WorldWideScience

Sample records for global clean energy

  1. Benchmarks of Global Clean Energy Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Sandor, Debra [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chung, Donald [National Renewable Energy Lab. (NREL), Golden, CO (United States); Keyser, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mann, Margaret [National Renewable Energy Lab. (NREL), Golden, CO (United States); Engel-Cox, Jill [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-01-01

    The Clean Energy Manufacturing Analysis Center (CEMAC), sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), provides objective analysis and up-to-date data on global supply chains and manufacturing of clean energy technologies. Benchmarks of Global Clean Energy Manufacturing sheds light on several fundamental questions about the global clean technology manufacturing enterprise: How does clean energy technology manufacturing impact national economies? What are the economic opportunities across the manufacturing supply chain? What are the global dynamics of clean energy technology manufacturing?

  2. Benchmarks of Global Clean Energy Manufacturing: Summary of Findings

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    The Benchmarks of Global Clean Energy Manufacturing will help policymakers and industry gain deeper understanding of global manufacturing of clean energy technologies. Increased knowledge of the product supply chains can inform decisions related to manufacturing facilities for extracting and processing raw materials, making the array of required subcomponents, and assembling and shipping the final product. This brochure summarized key findings from the analysis and includes important figures from the report. The report was prepared by the Clean Energy Manufacturing Analysis Center (CEMAC) analysts at the U.S. Department of Energy's National Renewable Energy Laboratory.

  3. Clean Economy, Living Planet. The Race to the Top of Global Clean Energy Technology Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Van der Slot, A.; Van den Berg, W. [Roland Berger Strategy Consultants RBSC, Amsterdam (Netherlands)

    2012-05-15

    For four years, WWF and Roland Berger have tracked developments in the global clean energy technology (cleantech) sector and ranked countries according to their cleantech sales. The 3rd annual 'Clean Economy, Living Planet' report ranks 40 countries based on the 2011 sales value of the clean energy technology products they manufacture. The report shows that the EU has lost its position to China as the leader in the fast growing global cleantech energy manufacturing sector. However, when cleantech sales are weighted as a percentage of GDP, Denmark and Germany occupied the first and third position globally. Last year the sector's global sales value rose by 10% to almost 200 billion euros, close to the scale of consumer electronics manufacturing. It is projected to overtake oil and gas equipment in the next three years.

  4. First-Annual Global Clean Energy Manufacturing Report Shows Strong Domestic Benefits for the United States

    Energy Technology Data Exchange (ETDEWEB)

    EERE Office of Strategic Programs, Strategic Priorities and Impact Analysis Team

    2017-02-01

    The Energy Department’s Office of Energy Efficiency and Renewable Energy (EERE) commissioned the Clean Energy Manufacturing Analysis Center to conduct the first-ever annual assessment of the economic state of global clean energy manufacturing. The report, Benchmarks of Global Clean Energy Manufacturing, makes economic data on clean energy technology widely available.

  5. Transforming Global Markets for Clean Energy Products

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This paper looks at three clean energy product categories: equipment energy efficiency; low-carbon transport, including high-efficiency vehicles and electric/plug-in hybrid electric vehicles (EV/PHEVs); and solar photovoltaic (PV) power. Each section identifies ways to enhance global co-operation among major economies through case studies and examples, and ends with specific suggestions for greater international collaboration on market transformation efforts. An annex with more detailed case studies on energy-efficient electric motors, televisions, external power supplies and compact fluorescent lights is included in the paper.

  6. Clean Energy Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    For the past several years, the IEA and others have been calling for a clean energy revolution to achieve global energy security, economic growth and climate change goals. This report analyses for the first time progress in global clean energy technology deployment against the pathways that are needed to achieve these goals. It provides an overview of technology deployment status, key policy developments and public spending on RDD&D of clean energy technologies.

  7. Global Gaps in Clean Energy RD and D

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This report seeks to inform decision makers seeking to prioritise RD&D investments in a time of financial uncertainty. It is an update of the December 2009 IEA report Global Gaps in Clean Energy Research, Development and Demonstration, which examined whether rates of LCET investment were sufficient to achieve shared global energy and environmental goals (IEA,2009). It discusses the impact of the green stimulus spending announcements, and provides private sector perspectives on priorities for government RD&D spending. Finally, it includes a revised assessment of the gaps in public RD&D, together with suggestions for possible areas for expanded international collaboration on specific LCETs. The conclusion re-affirms the first Global Gaps study finding that governments and industry need to dramatically increase their spending on RD&D for LCETs.

  8. International Clean Energy System Using Hydrogen Conversion (WE-NET). subtask 3. Study on the global network; Suiso riyo kokusai clean energy system gijutsu (WE-NET). subtask 3. Global network kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    As a part of the WE-NET project, the introduction condition of hydrogen as substituting energy and CO2 reduction effect were analyzed using a global energy model. The WE-NET project aims at global-wide introduction of clean energy by converting abundant renewable clean energy into hydrogen transportable to distant consumers all over the world. The study result in fiscal 1996 is as follows. Undeveloped hydroelectric resources in the world are estimated to be 12 trillion kWh/y equivalent to the existing developed one in the world. Since the cost of the hydroelectric power generation projects over 1000MW in the planning stage is estimated to be 0.02-0.05$/kWh lower than that of other renewable energies, such projects are expected as energy source in the initial stage of the practical WE-NET project. The GREEN model was modified by adding a hydrogen analysis function, and extending an analysis period. The modified model allowed evaluation of the long-term important role of hydrogen energy, in particular, the capability of CO2 gas reduction all over the world. 28 refs., 92 figs., 56 tabs.

  9. Summary report of the Banff clean energy dialogue : towards a truly Canadian clean energy strategy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    A clean energy strategy will allow Canada to seize opportunities for prosperity in a low-carbon future, while also contributing to the country's economic growth. This report outlined the conclusions drawn by representatives of major energy corporations and policy-makers who gathered to discuss Canada's clean energy plans for the future. Attendants at the meeting concluded that energy conservation and energy efficiency will play a prominent role in a successful clean energy strategy. However, a price on carbon is needed to emphasize the fundamental relationship between energy and the environment. A successful strategy will feature the following 4 overarching principles: (1) economic opportunity, (2) social responsibility, (3) environmental stewardship, and (4) international strategy in relation to trade and development of new markets. The role that federal, provincial and municipal governments will play in developing and implementing the strategy was also presented. The meeting was divided into the following 6 working sessions: (1) global context for a clean energy strategy, (2) why a Canadian clean energy strategy? Why now?, (3) key pillars of a Canadian clean energy strategy, (4) key building blocks of a national clean energy strategy, (5) a balanced Canadian framework, and (6) next steps. 1 fig.

  10. The Clean Energy Manufacturing Analysis Center (CEMAC): Providing Analysis and Insights on Clean Technology Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Nicholi S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-28

    The U.S. Department of Energy's Clean Energy Manufacturing Analysis Center (CEMAC) provides objective analysis and up-to-date data on global supply chains and manufacturing of clean energy technologies. Policymakers and industry leaders seek CEMAC insights to inform choices to promote economic growth and the transition to a clean energy economy.

  11. Scenarios for a Clean Energy Future: Interlaboratory Working Group on Energy-Efficient and Clean-Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2000-12-18

    This study estimates the potential for public policies and R and D programs to foster clean energy technology solutions to the energy and environmental challenges facing the nation. These challenges include global climate change, air pollution, oil dependence, and inefficiencies in the production and use of energy. The study uses a scenario-based approach to examine alternative portfolios of public policies and technologies. Although the report makes no policy recommendations, it does present policies that could lead to impressive advances in the development and deployment of clean energy technologies without significant net economic impacts. Appendices are available electronically at: www.nrel.gov/docs/fy01osti/29379appendices.pdf (6.4 MB).

  12. G20 Clean Energy, and Energy Efficiency Deployment and Policy Progress

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    G-20 Clean Energy, and Energy Efficiency Deployment and Policy Progress, a report prepared by the International Energy Agency (IEA) in collaboration with the G-20 Clean Energy and Energy Efficiency Working Group, provides an overview of clean energy and energy efficiency technology deployment and summarises support policies in place across G-20 countries. The report highlights that while clean energy technology deployment has made steady progress and energy efficiency improvements have been made, continued reliance on fossil fuels to meet growth in global energy demand presents a significant challenge. Scaling-up the deployment of renewable energy, in addition to improving end-use efficiency, enhancing the efficiency of fossil fuel based power generation, and supporting the widespread deployment of CCS will, therefore, also be crucial aspects of the transition to a cleaner energy future. Because the G-20 group of countries represent close to 80% of energy-related CO2 emissions, by developing and deploying energy efficiency and clean energy technologies, they are presented with a unique opportunity to make collective progress in transitioning the global energy system. IEA Deputy Executive Director Richard Jones emphasised the importance of G-20 efforts, saying, 'The IEA welcomes this important collaboration with the G-20. Enhanced deployment of clean energy technologies and of energy efficiency improvements offers energy security and environmental benefits. It will also enable cost savings over the medium and long term -- an aspect that is particularly relevant at a time of economic uncertainty. We believe that enhanced policy assessment and analysis, building on this initial report, will enable governments to take more cost effective and efficient policy decisions.' This report was issued on the authority of the IEA Executive Director, it does not necessarily represent the views of IEA Member countries or the G20.

  13. G20 Clean Energy, and Energy Efficiency Deployment and Policy Progress

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    G-20 Clean Energy, and Energy Efficiency Deployment and Policy Progress, a report prepared by the International Energy Agency (IEA) in collaboration with the G-20 Clean Energy and Energy Efficiency Working Group, provides an overview of clean energy and energy efficiency technology deployment and summarises support policies in place across G-20 countries. The report highlights that while clean energy technology deployment has made steady progress and energy efficiency improvements have been made, continued reliance on fossil fuels to meet growth in global energy demand presents a significant challenge. Scaling-up the deployment of renewable energy, in addition to improving end-use efficiency, enhancing the efficiency of fossil fuel based power generation, and supporting the widespread deployment of CCS will, therefore, also be crucial aspects of the transition to a cleaner energy future. Because the G-20 group of countries represent close to 80% of energy-related CO2 emissions, by developing and deploying energy efficiency and clean energy technologies, they are presented with a unique opportunity to make collective progress in transitioning the global energy system. IEA Deputy Executive Director Richard Jones emphasised the importance of G-20 efforts, saying, 'The IEA welcomes this important collaboration with the G-20. Enhanced deployment of clean energy technologies and of energy efficiency improvements offers energy security and environmental benefits. It will also enable cost savings over the medium and long term -- an aspect that is particularly relevant at a time of economic uncertainty. We believe that enhanced policy assessment and analysis, building on this initial report, will enable governments to take more cost effective and efficient policy decisions.' This report was issued on the authority of the IEA Executive Director, it does not necessarily represent the views of IEA Member countries or the G20.

  14. Strengthening Clean Energy Technology Cooperation under the UNFCCC: Steps toward Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Benioff, R.; de Coninck, H.; Dhar, S.; Hansen, U.; McLaren, J.; Painuly, J.

    2010-08-01

    Development of a comprehensive and effective global clean technology cooperation framework will require years of experimenting and evaluation with new instruments and institutional arrangements before it is clear what works on which scale and in which region or country. In presenting concrete examples, this paper aims to set the first step in that process by highlighting successful models and innovative approaches that can inform efforts to ramp up clean energy technology cooperation. This paper reviews current mechanisms and international frameworks for global cooperation on clean energy technologies, both within and outside of the UNFCCC, and provides selected concrete options for scaling up global cooperation on clean energy technology RD&D, enabling environment, and financing.

  15. Cost Benefit Analysis of Using Clean Energy Supplies to Reduce Greenhouse Gas Emissions of Global Automotive Manufacturing

    Directory of Open Access Journals (Sweden)

    Xiang Zhao

    2011-09-01

    Full Text Available Automotive manufacturing is energy-intensive. The consumed energy contributes to the generation of significant amounts of greenhouse gas (GHG emissions by the automotive manufacturing industry. In this paper, a study is conducted on assessing the application potential of such clean energy power systems as solar PV, wind and fuel cells in reducing the GHG emissions of the global auto manufacturing industry. The study is conducted on the representative solar PV, wind and fuel cell clean energy systems available on the commercial market in six representative locations of GM’s global facilities, including the United States, Mexico, Brazil, China, Egypt and Germany. The results demonstrate that wind power is superior to other two clean energy technologies in the economic performance of the GHG mitigation effect. Among these six selected countries, the highest GHG emission mitigation potential is in China, through wind power supply. The maximum GHG reduction could be up to 60 tons per $1,000 economic investment on wind energy supply in China. The application of wind power systems in the United States and Germany could also obtain relatively high GHG reductions of between 40–50 tons per $1,000 economic input. When compared with wind energy, the use of solar and fuel cell power systems have much less potential for GHG mitigation in the six countries selected. The range of median GHG mitigation values resulting from solar and wind power supply are almost at the same level.

  16. Clean Energy Manufacturing Analysis Center Benchmark Report: Framework and Methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Sandor, Debra [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chung, Donald [National Renewable Energy Lab. (NREL), Golden, CO (United States); Keyser, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mann, Margaret [National Renewable Energy Lab. (NREL), Golden, CO (United States); Engel-Cox, Jill [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-05-23

    This report documents the CEMAC methodologies for developing and reporting annual global clean energy manufacturing benchmarks. The report reviews previously published manufacturing benchmark reports and foundational data, establishes a framework for benchmarking clean energy technologies, describes the CEMAC benchmark analysis methodologies, and describes the application of the methodologies to the manufacturing of four specific clean energy technologies.

  17. Measures of International Manufacturing and Trade of Clean Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Engel-Cox, Jill; Sandor, Debbie; Keyser, David; Mann, Margaret

    2017-05-25

    The technologies that produce clean energy, such as solar photovoltaic panels and lithium ion batteries for electric vehicles, are globally manufactured and traded. As demand and deployment of these technologies grows exponentially, the innovation to reach significant economies of scale and drive down energy production costs becomes less in the technology and more in the manufacturing of the technology. Manufacturing innovations and other manufacturing decisions can reduce costs of labor, materials, equipment, operating costs, and transportation, across all the links in the supply chain. To better understand the manufacturing aspect of the clean energy economy, we have developed key metrics for systematically measuring and benchmarking international manufacturing of clean energy technologies. The metrics are: trade, market size, manufacturing value-added, and manufacturing capacity and production. These metrics were applied to twelve global economies and four representative technologies: wind turbine components, crystalline silicon solar photovoltaic modules, vehicle lithium ion battery cells, and light emitting diode packages for efficient lighting and other consumer products. The results indicated that clean energy technologies are being developed via complex, dynamic, and global supply chains, with individual economies benefiting from different technologies and links in the supply chain, through both domestic manufacturing and global trade.

  18. Clean Energy Solutions Center: Assisting Countries with Clean Energy Policy

    Science.gov (United States)

    advice on financing instruments. In a recent keynote to the Climate and Clean Energy Investment Forum renewable energy technologies in the country. Informing Energy Access and Clean Energy Project Finance understanding and knowledge of how to design policies that enable financing and encourage investment in clean

  19. Leading global energy and environmental transformation: Unified ASEAN biomass-based bio-energy system incorporating the clean development mechanism

    International Nuclear Information System (INIS)

    Lim, Steven; Lee, Keat Teong

    2011-01-01

    In recent years, the ten member countries in the Association of Southeast Asia Nations (ASEAN) have experienced high economic growth and, in tandem, a substantial increment in energy usage and demand. Consequently, they are now under intense pressure to secure reliable energy supplies to keep up with their growth rate. Fossil fuels remain the primary source of energy for the ASEAN countries, due to economic and physical considerations. This situation has led to unrestrained emissions of greenhouse gases to the environment and thus effectively contributes to global climate change. The abundant supply of biomass from their tropical environmental conditions offers great potential for ASEAN countries to achieve self-reliance in energy supplies. This fact can simultaneously transform into the main driving force behind combating global climate change, which is associated with the usage of fossil fuels. This research article explores the potential and advantages for ASEAN investment in biomass-based bio-energy supply, processing and distribution network with an emphasis on regional collaborations. It also investigates the implementation and operational challenges in terms of political, economic and technical factors for the cross-border energy scheme. Reliance of ASEAN countries on the clean development mechanism (CDM) to address most of the impediments in developing the project is also under scrutiny. Unified co-operation among ASEAN countries in integrating biomass-based bio-energy systems and utilising the clean development mechanism (CDM) as the common effort could serve as the prime example for regional partnerships in achieving sustainable development for the energy and environmental sector in the future. -- Highlights: →A study that explores feasibility for ASEAN investment in biomass-based bio-energy. →Focus is given on regional supply, processing and distribution network. →Cross-border implementation and operational challenges are discussed thoroughly.

  20. Broad Prospect for Sino-US Clean Energy Cooperation

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    @@ It is in both China and the US's best interest to collaborate and have strategic alliance in developing clean energy.China and the US can result in a positive outcome for both countries if they decide to agree and cooperate on global energy-related concerns.

  1. The BC energy plan : a vision for clean energy leadership

    International Nuclear Information System (INIS)

    2007-02-01

    Global warming is a pertinent environmental issue. This report presented a vision and plan for clean energy leadership in British Columbia (BC). The intent of the plan is make the province energy self-sufficient while taking responsibility for the natural environment and climate. The BC energy plan set out targets as well as a strategy for reducing greenhouse gas emissions. The plan outlines the steps that industry, environmental agencies, communities and citizens must take to reach goals for conservation, energy efficiency and clean energy. This report provided highlights of the BC energy plan and discussed energy conservation and efficiency targets. It also discussed electricity security and public ownership of electricity in addition to strategies and policy options for reducing greenhouse gas emissions from electricity. The report presented several policy options for alternative energy including an innovative clean energy fund; generating electricity from mountain pine beatlewood to turn wood waste into energy; and transportation strategies. The report also discussed electricity options such as bioenergy; coal thermal power; geothermal; hydrogen and fuel cell technology; large hydroelectric dams; natural gas; small hydro; solar; tidal energy; and wind. Other topics that were addressed in the report included skills, training and labour; and, oil and gas policy actions. A summary of policy actions was also presented. tabs., figs

  2. The BC energy plan : a vision for clean energy leadership

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-02-15

    Global warming is a pertinent environmental issue. This report presented a vision and plan for clean energy leadership in British Columbia (BC). The intent of the plan is make the province energy self-sufficient while taking responsibility for the natural environment and climate. The BC energy plan set out targets as well as a strategy for reducing greenhouse gas emissions. The plan outlines the steps that industry, environmental agencies, communities and citizens must take to reach goals for conservation, energy efficiency and clean energy. This report provided highlights of the BC energy plan and discussed energy conservation and efficiency targets. It also discussed electricity security and public ownership of electricity in addition to strategies and policy options for reducing greenhouse gas emissions from electricity. The report presented several policy options for alternative energy including an innovative clean energy fund; generating electricity from mountain pine beatlewood to turn wood waste into energy; and transportation strategies. The report also discussed electricity options such as bioenergy; coal thermal power; geothermal; hydrogen and fuel cell technology; large hydroelectric dams; natural gas; small hydro; solar; tidal energy; and wind. Other topics that were addressed in the report included skills, training and labour; and, oil and gas policy actions. A summary of policy actions was also presented. tabs., figs.

  3. The governance of clean energy in India: The clean development mechanism (CDM) and domestic energy politics

    International Nuclear Information System (INIS)

    Phillips, Jon; Newell, Peter

    2013-01-01

    This paper explores the ways in which clean energy is being governed in India. It does so in order to improve our understanding of the potential and limitations of carbon finance in supporting lower carbon energy transitions, and to strengthen our appreciation of the role of politics in enabling or frustrating such endeavors. In particular we emphasize the importance of politics and the nature of India's political economy in understanding the development of energy sources and technologies defined as ‘clean’ both by the United Nations Clean Development Mechanism (CDM) and leading international actors. By considering the broad range of institutions that exert formal and informal political influence over how the benefits and costs of the CDM are distributed, the paper highlights shortcomings in the narrow way in which CDM governance has been conceptualized to date. This approach goes beyond analysis of technocratic aspects of governance – often reduced to a set of institutional design issues – in order to appreciate the political nature of the trade-offs that characterize debates about India's energy future and the relations of power which will determine how, and on whose terms, they are resolved. - Highlights: • Clean energy governance in practice is shaped by political power and influence. • Governance of clean energy requires strong institutions from local to global levels. • Un-governed areas of energy policy are often as revealing of the exercise of power as areas where there explicit policy is in place. • Climate and carbon finance interventions need to better understand the landscape of political power which characterises India’s energy sector

  4. Public-Private roundtables at the fourth Clean Energy Ministerial, 17-18 April 2013, New Delhi, India

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, Tracey [Energetics, Incorporated, Washington, DC (United States)

    2013-06-30

    The Clean Energy Ministerial (CEM) is a high-level global forum to share best practices and promote policies and programs that advance clean energy technologies and accelerate the transition to a global clean energy economy. The CEM works to increase energy efficiency, expand clean energy supply, and enhance clean energy access worldwide. To achieve these goals, the CEM pursues a three-part strategy that includes high-level policy dialogue, technical cooperation, and engagement with the private sector and other stakeholders. Each year, energy ministers and other high-level delegates from the 23 participating CEM governments come together to discuss clean energy, review clean energy progress, and identify tangible next steps to accelerate the clean energy transition. The U.S. Department of Energy, which played a crucial role in launching the CEM, hosted the first annual meeting of energy ministers in Washington, DC, in June 2010. The United Arab Emirates hosted the second Clean Energy Ministerial in 2011, and the United Kingdom hosted the third Clean Energy Ministerial in 2012. In April 2013, India hosted the fourth Clean Energy Ministerial (CEM4) in New Delhi. Key insights from CEM4 are summarized in the report. It captures the ideas and recommendations of the government and private sector leaders who participated in the discussions on six discussion topics: reducing soft costs of solar PV; energy management systems; renewables policy and finance; clean vehicle adoption; mini-grid development; and power systems in emerging economies.

  5. Roadmaps to Transition Countries to 100% Clean, Renewable Energy for All Purposes to Curtail Global Warming, Air Pollution, and Energy Risk

    Science.gov (United States)

    Jacobson, Mark Z.

    2017-10-01

    Solving the problems of global warming, air pollution, and energy security requires a massive effort by individuals, communities, businesses, nonprofits, and policy makers around the world. The first step in that process is to have a plan. To that end, roadmaps to transition 139 countries of the world to 100% clean, renewable wind, water, and solar power for all energy purposes (electricity, transportation, heating, cooling, industry, agriculture, forestry, and fishing) by 2050, with 80% by 2030, have been developed. The evolution, characteristics, and impacts to date of these plans are briefly described.

  6. National Alliance for Clean Energy Incubators New Mexico Clean Energy Incubator

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Suzanne S.

    2004-12-15

    The National Alliance for Clean Energy Incubators was established by the National Renewable Energy Laboratory (NREL) to develop an emerging network of business incubators for entrepreneurs specializing in clean energy enterprises. The Alliance provides a broad range of business services to entrepreneurs in specific geographic locales across the U.S. and in diverse clean energy technology areas such as fuel cells, alternative fuels, power generation, and renewables, to name a few. Technology Ventures Corporation (TVC) participates in the Alliance from its corporate offices in Albuquerque, NM, and from its sites in Northern and Southern New Mexico, California, and Nevada. TVC reports on the results of its attempts to accelerate the growth and success of clean energy and energy efficiency companies through its array of business support services. During the period from September 2002 through September 2004, TVC describes contributions to the Alliance including the development of 28 clients and facilitating capital raises exceeding $35M.

  7. Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative (HCEI)

    Energy Technology Data Exchange (ETDEWEB)

    Busche, S.; Doris, E.; Braccio, R.; Lippert, D.; Finch, P.; O' Toole, D.; Fetter, J.

    2010-04-01

    This report provides detailed analyses of 21 clean energy policy options considered by the Hawaii Clean Energy Initiative working groups for recommendation to the 2010 Hawaii State Legislature. The report considers the impact each policy may have on ratepayers, businesses, and the state in terms of energy saved, clean energy generated, and the financial costs and benefits. The analyses provide insight into the possible impacts, both qualitative and quantitative, that these policies may have in Hawaii based on the experience with these policies elsewhere. As much as possible, the analyses incorporate Hawaii-specific context to reflect the many unique aspects of energy use in the State of Hawaii.

  8. Financing clean energy market creation. Clean energy ventures, venture capitalists and other investors

    Energy Technology Data Exchange (ETDEWEB)

    Teppo, T. [Helsinki Univ. of Technology, Espoo (Finland). Development and Management in Industry

    2006-07-01

    Many factors have emerged for change towards cleaner and more efficient technologies and services: climate change, increasing oil demands, and rising living standards in many parts of the world are putting an ever-increasing strain on the environment. Recently, these drivers have fueled the formation of a clean energy venture capital market where both independent venture capitalists (VCs) and corporate venture capitalists (CVCs) have invested in clean energy start-ups. Financing of clean energy market creation is the focus of this dissertation. The dissertation contributes to several bodies of literature in the area of entrepreneurship, new industry creation, corporate venturing, and venture capital research. The dissertation uses a grounded theory approach. The study is guided by three data collection approaches with an emphasis on the first two. First, interviews with European and North American VC and CVC firms that have invested in the clean energy sector were carried out. Second, a clean energy venture financing survey that consisted of qualitative, essay-format questions and some quantitative questions was carried out. Third, interviews with clean energy stakeholders were carried out in order to gain a better understanding of the emerging sector. The research results consist of three main findings. First, the research results suggest that clean energy ventures face the following three main entrepreneurial challenges: financing, market education, and growth management. A further study of three clean energy industry categories revealed additional challenges that varied according to the industry development stage. Second, the results demonstrate that, from a venture capitalist perspective, clean energy venture risk characteristics can be divided into two groups: generally recognized risk characteristics and cognitive risk characteristics. The identified generally recognized risk characteristics were market demand and adaptation, incompatibility with the VC model

  9. Clean energy, non-clean energy, and economic growth in the MIST countries

    International Nuclear Information System (INIS)

    Pao, Hsiao-Tien; Li, Yi-Ying; Hsin-Chia Fu

    2014-01-01

    This paper explores the causal relationship between clean (renewable/nuclear) and non-clean energy consumption and economic growth in emerging economies of the MIST (Mexico, Indonesia, South Korea, and Turkey) countries. The panel co-integration tests reveal that there is a long-term equilibrium relationship among GDP, capital formation, labor force, renewable/nuclear, and fossil fuel energy consumption. The panel causality results indicate that (1) there is a positive unidirectional short-run causality from fossil fuel energy consumption to economic growth with a bidirectional long-run causality; (2) there is a unidirectional long-run causality from renewable energy consumption to economic growth with positive bidirectional short-run causality, and a long-run causality from renewable to fossil fuel energy consumption with negative short-run feedback effects; and (3) there is a bidirectional long-run causality between nuclear energy consumption and economic growth and a long-run causality from fossil fuel energy consumption to nuclear energy consumption with positive short-run feedback effects. These suggest that MIST countries should be energy-dependent economies and that energy conservation policies may depress their economic development. However, developing renewable and nuclear energy is a viable solution for addressing energy security and climate change issues, and creating clean and fossil fuel energy partnerships could enhance a sustainable energy economy. - Highlights: • This novel study can provide more robust bases to strengthen sustainable energy policy settings. • Fossil fuel/nuclear energy use and economic growth is bidirectional causality. • Renewable energy consumption long term causes economic growth. • There is substitutability between renewable and fossil fuel energy. • Clean and non-clean energy partnerships can achieve a sustainable energy economy

  10. Tracking Clean Energy Progress 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    Tracking Clean Energy Progress 2013 (TCEP 2013) examines progress in the development and deployment of key clean energy technologies. Each technology and sector is tracked against interim 2020 targets in the IEA Energy Technology Perspectives 2012 2°C scenario, which lays out pathways to a sustainable energy system in 2050. Stark message emerge: progress has not been fast enough; large market failures are preventing clean energy solutions from being taken up; considerable energy efficiency remains untapped; policies need to better address the energy system as a whole; and energy-related research, development and demonstration need to accelerate. Alongside these grim conclusions there is positive news. In 2012, hybrid-electric vehicle sales passed the 1 million mark. Solar photovoltaic systems were being installed at a record pace. The costs of most clean energy technologies fell more rapidly than anticipated.

