changes by 2-ethyl-hexyl-4-trimethoxycinnamate in zebrafish.

  17. Global gene expression profile induced by the UV-filter 2-ethyl-hexyl-4-trimethoxycinnamate (EHMC) in zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Zucchi, Sara [University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Gruendensrasse 40, CH-4132 Muttenz (Switzerland); Oggier, Daniela M. [University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Gruendensrasse 40, CH-4132 Muttenz (Switzerland); University of Zuerich, Institute of Plant Biology, Division of Limnology, 8802 Kilchberg (Switzerland); Fent, Karl, E-mail: karl.fent@fhnw.ch [University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Gruendensrasse 40, CH-4132 Muttenz (Switzerland); Swiss Federal Institute of Technology Zuerich (ETH Zuerich), Department of Environmental Sciences, 8092 Zuerich (Switzerland)

    2011-10-15

    Residues of the UV-filter 2-ethyl-hexyl-4-trimethoxycinnamate (EHMC) are ubiquitously found in aquatic biota but potential adverse effects in fish are fairly unknown. To identify molecular effects and modes of action of EHMC we applied a gene expression profiling in zebrafish using whole genome microarrays. Transcriptome analysis and validation of targeted genes were performed after 14 days of exposure of male zebrafish. Concentrations of 2.2 {mu}g/L and 890 {mu}g/L EHMC lead to alteration of 1096 and 1137 transcripts, respectively, belonging to many pathways. Genes involved in lipid metabolism and estrogenic pathway (vtg1), lipid biosynthesis (ptgds), vitamin A metabolic process (rbp2a), DNA damage and apoptosis (gadd45b), and regulation of cell growth (igfbp1a) were investigated by qRT-PCR analysis in whole body, liver, brain and testis. The analysis showed tissue-specific gene profiles and revealed that EHMC slightly affects the transcription of genes involved in hormonal pathways including vtg1, esr1, esr2b, ar, cyp19b and hsd17{beta}3. - Highlights: > The UV-filter EHMC accumulates in biota and shows expressional changes in fish. > Molecular effects of EHMC are demonstrated by microarrays and qRT-PCR in zebrafish. > Expressional changes in zebrafish occur at environmentally relevant concentrations. > The expressional changes point to interference of EHMC with the sex hormone system. > Additionally, many pathways are affected demonstrating multiple activities of EHMC. - Gene expression changes by 2-ethyl-hexyl-4-trimethoxycinnamate in zebrafish.

  18. Sequential Analysis of Global Gene Expression Profiles in Immature and In vitro Matured Bovine Oocytes: Potential Molecular Markers of Oocyte Maturation

    LENUS (Irish Health Repository)

    Mamo, Solomon

    2011-03-16

    Abstract Background Without intensive selection, the majority of bovine oocytes submitted to in vitro embryo production (IVP) fail to develop to the blastocyst stage. This is attributed partly to their maturation status and competences. Using the Affymetrix GeneChip Bovine Genome Array, global mRNA expression analysis of immature (GV) and in vitro matured (IVM) bovine oocytes was carried out to characterize the transcriptome of bovine oocytes and then use a variety of approaches to determine whether the observed transcriptional changes during IVM was real or an artifact of the techniques used during analysis. Results 8489 transcripts were detected across the two oocyte groups, of which ~25.0% (2117 transcripts) were differentially expressed (p < 0.001); corresponding to 589 over-expressed and 1528 under-expressed transcripts in the IVM oocytes compared to their immature counterparts. Over expression of transcripts by IVM oocytes is particularly interesting, therefore, a variety of approaches were employed to determine whether the observed transcriptional changes during IVM were real or an artifact of the techniques used during analysis, including the analysis of transcript abundance in oocytes in vitro matured in the presence of α-amanitin. Subsets of the differentially expressed genes were also validated by quantitative real-time PCR (qPCR) and the gene expression data was classified according to gene ontology and pathway enrichment. Numerous cell cycle linked (CDC2, CDK5, CDK8, HSPA2, MAPK14, TXNL4B), molecular transport (STX5, STX17, SEC22A, SEC22B), and differentiation (NACA) related genes were found to be among the several over-expressed transcripts in GV oocytes compared to the matured counterparts, while ANXA1, PLAU, STC1and LUM were among the over-expressed genes after oocyte maturation. Conclusion Using sequential experiments, we have shown and confirmed transcriptional changes during oocyte maturation. This dataset provides a unique reference resource

  19. Lipidomic fatty acid profile and global gene expression pattern in mammary gland of rats that were exposed to lard-based high fat diet during fetal and lactation periods associated to breast cancer risk in adulthood.

    Science.gov (United States)

    Andrade, Fábia de Oliveira; de Assis, Sonia; Jin, Lu; Fontelles, Camile Castilho; Barbisan, Luís Fernando; Purgatto, Eduardo; Hilakivi-Clarke, Leena; Ong, Thomas Prates

    2015-09-05

    The persistent effects of animal fat consumption during pregnancy and nursing on the programming of breast cancer risk among female offspring were studied here. We have previously found that female offspring of rat dams that consumed a lard-based high-fat (HF) diet (60% fat-derived energy) during pregnancy, or during pregnancy and lactation, were at a reduced risk of developing mammary cancer. To better understand the unexpected protective effects of early life lard exposure, we have applied lipidomics and nutrigenomics approaches to investigate the fatty acid profile and global gene expression patterns in the mammary tissue of the female offspring. Consumption of this HF diet during gestation had few effects on the mammary tissue fatty acids profile of young adult offspring, while exposure from gestation throughout nursing promoted significant alterations in the fatty acids profile. Major differences were related to decreases in saturated fatty acids (SFA) and increases in omega-6 polyunsaturated fatty acids (PUFAs), monounsaturated fatty acids (MUFAs) and conjugated linolenic acid (CLA) concentrations. In addition several differences in gene expression patterns by microarray analysis between the control and in utero or in utero and during lactation HF exposed offspring were identified. Differential dependency network (DDN) analysis indicated that many of the genes exhibited unique connections to other genes only in the HF offspring. These unique connections included Hrh1-Ythdf1 and Repin1-Elavl2 in the in utero HF offspring, and Rnf213-Htr3b and Klf5-Chrna4 in the in utero and lactation HF offspring, compared with the control offspring. We conclude that an exposure to a lard-based HF diet during early life changes the fatty acid profile and transcriptional network in mammary gland in young adult rats, and these changes appear to be consistent with reduced mammary cancer risk observed in our previous study. Copyright © 2015 Elsevier Ireland Ltd. All rights

  20. Proteome Profiling Outperforms Transcriptome Profiling for Coexpression Based Gene Function Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Ma, Zihao; Carr, Steven A.; Mertins, Philipp; Zhang, Hui; Zhang, Zhen; Chan, Daniel W.; Ellis, Matthew J. C.; Townsend, R. Reid; Smith, Richard D.; McDermott, Jason E.; Chen, Xian; Paulovich, Amanda G.; Boja, Emily S.; Mesri, Mehdi; Kinsinger, Christopher R.; Rodriguez, Henry; Rodland, Karin D.; Liebler, Daniel C.; Zhang, Bing

    2016-11-11

    Coexpression of mRNAs under multiple conditions is commonly used to infer cofunctionality of their gene products despite well-known limitations of this “guilt-by-association” (GBA) approach. Recent advancements in mass spectrometry-based proteomic technologies have enabled global expression profiling at the protein level; however, whether proteome profiling data can outperform transcriptome profiling data for coexpression based gene function prediction has not been systematically investigated. Here, we address this question by constructing and analyzing mRNA and protein coexpression networks for three cancer types with matched mRNA and protein profiling data from The Cancer Genome Atlas (TCGA) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC). Our analyses revealed a marked difference in wiring between the mRNA and protein coexpression networks. Whereas protein coexpression was driven primarily by functional similarity between coexpressed genes, mRNA coexpression was driven by both cofunction and chromosomal colocalization of the genes. Functionally coherent mRNA modules were more likely to have their edges preserved in corresponding protein networks than functionally incoherent mRNA modules. Proteomic data strengthened the link between gene expression and function for at least 75% of Gene Ontology (GO) biological processes and 90% of KEGG pathways. A web application Gene2Net (http://cptac.gene2net.org) developed based on the three protein coexpression networks revealed novel gene-function relationships, such as linking ERBB2 (HER2) to lipid biosynthetic process in breast cancer, identifying PLG as a new gene involved in complement activation, and identifying AEBP1 as a new epithelial-mesenchymal transition (EMT) marker. Our results demonstrate that proteome profiling outperforms transcriptome profiling for coexpression based gene function prediction. Proteomics should be integrated if not preferred in gene function and human disease studies

  1. Gene expression profiling of cutaneous wound healing

    Directory of Open Access Journals (Sweden)

    Wang Ena

    2007-02-01

    Full Text Available Abstract Background Although the sequence of events leading to wound repair has been described at the cellular and, to a limited extent, at the protein level this process has yet to be fully elucidated. Genome wide transcriptional analysis tools promise to further define the global picture of this complex progression of events. Study Design This study was part of a placebo-controlled double-blind clinical trial in which basal cell carcinomas were treated topically with an immunomodifier – toll-like receptor 7 agonist: imiquimod. The fourteen patients with basal cell carcinoma in the placebo arm of the trial received placebo treatment consisting solely of vehicle cream. A skin punch biopsy was obtained immediately before treatment and at the end of the placebo treatment (after 2, 4 or 8 days. 17.5K cDNA microarrays were utilized to profile the biopsy material. Results Four gene signatures whose expression changed relative to baseline (before wound induction by the pre-treatment biopsy were identified. The largest group was comprised predominantly of inflammatory genes whose expression was increased throughout the study. Two additional signatures were observed which included preferentially pro-inflammatory genes in the early post-treatment biopsies (2 days after pre-treatment biopsies and repair and angiogenesis genes in the later (4 to 8 days biopsies. The fourth and smallest set of genes was down-regulated throughout the study. Early in wound healing the expression of markers of both M1 and M2 macrophages were increased, but later M2 markers predominated. Conclusion The initial response to a cutaneous wound induces powerful transcriptional activation of pro-inflammatory stimuli which may alert the host defense. Subsequently and in the absence of infection, inflammation subsides and it is replaced by angiogenesis and remodeling. Understanding this transition which may be driven by a change from a mixed macrophage population to predominately M2

  2. Gene expression profile of pulpitis.

    Science.gov (United States)

    Galicia, J C; Henson, B R; Parker, J S; Khan, A A

    2016-06-01

    The cost, prevalence and pain associated with endodontic disease necessitate an understanding of the fundamental molecular aspects of its pathogenesis. This study was aimed to identify the genetic contributors to pulpal pain and inflammation. Inflamed pulps were collected from patients diagnosed with irreversible pulpitis (n=20). Normal pulps from teeth extracted for various reasons served as controls (n=20). Pain level was assessed using a visual analog scale (VAS). Genome-wide microarray analysis was performed using Affymetrix GeneTitan Multichannel Instrument. The difference in gene expression levels were determined by the significance analysis of microarray program using a false discovery rate (q-value) of 5%. Genes involved in immune response, cytokine-cytokine receptor interaction and signaling, integrin cell surface interactions, and others were expressed at relatively higher levels in the pulpitis group. Moreover, several genes known to modulate pain and inflammation showed differential expression in asymptomatic and mild pain patients (⩾30 mm on VAS) compared with those with moderate to severe pain. This exploratory study provides a molecular basis for the clinical diagnosis of pulpitis. With an enhanced understanding of pulpal inflammation, future studies on treatment and management of pulpitis and on pain associated with it can have a biological reference to bridge treatment strategies with pulpal biology.

  3. Global transcriptome analysis reveals extensive gene remodeling, alternative splicing and differential transcription profiles in non-seed vascular plant Selaginella moellendorffii.

    Science.gov (United States)

    Zhu, Yan; Chen, Longxian; Zhang, Chengjun; Hao, Pei; Jing, Xinyun; Li, Xuan

    2017-01-25

    Selaginella moellendorffii, a lycophyte, is a model plant to study the early evolution and development of vascular plants. As the first and only sequenced lycophyte to date, the genome of S. moellendorffii revealed many conserved genes and pathways, as well as specialized genes different from flowering plants. Despite the progress made, little is known about long noncoding RNAs (lncRNA) and the alternative splicing (AS) of coding genes in S. moellendorffii. Its coding gene models have not been fully validated with transcriptome data. Furthermore, it remains important to understand whether the regulatory mechanisms similar to flowering plants are used, and how they operate in a non-seed primitive vascular plant. RNA-sequencing (RNA-seq) was performed for three S. moellendorffii tissues, root, stem, and leaf, by constructing strand-specific RNA-seq libraries from RNA purified using RiboMinus isolation protocol. A total of 176 million reads (44 Gbp) were obtained from three tissue types, and were mapped to S. moellendorffii genome. By comparing with 22,285 existing gene models of S. moellendorffii, we identified 7930 high-confidence novel coding genes (a 35.6% increase), and for the first time reported 4422 lncRNAs in a lycophyte. Further, we refined 2461 (11.0%) of existing gene models, and identified 11,030 AS events (for 5957 coding genes) revealed for the first time for lycophytes. Tissue-specific gene expression with functional implication was analyzed, and 1031, 554, and 269 coding genes, and 174, 39, and 17 lncRNAs were identified in root, stem, and leaf tissues, respectively. The expression of critical genes for vascular development stages, i.e. formation of provascular cells, xylem specification and differentiation, and phloem specification and differentiation, was compared in S. moellendorffii tissues, indicating a less complex regulatory mechanism in lycophytes than in flowering plants. The results were further strengthened by the evolutionary trend of

  4. Comparison of lists of genes based on functional profiles

    Directory of Open Access Journals (Sweden)

    Salicrú Miquel

    2011-10-01

    Full Text Available Abstract Background How to compare studies on the basis of their biological significance is a problem of central importance in high-throughput genomics. Many methods for performing such comparisons are based on the information in databases of functional annotation, such as those that form the Gene Ontology (GO. Typically, they consist of analyzing gene annotation frequencies in some pre-specified GO classes, in a class-by-class way, followed by p-value adjustment for multiple testing. Enrichment analysis, where a list of genes is compared against a wider universe of genes, is the most common example. Results A new global testing procedure and a method incorporating it are presented. Instead of testing separately for each GO class, a single global test for all classes under consideration is performed. The test is based on the distance between the functional profiles, defined as the joint frequencies of annotation in a given set of GO classes. These classes may be chosen at one or more GO levels. The new global test is more powerful and accurate with respect to type I errors than the usual class-by-class approach. When applied to some real datasets, the results suggest that the method may also provide useful information that complements the tests performed using a class-by-class approach if gene counts are sparse in some classes. An R library, goProfiles, implements these methods and is available from Bioconductor, http://bioconductor.org/packages/release/bioc/html/goProfiles.html. Conclusions The method provides an inferential basis for deciding whether two lists are functionally different. For global comparisons it is preferable to the global chi-square test of homogeneity. Furthermore, it may provide additional information if used in conjunction with class-by-class methods.

  5. Profiling Gene Expression in Germinating Brassica Roots.

    Science.gov (United States)

    Park, Myoung Ryoul; Wang, Yi-Hong; Hasenstein, Karl H

    2014-01-01

    Based on previously developed solid-phase gene extraction (SPGE) we examined the mRNA profile in primary roots of Brassica rapa seedlings for highly expressed genes like ACT7 (actin7), TUB (tubulin1), UBQ (ubiquitin), and low expressed GLK (glucokinase) during the first day post-germination. The assessment was based on the mRNA load of the SPGE probe of about 2.1 ng. The number of copies of the investigated genes changed spatially along the length of primary roots. The expression level of all genes differed significantly at each sample position. Among the examined genes ACT7 expression was most even along the root. UBQ was highest at the tip and root-shoot junction (RS). TUB and GLK showed a basipetal gradient. The temporal expression of UBQ was highest in the MZ 9 h after primary root emergence and higher than at any other sample position. Expressions of GLK in EZ and RS increased gradually over time. SPGE extraction is the result of oligo-dT and oligo-dA hybridization and the results illustrate that SPGE can be used for gene expression profiling at high spatial and temporal resolution. SPGE needles can be used within two weeks when stored at 4 °C. Our data indicate that gene expression studies that are based on the entire root miss important differences in gene expression that SPGE is able to resolve for example growth adjustments during gravitropism.

  6. Global gene expression profiling reveals a suppressed immune response pathway associated with 3q amplification in squamous carcinoma of the lung

    Directory of Open Access Journals (Sweden)

    Jun Qian

    2015-09-01

    Full Text Available Chromosome 3q26–28 is a critical region of genomic amplification in non-small cell lung cancer (NSCLC, particularly lung squamous cell carcinomas (SCCs. No molecular therapeutic target has shown clinical utility for SCC, in contrast with adenocarcinomas of the lung. To identify novel candidate drivers in this region, we performed both Array Comparative Genomic Hybridization (array CGH, Agilent Human Genome CGH 244A oligo-microarrays and Gene Expression Microarray (Agilent Human Gene Expression 4 × 44 K microarray on 24 untreated lung SCC specimens. Using our previously published integrative genomics approach, we identified 12 top amplified driver genes within this region that are highly correlated and overexpressed in lung SCC. We further demonstrated one of the 12 top amplified driver Fragile X mental retardation-related protein 1 (FXR1 as a novel cancer gene in NSCLC and FXR1 executes its regulatory function by forming a novel complex with two other oncogenes, protein kinase C, iota ( PRKCI and epithelial cell transforming 2 (ECT2 within the same amplicon in lung cancer cell. Here we report that immune response pathways are significantly suppressed in lung SCC and negatively associated with 3q driver gene expression, implying a potential role of 3q drivers in cancer immune-surveillance. In light of the attractive immunotherapy strategy using blockade of negative regulators of T cell function for multiple human cancer including lung SCC, our findings may provide a rationale for targeting 3q drivers in combination of immunotherapies for human tumors harboring the 3q amplicon. The data have been deposited in NCBI's Gene Expression Omnibus and are accessible through GEO Series accession number GSE40089.

  7. Global Temperature and Salinity Profile Programme (GTSPP) Data, 1985-present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Temperature-Salinity Profile Programme (GTSPP) develops and maintains a global ocean temperature and salinity resource with data that are both up-to-date...

  8. Resistance Genes in Global Crop Breeding Networks.

    Science.gov (United States)

    Garrett, K A; Andersen, K F; Asche, F; Bowden, R L; Forbes, G A; Kulakow, P A; Zhou, B

    2017-10-01

    Resistance genes are a major tool for managing crop diseases. The networks of crop breeders who exchange resistance genes and deploy them in varieties help to determine the global landscape of resistance and epidemics, an important system for maintaining food security. These networks function as a complex adaptive system, with associated strengths and vulnerabilities, and implications for policies to support resistance gene deployment strategies. Extensions of epidemic network analysis can be used to evaluate the multilayer agricultural networks that support and influence crop breeding networks. Here, we evaluate the general structure of crop breeding networks for cassava, potato, rice, and wheat. All four are clustered due to phytosanitary and intellectual property regulations, and linked through CGIAR hubs. Cassava networks primarily include public breeding groups, whereas others are more mixed. These systems must adapt to global change in climate and land use, the emergence of new diseases, and disruptive breeding technologies. Research priorities to support policy include how best to maintain both diversity and redundancy in the roles played by individual crop breeding groups (public versus private and global versus local), and how best to manage connectivity to optimize resistance gene deployment while avoiding risks to the useful life of resistance genes. [Formula: see text] Copyright © 2017 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .

  9. Gene expression profiles in skeletal muscle after gene electrotransfer

    DEFF Research Database (Denmark)

    Hojman, Pernille; Zibert, John R; Gissel, Hanne

    2007-01-01

    BACKGROUND: Gene transfer by electroporation (DNA electrotransfer) to muscle results in high level long term transgenic expression, showing great promise for treatment of e.g. protein deficiency syndromes. However little is known about the effects of DNA electrotransfer on muscle fibres. We have...... caused down-regulation of structural proteins e.g. sarcospan and catalytic enzymes. Injection of DNA induced down-regulation of intracellular transport proteins e.g. sentrin. The effects on muscle fibres were transient as the expression profiles 3 weeks after treatment were closely related......) followed by a long low voltage pulse (LV, 100 V/cm, 400 ms); a pulse combination optimised for efficient and safe gene transfer. Muscles were transfected with green fluorescent protein (GFP) and excised at 4 hours, 48 hours or 3 weeks after treatment. RESULTS: Differentially expressed genes were...

  10. Developmental gene expression profiles of the human pathogen Schistosoma japonicum

    Directory of Open Access Journals (Sweden)

    McManus Donald P

    2009-03-01

    Full Text Available Abstract Background The schistosome blood flukes are complex trematodes and cause a chronic parasitic disease of significant public health importance worldwide, schistosomiasis. Their life cycle is characterised by distinct parasitic and free-living phases involving mammalian and snail hosts and freshwater. Microarray analysis was used to profile developmental gene expression in the Asian species, Schistosoma japonicum. Total RNAs were isolated from the three distinct environmental phases of the lifecycle – aquatic/snail (eggs, miracidia, sporocysts, cercariae, juvenile (lung schistosomula and paired but pre-egg laying adults and adult (paired, mature males and egg-producing females, both examined separately. Advanced analyses including ANOVA, principal component analysis, and hierarchal clustering provided a global synopsis of gene expression relationships among the different developmental stages of the schistosome parasite. Results Gene expression profiles were linked to the major environmental settings through which the developmental stages of the fluke have to adapt during the course of its life cycle. Gene ontologies of the differentially expressed genes revealed a wide range of functions and processes. In addition, stage-specific, differentially expressed genes were identified that were involved in numerous biological pathways and functions including calcium signalling, sphingolipid metabolism and parasite defence. Conclusion The findings provide a comprehensive database of gene expression in an important human pathogen, including transcriptional changes in genes involved in evasion of the host immune response, nutrient acquisition, energy production, calcium signalling, sphingolipid metabolism, egg production and tegumental function during development. This resource should help facilitate the identification and prioritization of new anti-schistosome drug and vaccine targets for the control of schistosomiasis.

  11. DNA Array-Based Gene Profiling

    Science.gov (United States)

    Mocellin, Simone; Provenzano, Maurizio; Rossi, Carlo Riccardo; Pilati, Pierluigi; Nitti, Donato; Lise, Mario

    2005-01-01

    Cancer is a heterogeneous disease in most respects, including its cellularity, different genetic alterations, and diverse clinical behaviors. Traditional molecular analyses are reductionist, assessing only 1 or a few genes at a time, thus working with a biologic model too specific and limited to confront a process whose clinical outcome is likely to be governed by the combined influence of many genes. The potential of functional genomics is enormous, because for each experiment, thousands of relevant observations can be made simultaneously. Accordingly, DNA array, like other high-throughput technologies, might catalyze and ultimately accelerate the development of knowledge in tumor cell biology. Although in its infancy, the implementation of DNA array technology in cancer research has already provided investigators with novel data and intriguing new hypotheses on the molecular cascade leading to carcinogenesis, tumor aggressiveness, and sensitivity to antiblastic agents. Given the revolutionary implications that the use of this technology might have in the clinical management of patients with cancer, principles of DNA array-based tumor gene profiling need to be clearly understood for the data to be correctly interpreted and appreciated. In the present work, we discuss the technical features characterizing this powerful laboratory tool and review the applications so far described in the field of oncology. PMID:15621987

  12. Identification of Candidate B-Lymphoma Genes by Cross-Species Gene Expression Profiling

    Science.gov (United States)

    Tompkins, Van S.; Han, Seong-Su; Olivier, Alicia; Syrbu, Sergei; Bair, Thomas; Button, Anna; Jacobus, Laura; Wang, Zebin; Lifton, Samuel; Raychaudhuri, Pradip; Morse, Herbert C.; Weiner, George; Link, Brian; Smith, Brian J.; Janz, Siegfried

    2013-01-01

    Comparative genome-wide expression profiling of malignant tumor counterparts across the human-mouse species barrier has a successful track record as a gene discovery tool in liver, breast, lung, prostate and other cancers, but has been largely neglected in studies on neoplasms of mature B-lymphocytes such as diffuse large B cell lymphoma (DLBCL) and Burkitt lymphoma (BL). We used global gene expression profiles of DLBCL-like tumors that arose spontaneously in Myc-transgenic C57BL/6 mice as a phylogenetically conserved filter for analyzing the human DLBCL transcriptome. The human and mouse lymphomas were found to have 60 concordantly deregulated genes in common, including 8 genes that Cox hazard regression analysis associated with overall survival in a published landmark dataset of DLBCL. Genetic network analysis of the 60 genes followed by biological validation studies indicate FOXM1 as a candidate DLBCL and BL gene, supporting a number of studies contending that FOXM1 is a therapeutic target in mature B cell tumors. Our findings demonstrate the value of the “mouse filter” for genomic studies of human B-lineage neoplasms for which a vast knowledge base already exists. PMID:24130802

  13. Gene Expression Profiling of Xeroderma Pigmentosum

    Directory of Open Access Journals (Sweden)

    Bowden Nikola A

    2006-05-01

    Full Text Available Abstract Xeroderma pigmentosum (XP is a rare recessive disorder that is characterized by extreme sensitivity to UV light. UV light exposure results in the formation of DNA damage such as cyclobutane dimers and (6-4 photoproducts. Nucleotide excision repair (NER orchestrates the removal of cyclobutane dimers and (6-4 photoproducts as well as some forms of bulky chemical DNA adducts. The disease XP is comprised of 7 complementation groups (XP-A to XP-G, which represent functional deficiencies in seven different genes, all of which are believed to be involved in NER. The main clinical feature of XP is various forms of skin cancers; however, neurological degeneration is present in XPA, XPB, XPD and XPG complementation groups. The relationship between NER and other types of DNA repair processes is now becoming evident but the exact relationships between the different complementation groups remains to be precisely determined. Using gene expression analysis we have identified similarities and differences after UV light exposure between the complementation groups XP-A, XP-C, XP-D, XP-E, XP-F, XP-G and an unaffected control. The results reveal that there is a graded change in gene expression patterns between the mildest, most similar to the control response (XP-E and the severest form (XP-A of the disease, with the exception of XP-D. Distinct differences between the complementation groups with neurological symptoms (XP-A, XP-D and XP-G and without (XP-C, XP-E and XP-F were also identified. Therefore, this analysis has revealed distinct gene expression profiles for the XP complementation groups and the first step towards understanding the neurological symptoms of XP.

  14. RNA amplification for successful gene profiling analysis

    Directory of Open Access Journals (Sweden)

    Wang Ena

    2005-07-01

    Full Text Available Abstract The study of clinical samples is often limited by the amount of material available to study. While proteins cannot be multiplied in their natural form, DNA and RNA can be amplified from small specimens and used for high-throughput analyses. Therefore, genetic studies offer the best opportunity to screen for novel insights of human pathology when little material is available. Precise estimates of DNA copy numbers in a given specimen are necessary. However, most studies investigate static variables such as the genetic background of patients or mutations within pathological specimens without a need to assess proportionality of expression among different genes throughout the genome. Comparative genomic hybridization of DNA samples represents a crude exception to this rule since genomic amplification or deletion is compared among different specimens directly. For gene expression analysis, however, it is critical to accurately estimate the proportional expression of distinct RNA transcripts since such proportions directly govern cell function by modulating protein expression. Furthermore, comparative estimates of relative RNA expression at different time points portray the response of cells to environmental stimuli, indirectly informing about broader biological events affecting a particular tissue in physiological or pathological conditions. This cognitive reaction of cells is similar to the detection of electroencephalographic patterns which inform about the status of the brain in response to external stimuli. As our need to understand human pathophysiology at the global level increases, the development and refinement of technologies for high fidelity messenger RNA amplification have become the focus of increasing interest during the past decade. The need to increase the abundance of RNA has been met not only for gene specific amplification, but, most importantly for global transcriptome wide, unbiased amplification. Now gene

  15. Gene structure, phylogeny and expression profile of the sucrose ...

    Indian Academy of Sciences (India)

    Gene structure, phylogeny and expression profile of the sucrose synthase gene family in .... 24, 701–713. Bate N. and Twell D. 1998 Functional architecture of a late pollen .... Manzara T. and Gruissem W. 1988 Organization and expression.

  16. Diurnal and circadian expression profiles of glycerolipid biosynthetic genes in Arabidopsis.

    Science.gov (United States)

    Nakamura, Yuki; Andrés, Fernando; Kanehara, Kazue; Liu, Yu-chi; Coupland, George; Dörmann, Peter

    2014-01-01

    Glycerolipid composition in plant membranes oscillates in response to diurnal change. However, its functional significance remained unclear. A recent discovery that Arabidopsis florigen FT binds diurnally oscillating phosphatidylcholine molecules to promote flowering suggests that diurnal oscillation of glycerolipid composition is an important input in flowering time control. Taking advantage of public microarray data, we globally analyzed the expression pattern of glycerolipid biosynthetic genes in Arabidopsis under long-day, short-day, and continuous light conditions. The results revealed that 12 genes associated with glycerolipid metabolism showed significant oscillatory profiles. Interestingly, expression of most of these genes followed circadian profiles, suggesting that glycerolipid biosynthesis is partially under clock regulation. The oscillating expression profile of one representative gene, PECT1, was analyzed in detail. Expression of PECT1 showed a circadian pattern highly correlated with that of the clock-regulated gene GIGANTEA. Thus, our study suggests that a considerable number of glycerolipid biosynthetic genes are under circadian control.

  17. Meta-analysis of Cancer Gene Profiling Data.

    Science.gov (United States)

    Roy, Janine; Winter, Christof; Schroeder, Michael

    2016-01-01

    The simultaneous measurement of thousands of genes gives the opportunity to personalize and improve cancer therapy. In addition, the integration of meta-data such as protein-protein interaction (PPI) information into the analyses helps in the identification and prioritization of genes from these screens. Here, we describe a computational approach that identifies genes prognostic for outcome by combining gene profiling data from any source with a network of known relationships between genes.

  18. Prioritization of candidate disease genes by topological similarity between disease and protein diffusion profiles.

    Science.gov (United States)

    Zhu, Jie; Qin, Yufang; Liu, Taigang; Wang, Jun; Zheng, Xiaoqi

    2013-01-01

    Identification of gene-phenotype relationships is a fundamental challenge in human health clinic. Based on the observation that genes causing the same or similar phenotypes tend to correlate with each other in the protein-protein interaction network, a lot of network-based approaches were proposed based on different underlying models. A recent comparative study showed that diffusion-based methods achieve the state-of-the-art predictive performance. In this paper, a new diffusion-based method was proposed to prioritize candidate disease genes. Diffusion profile of a disease was defined as the stationary distribution of candidate genes given a random walk with restart where similarities between phenotypes are incorporated. Then, candidate disease genes are prioritized by comparing their diffusion profiles with that of the disease. Finally, the effectiveness of our method was demonstrated through the leave-one-out cross-validation against control genes from artificial linkage intervals and randomly chosen genes. Comparative study showed that our method achieves improved performance compared to some classical diffusion-based methods. To further illustrate our method, we used our algorithm to predict new causing genes of 16 multifactorial diseases including Prostate cancer and Alzheimer's disease, and the top predictions were in good consistent with literature reports. Our study indicates that integration of multiple information sources, especially the phenotype similarity profile data, and introduction of global similarity measure between disease and gene diffusion profiles are helpful for prioritizing candidate disease genes. Programs and data are available upon request.

  19. Gene Expression ‏‏‏‏Profiles of BAD and Bcl-xL in the CA1 Region of the Hippocampus Following Global Ischemic/Reperfusion and FK-506 Administration.

    Science.gov (United States)

    Badr, Ramak; Hashemi, Mehrdad; Javadi, Gholamreza; Movafagh, Abolfazl; Mahdian, Reza

    2015-12-01

    The hippocampus is a tiny nub in the mammalian brain that is involved in forming, organizing, and storing memories. Global cerebral ischemia (GCI) and reperfusion induced apoptosis lead to cell injury and death. FK-506 is a strong immunosuppressant drug that has neuroprotective effects on the hypoxic-ischemic effects of brain damage. BAD and Bcl-xL are pro-apoptotic and anti-apoptotic genes, respectively. These genes belong to The B-cell lymphoma-2 (Bcl-2) family. In this study, we assessed the neurotrophic properties of FK-506 on expression of the BAD and Bcl-xL genes in the hippocampus following global ischemia and reperfusion. In the present experimental study, adult male Wistar rats were obtained and housed under standard conditions in the Tehran University of Medical Science in Iran. Rats were equally distributed in groups of three among the following groups: normal control, treated-1 (ischemia/reperfusion), and treated-2 (ischemia/reperfusion followed by FK-506). Global ischemia was induced for animals in the treated-1 and treated-2 groups. In treated-2, two doses of FK-506 were injected: one dose as an IV injection immediately after reperfusion and another as an intra-peritoneal (IP) injection after 48 hours. Then, the hippocampus tissue was removed after anaesthetizing the rats. RNA was isolated, cDNA was synthesized, and real-time PCR was performed. Finally, the obtained data were analyzed statistically (P value ˂ 0.05). The quantitative results of real-time PCR show that the mRNA expression ratio of Bcl-xL down-regulated was 0.75 ± 0.06 in the ischemia/reperfusion group versus 1.57 ± 0.09 in the control group (P value BAD up-regulated in the ischemia/reperfusion + FK506 group was 3.65 ± 0.49 compared to Normal control (1.39 ± 0.09) and Ischemia/reperfusion + FK506 was 1.09 ± 0.20 (P value BAD /Bcl-xL) confirmed that expression of the pro-apoptotic gene significantly decreased (P value ˂ 0.001) under the ischemia/reperfusion condition. In contrast

  20. Expression profiles of genes involved in tanshinone biosynthesis of ...

    Indian Academy of Sciences (India)

    Expression profiles of genes involved in tanshinone biosynthesis of two. Salvia miltiorrhiza genotypes with different tanshinone contents. Zhenqiao Song, Jianhua Wang and Xingfeng Li. J. Genet. 95, 433–439. Table 1. S. miltiorrhiza genes and primer pairs used for qRT-PCR. Gene. GenBank accession. Primer name.

  1. Expression profiling identifies genes involved in emphysema severity

    Directory of Open Access Journals (Sweden)

    Bowman Rayleen V

    2009-09-01

    Full Text Available Abstract Chronic obstructive pulmonary disease (COPD is a major public health problem. The aim of this study was to identify genes involved in emphysema severity in COPD patients. Gene expression profiling was performed on total RNA extracted from non-tumor lung tissue from 30 smokers with emphysema. Class comparison analysis based on gas transfer measurement was performed to identify differentially expressed genes. Genes were then selected for technical validation by quantitative reverse transcriptase-PCR (qRT-PCR if also represented on microarray platforms used in previously published emphysema studies. Genes technically validated advanced to tests of biological replication by qRT-PCR using an independent test set of 62 lung samples. Class comparison identified 98 differentially expressed genes (p p Gene expression profiling of lung from emphysema patients identified seven candidate genes associated with emphysema severity including COL6A3, SERPINF1, ZNHIT6, NEDD4, CDKN2A, NRN1 and GSTM3.

  2. Statistical modelling of transcript profiles of differentially regulated genes

    Directory of Open Access Journals (Sweden)

    Sergeant Martin J

    2008-07-01

    Full Text Available Abstract Background The vast quantities of gene expression profiling data produced in microarray studies, and the more precise quantitative PCR, are often not statistically analysed to their full potential. Previous studies have summarised gene expression profiles using simple descriptive statistics, basic analysis of variance (ANOVA and the clustering of genes based on simple models fitted to their expression profiles over time. We report the novel application of statistical non-linear regression modelling techniques to describe the shapes of expression profiles for the fungus Agaricus bisporus, quantified by PCR, and for E. coli and Rattus norvegicus, using microarray technology. The use of parametric non-linear regression models provides a more precise description of expression profiles, reducing the "noise" of the raw data to produce a clear "signal" given by the fitted curve, and describing each profile with a small number of biologically interpretable parameters. This approach then allows the direct comparison and clustering of the shapes of response patterns between genes and potentially enables a greater exploration and interpretation of the biological processes driving gene expression. Results Quantitative reverse transcriptase PCR-derived time-course data of genes were modelled. "Split-line" or "broken-stick" regression identified the initial time of gene up-regulation, enabling the classification of genes into those with primary and secondary responses. Five-day profiles were modelled using the biologically-oriented, critical exponential curve, y(t = A + (B + CtRt + ε. This non-linear regression approach allowed the expression patterns for different genes to be compared in terms of curve shape, time of maximal transcript level and the decline and asymptotic response levels. Three distinct regulatory patterns were identified for the five genes studied. Applying the regression modelling approach to microarray-derived time course data

  3. Dissecting specific and global transcriptional regulation of bacterial gene expression

    NARCIS (Netherlands)

    Gerosa, Luca; Kochanowski, Karl; Heinemann, Matthias; Sauer, Uwe

    Gene expression is regulated by specific transcriptional circuits but also by the global expression machinery as a function of growth. Simultaneous specific and global regulation thus constitutes an additional-but often neglected-layer of complexity in gene expression. Here, we develop an

  4. Gene expression profiling in autoimmune diseases

    DEFF Research Database (Denmark)

    Bovin, Lone Frier; Brynskov, Jørn; Hegedüs, Laszlo

    2007-01-01

    A central issue in autoimmune disease is whether the underlying inflammation is a repeated stereotypical process or whether disease specific gene expression is involved. To shed light on this, we analysed whether genes previously found to be differentially regulated in rheumatoid arthritis (RA...

  5. Global aphasia without hemiparesis: language profiles and lesion distribution

    Science.gov (United States)

    Hanlon, R.; Lux, W.; Dromerick, A.

    1999-01-01

    OBJECTIVES—Global aphasia without hemiparesis (GAWH) is an uncommon stroke syndrome involving receptive and expressive language impairment, without the hemiparesis typically manifested by patients with global aphasia after large left perisylvian lesions. A few cases of GAWH have been reported with conflicting conclusions regarding pathogenesis, lesion localisation, and recovery. The current study was conducted to attempt to clarify these issues.
METHODS—Ten cases of GAWH were prospectively studied with language profiles and lesion analysis; five patients had multiple lesions, four patients had a single lesion, and one had a subarachnoid haemorrhage. Eight patients met criteria for cardioembolic ischaemic stroke.
RESULTS—Cluster analysis based on acute language profiles disclosed three subtypes of patients with GAWH; these clusters persisted on follow up language assessment. Each cluster evolved into a different aphasia subtype: persistent GAWH, Wernicke's aphasia, or transcortical motor aphasia (TCM). Composite lesion analysis showed that persistent GAWH was related to lesioning of the left superior temporal gyrus. Patients with acute GAWH who evolved into TCM type aphasia had common lesioning of the left inferior frontal gyrus and adjacent subcortical white matter. Patients with acute GAWH who evolved into Wernicke's type aphasia were characterised by lesioning of the left precentral and postcentral gyri. Recovery of language was poor in all but one patient.
CONCLUSIONS—Although patients with acute GAWH are similar on neurological examination, they are heterogeneous with respect to early aphasia profile, language recovery, and lesion profile.

 PMID:10084536

  6. Identification of genes showing differential expression profile ...

    Indian Academy of Sciences (India)

    3Department of Natural Sciences, International Christian University, Mitaka, Tokyo 181-8585, Japan ... the changes of expression predicted from gene function suggested association ... ate School of Science and Technology, Niigata University.

  7. Expression Profiling of Tyrosine Kinase Genes

    National Research Council Canada - National Science Library

    Weier, Heinz

    2000-01-01

    ... of these genes parallels the progression of tumors to a more malignant phenotype. We developed a DNA micro-array based screening system to monitor the level of expression of tyrosine kinase (tk...

  8. Research Article Gene expression profiling for coronary artery ...

    Indian Academy of Sciences (India)

    Shiridhar Kashyap

    stored at -80˚C in nuclease free water for gene expression experiments. ..... So, identification of a unique signature for CAD globally as treatment target and early diagnostic biomarker needs ..... The colour of bar, blue, brown, grey and yellow.

  9. Flies selected for longevity retain a young gene expression profile

    DEFF Research Database (Denmark)

    Sarup, Pernille Merete; Sørensen, Peter; Loeschcke, Volker

    2011-01-01

      We investigated correlated responses in the transcriptomes of longevity-selected lines of Drosophila melanogaster to identify pathways that affect life span in metazoan systems. We evaluated the gene expression profile in young, middle-aged, and old male flies, finding that 530 genes were...

  10. Microarray analysis of the gene expression profile in triethylene ...

    African Journals Online (AJOL)

    Microarray analysis of the gene expression profile in triethylene glycol dimethacrylate-treated human dental pulp cells. ... Conclusions: Our results suggest that TEGDMA can change the many functions of hDPCs through large changes in gene expression levels and complex interactions with different signaling pathways.

  11. Complete gene expression profiling of Saccharopolyspora erythraea using GeneChip DNA microarrays

    Directory of Open Access Journals (Sweden)

    Bordoni Roberta

    2007-11-01

    Full Text Available Abstract Background The Saccharopolyspora erythraea genome sequence, recently published, presents considerable divergence from those of streptomycetes in gene organization and function, confirming the remarkable potential of S. erythraea for producing many other secondary metabolites in addition to erythromycin. In order to investigate, at whole transcriptome level, how S. erythraea genes are modulated, a DNA microarray was specifically designed and constructed on the S. erythraea strain NRRL 2338 genome sequence, and the expression profiles of 6494 ORFs were monitored during growth in complex liquid medium. Results The transcriptional analysis identified a set of 404 genes, whose transcriptional signals vary during growth and characterize three distinct phases: a rapid growth until 32 h (Phase A; a growth slowdown until 52 h (Phase B; and another rapid growth phase from 56 h to 72 h (Phase C before the cells enter the stationary phase. A non-parametric statistical method, that identifies chromosomal regions with transcriptional imbalances, determined regional organization of transcription along the chromosome, highlighting differences between core and non-core regions, and strand specific patterns of expression. Microarray data were used to characterize the temporal behaviour of major functional classes and of all the gene clusters for secondary metabolism. The results confirmed that the ery cluster is up-regulated during Phase A and identified six additional clusters (for terpenes and non-ribosomal peptides that are clearly regulated in later phases. Conclusion The use of a S. erythraea DNA microarray improved specificity and sensitivity of gene expression analysis, allowing a global and at the same time detailed picture of how S. erythraea genes are modulated. This work underlines the importance of using DNA microarrays, coupled with an exhaustive statistical and bioinformatic analysis of the results, to understand the transcriptional

  12. Real-time PCR gene expression profiling

    Czech Academy of Sciences Publication Activity Database

    Kubista, Mikael; Sjögreen, B.; Forootan, A.; Šindelka, Radek; Jonák, Jiří; Andrade, J.M.

    2007-01-01

    Roč. 1, - (2007), s. 56-60 ISSN 1360-8606 R&D Projects: GA AV ČR KJB500520601 Institutional research plan: CEZ:AV0Z50520514 Keywords : real - time PCR, * expression profiling * statistical analysis Subject RIV: EB - Genetics ; Molecular Biology

  13. Gene expression profile data for mouse facial development

    Directory of Open Access Journals (Sweden)

    Sonia M. Leach

    2017-08-01

    Full Text Available This article contains data related to the research articles "Spatial and Temporal Analysis of Gene Expression during Growth and Fusion of the Mouse Facial Prominences" (Feng et al., 2009 [1] and “Systems Biology of facial development: contributions of ectoderm and mesenchyme” (Hooper et al., 2017 In press [2]. Embryonic mammalian craniofacial development is a complex process involving the growth, morphogenesis, and fusion of distinct facial prominences into a functional whole. Aberrant gene regulation during this process can lead to severe craniofacial birth defects, including orofacial clefting. As a means to understand the genes involved in facial development, we had previously dissected the embryonic mouse face into distinct prominences: the mandibular, maxillary or nasal between E10.5 and E12.5. The prominences were then processed intact, or separated into ectoderm and mesenchyme layers, prior analysis of RNA expression using microarrays (Feng et al., 2009, Hooper et al., 2017 in press [1,2]. Here, individual gene expression profiles have been built from these datasets that illustrate the timing of gene expression in whole prominences or in the separated tissue layers. The data profiles are presented as an indexed and clickable list of the genes each linked to a graphical image of that gene׳s expression profile in the ectoderm, mesenchyme, or intact prominence. These data files will enable investigators to obtain a rapid assessment of the relative expression level of any gene on the array with respect to time, tissue, prominence, and expression trajectory.

  14. PRAME gene expression profile in medulloblastoma

    Directory of Open Access Journals (Sweden)

    Tânia Maria Vulcani-Freitas

    2011-02-01

    Full Text Available Medulloblastoma is the most common malignant tumors of central nervous system in the childhood. The treatment is severe, harmful and, thus, has a dismal prognosis. As PRAME is present in various cancers, including meduloblastoma, and has limited expression in normal tissues, this antigen can be an ideal vaccine target for tumor immunotherapy. In order to find a potential molecular target, we investigated PRAME expression in medulloblastoma fragments and we compare the results with the clinical features of each patient. Analysis of gene expression was performed by real-time quantitative PCR from 37 tumor samples. The Mann-Whitney test was used to analysis the relationship between gene expression and clinical characteristics. Kaplan-Meier curves were used to evaluate survival. PRAME was overexpressed in 84% samples. But no statistical association was found between clinical features and PRAME overexpression. Despite that PRAME gene could be a strong candidate for immunotherapy since it is highly expressed in medulloblastomas.

  15. Global gene expression analysis of the zoonotic parasite Trichinella spiralis revealed novel genes in host parasite interaction.

    Directory of Open Access Journals (Sweden)

    Xiaolei Liu

    Full Text Available BACKGROUND: Trichinellosis is a typical food-borne zoonotic disease which is epidemic worldwide and the nematode Trichinella spiralis is the main pathogen. The life cycle of T. spiralis contains three developmental stages, i.e. adult worms, new borne larva (new borne L1 larva and muscular larva (infective L1 larva. Stage-specific gene expression in the parasites has been investigated with various immunological and cDNA cloning approaches, whereas the genome-wide transcriptome and expression features of the parasite have been largely unknown. The availability of the genome sequence information of T. spiralis has made it possible to deeply dissect parasite biology in association with global gene expression and pathogenesis. METHODOLOGY AND PRINCIPAL FINDINGS: In this study, we analyzed the global gene expression patterns in the three developmental stages of T. spiralis using digital gene expression (DGE analysis. Almost 15 million sequence tags were generated with the Illumina RNA-seq technology, producing expression data for more than 9,000 genes, covering 65% of the genome. The transcriptome analysis revealed thousands of differentially expressed genes within the genome, and importantly, a panel of genes encoding functional proteins associated with parasite invasion and immuno-modulation were identified. More than 45% of the genes were found to be transcribed from both strands, indicating the importance of RNA-mediated gene regulation in the development of the parasite. Further, based on gene ontological analysis, over 3000 genes were functionally categorized and biological pathways in the three life cycle stage were elucidated. CONCLUSIONS AND SIGNIFICANCE: The global transcriptome of T. spiralis in three developmental stages has been profiled, and most gene activity in the genome was found to be developmentally regulated. Many metabolic and biological pathways have been revealed. The findings of the differential expression of several protein

  16. Global metabolic profiling procedures for urine using UPLC-MS.

    Science.gov (United States)

    Want, Elizabeth J; Wilson, Ian D; Gika, Helen; Theodoridis, Georgios; Plumb, Robert S; Shockcor, John; Holmes, Elaine; Nicholson, Jeremy K

    2010-06-01

    The production of 'global' metabolite profiles involves measuring low molecular-weight metabolites (sample preparation, stability/storage and the selection of chromatographic conditions that balance metabolome coverage, chromatographic resolution and throughput. We discuss quality control and metabolite identification, as well as provide details of multivariate data analysis approaches for analyzing such MS data. Using this protocol, the analysis of a sample set in 96-well plate format, would take ca. 30 h, including 1 h for system setup, 1-2 h for sample preparation, 24 h for UPLC-MS analysis and 1-2 h for initial data processing. The use of UPLC-MS for metabolic profiling in this way is not faster than the conventional HPLC-based methods but, because of improved chromatographic performance, provides superior metabolome coverage.

  17. Random Subspace Aggregation for Cancer Prediction with Gene Expression Profiles

    Directory of Open Access Journals (Sweden)

    Liying Yang

    2016-01-01

    Full Text Available Background. Precisely predicting cancer is crucial for cancer treatment. Gene expression profiles make it possible to analyze patterns between genes and cancers on the genome-wide scale. Gene expression data analysis, however, is confronted with enormous challenges for its characteristics, such as high dimensionality, small sample size, and low Signal-to-Noise Ratio. Results. This paper proposes a method, termed RS_SVM, to predict gene expression profiles via aggregating SVM trained on random subspaces. After choosing gene features through statistical analysis, RS_SVM randomly selects feature subsets to yield random subspaces and training SVM classifiers accordingly and then aggregates SVM classifiers to capture the advantage of ensemble learning. Experiments on eight real gene expression datasets are performed to validate the RS_SVM method. Experimental results show that RS_SVM achieved better classification accuracy and generalization performance in contrast with single SVM, K-nearest neighbor, decision tree, Bagging, AdaBoost, and the state-of-the-art methods. Experiments also explored the effect of subspace size on prediction performance. Conclusions. The proposed RS_SVM method yielded superior performance in analyzing gene expression profiles, which demonstrates that RS_SVM provides a good channel for such biological data.

  18. Equivalent Gene Expression Profiles between Glatopa™ and Copaxone®.

    Directory of Open Access Journals (Sweden)

    Josephine S D'Alessandro

    Full Text Available Glatopa™ is a generic glatiramer acetate recently approved for the treatment of patients with relapsing forms of multiple sclerosis. Gene expression profiling was performed as a means to evaluate equivalence of Glatopa and Copaxone®. Microarray analysis containing 39,429 unique probes across the entire genome was performed in murine glatiramer acetate--responsive Th2-polarized T cells, a test system highly relevant to the biology of glatiramer acetate. A closely related but nonequivalent glatiramoid molecule was used as a control to establish assay sensitivity. Multiple probe-level (Student's t-test and sample-level (principal component analysis, multidimensional scaling, and hierarchical clustering statistical analyses were utilized to look for differences in gene expression induced by the test articles. The analyses were conducted across all genes measured, as well as across a subset of genes that were shown to be modulated by Copaxone. The following observations were made across multiple statistical analyses: the expression of numerous genes was significantly changed by treatment with Copaxone when compared against media-only control; gene expression profiles induced by Copaxone and Glatopa were not significantly different; and gene expression profiles induced by Copaxone and the nonequivalent glatiramoid were significantly different, underscoring the sensitivity of the test system and the multiple analysis methods. Comparative analysis was also performed on sets of transcripts relevant to T-cell biology and antigen presentation, among others that are known to be modulated by glatiramer acetate. No statistically significant differences were observed between Copaxone and Glatopa in the expression levels (magnitude and direction of these glatiramer acetate-regulated genes. In conclusion, multiple methods consistently supported equivalent gene expression profiles between Copaxone and Glatopa.

  19. Prognostic Gene Expression Profiles in Breast Cancer

    DEFF Research Database (Denmark)

    Sørensen, Kristina Pilekær

    Each year approximately 4,800 Danish women are diagnosed with breast cancer. Several clinical and pathological factors are used as prognostic and predictive markers to categorize the patients into groups of high or low risk. Around 90% of all patients are allocated to the high risk group...... clinical courses, and they may be useful as novel prognostic biomarkers in breast cancer. The aim of the present project was to predict the development of metastasis in lymph node negative breast cancer patients by RNA profiling. We collected and analyzed 82 primary breast tumors from patients who...... and the time of event. Previous findings have shown that high expression of the lncRNA HOTAIR is correlated with poor survival in breast cancer. We validated this finding by demonstrating that high HOTAIR expression in our primary tumors was significantly associated with worse prognosis independent...

  20. Global similarity and local divergence in human and mouse gene co-expression networks

    Directory of Open Access Journals (Sweden)

    Koonin Eugene V

    2006-09-01

    Full Text Available Abstract Background A genome-wide comparative analysis of human and mouse gene expression patterns was performed in order to evaluate the evolutionary divergence of mammalian gene expression. Tissue-specific expression profiles were analyzed for 9,105 human-mouse orthologous gene pairs across 28 tissues. Expression profiles were resolved into species-specific coexpression networks, and the topological properties of the networks were compared between species. Results At the global level, the topological properties of the human and mouse gene coexpression networks are, essentially, identical. For instance, both networks have topologies with small-world and scale-free properties as well as closely similar average node degrees, clustering coefficients, and path lengths. However, the human and mouse coexpression networks are highly divergent at the local level: only a small fraction ( Conclusion The dissonance between global versus local network divergence suggests that the interspecies similarity of the global network properties is of limited biological significance, at best, and that the biologically relevant aspects of the architectures of gene coexpression are specific and particular, rather than universal. Nevertheless, there is substantial evolutionary conservation of the local network structure which is compatible with the notion that gene coexpression networks are subject to purifying selection.

  1. Renal Gene Expression Database (RGED): a relational database of gene expression profiles in kidney disease.

    Science.gov (United States)

    Zhang, Qingzhou; Yang, Bo; Chen, Xujiao; Xu, Jing; Mei, Changlin; Mao, Zhiguo

    2014-01-01

    We present a bioinformatics database named Renal Gene Expression Database (RGED), which contains comprehensive gene expression data sets from renal disease research. The web-based interface of RGED allows users to query the gene expression profiles in various kidney-related samples, including renal cell lines, human kidney tissues and murine model kidneys. Researchers can explore certain gene profiles, the relationships between genes of interests and identify biomarkers or even drug targets in kidney diseases. The aim of this work is to provide a user-friendly utility for the renal disease research community to query expression profiles of genes of their own interest without the requirement of advanced computational skills. Website is implemented in PHP, R, MySQL and Nginx and freely available from http://rged.wall-eva.net. http://rged.wall-eva.net. © The Author(s) 2014. Published by Oxford University Press.

  2. Renal Gene Expression Database (RGED): a relational database of gene expression profiles in kidney disease

    Science.gov (United States)

    Zhang, Qingzhou; Yang, Bo; Chen, Xujiao; Xu, Jing; Mei, Changlin; Mao, Zhiguo

    2014-01-01

    We present a bioinformatics database named Renal Gene Expression Database (RGED), which contains comprehensive gene expression data sets from renal disease research. The web-based interface of RGED allows users to query the gene expression profiles in various kidney-related samples, including renal cell lines, human kidney tissues and murine model kidneys. Researchers can explore certain gene profiles, the relationships between genes of interests and identify biomarkers or even drug targets in kidney diseases. The aim of this work is to provide a user-friendly utility for the renal disease research community to query expression profiles of genes of their own interest without the requirement of advanced computational skills. Availability and implementation: Website is implemented in PHP, R, MySQL and Nginx and freely available from http://rged.wall-eva.net. Database URL: http://rged.wall-eva.net PMID:25252782

  3. Liver Gene Expression Profiles of Rats Treated with Clofibric Acid

    Science.gov (United States)

    Michel, Cécile; Desdouets, Chantal; Sacre-Salem, Béatrice; Gautier, Jean-Charles; Roberts, Ruth; Boitier, Eric

    2003-01-01

    Clofibric acid (CLO) is a peroxisome proliferator (PP) that acts through the peroxisome proliferator activated receptor α, leading to hepatocarcinogenesis in rodents. CLO-induced hepatocarcinogenesis is a multi-step process, first transforming normal liver cells into foci. The combination of laser capture microdissection (LCM) and genomics has the potential to provide expression profiles from such small cell clusters, giving an opportunity to understand the process of cancer development in response to PPs. To our knowledge, this is the first evaluation of the impact of the successive steps of LCM procedure on gene expression profiling by comparing profiles from LCM samples to those obtained with non-microdissected liver samples collected after a 1 month CLO treatment in the rat. We showed that hematoxylin and eosin (H&E) staining and laser microdissection itself do not impact on RNA quality. However, the overall process of the LCM procedure affects the RNA quality, resulting in a bias in the gene profiles. Nonetheless, this bias did not prevent accurate determination of a CLO-specific molecular signature. Thus, gene-profiling analysis of microdissected foci, identified by H&E staining may provide insight into the mechanisms underlying non-genotoxic hepatocarcinogenesis in the rat by allowing identification of specific genes that are regulated by CLO in early pre-neoplastic foci. PMID:14633594

  4. Freedom of expression: cell-type-specific gene profiling.

    Science.gov (United States)

    Otsuki, Leo; Cheetham, Seth W; Brand, Andrea H

    2014-01-01

    Cell fate and behavior are results of differential gene regulation, making techniques to profile gene expression in specific cell types highly desirable. Many methods now enable investigation at the DNA, RNA and protein level. This review introduces the most recent and popular techniques, and discusses key issues influencing the choice between these such as ease, cost and applicability of information gained. Interdisciplinary collaborations will no doubt contribute further advances, including not just in single cell type but single-cell expression profiling. © 2014 Wiley Periodicals, Inc.

  5. Appendix 1:Upregulated genes in gene expression profile (P<0.05 ...

    Indian Academy of Sciences (India)

    lazi

    Appendix 1: Upregulated genes in gene expression profile«P2). Probe_s. Gene_Symbol pvalues foldchange. Probe_S. et_ID. Gene_Symbol pvalues foldchange. et_ID. 1370355. 1393751. Scd1. 1.35E-04. 25.77. Loc1009122508.06E-03. 2.55. -at at. 1398250. 1370870. Acot1. 2.43E-02. 12.18. Me1.

  6. Gene Structures, Evolution and Transcriptional Profiling of the WRKY Gene Family in Castor Bean (Ricinus communis L.).

    Science.gov (United States)

    Zou, Zhi; Yang, Lifu; Wang, Danhua; Huang, Qixing; Mo, Yeyong; Xie, Guishui

    2016-01-01

    WRKY proteins comprise one of the largest transcription factor families in plants and form key regulators of many plant processes. This study presents the characterization of 58 WRKY genes from the castor bean (Ricinus communis L., Euphorbiaceae) genome. Compared with the automatic genome annotation, one more WRKY-encoding locus was identified and 20 out of the 57 predicted gene models were manually corrected. All RcWRKY genes were shown to contain at least one intron in their coding sequences. According to the structural features of the present WRKY domains, the identified RcWRKY genes were assigned to three previously defined groups (I-III). Although castor bean underwent no recent whole-genome duplication event like physic nut (Jatropha curcas L., Euphorbiaceae), comparative genomics analysis indicated that one gene loss, one intron loss and one recent proximal duplication occurred in the RcWRKY gene family. The expression of all 58 RcWRKY genes was supported by ESTs and/or RNA sequencing reads derived from roots, leaves, flowers, seeds and endosperms. Further global expression profiles with RNA sequencing data revealed diverse expression patterns among various tissues. Results obtained from this study not only provide valuable information for future functional analysis and utilization of the castor bean WRKY genes, but also provide a useful reference to investigate the gene family expansion and evolution in Euphorbiaceus plants.

  7. Global gene expression in Escherichia coli biofilms

    DEFF Research Database (Denmark)

    Schembri, Mark; Kjærgaard, K.; Klemm, Per

    2003-01-01

    It is now apparent that microorganisms undergo significant changes during the transition from planktonic to biofilm growth. These changes result in phenotypic adaptations that allow the formation of highly organized and structured sessile communities, which possess enhanced resistance to antimicr......It is now apparent that microorganisms undergo significant changes during the transition from planktonic to biofilm growth. These changes result in phenotypic adaptations that allow the formation of highly organized and structured sessile communities, which possess enhanced resistance...... the transition to biofilm growth, and these included genes expressed under oxygen-limiting conditions, genes encoding (putative) transport proteins, putative oxidoreductases and genes associated with enhanced heavy metal resistance. Of particular interest was the observation that many of the genes altered...... in expression have no current defined function. These genes, as well as those induced by stresses relevant to biofilm growth such as oxygen and nutrient limitation, may be important factors that trigger enhanced resistance mechanisms of sessile communities to antibiotics and hydrodynamic shear forces....

  8. Microarray gene expression profiling and analysis in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Sadhukhan Provash

    2004-06-01

    Full Text Available Abstract Background Renal cell carcinoma (RCC is the most common cancer in adult kidney. The accuracy of current diagnosis and prognosis of the disease and the effectiveness of the treatment for the disease are limited by the poor understanding of the disease at the molecular level. To better understand the genetics and biology of RCC, we profiled the expression of 7,129 genes in both clear cell RCC tissue and cell lines using oligonucleotide arrays. Methods Total RNAs isolated from renal cell tumors, adjacent normal tissue and metastatic RCC cell lines were hybridized to affymatrix HuFL oligonucleotide arrays. Genes were categorized into different functional groups based on the description of the Gene Ontology Consortium and analyzed based on the gene expression levels. Gene expression profiles of the tissue and cell line samples were visualized and classified by singular value decomposition. Reverse transcription polymerase chain reaction was performed to confirm the expression alterations of selected genes in RCC. Results Selected genes were annotated based on biological processes and clustered into functional groups. The expression levels of genes in each group were also analyzed. Seventy-four commonly differentially expressed genes with more than five-fold changes in RCC tissues were identified. The expression alterations of selected genes from these seventy-four genes were further verified using reverse transcription polymerase chain reaction (RT-PCR. Detailed comparison of gene expression patterns in RCC tissue and RCC cell lines shows significant differences between the two types of samples, but many important expression patterns were preserved. Conclusions This is one of the initial studies that examine the functional ontology of a large number of genes in RCC. Extensive annotation, clustering and analysis of a large number of genes based on the gene functional ontology revealed many interesting gene expression patterns in RCC. Most

  9. Cell-specific prediction and application of drug-induced gene expression profiles.

    Science.gov (United States)

    Hodos, Rachel; Zhang, Ping; Lee, Hao-Chih; Duan, Qiaonan; Wang, Zichen; Clark, Neil R; Ma'ayan, Avi; Wang, Fei; Kidd, Brian; Hu, Jianying; Sontag, David; Dudley, Joel

    2018-01-01

    Gene expression profiling of in vitro drug perturbations is useful for many biomedical discovery applications including drug repurposing and elucidation of drug mechanisms. However, limited data availability across cell types has hindered our capacity to leverage or explore the cell-specificity of these perturbations. While recent efforts have generated a large number of drug perturbation profiles across a variety of human cell types, many gaps remain in this combinatorial drug-cell space. Hence, we asked whether it is possible to fill these gaps by predicting cell-specific drug perturbation profiles using available expression data from related conditions--i.e. from other drugs and cell types. We developed a computational framework that first arranges existing profiles into a three-dimensional array (or tensor) indexed by drugs, genes, and cell types, and then uses either local (nearest-neighbors) or global (tensor completion) information to predict unmeasured profiles. We evaluate prediction accuracy using a variety of metrics, and find that the two methods have complementary performance, each superior in different regions in the drug-cell space. Predictions achieve correlations of 0.68 with true values, and maintain accurate differentially expressed genes (AUC 0.81). Finally, we demonstrate that the predicted profiles add value for making downstream associations with drug targets and therapeutic classes.