  11. Harnessing Solar Energy for the Production of Clean Fuel

    NARCIS (Netherlands)

    Pandit, A.; Holzwarth, A.; de Groot, H.J.M.

    2008-01-01

    The European Union and its member states are being urged by leading scientists to make a major multi million Euro commitment to solar driven production of environmentally clean electricity, hydrogen and other fuels, as the only sustainable long-term solution for global energy needs. The most

  12. Clean Energy Infrastructure Educational Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Hallinan, Kevin; Menart, James; Gilbert, Robert

    2012-08-31

    The Clean Energy Infrastructure Educational Initiative represents a collaborative effort by the University of Dayton, Wright State University and Sinclair Community College. This effort above all aimed to establish energy related programs at each of the universities while also providing outreach to the local, state-wide, and national communities. At the University of Dayton, the grant has aimed at: solidfying a newly created Master's program in Renewable and Clean Energy; helping to establish and staff a regional sustainability organization for SW Ohio. As well, as the prime grantee, the University of Dayton was responsible for insuring curricular sharing between WSU and the University of Dayton. Finally, the grant, through its support of graduate students, and through cooperation with the largest utilities in SW Ohio enabled a region-wide evaluation of over 10,000 commercial building buildings in order to identify the priority buildings in the region for energy reduction. In each, the grant has achieved success. The main focus of Wright State was to continue the development of graduate education in renewable and clean energy. Wright State has done this in a number of ways. First and foremost this was done by continuing the development of the new Renewable and Clean Energy Master's Degree program at Wright State . Development tasks included: continuing development of courses for the Renewable and Clean Energy Master's Degree, increasing the student enrollment, and increasing renewable and clean energy research work. The grant has enabled development and/or improvement of 7 courses. Collectively, the University of Dayton and WSU offer perhaps the most comprehensive list of courses in the renewable and clean energy area in the country. Because of this development, enrollment at WSU has increased from 4 students to 23. Secondly, the grant has helped to support student research aimed in the renewable and clean energy program. The grant helped to solidify

  13. 76 FR 16646 - Circadian, Inc., Clean Energy Combustion, Inc. (n/k/a Clean Energy Combustion Systems, Inc...

    Science.gov (United States)

    2011-03-24

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Circadian, Inc., Clean Energy Combustion, Inc. (n/k/a Clean Energy Combustion Systems, Inc.), Collectible Concepts Group, Inc., Communitronics of... is a lack of current and accurate information concerning the securities of Clean Energy Combustion...

  14. Clean fuel technology for world energy security

    Energy Technology Data Exchange (ETDEWEB)

    Sunjay, Sunjay

    2010-09-15

    Clean fuel technology is the integral part of geoengineering and green engineering with a view to global warming mitigation. Optimal utilization of natural resources coal and integration of coal & associated fuels with hydrocarbon exploration and development activities is pertinent task before geoscientist with evergreen energy vision with a view to energy security & sustainable development. Value added technologies Coal gasification,underground coal gasification & surface coal gasification converts solid coal into a gas that can be used for power generation, chemical production, as well as the option of being converted into liquid fuels.

  15. Clean coal: Global opportunities for small businesses

    International Nuclear Information System (INIS)

    1998-01-01

    The parallel growth in coal demand and environmental concern has spurred interest in technologies that burn coal with greater efficiency and with lower emissions. Clean Coal Technologies (CCTs) will ensure that continued use of the world's most abundant energy resource is compatible with a cleaner, healthier environment. Increasing interest in CCTs opens the door for American small businesses to provide services and equipment for the clean and efficient use of coal. Key players in most coal-related projects are typically large equipment manufacturers, power project developers, utilities, governments, and multinational corporations. At the same time, the complexity and scale of many of these projects creates niche markets for small American businesses with high-value products and services. From information technology, control systems, and specialized components to management practices, financial services, and personnel training methods, small US companies boast some of the highest value products and services in the world. As a result, American companies are in a prime position to take advantage of global niche markets for CCTs. This guide is designed to provide US small businesses with an overview of potential international market opportunities related to CCTs and to provide initial guidance on how to cost-effectively enter that growing global market

  16. Clean coal: Global opportunities for small businesses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The parallel growth in coal demand and environmental concern has spurred interest in technologies that burn coal with greater efficiency and with lower emissions. Clean Coal Technologies (CCTs) will ensure that continued use of the world`s most abundant energy resource is compatible with a cleaner, healthier environment. Increasing interest in CCTs opens the door for American small businesses to provide services and equipment for the clean and efficient use of coal. Key players in most coal-related projects are typically large equipment manufacturers, power project developers, utilities, governments, and multinational corporations. At the same time, the complexity and scale of many of these projects creates niche markets for small American businesses with high-value products and services. From information technology, control systems, and specialized components to management practices, financial services, and personnel training methods, small US companies boast some of the highest value products and services in the world. As a result, American companies are in a prime position to take advantage of global niche markets for CCTs. This guide is designed to provide US small businesses with an overview of potential international market opportunities related to CCTs and to provide initial guidance on how to cost-effectively enter that growing global market.

  17. Clean Energy Solutions Center Services

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-01

    The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  18. Transition through co-optation: Harnessing carbon democracy for clean energy

    Science.gov (United States)

    Meng, Kathryn-Louise

    This dissertation explores barriers to a clean energy transition in the United States. Clean energy is demonstrably viable, yet the pace of clean energy adoption in the U.S. is slow, particularly given the immediate threat of global climate change. The purpose of this dissertation is to examine the factors inhibiting a domestic energy transition and to propose pragmatic approaches to catalyzing a transition. The first article examines the current political-economic and socio-technical energy landscape in the U.S. Fossil fuels are central to the functioning of the American economy. Given this centrality, constellations of power have been constructed around the reliable and affordable access of fossil fuels. The fossil fuel energy regime is comprised of: political-economic networks with vested interests in continued fossil fuel reliance, and fixed infrastructure that is minimally compatible with distributed generation. A transition to clean energy threatens the profitability of fossil fuel regime actors. Harnessing structural critiques from political ecology and process and function-oriented socio-technical systems frameworks, I present a multi-level approach to identifying pragmatic means to catalyzing an energy transition. High-level solutions confront the existing structure, mid-level solutions harness synergy with the existing structure, and low-level solutions lie outside of the energy system or foster the TIS. This is exemplified using a case study of solar development in Massachusetts. Article two presents a case study of the clean energy technological innovation system (TIS) in Massachusetts. I examine the actors and institutions that support cleantech development. Further, I scrutinize the actors and institutions that help sustain the TIS support system. The concept of a catalyst is presented; a catalyst is an actor that serves to propel TIS functions. Catalysts are critical to facilitating anchoring. Strategic corporate partners are identified as powerful

  19. Clean Energy Policy Analyses: Analysis of the Status and Impact of Clean Energy Policies at the Local Level

    Energy Technology Data Exchange (ETDEWEB)

    Busche, S.

    2010-12-01

    This report takes a broad look at the status of local clean energy policies in the United States to develop a better understanding of local clean energy policy development and the interaction between state and local policies. To date, the majority of clean energy policy research focuses on the state and federal levels. While there has been a substantial amount of research on local level climate change initiatives, this is one of the first analyses of clean energy policies separate from climate change initiatives. This report is one in a suite of reports analyzing clean energy and climate policy development at the local, state, and regional levels.

  20. Clean Energy Policy Analyses. Analysis of the Status and Impact of Clean Energy Policies at the Local Level

    Energy Technology Data Exchange (ETDEWEB)

    Busche, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2010-12-01

    This report takes a broad look at the status of local clean energy policies in the United States to develop a better understanding of local clean energy policy development and the interaction between state and local policies. To date, the majority of clean energy policy research focuses on the state and federal levels. While there has been a substantial amount of research on local level climate change initiatives, this is one of the first analyses of clean energy policies separate from climate change initiatives. This report is one in a suite of reports analyzing clean energy and climate policy development at the local, state, and regional levels.

  1. Gas storage in porous metal-organic frameworks for clean energy applications.

    Science.gov (United States)

    Ma, Shengqian; Zhou, Hong-Cai

    2010-01-07

    Depletion of fossil oil deposits and the escalating threat of global warming have put clean energy research, which includes the search for clean energy carriers such as hydrogen and methane as well as the reduction of carbon dioxide emissions, on the urgent agenda. A significant technical challenge has been recognized as the development of a viable method to efficiently trap hydrogen, methane and carbon dioxide gas molecules in a confined space for various applications. This issue can be addressed by employing highly porous materials as storage media, and porous metal-organic frameworks (MOFs) which have exceptionally high surface areas as well as chemically-tunable structures are playing an unusual role in this respect. In this feature article we provide an overview of the current status of clean energy applications of porous MOFs, including hydrogen storage, methane storage and carbon dioxide capture.

  2. Southwest Regional Clean Energy Incubation Initiative (SRCEII)

    Energy Technology Data Exchange (ETDEWEB)

    Webber, Michael [Univ. of Texas, Austin, TX (United States)

    2017-10-31

    The Austin Technology Incubator’s (ATI’s) Clean Energy Incubator at the University of Texas at Austin (ATI-CEI) utilized the National Incubator Initiative for Clean Energy (NIICE) funding to establish the Southwest Regional Clean Energy Incubation Initiative, composed of clean energy incubators from The University of Texas at Austin (UT-Austin), The University of Texas at El Paso (UTEP), The University of Texas at San Antonio (UTSA), and Texas A&M University (TAMU).

  3. Colloborative International Resesarch on the Water Energy Nexus: Lessons Learned from the Clean Energy Research Center - Water Energy Technologies (CERC-WET)

    Science.gov (United States)

    Remick, C.

    2017-12-01

    The U.S.-China Clean Energy Research Center - Water and Energy Technologies (CERC-WET) is a global research partnership focused on developing and deploying technologies that to allow the U.S. and China to thrive in a future with constrained energy and water resources in a changing global climate. This presentation outlines and addresses the opportunities and challenges for international research collaboration on the so called "water-energy nexus", with a focus on industrial partnership, market readiness, and intellectual property. The U.S. Department of Energy created the CERC program as a research and development partnership between the United States and China to accelerate the development and deployment of advanced clean energy technologies. The United States and China are not only the world's largest economies; they are also the world's largest energy producers and energy consumers. Together, they account for about 40% of annual global greenhouse gas emissions. The bilateral investment in CERC-WET will total $50 million over five years and will target on the emerging issues and cut-edge research on the topics of (1) water use reduction at thermoelectric plants; (2) treatment and management of non-traditional waters; (3) improvements in sustainable hydropower design and operation; (4) climate impact modeling, methods, and scenarios to support improved understanding of energy and water systems; and (5) data and analysis to inform planning and policy.

  4. Clean Energy Solutions Center Services (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-04-01

    The Clean Energy Solutions Center (Solutions Center) helps governments, advisors and analysts create policies and programs that advance the deployment of clean energy technologies. The Solutions Center partners with international organizations to provide online training, expert assistance, and technical resources on clean energy policy.

  5. Clean Energy Solutions Center Services (Vietnamese Translation)

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-01

    This is a Vietnamese translation of the Clean Energy Solutions Center fact sheet. The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  6. Clean Energy Solutions Center Services (Arabic Translation)

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-01

    This is an Arabic translation of the Clean Energy Solutions Center fact sheet. The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  7. Clean Energy Solutions Center Services (French Translation)

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-01

    This is a French translation of the Clean Energy Solutions Center fact sheet. The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  8. Clean energy utilization technology

    International Nuclear Information System (INIS)

    Honma, Takuya

    1992-01-01

    The technical development of clean energy including the utilization of solar energy was begun in 1973 at the time of the oil crisis, and about 20 years elapsed. Also in Japan, the electric power buying system by electric power companies for solar light electric power and wind electric power has been started in 1992, namely their value as a merchandise was recognized. As for these two technologies, the works of making the international standards and JIS were begun. The range of clean energy or natural energy is wide, and its kinds are many. The utilization of solar heat and the electric power generation utilizing waves, tide and geotherm already reached the stage of practical use. Generally in order to practically use new energy, the problem of price must be solved, but the price is largely dependent on the degree of spread. Also the reliability, durability and safety must be ensured, and the easiness of use, effectiveness and trouble-saving maintenance and operation are required. For the purpose, it is important to packaging those skillfully in a system. The cases of intelligent natural energy systems are shown. Solar light and wind electric power generation systems and the technology of transporting clean energy are described. (K.I.)

  9. Clean Energy Solutions Center (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Reategui, S.

    2012-07-01

    The Clean Energy Ministerial launched the Clean Energy Solutions Center in April, 2011 for major economy countries, led by Australia and U.S. with other CEM partners. Partnership with UN-Energy is extending scope to support all developing countries: 1. Enhance resources on policies relating to energy access, small to medium enterprises (SMEs), and financing programs; 2. Offer expert policy assistance to all countries; 3. Expand peer to peer learning, training, and deployment and policy data for developing countries.

  10. Clean coal technologies and global climate change

    International Nuclear Information System (INIS)

    Long, R.S.

    1993-01-01

    The role for Clean Coal Technologies is discussed in the context of the global climate change debate. Global climate change is, of course as the name implies, a global issue. This clearly distinguishes this issue from acid rain or ozone non-attainment, which are regional in nature. Therefore, the issue requires a global perspective, one that looks at the issue not just from a US policy standpoint but from an international policy view. This includes the positions of other individual nations, trading blocks, common interest groups, and the evolving United Nations bureaucracy. It is assumed that as the global economy continues to grow, energy demand will also grow. With growth in economic activity and energy use, will come growth in worldwide greenhouse gas emissions, including growth in carbon dioxide (CO 2 ) emissions. Much of this growth will occur in developing economies which intend to fuel their growth with coal-fired power, especially China and India. Two basic premises which set out the boundaries of this topic are presented. First, there is the premise that global climate change is occurring, or is about to occur, and that governments must do something to mitigate the causes of climate change. Although this premise is highly rebuttable, and not based on scientific certainty, political science has driven it to the forefront of the debate. Second is the premise that advanced combustion CCTs, with their higher efficiencies, will result in lower CO 2 emissions, and hence lessen any contribution of greater coal use to potential global climate change. This promise is demonstrably true. This discussion focuses on recent and emerging public sector policy actions, which may in large part establish a new framework in which the private sector will find new challenges and new opportunities

  11. Clean Energy Solutions Center Services (Portuguese Translation)

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-01

    This is a Portuguese translation of the Clean Energy Solutions Center Services fact sheet. The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  12. Northwest Region Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Sjoding, David [Washington State Univ., Pullman, WA (United States)

    2013-09-30

    The main objective of the Northwest Clean Energy Application Center (NW CEAC) is to promote and support implementation of clean energy technologies. These technologies include combined heat and power (CHP), district energy, waste heat recovery with a primary focus on waste heat to power, and other related clean energy systems such as stationary fuel cell CHP systems. The northwest states include AK, ID, MT, OR, and WA. The key aim/outcome of the Center is to promote and support implementation of clean energy projects. Implemented projects result in a number of benefits including increased energy efficiency, renewable energy development (when using opportunity fuels), reduced carbon emissions, improved facility economics helping to preserve jobs, and reduced criteria pollutants calculated on an output-based emissions basis. Specific objectives performed by the NW CEAC fall within the following five broad promotion and support categories: 1) Center management and planning including database support; 2) Education and Outreach including plan development, website, target market workshops, and education/outreach materials development 3) Identification and provision of screening assessments & feasibility studies as funded by the facility or occasionally further support of Potential High Impact Projects; 4) Project implementation assistance/trouble shooting; and 5) Development of a supportive clean energy policy and initiative/financing framework.

  13. Chapter 2: Assessing the Potential Energy Impacts of Clean Energy Initiatives

    Science.gov (United States)

    Chapter 2 of Assessing the Multiple Benefits of Clean Energy helps state energy, environmental, and economic policy makers identify and quantify the many benefits of clean energy to support the development and implementation of cost-effective clean energ

  14. Advancing clean energy technology in Canada

    International Nuclear Information System (INIS)

    Munro, G.

    2011-01-01

    This paper discusses the development of clean energy technology in Canada. Energy is a major source of Canadian prosperity. Energy means more to Canada than any other industrialized country. It is the only OECD country with growing oil production. Canada is a stable and secure energy supplier and a major consumer. Promoting clean energy is a priority to make progress in multiple areas.

  15. Low carbon Finland 2050. VTT clean energy technology strategies for society

    Energy Technology Data Exchange (ETDEWEB)

    Koljonen, T; Simila, L; Sipila, K [and others

    2012-11-15

    The Low Carbon Finland 2050 project by VTT Technical Research Centre of Finland aims to assess the technological opportunities and challenges involved in reducing Finland's greenhouse gas emissions. A target for reduction is set as at least 80% from the 1990 level by 2050 as part of an international effort, which requires strong RD and D in clean energy technologies. Key findings of the project are presented in this publication, which aims to stimulate enlightening and multidisciplinary discussions on low-carbon futures for Finland. The project gathered together VTT's technology experts in clean energy production, smart energy infrastructures, transport, buildings, and industrial systems as well as experts in energy system modelling and foresight. VTT's leading edge 'Low Carbon and Smart Energy' enables new solutions with a demonstration that is the first of its kind in Finland, and the introduction of new energy technology onto national and global markets. (orig.)

  16. Clean Energy Finance Tool

    Science.gov (United States)

    State and local governments interested in developing a financing program can use this Excel tool to support energy efficiency and clean energy improvements for large numbers of buildings within their jurisdiction.

  17. Low carbon Finland 2050. VTT clean energy technology strategies for society

    Energy Technology Data Exchange (ETDEWEB)

    Koljonen, T.; Simila, L.; Sipila, K. [and others

    2012-11-15

    The Low Carbon Finland 2050 project by VTT Technical Research Centre of Finland aims to assess the technological opportunities and challenges involved in reducing Finland's greenhouse gas emissions. A target for reduction is set as at least 80% from the 1990 level by 2050 as part of an international effort, which requires strong RD and D in clean energy technologies. Key findings of the project are presented in this publication, which aims to stimulate enlightening and multidisciplinary discussions on low-carbon futures for Finland. The project gathered together VTT's technology experts in clean energy production, smart energy infrastructures, transport, buildings, and industrial systems as well as experts in energy system modelling and foresight. VTT's leading edge 'Low Carbon and Smart Energy' enables new solutions with a demonstration that is the first of its kind in Finland, and the introduction of new energy technology onto national and global markets. (orig.)

  18. Falling behind - Canada's lost clean energy jobs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-05-15

    With the depletion of conventional resources and the increasing concerns about the environment, emphasis has been put on developing clean energy. Clean energy is expected to become one of the main industrial sectors within the next decade, thus creating numerous jobs. While significant investments have been made by several countries to shift to clean energy, Canada is investing in highly polluting resources such as the tar sands. It is shown that if Canada were to match U.S. efforts in terms of clean energy on a per person basis, they would need to invest 11 billion additional dollars and this would result in the creation of 66,000 clean energy jobs. This paper showed that Canada is falling behind in terms of clean energy and the authors recommend that the Canadian government match U.S. investments and design policies in support of clean energy and put a price on carbon so as to favor the development of the clean energy sector and its consequent job creation.

  19. Canada's role in the global energy picture: making the case for a more coherent national energy approach

    Energy Technology Data Exchange (ETDEWEB)

    Gass, Philip; Drexhage, John [International Institute for Sustainable Development (Canada)

    2010-07-01

    Given Canada's position in the present global energy dynamic, there are opportunities for private sector economic actors to make large-scale investments in traditional energy resources such as oil, natural gas, hydropower and uranium. Canada, with so much to offer in terms of resources and potential for private investment, could play a leadership role in the push to develop clean energy. There is a need to articulate an overarching, coherent vision, not only in terms of Canada's stance on energy development but also in terms of national strategy. This is a critical moment, not only for Canada but for the whole world, when an effective, sustainable blueprint needs to be drawn up. If we can make a coherent case for a clean energy vision of the future, then Canada will make global progress in the energy field. Moreover, it seems clear that global governance with respect to energy issues will continue to be a topic of growing interest. Canada needs to give serious thought to what its position and its contribution will be with respect to a clean energy future.

  20. FY 2000 report on the results of the Clean Energy Festa; 2000 nendo clean energy festa kekka hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For understanding/education for the spread of clean energy vehicles and promotion of recognition/understanding of new energy, the Clean Energy Festa was conducted in Yokote, Akita prefecture, Nagoya, Osaka, Yokohama and Hiroshima, and analysis by questionnaire survey was made. Written below were the details of the questionnaire survey. How you knew of the exhibition: 'by leaflets from school, etc.' is 50.4%; why you came to the exhibition: 'there is something enjoyable about it' is 32.5%; What attracted you: 'solar car workshop' is 34.8%; How much you have known of new energy: 'somewhat known' is 41.5%; How much you understood new energy after seeing the exhibition: 'somewhat understood' is 60.9%; How much you became aware of new energy: 'a little deeply aware' is 59.8%; How much you understood clean energy car after seeing the exhibition: 'somewhat understood' is 58.7%; How much you became aware of clean energy car: 'a little deeply aware' is 60.9%. (NEDO)

  1. NREL's Clean Energy Policy Analyses Project. 2009 U.S. State Clean Energy Data Book

    Energy Technology Data Exchange (ETDEWEB)

    Gelman, Racel [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hummon, Marissa [National Renewable Energy Lab. (NREL), Golden, CO (United States); McLaren, Joyce [National Renewable Energy Lab. (NREL), Golden, CO (United States); Doris, Elizabeth [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2009-10-01

    This data book provides a summary of the status of state-level energy efficiency and renewable energy (taken together as clean energy) developments and supporting policy implementation. It is intended as a reference book for those interested in the progress of the states and regions toward a clean energy economy. Although some national-scale data are given in the initial section, the data are mostly aggregated by states and region, and no data on federal- or utility-level policies are presented here.

  2. Hydrogen Storage Experiments for an Undergraduate Laboratory Course--Clean Energy: Hydrogen/Fuel Cells

    Science.gov (United States)

    Bailey, Alla; Andrews, Lisa; Khot, Ameya; Rubin, Lea; Young, Jun; Allston, Thomas D.; Takacs, Gerald A.

    2015-01-01

    Global interest in both renewable energies and reduction in emission levels has placed increasing attention on hydrogen-based fuel cells that avoid harm to the environment by releasing only water as a byproduct. Therefore, there is a critical need for education and workforce development in clean energy technologies. A new undergraduate laboratory…

  3. A feasibility study of conceptual design for international clean energy network using hydrogen conversion technology

    International Nuclear Information System (INIS)

    Sato, Takashi; Hamada, Akiyoshi; Kitamura, Kazuhiro

    1998-01-01

    Clean energy is more and more required worldwide in proportion to actualization of global environmental issues including global warming. Therefore, it is an urgent task to realize promotion of worldwide introduction of clean energy which exists abundantly and is widely distributed in the world, such as hydropower and solar energy, while reducing the dependence on fossil fuel. However, since the renewable energy, differing from so called fossil fuel, is impossible to transport for long distance and store as it is, its utilization is subject to be limited. As one possible resolution of this kind of issues, 'International clean energy network using hydrogen conversion technology' which enables conversion of renewable energy from low cost hydropower into hydrogen energy and also into the transportable and storable form, is a meaningful concept. This system technology enables dealing of this hydrogen energy in international market as in the same manner as fossil fuel. It is considered to enable promotion of international and large scale introduction of such clean energy, along with the contribution to diversified and stabilized international energy supply. In this study, based upon the above-mentioned point of view and assumption of two sites, one on supply side and another on demand side of hydrogen energy, three systems are presumed. One of the systems consists of liquid hydrogen as transportation and storage medium of hydrogen, and the others intermediately convert hydrogen into methanol or ammonia as an energy carrier. A overall conceptual design of each system spanning from hydrogen production to its utilization, is conducted in practical way in order to review the general technical aspects and economical aspects through cost analysis. This study is administrated through the New Energy and Industrial Technology Development Organization (NEDO) as a part of the International Clean Energy Network Using Hydrogen Conversion (so-called WE-NET) Program with funding from

  4. Clean Energy Solutions Center Services (Arabic Translation) (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-06-01

    This is the Arabic translation of the Clean Energy Solutions Center Services fact sheet. The Clean Energy Solutions Center (Solutions Center) helps governments, advisors and analysts create policies and programs that advance the deployment of clean energy technologies. The Solutions Center partners with international organizations to provide online training, expert assistance, and technical resources on clean energy policy.

  5. Sociology: Clean-energy conservatism

    Science.gov (United States)

    McCright, Aaron M.

    2017-03-01

    US conservatives receive a steady stream of anti-environmental messaging from Republican politicians. However, clean-energy conservatives sending strong counter-messages on energy issues could mobilize moderate conservatives to break away from the dominant right-wing defence of fossil fuels.

  6. Promoting clean energy technology entrepreneurship: The role of external context

    International Nuclear Information System (INIS)

    Malen, Joel; Marcus, Alfred A.

    2017-01-01

    This study examines how political, social and economic factors influence clean energy technology entrepreneurship (CETE). Government policies supporting clean energy technology development and the development of markets for clean energy create opportunities for CETE. However, the extent to which such opportunities lead to the emergence of new clean energy businesses depends on a favorable external context promoting CETE. This study employs a novel dataset combining indicators of the policy and social context of CETE with information on clean energy technology startup firms in the USA to provide empirical evidence that technological and market conditions supporting clean energy induce more extensive CETE under contexts where local attention to clean energy issues and successful firms commercializing clean energy technologies are more prominent. By establishing that CETE is contingent upon a supportive local environment as well as technology and market opportunities, the study holds relevance for policy makers and clean energy technology firms. - Highlights: • Influence of political, social and economic factors on clean energy technology entrepreneurship (CETE). • CETE more prominent with clean energy technology availability. • Greater when local attention interacts with technology availability and market opportunities. • Greater when local firms successfully commercialize technologies. • Novel dataset and Arellano-Bond dynamic panel estimation.

  7. IDEA Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Robert P. [International District Energy Association, Westborough, MA (United States)

    2013-12-20

    The DOE Clean Energy Application Centers were launched with a goal of focusing on important aspects of our nation’s energy supply including Efficiency, Reliability and Resiliency. Clean Energy solutions based on Combined Heat & Power (CHP), District Energy and Waste Heat Recovery are at the core of ensuring a reliable and efficient energy infrastructure for campuses, communities, and industry and public enterprises across the country. IDEA members which include colleges and universities, hospitals, airports, downtown utilities as well as manufacturers, suppliers and service providers have long-standing expertise in the planning, design, construction and operations of Clean Energy systems. They represent an established base of successful projects and systems at scale and serve important and critical energy loads. They also offer experience, lessons learned and best practices which are of immense value to the sustained growth of the Clean Energy sector. IDEA has been able to leverage the funds from the project award to raise the visibility, improve the understanding and increase deployment CHP, District Energy and Waste Heat Recovery solutions across the regions of our nation, in collaboration with the regional CEAC’s. On August 30, 2012, President Obama signed an Executive Order to accelerate investments in industrial energy efficiency (EE), including CHP and set a national goal of 40 GW of new CHP installation over the next decade IDEA is pleased to have been able to support this Executive Order in a variety of ways including raising awareness of the goal through educational workshops and Conferences and recognizing the installation of large scale CHP and district energy systems. A supporting key area of collaboration has involved IDEA providing technical assistance on District Energy/CHP project screenings and feasibility to the CEAC’s for multi building, multi-use projects. The award was instrumental in the development of a first-order screening

  8. Data cleaning in the energy domain

    Science.gov (United States)

    Akouemo Kengmo Kenfack, Hermine N.