  10. Gene expression profiling of two distinct neuronal populations in the rodent spinal cord.

    Directory of Open Access Journals (Sweden)

    Jesper Ryge

    Full Text Available BACKGROUND: In the field of neuroscience microarray gene expression profiles on anatomically defined brain structures are being used increasingly to study both normal brain functions as well as pathological states. Fluorescent tracing techniques in brain tissue that identifies distinct neuronal populations can in combination with global gene expression profiling potentially increase the resolution and specificity of such studies to shed new light on neuronal functions at the cellular level. METHODOLOGY/PRINCIPAL FINDINGS: We examine the microarray gene expression profiles of two distinct neuronal populations in the spinal cord of the neonatal rat, the principal motor neurons and specific interneurons involved in motor control. The gene expression profiles of the respective cell populations were obtained from amplified mRNA originating from 50-250 fluorescently identified and laser microdissected cells. In the data analysis we combine a new microarray normalization procedure with a conglomerate measure of significant differential gene expression. Using our methodology we find 32 genes to be more expressed in the interneurons compared to the motor neurons that all except one have not previously been associated with this neuronal population. As a validation of our method we find 17 genes to be more expressed in the motor neurons than in the interneurons and of these only one had not previously been described in this population. CONCLUSIONS/SIGNIFICANCE: We provide an optimized experimental protocol that allows isolation of gene transcripts from fluorescent retrogradely labeled cell populations in fresh tissue, which can be used to generate amplified aRNA for microarray hybridization from as few as 50 laser microdissected cells. Using this optimized experimental protocol in combination with our microarray analysis methodology we find 49 differentially expressed genes between the motor neurons and the interneurons that reflect the functional

  11. Recrudescence mechanisms and gene expression profile of the reproductive tracts from chickens during the molting period.

    Directory of Open Access Journals (Sweden)

    Wooyoung Jeong

    Full Text Available The reproductive system of chickens undergoes dynamic morphological and functional tissue remodeling during the molting period. The present study identified global gene expression profiles following oviductal tissue regression and regeneration in laying hens in which molting was induced by feeding high levels of zinc in the diet. During the molting and recrudescence processes, progressive morphological and physiological changes included regression and re-growth of reproductive organs and fluctuations in concentrations of testosterone, progesterone, estradiol and corticosterone in blood. The cDNA microarray analysis of oviductal tissues revealed the biological significance of gene expression-based modulation in oviductal tissue during its remodeling. Based on the gene expression profiles, expression patterns of selected genes such as, TF, ANGPTL3, p20K, PTN, AvBD11 and SERPINB3 exhibited similar patterns in expression with gradual decreases during regression of the oviduct and sequential increases during resurrection of the functional oviduct. Also, miR-1689* inhibited expression of Sp1, while miR-17-3p, miR-22* and miR-1764 inhibited expression of STAT1. Similarly, chicken miR-1562 and miR-138 reduced the expression of ANGPTL3 and p20K, respectively. These results suggest that these differentially regulated genes are closely correlated with the molecular mechanism(s for development and tissue remodeling of the avian female reproductive tract, and that miRNA-mediated regulation of key genes likely contributes to remodeling of the avian reproductive tract by controlling expression of those genes post-transcriptionally. The discovered global gene profiles provide new molecular candidates responsible for regulating morphological and functional recrudescence of the avian reproductive tract, and provide novel insights into understanding the remodeling process at the genomic and epigenomic levels.

  12. Distinct gene expression profiles in ovarian cancer linked to Lynch syndrome

    DEFF Research Database (Denmark)

    Jönsson, Jenny-Maria; Bartuma, Katarina; Dominguez-Valentin, Mev

    2014-01-01

    Ovarian cancer linked to Lynch syndrome represents a rare subset that typically presents at young age as early-stage tumors with an overrepresentation of endometrioid and clear cell histologies. We investigated the molecular profiles of Lynch syndrome-associated and sporadic ovarian cancer...... with the aim to identify key discriminators and central tumorigenic mechanisms in hereditary ovarian cancer. Global gene expression profiling using whole-genome c-DNA-mediated Annealing, Selection, extension, and Ligation was applied to 48 histopathologically matched Lynch syndrome-associated and sporadic...... ovarian cancers. Lynch syndrome-associated and sporadic ovarian cancers differed by 349 significantly deregulated genes, including PTPRH, BIRC3, SHH and TNFRSF6B. The genes involved were predominantly linked to cell growth, proliferation, and cell-to-cell signaling and interaction. When stratified...

  13. Intrinsic limits to gene regulation by global crosstalk

    Science.gov (United States)

    Friedlander, Tamar; Prizak, Roshan; Guet, Călin C.; Barton, Nicholas H.; Tkačik, Gašper

    2016-01-01

    Gene regulation relies on the specificity of transcription factor (TF)–DNA interactions. Limited specificity may lead to crosstalk: a regulatory state in which a gene is either incorrectly activated due to noncognate TF–DNA interactions or remains erroneously inactive. As each TF can have numerous interactions with noncognate cis-regulatory elements, crosstalk is inherently a global problem, yet has previously not been studied as such. We construct a theoretical framework to analyse the effects of global crosstalk on gene regulation. We find that crosstalk presents a significant challenge for organisms with low-specificity TFs, such as metazoans. Crosstalk is not easily mitigated by known regulatory schemes acting at equilibrium, including variants of cooperativity and combinatorial regulation. Our results suggest that crosstalk imposes a previously unexplored global constraint on the functioning and evolution of regulatory networks, which is qualitatively distinct from the known constraints that act at the level of individual gene regulatory elements. PMID:27489144

  14. Epigenetics and gene expression profile in first-episode psychosis: The role of childhood trauma.

    Science.gov (United States)

    Tomassi, Simona; Tosato, Sarah

    2017-12-01

    Childhood Trauma (CT) mediation of the epigenome and its impact on gene expression profile could provide a mechanism for the gene-environment interaction underling psychosis. We reviewed the evidence concerning epigenetic and gene expression modifications associated with CT in both First-Episode Psychosis (FEP) and healthy subjects. In order to explore the relative role of psychosis itself in determining these modifications, evidence about FEP and epigenetics/gene expression was also summarized. We performed a systematic search on PubMed, last updated in December 2016. Out of 2966 potentially relevant records, only 41 studies were included. CT resulted associated: in FEP subjects, with global DNA hypo-methylation and reduced BDNF gene-expression; in healthy subjects, with hyper-methylation of SLC6A4, NR3C1, KITLG, and OXTR; hypo-methylation of FKBP5, IL-6, and BDNF; increased IL1B, IL8, and PTGS gene expression; and decreased SLC6A4 gene expression. FEP showed global DNA hypo-methylation; increased methylation and reduced gene expression of GCH1; hyper-expression of MPB, NDEL1, AKT1, and DICER1; and hypo-expression of DROSHA, COMT, and DISC1 in comparison with healthy controls. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Gene expression profiles in adenosine-treated human mast cells ...

    African Journals Online (AJOL)

    Gene expression profiles in adenosine-treated human mast cells. ... SW Kang, JE Jeong, CH Kim, SH Choi, SH Chae, SA Jun, HJ Cha, JH Kim, YM Lee, YS ... beta 4, ring finger protein, high-mobility group, calmodulin 2, RAN binding protein, ...

  16. Expression profile of genes coding for carotenoid biosynthetic ...

    Indian Academy of Sciences (India)

    Expression profile of genes coding for carotenoid biosynthetic pathway during ripening and their association with accumulation of lycopene in tomato fruits. Shuchi Smita, Ravi Rajwanshi, Sangram Keshari Lenka, Amit Katiyar, Viswanathan Chinnusamy and. Kailash Chander Bansal. J. Genet. 92, 363–368. Table 1.

  17. Identifying potential maternal genes of Bombyx mori using digital gene expression profiling

    Science.gov (United States)

    Xu, Pingzhen

    2018-01-01

    Maternal genes present in mature oocytes play a crucial role in the early development of silkworm. Although maternal genes have been widely studied in many other species, there has been limited research in Bombyx mori. High-throughput next generation sequencing provides a practical method for gene discovery on a genome-wide level. Herein, a transcriptome study was used to identify maternal-related genes from silkworm eggs. Unfertilized eggs from five different stages of early development were used to detect the changing situation of gene expression. The expressed genes showed different patterns over time. Seventy-six maternal genes were annotated according to homology analysis with Drosophila melanogaster. More than half of the differentially expressed maternal genes fell into four expression patterns, while the expression patterns showed a downward trend over time. The functional annotation of these material genes was mainly related to transcription factor activity, growth factor activity, nucleic acid binding, RNA binding, ATP binding, and ion binding. Additionally, twenty-two gene clusters including maternal genes were identified from 18 scaffolds. Altogether, we plotted a profile for the maternal genes of Bombyx mori using a digital gene expression profiling method. This will provide the basis for maternal-specific signature research and improve the understanding of the early development of silkworm. PMID:29462160

  18. Gene expression analysis identifies global gene dosage sensitivity in cancer

    DEFF Research Database (Denmark)

    Fehrmann, Rudolf S. N.; Karjalainen, Juha M.; Krajewska, Malgorzata

    2015-01-01

    Many cancer-associated somatic copy number alterations (SCNAs) are known. Currently, one of the challenges is to identify the molecular downstream effects of these variants. Although several SCNAs are known to change gene expression levels, it is not clear whether each individual SCNA affects gen...

  19. Gene expression profiling reveals multiple toxicity endpoints induced by hepatotoxicants

    Energy Technology Data Exchange (ETDEWEB)

    Huang Qihong; Jin Xidong; Gaillard, Elias T.; Knight, Brian L.; Pack, Franklin D.; Stoltz, James H.; Jayadev, Supriya; Blanchard, Kerry T

    2004-05-18

    Microarray technology continues to gain increased acceptance in the drug development process, particularly at the stage of toxicology and safety assessment. In the current study, microarrays were used to investigate gene expression changes associated with hepatotoxicity, the most commonly reported clinical liability with pharmaceutical agents. Acetaminophen, methotrexate, methapyrilene, furan and phenytoin were used as benchmark compounds capable of inducing specific but different types of hepatotoxicity. The goal of the work was to define gene expression profiles capable of distinguishing the different subtypes of hepatotoxicity. Sprague-Dawley rats were orally dosed with acetaminophen (single dose, 4500 mg/kg for 6, 24 and 72 h), methotrexate (1 mg/kg per day for 1, 7 and 14 days), methapyrilene (100 mg/kg per day for 3 and 7 days), furan (40 mg/kg per day for 1, 3, 7 and 14 days) or phenytoin (300 mg/kg per day for 14 days). Hepatic gene expression was assessed using toxicology-specific gene arrays containing 684 target genes or expressed sequence tags (ESTs). Principal component analysis (PCA) of gene expression data was able to provide a clear distinction of each compound, suggesting that gene expression data can be used to discern different hepatotoxic agents and toxicity endpoints. Gene expression data were applied to the multiplicity-adjusted permutation test and significantly changed genes were categorized and correlated to hepatotoxic endpoints. Repression of enzymes involved in lipid oxidation (acyl-CoA dehydrogenase, medium chain, enoyl CoA hydratase, very long-chain acyl-CoA synthetase) were associated with microvesicular lipidosis. Likewise, subsets of genes associated with hepatotocellular necrosis, inflammation, hepatitis, bile duct hyperplasia and fibrosis have been identified. The current study illustrates that expression profiling can be used to: (1) distinguish different hepatotoxic endpoints; (2) predict the development of toxic endpoints; and

  20. Novel roles for metallothionein-I + II (MT-I + II) in defense responses, neurogenesis, and tissue restoration after traumatic brain injury: insights from global gene expression profiling in wild-type and MT-I + II knockout mice

    DEFF Research Database (Denmark)

    Penkowa, Milena; Cáceres, Mario; Borup, Rehannah

    2006-01-01

    of the somatosensorial cortex and killed at 0, 1, 4, 8, and 16 days postlesion (dpl) using Affymetrix genechips/oligonucleotide arrays interrogating approximately 10,000 different murine genes (MG_U74Av2). Hierarchical clustering analysis of these genes readily shows an orderly pattern of gene responses at specific...... and opened new avenues that were confirmed by immunohistochemistry. Data in KO, MT-I-overexpressing, and MT-II-injected mice strongly suggest a role of these proteins in postlesional activation of neural stem cells....

  1. Differential gene expression profile in pig adipose tissue treated with/without clenbuterol

    Directory of Open Access Journals (Sweden)

    Deng Xue M

    2007-11-01

    Full Text Available Abstract Background Clenbuterol, a beta-agonist, can dramatically reduce pig adipose accumulation at high dosages. However, it has been banned in pig production because people who eat pig products treated with clenbuterol can be poisoned by the clenbuterol residues. To understand the molecular mechanism for this fat reduction, cDNA microarray, real-time PCR, two-dimensional electrophoresis and mass spectra were used to study the differential gene expression profiles of pig adipose tissues treated with/without clenbuterol. The objective of this research is to identify novel genes and physiological pathways that potentially facilitate clenbuterol induced reduction of adipose accumulation. Results Clenbuterol was found to improve the lean meat percentage about 10 percent (P Conclusion Pig fat accumulation was reduced dramatically with clenbuterol treatment. Histological sections and global evaluation of gene expression after administration of clenbuterol in pigs identified profound changes in adipose cells. With clenbuterol stimulation, adipose cell volumes decreased and their gene expression profile changed, which indicate some metabolism processes have been also altered. Although the biological functions of the differentially expressed genes are not completely known, higher expressions of these molecules in adipose tissue might contribute to the reduction of fat accumulation. Among these genes, five lipid metabolism related genes were of special interest for further study, including apoD and apoR. The apoR expression was increased at both the RNA and protein levels. The apoR may be one of the critical molecules through which clenbuterol reduces fat accumulation.

  2. Analyzing gene expression profiles in dilated cardiomyopathy via bioinformatics methods.

    Science.gov (United States)

    Wang, Liming; Zhu, L; Luan, R; Wang, L; Fu, J; Wang, X; Sui, L

    2016-10-10

    Dilated cardiomyopathy (DCM) is characterized by ventricular dilatation, and it is a common cause of heart failure and cardiac transplantation. This study aimed to explore potential DCM-related genes and their underlying regulatory mechanism using methods of bioinformatics. The gene expression profiles of GSE3586 were downloaded from Gene Expression Omnibus database, including 15 normal samples and 13 DCM samples. The differentially expressed genes (DEGs) were identified between normal and DCM samples using Limma package in R language. Pathway enrichment analysis of DEGs was then performed. Meanwhile, the potential transcription factors (TFs) and microRNAs (miRNAs) of these DEGs were predicted based on their binding sequences. In addition, DEGs were mapped to the cMap database to find the potential small molecule drugs. A total of 4777 genes were identified as DEGs by comparing gene expression profiles between DCM and control samples. DEGs were significantly enriched in 26 pathways, such as lymphocyte TarBase pathway and androgen receptor signaling pathway. Furthermore, potential TFs (SP1, LEF1, and NFAT) were identified, as well as potential miRNAs (miR-9, miR-200 family, and miR-30 family). Additionally, small molecules like isoflupredone and trihexyphenidyl were found to be potential therapeutic drugs for DCM. The identified DEGs (PRSS12 and FOXG1), potential TFs, as well as potential miRNAs, might be involved in DCM.

  3. Analyzing gene expression profiles in dilated cardiomyopathy via bioinformatics methods

    Directory of Open Access Journals (Sweden)

    Liming Wang

    Full Text Available Dilated cardiomyopathy (DCM is characterized by ventricular dilatation, and it is a common cause of heart failure and cardiac transplantation. This study aimed to explore potential DCM-related genes and their underlying regulatory mechanism using methods of bioinformatics. The gene expression profiles of GSE3586 were downloaded from Gene Expression Omnibus database, including 15 normal samples and 13 DCM samples. The differentially expressed genes (DEGs were identified between normal and DCM samples using Limma package in R language. Pathway enrichment analysis of DEGs was then performed. Meanwhile, the potential transcription factors (TFs and microRNAs (miRNAs of these DEGs were predicted based on their binding sequences. In addition, DEGs were mapped to the cMap database to find the potential small molecule drugs. A total of 4777 genes were identified as DEGs by comparing gene expression profiles between DCM and control samples. DEGs were significantly enriched in 26 pathways, such as lymphocyte TarBase pathway and androgen receptor signaling pathway. Furthermore, potential TFs (SP1, LEF1, and NFAT were identified, as well as potential miRNAs (miR-9, miR-200 family, and miR-30 family. Additionally, small molecules like isoflupredone and trihexyphenidyl were found to be potential therapeutic drugs for DCM. The identified DEGs (PRSS12 and FOXG1, potential TFs, as well as potential miRNAs, might be involved in DCM.

  4. Blood Gene Expression Profiling of Breast Cancer Survivors Experiencing Fibrosis

    International Nuclear Information System (INIS)

    Landmark-Hoyvik, Hege; Dumeaux, Vanessa; Reinertsen, Kristin V.; Edvardsen, Hege; Fossa, Sophie D.; Borresen-Dale, Anne-Lise

    2011-01-01

    Purpose: To extend knowledge on the mechanisms and pathways involved in maintenance of radiation-induced fibrosis (RIF) by performing gene expression profiling of whole blood from breast cancer (BC) survivors with and without fibrosis 3-7 years after end of radiotherapy treatment. Methods and Materials: Gene expression profiles from blood were obtained for 254 BC survivors derived from a cohort of survivors, treated with adjuvant radiotherapy for breast cancer 3-7 years earlier. Analyses of transcriptional differences in blood gene expression between BC survivors with fibrosis (n = 31) and BC survivors without fibrosis (n = 223) were performed using R version 2.8.0 and tools from the Bioconductor project. Gene sets extracted through a literature search on fibrosis and breast cancer were subsequently used in gene set enrichment analysis. Results: Substantial differences in blood gene expression between BC survivors with and without fibrosis were observed, and 87 differentially expressed genes were identified through linear analysis. Transforming growth factor-β1 signaling was identified as the most significant gene set, showing a down-regulation of most of the core genes, together with up-regulation of a transcriptional activator of the inhibitor of fibrinolysis, Plasminogen activator inhibitor 1 in the BC survivors with fibrosis. Conclusion: Transforming growth factor-β1 signaling was found down-regulated during the maintenance phase of fibrosis as opposed to the up-regulation reported during the early, initiating phase of fibrosis. Hence, once the fibrotic tissue has developed, the maintenance phase might rather involve a deregulation of fibrinolysis and altered degradation of extracellular matrix components.

  5. Gene expression profiles in BCL11B-siRNA treated malignant T cells

    Directory of Open Access Journals (Sweden)

    Grabarczyk Piotr

    2011-05-01

    Full Text Available Abstract Background Downregulation of the B-cell chronic lymphocytic leukemia (CLL/lymphoma11B (BCL11B gene by small interfering RNA (siRNA leads to growth inhibition and apoptosis of the human T-cell acute lymphoblastic leukemia (T-ALL cell line Molt-4. To further characterize the molecular mechanism, a global gene expression profile of BCL11B-siRNA -treated Molt-4 cells was established. The expression profiles of several genes were further validated in the BCL11B-siRNA -treated Molt-4 cells and primary T-ALL cells. Results 142 genes were found to be upregulated and 109 genes downregulated in the BCL11B-siRNA -treated Molt-4 cells by microarray analysis. Among apoptosis-related genes, three pro-apoptotic genes, TNFSF10, BIK, BNIP3, were upregulated and one anti-apoptotic gene, BCL2L1 was downregulated. Moreover, the expression of SPP1 and CREBBP genes involved in the transforming growth factor (TGF-β pathway was down 16-fold. Expression levels of TNFSF10, BCL2L1, SPP1, and CREBBP were also examined by real-time PCR. A similar expression pattern of TNFSF10, BCL2L1, and SPP1 was identified. However, CREBBP was not downregulated in the BLC11B-siRNA -treated Molt-4 cells. Conclusion BCL11B-siRNA treatment altered expression profiles of TNFSF10, BCL2L1, and SPP1 in both Molt-4 T cell line and primary T-ALL cells.

  6. Gene Expression Profiling in Lung Tissues from Rat Exposed to Lunar Dust Particles

    Science.gov (United States)

    Zhang, Ye; Lam, Chiu-Wing; Zalesak, Selina M.; Kidane, Yared H.; Feiveson, Alan H.; Ploutz-Snyder, Robert; Scully, Robert R.; Williams, Kyle; Wu, Honglu; James, John T.

    2014-01-01

    The Moon's surface is covered by a layer of fine, reactive dust. Lunar dust contain about 1-2% of very fine dust (gene expression changes in lung tissues from rats exposed to lunar dust particles. F344 rats were exposed for 4 weeks (6h/d; 5d/wk) in nose-only inhalation chambers to concentrations of 0 (control air), 2.1, 6.8, 21, and 61 mg/m(exp 3) of lunar dust. Five rats per group were euthanized 1 day, and 3 months after the last inhalation exposure. The total RNAs were isolated from lung tissues after being lavaged. The Agilent Rat GE v3 microarray was used to profile global gene expression (44K). The genes with significant expression changes are identified and the gene expression data were further analyzed using various statistical tools.

  7. Global Regulatory Differences for Gene- and Cell-Based Therapies

    DEFF Research Database (Denmark)

    Coppens, Delphi G M; De Bruin, Marie L; Leufkens, Hubert G M

    2017-01-01

    Gene- and cell-based therapies (GCTs) offer potential new treatment options for unmet medical needs. However, the use of conventional regulatory requirements for medicinal products to approve GCTs may impede patient access and therapeutic innovation. Furthermore, requirements differ between...... jurisdictions, complicating the global regulatory landscape. We provide a comparative overview of regulatory requirements for GCT approval in five jurisdictions and hypothesize on the consequences of the observed global differences on patient access and therapeutic innovation....

  8. Bovine mammary gene expression profiling during the onset of lactation.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Gao

    Full Text Available BACKGROUND: Lactogenesis includes two stages. Stage I begins a few weeks before parturition. Stage II is initiated around the time of parturition and extends for several days afterwards. METHODOLOGY/PRINCIPAL FINDINGS: To better understand the molecular events underlying these changes, genome-wide gene expression profiling was conducted using digital gene expression (DGE on bovine mammary tissue at three time points (on approximately day 35 before parturition (-35 d, day 7 before parturition (-7 d and day 3 after parturition (+3 d. Approximately 6.2 million (M, 5.8 million (M and 6.1 million (M 21-nt cDNA tags were sequenced in the three cDNA libraries (-35 d, -7 d and +3 d, respectively. After aligning to the reference sequences, the three cDNA libraries included 8,662, 8,363 and 8,359 genes, respectively. With a fold change cutoff criteria of ≥ 2 or ≤-2 and a false discovery rate (FDR of ≤ 0.001, a total of 812 genes were significantly differentially expressed at -7 d compared with -35 d (stage I. Gene ontology analysis showed that those significantly differentially expressed genes were mainly associated with cell cycle, lipid metabolism, immune response and biological adhesion. A total of 1,189 genes were significantly differentially expressed at +3 d compared with -7 d (stage II, and these genes were mainly associated with the immune response and cell cycle. Moreover, there were 1,672 genes significantly differentially expressed at +3 d compared with -35 d. Gene ontology analysis showed that the main differentially expressed genes were those associated with metabolic processes. CONCLUSIONS: The results suggest that the mammary gland begins to lactate not only by a gain of function but also by a broad suppression of function to effectively push most of the cell's resources towards lactation.

  9. Microenvironment alters epigenetic and gene expression profiles in Swarm rat chondrosarcoma tumors

    International Nuclear Information System (INIS)

    Hamm, Christopher A; Wang, Deli; Malchenko, Sergey; Fatima Bonaldo, Maria de; Casavant, Thomas L; Hendrix, Mary JC; Soares, Marcelo B; Stevens, Jeff W; Xie, Hehuang; Vanin, Elio F; Morcuende, Jose A; Abdulkawy, Hakeem; Seftor, Elisabeth A; Sredni, Simone T; Bischof, Jared M

    2010-01-01

    Chondrosarcomas are malignant cartilage tumors that do not respond to traditional chemotherapy or radiation. The 5-year survival rate of histologic grade III chondrosarcoma is less than 30%. An animal model of chondrosarcoma has been established - namely, the Swarm Rat Chondrosarcoma (SRC) - and shown to resemble the human disease. Previous studies with this model revealed that tumor microenvironment could significantly influence chondrosarcoma malignancy. To examine the effect of the microenvironment, SRC tumors were initiated at different transplantation sites. Pyrosequencing assays were utilized to assess the DNA methylation of the tumors, and SAGE libraries were constructed and sequenced to determine the gene expression profiles of the tumors. Based on the gene expression analysis, subsequent functional assays were designed to determine the relevancy of the specific genes in the development and progression of the SRC. The site of transplantation had a significant impact on the epigenetic and gene expression profiles of SRC tumors. Our analyses revealed that SRC tumors were hypomethylated compared to control tissue, and that tumors at each transplantation site had a unique expression profile. Subsequent functional analysis of differentially expressed genes, albeit preliminary, provided some insight into the role that thymosin-β4, c-fos, and CTGF may play in chondrosarcoma development and progression. This report describes the first global molecular characterization of the SRC model, and it demonstrates that the tumor microenvironment can induce epigenetic alterations and changes in gene expression in the SRC tumors. We documented changes in gene expression that accompany changes in tumor phenotype, and these gene expression changes provide insight into the pathways that may play a role in the development and progression of chondrosarcoma. Furthermore, specific functional analysis indicates that thymosin-β4 may have a role in chondrosarcoma metastasis

  10. Microenvironment alters epigenetic and gene expression profiles in Swarm rat chondrosarcoma tumors

    Directory of Open Access Journals (Sweden)

    Hamm Christopher A

    2010-09-01

    Full Text Available Abstract Background Chondrosarcomas are malignant cartilage tumors that do not respond to traditional chemotherapy or radiation. The 5-year survival rate of histologic grade III chondrosarcoma is less than 30%. An animal model of chondrosarcoma has been established - namely, the Swarm Rat Chondrosarcoma (SRC - and shown to resemble the human disease. Previous studies with this model revealed that tumor microenvironment could significantly influence chondrosarcoma malignancy. Methods To examine the effect of the microenvironment, SRC tumors were initiated at different transplantation sites. Pyrosequencing assays were utilized to assess the DNA methylation of the tumors, and SAGE libraries were constructed and sequenced to determine the gene expression profiles of the tumors. Based on the gene expression analysis, subsequent functional assays were designed to determine the relevancy of the specific genes in the development and progression of the SRC. Results The site of transplantation had a significant impact on the epigenetic and gene expression profiles of SRC tumors. Our analyses revealed that SRC tumors were hypomethylated compared to control tissue, and that tumors at each transplantation site had a unique expression profile. Subsequent functional analysis of differentially expressed genes, albeit preliminary, provided some insight into the role that thymosin-β4, c-fos, and CTGF may play in chondrosarcoma development and progression. Conclusion This report describes the first global molecular characterization of the SRC model, and it demonstrates that the tumor microenvironment can induce epigenetic alterations and changes in gene expression in the SRC tumors. We documented changes in gene expression that accompany changes in tumor phenotype, and these gene expression changes provide insight into the pathways that may play a role in the development and progression of chondrosarcoma. Furthermore, specific functional analysis indicates that

  11. Oxidative stress gene expression profile in inbred mouse after ischemia/reperfusion small bowel injury.

    Science.gov (United States)

    Bertoletto, Paulo Roberto; Ikejiri, Adauto Tsutomu; Somaio Neto, Frederico; Chaves, José Carlos; Teruya, Roberto; Bertoletto, Eduardo Rodrigues; Taha, Murched Omar; Fagundes, Djalma José

    2012-11-01

    To determine the profile of gene expressions associated with oxidative stress and thereby contribute to establish parameters about the role of enzyme clusters related to the ischemia/reperfusion intestinal injury. Twelve male inbred mice (C57BL/6) were randomly assigned: Control Group (CG) submitted to anesthesia, laparotomy and observed by 120 min; Ischemia/reperfusion Group (IRG) submitted to anesthesia, laparotomy, 60 min of small bowel ischemia and 60 min of reperfusion. A pool of six samples was submitted to the qPCR-RT protocol (six clusters) for mouse oxidative stress and antioxidant defense pathways. On the 84 genes investigated, 64 (76.2%) had statistic significant expression and 20 (23.8%) showed no statistical difference to the control group. From these 64 significantly expressed genes, 60 (93.7%) were up-regulated and 04 (6.3%) were down-regulated. From the group with no statistical significantly expression, 12 genes were up-regulated and 8 genes were down-regulated. Surprisingly, 37 (44.04%) showed a higher than threefold up-regulation and then arbitrarily the values was considered as a very significant. Thus, 37 genes (44.04%) were expressed very significantly up-regulated. The remained 47 (55.9%) genes were up-regulated less than three folds (35 genes - 41.6%) or down-regulated less than three folds (12 genes - 14.3%). The intestinal ischemia and reperfusion promote a global hyper-expression profile of six different clusters genes related to antioxidant defense and oxidative stress.

  12. Global gene mining and the pharmaceutical industry

    International Nuclear Information System (INIS)

    Knudsen, Lisbeth E.

    2005-01-01

    Worldwide efforts are ongoing in optimizing medical treatment by searching for the right medicine at the right dose for the individual. Metabolism is regulated by polymorphisms, which may be tested by relatively simple SNP analysis, however requiring DNA from the test individuals. Target genes for the efficiency of a given medicine or predisposition of a given disease are also subject to population studies, e.g., in Iceland, Estonia, Sweden, etc. For hypothesis testing and generation, several bio-banks with samples from patients and healthy persons within the pharmaceutical industry have been established during the past 10 years. Thus, more than 100,000 samples are stored in the freezers of either the pharmaceutical companies or their contractual partners at universities and test institutions. Ethical issues related to data protection of the individuals providing samples to bio-banks are several: nature and extent of information prior to consent, coverage of the consent given by the study person, labeling and storage of the sample and data (coded or anonymized). In general, genetic test data, once obtained, are permanent and cannot be changed. The test data may imply information that is not beneficial to the patient and his/her family (e.g., employment opportunities, insurance, etc.). Furthermore, there may be a long latency between the analysis of the genetic test and the clinical expression of the disease and wide differences in the disease patterns. Consequently, information about some genetic test data may stigmatize patients leading to poor quality of life. This has raised the issue of 'genetic exceptionalism' justifying specific regulation of use of genetic information. Discussions on how to handle sampling and data are ongoing within the industry and the regulatory sphere, the European Agency for the Evaluation of Medicinal Products (EMEA) having issued a position paper, the Council for International Organizations of Medical Sciences (CIOMS) having a working

  13. Age-Specific Gene Expression Profiles of Rhesus Monkey Ovaries Detected by Microarray Analysis

    Directory of Open Access Journals (Sweden)

    Hengxi Wei

    2015-01-01

    Full Text Available The biological function of human ovaries declines with age. To identify the potential molecular changes in ovarian aging, we performed genome-wide gene expression analysis by microarray of ovaries from young, middle-aged, and old rhesus monkeys. Microarray data was validated by quantitative real-time PCR. Results showed that a total of 503 (60 upregulated, 443 downregulated and 84 (downregulated genes were differentially expressed in old ovaries compared to young and middle-aged groups, respectively. No difference in gene expression was found between middle-aged and young groups. Differentially expressed genes were mainly enriched in cell and organelle, cellular and physiological process, binding, and catalytic activity. These genes were primarily associated with KEGG pathways of cell cycle, DNA replication and repair, oocyte meiosis and maturation, MAPK, TGF-beta, and p53 signaling pathway. Genes upregulated were involved in aging, defense response, oxidation reduction, and negative regulation of cellular process; genes downregulated have functions in reproduction, cell cycle, DNA and RNA process, macromolecular complex assembly, and positive regulation of macromolecule metabolic process. These findings show that monkey ovary undergoes substantial change in global transcription with age. Gene expression profiles are useful in understanding the mechanisms underlying ovarian aging and age-associated infertility in primates.

  14. Intrinsic limits to gene regulation by global crosstalk

    Science.gov (United States)

    Friedlander, Tamar; Prizak, Roshan; Guet, Calin; Barton, Nicholas H.; Tkacik, Gasper

    Gene activity is mediated by the specificity of binding interactions between special proteins, called transcription factors, and short regulatory sequences on the DNA, where different protein species preferentially bind different DNA targets. Limited interaction specificity may lead to crosstalk: a regulatory state in which a gene is either incorrectly activated due to spurious interactions or remains erroneously inactive. Since each protein can potentially interact with numerous DNA targets, crosstalk is inherently a global problem, yet has previously not been studied as such. We construct a theoretical framework to analyze the effects of global crosstalk on gene regulation, using statistical mechanics. We find that crosstalk in regulatory interactions puts fundamental limits on the reliability of gene regulation that are not easily mitigated by tuning proteins concentrations or by complex regulatory schemes proposed in the literature. Our results suggest that crosstalk imposes a previously unexplored global constraint on the functioning and evolution of regulatory networks, which is qualitatively distinct from the known constraints that act at the level of individual gene regulatory elements. The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA Grant agreement Nr. 291734 (T.F.) and ERC Grant Nr. 250152 (N.B.).

  15. Abundance profiling of specific gene groups using precomputed gut metagenomes yields novel biological hypotheses.

    Directory of Open Access Journals (Sweden)

    Konstantin Yarygin

    Full Text Available The gut microbiota is essentially a multifunctional bioreactor within a human being. The exploration of its enormous metabolic potential provides insights into the mechanisms underlying microbial ecology and interactions with the host. The data obtained using "shotgun" metagenomics capture information about the whole spectrum of microbial functions. However, each new study presenting new sequencing data tends to extract only a little of the information concerning the metabolic potential and often omits specific functions. A meta-analysis of the available data with an emphasis on biomedically relevant gene groups can unveil new global trends in the gut microbiota. As a step toward the reuse of metagenomic data, we developed a method for the quantitative profiling of user-defined groups of genes in human gut metagenomes. This method is based on the quick analysis of a gene coverage matrix obtained by pre-mapping the metagenomic reads to a global gut microbial catalogue. The method was applied to profile the abundance of several gene groups related to antibiotic resistance, phages, biosynthesis clusters and carbohydrate degradation in 784 metagenomes from healthy populations worldwide and patients with inflammatory bowel diseases and obesity. We discovered country-wise functional specifics in gut resistome and virome compositions. The most distinct features of the disease microbiota were found for Crohn's disease, followed by ulcerative colitis and obesity. Profiling of the genes belonging to crAssphage showed that its abundance varied across the world populations and was not associated with clinical status. We demonstrated temporal resilience of crAssphage and the influence of the sample preparation protocol on its detected abundance. Our approach offers a convenient method to add value to accumulated "shotgun" metagenomic data by helping researchers state and assess novel biological hypotheses.

  16. Microarray analysis of gene expression profiles in ripening pineapple fruits.

    Science.gov (United States)

    Koia, Jonni H; Moyle, Richard L; Botella, Jose R

    2012-12-18

    Pineapple (Ananas comosus) is a tropical fruit crop of significant commercial importance. Although the physiological changes that occur during pineapple fruit development have been well characterized, little is known about the molecular events that occur during the fruit ripening process. Understanding the molecular basis of pineapple fruit ripening will aid the development of new varieties via molecular breeding or genetic modification. In this study we developed a 9277 element pineapple microarray and used it to profile gene expression changes that occur during pineapple fruit ripening. Microarray analyses identified 271 unique cDNAs differentially expressed at least 1.5-fold between the mature green and mature yellow stages of pineapple fruit ripening. Among these 271 sequences, 184 share significant homology with genes encoding proteins of known function, 53 share homology with genes encoding proteins of unknown function and 34 share no significant homology with any database accession. Of the 237 pineapple sequences with homologs, 160 were up-regulated and 77 were down-regulated during pineapple fruit ripening. DAVID Functional Annotation Cluster (FAC) analysis of all 237 sequences with homologs revealed confident enrichment scores for redox activity, organic acid metabolism, metalloenzyme activity, glycolysis, vitamin C biosynthesis, antioxidant activity and cysteine peptidase activity, indicating the functional significance and importance of these processes and pathways during pineapple fruit development. Quantitative real-time PCR analysis validated the microarray expression results for nine out of ten genes tested. This is the first report of a microarray based gene expression study undertaken in pineapple. Our bioinformatic analyses of the transcript profiles have identified a number of genes, processes and pathways with putative involvement in the pineapple fruit ripening process. This study extends our knowledge of the molecular basis of pineapple fruit

  17. Gene expression profiles of fin regeneration in loach (Paramisgurnus dabryanu).

    Science.gov (United States)

    Li, Li; He, Jingya; Wang, Linlin; Chen, Weihua; Chang, Zhongjie

    2017-11-01

    Teleost fins can regenerate accurate position-matched structure and function after amputation. However, we still lack systematic transcriptional profiling and methodologies to understand the molecular basis of fin regeneration. After histological analysis, we established a suppression subtraction hybridization library containing 418 distinct sequences expressed differentially during the process of blastema formation and differentiation in caudal fin regeneration. Genome ontology and comparative analysis of differential distribution of our data and the reference zebrafish genome showed notable subcategories, including multi-organism processes, response to stimuli, extracellular matrix, antioxidant activity, and cell junction function. KEGG pathway analysis allowed the effective identification of relevant genes in those pathways involved in tissue morphogenesis and regeneration, including tight junction, cell adhesion molecules, mTOR and Jak-STAT signaling pathway. From relevant function subcategories and signaling pathways, 78 clones were examined for further Southern-blot hybridization. Then, 17 genes were chosen and characterized using semi-quantitative PCR. Then 4 candidate genes were identified, including F11r, Mmp9, Agr2 and one without a match to any database. After real-time quantitative PCR, the results showed obvious expression changes in different periods of caudal fin regeneration. We can assume that the 4 candidates, likely valuable genes associated with fin regeneration, deserve additional attention. Thus, our study demonstrated how to investigate the transcript profiles with an emphasis on bioinformatics intervention and how to identify potential genes related to fin regeneration processes. The results also provide a foundation or knowledge for further research into genes and molecular mechanisms of fin regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Gene expression profiles of mouse spermatogenesis during recovery from irradiation

    DEFF Research Database (Denmark)

    Shah, Fozia J; Tanaka, Masami; Nielsen, John E

    2009-01-01

    BACKGROUND: Irradiation or chemotherapy that suspend normal spermatogenesis is commonly used to treat various cancers. Fortunately, spermatogenesis in many cases can be restored after such treatments but knowledge is limited about the re-initiation process. Earlier studies have described the cell......BACKGROUND: Irradiation or chemotherapy that suspend normal spermatogenesis is commonly used to treat various cancers. Fortunately, spermatogenesis in many cases can be restored after such treatments but knowledge is limited about the re-initiation process. Earlier studies have described...... the cellular changes that happen during recovery from irradiation by means of histology. We have earlier generated gene expression profiles during induction of spermatogenesis in mouse postnatal developing testes and found a correlation between profiles and the expressing cell types. The aim of the present...... work was to utilize the link between expression profile and cell types to follow the cellular changes that occur during post-irradiation recovery of spermatogenesis in order to describe recovery by means of gene expression. METHODS: Adult mouse testes were subjected to irradiation with 1 Gy...

  19. Gene expression profiling distinguishes between spontaneous and radiation-induced rat mammary carcinomas

    International Nuclear Information System (INIS)

    Imaoka, Tatsuhiko; Nishimura, Mayumi; Kakinuma, Shizuko; Shimada, Yoshiya; Yamashita, Satoshi; Ushijima, Toshikazu

    2008-01-01

    The ability to distinguish between spontaneous and radiation-induced cancers in humans is expected to improve the resolution of estimated risk from low dose radiation. Mammary carcinomas were obtained from Sprague-Dawley rats that were either untreated (n=45) or acutely γ-irradiated (1 Gy; n=20) at seven weeks of age. Gene expression profiles of three spontaneous and four radiation-induced carcinomas, as well as those of normal mammary glands, were analyzed by microarrays. Differential expression of identified genes of interest was then verified by quantitative polymerase chain reaction (qPCR). Cluster analysis of global gene expression suggested that spontaneous carcinomas were distinguished from a heterogeneous population of radiation-induced carcinomas, though most gene expressions were common. We identified 50 genes that had different expression levels between spontaneous and radiogenic carcinomas. We then selected 18 genes for confirmation of the microarray data by qPCR analysis and obtained the following results: high expression of Plg, Pgr and Wnt4 was characteristic to all spontaneous carcinomas; Tnfsf11, Fgf10, Agtr1a, S100A9 and Pou3f3 showed high expression in a subset of radiation-induced carcinomas; and increased Gp2, Areg and Igf2 expression, as well as decreased expression of Ca3 and noncoding RNA Mg1, were common to all carcinomas. Thus, gene expression analysis distinguished between spontaneous and radiogenic carcinomas, suggesting possible differences in their carcinogenic mechanism. (author)

  20. Profiling helper T cell subset gene expression in deer mice

    Directory of Open Access Journals (Sweden)

    Hjelle Brian

    2006-08-01

    Full Text Available Abstract Background Deer mice (Peromyscus maniculatus are the most common mammals in North America and are reservoirs for several zoonotic agents, including Sin Nombre virus (SNV, the principal etiologic agent of hantavirus cardiopulmonary syndrome (HCPS in North America. Unlike human HCPS patients, SNV-infected deer mice show no overt pathological symptoms, despite the presence of virus in the lungs. A neutralizing IgG antibody response occurs, but the virus establishes a persistent infection. Limitations of detailed analysis of deer mouse immune responses to SNV are the lack of reagents and methods for evaluating such responses. Results We developed real-time PCR-based detection assays for several immune-related transcription factor and cytokine genes from deer mice that permit the profiling of CD4+ helper T cells, including markers of Th1 cells (T-bet, STAT4, IFNγ, TNF, LT, Th2 cells (GATA-3, STAT6, IL-4, IL-5 and regulatory T cells (Fox-p3, IL-10, TGFβ1. These assays compare the expression of in vitro antigen-stimulated and unstimulated T cells from individual deer mice. Conclusion We developed molecular methods for profiling immune gene expression in deer mice, including a multiplexed real-time PCR assay for assessing expression of several cytokine and transcription factor genes. These assays should be useful for characterizing the immune responses of experimentally- and naturally-infected deer mice.

  1. Gene expression profile associated with radioresistance and malignancy in melanoma

    International Nuclear Information System (INIS)

    Ibañez, I.L.; Molinari, B.; Notcovich, C.; García, F.M.; Bracalente, C.; Zuccato, C.F.; Durán, H.

    2015-01-01

    The incidence of melanoma has substantially increased over the last decades. Melanomas respond poorly to treatments and no effective therapy exists to inhibit its metastatic spread. The aim of this study was to evaluate the association between radioresistance of melanoma cells and malignancy. A melanoma model developed in our laboratory from A375 human amelanotic melanoma cells was used. It consists in two catalase-overexpressing cell lines with the same genetic background, but with different phenotypes: A375-A7, melanotic and non-invasive and A375-G10, amelanotic and metastatic; and A375-PCDNA3 (transfected with empty plasmid) as control. Radiosensitivity was determined by clonogenic assay after irradiating these cells with a “1”3”7 Cs gamma source. Survival curves were fitted to the linear-quadratic model and surviving fraction at 2 Gy (SF2) was calculated. Results showed that A375-G10 cells were significantly more radioresistant than both A375-A7 and control cells, demonstrated by SF2 and α parameter of survival curves: SF2=0.32±0.03, 0.43±0.16 and 0.89±0.05 and α=0.45±0.05, 0.20±0.05 and 0 for A375-PCDNA3, A375-A7 and A375-G10 respectively. Bioinformatic analysis of whole genome expression microarrays data (Affymetrix) from these cells was performed. A priori defined gene sets associated with cell cycle, apoptosis and MAPK signaling pathway were collected from KEGG (Kyoto Encyclopedia of Genes and Genomes) to evaluate significant differences in gene set expression between cells by GSEA (Gene Set Enrichment Analysis). A375-G10 showed significant decrease in the expression of genes related to DNA damage response (ATM, TP53BP1 and MRE11A) compared to A375-A7 and controls. Moreover, A375-G10 exhibited down-regulated gene sets that are involved in DNA repair, checkpoint and negative regulation of cell cycle and apoptosis. In conclusion, A375-G10 gene expression profile could be involved in radioresistance mechanisms of these cells. Thus, this expression

  2. In silico gene expression profiling in Cannabis sativa.

    Science.gov (United States)

    Massimino, Luca

    2017-01-01

    The cannabis plant and its active ingredients (i.e., cannabinoids and terpenoids) have been socially stigmatized for half a century. Luckily, with more than 430,000 published scientific papers and about 600 ongoing and completed clinical trials, nowadays cannabis is employed for the treatment of many different medical conditions. Nevertheless, even if a large amount of high-throughput functional genomic data exists, most researchers feature a strong background in molecular biology but lack advanced bioinformatics skills. In this work, publicly available gene expression datasets have been analyzed giving rise to a total of 40,224 gene expression profiles taken from cannabis plant tissue at different developmental stages. The resource presented here will provide researchers with a starting point for future investigations with Cannabis sativa .

  3. Specific Tandem 3'UTR Patterns and Gene Expression Profiles in Mouse Thy1+ Germline Stem Cells.

    Directory of Open Access Journals (Sweden)

    Yan Huang

    Full Text Available A recently developed strategy of sequencing alternative polyadenylation (APA sites (SAPAS with second-generation sequencing technology can be used to explore complete genome-wide patterns of tandem APA sites and global gene expression profiles. spermatogonial stem cells (SSCs maintain long-term reproductive abilities in male mammals. The detailed mechanisms by which SSCs self-renew and generate mature spermatozoa are not clear. To understand the specific alternative polyadenylation pattern and global gene expression profile of male germline stem cells (GSCs, mainly referred to SSCs here, we isolated and purified mouse Thy1+ cells from testis by magnetic-activated cell sorting (MACS and then used the SAPAS method for analysis, using pluripotent embryonic stem cells (ESCs and differentiated mouse embryonic fibroblast cells (MEFs as controls. As a result, we obtained 99,944 poly(A sites, approximately 40% of which were newly detected in our experiments. These poly(A sites originated from three mouse cell types and covered 17,499 genes, including 831 long non-coding RNA (lncRNA genes. We observed that GSCs tend to have shorter 3'UTR lengths while MEFs tend towards longer 3'UTR lengths. We also identified 1337 genes that were highly expressed in GSCs, and these genes were highly consistent with the functional characteristics of GSCs. Our detailed bioinformatics analysis identified APA site-switching events at 3'UTRs and many new specifically expressed genes in GSCs, which we experimentally confirmed. Furthermore, qRT-PCR was performed to validate several events of the 334 genes with distal-to-proximal poly(A switch in GSCs. Consistently APA reporter assay confirmed the total 3'UTR shortening in GSCs compared to MEFs. We also analyzed the cis elements around the proximal poly(A site preferentially used in GSCs and found C-rich elements may contribute to this regulation. Overall, our results identified the expression level and polyadenylation site

  4. Specific Tandem 3'UTR Patterns and Gene Expression Profiles in Mouse Thy1+ Germline Stem Cells

    Science.gov (United States)

    Lin, Zhuoheng; Feng, Xuyang; Jiang, Xue; Songyang, Zhou; Huang, Junjiu

    2015-01-01

    A recently developed strategy of sequencing alternative polyadenylation (APA) sites (SAPAS) with second-generation sequencing technology can be used to explore complete genome-wide patterns of tandem APA sites and global gene expression profiles. spermatogonial stem cells (SSCs) maintain long-term reproductive abilities in male mammals. The detailed mechanisms by which SSCs self-renew and generate mature spermatozoa are not clear. To understand the specific alternative polyadenylation pattern and global gene expression profile of male germline stem cells (GSCs, mainly referred to SSCs here), we isolated and purified mouse Thy1+ cells from testis by magnetic-activated cell sorting (MACS) and then used the SAPAS method for analysis, using pluripotent embryonic stem cells (ESCs) and differentiated mouse embryonic fibroblast cells (MEFs) as controls. As a result, we obtained 99,944 poly(A) sites, approximately 40% of which were newly detected in our experiments. These poly(A) sites originated from three mouse cell types and covered 17,499 genes, including 831 long non-coding RNA (lncRNA) genes. We observed that GSCs tend to have shorter 3'UTR lengths while MEFs tend towards longer 3'UTR lengths. We also identified 1337 genes that were highly expressed in GSCs, and these genes were highly consistent with the functional characteristics of GSCs. Our detailed bioinformatics analysis identified APA site-switching events at 3'UTRs and many new specifically expressed genes in GSCs, which we experimentally confirmed. Furthermore, qRT-PCR was performed to validate several events of the 334 genes with distal-to-proximal poly(A) switch in GSCs. Consistently APA reporter assay confirmed the total 3'UTR shortening in GSCs compared to MEFs. We also analyzed the cis elements around the proximal poly(A) site preferentially used in GSCs and found C-rich elements may contribute to this regulation. Overall, our results identified the expression level and polyadenylation site profiles and

  5. Global gene response in Saccharomyces cerevisiae exposed to silver nanoparticles.

    Science.gov (United States)

    Niazi, Javed H; Sang, Byoung-In; Kim, Yeon Seok; Gu, Man Bock

    2011-08-01

    Silver nanoparticles (AgNPs), exhibiting a broad size range and morphologies with highly reactive facets, which are widely applicable in real-life but not fully verified for biosafety and ecotoxicity, were subjected to report transcriptome profile in yeast Saccharomyces cerevisiae. A large number of genes accounted for ∼3% and ∼5% of the genome affected by AgNPs and Ag-ions, respectively. Principal component and cluster analysis suggest that the different physical forms of Ag were the major cause in differential expression profile. Among 90 genes affected by both AgNPs and Ag-ions, metalloprotein mediating high resistance to copper (CUP1-1 and CUP1-2) were strongly induced by AgNPs (∼45-folds) and Ag-ions (∼22-folds), respectively. A total of 17 genes, responsive to chemical stimuli, stress, and transport processes, were differentially induced by AgNPs. The differential expression was also seen with Ag-ions that affected 73 up- and 161 down-regulating genes, and most of these were involved in ion transport and homeostasis. This study provides new information on the knowledge for impact of nanoparticles on living microorganisms that can be extended to other nanoparticles.

  6. Neurocognitive Profiles in Duchenne Muscular Dystrophy and Gene Mutation Site

    Science.gov (United States)

    D’Angelo, Maria Grazia; Lorusso, Maria Luisa; Civati, Federica; Comi, Giacomo Pietro; Magri, Francesca; Del Bo, Roberto; Guglieri, Michela; Molteni, Massimo; Turconi, Anna Carla; Bresolin, Nereo

    2011-01-01

    The presence of nonprogressive cognitive impairment is recognized as a common feature in a substantial proportion of patients with Duchenne muscular dystrophy. To investigate the possible role of mutations along the dystrophin gene affecting different brain dystrophin isoforms and specific cognitive profiles, 42 school-age children affected with Duchenne muscular dystrophy, subdivided according to sites of mutations along the dystrophin gene, underwent a battery of tests tapping a wide range of intellectual, linguistic, and neuropsychologic functions. Full-scale intelligence quotient was approximately 1 S.D. below the population average in the whole group of dystrophic children. Patients with Duchenne muscular dystrophy and mutations located in the distal portion of the dystrophin gene (involving the 140-kDa brain protein isoform, called Dp140) were generally more severely affected and expressed different patterns of strengths and impairments, compared with patients with Duchenne muscular dystrophy and mutations located in the proximal portion of the dystrophin gene (not involving Dp140). Patients with Duchenne muscular dystrophy and distal mutations demonstrated specific impairments in visuospatial functions and visual memory (which seemed intact in proximally mutated patients) and greater impairment in syntactic processing. PMID:22000308

  7. Transcriptome profiling of the Plutella xylostella (Lepidoptera: Plutellidae) ovary reveals genes involved in oogenesis.

    Science.gov (United States)

    Peng, Lu; Wang, Lei; Yang, Yi-Fan; Zou, Ming-Min; He, Wei-Yi; Wang, Yue; Wang, Qing; Vasseur, Liette; You, Min-Sheng

    2017-12-30

    As a specialized organ, the insect ovary performs valuable functions by ensuring fecundity and population survival. Oogenesis is the complex physiological process resulting in the production of mature eggs, which are involved in epigenetic programming, germ cell behavior, cell cycle regulation, etc. Identification of the genes involved in ovary development and oogenesis is critical to better understand the reproductive biology and screening for the potential molecular targets in Plutella xylostella, a worldwide destructive pest of economically major crops. Based on transcriptome sequencing, a total of 7.88Gb clean nucleotides was obtained, with 19,934 genes and 1861 new transcripts being identified. Expression profiling indicated that 61.7% of the genes were expressed (FPKM≥1) in the P. xylostella ovary. GO annotation showed that the pathways of multicellular organism reproduction and multicellular organism reproduction process, as well as gamete generation and chorion were significantly enriched. Processes that were most likely relevant to reproduction included the spliceosome, ubiquitin mediated proteolysis, endocytosis, PI3K-Akt signaling pathway, insulin signaling pathway, cAMP signaling pathway, and focal adhesion were identified in the top 20 'highly represented' KEGG pathways. Functional genes involved in oogenesis were further analyzed and validated by qRT-PCR to show their potential predominant roles in P. xylostella reproduction. Our newly developed P. xylostella ovary transcriptome provides an overview of the gene expression profiling in this specialized tissue and the functional gene network closely related to the ovary development and oogenesis. This is the first genome-wide transcriptome dataset of P. xylostella ovary that includes a subset of functionally activated genes. This global approach will be the basis for further studies on molecular mechanisms of P. xylostella reproduction aimed at screening potential molecular targets for integrated pest

  8. Altered gene expression profiles in the hippocampus and prefrontal cortex of type 2 diabetic rats

    Directory of Open Access Journals (Sweden)

    Abdul-Rahman Omar

    2012-02-01

    Full Text Available Abstract Background There has been an increasing body of epidemiologic and biochemical evidence implying the role of cerebral insulin resistance in Alzheimer-type dementia. For a better understanding of the insulin effect on the central nervous system, we performed microarray-based global gene expression profiling in the hippocampus, striatum and prefrontal cortex of streptozotocin-induced and spontaneously diabetic Goto-Kakizaki rats as model animals for type 1 and type 2 diabetes, respectively. Results Following pathway analysis and validation of gene lists by real-time polymerase chain reaction, 30 genes from the hippocampus, such as the inhibitory neuropeptide galanin, synuclein gamma and uncoupling protein 2, and 22 genes from the prefrontal cortex, e.g. galanin receptor 2, protein kinase C gamma and epsilon, ABCA1 (ATP-Binding Cassette A1, CD47 (Cluster of Differentiation 47 and the RET (Rearranged During Transfection protooncogene, were found to exhibit altered expression levels in type 2 diabetic model animals in comparison to non-diabetic control animals. These gene lists proved to be partly overlapping and encompassed genes related to neurotransmission, lipid metabolism, neuronal development, insulin secretion, oxidative damage and DNA repair. On the other hand, no significant alterations were found in the transcriptomes of the corpus striatum in the same animals. Changes in the cerebral gene expression profiles seemed to be specific for the type 2 diabetic model, as no such alterations were found in streptozotocin-treated animals. Conclusions According to our knowledge this is the first characterization of the whole-genome expression changes of specific brain regions in a diabetic model. Our findings shed light on the complex role of insulin signaling in fine-tuning brain functions, and provide further experimental evidence in support of the recently elaborated theory of type 3 diabetes.

  9. Global transcriptional profiling of longitudinal clinical isolates of Mycobacterium tuberculosis exhibiting rapid accumulation of drug resistance.

    Directory of Open Access Journals (Sweden)

    Anirvan Chatterjee

    Full Text Available The identification of multidrug resistant (MDR, extensively and totally drug resistant Mycobacterium tuberculosis (Mtb, in vulnerable sites such as Mumbai, is a grave threat to the control of tuberculosis. The current study aimed at explaining the rapid expression of MDR in Directly Observed Treatment Short Course (DOTS compliant patients, represents the first study comparing global transcriptional profiles of 3 pairs of clinical Mtb isolates, collected longitudinally at initiation and completion of DOTS. While the isolates were drug susceptible (DS at onset and MDR at completion of DOTS, they exhibited identical DNA fingerprints at both points of collection. The whole genome transcriptional analysis was performed using total RNA from H37Rv and 3 locally predominant spoligotypes viz. MANU1, CAS and Beijing, hybridized on MTBv3 (BuG@S microarray, and yielded 36, 98 and 45 differentially expressed genes respectively. Genes encoding transcription factors (sig, rpoB, cell wall biosynthesis (emb genes, protein synthesis (rpl and additional central metabolic pathways (ppdK, pknH, pfkB were found to be down regulated in the MDR isolates as compared to the DS isolate of the same genotype. Up regulation of drug efflux pumps, ABC transporters, trans-membrane proteins and stress response transcriptional factors (whiB in the MDR isolates was observed. The data indicated that Mtb, without specific mutations in drug target genes may persist in the host due to additional mechanisms like drug efflux pumps and lowered rate of metabolism. Furthermore this population of Mtb, which also showed reduced DNA repair activity, would result in selection and stabilization of spontaneous mutations in drug target genes, causing selection of a MDR strain in the presence of drug pressures. Efflux pump such as drrA may play a significant role in increasing fitness of low level drug resistant cells and assist in survival of Mtb till acquisition of drug resistant mutations with

  10. Global patterns of diversity and selection in human tyrosinase gene.

    Science.gov (United States)

    Hudjashov, Georgi; Villems, Richard; Kivisild, Toomas

    2013-01-01

    Global variation in skin pigmentation is one of the most striking examples of environmental adaptation in humans. More than two hundred loci have been identified as candidate genes in model organisms and a few tens of these have been found to be significantly associated with human skin pigmentation in genome-wide association studies. However, the evolutionary history of different pigmentation genes is rather complex: some loci have been subjected to strong positive selection, while others evolved under the relaxation of functional constraints in low UV environment. Here we report the results of a global study of the human tyrosinase gene, which is one of the key enzymes in melanin production, to assess the role of its variation in the evolution of skin pigmentation differences among human populations. We observe a higher rate of non-synonymous polymorphisms in the European sample consistent with the relaxation of selective constraints. A similar pattern was previously observed in the MC1R gene and concurs with UV radiation-driven model of skin color evolution by which mutations leading to lower melanin levels and decreased photoprotection are subject to purifying selection at low latitudes while being tolerated or even favored at higher latitudes because they facilitate UV-dependent vitamin D production. Our coalescent date estimates suggest that the non-synonymous variants, which are frequent in Europe and North Africa, are recent and have emerged after the separation of East and West Eurasian populations.

  11. Impact of elevated plasma serotonin on global gene expression of murine megakaryocytes.

    Directory of Open Access Journals (Sweden)

    Charles P Mercado

    Full Text Available Serotonin (5-HT is a biogenic amine that also acts as a mitogen and a developmental signal early in rodent embryogenesis. Genetic and pharmacological disruption of 5-HT signaling causes various diseases and disorders via mediating central nervous system, cardiovascular system, and serious abnormalities on a growing embryo. Today, neither the effective modulators on 5-HT signaling pathways nor the genes affected by 5-HT signal are well known yet.In an attempt to identify the genes altered by 5-HT signaling pathways, we analyzed the global gene expression via the Illumina array platform using the mouse WG-6 v2.0 Expression BeadChip containing 45,281 probe sets representing 30,854 genes in megakaryocytes isolated from mice infused with 5-HT or saline. We identified 723 differentially expressed genes of which 706 were induced and 17 were repressed by elevated plasma 5-HT.Hierarchical gene clustering analysis was utilized to represent relations between groups and clusters. Using gene ontology mining tools and canonical pathway analyses, we identified multiple biological pathways that are regulated by 5-HT: (i cytoskeletal remodeling, (ii G-protein signaling, (iii vesicular transport, and (iv apoptosis and survival. Our data encompass the first extensive genome-wide based profiling in the progenitors of platelets in response to 5-HT elevation in vivo.

  12. Gene Structures, Evolution, Classification and Expression Profiles of the Aquaporin Gene Family in Castor Bean (Ricinus communis L..

    Directory of Open Access Journals (Sweden)

    Zhi Zou

    Full Text Available Aquaporins (AQPs are a class of integral membrane proteins that facilitate the passive transport of water and other small solutes across biological membranes. Castor bean (Ricinus communis L., Euphobiaceae, an important non-edible oilseed crop, is widely cultivated for industrial, medicinal and cosmetic purposes. Its recently available genome provides an opportunity to analyze specific gene families. In this study, a total of 37 full-length AQP genes were identified from the castor bean genome, which were assigned to five subfamilies, including 10 plasma membrane intrinsic proteins (PIPs, 9 tonoplast intrinsic proteins (TIPs, 8 NOD26-like intrinsic proteins (NIPs, 6 X intrinsic proteins (XIPs and 4 small basic intrinsic proteins (SIPs on the basis of sequence similarities. Functional prediction based on the analysis of the aromatic/arginine (ar/R selectivity filter, Froger's positions and specificity-determining positions (SDPs showed a remarkable difference in substrate specificity among subfamilies. Homology analysis supported the expression of all 37 RcAQP genes in at least one of examined tissues, e.g., root, leaf, flower, seed and endosperm. Furthermore, global expression profiles with deep transcriptome sequencing data revealed diverse expression patterns among various tissues. The current study presents the first genome-wide analysis of the AQP gene family in castor bean. Results obtained from this study provide valuable information for future functional analysis and utilization.

  13. Gene expression profiling in the inductive human hematopoietic microenvironment

    International Nuclear Information System (INIS)

    Zhao Yongjun; Chen, Edwin; Li Liheng; Gong Baiwei; Xie Wei; Nanji, Shaherose; Dube, Ian D.; Hough, Margaret R.

    2004-01-01

    Human hematopoietic stem cells (HSCs) and their progenitors can be maintained in vitro in long-term bone marrow cultures (LTBMCs) in which constituent HSCs can persist within the adherent layers for up to 2 months. Media replenishment of LTBMCs has been shown to induce transition of HSCs from a quiescent state to an active cycling state. We hypothesize that the media replenishment of the LTBMCs leads to the activation of important regulatory genes uniquely involved in HSC proliferation and differentiation. To profile the gene expression changes associated with HSC activation, we performed suppression subtractive hybridization (SSH) on day 14 human LTBMCs following 1-h media replenishment and on unmanipulated controls. The generated SSH library contained 191 differentially up-regulated expressed sequence tags (ESTs), the majority corresponding to known genes related to various intracellular processes, including signal transduction pathways, protein synthesis, and cell cycle regulation. Nineteen ESTs represented previously undescribed sequences encoding proteins of unknown function. Differential up-regulation of representative genes, including IL-8, IL-1, putative cytokine 21/HC21, MAD3, and a novel EST was confirmed by semi-quantitative RT-PCR. Levels of fibronectin, G-CSF, and stem cell factor also increased in the conditioned media of LTBMCs as assessed by ELISA, indicating increased synthesis and secretion of these factors. Analysis of our library provides insights into some of the immediate early gene changes underlying the mechanisms by which the stromal elements within the LTBMCs contribute to the induction of HSC activation and provides the opportunity to identify as yet unrecognized factors regulating HSC activation in the LTBMC milieu

  14. Local and global responses in complex gene regulation networks

    Science.gov (United States)

    Tsuchiya, Masa; Selvarajoo, Kumar; Piras, Vincent; Tomita, Masaru; Giuliani, Alessandro

    2009-04-01

    An exacerbated sensitivity to apparently minor stimuli and a general resilience of the entire system stay together side-by-side in biological systems. This apparent paradox can be explained by the consideration of biological systems as very strongly interconnected network systems. Some nodes of these networks, thanks to their peculiar location in the network architecture, are responsible for the sensitivity aspects, while the large degree of interconnection is at the basis of the resilience properties of the system. One relevant feature of the high degree of connectivity of gene regulation networks is the emergence of collective ordered phenomena influencing the entire genome and not only a specific portion of transcripts. The great majority of existing gene regulation models give the impression of purely local ‘hard-wired’ mechanisms disregarding the emergence of global ordered behavior encompassing thousands of genes while the general, genome wide, aspects are less known. Here we address, on a data analysis perspective, the discrimination between local and global scale regulations, this goal was achieved by means of the examination of two biological systems: innate immune response in macrophages and oscillating growth dynamics in yeast. Our aim was to reconcile the ‘hard-wired’ local view of gene regulation with a global continuous and scalable one borrowed from statistical physics. This reconciliation is based on the network paradigm in which the local ‘hard-wired’ activities correspond to the activation of specific crucial nodes in the regulation network, while the scalable continuous responses can be equated to the collective oscillations of the network after a perturbation.

  15. Gene profile analysis of osteoblast genes differentially regulated by histone deacetylase inhibitors

    Directory of Open Access Journals (Sweden)

    Lamblin Anne-Francoise

    2007-10-01

    Full Text Available Abstract Background Osteoblast differentiation requires the coordinated stepwise expression of multiple genes. Histone deacetylase inhibitors (HDIs accelerate the osteoblast differentiation process by blocking the activity of histone deacetylases (HDACs, which alter gene expression by modifying chromatin structure. We previously demonstrated that HDIs and HDAC3 shRNAs accelerate matrix mineralization and the expression of osteoblast maturation genes (e.g. alkaline phosphatase, osteocalcin. Identifying other genes that are differentially regulated by HDIs might identify new pathways that contribute to osteoblast differentiation. Results To identify other osteoblast genes that are altered early by HDIs, we incubated MC3T3-E1 preosteoblasts with HDIs (trichostatin A, MS-275, or valproic acid for 18 hours in osteogenic conditions. The promotion of osteoblast differentiation by HDIs in this experiment was confirmed by osteogenic assays. Gene expression profiles relative to vehicle-treated cells were assessed by microarray analysis with Affymetrix GeneChip 430 2.0 arrays. The regulation of several genes by HDIs in MC3T3-E1 cells and primary osteoblasts was verified by quantitative real-time PCR. Nine genes were differentially regulated by at least two-fold after exposure to each of the three HDIs and six were verified by PCR in osteoblasts. Four of the verified genes (solute carrier family 9 isoform 3 regulator 1 (Slc9a3r1, sorbitol dehydrogenase 1, a kinase anchor protein, and glutathione S-transferase alpha 4 were induced. Two genes (proteasome subunit, beta type 10 and adaptor-related protein complex AP-4 sigma 1 were suppressed. We also identified eight growth factors and growth factor receptor genes that are significantly altered by each of the HDIs, including Frizzled related proteins 1 and 4, which modulate the Wnt signaling pathway. Conclusion This study identifies osteoblast genes that are regulated early by HDIs and indicates pathways that

  16. Reconstructing Dynamic Promoter Activity Profiles from Reporter Gene Data.

    Science.gov (United States)

    Kannan, Soumya; Sams, Thomas; Maury, Jérôme; Workman, Christopher T

    2018-03-16

    Accurate characterization of promoter activity is important when designing expression systems for systems biology and metabolic engineering applications. Promoters that respond to changes in the environment enable the dynamic control of gene expression without the necessity of inducer compounds, for example. However, the dynamic nature of these processes poses challenges for estimating promoter activity. Most experimental approaches utilize reporter gene expression to estimate promoter activity. Typically the reporter gene encodes a fluorescent protein that is used to infer a constant promoter activity despite the fact that the observed output may be dynamic and is a number of steps away from the transcription process. In fact, some promoters that are often thought of as constitutive can show changes in activity when growth conditions change. For these reasons, we have developed a system of ordinary differential equations for estimating dynamic promoter activity for promoters that change their activity in response to the environment that is robust to noise and changes in growth rate. Our approach, inference of dynamic promoter activity (PromAct), improves on existing methods by more accurately inferring known promoter activity profiles. This method is also capable of estimating the correct scale of promoter activity and can be applied to quantitative data sets to estimate quantitative rates.

  17. Global Gene-Expression Analysis to Identify Differentially Expressed Genes Critical for the Heat Stress Response in Brassica rapa.

    Directory of Open Access Journals (Sweden)

    Xiangshu Dong

    Full Text Available Genome-wide dissection of the heat stress response (HSR is necessary to overcome problems in crop production caused by global warming. To identify HSR genes, we profiled gene expression in two Chinese cabbage inbred lines with different thermotolerances, Chiifu and Kenshin. Many genes exhibited >2-fold changes in expression upon exposure to 0.5- 4 h at 45°C (high temperature, HT: 5.2% (2,142 genes in Chiifu and 3.7% (1,535 genes in Kenshin. The most enriched GO (Gene Ontology items included 'response to heat', 'response to reactive oxygen species (ROS', 'response to temperature stimulus', 'response to abiotic stimulus', and 'MAPKKK cascade'. In both lines, the genes most highly induced by HT encoded small heat shock proteins (Hsps and heat shock factor (Hsf-like proteins such as HsfB2A (Bra029292, whereas high-molecular weight Hsps were constitutively expressed. Other upstream HSR components were also up-regulated: ROS-scavenging genes like glutathione peroxidase 2 (BrGPX2, Bra022853, protein kinases, and phosphatases. Among heat stress (HS marker genes in Arabidopsis, only exportin 1A (XPO1A (Bra008580, Bra006382 can be applied to B. rapa for basal thermotolerance (BT and short-term acquired thermotolerance (SAT gene. CYP707A3 (Bra025083, Bra021965, which is involved in the dehydration response in Arabidopsis, was associated with membrane leakage in both lines following HS. Although many transcription factors (TF genes, including DREB2A (Bra005852, were involved in HS tolerance in both lines, Bra024224 (MYB41 and Bra021735 (a bZIP/AIR1 [Anthocyanin-Impaired-Response-1] were specific to Kenshin. Several candidate TFs involved in thermotolerance were confirmed as HSR genes by real-time PCR, and these assignments were further supported by promoter analysis. Although some of our findings are similar to those obtained using other plant species, clear differences in Brassica rapa reveal a distinct HSR in this species. Our data could also provide a

  18. Gene expression profiling of liver from dairy cows treated intra-mammary with lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Vels Lotte

    2008-09-01

    Full Text Available Abstract Background Liver plays a profound role in the acute phase response (APR observed in the early phase of acute bovine mastitis caused by Escherichia coli (E. coli. To gain an insight into the genes and pathways involved in hepatic APR of dairy cows we performed a global gene expression analysis of liver tissue sampled at different time points before and after intra-mammary (IM exposure to E. coli lipopolysaccharide (LPS treatment. Results Approximately 20% target transcripts were differentially expressed and eight co-expression clusters were identified. Each cluster had a unique time-dependent expression profile and consisted of genes involved in different biological processes. Our findings suggest that APR in the liver is triggered by the activation of signaling pathways that are involved with common and hepatic-specific transcription factors and pro-inflammatory cytokines. These mediators in turn stimulated or repressed the expression of genes encoding acute phase proteins (APP, collectins, complement components, chemokines, cell adhesion molecules and key metabolic enzymes during the APR. Hormones, anti-inflammatory and other hypothalamus-pituitary-adrenal axis (HPAA linked mediators also seemed to participate in APR. Conclusion Performing global gene expression analysis on liver tissue from IM LPS treated cows verified that the liver plays a major role in the APR of E. coli mastitis, and that the bovine hepatic APR follows the same pattern as other mammals when they are challenged with LPS. Our work presents the first insight into the dynamic changes in gene expression in the liver that influences the induction, kinetics and clinical outcome of the APR in dairy cows.

  19. Gene expression profiling of canine osteosarcoma reveals genes associated with short and long survival times

    Directory of Open Access Journals (Sweden)

    Rao Nagesha AS

    2009-09-01

    Full Text Available Abstract Background Gene expression profiling of spontaneous tumors in the dog offers a unique translational opportunity to identify prognostic biomarkers and signaling pathways that are common to both canine and human. Osteosarcoma (OS accounts for approximately 80% of all malignant bone tumors in the dog. Canine OS are highly comparable with their human counterpart with respect to histology, high metastatic rate and poor long-term survival. This study investigates the prognostic gene profile among thirty-two primary canine OS using canine specific cDNA microarrays representing 20,313 genes to identify genes and cellular signaling pathways associated with survival. This, the first report of its kind in dogs with OS, also demonstrates the advantages of cross-species comparison with human OS. Results The 32 tumors were classified into two prognostic groups based on survival time (ST. They were defined as short survivors (dogs with poor prognosis: surviving fewer than 6 months and long survivors (dogs with better prognosis: surviving 6 months or longer. Fifty-one transcripts were found to be differentially expressed, with common upregulation of these genes in the short survivors. The overexpressed genes in short survivors are associated with possible roles in proliferation, drug resistance or metastasis. Several deregulated pathways identified in the present study, including Wnt signaling, Integrin signaling and Chemokine/cytokine signaling are comparable to the pathway analysis conducted on human OS gene profiles, emphasizing the value of the dog as an excellent model for humans. Conclusion A molecular-based method for discrimination of outcome for short and long survivors is useful for future prognostic stratification at initial diagnosis, where genes and pathways associated with cell cycle/proliferation, drug resistance and metastasis could be potential targets for diagnosis and therapy. The similarities between human and canine OS makes the

  20. Identification of circulating miRNA biomarkers based on global quantitative real-time PCR profiling

    Directory of Open Access Journals (Sweden)

    Kang Kang

    2012-02-01

    Full Text Available Abstract MicroRNAs (miRNAs are small noncoding RNAs (18-25 nucleotides that regulate gene expression at the post-transcriptional level. Recent studies have demonstrated the presence of miRNAs in the blood circulation. Deregulation of miRNAs in serum or plasma has been associated with many diseases including cancers and cardiovascular diseases, suggesting the possible use of miRNAs as diagnostic biomarkers. However, the detection of the small amount of miRNAs found in serum or plasma requires a method with high sensitivity and accuracy. Therefore, the current study describes polymerase chain reaction (PCR-based methods for measuring circulating miRNAs. Briefly, the procedure involves four major steps: (1 sample collection and preparation; (2 global miRNAs profiling using quantitative real-time PCR (qRT-PCR; (3 data normalization and analysis; and (4 selection and validation of miRNA biomarkers. In conclusion, qRT-PCR is a promising method for profiling of circulating miRNAs as biomarkers.

  1. Assessment of gene expression profiles in peripheral occlusive arterial disease.

    Science.gov (United States)

    Bubenek, Serban; Nastase, Anca; Niculescu, Ana Maria; Baila, Sorin; Herlea, Vlad; Lazar, Vadimir; Paslaru, Liliana; Botezatu, Anca; Tomescu, Dana; Popescu, Irinel; Dima, Simona

    2012-01-01

    Molecular events responsible for the onset and progression of peripheral occlusive arterial disease (POAD) are incompletely understood. Gene expression profiling may point out relevant features of the disease. Tissue samples were collected as operatory waste from a total of 36 patients with (n = 18) and without (n = 18) POAD. The tissues were histologically evaluated, and the patients with POAD were classified according to Leriche-Fontaine (LF) classification: 11% with stage IIB, 22% with stage III, and 67% with stage IV. Total RNA was isolated from all samples and hybridized onto Agilent 4×44K Oligo microarray slides. The bioinformatic analysis identified genes differentially expressed between control and pathologic tissues. Ten genes with a fold change ≥ 2 (1 with a fold change ≥ 1.8) were selected for quantitative polymerase chain reaction validation (GPC3, CFD, GDF10, ITLN1, TSPAN8, MMP28, NNMT, SERPINA5, LUM, and FDXR). C-reactive protein (CRP) was assessed with a specific assay, while nicotinamide N-methyltransferase (NNMT) was evaluated in the patient serum by enzyme-linked immunosorbent assay. A multiple regression analysis showed that the level of CRP in the serum is correlated with the POAD LF stages (r(2) = 0.22, P = 0.046) and that serum NNMT is higher in IV LF POAD patients (P = 0.005). The mRNA gene expression of LUM is correlated with the LF stage (r(2) = 0.45, P = 0.009), and the mRNA level of ITLN1 is correlated with the ankle-brachial index (r(2) = 0.42, P = 0.008). Our analysis shows that NNMT, ITLN1, LUM, CFD, and TSPAN8 in combination with other known markers, such as CRP, could be evaluated as a panel of biomarkers of POAD. Copyright © 2012 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  2. NODC Standard Product: Global ocean temperature and salinity profiles (2 disc set) (NODC Accession 0098058)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This set of CD-ROMs contains global ocean temperature and salinity profiles derived from NODC archive data files. It includes oceanographic station (bottle) data,...

  3. Asymptotic profile of global solutions to the generalized double dispersion equation via the nonlinear term

    Science.gov (United States)

    Wang, Yu-Zhu; Wei, Changhua

    2018-04-01

    In this paper, we investigate the initial value problem for the generalized double dispersion equation in R^n. Weighted decay estimate and asymptotic profile of global solutions are established for n≥3 . The global existence result was already proved by Kawashima and the first author in Kawashima and Wang (Anal Appl 13:233-254, 2015). Here, we show that the nonlinear term plays an important role in this asymptotic profile.

  4. Gene Expression Commons: an open platform for absolute gene expression profiling.

    Directory of Open Access Journals (Sweden)

    Jun Seita

    Full Text Available Gene expression profiling using microarrays has been limited to comparisons of gene expression between small numbers of samples within individual experiments. However, the unknown and variable sensitivities of each probeset have rendered the absolute expression of any given gene nearly impossible to estimate. We have overcome this limitation by using a very large number (>10,000 of varied microarray data as a common reference, so that statistical attributes of each probeset, such as the dynamic range and threshold between low and high expression, can be reliably discovered through meta-analysis. This strategy is implemented in a web-based platform named "Gene Expression Commons" (https://gexc.stanford.edu/ which contains data of 39 distinct highly purified mouse hematopoietic stem/progenitor/differentiated cell populations covering almost the entire hematopoietic system. Since the Gene Expression Commons is designed as an open platform, investigators can explore the expression level of any gene, search by expression patterns of interest, submit their own microarray data, and design their own working models representing biological relationship among samples.

  5. Evaluation of Global Ozone Monitoring Experiment (GOME) ozone profiles from nine different algorithms

    NARCIS (Netherlands)

    Meijer, Y.J.; Swart, D.P.J.; Baier, F.; Bhartia, P.K.; Bodeker, G.E.; Casadio, S.; Chance, K.; Frate, Del F.; Erbertseder, T.; Felder, M.D.; Flynn, L.E.; Godin-Beekmann, S.; Hansen, G.; Hasekamp, O.P.; Kaifel, A.; Kelder, H.M.; Kerridge, B.J.; Lambert, J.-C.; Landgraf, J.; Latter, B.G.; Liu, X.; McDermid, I.S.; Pachepsky, Y.; Rozanov, V.; Siddans, R.; Tellmann, S.; A, van der R.J.; Oss, van R.F.; Weber, M.; Zehner, C.

    2006-01-01

    An evaluation is made of ozone profiles retrieved from measurements of the nadir-viewing Global Ozone Monitoring Experiment (GOME) instrument. Currently, four different approaches are used to retrieve ozone profile information from GOME measurements, which differ in the use of external information

  6. Differential genome-wide gene expression profiling of bovine largest and second-largest follicles: identification of genes associated with growth of dominant follicles

    Directory of Open Access Journals (Sweden)

    Takahashi Toru

    2010-02-01

    Full Text Available Abstract Background Bovine follicular development is regulated by numerous molecular mechanisms and biological pathways. In this study, we tried to identify differentially expressed genes between largest (F1 and second-largest follicles (F2, and classify them by global gene expression profiling using a combination of microarray and quantitative real-time PCR (QPCR analysis. The follicular status of F1 and F2 were further evaluated in terms of healthy and atretic conditions by investigating mRNA localization of identified genes. Methods Global gene expression profiles of F1 (10.7 +/- 0.7 mm and F2 (7.8 +/- 0.2 mm were analyzed by hierarchical cluster analysis and expression profiles of 16 representative genes were confirmed by QPCR analysis. In addition, localization of six identified transcripts was investigated in healthy and atretic follicles using in situ hybridization. The healthy or atretic condition of examined follicles was classified by progesterone and estradiol concentrations in follicular fluid. Results Hierarchical cluster analysis of microarray data classified the follicles into two clusters. Cluster A was composed of only F2 and was characterized by high expression of 31 genes including IGFBP5, whereas cluster B contained only F1 and predominantly expressed 45 genes including CYP19 and FSHR. QPCR analysis confirmed AMH, CYP19, FSHR, GPX3, PlGF, PLA2G1B, SCD and TRB2 were greater in F1 than F2, while CCL2, GADD45A, IGFBP5, PLAUR, SELP, SPP1, TIMP1 and TSP2 were greater in F2 than in F1. In situ hybridization showed that AMH and CYP19 were detected in granulosa cells (GC of healthy as well as atretic follicles. PlGF was localized in GC and in the theca layer (TL of healthy follicles. IGFBP5 was detected in both GC and TL of atretic follicles. GADD45A and TSP2 were localized in both GC and TL of atretic follicles, whereas healthy follicles expressed them only in GC. Conclusion We demonstrated that global gene expression profiling of F

  7. Aging: a portrait from gene expression profile in blood cells.

    Science.gov (United States)

    Calabria, Elisa; Mazza, Emilia Maria Cristina; Dyar, Kenneth Allen; Pogliaghi, Silvia; Bruseghini, Paolo; Morandi, Carlo; Salvagno, Gian Luca; Gelati, Matteo; Guidi, Gian Cesare; Bicciato, Silvio; Schiaffino, Stefano; Schena, Federico; Capelli, Carlo

    2016-08-01

    The availability of reliable biomarkers of aging is important not only to monitor the effect of interventions and predict the timing of pathologies associated with aging but also to understand the mechanisms and devise appropriate countermeasures. Blood cells provide an easily available tissue and gene expression profiles from whole blood samples appear to mirror disease states and some aspects of the aging process itself. We report here a microarray analysis of whole blood samples from two cohorts of healthy adult and elderly subjects, aged 43±3 and 68±4 years, respectively, to monitor gene expression changes in the initial phase of the senescence process. A number of significant changes were found in the elderly compared to the adult group, including decreased levels of transcripts coding for components of the mitochondrial respiratory chain, which correlate with a parallel decline in the maximum rate of oxygen consumption (VO2max), as monitored in the same subjects. In addition, blood cells show age-related changes in the expression of several markers of immunosenescence, inflammation and oxidative stress. These findings support the notion that the immune system has a major role in tissue homeostasis and repair, which appears to be impaired since early stages of the aging process.

  8. Integrated genomic and gene expression profiling identifies two major genomic circuits in urothelial carcinoma.

    Directory of Open Access Journals (Sweden)

    David Lindgren

    Full Text Available Similar to other malignancies, urothelial carcinoma (UC is characterized by specific recurrent chromosomal aberrations and gene mutations. However, the interconnection between specific genomic alterations, and how patterns of chromosomal alterations adhere to different molecular subgroups of UC, is less clear. We applied tiling resolution array CGH to 146 cases of UC and identified a number of regions harboring recurrent focal genomic amplifications and deletions. Several potential oncogenes were included in the amplified regions, including known oncogenes like E2F3, CCND1, and CCNE1, as well as new candidate genes, such as SETDB1 (1q21, and BCL2L1 (20q11. We next combined genome profiling with global gene expression, gene mutation, and protein expression data and identified two major genomic circuits operating in urothelial carcinoma. The first circuit was characterized by FGFR3 alterations, overexpression of CCND1, and 9q and CDKN2A deletions. The second circuit was defined by E3F3 amplifications and RB1 deletions, as well as gains of 5p, deletions at PTEN and 2q36, 16q, 20q, and elevated CDKN2A levels. TP53/MDM2 alterations were common for advanced tumors within the two circuits. Our data also suggest a possible RAS/RAF circuit. The tumors with worst prognosis showed a gene expression profile that indicated a keratinized phenotype. Taken together, our integrative approach revealed at least two separate networks of genomic alterations linked to the molecular diversity seen in UC, and that these circuits may reflect distinct pathways of tumor development.

  9. Differential Gene Expression Profiling of Dystrophic Dog Muscle after MuStem Cell Transplantation

    Science.gov (United States)

    Babarit, Candice; Larcher, Thibaut; Dubreil, Laurence; Leroux, Isabelle; Zuber, Céline; Ledevin, Mireille; Deschamps, Jack-Yves; Fromes, Yves; Cherel, Yan; Guevel, Laetitia; Rouger, Karl

    2015-01-01

    Background Several adult stem cell populations exhibit myogenic regenerative potential, thus representing attractive candidates for therapeutic approaches of neuromuscular diseases such as Duchenne Muscular Dystrophy (DMD). We have recently shown that systemic delivery of MuStem cells, skeletal muscle-resident stem cells isolated in healthy dog, generates the remodelling of muscle tissue and gives rise to striking clinical benefits in Golden Retriever Muscular Dystrophy (GRMD) dog. This global effect, which is observed in the clinically relevant DMD animal model, leads us to question here the molecular pathways that are impacted by MuStem cell transplantation. To address this issue, we compare the global gene expression profile between healthy, GRMD and MuStem cell treated GRMD dog muscle, four months after allogenic MuStem cell transplantation. Results In the dystrophic context of the GRMD dog, disease-related deregulation is observed in the case of 282 genes related to various processes such as inflammatory response, regeneration, calcium ion binding, extracellular matrix organization, metabolism and apoptosis regulation. Importantly, we reveal the impact of MuStem cell transplantation on several molecular and cellular pathways based on a selection of 31 genes displaying signals specifically modulated by the treatment. Concomitant with a diffuse dystrophin expression, a histological remodelling and a stabilization of GRMD dog clinical status, we show that cell delivery is associated with an up-regulation of genes reflecting a sustained enhancement of muscle regeneration. We also identify a decreased mRNA expression of a set of genes having metabolic functions associated with lipid homeostasis and energy. Interestingly, ubiquitin-mediated protein degradation is highly enhanced in GRMD dog muscle after systemic delivery of MuStem cells. Conclusions Overall, our results provide the first high-throughput characterization of GRMD dog muscle and throw new light on the

  10. Differential Gene Expression Profiling of Dystrophic Dog Muscle after MuStem Cell Transplantation.

    Science.gov (United States)

    Robriquet, Florence; Lardenois, Aurélie; Babarit, Candice; Larcher, Thibaut; Dubreil, Laurence; Leroux, Isabelle; Zuber, Céline; Ledevin, Mireille; Deschamps, Jack-Yves; Fromes, Yves; Cherel, Yan; Guevel, Laetitia; Rouger, Karl

    2015-01-01

    Several adult stem cell populations exhibit myogenic regenerative potential, thus representing attractive candidates for therapeutic approaches of neuromuscular diseases such as Duchenne Muscular Dystrophy (DMD). We have recently shown that systemic delivery of MuStem cells, skeletal muscle-resident stem cells isolated in healthy dog, generates the remodelling of muscle tissue and gives rise to striking clinical benefits in Golden Retriever Muscular Dystrophy (GRMD) dog. This global effect, which is observed in the clinically relevant DMD animal model, leads us to question here the molecular pathways that are impacted by MuStem cell transplantation. To address this issue, we compare the global gene expression profile between healthy, GRMD and MuStem cell treated GRMD dog muscle, four months after allogenic MuStem cell transplantation. In the dystrophic context of the GRMD dog, disease-related deregulation is observed in the case of 282 genes related to various processes such as inflammatory response, regeneration, calcium ion binding, extracellular matrix organization, metabolism and apoptosis regulation. Importantly, we reveal the impact of MuStem cell transplantation on several molecular and cellular pathways based on a selection of 31 genes displaying signals specifically modulated by the treatment. Concomitant with a diffuse dystrophin expression, a histological remodelling and a stabilization of GRMD dog clinical status, we show that cell delivery is associated with an up-regulation of genes reflecting a sustained enhancement of muscle regeneration. We also identify a decreased mRNA expression of a set of genes having metabolic functions associated with lipid homeostasis and energy. Interestingly, ubiquitin-mediated protein degradation is highly enhanced in GRMD dog muscle after systemic delivery of MuStem cells. Overall, our results provide the first high-throughput characterization of GRMD dog muscle and throw new light on the complex molecular

  11. Differential Gene Expression Profiling of Dystrophic Dog Muscle after MuStem Cell Transplantation.

    Directory of Open Access Journals (Sweden)

    Florence Robriquet

    Full Text Available Several adult stem cell populations exhibit myogenic regenerative potential, thus representing attractive candidates for therapeutic approaches of neuromuscular diseases such as Duchenne Muscular Dystrophy (DMD. We have recently shown that systemic delivery of MuStem cells, skeletal muscle-resident stem cells isolated in healthy dog, generates the remodelling of muscle tissue and gives rise to striking clinical benefits in Golden Retriever Muscular Dystrophy (GRMD dog. This global effect, which is observed in the clinically relevant DMD animal model, leads us to question here the molecular pathways that are impacted by MuStem cell transplantation. To address this issue, we compare the global gene expression profile between healthy, GRMD and MuStem cell treated GRMD dog muscle, four months after allogenic MuStem cell transplantation.In the dystrophic context of the GRMD dog, disease-related deregulation is observed in the case of 282 genes related to various processes such as inflammatory response, regeneration, calcium ion binding, extracellular matrix organization, metabolism and apoptosis regulation. Importantly, we reveal the impact of MuStem cell transplantation on several molecular and cellular pathways based on a selection of 31 genes displaying signals specifically modulated by the treatment. Concomitant with a diffuse dystrophin expression, a histological remodelling and a stabilization of GRMD dog clinical status, we show that cell delivery is associated with an up-regulation of genes reflecting a sustained enhancement of muscle regeneration. We also identify a decreased mRNA expression of a set of genes having metabolic functions associated with lipid homeostasis and energy. Interestingly, ubiquitin-mediated protein degradation is highly enhanced in GRMD dog muscle after systemic delivery of MuStem cells.Overall, our results provide the first high-throughput characterization of GRMD dog muscle and throw new light on the complex

  12. Gene expression profiling in Ishikawa cells: A fingerprint for estrogen active compounds

    International Nuclear Information System (INIS)

    Boehme, Kathleen; Simon, Stephanie; Mueller, Stefan O.

    2009-01-01

    Several anthropogenous and naturally occurring substances, referred to as estrogen active compounds (EACs), are able to interfere with hormone and in particular estrogen receptor signaling. EACs can either cause adverse health effects in humans and wildlife populations or have beneficial effects on estrogen-dependent diseases. The aim of this study was to examine global gene expression profiles in estrogen receptor (ER)-proficient Ishikawa plus and ER-deficient Ishikawa minus endometrial cancer cells treated with selected well-known EACs (Diethylstilbestrol, Genistein, Zearalenone, Resveratrol, Bisphenol A and o,p'-DDT). We also investigated the effect of the pure antiestrogen ICI 182,780 (ICI) on the expression patterns caused by these compounds. Transcript levels were quantified 24 h after compound treatment using Illumina BeadChip Arrays. We identified 87 genes with similar expression changes in response to all EAC treatments in Ishikawa plus. ICI lowered the magnitude or reversed the expression of these genes, indicating ER dependent regulation. Apart from estrogenic gene regulation, Bisphenol A, o,p'-DDT, Zearalenone, Genistein and Resveratrol displayed similarities to ICI in their expression patterns, suggesting mixed estrogenic/antiestrogenic properties. In particular, the predominant antiestrogenic expression response of Resveratrol could be clearly distinguished from the other test compounds, indicating a distinct mechanism of action. Divergent gene expression patterns of the phytoestrogens, as well as weaker estrogenic gene expression regulation determined for the anthropogenous chemicals Bisphenol A and o,p'-DDT, warrants a careful assessment of potential detrimental and/or beneficial effects of EACs. The characteristic expression fingerprints and the identified subset of putative marker genes can be used for screening chemicals with an unknown mode of action and for predicting their potential to exert endocrine disrupting effects

  13. Genes associated with thermosensitive genic male sterility in rice identified by comparative expression profiling.

    Science.gov (United States)

    Pan, Yufang; Li, Qiaofeng; Wang, Zhizheng; Wang, Yang; Ma, Rui; Zhu, Lili; He, Guangcun; Chen, Rongzhi

    2014-12-16

    Thermosensitive genic male sterile (TGMS) lines and photoperiod-sensitive genic male sterile (PGMS) lines have been successfully used in hybridization to improve rice yields. However, the molecular mechanisms underlying male sterility transitions in most PGMS/TGMS rice lines are unclear. In the recently developed TGMS-Co27 line, the male sterility is based on co-suppression of a UDP-glucose pyrophosphorylase gene (Ugp1), but further study is needed to fully elucidate the molecular mechanisms involved. Microarray-based transcriptome profiling of TGMS-Co27 and wild-type Hejiang 19 (H1493) plants grown at high and low temperatures revealed that 15462 probe sets representing 8303 genes were differentially expressed in the two lines, under the two conditions, or both. Environmental factors strongly affected global gene expression. Some genes important for pollen development were strongly repressed in TGMS-Co27 at high temperature. More significantly, series-cluster analysis of differentially expressed genes (DEGs) between TGMS-Co27 plants grown under the two conditions showed that low temperature induced the expression of a gene cluster. This cluster was found to be essential for sterility transition. It includes many meiosis stage-related genes that are probably important for thermosensitive male sterility in TGMS-Co27, inter alia: Arg/Ser-rich domain (RS)-containing zinc finger proteins, polypyrimidine tract-binding proteins (PTBs), DEAD/DEAH box RNA helicases, ZOS (C2H2 zinc finger proteins of Oryza sativa), at least one polyadenylate-binding protein and some other RNA recognition motif (RRM) domain-containing proteins involved in post-transcriptional processes, eukaryotic initiation factor 5B (eIF5B), ribosomal proteins (L37, L1p/L10e, L27 and L24), aminoacyl-tRNA synthetases (ARSs), eukaryotic elongation factor Tu (eEF-Tu) and a peptide chain release factor protein involved in translation. The differential expression of 12 DEGs that are important for pollen

  14. Global gene analysis of oocytes from early stages in human folliculogenesis shows high expression of novel genes in reproduction

    DEFF Research Database (Denmark)

    Markholt, Sara; Grøndahl, M L; Ernst, Erik

    2012-01-01

    The pool of primordial follicles in humans is laid down during embryonic development and follicles can remain dormant for prolonged intervals, often decades, until individual follicles resume growth. The mechanisms that induce growth and maturation of primordial follicles are poorly understood...... but follicles once activated either continue growth or undergo atresia. We have isolated pure populations of oocytes from human primordial, intermediate and primary follicles using laser capture micro-dissection microscopy and evaluated the global gene expression profiles by whole-genome microarray analysis......) and the mitochondrial-encoded ATPase6 (ATP6). Thus, the present study provides not only a technique to capture and perform transcriptome analysis of the sparse material of human oocytes from the earliest follicle stages but further includes a comprehensive basis for our understanding of the regulatory factors...

  15. Cytogenetic Profile and Gene Mutations of Childhood Acute Lymphoblastic Leukemia

    Directory of Open Access Journals (Sweden)

    Nawaf Alkhayat

    2017-07-01

    Full Text Available Background: Childhood acute lymphoblastic leukemia (ALL is characterized by recurrent genetic aberrations. The identification of those abnormalities is clinically important because they are considered significant risk-stratifying markers. Aims: There are insufficient data of cytogenetic profiles in Saudi Arabian patients with childhood ALL leukemia. We have examined a cohort of 110 cases of ALL to determine the cytogenetic profiles and prevalence of FLT3 mutations and analysis of the more frequently observed abnormalities and its correlations to other biologic factors and patient outcomes and to compare our results with previously published results. Materials and methods: Patients —We reviewed all cases from 2007 to 2016 with an established diagnosis of childhood ALL. Of the 110 patients, 98 were B-lineage ALL and 12 T-cell ALL. All the patients were treated by UKALL 2003 protocol and risk stratified according previously published criteria. Cytogenetic analysis —Chromosome banding analysis and fluorescence in situ hybridization were used to detect genetic aberrations. Analysis of FLT3 mutations —Bone marrow or blood samples were screened for FLT3 mutations (internal tandem duplications, and point mutations, D835 using polymerase chain reaction methods. Result: Cytogenetic analysis showed chromosomal anomalies in 68 out of 102 cases with an overall incidence 66.7%. The most frequent chromosomal anomalies in ALL were hyperdiploidy, t(9;22, t(12;21, and MLL gene rearrangements. Our data are in accordance with those published previously and showed that FLT3 mutations are not common in patients with ALL (4.7% and have no prognostic relevance in pediatric patients with ALL. On the contrary, t(9;22, MLL gene rearrangements and hypodiploidy were signs of a bad prognosis in childhood ALL with high rate of relapse and shorter overall survival compared with the standard-risk group ( P  = .031.The event-free survival was also found to be worse ( P

  16. Gene expression profiling of macrophages: implications for an immunosuppressive effect of dissolucytotic gold ions

    Directory of Open Access Journals (Sweden)

    Seifert Oliver

    2012-11-01

    Full Text Available Abstract Background Gold salts has previously been used in the treatment of rheumatoid arthritis but have been replaced by biologicals such as TNF-α inhibitors. The mechanisms behind the anti-inflammatory effect of metallic gold ions are still unknown, however, recent data showed that charged gold atoms are released from pure metallic gold implants by macrophages via a dissolucytosis membrane, and that gold ions are taken up by local macrophages, mast cells and to some extent fibroblasts. These findings open the question of possible immunomodulatory effects of metallic gold and motivate efforts on a deeper understanding of the effect of metallic gold on key inflammatory cells as macrophages. Methods Human macrophage cells (cell line THP-1 were grown on gold foils and intracellular uptake was analysed by autometallography. The impact of phagocytised gold ions on viability of THP-1 cells was investigated by trypan blue staining and TUNEL assay. The global gene expression profile of THP-1 cells after incorporation of gold ions was studied using microarray analysis comprising approximately 20,000 genes. The gene expression data was confirmed by measurement of secreted proteins. Results Autometallography showed intracellular uptake of gold ions into THP-1 cells. No significant effect on viability of THP-1 cells was demonstrated. Our data revealed a unique gene expression signature of dissolucytotic THP-1 cells that had taken up gold ions. A large number of regulated genes were functionally related to immunomodulation. Gold ion uptake induced downregulation of genes involved in rheumatoid arthritis such as hepatocyte growth factor, tenascin-C, inhibitor of DNA binding 1 and 3 and matrix metalloproteinase 13. Conclusion The data obtained in this study offer new insights into the mode of action of gold ions and suggest for the investigation of effects on other key cells and a possible future role of metallic gold as implants in rheumatoid arthritis or

  17. Gene expression profiling and pathway analysis of human bronchial epithelial cells exposed to airborne particulate matter collected from Saudi Arabia

    International Nuclear Information System (INIS)

    Sun, Hong; Shamy, Magdy; Kluz, Thomas; Muñoz, Alexandra B.; Zhong, Mianhua; Laulicht, Freda; Alghamdi, Mansour A.; Khoder, Mamdouh I.; Chen, Lung-Chi; Costa, Max

    2012-01-01

    Epidemiological studies have established a positive correlation between human mortality and increased concentration of airborne particulate matters (PM). However, the mechanisms underlying PM related human diseases, as well as the molecules and pathways mediating the cellular response to PM, are not fully understood. This study aims to investigate the global gene expression changes in human cells exposed to PM 10 and to identify genes and pathways that may contribute to PM related adverse health effects. Human bronchial epithelial cells were exposed to PM 10 collected from Saudi Arabia for 1 or 4 days, and whole transcript expression was profiled using the GeneChip human gene 1.0 ST array. A total of 140 and 230 genes were identified that significantly changed more than 1.5 fold after PM 10 exposure for 1 or 4 days, respectively. Ingenuity Pathway Analysis revealed that different exposure durations triggered distinct pathways. Genes involved in NRF2-mediated response to oxidative stress were up-regulated after 1 day exposure. In contrast, cells exposed for 4 days exhibited significant changes in genes related to cholesterol and lipid synthesis pathways. These observed changes in cellular oxidative stress and lipid synthesis might contribute to PM related respiratory and cardiovascular disease. -- Highlights: ► PM exposure modulated gene expression and associated pathways in BEAS-2B cells. ► One-day exposure to PM induced genes involved in responding to oxidative stress. ► 4-day exposure to PM changed genes associated to cholesterol and lipid synthesis.

  18. Gene expression profiling reveals candidate genes related to residual feed intake in duodenum of laying ducks.

    Science.gov (United States)

    Zeng, T; Huang, L; Ren, J; Chen, L; Tian, Y; Huang, Y; Zhang, H; Du, J; Lu, L

    2017-12-01

    Feed represents two-thirds of the total costs of poultry production, especially in developing countries. Improvement in feed efficiency would reduce the amount of feed required for production (growth or laying), the production cost, and the amount of nitrogenous waste. The most commonly used measures for feed efficiency are feed conversion ratio (FCR) and residual feed intake (RFI). As a more suitable indicator assessing feed efficiency, RFI is defined as the difference between observed and expected feed intake based on maintenance and growth or laying. However, the genetic and biological mechanisms regulating RFI are largely unknown. Identifying molecular mechanisms explaining divergence in RFI in laying ducks would lead to the development of early detection methods for the selection of more efficient breeding poultry. The objective of this study was to identify duodenum genes and pathways through transcriptional profiling in 2 extreme RFI phenotypes (HRFI and LRFI) of the duck population. Phenotypic aspects of feed efficiency showed that RFI was strongly positive with FCR and feed intake (FI). Transcriptomic analysis identified 35 differentially expressed genes between LRFI and HRFI ducks. These genes play an important role in metabolism, digestibility, secretion, and innate immunity including (), (), (), β (), and (). These results improve our knowledge of the biological basis underlying RFI, which would be useful for further investigations of key candidate genes for RFI and for the development of biomarkers.

  19. A method to identify differential expression profiles of time-course gene data with Fourier transformation.

    Science.gov (United States)

    Kim, Jaehee; Ogden, Robert Todd; Kim, Haseong

    2013-10-18

    Time course gene expression experiments are an increasingly popular method for exploring biological processes. Temporal gene expression profiles provide an important characterization of gene function, as biological systems are both developmental and dynamic. With such data it is possible to study gene expression changes over time and thereby to detect differential genes. Much of the early work on analyzing time series expression data relied on methods developed originally for static data and thus there is a need for improved methodology. Since time series expression is a temporal process, its unique features such as autocorrelation between successive points should be incorporated into the analysis. This work aims to identify genes that show different gene expression profiles across time. We propose a statistical procedure to discover gene groups with similar profiles using a nonparametric representation that accounts for the autocorrelation in the data. In particular, we first represent each profile in terms of a Fourier basis, and then we screen out genes that are not differentially expressed based on the Fourier coefficients. Finally, we cluster the remaining gene profiles using a model-based approach in the Fourier domain. We evaluate the screening results in terms of sensitivity, specificity, FDR and FNR, compare with the Gaussian process regression screening in a simulation study and illustrate the results by application to yeast cell-cycle microarray expression data with alpha-factor synchronization.The key elements of the proposed methodology: (i) representation of gene profiles in the Fourier domain; (ii) automatic screening of genes based on the Fourier coefficients and taking into account autocorrelation in the data, while controlling the false discovery rate (FDR); (iii) model-based clustering of the remaining gene profiles. Using this method, we identified a set of cell-cycle-regulated time-course yeast genes. The proposed method is general and can be

  20. Predicting survival in patients with metastatic kidney cancer by gene-expression profiling in the primary tumor.

    Science.gov (United States)

    Vasselli, James R; Shih, Joanna H; Iyengar, Shuba R; Maranchie, Jodi; Riss, Joseph; Worrell, Robert; Torres-Cabala, Carlos; Tabios, Ray; Mariotti, Andra; Stearman, Robert; Merino, Maria; Walther, McClellan M; Simon, Richard; Klausner, Richard D; Linehan, W Marston

    2003-06-10

    To identify potential molecular determinants of tumor biology and possible clinical outcomes, global gene-expression patterns were analyzed in the primary tumors of patients with metastatic renal cell cancer by using cDNA microarrays. We used grossly dissected tumor masses that included tumor, blood vessels, connective tissue, and infiltrating immune cells to obtain a gene-expression "profile" from each primary tumor. Two patterns of gene expression were found within this uniformly staged patient population, which correlated with a significant difference in overall survival between the two patient groups. Subsets of genes most significantly associated with survival were defined, and vascular cell adhesion molecule-1 (VCAM-1) was the gene most predictive for survival. Therefore, despite the complex biological nature of metastatic cancer, basic clinical behavior as defined by survival may be determined by the gene-expression patterns expressed within the compilation of primary gross tumor cells. We conclude that survival in patients with metastatic renal cell cancer can be correlated with the expression of various genes based solely on the expression profile in the primary kidney tumor.

  1. Transient Gene and miRNA Expression Profile Changes of Confluent Human Fibroblast Cells in Space

    Science.gov (United States)

    Zhang, Ye; Lu, Tao; Wong, Michael; Feiveson, Alan; Stodieck, Louis; Karouia, Fathi; Wang, Xiaoyu; Wu, Honglu

    2015-01-01

    Microgravity or an altered gravity environment from the static 1 gravitational constant has been shown to influence global gene expression patterns and protein levels in cultured cells. However, most of the reported studies conducted in space or using simulated microgravity on the ground have focused on the growth or differentiation of the cells. Whether non-dividing cultured cells will sense the presence of microgravity in space has not been specifically addressed. In an experiment conducted on the International Space Station, confluent human fibroblast cells were fixed after being cultured in space for 3 and 14 days for investigations of gene and miRNA (microRNA) expression profile changes in these cells. A fibroblast is a type of cell that synthesizes the extracellular matrix and collagen, the structural framework for tissues, and plays a critical role in wound healing and other functions. Results of the experiment showed that on Day 3, both the flown and ground cells were still proliferating slowly even though they were confluent, as measured by the expression of the protein Ki-67 positive cells, and the cells in space grew slightly faster. Gene and miRNA expression data indicated activation of NF(sub kappa)B (nuclear factor kappa-light-chain-enhancer of activated B cells) and other growth related pathways involving HGF and VEGF in the flown cells. On Day 14 when the cells were mostly non-dividing, the gene and miRNA expression profiles between the flight and ground samples were indistinguishable. Comparison of gene and miRNA expressions in the Day 3 samples in respect to Day 14 revealed that most of the changes observed on Day 3 were related to cell growth for both the flown and ground cells. Analysis of cytoskeleton changes by immunohistochemistry staining of the cells with antibodies for alpha-tubulin showed no difference between the flight and ground samples. Results of our study suggest that in true non-dividing human fibroblast cells, microgravity in

  2. Response of temperature and density profiles to heat deposition profile and its impact on global scaling in LHD

    International Nuclear Information System (INIS)

    Yamada, H.; Murakami, S.; Yamazaki, K.

    2002-01-01

    Energy confinement and heat transport of net current-free NBI-heated plasmas in the Large Helical Device (LHD) are discussed with an emphasis on density dependence. Although the apparent density dependence of the energy confinement time has been demonstrated in a wide parameter range in LHD, the loss of this dependence has been observed in the high density regime under the specific condition. Broad heat deposition due to off-axis alignment and shallow penetration of neutral beams degrades the global energy confinement while the local heat transport maintains a clear temperature dependence lying between Bohm and gyro-Bohm characteristics. The central heat deposition inclines towards an intrinsic density dependence like τ E ∝(n-bar e /P) 0.6 from the saturated state. The broadening of the temperature profile due to the broad heat deposition profile contrasts with the invariant property which has observed widely as profile consistency and stiffness in tokamak experiments. (author)

  3. Response of temperature and density profiles to heat deposition profile and its impact on global scaling in LHD

    International Nuclear Information System (INIS)

    Yamada, H.; Murakami, S.; Yamazaki, K.

    2003-01-01

    Energy confinement and heat transport of net current-free NBI-heated plasmas in the Large Helical Device (LHD) are discussed with an emphasis on density dependence. Although the apparent density dependence of the energy confinement time has been demonstrated in a wide parameter range in LHD, the loss of this dependence has been observed in the high density regime under the specific condition. Broad heat deposition due to off-axis alignment and shallow penetration of neutral beams degrades the global energy confinement while the local heat transport maintains a clear temperature dependence lying between Bohm and gyro-Bohm characteristics. The central heat deposition inclines towards an intrinsic density dependence like τ E ∝(n-bars e /P) 0.6 from the saturated state. The broadening of the temperature profile due to the broad heat deposition profile contrasts with the invariant property which has observed widely as profile consistency and stiffness in tokamak experiments. (author)

  4. Global gene expression response to telomerase in bovine adrenocortical cells

    International Nuclear Information System (INIS)

    Perrault, Steven D.; Hornsby, Peter J.; Betts, Dean H.

    2005-01-01

    The infinite proliferative capability of most immortalized cells is dependent upon the presence of the enzyme telomerase and its ability to maintain telomere length and structure. However, telomerase may be involved in a greater system than telomere length regulation, as recent evidence has shown it capable of increasing wound healing in vivo, and improving cellular proliferation rate and survival from apoptosis in vitro. Here, we describe the global gene expression response to ectopic telomerase expression in an in vitro bovine adrenocortical cell model. Telomerase-immortalized cells showed an increased ability for proliferation and survival in minimal essential medium above cells transgenic for GFP. cDNA microarray analyses revealed an altered cell state indicative of increased adrenocortical cell proliferation regulated by the IGF2 pathway and alterations in members of the TGF-B family. As well, we identified alterations in genes associated with development and wound healing that support a model that high telomerase expression induces a highly adaptable, progenitor-like state

  5. Response of temperature and density profiles to heat deposition profile and its impact on global scaling in LHD

    International Nuclear Information System (INIS)

    Yamada, H.

    2002-01-01

    Significant density dependence of the energy confinement time as described in the ISS95 scaling has been demonstrated in the extended parameter regimes in LHD. However, recent experiments have indicated that this density dependence is lost at a certain density under specific conditions. This paper discusses the cause of this saturation and related characteristics of anomalous transport. The saturation of the energy confinement time is observed in the density ramp-up phase of NBI heated plasmas. In contrast to the global energy confinement time, the local heat conduction coefficient still indicates the temperature dependence which is a companion to the density dependence of the energy confinement time. The apparent contradiction between the global confinement and the local transport can be attributed to the change of the heat deposition profile. Through this study, the response of temperature and density profiles to the heat deposition profile is highlighted, which is contrasted to the concept of stiffness or profile consistency observed in tokamaks. The major anomalous transport models based on ITG/TEM and interchange/ballooning modes are assessed. (author)

  6. A Decade of Global mRNA and miRNA Profiling of HPV-Positive Cell Lines and Clinical Specimens

    DEFF Research Database (Denmark)

    Kaczkowski, Bogumil; Morevati, Marya; Rossing, Maria

    2012-01-01

    For more than a decade, global gene expression profiling has been extensively used to elucidate the biology of human papillomaviruses (HPV) and their role in cervical- and head-and-neck cancers. Since 2008, the expression profiling of miRNAs has been reported in multiple HPV studies. Two major...... as the fragmented miRNA-mRNA target correlation evidence. Furthermore, we propose an approach for future research to include more comprehensive miRNA-mRNA target correlation analysis and to apply systems biology/gene networks methodology....... strategies have been employed in the gene and miRNA profiling studies: In the first approach, HPV positive tumors were compared to normal tissues or to HPV negative tumors. The second strategy relied on analysis of cell cultures transfected with single HPV oncogenes or with HPV genomes compared...

  7. Scientometrics Profile of Global Intellectual Property Rights Research

    Directory of Open Access Journals (Sweden)

    Gnanasekaran, D.

    2016-06-01

    Full Text Available The authors in this paper aim to identify the growth of literature on Intellectual Property Rights (IPRs. The research publications on IPRs were downloaded from the Scopus online citation database and the authors found that there were 1,513,138 records contributed globally over a period of 10 years from 2005 to 2014. The distribution of publications based on the year, country, and document type were studied. Relative growth rate (RGR of the publications and doubling time (Td were calculated. Most productive organizations, source titles, and the productive authors on IPR research were studied. Most cited articles in the study area were identified. The results show that a number of publications under the subjects Medicine and Engineering were produced. The developed countries are very active in IPR research and producing publications. It is found that one institution which holds the sixth place among the top 10 most productive institutions belongs to Brazil, a developing country. Two developing countries such as China and India hold second and tenth positions respectively in the top 10 countries contributing literature on IPRs.

  8. Metastatic canine mammary carcinomas can be identified by a gene expression profile that partly overlaps with human breast cancer profiles

    International Nuclear Information System (INIS)

    Klopfleisch, Robert; Lenze, Dido; Hummel, Michael; Gruber, Achim D

    2010-01-01

    Similar to human breast cancer mammary tumors of the female dog are commonly associated with a fatal outcome due to the development of distant metastases. However, the molecular defects leading to metastasis are largely unknown and the value of canine mammary carcinoma as a model for human breast cancer is unclear. In this study, we analyzed the gene expression signatures associated with mammary tumor metastasis and asked for parallels with the human equivalent. Messenger RNA expression profiles of twenty-seven lymph node metastasis positive or negative canine mammary carcinomas were established by microarray analysis. Differentially expressed genes were functionally characterized and associated with molecular pathways. The findings were also correlated with published data on human breast cancer. Metastatic canine mammary carcinomas had 1,011 significantly differentially expressed genes when compared to non-metastatic carcinomas. Metastatic carcinomas had a significant up-regulation of genes associated with cell cycle regulation, matrix modulation, protein folding and proteasomal degradation whereas cell differentiation genes, growth factor pathway genes and regulators of actin organization were significantly down-regulated. Interestingly, 265 of the 1,011 differentially expressed canine genes are also related to human breast cancer and, vice versa, parts of a human prognostic gene signature were identified in the expression profiles of the metastatic canine tumors. Metastatic canine mammary carcinomas can be discriminated from non-metastatic carcinomas by their gene expression profiles. More than one third of the differentially expressed genes are also described of relevance for human breast cancer. Many of the differentially expressed genes are linked to functions and pathways which appear to be relevant for the induction and maintenance of metastatic progression and may represent new therapeutic targets. Furthermore, dogs are in some aspects suitable as a

  9. Promoter Analysis Reveals Globally Differential Regulation of Human Long Non-Coding RNA and Protein-Coding Genes

    KAUST Repository

    Alam, Tanvir

    2014-10-02

    Transcriptional regulation of protein-coding genes is increasingly well-understood on a global scale, yet no comparable information exists for long non-coding RNA (lncRNA) genes, which were recently recognized to be as numerous as protein-coding genes in mammalian genomes. We performed a genome-wide comparative analysis of the promoters of human lncRNA and protein-coding genes, finding global differences in specific genetic and epigenetic features relevant to transcriptional regulation. These two groups of genes are hence subject to separate transcriptional regulatory programs, including distinct transcription factor (TF) proteins that significantly favor lncRNA, rather than coding-gene, promoters. We report a specific signature of promoter-proximal transcriptional regulation of lncRNA genes, including several distinct transcription factor binding sites (TFBS). Experimental DNase I hypersensitive site profiles are consistent with active configurations of these lncRNA TFBS sets in diverse human cell types. TFBS ChIP-seq datasets confirm the binding events that we predicted using computational approaches for a subset of factors. For several TFs known to be directly regulated by lncRNAs, we find that their putative TFBSs are enriched at lncRNA promoters, suggesting that the TFs and the lncRNAs may participate in a bidirectional feedback loop regulatory network. Accordingly, cells may be able to modulate lncRNA expression levels independently of mRNA levels via distinct regulatory pathways. Our results also raise the possibility that, given the historical reliance on protein-coding gene catalogs to define the chromatin states of active promoters, a revision of these chromatin signature profiles to incorporate expressed lncRNA genes is warranted in the future.

  10. Candidate luminal B breast cancer genes identified by genome, gene expression and DNA methylation profiling.

    Directory of Open Access Journals (Sweden)

    Stéphanie Cornen

    Full Text Available Breast cancers (BCs of the luminal B subtype are estrogen receptor-positive (ER+, highly proliferative, resistant to standard therapies and have a poor prognosis. To better understand this subtype we compared DNA copy number aberrations (CNAs, DNA promoter methylation, gene expression profiles, and somatic mutations in nine selected genes, in 32 luminal B tumors with those observed in 156 BCs of the other molecular subtypes. Frequent CNAs included 8p11-p12 and 11q13.1-q13.2 amplifications, 7q11.22-q34, 8q21.12-q24.23, 12p12.3-p13.1, 12q13.11-q24.11, 14q21.1-q23.1, 17q11.1-q25.1, 20q11.23-q13.33 gains and 6q14.1-q24.2, 9p21.3-p24,3, 9q21.2, 18p11.31-p11.32 losses. A total of 237 and 101 luminal B-specific candidate oncogenes and tumor suppressor genes (TSGs presented a deregulated expression in relation with their CNAs, including 11 genes previously reported associated with endocrine resistance. Interestingly, 88% of the potential TSGs are located within chromosome arm 6q, and seven candidate oncogenes are potential therapeutic targets. A total of 100 candidate oncogenes were validated in a public series of 5,765 BCs and the overexpression of 67 of these was associated with poor survival in luminal tumors. Twenty-four genes presented a deregulated expression in relation with a high DNA methylation level. FOXO3, PIK3CA and TP53 were the most frequent mutated genes among the nine tested. In a meta-analysis of next-generation sequencing data in 875 BCs, KCNB2 mutations were associated with luminal B cases while candidate TSGs MDN1 (6q15 and UTRN (6q24, were mutated in this subtype. In conclusion, we have reported luminal B candidate genes that may play a role in the development and/or hormone resistance of this aggressive subtype.

  11. Study of formation of green eggshell color in ducks through global gene expression.

    Science.gov (United States)

    Xu, Fa Qiong; Li, Ang; Lan, Jing Jing; Wang, Yue Ming; Yan, Mei Jiao; Lian, Sen Yang; Wu, Xu

    2018-01-01

    The green eggshell color produced by ducks is a threshold trait that can be influenced by various factors, such as hereditary, environment and nutrition. The aim of this study was to investigate the genetic regulation of the formation of eggs with green shells in Youxian ducks. We performed integrative analysis of mRNAs and miRNAs expression profiling in the shell gland samples from ducks by RNA-Seq. We found 124 differentially expressed genes that were associated with various pathways, such as the ATP-binding cassette (ABC) transporter and solute carrier supper family pathways. A total of 31 differentially expressed miRNAs were found between ducks laying green eggs and white eggs. KEGG pathway analysis of the predicted miRNA target genes also indicated the functional characteristics of these miRNAs; they were involved in the ABC transporter pathway and the solute carrier (SLC) supper family. Analysis with qRT-PCR was applied to validate the results of global gene expression, which showed a correlation between results obtained by RNA-seq and RT-qPCR. Moreover, a miRNA-mRNA interaction network was established using correlation analysis of differentially expressed mRNA and miRNA. Compared to ducks that lay white eggs, ducks that lay green eggs include six up-regulated miRNAs that had regulatory effects on 35 down-regulated genes, and seven down-regulated miRNAs which influenced 46 up-regulated genes. For example, the ABC transporter pathway could be regulated by expressing gga-miR-144-3p (up-regulated) with ABCG2 (up-regulated) and other miRNAs and genes. This study provides valuable information about mRNA and miRNA regulation in duck shell gland tissues, and provides foundational information for further study on the eggshell color formation and marker-assisted selection for Youxian duck breeding.

  12. Study of formation of green eggshell color in ducks through global gene expression.

    Directory of Open Access Journals (Sweden)

    Fa Qiong Xu

    Full Text Available The green eggshell color produced by ducks is a threshold trait that can be influenced by various factors, such as hereditary, environment and nutrition. The aim of this study was to investigate the genetic regulation of the formation of eggs with green shells in Youxian ducks. We performed integrative analysis of mRNAs and miRNAs expression profiling in the shell gland samples from ducks by RNA-Seq. We found 124 differentially expressed genes that were associated with various pathways, such as the ATP-binding cassette (ABC transporter and solute carrier supper family pathways. A total of 31 differentially expressed miRNAs were found between ducks laying green eggs and white eggs. KEGG pathway analysis of the predicted miRNA target genes also indicated the functional characteristics of these miRNAs; they were involved in the ABC transporter pathway and the solute carrier (SLC supper family. Analysis with qRT-PCR was applied to validate the results of global gene expression, which showed a correlation between results obtained by RNA-seq and RT-qPCR. Moreover, a miRNA-mRNA interaction network was established using correlation analysis of differentially expressed mRNA and miRNA. Compared to ducks that lay white eggs, ducks that lay green eggs include six up-regulated miRNAs that had regulatory effects on 35 down-regulated genes, and seven down-regulated miRNAs which influenced 46 up-regulated genes. For example, the ABC transporter pathway could be regulated by expressing gga-miR-144-3p (up-regulated with ABCG2 (up-regulated and other miRNAs and genes. This study provides valuable information about mRNA and miRNA regulation in duck shell gland tissues, and provides foundational information for further study on the eggshell color formation and marker-assisted selection for Youxian duck breeding.

  13. Investigating the radial structure of axisymmetric fluctuations in the TCV tokamak with local and global gyrokinetic GENE simulations

    Science.gov (United States)

    Merlo, G.; Brunner, S.; Huang, Z.; Coda, S.; Görler, T.; Villard, L.; Bañón Navarro, A.; Dominski, J.; Fontana, M.; Jenko, F.; Porte, L.; Told, D.

    2018-03-01

    Axisymmetric (n = 0) density fluctuations measured in the TCV tokamak are observed to possess a frequency f 0 which is either varying (radially dispersive oscillations) or a constant over a large fraction of the plasma minor radius (radially global oscillations) as reported in a companion paper (Z Huang et al, this issue). Given that f 0 scales with the sound speed and given the poloidal structure of density fluctuations, these oscillations were interpreted as Geodesic Acoustic Modes, even though f 0 is in fact smaller than the local linear GAM frequency {f}{GAM}. In this work we employ the Eulerian gyrokinetic code GENE to simulate TCV relevant conditions and investigate the nature and properties of these oscillations, in particular their relation to the safety factor profile. Local and global simulations are carried out and a good qualitative agreement is observed between experiments and simulations. By varying also the plasma temperature and density profiles, we conclude that a variation of the edge safety factor alone is not sufficient to induce a transition from global to radially inhomogeneous oscillations, as was initially suggested by experimental results. This transition appears instead to be the combined result of variations in the different plasma profiles, collisionality and finite machine size effects. Simulations also show that radially global GAM-like oscillations can be observed in all fluxes and fluctuation fields, suggesting that they are the result of a complex nonlinear process involving also finite toroidal mode numbers and not just linear global GAM eigenmodes.