    This dissertation addresses the problem of data cleaning in the energy domain, especially for natural gas and electric time series. The detection and imputation of anomalies improves the performance of forecasting models necessary to lower purchasing and storage costs for utilities and plan for peak energy loads or distribution shortages. There are various types of anomalies, each induced by diverse causes and sources depending on the field of study. The definition of false positives also depends on the context. The analysis is focused on energy data because of the availability of data and information to make a theoretical and practical contribution to the field. A probabilistic approach based on hypothesis testing is developed to decide if a data point is anomalous based on the level of significance. Furthermore, the probabilistic approach is combined with statistical regression models to handle time series data. Domain knowledge of energy data and the survey of causes and sources of anomalies in energy are incorporated into the data cleaning algorithm to improve the accuracy of the results. The data cleaning method is evaluated on simulated data sets in which anomalies were artificially inserted and on natural gas and electric data sets. In the simulation study, the performance of the method is evaluated for both detection and imputation on all identified causes of anomalies in energy data. The testing on utilities' data evaluates the percentage of improvement brought to forecasting accuracy by data cleaning. A cross-validation study of the results is also performed to demonstrate the performance of the data cleaning algorithm on smaller data sets and to calculate an interval of confidence for the results. The data cleaning algorithm is able to successfully identify energy time series anomalies. The replacement of those anomalies provides improvement to forecasting models accuracy. The process is automatic, which is important because many data cleaning processes

  9. Analysis on energy saving and emission reduction of clean energy technology in ports

    Science.gov (United States)

    Zhu, Li; Qin, Cuihong; Peng, Chuansheng

    2018-02-01

    This paper discusses the application of clean energy technology in ports. Using Ningbo port Co. Ltd. Beilun second container terminal branch as an example, we analyze the effect of energy saving and emission reduction of CO2 and SO2 by clean energy alternative to fuel oil, and conclude that the application of clean energy technology in the container terminal is mature, and can achieve effect of energy-saving and emission reduction of CO2 and SO2. This paper can provide as a reference for the promotion and application of clean energy in ports.

  10. NREL's Clean Energy Policy Analyses Project: 2009 U.S. State Clean Energy Data Book, October 2010

    Energy Technology Data Exchange (ETDEWEB)

    Gelman, R.; Hummon, M.; McLaren, J.; Doris, E.

    2010-10-01

    This data book provides a summary of the status of state-level energy efficiency and renewable energy (taken together as clean energy) developments and supporting policy implementation. It is intended as a reference book for those interested in the progress of the states and regions toward a clean energy economy. Although some national-scale data are given in the initial section, the data are mostly aggregated by states and region, and no data on federal- or utility-level policies are presented here.

  11. Clean energy: Revisiting the challenges of industrial policy

    International Nuclear Information System (INIS)

    Morris, Adele C.; Nivola, Pietro S.; Schultze, Charles L.

    2012-01-01

    Large public investments in clean energy technology arguably constitute an industrial policy. One rationale points to market failures that have not been corrected by other policies, most notably greenhouse gas emissions and dependence on oil. Another inspiration for clean energy policy reflects economic arguments of the 1980s. It suggests strategic government investments would increase U.S. firms' market share of a growing industry and thus help American firms and workers. This paper examines the reasoning for clean energy policy and concludes that: •While a case can be made that subsidizing clean energy might help address market failures, the case may be narrower than some assert, and turning theory into sound practice is no simple feat. •An appropriate price on greenhouse gases is an essential precondition to ensuring efficient incentives to develop and deploy cost-effective emissions-abating technologies. However, efficient prices alone are unlikely to generate efficient levels of basic research and development by private firms. •Government investments in clean energy are unlikely to produce net increases in employment in the long run, in part because pushing home-grown technologies at taxpayers' expense offers no guarantee that the eventual products ultimately would not be manufactured somewhere else. •Spending on clean energy technologies is not well suited to fiscal stimulus. The authors recommend that: •Federal energy spending should invest in technologies with the lowest expected cost of abatement and highest probability of market penetration. •Funding decisions ought to be insulated – as much as possible – from rent-seeking by interest groups, purely political distortions, and the parochial preferences of legislators. - Highlights: ► Clean energy technology policy may be less justifiable than many assert, and doing it well is hard. ► The government should appropriately price greenhouse gas emissions and fund technology R and D.

  12. Clean energy microgrids

    CERN Document Server

    Obara, Shin'ya

    2017-01-01

    This book describes the latest technology in microgrids and economic, environmental and policy aspects of their implementation, including microgrids for cold regions, and future trends. The aim of this work is to give this complete overview of the latest technology around the world, and the interrelation with clean energy systems.

  13. Accelerating Clean Energy Commercialization. A Strategic Partnership Approach

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Richard [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pless, Jacquelyn [Joint Institute for Strategic Energy Analysis, Golden, CO (United States); Arent, Douglas J. [Joint Institute for Strategic Energy Analysis, Golden, CO (United States); Locklin, Ken [Impax Asset Management Group (United Kingdom)

    2016-04-01

    Technology development in the clean energy and broader clean tech space has proven to be challenging. Long-standing methods for advancing clean energy technologies from science to commercialization are best known for relatively slow, linear progression through research and development, demonstration, and deployment (RDD&D); and characterized by well-known valleys of death for financing. Investment returns expected by traditional venture capital investors have been difficult to achieve, particularly for hardware-centric innovations, and companies that are subject to project finance risks. Commercialization support from incubators and accelerators has helped address these challenges by offering more support services to start-ups; however, more effort is needed to fulfill the desired clean energy future. The emergence of new strategic investors and partners in recent years has opened up innovative opportunities for clean tech entrepreneurs, and novel commercialization models are emerging that involve new alliances among clean energy companies, RDD&D, support systems, and strategic customers. For instance, Wells Fargo and Company (WFC) and the National Renewable Energy Laboratory (NREL) have launched a new technology incubator that supports faster commercialization through a focus on technology development. The incubator combines strategic financing, technology and technical assistance, strategic customer site validation, and ongoing financial support.

  14. Clean Energy Solutions Center Services (Vietnamese Translation) (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-11-01

    This is the Vietnamese language translation of the Clean Energy Solutions Center (Solutions Center) fact sheet. The Solutions Center helps governments, advisors and analysts create policies and programs that advance the deployment of clean energy technologies. The Solutions Center partners with international organizations to provide online training, expert assistance, and technical resources on clean energy policy.

  15. Production of clean energy by anaerobic digestion of phytomass - New prospects for a global warming amelioration technology

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, Tasneem; Abbasi, S.A. [Centre for Pollution Control and Energy Technology, Pondicherry University, Chinakalapet, Puducherry 605014 (India)

    2010-08-15

    Anaerobic digestion of animal dung generated combustible gas - this fact has been known since over 130 years and has been gainfully utilized in generating clean energy in the form of methane-rich 'biogas'. During 1970s it was found that aquatic weeds and other phytomass, if anaerobically digested, also produced similarly combustible 'bio' gas. It raised great hopes that anaerobic digestion of phytomass will also enable generation of biogas that too on a much larger scale than is possible with animal manure. This, it was hoped, would also provide a means for utilizing weeds, crop wastes, and biodegradable municipal solid waste which otherwise cause environmental pollution. It appeared to be a 'no lose' possibility; it was hoped that soon the problems of weeds (and other biosolid wastes) as well as energy shortage, would vanish. At that time there was little realization of the global warming (GW) potential of methane nor of the fact that natural degradation of phytomass in the environment is causing massive quantities of GW gas emission. Hence, at that time, the potential benefits from anaerobic digestion of phytomass were perceived only in terms of pollution control and energy generation. But four decades have since elapsed and there is still no economically viable technology with which weeds and phytowastes can be gainfully converted to energy. This paper takes a look at what has happened and why. It also points towards the possibility of success finally emerging on the horizon. It would, hopefully, give a fresh impetus to the entire field of biomethanation R and D because all 'methane capture' technologies also indirectly contribute to very significant reduction in global warming. (author)

  16. Assessing the Multiple Benefits of Clean Energy Full Report

    Science.gov (United States)

    Guidance for state energy, environmental, and economic policy makers to identify and quantify the many benefits of clean energy to support the development and implementation of cost-effective clean energy initiatives.

  17. An international partnership approach to clean energy technology innovation: Carbon capture and storage

    Science.gov (United States)

    Yang, Xiaoliang

    Is a global research partnership effective in developing, deploying, and diffusing clean energy technologies? Drawing on and extending innovation system studies, this doctoral dissertation elaborates an analytical model for a global technology learning system; examines the rationales, mechanisms, and effectiveness of the United States-- China Clean Energy Research Center Advanced Coal Technology Consortium (CERC-ACTC); and analyzes government's role in developing and implementing carbon capture and storage technologies in the United States (U.S.) and China. Studies have shown that successful technology innovation leads to economic prosperity and national competence, and prove that technology innovation does not happen in isolation but rather within interactive systems among stakeholders. However, the innovation process itself remains unclear, particularly with regard to interactive learning among and between major institutional actors, including technology developers, regulators, and financial organizations. This study seeks to advance scholarship on the interactive learning from the angle of global interactive learning. This dissertation research project seeks, as well, to inform policy-makers of how to strengthen international collaboration in clean energy technology development. The U.S.--China CERC-ACTC announced by Presidents Obama and Hu in 2009, provided a unique opportunity to close this scholarly gap. ACTC aimed to "advance the coal technology needed to safely, effectively, and efficiently utilize coal resources including the ability to capture, store, and utilize the emissions from coal use in both nations " through the joint research and development by U.S. and Chinese scientists and engineers. This dissertation project included one-year field research in the two countries, with in-depth interviews of key stakeholders, a survey of Consortium participants, analysis of available data, and site visits to collaborative research projects from 2013-2014. This

  18. Assistance Focus: Asia/Pacific Region; Clean Energy Solutions Center (CESC)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-05-11

    The Clean Energy Solutions Center Ask an Expert service connects governments seeking policy information and advice with one of more than 30 global policy experts who can provide reliable and unbiased quick-response advice and information. The service is available at no cost to government agency representatives from any country and the technical institutes assisting them. This publication presents summaries of assistance provided to governments in the Asia/Pacific region, including the benefits of that assistance.

  19. Achieving global environmental benefits through local development of clean energy? The case of small hilly hydel in India

    International Nuclear Information System (INIS)

    Reddy, V. Ratna; Uitto, Juha I.; Frans, Dirk R.; Matin, Nilufar

    2006-01-01

    Energy and development are closely intertwined. Yet, increasing fossil fuel-based energy consumption contributes significantly to environmental problems both locally and globally. This article explores the interlinkages between local livelihood and environmental benefits from the provision of energy to remote rural households through small hydropower development. The analysis is based on research carried out around a large development project designed to assist the Government of India in the optimum utilization of small hydropower resources in the Himalayan and sub-Himalayan regions. There are about 100,000 villages in India that are not connected to electricity supply, many of them in the hilly regions with ample hydropower potential. The project aimed to demonstrate the utility of and options for providing electricity to such villages through clean mini-hydro. The article addresses the nature of the impacts of the demonstration small hydel schemes on the local communities, to what extent they translate into environmental benefits both locally and globally, and the perceptions and participation of the local communities in these small hydro schemes. The study explores the impacts of the schemes on financial capital, natural capital, social capital, physical capital, human capital, and gender equity in the local communities. It further provides a discussion on the links between local and global environmental benefits. Overall, it is found that the schemes' impacts both on the local communities and the environment are mostly marginally positive or neutral, although achieving clearly demonstrable benefits would require major upscaling of the effort involving broader changes than possible under this project. Furthermore, it is argued that some of the assumptions behind the project design were faulty. Involvement of the local communities and direct livelihood benefits to them are essential for the long-term sustainability of the small hydro schemes. The discussion and

  20. Southeast Regional Clean Energy Policy Analysis

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, Joyce [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2011-04-01

    More than half of the electricity produced in the southeastern states is fuelled by coal. Although the region produces some coal, most of the states depend heavily on coal imports. Many of the region's aging coal power facilities are planned for retirement within the next 20 years. However, estimates indicate that a 20% increase in capacity is needed over that time to meet the rapidly growing demand. The most common incentives for energy efficiency in the Southeast are loans and rebates; however, total public spending on energy efficiency is limited. The most common state-level policies to support renewable energy development are personal and corporate tax incentives and loans. The region produced 1.8% of the electricity from renewable resources other than conventional hydroelectricity in 2009, half of the national average. There is significant potential for development of a biomass market in the region, as well as use of local wind, solar, methane-to-energy, small hydro, and combined heat and power resources. Options are offered for expanding and strengthening state-level policies such as decoupling, integrated resource planning, building codes, net metering, and interconnection standards to support further clean energy development. Benefits would include energy security, job creation, insurance against price fluctuations, increased value of marginal lands, and local and global environmental paybacks.

  1. Hydrogen energy - Abundant, efficient, clean: A debate over the energy-system-of-change

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Carl-Jochen [International Association for Hydrogen Energy (IAHE), c/o ENERGON Carl-Jochen Winter e.K., Obere St.-Leonhardstr. 9, 88662 Ueberlingen (Germany)

    2009-07-15

    Both secondary energies, electricity and hydrogen, have much in common: they are technology driven; both are produced from any available primary energy; once produced both are environmentally and climatically clean over the entire length of their respective conversion chains, from production to utilization; they are electrochemically interchangeable via electrolyses and fuel cells; both rely on each other, e.g., when electrolyzers and liquefiers need electricity or when electricity-providing low temperature fuel cells need hydrogen; in cases of secondary energy transport over longer distances they compete with each other; in combined fossil fuel cycles both hydrogen and electricity are produced in parallel exergetically highly efficiently; hydrogen in addition to electricity helps exergizing the energy system and, thus, maximizing the available technical work. There are dissimilarities, too: electricity transports information, hydrogen does not; hydrogen stores and transports energy, electricity does not (in macroeconomic terms). The most obvious dissimilarity is their market presence, both in capacities and in availability: Electricity is globally ubiquitous (almost), whilst hydrogen energy is still used in only selected industrial areas and in much smaller capacities. The article describes in 15 chapters, 33 figures, 3 tables, and 2 Annexes the up-and-coming hydrogen energy economy, its environmental and climatic relevance, its exergizing influence on the energy system, its effect on decarbonizing fossil fueled power plants, the introduction of the novel non-heat-engine-related electrochemical energy converter fuel cell in portable electronics, in stationary and mobile applications. Hydrogen guarantees environmentally and climatically clean transportation on land, in air and space, and at sea. Hydrogen facilitates the electrification of vehicles with practically no range limits. (author)

  2. Clean energy deployment: addressing financing cost

    International Nuclear Information System (INIS)

    Ameli, Nadia; Kammen, Daniel M

    2012-01-01

    New methods are needed to accelerate clean energy policy adoption. To that end, this study proposes an innovative financing scheme for renewable and energy efficiency deployment. Financing barriers represent a notable obstacle for energy improvements and this is particularly the case for low income households. Implementing a policy such as PACE—property assessed clean energy—allows for the provision of upfront funds for residential property owners to install electric and thermal solar systems and make energy efficiency improvements to their buildings. This paper will inform the design of better policies tailored to the creation of the appropriate conditions for such investments to occur, especially in those countries where most of the population belongs to the low–middle income range facing financial constraints. (letter)

  3. Clean energy deployment: addressing financing cost

    Science.gov (United States)

    Ameli, Nadia; Kammen, Daniel M.

    2012-09-01

    New methods are needed to accelerate clean energy policy adoption. To that end, this study proposes an innovative financing scheme for renewable and energy efficiency deployment. Financing barriers represent a notable obstacle for energy improvements and this is particularly the case for low income households. Implementing a policy such as PACE—property assessed clean energy—allows for the provision of upfront funds for residential property owners to install electric and thermal solar systems and make energy efficiency improvements to their buildings. This paper will inform the design of better policies tailored to the creation of the appropriate conditions for such investments to occur, especially in those countries where most of the population belongs to the low-middle income range facing financial constraints.

  4. Global patterns of renewable energy innovation, 1990–2009

    OpenAIRE

    Bayer, Patrick; Dolan, Lindsay; Urpelainen, Johannes

    2013-01-01

    Cost-effective approaches to mitigating climate change depend on advances in clean energy technologies, such as solar and wind power. Given increased technology innovation in developing countries, led by China, we focus our attention on global patterns of renewable energy innovation. Utilizing highly valuable international patents as our indicator of innovation, we examine the economic and political determinants of energy innovation in 74 countries across the world, 1990–2009. We find that hi...

  5. Hydrogen based global renewable energy network

    Energy Technology Data Exchange (ETDEWEB)

    Akai, Makoto [Mechanical Engineering Laboratory, AIST, MITI, Namiki, Tsukuba (Japan)

    1993-12-31

    In the last quarter of this century, global environmental problem has emerged as a major scientific, political and social issue. Specific Problems include: depletion of ozone layer by chlorofluorocarbons (CFCs), acid rain, destruction of tropical forests and desertification, pollution of the sea and global wanning due to the greenhouse effect by carbon dioxide and others. Among these problems, particular attention of the world has been focused on the global warming because it has direct linkage to energy consumption which our economic development depends on so far. On the other hand, the future program of The Sunshine Project for alternative energy technology R&D, The Moonlight Project for energy conservation technology R&D, and The Global Environmental Technology Program for environmental problem mitigating technology R&D which are Japan`s national projects being promoted by their Agency of Industrial Science and Technology (AIST) in the Ministry of International Trade and Industry have been reexamined in view of recent changes in the situations surrounding new energy technology. In this regard, The New Sunshine Program will be established by integrating these three activities to accelerate R&D in the field of energy and environmental technologies. In the reexamination, additional stress has been laid on the contribution to solving global environmental problem through development of clean renewable energies which constitute a major part of the {open_quotes}New Earth 21{close_quotes}, a comprehensive, long-term and international cooperative program proposed by MITI. The present paper discusses the results of feasibility study on hydrogen energy system leading to the concept of WE-NET following a brief summary on R&D status on solar and wind energy in Japan.

  6. International Clean Energy Coalition

    Energy Technology Data Exchange (ETDEWEB)

    Erin Skootsky; Matt Gardner; Bevan Flansburgh

    2010-09-28

    In 2003, the National Association of Regulatory Utility Commissioners (NARUC) and National Energy Technology Laboratories (NETL) collaboratively established the International Clean Energy Coalition (ICEC). The coalition consisting of energy policy-makers, technologists, and financial institutions was designed to assist developing countries in forming and supporting local approaches to greenhouse gas mitigation within the energy sector. ICEC's work focused on capacity building and clean energy deployment in countries that rely heavily on fossil-based electric generation. Under ICEC, the coalition formed a steering committee consisting of NARUC members and held a series of meetings to develop and manage the workplan and define successful outcomes for the projects. ICEC identified India as a target country for their work and completed a country assessment that helped ICEC build a framework for discussion with Indian energy decisionmakers including two follow-on in-country workshops. As of the conclusion of the project in 2010, ICEC had also conducted outreach activities conducted during United Nations Framework Convention on Climate Change (UNFCCC) Ninth Conference of Parties (COP 9) and COP 10. The broad goal of this project was to develop a coalition of decision-makers, technologists, and financial institutions to assist developing countries in implementing affordable, effective and resource appropriate technology and policy strategies to mitigate greenhouse gas emissions. Project goals were met through international forums, a country assessment, and in-country workshops. This project focused on countries that rely heavily on fossil-based electric generation.

  7. Clean energy industries and rare earth materials: Economic and financial issues

    International Nuclear Information System (INIS)

    Baldi, Lucia; Peri, Massimo; Vandone, Daniela

    2014-01-01

    In the last few years, rare earth materials (REM) prices have experienced a strong increase due to geopolitical and sustainability issues. Financial markets could already have factored in concerns about shortages of REM supplies into clean energy companies’ valuations. We use a multifactor market model for the period January 2006 to September 2012 to analyze the impact of REM price trends – specifically dysprosium and neodymium – on six clean energy indices (NYSE–BNEF) tracking the world's most important companies in the clean energy sector. The results show that during period of price increase, there is a negative relationships between REM price changes and the stock market performance of some clean energy indices. The European clean energy index is also negatively affected, and this effect could be relevant to policy makers, considering that Europe is implementing some relevant policy actions to support the development of the clean energy industry. - Highlights: • Clean energy is an industry with a double-digit growth market rate in the last years. • Rare earth materials are a key component in the development process of this industry. • Recently REMs’ prices have skyrocketed and the clean energy industry is in turmoil. • We analyze the effect of REMs price on the stock market performances of clean industry. • We find negative relation between REMs price increase and stock market performances

  8. Meeting China's electricity needs through clean energy sources: A 2030 low-carbon energy roadmap

    Science.gov (United States)

    Hu, Zheng

    China is undergoing rapid economic development that generates significant increase in energy demand, primarily for electricity. Energy supply in China is heavily relying on coal, which leads to high carbon emissions. This dissertation explores opportunities for meeting China's growing power demand through clean energy sources. The utilization of China's clean energy sources as well as demand-side management is still at the initial phase. Therefore, development of clean energy sources would require substantial government support in order to be competitive in the market. One of the widely used means to consider clean energy in power sector supplying is Integrated Resource Strategic Planning, which aims to minimize the long term electricity costs while screening various power supply options for the power supply and demand analysis. The IRSP tool tackles the energy problem from the perspective of power sector regulators, and provides different policy scenarios to quantify the impacts of combined incentives. Through three scenario studies, Business as Usual, High Renewable, and Renewable and Demand Side Management, this dissertation identifies the optimized scenario for China to achieve the clean energy target of 2030. The scenarios are assessed through energy, economics, environment, and equity dimensions.

  9. State Clean Energy Policies Analysis: State, Utility, and Municipal Loan Programs

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, E.

    2010-05-01

    High initial costs can impede the deployment of clean energy technologies. Financing can reduce these costs. And, state, municipal, and utility-sponsored loan programs have emerged to fill the gap between clean energy technology financing needs and private sector lending. In general, public loan programs are more favorable to clean energy technologies than are those offered by traditional lending institutions; however, public loan programs address only the high up-front costs of clean energy systems, and the technology installed under these loan programs rarely supports clean energy production at levels that have a notable impact on the broader energy sector. This report discusses ways to increase the impact of these loan programs and suggests related policy design considerations.

  10. Innovation, renewable energy, and state investment: Case studies of leading clean energy funds

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan; Bolinger, Mark; Milford, Lewis; Porter, Kevin; Clark, Roger

    2002-09-01

    Over the last several years, many U.S. states have established clean energy funds to help support the growth of renewable energy markets. Most often funded by system-benefits charges (SBC), the 15 states that have established such funds are slated to collect nearly $3.5 billion from 1998 to 2012 for renewable energy investments. These clean energy funds are expected to have a sizable impact on the energy future of the states in which the funds are being collected and used. For many of the organizations tapped to administer these funds, however, this is a relatively new role that presents the challenge of using public funds in the most effective and innovative fashion possible. Fortunately, each state is not alone in its efforts; many other U.S. states and a number of countries are undertaking similar efforts. Early lessons are beginning to be learned by clean energy funds about how to effectively target public funds towards creating and building renewable energy markets. A number of innovative programs have already been developed that show significant leadership by U.S. states in supporting renewable energy. It is important that clean energy fund administrators learn from this emerging experience.

  11. Nuclear energy - a green energy solution to global warming

    International Nuclear Information System (INIS)

    Malhotra, S.K.

    2013-01-01

    The manner in which the world has conducted itself in exploiting energy resources so far particularly in the post industrial revolution period, is now looming as one of the greatest challenges to the sustainability of development or even sustainability of life. Global climate change is no more a perceived threat, it is now a reality and we are not in a position to engage ourselves to debate on the issue. It is in fact a little late in taking the right corrective action if we have any concern for our future generations. The efforts of the scientists and engineers are to gradually replace the energy from burning of carbonaceous material to clean and intense source of energy i.e. nuclear fission and fusion

  12. Policies for accelerating access to clean energy, improving health, advancing development, and mitigating climate change.

    Science.gov (United States)

    Haines, Andy; Smith, Kirk R; Anderson, Dennis; Epstein, Paul R; McMichael, Anthony J; Roberts, Ian; Wilkinson, Paul; Woodcock, James; Woods, Jeremy

    2007-10-06

    The absence of reliable access to clean energy and the services it provides imposes a large disease burden on low-income populations and impedes prospects for development. Furthermore, current patterns of fossil-fuel use cause substantial ill-health from air pollution and occupational hazards. Impending climate change, mainly driven by energy use, now also threatens health. Policies to promote access to non-polluting and sustainable sources of energy have great potential both to improve public health and to mitigate (prevent) climate disruption. There are several technological options, policy levers, and economic instruments for sectors such as power generation, transport, agriculture, and the built environment. However, barriers to change include vested interests, political inertia, inability to take meaningful action, profound global inequalities, weak technology-transfer mechanisms, and knowledge gaps that must be addressed to transform global markets. The need for policies that prevent dangerous anthropogenic interference with the climate while addressing the energy needs of disadvantaged people is a central challenge of the current era. A comprehensive programme for clean energy should optimise mitigation and, simultaneously, adaption to climate change while maximising co-benefits for health--eg, through improved air, water, and food quality. Intersectoral research and concerted action, both nationally and internationally, will be required.

  13. Alberta's clean energy future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This paper deals with the future of clean energy in Alberta. With the present economic growth of the oil sands industry in Alberta, it is expected that there will be very considerable increases in job opportunities and GDP in both Canada and US. The challenges include high-energy demand and reduction of the carbon footprint. Alberta has adopted certain approaches to developing renewable and alternate forms of energy as well as to increasing the efficiency of present energy use and raising environmental consciousness in energy production. Three areas where the effects of clean energy will be felt are energy systems, climate change, and regional impacts, for instance on land, water, and wildlife. Alberta's regulatory process is shown by means of a flow chart. Aspects of oil sands environmental management include greenhouse gas targets, air quality assurance, and water quality monitoring, among others. Steps taken by Alberta to monitor and improve air quality and water management are listed. In conclusion, the paper notes that significant amounts of money are being pumped into research and development for greenhouse gas and water management projects.

  14. Clean Energy Works Oregon Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Andria [City of Portland; Cyr, Shirley [Clean Energy Works

    2013-12-31

    In April 2010, the City of Portland received a $20 million award from the U.S. Department of Energy, as part of the Energy Efficiency and Conservation Block Grant program. This award was appropriated under the American Recovery and Reinvestment Act (ARRA), passed by President Obama in 2009. DOE’s program became known as the Better Buildings Neighborhood Program (BBNP). The BBNP grant objectives directed the City of Portland Bureau of Planning and Sustainability (BPS) as the primary grantee to expand the BPS-led pilot program, Clean Energy Works Portland, into Clean Energy Works Oregon (CEWO), with the mission to deliver thousands of home energy retrofits, create jobs, save energy and reduce carbon dioxide emissions.The Final Technical Report explores the successes and lessons learned from the first 3 years of program implementation.

  15. Clean energy systems in the subsurface. Production, storage and conversion. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Zhengmeng Michael; Were, Patrick (eds.) [Clausthal Univ. of Technology, Goslar (Germany). Energie-Forschungszentrum Niedersachsen (EFZN); Xie, Heping [Sichuan Univ., Chengdu (China)

    2013-04-01

    Recent research on Integrated Energy and Environmental Utilization of Deep Underground Space. Results of the 3{sup rd} Sino-German Conference ''Underground Storage of CO{sub 2} and Energy'', held at Goslar, Germany, 21-23 May 2013. Researchers and professionals from academia and industry discuss the future of deep underground space technologies for an integrated energy and environmental utilization. Anthropogenic greenhouse gas emissions, energy security and sustainability are three of the greatest contemporary global challenges today. This year the Sino-German Cooperation Group ''Underground Storage of CO{sub 2} and Energy'', is meeting on the 21-23 May 2013 for the second time in Goslar, Germany, to convene its 3{sup rd} Sino-German conference on the theme ''Clean Energy Systems in the Subsurface: Production, Storage and Conversion''.

  16. Chapter 3: Assessing the Electric System Benefits of Clean Energy

    Science.gov (United States)

    Chapter 3 of Assessing the Multiple Benefits of Clean Energy presents detailed information about the energy system, specifically electricity benefits of clean energy, to help policy makers understand how to identify and assess these benefits based upon t

  17. Southeast Regional Clean Energy Policy Analysis (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, J.

    2011-04-01

    More than half of the electricity produced in the southeastern states is fuelled by coal. Although the region produces some coal, most of the states depend heavily on coal imports. Many of the region's aging coal power facilities are planned for retirement within the next 20 years. However, estimates indicate that a 20% increase in capacity is needed over that time to meet the rapidly growing demand. The most common incentives for energy efficiency in the Southeast are loans and rebates; however, total public spending on energy efficiency is limited. The most common state-level policies to support renewable energy development are personal and corporate tax incentives and loans. The region produced 1.8% of the electricity from renewable resources other than conventional hydroelectricity in 2009, half of the national average. There is significant potential for development of a biomass market in the region, as well as use of local wind, solar, methane-to-energy, small hydro, and combined heat and power resources. Options are offered for expanding and strengthening state-level policies such as decoupling, integrated resource planning, building codes, net metering, and interconnection standards to support further clean energy development. Benefits would include energy security, job creation, insurance against price fluctuations, increased value of marginal lands, and local and global environmental paybacks.

  18. Experimental study on energy performance of clean air heat pump

    DEFF Research Database (Denmark)

    Fang, Lei; Nie, Jinzhe; Olesen, Bjarne W.

    2014-01-01

    An innovative clean air heat pump (CAHP) was designed and developed based on the air purification capacity of regenerative silica gel rotor. The clean air heat pump integrated air purification, dehumidification and cooling in one unit. A prototype of the clean air heat pump was developed...... to investigate its energy performance. Energy consumption of the prototype of CAHP was measured in laboratory at different climate conditions including mild-cold, mildhot and extremely hot and humid climates. The energy saving potential of the clean air heat pump compared to a conventional ventilation and air......-conditioning system was calculated. The experimental results showed that the clean air heat pump saved substantial amount of energy compared to the conventional system. For example, the CAHP can save up to 59% of electricity in Copenhagen, up to 40% of electricity in Milan and up to 30% of electricity in Colombo...

  19. The convenient truth LPG: clean energy for a low carbon world

    International Nuclear Information System (INIS)

    Rolland, M.

    2008-01-01

    In the context of climate change, no one solution is future-proof. It is going to take a coordinated worldwide effort to find the right mix of energy policies while balancing diverse and sometimes competing priorities. The WLPGA Climate Change Working Group (CCWG) seeks to demonstrate that the technologies needed to continue current rates of development while mitigating climate change already exist and that LP gas can be a major part of today's solutions to this challenge. LP gas is not a zero-GHG fuel. However, in most cases it can make major and immediate contributions to delivering real GHG emissions reductions. In some ways LP Gas can claim to be ahead of its time, for its clean-burning, low-carbon advantage is available at once, so that even using today's technology, most industries can exceed Kyoto GHG reduction targets by switching to LP Gas. The fact is that LP Gas produces lower GHG emissions compared to conventional energy supplies in virtually every application it is used, from stationary applications such as water heating, space heating, cooking and industrial boilers to transportation applications. There are opportunities to switch to clean burning LP gas for virtually every industry as a means meet GHG targets. LP gas is also portable, making it a perfect complement to distributed renewable energy source such as solar, wind and wave energy (and soon the fuel cell), thereby reducing our reliance centrally produced electricity. LP Gas used in combination with these renewable sources also can improve energy reliability while reducing the overall life-cycle costs. The portable and clean burning nature of LP Gas also makes it an ideal substitute for solid fuels in domestic cooking and heating applications. Household solid fuel use, overwhelmingly concentrated in developing countries, accounts for up to 30% of black carbon emissions worldwide according to some statistics. Switching to LP Gas could lower global GHG emissions as well as help to diminish

  20. Applying Physics to Clean Energy Needs

    Science.gov (United States)

    Environmental Science and Technology, 1975

    1975-01-01

    Solar and ocean thermal energy sources offer real potential for an environmentally clean fuel by the year 2000. A review of current research contracts relating to ocean-thermal energy, cost requirements of plant construction and uses of the electricity produced, such as synthesizing ammonia and synthetic fuels, are discussed. (BT)

  1. 75 FR 9181 - Secretarial China Clean Energy Business Development Mission; Application Deadline Extended

    Science.gov (United States)

    2010-03-01

    ... DEPARTMENT OF COMMERCE International Trade Administration Secretarial China Clean Energy Business... completed on-line at the Clean Energy Business Development Missions' Web site at http://www.trade.gov/Clean... (202-482-1360 or CleanEnergy[email protected] ). The application deadline has been extended to Friday...

  2. U.S. Department of Energy Pacific Region Clean Energy Application Center (PCEAC)

    Energy Technology Data Exchange (ETDEWEB)

    Lipman, Tim [Univ. of California, Berkeley, CA (United States); Kammen, Dan [Univ. of California, Berkeley, CA (United States); McDonell, Vince [Univ. of California, Irvine, CA (United States); Samuelsen, Scott [Univ. of California, Irvine, CA (United States); Beyene, Asfaw [San Diego State Univ., CA (United States); Ganji, Ahmad [San Francisco State Univ., CA (United States)

    2013-09-30

    The U.S. Department of Energy Pacific Region Clean Energy Application Center (PCEAC) was formed in 2009 by the U.S. Department of Energy (DOE) and the California Energy Commission to provide education, outreach, and technical support to promote clean energy -- combined heat and power (CHP), district energy, and waste energy recovery (WHP) -- development in the Pacific Region. The region includes California, Nevada, Hawaii, and the Pacific territories. The PCEAC was operated as one of nine regional clean energy application centers, originally established in 2003/2004 as Regional Application Centers for combined heat and power (CHP). Under the Energy Independence and Security Act of 2007, these centers received an expanded charter to also promote district energy and waste energy recovery, where economically and environmentally advantageous. The centers are working in a coordinated fashion to provide objective information on clean energy system technical and economic performance, direct technical assistance for clean energy projects and additional outreach activities to end users, policy, utility, and industry stakeholders. A key goal of the CEACs is to assist the U.S. in achieving the DOE goal to ramp up the implementation of CHP to account for 20% of U.S. generating capacity by 2030, which is estimated at a requirement for an additional 241 GW of installed clean technologies. Additional goals include meeting the Obama Administration goal of 40 GW of new CHP by 2020, key statewide goals such as renewable portfolio standards (RPS) in each state, California’s greenhouse gas emission reduction goals under AB32, and Governor Brown’s “Clean Energy Jobs Plan” goal of 6.5 GW of additional CHP over the next twenty years. The primary partners in the PCEAC are the Department of Civil and Environmental Engineering and the Energy and Resources Group (ERG) at UC Berkeley, the Advanced Power and Energy Program (APEP) at UC Irvine, and the Industrial Assessment Centers (IAC

  3. Clean Energy Finance: Challenges and Opportunities of Early-Stage Energy Investing (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Heap, D.; Pless, J.; Aieta, N.

    2013-12-01

    Characterized by a changing landscape and new opportunities, today's increasingly complex energy decision space will need innovative financing and investment models to appropriately assess risk and profitability. This report provides an overview of the current state of clean energy finance across the entire spectrum but with a focus on early stage investing, and it includes insights from investors across all investment classes. Further, this report aims to provide a roadmap with the mechanisms, limitations, and considerations involved in making successful investments by identifying risks, challenges, and opportunities in the clean energy sector.

  4. Battery Technology Stores Clean Energy

    Science.gov (United States)

    2008-01-01

    Headquartered in Fremont, California, Deeya Energy Inc. is now bringing its flow batteries to commercial customers around the world after working with former Marshall Space Flight Center scientist, Lawrence Thaller. Deeya's liquid-cell batteries have higher power capability than Thaller's original design, are less expensive than lead-acid batteries, are a clean energy alternative, and are 10 to 20 times less expensive than nickel-metal hydride batteries, lithium-ion batteries, and fuel cell options.

  5. Structural Break, Stock Prices of Clean Energy Firms and Carbon Market

    Science.gov (United States)

    Wang, Yubao; Cai, Junyu

    2018-03-01

    This paper uses EU ETS carbon future price and Germany/UK clean energy firms stock indices to study the relationship between carbon market and clean energy market. By structural break test, it is found that the ‘non-stationary’ variables judged by classical unit root test do own unit roots and need taking first difference. After analysis of VAR and Granger causality test, no causal relationships are found between the two markets. However, when Hsiao’s version of causality test is employed, carbon market is found to have power in explaining the movement of stock prices of clean energy firms, and stock prices of clean energy firms also affect the carbon market.

  6. NREL Spectrum of Clean Energy Innovation: Issue 3 (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2012-11-01

    This quarterly magazine is dedicated to stepping beyond the technical journals to reveal NREL's vital work in a real-world context for our stakeholders. Continuum provides insights into the latest and most impactful clean energy innovations, while spotlighting those talented researchers and unique facilities that make it all happen. This edition focuses on the NREL Spectrum of Clean Energy Innovation.

  7. MIT Clean Energy Prize: Final Technical Report May 12, 2010 - May 11, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Chris [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Campbell, Georgina [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Salony, Jason [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Aulet, Bill [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2011-08-09

    The MIT Clean Energy Prize (MIT CEP) is a venture creation and innovation competition to encourage innovation in the energy space, specifically with regard to clean energy. The Competition invited student teams from any US university to submit student-led ventures that demonstrate a high potential of successfully making clean energy more affordable, with a positive impact on the environment. By focusing on student ventures, the MIT CEP aims to educate the next generation of clean energy entrepreneurs. Teams receive valuable mentoring and hard deadlines that complement the cash prize to accelerate development of ventures. The competition is a year-long educational process that culminates in the selection of five category finalists and a Grand Prize winner and the distribution of cash prizes to each of those teams. Each entry was submitted in one of five clean energy categories: Renewables, Clean Non-Renewables, Energy Efficiency, Transportation, and Deployment.

  8. Memo to US energy executives: Don't forget global warming

    International Nuclear Information System (INIS)

    Howes, J.A.

    1990-01-01

    This article warns executives of energy related companies and government policy makers to not be complacent regarding the impact of future global warming legislation. The author feels that those companies that take a minimum approach to meeting the requirements of the Clean Air Act may find themselves having to revise their approach in midstream to meet tougher global warming legislation requirements. The author approaches the issue as a challenge to the industry to compete in an increasingly environmentally-conscious worldwide market

  9. 78 FR 57629 - Eagle Valley Clean Energy, LLC; Notice of Filing

    Science.gov (United States)

    2013-09-19

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket Nos. EL13-87-000; QF13-658-000] Eagle Valley Clean Energy, LLC; Notice of Filing Take notice that on September 9, 2013, Eagle Valley Clean Energy, LLC filed Form 556 and a petition for certification as a qualifying small power production...

  10. US Clean Energy Sector and the Opportunity for Modeling and Simulation

    Science.gov (United States)

    Inge, Carole Cameron

    2011-01-01

    The following paper sets forth the current understanding of the US clean energy demand and opportunity. As clean energy systems come online and technology is developed, modeling and simulation of these complex energy programs provides an untapped business opportunity. The US Department of Defense provides a great venue for developing new technology in the energy sector because it is demanding lower fuel costs, more energy efficiencies in its buildings and bases, and overall improvements in its carbon footprint. These issues coupled with the security issues faced by foreign dependence on oil will soon bring more clean energy innovations to the forefront (lighter batteries for soldiers, alternative fuel for jets, energy storage systems for ships, etc).

  11. Global climate change: a synopsis of current activities in the Office of Fossil Energy

    International Nuclear Information System (INIS)

    South, D.W.; Kane, R.

    1990-01-01

    This paper reports on the US DOE Office of Fossil Energy investigation and monitoring of several aspects of global climate change as it relates to fossil fuels. The paper consists of the overheads from the presentation. The topics of this paper include greenhouse gases from fossil fuels, scientific uncertainties, legislation and protocols, mitigation strategies and policies, energy and economic impacts, and the role of clean coal technologies and fossil fuels in global climate change

  12. Clean Energy Manufacturing Analysis Center. 2015 Research Highlights -- Carbon Fiber

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sujit [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-03-01

    CEMAC has conducted four major studies on the manufacturing of clean energy technologies. Three of these focused on the end product: solar photovoltaic modules, wind turbines, and automotive lithium-ion batteries. The fourth area focused on a key material for manufacturing clean energy technologies, carbon fiber.

  13. Clean Energy Manufacturing Analysis Center (CEMAC) 2015 Research Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Woodhouse, Michael; Mone, Christopher; Chung, Donald; Elgqvist, Emma; Das, Sujit; Mann, Margaret; Gossett, Scott

    2016-03-01

    CEMAC has conducted four major studies on the manufacturing of clean energy technologies. Three of these focused on the end product: solar photovoltaic modules, wind turbines, and automotive lithium-ion batteries. The fourth area focused on a key material for manufacturing clean energy technologies, carbon fiber. This booklet summarizes key findings of CEMAC work to date, describes CEMAC's research methodology, and describes work to come.

  14. Impact of Clean Energy R&D on the U.S. Power Sector

    Energy Technology Data Exchange (ETDEWEB)

    Donohoo-Vallett, Paul [Dept. of Energy (DOE), Washington DC (United States); Mai, Trieu [National Renewable Energy Lab. (NREL), Golden, CO (United States). Strategic Energy Analysis Center. Energy Forecasting and Modeling Group; Mowers, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States). Strategic Energy Analysis Center. Energy Forecasting and Modeling Group; Porro, Gian [National Renewable Energy Lab. (NREL), Golden, CO (United States). Strategic Energy Analysis Center. Energy Forecasting and Modeling Group

    2017-01-01

    The U.S. government, along with other governments, private corporations and organizations, invests significantly in research, development, demonstration and deployment (RDD&D) activities in clean energy technologies, in part to achieve the goal of a clean, secure, and reliable energy system. While specific outcomes and breakthroughs resulting from RDD&D investment are unpredictable, it can be instructive to explore the potential impacts of clean energy RDD&D activities in the power sector and to place those impacts in the context of current and anticipated market trends. This analysis builds on and leverages analysis by the U.S. Department of Energy (DOE) titled “Energy CO2 Emissions Impacts of Clean Energy Technology Innovation and Policy” (DOE 2017). Similar to DOE (2017), we explore how additional improvements in cost and performance of clean energy technologies could impact the future U.S. energy system; however, unlike the economy-wide modeling used in DOE (2017) our analysis is focused solely on the electricity sector and applies a different and more highly spatially-resolved electric sector model. More specifically, we apply a scenario analysis approach to explore how assumed further advancements in clean electricity technologies would impact power sector generation mix, electricity system costs, and power sector carbon dioxide (CO2) emissions.

  15. Clean fuels from fossil sources

    International Nuclear Information System (INIS)

    Sanfilippo, D.

    2000-01-01

    Energy availability is determining to sustain the social development, but energy production involves environmental impacts at regional and global level. The central role of oil, natural gas, coal for energy supply will be kept for decades. The development of the engine-fuel combination to satisfy more stringent emissions limitations, is the challenge for an environmentally clean transportation system [it

  16. Hawaii Clean Energy Initiative 2008-2018: Celebrating 10 Years of Success

    Energy Technology Data Exchange (ETDEWEB)

    2018-01-04

    Launched in January 2008, the Hawaii Clean Energy Initiative (HCEI) set out transform Hawaii into a world model for energy independence and sustainability. With its leading-edge vision to transition to a Hawaii-powered clean energy economy within a single generation, HCEI established the most aggressive clean energy goals in the nation. Ten years after its launch, HCEI has significantly outdistanced the lofty targets established as Hawaii embarked on its ambitious quest for energy independence. The state now generates 27 percent of its electricity sales from clean energy sources like wind and solar, placing it 12 percentage points ahead of HCEI's original 2015 RPS target of 15 percent. This brochure highlights some of HCEI's key accomplishments and impacts during its first decade and reveals how its new RPS goal of 100 percent by 2045, which the Hawaii state legislature adopted in May 2015, has positioned Hawaii to become the first U.S. state to produce all of its electricity from indigenous renewable sources.

  17. Challenges in the Quest for Clean Energies

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 5. Challenges in the Quest for Clean Energies - Solar Energy Technologies. Sheela K Ramasesha. Series Article Volume 18 Issue 5 May 2013 pp 440-457. Fulltext. Click here to view fulltext PDF. Permanent link:

  18. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy

    Energy Technology Data Exchange (ETDEWEB)

    Sidheswaran, Meera; Destaillats, Hugo; Sullivan, Douglas P.; Fisk, William J.

    2010-10-27

    Approximately ten percent of the energy consumed in U.S. commercial buildings is used by HVAC systems to condition outdoor ventilation air. Reducing ventilation rates would be a simple and broadly-applicable energy retrofit option, if practical counter measures were available that maintained acceptable concentrations of indoor-generated air pollutants. The two general categories of countermeasures are: 1) indoor pollutant source control, and 2) air cleaning. Although pollutant source control should be used to the degree possible, source control is complicated by the large number and changing nature of indoor pollutant sources. Particle air cleaning is already routinely applied in commercial buildings. Previous calculations indicate that particle filtration consumes only 10percent to 25percent of the energy that would otherwise be required to achieve an equivalent amount of particle removal with ventilation. If cost-effective air cleaning technologies for volatile organic compounds (VOCs) were also available, outdoor air ventilation rates could be reduced substantially and broadly in the commercial building stock to save energy. The research carried out in this project focuses on developing novel VOC air cleaning technologies needed to enable energy-saving reductions in ventilation rates. The minimum required VOC removal efficiency to counteract a 50percent reduction in ventilation rate for air cleaning systems installed in the HVAC supply airstream is modest (generally 20percent or less).

  19. 76 FR 5411 - Clean Energy and Power, Inc., Order of Suspension of Trading

    Science.gov (United States)

    2011-01-31

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Clean Energy and Power, Inc., Order of... lack of current and accurate information concerning the securities of Clean Energy and Power, Inc. (``Clean Energy'') because it has not filed any periodic reports since the period ended September 30, 2007...

  20. 75 FR 9181 - Secretarial Indonesia Clean Energy Business Development Mission: Application Deadline Extended

    Science.gov (United States)

    2010-03-01

    ... DEPARTMENT OF COMMERCE International Trade Administration Secretarial Indonesia Clean Energy.... Applications can be completed on-line at the Clean Energy Business Development Missions' Web site at http://www.trade.gov/CleanEnergyMission or can be obtained by contacting the U.S. Department of Commerce Office of...

  1. New energy technology cope with global environmental problems

    International Nuclear Information System (INIS)

    Tsuchimoto, Tatsuya

    1991-01-01

    At present, the national and private storage of oil is the quantity for about 140 days in total, and it can cope with the temporary fear of oil supply, but if the Gulf War was prolonged, the large effect should be exerted to the energy supply. The reduction of the degree of oil dependence and the increase of the dependence on nonfossil fuel are taken up as the basic idea of the long term energy demand and supply in Japan. Also in the action plan for preventing global warming, the further promotion of energy conservation and the adoption of clean energy were decided to be carried out for decreasing carbon dioxide. In this report, among clean energies, the technology of electric power generation by sun beam, wind force and geotherm is described. The power generation by sun beam has many features, but the energy density is low, and the area for installation becomes large. The cost of power generation is relatively high. The power generation by wind force is superior in its environmental characteristics, and has been already put in practical use in USA and Europe. The problem is the reliability of the system. The geothermal power generation is available also in Japan, and is important for the energy security. The plants of about 270 MW are installed in Japan. (K.I.)

  2. Emerging forward osmosis (FO) technologies and challenges ahead for clean water and clean energy applications

    KAUST Repository

    Chung, Tai-Shung; Li, Xue; Ong, Rui Chin; Ge, Qingchun; Wang, Honglei; Han, Gang

    2012-01-01

    The purpose of this short review is to share our understanding and perspectives with the chemical, environmental, water and osmotic power communities on FO processes in order to conduct meaningful R & D and develop effective and sustainable FO technologies for clean water and clean energy. © 2012 Elsevier Ltd. All rights reserved.

  3. Emerging forward osmosis (FO) technologies and challenges ahead for clean water and clean energy applications

    KAUST Repository

    Chung, Tai-Shung

    2012-08-01

    The purpose of this short review is to share our understanding and perspectives with the chemical, environmental, water and osmotic power communities on FO processes in order to conduct meaningful R & D and develop effective and sustainable FO technologies for clean water and clean energy. © 2012 Elsevier Ltd. All rights reserved.

  4. Ontario's long-term energy plan, building our clean energy future

    International Nuclear Information System (INIS)

    2010-01-01

    The first energy priority of the plan is to provide all Ontarians with a clean, modern and reliable electricity system. It gives a summary of the means implemented to help families and businesses with increasing electricity costs. The plan is to shift the province from a coal-dependent system. Over the next 20 years, 15,000 MW (megawatt) of generating capacity will have to be rebuilt or constructed to replace older Ontario's energy infrastructures. In Ontario, an increase of about 3.5% per year in residential prices, resulting from the need to enjoy clean air, reliable generation and modernized transmission, is expected to occur over the next two decades. The expected electricity needs in Ontario and efficient means to satisfy them are described in this plan.

  5. Clean air and energy: from conflict to reconciliation

    International Nuclear Information System (INIS)

    Kolstad, C.D.; Schulze, W.D.; Williams, M.D.

    1982-01-01

    Unconstrained energy resource development in the Rocky Mountain west is likely to threaten the environment and the health and well-being of the people. Impacts may be associated with visibility degradation, toxic concentrations of gases, and deposition of acidic or toxic substances. Because the possible benefits of energy development in the region are very large, there is great concern that constraints imposed by air quality regulation may preclude the use of important resources or make unduly expensive energy produced from the region. The conflict between energy and clean air in the region is exacerbated by non-energy sources, such as copper smelters and urban areas, that already pose significant environmental threats. The hard policy question is not how to preserve clean air resources or how to develop energy but how to achieve and balance both goals. The effects and regulatory costs and benefits of air pollution control are discussed, and policy directions to protect air quality while pursuing energy development are presented

  6. Separations Technology for Clean Water and Energy

    Energy Technology Data Exchange (ETDEWEB)

    Jarvinen, Gordon D [Los Alamos National Laboratory

    2012-06-22

    Providing clean water and energy for about nine billion people on the earth by midcentury is a daunting challenge. Major investments in efficiency of energy and water use and deployment of all economical energy sources will be needed. Separations technology has an important role to play in producing both clean energy and water. Some examples are carbon dioxide capture and sequestration from fossil energy power plants and advanced nuclear fuel cycle scemes. Membrane separations systems are under development to improve the economics of carbon capture that would be required at a huge scale. For nuclear fuel cycles, only the PUREX liquid-liquid extraction process has been deployed on a large scale to recover uranium and plutonium from used fuel. Most current R and D on separations technology for used nuclear fuel focuses on ehhancements to a PUREX-type plant to recover the minor actinides (neptunium, americiu, and curium) and more efficiently disposition the fission products. Are there more efficient routes to recycle the actinides on the horizon? Some new approaches and barriers to development will be briefly reviewed.

  7. British Columbia at the crossroads: clean energy or more pollution?

    Energy Technology Data Exchange (ETDEWEB)

    Foley, D.; Hertzog, S.; Scott, G. (eds.)

    2001-11-01

    Some of the challenges facing policy makers as we enter this century are related to regional air pollution and global climate change, where both are a consequence of the combustion of fossil fuels. Data on smog and particulates has been compiled for decades by medical authorities and regulators, thereby documenting the causes, the characteristics and the impact of global warming. Sustainable energy policies are required. A historic compromise was forged in July 2001 on how to implement the 1997 Kyoto Protocol. It is increasingly important for Canada to make energy policy decisions that support the protection of the climate. Key aspects of human activity, such as tourism, forestry, fishing, agriculture, water supplies and flows, infrastructure reliability and costs, and public health factors are at risk in British Columbia. For British Columbia to comply with the Kyoto Protocol, some sources would be able to expand emissions while others would have to reduce them much more to achieve an overall reduction. This document represents an outline and a vision for new opportunities and analyses the challenges facing energy patterns in British Columbia. It was presented to the British Columbia (BC) Energy Policy Task Force. This broad policy review is an ideal opportunity to build energy policies and related economic initiatives leading to new industries, new jobs, and increased energy security. The document is divided in five parts: the BC situation: trends and impacts, BC Hydro and the rush to gas, the BC gas turbine experience: conflict and controversy, gas and the changing dynamics of the BC energy market, and the clean energy path: lessons and policy recommendations. refs., 1 tab., 4 figs.

  8. British Columbia at the crossroads: clean energy or more pollution?

    International Nuclear Information System (INIS)

    Foley, D.; Hertzog, S.; Scott, G.

    2001-11-01

    Some of the challenges facing policy makers as we enter this century are related to regional air pollution and global climate change, where both are a consequence of the combustion of fossil fuels. Data on smog and particulates has been compiled for decades by medical authorities and regulators, thereby documenting the causes, the characteristics and the impact of global warming. Sustainable energy policies are required. A historic compromise was forged in July 2001 on how to implement the 1997 Kyoto Protocol. It is increasingly important for Canada to make energy policy decisions that support the protection of the climate. Key aspects of human activity, such as tourism, forestry, fishing, agriculture, water supplies and flows, infrastructure reliability and costs, and public health factors are at risk in British Columbia. For British Columbia to comply with the Kyoto Protocol, some sources would be able to expand emissions while others would have to reduce them much more to achieve an overall reduction. This document represents an outline and a vision for new opportunities and analyses the challenges facing energy patterns in British Columbia. It was presented to the British Columbia (BC) Energy Policy Task Force. This broad policy review is an ideal opportunity to build energy policies and related economic initiatives leading to new industries, new jobs, and increased energy security. The document is divided in five parts: the BC situation: trends and impacts, BC Hydro and the rush to gas, the BC gas turbine experience: conflict and controversy, gas and the changing dynamics of the BC energy market, and the clean energy path: lessons and policy recommendations. refs., 1 tab., 4 figs

  9. Revolution Now: The Future Arrives for Four Clean Energy Technologies

    Science.gov (United States)

    Tillemann, Levi; Beck, Fredric; Brodrick, James; Brown, Austin; Feldman, David; Nguyen, Tien; Ward, Jacob

    2013-09-17

    For decades, America has anticipated the transformational impact of clean energy technologies. But even as costs fell and technology matured, a clean energy revolution always seemed just out of reach. Critics often said a clean energy future would "always be five years away." This report focuses on four technology revolutions that are here today. In the last five years they have achieved dramatic reductions in cost and this has been accompanied by a surge in consumer, industrial and commercial deployment. Although these four technologies still represent a small percentage of their total market, they are growing rapidly. The four key technologies this report focuses on are: onshore wind power, polysilicon photovoltaic modules, LED lighting, and electric vehicles.

  10. Energy storage deployment and innovation for the clean energy transition

    Science.gov (United States)

    Kittner, Noah; Lill, Felix; Kammen, Daniel M.

    2017-09-01

    The clean energy transition requires a co-evolution of innovation, investment, and deployment strategies for emerging energy storage technologies. A deeply decarbonized energy system research platform needs materials science advances in battery technology to overcome the intermittency challenges of wind and solar electricity. Simultaneously, policies designed to build market growth and innovation in battery storage may complement cost reductions across a suite of clean energy technologies. Further integration of R&D and deployment of new storage technologies paves a clear route toward cost-effective low-carbon electricity. Here we analyse deployment and innovation using a two-factor model that integrates the value of investment in materials innovation and technology deployment over time from an empirical dataset covering battery storage technology. Complementary advances in battery storage are of utmost importance to decarbonization alongside improvements in renewable electricity sources. We find and chart a viable path to dispatchable US$1 W-1 solar with US$100 kWh-1 battery storage that enables combinations of solar, wind, and storage to compete directly with fossil-based electricity options.