  14. Identification and profiling of microRNAs and their target genes from developing caprine skeletal Muscle.

    Directory of Open Access Journals (Sweden)

    Yanhong Wang

    Full Text Available Goat is an important agricultural animal for meat production. Functional studies have demonstrated that microRNAs (miRNAs regulate gene expression at the post-transcriptional level and play an important role in various biological processes. Although studies on miRNAs expression profiles have been performed in various animals, relatively limited information about goat muscle miRNAs has been reported. To investigate the miRNAs involved in regulating different periods of skeletal muscle development, we herein performed a comprehensive research for expression profiles of caprine miRNAs during two developmental stages of skeletal muscles: fetal stage and six month-old stage. As a result, 15,627,457 and 15,593,721 clean reads were obtained from the fetal goat library (FC and the six month old goat library (SMC, respectively. 464 known miRNAs and 83 novel miRNA candidates were identified. Furthermore, by comparing the miRNA profile, 336 differentially expressed miRNAs were identified and then the potential targets of the differentially expressed miRNAs were predicted. To understand the regulatory network of miRNAs during muscle development, the mRNA expression profiles for the two development stages were characterized and 7322 differentially expressed genes (DEGs were identified. Then the potential targets of miRNAs were compared to the DEGs, the intersection of the two gene sets were screened out and called differentially expressed targets (DE-targets, which were involved in 231 pathways. Ten of the 231 pathways that have smallest P-value were shown as network figures. Based on the analysis of pathways and networks, we found that miR-424-5p and miR-29a might have important regulatory effect on muscle development, which needed to be further studied. This study provided the first global view of the miRNAs in caprine muscle tissues. Our results help elucidation of complex regulatory networks between miRNAs and mRNAs and for the study of muscle

  15. Preeclampsia: novel insights from global RNA profiling of trophoblast subpopulations.

    Science.gov (United States)

    Gormley, Matthew; Ona, Katherine; Kapidzic, Mirhan; Garrido-Gomez, Tamara; Zdravkovic, Tamara; Fisher, Susan J

    2017-08-01

    The maternal signs of preeclampsia, which include the new onset of high blood pressure, can occur because of faulty placentation. We theorized that transcriptomic analyses of trophoblast subpopulations in situ would lend new insights into the role of these cells in preeclampsia pathogenesis. Our goal was to enrich syncytiotrophoblasts, invasive cytotrophoblasts, or endovascular cytotrophoblasts from the placentas of severe preeclampsia cases. Total RNA was subjected to global transcriptional profiling to identify RNAs that were misexpressed compared with controls. This was a cross-sectional analysis of placentas from women who had been diagnosed with severe preeclampsia. Gestational age-matched controls were placentas from women who had a preterm birth with no signs of infection. Laser microdissection enabled enrichment of syncytiotrophoblasts, invasive cytotrophoblasts, or endovascular cytotrophoblasts. After RNA isolation, a microarray approach was used for global transcriptional profiling. Immunolocalization identified changes in messenger RNA expression that carried over to the protein level. Differential expression of non-protein-coding RNAs was confirmed by in situ hybridization. A 2-way analysis of variance of non-coding RNA expression identified particular classes that distinguished trophoblasts in cases vs controls. Cajal body foci were visualized by coilin immunolocalization. Comparison of the trophoblast subtype data within each group (severe preeclampsia or noninfected preterm birth) identified many highly differentially expressed genes. They included molecules that are known to be expressed by each subpopulation, which is evidence that the method worked. Genes that were expressed differentially between the 2 groups, in a cell-type-specific manner, encoded a combination of molecules that previous studies associated with severe preeclampsia and those that were not known to be dysregulated in this pregnancy complication. Gene ontology analysis of the

  16. Characteristic gene expression profiles in the progression from liver cirrhosis to carcinoma induced by diethylnitrosamine in a rat model

    Directory of Open Access Journals (Sweden)

    Zhu Jin

    2009-07-01

    Full Text Available Abstract Background Liver cancr is a heterogeneous disease in terms of etiology, biologic and clinical behavior. Very little is known about how many genes concur at the molecular level of tumor development, progression and aggressiveness. To explore the key genes involved in the development of liver cancer, we established a rat model induced by diethylnitrosamine to investigate the gene expression profiles of liver tissues during the transition to cirrhosis and carcinoma. Methods A rat model of liver cancer induced by diethylnitrosamine was established. The cirrhotic tissue, the dysplasia nodules, the early cancerous nodules and the cancerous nodules from the rats with lung metastasis were chosen to compare with liver tissue of normal rats to investigate the differential expression genes between them. Affymetrix GeneChip Rat 230 2.0 arrays were used throughout. The real-time quantity PCR was used to verify the expression of some differential expression genes in tissues. Results The pathological changes that occurred in the livers of diethylnitrosamine-treated rats included non-specific injury, fibrosis and cirrhosis, dysplastic nodules, early cancerous nodules and metastasis. There are 349 upregulated and 345 downregulated genes sharing among the above chosen tissues when compared with liver tissue of normal rats. The deregulated genes play various roles in diverse processes such as metabolism, transport, cell proliferation, apoptosis, cell adhesion, angiogenesis and so on. Among which, 41 upregulated and 27 downregulated genes are associated with inflammatory response, immune response and oxidative stress. Twenty-four genes associated with glutathione metabolism majorly participating oxidative stress were deregulated in the development of liver cancer. There were 19 members belong to CYP450 family downregulated, except CYP2C40 upregulated. Conclusion In this study, we provide the global gene expression profiles during the development and

  17. Global mapping of vertical injection profiles of wild-fire emission

    Science.gov (United States)

    Sofiev, M.; Vankevich, R.; Ermakova, T.; Hakkarainen, J.

    2012-08-01

    A problem of a characteristic vertical profile of smoke released from wild-land fires is considered. A methodology for bottom-up evaluation of this profile is suggested and a corresponding global dataset is calculated. The profile estimation is based on: (i) a semi-empirical formula for plume-top height recently suggested by the authors, (ii) MODIS satellite observations of active wild-land fires, and (iii) meteorological conditions evaluated at each fireplace using output of ECMWF weather prediction model. Plumes from all fires recorded globally during two arbitrarily picked years 2001 and 2008 are evaluated and their smoke injection profiles are estimated with a time step of 3 h. The resulting 4-dimensional dataset is split to day- and night-time subsets. Each of the subsets is projected to global grid with resolution 1° × 1° × 500 m, averaged to monthly level, and normalised with total emission. Evaluation of the obtained dataset was performed at several levels. Firstly, the quality of the semi-empirical formula for plume-top computations was evaluated using recent additions to the MISR fire plume-height dataset. Secondly, the obtained maps of injection profiles are compared with another global distribution available from literature. Thirdly, the upper percentiles of the profiles are compared with an independent dataset of space-based lidar CALIOP. Finally, the stability of the calculated profiles with regard to inter-annual variations of the fire activity and meteorological conditions is roughly estimated by comparing the sub-sets for 2001 and 2008.

  18. Nitrogenase gene amplicons from global marine surface waters are dominated by genes of non-cyanobacteria.

    Directory of Open Access Journals (Sweden)

    Hanna Farnelid

    Full Text Available Cyanobacteria are thought to be the main N(2-fixing organisms (diazotrophs in marine pelagic waters, but recent molecular analyses indicate that non-cyanobacterial diazotrophs are also present and active. Existing data are, however, restricted geographically and by limited sequencing depths. Our analysis of 79,090 nitrogenase (nifH PCR amplicons encoding 7,468 unique proteins from surface samples (ten DNA samples and two RNA samples collected at ten marine locations world-wide provides the first in-depth survey of a functional bacterial gene and yield insights into the composition and diversity of the nifH gene pool in marine waters. Great divergence in nifH composition was observed between sites. Cyanobacteria-like genes were most frequent among amplicons from the warmest waters, but overall the data set was dominated by nifH sequences most closely related to non-cyanobacteria. Clusters related to Alpha-, Beta-, Gamma-, and Delta-Proteobacteria were most common and showed distinct geographic distributions. Sequences related to anaerobic bacteria (nifH Cluster III were generally rare, but preponderant in cold waters, especially in the Arctic. Although the two transcript samples were dominated by unicellular cyanobacteria, 42% of the identified non-cyanobacterial nifH clusters from the corresponding DNA samples were also detected in cDNA. The study indicates that non-cyanobacteria account for a substantial part of the nifH gene pool in marine surface waters and that these genes are at least occasionally expressed. The contribution of non-cyanobacterial diazotrophs to the global N(2 fixation budget cannot be inferred from sequence data alone, but the prevalence of non-cyanobacterial nifH genes and transcripts suggest that these bacteria are ecologically significant.

  19. Global Analysis of miRNA Gene Clusters and Gene Families Reveals Dynamic and Coordinated Expression

    Directory of Open Access Journals (Sweden)

    Li Guo

    2014-01-01

    Full Text Available To further understand the potential expression relationships of miRNAs in miRNA gene clusters and gene families, a global analysis was performed in 4 paired tumor (breast cancer and adjacent normal tissue samples using deep sequencing datasets. The compositions of miRNA gene clusters and families are not random, and clustered and homologous miRNAs may have close relationships with overlapped miRNA species. Members in the miRNA group always had various expression levels, and even some showed larger expression divergence. Despite the dynamic expression as well as individual difference, these miRNAs always indicated consistent or similar deregulation patterns. The consistent deregulation expression may contribute to dynamic and coordinated interaction between different miRNAs in regulatory network. Further, we found that those clustered or homologous miRNAs that were also identified as sense and antisense miRNAs showed larger expression divergence. miRNA gene clusters and families indicated important biological roles, and the specific distribution and expression further enrich and ensure the flexible and robust regulatory network.

  20. Global Advocacy for Physical Activity (GAPA): global leadership towards a raised profile.

    Science.gov (United States)

    Blanchard, Claire; Shilton, Trevor; Bull, Fiona

    2013-12-01

    Physical inactivity has been recognised by the World Health Organization as one of the leading causes of death due to non-communicable disease (NCD), worldwide. The benefits of action over inactivity can cut across health, environment, transportation, sport, culture and the economy. Despite the evidence, the policies and strategies to increase population-wide participation in physical activity receive insufficient priority from across high, middle and low-income countries; where physical inactivity is a rapidly-emerging issue. There is an increased need for all countries to invest in policies, strategies and supportive environments that inform, motivate and support individuals and communities to be active in ways that are safe, accessible and enjoyable. This commentary presents some recent efforts towards physical activity promotion globally, led by the Global Advocacy for Physical Activity (GAPA). It provides an overview of the background and history of GAPA; describes GAPA and the council's key achievements and milestones; places physical activity promotion within the global NCD agenda; presents GAPA flagships; and reflects on the lessons learned, ingredients for success and the major challenges that remain. The commentary documents insights into the effectiveness and challenges faced by a small non-governmental organisation (NGO) in mounting global advocacy. These lessons may be transferrable to other areas of health promotion advocacy.

  1. Gene expression profiling in respond to TBT exposure in small abalone Haliotis diversicolor.

    Science.gov (United States)

    Jia, Xiwei; Zou, Zhihua; Wang, Guodong; Wang, Shuhong; Wang, Yilei; Zhang, Ziping

    2011-10-01

    In this study, we investigated the gene expression profiling of small abalone, Haliotis diversicolor by tributyltin (TBT) exposure using a cDNA microarray containing 2473 unique transcripts. Totally, 107 up-regulated genes and 41 down-regulated genes were found. For further investigation of candidate genes from microarray data and EST analysis, quantitative real-time PCR was performed at 6 h, 24 h, 48 h, 96 h and 192 h TBT exposure. 26 genes were found to be significantly differentially expressed in different time course, 3 of them were unknown. Some gene homologues like cellulose, endo-beta-1,4-glucanase, ferritin subunit 1 and thiolester containing protein II CG7052-PB might be the good biomarker candidate for TBT monitor. The identification of stress response genes and their expression profiles will permit detailed investigation of the defense responses of small abalone genes. Published by Elsevier Ltd.

  2. Digital gene expression profiling of flax (Linum usitatissimum L.) stem peel identifies genes enriched in fiber-bearing phloem tissue.

    Science.gov (United States)

    Guo, Yuan; Qiu, Caisheng; Long, Songhua; Chen, Ping; Hao, Dongmei; Preisner, Marta; Wang, Hui; Wang, Yufu

    2017-08-30

    To better understand the molecular mechanisms and gene expression characteristics associated with development of bast fiber cell within flax stem phloem, the gene expression profiling of flax stem peels and leaves were screened, using Illumina's Digital Gene Expression (DGE) analysis. Four DGE libraries (2 for stem peel and 2 for leaf), ranging from 6.7 to 9.2 million clean reads were obtained, which produced 7.0 million and 6.8 million mapped reads for flax stem peel and leave, respectively. By differential gene expression analysis, a total of 975 genes, of which 708 (73%) genes have protein-coding annotation, were identified as phloem enriched genes putatively involved in the processes of polysaccharide and cell wall metabolism. Differential expression genes (DEGs) was validated using quantitative RT-PCR, the expression pattern of all nine genes determined by qRT-PCR fitted in well with that obtained by sequencing analysis. Cluster and Gene Ontology (GO) analysis revealed that a large number of genes related to metabolic process, catalytic activity and binding category were expressed predominantly in the stem peels. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the phloem enriched genes suggested approximately 111 biological pathways. The large number of genes and pathways produced from DGE sequencing will expand our understanding of the complex molecular and cellular events in flax bast fiber development and provide a foundation for future studies on fiber development in other bast fiber crops. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. MicroRNA expression profiling to identify and validate reference genes for relative quantification in colorectal cancer.

    LENUS (Irish Health Repository)

    Chang, Kah Hoong

    2010-01-01

    BACKGROUND: Advances in high-throughput technologies and bioinformatics have transformed gene expression profiling methodologies. The results of microarray experiments are often validated using reverse transcription quantitative PCR (RT-qPCR), which is the most sensitive and reproducible method to quantify gene expression. Appropriate normalisation of RT-qPCR data using stably expressed reference genes is critical to ensure accurate and reliable results. Mi(cro)RNA expression profiles have been shown to be more accurate in disease classification than mRNA expression profiles. However, few reports detailed a robust identification and validation strategy for suitable reference genes for normalisation in miRNA RT-qPCR studies. METHODS: We adopt and report a systematic approach to identify the most stable reference genes for miRNA expression studies by RT-qPCR in colorectal cancer (CRC). High-throughput miRNA profiling was performed on ten pairs of CRC and normal tissues. By using the mean expression value of all expressed miRNAs, we identified the most stable candidate reference genes for subsequent validation. As such the stability of a panel of miRNAs was examined on 35 tumour and 39 normal tissues. The effects of normalisers on the relative quantity of established oncogenic (miR-21 and miR-31) and tumour suppressor (miR-143 and miR-145) target miRNAs were assessed. RESULTS: In the array experiment, miR-26a, miR-345, miR-425 and miR-454 were identified as having expression profiles closest to the global mean. From a panel of six miRNAs (let-7a, miR-16, miR-26a, miR-345, miR-425 and miR-454) and two small nucleolar RNA genes (RNU48 and Z30), miR-16 and miR-345 were identified as the most stably expressed reference genes. The combined use of miR-16 and miR-345 to normalise expression data enabled detection of a significant dysregulation of all four target miRNAs between tumour and normal colorectal tissue. CONCLUSIONS: Our study demonstrates that the top six most

  4. MicroRNA expression profiling to identify and validate reference genes for relative quantification in colorectal cancer

    LENUS (Irish Health Repository)

    Chang, Kah Hoong

    2010-04-29

    Abstract Background Advances in high-throughput technologies and bioinformatics have transformed gene expression profiling methodologies. The results of microarray experiments are often validated using reverse transcription quantitative PCR (RT-qPCR), which is the most sensitive and reproducible method to quantify gene expression. Appropriate normalisation of RT-qPCR data using stably expressed reference genes is critical to ensure accurate and reliable results. Mi(cro)RNA expression profiles have been shown to be more accurate in disease classification than mRNA expression profiles. However, few reports detailed a robust identification and validation strategy for suitable reference genes for normalisation in miRNA RT-qPCR studies. Methods We adopt and report a systematic approach to identify the most stable reference genes for miRNA expression studies by RT-qPCR in colorectal cancer (CRC). High-throughput miRNA profiling was performed on ten pairs of CRC and normal tissues. By using the mean expression value of all expressed miRNAs, we identified the most stable candidate reference genes for subsequent validation. As such the stability of a panel of miRNAs was examined on 35 tumour and 39 normal tissues. The effects of normalisers on the relative quantity of established oncogenic (miR-21 and miR-31) and tumour suppressor (miR-143 and miR-145) target miRNAs were assessed. Results In the array experiment, miR-26a, miR-345, miR-425 and miR-454 were identified as having expression profiles closest to the global mean. From a panel of six miRNAs (let-7a, miR-16, miR-26a, miR-345, miR-425 and miR-454) and two small nucleolar RNA genes (RNU48 and Z30), miR-16 and miR-345 were identified as the most stably expressed reference genes. The combined use of miR-16 and miR-345 to normalise expression data enabled detection of a significant dysregulation of all four target miRNAs between tumour and normal colorectal tissue. Conclusions Our study demonstrates that the top six most

  5. Identifying arsenic trioxide (ATO) functions in leukemia cells by using time series gene expression profiles.

    Science.gov (United States)

    Yang, Hong; Lin, Shan; Cui, Jingru

    2014-02-10

    Arsenic trioxide (ATO) is presently the most active single agent in the treatment of acute promyelocytic leukemia (APL). In order to explore the molecular mechanism of ATO in leukemia cells with time series, we adopted bioinformatics strategy to analyze expression changing patterns and changes in transcription regulation modules of time series genes filtered from Gene Expression Omnibus database (GSE24946). We totally screened out 1847 time series genes for subsequent analysis. The KEGG (Kyoto encyclopedia of genes and genomes) pathways enrichment analysis of these genes showed that oxidative phosphorylation and ribosome were the top 2 significantly enriched pathways. STEM software was employed to compare changing patterns of gene expression with assigned 50 expression patterns. We screened out 7 significantly enriched patterns and 4 tendency charts of time series genes. The result of Gene Ontology showed that functions of times series genes mainly distributed in profiles 41, 40, 39 and 38. Seven genes with positive regulation of cell adhesion function were enriched in profile 40, and presented the same first increased model then decreased model as profile 40. The transcription module analysis showed that they mainly involved in oxidative phosphorylation pathway and ribosome pathway. Overall, our data summarized the gene expression changes in ATO treated K562-r cell lines with time and suggested that time series genes mainly regulated cell adhesive. Furthermore, our result may provide theoretical basis of molecular biology in treating acute promyelocytic leukemia. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Gene Profiling in Patients with Systemic Sclerosis Reveals the Presence of Oncogenic Gene Signatures

    Directory of Open Access Journals (Sweden)

    Marzia Dolcino

    2018-03-01

    Full Text Available Systemic sclerosis (SSc is a rare connective tissue disease characterized by three pathogenetic hallmarks: vasculopathy, dysregulation of the immune system, and fibrosis. A particular feature of SSc is the increased frequency of some types of malignancies, namely breast, lung, and hematological malignancies. Moreover, SSc may also be a paraneoplastic disease, again indicating a strong link between cancer and scleroderma. The reason of this association is still unknown; therefore, we aimed at investigating whether particular genetic or epigenetic factors may play a role in promoting cancer development in patients with SSc and whether some features are shared by the two conditions. We therefore performed a gene expression profiling of peripheral blood mononuclear cells (PBMCs derived from patients with limited and diffuse SSc, showing that the various classes of genes potentially linked to the pathogenesis of SSc (such as apoptosis, endothelial cell activation, extracellular matrix remodeling, immune response, and inflammation include genes that directly participate in the development of malignancies or that are involved in pathways known to be associated with carcinogenesis. The transcriptional analysis was then complemented by a complex network analysis of modulated genes which further confirmed the presence of signaling pathways associated with carcinogenesis. Since epigenetic mechanisms, such as microRNAs (miRNAs, are believed to play a central role in the pathogenesis of SSc, we also evaluated whether specific cancer-related miRNAs could be deregulated in the serum of SSc patients. We focused our attention on miRNAs already found upregulated in SSc such as miR-21-5p, miR-92a-3p, and on miR-155-5p, miR 126-3p and miR-16-5p known to be deregulated in malignancies associated to SSc, i.e., breast, lung, and hematological malignancies. miR-21-5p, miR-92a-3p, miR-155-5p, and miR-16-5p expression was significantly higher in SSc sera compared to

  7. Gene expression profiling and candidate gene resequencing identifies pathways and mutations important for malignant transformation caused by leukemogenic fusion genes.

    Science.gov (United States)

    Novak, Rachel L; Harper, David P; Caudell, David; Slape, Christopher; Beachy, Sarah H; Aplan, Peter D

    2012-12-01

    NUP98-HOXD13 (NHD13) and CALM-AF10 (CA10) are oncogenic fusion proteins produced by recurrent chromosomal translocations in patients with acute myeloid leukemia (AML). Transgenic mice that express these fusions develop AML with a long latency and incomplete penetrance, suggesting that collaborating genetic events are required for leukemic transformation. We employed genetic techniques to identify both preleukemic abnormalities in healthy transgenic mice as well as collaborating events leading to leukemic transformation. Candidate gene resequencing revealed that 6 of 27 (22%) CA10 AMLs spontaneously acquired a Ras pathway mutation and 8 of 27 (30%) acquired an Flt3 mutation. Two CA10 AMLs acquired an Flt3 internal-tandem duplication, demonstrating that these mutations can be acquired in murine as well as human AML. Gene expression profiles revealed a marked upregulation of Hox genes, particularly Hoxa5, Hoxa9, and Hoxa10 in both NHD13 and CA10 mice. Furthermore, mir196b, which is embedded within the Hoxa locus, was overexpressed in both CA10 and NHD13 samples. In contrast, the Hox cofactors Meis1 and Pbx3 were differentially expressed; Meis1 was increased in CA10 AMLs but not NHD13 AMLs, whereas Pbx3 was consistently increased in NHD13 but not CA10 AMLs. Silencing of Pbx3 in NHD13 cells led to decreased proliferation, increased apoptosis, and decreased colony formation in vitro, suggesting a previously unexpected role for Pbx3 in leukemic transformation. Published by Elsevier Inc.

  8. A Gene Expression Profile of BRCAness That Predicts for Responsiveness to Platinum and PARP Inhibitors

    Science.gov (United States)

    2017-02-01

    affecting the function of Fanconi Anemia (FA) genes ( FANCA /B/C/D2/E/F/G/I/J/L/M, PALB2) or DNA damage response genes involved in HR 5 (ATM, ATR...Award Number: W81XWH-10-1-0585 TITLE: A Gene Expression Profile of BRCAness That Predicts for Responsiveness to Platinum and PARP Inhibitors...To) 15 July 2010 – 2 Nov.2016 4. TITLE AND SUBTITLE A Gene Expression Profile of BRCAness That Predicts for Responsiveness to Platinum and PARP

  9. Gene expression profiles in stages II and III colon cancers

    DEFF Research Database (Denmark)

    Thorsteinsson, Morten; Kirkeby, Lene T; Hansen, Raino

    2012-01-01

    PURPOSE: A 128-gene signature has been proposed to predict outcome in patients with stages II and III colorectal cancers. In the present study, we aimed to reproduce and validate the 128-gene signature in external and independent material. METHODS: Gene expression data from the original material...... were retrieved from the Gene Expression Omnibus (GEO) (n¿=¿111) in addition to a Danish data set (n¿=¿37). All patients had stages II and III colon cancers. A Prediction Analysis of Microarray classifier, based on the 128-gene signature and the original training set of stage I (n¿=¿65) and stage IV (n...... correctly predicted as stage IV-like, and the remaining patients were predicted as stage I-like and unclassifiable, respectively. Stage II patients could not be stratified. CONCLUSIONS: The 128-gene signature showed reproducibility in stage III colon cancer, but could not predict recurrence in stage II...

  10. Gene expression profiling of brakeless mutant Drosophila embryos.

    Science.gov (United States)

    Crona, Filip; Singla, Bhumica; Mannervik, Mattias

    2015-12-01

    The transcriptional co-regulator Brakeless performs many important functions during Drosophila development, but few target genes have been identified. Here we use Affymetrix microarrays to identify Brakeless-regulated genes in 2-4 h old Drosophila embryos. Robust multi-array analysis (RMA) and statistical tests revealed 240 genes that changed their expression more than 1.5 fold. We find that up- and down-regulated genes fall into distinct gene ontology categories. In our associated study [2] we demonstrate that both up- and down-regulated genes can be direct Brakeless targets. Our results indicate that the co-repressor and co-activator activities of Brakeless may result in distinct biological responses. The microarray data complies with MIAME guidelines and is deposited in GEO under accession number GSE60048.

  11. Gene expression profiling of placentas affected by pre-eclampsia

    DEFF Research Database (Denmark)

    Hoegh, Anne Mette; Borup, Rehannah; Nielsen, Finn Cilius

    2010-01-01

    Several studies point to the placenta as the primary cause of pre-eclampsia. Our objective was to identify placental genes that may contribute to the development of pre-eclampsia. RNA was purified from tissue biopsies from eleven pre-eclamptic placentas and eighteen normal controls. Messenger RNA...... expression from pooled samples was analysed by microarrays. Verification of the expression of selected genes was performed using real-time PCR. A surprisingly low number of genes (21 out of 15,000) were identified as differentially expressed. Among these were genes not previously associated with pre-eclampsia...... as bradykinin B1 receptor and a 14-3-3 protein, but also genes that have already been connected with pre-eclampsia, for example, inhibin beta A subunit and leptin. A low number of genes were repeatedly identified as differentially expressed, because they may represent the endpoint of a cascade of events...

  12. THE EXPRESSION PROFILING OF INTESTINAL NUTRIENT TRANSPORTER GENES IN RATS WITH RENAL FAILURE

    Directory of Open Access Journals (Sweden)

    Hironori Yamamoto

    2012-06-01

    has been still unclear how different of the intestinal function in CKD. In this study, we demonstrated the microarray analysis of global gene expression in intestine of adenine-induced CKD rat. DNA microarray analysis using Affymextrix rat gene chip revealed that CKD caused great changes in gene expression in the rat duodenum: about 400 genes exhibited more than a two-fold change in expression level. Gene ontology analysis showed that a global regulation of genes by CKD involved in iron ion binding, alcoholic, organic acid and lipid metabolism. Furthermore, we found markedly changes of a number of intestinal transporters gene expression related to iron metabolism. These results suggest that CKD may alter some nutrient metabolism in the small intestine by modifying the expression of specific genes. The intestinal transcriptome database of CKD might be useful to develop the novel drugs or functional foods for CKD patients.

  13. The human cumulus--oocyte complex gene-expression profile

    Science.gov (United States)

    Assou, Said; Anahory, Tal; Pantesco, Véronique; Le Carrour, Tanguy; Pellestor, Franck; Klein, Bernard; Reyftmann, Lionel; Dechaud, Hervé; De Vos, John; Hamamah, Samir

    2006-01-01

    BACKGROUND The understanding of the mechanisms regulating human oocyte maturation is still rudimentary. We have identified transcripts differentially expressed between immature and mature oocytes, and cumulus cells. METHODS Using oligonucleotides microarrays, genome wide gene expression was studied in pooled immature and mature oocytes or cumulus cells from patients who underwent IVF. RESULTS In addition to known genes such as DAZL, BMP15 or GDF9, oocytes upregulated 1514 genes. We show that PTTG3 and AURKC are respectively the securin and the Aurora kinase preferentially expressed during oocyte meiosis. Strikingly, oocytes overexpressed previously unreported growth factors such as TNFSF13/APRIL, FGF9, FGF14, and IL4, and transcription factors including OTX2, SOX15 and SOX30. Conversely, cumulus cells, in addition to known genes such as LHCGR or BMPR2, overexpressed cell-tocell signaling genes including TNFSF11/RANKL, numerous complement components, semaphorins (SEMA3A, SEMA6A, SEMA6D) and CD genes such as CD200. We also identified 52 genes progressively increasing during oocyte maturation, comprising CDC25A and SOCS7. CONCLUSION The identification of genes up and down regulated during oocyte maturation greatly improves our understanding of oocyte biology and will provide new markers that signal viable and competent oocytes. Furthermore, genes found expressed in cumulus cells are potential markers of granulosa cell tumors. PMID:16571642

  14. Altered gene-expression profile in rat plasma and promoted body ...

    African Journals Online (AJOL)

    Altered gene-expression profile in rat plasma and promoted body and brain development ... The study was aimed to explore how the prenatal EE impacts affect the ... positively promote the body and nervous system development of offspring, ...

  15. Gene expression profiling of circulating tumor cells and peripheral blood mononuclear cells from breast cancer patients

    Czech Academy of Sciences Publication Activity Database

    Hensler, M.; Vancurova, I.; Becht, E.; Palata, O.; Strnad, P.; Tesarova, P.; Cabinakova, M.; Švec, David; Kubista, Mikael; Bartunkova, J.; Spisek, R.; Sojka, L.

    2016-01-01

    Roč. 5, č. 4 (2016), e1102827 ISSN 2162-402X Institutional support: RVO:86652036 Keywords : Breast cancer * gene expression profiling * circulating tumor cells Subject RIV: FD - Oncology ; Hematology Impact factor: 7.719, year: 2016

  16. Improving functional modules discovery by enriching interaction networks with gene profiles

    KAUST Repository

    Salem, Saeed; Alroobi, Rami; Banitaan, Shadi; Seridi, Loqmane; Aljarah, Ibrahim; Brewer, James

    2013-01-01

    networks. We demonstrate the effectiveness of CLARM on Yeast and Human interaction datasets, and gene expression and molecular function profiles. Experiments on these real datasets show that the CLARM approach is competitive to well established functional

  17. Towards precise classification of cancers based on robust gene functional expression profiles

    Directory of Open Access Journals (Sweden)

    Zhu Jing

    2005-03-01

    Full Text Available Abstract Background Development of robust and efficient methods for analyzing and interpreting high dimension gene expression profiles continues to be a focus in computational biology. The accumulated experiment evidence supports the assumption that genes express and perform their functions in modular fashions in cells. Therefore, there is an open space for development of the timely and relevant computational algorithms that use robust functional expression profiles towards precise classification of complex human diseases at the modular level. Results Inspired by the insight that genes act as a module to carry out a highly integrated cellular function, we thus define a low dimension functional expression profile for data reduction. After annotating each individual gene to functional categories defined in a proper gene function classification system such as Gene Ontology applied in this study, we identify those functional categories enriched with differentially expressed genes. For each functional category or functional module, we compute a summary measure (s for the raw expression values of the annotated genes to capture the overall activity level of the module. In this way, we can treat the gene expressions within a functional module as an integrative data point to replace the multiple values of individual genes. We compare the classification performance of decision trees based on functional expression profiles with the conventional gene expression profiles using four publicly available datasets, which indicates that precise classification of tumour types and improved interpretation can be achieved with the reduced functional expression profiles. Conclusion This modular approach is demonstrated to be a powerful alternative approach to analyzing high dimension microarray data and is robust to high measurement noise and intrinsic biological variance inherent in microarray data. Furthermore, efficient integration with current biological knowledge

  18. Global LC/MS Metabolomics Profiling of Calcium Stressed and Immunosuppressant Drug Treated Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Stefan Jenkins

    2013-12-01

    Full Text Available Previous studies have shown that calcium stressed Saccharomyces cerevisiae, challenged with immunosuppressant drugs FK506 and Cyclosporin A, responds with comprehensive gene expression changes and attenuation of the generalized calcium stress response. Here, we describe a global metabolomics workflow for investigating the utility of tracking corresponding phenotypic changes. This was achieved by efficiently analyzing relative abundance differences between intracellular metabolite pools from wild-type and calcium stressed cultures, with and without prior immunosuppressant drugs exposure. We used pathway database content from WikiPathways and YeastCyc to facilitate the projection of our metabolomics profiling results onto biological pathways. A key challenge was to increase the coverage of the detected metabolites. This was achieved by applying both reverse phase (RP and aqueous normal phase (ANP chromatographic separations, as well as electrospray ionization (ESI and atmospheric pressure chemical ionization (APCI sources for detection in both ion polarities. Unsupervised principle component analysis (PCA and ANOVA results revealed differentiation between wild-type controls, calcium stressed and immunosuppressant/calcium challenged cells. Untargeted data mining resulted in 247 differentially expressed, annotated metabolites, across at least one pair of conditions. A separate, targeted data mining strategy identified 187 differential, annotated metabolites. All annotated metabolites were subsequently mapped onto curated pathways from YeastCyc and WikiPathways for interactive pathway analysis and visualization. Dozens of pathways showed differential responses to stress conditions based on one or more matches to the list of annotated metabolites or to metabolites that had been identified further by MS/MS. The purine salvage, pantothenate and sulfur amino acid pathways were flagged as being enriched, which is consistent with previously published

  19. Glycosyltransferase Gene Expression Profiles Classify Cancer Types and Propose Prognostic Subtypes

    Science.gov (United States)

    Ashkani, Jahanshah; Naidoo, Kevin J.

    2016-05-01

    Aberrant glycosylation in tumours stem from altered glycosyltransferase (GT) gene expression but can the expression profiles of these signature genes be used to classify cancer types and lead to cancer subtype discovery? The differential structural changes to cellular glycan structures are predominantly regulated by the expression patterns of GT genes and are a hallmark of neoplastic cell metamorphoses. We found that the expression of 210 GT genes taken from 1893 cancer patient samples in The Cancer Genome Atlas (TCGA) microarray data are able to classify six cancers; breast, ovarian, glioblastoma, kidney, colon and lung. The GT gene expression profiles are used to develop cancer classifiers and propose subtypes. The subclassification of breast cancer solid tumour samples illustrates the discovery of subgroups from GT genes that match well against basal-like and HER2-enriched subtypes and correlates to clinical, mutation and survival data. This cancer type glycosyltransferase gene signature finding provides foundational evidence for the centrality of glycosylation in cancer.

  20. Variation-preserving normalization unveils blind spots in gene expression profiling

    Science.gov (United States)

    Roca, Carlos P.; Gomes, Susana I. L.; Amorim, Mónica J. B.; Scott-Fordsmand, Janeck J.

    2017-01-01

    RNA-Seq and gene expression microarrays provide comprehensive profiles of gene activity, but lack of reproducibility has hindered their application. A key challenge in the data analysis is the normalization of gene expression levels, which is currently performed following the implicit assumption that most genes are not differentially expressed. Here, we present a mathematical approach to normalization that makes no assumption of this sort. We have found that variation in gene expression is much larger than currently believed, and that it can be measured with available assays. Our results also explain, at least partially, the reproducibility problems encountered in transcriptomics studies. We expect that this improvement in detection will help efforts to realize the full potential of gene expression profiling, especially in analyses of cellular processes involving complex modulations of gene expression. PMID:28276435

  1. Single-cell gene-expression profiling and its potential diagnostic applications

    Czech Academy of Sciences Publication Activity Database

    Stahlberg, A.; Kubista, Mikael; Aman, P.

    2011-01-01

    Roč. 11, č. 7 (2011), s. 735-740 ISSN 1473-7159 R&D Projects: GA ČR(CZ) GAP303/10/1338; GA ČR(CZ) GA301/09/1752 Institutional research plan: CEZ:AV0Z50520701 Keywords : gene-expression profiling * RT-qPCR * single-cell gene-expression profiling Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.859, year: 2011

  2. Comparison of gene expression profiles in Bacillus megaterium ...

    African Journals Online (AJOL)

    Abstract. The MP agent, prepared from Bacillus megaterium isolated from the soil near tobacco fields, can improve metabolic products, and hence the aroma, of tobacco (Nicotiana tabacum) leaf. To explore genes regulating metabolic responses in tobacco leaf, we used microarrays to analyze differentially expressed genes ...

  3. Gene expression profiling of chicken intestinal host responses

    NARCIS (Netherlands)

    Hemert, van S.

    2007-01-01

    Chicken lines differ in genetic disease susceptibility. The scope of the research described in this thesis was to identify genes involved in genetic disease resistance in the chicken intestine. Therefore gene expression in the jejunum was investigated using a microarray approach. An intestine

  4. TXTGate: profiling gene groups with text-based information

    DEFF Research Database (Denmark)

    Glenisson, P.; Coessens, B.; Van Vooren, S.

    2004-01-01

    We implemented a framework called TXTGate that combines literature indices of selected public biological resources in a flexible text-mining system designed towards the analysis of groups of genes. By means of tailored vocabularies, term-as well as gene-centric views are offered on selected textual...

  5. A Critical Perspective On Microarray Breast Cancer Gene Expression Profiling

    NARCIS (Netherlands)

    Sontrop, H.M.J.

    2015-01-01

    Microarrays offer biologists an exciting tool that allows the simultaneous assessment of gene expression levels for thousands of genes at once. At the time of their inception, microarrays were hailed as the new dawn in cancer biology and oncology practice with the hope that within a decade diseases

  6. Expression profiles for six zebrafish genes during gonadal sex differentiation

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Morthorst, Jane Ebsen; Andersen, Ole

    2008-01-01

    BACKGROUND: The mechanism of sex determination in zebrafish is largely unknown and neither sex chromosomes nor a sex-determining gene have been identified. This indicates that sex determination in zebrafish is mediated by genetic signals from autosomal genes. The aim of this study was to determine...... the precise timing of expression of six genes previously suggested to be associated with sex differentiation in zebrafish. The current study investigates the expression of all six genes in the same individual fish with extensive sampling dates during sex determination and -differentiation. RESULTS......: In the present study, we have used quantitative real-time PCR to investigate the expression of ar, sox9a, dmrt1, fig alpha, cyp19a1a and cyp19a1b during the expected sex determination and gonadal sex differentiation period. The expression of the genes expected to be high in males (ar, sox9a and dmrt1a) and high...

  7. Transcriptome profiling in conifers and the PiceaGenExpress database show patterns of diversification within gene families and interspecific conservation in vascular gene expression

    Directory of Open Access Journals (Sweden)

    Raherison Elie

    2012-08-01

    Full Text Available Abstract Background Conifers have very large genomes (13 to 30 Gigabases that are mostly uncharacterized although extensive cDNA resources have recently become available. This report presents a global overview of transcriptome variation in a conifer tree and documents conservation and diversity of gene expression patterns among major vegetative tissues. Results An oligonucleotide microarray was developed from Picea glauca and P. sitchensis cDNA datasets. It represents 23,853 unique genes and was shown to be suitable for transcriptome profiling in several species. A comparison of secondary xylem and phelloderm tissues showed that preferential expression in these vascular tissues was highly conserved among Picea spp. RNA-Sequencing strongly confirmed tissue preferential expression and provided a robust validation of the microarray design. A small database of transcription profiles called PiceaGenExpress was developed from over 150 hybridizations spanning eight major tissue types. In total, transcripts were detected for 92% of the genes on the microarray, in at least one tissue. Non-annotated genes were predominantly expressed at low levels in fewer tissues than genes of known or predicted function. Diversity of expression within gene families may be rapidly assessed from PiceaGenExpress. In conifer trees, dehydrins and late embryogenesis abundant (LEA osmotic regulation proteins occur in large gene families compared to angiosperms. Strong contrasts and low diversity was observed in the dehydrin family, while diverse patterns suggested a greater degree of diversification among LEAs. Conclusion Together, the oligonucleotide microarray and the PiceaGenExpress database represent the first resource of this kind for gymnosperm plants. The spruce transcriptome analysis reported here is expected to accelerate genetic studies in the large and important group comprised of conifer trees.

  8. Gene structure, phylogeny and expression profile of the sucrose synthase gene family in cacao (Theobroma cacao L.).

    Science.gov (United States)

    Li, Fupeng; Hao, Chaoyun; Yan, Lin; Wu, Baoduo; Qin, Xiaowei; Lai, Jianxiong; Song, Yinghui

    2015-09-01

    In higher plants, sucrose synthase (Sus, EC 2.4.1.13) is widely considered as a key enzyme involved in sucrose metabolism. Although, several paralogous genes encoding different isozymes of Sus have been identified and characterized in multiple plant genomes, to date detailed information about the Sus genes is lacking for cacao. This study reports the identification of six novel Sus genes from economically important cacao tree. Analyses of the gene structure and phylogeny of the Sus genes demonstrated evolutionary conservation in the Sus family across cacao and other plant species. The expression of cacao Sus genes was investigated via real-time PCR in various tissues, different developmental phases of leaf, flower bud and pod. The Sus genes exhibited distinct but partially redundant expression profiles in cacao, with TcSus1, TcSus5 and TcSus6, being the predominant genes in the bark with phloem, TcSus2 predominantly expressing in the seed during the stereotype stage. TcSus3 and TcSus4 were significantly detected more in the pod husk and seed coat along the pod development, and showed development dependent expression profiles in the cacao pod. These results provide new insights into the evolution, and basic information that will assist in elucidating the functions of cacao Sus gene family.

  9. Functional Profiling of Transcription Factor Genes in Neurospora crassa

    Directory of Open Access Journals (Sweden)

    Alexander J. Carrillo

    2017-09-01

    Full Text Available Regulation of gene expression by DNA-binding transcription factors is essential for proper control of growth and development in all organisms. In this study, we annotate and characterize growth and developmental phenotypes for transcription factor genes in the model filamentous fungus Neurospora crassa. We identified 312 transcription factor genes, corresponding to 3.2% of the protein coding genes in the genome. The largest class was the fungal-specific Zn2Cys6 (C6 binuclear cluster, with 135 members, followed by the highly conserved C2H2 zinc finger group, with 61 genes. Viable knockout mutants were produced for 273 genes, and complete growth and developmental phenotypic data are available for 242 strains, with 64% possessing at least one defect. The most prominent defect observed was in growth of basal hyphae (43% of mutants analyzed, followed by asexual sporulation (38%, and the various stages of sexual development (19%. Two growth or developmental defects were observed for 21% of the mutants, while 8% were defective in all three major phenotypes tested. Analysis of available mRNA expression data for a time course of sexual development revealed mutants with sexual phenotypes that correlate with transcription factor transcript abundance in wild type. Inspection of this data also implicated cryptic roles in sexual development for several cotranscribed transcription factor genes that do not produce a phenotype when mutated.

  10. Ageing Drosophila selected for longevity retain a young gene expression profile

    DEFF Research Database (Denmark)

    Sarup, Pernille Merete

    and longevity selected lines. Among the latter genes we found a clear overrepresentation of genes involved in immune functions supporting the hypothesis of the life shortening effect of an overactive immune system (inflammaging). Eighty-four genes were differentially expressed at the same physiological age...... between control and longevity selected lines, and the overlap between the same chronological and physiological age gene lists counted 40 candidate genes for increased longevity. Among these were genes with functions in starvation resistance, a regulator of immune responses and several genes which have......  We have investigated how the gene-expression profile of longevity selected lines of Drosophila melanogaster differed from control lines in young, middle-aged and old male flies. 530 genes were differentially expressed between selected and control flies at the same chronological age. We used...

  11. DNA methylation profiles of the brain-derived neurotrophic factor (BDNF gene as a potent diagnostic biomarker in major depression.

    Directory of Open Access Journals (Sweden)

    Manabu Fuchikami

    Full Text Available Major depression, because of its recurring and life-threatening nature, is one of the top 10 diseases for global disease burden. Major depression is still diagnosed on the basis of clinical symptoms in patients. The search for specific biological markers is of great importance to advance the method of diagnosis for depression. We examined the methylation profile of 2 CpG islands (I and IV at the promoters of the brain-derived neurotrophic factor (BDNF gene, which is well known to be involved in the pathophysiology of depression. We analyzed genomic DNA from peripheral blood of 20 Japanese patients with major depression and 18 healthy controls to identify an appropriate epigenetic biomarker to aid in the establishment of an objective system for the diagnosis of depression. Methylation rates at each CpG unit was measured using a MassArray® system (SEQUENOM, and 2-dimensional hierarchical clustering analyses were undertaken to determine the validity of these methylation profiles as a diagnostic biomarker. Analyses of the dendrogram from methylation profiles of CpG I, but not IV, demonstrated that classification of healthy controls and patients at the first branch completely matched the clinical diagnosis. Despite the small number of subjects, our results indicate that classification based on the DNA methylation profiles of CpG I of the BDNF gene may be a valuable diagnostic biomarker for major depression.

  12. STUDENTS’ SCIENCE LITERACY ABILITY PROFILE IN ENVIRONMENTAL POLLUTION AND GLOBAL WARMING MATERIAL

    Directory of Open Access Journals (Sweden)

    Laela Ulfa

    2017-12-01

    Full Text Available This research head for measure profile of students’ science literacy ability in environmental pollution and global warming material. The study was conducted in one of SMP Negeri Semarang with samples of 70 students from grade VII D and VII E. The profile of literacy science of students from the highest percentage till the lowest was science as a body of a knowledge was 70,36%, science as a way of thinking was 61,71%, the interaction between science, technology, and society was 61,43% categorized enough level, and science as a way for investigating was 38,21 categorized too less. keywords: science literacy, scince literacy ability

  13. Profile of Colombian entrepreneurs based on the data from the Global Entrepreneurship Monitor

    Directory of Open Access Journals (Sweden)

    Vera J. Santiago Martínez

    2017-11-01

    Full Text Available Using the data obtained from the Global Entrepreneurship Monitor study through eight cycles of measurement, this work builds a profile of Colombian entrepreneurs considering the perspective of the entrepreneurial pipeline developed by Varela and Soler (2012, from 2006 to 2011. This research determines the profile of entrepreneurs in four points of the entrepreneurial pipeline: (1 intentional entrepreneurs, (2 nascent entrepreneurs, (3 new entrepreneurs and (4 established entrepreneurs. Gender, age, income level, and education level allowed longitudinal comparisons to identify prevailing characteristics. The relationship between these four variables and the four types of entrepreneurs in the pipeline was examined, in order to evaluate at what level one element explains the other.

  14. Expression profiles of variation integration genes in bladder urothelial carcinoma.

    Science.gov (United States)

    Wang, J M; Wang, Y Q; Gao, Z L; Wu, J T; Shi, B K; Yu, C C

    2014-04-30

    Bladder cancer is a common cancer worldwide and its incidence continues to increase. There are approximately 261,000 cases of bladder cancer resulting in 115,000 deaths annually. This study aimed to integrate bladder cancer genome copy number variation information and bladder cancer gene transcription level expression data to construct a causal-target module network of the range of bladder cancer-related genomes. Here, we explored the control mechanism underlying bladder cancer phenotype expression regulation by the major bladder cancer genes. We selected 22 modules as the initial module network to expand the search to screen more networks. After bootstrapping 100 times, we obtained 16 key regulators. These 16 key candidate regulatory genes were further expanded to identify the expression changes of 11,676 genes in 275 modules, which may all have the same regulation. In conclusion, a series of modules associated with the terms 'cancer' or 'bladder' were considered to constitute a potential network.

  15. Expression profile of genes coding for carotenoid biosynthetic ...

    Indian Academy of Sciences (India)

    3Department of Biotechnology, School of Life Sciences, Assam University, Silchar 788 011, India. 4Reliance Industries ... mellitus, and helps to maintain prostate health (Stacewicz- ... mental stages to establish gene-to-metabolite links in high.

  16. Molecular characterization, expression profile of the FSHR gene and ...

    Indian Academy of Sciences (India)

    2016-10-24

    Oct 24, 2016 ... gene(internal control), respectively.P5~P13 ... The obtained RNA quality was detected by 1.5% agarose gel electrophoresis and the concentration was ... sequenced by a commercial service (Majorbio Co. Ltd, Shanghai).

  17. Tyrosine Kinase Gene Expression Profiling in Prostate Cancer

    National Research Council Canada - National Science Library

    Weier, Heinz-Ulrich

    2001-01-01

    ... of these genes parallels the progression of tumors to a more malignant phenotype. We developed a DNA micro-array based screening system to monitor the level of expression of tyrosine kinase (tk...

  18. Tyrosine Kinase Gene Expression Profiling in Prostate Cancer

    National Research Council Canada - National Science Library

    Weier, Heinz-Ulrich

    2002-01-01

    ... of these genes parallels the progression of tumors to a more malignant phenotype. We developed a DNA micro-array based screening system to monitor the level of expression of tyrosine kinase (tk...

  19. Transient gene expression profile changes of confluent human fibroblast cells in spaceflight

    Data.gov (United States)

    National Aeronautics and Space Administration — Microgravity or an altered gravity environment from the static 1g has been shown to influence global gene expression patterns and protein levels in cultured cells or...

  20. Role of SeqA and Dam in Escherichia coli gene expression: A global/microarray analysis

    DEFF Research Database (Denmark)

    Løbner-Olesen, Anders; Marinus, M.G.; Hansen, Flemming G.

    2003-01-01

    High-density oligonucleotide arrays were used to monitor global transcription patterns in Escherichia coli with various levels of Dam and SeqA proteins. Cells lacking Dam methyltransferase showed a modest increase in transcription of the genes belonging to the SOS regulon. Bacteria devoid...... of the SeqA protein, which preferentially binds hemimethylated DNA, were found to have a transcriptional profile almost identical to WT bacteria overexpressing Dam methyltransferase. The latter two strains differed from WT in two ways. First, the origin proximal genes were transcribed with increased...... frequency due to increased gene dosage. Second, chromosomal domains of high transcriptional activity alternate with regions of low activity, and our results indicate that the activity in each domain is modulated in the same way by SeqA deficiency or Dam overproduction. We suggest that the methylation status...

  1. Ensemble attribute profile clustering: discovering and characterizing groups of genes with similar patterns of biological features

    Directory of Open Access Journals (Sweden)

    Bissell MJ

    2006-03-01

    Full Text Available Abstract Background Ensemble attribute profile clustering is a novel, text-based strategy for analyzing a user-defined list of genes and/or proteins. The strategy exploits annotation data present in gene-centered corpora and utilizes ideas from statistical information retrieval to discover and characterize properties shared by subsets of the list. The practical utility of this method is demonstrated by employing it in a retrospective study of two non-overlapping sets of genes defined by a published investigation as markers for normal human breast luminal epithelial cells and myoepithelial cells. Results Each genetic locus was characterized using a finite set of biological properties and represented as a vector of features indicating attributes associated with the locus (a gene attribute profile. In this study, the vector space models for a pre-defined list of genes were constructed from the Gene Ontology (GO terms and the Conserved Domain Database (CDD protein domain terms assigned to the loci by the gene-centered corpus LocusLink. This data set of GO- and CDD-based gene attribute profiles, vectors of binary random variables, was used to estimate multiple finite mixture models and each ensuing model utilized to partition the profiles into clusters. The resultant partitionings were combined using a unanimous voting scheme to produce consensus clusters, sets of profiles that co-occured consistently in the same cluster. Attributes that were important in defining the genes assigned to a consensus cluster were identified. The clusters and their attributes were inspected to ascertain the GO and CDD terms most associated with subsets of genes and in conjunction with external knowledge such as chromosomal location, used to gain functional insights into human breast biology. The 52 luminal epithelial cell markers and 89 myoepithelial cell markers are disjoint sets of genes. Ensemble attribute profile clustering-based analysis indicated that both lists

  2. Expression profile of genes coding for carotenoid biosynthetic ...

    Indian Academy of Sciences (India)

    Fruit ripening process is associated with change in carotenoid profile and accumulation of lycopene in tomato (Solanum lycopersicum L.). In this study, we quantified the -carotene and lycopene content at green, breaker and red-ripe stages of fruit ripening in eight tomato genotypes by using high-performance liquid ...

  3. Digital sorting of complex tissues for cell type-specific gene expression profiles.

    Science.gov (United States)

    Zhong, Yi; Wan, Ying-Wooi; Pang, Kaifang; Chow, Lionel M L; Liu, Zhandong

    2013-03-07

    Cellular heterogeneity is present in almost all gene expression profiles. However, transcriptome analysis of tissue specimens often ignores the cellular heterogeneity present in these samples. Standard deconvolution algorithms require prior knowledge of the cell type frequencies within a tissue or their in vitro expression profiles. Furthermore, these algorithms tend to report biased estimations. Here, we describe a Digital Sorting Algorithm (DSA) for extracting cell-type specific gene expression profiles from mixed tissue samples that is unbiased and does not require prior knowledge of cell type frequencies. The results suggest that DSA is a specific and sensitivity algorithm in gene expression profile deconvolution and will be useful in studying individual cell types of complex tissues.

  4. Global identification of bursicon-regulated genes in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Beerntsen Brenda

    2008-09-01

    Full Text Available Abstract Background Bursicon is a heterodimer neuropeptide responsible for regulating cuticle sclerotization and wing expansion in several insect species. Recent studies indicate that the action of bursicon is mediated by a specific G protein-coupled receptor DLGR2 and the cAMP/PKA signaling pathway. However, little is known regarding the genes that are regulated by bursicon. The identification of bursicon-regulated genes is the focus of this investigation. Results We used DNA microarray analysis to identify bursicon-regulated genes in neck-ligated flies (Drosophila melanogaster that received recombinant bursicon (r-bursicon. Fifty four genes were found to be regulated by bursicon 1 h post r-bursicon injection, 52 being up-regulated and 2 down-regulated while 33 genes were influenced by r-bursicon 3 h post-injection (24 up-regulated and 9 down-regulated genes. Analysis of these genes by inference from the fly database http://flybase.bio.indiana.edu revealed that these genes encode proteins with diverse functions, including cell signaling, gene transcription, DNA/RNA binding, ion trafficking, proteolysis-peptidolysis, metabolism, cytoskeleton formation, immune response and cell-adhesion. Twenty eight genes randomly selected from the microarray-identified list were verified by real time PCR (qPCR which supported the microarray data. Temporal response studies of 13 identified and verified genes by qPCR revealed that the temporal expression patterns of these genes are consistent with the microarray data. Conclusion Using r-bursicon, we identified 87 genes that are regulated by bursicon, 30 of which have no previously known function. Most importantly, all genes randomly selected from the microarray-identified list were verified by real time PCR. Temporal analysis of 13 verified genes revealed that the expression of these genes was indeed induced by bursicon and correlated well with the cuticle sclerotization process. The composite data suggest that

  5. Global gene expression analysis for evaluation and design of biomaterials

    Directory of Open Access Journals (Sweden)

    Nobutaka Hanagata, Taro Takemura and Takashi Minowa

    2010-01-01

    Full Text Available Comprehensive gene expression analysis using DNA microarrays has become a widespread technique in molecular biological research. In the biomaterials field, it is used to evaluate the biocompatibility or cellular toxicity of metals, polymers and ceramics. Studies in this field have extracted differentially expressed genes in the context of differences in cellular responses among multiple materials. Based on these genes, the effects of materials on cells at the molecular level have been examined. Expression data ranging from several to tens of thousands of genes can be obtained from DNA microarrays. For this reason, several tens or hundreds of differentially expressed genes are often present in different materials. In this review, we outline the principles of DNA microarrays, and provide an introduction to methods of extracting information which is useful for evaluating and designing biomaterials from comprehensive gene expression data.

  6. Global gene expression analysis for evaluation and design of biomaterials

    International Nuclear Information System (INIS)

    Hanagata, Nobutaka; Takemura, Taro; Minowa, Takashi

    2010-01-01

    Comprehensive gene expression analysis using DNA microarrays has become a widespread technique in molecular biological research. In the biomaterials field, it is used to evaluate the biocompatibility or cellular toxicity of metals, polymers and ceramics. Studies in this field have extracted differentially expressed genes in the context of differences in cellular responses among multiple materials. Based on these genes, the effects of materials on cells at the molecular level have been examined. Expression data ranging from several to tens of thousands of genes can be obtained from DNA microarrays. For this reason, several tens or hundreds of differentially expressed genes are often present in different materials. In this review, we outline the principles of DNA microarrays, and provide an introduction to methods of extracting information which is useful for evaluating and designing biomaterials from comprehensive gene expression data. (topical review)

  7. Reconstructing Dynamic Promoter Activity Profiles from Reporter Gene Data

    DEFF Research Database (Denmark)

    Kannan, Soumya; Sams, Thomas; Maury, Jérôme

    2018-01-01

    activity despite the fact that the observed output may be dynamic and is a number of steps away from the transcription process. In fact, some promoters that are often thought of as constitutive can show changes in activity when growth conditions change. For these reasons, we have developed a system......Accurate characterization of promoter activity is important when designing expression systems for systems biology and metabolic engineering applications. Promoters that respond to changes in the environment enable the dynamic control of gene expression without the necessity of inducer compounds......, for example. However, the dynamic nature of these processes poses challenges for estimating promoter activity. Most experimental approaches utilize reporter gene expression to estimate promoter activity. Typically the reporter gene encodes a fluorescent protein that is used to infer a constant promoter...

  8. Gene expression profiling in hypertension research: a critical perspective

    Czech Academy of Sciences Publication Activity Database

    Pravenec, Michal; Wallace, C.; Aitman, T. J.; Kurtz, T. W.

    2003-01-01

    Roč. 41, č. 1 (2003), s. 3-8 ISSN 0194-911X R&D Projects: GA MŠk LN00A079; GA ČR GA301/01/0278; GA MZd NB6468 Grant - others:NIH(US) RO1 HL56028; NIH(US) RO1 HL56608; NIH(US) RO3 TW01236; NIH(US) RO1 HL63707 Institutional research plan: CEZ:AV0Z5011922 Keywords : gene expression * hypertension * genes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.630, year: 2003

  9. Global Transcription Profiling Reveals Comprehensive Insights into Hypoxic Response in Arabidopsis1[w

    Science.gov (United States)

    Liu, Fenglong; VanToai, Tara; Moy, Linda P.; Bock, Geoffrey; Linford, Lara D.; Quackenbush, John

    2005-01-01

    Plants have evolved adaptation mechanisms to sense oxygen deficiency in their environments and make coordinated physiological and structural adjustments to enhance their hypoxic tolerance. To gain insight into how plants respond to low-oxygen stress, gene expression profiling using whole-genome DNA amplicon microarrays was carried out at seven time points over 24 h, in wild-type and transgenic PSAG12:ipt Arabidopsis (Arabidopsis thaliana) plants under normoxic and hypoxic conditions. Transcript levels of genes involved in glycolysis and fermentation pathways, ethylene synthesis and perception, calcium signaling, nitrogen utilization, trehalose metabolism, and alkaloid synthesis were significantly altered in response to oxygen limitation. Analysis based on gene ontology assignments suggested a significant down-regulation of genes whose functions are associated with cell walls, nucleosome structures, water channels, and ion transporters and a significant up-regulation of genes involved in transcriptional regulation, protein kinase activity, and auxin responses under conditions of oxygen shortage. Promoter analysis on a cluster of up-regulated genes revealed a significant overrepresentation of the AtMYB2-binding motif (GT motif), a sugar response element-like motif, and a G-box-related sequence, and also identified several putative anaerobic response elements. Finally, quantitative real-time polymerase chain reactions using 29 selected genes independently verified the microarray results. This study represents one of the most comprehensive analyses conducted to date investigating hypoxia-responsive transcriptional networks in plants. PMID:15734912

  10. Global transcription profiling reveals comprehensive insights into hypoxic response in Arabidopsis.

    Science.gov (United States)

    Liu, Fenglong; Vantoai, Tara; Moy, Linda P; Bock, Geoffrey; Linford, Lara D; Quackenbush, John

    2005-03-01

    Plants have evolved adaptation mechanisms to sense oxygen deficiency in their environments and make coordinated physiological and structural adjustments to enhance their hypoxic tolerance. To gain insight into how plants respond to low-oxygen stress, gene expression profiling using whole-genome DNA amplicon microarrays was carried out at seven time points over 24 h, in wild-type and transgenic P(SAG12):ipt Arabidopsis (Arabidopsis thaliana) plants under normoxic and hypoxic conditions. Transcript levels of genes involved in glycolysis and fermentation pathways, ethylene synthesis and perception, calcium signaling, nitrogen utilization, trehalose metabolism, and alkaloid synthesis were significantly altered in response to oxygen limitation. Analysis based on gene ontology assignments suggested a significant down-regulation of genes whose functions are associated with cell walls, nucleosome structures, water channels, and ion transporters and a significant up-regulation of genes involved in transcriptional regulation, protein kinase activity, and auxin responses under conditions of oxygen shortage. Promoter analysis on a cluster of up-regulated genes revealed a significant overrepresentation of the AtMYB2-binding motif (GT motif), a sugar response element-like motif, and a G-box-related sequence, and also identified several putative anaerobic response elements. Finally, quantitative real-time polymerase chain reactions using 29 selected genes independently verified the microarray results. This study represents one of the most comprehensive analyses conducted to date investigating hypoxia-responsive transcriptional networks in plants.

  11. Mars Global Surveyor Radio Science Electron Density Profiles: Interannual Variability and Implications for the Neutral Atmosphere

    Science.gov (United States)

    Bougher, S. W.; Engel, S.; Hinson, D. P.; Murphy, J. R.

    2003-01-01

    The Mars Global Surveyor (MGS) Radio Science (RS) experiment employs an ultrastable oscillator aboard the spacecraft. The signal from the oscillator to Earth is refracted by the Martian ionosphere, allowing retrieval of electron density profiles versus radius and geopotential. The present analysis is carried out on five sets of occultation measurements: (1) four obtained near northern summer solstice (Ls = 74-116, near aphelion) at high northern latitudes (64.7-77.6N), and (2) one set of profiles approaching equinox conditions (Ls = 135- 146) at high southern latitudes (64.7-69.1S). Electron density profiles (95 to 200 km) are examined over a narrow range of solar zenith angles (76.5-86.9 degrees) for local true solar times of (1) 3-4 hours and (2) 12.1 hours. Variations spanning 1-Martian year are specifically examined in the Northern hemisphere.

  12. ABC gene expression profiles have clinical importance and possibly form a new hallmark of cancer.

    Science.gov (United States)

    Dvorak, Pavel; Pesta, Martin; Soucek, Pavel

    2017-05-01

    Adenosine triphosphate-binding cassette proteins constitute a large family of active transporters through extracellular and intracellular membranes. Increased drug efflux based on adenosine triphosphate-binding cassette protein activity is related to the development of cancer cell chemoresistance. Several articles have focused on adenosine triphosphate-binding cassette gene expression profiles (signatures), based on the expression of all 49 human adenosine triphosphate-binding cassette genes, in individual tumor types and reported connections to established clinicopathological features. The aim of this study was to test our theory about the existence of adenosine triphosphate-binding cassette gene expression profiles common to multiple types of tumors, which may modify tumor progression and provide clinically relevant information. Such general adenosine triphosphate-binding cassette profiles could constitute a new attribute of carcinogenesis. Our combined cohort consisted of tissues from 151 cancer patients-breast, colorectal, and pancreatic carcinomas. Standard protocols for RNA isolation and quantitative real-time polymerase chain reaction were followed. Gene expression data from individual tumor types as well as a merged tumor dataset were analyzed by bioinformatics tools. Several general adenosine triphosphate-binding cassette profiles, with differences in gene functions, were established and shown to have significant relations to clinicopathological features such as tumor size, histological grade, or clinical stage. Genes ABCC7, A3, A8, A12, and C8 prevailed among the most upregulated or downregulated ones. In conclusion, the results supported our theory about general adenosine triphosphate-binding cassette gene expression profiles and their importance for cancer on clinical as well as research levels. The presence of ABCC7 (official symbol CFTR) among the genes with key roles in the profiles supports the emerging evidence about its crucial role in various

  13. Virulence gene profiles of avian pathogenic Escherichia coli isolated from chickens with colibacillosis in Bulawayo, Zimbabwe

    Directory of Open Access Journals (Sweden)

    Joshua Mbanga

    2015-04-01

    Full Text Available Colibacillosis, a disease caused by avian pathogenic Escherichia coli (APEC, is one of the main causes of economic losses in the poultry industry worldwide. This study was carried out in order to determine the APEC-associated virulence genes contained by E. coli isolates causing colibacillosis in chickens. A total of 45 E. coli isolates were obtained from the diagnostics and research branch of the Central Veterinary Laboratories, Bulawayo, Zimbabwe. These isolates were obtained from chickens with confirmed cases of colibacillosis after postmortem examination. The presence of the iutA, hlyF, ompT, frz, sitD, fimH, kpsM, sitA, sopB, uvrY, pstB and vat genes were investigated by multiplex polymerase chain reaction (PCR assay. Of the 45 isolates, 93% were positive for the presence of at least one virulence gene. The three most prevalent virulence genes were iutA (80%, fimH (33.3% and hlyF (24.4%. The kpsM, pstB and ompT genes had the lowest prevalence, having been detected in only 2.2% of the isolates. All 12 virulence genes studied were detected in the 45 APEC isolates. Virulence gene profiles were constructed for each APEC isolate from the multiplex data. The APEC isolates were profiled as 62.2% fitting profile A, 31.1% profile B and 6.7% profile C. None of the isolates had more than seven virulence genes. Virulence profiles of Zimbabwean APEC isolates are different from those previously reported. Zimbabwean APEC isolates appear to be less pathogenic and may rely on environmental factors and stress in hosts to establish infection.