  11. Assessing the Multiple Benefits of Clean Energy Chapter 1: Introduction

    Science.gov (United States)

    Chapter 1 of “Assessing the Multiple Benefits of Clean Energy” provides an introduction to the document. /meta name=DC.title content=Assessing the Multiple Benefits of Clean Energy Chapter 1: Introduction

  12. Clean energy and the hydrogen economy.

    Science.gov (United States)

    Brandon, N P; Kurban, Z

    2017-07-28

    In recent years, new-found interest in the hydrogen economy from both industry and academia has helped to shed light on its potential. Hydrogen can enable an energy revolution by providing much needed flexibility in renewable energy systems. As a clean energy carrier, hydrogen offers a range of benefits for simultaneously decarbonizing the transport, residential, commercial and industrial sectors. Hydrogen is shown here to have synergies with other low-carbon alternatives, and can enable a more cost-effective transition to de-carbonized and cleaner energy systems. This paper presents the opportunities for the use of hydrogen in key sectors of the economy and identifies the benefits and challenges within the hydrogen supply chain for power-to-gas, power-to-power and gas-to-gas supply pathways. While industry players have already started the market introduction of hydrogen fuel cell systems, including fuel cell electric vehicles and micro-combined heat and power devices, the use of hydrogen at grid scale requires the challenges of clean hydrogen production, bulk storage and distribution to be resolved. Ultimately, greater government support, in partnership with industry and academia, is still needed to realize hydrogen's potential across all economic sectors.This article is part of the themed issue 'The challenges of hydrogen and metals'. © 2017 The Author(s).

  13. Energy Servers Deliver Clean, Affordable Power

    Science.gov (United States)

    2010-01-01

    K.R. Sridhar developed a fuel cell device for Ames Research Center, that could use solar power to split water into oxygen for breathing and hydrogen for fuel on Mars. Sridhar saw the potential of the technology, when reversed, to create clean energy on Earth. He founded Bloom Energy, of Sunnyvale, California, to advance the technology. Today, the Bloom Energy Server is providing cost-effective, environmentally friendly energy to a host of companies such as eBay, Google, and The Coca-Cola Company. Bloom's NASA-derived Energy Servers generate energy that is about 67-percent cleaner than a typical coal-fired power plant when using fossil fuels and 100-percent cleaner with renewable fuels.

  14. 77 FR 71846 - In the Matter of Encore Clean Energy, Inc., Energy & Engine Technology Corp., Equity Media...

    Science.gov (United States)

    2012-12-04

    ... SECURITIES AND EXCHANGE COMMISSION [ File No. 500-1] In the Matter of Encore Clean Energy, Inc., Energy & Engine Technology Corp., Equity Media Holdings Corporation, eTotalSource, Inc., Extensions, Inc... concerning the securities of Encore Clean Energy, Inc. because it has not filed any periodic reports since...

  15. Evaluating clean energy alternatives for Jiangsu, China: An improved multi-criteria decision making method

    International Nuclear Information System (INIS)

    Zhang, Ling; Zhou, Peng; Newton, Sidney; Fang, Jian-xin; Zhou, De-qun; Zhang, Lu-ping

    2015-01-01

    Promoting the utilization of clean energy has been identified as one potential solution to addressing environmental pollution and achieving sustainable development in many countries around the world. Evaluating clean energy alternatives includes a requirement to balance multiple conflict criteria, including technology, environment, economy and society, all of which are incommensurate and interdependent. Traditional MCDM (multi-criteria decision making) methods, such as the weighted average method, often fail to aggregate such criteria consistently. In this paper, an improved MCDM method based on fuzzy measure and integral is developed and applied to evaluate four primary clean energy options for Jiangsu Province, China. The results confirm that the preferred clean energy option for Jiangsu is solar photovoltaic, followed by wind, biomass and finally nuclear. A sensitivity analysis is also conducted to evaluate the values of clean energy resources for Jiangsu. The ordered weighted average method is also applied to compare the method mentioned above in our empirical study. The results show that the improved MCDM method provides higher discrimination between alternative clean energy alternatives. - Highlights: • Interactions among evaluation criteria of clean energy resources are taken into account. • An improved multi-criteria decision making (MCDM) method is proposed based on entropy weight method, fuzzy measure and integral. • Clean energy resources of Jiangsu are evaluated with the improved MCDM method, and their ranks are identified.

  16. Study on generation investment decision-making considering multi-agent benefit for global energy internet

    Science.gov (United States)

    Li, Pai; Huang, Yuehui; Jia, Yanbing; Liu, Jichun; Niu, Yi

    2018-02-01

    Abstract . This article has studies on the generation investment decision in the background of global energy interconnection. Generation investment decision model considering the multiagent benefit is proposed. Under the back-ground of global energy Interconnection, generation investors in different clean energy base not only compete with other investors, but also facing being chosen by the power of the central area, therefor, constructing generation investment decision model considering multiagent benefit can be close to meet the interests demands. Using game theory, the complete information game model is adopted to solve the strategies of different subjects in equilibrium state.

  17. Global and Regional Impacts of the Clean Development Mechanism

    International Nuclear Information System (INIS)

    Wang, Shunli; De Groot, H.L.F.; Nijkamp, P.; Verhoef, E.T.

    2009-05-01

    Climate change is a serious concern worldwide. Policy research on climate change in the past decades has largely focused on applied modelling exercises. However, the implications of specific policy strategies such as the clean development mechanism (CDM) for global and regional economic and environmental developments has received relatively little attention. This is partly caused by the complexities of modelling an instrument like CDM. By using and modifying the GTAP-E modelling system (GTAP stands for Global Trade Analysis Project), this paper sets out to trace the combined economic and environmental impacts of CDM policies. Particular emphasis is placed on technology transfer induced by alternative CDM policies. Specific attention is devoted to the possible negative consequences of non-participation of the USA in the global coalition, and the associated distributional impacts world-wide.

  18. Global and Regional Impacts of the Clean Development Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shunli; De Groot, H.L.F.; Nijkamp, P.; Verhoef, E.T. [VU University, Amsterdam (Netherlands)

    2009-05-15

    Climate change is a serious concern worldwide. Policy research on climate change in the past decades has largely focused on applied modelling exercises. However, the implications of specific policy strategies such as the clean development mechanism (CDM) for global and regional economic and environmental developments has received relatively little attention. This is partly caused by the complexities of modelling an instrument like CDM. By using and modifying the GTAP-E modelling system (GTAP stands for Global Trade Analysis Project), this paper sets out to trace the combined economic and environmental impacts of CDM policies. Particular emphasis is placed on technology transfer induced by alternative CDM policies. Specific attention is devoted to the possible negative consequences of non-participation of the USA in the global coalition, and the associated distributional impacts world-wide.

  19. Outreach and education to ensure a clean energy future for all - 59339

    International Nuclear Information System (INIS)

    Hess, Susan M.

    2012-01-01

    As the nuclear industry continues to grow throughout the world, we find that support from government officials, local business leaders and the general public is becoming more and more important. In order to help raise awareness and inform these various publics, AREVA expanded upon a best practice from its worldwide operations and recently established a Community Advisory Council in the United States. The member organizations represent a variety of grassroots and minority organizations from across the United States and are active in various ways in local, state and federal arenas. AREVA's objective for the Council is simple - listen to concerns, engage in dialogue and raise awareness about the intrinsic link existing between energy, CO 2 emissions, global warming, and economic growth, so these same people can make decisions when it comes to energy sources in the future. We want our members to help us better understand their communities, listen to their concerns and answer their questions openly and honestly. AREVA understands that this outreach and education are just the first steps toward helping clean energy sources grow. We must maintain regular dialog and operate in a safe manner, because in the long run, it is these community members who will ensure energy security for the country. And it is only by working together as an industry that we can ensure a safe, clean air future for generations to come, no matter where in the world we live. (authors)

  20. FY 2001 report on the results of the trend survey of introduction of clean energy vehicle for the transport industry; 2001 nendo unso yo clean energy jidosha no donyu doko chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-03-01

    Survey/analysis were made on the details of the plan on the leading introduction of clean energy vehicle by 632 transporters who applied for the project on promotion of clean energy vehicle in FY 2001. As a result of the survey, the following were made clear. The clean energy vehicles to be planned to be introduced by transporters are all natural gas vehicles. The transporters planning the leading introduction are mostly in large cities and are spreading also in the periphery. Fifty three percent of the transporters predicts that the predicted average running distance of the clean energy vehicle to be introduced is the same as those of the vehicles they owns, and 39% predicts that it is shorter. About the form of utilization, they use it overwhelmingly for the regional collection/delivery. It is considered that the improvement in running distance per 1 fuel filling of clean energy vehicle will contribute to the spread. Fuel supply stations that the clean energy cars to be introduced use concentrate in the good location. It is necessary to strongly promote preparation of the infrastructure. (NEDO)

  1. Clean and Secure Energy from Coal

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Philip [Univ. of Utah, Salt Lake City, UT (United States); Davies, Lincoln [Univ. of Utah, Salt Lake City, UT (United States); Kelly, Kerry [Univ. of Utah, Salt Lake City, UT (United States); Lighty, JoAnn [Univ. of Utah, Salt Lake City, UT (United States); Reitze, Arnold [Univ. of Utah, Salt Lake City, UT (United States); Silcox, Geoffrey [Univ. of Utah, Salt Lake City, UT (United States); Uchitel, Kirsten [Univ. of Utah, Salt Lake City, UT (United States); Wendt, Jost [Univ. of Utah, Salt Lake City, UT (United States); Whitty, Kevin [Univ. of Utah, Salt Lake City, UT (United States)

    2014-08-31

    The University of Utah, through their Institute for Clean and Secure Energy (ICSE), performed research to utilize the vast energy stored in our domestic coal resources and to do so in a manner that will capture CO2 from combustion from stationary power generation. The research was organized around the theme of validation and uncertainty quantification (V/UQ) through tightly coupled simulation and experimental designs and through the integration of legal, environment, economics and policy issues.

  2. Modelling energy demand for a fleet of hydrogen-electric vehicles interacting with a clean energy hub

    International Nuclear Information System (INIS)

    Syed, F.; Fowler, M.; Wan, D.; Maniyali, Y.

    2009-01-01

    This paper details the development of an energy demand model for a hydrogen-electric vehicle fleet and the modelling of the fleet interactions with a clean energy hub. The approach taken is to model the architecture and daily operation of every individual vehicle in the fleet. A generic architecture was developed based on understanding gained from existing detailed models used in vehicle powertrain design, with daily operation divided into two periods: charging and travelling. During the charging period, the vehicle charges its Electricity Storage System (ESS) and refills its Hydrogen Storage System (HSS), and during the travelling period, the vehicle depletes the ESS and HSS based on distance travelled. Daily travel distance is generated by a stochastic model and is considered an input to the fleet model. The modelling of a clean energy hub is also presented. The clean energy hub functions as an interface between electricity supply and the energy demand (i.e. hydrogen and electricity) of the vehicle fleet. Finally, a sample case is presented to demonstrate the use of the fleet model and its implications on clean energy hub sizing. (author)

  3. Enhancing State Clean Energy Workforce Training to Meet Demand. Issue Brief

    Science.gov (United States)

    Saha, Devashree

    2010-01-01

    Recent state policy and federal funding initiatives are driving the demand for clean energy in both the short and long term. This increased demand has created the need for many more workers trained or retrained in a variety of clean energy jobs. In response, states are utilizing funding under the American Recovery and Reinvestment Act of 2009…

  4. The Global Trend of Energy Saving and Carbon Reducing in Post-Kyoto Protocol Era

    OpenAIRE

    Chih-Lun Chen

    2011-01-01

    In recent years, with increased focus on extreme global climates, the drastic population growth, and the exhaustion of resources, humanity has a greater need for and reliance on intelligent, technology-enhanced living, as well as more effective means of production. Being sustainable, green, and environmentally friendly is becoming more and more a global priority. Energy saving and carbon reduction are the keys to achieving intelligent living, clean production, and environmental responsibility...

  5. A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation

    International Nuclear Information System (INIS)

    Cai, Yiyong; Newth, David; Finnigan, John; Gunasekera, Don

    2015-01-01

    Highlights: • This paper introduces the design of a hybrid energy-economy model, GTEM-C. • The model offers a unified tool to analyse the energy-carbon-environment nexus. • Results are presented on global energy transformation due to carbon mitigation. • Electrification with renewable energies can contain the spiking of carbon prices. - Abstract: This paper introduces the design of the CSIRO variant of the Global Trade and Environment model (GTEM-C). GTEM-C is a hybrid model that combines the top-down macroeconomic representation of a computable general equilibrium model with the bottom-up engineering details of energy production. The model features detailed accounting for global energy flows that are embedded in traded energy goods, and it offers a unified framework to analyse the energy-carbon-environment nexus. As an illustrative example, we present simulation results on global energy transformation under the Intergovernmental Panel on Climate Change’s representative carbon pathways 4.5 and 8.5. By testing the model’s sensitivity to the relevant parameter, we find that the pace of electrification will significantly contain the spiking of carbon prices because electricity can be produced from carbon-free or less carbon-intensive technologies. The decoupling of energy use and carbon footprint, due to the uptake of clean electricity technologies, such as nuclear, wind, solar, and carbon capture and storage, allows the world to maintain high level of energy consumption, which is essential to economic growth

  6. Clean Energy-Related Economic Development Policy across the States: Establishing a 2016 Baseline

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Jeffrey J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-01-01

    States implement clean energy-related economic development policy to spur innovation, manufacturing, and to address other priorities. This report focuses on those policies most directly related to expanding new and existing manufacturing. The extent to which states invest in this policymaking depends on political drivers and jurisdictional economic development priorities. To date, no one source has collected all of the clean energy-related economic development policies available across the 50 states. Thus, it is unclear how many policies exist within each state and how these policies, when implemented, can drive economic development. Establishing the baseline of existing policy is a critical first step in determining the potential holistic impact of these policies on driving economic growth in a state. The goal of this report is to document the clean energy-related economic development policy landscape across the 50 states with a focus on policy that seeks to expand new or existing manufacturing within a state. States interested in promoting clean energy manufacturing in their jurisdictions may be interested in reviewing this landscape to determine how they compare to peers and to adjust their policies as necessary. This report documents over 900 existing clean energy-related economic development laws, financial incentives (technology-agnostic and clean energy focused), and other policies such as agency-directed programs and initiatives across the states.

  7. Framework for Evaluating the Total Value Proposition of Clean Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Pater, J. E.

    2006-02-01

    Conventional valuation techniques fail to include many of the financial advantages of clean energy technologies. By omitting benefits associated with risk management, emissions reductions, policy incentives, resource use, corporate social responsibility, and societal economic benefits, investors and firms sacrifice opportunities for new revenue streams and avoided costs. In an effort to identify some of these externalities, this analysis develops a total value proposition for clean energy technologies. It incorporates a series of values under each of the above categories, describing the opportunities for recapturing investments throughout the value chain. The framework may be used to create comparable value propositions for clean energy technologies supporting investment decisions, project siting, and marketing strategies. It can also be useful in policy-making decisions.

  8. A Comprehensive Plan for Global Energy Revolution

    Science.gov (United States)

    Blees, T.

    2009-05-01

    There is no dearth of information regarding the grave crises faced by humanity in the 21st century. There is also growing consensus that the wholesale burning of fossil fuels must come to an end, either because of climate change or other still-salient reasons such as air pollution or major conflicts over dwindling reserves of cheaply recoverable oil and gas resources. At the same time, global demographics predict with disquieting certainty a world with up to 9 or 10 billion souls by mid-century. The vast expansion of energy consumption that this population represents, along with further increases in already-unacceptable levels of atmospheric carbon dioxide from fossil fuel burning, demands that we quickly develop almost limitless sources of clean, economical power. What is sorely lacking in the public debate are realistic solutions. Expanding wind and solar generating capacity is an important near-term goal, but neither of these technologies represents a viable solution for generating base load power at the vast scales that will be required. Energy efficiency measures are likewise well-directed, but the combination of rising population along with increasingly energy-intensive economic activity by the large fraction of Earth's current population residing in developing nations suggests that absolute energy demand will continue to rise even with radically improved energy efficiency. Fortunately we have the technologies available to provide virtually unlimited clean energy, and to utilize and recycle our resources so that everyone can improve their standard of living. The Integral Fast Reactor (IFR), developed at the Argonne National Laboratory in the 80's and 90's and currently championed by General Electric, is a technology that fills the bill on every count, and then some. IFRs are safe, environmentally clean, economical, and free of conflict over fuel supply. IFRs can safely consume as fuel the nuclear waste from the current installed base of light-water reactors

  9. The optimal time path of clean energy R&D policy when patents have finite lifetime

    NARCIS (Netherlands)

    Gerlagh, R.; Kverndokk, S.; Rosendahl, K.E.

    We study the optimal time path for clean energy innovation policy. In a model with emission reduction through clean energy deployment, and with R&D increasing the overall productivity of clean energy, we describe optimal R&D policies jointly with emission pricing policies. We find that while

  10. Tracking Clean Energy Progress

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Global demand for energy shows no signs of slowing; carbon dioxide emissions keep surging to new records; and political uprisings, natural disasters and volatile energy markets put the security of energy supplies to the test. More than ever, the need for a fundamental shift to a cleaner and more reliable energy system is clear. What technologies can make that transition happen? How do they work? And how much will it all cost?.

  11. New clean energy enterprises and sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Usher, Eric [United Nations Environment Programme, Rural Energy Enterprise Development (REED), Paris (France); Xiaodong Wang [United Nations Foundation, Climate Change Program, Washington, DC (United States)

    2002-06-01

    Though hundreds of billions of dollars have been invested, past development efforts have been largely unable to break the cycle of poverty - a cycle that is directly linked to the provision of energy. Too often, the potential of local enterprises to provide essential energy services has been ignored. Yet such an enterprise is one of the most potent engines for shifting towards a local human capacity to produce and distribute modern energy services. This recognition lies at the heart of REED, an approach to developing new sustainable energy enterprises that use clean, efficient and renewable energy technologies to meet the energy needs of underserved populations. (Author)

  12. Canada's clean energy technology and the southern California market : a needs assessment

    International Nuclear Information System (INIS)

    2008-01-01

    This report presented a study whose purpose was to develop targeted market intelligence regarding the specific needs and plans of southern California-based organizations that are interested in procuring or using clean energy technologies for demonstration or commercial purposes. Industry Canada and the Canadian Consulate General in Los Angeles planned to utilize the study as a tool to explore business development or partnering opportunities between Canada/Canadian industry and California entities. The report described the study objective and provided a definition of clean energy technology. Clean energy was defined as any energy that causes little or no harm to the environment. The study scope was also presented. The study focused on opportunities in the following areas: solar power and photovoltaic technologies; hydrogen and fuel cells technologies; and thermochemical waste-to-energy systems. Context was discussed in terms of California's energy drivers, and California clean energy initiatives and experience. The results of a survey conducted with 350 organizations in southern California were also outlined for facilities and capital projects; fleets and mobile sources; and parks and public spaces. Last, the report presented an analysis of the California marketplace and solar power, hydrogen and fuel cells, and waste-to-energy. 14 refs

  13. Potential contribution of the Clean Coal Program to reducing global emissions of greenhouse gases

    International Nuclear Information System (INIS)

    Blasing, T.J.

    1992-01-01

    Environmental considerations of Clean Coal Program (CCP) initially focused on reducing emissions of sulfur dioxide (SO 2 ) and nitrogen oxides (NO x ) to the atmosphere. However, it has also become apparent that some Clean Coal Technologies (CCTs) may contribute appreciably to reducing emissions of carbon dioxide (CO 2 ), thereby diminishing the rate of any global warming that may result from greenhouse effects. This is particularly true for CCTs involving replacement of a major portion of an existing facility and/or providing the option of using a different fuel form (the repowering CCTs). Because the subject of global-scale climate warming is receiving increased attention, the effect of CCTs on Co 2 emissions has become a topic of increasing interest. The Final Programmatic Environmental Impact Statement for the Clean Coal Technology Demonstration Program projected that with full implementation of those repowering CCTs that would be most effective at reducing CO 2 emissions (Pressurized Fluidized Bed and Coal Gasification Fuel Cell technologies), the national fossil-fuel Co 2 emissions by the year 2010 would be roughly 90% of the emissions that would occur with no implementation of any CCTs by the same date. It is the purpose of this paper to examine the global effect of such a reduction in greenhouse gas emissions, and to compare that effect with effects of other strategies for reducing global greenhouse gas emissions

  14. Northeast Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeois, Tom [Pace Univ., New York, NY (United States)

    2013-09-30

    From October 1, 2009 through September 30, 2013 (“contract period”), the Northeast Clean Energy Application Center (“NE-CEAC”) worked in New York and New England (Connecticut, Rhode Island, Vermont, Massachusetts, New Hampshire, and Maine) to create a more robust market for the deployment of clean energy technologies (CETs) including combined heat and power (CHP), district energy systems (DES), and waste heat recovery (WHR) systems through the provision of technical assistance, education and outreach, and strategic market analysis and support for decision-makers. CHP, DES, and WHR can help reduce greenhouse gas emissions, reduce electrical and thermal energy costs, and provide more reliable energy for users throughout the United States. The NE-CEAC’s efforts in the provision of technical assistance, education and outreach, and strategic market analysis and support for decision-makers helped advance the market for CETs in the Northeast thereby helping the region move towards the following outcomes: Reduction of greenhouse gas emissions and criteria pollutants; Improvements in energy efficiency resulting in lower costs of doing business; Productivity gains in industry and efficiency gains in buildings; Lower regional energy costs; Strengthened energy security; Enhanced consumer choice; Reduced price risks for end-users; and Economic development effects keeping more jobs and more income in our regional economy Over the contract period, NE-CEAC provided technical assistance to approximately 56 different potential end-users that were interested in CHP and other CETs for their facility or facilities. Of these 56 potential end-users, five new CHP projects totaling over 60 MW of install capacity became operational during the contract period. The NE-CEAC helped host numerous target market workshops, trainings, and webinars; and NE-CEAC staff delivered presentations at many other workshops and conferences. In total, over 60 different workshops, conferences

  15. China's "energy revolution": measuring the status quo, modelling regional dynamics and assessing global impacts

    DEFF Research Database (Denmark)

    Mischke, Peggy

    As the world's largest economy in transition, China plays a growing role in global energy markets, clean technology deployment and climate change negotiations. The Chinese president Xi Jinping called in June 2014 for an “energy revolution” of the country’s “energy production and consumption habits......, expanded and applied in this regard. The theories underlying this research are stemming from various scientific disciplines, such as energy and power engineering, macro- and energy-economics, and power project finance. Cross-cutting aspects are the harmonization of Chinese and international energy...... top-down and bottom-up global energy planning tools to model future regional dynamics of China's energy sector; and (v) an assessment of electricity generation costs of the first operational concentrated solar power technologies in China. The results of this thesis are relevant for a broad scientific...

  16. Power System Challenge: Synthesis Report for the 7th Clean Energy Ministerial

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-06-01

    The Clean Energy Ministerial's (CEM's) Power System Challenge was established in 2015 to create a shared vision among major economies regarding the pathway to clean, reliable, resilient, and affordable power. Endorsing governments have created core principles and challenge propositions as a framework for government and industry action to support and guide power system transformation. This brochure details the status of the Challenge, how countries are working to meet the Challenge, and the relevant milestones reached by initiatives of the Clean Energy Ministerial.

  17. Studies of global warming and global energy

    International Nuclear Information System (INIS)

    Inaba, Atsushi

    1993-01-01

    Global warming caused by increase in atmospheric CO 2 concentration has been the focus of many recent global energy studies. CO 2 is emitted to the atmosphere mainly from the combustion of fossil fuels. This means that global warming is fundamentally a problem of the global energy system. An analysis of the findings of recent global energy studies is made in this report. The results are categorized from the viewpoint of concern about global warming. The analysis includes energy use and CO 2 emissions, measures taken to restrain CO 2 emissions and the cost of such measure, and suggestions for long term global energy generation. Following this comparative analysis, each of the studies is reviewed in detail. (author) 63 refs

  18. USVI Energy Road Map: Charting the Course to a Clean Energy Future (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-07-01

    This brochure provides an overview of the integrated clean energy deployment process and progress of the Energy Development in Island Nations U.S. Virgin Islands pilot project road map, including over-arching goals, organization, strategy, technology-specific goals and accomplishments, challenges, solutions, and upcoming milestones.

  19. Energy Efficient in-Sensor Data Cleaning for Mining Frequent Itemsets

    Directory of Open Access Journals (Sweden)

    Jacques M. BAHI

    2012-03-01

    Full Text Available Limited energy, storage, computational power represent the main constraint of sensor networks. Development of algorithms that take into consideration this extremely demanding and constrained environment of sensor networks became a major challenge. Communicating messages over a sensor network consume far more energy than processing it and mining sensors data should respect the characteristics of sensor networks in terms of energy and computation constraints, network dynamics, and faults. This lead us to think of a data cleaning pre processing phase to reduce the packet size transmitted and prepare the data for an efficient and scalable data mining. This paper introduces a tree-based bi-level periodic data cleaning approach implemented on both the source node and the aggregator levels. Our contribution in this paper is two folds. First we look on a periodic basis at each data measured and periodically clean it while taking into consideration the number of occurrences of the measures captured which we shall call weight. Then, a data cleaning is performed between groups of nodes on the level of the aggregator, which contains lists of measures along with their weights. The quality of the information should be preserved during the in-network transmission through the weight of each measure captured by the sensors. This weight will constitute the key optimization of the frequent pattern tree. The result set will constitute a perfect training set to mine without higher CPU consumption allowing us to send only the useful information to the sink. The experimental results show the effectiveness of this technique in terms of energy efficiency and quality of the information by focusing on a periodical data cleaning while taking into consideration the weight of the data captured.

  20. THE CLEAN ENERGY MANUFACTURING JOB MARKET AND ITS ROLE IN THE UNITED STATES ECONOMY

    OpenAIRE

    Plaskacz, Audrey

    2009-01-01

    This paper provides an overview of green jobs in the United States, with a focus on synthesizing various estimates of the current and future number of green jobs, and relating these to estimates of the future number of clean energy manufacturing jobs. In doing so, it answers the following two research questions: ?can lost manufacturing jobs become clean energy jobs?? and ?can existing manufacturing jobs be saved from disappearing by transforming into clean energy jobs?? By combining current f...

  1. Clean Energy Industries and rare Earth Materials: Economic and Financial Issues

    OpenAIRE

    Baldi, Lucia; Peri, Massimo; Vandone, Daniela

    2013-01-01

    In the last few years Rare Earth Materials (REMs) prices have experienced a strong increase, due to geopolitical policies and sustainability issues. Provided that these materials at risk of supply disruptions are largely employed in the development of new technologies - such as clean energy industries - financial markets may already have included these concerns into clean energy companies evaluation. We use a multifactor market model for the period January 2006-September 2012 to analyse the i...

  2. Midwest Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Cuttica, John; Haefke, Cliff

    2013-12-31

    The Midwest Clean Energy Application Center (CEAC) was one of eight regional centers that promoted and assisted in transforming the market for combined heat and power (CHP), waste heat to power (WHP), and district energy (DE) technologies and concepts throughout the United States between October 1, 2009 and December 31, 2013. The key services the CEACs provided included: Market Opportunity Analyses – Supporting analyses of CHP market opportunities in diverse markets including industrial, federal, institutional, and commercial sectors. Education and Outreach – Providing information on the energy and non-energy benefits and applications of CHP to state and local policy makers, regulators, energy end-users, trade associations and others. Information was shared on the Midwest CEAC website: www.midwestcleanergy.org. Technical Assistance – Providing technical assistance to end-users and stakeholders to help them consider CHP, waste heat to power, and/or district energy with CHP in their facility and to help them through the project development process from initial CHP screening to installation. The Midwest CEAC provided services to the Midwest Region that included the states of Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin.

  3. Photobiological hydrogen production and artificial photosynthesis for clean energy: from bio to nanotechnologies.

    Science.gov (United States)

    Nath, K; Najafpour, M M; Voloshin, R A; Balaghi, S E; Tyystjärvi, E; Timilsina, R; Eaton-Rye, J J; Tomo, T; Nam, H G; Nishihara, H; Ramakrishna, S; Shen, J-R; Allakhverdiev, S I

    2015-12-01

    Global energy demand is increasing rapidly and due to intensive consumption of different forms of fuels, there are increasing concerns over the reduction in readily available conventional energy resources. Because of the deleterious atmospheric effects of fossil fuels and the uncertainties of future energy supplies, there is a surge of interest to find environmentally friendly alternative energy sources. Hydrogen (H2) has attracted worldwide attention as a secondary energy carrier, since it is the lightest carbon-neutral fuel rich in energy per unit mass and easy to store. Several methods and technologies have been developed for H2 production, but none of them are able to replace the traditional combustion fuel used in automobiles so far. Extensively modified and renovated methods and technologies are required to introduce H2 as an alternative efficient, clean, and cost-effective future fuel. Among several emerging renewable energy technologies, photobiological H2 production by oxygenic photosynthetic microbes such as green algae and cyanobacteria or by artificial photosynthesis has attracted significant interest. In this short review, we summarize the recent progress and challenges in H2-based energy production by means of biological and artificial photosynthesis routes.