  14. Identification and expression profiling analysis of TCP family genes involved in growth and development in maize.

    Science.gov (United States)

    Chai, Wenbo; Jiang, Pengfei; Huang, Guoyu; Jiang, Haiyang; Li, Xiaoyu

    2017-10-01

    The TCP family is a group of plant-specific transcription factors. TCP genes encode proteins harboring bHLH structure, which is implicated in DNA binding and protein-protein interactions and known as the TCP domain. TCP genes play important roles in plant development and have been evolutionarily and functionally elaborated in various plants, however, no overall phylogenetic analysis or expression profiling of TCP genes in Zea mays has been reported. In the present study, a systematic analysis of molecular evolution and functional prediction of TCP family genes in maize ( Z . mays L.) has been conducted. We performed a genome-wide survey of TCP genes in maize, revealing the gene structure, chromosomal location and phylogenetic relationship of family members. Microsynteny between grass species and tissue-specific expression profiles were also investigated. In total, 29 TCP genes were identified in the maize genome, unevenly distributed on the 10 maize chromosomes. Additionally, ZmTCP genes were categorized into nine classes based on phylogeny and purifying selection may largely be responsible for maintaining the functions of maize TCP genes. What's more, microsynteny analysis suggested that TCP genes have been conserved during evolution. Finally, expression analysis revealed that most TCP genes are expressed in the stem and ear, which suggests that ZmTCP genes influence stem and ear growth. This result is consistent with the previous finding that maize TCP genes represses the growth of axillary organs and enables the formation of female inflorescences. Altogether, this study presents a thorough overview of TCP family in maize and provides a new perspective on the evolution of this gene family. The results also indicate that TCP family genes may be involved in development stage in plant growing conditions. Additionally, our results will be useful for further functional analysis of the TCP gene family in maize.

  15. Identification of pathogenic genes related to rheumatoid arthritis through integrated analysis of DNA methylation and gene expression profiling.

    Science.gov (United States)

    Zhang, Lei; Ma, Shiyun; Wang, Huailiang; Su, Hang; Su, Ke; Li, Longjie

    2017-11-15

    The purpose of our study was to identify new pathogenic genes used for exploring the pathogenesis of rheumatoid arthritis (RA). To screen pathogenic genes of RA, an integrated analysis was performed by using the microarray datasets in RA derived from the Gene Expression Omnibus (GEO) database. The functional annotation and potential pathways of differentially expressed genes (DEGs) were further discovered by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Afterwards, the integrated analysis of DNA methylation and gene expression profiling was used to screen crucial genes. In addition, we used RT-PCR and MSP to verify the expression levels and methylation status of these crucial genes in 20 synovial biopsy samples obtained from 10 RA model mice and 10 normal mice. BCL11B, CCDC88C, FCRLA and APOL6 were both up-regulated and hypomethylated in RA according to integrated analysis, RT-PCR and MSP verification. Four crucial genes (BCL11B, CCDC88C, FCRLA and APOL6) identified and analyzed in this study might be closely connected with the pathogenesis of RA. Copyright © 2017. Published by Elsevier B.V.

  16. Gene-expression profiling after exposure to C-ion beams

    International Nuclear Information System (INIS)

    Saegusa, Kumiko; Furuno, Aki; Ishikawa, Kenichi; Ishikawa, Atsuko; Ohtsuka, Yoshimi; Kawai, Seiko; Imai, Takashi; Nojima, Kumie

    2005-01-01

    It is recognized that carbon-ion beam kills cancer cells more efficiently than X-ray. In this study we have compared cellular gene expression response after carbon-ion beam exposure with that after X-ray exposure. Gene expression profiles of cultured neonatal human dermal fibroblasts (NHDF) at 0, 1, 3, 6, 12, 18, and 24 hr after exposure to 0.1, 2 and 5 Gy of X-ray or carbon-ion beam were obtained using 22K oligonucleotide microarray. N-way ANOVA analysis of whole gene expression data sets selected 960 genes for carbon-ion beam and 977 genes for X-ray, respectively. Interestingly, majority of these genes (91% for carbon-ion beam and 88% for X-ray, respectively) were down regulated. The selected genes were further classified by their dose-dependence or time-dependence of gene expression change (fold change>1.5). It was revealed that genes involved in cell proliferation had tendency to show time-dependent up regulation by carbon-ion beam. Another N-way ANOVA analysis was performed to select 510 genes, and further selection was made to find 70 genes that showed radiation species-dependent gene expression change (fold change>1.25). These genes were then categorized by the K-Mean clustering method into 4 clusters. Each cluster showed tendency to contain genes involved in cell cycle regulation, cell death, responses to stress and metabolisms, respectively. (author)

  17. Gene expression profiles in adenosine-treated human mast cells

    African Journals Online (AJOL)

    ajl yemi

    2011-10-26

    Oct 26, 2011 ... assignment (Ewing and Green, 1998a; Ewing et al., 1998b). The trace files were trimmed with trim-alt 0.05 (P-score>20). In addition, vector trimming was conducted with cross-match software. Each gene expression pattern was analyzed by clustering. (30 bp or more 94% homology) and assembly.

  18. A Classification Framework Applied to Cancer Gene Expression Profiles

    Directory of Open Access Journals (Sweden)

    Hussein Hijazi

    2013-01-01

    Full Text Available Classification of cancer based on gene expression has provided insight into possible treatment strategies. Thus, developing machine learning methods that can successfully distinguish among cancer subtypes or normal versus cancer samples is important. This work discusses supervised learning techniques that have been employed to classify cancers. Furthermore, a two-step feature selection method based on an attribute estimation method (e.g., ReliefF and a genetic algorithm was employed to find a set of genes that can best differentiate between cancer subtypes or normal versus cancer samples. The application of different classification methods (e.g., decision tree, k-nearest neighbor, support vector machine (SVM, bagging, and random forest on 5 cancer datasets shows that no classification method universally outperforms all the others. However, k-nearest neighbor and linear SVM generally improve the classification performance over other classifiers. Finally, incorporating diverse types of genomic data (e.g., protein-protein interaction data and gene expression increase the prediction accuracy as compared to using gene expression alone.

  19. Gene expression profiling gut microbiota in different races of humans

    Science.gov (United States)

    Chen, Lei; Zhang, Yu-Hang; Huang, Tao; Cai, Yu-Dong

    2016-03-01

    The gut microbiome is shaped and modified by the polymorphisms of microorganisms in the intestinal tract. Its composition shows strong individual specificity and may play a crucial role in the human digestive system and metabolism. Several factors can affect the composition of the gut microbiome, such as eating habits, living environment, and antibiotic usage. Thus, various races are characterized by different gut microbiome characteristics. In this present study, we studied the gut microbiomes of three different races, including individuals of Asian, European and American races. The gut microbiome and the expression levels of gut microbiome genes were analyzed in these individuals. Advanced feature selection methods (minimum redundancy maximum relevance and incremental feature selection) and four machine-learning algorithms (random forest, nearest neighbor algorithm, sequential minimal optimization, Dagging) were employed to capture key differentially expressed genes. As a result, sequential minimal optimization was found to yield the best performance using the 454 genes, which could effectively distinguish the gut microbiomes of different races. Our analyses of extracted genes support the widely accepted hypotheses that eating habits, living environments and metabolic levels in different races can influence the characteristics of the gut microbiome.

  20. Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression

    DEFF Research Database (Denmark)

    Beloin, C.; Valle, J.; Latour-Lambert, P.

    2004-01-01

    The formation of biofilm results in a major lifestyle switch that is thought to affect the expression of multiple genes and operons. We used DNA arrays to study the global effect of biofilm formation on gene expression in mature Escherichia coli K-12 biofilm. We show that, when biofilm is compared...... that 20 of these genes are required for the formation of mature biofilm. This group includes 11 genes of previously unknown function. These results constitute a comprehensive analysis of the global transcriptional response triggered in mature E. coli biofilms and provide insights into its physiological...

  1. QTL global meta-analysis: are trait determining genes clustered?

    Directory of Open Access Journals (Sweden)

    Adelson David L

    2009-04-01

    Full Text Available Abstract Background A key open question in biology is if genes are physically clustered with respect to their known functions or phenotypic effects. This is of particular interest for Quantitative Trait Loci (QTL where a QTL region could contain a number of genes that contribute to the trait being measured. Results We observed a significant increase in gene density within QTL regions compared to non-QTL regions and/or the entire bovine genome. By grouping QTL from the Bovine QTL Viewer database into 8 categories of non-redundant regions, we have been able to analyze gene density and gene function distribution, based on Gene Ontology (GO with relation to their location within QTL regions, outside of QTL regions and across the entire bovine genome. We identified a number of GO terms that were significantly over represented within particular QTL categories. Furthermore, select GO terms expected to be associated with the QTL category based on common biological knowledge have also proved to be significantly over represented in QTL regions. Conclusion Our analysis provides evidence of over represented GO terms in QTL regions. This increased GO term density indicates possible clustering of gene functions within QTL regions of the bovine genome. Genes with similar functions may be grouped in specific locales and could be contributing to QTL traits. Moreover, we have identified over-represented GO terminology that from a biological standpoint, makes sense with respect to QTL category type.

  2. Gene expression profiling of liver from dairy cows treated intra-mammary with lipopolysaccharide

    DEFF Research Database (Denmark)

    Jiang, Li; Sørensen, Peter; Røntved, Christine

    2008-01-01

    Liver plays a profound role in the acute phase response (APR) observed in the early phase of acute bovine mastitis caused by Escherichia coli (E. coli). To gain an insight into the genes and pathways involved in hepatic APR of dairy cows we performed a global gene expression analysis of liver...... also seemed to participate in APR. CONCLUSIONS: Performing global gene expression analysis on liver tissue from IM LPS treated cows verified that the liver plays a major role in the APR of E. coli mastitis, and that the bovine hepatic APR follows the same pattern as other mammals when...

  3. Radioactive cDNA microarrys for gene expression profiles in antidepressant therapy

    International Nuclear Information System (INIS)

    Lee, M. S.; Han, B. J.; Cha, J. H.; Ryu, Y. M.; Shin, E. K.; Park, J. H.; Park, Y. H.; Kim, M. K.

    2002-01-01

    Using radioactive cDNA microarray, we investigated a pattern of gene regulation under treatment of antidepressant on patients of depressive disoder. Basic microarray technology was performed as previously described in our research. The bioinformatic selection of human cDNAs, which is specifically designed for psychiatry, neurology, and signal transduction, were arrayed on nylon membranes. Using with 33P-labeled probes, this method provided highly sensitive gene expression profiles of our interest including brain receptors, drug metabolism, and cellular signalings. Gene expression profiles were also classified into several categories in accordance with the gene-regulation of antidepressant. The gene profiles of our interest were significantly up- (16 genes, >2.0 of Z-ratio) or down- (24 genes, <-2.0 of Z ratio) regulated when compared the good responsed group with the bad-responsed one. Consequently, we demonstrated that radioactive human cDNA microarray is highly likely to be an efficient technology for evaluating the gene regulation of antidepressants, such as selective serotonin-reuptake inhibitors (SSRIs), by using high-throughput biotechnology

  4. Gene expression profiling via LongSAGE in a non-model plant species: a case study in seeds of Brassica napus

    Directory of Open Access Journals (Sweden)

    Friedt Wolfgang

    2009-07-01

    Full Text Available Abstract Background Serial analysis of gene expression (LongSAGE was applied for gene expression profiling in seeds of oilseed rape (Brassica napus ssp. napus. The usefulness of this technique for detailed expression profiling in a non-model organism was demonstrated for the highly complex, neither fully sequenced nor annotated genome of B. napus by applying a tag-to-gene matching strategy based on Brassica ESTs and the annotated proteome of the closely related model crucifer A. thaliana. Results Transcripts from 3,094 genes were detected at two time-points of seed development, 23 days and 35 days after pollination (DAP. Differential expression showed a shift from gene expression involved in diverse developmental processes including cell proliferation and seed coat formation at 23 DAP to more focussed metabolic processes including storage protein accumulation and lipid deposition at 35 DAP. The most abundant transcripts at 23 DAP were coding for diverse protease inhibitor proteins and proteases, including cysteine proteases involved in seed coat formation and a number of lipid transfer proteins involved in embryo pattern formation. At 35 DAP, transcripts encoding napin, cruciferin and oleosin storage proteins were most abundant. Over both time-points, 18.6% of the detected genes were matched by Brassica ESTs identified by LongSAGE tags in antisense orientation. This suggests a strong involvement of antisense transcript expression in regulatory processes during B. napus seed development. Conclusion This study underlines the potential of transcript tagging approaches for gene expression profiling in Brassica crop species via EST matching to annotated A. thaliana genes. Limits of tag detection for low-abundance transcripts can today be overcome by ultra-high throughput sequencing approaches, so that tag-based gene expression profiling may soon become the method of choice for global expression profiling in non-model species.

  5. Alteration of gene expression profiling including GPR174 and GNG2 is associated with vasovagal syncope.

    Science.gov (United States)

    Huang, Yu-Juan; Zhou, Zai-wei; Xu, Miao; Ma, Qing-wen; Yan, Jing-bin; Wang, Jian-yi; Zhang, Quo-qin; Huang, Min; Bao, Liming

    2015-03-01

    Vasovagal syncope (VVS) causes accidental harm for susceptible patients. However, pathophysiology of this disorder remains largely unknown. In an effort to understanding of molecular mechanism for VVS, genome-wide gene expression profiling analyses were performed on VVS patients at syncope state. A total of 66 Type 1 VVS child patients and the same number healthy controls were enrolled in this study. Peripheral blood RNAs were isolated from all subjects, of which 10 RNA samples were randomly selected from each groups for gene expression profile analysis using Gene ST 1.0 arrays (Affymetrix). The results revealed that 103 genes were differently expressed between the patients and controls. Significantly, two G-proteins related genes, GPR174 and GNG2 that have not been related to VVS were among the differently expressed genes. The microarray results were confirmed by qRT-PCR in all the tested individuals. Ingenuity pathway analysis and gene ontology annotation study showed that the differently expressed genes are associated with stress response and apoptosis, suggesting that the alteration of some gene expression including G-proteins related genes is associated with VVS. This study provides new insight into the molecular mechanism of VVS and would be helpful to further identify new molecular biomarkers for the disease.

  6. Transcriptional Profiling and Identification of Heat-Responsive Genes in Perennial Ryegrass by RNA-Sequencing

    Directory of Open Access Journals (Sweden)

    Kehua Wang

    2017-06-01

    Full Text Available Perennial ryegrass (Lolium perenne is one of the most widely used forage and turf grasses in the world due to its desirable agronomic qualities. However, as a cool-season perennial grass species, high temperature is a major factor limiting its performance in warmer and transition regions. In this study, a de novo transcriptome was generated using a cDNA library constructed from perennial ryegrass leaves subjected to short-term heat stress treatment. Then the expression profiling and identification of perennial ryegrass heat response genes by digital gene expression analyses was performed. The goal of this work was to produce expression profiles of high temperature stress responsive genes in perennial ryegrass leaves and further identify the potentially important candidate genes with altered levels of transcript, such as those genes involved in transcriptional regulation, antioxidant responses, plant hormones and signal transduction, and cellular metabolism. The de novo assembly of perennial ryegrass transcriptome in this study obtained more total and annotated unigenes compared to previously published ones. Many DEGs identified were genes that are known to respond to heat stress in plants, including HSFs, HSPs, and antioxidant related genes. In the meanwhile, we also identified four gene candidates mainly involved in C4 carbon fixation, and one TOR gene. Their exact roles in plant heat stress response need to dissect further. This study would be important by providing the gene resources for improving heat stress tolerance in both perennial ryegrass and other cool-season perennial grass plants.

  7. Global discriminative learning for higher-accuracy computational gene prediction.

    Directory of Open Access Journals (Sweden)

    Axel Bernal

    2007-03-01

    Full Text Available Most ab initio gene predictors use a probabilistic sequence model, typically a hidden Markov model, to combine separately trained models of genomic signals and content. By combining separate models of relevant genomic features, such gene predictors can exploit small training sets and incomplete annotations, and can be trained fairly efficiently. However, that type of piecewise training does not optimize prediction accuracy and has difficulty in accounting for statistical dependencies among different parts of the gene model. With genomic information being created at an ever-increasing rate, it is worth investigating alternative approaches in which many different types of genomic evidence, with complex statistical dependencies, can be integrated by discriminative learning to maximize annotation accuracy. Among discriminative learning methods, large-margin classifiers have become prominent because of the success of support vector machines (SVM in many classification tasks. We describe CRAIG, a new program for ab initio gene prediction based on a conditional random field model with semi-Markov structure that is trained with an online large-margin algorithm related to multiclass SVMs. Our experiments on benchmark vertebrate datasets and on regions from the ENCODE project show significant improvements in prediction accuracy over published gene predictors that use intrinsic features only, particularly at the gene level and on genes with long introns.

  8. Metagenomic species profiling using universal phylogenetic marker genes

    DEFF Research Database (Denmark)

    Sunagawa, Shinichi; Mende, Daniel R; Zeller, Georg

    2013-01-01

    To quantify known and unknown microorganisms at species-level resolution using shotgun sequencing data, we developed a method that establishes metagenomic operational taxonomic units (mOTUs) based on single-copy phylogenetic marker genes. Applied to 252 human fecal samples, the method revealed th...... that on average 43% of the species abundance and 58% of the richness cannot be captured by current reference genome-based methods. An implementation of the method is available at http://www.bork.embl.de/software/mOTU/.......To quantify known and unknown microorganisms at species-level resolution using shotgun sequencing data, we developed a method that establishes metagenomic operational taxonomic units (mOTUs) based on single-copy phylogenetic marker genes. Applied to 252 human fecal samples, the method revealed...

  9. Genomic profiling in Down syndrome acute lymphoblastic leukemia identifies histone gene deletions associated with altered methylation profiles

    Science.gov (United States)

    Loudin, Michael G.; Wang, Jinhua; Leung, Hon-Chiu Eastwood; Gurusiddappa, Sivashankarappa; Meyer, Julia; Condos, Gregory; Morrison, Debra; Tsimelzon, Anna; Devidas, Meenakshi; Heerema, Nyla A.; Carroll, Andrew J.; Plon, Sharon E.; Hunger, Stephen P.; Basso, Giuseppe; Pession, Andrea; Bhojwani, Deepa; Carroll, William L.; Rabin, Karen R.

    2014-01-01

    Patients with Down syndrome (DS) and acute lymphoblastic leukemia (ALL) have distinct clinical and biological features. Whereas most DS-ALL cases lack the sentinel cytogenetic lesions that guide risk assignment in childhood ALL, JAK2 mutations and CRLF2 overexpression are highly enriched. To further characterize the unique biology of DS-ALL, we performed genome-wide profiling of 58 DS-ALL and 68 non-Down syndrome (NDS) ALL cases by DNA copy number, loss of heterozygosity, gene expression, and methylation analyses. We report a novel deletion within the 6p22 histone gene cluster as significantly more frequent in DS-ALL, occurring in 11 DS (22%) and only two NDS cases (3.1%) (Fisher’s exact p = 0.002). Homozygous deletions yielded significantly lower histone expression levels, and were associated with higher methylation levels, distinct spatial localization of methylated promoters, and enrichment of highly methylated genes for specific pathways and transcription factor binding motifs. Gene expression profiling demonstrated heterogeneity of DS-ALL cases overall, with supervised analysis defining a 45-transcript signature associated with CRLF2 overexpression. Further characterization of pathways associated with histone deletions may identify opportunities for novel targeted interventions. PMID:21647151

  10. Gene expression profiling of the green seed problem in Soybean.

    Science.gov (United States)

    Teixeira, Renake N; Ligterink, Wilco; França-Neto, José de B; Hilhorst, Henk W M; da Silva, Edvaldo A A

    2016-02-01

    Due to the climate change of the past few decades, some agricultural areas in the world are now experiencing new climatic extremes. For soybean, high temperatures and drought stress can potentially lead to the "green seed problem", which is characterized by chlorophyll retention in mature seeds and is associated with lower oil and seed quality, thus negatively impacting the production of soybean seeds. Here we show that heat and drought stress result in a "mild" stay-green phenotype and impaired expression of the STAY-GREEN 1 and STAY-GREEN 2 (D1, D2), PHEOPHORBIDASE 2 (PPH2) and NON-YELLOW COLORING 1 (NYC1_1) genes in soybean seeds of a susceptible soybean cultivar. We suggest that the higher expression of these genes in fully mature seeds of a tolerant cultivar allows these seeds to cope with stressful conditions and complete chlorophyll degradation. The gene expression results obtained in this study represent a significant advance in understanding chlorophyll retention in mature soybean seeds produced under stressful conditions. This will open new research possibilities towards finding molecular markers for breeding programs to produce cultivars which are less susceptible to chlorophyll retention under the hot and dry climate conditions which are increasingly common in the largest soybean production areas of the world.

  11. Gene Expression Profiling in Fish Toxicology: A Review.

    Science.gov (United States)

    Kumar, Girish; Denslow, Nancy D

    In this review, we present an overview of transcriptomic responses to chemical exposures in a variety of fish species. We have discussed the use of several molecular approaches such as northern blotting, differential display reverse transcription-polymerase chain reaction (DDRT-PCR), suppression subtractive hybridization (SSH), real time quantitative PCR (RT-qPCR), microarrays, and next-generation sequencing (NGS) for measuring gene expression. These techniques have been mainly used to measure the toxic effects of single compounds or simple mixtures in laboratory conditions. In addition, only few studies have been conducted to examine the biological significance of differentially expressed gene sets following chemical exposure. Therefore, future studies should focus more under field conditions using a multidisciplinary approach (genomics, proteomics and metabolomics) to understand the synergetic effects of multiple environmental stressors and to determine the functional significance of differentially expressed genes. Nevertheless, recent developments in NGS technologies and decreasing costs of sequencing holds the promise to uncover the complexity of anthropogenic impacts and biological effects in wild fish populations.

  12. [Identification of candidate genes and expression profiles, as doping biomarkers].

    Science.gov (United States)

    Paparini, A; Impagnatiello, F; Pistilli, A; Rinaldi, M; Gianfranceschi, G; Signori, E; Stabile, A M; Fazio, V; Rende, M; Romano Spica, V

    2007-01-01

    Administration of prohibited substances to enhance athletic performance represents an emerging medical, social, ethical and legal issue. Traditional controls are based on direct detection of substances or their catabolites. However out-of-competition doping may not be easily revealed by standard analytical methods. Alternative indirect control strategies are based on the evaluation of mid- and long-term effects of doping in tissues. Drug-induced long-lasting changes of gene expression may be taken as effective indicators of doping exposure. To validate this approach, we used real-time PCR to monitor the expression pattern of selected genes in human haematopoietic cells exposed to nandrolone, insulin-like growth factor I (IGF-I) or growth hormone (GH). Some candidate genes were found significantly and consistently modulated by treatments. Nandrolone up-regulated AR, ESR2 and PGR in K562 cells, and SRD5A1, PPARA and JAK2 in Jurkat cells; IGF-I up-regulated EPOR and PGR in HL60 cells, and SRD5A1 in Jurkat; GH up-regulated SRD5A1 and GHR in K562. GATA1 expression was down-regulated in IGF-1-treated HL60, ESR2 was down-regulated in nandrolone-treated Jurkat, and AR and PGR were down-regulated in GH-treated Jurkat. This pilot study shows the potential of molecular biology-based strategies in anti-doping controls.

  13. Gene expression profiling identifies inflammation and angiogenesis as distinguishing features of canine hemangiosarcoma

    International Nuclear Information System (INIS)

    Tamburini, Beth A; Cutter, Gary R; Wojcieszyn, John W; Bellgrau, Donald; Gemmill, Robert M; Hunter, Lawrence E; Modiano, Jaime F; Phang, Tzu L; Fosmire, Susan P; Scott, Milcah C; Trapp, Susan C; Duckett, Megan M; Robinson, Sally R; Slansky, Jill E; Sharkey, Leslie C

    2010-01-01

    The etiology of hemangiosarcoma remains incompletely understood. Its common occurrence in dogs suggests predisposing factors favor its development in this species. These factors could represent a constellation of heritable characteristics that promote transformation events and/or facilitate the establishment of a microenvironment that is conducive for survival of malignant blood vessel-forming cells. The hypothesis for this study was that characteristic molecular features distinguish hemangiosarcoma from non-malignant endothelial cells, and that such features are informative for the etiology of this disease. We first investigated mutations of VHL and Ras family genes that might drive hemangiosarcoma by sequencing tumor DNA and mRNA (cDNA). Protein expression was examined using immunostaining. Next, we evaluated genome-wide gene expression profiling using the Affymetrix Canine 2.0 platform as a global approach to test the hypothesis. Data were evaluated using routine bioinformatics and validation was done using quantitative real time RT-PCR. Each of 10 tumor and four non-tumor samples analyzed had wild type sequences for these genes. At the genome wide level, hemangiosarcoma cells clustered separately from non-malignant endothelial cells based on a robust signature that included genes involved in inflammation, angiogenesis, adhesion, invasion, metabolism, cell cycle, signaling, and patterning. This signature did not simply reflect a cancer-associated angiogenic phenotype, as it also distinguished hemangiosarcoma from non-endothelial, moderately to highly angiogenic bone marrow-derived tumors (lymphoma, leukemia, osteosarcoma). The data show that inflammation and angiogenesis are important processes in the pathogenesis of vascular tumors, but a definitive ontogeny of the cells that give rise to these tumors remains to be established. The data do not yet distinguish whether functional or ontogenetic plasticity creates this phenotype, although they suggest that cells

  14. Gene expression profiling identifies inflammation and angiogenesis as distinguishing features of canine hemangiosarcoma

    Directory of Open Access Journals (Sweden)

    Slansky Jill E

    2010-11-01

    Full Text Available Abstract Background The etiology of hemangiosarcoma remains incompletely understood. Its common occurrence in dogs suggests predisposing factors favor its development in this species. These factors could represent a constellation of heritable characteristics that promote transformation events and/or facilitate the establishment of a microenvironment that is conducive for survival of malignant blood vessel-forming cells. The hypothesis for this study was that characteristic molecular features distinguish hemangiosarcoma from non-malignant endothelial cells, and that such features are informative for the etiology of this disease. Methods We first investigated mutations of VHL and Ras family genes that might drive hemangiosarcoma by sequencing tumor DNA and mRNA (cDNA. Protein expression was examined using immunostaining. Next, we evaluated genome-wide gene expression profiling using the Affymetrix Canine 2.0 platform as a global approach to test the hypothesis. Data were evaluated using routine bioinformatics and validation was done using quantitative real time RT-PCR. Results Each of 10 tumor and four non-tumor samples analyzed had wild type sequences for these genes. At the genome wide level, hemangiosarcoma cells clustered separately from non-malignant endothelial cells based on a robust signature that included genes involved in inflammation, angiogenesis, adhesion, invasion, metabolism, cell cycle, signaling, and patterning. This signature did not simply reflect a cancer-associated angiogenic phenotype, as it also distinguished hemangiosarcoma from non-endothelial, moderately to highly angiogenic bone marrow-derived tumors (lymphoma, leukemia, osteosarcoma. Conclusions The data show that inflammation and angiogenesis are important processes in the pathogenesis of vascular tumors, but a definitive ontogeny of the cells that give rise to these tumors remains to be established. The data do not yet distinguish whether functional or ontogenetic

  15. Global analysis of differential expressed genes in ECV304 ...

    African Journals Online (AJOL)

    EB

    Abstract. Background: Human cytomegalovirus (HCMV) is a virus which has the potential to alter cellular gene expression through .... and (reverse: 5'-CAG CAC CAT CCT CCT CTT. CCT CT ..... acute respiratory syndrome (SARS) coronavirus.

  16. mRMR-ABC: A Hybrid Gene Selection Algorithm for Cancer Classification Using Microarray Gene Expression Profiling

    Directory of Open Access Journals (Sweden)

    Hala Alshamlan

    2015-01-01

    Full Text Available An artificial bee colony (ABC is a relatively recent swarm intelligence optimization approach. In this paper, we propose the first attempt at applying ABC algorithm in analyzing a microarray gene expression profile. In addition, we propose an innovative feature selection algorithm, minimum redundancy maximum relevance (mRMR, and combine it with an ABC algorithm, mRMR-ABC, to select informative genes from microarray profile. The new approach is based on a support vector machine (SVM algorithm to measure the classification accuracy for selected genes. We evaluate the performance of the proposed mRMR-ABC algorithm by conducting extensive experiments on six binary and multiclass gene expression microarray datasets. Furthermore, we compare our proposed mRMR-ABC algorithm with previously known techniques. We reimplemented two of these techniques for the sake of a fair comparison using the same parameters. These two techniques are mRMR when combined with a genetic algorithm (mRMR-GA and mRMR when combined with a particle swarm optimization algorithm (mRMR-PSO. The experimental results prove that the proposed mRMR-ABC algorithm achieves accurate classification performance using small number of predictive genes when tested using both datasets and compared to previously suggested methods. This shows that mRMR-ABC is a promising approach for solving gene selection and cancer classification problems.

  17. mRMR-ABC: A Hybrid Gene Selection Algorithm for Cancer Classification Using Microarray Gene Expression Profiling.

    Science.gov (United States)

    Alshamlan, Hala; Badr, Ghada; Alohali, Yousef

    2015-01-01

    An artificial bee colony (ABC) is a relatively recent swarm intelligence optimization approach. In this paper, we propose the first attempt at applying ABC algorithm in analyzing a microarray gene expression profile. In addition, we propose an innovative feature selection algorithm, minimum redundancy maximum relevance (mRMR), and combine it with an ABC algorithm, mRMR-ABC, to select informative genes from microarray profile. The new approach is based on a support vector machine (SVM) algorithm to measure the classification accuracy for selected genes. We evaluate the performance of the proposed mRMR-ABC algorithm by conducting extensive experiments on six binary and multiclass gene expression microarray datasets. Furthermore, we compare our proposed mRMR-ABC algorithm with previously known techniques. We reimplemented two of these techniques for the sake of a fair comparison using the same parameters. These two techniques are mRMR when combined with a genetic algorithm (mRMR-GA) and mRMR when combined with a particle swarm optimization algorithm (mRMR-PSO). The experimental results prove that the proposed mRMR-ABC algorithm achieves accurate classification performance using small number of predictive genes when tested using both datasets and compared to previously suggested methods. This shows that mRMR-ABC is a promising approach for solving gene selection and cancer classification problems.

  18. Expression profile of genes during resistance reversal in a temephos selected strain of the dengue vector, Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Clare Strode

    Full Text Available BACKGROUND: The mosquito Aedes aegypti is one of the most important disease vectors because it transmits two major arboviruses, dengue and yellow fever, which cause significant global morbidity and mortality. Chemical insecticides form the cornerstone of vector control. The organophosphate temephos a larvicide recommended by WHO for controlling Ae. aegypti, however, resistance to this compound has been reported in many countries, including Brazil. METHODOLOGY/PRINCIPAL FINDINGS: The aim of this study was to identify genes implicated in metabolic resistance in an Ae. aegypti temephos resistant strain, named RecR, through microarray analysis. We utilized a custom 'Ae. aegypti detox chip' and validated microarray data through RT-PCR comparing susceptible and resistant individuals. In addition, we analyzed gene expression in 4(th instar larvae from a reversed susceptible strain (RecRev, exposed and unexposed to temephos. The results obtained revealed a set of 13 and 6 genes significantly over expressed in resistant adult mosquitoes and larvae, respectively. One of these genes, the cytochrome P450 CYP6N12, was up-regulated in both stages. RT-PCR confirmed the microarray results and, additionally, showed no difference in gene expression between temephos exposed and unexposed RecRev mosquitoes. This suggested that the differences in the transcript profiles among the strains are heritable due to a selection process and are not caused by immediate insecticide exposure. Reversal of temephos resistance was demonstrated and, importantly, there was a positive correlation between a decrease in the resistance ratio and an accompanying decrease in the expression levels of previously over expressed genes. Some of the genes identified here have also been implicated in metabolic resistance in other mosquito species and insecticide resistant populations of Ae. aegypti. CONCLUSIONS/SIGNIFICANCE: The identification of gene expression signatures associated to

  19. Gene expression profiles reveal key pathways and genes associated with neuropathic pain in patients with spinal cord injury.

    Science.gov (United States)

    He, Xijing; Fan, Liying; Wu, Zhongheng; He, Jiaxuan; Cheng, Bin

    2017-04-01

    Previous gene expression profiling studies of neuropathic pain (NP) following spinal cord injury (SCI) have predominantly been performed in animal models. The present study aimed to investigate gene alterations in patients with spinal cord injury and to further examine the mechanisms underlying NP following SCI. The GSE69901 gene expression profile was downloaded from the public Gene Expression Omnibus database. Samples of peripheral blood mononuclear cells (PBMCs) derived from 12 patients with intractable NP and 13 control patients without pain were analyzed to identify the differentially expressed genes (DEGs), followed by functional enrichment analysis and protein‑protein interaction (PPI) network construction. In addition, a transcriptional regulation network was constructed and functional gene clustering was performed. A total of 70 upregulated and 61 downregulated DEGs were identified in the PBMC samples from patients with NP. The upregulated and downregulated genes were significantly involved in different Gene Ontology terms and pathways, including focal adhesion, T cell receptor signaling pathway and mitochondrial function. Glycogen synthase kinase 3 β (GSK3B) was identified as a hub protein in the PPI network. In addition, ornithine decarboxylase 1 (ODC1) and ornithine aminotransferase (OAT) were regulated by additional transcription factors in the regulation network. GSK3B, OAT and ODC1 were significantly enriched in two functional gene clusters, the function of mitochondrial membrane and DNA binding. Focal adhesion and the T cell receptor signaling pathway may be significantly linked with NP, and GSK3B, OAT and ODC1 may be potential targets for the treatment of NP.

  20. Gene expression profiling demonstrates WNT/β-catenin pathway genes alteration in Mexican patients with colorectal cancer and diabetes mellitus.

    Science.gov (United States)

    Ivonne Wence-Chavez, Laura; Palomares-Chacon, Ulises; Pablo Flores-Gutierrez, Juan; Felipe Jave-Suarez, Luis; Del Carmen Aguilar-Lemarroy, Adriana; Barros-Nunez, Patricio; Esperanza Flores-Martinez, Silvia; Sanchez-Corona, Jose; Alejandra Rosales-Reynoso, Monica

    2017-01-01

    Several studies have shown a strong association between diabetes mellitus (DM) and increased risk of colorectal cancer (CRC). The fundamental mechanisms that support this association are not entirely understood; however, it is believed that hyperinsulinemia and hyperglycemia may be involved. Some proposed mechanisms include upregulation of mitogenic signaling pathways like MAPK, PI3K, mTOR, and WNT, which are involved in cell proliferation, growth, and cancer cell survival. The purpose of this study was to evaluate the gene expression profile and identify differently expressed genes involved in mitogenic pathways in CRC patients with and without DM. In this study, microarray analysis of gene expression followed by quantitative PCR (qPCR) was performed in cancer tissue from CRC patients with and without DM to identify the gene expression profiles and validate the differently expressed genes. Among the study groups, some differently expressed genes were identified. However, when bioinformatics clustering tools were used, a significant modulation of genes involved in the WNT pathway was evident. Therefore, we focused on genes participating in this pathway, such as WNT3A, LRP6, TCF7L2, and FRA-1. Validation of the expression levels of those genes by qPCR showed that CRC patients without type 2 diabetes mellitus (T2DM) expressed significantly more WNT3Ay LRP6, but less TCF7L2 and FRA-1 compared to controls, while in CRC patients with DM the expression levels of WNT3A, LRP6, TCF7L2, and FRA-1 were significantly higher compared to controls. Our results suggest that WNT/β-catenin pathway is upregulated in patients with CRC and DM, demonstrating its importance and involvement in both pathologies.

  1. Brain Gene Expression Signatures From Cerebrospinal Fluid Exosome RNA Profiling

    Science.gov (United States)

    Zanello, S. B.; Stevens, B.; Calvillo, E.; Tang, R.; Gutierrez Flores, B.; Hu, L.; Skog, J.; Bershad, E.

    2016-01-01

    While the Visual Impairment and Intracranial Pressure (VIIP) syndrome observations have focused on ocular symptoms, spaceflight has been also associated with a number of other performance and neurologic signs, such as headaches, cognitive changes, vertigo, nausea, sleep/circadian disruption and mood alterations, which, albeit likely multifactorial, can also result from elevation of intracranial pressure (ICP). We therefore hypothesize that these various symptoms are caused by disturbances in the neurophysiology of the brain structures and are correlated with molecular markers in the cerebrospinal fluid (CSF) as indicators of neurophysiological changes. Exosomes are 30-200 nm microvesicles shed into all biofluids, including blood, urine, and CSF, carrying a highly rich source of intact protein and RNA cargo. Exosomes have been identified in human CSF, and their proteome and RNA pool is a potential new reservoir for biomarker discovery in neurological disorders. The purpose of this study is to investigate changes in brain gene expression via exosome analysis in patients suffering from ICP elevation of varied severity (idiopathic intracranial hypertension -IIH), a condition which shares some of the neuroophthalmological features of VIIP, as a first step toward obtaining evidence suggesting that cognitive function and ICP levels can be correlated with biomarkers in the CSF. Our preliminary work, reported last year, validated the exosomal technology applicable to CSF analysis and demonstrated that it was possible to obtain gene expression evidence of inflammation processes in traumatic brain injury patients. We are now recruiting patients with suspected IIH requiring lumbar puncture at Baylor College of Medicine. Both CSF (5 ml) and human plasma (10 ml) are being collected in order to compare the pattern of differentially expressed genes observed in CSF and in blood. Since blood is much more accessible than CSF, we would like to determine whether plasma biomarkers for

  2. Stress amplifies sex differences in primate prefrontal profiles of gene expression.

    Science.gov (United States)

    Lee, Alex G; Hagenauer, Megan; Absher, Devin; Morrison, Kathleen E; Bale, Tracy L; Myers, Richard M; Watson, Stanley J; Akil, Huda; Schatzberg, Alan F; Lyons, David M

    2017-11-02

    Stress is a recognized risk factor for mood and anxiety disorders that occur more often in women than men. Prefrontal brain regions mediate stress coping, cognitive control, and emotion. Here, we investigate sex differences and stress effects on prefrontal cortical profiles of gene expression in squirrel monkey adults. Dorsolateral, ventrolateral, and ventromedial prefrontal cortical regions from 18 females and 12 males were collected after stress or no-stress treatment conditions. Gene expression profiles were acquired using HumanHT-12v4.0 Expression BeadChip arrays adapted for squirrel monkeys. Extensive variation between prefrontal cortical regions was discerned in the expression of numerous autosomal and sex chromosome genes. Robust sex differences were also identified across prefrontal cortical regions in the expression of mostly autosomal genes. Genes with increased expression in females compared to males were overrepresented in mitogen-activated protein kinase and neurotrophin signaling pathways. Many fewer genes with increased expression in males compared to females were discerned, and no molecular pathways were identified. Effect sizes for sex differences were greater in stress compared to no-stress conditions for ventromedial and ventrolateral prefrontal cortical regions but not dorsolateral prefrontal cortex. Stress amplifies sex differences in gene expression profiles for prefrontal cortical regions involved in stress coping and emotion regulation. Results suggest molecular targets for new treatments of stress disorders in human mental health.

  3. Gene expression profiling in woman with women with breast cancer in a Saudi population

    International Nuclear Information System (INIS)

    Amer, Saud M. Bin; Maqbool, Z.; Nirmal, Maimoona S.; Hussain, Syed S.; Jeprel, Hatim A.; Qattan, Amal T.; Tulbah, Asma M.; Malik, Osama A.; Al-Tweigeri, Taher A.

    2008-01-01

    Objective was to generate consensus gene expression profiles of invasive breast tumors from a small cohort of Saudi females and to explore the possibility that they may be broadly conserved between Caucasian and Middle Eastern populations. This study was performed at King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia, from January 2005 to January 2007. Gene expression profiles were generated from 38 invasive breast tumors and 8 tumor adjacent tissues (TATs) using BD Atlas cDNA expression arrays containing 1176 genes. Results were confirmed by reverse transcriptase polymerase chain reaction and analyzed by 2-dimensional unsupervised hierarchical clustering. The analysis identified 48 differentially expressed genes in tumors from which 25 are already reported by various western studies. Forty-three of these genes were also differentially expressed in TATs. The same data set has been able to distinguish between tumors and the TAT's, interestingly by using only 4 of the differentially expressed genes. Moreover, we were able to group the patients according to prognosis to an extent by hierarchical clustering. Our results indicate that expression profiles between Saudi females with breast cancer and the Caucasian population are conserved to some extent, and can be used to classify patients according to prognostic groups. We also suggest 3 differentially expressed genes (IGHG3, CDK3 and RPS9) in tumors may have a novel role in breast cancer. In addition, the role of TATs is much more essential in breast cancer and needs to be explored thoroughly. (author)

  4. Gene expression profile altered by orthodontic tooth movement during healing of surgical alveolar defect.

    Science.gov (United States)

    Choi, Eun-Kyung; Lee, Jae-Hyung; Baek, Seung-Hak; Kim, Su-Jung

    2017-06-01

    We explored the gene expression profile altered by orthodontic tooth movement (OTM) during the healing of surgical alveolar defects in beagles. An OTM-related healing model was established where a maxillary second premolar was protracted into the critical-sized defect for 6 weeks (group DT6). As controls, natural healing models without OTM were set at 2 weeks (group D2) and at 6 weeks (group D6) after surgery. Total RNAs were extracted from dissected tissue blocks containing the regenerated defects and additionally from sound alveolar bone as a baseline (group C). mRNA profiling was performed using microarray analysis. Functional annotations of gene clusters based on differentially expressed genes among groups indicated that the gene expression profile of group DT6 had a stronger similarity to that of group D2 than to group D6. The genes participating in high woven-bone fraction in group DT6 could be identified as TNFSF11, MMP13, SPP1, and DMP1, which were verified by quantitative real-time polymerase chain reactions. We investigated at the gene level that OTM can affect the healing state of surgical defects serving as favorable matrices for OTM with defect regeneration. It would be a basis on selecting putative genes to be therapeutically applied for tissue-friendly accelerated orthodontics in the future. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  5. Gene expression profiles of glucose toxicity-exposed islet microvascular endothelial cells.

    Science.gov (United States)

    Liu, Mingming; Lu, Wenbao; Hou, Qunxing; Wang, Bing; Sheng, Youming; Wu, Qingbin; Li, Bingwei; Liu, Xueting; Zhang, Xiaoyan; Li, Ailing; Zhang, Honggang; Xiu, Ruijuan

    2018-03-25

    Islet microcirculation is mainly composed by IMECs. The aim of the study was to investigate the differences in gene expression profiles of IMECs upon glucose toxicity exposure and insulin treatment. IMECs were treated with 5.6 mmol L -1 glucose, 35 mmol L -1 glucose, and 35 mmol L -1 glucose plus 10 -8  mol L -1 insulin, respectively. Gene expression profiles were determined by microarray and verified by qPCR. GO terms and KEGG analysis were performed to assess the potential roles of differentially expressed genes. The interaction and expression tendency of differentially expressed genes were analyzed by Path-Net algorithm. Compared with glucose toxicity-exposed IMECs, 1574 mRNAs in control group and 2870 mRNAs in insulin-treated IMECs were identified with differential expression, respectively. GO and KEGG pathway analysis revealed that these genes conferred roles in regulation of apoptosis, proliferation, migration, adhesion, and metabolic process etc. Additionally, MAPK signaling pathway and apoptosis were the dominant nodes in Path-Net. IMECs survival and function pathways were significantly changed, and the expression tendency of genes from euglycemia and glucose toxicity exposure to insulin treatment was revealed and enriched in 7 patterns. Our study provides a microcirculatory framework for gene expression profiles of glucose toxicity-exposed IMECs. © 2018 John Wiley & Sons Ltd.

  6. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain.

    Science.gov (United States)

    Krienen, Fenna M; Yeo, B T Thomas; Ge, Tian; Buckner, Randy L; Sherwood, Chet C

    2016-01-26

    The human brain is patterned with disproportionately large, distributed cerebral networks that connect multiple association zones in the frontal, temporal, and parietal lobes. The expansion of the cortical surface, along with the emergence of long-range connectivity networks, may be reflected in changes to the underlying molecular architecture. Using the Allen Institute's human brain transcriptional atlas, we demonstrate that genes particularly enriched in supragranular layers of the human cerebral cortex relative to mouse distinguish major cortical classes. The topography of transcriptional expression reflects large-scale brain network organization consistent with estimates from functional connectivity MRI and anatomical tracing in nonhuman primates. Microarray expression data for genes preferentially expressed in human upper layers (II/III), but enriched only in lower layers (V/VI) of mouse, were cross-correlated to identify molecular profiles across the cerebral cortex of postmortem human brains (n = 6). Unimodal sensory and motor zones have similar molecular profiles, despite being distributed across the cortical mantle. Sensory/motor profiles were anticorrelated with paralimbic and certain distributed association network profiles. Tests of alternative gene sets did not consistently distinguish sensory and motor regions from paralimbic and association regions: (i) genes enriched in supragranular layers in both humans and mice, (ii) genes cortically enriched in humans relative to nonhuman primates, (iii) genes related to connectivity in rodents, (iv) genes associated with human and mouse connectivity, and (v) 1,454 gene sets curated from known gene ontologies. Molecular innovations of upper cortical layers may be an important component in the evolution of long-range corticocortical projections.

  7. Alteration in gene expression profile and oncogenicity of esophageal squamous cell carcinoma by RIZ1 upregulation.

    Science.gov (United States)

    Dong, Shang-Wen; Li, Dong; Xu, Cong; Sun, Pei; Wang, Yuan-Guo; Zhang, Peng

    2013-10-07

    To investigate the effect of retinoblastoma protein-interacting zinc finger gene 1 (RIZ1) upregulation in gene expression profile and oncogenicity of human esophageal squamous cell carcinoma (ESCC) cell line TE13. TE13 cells were transfected with pcDNA3.1(+)/RIZ1 and pcDNA3.1(+). Changes in gene expression profile were screened and the microarray results were confirmed by reverse transcription-polymerase chain reaction (RT-PCR). Nude mice were inoculated with TE13 cells to establish ESCC xenografts. After two weeks, the inoculated mice were randomly divided into three groups. Tumors were injected with normal saline, transfection reagent pcDNA3.1(+) and transfection reagent pcDNA3.1(+)/RIZ1, respectively. Tumor development was quantified, and changes in gene expression of RIZ1 transfected tumors were detected by RT-PCR and Western blotting. DNA microarray data showed that RIZ1 transfection induced widespread changes in gene expression profile of cell line TE13, with 960 genes upregulated and 1163 downregulated. Treatment of tumor xenografts with RIZ1 recombinant plasmid significantly inhibited tumor growth, decreased tumor size, and increased expression of RIZ1 mRNA compared to control groups. The changes in gene expression profile were also observed in vivo after RIZ1 transfection. Most of the differentially expressed genes were associated with cell development, supervision of viral replication, lymphocyte costimulatory and immune system development in esophageal cells. RIZ1 gene may be involved in multiple cancer pathways, such as cytokine receptor interaction and transforming growth factor beta signaling. The development and progression of esophageal cancer are related to the inactivation of RIZ1. Virus infection may also be an important factor.

  8. Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process

    International Nuclear Information System (INIS)

    Chandran, Uma R; Ma, Changqing; Dhir, Rajiv; Bisceglia, Michelle; Lyons-Weiler, Maureen; Liang, Wenjing; Michalopoulos, George; Becich, Michael; Monzon, Federico A

    2007-01-01

    Prostate cancer is characterized by heterogeneity in the clinical course that often does not correlate with morphologic features of the tumor. Metastasis reflects the most adverse outcome of prostate cancer, and to date there are no reliable morphologic features or serum biomarkers that can reliably predict which patients are at higher risk of developing metastatic disease. Understanding the differences in the biology of metastatic and organ confined primary tumors is essential for developing new prognostic markers and therapeutic targets. Using Affymetrix oligonucleotide arrays, we analyzed gene expression profiles of 24 androgen-ablation resistant metastatic samples obtained from 4 patients and a previously published dataset of 64 primary prostate tumor samples. Differential gene expression was analyzed after removing potentially uninformative stromal genes, addressing the differences in cellular content between primary and metastatic tumors. The metastatic samples are highly heterogenous in expression; however, differential expression analysis shows that 415 genes are upregulated and 364 genes are downregulated at least 2 fold in every patient with metastasis. The expression profile of metastatic samples reveals changes in expression of a unique set of genes representing both the androgen ablation related pathways and other metastasis related gene networks such as cell adhesion, bone remodelling and cell cycle. The differentially expressed genes include metabolic enzymes, transcription factors such as Forkhead Box M1 (FoxM1) and cell adhesion molecules such as Osteopontin (SPP1). We hypothesize that these genes have a role in the biology of metastatic disease and that they represent potential therapeutic targets for prostate cancer

  9. Transcriptional profiling of protein expression related genes of Pichia pastoris under simulated microgravity.

    Directory of Open Access Journals (Sweden)

    Feng Qi

    Full Text Available The physiological responses and transcription profiling of Pichia pastoris GS115 to simulated microgravity (SMG were substantially changed compared with normal gravity (NG control. We previously reported that the recombinant P. pastoris grew faster under SMG than NG during methanol induction phase and the efficiencies of recombinant enzyme production and secretion were enhanced under SMG, which was considered as the consequence of changed transcriptional levels of some key genes. In this work, transcriptiome profiling of P. pastoris cultured under SMG and NG conditions at exponential and stationary phases were determined using next-generation sequencing (NGS technologies. Four categories of 141 genes function as methanol utilization, protein chaperone, RNA polymerase and protein transportation or secretion classified according to Gene Ontology (GO were chosen to be analyzed on the basis of NGS results. And 80 significantly changed genes were weighted and estimated by Cluster 3.0. It was found that most genes of methanol metabolism (85% of 20 genes and protein transportation or secretion (82.2% of 45 genes were significantly up-regulated under SMG. Furthermore the quantity and fold change of up-regulated genes in exponential phase of each category were higher than those of stationary phase. The results indicate that the up-regulated genes of methanol metabolism and protein transportation or secretion mainly contribute to enhanced production and secretion of the recombinant protein under SMG.

  10. Expression profiling of hypothetical genes in Desulfovibrio vulgaris leads to improved functional annotation

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Dwayne A.; Mukhopadhyay, Aindrila; Joachimiak, Marcin P.; Drury, Elliott C.; Redding, Alyssa M.; Yen, Huei-Che B.; Fields, Matthew W.; Hazen, Terry C.; Arkin, Adam P.; Keasling, Jay D.; Wall, Judy D.

    2008-10-27

    Hypothetical and conserved hypothetical genes account for>30percent of sequenced bacterial genomes. For the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough, 347 of the 3634 genes were annotated as conserved hypothetical (9.5percent) along with 887 hypothetical genes (24.4percent). Given the large fraction of the genome, it is plausible that some of these genes serve critical cellular roles. The study goals were to determine which genes were expressed and provide a more functionally based annotation. To accomplish this, expression profiles of 1234 hypothetical and conserved genes were used from transcriptomic datasets of 11 environmental stresses, complemented with shotgun LC-MS/MS and AMT tag proteomic data. Genes were divided into putatively polycistronic operons and those predicted to be monocistronic, then classified by basal expression levels and grouped according to changes in expression for one or multiple stresses. 1212 of these genes were transcribed with 786 producing detectable proteins. There was no evidence for expression of 17 predicted genes. Except for the latter, monocistronic gene annotation was expanded using the above criteria along with matching Clusters of Orthologous Groups. Polycistronic genes were annotated in the same manner with inferences from their proximity to more confidently annotated genes. Two targeted deletion mutants were used as test cases to determine the relevance of the inferred functional annotations.

  11. Transcriptome sequencing in pediatric acute lymphoblastic leukemia identifies fusion genes associated with distinct DNA methylation profiles

    Directory of Open Access Journals (Sweden)

    Yanara Marincevic-Zuniga

    2017-08-01

    Full Text Available Abstract Background Structural chromosomal rearrangements that lead to expressed fusion genes are a hallmark of acute lymphoblastic leukemia (ALL. In this study, we performed transcriptome sequencing of 134 primary ALL patient samples to comprehensively detect fusion transcripts. Methods We combined fusion gene detection with genome-wide DNA methylation analysis, gene expression profiling, and targeted sequencing to determine molecular signatures of emerging ALL subtypes. Results We identified 64 unique fusion events distributed among 80 individual patients, of which over 50% have not previously been reported in ALL. Although the majority of the fusion genes were found only in a single patient, we identified several recurrent fusion gene families defined by promiscuous fusion gene partners, such as ETV6, RUNX1, PAX5, and ZNF384, or recurrent fusion genes, such as DUX4-IGH. Our data show that patients harboring these fusion genes displayed characteristic genome-wide DNA methylation and gene expression signatures in addition to distinct patterns in single nucleotide variants and recurrent copy number alterations. Conclusion Our study delineates the fusion gene landscape in pediatric ALL, including both known and novel fusion genes, and highlights fusion gene families with shared molecular etiologies, which may provide additional information for prognosis and therapeutic options in the future.

  12. Multitarget Effects of Danqi Pill on Global Gene Expression Changes in Myocardial Ischemia

    Directory of Open Access Journals (Sweden)

    Qiyan Wang

    2018-01-01

    Full Text Available Danqi pill (DQP is a widely prescribed traditional Chinese medicine (TCM in the treatment of cardiovascular diseases. The objective of this study is to systematically characterize altered gene expression pattern induced by myocardial ischemia (MI in a rat model and to investigate the effects of DQP on global gene expression. Global mRNA expression was measured. Differentially expressed genes among the sham group, model group, and DQP group were analyzed. The gene ontology enrichment analysis and pathway analysis of differentially expressed genes were carried out. We quantified 10,813 genes. Compared with the sham group, expressions of 339 genes were upregulated and 177 genes were downregulated in the model group. The upregulated genes were enriched in extracellular matrix organization, response to wounding, and defense response pathways. Downregulated genes were enriched in fatty acid metabolism, pyruvate metabolism, PPAR signaling pathways, and so forth. This indicated that energy metabolic disorders occurred in rats with MI. In the DQP group, expressions of genes in the altered pathways were regulated back towards normal levels. DQP reversed expression of 313 of the 516 differentially expressed genes in the model group. This study provides insight into the multitarget mechanism of TCM in the treatment of complex diseases.

  13. Circadian expression profiles of chromatin remodeling factor genes in Arabidopsis.

    Science.gov (United States)

    Lee, Hong Gil; Lee, Kyounghee; Jang, Kiyoung; Seo, Pil Joon

    2015-01-01

    The circadian clock is a biological time keeper mechanism that regulates biological rhythms to a period of approximately 24 h. The circadian clock enables organisms to anticipate environmental cycles and coordinates internal cellular physiology with external environmental cues. In plants, correct matching of the clock with the environment confers fitness advantages to plant survival and reproduction. Therefore, circadian clock components are regulated at multiple layers to fine-tune the circadian oscillation. Epigenetic regulation provides an additional layer of circadian control. However, little is known about which chromatin remodeling factors are responsible for circadian control. In this work, we analyzed circadian expression of 109 chromatin remodeling factor genes and identified 17 genes that display circadian oscillation. In addition, we also found that a candidate interacts with a core clock component, supporting that clock activity is regulated in part by chromatin modification. As an initial attempt to elucidate the relationship between chromatin modification and circadian oscillation, we identified novel regulatory candidates that provide a platform for future investigations of chromatin regulation of the circadian clock.

  14. Genome-wide DNA methylation profiles reveal novel candidate genes associated with meat quality at different age stages in hens.

    Science.gov (United States)

    Zhang, Meng; Yan, Feng-Bin; Li, Fang; Jiang, Ke-Ren; Li, Dong-Hua; Han, Rui-Li; Li, Zhuan-Jan; Jiang, Rui-Rui; Liu, Xiao-Jun; Kang, Xiang-Tao; Sun, Gui-Rong

    2017-04-05

    Poultry meat quality is associated with breed, age, tissue and other factors. Many previous studies have focused on distinct breeds; however, little is known regarding the epigenetic regulatory mechanisms in different age stages, such as DNA methylation. Here, we compared the global DNA methylation profiles between juvenile (20 weeks old) and later laying-period (55 weeks old) hens and identified candidate genes related to the development and meat quality of breast muscle using whole-genome bisulfite sequencing. The results showed that the later laying-period hens, which had a higher intramuscular fat (IMF) deposition capacity and water holding capacity (WHC) and less tenderness, exhibited higher global DNA methylation levels than the juvenile hens. A total of 2,714 differentially methylated regions were identified in the present study, which corresponded to 378 differentially methylated genes, mainly affecting muscle development, lipid metabolism, and the ageing process. Hypermethylation of the promoters of the genes ABCA1, COL6A1 and GSTT1L and the resulting transcriptional down-regulation in the later laying-period hens may be the reason for the significant difference in the meat quality between the juvenile and later laying-period hens. These findings contribute to a better understanding of epigenetic regulation in the skeletal muscle development and meat quality of chicken.

  15. Shared control of gene expression in bacteria by transcription factors and global physiology of the cell.

    NARCIS (Netherlands)

    Berthoumieux, S.; Jong, H. de; Baptist, G.; Pinel, C.; Ranquet, C.; Ropers, D.; Geiselmann, J.

    2013-01-01

    Gene expression is controlled by the joint effect of (i) the global physiological state of the cell, in particular the activity of the gene expression machinery, and (ii) DNA-binding transcription factors and other specific regulators. We present a model-based approach to distinguish between these

  16. The euryhaline yeast Debaryomyces hansenii has two catalase genes encoding enzymes with differential activity profile.

    Science.gov (United States)

    Segal-Kischinevzky, Claudia; Rodarte-Murguía, Beatriz; Valdés-López, Victor; Mendoza-Hernández, Guillermo; González, Alicia; Alba-Lois, Luisa

    2011-03-01

    Debaryomyces hansenii is a spoilage yeast able to grow in a variety of ecological niches, from seawater to dairy products. Results presented in this article show that (i) D. hansenii has an inherent resistance to H2O2 which could be attributed to the fact that this yeast has a basal catalase activity which is several-fold higher than that observed in Saccharomyces cerevisiae under the same culture conditions, (ii) D. hansenii has two genes (DhCTA1 and DhCTT1) encoding two catalase isozymes with a differential enzymatic activity profile which is not strictly correlated with a differential expression profile of the encoding genes.

  17. HURRICANE AND SEVERE STORM SENTINEL (HS3) GLOBAL HAWK ADVANCED VERTICAL ATMOSPHERIC PROFILING SYSTEM (AVAPS) DROPSONDE SYSTEM V2

    Data.gov (United States)

    National Aeronautics and Space Administration — The Hurricane and Severe Storm Sentinel (HS3) Global Hawk Advanced Vertical Atmospheric Profiling System (AVAPS) Dropsonde System dataset was collected by the...

  18. Prediction of graft-versus-host disease in humans by donor gene-expression profiling.

    Directory of Open Access Journals (Sweden)

    Chantal Baron

    2007-01-01

    Full Text Available BACKGROUND: Graft-versus-host disease (GVHD results from recognition of host antigens by donor T cells following allogeneic hematopoietic cell transplantation (AHCT. Notably, histoincompatibility between donor and recipient is necessary but not sufficient to elicit GVHD. Therefore, we tested the hypothesis that some donors may be "stronger alloresponders" than others, and consequently more likely to elicit GVHD. METHODS AND FINDINGS: To this end, we measured the gene-expression profiles of CD4(+ and CD8(+ T cells from 50 AHCT donors with microarrays. We report that pre-AHCT gene-expression profiling segregates donors whose recipient suffered from GVHD or not. Using quantitative PCR, established statistical tests, and analysis of multiple independent training-test datasets, we found that for chronic GVHD the "dangerous donor" trait (occurrence of GVHD in the recipient is under polygenic control and is shaped by the activity of genes that regulate transforming growth factor-beta signaling and cell proliferation. CONCLUSIONS: These findings strongly suggest that the donor gene-expression profile has a dominant influence on the occurrence of GVHD in the recipient. The ability to discriminate strong and weak alloresponders using gene-expression profiling could pave the way to personalized transplantation medicine.

  19. Autism and increased paternal age related changes in global levels of gene expression regulation.

    Directory of Open Access Journals (Sweden)

    Mark D Alter

    2011-02-01

    Full Text Available A causal role of mutations in multiple general transcription factors in neurodevelopmental disorders including autism suggested that alterations in global levels of gene expression regulation might also relate to disease risk in sporadic cases of autism. This premise can be tested by evaluating for changes in the overall distribution of gene expression levels. For instance, in mice, variability in hippocampal-dependent behaviors was associated with variability in the pattern of the overall distribution of gene expression levels, as assessed by variance in the distribution of gene expression levels in the hippocampus. We hypothesized that a similar change in variance might be found in children with autism. Gene expression microarrays covering greater than 47,000 unique RNA transcripts were done on RNA from peripheral blood lymphocytes (PBL of children with autism (n = 82 and controls (n = 64. Variance in the distribution of gene expression levels from each microarray was compared between groups of children. Also tested was whether a risk factor for autism, increased paternal age, was associated with variance. A decrease in the variance in the distribution of gene expression levels in PBL was associated with the diagnosis of autism and a risk factor for autism, increased paternal age. Traditional approaches to microarray analysis of gene expression suggested a possible mechanism for decreased variance in gene expression. Gene expression pathways involved in transcriptional regulation were down-regulated in the blood of children with autism and children of older fathers. Thus, results from global and gene specific approaches to studying microarray data were complimentary and supported the hypothesis that alterations at the global level of gene expression regulation are related to autism and increased paternal age. Global regulation of transcription, thus, represents a possible point of convergence for multiple etiologies of autism and other

  20. Meteoric 10Be in soil profiles - A global meta-analysis

    Science.gov (United States)

    Graly, Joseph A.; Bierman, Paul R.; Reusser, Lucas J.; Pavich, Milan J.

    2010-01-01

    In order to assess current understanding of meteoric 10Be dynamics and distribution in terrestrial soils, we assembled a database of all published meteoric 10Be soil depth profiles, including 104 profiles from 27 studies in globally diverse locations, collectively containing 679 individual measurements. This allows for the systematic comparison of meteoric 10Be concentration to other soil characteristics and the comparison of profile depth distributions between geologic settings. Percent clay, 9Be, and dithionite-citrate extracted Al positively correlate to meteoric 10Be in more than half of the soils where they were measured, but the lack of significant correlation in other soils suggests that no one soil factor controls meteoric 10Be distribution with depth. Dithionite-citrate extracted Fe and cation exchange capacity are only weakly correlated to meteoric 10Be. Percent organic carbon and pH are not significantly related to meteoric 10Be concentration when all data are complied.The compilation shows that meteoric 10Be concentration is seldom uniform with depth in a soil profile. In young or rapidly eroding soils, maximum meteoric 10Be concentrations are typically found in the uppermost 20 cm. In older, more slowly eroding soils, the highest meteoric 10Be concentrations are found at depth, usually between 50 and 200 cm. We find that the highest measured meteoric 10Be concentration in a soil profile is an important metric, as both the value and the depth of the maximum meteoric 10Be concentration correlate with the total measured meteoric 10Be inventory of the soil profile.In order to refine the use of meteoric 10Be as an estimator of soil erosion rate, we compare near-surface meteoric 10Be concentrations to total meteoric 10Be soil inventories. These trends are used to calibrate models of meteoric 10Be loss by soil erosion. Erosion rates calculated using this method vary based on the assumed depth and timing of erosional events and on the reference data selected.

  1. Mesenchymal stem cells display different gene expression profiles compared to hyaline and elastic chondrocytes

    OpenAIRE

    Zhai, Li-Jie; Zhao, Ke-Qing; Wang, Zhi-Qiang; Feng, Ya; Xing, Shuang-Chun

    2011-01-01

    Cartilage has a poor intrinsic repair capacity, requiring surgical intervention to effect biological repair. Tissue engineering technologies or regenerative medicine strategies are currently being employed to address cartilage repair. Mesenchymal stem cells (MSCs) are considered to be an excellent cell source for this application. However, the different gene expression profiles between the MSCs and differentiated cartilage remain unclear. In this report, we first examined the gene expression ...

  2. Gene expression profile change and growth inhibition in Drosophila larvae treated with azadirachtin.

    Science.gov (United States)

    Lai, Duo; Jin, Xiaoyong; Wang, Hao; Yuan, Mei; Xu, Hanhong

    2014-09-20

    Azadirachtin is a botanical insecticide that affects various biological processes. The effects of azadirachtin on the digital gene expression profile and growth inhibition in Drosophila larvae have not been investigated. In this study, we applied high-throughput sequencing technology to detect the differentially expressed genes of Drosophila larvae regulated by azadirachtin. A total of 15,322 genes were detected, and 28 genes were found to be significantly regulated by azadirachtin. Biological process and pathway analysis showed that azadirachtin affected starch and sucrose metabolism, defense response, signal transduction, instar larval or pupal development, and chemosensory behavior processes. The genes regulated by azadirachtin were mainly enriched in starch and sucrose metabolism. This study provided a general digital gene expression profile of dysregulated genes in response to azadirachtin and showed that azadirachtin provoked potent growth inhibitory effects in Drosophila larvae by regulating the genes of cuticular protein, amylase, and odorant-binding protein. Finally, we propose a potential mechanism underlying the dysregulation of the insulin/insulin-like growth factor signaling pathway by azadirachtin. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Expression profile of immune response genes in patients with Severe Acute Respiratory Syndrome

    Directory of Open Access Journals (Sweden)

    Tai Dessmon

    2005-01-01

    Full Text Available Abstract Background Severe acute respiratory syndrome (SARS emerged in later February 2003, as a new epidemic form of life-threatening infection caused by a novel coronavirus. However, the immune-pathogenesis of SARS is poorly understood. To understand the host response to this pathogen, we investigated the gene expression profiles of peripheral blood mononuclear cells (PBMCs derived from SARS patients, and compared with healthy controls. Results The number of differentially expressed genes was found to be 186 under stringent filtering criteria of microarray data analysis. Several genes were highly up-regulated in patients with SARS, such as, the genes coding for Lactoferrin, S100A9 and Lipocalin 2. The real-time PCR method verified the results of the gene array analysis and showed that those genes that were up-regulated as determined by microarray analysis were also found to be comparatively up-regulated by real-time PCR analysis. Conclusions This differential gene expression profiling of PBMCs from patients with SARS strongly suggests that the response of SARS affected patients seems to be mainly an innate inflammatory response, rather than a specific immune response against a viral infection, as we observed a complete lack of cytokine genes usually triggered during a viral infection. Our study shows for the first time how the immune system responds to the SARS infection, and opens new possibilities for designing new diagnostics and treatments for this new life-threatening disease.

  4. Gene expression profiles reveal key genes for early diagnosis and treatment of adamantinomatous craniopharyngioma.

    Science.gov (United States)

    Yang, Jun; Hou, Ziming; Wang, Changjiang; Wang, Hao; Zhang, Hongbing

    2018-04-23

    Adamantinomatous craniopharyngioma (ACP) is an aggressive brain tumor that occurs predominantly in the pediatric population. Conventional diagnosis method and standard therapy cannot treat ACPs effectively. In this paper, we aimed to identify key genes for ACP early diagnosis and treatment. Datasets GSE94349 and GSE68015 were obtained from Gene Expression Omnibus database. Consensus clustering was applied to discover the gene clusters in the expression data of GSE94349 and functional enrichment analysis was performed on gene set in each cluster. The protein-protein interaction (PPI) network was built by the Search Tool for the Retrieval of Interacting Genes, and hubs were selected. Support vector machine (SVM) model was built based on the signature genes identified from enrichment analysis and PPI network. Dataset GSE94349 was used for training and testing, and GSE68015 was used for validation. Besides, RT-qPCR analysis was performed to analyze the expression of signature genes in ACP samples compared with normal controls. Seven gene clusters were discovered in the differentially expressed genes identified from GSE94349 dataset. Enrichment analysis of each cluster identified 25 pathways that highly associated with ACP. PPI network was built and 46 hubs were determined. Twenty-five pathway-related genes that overlapped with the hubs in PPI network were used as signatures to establish the SVM diagnosis model for ACP. The prediction accuracy of SVM model for training, testing, and validation data were 94, 85, and 74%, respectively. The expression of CDH1, CCL2, ITGA2, COL8A1, COL6A2, and COL6A3 were significantly upregulated in ACP tumor samples, while CAMK2A, RIMS1, NEFL, SYT1, and STX1A were significantly downregulated, which were consistent with the differentially expressed gene analysis. SVM model is a promising classification tool for screening and early diagnosis of ACP. The ACP-related pathways and signature genes will advance our knowledge of ACP pathogenesis

  5. Common changes in global gene expression induced by RNA polymerase inhibitors in Shigella flexneri.

    Directory of Open Access Journals (Sweden)

    Hua Fu

    Full Text Available Characterization of expression profile of organisms in response to antimicrobials provides important information on the potential mechanism of action of the drugs. The special expression signature can be used to predict whether other drugs act on the same target. Here, the common response of Shigella flexneri to two inhibitors of RNA polymerase was examined using gene expression profiling. Consistent with similar effects of the two drugs, the gene expression profiles indicated that responses of the bacteria to these drugs were roughly the same, with 225 genes affected commonly. Of them, 88 were induced and 137 were repressed. Real-time PCR was performed for selected genes to verify the microarray results. Analysis of the expression data revealed that more than 30% of the plasmid-encoded genes on the array were up-regulated by the antibiotics including virF regulon, other virulence-related genes, and genes responsible for plasmid replication, maintenance, and transfer. In addition, some chromosome-encoded genes involved in virulence and genes acquired from horizontal transfer were also significantly up-regulated. However, the expression of genes encoding the beta-subunit of RNA polymerase was increased moderately. The repressed genes include those that code for products associated with the ribosome, citrate cycle, glycolysis, thiamine biosynthesis, purine metabolism, fructose metabolism, mannose metabolism, and cold shock proteins. This study demonstrates that the two antibiotics induce rapid cessation of RNA synthesis resulting in inhibition of translation components. It also indicates that the production of virulence factors involved in intercellular dissemination, tissue invasion and inflammatory destruction may be enhanced through derepressing horizontal transfer genes by the drugs.

  6. Blood cell gene expression profiling in rheumatoid arthritis. Discriminative genes and effect of rheumatoid factor

    DEFF Research Database (Denmark)

    Bovin, Lone Frier; Rieneck, Klaus; Workman, Christopher

    2004-01-01

    To study the pathogenic importance of the rheumatoid factor (RF) in rheumatoid arthritis (RA) and to identify genes differentially expressed in patients and healthy individuals, total RNA was isolated from peripheral blood mononuclear cells (PBMC) from eight RF-positive and six RF-negative RA...... patients, and seven healthy controls. Gene expression of about 10,000 genes were examined using oligonucleotide-based DNA chip microarrays. The analyses showed no significant differences in PBMC expression patterns from RF-positive and RF-negative patients. However, comparisons of gene expression patterns...

  7. Transcriptome profiling and digital gene expression by deep sequencing in early somatic embryogenesis of endangered medicinal Eleutherococcus senticosus Maxim.

    Science.gov (United States)

    Tao, Lei; Zhao, Yue; Wu, Ying; Wang, Qiuyu; Yuan, Hongmei; Zhao, Lijuan; Guo, Wendong; You, Xiangling

    2016-03-01

    Somatic embryogenesis (SE) has been studied as a model system to understand molecular events in physiology, biochemistry, and cytology during plant embryo development. In particular, it is exceedingly difficult to access the morphological and early regulatory events in zygotic embryos. To understand the molecular mechanisms regulating early SE in Eleutherococcus senticosus Maxim., we used high-throughput RNA-Seq technology to investigate its transcriptome. We obtained 58,327,688 reads, which were assembled into 75,803 unique unigenes. To better understand their functions, the unigenes were annotated using the Clusters of Orthologous Groups, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes databases. Digital gene expression libraries revealed differences in gene expression profiles at different developmental stages (embryogenic callus, yellow embryogenic callus, global embryo). We obtained a sequencing depth of >5.6 million tags per sample and identified many differentially expressed genes at various stages of SE. The initiation of SE affected gene expression in many KEGG pathways, but predominantly that in metabolic pathways, biosynthesis of secondary metabolites, and plant hormone signal transduction. This information on the changes in the multiple pathways related to SE induction in E. senticosus Maxim. embryogenic tissue will contribute to a more comprehensive understanding of the mechanisms involved in early SE. Additionally, the differentially expressed genes may act as molecular markers and could play very important roles in the early stage of SE. The results are a comprehensive molecular biology resource for investigating SE of E. senticosus Maxim. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Altered Gene Expression Profile in Mouse Bladder Cancers Induced by Hydroxybutyl(butylnitrosamine

    Directory of Open Access Journals (Sweden)

    Ruisheng Yao

    2004-09-01

    Full Text Available A variety of genetic alterations and gene expression changes are involved in the pathogenesis of bladder tumor. To explore these changes, oligonucleotide array analysis was performed on RNA obtained from carcinogen-induced mouse bladder tumors and normal mouse bladder epithelia using Affymetrix (Santa Clara, CA MGU74Av2 GeneChips. Analysis yielded 1164 known genes that were changed in the tumors. Certain of the upregulated genes included EGFR-Ras signaling genes, transcription factors, cell cycle-related genes, and intracellular signaling cascade genes. However, downregulated genes include mitogen-activated protein kinases, cell cycle checkpoint genes, Rab subfamily genes, Rho subfamily genes, and SH2 and SH3 domains-related genes. These genes are involved in a broad range of different pathways including control of cell proliferation, differentiation, cell cycle, signal transduction, and apoptosis. Using the pathway visualization tool GenMAPP, we found that several genes, including TbR-l, STAT1, Smad1, Smad2, Jun, NFκB, and so on, in the TGF-β signaling pathway and p115 RhoGEF, RhoGDl3, MEKK4A/MEKK4B, P13KA, and JNK in the G13 signaling pathway were differentially expressed in the tumors. In summary, we have determined the expression profiles of genes differentially expressed during mouse bladder tumorigenesis. Our results suggest that activation of the EGFR-Ras pathway, uncontrolled cell cycle, aberrant transcription factors, and G13 and TGF-β pathways are involved, and the cross-talk between these pathways seems to play important roles in mouse bladder tumorigenesis.

  9. Discrimination of meniscal cell phenotypes using gene expression profiles

    Directory of Open Access Journals (Sweden)

    M Son

    2012-03-01

    Full Text Available The lack of quantitative and objective metrics to assess cartilage and meniscus cell phenotypes contributes to the challenges in fibrocartilage tissue engineering. Although functional assessment of the final resulting tissue is essential, initial characterization of cell sources and quantitative description of their progression towards the natural, desired cell phenotype would provide an effective tool in optimizing cell-based tissue engineering strategies. The purpose of this study was to identify quantifiable characteristics of meniscal cells and thereby find phenotypical markers that could effectively categorize cells based on their tissue of origin (cartilage, inner, middle, and outer meniscus. The combination of gene expression ratios collagen VI/collagen II, ADAMTS-5/collagen II, and collagen I/collagen II was the most effective indicator of variation among different tissue regions. We additionally demonstrate a possible application of these quantifiable metrics in evaluating the use of serially passaged chondrocytes as a possible cell source in fibrocartilage engineering. Comparing the ratios of the passaged chondrocytes and the native meniscal cells may provide direction to optimize towards the desired cell phenotype. We have thus shown that measurable markers defining the characteristics of the native meniscus can establish a standard by which different tissue engineering strategies can be objectively assessed. Such metrics could additionally be useful in exploring the different stages of meniscal degradation in osteoarthritis and provide some insight in the disease progression.

  10. OPTN gene: profile of patients with glaucoma from India.

    Science.gov (United States)

    Sripriya, S; Nirmaladevi, J; George, R; Hemamalini, A; Baskaran, M; Prema, R; Ve Ramesh, S; Karthiyayini, T; Amali, J; Job, S; Vijaya, L; Kumaramanickavel, G

    2006-07-24

    Optineurin gene (OPTN) mutations are reported in primary open angle glaucoma patients (POAG) from different populations. The coding and noncoding regions of OPTN were screened for mutations in 100 Indian high tension glaucoma patients (HTG). The frequency of the OPTN M98K mutation in an additional 120 patients (70 HTG and 50 normal tension glaucoma [NTG]) was analyzed by restriction enzyme digestion. The HTG patients (about 40 years of age) were characterized by open angles on gonioscopy, with raised intraocular pressure (IOP) more than 21 mmHg (A polymorphism was attempted with AliBaba software (version 2.1). Six sequence alterations were observed in the 100 POAG patients by direct sequencing. The M98K substitution was observed in a total of 10 patients (7/170 HTG and 3/50 NTG) contributing to 4.1% in HTG and 6% in the NTG group and not in the controls. The IVS7+24G>A nucleotide change showed a significant difference in the HTG group (7/100) when compared to the control group (0/100) and found to be associated with increased IOP at diagnosis (p=0.03). The IVS7+24G>A polymorphism resulted in the creation of binding sites for transcription factors NF-1 and CPE that were not present in the wild type. The current study suggests a possible role of SNPs rather than mutations in OPTN in POAG pathology in the Indian population.

  11. De novo Transcriptome Assembly of Chinese Kale and Global Expression Analysis of Genes Involved in Glucosinolate Metabolism in Multiple Tissues

    Science.gov (United States)

    Wu, Shuanghua; Lei, Jianjun; Chen, Guoju; Chen, Hancai; Cao, Bihao; Chen, Changming

    2017-01-01

    Chinese kale, a vegetable of the cruciferous family, is a popular crop in southern China and Southeast Asia due to its high glucosinolate content and nutritional qualities. However, there is little research on the molecular genetics and genes involved in glucosinolate metabolism and its regulation in Chinese kale. In this study, we sequenced and characterized the transcriptomes and expression profiles of genes expressed in 11 tissues of Chinese kale. A total of 216 million 150-bp clean reads were generated using RNA-sequencing technology. From the sequences, 98,180 unigenes were assembled for the whole plant, and 49,582~98,423 unigenes were assembled for each tissue. Blast analysis indicated that a total of 80,688 (82.18%) unigenes exhibited similarity to known proteins. The functional annotation and classification tools used in this study suggested that genes principally expressed in Chinese kale, were mostly involved in fundamental processes, such as cellular and molecular functions, the signal transduction, and biosynthesis of secondary metabolites. The expression levels of all unigenes were analyzed in various tissues of Chinese kale. A large number of candidate genes involved in glucosinolate metabolism and its regulation were identified, and the expression patterns of these genes were analyzed. We found that most of the genes involved in glucosinolate biosynthesis were highly expressed in the root, petiole, and in senescent leaves. The expression patterns of ten glucosinolate biosynthetic genes from RNA-seq were validated by quantitative RT-PCR in different tissues. These results provided an initial and global overview of Chinese kale gene functions and expression activities in different tissues. PMID:28228764

  12. Identification of novel candidate genes involved in mineralization of dental enamel by genome-wide transcript profiling.

    Science.gov (United States)

    Lacruz, Rodrigo S; Smith, Charles E; Bringas, Pablo; Chen, Yi-Bu; Smith, Susan M; Snead, Malcolm L; Kurtz, Ira; Hacia, Joseph G; Hubbard, Michael J; Paine, Michael L

    2012-05-01

    The gene repertoire regulating vertebrate biomineralization is poorly understood. Dental enamel, the most highly mineralized tissue in mammals, differs from other calcifying systems in that the formative cells (ameloblasts) lack remodeling activity and largely degrade and resorb the initial extracellular matrix. Enamel mineralization requires that ameloblasts undergo a profound functional switch from matrix-secreting to maturational (calcium transport, protein resorption) roles as mineralization progresses. During the maturation stage, extracellular pH decreases markedly, placing high demands on ameloblasts to regulate acidic environments present around the growing hydroxyapatite crystals. To identify the genetic events driving enamel mineralization, we conducted genome-wide transcript profiling of the developing enamel organ from rat incisors and highlight over 300 genes differentially expressed during maturation. Using multiple bioinformatics analyses, we identified groups of maturation-associated genes whose functions are linked to key mineralization processes including pH regulation, calcium handling, and matrix turnover. Subsequent qPCR and Western blot analyses revealed that a number of solute carrier (SLC) gene family members were up-regulated during maturation, including the novel protein Slc24a4 involved in calcium handling as well as other proteins of similar function (Stim1). By providing the first global overview of the cellular machinery required for enamel maturation, this study provide a strong foundation for improving basic understanding of biomineralization and its practical applications in healthcare. Copyright © 2011 Wiley Periodicals, Inc.

  13. Identification of gene expression profiling associated with erlotinib-related skin toxicity in pancreatic adenocarcinoma patients

    Energy Technology Data Exchange (ETDEWEB)

    Caba, Octavio, E-mail: ocaba@ujaen.es [Department of Health Sciences, University of Jaen, Jaen (Spain); Irigoyen, Antonio, E-mail: antonioirigoyen@yahoo.com [Department of Medical Oncology, Virgen de la Salud Hospital, Toledo (Spain); Jimenez-Luna, Cristina, E-mail: crisjilu@ugr.es [Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada (Spain); Benavides, Manuel, E-mail: manuel.benavides.sspa@juntadeandalucia.es [Department of Medical Oncology, Virgen de la Victoria Hospital, Malaga (Spain); Ortuño, Francisco M., E-mail: fortuno@ugr.es [Department of Computer Architecture and Computer Technology, Research Center for Information and Communications Technologies, University of Granada, Granada (Spain); Gallego, Javier, E-mail: j.gallegoplazas@gmail.com [Department of Medical Oncology, General Universitario de Elche Hospital, Alicante (Spain); Rojas, Ignacio, E-mail: irojas@ugr.es [Department of Computer Architecture and Computer Technology, Research Center for Information and Communications Technologies, University of Granada, Granada (Spain); Guillen-Ponce, Carmen, E-mail: carmen.guillen@salud.madrid.org [Department of Medical Oncology, Ramón y Cajal University Hospital, Madrid (Spain); Torres, Carolina, E-mail: ctorres@uic.edu [Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL (United States); Aranda, Enrique, E-mail: enrique.aranda@imibic.org [Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Córdoba (Spain); Prados, Jose, E-mail: jcprados@ugr.es [Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada (Spain)

    2016-11-15

    Erlotinib is an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that showed activity against pancreatic ductal adenocarcinoma (PDAC). The drug's most frequently reported side effect as a result of EGFR inhibition is skin rash (SR), a symptom which has been associated with a better therapeutic response to the drug. Gene expression profiling can be used as a tool to predict which patients will develop this important cutaneous manifestation. The aim of the present study was to identify which genes may influence the appearance of SR in PDAC patients. The study included 34 PDAC patients treated with erlotinib: 21 patients developed any grade of SR, while 13 patients did not (controls). Before administering any chemotherapy regimen and the development of SR, we collected RNA from peripheral blood samples of all patients and studied the differential gene expression pattern using the Illumina microarray platform HumanHT-12 v4 Expression BeadChip. Seven genes (FAM46C, IFITM3, GMPR, DENND6B, SELENBP1, NOL10, and SIAH2), involved in different pathways including regulatory, migratory, and signalling processes, were downregulated in PDAC patients with SR. Our results suggest the existence of a gene expression profiling significantly correlated with erlotinib-induced SR in PDAC that could be used as prognostic indicator in this patients. - Highlights: • Skin rash (SR) is the most characteristic side effect of erlotinib in PDAC patients. • Erlotinib-induced SR has been associated with a better clinical outcome. • Gene expression profiling was used to determine who will develop this manifestation. • 7 genes involved in different pathways were downregulated in PDAC patients with SR. • Our profile correlated with erlotinib-induced SR in PDAC could be used for prognosis.

  14. The usability of a 15-gene hypoxia classifier as a universal hypoxia profile in various cancer cell types

    DEFF Research Database (Denmark)

    Sørensen, Brita Singers; Knudsen, Anders Bisgård; Wittrup, Catja Foged

    2015-01-01

    genes, with BNIP3 not being upregulated at hypoxic conditions in 3 out of 6 colon cancer cell lines, and ALDOA in OE21 and FAM162A and SLC2A1 in SW116 only showing limited hypoxia induction. Furthermore, in the esophagus cell lines, the normoxic and hypoxic expression levels of LOX and BNIP3 were below...... the tissue type dependency of hypoxia induced genes included in a 15-gene hypoxic profile in carcinoma cell lines from prostate, colon, and esophagus cancer, and demonstrated that in vitro, with minor fluctuations, the genes in the hypoxic profile are hypoxia inducible, and the hypoxia profile may......BACKGROUND AND PURPOSE: A 15-gene hypoxia profile has previously demonstrated to have both prognostic and predictive impact for hypoxic modification in squamous cell carcinoma of the head and neck. This gene expression profile may also have a prognostic value in other histological cancer types...

  15. A prognostic profile of hypoxia-induced genes for localised high-grade soft tissue sarcoma

    DEFF Research Database (Denmark)

    Aggerholm-Pedersen, Ninna; Sørensen, Brita Singers; Overgaard, Jens

    2016-01-01

    sarcoma (STS). METHODS: The hypoxia-induced gene quantification was performed by real-time quantitative PCR (RT-qPCR) of formalin-fixed, paraffin-embedded tissue samples. The gene expression cut-points were determined in a test cohort of 55 STS patients and used to allocate each patient into a more......BACKGROUND: For decades, tumour hypoxia has been pursued as a cancer treatment target. However, prognostic and predictive biomarkers are essential for the use of this target in the clinic. This study investigates the prognostic value of a hypoxia-induced gene profile in localised soft tissue...

  16. First cellular approach of the effects of global warming on groundwater organisms: a study of the HSP70 gene expression.

    Science.gov (United States)

    Colson-Proch, Céline; Morales, Anne; Hervant, Frédéric; Konecny, Lara; Moulin, Colette; Douady, Christophe J

    2010-05-01

    Whereas the consequences of global warming at population or community levels are well documented, studies at the cellular level are still scarce. The study of the physiological or metabolic effects of such small increases in temperature (between +2 degrees C and +6 degrees C) is difficult because they are below the amplitude of the daily or seasonal thermal variations occurring in most environments. In contrast, subterranean biotopes are highly thermally buffered (+/-1 degrees C within a year), and underground water organisms could thus be particularly well suited to characterise cellular responses of global warming. To this purpose, we studied genes encoding chaperone proteins of the HSP70 family in amphipod crustaceans belonging to the ubiquitous subterranean genus Niphargus. An HSP70 sequence was identified in eight populations of two complexes of species of the Niphargus genus (Niphargus rhenorhodanensis and Niphargus virei complexes). Expression profiles were determined for one of these by reverse transcription and quantitative polymerase chain reaction, confirming the inducible nature of this gene. An increase in temperature of 2 degrees C seemed to be without effect on N. rhenorhodanensis physiology, whereas a heat shock of +6 degrees C represented an important thermal stress for these individuals. Thus, this study shows that although Niphargus individuals do not undergo any daily or seasonal thermal variations in underground water, they display an inducible HSP70 heat shock response. This controlled laboratory-based physiological experiment constitutes a first step towards field investigations of the cellular consequences of global warming on subterranean organisms.

  17. EvoCor: a platform for predicting functionally related genes using phylogenetic and expression profiles.

    Science.gov (United States)

    Dittmar, W James; McIver, Lauren; Michalak, Pawel; Garner, Harold R; Valdez, Gregorio

    2014-07-01

    The wealth of publicly available gene expression and genomic data provides unique opportunities for computational inference to discover groups of genes that function to control specific cellular processes. Such genes are likely to have co-evolved and be expressed in the same tissues and cells. Unfortunately, the expertise and computational resources required to compare tens of genomes and gene expression data sets make this type of analysis difficult for the average end-user. Here, we describe the implementation of a web server that predicts genes involved in affecting specific cellular processes together with a gene of interest. We termed the server 'EvoCor', to denote that it detects functional relationships among genes through evolutionary analysis and gene expression correlation. This web server integrates profiles of sequence divergence derived by a Hidden Markov Model (HMM) and tissue-wide gene expression patterns to determine putative functional linkages between pairs of genes. This server is easy to use and freely available at http://pilot-hmm.vbi.vt.edu/. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Methods for small RNA preparation for digital gene expression profiling by next-generation sequencing

    NARCIS (Netherlands)

    Linsen, S.E.V.; Cuppen, E.

    2012-01-01

    Digital gene expression (DGE) profiling techniques are playing an eminent role in the detection, localization, and differential expression quantification of many small RNA species, including microRNAs (1-3). Procedures in small RNA library preparation techniques typically include adapter ligation by

  19. Gene expression profiling of two distinct neuronal populations in the rodent spinal cord

    DEFF Research Database (Denmark)

    Ryge, Jesper; Westerdahl, Ann Charlotte; Alstøm, Preben

    2008-01-01

    Background: In the field of neuroscience microarray gene expression profiles on anatomically defined brain structures are being used increasingly to study both normal brain functions as well as pathological states. Fluorescent tracing techniques in brain tissue that identifies distinct neuronal p...

  20. Association between gene expression profile of the primary tumor and chemotherapy response of metastatic breast cancer

    NARCIS (Netherlands)

    Savci-Heijink, Cemile Dilara; Halfwerk, Hans; Koster, Jan; van de Vijver, Marc Joan

    2017-01-01

    Background: To better predict the likelihood of response to chemotherapy, we have conducted a study comparing the gene expression patterns of primary tumours with their corresponding response to systemic chemotherapy in the metastatic setting. Methods: mRNA expression profiles of breast carcinomas

  1. Gene expression profiles as prognostic markers in women with ovarian cancer

    DEFF Research Database (Denmark)

    Jochumsen, Kirsten M; Tan, Qihua; Høgdall, Estrid V

    2009-01-01

    toward investigations for more individualized therapies and the use of gene expression profiles in the clinical practice. RNA from tumor tissue from 43 Danish patients with serous epithelial ovarian carcinoma (11 International Federation of Gynecology and Obstetrics [FIGO] stage I/II, 32 FIGO stage III...

  2. Gene expression profiling in circulating cells (ctcs) of breast carcinoma patients

    Czech Academy of Sciences Publication Activity Database

    Kološtová, K.; Pinterová, D.; Tesařová, P.; Mikulová, V.; Kubecová, M.; Brychta, M.; Rusňáková, Vendula; Kasimir-Bauer, S.; Kubista, Mikael

    2010-01-01

    Roč. 21, suppl. 4 (2010), s. 49-59 ISSN 0923-7534 Institutional research plan: CEZ:AV0Z50520701 Keywords : Circulating tumor cells * Breast cancer * Gene expression profiling Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.452, year: 2010

  3. Clues to pathogenesis of spondyloarthropathy derived from synovial fluid mononuclear cell gene expression profiles

    NARCIS (Netherlands)

    Gu, Jieruo; Rihl, Markus; Märker-Hermann, Elisabeth; Baeten, Dominique; Kuipers, Jens G.; Song, Yeong Wook; Maksymowych, Walter P.; Burgos-Vargas, Ruben; Veys, Eric M.; de Keyser, Filip; Deister, Helmuth; Xiong, Momiao; Huang, Feng; Tsai, Wen Chan; Yu, David Tak Yan

    2002-01-01

    OBJECTIVE: To use gene expression profiles of spondyloarthropathy (SpA) synovial fluid mononuclear cells (SFMC) to determine if there are transcripts that support the unfolded protein response (UPR) hypothesis, and to identify which cytokines/chemokines are being expressed and which cell fractions

  4. Gene expression profiling for molecular classification of multiple myeloma in newly diagnosed patients

    NARCIS (Netherlands)

    Broyl, Annemiek; Hose, Dirk; Lokhorst, Henk; de Knegt, Yvonne; Peeters, Justine; Jauch, Anna; Bertsch, Uta; Buijs, Arjan; Stevens-Kroef, Marian; Beverloo, H. Berna; Vellenga, Edo; Zweegman, Sonja; Kersten, Marie-Josée; van der Holt, Bronno; el Jarari, Laila; Mulligan, George; Goldschmidt, Hartmut; van Duin, Mark; Sonneveld, Pieter

    2010-01-01

    To identify molecularly defined subgroups in multiple myeloma, gene expression profiling was performed on purified CD138(+) plasma cells of 320 newly diagnosed myeloma patients included in the Dutch-Belgian/German HOVON-65/GMMG-HD4 trial. Hierarchical clustering identified 10 subgroups; 6

  5. Gene Expression Profiling of Early Stage Non-Small Cell Lung Cancer

    NARCIS (Netherlands)

    J. Hou (Jun)

    2010-01-01

    textabstractNSCLC is a highly heterogeneous malignancy with a poor prognosis. Treatment for NSCLC is currently based on a combination of pathological staging and histological classification. Recently, gene expression-based NSCLC profiling is proven a superior approach to stratify cancer cases with

  6. Gene expression profile of Bombyx mori hemocyte under the stress of destruxin A.

    Directory of Open Access Journals (Sweden)

    Liang Gong

    Full Text Available Destruxin A (DA is a cyclo-peptidic mycotoxin from the entomopathogenic fungus Metarhizium anisopliae. To uncover potential genes associated with its molecular mechanisms, a digital gene expression (DGE profiling analysis was used to compare differentially expressed genes in the hemocytes of silkworm larvae treated with DA. Ten DGE libraries were constructed, sequenced, and assembled, and the unigenes with least 2.0-fold difference were further analyzed. The numbers of up-regulated genes were 10, 20, 18, 74 and 8, as well as the numbers of down-regulated genes were 0, 1, 8, 13 and 3 at 1, 4, 8, 12 and 24 h post treatment, respectively. Totally, the expression of 132 genes were significantly changed, among them, 1, 3 and 12 genes were continually up-regulated at 4, 3 and 2 different time points, respectively, while 1 gene was either up or down-regulated continually at 2 different time points. Furthermore, 68 genes were assigned to one or multiple gene ontology (GO terms and 89 genes were assigned to specific Kyoto Encyclopedia of Genes and Genomes (KEGG Orthology. In-depth analysis identified that these genes putatively involved in insecticide resistance, cell apoptosis, and innate immune defense. Finally, twenty differentially expressed genes were randomly chosen and validated by quantitative real-time PCR (qRT-PCR. Our studies provide insights into the toxic effect of this microbial insecticide on silkworm's hemocytes, and are helpful to better understanding of the molecular mechanisms of DA as a biological insecticide.

  7. Systematic enrichment analysis of gene expression profiling studies identifies consensus pathways implicated in colorectal cancer development

    Directory of Open Access Journals (Sweden)

    Jesús Lascorz

    2011-01-01

    Full Text Available Background: A large number of gene expression profiling (GEP studies on colorectal carcinogenesis have been performed but no reliable gene signature has been identified so far due to the lack of reproducibility in the reported genes. There is growing evidence that functionally related genes, rather than individual genes, contribute to the etiology of complex traits. We used, as a novel approach, pathway enrichment tools to define functionally related genes that are consistently up- or down-regulated in colorectal carcinogenesis. Materials and Methods: We started the analysis with 242 unique annotated genes that had been reported by any of three recent meta-analyses covering GEP studies on genes differentially expressed in carcinoma vs normal mucosa. Most of these genes (218, 91.9% had been reported in at least three GEP studies. These 242 genes were submitted to bioinformatic analysis using a total of nine tools to detect enrichment of Gene Ontology (GO categories or Kyoto Encyclopedia of Genes and Genomes (KEGG pathways. As a final consistency criterion the pathway categories had to be enriched by several tools to be taken into consideration. Results: Our pathway-based enrichment analysis identified the categories of ribosomal protein constituents, extracellular matrix receptor interaction, carbonic anhydrase isozymes, and a general category related to inflammation and cellular response as significantly and consistently overrepresented entities. Conclusions: We triaged the genes covered by the published GEP literature on colorectal carcinogenesis and subjected them to multiple enrichment tools in order to identify the consistently enriched gene categories. These turned out to have known functional relationships to cancer development and thus deserve further investigation.

  8. Genome-wide analysis of immune system genes by EST profiling

    Science.gov (United States)

    Giallourakis, Cosmas; Benita, Yair; Molinie, Benoit; Cao, Zhifang; Despo, Orion; Pratt, Henry E.; Zukerberg, Lawrence R.; Daly, Mark J.; Rioux, John D.; Xavier, Ramnik J.

    2013-01-01

    Profiling studies of mRNA and miRNA, particularly microarray-based studies, have been extensively used to create compendia of genes that are preferentially expressed in the immune system. In some instances, functional studies have been subsequently pursued. Recent efforts such as ENCODE have demonstrated the benefit of coupling RNA-Seq analysis with information from expressed sequence tags (ESTs) for transcriptomic analysis. However, the full characterization and identification of transcripts that function as modulators of human immune responses remains incomplete. In this study, we demonstrate that an integrated analysis of human ESTs provides a robust platform to identify the immune transcriptome. Beyond recovering a reference set of immune-enriched genes and providing large-scale cross-validation of previous microarray studies, we discovered hundreds of novel genes preferentially expressed in the immune system, including non-coding RNAs. As a result, we have established the Immunogene database, representing an integrated EST “road map” of gene expression in human immune cells, which can be used to further investigate the function of coding and non-coding genes in the immune system. Using this approach, we have uncovered a unique metabolic gene signature of human macrophages and identified PRDM15 as a novel overexpressed gene in human lymphomas. Thus we demonstrate the utility of EST profiling as a basis for further deconstruction of physiologic and pathologic immune processes. PMID:23616578

  9. Signaling pathway-focused gene expression profiling in pressure overloaded hearts

    Directory of Open Access Journals (Sweden)

    Marco Musumeci

    2011-01-01

    Full Text Available The β-blocker propranolol displays antihypertrophic and antifibrotic properties in the heart subjected to pressure overload. Yet the underlying mechanisms responsible for these important effects remain to be completely understood. The purpose of this study was to determine signaling pathway-focused gene expression profile associated with the antihypertrophic action of propranolol in pressure overloaded hearts. To address this question, a focused real-time PCR array was used to screen left ventricular RNA expression of 84 gene transcripts representative of 18 different signaling pathways in C57BL/6 mice subjected to transverse aortic constriction (TAC or sham surgery. On the surgery day, mice received either propranolol (80 mg/kg/day or vehicle for 14 days. TAC caused a 49% increase in the left ventricular weight-to-body weight (LVW/BW ratio without changing gene expression. Propranolol blunted LVW/BW ratio increase by approximately 50% while causing about a 3-fold increase in the expression of two genes, namely Brca1 and Cdkn2a, belonging to the TGF-beta and estrogen pathways, respectively. In conclusion, after 2 weeks of pressure overload, TAC hearts show a gene expression profile superimposable to that of sham hearts. Conversely, propranolol treatment is associated with an increased expression of genes which negatively regulate cell cycle progression. It remains to be established whether a mechanistic link between gene expression changes and the antihypertrophic action of propranolol occurs.

  10. A chronological expression profile of gene activity during embryonic mouse brain development.

    Science.gov (United States)

    Goggolidou, P; Soneji, S; Powles-Glover, N; Williams, D; Sethi, S; Baban, D; Simon, M M; Ragoussis, I; Norris, D P

    2013-12-01

    The brain is a functionally complex organ, the patterning and development of which are key to adult health. To help elucidate the genetic networks underlying mammalian brain patterning, we conducted detailed transcriptional profiling during embryonic development of the mouse brain. A total of 2,400 genes were identified as showing differential expression between three developmental stages. Analysis of the data identified nine gene clusters to demonstrate analogous expression profiles. A significant group of novel genes of as yet undiscovered biological function were detected as being potentially relevant to brain development and function, in addition to genes that have previously identified roles in the brain. Furthermore, analysis for genes that display asymmetric expression between the left and right brain hemispheres during development revealed 35 genes as putatively asymmetric from a combined data set. Our data constitute a valuable new resource for neuroscience and neurodevelopment, exposing possible functional associations between genes, including novel loci, and encouraging their further investigation in human neurological and behavioural disorders.

  11. Transcriptome profiling and digital gene expression analysis of genes associated with salinity resistance in peanut

    Directory of Open Access Journals (Sweden)

    Jiongming Sui

    2018-03-01

    Full Text Available Background: Soil salinity can significantly reduce crop production, but the molecular mechanism of salinity tolerance in peanut is poorly understood. A mutant (S1 with higher salinity resistance than its mutagenic parent HY22 (S3 was obtained. Transcriptome sequencing and digital gene expression (DGE analysis were performed with leaves of S1 and S3 before and after plants were irrigated with 250 mM NaCl. Results: A total of 107,725 comprehensive transcripts were assembled into 67,738 unigenes using TIGR Gene Indices clustering tools (TGICL. All unigenes were searched against the euKaryotic Ortholog Groups (KOG, gene ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG databases, and these unigenes were assigned to 26 functional KOG categories, 56 GO terms, 32 KEGG groups, respectively. In total 112 differentially expressed genes (DEGs between S1 and S3 after salinity stress were screened, among them, 86 were responsive to salinity stress in S1 and/or S3. These 86 DEGs included genes that encoded the following kinds of proteins that are known to be involved in resistance to salinity stress: late embryogenesis abundant proteins (LEAs, major intrinsic proteins (MIPs or aquaporins, metallothioneins (MTs, lipid transfer protein (LTP, calcineurin B-like protein-interacting protein kinases (CIPKs, 9-cis-epoxycarotenoid dioxygenase (NCED and oleosins, etc. Of these 86 DEGs, 18 could not be matched with known proteins. Conclusion: The results from this study will be useful for further research on the mechanism of salinity resistance and will provide a useful gene resource for the variety breeding of salinity resistance in peanut. Keywords: Digital gene expression, Gene, Mutant, NaCl, Peanut (Arachis hypogaea L., RNA-seq, Salinity stress, Salinity tolerance, Soil salinity, Transcripts, Unigenes

  12. Neonatal maternal deprivation response and developmental changes in gene expression revealed by hypothalamic gene expression profiling in mice.

    Directory of Open Access Journals (Sweden)

    Feng Ding

    Full Text Available Neonatal feeding problems are observed in several genetic diseases including Prader-Willi syndrome (PWS. Later in life, individuals with PWS develop hyperphagia and obesity due to lack of appetite control. We hypothesized that failure to thrive in infancy and later-onset hyperphagia are related and could be due to a defect in the hypothalamus. In this study, we performed gene expression microarray analysis of the hypothalamic response to maternal deprivation in neonatal wild-type and Snord116del mice, a mouse model for PWS in which a cluster of imprinted C/D box snoRNAs is deleted. The neonatal starvation response in both strains was dramatically different from that reported in adult rodents. Genes that are affected by adult starvation showed no expression change in the hypothalamus of 5 day-old pups after 6 hours of maternal deprivation. Unlike in adult rodents, expression levels of Nanos2 and Pdk4 were increased, and those of Pgpep1, Ndp, Brms1l, Mett10d, and Snx1 were decreased after neonatal deprivation. In addition, we compared hypothalamic gene expression profiles at postnatal days 5 and 13 and observed significant developmental changes. Notably, the gene expression profiles of Snord116del deletion mice and wild-type littermates were very similar at all time points and conditions, arguing against a role of Snord116 in feeding regulation in the neonatal period.

  13. Identification of specific gene expression profiles in fibroblasts derived from middle ear cholesteatoma.

    Science.gov (United States)

    Yoshikawa, Mamoru; Kojima, Hiromi; Wada, Kota; Tsukidate, Toshiharu; Okada, Naoko; Saito, Hirohisa; Moriyama, Hiroshi

    2006-07-01

    To investigate the role of fibroblasts in the pathogenesis of cholesteatoma. Tissue specimens were obtained from our patients. Middle ear cholesteatoma-derived fibroblasts (MECFs) and postauricular skin-derived fibroblasts (SFs) as controls were then cultured for a few weeks. These fibroblasts were stimulated with interleukin (IL) 1alpha and/or IL-1beta before gene expression assays. We used the human genome U133A probe array (GeneChip) and real-time polymerase chain reaction to examine and compare the gene expression profiles of the MECFs and SFs. Six patients who had undergone tympanoplasty. The IL-1alpha-regulated genes were classified into 4 distinct clusters on the basis of profiles differentially regulated by SF and MECF using a hierarchical clustering analysis. The messenger RNA expressions of LARC (liver and activation-regulated chemokine), GMCSF (granulocyte-macrophage colony-stimulating factor), epiregulin, ICAM1 (intercellular adhesion molecule 1), and TGFA (transforming growth factor alpha) were more strongly up-regulated by IL-1alpha and/or IL-1beta in MECF than in SF, suggesting that these fibroblasts derived from different tissues retained their typical gene expression profiles. Fibroblasts may play a role in hyperkeratosis of middle ear cholesteatoma by releasing molecules involved in inflammation and epidermal growth. These fibroblasts may retain tissue-specific characteristics presumably controlled by epigenetic mechanisms.

  14. Gene Expression Profiling and Identification of Resistance Genes to Aspergillus flavus Infection in Peanut through EST and Microarray Strategies

    Directory of Open Access Journals (Sweden)

    Baozhu Guo

    2011-06-01

    Full Text Available Aspergillus flavus and A. parasiticus infect peanut seeds and produce aflatoxins, which are associated with various diseases in domestic animals and humans throughout the world. The most cost-effective strategy to minimize aflatoxin contamination involves the development of peanut cultivars that are resistant to fungal infection and/or aflatoxin production. To identify peanut Aspergillus-interactive and peanut Aspergillus-resistance genes, we carried out a large scale peanut Expressed Sequence Tag (EST project which we used to construct a peanut glass slide oligonucleotide microarray. The fabricated microarray represents over 40% of the protein coding genes in the peanut genome. For expression profiling, resistant and susceptible peanut cultivars were infected with a mixture of Aspergillus flavus and parasiticus spores. The subsequent microarray analysis identified 62 genes in resistant cultivars that were up-expressed in response to Aspergillus infection. In addition, we identified 22 putative Aspergillus-resistance genes that were constitutively up-expressed in the resistant cultivar in comparison to the susceptible cultivar. Some of these genes were homologous to peanut, corn, and soybean genes that were previously shown to confer resistance to fungal infection. This study is a first step towards a comprehensive genome-scale platform for developing Aspergillus-resistant peanut cultivars through targeted marker-assisted breeding and genetic engineering.

  15. Gene Expression Profiling Identifies Important Genes Affected by R2 Compound Disrupting FAK and P53 Complex

    International Nuclear Information System (INIS)

    Golubovskaya, Vita M.; Ho, Baotran; Conroy, Jeffrey; Liu, Song; Wang, Dan; Cance, William G.

    2014-01-01

    Focal Adhesion Kinase (FAK) is a non-receptor kinase that plays an important role in many cellular processes: adhesion, proliferation, invasion, angiogenesis, metastasis and survival. Recently, we have shown that Roslin 2 or R2 (1-benzyl-15,3,5,7-tetraazatricyclo[3.3.1.1~3,7~]decane) compound disrupts FAK and p53 proteins, activates p53 transcriptional activity, and blocks tumor growth. In this report we performed a microarray gene expression analysis of R2-treated HCT116 p53 +/+ and p53 −/− cells and detected 1484 genes that were significantly up- or down-regulated (p < 0.05) in HCT116 p53 +/+ cells but not in p53 −/− cells. Among up-regulated genes in HCT p53 +/+ cells we detected critical p53 targets: Mdm-2, Noxa-1, and RIP1. Among down-regulated genes, Met, PLK2, KIF14, BIRC2 and other genes were identified. In addition, a combination of R2 compound with M13 compound that disrupts FAK and Mmd-2 complex or R2 and Nutlin-1 that disrupts Mdm-2 and p53 decreased clonogenicity of HCT116 p53 +/+ colon cancer cells more significantly than each agent alone in a p53-dependent manner. Thus, the report detects gene expression profile in response to R2 treatment and demonstrates that the combination of drugs targeting FAK, Mdm-2, and p53 can be a novel therapy approach

  16. Gene expression profiling of mucolipidosis type IV fibroblasts reveals deregulation of genes with relevant functions in lysosome physiology.

    Science.gov (United States)

    Bozzato, Andrea; Barlati, Sergio; Borsani, Giuseppe

    2008-04-01

    Mucolipidosis type IV (MLIV, MIM 252650) is an autosomal recessive lysosomal storage disorder that causes mental and motor retardation as well as visual impairment. The lysosomal storage defect in MLIV is consistent with abnormalities of membrane traffic and organelle dynamics in the late endocytic pathway. MLIV is caused by mutations in the MCOLN1 gene, which codes for mucolipin-1 (MLN1), a member of the large family of transient receptor potential (TRP) cation channels. Although a number of studies have been performed on mucolipin-1, the pathological mechanisms underlying MLIV are not fully understood. To identify genes that characterize pathogenic changes in mucolipidosis type IV, we compared the expression profiles of three MLIV and three normal skin fibroblasts cell lines using oligonucleotide microarrays. Genes that were differentially expressed in patients' cells were identified. 231 genes were up-regulated, and 116 down-regulated. Real-Time RT-PCR performed on selected genes in six independent MLIV fibroblasts cell lines was generally consistent with the microarray findings. This study allowed to evidence the modulation at the transcriptional level of a discrete number of genes relevant in biological processes which are altered in the disease such as endosome/lysosome trafficking, lysosome biogenesis, organelle acidification and lipid metabolism.

  17. Identification and Expression Profiling of Chemosensory Genes in Dendrolimus punctatus Walker

    Directory of Open Access Journals (Sweden)

    Su-fang Zhang

    2017-07-01

    Full Text Available Dendrolimus punctatus Walker is a serious pest affecting conifers in southern China. As extensive pesticide spraying is currently required to control D. punctatus, new control strategies are urgently needed. Chemosensory genes represent potential molecular targets for development of alternative pest control strategies, and the expression characteristics of these genes provide an indication of their function. To date, little information is available regarding chemosensory genes in D. punctatus or their expression profiles at different development stages and in various tissues. Here, we assembled and analyzed the transcriptomes of D. punctatus collected at different developmental stages and in a range of organs, using next-generation sequencing. A total of 171 putative chemosensory genes were identified, encoding 53 odorant binding proteins, 26 chemosensory proteins, 60 odorant receptors (OR, 12 gustatory receptors (GR, 18 ionotropic receptors (IR, and 2 sensory neuron membrane proteins (SNMPs. Expression analysis indicated that the antennae possess the largest number of highly expressed olfactory genes and that olfactory gene expression patterns in the eggs, larvae, and head were similar to one another, with each having moderate numbers of highly expressed olfactory genes. Fat body, ovary, midgut, and testis tissues also had similar olfactory gene expression patterns, including few highly expressed olfactory genes. Of particular note, we identified only two pheromone binding proteins and no pheromone receptors in D. punctatus, similar to our previous findings in Dendrolimus houi and Dendrolimus kikuchii, suggesting that insects of the Dendrolimus genus have different pheromone recognition characteristics to other Lepidopteran insects. Overall, this extensive expression profile analysis provides a clear map of D. punctatus chemosensory genes, and will facilitate functional studies and the development of new pest control methods in the future.

  18. Major differences between human atopic dermatitis and murine models, as determined by using global transcriptomic profiling

    DEFF Research Database (Denmark)

    Ewald, David A.; Noda, Shinji; Oliva, Margeaux

    2017-01-01

    , and a comparison of these models with the human AD transcriptomic fingerprint is lacking. Objective We sought to evaluate the transcriptomic profiles of 6 common murine models and determine how they relate to human AD skin. Methods Transcriptomic profiling was performed by using microarrays and quantitative RT......-PCR on biopsy specimens from NC/Nga, flaky tail, Flg-mutated, ovalbumin-challenged, oxazolone-challenged, and IL-23–injected mice. Gene expression data of patients with AD, psoriasis, and contact dermatitis were obtained from previous patient cohorts. Criteria of a fold change of 2 or greater and a false...... discovery rate of 0.05 or less were used for gene arrays. Results IL-23–injected, NC/Nga, and oxazolone-challenged mice show the largest homology with our human meta-analysis–derived AD transcriptome (37%, 18%, 17%, respectively). Similar to human AD, robust TH1, TH2, and also TH17 activation are seen in IL...

  19. Global volatile profile of virgin olive oils flavoured by aromatic/medicinal plants.

    Science.gov (United States)

    Perestrelo, R; Silva, C; Silva, P; Câmara, J S

    2017-07-15

    The global volatile profile of commercial virgin olive oils and flavoured olive oils with aromatic/medicinal plants, was established using liquid-liquid microextraction (LLME) and headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-quadrupole mass spectrometry (GC-qMS). More than 60 volatile organic compounds (VOCs belonging to different groups were identified using both methods. Olive oils volatile profile was slightly influenced by maceration process, which occurred at room temperature (20±2°C) for 15days. The predominant differences were observed in terpenoids group, since some of them were only identified in the flavoured olive oils, while others showed an increase with the maceration process. VOCs mass transfer from plants to olive oils could explain the observed results. Principal components analysis (PCA) applied to LLME/GC-qMS data allowed to distinguish the olive oils. The flavoured oils would increase the use of olive oil among consumers as consequence of the improvement of its aromatic profile and healthy properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Identification of human circadian genes based on time course gene expression profiles by using a deep learning method.

    Science.gov (United States)

    Cui, Peng; Zhong, Tingyan; Wang, Zhuo; Wang, Tao; Zhao, Hongyu; Liu, Chenglin; Lu, Hui

    2018-06-01

    Circadian genes express periodically in an approximate 24-h period and the identification and study of these genes can provide deep understanding of the circadian control which plays significant roles in human health. Although many circadian gene identification algorithms have been developed, large numbers of false positives and low coverage are still major problems in this field. In this study we constructed a novel computational framework for circadian gene identification using deep neural networks (DNN) - a deep learning algorithm which can represent the raw form of data patterns without imposing assumptions on the expression distribution. Firstly, we transformed time-course gene expression data into categorical-state data to denote the changing trend of gene expression. Two distinct expression patterns emerged after clustering of the state data for circadian genes from our manually created learning dataset. DNN was then applied to discriminate the aperiodic genes and the two subtypes of periodic genes. In order to assess the performance of DNN, four commonly used machine learning methods including k-nearest neighbors, logistic regression, naïve Bayes, and support vector machines were used for comparison. The results show that the DNN model achieves the best balanced precision and recall. Next, we conducted large scale circadian gene detection using the trained DNN model for the remaining transcription profiles. Comparing with JTK_CYCLE and a study performed by Möller-Levet et al. (doi: https://doi.org/10.1073/pnas.1217154110), we identified 1132 novel periodic genes. Through the functional analysis of these novel circadian genes, we found that the GTPase superfamily exhibits distinct circadian expression patterns and may provide a molecular switch of circadian control of the functioning of the immune system in human blood. Our study provides novel insights into both the circadian gene identification field and the study of complex circadian-driven biological

  1. Sex-specific patterns and deregulation of endocrine pathways in the gene expression profiles of Bangladeshi adults exposed to arsenic contaminated drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, Alexandra; Chervona, Yana [New York University School of Medicine, Nelson Institute of Environmental Medicine, Tuxedo, NY (United States); Hall, Megan [Department of Epidemiology, Mailman School of Public Health, Columbia University, New York (United States); Kluz, Thomas [New York University School of Medicine, Nelson Institute of Environmental Medicine, Tuxedo, NY (United States); Gamble, Mary V., E-mail: mvg7@columbia.edu [Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York (United States); Costa, Max, E-mail: Max.Costa@nyumc.org [New York University School of Medicine, Nelson Institute of Environmental Medicine, Tuxedo, NY (United States)

    2015-05-01

    Arsenic contamination of drinking water occurs globally and is associated with numerous diseases including skin, lung and bladder cancers, and cardiovascular disease. Recent research indicates that arsenic may be an endocrine disruptor. This study was conducted to evaluate the nature of gene expression changes among males and females exposed to arsenic contaminated water in Bangladesh at high and low doses. Twenty-nine (55% male) Bangladeshi adults with water arsenic exposure ranging from 50 to 1000 μg/L were selected from the Folic Acid Creatinine Trial. RNA was extracted from peripheral blood mononuclear cells for gene expression profiling using Affymetrix 1.0 ST arrays. Differentially expressed genes were assessed between high and low exposure groups for males and females separately and findings were validated using quantitative real-time PCR. There were 534 and 645 differentially expressed genes (p < 0.05) in the peripheral blood mononuclear cells of males and females, respectively, when high and low water arsenic exposure groups were compared. Only 43 genes overlapped between the two sexes, with 29 changing in opposite directions. Despite the difference in gene sets both males and females exhibited common biological changes including deregulation of 17β-hydroxysteroid dehydrogenase enzymes, deregulation of genes downstream of Sp1 (specificity protein 1) transcription factor, and prediction of estrogen receptor alpha as a key hub in cardiovascular networks. Arsenic-exposed adults exhibit sex-specific gene expression profiles that implicate involvement of the endocrine system. Due to arsenic's possible role as an endocrine disruptor, exposure thresholds for arsenic may require different parameters for males and females. - Highlights: • Males and females exhibit unique gene expression changes in response to arsenic. • Only 23 genes are common among the differentially expressed genes for the sexes. • Male and female gene lists exhibit common

  2. Sex-specific patterns and deregulation of endocrine pathways in the gene expression profiles of Bangladeshi adults exposed to arsenic contaminated drinking water

    International Nuclear Information System (INIS)

    Muñoz, Alexandra; Chervona, Yana; Hall, Megan; Kluz, Thomas; Gamble, Mary V.; Costa, Max

    2015-01-01

    Arsenic contamination of drinking water occurs globally and is associated with numerous diseases including skin, lung and bladder cancers, and cardiovascular disease. Recent research indicates that arsenic may be an endocrine disruptor. This study was conducted to evaluate the nature of gene expression changes among males and females exposed to arsenic contaminated water in Bangladesh at high and low doses. Twenty-nine (55% male) Bangladeshi adults with water arsenic exposure ranging from 50 to 1000 μg/L were selected from the Folic Acid Creatinine Trial. RNA was extracted from peripheral blood mononuclear cells for gene expression profiling using Affymetrix 1.0 ST arrays. Differentially expressed genes were assessed between high and low exposure groups for males and females separately and findings were validated using quantitative real-time PCR. There were 534 and 645 differentially expressed genes (p < 0.05) in the peripheral blood mononuclear cells of males and females, respectively, when high and low water arsenic exposure groups were compared. Only 43 genes overlapped between the two sexes, with 29 changing in opposite directions. Despite the difference in gene sets both males and females exhibited common biological changes including deregulation of 17β-hydroxysteroid dehydrogenase enzymes, deregulation of genes downstream of Sp1 (specificity protein 1) transcription factor, and prediction of estrogen receptor alpha as a key hub in cardiovascular networks. Arsenic-exposed adults exhibit sex-specific gene expression profiles that implicate involvement of the endocrine system. Due to arsenic's possible role as an endocrine disruptor, exposure thresholds for arsenic may require different parameters for males and females. - Highlights: • Males and females exhibit unique gene expression changes in response to arsenic. • Only 23 genes are common among the differentially expressed genes for the sexes. • Male and female gene lists exhibit common

  3. Discovery of time-delayed gene regulatory networks based on temporal gene expression profiling

    Directory of Open Access Journals (Sweden)

    Guo Zheng

    2006-01-01

    Full Text Available Abstract Background It is one of the ultimate goals for modern biological research to fully elucidate the intricate interplays and the regulations of the molecular determinants that propel and characterize the progression of versatile life phenomena, to name a few, cell cycling, developmental biology, aging, and the progressive and recurrent pathogenesis of complex diseases. The vast amount of large-scale and genome-wide time-resolved data is becoming increasing available, which provides the golden opportunity to unravel the challenging reverse-engineering problem of time-delayed gene regulatory networks. Results In particular, this methodological paper aims to reconstruct regulatory networks from temporal gene expression data by using delayed correlations between genes, i.e., pairwise overlaps of expression levels shifted in time relative each other. We have thus developed a novel model-free computational toolbox termed TdGRN (Time-delayed Gene Regulatory Network to address the underlying regulations of genes that can span any unit(s of time intervals. This bioinformatics toolbox has provided a unified approach to uncovering time trends of gene regulations through decision analysis of the newly designed time-delayed gene expression matrix. We have applied the proposed method to yeast cell cycling and human HeLa cell cycling and have discovered most of the underlying time-delayed regulations that are supported by multiple lines of experimental evidence and that are remarkably consistent with the current knowledge on phase characteristics for the cell cyclings. Conclusion We established a usable and powerful model-free approach to dissecting high-order dynamic trends of gene-gene interactions. We have carefully validated the proposed algorithm by applying it to two publicly available cell cycling datasets. In addition to uncovering the time trends of gene regulations for cell cycling, this unified approach can also be used to study the complex

  4. Promoter Analysis Reveals Globally Differential Regulation of Human Long Non-Coding RNA and Protein-Coding Genes

    KAUST Repository

    Alam, Tanvir; Medvedeva, Yulia A.; Jia, Hui; Brown, James B.; Lipovich, Leonard; Bajic, Vladimir B.

    2014-01-01

    raise the possibility that, given the historical reliance on protein-coding gene catalogs to define the chromatin states of active promoters, a revision of these chromatin signature profiles to incorporate expressed lncRNA genes is warranted

  5. Global mass spectrometry based metabolomics profiling of erythrocytes infected with Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Theodore R Sana

    Full Text Available Malaria is a global infectious disease that threatens the lives of millions of people. Transcriptomics, proteomics and functional genomics studies, as well as sequencing of the Plasmodium falciparum and Homo sapiens genomes, have shed new light on this host-parasite relationship. Recent advances in accurate mass measurement mass spectrometry, sophisticated data analysis software, and availability of biological pathway databases, have converged to facilitate our global, untargeted biochemical profiling study of in vitro P. falciparum-infected (IRBC and uninfected (NRBC erythrocytes. In order to expand the number of detectable metabolites, several key analytical steps in our workflows were optimized. Untargeted and targeted data mining resulted in detection of over one thousand features or chemical entities. Untargeted features were annotated via matching to the METLIN metabolite database. For targeted data mining, we queried the data using a compound database derived from a metabolic reconstruction of the P. falciparum genome. In total, over one hundred and fifty differential annotated metabolites were observed. To corroborate the representation of known biochemical pathways from our data, an inferential pathway analysis strategy was used to map annotated metabolites onto the BioCyc pathway collection. This hypothesis-generating approach resulted in over-representation of many metabolites onto several IRBC pathways, most prominently glycolysis. In addition, components of the "branched" TCA cycle, partial urea cycle, and nucleotide, amino acid, chorismate, sphingolipid and fatty acid metabolism were found to be altered in IRBCs. Interestingly, we detected and confirmed elevated levels for cyclic ADP ribose and phosphoribosyl AMP in IRBCs, a novel observation. These metabolites may play a role in regulating the release of intracellular Ca(2+ during P. falciparum infection. Our results support a strategy of global metabolite profiling by untargeted

  6. Inferring Drosophila gap gene regulatory network: Pattern analysis of simulated gene expression profiles and stability analysis

    OpenAIRE

    Fomekong-Nanfack, Y.; Postma, M.; Kaandorp, J.A.

    2009-01-01

    Abstract Background Inference of gene regulatory networks (GRNs) requires accurate data, a method to simulate the expression patterns and an efficient optimization algorithm to estimate the unknown parameters. Using this approach it is possible to obtain alternative circuits without making any a priori assumptions about the interactions, which all simulate the observed patterns. It is important to analyze the properties of the circuits. Findings We have analyzed the simulated gene expression ...

  7. Classification of genes and putative biomarker identification using distribution metrics on expression profiles.

    Directory of Open Access Journals (Sweden)

    Hung-Chung Huang

    Full Text Available BACKGROUND: Identification of genes with switch-like properties will facilitate discovery of regulatory mechanisms that underlie these properties, and will provide knowledge for the appropriate application of Boolean networks in gene regulatory models. As switch-like behavior is likely associated with tissue-specific expression, these gene products are expected to be plausible candidates as tissue-specific biomarkers. METHODOLOGY/PRINCIPAL FINDINGS: In a systematic classification of genes and search for biomarkers, gene expression profiles (GEPs of more than 16,000 genes from 2,145 mouse array samples were analyzed. Four distribution metrics (mean, standard deviation, kurtosis and skewness were used to classify GEPs into four categories: predominantly-off, predominantly-on, graded (rheostatic, and switch-like genes. The arrays under study were also grouped and examined by tissue type. For example, arrays were categorized as 'brain group' and 'non-brain group'; the Kolmogorov-Smirnov distance and Pearson correlation coefficient were then used to compare GEPs between brain and non-brain for each gene. We were thus able to identify tissue-specific biomarker candidate genes. CONCLUSIONS/SIGNIFICANCE: The methodology employed here may be used to facilitate disease-specific biomarker discovery.