  4. The Dalian National Laboratory for Clean Energy.

    Science.gov (United States)

    Zhang, Tao; Li, Can; Bao, Xinhe

    2012-05-01

    The Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences conducts fundamental and applied research towards chemistry and chemical engineering, with strong competence in the development of new technologies. The research in this special issue, containing 19 papers, features some of the DICP's best work on sustainable energy, use of environmental resources, and advanced materials within the framework of the Dalian National Laboratory for Clean Energy (DNL). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Clean fuel technologies and clean and reliable energy: a summary

    International Nuclear Information System (INIS)

    Bulatov, Igor; Klemes, Jiri Jaromir

    2011-01-01

    There are two major areas covered by this current Special Issue: Cleaner Fuel Technologies and Waste Processing. In addition, the Special Issue, also includes some recent developments in various fields of energy efficiency research. The first group of contributions considers in detail, hydrogen production from biomass and hydrogen production by the sorption-enhanced steam methane reforming process (SE-SMR). Biomass-related technologies are also discussed for a design of an integrated biorefinery, production of clean diesel fuel by co-hydrogenation of vegetable oil with gas oil and utilization of microwave and ultrasound pretreatments in the production of bioethanol from corn. Waste Processing aspects are considered in the second group of papers. This section includes integrated waste-to-energy plants, utilisation of municipal solid waste in the cement industry and urban supply and disposal systems. The third topic is intentionally made rather loose: it includes different research topics on various aspects of energy efficiency, e.g. resource-saving network design, new research on divided wall columns, vehicle logistics as process-network synthesis for energy consumption and CO 2 reduction.

  6. Problems of clean coals production as a sources of clean energy generation; Problemy produkcji czystych wegli jako zrodlo wytwarzania czystej energii

    Energy Technology Data Exchange (ETDEWEB)

    Blaschke, W. [Polish Academy of Sciences, Krakow (Poland). Mineral and Energy Economy Institute

    2004-07-01

    The paper advises of clean coal technology programme objectives. Issues connected with clean coals preparation for combustion have been discussed. The quality of steam fine coals has been presented, including those used in the commercial power industry. A small supply of 'clean coals' has been started in Poland, related however to a limited demand. Factors affecting the reduction in clean coal production have been discussed. The fact that there are no significant reasons to constrain supplies of clean coals has been emphasised. The quality of coal in deposits is very good, and the condition of preparation enables production of clean coal. Clean energy generation from clean coal requires only cooperation between the hard coal mining industry and the commercial power industry, passing over particular sectoral interests. 15 refs.

  7. Krakow clean fossil fuels and energy efficiency project

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, T.A.; Pierce, B.L. [Brookhaven National Lab., Upton, NY (United States)

    1995-11-01

    The Support for Eastern European Democracy (SEED) Act of 1989 directed the U.S. Department of Energy (DOE) to undertake an equipment assessment project aimed at developing the capability within Poland to manufacture or modify industrial-scale combustion equipment to utilize fossil fuels cleanly. This project is being implemented in the city of Krakow as the `Krakow Clean Fossil Fuels and Energy Efficiency Project.` Funding is provided through the U.S. Agency for International Development (AID). The project is being conducted in a manner that can be generalized to all of Poland and to the rest of Eastern Europe. The historic city of Krakow has a population of 750,000. Almost half of the heating energy used in Krakow is supplied by low-efficiency boilerhouses and home coal stoves. Within the town, there are more than 1,300 local boilerhouses and 100,000 home stoves. These are collectively referred to as the `low emission sources` and they are the primary sources of particulates and hydrocarbon emissions in the city and major contributors of sulfur dioxide and carbon monoxide.

  8. 77 FR 74520 - Encore Clean Energy, Inc., Energy & Engine Technology Corp., Equity Media Holdings Corporation...

    Science.gov (United States)

    2012-12-14

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Encore Clean Energy, Inc., Energy & Engine Technology Corp., Equity Media Holdings Corporation, eTotalSource, Inc., Extensions, Inc., Firepond, Inc., and GNC Energy Corporation; Order Withdrawing Trading Suspension as to Extensions, Inc. December 12...

  9. Gulf Coast Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Dillingham, Gavin [Houston Advanced Research Center, TX (United States)

    2013-09-30

    The Gulf Coast Clean Energy Application Center was initiated to significantly improve market and regulatory conditions for the implementation of combined heat and power technologies. The GC CEAC was responsible for the development of CHP in Texas, Louisiana and Oklahoma. Through this program we employed a variety of outreach and education techniques, developed and deployed assessment tools and conducted market assessments. These efforts resulted in the growth of the combined heat and power market in the Gulf Coast region with a realization of more efficient energy generation, reduced emissions and a more resilient infrastructure. Specific t research, we did not formally investigate any techniques with any formal research design or methodology.

  10. New stage of clean coal technology in Japan; Clean coal technology no aratana tenkai ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Y [Agency of Natural Resources and Energy, Tokyo (Japan)

    1996-09-01

    The paper described the positioning and new development of clean coal technology. Coal is an important resource which supplies approximately 30% of the energy consumed in all the world. In the Asian/Pacific region, especially, a share of coal in energy is high, around 60% of the world, and it is indispensable to continue using coal which is abundantly reserved. Japan continues using coal as an important energy among petroleum substituting energies taking consideration of the global environment, and is making efforts for development and promotion of clean coal technology aiming at further reduction of environmental loads. Moreover, in the Asian region where petroleum depends greatly upon outside the region, it is extremely important for stabilization of Japan`s energy supply that coal producing countries in the region promote development/utilization of their coal resources. For this, it is a requirement for Japan to further a coal policy having an outlook of securing stable coal supply/demand in the Asian region. 6 figs., 2 tabs.

  11. Clean Energy: No Longer a Luxury! Resources in Technology.

    Science.gov (United States)

    Technology Teacher, 1991

    1991-01-01

    This learning activity provides an overview of the problem of clean energy sources and examination of alternatives. Student activity, quiz with answers, related activities, and nine references are provided. (SK)

  12. Sustainable global energy development: the case of coal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The report aims at developing an internationally consistent reply to the question whether and to what extent coal use could be economic and sustainable in meeting global energy demand to 2030 and beyond. It covers markets, trade and demand, mining and combustion technologies, restructuring and international policies, and perspectives. It considers both the contribution that coal could make to economic development as well as the need for coal to adapt to the exigencies of security of supply, local environmental protection and mitigation of climate change. The conclusion suggests that coal will continue to be an expanding, a cheap foundation for economic and social development. Backed by its vast and well-distributed resource base, coal will make a significant contribution to eradicating energy poverty and coal can be and will be increasingly clean, at a bearable cost in terms of technological sophistication and at little cost in terms of international technology transfer and RD & D in CO{sub 2} sequestration. For this to happen, even-handed energy and environmental policies are needed, not ideologies. Moreover, a more pro-active involvement of the coal and power industries is needed in 'globalizing' best technical and managerial practices and advocating coal's credentials.

  13. U.S. Department of Energy clean cities five-year strategic plan.

    Energy Technology Data Exchange (ETDEWEB)

    Cambridge Concord Associates

    2011-02-15

    Clean Cities is a government-industry partnership sponsored by the U.S. Department of Energy's (DOE) Vehicle Technologies Program, which is part of the Office of Energy Efficiency and Renewable Energy. Working with its network of about 100 local coalitions and more than 6,500 stakeholders across the country, Clean Cities delivers on its mission to reduce petroleum consumption in on-road transportation. In its work to reduce petroleum use, Clean Cities focuses on a portfolio of technologies that includes electric drive, propane, natural gas, renewable natural gas/biomethane, ethanol/E85, biodiesel/B20 and higher-level blends, fuel economy, and idle reduction. Over the past 17 years, Clean Cities coalitions have displaced more than 2.4 billion gallons of petroleum; they are on track to displace 2.5 billion gallons of gasoline per year by 2020. This Clean Cities Strategic Plan lays out an aggressive five-year agenda to help DOE Clean Cities and its network of coalitions and stakeholders accelerate the deployment of alternative fuel and advanced technology vehicles, while also expanding the supporting infrastructure to reduce petroleum use. Today, Clean Cities has a far larger opportunity to make an impact than at any time in its history because of its unprecedented $300 million allocation for community-based deployment projects from the American Recovery and Reinvestment Act (ARRA) (see box below). Moreover, the Clean Cities annual budget has risen to $25 million for FY2010 and $35 million has been requested for FY2011. Designed as a living document, this strategic plan is grounded in the understanding that priorities will change annually as evolving technical, political, economic, business, and social considerations are woven into project decisions and funding allocations. The plan does not intend to lock Clean Cities into pathways that cannot change. Instead, with technology deployment at its core, the plan serves as a guide for decision-making at both the

  14. Sokaogon Chippewa Community Emission-Free and Treaty Resource Protection Clean Energy Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Quade, Ron

    2018-03-30

    Final Report for DOE project DE-IE0000036 The Sokaogon Chippewa Community received a tribal clean energy initiative grant and installed a community wide solar system estimated to produce 606 kw of carbon free clean energy on seventeen (17) tribal buildings and three (3) residential homes significantly reducing the tribes’ energy bills over the life of the system, potentially saving the tribe up to $2.7 million in energy savings over a thirty (30) year time span. Fifteen (15) solar installations utilized aluminum roof-top mounting systems while two (2) installations utilized a ground mount aluminum racking system.

  15. Global solar energy radiation in relation with electricity supply in Romania

    International Nuclear Information System (INIS)

    Zoran, Maria

    2001-01-01

    Solar energy is one of the most viable source of renewable energy being both clean and nonpolluting. Spiraling energy use and other human activities have led to measurable effects upon the global environment and climatic changes. There is increasing international concern particularly in the areas of global warming owing to the increase of carbon dioxide (CO 2 ) in the atmosphere and of other greenhouse gases as sulfur dioxide (SO 2 ), oxides of nitrogen (NOx), hydrogen sulfide H 2 S, diethyl sulfide (DMS), chlorofluorocarbons (CFCs), methane CH 4 , as well in the effect of depletion of ozone (O 3 ) layer in the stratosphere. Climatological and global solar radiation analysis for some Romanian zones with great solar energy potential are presented. Remote sensing data provided by satellites are used for radiative fluxes monitoring and solar energy mapping as well as for solar energy use assessment. The realistic technical potential for solar energy applications in Romania is substantial, over 40000 TJyear -1 . As average energy global solar radiation in horizontal plane lies between 1100 and 1300 kWhm -2 year -1 , solar energy using for electrical power supply being a reliable alternative. More than one half of Romania's area has a range of insolation period between 1200 and 1500 hours year -1 , at an overall average daily irradiation of 1000 - 1200 kWh m -2 . The most favorable area in Romania is the North - Western part of Black Sea coast with an insolation period above 2300 hours year -1 . A small part 140 TJyear -1 are used profitably and almost 10% of the installed 10 6 m 2 of collector area, is still in operation. (author)

  16. Clean Energy Innovation: Sources of Technical and Commercial Breakthroughs

    Energy Technology Data Exchange (ETDEWEB)

    Perry, T. D., IV; Miller, M.; Fleming, L.; Younge, K.; Newcomb, J.

    2011-03-01

    Low-carbon energy innovation is essential to combat climate change, promote economic competitiveness, and achieve energy security. Using U.S. patent data and additional patent-relevant data collected from the Internet, we map the landscape of low-carbon energy innovation in the United States since 1975. We isolate 10,603 renewable and 10,442 traditional energy patents and develop a database that characterizes proxy measures for technical and commercial impact, as measured by patent citations and Web presence, respectively. Regression models and multivariate simulations are used to compare the social, institutional, and geographic drivers of breakthrough clean energy innovation. Results indicate statistically significant effects of social, institutional, and geographic variables on technical and commercial impacts of patents and unique innovation trends between different energy technologies. We observe important differences between patent citations and Web presence of licensed and unlicensed patents, indicating the potential utility of using screened Web hits as a measure of commercial importance. We offer hypotheses for these revealed differences and suggest a research agenda with which to test these hypotheses. These preliminary findings indicate that leveraging empirical insights to better target research expenditures would augment the speed and scale of innovation and deployment of clean energy technologies.

  17. Nanotechnology and clean energy: sustainable utilization and supply of critical materials

    International Nuclear Information System (INIS)

    Fromer, Neil A.; Diallo, Mamadou S.

    2013-01-01

    Advances in nanoscale science and engineering suggest that many of the current problems involving the sustainable utilization and supply of critical materials in clean and renewable energy technologies could be addressed using (i) nanostructured materials with enhanced electronic, optical, magnetic and catalytic properties and (ii) nanotechnology-based separation materials and systems that can recover critical materials from non-traditional sources including mine tailings, industrial wastewater and electronic wastes with minimum environmental impact. This article discusses the utilization of nanotechnology to improve or achieve materials sustainability for energy generation, conversion and storage. We highlight recent advances and discuss opportunities of utilizing nanotechnology to address materials sustainability for clean and renewable energy technologies

  18. Nanotechnology and clean energy: sustainable utilization and supply of critical materials

    Energy Technology Data Exchange (ETDEWEB)

    Fromer, Neil A., E-mail: nafromer@caltech.edu [California Institute of Technology, Resnick Sustainability Institute (United States); Diallo, Mamadou S., E-mail: diallo@wag.caltech.edu [Korea Advanced Institute of Science and Technology (KAIST), Graduate School of Energy, Environment, Water and Sustainability (EEWS) (Korea, Republic of)

    2013-11-15

    Advances in nanoscale science and engineering suggest that many of the current problems involving the sustainable utilization and supply of critical materials in clean and renewable energy technologies could be addressed using (i) nanostructured materials with enhanced electronic, optical, magnetic and catalytic properties and (ii) nanotechnology-based separation materials and systems that can recover critical materials from non-traditional sources including mine tailings, industrial wastewater and electronic wastes with minimum environmental impact. This article discusses the utilization of nanotechnology to improve or achieve materials sustainability for energy generation, conversion and storage. We highlight recent advances and discuss opportunities of utilizing nanotechnology to address materials sustainability for clean and renewable energy technologies.

  19. Nanotechnology and clean energy: sustainable utilization and supply of critical materials

    Science.gov (United States)

    Fromer, Neil A.; Diallo, Mamadou S.

    2013-11-01

    Advances in nanoscale science and engineering suggest that many of the current problems involving the sustainable utilization and supply of critical materials in clean and renewable energy technologies could be addressed using (i) nanostructured materials with enhanced electronic, optical, magnetic and catalytic properties and (ii) nanotechnology-based separation materials and systems that can recover critical materials from non-traditional sources including mine tailings, industrial wastewater and electronic wastes with minimum environmental impact. This article discusses the utilization of nanotechnology to improve or achieve materials sustainability for energy generation, conversion and storage. We highlight recent advances and discuss opportunities of utilizing nanotechnology to address materials sustainability for clean and renewable energy technologies.

  20. Ensuring clean air: Developing a clean air strategy for British Columbia

    International Nuclear Information System (INIS)

    1992-04-01

    In 1992, a clean air strategy will be developed to incorporate views of British Columbians on ways to meet goals related to air quality. A discussion paper is presented to provide information to those interested in participation in developing this strategy. The paper gives information on air quality issues important to the province, including local air quality, urban smog, ozone layer depletion, and global climate change. The views and concerns expressed by stakeholders who attended the Clean Air Conference in 1991 are summarized. The process used to develop the clean air strategy is outlined and some outcomes to be anticipated from the strategy are suggested, including policies and priorities for action to ensure clean air. Air pollutants of concern are total reduced sulfur, mainly from pulp mills and gas processing plants; smoke from wood burning; sulfur dioxide from pulp mills and gas plants; hydrogen fluoride from aluminum smelting; ground-level ozone in urban areas; and acid rain. Elements of a clean air strategy include a smoke management policy, management strategies for greenhouse gases and ozone smog, ozone layer protection measures, regional air quality management plans, and long-term planning efforts in energy use, transportation modes, community design, and land use. 12 refs., 14 figs., 2 tabs

  1. Community Renewable Energy Deployment Provides Replicable Examples of Clean Energy Projects (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-09-01

    This fact sheet describes the U.S. Department of Energy's Community Renewable Energy Deployment (CommRE) program, which is a more than $20 million effort funded through the American Recovery and Reinvestment Act of 2009, to promote investment in clean energy solutions and provide real-life examples for other local governments, campuses, and small utilities to replicate. Five community-based renewable energy projects received funding from DOE through the CommRE and their progress is detailed.

  2. Water management for sustainable and clean energy in Turkey

    Directory of Open Access Journals (Sweden)

    Ibrahim Yuksel

    2015-11-01

    Full Text Available Water management has recently become a major concern for many countries. During the last century consumption of water and energy has been increased in the world. This trend is anticipated to continue in the decades to come. One of the greatest reasons is the unplanned industrial activities deteriorating environment in the name of rising standard of life. What is needed is the avoidance of environmental pollution and maintenance of natural balance, in the context of sustainable development. However, Turkey’s geographical location has several advantages for extensive use of most of the renewable energy resources. There is a large variation in annual precipitation, evaporation and surface run-off parameters, in Turkey. Precipitation is not evenly distributed in time and space throughout the country. There are 25 hydrological basins in Turkey. But the rivers often have irregular regimes. In this situation the main aim is to manage and use the water resources for renewable, sustainable and clean energy. This paper deals with water management for renewable, sustainable and clean energy in Turkey.

  3. Renewable Energy Zones for the Africa Clean Energy Corridor

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Grace C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Deshmukh, Ranjit [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Ndhlukula, Kudakwashe [International Renewable Energy Agency (IRENA), Abu Dhabi (United Arab Emirates); Radojicic, Tijana [International Renewable Energy Agency (IRENA), Abu Dhabi (United Arab Emirates); Reilly, Jessica [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)

    2015-07-01

    Multi-criteria Analysis for Planning Renewable Energy (MapRE) is a study approach developed by the Lawrence Berkeley National Laboratory with the support of the International Renewable Energy Agency (IRENA). The approach combines geospatial, statistical, energy engineering, and economic methods to comprehensively identify and value high-quality wind, solar PV, and solar CSP resources for grid integration based on techno-economic criteria, generation profiles (for wind), and socio-environmental impacts. The Renewable Energy Zones for the Africa Clean Energy Corridor study sought to identify and comprehensively value high-quality wind, solar photovoltaic (PV), and concentrating solar power (CSP) resources in 21 countries in the East and Southern Africa Power Pools to support the prioritization of areas for development through a multi-criteria planning process. These countries include Angola, Botswana, Burundi, Djibouti, Democratic Republic of Congo, Egypt, Ethiopia, Kenya, Lesotho, Libya, Malawi, Mozambique, Namibia, Rwanda, South Africa, Sudan, Swaziland, Tanzania, Uganda, Zambia, and Zimbabwe. The study includes the methodology and the key results including renewable energy potential for each region.

  4. Clean coal technology: Export finance programs

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-30

    Participation by US firms in the development of Clean Coal. Technology (CCT) projects in foreign countries will help the United States achieve multiple national objectives simultaneously--addressing critical goals related to energy, environmental technology, industrial competitiveness and international trade. US participation in these projects will result in an improved global environment, an improvement in the balance of payments and an increase in US jobs. Meanwhile, host countries will benefit from the development of economically- and environmentally-sound power facilities. The Clean Air Act Amendments of 1990 (Public Law 101-549, Section 409) as supplemented by a requirement in the Energy Policy Act of 1992 (Public Law 102-486, Section 1331(f)) requires that the Secretary of Energy, acting through the Trade Promotion Coordinating Committee Subgroup on Clean Coal Technologies, submit a report to Congress with information on the status of recommendations made in the US Department of Energy, Clean Coal Technology Export Programs, Report to the United States Congress, February 1992. Specific emphasis is placed on the adequacy of financial assistance for export of CCTS. This report fulfills the requirements of the Act. In addition, although this report focuses on CCT power projects, the issues it raises about the financing of these projects are also relevant to other CCT projects such as industrial applications or coal preparation, as well as to a much broader range of energy and environmental technology projects worldwide.

  5. NREL's Industry Growth Forum Boosts Clean Energy Commercialization Efforts (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-01

    For more than a decade, the National Renewable Energy Laboratory's (NREL) Industry Growth Forum has been the nation's premier event for early-stage clean energy investment. The forum features presentations from the most innovative, promising, and emergent clean energy companies; provocative panels led by thought leaders; and organized networking opportunities. It is the perfect venue for growing cleantech companies to present their business to a wide range of investors.

  6. Challenges in the Quest for Clean Energies

    Indian Academy of Sciences (India)

    IAS Admin

    will never run out, and it is also a very clean energy source. Principle behind the ... Figure 2. World wind map showing the speed of wind in different parts of the world. ... C p is proportional to the ratio of wind velocity behind the rotor and in front of the rotor. ... turbine had just one rotor blade, most of the wind passing through.

  7. CLEAN-AIR heat pump. Reduced energy consumption for ventilation in buildings by integrating air cleaning and heat pump. Final Report; CLEAN-AIR heat pump - Reduceret energiforbrug til ventilation af bygninger ved luftrensning integreret med luft varmepumpe. Slut rapport

    Energy Technology Data Exchange (ETDEWEB)

    Fang, L.; Olesen, Bjarne W.; Molinaro, G.; Simmonsen, P.; Skocajic, S. [Danmarks Tekniske Univ. Institut for Byggeri og Anlaeg, Lyngby (Denmark); Hummelshoej, R.M.; Carlassara, L. [COWI A/S, Lyngby, (Denmark); Groenbaek, H.; Hansen, Ole R. [Exhausto A/S, Langeskov (Denmark)

    2011-07-01

    This report summarizes task 1 of the Clean Air Heat Pump project - modelling and simulation on energy savings when using the clean air heat pump for ventilation, air cleaning and energy recovery. The total energy consumption of the proposed ventilation systems using clean air heat pump technology was calculated by a theoretical model and compared with the reference ventilation systems (conventional ventilation systems). The energy compared between the two systems includes energy used for heating, cooling and fan. The simulation and energy saving calculation was made for the application of the clean air heat pump in three typical climate conditions, i.e. mild-cold, mild-hot and hot and wet climates. Real climate data recorded from three cities in 2002 was used for the calculation. The three cities were Copenhagen (Denmark), Milan (Italy) and Colombo (Sir Lanka) which represent the above three typical climate zones. For the Danish climate (the mild cold climate), the calculations show that the ventilation system using clean air heat pump technology can save up to 42% of energy cost in winter compared to the conventional ventilation system. The energy saving in summer can be as high as 66% for the ventilation system with humidity control and 9% for the ventilation system without the requirement of humidity control. Since the Danish summer climate is very mild, over 80% of the yearly energy consumption for ventilation is used during winter season. It is, therefore, estimated that more than 35% annual energy saving for ventilation is expected in Denmark using the clean air heat pump ventilation technology. For the mild hot climate, e.g. the Italian climate, the calculations show that up to 63% of the energy saving can be achieved in summer season. For the winter mode, 17% reduction of the energy cost can be expected for the domestic use. For industrial use, the energy cost of the clean air heat pump may not be favourable due to the industrial price of gas in Italy is

  8. 77 FR 64980 - Collegiate Clean Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2012-10-24

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-33-000] Collegiate Clean Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... Collegiate Clean Energy, LLC's application for market-based rate authority, with an accompanying rate tariff...

  9. US-China Clean Energy Research Center on Building Energy Efficiency: Materials that Improve the Cost-Effectiveness of Air Barrier Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hun, Diana E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-12-01

    The US–China Clean Energy Research Center (CERC) was launched in 2009 by US Energy Secretary Steven Chu, Chinese Minister of Science and Technology Wan Gang, and Chinese National Energy Agency Administrator Zhang Guobao. This 5-year collaboration emerged from the fact that the United States and China are the world’s largest energy producers, energy consumers, and greenhouse gas emitters, and that their joint effort could have significant positive repercussions worldwide. CERC’s main goal is to develop and deploy clean energy technologies that will help both countries meet energy and climate challenges. Three consortia were established to address the most pressing energy-related research areas: Advanced Coal Technology, Clean Vehicles, and Building Energy Efficiency (BEE). The project discussed in this report was part of the CERC-BEE consortia; its objective was to lower energy use in buildings by developing and evaluating technologies that improve the cost-effectiveness of air barrier systems for building envelopes.

  10. Catching the wind - clean and sustainable solutions to China's energy shortfall

    International Nuclear Information System (INIS)

    Hayes, D.

    2002-01-01

    China's power generating capacity has increased markedly in recent years largely due new coal-fired power stations, but sadly, the environmental consequences were largely ignored. Apart from the coal used for power generation, coal is also used to fuel industrial boilers and in houses: some of the world's most polluted cities are in China. In the late 1990s, China began to curb the environmental impact by closing smaller power stations and retrofitting clean-up plant to the bigger stations, but there is still a lot of cleaning-up still to do. The government of China is now offering incentives for the development of renewable sources of energy, and wind power is seen as a clean and sustainable solution to the air pollution problem. The government has identified various geographical regions suitable for wind farms. Solar energy is also seen as a promising source of energy and is being employed in areas remote from power grids. The paper discusses incentives and bank loans for the development and application of renewables

  11. State Support for Clean Energy Deployment. Lessons Learned for Potential Future Policy

    Energy Technology Data Exchange (ETDEWEB)

    Kubert, Charles [Clean Energy States Alliance, Montpelier, VT (United States); Sinclair, Mark [Clean Energy States Alliance, Montpelier, VT (United States)

    2011-04-01

    Proposed federal clean energy initiatives and climate legislation have suggested significant increases to federal funding for clean energy deployment and investment. Many states and utilities have over a decade of experience and spend billions of public dollars every year to support EE/RE deployment through programs that reduce the cost of technologies, provide financing for EE/RE projects, offer technical assistance, and educate market participants. Meanwhile, constraints on public expenditures at all levels of government continue to call upon such programs to demonstrate their value. This report reviews the results of these programs and the specific financial incentives and financing tools used to encourage clean energy investment. Lessons from such programs could be used to inform the future application of EE/RE incentives and financing tools. These lessons learned apply to use of distributed resources and the historical focus of these EE/RE programs.

  12. State Support for Clean Energy Deployment: Lessons Learned for Potential Future Policy

    Energy Technology Data Exchange (ETDEWEB)

    Kubert, C.; Sinclair, M.

    2011-04-01

    Proposed federal clean energy initiatives and climate legislation have suggested significant increases to federal funding for clean energy deployment and investment. Many states and utilities have over a decade of experience and spend billions of public dollars every year to support EE/RE deployment through programs that reduce the cost of technologies, provide financing for EE/RE projects, offer technical assistance, and educate market participants. Meanwhile, constraints on public expenditures at all levels of government continue to call upon such programs to demonstrate their value. This report reviews the results of these programs and the specific financial incentives and financing tools used to encourage clean energy investment. Lessons from such programs could be used to inform the future application of EE/RE incentives and financing tools. These lessons learned apply to use of distributed resources and the historical focus of these EE/RE programs.

  13. VISION: Illuminating the Pathways to a Clean Energy Economy - JISEA 2016 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-01

    This report demonstrates JISEA's successes over the past year and previews our coming work. The 2016 Annual Report highlights JISEA accomplishments in low-carbon electricity system research, international collaboration, clean energy manufacturing analysis, 21st century innovation strategy, and more. As we look to the coming year, JISEA will continue to navigate complex issues, present unique perspectives, and envision a clean energy economy.