  8. Differential expression gene profiling in human lymphocyte after 6 h irradiated

    International Nuclear Information System (INIS)

    Li Jianguo; Qin Xiujun; Zhang Wei; Xu Chaoqi; Li Weibin; Dang Xuhong; Zuo Yahui

    2011-01-01

    Objective: To provide the evidence of health damage for the staff irradiated from the gene level. Methods: The study analyzed the differential transcriptional profile of normal human lymphocyte and human lymphocyte irradiated with 0.1 Gy, 0.2 Gy, 0.5 Gy, 1.0 Gy by whole genome chip after 6 h irradiated. Results: The results showed that there were 1177 differentially expressed genes with 0.1 Gy after 6 h irradiation, and there were 1922 differentially expressed genes with 0.2 Gy after 6 h irradiation, and there were 492 differentially expressed genes with 0.5 Gy after 6 h irradiation, 2615 differentially expressed genes with 1.0 Gy after 6 h irradiation, 114 differentially expressed genes in 4 dose points after 6 h irradiation. RT-PCR results indicated that the relative quantity's result of EGR1, HLA-DMB and TAIAP1 was consistent with gene chip data. Conclusion: The study found many significant different genes in human lymphocyte with different doses after 6 h irradiation, which will provide a basis for the further radiation-different-genes and the mechanism of radiation damage. (authors)

  9. Gene expression profiling in response to the histone deacetylase inhibitor BL1521 in neuroblastoma

    International Nuclear Information System (INIS)

    Ruijter, Annemieke J.M. de; Meinsma, Rutger J.; Bosma, Peter; Kemp, Stephan; Caron, Huib N.; Kuilenburg, Andre B.P. van

    2005-01-01

    Neuroblastoma is a childhood tumor with a poor survival in advanced stage disease despite intensive chemotherapeutic regimes. The new histone deacetylase (HDAC) inhibitor BL1521 has shown promising results in neuroblastoma. Inhibition of HDAC resulted in a decrease in proliferation and metabolic activity, induction of apoptosis and differentiation of neuroblastoma cells. In order to elucidate the mechanism mediating the effects of BL1521 on neuroblastoma cells, we investigated the gene expression profile of an MYCN single copy (SKNAS) and an MYCN amplified (IMR32) neuroblastoma cell line after treatment with BL1521 using the Affymetrix oligonucleotide array U133A. An altered expression of 255 genes was observed in both neuroblastoma cell lines. The majority of these genes were involved in gene expression, cellular metabolism, and cell signaling. We observed changes in the expression of vital genes belonging to the cell cycle (cyclin D1 and CDK4) and apoptosis (BNIP3, BID, and BCL2) pathway in response to BL1521. The expression of 37 genes was altered by both BL1521 and Trichostatin A, which could indicate a common gene set regulated by different HDAC inhibitors. BL1521 treatment changed the expression of a number of MYCN-associated genes. Several genes in the Wnt and the Delta/Notch pathways were changed in response to BL1521 treatment, suggesting that BL1521 is able to induce the differentiation of neuroblastoma cells into a more mature phenotype

  10. Global Gene Expression Analysis of Yeast Cells during Sake Brewing▿ †

    Science.gov (United States)

    Wu, Hong; Zheng, Xiaohong; Araki, Yoshio; Sahara, Hiroshi; Takagi, Hiroshi; Shimoi, Hitoshi

    2006-01-01

    During the brewing of Japanese sake, Saccharomyces cerevisiae cells produce a high concentration of ethanol compared with other ethanol fermentation methods. We analyzed the gene expression profiles of yeast cells during sake brewing using DNA microarray analysis. This analysis revealed some characteristics of yeast gene expression during sake brewing and provided a scaffold for a molecular level understanding of the sake brewing process. PMID:16997994

  11. Core microbial functional activities in ocean environments revealed by global metagenomic profiling analyses.

    Directory of Open Access Journals (Sweden)

    Ari J S Ferreira

    Full Text Available Metagenomics-based functional profiling analysis is an effective means of gaining deeper insight into the composition of marine microbial populations and developing a better understanding of the interplay between the functional genome content of microbial communities and abiotic factors. Here we present a comprehensive analysis of 24 datasets covering surface and depth-related environments at 11 sites around the world's oceans. The complete datasets comprises approximately 12 million sequences, totaling 5,358 Mb. Based on profiling patterns of Clusters of Orthologous Groups (COGs of proteins, a core set of reference photic and aphotic depth-related COGs, and a collection of COGs that are associated with extreme oxygen limitation were defined. Their inferred functions were utilized as indicators to characterize the distribution of light- and oxygen-related biological activities in marine environments. The results reveal that, while light level in the water column is a major determinant of phenotypic adaptation in marine microorganisms, oxygen concentration in the aphotic zone has a significant impact only in extremely hypoxic waters. Phylogenetic profiling of the reference photic/aphotic gene sets revealed a greater variety of source organisms in the aphotic zone, although the majority of individual photic and aphotic depth-related COGs are assigned to the same taxa across the different sites. This increase in phylogenetic and functional diversity of the core aphotic related COGs most probably reflects selection for the utilization of a broad range of alternate energy sources in the absence of light.

  12. Core microbial functional activities in ocean environments revealed by global metagenomic profiling analyses.

    KAUST Repository

    Ferreira, Ari J S

    2014-06-12

    Metagenomics-based functional profiling analysis is an effective means of gaining deeper insight into the composition of marine microbial populations and developing a better understanding of the interplay between the functional genome content of microbial communities and abiotic factors. Here we present a comprehensive analysis of 24 datasets covering surface and depth-related environments at 11 sites around the world\\'s oceans. The complete datasets comprises approximately 12 million sequences, totaling 5,358 Mb. Based on profiling patterns of Clusters of Orthologous Groups (COGs) of proteins, a core set of reference photic and aphotic depth-related COGs, and a collection of COGs that are associated with extreme oxygen limitation were defined. Their inferred functions were utilized as indicators to characterize the distribution of light- and oxygen-related biological activities in marine environments. The results reveal that, while light level in the water column is a major determinant of phenotypic adaptation in marine microorganisms, oxygen concentration in the aphotic zone has a significant impact only in extremely hypoxic waters. Phylogenetic profiling of the reference photic/aphotic gene sets revealed a greater variety of source organisms in the aphotic zone, although the majority of individual photic and aphotic depth-related COGs are assigned to the same taxa across the different sites. This increase in phylogenetic and functional diversity of the core aphotic related COGs most probably reflects selection for the utilization of a broad range of alternate energy sources in the absence of light.

  13. Core microbial functional activities in ocean environments revealed by global metagenomic profiling analyses.

    KAUST Repository

    Ferreira, Ari J S; Siam, Rania; Setubal, Joã o C; Moustafa, Ahmed; Sayed, Ahmed; Chambergo, Felipe S; Dawe, Adam S; Ghazy, Mohamed A; Sharaf, Hazem; Ouf, Amged; Alam, Intikhab; Abdel-Haleem, Alyaa M; Lehvä slaiho, Heikki; Ramadan, Eman; Antunes, André ; Stingl, Ulrich; Archer, John A.C.; Jankovic, Boris R; Sogin, Mitchell; Bajic, Vladimir B.; El-Dorry, Hamza

    2014-01-01

    Metagenomics-based functional profiling analysis is an effective means of gaining deeper insight into the composition of marine microbial populations and developing a better understanding of the interplay between the functional genome content of microbial communities and abiotic factors. Here we present a comprehensive analysis of 24 datasets covering surface and depth-related environments at 11 sites around the world's oceans. The complete datasets comprises approximately 12 million sequences, totaling 5,358 Mb. Based on profiling patterns of Clusters of Orthologous Groups (COGs) of proteins, a core set of reference photic and aphotic depth-related COGs, and a collection of COGs that are associated with extreme oxygen limitation were defined. Their inferred functions were utilized as indicators to characterize the distribution of light- and oxygen-related biological activities in marine environments. The results reveal that, while light level in the water column is a major determinant of phenotypic adaptation in marine microorganisms, oxygen concentration in the aphotic zone has a significant impact only in extremely hypoxic waters. Phylogenetic profiling of the reference photic/aphotic gene sets revealed a greater variety of source organisms in the aphotic zone, although the majority of individual photic and aphotic depth-related COGs are assigned to the same taxa across the different sites. This increase in phylogenetic and functional diversity of the core aphotic related COGs most probably reflects selection for the utilization of a broad range of alternate energy sources in the absence of light.

  14. Gene expression profiling and association of circulating lactoferrin level with obesity-related phenotypes in Latino youth.

    Science.gov (United States)

    Kim, J Y; Campbell, L E; Shaibi, G Q; Coletta, D K

    2015-10-01

    Low-grade inflammation is an underlying feature of obesity and identifying inflammatory markers is crucial to understanding this disease. Therefore, the purpose of this study was twofold: (i) to perform a global microarray analysis and (ii) to investigate the role of lactoferrin (LTF), one of the most altered genes, in relation to obesity in Latino youth. Non-diabetic Latino youth (71 males/92 females; 15.6 ± 3.2 years) were studied. A subset of 39 participants was randomly selected for global microarray analysis profiling from the whole blood sample. Serum LTF was compared between lean (n = 78) and overweight/obese (n = 85) participants. Microarray analysis revealed that a total of 1870 probes were altered in expression ≥1.2-fold and P obese participants compared with lean. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis revealed significant enrichment for pathways including toll-like receptor (TLR) and B cell receptor signalling pathways. LTF and TLR5 were increased in expression by 2.2 and 1.5 fold, respectively, in the overweight/obese participants. Increased LTF concentrations were significantly associated with high risk of obesity-related phenotypes (all P obesity risk among Latino youth. This finding is discordant to what has been shown in adults and suggests that age may modulate the association between LTF and obesity-related health. © 2014 World Obesity.

  15. Hepatic gene expression profiling using GeneChips in zebrafish exposed to 17{alpha}-methyldihydrotestosterone

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, J.L.; Thomason, R.G.; Lee, D.M.; Brill, J.L.; Price, B.B.; Carr, G.J. [Miami Valley Innovation Center, Procter and Gamble Company, P.O. Box 538707, Cincinnati, OH 45253-8707 (United States); Versteeg, D.J. [Miami Valley Innovation Center, Procter and Gamble Company, P.O. Box 538707, Cincinnati, OH 45253-8707 (United States)], E-mail: versteeg.dj@pg.com

    2008-04-28

    Concentration and time-dependent changes in hepatic gene expression were examined in adult, female zebrafish (Danio rerio) exposed to 0, 0.1, 0.7, 4.9 {mu}g/L of a model androgen, 17{alpha}-methyldihydrotestosterone (MDHT). At 24 and 168 h, fish were sacrificed and liver was extracted for gene expression analysis using custom Affymetrix GeneChip Zebrafish Genome Microarrays. In an effort to link gene expression changes to higher levels of biological organization, blood was collected for measurement of plasma steroid hormones (17{beta}-estradiol (E2), testosterone (T)) and vitellogenin (VTG) using ELISA. Body and ovary weight were also measured. A significant reduction in E2 occurred at 24 h (0.7 and 4.9 {mu}g/L) and 168 h (4.9 {mu}g/L) following MDHT exposure. In contrast, T was significantly increased at 24 h (4.9 {mu}g/L) and 168 h (0.1, 0.7, 4.9 {mu}g/L). 171 and 575 genes were significantly affected in a concentration-dependent manner at either 24 or 168 h by MDHT exposure at p {<=} 0.001 and p {<=} 0.01, respectively. Genes involved in retinoic acid metabolism (e.g. aldehyde dehydrogenase 8, member A1; retinol dehydrogenase 12), steroid biosynthesis and metabolism (e.g. hydroxysteroid (11{beta}) dehydrogenase 2; hydroxy-delta-5-steroid dehydrogenase, 3 beta-), hormone transport (e.g. sex hormone binding globulin), and regulation of cell growth and proliferation (e.g. N-myc downstream regulated gene 1; spermidinespermine N(1)-acetyltransferase) were affected by MDHT exposure. In this study, we identified genes involved in a variety of biological processes that have the potential to be used as markers of exposure to androgenic substances. Genes identified in this study provide information on the potential mode of action of strong androgens in female fish. In addition, when used for screening of EDC's, these genes may also serve as sensitive markers of exposure to androgenic compounds.

  16. Identification of potential crucial genes associated with steroid-induced necrosis of femoral head based on gene expression profile.

    Science.gov (United States)

    Lin, Zhe; Lin, Yongsheng

    2017-09-05

    The aim of this study was to explore potential crucial genes associated with the steroid-induced necrosis of femoral head (SINFH) and to provide valid biological information for further investigation of SINFH. Gene expression profile of GSE26316, generated from 3 SINFH rat samples and 3 normal rat samples were downloaded from Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were identified using LIMMA package. After functional enrichment analyses of DEGs, protein-protein interaction (PPI) network and sub-PPI network analyses were conducted based on the STRING database and cytoscape. In total, 59 up-regulated DEGs and 156 downregulated DEGs were identified. The up-regulated DEGs were mainly involved in functions about immunity (e.g. Fcer1A and Il7R), and the downregulated DEGs were mainly enriched in muscle system process (e.g. Tnni2, Mylpf and Myl1). The PPI network of DEGs consisted of 123 nodes and 300 interactions. Tnni2, Mylpf, and Myl1 were the top 3 outstanding genes based on both subgraph centrality and degree centrality evaluation. These three genes interacted with each other in the network. Furthermore, the significant network module was composed of 22 downregulated genes (e.g. Tnni2, Mylpf and Myl1). These genes were mainly enriched in functions like muscle system process. The DEGs related to the regulation of immune system process (e.g. Fcer1A and Il7R), and DEGs correlated with muscle system process (e.g. Tnni2, Mylpf and Myl1) may be closely associated with the progress of SINFH, which is still needed to be confirmed by experiments. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Identification of distinct genes associated with seawater aspiration-induced acute lung injury by gene expression profile analysis

    Science.gov (United States)

    Liu, Wei; Pan, Lei; Zhang, Minlong; Bo, Liyan; Li, Congcong; Liu, Qingqing; Wang, Li; Jin, Faguang

    2016-01-01

    Seawater aspiration-induced acute lung injury (ALI) is a syndrome associated with a high mortality rate, which is characterized by severe hypoxemia, pulmonary edema and inflammation. The present study is the first, to the best of our knowledge, to analyze gene expression profiles from a rat model of seawater aspiration-induced ALI. Adult male Sprague-Dawley rats were instilled with seawater (4 ml/kg) in the seawater aspiration-induced ALI group (S group) or with distilled water (4 ml/kg) in the distilled water negative control group (D group). In the blank control group (C group) the rats' tracheae were exposed without instillation. Subsequently, lung samples were examined by histopathology; total protein concentration was detected in bronchoalveolar lavage fluid (BALF); lung wet/dry weight ratios were determined; and transcript expression was detected by gene sequencing analysis. The results demonstrated that histopathological alterations, pulmonary edema and total protein concentrations in BALF were increased in the S group compared with in the D group. Analysis of differential gene expression identified up and downregulated genes in the S group compared with in the D and C groups. A gene ontology analysis of the differential gene expression revealed enrichment of genes in the functional pathways associated with neutrophil chemotaxis, immune and defense responses, and cytokine activity. Kyoto Encyclopedia of Genes and Genomes analysis revealed that the cytokine-cytokine receptor interaction pathway was one of the most important pathways involved in seawater aspiration-induced ALI. In conclusion, activation of the cytokine-cytokine receptor interaction pathway may have an essential role in the progression of seawater aspiration-induced ALI, and the downregulation of tumor necrosis factor superfamily member 10 may enhance inflammation. Furthermore, IL-6 may be considered a biomarker in seawater aspiration-induced ALI. PMID:27509884

  18. A multiplex branched DNA assay for parallel quantitative gene expression profiling.

    Science.gov (United States)

    Flagella, Michael; Bui, Son; Zheng, Zhi; Nguyen, Cung Tuong; Zhang, Aiguo; Pastor, Larry; Ma, Yunqing; Yang, Wen; Crawford, Kimberly L; McMaster, Gary K; Witney, Frank; Luo, Yuling

    2006-05-01

    We describe a novel method to quantitatively measure messenger RNA (mRNA) expression of multiple genes directly from crude cell lysates and tissue homogenates without the need for RNA purification or target amplification. The multiplex branched DNA (bDNA) assay adapts the bDNA technology to the Luminex fluorescent bead-based platform through the use of cooperative hybridization, which ensures an exceptionally high degree of assay specificity. Using in vitro transcribed RNA as reference standards, we demonstrated that the assay is highly specific, with cross-reactivity less than 0.2%. We also determined that the assay detection sensitivity is 25,000 RNA transcripts with intra- and interplate coefficients of variance of less than 10% and less than 15%, respectively. Using three 10-gene panels designed to measure proinflammatory and apoptosis responses, we demonstrated sensitive and specific multiplex gene expression profiling directly from cell lysates. The gene expression change data demonstrate a high correlation coefficient (R(2)=0.94) compared with measurements obtained using the single-plex bDNA assay. Thus, the multiplex bDNA assay provides a powerful means to quantify the gene expression profile of a defined set of target genes in large sample populations.

  19. Expression profiles of sugarcane under drought conditions: Variation in gene regulation

    Directory of Open Access Journals (Sweden)

    Júlio César Farias de Andrade

    2015-01-01

    Full Text Available AbstractDrought is a major factor in decreased sugarcane productivity because of the resulting morphophysiological effects that it causes. Gene expression studies that have examined the influence of water stress in sugarcane have yielded divergent results, indicating the absence of a fixed pattern of changes in gene expression. In this work, we investigated the expression profiles of 12 genes in the leaves of a drought-tolerant genotype (RB72910 of sugarcane and compared the results with those of other studies. The genotype was subjected to 80–100% water availability (control condition and 0–20% water availability (simulated drought. To analyze the physiological status, the SPAD index, Fv/Fm ratio, net photosynthesis (A, stomatal conductance (gs and stomatal transpiration (E were measured. Total RNA was extracted from leaves and the expression of SAMDC, ZmPIP2-1 protein, ZmTIP4-2 protein, WIP protein, LTP protein, histone H3, DNAj, ferredoxin I, β-tubulin, photosystem I, gene 1 and gene 2 was analyzed by quantitative real-time PCR (RT-PCR. Important differences in the expression profiles of these genes were observed when compared with other genotypes, suggesting that complex defense mechanisms are activated in response to water stress. However, there was no recognizable pattern for the changes in expression of the different proteins associated with tolerance to drought stress.

  20. Gene Expression Differences in Peripheral Blood of Parkinson's Disease Patients with Distinct Progression Profiles.

    Directory of Open Access Journals (Sweden)

    Raquel Pinho

    Full Text Available The prognosis of neurodegenerative disorders is clinically challenging due to the inexistence of established biomarkers for predicting disease progression. Here, we performed an exploratory cross-sectional, case-control study aimed at determining whether gene expression differences in peripheral blood may be used as a signature of Parkinson's disease (PD progression, thereby shedding light into potential molecular mechanisms underlying disease development. We compared transcriptional profiles in the blood from 34 PD patients who developed postural instability within ten years with those of 33 patients who did not develop postural instability within this time frame. Our study identified >200 differentially expressed genes between the two groups. The expression of several of the genes identified was previously found deregulated in animal models of PD and in PD patients. Relevant genes were selected for validation by real-time PCR in a subset of patients. The genes validated were linked to nucleic acid metabolism, mitochondria, immune response and intracellular-transport. Interestingly, we also found deregulation of these genes in a dopaminergic cell model of PD, a simple paradigm that can now be used to further dissect the role of these molecular players on dopaminergic cell loss. Altogether, our study provides preliminary evidence that expression changes in specific groups of genes and pathways, detected in peripheral blood samples, may be correlated with differential PD progression. Our exploratory study suggests that peripheral gene expression profiling may prove valuable for assisting in prediction of PD prognosis, and identifies novel culprits possibly involved in dopaminergic cell death. Given the exploratory nature of our study, further investigations using independent, well-characterized cohorts will be essential in order to validate our candidates as predictors of PD prognosis and to definitively confirm the value of gene expression

  1. Impact of blood collection and processing on peripheral blood gene expression profiling in type 1 diabetes.

    Science.gov (United States)

    Yip, Linda; Fuhlbrigge, Rebecca; Atkinson, Mark A; Fathman, C Garrison

    2017-08-18

    The natural history of type 1 diabetes (T1D) is challenging to investigate, especially as pre-diabetic individuals are difficult to identify. Numerous T1D consortia have been established to collect whole blood for gene expression analysis from individuals with or at risk to develop T1D. However, with no universally accepted protocol for their collection, differences in sample processing may lead to variances in the results. Here, we examined whether the choice of blood collection tube and RNA extraction kit leads to differences in the expression of genes that are changed during the progression of T1D, and if these differences could be minimized by measuring gene expression directly from the lysate of whole blood. Microarray analysis showed that the expression of 901 genes is highly influenced by sample processing using the PAXgene versus the Tempus system. These included a significant number of lymphocyte-specific genes and genes whose expression has been reported to differ in the peripheral blood of at-risk and T1D patients compared to controls. We showed that artificial changes in gene expression occur when control and T1D samples were processed differently. The sample processing-dependent differences in gene expression were largely due to loss of transcripts during the RNA extraction step using the PAXgene system. The majority of differences were not observed when gene expression was measured in whole blood lysates prepared from blood collected in PAXgene and Tempus tubes. We showed that the gene expression profile of samples processed using the Tempus system is more accurate than that of samples processed using the PAXgene system. Variation in sample processing can result in misleading changes in gene expression. However, these differences can be minimized by measuring gene expression directly in whole blood lysates.

  2. Identification of differentially expressed genes in cucumber (Cucumis sativus L.) root under waterlogging stress by digital gene expression profile.

    Science.gov (United States)

    Qi, Xiao-Hua; Xu, Xue-Wen; Lin, Xiao-Jian; Zhang, Wen-Jie; Chen, Xue-Hao

    2012-03-01

    High-throughput tag-sequencing (Tag-seq) analysis based on the Solexa Genome Analyzer platform was applied to analyze the gene expression profiling of cucumber plant at 5 time points over a 24h period of waterlogging treatment. Approximately 5.8 million total clean sequence tags per library were obtained with 143013 distinct clean tag sequences. Approximately 23.69%-29.61% of the distinct clean tags were mapped unambiguously to the unigene database, and 53.78%-60.66% of the distinct clean tags were mapped to the cucumber genome database. Analysis of the differentially expressed genes revealed that most of the genes were down-regulated in the waterlogging stages, and the differentially expressed genes mainly linked to carbon metabolism, photosynthesis, reactive oxygen species generation/scavenging, and hormone synthesis/signaling. Finally, quantitative real-time polymerase chain reaction using nine genes independently verified the tag-mapped results. This present study reveals the comprehensive mechanisms of waterlogging-responsive transcription in cucumber. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Detection of growth hormone doping by gene expression profiling of peripheral blood.

    Science.gov (United States)

    Mitchell, Christopher J; Nelson, Anne E; Cowley, Mark J; Kaplan, Warren; Stone, Glenn; Sutton, Selina K; Lau, Amie; Lee, Carol M Y; Ho, Ken K Y

    2009-12-01

    GH abuse is a significant problem in many sports, and there is currently no robust test that allows detection of doping beyond a short window after administration. Our objective was to evaluate gene expression profiling in peripheral blood leukocytes in-vivo as a test for GH doping in humans. Seven men and thirteen women were administered GH, 2 mg/d sc for 8 wk. Blood was collected at baseline and at 8 wk. RNA was extracted from the white cell fraction. Microarray analysis was undertaken using Agilent 44K G4112F arrays using a two-color design. Quantitative RT-PCR using TaqMan gene expression assays was performed for validation of selected differentially expressed genes. GH induced an approximately 2-fold increase in circulating IGF-I that was maintained throughout the 8 wk of the study. GH induced significant changes in gene expression with 353 in women and 41 in men detected with a false discovery rate of less than 5%. None of the differentially expressed genes were common between men and women. The maximal changes were a doubling for up-regulated or halving for down-regulated genes, similar in magnitude to the variation between individuals. Quantitative RT-PCR for seven target genes showed good concordance between microarray and quantitative PCR data in women but not in men. Gene expression analysis of peripheral blood leukocytes is unlikely to be a viable approach for the detection of GH doping.

  4. A global evolutionary and metabolic analysis of human obesity gene risk variants.

    Science.gov (United States)

    Castillo, Joseph J; Hazlett, Zachary S; Orlando, Robert A; Garver, William S

    2017-09-05

    It is generally accepted that the selection of gene variants during human evolution optimized energy metabolism that now interacts with our obesogenic environment to increase the prevalence of obesity. The purpose of this study was to perform a global evolutionary and metabolic analysis of human obesity gene risk variants (110 human obesity genes with 127 nearest gene risk variants) identified using genome-wide association studies (GWAS) to enhance our knowledge of early and late genotypes. As a result of determining the mean frequency of these obesity gene risk variants in 13 available populations from around the world our results provide evidence for the early selection of ancestral risk variants (defined as selection before migration from Africa) and late selection of derived risk variants (defined as selection after migration from Africa). Our results also provide novel information for association of these obesity genes or encoded proteins with diverse metabolic pathways and other human diseases. The overall results indicate a significant differential evolutionary pattern for the selection of obesity gene ancestral and derived risk variants proposed to optimize energy metabolism in varying global environments and complex association with metabolic pathways and other human diseases. These results are consistent with obesity genes that encode proteins possessing a fundamental role in maintaining energy metabolism and survival during the course of human evolution. Copyright © 2017. Published by Elsevier B.V.

  5. Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes

    KAUST Repository

    Horiuchi, Youko

    2015-12-23

    Background Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue specific expression differences. However, different types of gene expression alteration should have different effects on an organism, the evolutionary forces that act on them might be different, and different types of genes might show different types of differential expression between species. To confirm this, we studied differentially expressed (DE) genes among closely related groups that have extensive gene expression atlases, and clarified characteristics of different types of DE genes including the identification of regulating loci for differential expression using expression quantitative loci (eQTL) analysis data. Results We detected differentially expressed (DE) genes between rice subspecies in five homologous tissues that were verified using japonica and indica transcriptome atlases in public databases. Using the transcriptome atlases, we classified DE genes into two types, global DE genes and changed-tissues DE genes. Global type DE genes were not expressed in any tissues in the atlas of one subspecies, however changed-tissues type DE genes were expressed in both subspecies with different tissue specificity. For the five tissues in the two japonica-indica combinations, 4.6 ± 0.8 and 5.9 ± 1.5 % of highly expressed genes were global and changed-tissues DE genes, respectively. Changed-tissues DE genes varied in number between tissues, increasing linearly with the abundance of tissue specifically expressed genes in the tissue. Molecular evolution of global DE genes was rapid, unlike that of changed-tissues DE genes. Based on gene ontology, global and changed-tissues DE genes were different, having no common GO terms. Expression differences of most global DE genes were regulated by cis-eQTLs. Expression

  6. Gene expression profiling of fast- and slow- growing gonadotroph non-functioning pituitary adenomas

    DEFF Research Database (Denmark)

    Falch, Camilla Maria; Sundaram, Arvind Y M; Øystese, Kristin Astrid

    2018-01-01

    Objective Reliable biomarkers associated with aggressiveness of non-functioning gonadotroph adenomas (GAs) are lacking. As the growth of tumor remnants is highly variable, molecular markers for growth potential prediction are necessary. We hypothesized that fast- and slow - growing GAs present......, GPM6A and six EMT-related genes (SPAG9, SKIL, MTDH, HOOK1, CNOT6L and PRKACB). MTDH, but not EMCN, demonstrated involvement in cell migration and association with EMT-markers. Conclusions Fast- and slow- growing GAs present different gene expression profiles and genes related to EMT have higher...... expression in fast-growing tumors. In addition to MTDH, identified as an important contributor to aggressiveness, the other genes might represent markers for tumor growth potential and possible targets for drug therapy. ....

  7. The influence of nutrigenetics on the lipid profile: interaction between genes and dietary habits.

    Science.gov (United States)

    de Andrade, Fabiana M; Bulhões, Andréa C; Maluf, Sharbel W; Schuch, Jaqueline B; Voigt, Francine; Lucatelli, Juliana F; Barros, Alessandra C; Hutz, Mara H

    2010-04-01

    Nutrigenetics is a new field with few studies in Latin America. Our aim is to investigate the way in which different genes related to the lipid profile influence the response to specific dietary habits. Eight polymorphisms on seven genes were investigated in a sample (n = 567) from Porto Alegre, RS, Brazil. All the volunteers completed a food diary that was then assessed and classified into nine food groups. A number of nutrigenetic interactions were detected primarily related to the apolipoprotein E (apoE) gene. For example, frequent consumption of foods rich in polyunsaturated fat resulted in the beneficial effect of increasing HDL-C only in individuals who were not carriers of the E*4 allele of the APOE gene, whereas variations in eating habits of E*4 carriers did not affect their HDL-C (P = 0.018). Our data demonstrate for the first time nutrigenetic interactions in a Brazilian population.

  8. Inferring Drosophila gap gene regulatory network: Pattern analysis of simulated gene expression profiles and stability analysis

    NARCIS (Netherlands)

    Fomekong-Nanfack, Y.; Postma, M.; Kaandorp, J.A.

    2009-01-01

    Background: Inference of gene regulatory networks (GRNs) requires accurate data, a method to simulate the expression patterns and an efficient optimization algorithm to estimate the unknown parameters. Using this approach it is possible to obtain alternative circuits without making any a priori

  9. Discovering time-lagged rules from microarray data using gene profile classifiers

    Directory of Open Access Journals (Sweden)

    Ponzoni Ignacio

    2011-04-01

    Full Text Available Abstract Background Gene regulatory networks have an essential role in every process of life. In this regard, the amount of genome-wide time series data is becoming increasingly available, providing the opportunity to discover the time-delayed gene regulatory networks that govern the majority of these molecular processes. Results This paper aims at reconstructing gene regulatory networks from multiple genome-wide microarray time series datasets. In this sense, a new model-free algorithm called GRNCOP2 (Gene Regulatory Network inference by Combinatorial OPtimization 2, which is a significant evolution of the GRNCOP algorithm, was developed using combinatorial optimization of gene profile classifiers. The method is capable of inferring potential time-delay relationships with any span of time between genes from various time series datasets given as input. The proposed algorithm was applied to time series data composed of twenty yeast genes that are highly relevant for the cell-cycle study, and the results were compared against several related approaches. The outcomes have shown that GRNCOP2 outperforms the contrasted methods in terms of the proposed metrics, and that the results are consistent with previous biological knowledge. Additionally, a genome-wide study on multiple publicly available time series data was performed. In this case, the experimentation has exhibited the soundness and scalability of the new method which inferred highly-related statistically-significant gene associations. Conclusions A novel method for inferring time-delayed gene regulatory networks from genome-wide time series datasets is proposed in this paper. The method was carefully validated with several publicly available data sets. The results have demonstrated that the algorithm constitutes a usable model-free approach capable of predicting meaningful relationships between genes, revealing the time-trends of gene regulation.

  10. Genomic Survey, Characterization, and Expression Profile Analysis of the SBP Genes in Pineapple (Ananas comosus L.).

    Science.gov (United States)

    Ali, Hina; Liu, Yanhui; Azam, Syed Muhammad; Rahman, Zia Ur; Priyadarshani, S V G N; Li, Weimin; Huang, Xinyu; Hu, Bingyan; Xiong, Junjie; Ali, Umair; Qin, Yuan

    2017-01-01

    Gene expression is regulated by transcription factors, which play many significant developmental processes. SQUAMOSA promoter-binding proteins (SBP) perform a variety of regulatory functions in leaf, flower, and fruit development, plant architecture, and sporogenesis. 16 SBP genes were identified in pineapple and were divided into four groups on basis of phylogenetic analysis. Five paralogs in pineapple for SBP genes were identified with Ka/Ks ratio varied from 0.20 for AcSBP14 and AcSBP15 to 0.36 for AcSBP6 and AcSBP16 , respectively. 16 SBP genes were located on 12 chromosomes out of 25 pineapple chromosomes with highly conserved protein sequence structures. The isoionic points of SBP ranged from 6.05 to 9.57, while molecular weight varied from 22.7 to 121.9 kD. Expression profiles of SBP genes revealed that AcSBP7 and AcSBP15 (leaf), AcSBP13 , AcSBP12 , AcSBP8 , AcSBP16 , AcSBP9 , and AcSBP11 (sepal), AcSBP6 , AcSBP4 , and AcSBP10 (stamen), AcSBP14 , AcSBP1 , and AcSBP5 (fruit) while the rest of genes showed low expression in studied tissues. Four genes, that is, AcSBP11 , AcSBP6 , AcSBP4 , and AcSBP12 , were highly expressed at 4°C, while AcSBP16 were upregulated at 45°C. RNA-Seq was validated through qRT-PCR for some genes. Salt stress-induced expression of two genes, that is, AcSBP7 and AcSBP14 , while in drought stress, AcSBP12 and AcSBP15 were highly expressed. Our study lays a foundation for further gene function and expression studies of SBP genes in pineapple.

  11. Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes

    KAUST Repository

    Horiuchi, Youko; Harushima, Yoshiaki; Fujisawa, Hironori; Mochizuki, Takako; Fujita, Masahiro; Ohyanagi, Hajime; Kurata, Nori

    2015-01-01

    Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue

  12. Differences in gene expression profiles and signaling pathways in rhabdomyolysis-induced acute kidney injury.

    Science.gov (United States)

    Geng, Xiaodong; Wang, Yuanda; Hong, Quan; Yang, Jurong; Zheng, Wei; Zhang, Gang; Cai, Guangyan; Chen, Xiangmei; Wu, Di

    2015-01-01

    Rhabdomyolysis is a threatening syndrome because it causes the breakdown of skeletal muscle. Muscle destruction leads to the release of myoglobin, intracellular proteins, and electrolytes into the circulation. The aim of this study was to investigate the differences in gene expression profiles and signaling pathways upon rhabdomyolysis-induced acute kidney injury (AKI). In this study, we used glycerol-induced renal injury as a model of rhabdomyolysis-induced AKI. We analyzed data and relevant information from the Gene Expression Omnibus database (No: GSE44925). The gene expression data for three untreated mice were compared to data for five mice with rhabdomyolysis-induced AKI. The expression profiling of the three untreated mice and the five rhabdomyolysis-induced AKI mice was performed using microarray analysis. We examined the levels of Cyp3a13, Rela, Aldh7a1, Jun, CD14. And Cdkn1a using RT-PCR to determine the accuracy of the microarray results. The microarray analysis showed that there were 1050 downregulated and 659 upregulated genes in the rhabdomyolysis-induced AKI mice compared to the control group. The interactions of all differentially expressed genes in the Signal-Net were analyzed. Cyp3a13 and Rela had the most interactions with other genes. The data showed that Rela and Aldh7a1 were the key nodes and had important positions in the Signal-Net. The genes Jun, CD14, and Cdkn1a were also significantly upregulated. The pathway analysis classified the differentially expressed genes into 71 downregulated and 48 upregulated pathways including the PI3K/Akt, MAPK, and NF-κB signaling pathways. The results of this study indicate that the NF-κB, MAPK, PI3K/Akt, and apoptotic pathways are regulated in rhabdomyolysis-induced AKI.

  13. Gene expression profile of endoscopically active and inactive ulcerative colitis: preliminary data.

    Science.gov (United States)

    Ţieranu, Cristian George; Dobre, Maria; Mănuc, Teodora Ecaterina; Milanesi, Elena; Pleşea, Iancu Emil; Popa, Caterina; Mănuc, Mircea; Ţieranu, Ioana; Preda, Carmen Monica; Diculescu, Mihai Mircea; Ionescu, Elena Mirela; Becheanu, Gabriel

    2017-01-01

    Multiple cytokines and chemokines related to immune response, apoptosis and inflammation have been identified as molecules implicated in ulcerative colitis (UC) pathogenesis. The aim of this study was to identify the differences at gene expression level of a panel of candidate genes in mucosa from patients with active UC (UCA), patients in remission (UCR), and normal controls. Eleven individuals were enrolled in the study: eight UC patients (four with active lesions, four with mucosal healing) and three controls without inflammatory bowel disease (IBD) seen on endoscopy. All the individuals underwent mucosal biopsy during colonoscopy. Gene expression profile was evaluated by polymerase chain reaction (PCR) array, investigating 84 genes implicated in apoptosis, inflammation, immune response, cellular adhesion, tissue remodeling and mucous secretion. Seventeen and three genes out of 84 were found significantly differentially expressed in UCA and UCR compared to controls, respectively. In particular, REG1A and CHI3L1 genes reported an up-regulation in UCA with a fold difference above 200. In UCR patients, the levels of CASP1, LYZ and ISG15 were different compared to controls. However, since a significant up-regulation of both CASP1 and LYZ was observed also in the UCA group, only ISG15 levels remained associated to the remission state. ISG15, that plays a key role in the innate immune response, seemed to be specifically associated to the UC remission state. These preliminary data represent a starting point for defining the gene profile of UC in different stages in Romanian population. Identification of genes implicated in UC pathogenesis could be useful to select new therapeutic targets.

  14. Gene expression profile identifies potential biomarkers for human intervertebral disc degeneration.

    Science.gov (United States)

    Guo, Wei; Zhang, Bin; Li, Yan; Duan, Hui-Quan; Sun, Chao; Xu, Yun-Qiang; Feng, Shi-Qing

    2017-12-01

    The present study aimed to reveal the potential genes associated with the pathogenesis of intervertebral disc degeneration (IDD) by analyzing microarray data using bioinformatics. Gene expression profiles of two regions of the intervertebral disc were compared between patients with IDD and controls. GSE70362 containing two groups of gene expression profiles, 16 nucleus pulposus (NP) samples from patients with IDD and 8 from controls, and 16 annulus fibrosus (AF) samples from patients with IDD and 8 from controls, was downloaded from the Gene Expression Omnibus database. A total of 93 and 114 differentially expressed genes (DEGs) were identified in NP and AF samples, respectively, using a limma software package for the R programming environment. Gene Ontology (GO) function enrichment analysis was performed to identify the associated biological functions of DEGs in IDD, which indicated that the DEGs may be involved in various processes, including cell adhesion, biological adhesion and extracellular matrix organization. Pathway enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) demonstrated that the identified DEGs were potentially involved in focal adhesion and the p53 signaling pathway. Further analysis revealed that there were 35 common DEGs observed between the two regions (NP and AF), which may be further regulated by 6 clusters of microRNAs (miRNAs) retrieved with WebGestalt. The genes in the DEG‑miRNA regulatory network were annotated using GO function and KEGG pathway enrichment analysis, among which extracellular matrix organization was the most significant disrupted biological process and focal adhesion was the most significant dysregulated pathway. In addition, the result of protein‑protein interaction network modules demonstrated the involvement of inflammatory cytokine interferon signaling in IDD. These findings may not only advance the understanding of the pathogenesis of IDD, but also identify novel potential

  15. Amniotic fluid RNA gene expression profiling provides insights into the phenotype of Turner syndrome.

    Science.gov (United States)

    Massingham, Lauren J; Johnson, Kirby L; Scholl, Thomas M; Slonim, Donna K; Wick, Heather C; Bianchi, Diana W

    2014-09-01

    Turner syndrome is a sex chromosome aneuploidy with characteristic malformations. Amniotic fluid, a complex biological material, could contribute to the understanding of Turner syndrome pathogenesis. In this pilot study, global gene expression analysis of cell-free RNA in amniotic fluid supernatant was utilized to identify specific genes/organ systems that may play a role in Turner syndrome pathophysiology. Cell-free RNA from amniotic fluid of five mid-trimester Turner syndrome fetuses and five euploid female fetuses matched for gestational age was extracted, amplified, and hybridized onto Affymetrix(®) U133 Plus 2.0 arrays. Significantly differentially regulated genes were identified using paired t tests. Biological interpretation was performed using Ingenuity Pathway Analysis and BioGPS gene expression atlas. There were 470 statistically significantly differentially expressed genes identified. They were widely distributed across the genome. XIST was significantly down-regulated (p Turner syndrome transcriptome from other aneuploidies we previously studied. Manual curation of the differentially expressed gene list identified genes of possible pathologic significance, including NFATC3, IGFBP5, and LDLR. Transcriptomic differences in the amniotic fluid of Turner syndrome fetuses are due to genome-wide dysregulation. The hematologic/immune system differences may play a role in early-onset autoimmune dysfunction. Other genes identified with possible pathologic significance are associated with cardiac and skeletal systems, which are known to be affected in females with Turner syndrome. The discovery-driven approach described here may be useful in elucidating novel mechanisms of disease in Turner syndrome.

  16. RNA-Seq for gene identification and transcript profiling of three Stevia rebaudiana genotypes.

    Science.gov (United States)

    Chen, Junwen; Hou, Kai; Qin, Peng; Liu, Hongchang; Yi, Bin; Yang, Wenting; Wu, Wei

    2014-07-07

    Stevia (Stevia rebaudiana) is an important medicinal plant that yields diterpenoid steviol glycosides (SGs). SGs are currently used in the preparation of medicines, food products and neutraceuticals because of its sweetening property (zero calories and about 300 times sweeter than sugar). Recently, some progress has been made in understanding the biosynthesis of SGs in Stevia, but little is known about the molecular mechanisms underlying this process. Additionally, the genomics of Stevia, a non-model species, remains uncharacterized. The recent advent of RNA-Seq, a next generation sequencing technology, provides an opportunity to expand the identification of Stevia genes through in-depth transcript profiling. We present a comprehensive landscape of the transcriptome profiles of three genotypes of Stevia with divergent SG compositions characterized using RNA-seq. 191,590,282 high-quality reads were generated and then assembled into 171,837 transcripts with an average sequence length of 969 base pairs. A total of 80,160 unigenes were annotated, and 14,211 of the unique sequences were assigned to specific metabolic pathways by the Kyoto Encyclopedia of Genes and Genomes. Gene sequences of all enzymes known to be involved in SG synthesis were examined. A total of 143 UDP-glucosyltransferase (UGT) unigenes were identified, some of which might be involved in SG biosynthesis. The expression patterns of eight of these genes were further confirmed by RT-QPCR. RNA-seq analysis identified candidate genes encoding enzymes responsible for the biosynthesis of SGs in Stevia, a non-model plant without a reference genome. The transcriptome data from this study yielded new insights into the process of SG accumulation in Stevia. Our results demonstrate that RNA-Seq can be successfully used for gene identification and transcript profiling in a non-model species.

  17. In vivo gene expression profiling of the entomopathogenic fungus Beauveria bassiana elucidates its infection stratagems in Anopheles mosquito.

    Science.gov (United States)

    Lai, Yiling; Chen, Huan; Wei, Ge; Wang, Guandong; Li, Fang; Wang, Sibao

    2017-08-01

    The use of entomopathogenic fungi to control mosquitoes is a promising tool for reducing vector-borne disease transmission. To better understand infection stratagems of insect pathogenic fungi, we analyzed the global gene expression profiling of Beauveria bassiana at 36, 60, 84 and 108 h after topical infection of Anopheles stephensi adult mosquitoes using RNA sequencing (RNA-Seq). A total of 5,354 differentially expressed genes (DEGs) are identified over the course of fungal infection. When the fungus grows on the mosquito cuticle, up-regulated DEGs include adhesion-related genes involved in cuticle attachment, Pth11-like GPCRs hypothesized to be involved in host recognition, and extracellular enzymes involved in the degradation and penetration of the mosquito cuticle. Once in the mosquito hemocoel, the fungus evades mosquito immune system probably through up-regulating expression of β-1,3-glucan degrading enzymes and chitin synthesis enzymes for remodeling of cell walls. Moreover, six previous unknown SSCP (small secreted cysteine-rich proteins) are significantly up-regulated, which may serve as "effectors" to suppress host defense responses. B. bassiana also induces large amounts of antioxidant genes to mitigate host-generated exogenous oxidative stress. At late stage of infection, B. bassiana activates a broad spectrum of genes including nutrient degrading enzymes, some transporters and metabolism pathway components, to exploit mosquito tissues and hemolymph as a nutrient source for hyphal growth. These findings establish an important framework of knowledge for further comprehensive elucidation of fungal pathogenesis and molecular mechanism of Beauveria-mosquito interactions.

  18. Nitrogenase gene amplicons from global marine surface waters are dominated by genes of non-cyanobacteria

    DEFF Research Database (Denmark)

    Farnelid, Hanna; Andersson, Anders F.; Bertilsson, Stefan

    2011-01-01

    analysis of 79,090 nitrogenase (nifH) PCR amplicons encoding 7,468 unique proteins from surface samples (ten DNA samples and two RNA samples) collected at ten marine locations world-wide provides the first in-depth survey of a functional bacterial gene and yield insights into the composition and diversity...... by unicellular cyanobacteria, 42% of the identified non-cyanobacterial nifH clusters from the corresponding DNA samples were also detected in cDNA. The study indicates that non-cyanobacteria account for a substantial part of the nifH gene pool in marine surface waters and that these genes are at least...

  19. Rice sHsp genes: genomic organization and expression profiling under stress and development

    Directory of Open Access Journals (Sweden)

    Grover Anil

    2009-08-01

    Full Text Available Abstract Background Heat shock proteins (Hsps constitute an important component in the heat shock response of all living systems. Among the various plant Hsps (i.e. Hsp100, Hsp90, Hsp70 and Hsp20, Hsp20 or small Hsps (sHsps are expressed in maximal amounts under high temperature stress. The characteristic feature of the sHsps is the presence of α-crystallin domain (ACD at the C-terminus. sHsps cooperate with Hsp100/Hsp70 and co-chaperones in ATP-dependent manner in preventing aggregation of cellular proteins and in their subsequent refolding. Database search was performed to investigate the sHsp gene family across rice genome sequence followed by comprehensive expression analysis of these genes. Results We identified 40 α-crystallin domain containing genes in rice. Phylogenetic analysis showed that 23 out of these 40 genes constitute sHsps. The additional 17 genes containing ACD clustered with Acd proteins of Arabidopsis. Detailed scrutiny of 23 sHsp sequences enabled us to categorize these proteins in a revised scheme of classification constituting of 16 cytoplasmic/nuclear, 2 ER, 3 mitochondrial, 1 plastid and 1 peroxisomal genes. In the new classification proposed herein nucleo-cytoplasmic class of sHsps with 9 subfamilies is more complex in rice than in Arabidopsis. Strikingly, 17 of 23 rice sHsp genes were noted to be intronless. Expression analysis based on microarray and RT-PCR showed that 19 sHsp genes were upregulated by high temperature stress. Besides heat stress, expression of sHsp genes was up or downregulated by other abiotic and biotic stresses. In addition to stress regulation, various sHsp genes were differentially upregulated at different developmental stages of the rice plant. Majority of sHsp genes were expressed in seed. Conclusion We identified twenty three sHsp genes and seventeen Acd genes in rice. Three nucleocytoplasmic sHsp genes were found only in monocots. Analysis of expression profiling of sHsp genes revealed

  20. Functional features of gene expression profiles differentiating gastrointestinal stromal tumours according to KIT mutations and expression

    International Nuclear Information System (INIS)

    Ostrowski, Jerzy; Dobosz, Anna Jerzak Vel; Jarosz, Dorota; Ruka, Wlodzimierz; Wyrwicz, Lucjan S; Polkowski, Marcin; Paziewska, Agnieszka; Skrzypczak, Magdalena; Goryca, Krzysztof; Rubel, Tymon; Kokoszyñska, Katarzyna; Rutkowski, Piotr; Nowecki, Zbigniew I

    2009-01-01

    Gastrointestinal stromal tumours (GISTs) represent a heterogeneous group of tumours of mesenchymal origin characterized by gain-of-function mutations in KIT or PDGFRA of the type III receptor tyrosine kinase family. Although mutations in either receptor are thought to drive an early oncogenic event through similar pathways, two previous studies reported the mutation-specific gene expression profiles. However, their further conclusions were rather discordant. To clarify the molecular characteristics of differentially expressed genes according to GIST receptor mutations, we combined microarray-based analysis with detailed functional annotations. Total RNA was isolated from 29 frozen gastric GISTs and processed for hybridization on GENECHIP ® HG-U133 Plus 2.0 microarrays (Affymetrix). KIT and PDGFRA were analyzed by sequencing, while related mRNA levels were analyzed by quantitative RT-PCR. Fifteen and eleven tumours possessed mutations in KIT and PDGFRA, respectively; no mutation was found in three tumours. Gene expression analysis identified no discriminative profiles associated with clinical or pathological parameters, even though expression of hundreds of genes differentiated tumour receptor mutation and expression status. Functional features of genes differentially expressed between the two groups of GISTs suggested alterations in angiogenesis and G-protein-related and calcium signalling. Our study has identified novel molecular elements likely to be involved in receptor-dependent GIST development and allowed confirmation of previously published results. These elements may be potential therapeutic targets and novel markers of KIT mutation status

  1. Differential Gene Expression Profiling of Enriched Human Spermatogonia after Short- and Long-Term Culture

    Directory of Open Access Journals (Sweden)

    Sabine Conrad

    2014-01-01

    Full Text Available This study aimed to provide a molecular signature for enriched adult human stem/progenitor spermatogonia during short-term (<2 weeks and long-term culture (up to more than 14 months in comparison to human testicular fibroblasts and human embryonic stem cells. Human spermatogonia were isolated by CD49f magnetic activated cell sorting and collagen−/laminin+ matrix binding from primary testis cultures obtained from ten adult men. For transcriptomic analysis, single spermatogonia-like cells were collected based on their morphology and dimensions using a micromanipulation system from the enriched germ cell cultures. Immunocytochemical, RT-PCR and microarray analyses revealed that the analyzed populations of cells were distinct at the molecular level. The germ- and pluripotency-associated genes and genes of differentiation/spermatogenesis pathway were highly expressed in enriched short-term cultured spermatogonia. After long-term culture, a proportion of cells retained and aggravated the “spermatogonial” gene expression profile with the expression of germ and pluripotency-associated genes, while in the majority of long-term cultured cells this molecular profile, typical for the differentiation pathway, was reduced and more genes related to the extracellular matrix production and attachment were expressed. The approach we provide here to study the molecular status of in vitro cultured spermatogonia may be important to optimize the culture conditions and to evaluate the germ cell plasticity in the future.

  2. Gene expression profiles of primary colorectal carcinomas, liver metastases, and carcinomatoses

    Directory of Open Access Journals (Sweden)

    Myklebost Ola

    2007-01-01

    Full Text Available Abstract Background Despite the fact that metastases are the leading cause of colorectal cancer deaths, little is known about the underlying molecular changes in these advanced disease stages. Few have studied the overall gene expression levels in metastases from colorectal carcinomas, and so far, none has investigated the peritoneal carcinomatoses by use of DNA microarrays. Therefore, the aim of the present study is to investigate and compare the gene expression patterns of primary carcinomas (n = 18, liver metastases (n = 4, and carcinomatoses (n = 4, relative to normal samples from the large bowel. Results Transcriptome profiles of colorectal cancer metastases independent of tumor site, as well as separate profiles associated with primary carcinomas, liver metastases, or peritoneal carcinomatoses, were assessed by use of Bayesian statistics. Gains of chromosome arm 5p are common in peritoneal carcinomatoses and several candidate genes (including PTGER4, SKP2, and ZNF622 mapping to this region were overexpressed in the tumors. Expression signatures stratified on TP53 mutation status were identified across all tumors regardless of stage. Furthermore, the gene expression levels for the in vivo tumors were compared with an in vitro model consisting of cell lines representing all three tumor stages established from one patient. Conclusion By statistical analysis of gene expression data from primary colorectal carcinomas, liver metastases, and carcinomatoses, we are able to identify genetic patterns associated with the different stages of tumorigenesis.

  3. Comparative expression profiling reveals gene functions in female meiosis and gametophyte development in Arabidopsis.

    Science.gov (United States)

    Zhao, Lihua; He, Jiangman; Cai, Hanyang; Lin, Haiyan; Li, Yanqiang; Liu, Renyi; Yang, Zhenbiao; Qin, Yuan

    2014-11-01

    Megasporogenesis is essential for female fertility, and requires the accomplishment of meiosis and the formation of functional megaspores. The inaccessibility and low abundance of female meiocytes make it particularly difficult to elucidate the molecular basis underlying megasporogenesis. We used high-throughput tag-sequencing analysis to identify genes expressed in female meiocytes (FMs) by comparing gene expression profiles from wild-type ovules undergoing megasporogenesis with those from the spl mutant ovules, which lack megasporogenesis. A total of 862 genes were identified as FMs, with levels that are consistently reduced in spl ovules in two biological replicates. Fluorescence-assisted cell sorting followed by RNA-seq analysis of DMC1:GFP-labeled female meiocytes confirmed that 90% of the FMs are indeed detected in the female meiocyte protoplast profiling. We performed reverse genetic analysis of 120 candidate genes and identified four FM genes with a function in female meiosis progression in Arabidopsis. We further revealed that KLU, a putative cytochrome P450 monooxygenase, is involved in chromosome pairing during female meiosis, most likely by affecting the normal expression pattern of DMC1 in ovules during female meiosis. Our studies provide valuable information for functional genomic analyses of plant germline development as well as insights into meiosis. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  4. Alternative life histories shape brain gene expression profiles in males of the same population.

    Science.gov (United States)

    Aubin-Horth, Nadia; Landry, Christian R; Letcher, Benjamin H; Hofmann, Hans A

    2005-08-22

    Atlantic salmon (Salmo salar) undergo spectacular marine migrations before homing to spawn in natal rivers. However, males that grow fastest early in life can adopt an alternative 'sneaker' tactic by maturing earlier at greatly reduced size without leaving freshwater. While the ultimate evolutionary causes have been well studied, virtually nothing is known about the molecular bases of this developmental plasticity. We investigate the nature and extent of coordinated molecular changes that accompany such a fundamental transformation by comparing the brain transcription profiles of wild mature sneaker males to age-matched immature males (future large anadromous males) and immature females. Of the ca. 3000 genes surveyed, 15% are differentially expressed in the brains of the two male types. These genes are involved in a wide range of processes, including growth, reproduction and neural plasticity. Interestingly, despite the potential for wide variation in gene expression profiles among individuals sampled in nature, consistent patterns of gene expression were found for individuals of the same reproductive tactic. Notably, gene expression patterns in immature males were different both from immature females and sneakers, indicating that delayed maturation and sea migration by immature males, the 'default' life cycle, may actually result from an active inhibition of development into a sneaker.

  5. Comparative transcriptional profiling of the axolotl limb identifies a tripartite regeneration-specific gene program.

    Directory of Open Access Journals (Sweden)

    Dunja Knapp

    Full Text Available Understanding how the limb blastema is established after the initial wound healing response is an important aspect of regeneration research. Here we performed parallel expression profile time courses of healing lateral wounds versus amputated limbs in axolotl. This comparison between wound healing and regeneration allowed us to identify amputation-specific genes. By clustering the expression profiles of these samples, we could detect three distinguishable phases of gene expression - early wound healing followed by a transition-phase leading to establishment of the limb development program, which correspond to the three phases of limb regeneration that had been defined by morphological criteria. By focusing on the transition-phase, we identified 93 strictly amputation-associated genes many of which are implicated in oxidative-stress response, chromatin modification, epithelial development or limb development. We further classified the genes based on whether they were or were not significantly expressed in the developing limb bud. The specific localization of 53 selected candidates within the blastema was investigated by in situ hybridization. In summary, we identified a set of genes that are expressed specifically during regeneration and are therefore, likely candidates for the regulation of blastema formation.

  6. Expression profile of cell cycle genes in the fish CATLA CATLA (Ham.) exposed to gamma radiation

    International Nuclear Information System (INIS)

    Anbumani, S.; Mohankumar Mary, N.

    2012-01-01

    The International Commission on Radiological Protection (ICRP) emphasized the need to protect non-human biota from the potential effects of ionizing radiation and proposed to include molecular effects such as DNA damage as endpoints. Molecular effects of ionizing radiation exposure in representative non-humans are largely unexplored and sufficient data is not available in fishes. Gene expression is a fast and sensitive end point in detecting the molecular cues as a result of ionizing radiation exposure in a wide variety of aquatic organisms under suspected environmental contamination. Exposure to ionizing radiation transiently alters gene expression profiles as cells regulate certain genes to protect cellular structures and repair damage. The present study focused on genes like Gadd45á, Cdk1 and Bcl-2 in DNA damage repair and cell cycle machinery and its implication as molecular markers of radiation exposure. This study is first of its kind showing the in vivo expression profile of cell cycle genes in fish exposed to gamma radiation. Although this preliminary investigation points to certain molecular markers of ionizing radiation, elaborate studies with various doses and dose-rates are required before these markers find application as prospective molecular markers in aquatic radiation biodosimetry

  7. Defining global neuroendocrine gene expression patterns associated with reproductive seasonality in fish.

    Directory of Open Access Journals (Sweden)

    Dapeng Zhang

    Full Text Available BACKGROUND: Many vertebrates, including the goldfish, exhibit seasonal reproductive rhythms, which are a result of interactions between external environmental stimuli and internal endocrine systems in the hypothalamo-pituitary-gonadal axis. While it is long believed that differential expression of neuroendocrine genes contributes to establishing seasonal reproductive rhythms, no systems-level investigation has yet been conducted. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, by analyzing multiple female goldfish brain microarray datasets, we have characterized global gene expression patterns for a seasonal cycle. A core set of genes (873 genes in the hypothalamus were identified to be differentially expressed between May, August and December, which correspond to physiologically distinct stages that are sexually mature (prespawning, sexual regression, and early gonadal redevelopment, respectively. Expression changes of these genes are also shared by another brain region, the telencephalon, as revealed by multivariate analysis. More importantly, by examining one dataset obtained from fish in October who were kept under long-daylength photoperiod (16 h typical of the springtime breeding season (May, we observed that the expression of identified genes appears regulated by photoperiod, a major factor controlling vertebrate reproductive cyclicity. Gene ontology analysis revealed that hormone genes and genes functionally involved in G-protein coupled receptor signaling pathway and transmission of nerve impulses are significantly enriched in an expression pattern, whose transition is located between prespawning and sexually regressed stages. The existence of seasonal expression patterns was verified for several genes including isotocin, ependymin II, GABA(A gamma2 receptor, calmodulin, and aromatase b by independent samplings of goldfish brains from six seasonal time points and real-time PCR assays. CONCLUSIONS/SIGNIFICANCE: Using both

  8. Global gene expression analysis of peripheral blood mononuclear cells in rhesus monkey infants with CA16 infection-induced HFMD.

    Science.gov (United States)

    Song, Jie; Hu, Yajie; Hu, Yunguang; Wang, Jingjing; Zhang, Xiaolong; Wang, Lichun; Guo, Lei; Wang, Yancui; Ning, Ruotong; Liao, Yun; Zhang, Ying; Zheng, Huiwen; Shi, Haijing; He, Zhanlong; Li, Qihan; Liu, Longding

    2016-03-02

    Coxsackievirus A16 (CA16) is a dominant pathogen that results in hand, foot, and mouth disease and causes outbreaks worldwide, particularly in the Asia-Pacific region. However, the underlying molecular mechanisms remain unclear. Our previous study has demonstrated that the basic CA16 pathogenic process was successfully mimicked in rhesus monkey infant. The present study focused on the global gene expression changes in peripheral blood mononuclear cells of rhesus monkey infants with hand, foot, and mouth disease induced by CA16 infection at different time points. Genome-wide expression analysis was performed with Agilent whole-genome microarrays and established bioinformatics tools. Nine hundred and forty-eight significant differentially expressed genes that were associated with 5 gene ontology categories, including cell communication, cell cycle, immune system process, regulation of transcription and metabolic process were identified. Subsequently, the mapping of genes related to the immune system process by PANTHER pathway analysis revealed the predominance of inflammation mediated by chemokine and cytokine signaling pathways and the interleukin signaling pathway. Ultimately, co-expressed genes and their networks were analyzed. The results revealed the gene expression profile of the immune system in response to CA16 in rhesus monkey infants and suggested that such an immune response was generated as a result of the positive mobilization of the immune system. This initial microarray study will provide insights into the molecular mechanism of CA16 infection and will facilitate the identification of biomarkers for the evaluation of vaccines against this virus. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Global Gene Expression Analysis of Cross-Protected Phenotype of Pectobacterium atrosepticum.

    Directory of Open Access Journals (Sweden)

    Vladimir Gorshkov

    Full Text Available The ability to adapt to adverse conditions permits many bacterial species to be virtually ubiquitous and survive in a variety of ecological niches. This ability is of particular importance for many plant pathogenic bacteria that should be able to exist, except for their host plants, in different environments e.g. soil, water, insect-vectors etc. Under some of these conditions, bacteria encounter absence of nutrients and persist, acquiring new properties related to resistance to a variety of stress factors (cross-protection. Although many studies describe the phenomenon of cross-protection and several regulatory components that induce the formation of resistant cells were elucidated, the global comparison of the physiology of cross-protected phenotype and growing cells has not been performed. In our study, we took advantage of RNA-Seq technology to gain better insights into the physiology of cross-protected cells on the example of a harmful phytopathogen, Pectobacterium atrosepticum (Pba that causes crop losses all over the world. The success of this bacterium in plant colonization is related to both its virulence potential and ability to persist effectively under various stress conditions (including nutrient deprivation retaining the ability to infect plants afterwards. In our previous studies, we showed Pba to be advanced in applying different adaptive strategies that led to manifestation of cell resistance to multiple stress factors. In the present study, we determined the period necessary for the formation of cross-protected Pba phenotype under starvation conditions, and compare the transcriptome profiles of non-adapted growing cells and of adapted cells after the cross-protective effect has reached the maximal level. The obtained data were verified using qRT-PCR. Genes that were expressed differentially (DEGs in two cell types were classified into functional groups and categories using different approaches. As a result, we portrayed

  10. Estrogenic effect of soy isoflavones on mammary gland morphogenesis and gene expression profile

    DEFF Research Database (Denmark)

    Thomsen, Anni R.; Almstrup, Kristian; Nielsen, John E.

    2006-01-01

    We examined the effect of 17 beta-estradiol (E2) and soy isoflavones' exposure on morphogenesis and global gene expression in the murine mammary gland. Three exposure regimens were applied: isoflavones added to the diet throughout either the lactational period (via the dams) or the postweaning...... period and E2 administered orally during the lactational period. Whole mounts of mammary glands were evaluated both in juvenile and adult animals with respect to branching morphogenesis and terminal end bud (TEB) formation. At postnatal day (PND) 28, we observed a significant increase in branching...... isoflavone and E2 exposure was further substantiated by changes in gene expression, since the same groups of genes were up- and downregulated, particularly in the E2 and postweaning isoflavone regimen. All changes in gene expression correlated with changes in the cellular composition of the gland, i.e., more...

  11. Cytotoxicity and gene expression profiling of polyhexamethylene guanidine hydrochloride in human alveolar A549 cells.

    Science.gov (United States)

    Jung, Ha-Na; Zerin, Tamanna; Podder, Biswajit; Song, Ho-Yeon; Kim, Yong-Sik

    2014-06-01

    In Korea, lung disease of children and pregnant women associated with humidifier disinfectant use has become a major concern. A common sterilizer is polyhexamethylene guanidine (PHMG), a member of the guanidine family of antiseptics. This study was done to elucidate the putative cytotoxic effect of PHMG and the PHMG-mediated altered gene expression in human alveolar epithelial A549 cells in vitro. Cell viability analyses revealed the potent cytotoxicity of PHMG, with cell death evident at as low as 5 μg/mL. Death was dose- and time-dependent, and was associated with formation of intracellular reactive oxygen species, and apoptosis significantly, at even 2 μg/mL concentration. The gene expression profile in A549 cells following 24 h exposure to 5 μg/mL of PHMG was investigated using DNA microarray analysis. Changes in gene expression relevant to the progression of cell death included induction of genes related to apoptosis, autophagy, fibrosis, and cell cycle. However, the expressions of genes encoding antioxidant and detoxifying enzymes were down-regulated or not affected. The altered expression of selected genes was confirmed by quantitative reverse transcription-polymerase chain reaction and Western blot analyses. The collective data suggest that PHMG confers cellular toxicity through the generation of intracellular reactive oxygen species and alteration of gene expression. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Gene Expression Profiling Reveals Potential Players of Left-Right Asymmetry in Female Chicken Gonads

    Directory of Open Access Journals (Sweden)

    Zhiyi Wan

    2017-06-01

    Full Text Available Most female birds develop only a left ovary, whereas males develop bilateral testes. The mechanism underlying this process is still not completely understood. Here, we provide a comprehensive transcriptional analysis of female chicken gonads and identify novel candidate side-biased genes. RNA-Seq analysis was carried out on total RNA harvested from the left and right gonads on embryonic day 6 (E6, E12, and post-hatching day 1 (D1. By comparing the gene expression profiles between the left and right gonads, 347 differentially expressed genes (DEGs were obtained on E6, 3730 were obtained on E12, and 2787 were obtained on D1. Side-specific genes were primarily derived from the autosome rather than the sex chromosome. Gene ontology and pathway analysis showed that the DEGs were most enriched in the Piwi-interactiing RNA (piRNA metabolic process, germ plasm, chromatoid body, P granule, neuroactive ligand-receptor interaction, microbial metabolism in diverse environments, and methane metabolism. A total of 111 DEGs, five gene ontology (GO terms, and three pathways were significantly different between the left and right gonads among all the development stages. We also present the gene number and the percentage within eight development-dependent expression patterns of DEGs in the left and right gonads of female chicken.

  13. Digital Gene Expression Profiling Analysis of Aged Mice under Moxibustion Treatment

    Directory of Open Access Journals (Sweden)

    Nan Liu

    2018-01-01

    Full Text Available Aging is closely connected with death, progressive physiological decline, and increased risk of diseases, such as cancer, arteriosclerosis, heart disease, hypertension, and neurodegenerative diseases. It is reported that moxibustion can treat more than 300 kinds of diseases including aging related problems and can improve immune function and physiological functions. The digital gene expression profiling of aged mice with or without moxibustion treatment was investigated and the mechanisms of moxibustion in aged mice were speculated by gene ontology and pathway analysis in the study. Almost 145 million raw reads were obtained by digital gene expression analysis and about 140 million (96.55% were clean reads. Five differentially expressed genes with an adjusted P value 1 were identified between the control and moxibustion groups. They were Gm6563, Gm8116, Rps26-ps1, Nat8f4, and Igkv3-12. Gene ontology analysis was carried out by the GOseq R package and functional annotations of the differentially expressed genes related to translation, mRNA export from nucleus, mRNA transport, nuclear body, acetyltransferase activity, and so on. Kyoto Encyclopedia of Genes and Genomes database was used for pathway analysis and ribosome was the most significantly enriched pathway term.

  14. Peripheral blood RNA gene expression profiling in illicit methcathinone users reveals effect on immune system

    Directory of Open Access Journals (Sweden)

    Katrin eSikk

    2011-08-01

    Full Text Available Methcathinone (ephedrone is relatively easily accessible for abuse. Its users develop an extrapyramidal syndrome and it is not known if this is caused by methcathinone itself, by side-ingredients (manganese, or both. In the present study we aimed to clarify molecular mechanisms underlying this condition. We analyzed whole genome gene expression patterns of peripheral blood from 20 methcathinone users and 20 matched controls. Gene expression profile data was analyzed by Bayesian modelling and functional annotation. In order to verify the genechip results we performed quantitative real-time (RT PCR in selected genes. 326 out of analyzed 28,869 genes showed statistically significant differential expression with FDR adjusted p-values below 0.05. Quantitative RT-PCR confirmed differential expression for the most of selected genes. Functional annotation and network analysis indicated that most of the genes were related to activation immunological disease, cellular movement and cardiovascular disease gene network (enrichment score 42. As HIV and HCV infections were confounding factors, we performed additional stratification of patients. A similar functional activation of the immunological disease pathway was evident when we compared patients according to the injection status (past versus current users, balanced for HIV and HCV infection. However, this difference was not large therefore the major effect was related to the HIV status of the patients. Mn-methcathinone abusers have blood transcriptional patterns mostly caused by their HIV and HCV infections.

  15. Alteration of gene expression profiles in skeletal muscle of rats exposed to microgravity during a spaceflight

    Science.gov (United States)

    Taylor, Wayne E.; Bhasin, Shalender; Lalani, Rukhsana; Datta, Anuj; Gonzalez-Cadavid, Nestor F.

    2002-01-01

    To clarify the mechanism of skeletal muscle wasting during spaceflights, we investigated whether intramuscular gene expression profiles are affected, by using DNA microarray methods. Male rats sent on the 17-day NASA STS-90 Neurolab spaceflight were sacrificed 24 hours after return to earth (MG group). Ground control rats were maintained for 17 days in flight-simulated cages (CS group). Spaceflight induced a 19% and 23% loss of tibialis anterior and gastrocnemius muscle mass, respectively, as compared to ground controls. Muscle RNA was analyzed by the Clontech Atlas DNA expression array in four rats, with two MG/ CS pairs for the tibialis anterior, and one pair for the gastrocnemius. Alterations in gene expression were verified for selected genes by reverse-transcription PCR. In both muscles of MG rats, mRNAs for 12 genes were up-regulated by over 2-fold, and 38 were down-regulated compared to controls. There was inhibition of genes for cell proliferation and growth factor cascades, including cell cycle genes and signal transduction proteins, such as p21 Cip1, retinoblastoma (Rb), cyclins G1/S, -E and -D3, MAP kinase 3, MAD3, and ras related protein RAB2. These data indicate that following exposure to microgravity, there is downregulation of genes involved in regulation of muscle satellite cell replication.

  16. Gene Expression Profiling Reveals Potential Players of Left-Right Asymmetry in Female Chicken Gonads.

    Science.gov (United States)

    Wan, Zhiyi; Lu, Yanan; Rui, Lei; Yu, Xiaoxue; Yang, Fang; Tu, Chengfang; Li, Zandong

    2017-06-20

    Most female birds develop only a left ovary, whereas males develop bilateral testes. The mechanism underlying this process is still not completely understood. Here, we provide a comprehensive transcriptional analysis of female chicken gonads and identify novel candidate side-biased genes. RNA-Seq analysis was carried out on total RNA harvested from the left and right gonads on embryonic day 6 (E6), E12, and post-hatching day 1 (D1). By comparing the gene expression profiles between the left and right gonads, 347 differentially expressed genes (DEGs) were obtained on E6, 3730 were obtained on E12, and 2787 were obtained on D1. Side-specific genes were primarily derived from the autosome rather than the sex chromosome. Gene ontology and pathway analysis showed that the DEGs were most enriched in the Piwi-interactiing RNA (piRNA) metabolic process, germ plasm, chromatoid body, P granule, neuroactive ligand-receptor interaction, microbial metabolism in diverse environments, and methane metabolism. A total of 111 DEGs, five gene ontology (GO) terms, and three pathways were significantly different between the left and right gonads among all the development stages. We also present the gene number and the percentage within eight development-dependent expression patterns of DEGs in the left and right gonads of female chicken.

  17. Integrative analyses of leprosy susceptibility genes indicate a common autoimmune profile.

    Science.gov (United States)

    Zhang, Deng-Feng; Wang, Dong; Li, Yu-Ye; Yao, Yong-Gang

    2016-04-01

    Leprosy is an ancient chronic infection in the skin and peripheral nerves caused by Mycobacterium leprae. The development of leprosy depends on genetic background and the immune status of the host. However, there is no systematic view focusing on the biological pathways, interaction networks and overall expression pattern of leprosy-related immune and genetic factors. To identify the hub genes in the center of leprosy genetic network and to provide an insight into immune and genetic factors contributing to leprosy. We retrieved all reported leprosy-related genes and performed integrative analyses covering gene expression profiling, pathway analysis, protein-protein interaction network, and evolutionary analyses. A list of 123 differentially expressed leprosy related genes, which were enriched in activation and regulation of immune response, was obtained in our analyses. Cross-disorder analysis showed that the list of leprosy susceptibility genes was largely shared by typical autoimmune diseases such as lupus erythematosus and arthritis, suggesting that similar pathways might be affected in leprosy and autoimmune diseases. Protein-protein interaction (PPI) and positive selection analyses revealed a co-evolution network of leprosy risk genes. Our analyses showed that leprosy associated genes constituted a co-evolution network and might undergo positive selection driven by M. leprae. We suggested that leprosy may be a kind of autoimmune disease and the development of leprosy is a matter of defect or over-activation of body immunity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Transcription profile data of phorbol esters biosynthetic genes during developmental stages in Jatropha curcas.

    Science.gov (United States)

    Jadid, Nurul; Mardika, Rizal Kharisma; Purwani, Kristanti Indah; Permatasari, Erlyta Vivi; Prasetyowati, Indah; Irawan, Mohammad Isa

    2018-06-01

    Jatropha curcas is currently known as an alternative source for biodiesel production. Beside its high free fatty acid content, J. curcas also contains typical diterpenoid-toxic compounds of Euphorbiaceae plant namely phorbol esters. This article present the transcription profile data of genes involved in the biosynthesis of phorbol esters at different developmental stages of leaves, fruit, and seed in Jatropha curcas . Transcriptional profiles were analyzed using reverse transcription-polymerase chain reaction (RT-PCR). We used two genes including GGPPS (Geranylgeranyl diphospate synthase), which is responsible for the formation of common diterpenoid precursor (GGPP) and CS (Casbene Synthase), which functions in the synthesis of casbene. Meanwhile, J. curcas Actin ( ACT ) was used as internal standard. We demonstrated dynamic of GGPPS and CS expression among different stage of development of leaves, fruit and seed in Jatropha .

  19. Radiation-associated breast tumors display a distinct gene expression profile

    DEFF Research Database (Denmark)

    Broeks, Annegien; Braaf, Linde M; Wessels, Lodewyk F A

    2010-01-01

    PURPOSE: Women who received irradiation for Hodgkin's lymphoma have a strong increased risk for developing breast cancer. Approximately 90% of the breast cancers in these patients can be attributed to their radiation treatment, rendering such series extremely useful to determine whether a common...... radiation-associated cause underlies the carcinogenic process. METHODS AND MATERIALS: In this study we used gene expression profiling technology to assess gene expression changes in radiation-associated breast tumors compared with a set of control breast tumors of women unexposed to radiation, diagnosed...... at the same age. RNA was obtained from fresh frozen tissue samples from 22 patients who developed breast cancer after Hodgkin's lymphoma (BfHL) and from 20 control breast tumors. RESULTS: Unsupervised hierarchical clustering of the profile data resulted in a clustering of the radiation-associated tumors...

  20. Tumour metastasis-associated gene profiling using one-dimensional microfluidic beads array

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Great efforts have been made on the early diagnosis and molecular mechanism research of tumour metastasis in recent years. In this paper, based on the one-dimensional microfluidic beads array, a novel platform for tumour metastasis-associated genes profiling has been developed by depositing nucleic acids functional beads in the microchannel. This platform is sensitive (limit of detection: 0.02 nmol/L) and can perform mRNAs analysis without PCR. Two human colon cancer cell lines (primary and metastatic) from the same patient were used as a model, and transcriptional expression profiling of multiple tumour metastasis-associated genes in these two cell lines was successfully achieved. Furthermore, the results obtained on the beads array were validated by RT-PCR. This novel beads array has advantages of high sensitivity, little sample consumption, short assay time, low cost and high throughput capability. It holds the potential in early diagnosis and mechanism research of tumour metastasis.

  1. ESTs, cDNA microarrays, and gene expression profiling: tools for dissecting plant physiology and development.

    Science.gov (United States)

    Alba, Rob; Fei, Zhangjun; Payton, Paxton; Liu, Yang; Moore, Shanna L; Debbie, Paul; Cohn, Jonathan; D'Ascenzo, Mark; Gordon, Jeffrey S; Rose, Jocelyn K C; Martin, Gregory; Tanksley, Steven D; Bouzayen, Mondher; Jahn, Molly M; Giovannoni, Jim

    2004-09-01

    Gene expression profiling holds tremendous promise for dissecting the regulatory mechanisms and transcriptional networks that underlie biological processes. Here we provide details of approaches used by others and ourselves for gene expression profiling in plants with emphasis on cDNA microarrays and discussion of both experimental design and downstream analysis. We focus on methods and techniques emphasizing fabrication of cDNA microarrays, fluorescent labeling, cDNA hybridization, experimental design, and data processing. We include specific examples that demonstrate how this technology can be used to further our understanding of plant physiology and development (specifically fruit development and ripening) and for comparative genomics by comparing transcriptome activity in tomato and pepper fruit.

  2. Prediction of metastasis from low-malignant breast cancer by gene expression profiling

    DEFF Research Database (Denmark)

    Thomassen, Mads; Tan, Qihua; Eiriksdottir, Freyja

    2007-01-01

    examined in these studies is the low-risk patients for whom outcome is very difficult to predict with currently used methods. These patients do not receive adjuvant treatment according to the guidelines of the Danish Breast Cancer Cooperative Group (DBCG). In this study, 26 tumors from low-risk patients...... with different characteristics and risk, expression-based classification specifically developed in low-risk patients have higher predictive power in this group.......Promising results for prediction of outcome in breast cancer have been obtained by genome wide gene expression profiling. Some studies have suggested that an extensive overtreatment of breast cancer patients might be reduced by risk assessment with gene expression profiling. A patient group hardly...

  3. Improving functional modules discovery by enriching interaction networks with gene profiles

    KAUST Repository

    Salem, Saeed

    2013-05-01

    Recent advances in proteomic and transcriptomic technologies resulted in the accumulation of vast amount of high-throughput data that span multiple biological processes and characteristics in different organisms. Much of the data come in the form of interaction networks and mRNA expression arrays. An important task in systems biology is functional modules discovery where the goal is to uncover well-connected sub-networks (modules). These discovered modules help to unravel the underlying mechanisms of the observed biological processes. While most of the existing module discovery methods use only the interaction data, in this work we propose, CLARM, which discovers biological modules by incorporating gene profiles data with protein-protein interaction networks. We demonstrate the effectiveness of CLARM on Yeast and Human interaction datasets, and gene expression and molecular function profiles. Experiments on these real datasets show that the CLARM approach is competitive to well established functional module discovery methods.

  4. Minimal gene selection for classification and diagnosis prediction based on gene expression profile

    Directory of Open Access Journals (Sweden)

    Alireza Mehridehnavi

    2013-01-01

    Conclusion: We have shown that the use of two most significant genes based on their S/N ratios and selection of suitable training samples can lead to classify DLBCL patients with a rather good result. Actually with the aid of mentioned methods we could compensate lack of enough number of patients, improve accuracy of classifying and reduce complication of computations and so running time.

  5. Global transcriptional profiling of the toxic dinoflagellate Alexandrium fundyense using Massively Parallel Signature Sequencing

    Directory of Open Access Journals (Sweden)

    Anderson Donald M

    2006-04-01

    Full Text Available Abstract Background Dinoflagellates are one of the most important classes of marine and freshwater algae, notable both for their functional diversity and ecological significance. They occur naturally as free-living cells, as endosymbionts of marine invertebrates and are well known for their involvement in "red tides". Dinoflagellates are also notable for their unusual genome content and structure, which suggests that the organization and regulation of dinoflagellate genes may be very different from that of most eukaryotes. To investigate the content and regulation of the dinoflagellate genome, we performed a global analysis of the transcriptome of the toxic dinoflagellate Alexandrium fundyense under nitrate- and phosphate-limited conditions using Massively Parallel Signature Sequencing (MPSS. Results Data from the two MPSS libraries showed that the number of unique signatures found in A. fundyense cells is similar to that of humans and Arabidopsis thaliana, two eukaryotes that have been extensively analyzed using this method. The general distribution, abundance and expression patterns of the A. fundyense signatures were also quite similar to other eukaryotes, and at least 10% of the A. fundyense signatures were differentially expressed between the two conditions. RACE amplification and sequencing of a subset of signatures showed that multiple signatures arose from sequence variants of a single gene. Single signatures also mapped to different sequence variants of the same gene. Conclusion The MPSS data presented here provide a quantitative view of the transcriptome and its regulation in these unusual single-celled eukaryotes. The observed signature abundance and distribution in Alexandrium is similar to that of other eukaryotes that have been analyzed using MPSS. Results of signature mapping via RACE indicate that many signatures result from sequence variants of individual genes. These data add to the growing body of evidence for widespread gene

  6. Gene expression profiling reveals distinct molecular signatures associated with the rupture of intracranial aneurysm.

    Science.gov (United States)

    Nakaoka, Hirofumi; Tajima, Atsushi; Yoneyama, Taku; Hosomichi, Kazuyoshi; Kasuya, Hidetoshi; Mizutani, Tohru; Inoue, Ituro

    2014-08-01

    The rupture of intracranial aneurysm (IA) causes subarachnoid hemorrhage associated with high morbidity and mortality. We compared gene expression profiles in aneurysmal domes between unruptured IAs and ruptured IAs (RIAs) to elucidate biological mechanisms predisposing to the rupture of IA. We determined gene expression levels of 8 RIAs, 5 unruptured IAs, and 10 superficial temporal arteries with the Agilent microarrays. To explore biological heterogeneity of IAs, we classified the samples into subgroups showing similar gene expression patterns, using clustering methods. The clustering analysis identified 4 groups: superficial temporal arteries and unruptured IAs were aggregated into their own clusters, whereas RIAs segregated into 2 distinct subgroups (early and late RIAs). Comparing gene expression levels between early RIAs and unruptured IAs, we identified 430 upregulated and 617 downregulated genes in early RIAs. The upregulated genes were associated with inflammatory and immune responses and phagocytosis including S100/calgranulin genes (S100A8, S100A9, and S100A12). The downregulated genes suggest mechanical weakness of aneurysm walls. The expressions of Krüppel-like family of transcription factors (KLF2, KLF12, and KLF15), which were anti-inflammatory regulators, and CDKN2A, which was located on chromosome 9p21 that was the most consistently replicated locus in genome-wide association studies of IA, were also downregulated. We demonstrate that gene expression patterns of RIAs were different according to the age of patients. The results suggest that macrophage-mediated inflammation is a key biological pathway for IA rupture. The identified genes can be good candidates for molecular markers of rupture-prone IAs and therapeutic targets. © 2014 American Heart Association, Inc.

  7. Analysis of gene expression profile microarray data in complex regional pain syndrome.

    Science.gov (United States)

    Tan, Wulin; Song, Yiyan; Mo, Chengqiang; Jiang, Shuangjian; Wang, Zhongxing

    2017-09-01

    The aim of the present study was to predict key genes and proteins associated with complex regional pain syndrome (CRPS) using bioinformatics analysis. The gene expression profiling microarray data, GSE47603, which included peripheral blood samples from 4 patients with CRPS and 5 healthy controls, was obtained from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) in CRPS patients compared with healthy controls were identified using the GEO2R online tool. Functional enrichment analysis was then performed using The Database for Annotation Visualization and Integrated Discovery online tool. Protein‑protein interaction (PPI) network analysis was subsequently performed using Search Tool for the Retrieval of Interaction Genes database and analyzed with Cytoscape software. A total of 257 DEGs were identified, including 243 upregulated genes and 14 downregulated ones. Genes in the human leukocyte antigen (HLA) family were most significantly differentially expressed. Enrichment analysis demonstrated that signaling pathways, including immune response, cell motion, adhesion and angiogenesis were associated with CRPS. PPI network analysis revealed that key genes, including early region 1A binding protein p300 (EP300), CREB‑binding protein (CREBBP), signal transducer and activator of transcription (STAT)3, STAT5A and integrin α M were associated with CRPS. The results suggest that the immune response may therefore serve an important role in CRPS development. In addition, genes in the HLA family, such as HLA‑DQB1 and HLA‑DRB1, may present potential biomarkers for the diagnosis of CRPS. Furthermore, EP300, its paralog CREBBP, and the STAT family genes, STAT3 and STAT5 may be important in the development of CRPS.

  8. Differential gene expression profiling of endometrium during the mid-luteal phase of the estrous cycle between a repeat breeder (RB) and non-RB cows.

    Science.gov (United States)

    Hayashi, Ken-Go; Hosoe, Misa; Kizaki, Keiichiro; Fujii, Shiori; Kanahara, Hiroko; Takahashi, Toru; Sakumoto, Ryosuke

    2017-03-23

    Repeat breeding directly affects reproductive efficiency in cattle due to an increase in services per conception and calving interval. This study aimed to investigate whether changes in endometrial gene expression profile are involved in repeat breeding in cows. Differential gene expression profiles of the endometrium were investigated during the mid-luteal phase of the estrous cycle between repeat breeder (RB) and non-RB cows using microarray analysis. The caruncular (CAR) and intercaruncular (ICAR) endometrium of both ipsilateral and contralateral uterine horns to the corpus luteum were collected from RB (inseminated at least three times but not pregnant) and non-RB cows on Day 15 of the estrous cycle (4 cows/group). Global gene expression profiles of these endometrial samples were analyzed with a 15 K custom-made oligo-microarray for cattle. Immunohistochemistry was performed to investigate the cellular localization of proteins of three identified transcripts in the endometrium. Microarray analysis revealed that 405 and 397 genes were differentially expressed in the CAR and ICAR of the ipsilateral uterine horn of RB, respectively when compared with non-RB cows. In the contralateral uterine horn, 443 and 257 differentially expressed genes were identified in the CAR and ICAR of RB, respectively when compared with non-RB cows. Gene ontology analysis revealed that genes involved in development and morphogenesis were mainly up-regulated in the CAR of RB cows. In the ICAR of both the ipsilateral and contralateral uterine horns, genes related to the metabolic process were predominantly enriched in the RB cows when compared with non-RB cows. In the analysis of the whole uterus (combining the data above four endometrial compartments), RB cows showed up-regulation of 37 genes including PRSS2, GSTA3 and PIPOX and down-regulation of 39 genes including CHGA, KRT35 and THBS4 when compared with non-RB cows. Immunohistochemistry revealed that CHGA, GSTA3 and PRSS2 proteins

  9. A computational profiling of changes in gene expression and transcription factors induced by vFLIP K13 in primary effusion lymphoma.

    Directory of Open Access Journals (Sweden)

    Vasu Punj

    Full Text Available Infection with Kaposi's sarcoma associated herpesvirus (KSHV has been linked to the development of primary effusion lymphoma (PEL, a rare lymphoproliferative disorder that is characterized by loss of expression of most B cell markers and effusions in the body cavities. This unique clinical presentation of PEL has been attributed to their distinctive plasmablastic gene expression profile that shows overexpression of genes involved in inflammation, adhesion and invasion. KSHV-encoded latent protein vFLIP K13 has been previously shown to promote the survival and proliferation of PEL cells. In this study, we employed gene array analysis to characterize the effect of K13 on global gene expression in PEL-derived BCBL1 cells, which express negligible K13 endogenously. We demonstrate that K13 upregulates the expression of a number of NF-κB responsive genes involved in cytokine signaling, cell death, adhesion, inflammation and immune response, including two NF-κB subunits involved in the alternate NF-κB pathway, RELB and NFKB2. In contrast, CD19, a B cell marker, was one of the genes downregulated by K13. A comparison with K13-induced genes in human vascular endothelial cells revealed that although there was a considerable overlap among the genes induced by K13 in the two cell types, chemokines genes were preferentially induced in HUVEC with few exceptions, such as RANTES/CCL5, which was induced in both cell types. Functional studies confirmed that K13 activated the RANTES/CCL5 promoter through the NF-κB pathway. Taken collectively, our results suggest that K13 may contribute to the unique gene expression profile, immunophenotype and clinical presentation that are characteristics of KSHV-associated PEL.

  10. Gene Expression Profiling Reveals a Massive, Aneuploidy-Dependent Transcriptional Deregulation and Distinct Differences between Lymph Node–Negative and Lymph Node–Positive Colon Carcinomas

    Science.gov (United States)

    Grade, Marian; Hörmann, Patrick; Becker, Sandra; Hummon, Amanda B.; Wangsa, Danny; Varma, Sudhir; Simon, Richard; Liersch, Torsten; Becker, Heinz; Difilippantonio, Michael J.; Ghadimi, B. Michael; Ried, Thomas

    2016-01-01

    To characterize patterns of global transcriptional deregulation in primary colon carcinomas, we did gene expression profiling of 73 tumors [Unio Internationale Contra Cancrum stage II (n = 33) and stage III (n = 40)] using oligonucleotide microarrays. For 30 of the tumors, expression profiles were compared with those from matched normal mucosa samples. We identified a set of 1,950 genes with highly significant deregulation between tumors and mucosa samples (P 5-fold average expression difference between normal colon mucosa and carcinomas, including up-regulation of MYC and of HMGA1, a putative oncogene. Furthermore, we identified 68 genes that were significantly differentially expressed between lymph node–negative and lymph node–positive tumors (P deregulated genes were validated using quantitative real-time reverse transcription-PCR in >40 tumor and normal mucosa samples with good concordance between the techniques. Finally, we established a relationship between specific genomic imbalances, which were mapped for 32 of the analyzed colon tumors by comparative genomic hybridization, and alterations of global transcriptional activity. Previously, we had conducted a similar analysis of primary rectal carcinomas. The systematic comparison of colon and rectal carcinomas revealed a significant overlap of genomic imbalances and transcriptional deregulation, including activation of the Wnt/β-catenin signaling cascade, suggesting similar pathogenic pathways. PMID:17210682

  11. Gene expression profiling of sex differences in HIF1-dependent adaptive cardiac responses to chronic hypoxia

    Czech Academy of Sciences Publication Activity Database

    Bohuslavová, Romana; Kolář, František; Kuthanová, Lada; Neckář, Jan; Tichopád, Aleš; Pavlínková, Gabriela

    2010-01-01

    Roč. 109, č. 4 (2010), s. 1195-1202 ISSN 8750-7587 R&D Projects: GA ČR GA301/09/0117 Institutional research plan: CEZ:AV0Z50520701; CEZ:AV0Z50110509 Keywords : Hypoxia inducible factor 1 alpha * hypoxia * gene expression profiling Subject RIV: EB - Genetics ; Molecular Biology Impact factor : 4.232, year: 2010

  12. Gene expression profiling in mouse lung following polymeric hexamethylene diisocyanate exposure

    International Nuclear Information System (INIS)

    Lee, C.-T.; Ylostalo, Joni; Friedman, Mitchell; Hoyle, Gary W.

    2005-01-01

    Isocyanates are a common cause of occupational lung disease. Hexamethylene diisocyanate (HDI), a component of polyurethane spray paints, can induce respiratory symptoms, inflammation, lung function impairment, and isocyanate asthma. The predominant form of HDI in polyurethane paints is a nonvolatile polyisocyanate known as HDI biuret trimer (HDI-BT). Exposure of mice to aerosolized HDI-BT results in pathological effects, including pulmonary edema, lung inflammation, cellular proliferation, and fibrotic lesions, which occur with distinct time courses following exposure. To identify genes that mediate lung pathology in the distinct temporal phases after exposure, gene expression profiles in HDI-BT-exposed C57BL/6J mouse lungs were analyzed. RNase protection assay (RPA) of genes involved in apoptosis, cell survival, and inflammation revealed increased expression of IκBα, Fas, Bcl-X L , TNFα, KC, MIP-2, IL-6, and GM-CSF following HDI-BT exposure. Microarray analysis of approximately 10 000 genes was performed on lung RNA collected from mice 6, 18, and 90 h after HDI-BT exposure and from unexposed mice. Classes of genes whose expression was increased 6 h after exposure included those involved in stress responses (particularly oxidative stress and thiol redox balance), growth arrest, apoptosis, signal transduction, and inflammation. Types of genes whose expression was increased at 18 h included proteinases, anti-proteinases, cytoskeletal molecules, and inflammatory mediators. Transcripts increased at 90 h included extracellular matrix components, transcription factors, inflammatory mediators, and cell cycle regulators. This characterization of the gene expression profile in lungs exposed to HDI-BT will provide a basis for investigating injury and repair pathways that are operative during isocyanate-induced lung disease

  13. Gene expression profile of peripheral blood monocytes: a step towards the molecular diagnosis of celiac disease?

    Directory of Open Access Journals (Sweden)

    Martina Galatola

    Full Text Available AIM: Celiac disease (CD is a multifactorial autoimmune disease induced by ingestion of gluten in genetically predisposed individuals. Despite technological progress, the diagnosis of CD is still based on duodenal biopsy as it was 50 years ago. In this study we analysed the expression of CD-associated genes in small bowel biopsies of patients and controls in order to explore the multivariate pathway of the expression profile of CD patients. Then, using multivariant discriminant analysis, we evaluated whether the expression profiles of these genes in peripheral blood monocytes (PBMs differed between patients and controls. PARTICIPANTS: Thirty-seven patients with active and 11 with treated CD, 40 healthy controls and 9 disease controls (Crohn's disease patients were enrolled. RESULTS: Several genes were differentially expressed in CD patients versus controls, but the analysis of each single gene did not provided a comprehensive picture. A multivariate discriminant analysis showed that the expression of 5 genes in intestinal mucosa accounted for 93% of the difference between CD patients and controls. We then applied the same approach to PBMs, on a training set of 20 samples. The discriminant equation obtained was validated on a testing cohort of 10 additional cases and controls, and we obtained a correct classification of all CD cases and of 91% of the control samples. We applied this equation to treated CD patients and to disease controls and obtained a discrimination of 100%. CONCLUSIONS: The combined expression of 4 genes allows one to discriminate between CD patients and controls, and between CD patients on a gluten-free diet and disease controls. Our results contribute to the understanding of the complex interactions among CD-associated genes, and they may represent a starting point for the development of a molecular diagnosis of celiac disease.

  14. Effector genomics accelerates discovery and functional profiling of potato disease resistance and phytophthora infestans avirulence genes.

    Directory of Open Access Journals (Sweden)

    Vivianne G A A Vleeshouwers

    Full Text Available Potato is the world's fourth largest food crop yet it continues to endure late blight, a devastating disease caused by the Irish famine pathogen Phytophthora infestans. Breeding broad-spectrum disease resistance (R genes into potato (Solanum tuberosum is the best strategy for genetically managing late blight but current approaches are slow and inefficient. We used a repertoire of effector genes predicted computationally from the P. infestans genome to accelerate the identification, functional characterization, and cloning of potentially broad-spectrum R genes. An initial set of 54 effectors containing a signal peptide and a RXLR motif was profiled for activation of innate immunity (avirulence or Avr activity on wild Solanum species and tentative Avr candidates were identified. The RXLR effector family IpiO induced hypersensitive responses (HR in S. stoloniferum, S. papita and the more distantly related S. bulbocastanum, the source of the R gene Rpi-blb1. Genetic studies with S. stoloniferum showed cosegregation of resistance to P. infestans and response to IpiO. Transient co-expression of IpiO with Rpi-blb1 in a heterologous Nicotiana benthamiana system identified IpiO as Avr-blb1. A candidate gene approach led to the rapid cloning of S. stoloniferum Rpi-sto1 and S. papita Rpi-pta1, which are functionally equivalent to Rpi-blb1. Our findings indicate that effector genomics enables discovery and functional profiling of late blight R genes and Avr genes at an unprecedented rate and promises to accelerate the engineering of late blight resistant potato varieties.

  15. Transcriptional profiling uncovers a network of cholesterol-responsive atherosclerosis target genes.

    Directory of Open Access Journals (Sweden)

    Josefin Skogsberg

    2008-03-01

    Full Text Available Despite the well-documented effects of plasma lipid lowering regimes halting atherosclerosis lesion development and reducing morbidity and mortality of coronary artery disease and stroke, the transcriptional response in the atherosclerotic lesion mediating these beneficial effects has not yet been carefully investigated. We performed transcriptional profiling at 10-week intervals in atherosclerosis-prone mice with human-like hypercholesterolemia and a genetic switch to lower plasma lipoproteins (Ldlr(-/-Apo(100/100Mttp(flox/flox Mx1-Cre. Atherosclerotic lesions progressed slowly at first, then expanded rapidly, and plateaued after advanced lesions formed. Analysis of lesion expression profiles indicated that accumulation of lipid-poor macrophages reached a point that led to the rapid expansion phase with accelerated foam-cell formation and inflammation, an interpretation supported by lesion histology. Genetic lowering of plasma cholesterol (e.g., lipoproteins at this point all together prevented the formation of advanced plaques and parallel transcriptional profiling of the atherosclerotic arterial wall identified 37 cholesterol-responsive genes mediating this effect. Validation by siRNA-inhibition in macrophages incubated with acetylated-LDL revealed a network of eight cholesterol-responsive atherosclerosis genes regulating cholesterol-ester accumulation. Taken together, we have identified a network of atherosclerosis genes that in response to plasma cholesterol-lowering prevents the formation of advanced plaques. This network should be of interest for the development of novel atherosclerosis therapies.

  16. Specific gene expression profiles and chromosomal abnormalities are associated with infant disseminated neuroblastoma

    Directory of Open Access Journals (Sweden)

    Kushner Brian

    2009-02-01

    Full Text Available Abstract Background Neuroblastoma (NB tumours have the highest incidence of spontaneous remission, especially among the stage 4s NB subgroup affecting infants. Clinical distinction of stage 4s from lethal stage 4 can be difficult, but critical for therapeutic decisions. The aim of this study was to investigate chromosomal alterations and differential gene expression amongst infant disseminated NB subgroups. Methods Thirty-five NB tumours from patients diagnosed at Results All stage 4s patients underwent spontaneous remission, only 48% stage 4 patients survived despite combined modality therapy. Stage 4 tumours were 90% near-diploid/tetraploid, 44% MYCN amplified, 77% had 1p LOH (50% 1p36, 23% 11q and/or 14q LOH (27% and 47% had 17q gain. Stage 4s were 90% near-triploid, none MYCN amplified and LOH was restricted to 11q. Initial comparison analyses between stage 4s and 4 P P = 0.0054, 91% with higher expression in stage 4. Less definite expression profiles were observed between stage 4s and 4 P P = 0.005 was maintained. Distinct gene expression profiles but no significant association with specific chromosomal region localization was observed between stage 4s and stage 4 Conclusion Specific chromosomal aberrations are associated with distinct gene expression profiles which characterize spontaneously regressing or aggressive infant NB, providing the biological basis for the distinct clinical behaviour.

  17. Mechanistic Differences in Neuropathic Pain Modalities Revealed by Correlating Behavior with Global Expression Profiling

    Directory of Open Access Journals (Sweden)

    Enrique J. Cobos

    2018-01-01

    Full Text Available Chronic neuropathic pain is a major morbidity of neural injury, yet its mechanisms are incompletely understood. Hypersensitivity to previously non-noxious stimuli (allodynia is a common symptom. Here, we demonstrate that the onset of cold hypersensitivity precedes tactile allodynia in a model of partial nerve injury, and this temporal divergence was associated with major differences in global gene expression in innervating dorsal root ganglia. Transcripts whose expression change correlates with the onset of cold allodynia were nociceptor related, whereas those correlating with tactile hypersensitivity were immune cell centric. Ablation of TrpV1 lineage nociceptors resulted in mice that did not acquire cold allodynia but developed normal tactile hypersensitivity, whereas depletion of macrophages or T cells reduced neuropathic tactile allodynia but not cold hypersensitivity. We conclude that neuropathic pain incorporates reactive processes of sensory neurons and immune cells, each leading to distinct forms of hypersensitivity, potentially allowing drug development targeted to each pain type.

  18. The Vitis vinifera sugar transporter gene family: phylogenetic overview and macroarray expression profiling

    Directory of Open Access Journals (Sweden)

    Atanassova Rossitza

    2010-11-01

    Full Text Available Abstract Background In higher plants, sugars are not only nutrients but also important signal molecules. They are distributed through the plant via sugar transporters, which are involved not only in sugar long-distance transport via the loading and the unloading of the conducting complex, but also in sugar allocation into source and sink cells. The availability of the recently released grapevine genome sequence offers the opportunity to identify sucrose and monosaccharide transporter gene families in a woody species and to compare them with those of the herbaceous Arabidopsis thaliana using a phylogenetic analysis. Results In grapevine, one of the most economically important fruit crop in the world, it appeared that sucrose and monosaccharide transporter genes are present in 4 and 59 loci, respectively and that the monosaccharide transporter family can be divided into 7 subfamilies. Phylogenetic analysis of protein sequences has indicated that orthologs exist between Vitis and Arabidospis. A search for cis-regulatory elements in the promoter sequences of the most characterized transporter gene families (sucrose, hexoses and polyols transporters, has revealed that some of them might probably be regulated by sugars. To profile several genes simultaneously, we created a macroarray bearing cDNA fragments specific to 20 sugar transporter genes. This macroarray analysis has revealed that two hexose (VvHT1, VvHT3, one polyol (VvPMT5 and one sucrose (VvSUC27 transporter genes, are highly expressed in most vegetative organs. The expression of one hexose transporter (VvHT2 and two tonoplastic monosaccharide transporter (VvTMT1, VvTMT2 genes are regulated during berry development. Finally, three putative hexose transporter genes show a preferential organ specificity being highly expressed in seeds (VvHT3, VvHT5, in roots (VvHT2 or in mature leaves (VvHT5. Conclusions This study provides an exhaustive survey of sugar transporter genes in Vitis vinifera and

  19. Quantitative Methylation Profiles for Multiple Tumor Suppressor Gene Promoters in Salivary Gland Tumors

    Science.gov (United States)

    Durr, Megan L.; Mydlarz, Wojciech K.; Shao, Chunbo; Zahurak, Marianna L.; Chuang, Alice Y.; Hoque, Mohammad O.; Westra, William H.; Liegeois, Nanette J.; Califano, Joseph A.; Sidransky, David; Ha, Patrick K.

    2010-01-01

    Background Methylation profiling of tumor suppressor gene (TSGs) promoters is quickly becoming a powerful diagnostic tool for the early detection, prognosis, and even prediction of clinical response to treatment. Few studies address this in salivary gland tumors (SGTs); hence the promoter methylation profile of various TSGs was quantitatively assessed in primary SGT tissue to determine if tumor-specific alterations could be detected. Methodology DNA isolated from 78 tumor and 17 normal parotid gland specimens was assayed for promoter methylation status of 19 TSGs by fluorescence-based, quantitative methylation-specific PCR (qMSP). The data were utilized in a binary fashion as well as quantitatively (using a methylation quotient) allowing for better profiling and interpretation of results. Principal Findings The average number of methylation events across the studied genes was highest in salivary duct carcinoma (SDC), with a methylation value of 9.6, compared to the normal 4.5 (ptrend for increasing methylation in APC, Mint 1, PGP9.5, RAR-β, and Timp3. Conclusions/Significance Screening promoter methylation profiles in SGTs showed considerable heterogeneity. The methylation status of certain markers was surprisingly high in even normal salivary tissue, confirming the need for such controls. Several TSGs were found to be associated with malignant SGTs, especially SDC. Further study is needed to evaluate the potential use of these associations in the detection, prognosis, and therapeutic outcome of these rare tumors. PMID:20520817

  20. Dose and temporal effects on gene expression profiles of urothelial cells from rats exposed to diuron

    International Nuclear Information System (INIS)

    Ihlaseh-Catalano, Shadia M.; Bailey, Kathryn A.; Cardoso, Ana Paula F.; Ren, Hongzu; Fry, Rebecca C.; Camargo, João Lauro V.de; Wolf, Douglas C.

    2014-01-01

    Diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea) is a substituted urea herbicide that at high dietary levels (2500 ppm) induces rat urinary bladder hyperplasia after 20 weeks of exposure and neoplasia after 2 years. The effects on the urothelium after short-term exposure have not been described. The present 7-day study evaluated the dose-dependency of urothelial alterations in the urinary bladder using light microscopy, scanning electron microscopy, and genome-wide transcriptional profiling. Male Wistar rats were fed 0, 125, 500, 2500 ppm diuron for 7 days. The urinary bladder and isolated urothelial cells of these animals were processed for microscopic examination and gene expression profiling, respectively. No significant treatment-related morphologic effects were observed. The number of differentially expressed genes (DEGs) in the exposed groups increased with diuron levels. Diuron-altered genes involved in cell-to-cell interactions and tissue organization were identified in all treatment groups. After 7 days of diuron exposure, transcriptional responses were observed in the urothelium in the absence of clear morphologic changes. These morphological findings are different from those observed in a previous study in which 20 weeks of diuron exposure was associated with simple hyperplasia secondary to the persistent cytotoxicity and necrosis associated with continuous cellular regeneration. Comparison of the gene expression profiles of rats exposed to the 2500 ppm carcinogenic diuron dose for 7 days versus 20 weeks revealed few similarities between these two time points at the gene or pathway level. Taken together, these data provide insight into the dose- and temporal-dependent morphological and transcriptional changes associated with diuron exposure that may lead to the development of tumors in the rat urinary bladder

  1. Dose and temporal effects on gene expression profiles of urothelial cells from rats exposed to diuron.

    Science.gov (United States)

    Ihlaseh-Catalano, Shadia M; Bailey, Kathryn A; Cardoso, Ana Paula F; Ren, Hongzu; Fry, Rebecca C; de Camargo, João Lauro V; Wolf, Douglas C

    2014-11-05

    Diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea) is a substituted urea herbicide that at high dietary levels (2500 ppm) induces rat urinary bladder hyperplasia after 20 weeks of exposure and neoplasia after 2 years. The effects on the urothelium after short-term exposure have not been described. The present 7-day study evaluated the dose-dependency of urothelial alterations in the urinary bladder using light microscopy, scanning electron microscopy, and genome-wide transcriptional profiling. Male Wistar rats were fed 0, 125, 500, 2500 ppm diuron for 7 days. The urinary bladder and isolated urothelial cells of these animals were processed for microscopic examination and gene expression profiling, respectively. No significant treatment-related morphologic effects were observed. The number of differentially expressed genes (DEGs) in the exposed groups increased with diuron levels. Diuron-altered genes involved in cell-to-cell interactions and tissue organization were identified in all treatment groups. After 7 days of diuron exposure, transcriptional responses were observed in the urothelium in the absence of clear morphologic changes. These morphological findings are different from those observed in a previous study in which 20 weeks of diuron exposure was associated with simple hyperplasia secondary to the persistent cytotoxicity and necrosis associated with continuous cellular regeneration. Comparison of the gene expression profiles of rats exposed to the 2500 ppm carcinogenic diuron dose for 7 days versus 20 weeks revealed few similarities between these two time points at the gene or pathway level. Taken together, these data provide insight into the dose- and temporal-dependent morphological and transcriptional changes associated with diuron exposure that may lead to the development of tumors in the rat urinary bladder. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Subacute effects of hexabromocyclododecane (HBCD) on hepatic gene expression profiles in rats

    International Nuclear Information System (INIS)

    Canton, Rocio F.; Peijnenburg, Ad A.C.M.; Hoogenboom, Ron L.A.P.; Piersma, Aldert H.; Ven, Leo T.M. van der; Berg, Martin van den; Heneweer, Marjoke

    2008-01-01

    Hexabromoyclododecane (HBCD), used as flame retardant (FR) mainly in textile industry and in polystyrene foam manufacture, has been identified as a contaminant at levels comparable to other brominated FRs (BFRs). HBCD levels in biota are increasing slowly and seem to reflect the local market demand. The toxicological database of HBCD is too limited to perform at present a solid risk assessment, combining data from exposure and effect studies. In order to fill in some gaps, a 28-day HBCD repeated dose study (OECD407) was done in Wistar rats. In the present work liver tissues from these animals were used for gene expression profile analysis. Results show clear gender specificity with females having a higher number of regulated genes and therefore being more sensitive to HBCD than males. Several specific pathways were found to be affected by HBCD exposure, like PPAR-mediated regulation of lipid metabolism, triacylglycerol metabolism, cholesterol biosynthesis, and phase I and II pathways. These results were corroborated with quantitative RT-PCR analysis. Cholesterol biosynthesis and lipid metabolism were especially down-regulated in females. Genes involved in phase I and II metabolism were up-regulated predominantly in males, which could explain the observed lower HBCD hepatic disposition in male rats in this 28-day study. These sex-specific differences in gene expression profiles could also underlie sex-specific differences in toxicity (e.g. decreased thyroid hormone or increased serum cholesterol levels). To our knowledge, this is the fist study that describes the changes in rat hepatic gene profiles caused by this commonly used flame retardant

  3. Transcriptional profiling of cattle infected with Trypanosoma congolense highlights gene expression signatures underlying trypanotolerance and trypanosusceptibility

    Directory of Open Access Journals (Sweden)

    Naessens Jan

    2009-05-01

    Full Text Available Abstract Background African animal trypanosomiasis (AAT caused by tsetse fly-transmitted protozoa of the genus Trypanosoma is a major constraint on livestock and agricultural production in Africa and is among the top ten global cattle diseases impacting on the poor. Here we show that a functional genomics approach can be used to identify temporal changes in host peripheral blood mononuclear cell (PBMC gene expression due to disease progression. We also show that major gene expression differences exist between cattle from trypanotolerant and trypanosusceptible breeds. Using bovine long oligonucleotide microarrays and real time quantitative reverse transcription PCR (qRT-PCR validation we analysed PBMC gene expression in naïve trypanotolerant and trypanosusceptible cattle experimentally challenged with Trypanosoma congolense across a 34-day infection time course. Results Trypanotolerant N'Dama cattle displayed a rapid and distinct transcriptional response to infection, with a ten-fold higher number of genes differentially expressed at day 14 post-infection compared to trypanosusceptible Boran cattle. These analyses identified coordinated temporal gene expression changes for both breeds in response to trypanosome infection. In addition, a panel of genes were identified that showed pronounced differences in gene expression between the two breeds, which may underlie the phenomena of trypanotolerance and trypanosusceptibility. Gene ontology (GO analysis demonstrate that the products of these genes may contribute to increased mitochondrial mRNA translational efficiency, a more pronounced B cell response, an elevated activation status and a heightened response to stress in trypanotolerant cattle. Conclusion This study has revealed an extensive and diverse range of cellular processes that are altered temporally in response to trypanosome infection in African cattle. Results indicate that the trypanotolerant N'Dama cattle respond more rapidly and with a

  4. Transcription profiling and identification of infection-related genes in Phytophthora cactorum.

    Science.gov (United States)

    Chen, Xiao-Ren; Huang, Shen-Xin; Zhang, Ye; Sheng, Gui-Lin; Zhang, Bo-Yue; Li, Qi-Yuan; Zhu, Feng; Xu, Jing-You

    2018-04-01

    Phytophthora cactorum, an oomycete pathogen, infects more than 200 plant species within several plant families. To gain insight into the repertoire of the infection-related genes of P. cactorum, Illumina RNA-Seq was used to perform a global transcriptome analysis of three life cycle stages of the pathogen, mycelia (MY), zoospores (ZO) and germinating cysts with germ tubes (GC). From over 9.8 million Illumina reads for each library, 18,402, 18,569 and 19,443 distinct genes were identified for MY, ZO and GC libraries, respectively. Furthermore, the transcriptome difference among MY, ZO and GC stages was investigated. Gene ontology (GO) and KEGG pathway enrichment analyses revealed diverse biological functions and processes. Comparative analysis identified a large number of genes that are associated with specific stages and pathogenicity, including 166 effector genes. Of them, most of RXLR and NLP genes showed induction while the majority of CRN genes were down-regulated in GC, the important pre-infection stage, compared to either MY or ZO. And 14 genes encoding small cysteine-rich (SCR) secretory proteins showed differential expression during the developmental stages and in planta. Ectopic expression in the Solanaceae indicated that SCR113 and one elicitin PcINF1 can trigger cell death on Nicotiana benthamiana, tobacco (N. tabacum) and tomato (Solanum lycopersicum) leaves. Neither conserved domain nor homologues of SCR113 in other organisms can be identified. Collectively, our study provides a comprehensive examination of gene expression across three P. cactorum developmental stages and describes pathogenicity-related genes, all of which will help elucidate the pathogenicity mechanism of this destructive pathogen.

  5. Impacts of temperature and lunar day on gene expression profiles during a monthly reproductive cycle in the brooding coral Pocillopora damicornis.

    Science.gov (United States)

    Crowder, Camerron M; Meyer, Eli; Fan, Tung-Yung; Weis, Virginia M

    2017-08-01

    Reproductive timing in brooding corals has been correlated to temperature and lunar irradiance, but the mechanisms by which corals transduce these environmental variables into molecular signals are unknown. To gain insight into these processes, global gene expression profiles in the coral Pocillopora damicornis were examined (via RNA-Seq) across lunar phases and between temperature treatments, during a monthly planulation cycle. The interaction of temperature and lunar day together had the largest influence on gene expression. Mean timing of planulation, which occurred at lunar days 7.4 and 12.5 for 28- and 23°C-treated corals, respectively, was associated with an upregulation of transcripts in individual temperature treatments. Expression profiles of planulation-associated genes were compared between temperature treatments, revealing that elevated temperatures disrupted expression profiles associated with planulation. Gene functions inferred from homologous matches to online databases suggest complex neuropeptide signalling, with calcium as a central mediator, acting through tyrosine kinase and G protein-coupled receptor pathways. This work contributes to our understanding of coral reproductive physiology and the impacts of environmental variables on coral reproductive pathways. © 2017 John Wiley & Sons Ltd.

  6. The impact of endurance exercise on global and AMPK gene-specific DNA methylation

    Energy Technology Data Exchange (ETDEWEB)

    King-Himmelreich, Tanya S.; Schramm, Stefanie; Wolters, Miriam C.; Schmetzer, Julia; Möser, Christine V.; Knothe, Claudia [pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590, Frankfurt am Main (Germany); Resch, Eduard [Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project Group for Translational Medicine & Pharmacology (TMP), 60596, Frankfurt/Main (Germany); Peil, Johannes [Sports Clinic, Bad Nauheim, MCI GmbH, In der Aue 30-32, 61231, Bad Nauheim (Germany); Geisslinger, Gerd [pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590, Frankfurt am Main (Germany); Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project Group for Translational Medicine & Pharmacology (TMP), 60596, Frankfurt/Main (Germany); Niederberger, Ellen, E-mail: e.niederberger@em.uni-frankfurt.de [pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590, Frankfurt am Main (Germany)

    2016-05-27

    Alterations in gene expression as a consequence of physical exercise are frequently described. The mechanism of these regulations might depend on epigenetic changes in global or gene-specific DNA methylation levels. The AMP-activated protein kinase (AMPK) plays a key role in maintenance of energy homeostasis and is activated by increases in the AMP/ATP ratio as occurring in skeletal muscles after sporting activity. To analyze whether exercise has an impact on the methylation status of the AMPK promoter, we determined the AMPK methylation status in human blood samples from patients before and after sporting activity in the context of rehabilitation as well as in skeletal muscles of trained and untrained mice. Further, we examined long interspersed nuclear element 1 (LINE-1) as indicator of global DNA methylation changes. Our results revealed that light sporting activity in mice and humans does not alter global DNA methylation but has an effect on methylation of specific CpG sites in the AMPKα2 gene. These regulations were associated with a reduced AMPKα2 mRNA and protein expression in muscle tissue, pointing at a contribution of the methylation status to AMPK expression. Taken together, these results suggest that exercise influences AMPKα2 gene methylation in human blood and eminently in the skeletal muscle of mice and therefore might repress AMPKα2 gene expression. -- Highlights: •AMPK gene methylation increases after moderate endurance exercise in humans and mice. •AMPKα mRNA and protein decrease after moderate endurance exercise in mice. •Global DNA methylation is not affected under the same conditions.

  7. The impact of endurance exercise on global and AMPK gene-specific DNA methylation

    International Nuclear Information System (INIS)

    King-Himmelreich, Tanya S.; Schramm, Stefanie; Wolters, Miriam C.; Schmetzer, Julia; Möser, Christine V.; Knothe, Claudia; Resch, Eduard; Peil, Johannes; Geisslinger, Gerd; Niederberger, Ellen

    2016-01-01

    Alterations in gene expression as a consequence of physical exercise are frequently described. The mechanism of these regulations might depend on epigenetic changes in global or gene-specific DNA methylation levels. The AMP-activated protein kinase (AMPK) plays a key role in maintenance of energy homeostasis and is activated by increases in the AMP/ATP ratio as occurring in skeletal muscles after sporting activity. To analyze whether exercise has an impact on the methylation status of the AMPK promoter, we determined the AMPK methylation status in human blood samples from patients before and after sporting activity in the context of rehabilitation as well as in skeletal muscles of trained and untrained mice. Further, we examined long interspersed nuclear element 1 (LINE-1) as indicator of global DNA methylation changes. Our results revealed that light sporting activity in mice and humans does not alter global DNA methylation but has an effect on methylation of specific CpG sites in the AMPKα2 gene. These regulations were associated with a reduced AMPKα2 mRNA and protein expression in muscle tissue, pointing at a contribution of the methylation status to AMPK expression. Taken together, these results suggest that exercise influences AMPKα2 gene methylation in human blood and eminently in the skeletal muscle of mice and therefore might repress AMPKα2 gene expression. -- Highlights: •AMPK gene methylation increases after moderate endurance exercise in humans and mice. •AMPKα mRNA and protein decrease after moderate endurance exercise in mice. •Global DNA methylation is not affected under the same conditions.

  8. Comprehensive gene expression profiling reveals synergistic functional networks in cerebral vessels after hypertension or hypercholesterolemia.

    Directory of Open Access Journals (Sweden)

    Wei-Yi Ong

    Full Text Available Atherosclerotic stenosis of cerebral arteries or intracranial large artery disease (ICLAD is a major cause of stroke especially in Asians, Hispanics and Africans, but relatively little is known about gene expression changes in vessels at risk. This study compares comprehensive gene expression profiles in the middle cerebral artery (MCA of New Zealand White rabbits exposed to two stroke risk factors i.e. hypertension and/or hypercholesterolemia, by the 2-Kidney-1-Clip method, or dietary supplementation with cholesterol. Microarray and Ingenuity Pathway Analyses of the MCA of the hypertensive rabbits showed up-regulated genes in networks containing the node molecules: UBC (ubiquitin, P38 MAPK, ERK, NFkB, SERPINB2, MMP1 and APP (amyloid precursor protein; and down-regulated genes related to MAPK, ERK 1/2, Akt, 26 s proteasome, histone H3 and UBC. The MCA of hypercholesterolemic rabbits showed differentially expressed genes that are surprisingly, linked to almost the same node molecules as the hypertensive rabbits, despite a relatively low percentage of 'common genes' (21 and 7% between the two conditions. Up-regulated common genes were related to: UBC, SERPINB2, TNF, HNF4A (hepatocyte nuclear factor 4A and APP, and down-regulated genes, related to UBC. Increased HNF4A message and protein were verified in the aorta. Together, these findings reveal similar nodal molecules and gene pathways in cerebral vessels affected by hypertension or hypercholesterolemia, which could be a basis for synergistic action of risk factors in the pathogenesis of ICLAD.

  9. Gene expression profiling in rat kidney after intratracheal exposure to cadmium-doped nanoparticles

    Science.gov (United States)

    Coccini, Teresa; Roda, Elisa; Fabbri, Marco; Sacco, Maria Grazia; Gribaldo, Laura; Manzo, Luigi

    2012-08-01

    While nephrotoxicity of cadmium is well documented, very limited information exists on renal effects of exposure to cadmium-containing nanomaterials. In this work, "omics" methodologies have been used to assess the action of cadmium-containing silica nanoparticles (Cd-SiNPs) in the kidney of Sprague-Dawley rats exposed intratracheally. Groups of animals received a single dose of Cd-SiNPs (1 mg/rat), CdCl2 (400 μg/rat) or 0.1 ml saline (control). Renal gene expression was evaluated 7 and 30 days post exposure by DNA microarray technology using the Agilent Whole Rat Genome Microarray 4x44K. Gene modulating effects were observed in kidney at both time periods after treatment with Cd-SiNPs. The number of differentially expressed genes being 139 and 153 at the post exposure days 7 and 30, respectively. Renal gene expression changes were also observed in the kidney of CdCl2-treated rats with a total of 253 and 70 probes modulated at 7 and 30 days, respectively. Analysis of renal gene expression profiles at day 7 indicated in both Cd-SiNP and CdCl2 groups downregulation of several cluster genes linked to immune function, oxidative stress, and inflammation processes. Differing from day 7, the majority of cluster gene categories modified by nanoparticles in kidney 30 days after dosing were genes implicated in cell regulation and apoptosis. Modest renal gene expression changes were observed at day 30 in rats treated with CdCl2. These results indicate that kidney may be a susceptible target for subtle long-lasting molecular alterations produced by cadmium nanoparticles locally instilled in the lung.

  10. Gene expression profiling in rat kidney after intratracheal exposure to cadmium-doped nanoparticles

    International Nuclear Information System (INIS)

    Coccini, Teresa; Roda, Elisa; Fabbri, Marco; Sacco, Maria Grazia; Gribaldo, Laura; Manzo, Luigi

    2012-01-01

    While nephrotoxicity of cadmium is well documented, very limited information exists on renal effects of exposure to cadmium-containing nanomaterials. In this work, “omics” methodologies have been used to assess the action of cadmium-containing silica nanoparticles (Cd-SiNPs) in the kidney of Sprague-Dawley rats exposed intratracheally. Groups of animals received a single dose of Cd-SiNPs (1 mg/rat), CdCl 2 (400 μg/rat) or 0.1 ml saline (control). Renal gene expression was evaluated 7 and 30 days post exposure by DNA microarray technology using the Agilent Whole Rat Genome Microarray 4x44K. Gene modulating effects were observed in kidney at both time periods after treatment with Cd-SiNPs. The number of differentially expressed genes being 139 and 153 at the post exposure days 7 and 30, respectively. Renal gene expression changes were also observed in the kidney of CdCl 2 -treated rats with a total of 253 and 70 probes modulated at 7 and 30 days, respectively. Analysis of renal gene expression profiles at day 7 indicated in both Cd-SiNP and CdCl 2 groups downregulation of several cluster genes linked to immune function, oxidative stress, and inflammation processes. Differing from day 7, the majority of cluster gene categories modified by nanoparticles in kidney 30 days after dosing were genes implicated in cell regulation and apoptosis. Modest renal gene expression changes were observed at day 30 in rats treated with CdCl 2 . These results indicate that kidney may be a susceptible target for subtle long-lasting molecular alterations produced by cadmium nanoparticles locally instilled in the lung.

  11. Automatic assignment of prokaryotic genes to functional categories using literature profiling.

    Directory of Open Access Journals (Sweden)

    Raul Torrieri

    Full Text Available In the last years, there was an exponential increase in the number of publicly available genomes. Once finished, most genome projects lack financial support to review annotations. A few of these gene annotations are based on a combination of bioinformatics evidence, however, in most cases, annotations are based solely on sequence similarity to a previously known gene, which was most probably annotated in the same way. As a result, a large number of predicted genes remain unassigned to any functional category despite the fact that there is enough evidence in the literature to predict their function. We developed a classifier trained with term-frequency vectors automatically disclosed from text corpora of an ensemble of genes representative of each functional category of the J. Craig Venter Institute Comprehensive Microbial Resource (JCVI-CMR ontology. The classifier achieved up to 84% precision with 68% recall (for confidence≥0.4, F-measure 0.76 (recall and precision equally weighted in an independent set of 2,220 genes, from 13 bacterial species, previously classified by JCVI-CMR into unambiguous categories of its ontology. Finally, the classifier assigned (confidence≥0.7 to functional categories a total of 5,235 out of the ∼24 thousand genes previously in categories "Unknown function" or "Unclassified" for which there is literature in MEDLINE. Two biologists reviewed the literature of 100 of these genes, randomly picket, and assigned them to the same functional categories predicted by the automatic classifier. Our results confirmed the hypothesis that it is possible to confidently assign genes of a real world repository to functional categories, based exclusively on the automatic profiling of its associated literature. The LitProf--Gene Classifier web server is accessible at: www.cebio.org/litprofGC.

  12. Comparative gene expression profiles between heterotic and non-heterotic hybrids of tetraploid Medicago sativa

    Directory of Open Access Journals (Sweden)

    Nettleton Dan

    2009-08-01

    Full Text Available Abstract Background Heterosis, the superior performance of hybrids relative to parents, has clear agricultural value, but its genetic control is unknown. Our objective was to test the hypotheses that hybrids expressing heterosis for biomass yield would show more gene expression levels that were different from midparental values and outside the range of parental values than hybrids that do not exhibit heterosis. Results We tested these hypotheses in three Medicago sativa (alfalfa genotypes and their three hybrids, two of which expressed heterosis for biomass yield and a third that did not, using Affymetrix M. truncatula GeneChip arrays. Alfalfa hybridized to approximately 47% of the M. truncatula probe sets. Probe set signal intensities were analyzed using MicroArray Suite v.5.0 (MAS and robust multi-array average (RMA algorithms. Based on MAS analysis, the two heterotic hybrids performed similarly, with about 27% of genes showing differential expression among the parents and their hybrid compared to 12.5% for the non-heterotic hybrid. At a false discovery rate of 0.15, 4.7% of differentially expressed genes in hybrids (~300 genes showed nonadditive expression compared to only 0.5% (16 genes in the non-heterotic hybrid. Of the nonadditively expressed genes, approximately 50% showed expression levels that fell outside the parental range in heterotic hybrids, but only one of 16 showed a similar profile in the non-heterotic hybrid. Genes whose expression differed in the parents were three times more likely to show nonadditive expression than genes whose parental transcript levels were equal. Conclusion The higher proportions of probe sets with expression level that differed from the parental midparent value and that were more extreme than either parental value in the heterotic hybrids compared to a non-heterotic hybrid were also found using RMA. We conclude that nonadditive expression of transcript levels may contribute to heterosis for biomass

  13. Gene expression profiles in prostate cancer: identification of candidate non-invasive diagnostic markers.

    Science.gov (United States)

    Mengual, L; Ars, E; Lozano, J J; Burset, M; Izquierdo, L; Ingelmo-Torres, M; Gaya, J M; Algaba, F; Villavicencio, H; Ribal, M J; Alcaraz, A

    2014-04-01

    To analyze gene expression profiles of prostate cancer (PCa) with the aim of determining the relevant differentially expressed genes and subsequently ascertain whether this differential expression is maintained in post-prostatic massage (PPM) urine samples. Forty-six tissue specimens (36 from PCa patients and 10 controls) and 158 urine PPM-urines (113 from PCa patients and 45 controls) were collected between December 2003 and May 2007. DNA microarrays were used to identify genes differentially expressed between tumour and control samples. Ten genes were technically validated in the same tissue samples by quantitative RT-PCR (RT-qPCR). Forty two selected differentially expressed genes were validated in an independent set of PPM-urines by qRT-PCR. Multidimensional scaling plot according to the expression of all the microarray genes showed a clear distinctio