  14. An assessment of greenhouse gas emissions-weighted clean energy standards

    International Nuclear Information System (INIS)

    Coffman, Makena; Griffin, James P.; Bernstein, Paul

    2012-01-01

    This paper quantifies the relative cost-savings of utilizing a greenhouse gas emissions-weighted Clean Energy Standard (CES) in comparison to a Renewable Portfolio Standard (RPS). Using a bottom-up electricity sector model for Hawaii, this paper demonstrates that a policy that gives “clean energy” credit to electricity technologies based on their cardinal ranking of lifecycle GHG emissions, normalizing the highest-emitting unit to zero credit, can reduce the costs of emissions abatement by up to 90% in comparison to a typical RPS. A GHG emissions-weighted CES provides incentive to not only pursue renewable sources of electricity, but also promotes fuel-switching among fossil fuels and improved generation efficiencies at fossil-fired units. CES is found to be particularly cost-effective when projected fossil fuel prices are relatively low. - Highlights: ► Proposes a GHG Emissions-Weighted Clean Energy Standard (CES) mechanism. ► Compares CES to RPS using a case study of Hawaii. ► Finds CES is up to 90% more cost-effective as a GHG abatement tool.

  15. North American energy relationships : clean energy and climate action : a North American collaboration : draft paper for discussion

    International Nuclear Information System (INIS)

    Russell, D.

    2009-12-01

    This paper discussed energy and climate policies and programs aimed at reducing greenhouse gas (GHG) emissions in North America. The aim of the study was to determine how energy production and use will impact policy responses to climate change and the development of clean energy technologies. Energy sectors in Canada, the United States and Mexico were outlined, and the relationships between the different countries and their energy systems were discussed. Energy policy drivers and infrastructure in each of the 3 countries were also discussed. The influence of energy security on energy trading, clean energy technology, and climate change policy was also investigated in order to identify barriers to future cooperation between the countries. Emerging areas of cooperation were outlined. Potential climate policy scenarios were reviewed, and the implications of a more highly integrated North American energy and climate policy were discussed. The study indicated that increased linkages between the Canadian and United States systems are likely in the future. 62 refs., 11 tabs., 7 figs.

  16. Final Technical Report_Clean Energy Program_SLC-SELF

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Glenn; Coward, Doug

    2014-01-22

    This is the Final Technical Report for DOE's Energy Efficiency and Conservation Block Grant, Award No. DE-EE0003813, submitted by St. Lucie County, FL (prime recipient) and the Solar and Energy Loan Fund (SELF), the program's third-party administrator. SELF is a 501(c)(3) and a certified Community Development Financial Institution (CDFI). SELF is a community-based lending organization that operates the Clean Energy Loan Program, which focuses on improving the overall quality of life of underserved populations in Florida with an emphasis on home energy improvements and cost-effective renewable energy alternatives. SELF was launched in 2010 through the creation of the non-profit organization and with a $2.9 million Energy Efficiency and Conservation Block (EECBG) grant from the U.S. Department of Energy (DOE). SELF has its main office and headquarters in St. Lucie County, in the region known as the Treasure Coast in East-Central Florida. St. Lucie County received funding to create SELF as an independent non-profit institution, outside the control of local government. This was important for SELF to create its identity as an integral part of the business community and to help in its quest to become a Community Development Financial Institution (CDFI). This goal was accomplished in 2013, allowing SELF to focus on its mission to increase energy savings while serving markets that have struggled to find affordable financial assistance. These homeowners are most impacted by high energy costs. Energy costs are a disproportionate percentage of household expenses for low to moderate income (LMI) households. Electricity costs have been steadily rising in Florida by nearly 5% per year. Housing in LMI neighborhoods often includes older inefficient structures that further exacerbate the problem. Despite the many available clean energy solutions, most LMI property owners do not have the disposable income or equity in their homes necessary to afford the high upfront cost

  17. Off-momentum collimation and cleaning in the energy ramp in the LHC

    CERN Document Server

    Quaranta, Elena; Giulini Castiglioni Agosteo, Stefano Luigi Maria

    This Master thesis work has been carried out at CERN in the framework of the LHC (Large Hadron Collider) Collimation project. The LHC is a two-beam proton collider, built to handle a stored energy of 360MJ for each beam. Since the energy deposition from particle losses could quench the superconducting magnets, a system of collimators has been installed in two cleaning insertions in the ring and in the experimental areas. The achievable LHC beam intensity is directly coupled to the beam loss rate and, consequently, to the cleaning eciency of the collimation system. This study analyses the collimation cleaning performance in dierent scenarios inside the accelerator. First, simulations are performed of the transverse losses in the LHC collimation system during the acceleration process. The results are compared with data taken during a dedicated session at the LHC machine. Simulations are also performed to predict the collimation eciency during future operation at higher energy. Furthermore, an investigation of t...

  18. Clean Cities Strategic Planning White Paper: Light Duty Vehicle Fuel Economy

    Energy Technology Data Exchange (ETDEWEB)

    Saulsbury, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hopson, Dr Janet L [Univ. of Tennessee, Knoxville, TN (United States); Greene, David [Univ. of Tennessee, Knoxville, TN (United States); Gibson, Robert [Univ. of Tennessee, Knoxville, TN (United States)

    2015-04-01

    Increasing the energy efficiency of motor vehicles is critical to achieving national energy goals of reduced petroleum dependence, protecting the global climate, and promoting continued economic prosperity. Even with fuel economy and greenhouse gas emissions standards and various economic incentives for clean and efficient vehicles, providing reliable and accurate fuel economy information to the public is important to achieving these goals. This white paper reviews the current status of light-duty vehicle fuel economy in the United States and the role of the Department of Energy (DOE) Clean Cities Program in disseminating fuel economy information to the public.

  19. A GLOBAL ASSESSMENT OF SOLAR ENERGY RESOURCES: NASA's Prediction of Worldwide Energy Resources (POWER) Project

    Science.gov (United States)

    Zhang, T.; Stackhouse, P. W., Jr.; Chandler, W.; Hoell, J. M.; Westberg, D.; Whitlock, C. H.

    2010-12-01

    NASA's POWER project, or the Prediction of the Worldwide Energy Resources project, synthesizes and analyzes data on a global scale. The products of the project find valuable applications in the solar and wind energy sectors of the renewable energy industries. The primary source data for the POWER project are NASA's World Climate Research Project (WCRP)/Global Energy and Water cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project (Release 3.0) and the Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System (GEOS) assimilation model (V 4.0.3). Users of the POWER products access the data through NASA's Surface meteorology and Solar Energy (SSE, Version 6.0) website (http://power.larc.nasa.gov). Over 200 parameters are available to the users. The spatial resolution is 1 degree by 1 degree now and will be finer later. The data covers from July 1983 to December 2007, a time-span of 24.5 years, and are provided as 3-hourly, daily and monthly means. As of now, there have been over 18 million web hits and over 4 million data file downloads. The POWER products have been systematically validated against ground-based measurements, and in particular, data from the Baseline Surface Radiation Network (BSRN) archive, and also against the National Solar Radiation Data Base (NSRDB). Parameters such as minimum, maximum, daily mean temperature and dew points, relative humidity and surface pressure are validated against the National Climate Data Center (NCDC) data. SSE feeds data directly into Decision Support Systems including RETScreen International clean energy project analysis software that is written in 36 languages and has greater than 260,000 users worldwide.

  20. Nuclear energy role and potential for global sustainable development

    International Nuclear Information System (INIS)

    Ujita, H.; Matsui, K.

    2006-01-01

    The long-term energy supply simulation that optimizes the energy system cost until 2100 for the world is being performed, by using the energy module of GRAPE model, where energy demand under the C02 emission constraint etc. is assumed. The model has been taken up for the trial calculation in I PCC the third report . Role and potential of nuclear energy system in the energy options is discussed here from the viewpoint of sustainable development with protecting from global warming. Taking the effort for energy conservation as major premise, carbon-sequestration for fossil fuel, renewable energy and nuclear energy should be altogether developed under the C02 constraint. Especially, fast breeder reactor will be attached importance to, as the 22nd century is approaching, due to its carbon free and resource limitless features when the nuclear generation cost is cheap as a current light water reactor level. It takes time around 30 years in order for breeding of Pu, a fast breeder reactor will begin to be introduced from around 2030. If the period for the technology establish of nuclear fuel cycle is assumed to be 30 years, it is necessary to start technical development right now. If the Kyoto Protocol, the emission constraint on only the developed countries, is extended in 21st century, it will promote the growth of nuclear power in the developed countries in the first half of the century. After 2050, the developing countries will face the shortage of uranium and plutonium. Carbon emission constraint should be covered all countries in the World not only for the developed countries but also for the developing countries. Therefore, it is important that the developing countries will use nuclear power effectively from the viewpoint of harmonization of energy growth and global environment. The policy that nuclear power is considered as Clean Development Mechanism would mitigate such global warming problems

  1. The boom of clean energies in China

    International Nuclear Information System (INIS)

    Seaman, J.

    2009-01-01

    The author outlines the strong current development of wind and solar energy in China, with an increasing and already rather high wind energy production, and a solar panel production which is, until now, mostly exported. He observes that the development of these industries is based on economic, political and security issues: China is now strongly dependent on energy imports (even coal imports), looks to reduce the social cost of pollution and environment degradation, and wants to be a major actor of the renewable energy sector. The development of this sector is mainly financed by public investments, but the clean sector is weakened by the slow development of distribution networks, and by a too fragmented production market. The author discusses the new approach adopted by the Chinese government to overcome these drawbacks, and the consequences of this approach for the international context

  2. Who governs energy? The challenges facing global energy governance

    International Nuclear Information System (INIS)

    Florini, Ann; Sovacool, Benjamin K.

    2009-01-01

    This article conceptualizes the energy problems facing society from a global governance perspective. It argues that a notion of 'global energy governance,' taken to mean international collective action efforts undertaken to manage and distribute energy resources and provide energy services, offers a meaningful and useful framework for assessing energy-related challenges. The article begins by exploring the concepts of governance, global governance, and global energy governance. It then examines some of the existing institutions in place to establish and carry out rules and norms governing global energy problems and describes the range of institutional design options available to policymakers. It briefly traces the role of a selection of these institutions, from inter-governmental organizations to summit processes to multilateral development banks to global action networks, in responding to energy issues, and points out their strengths and weaknesses. The article concludes by analyzing how the various approaches to global governance differ in their applicability to addressing the conundrums of global energy problems.

  3. Who governs energy? The challenges facing global energy governance

    Energy Technology Data Exchange (ETDEWEB)

    Florini, Ann; Sovacool, Benjamin K. [Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore, Singapore 259772 (Singapore)

    2009-12-15

    This article conceptualizes the energy problems facing society from a global governance perspective. It argues that a notion of 'global energy governance,' taken to mean international collective action efforts undertaken to manage and distribute energy resources and provide energy services, offers a meaningful and useful framework for assessing energy-related challenges. The article begins by exploring the concepts of governance, global governance, and global energy governance. It then examines some of the existing institutions in place to establish and carry out rules and norms governing global energy problems and describes the range of institutional design options available to policymakers. It briefly traces the role of a selection of these institutions, from inter-governmental organizations to summit processes to multilateral development banks to global action networks, in responding to energy issues, and points out their strengths and weaknesses. The article concludes by analyzing how the various approaches to global governance differ in their applicability to addressing the conundrums of global energy problems. (author)

  4. The potential of nuclear energy to generate clean electric power in Brazil

    International Nuclear Information System (INIS)

    Stecher, Luiza C.; Sabundjian, Gaiane; Menzel, Francine; Giarola, Rodrigo S.; Coelho, Talita S.

    2013-01-01

    The generation of electricity in Brazil is concentrated in hydroelectric generation, renewable and clean source, but that does not satisfy all the demand and leads to necessity of a supplementary thermal sources portion. Considering the predictions of increase in demand for electricity in the next years, it becomes necessary to insert new sources to complement the production taking into account both the volume being produced and the needs of environmental preservation. Thus, nuclear power can be considered a potential supplementary source for electricity generation in Brazil as well as the country has large reserves of fissile material, the generation emits no greenhouse gases, the country has technological mastery of the fuel cycle and it enables the production of large volumes of clean energy. The objective of this study is to demonstrate the potential of nuclear energy in electricity production in Brazil cleanly and safely, ensuring the supplies necessary to maintain the country's economic growth and the increased demand sustainable. For this, will be made an analysis of economic and social indicators of the characteristics of our energy matrix and the availability of our sources, as well as a description of the nuclear source and arguments that justify a higher share of nuclear energy in the matrix of the country. Then, after these analysis, will notice that the generation of electricity from nuclear source has all the conditions to supplement safely and clean supply of electricity in Brazil. (author)

  5. Green businesses in a clean energy economy: Analyzing drivers of green business growth in U.S. states

    International Nuclear Information System (INIS)

    Yi, Hongtao

    2014-01-01

    In a clean energy economy, green businesses play a central role by utilizing renewable energy technologies and employing green labor forces to provide clean energy services and goods. This paper aims at analyzing factors driving the growth and survival of green businesses in the U.S. states, with hypotheses proposed on the impacts from clean energy policies and tax incentives, labor market conditions, and economic and political environments. A fixed effect regression analysis is applied with a panel data set of 48 continental states from 1998 to 2007 in the United States. The statistical analysis with a longitudinal data set reveals that the adoption of renewable energy policies, the permission of renewable energy credits imports, the stringency of minimum wage legislations, and presence of clean energy business associations are the major driving forces of the green business development in the U.S. states. - Highlights: • This paper studies the growth of green businesses in the U.S. states. • The adoption of RPS (Renewable Portfolio Standard) is positively associated with number of green businesses. • Clean energy NGOs are positively associated with green business growth

  6. Addressing climate and energy misconceptions - teaching tools offered by the Climate Literacy and Energy Awareness Network (CLEAN)

    Science.gov (United States)

    Gold, A. U.; Ledley, T. S.; Kirk, K. B.; Grogan, M.; McCaffrey, M. S.; Buhr, S. M.; Manduca, C. A.; Fox, S.; Niepold, F.; Howell, C.; Lynds, S. E.

    2011-12-01

    Despite a prevalence of peer-reviewed scientific research and high-level reports by intergovernmental agencies (e.g., IPCC) that document changes in our climate and consequences for human societies, the public discourse regards these topics as controversial and sensitive. The chasm between scientific-based understanding of climate systems and public understanding can most easily be addressed via high quality, science-based education on these topics. Well-trained and confident educators are required to provide this education. However, climate science and energy awareness are complex topics that are rapidly evolving and have a great potential for controversy. Furthermore, the interdisciplinary nature of climate science further increases the difficulty for teachers to stay abreast of the science and the policy. Research has shown that students and educators alike hold misconceptions about the climate system in general and the causes and effects of climate change in particular. The NSF-funded CLEAN Pathway (http://cleanet.org) as part of the National Science Digital Library (http://www.nsdl.org) strives to address these needs and help educators address misconceptions by providing high quality learning resources and professional development opportunities to support educators of grade levels 6 through 16. The materials focus on teaching climate science and energy use. The scope and framework of the CLEAN Pathway is defined by the Essential Principles of Climate Science (CCSP, 2009) and the Energy Literacy Principles recently developed by the Department of Energy. Following this literacy-based approach, CLEAN helps with developing mental models to address misconceptions around climate science and energy awareness through a number of different avenues. These are: 1) Professional development opportunities for educators - interactive webinars for secondary teachers and virtual workshops for college faculty, 2) A collection of scientifically and pedagogically reviewed, high

  7. Fiscal 2000 survey report on R and D results of advanced clean energy vehicle; 2000 nendo kokoritsu clean energy jidosha no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With problems inherent to clean energy vehicles such as cruising distance, fuel supply and fuel consumption, ACEVs (advanced clean energy vehicles) are in demand featuring both low pollution and high efficiency compatibly. This paper explains the fiscal 2000 results of development. The target is, by using oil-alternative fuel, to reduce driving energy consumption and carbon dioxide emission to less than half and to control the life cycle cost (total of manufacturing cost, operating cost, fuel cost, etc.) to not more than twice as much as those of conventional vehicles. As ACEVs, an ANG (adsorbed natural gas) engine and flywheel battery mounted passenger car was selected, as were a CNG ceramics engine and capacitor mounted truck, CNG engine and lithium-ion battery mounted truck, LNG engine and capacitor mounted bus, and a DME engine and capacitor mounted bus. All are hybrid systems with an energy saving device. In the research of synthetic fuels, the results of the studies were summarized including the effect of various synthetic light oils on engine performance, fuel characteristics, effect of PM grain size and the optimum properties. (NEDO)

  8. Catalyzing Gender Equality-Focused Clean Energy Development in West Africa

    Energy Technology Data Exchange (ETDEWEB)

    2016-06-01

    The Economic Community of West African States (ECOWAS) Regional Center for Renewable Energy and Energy Efficiency (ECREEE) partnered with the Clean Energy Solutions Center (Solutions Center), the African Development Bank and other institutions to develop a Situation Analysis of Energy and Gender Issues in ECOWAS Member States. Through a systematic approach to assess interlinked gender and energy issues in the region, the report puts forth a number of key findings. This brochure highlights ECREEE's partnership with the Solutions Center and key findings from the report.

  9. The Global Energy Challenge

    DEFF Research Database (Denmark)

    Connolly, David

    2011-01-01

    This report gives a brief overview of the global energy challenge and subsequently outlines how and where renewable energy could be developed to solve these issues. The report does not go into a lot of detail on these issues and hence, it is meant as an overview only. The report begins by outlining...... the causes of global climate change, concluding that energy-related emissions are the primary contributors to the problem. As a result, global energy production is analysed in more detail, discussing how it has evolved over the last 30 years and also, how it is expected to evolve in the coming 30 years....... Afterwards, the security of the world’s energy supply is investigated and it becomes clear that there is both an inevitable shortage of fossil fuels and a dangerous separation of supply and demand. The final topic discussed is renewable energy, since it is one sustainable solution to the global energy...

  10. The role of the clean development mechanism in facilitating the application of biomass renewable energy technologies in Malaysia

    International Nuclear Information System (INIS)

    Kheng, Wong Hwee; Hvid, Joergen

    2003-01-01

    The Malaysian Government's move to ratify the Kyoto Protocol in September 2001 reaffirms the country's support to combat global climate change. Although Malaysia is not bound by any commitments to reduce its greenhouse gas emissions, the opportunities that exist through the Clean Development Mechanism (CDM) could be two-fold: to contribute to the country's sustainable development objectives and to improve the energy supply security through the application of clean energy technologies such as renewable energy technologies. Malaysia is very dependent on fossil fuel based technologies for electricity generation and energy production. In 2001 almost 90% of the total energy input to power stations was derived from fossil fuels. Although the energy mix will continue to be predominantly based on fossil fuels, indigenous renewable energy resources may come to play a noticeable role in complementing the depleting fossil fuels. This paper focuses on how best to utilize the oil palm residues for electricity generation and energy production as these residues are the 'low hanging fruits' that are readily available. It compares the use of two different technological uses of residues: distributes power generation and co-firing with coal in large-scale power plants. The paper analyses the financial, economic and environmental impacts of these technologies, and it discusses the relative benefits of the technologies. In addition, the paper look into the barriers associated with each of the technologies, and it suggests possible policy interventions to be adopted in order to promote a viable and environmentally efficient use of the limited biomass resources. (au)

  11. Realizing a Clean Energy Future: Highlights of NREL Analysis (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2013-12-01

    Profound energy system transformation is underway. In Hawaiian mythology, Maui set out to lasso the sun in order to capture its energy. He succeeded. That may have been the most dramatic leap forward in clean energy systems that the world has known. Until now. Today, another profound transformation is underway. A combination of forces is taking us from a carbon-centric, inefficient energy system to one that draws from diverse energy sources - including the sun. NREL analysis is helping guide energy systems policy and investment decisions through this transformation. This brochure highlights NREL analysis accomplishments in the context of four thematic storylines.

  12. A network analysis using metadata to investigate innovation in clean-tech – Implications for energy policy

    International Nuclear Information System (INIS)

    Marra, Alessandro; Antonelli, Paola; Dell’Anna, Luca; Pozzi, Cesare

    2015-01-01

    Clean-technology (clean-tech) is a large and increasing sector. Research and development (R&D) is the lifeline of the industry and innovation is fostered by a plethora of high-tech start-ups and small and medium-sized enterprises (SMEs). Any empirical-based attempt to detect the pattern of technological innovation in the industry is challenging. This paper proposes an investigation of innovation in clean-tech using metadata provided by CrunchBase. Metadata reveal information on markets, products, services and technologies driving innovation in the clean-tech industry worldwide and for San Francisco, the leader in clean-tech innovation with more than two hundred specialised companies. A network analysis using metadata is the employed methodology and the main metrics of the resulting networks are discussed from an economic point of view. The purpose of the paper is to understand specifically specializations and technological complementarities underlying innovative companies, detect emerging industrial clusters at the global and local/metropolitan level and, finally, suggest a way to realize whether observed start-ups, SMEs and clusters follow a technological path of complementary innovation and market opportunity or, instead, present a risk of lock-in. The discussion of the results of the network analysis shows interesting implications for energy policy, particularly useful from an operational point of view. - Highlights: • Metadata provide information on companies' products and technologies. • A network analysis enables detection of specializations and complementarities. • An investigation of the network allows to identify emerging industrial clusters. • Metrics help to appreciate complementary innovation and market opportunity. • Results of the network analysis show interesting policy implications.

  13. Energy globalization

    International Nuclear Information System (INIS)

    Tierno Andres

    1997-01-01

    Toward the future, the petroleum could stop to be the main energy source in the world and the oil companies will only survive if they are adjusted to the new winds that blow in the general energy sector. It will no longer be enough to be the owner of the resource (petroleum or gas) so that a company subsists and be profitable in the long term. The future, it will depend in great measure of the vision with which the oil companies face the globalization concept that begins to experience the world in the energy sector. Concepts like globalization, competition, integration and diversification is something that the companies of the hydrocarbons sector will have very present. Globalization means that it should be been attentive to what happens in the world, beyond of the limits of its territory, or to be caught by competitive surprises that can originate in very distant places. The search of cleaner and friendlier energy sources with the means it is not the only threat that it should fear the petroleum. Their substitution for electricity in the big projects of massive transport, the technology of the communications, the optic fiber and the same relationships with the aboriginal communities are aspects that also compete with the future of the petroleum

  14. Clean air in the Anthropocene.

    Science.gov (United States)

    Lelieveld, Jos

    2017-08-24

    In atmospheric chemistry, interactions between air pollution, the biosphere and human health, often through reaction mixtures from both natural and anthropogenic sources, are of growing interest. Massive pollution emissions in the Anthropocene have transformed atmospheric composition to the extent that biogeochemical cycles, air quality and climate have changed globally and partly profoundly. It is estimated that mortality attributable to outdoor air pollution amounts to 4.33 million individuals per year, associated with 123 million years of life lost. Worldwide, air pollution is the major environmental risk factor to human health, and strict air quality standards have the potential to strongly reduce morbidity and mortality. Preserving clean air should be considered a human right, and is fundamental to many sustainable development goals of the United Nations, such as good health, climate action, sustainable cities, clean energy, and protecting life on land and in the water. It would be appropriate to adopt "clean air" as a sustainable development goal.

  15. Energy Zones Study: A Comprehensive Web-Based Mapping Tool to Identify and Analyze Clean Energy Zones in the Eastern Interconnection

    Energy Technology Data Exchange (ETDEWEB)

    Koritarov, V.; Kuiper, J.; Hlava, K.; Orr, A.; Rollins, K.; Brunner, D.; Green, H.; Makar, J.; Ayers, A.; Holm, M.; Simunich, K.; Wang, J.; Augustine, C.; Heimiller, D.; Hurlbut, D. J.; Milbrandt, A.; Schneider, T. R.; et al.

    2013-09-01

    This report describes the work conducted in support of the Eastern Interconnection States’ Planning Council (EISPC) Energy Zones Study and the development of the Energy Zones Mapping Tool performed by a team of experts from three National Laboratories. The multi-laboratory effort was led by Argonne National Laboratory (Argonne), in collaboration with the National Renewable Energy Laboratory (NREL) and Oak Ridge National Laboratory (ORNL). In June 2009, the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory published Funding Opportunity Announcement FOA-0000068, which invited applications for interconnection-level analysis and planning. In December 2009, the Eastern Interconnection Planning Collaborative (EIPC) and the EISPC were selected as two award recipients for the Eastern Interconnection. Subsequently, in 2010, DOE issued Research Call RC-BM-2010 to DOE’s Federal Laboratories to provide research support and assistance to FOA-0000068 awardees on a variety of key subjects. Argonne was selected as the lead laboratory to provide support to EISPC in developing a methodology and a mapping tool for identifying potential clean energy zones in the Eastern Interconnection. In developing the EISPC Energy Zones Mapping Tool (EZ Mapping Tool), Argonne, NREL, and ORNL closely collaborated with the EISPC Energy Zones Work Group which coordinated the work on the Energy Zones Study. The main product of the Energy Zones Study is the EZ Mapping Tool, which is a web-based decision support system that allows users to locate areas with high suitability for clean power generation in the U.S. portion of the Eastern Interconnection. The mapping tool includes 9 clean (low- or no-carbon) energy resource categories and 29 types of clean energy technologies. The EZ Mapping Tool contains an extensive geographic information system database and allows the user to apply a flexible modeling approach for the identification and analysis of potential energy zones

  16. Evolving Role of the Power Sector Regulator: A Clean Energy Regulators Initiative Report

    Energy Technology Data Exchange (ETDEWEB)

    Zinaman, O.; Miller, M.; Bazilian, M.

    2014-04-01

    This paper seeks to briefly characterize the evolving role of power sector regulation. Given current global dynamics, regulation of the power sector is undergoing dramatic changes. This transformation is being driven by various factors including technological advances and cost reductions in renewable energy, energy efficiency, and demand management; increasing air pollution and climate change concerns; and persistent pressure for ensuring sustainable economic development and increased access to energy services by the poor. These issues add to the already complex task of power sector regulation, of which the fundamental remit remains to objectively and transparently ensure least-cost service delivery at high quality. While no single regulatory task is trivial to undertake, it is the prioritization and harmonization of a multitude of objectives that exemplifies the essential challenge of power sector regulation. Evolving regulatory roles can be understood through the concept of existing objectives and an additional layer of emerging objectives. Following this categorization, we describe seven existing objectives of power sector regulators and nine emerging objectives, highlighting key challenges and outlining interdependencies. This essay serves as a preliminary installment in the Clean Energy Regulatory Initiative (CERI) series, and aims to lay the groundwork for subsequent reports and case studies that will explore these topics in more depth.

  17. Mapping of Ethiopian higher education institutions on clean energy

    Energy Technology Data Exchange (ETDEWEB)

    2011-04-15

    Norad commissioned Econ Poeyry to map teaching and research activities and capacity related to clean energy in selected Ethiopian universities. The mapping identified challenges and opportunities with the aim of facilitating future intervention by the Ethiopian Government and donors to help improve the energy sector development of the country. The report covered the government-owned universities of Bahir Dar, Mekelle, Jimma, Arba Minch and Addis Ababa. The mapping was based on a questionnaire and on interviews at each university. (Author)

  18. Chapter 4: Assessing the Air Pollution, Greenhouse Gas, Air Quality, and Health Benefits of Clean Energy Initiatives

    Science.gov (United States)

    Chapter 4 of Assessing the Multiple Benefits of Clean Energy helps state states understand the methods, models, opportunities, and issues associated with assessing the GHG, air pollution, air quality, and human health benefits of clean energy options.

  19. Clean Energy in City Codes: A Baseline Analysis of Municipal Codification across the United States

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Jeffrey J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Aznar, Alexandra [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dane, Alexander [National Renewable Energy Lab. (NREL), Golden, CO (United States); Day, Megan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mathur, Sivani [National Renewable Energy Lab. (NREL), Golden, CO (United States); Doris, Elizabeth [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-12-01

    Municipal governments in the United States are well positioned to influence clean energy (energy efficiency and alternative energy) and transportation technology and strategy implementation within their jurisdictions through planning, programs, and codification. Municipal governments are leveraging planning processes and programs to shape their energy futures. There is limited understanding in the literature related to codification, the primary way that municipal governments enact enforceable policies. The authors fill the gap in the literature by documenting the status of municipal codification of clean energy and transportation across the United States. More directly, we leverage online databases of municipal codes to develop national and state-specific representative samples of municipal governments by population size. Our analysis finds that municipal governments with the authority to set residential building energy codes within their jurisdictions frequently do so. In some cases, communities set codes higher than their respective state governments. Examination of codes across the nation indicates that municipal governments are employing their code as a policy mechanism to address clean energy and transportation.

  20. Clean Energy Financing Programs: A Decision Resource for States and Communities

    Science.gov (United States)

    Describes financing-program options, key components of financing programs, and factors for states and communities to consider as they make decisions about getting started or updating their clean energy financing programs.

  1. U.S. DOE Southeast Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Panzarella, Isaac [North Carolina State Univ., Raleigh, NC (United States); Mago, Pedro [North Carolina State Univ., Raleigh, NC (United States); Kalland, Stephen [North Carolina State Univ., Raleigh, NC (United States)

    2013-12-31

    Between 2010 and 2013, the U.S. Department of Energy (DOE) funded the Southeast Clean Energy Application Center (SE-CEAC), co-located at the North Carolina Solar Center at NC State University (NCSU) and at Mississippi State University. The SE-CEAC was one of eight regional CEACs established to promote and assist in transforming the market for combined heat and power (CHP), district energy (DE) and waste heat to power (WHP) throughout the U.S. CHP locates power generation at the point of demand and makes productive use of the residual thermal energy for process and space heating in factories and businesses, thus lowering the cost of meeting electricity and heat requirements and increasing energy efficiency. The overall goal of the SE-CEAC was to support end-user implementation and overall market transformation for CHP and related clean energy technologies. Five objectives were targeted to achieve the goal: 1. Market Analysis and Information Dissemination 2. Outreach and Education for Potential CHP End-users 3. Policy Support for State and Regional Stakeholders 4. Technical Assistance to Support CHP Deployment 5. Collaboration with DOE and other CEACs Throughout the project, the CEACs provided key services of education and outreach, technical assistance and market analysis in support of project objectives. These services were very effective at achieving key objectives of assisting prospective CHP end-users and informing policy makers, utilities and others about the benefits of CHP. There is a marked increase in the awareness of CHP technologies and applications as an energy resource among end-users, policymakers, utility regulators, electric utilities and natural gas utilities in the Southeast region as a result. At the end of 2013, a number of best-practice policies for CHP were applied or under consideration in various Southeast states. The SE-CEAC met its targets for providing technical assistance with over 50 analyses delivered for 412 MW of potential end

  2. Natural gas - bridge to a clean energy future

    International Nuclear Information System (INIS)

    Doelman, J.

    1991-01-01

    Per unit of useful energy natural gas gives the lowest environmental pollution of all fossil fuels. This is due to its low carbon content, the absence of sulphur compounds, and the fact that natural gas can, rather easily, be burnt completely in such a way that also the NO x emission is acceptably low. Although natural gas has already a good record as an efficient and clean fuel large improvements are still possible, but this requires more R+D and time. The presently known natural gas world reserves are high enough to go for a substantially higher share of gas in the energy package. E.g. replacing coal by natural gas will give large environmental improvements. Furthermore, direct gas use is very often the most efficient and cleanest option, also when electricity is an alternative. To develop and connect the known large reserves to the market enormous amounts of money are required. The political and economical situation should make these investments possible and attractive. The ideas first expressed by the Dutch prime minister, now incorporated in the Energy Charter, have been developed to that end. Special attention should be given to the development of small gas fields as is e.g. being done in The Netherlands, which has improved the local gas reserves situation impressively. As a first major step to a clean future the potential of natural gas should be explored and put to work worldwide. Its potential as an important diversified source of energy is underestimated. Amongst others by funding more natural gas R+D natural gas should develop a keyrole in the energy scene of the next 3-5 decades.(author) 3 figs., 8 tabs., 3 refs

  3. Ways of transition to clean energy use: two methodological approaches

    International Nuclear Information System (INIS)

    Belyaev, L.S.; Kaganovich, B.M.; Krutov, A.N.; Filippov, S.P.; Martinsen, D.; Mueller, M.; Wagner, H.J.; Walbeck, M.

    1987-01-01

    Studies of the Siberian Energy Institute, Irkutsk, and the Nuclear Research Center, Juelich, carried out with the aid of complex computer models, demonstrate the opportunities of novel integrated energy systems in a future, clean energy supply. As conditions differ widely in different regions and different countries, there will of course be a wide structural variety in the realization of integrated energy systems. The studies of SEI and KFA, based on the cooperation with the International Institute of Applied System Analysis (IIASA), emphasize the common viewpoint that the idea of integrated energy systems constitutes an essential basis for future studies on 'energy in a finite environment'. (Author)

  4. Vertical Silicon Nanowire Platform for Low Power Electronics and Clean Energy Applications

    Directory of Open Access Journals (Sweden)

    D.-L. Kwong

    2012-01-01

    Full Text Available This paper reviews the progress of the vertical top-down nanowire technology platform developed to explore novel device architectures and integration schemes for green electronics and clean energy applications. Under electronics domain, besides having ultimate scaling potential, the vertical wire offers (1 CMOS circuits with much smaller foot print as compared to planar transistor at the same technology node, (2 a natural platform for tunneling FETs, and (3 a route to fabricate stacked nonvolatile memory cells. Under clean energy harvesting area, vertical wires could provide (1 cost reduction in photovoltaic energy conversion through enhanced light trapping and (2 a fully CMOS compatible thermoelectric engine converting waste-heat into electricity. In addition to progress review, we discuss the challenges and future prospects with vertical nanowires platform.

  5. FY 2000 report on the investigational study of the general PR method for spreading clean energy vehicles and letting people know them; 2000 nendo chosa hokokusho. Clean energy jidosha fukyu keihatsu no tameno ippan koho shuho ni kansuru kento chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The details were outlined of the PR event 'Clean Energy Festa' which was carried out for PR activities for spread of new energy and clean energy vehicles. The festa was implemented in Yokote (Akita prefecture), Nagoya, Osaka, Yokohama and Hiroshima. The details of each place were reported in terms of the following: outline of the implementation, map of the place and booths, opening ceremony, management at entrance, dome theater, place for enjoying/relaxing, festival plaza, parking lot, PR related works, etc. In Festa in Yokote, more people gathered than expected. The reasons seem to be: the festa was held in the existing amusement facilities; the show using costumes of popular characters and gifts of the lottery were effective. As to new energy and clean energy vehicles, appeal was made mainly by stamp rally and questionnaire survey. By moving people inside the place, it helped people to have an understanding of clean energy vehicles. Almost the same effects were recognized also in the other places. (NEDO)

  6. FY 2000 report on the investigational study of the general PR method for spreading clean energy vehicles and letting people know them; 2000 nendo chosa hokokusho. Clean energy jidosha fukyu keihatsu no tameno ippan koho shuho ni kansuru kento chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The details were outlined of the PR event 'Clean Energy Festa' which was carried out for PR activities for spread of new energy and clean energy vehicles. The festa was implemented in Yokote (Akita prefecture), Nagoya, Osaka, Yokohama and Hiroshima. The details of each place were reported in terms of the following: outline of the implementation, map of the place and booths, opening ceremony, management at entrance, dome theater, place for enjoying/relaxing, festival plaza, parking lot, PR related works, etc. In Festa in Yokote, more people gathered than expected. The reasons seem to be: the festa was held in the existing amusement facilities; the show using costumes of popular characters and gifts of the lottery were effective. As to new energy and clean energy vehicles, appeal was made mainly by stamp rally and questionnaire survey. By moving people inside the place, it helped people to have an understanding of clean energy vehicles. Almost the same effects were recognized also in the other places. (NEDO)

  7. State and Local Clean Energy Policy Primer: Getting from Here to Clean Electricity with Policy (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2011-04-01

    This fact sheet proposes a framework for how states and localities can build policy portfolios by first setting the stage for clean energy in the market with low cost policies, and then growing the market with successive policies until the need for financial incentives can be reduced and eventually eliminated.

  8. Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Freihaut, Jim [Pennsylvania State Univ., University Park, PA (United States)

    2013-09-30

    The Mid Atlantic Clean Energy Application Center (MACEAC), managed by The Penn State College of Engineering, serves the six states in the Mid-Atlantic region (Pennsylvania, New Jersey, Delaware, Maryland, Virginia and West Virginia) plus the District of Columbia. The goals of the Mid-Atlantic CEAC are to promote the adoption of Combined Heat and Power (CHP), Waste Heat Recovery (WHR) and District Energy Systems (DES) in the Mid Atlantic area through education and technical support to more than 1,200 regional industry and government representatives in the region. The successful promotion of these technologies by the MACEAC was accomplished through the following efforts; (1)The MACEAC developed a series of technology transfer networks with State energy and environmental offices, Association of Energy Engineers local chapters, local community development organizations, utilities and, Penn State Department of Architectural Engineering alumni and their firms to effectively educate local practitioners about the energy utilization, environmental and economic advantages of CHP, WHR and DES; (2) Completed assessments of the regional technical and market potential for CHP, WHR and DE technologies application in the context of state specific energy prices, state energy and efficiency portfolio development. The studies were completed for Pennsylvania, New Jersey and Maryland and included a set of incentive adoption probability models used as a to guide during implementation discussions with State energy policy makers; (3) Using the technical and market assessments and adoption incentive models, the Mid Atlantic CEAC developed regional strategic action plans for the promotion of CHP Application technology for Pennsylvania, New Jersey and Maryland; (4) The CHP market assessment and incentive adoption model information was discussed, on a continuing basis, with relevant state agencies, policy makers and Public Utility Commission organizations resulting in CHP favorable incentive

  9. Developing an Online Database of National and Sub-National Clean Energy Policies

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, R.; Cross, S.; Heinemann, A.; Booth, S.

    2014-06-01

    The Database of State Incentives for Renewables and Efficiency (DSIRE) was established in 1995 to provide summaries of energy efficiency and renewable energy policies offered by the federal and state governments. This primer provides an overview of the major policy, research, and technical topics to be considered when creating a similar clean energy policy database and website.

  10. 77 FR 47828 - Amended Notice of Intent To Prepare the Hawai'i Clean Energy Programmatic Environmental Impact...

    Science.gov (United States)

    2012-08-10

    .... Attention: Hawai'i Clean Energy PEIS. U.S. mail to Jim Spaeth, U.S. Department of Energy, 300 Ala Moana Blvd.... For purposes of this PEIS, DOE has divided these potential future actions into five clean energy..., 2012, 5-8:30 p.m. at O'ahu, James B. Castle High School, 45-386 Kaneohe Bay Drive, Kaneohe, HI 96744...

  11. Sustainability of hydropower as source of renewable and clean energy

    International Nuclear Information System (INIS)

    Luis, J; Sidek, L M; Desa, M N M; Julien, P Y

    2013-01-01

    Hydroelectric energy has been in recent times placed as an important future source of renewable and clean energy. The advantage of hydropower as a renewable energy is that it produces negligible amounts of greenhouse gases, it stores large amounts of electricity at low cost and it can be adjusted to meet consumer demand. This noble vision however is becoming more challenging due to rapid urbanization development and increasing human activities surrounding the catchment area. Numerous studies have shown that there are several contributing factors that lead towards the loss of live storage in reservoir, namely geology, ground slopes, climate, drainage density and human activities. Sediment deposition in the reservoir particularly for hydroelectric purposes has several major concerns due to the reduced water storage volume which includes increase in the risk of flooding downstream which directly effects the safety of human population and properties, contributes to economic losses not only in revenue for power generation but also large capital and maintenance cost for reservoir restorations works. In the event of functional loss of capabilities of a hydropower reservoir as a result of sedimentation or siltation could lead to both economical and environmental impact. The objective of this paper is aimed present the importance of hydropower as a source of renewable and clean energy in the national energy mix and the increasing challenges of sustainability.

  12. Materials, critical materials and clean-energy technologies

    Science.gov (United States)

    Eggert, R.

    2017-07-01

    Modern engineered materials, components and systems depend on raw materials whose properties provide essential functionality to these technologies. Some of these raw materials are subject to supply-chain risks, and such materials are known as critical materials. This paper reviews corporate, national and world perspectives on material criticality. It then narrows its focus to studies that assess "what is critical" to clean-energy technologies. The focus on supply-chain risks is not meant to be alarmist but rather to encourage attention to monitoring these risks and pursuing technological innovation to mitigate the risks.

  13. Geothermal today: 1999 Geothermal Energy Program highlights (Clean energy for the 21st century booklet)

    Energy Technology Data Exchange (ETDEWEB)

    Green, B.; Waggoner, T.

    2000-05-10

    The purpose of this publication is to educate and inform readers about research activities being carried out by the federal Geothermal Energy Program, and its achievements and future goals. This publication should help raise the visibility and awareness of geothermal energy contributions and potential, especially as part of the nation's clean energy technologies portfolio. The message of the publication is that program resources are being well spent and the results are real and tangible. A secondary message is that geothermal energy is a viable generation option with environmental, economic, and other benefits.

  14. The Ontario-Manitoba clean energy transfer initiative

    International Nuclear Information System (INIS)

    Clarkson, J.

    2006-01-01

    Manitoba currently generates 5500 MW of electricity, and has the potential to add another 5000 MW of clean energy. Nearly 2000 MW of Manitoba's electricity is currently being sold to the United States. New transmission sites will ensure both grid reliability and energy security for Ontario, and power exchanges are expected to reduce costs. This presentation provided details of a memorandum of understanding (MOU) between Ontario and Manitoba concerning energy sales across existing and future transmission infrastructure. Peak energy sales were expected to reach 1000 MW in the near future. Options for the interconnection included direct high voltage direct current (HVDC) lines to Sudbury as well as lines through Thunder Bay and Winnipeg. Manitoba's existing hydro sites were outlined, and potential sites were reviewed. In addition to presenting new supply options, this presentation described generation and transmission approval processes, as well as construction schedules for new sites and interconnection points. It was concluded that while there is currently a provincial focus on electricity supply and demand, new generation technologies will make interprovincial electricity agreements economically viable. tabs., figs

  15. Energy and global warming impacts of CFC alternative technologies for foam building insulations

    International Nuclear Information System (INIS)

    Fischer, S.K.; Fairchild, P.D.; Hughes, P.J.

    1992-01-01

    Chlorofluorocarbons (CFCS) have been used as blowing agents in foam insulation, as the working fluids in cooling and refrigeration equipment, and as solvents in general and precision cleaning applications since their introduction in the 1930s. The number of applications and volumes of CFCs used grew at a tremendous pace during the 1960s and 1970s, but in the mid-1980s it was confirmed that these extremely useful chemicals contribute to the destruction of stratospheric zone and that they are the primary cause of the CFCs have also been found to be second only to carbon dioxide as a factor causing increased greenhouse warming. These chemicals are being phased out of use rapidly to protect the ozone layer and it is very important that the replacements for CFCs do not result in a net increase in global warming by introducing less efficient processes that lead to higher energy use and increased carbon dioxide emissions. A study was conducted to identify those alternative chemicals and technologies that could replace CFCs in energy related applications before the year 2000, and to assess the total potential impact of those alternatives on global warming. The analysis for this project included an estimate of the direct effects from the release of blowing agents, refrigerants, and solvents into the atmosphere and the indirect effects of carbon dioxide emissions resulting from energy use for commercial and residential building insulation, household and commercial refrigeration, building and automobile air conditioning, and general metal and electronics solvent cleaning. This paper focuses on those aspects of the study relevant to building insulation. In general the hydrofluorocarbon (HFC) and hydrochlorofluorocarbon alternatives for CFCs lead to large and sometimes dramatic reductions in total equivalent warming impact, lifetime equivalent C0 2 emissions (TEWI). Most of the reductions result from decreased direct effects without significant changes in energy use

  16. Renewable energy projects under the clean development mechanism : myth or reality?

    International Nuclear Information System (INIS)

    Timilsina, G.

    2005-01-01

    This paper discussed the fate of Renewable Energy (RE) in Canada. The importance of RE is now increasing from both an environmental and energy security perspective, and has been projected as a key solution to climate change problems. RE is also one of the key greenhouse gas (GHG) mitigation options to be considered under the Clean Development Mechanism (CDM). Canada possesses more than 100 GW of technical potential for RE resources, including wind, solar and small hydro. Less than 10 per cent of this potential has been exploited to date. A number of programs have been developed to facilitate the deployment of Renewable Energy Technologies (RETs), including financial incentives, renewable portfolio standards and green power procurement policies. However, Canadian policies are less aggressive than those of other countries. This study showed that the supply of certified emission reductions (CERs) resulting from negative and low cost CDM options, such as energy efficiency improvements, afforestation and reforestation, could surpass the total demand for CERs during the first commitment period of the Kyoto Protocol. Implementation of RE projects under the CDM could be undermined. It was recommended that increased support of the Global Environment Facility (GEF), use of the Special Climate Change Fund, and special attention to RE from both host and investing countries should become mandatory as alternative strategies to promote RE. In addition, it should be acknowledged that the development of RETs faces a number of barriers and challenges, including competition from conventional energy technologies; lack of customer and investor confidence; regulatory and institutional barriers; and technical barriers such as transmission access. 19 refs., 1 tab

  17. Energy Revolution. A Sustainable Pathway to a Clean Energy Future for Europe. A European Energy Scenario for EU-25

    International Nuclear Information System (INIS)

    Teske, S.; Baker, C.

    2005-09-01

    Greenpeace and the Institute of Technical Thermodynamics, Department of Systems Analysis and Technology Assessment of the German Aerospace Center (DLR),have developed a blueprint for the EU energy supply that shows how Europe can lead the way to a sustainable pathway to a clean energy future. The Greenpeace energy revolution scenario demonstrates that phasing out nuclear power and massively reducing CO2-emissions is possible. The scenario comes close to a fossil fuels phase-out by aiming for a 80% CO2 emissions reduction by 2050.The pathway in this scenario achieves this phase-out in a relatively short time-frame without using technological options (such as 'clean coal') that are ultimately dead ends, deflecting resources from the real solutions offered by renewable energy. Whilst there are many technical options that will allow us to meet short-term EU Kyoto targets (-8% GHG by 2010), these may have limited long-term potential. The Greenpeace Energy Revolution Scenario shows that in the long run, renewable energy will be cheaper than conventional energy sources and reduce EU's dependence from world market prices from imported fossil and nuclear fuels.The rapid growth of renewable energy technologies will lead to a large investment in new technologies.This dynamic market growth will result in a shift of employment opportunities from conventional energy-related industries to new occupational fields in the renewable energy industry. Renewable energy is expected to provide about 700,000 jobs in the field of electricity generation from renewable energy sources by 2010

  18. The necessity of nuclear power: a global human and environmental imperative

    International Nuclear Information System (INIS)

    Ritch, J.

    2008-01-01

    Humankind cannot conceivably achieve a global clean-energy revolution without a huge expansion of nuclear power to generate electricity; to produce battery power and possibly hydrogen for tomorrow's vehicles; to desalinate seawater in response to the worlds rapidly emerging fresh-water crisis. Factors for accelerating the nuclear renaissance are: comprehensive post-Kyoto agreement all major nations, with appropriate obligations, strong political and economic incentives and goal to achieve 60% cut in global emissions by 2050; harness UN system to one clean-energy vision nuclear power at centre of global strategy; national incentive policies not for subsidy but for acceleration; education policies public's better understanding of nuclear energy new generation of nuclear professionals

  19. Credits/exemptions for clean energy exports in the context of a Canadian GHG strategy

    International Nuclear Information System (INIS)

    Hyndman, R.

    2002-01-01

    Greenhouse gas emissions is a global issue because the effect of a tonne of carbon dioxide emissions is independent of where it occurs, or during which stage or production, distribution and final use of a given product. International trade complicates the relationship between the final use of goods and where the emissions associated with their production and distribution occur. Besides the large bilateral trade with the US in automobiles and parts, Canada's exports lean largely toward energy intensive commodities such as oil, gas, chemicals, steel, pulp and paper, and aluminum. In consequence, there is a high volume of greenhouse gas emissions in Canada associated with goods produced for consumption elsewhere. Under the Kyoto Protocol, this growing export of energy intensive goods, creates a greenhouse gas inventory burden for Canadians. The author noted that the Kyoto Protocol greenhouse gas accounting system attributes upstream emissions to the exporter. It was argued that since Canada's natural gas exports to the United States reduce their coal consumption for electricity generation and fuel oil for industrial boilers, Canada should have its greenhouse gas inventory adjusted through either a credit for clean energy exports or through exemption of upstream emissions. 7 figs

  20. Atomistic Modelling of Materials for Clean Energy Applications : hydrogen generation, hydrogen storage, and Li-ion battery

    OpenAIRE

    Qian, Zhao

    2013-01-01

    In this thesis, a number of clean-energy materials for hydrogen generation, hydrogen storage, and Li-ion battery energy storage applications have been investigated through state-of-the-art density functional theory. As an alternative fuel, hydrogen has been regarded as one of the promising clean energies with the advantage of abundance (generated through water splitting) and pollution-free emission if used in fuel cell systems. However, some key problems such as finding efficient ways to prod...

  1. Canada's clean energy technology and the Bay area market : a needs assessment

    International Nuclear Information System (INIS)

    2008-03-01

    This study was conducted to develop market intelligence related to clean energy technologies in Northern California, including both commercial and demonstration technologies. The study was developed as a tool for exploring engagement between Canadian and Californian businesses and partnering opportunities. The study examined technologies for solar power and photovoltaics; hydrogen and fuel cells; and waste-to-energy. A list of more than 150 organizations, government agencies, business associations, and utilities was prepared. The survey also included the establishment of contact points with large facilities, public spaces, bus fleets, and major capital projects. Fifty-nine interviews were also conducted as part of the study. Results of the study indicated that the biggest challenge concerning most individuals was the need to reduce energy consumption while maintaining reliability. Many interviewees expressed an interest in operating waste-to-energy facilities. Fifty interviewees indicated that they were planning to use or already used solar technologies. An analysis of clean energy needs was also included. The study indicated that many local governments are reluctant to embrace new, highly visible technologies. Only sophisticated organizations with unique energy demands have considered the use of fuel cell technologies. 1 fig

  2. The Clean-Development Mechanism, stochastic permit prices and energy investments

    International Nuclear Information System (INIS)

    Hieronymi, Philipp; Schüller, David

    2015-01-01

    We analyze the impact on energy investments stemming from different emission permit classes, by considering permits that are allocated inside the European Emission Trading Scheme and secondary Certified Emission Reduction (sCER) permits originating from the Clean Development Mechanism. One price taking firm which is subject to emission regulation has the choice to invest in gas or wind power plant. The firm faces uncertainty regarding stochastically evolving permit prices, while it receives a premium on the electricity price for wind energy. As a first step, we determine the value of the option to invest into a gas power plant over time. Then, we calculate the investment probability of a gas power investment in a range of policy scenarios. We find that allowing the usage of sCER permits in the present policy framework has a positive impact on gas power investment. Decoupling the price processes has a similar effect. If the quota of sCER permits is doubled, the decrease in the investment probability for wind power is large. We carry out sensitivity tests for different parameter values, and find that investment behavior changes significantly with differing interest rates, the wind energy premium and volatility. - Highlights: • We model the impact of two CO 2 permit classes on energy investments. • We present a real-options framework accounting for uncertainty. • Clean Development Mechanism permits have a negative influence on investment into renewable energy. • Interest rate and volatility values have a strong impact on the results

  3. Concerned consumption. Global warming changing household domestication of energy

    International Nuclear Information System (INIS)

    Aune, Margrethe; Godbolt, Åsne Lund; Sørensen, Knut H.; Ryghaug, Marianne; Karlstrøm, Henrik; Næss, Robert

    2016-01-01

    This paper addresses possible effects of the growing focus on global warming on households’ domestication of energy and the dynamics of energy consumption by comparing data pertaining to the domestication of energy within Norwegian households from two time periods: first, 1991–1995, when climate change was given little public attention, and, second, 2006–2009, after climate change became a major public concern. In the first period, we observed that the domestication of energy resulted in an energy culture emphasizing comfort and convenience with respect to everyday life and the abundant supply of clean hydropower. In the second period, this culture seemed to have changed, making households more concerned about their energy consumption. Consumption of energy was linked to climate change, and many interviewees claimed to save energy. However, the dominant expectation was still to be able to manage everyday life in a convenient and comfortable way. Thus, climate change concerns produced some but not very radical changes in the practical domestication of energy, including energy saving. A main effect was feelings of guilt, tempered by arguments regarding why change is difficult and complaints about political inaction. Thus, public engagement with climate change issues may facilitate energy efficiency policy but to succeed, wider climate policy measures seem to be needed. - Highlights: • Increased climate change focus has affected household domestication of energy. • The changes produced concerns about energy consumption. • Some energy saving activities were reported. • Household energy cultures are less stable than anticipated. • Suggests wider climate policy measures to motivate for energy efficiency.

  4. Materials, critical materials and clean-energy technologies

    Directory of Open Access Journals (Sweden)

    Eggert R.

    2017-01-01

    Full Text Available Modern engineered materials, components and systems depend on raw materials whose properties provide essential functionality to these technologies. Some of these raw materials are subject to supply-chain risks, and such materials are known as critical materials. This paper reviews corporate, national and world perspectives on material criticality. It then narrows its focus to studies that assess “what is critical” to clean-energy technologies. The focus on supply-chain risks is not meant to be alarmist but rather to encourage attention to monitoring these risks and pursuing technological innovation to mitigate the risks.

  5. Clean energy funds: An overview of state support for renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark; Wiser, Ryan

    2001-04-01

    Across the United States, as competition in the supply and delivery of electricity has been introduced, states have sought to ensure the continuation of ''public benefits'' programs traditionally administered or funded by electric utilities. Many states have built into their restructuring plans methods of supporting renewable energy sources. One of the most popular policy mechanisms for ensuring such continued support has been the system-benefits charge (SBC), a non-bypassable charge to electricity customers (usually applied on a cents/kWh basis) used to collect funds for public purpose programs. Thus far, at least fourteen states have established SBC funds targeted in part towards renewable energy. This paper discusses the status and performance of these state renewable or ''clean'' energy funds supported by system-benefits charges. As illustrated later, existing state renewable energy funds are expected to collect roughly $3.5 billion through 2012 for renewable energy. Clearly, these funds have the potential to provide significant support for clean energy technologies over at least the next decade. Because the level of funding for renewable energy available under these programs is unprecedented and because fund administrators are developing innovative and new programs to fund renewable projects, a certain number of program failures are unavoidable. Also evident is that states are taking very different approaches to the distribution of these funds and that many lessons are being learned as programs are designed, implemented, and evaluated. Our purpose in this paper is therefore to relay early experience with these funds and provide preliminary lessons learned from that experience. It is our hope that this analysis will facilitate learning across states and help state fund managers develop more effective and more coordinated programs. Central to this paper are case studies that provide information on the SBC-funded renewable

  6. R&D 100 Awards Demonstrate Clean Energy Legacy - Continuum Magazine |

    Science.gov (United States)

    Intel to develop an innovative warm-water, liquid-cooled supercomputer that later won an R&D 100 Award. Photo by Dennis Schroeder, NREL R&D 100 Awards Demonstrate Clean Energy Legacy NREL has won 57 R&D 100 Awards since 1982, many of which led directly to industry successes today. R&D 100

  7. A Blueprint for Florida's Clean Energy Future - Case Study of a Regional Government's Environmental Strategy

    Directory of Open Access Journals (Sweden)

    Margaret Lowman

    2009-04-01

    Full Text Available On 13 July 2007, Governor Charlie Crist of Florida signed executive orders to establish greenhouse gas emission targets that required an 80 percent reduction below 1990 levels by the year 2050. Florida is a very high-risk state with regard to climate change. Its 1,350-mile-long coastline, location in "Hurricane Alley," reliance on coral reefs and other vulnerable natural resources for its economy, and the predictions that state population could double in the next 30 years all contribute to this designation of "high-risk. As a consequence of the potential economic and ecological impacts of climate change to Florida, a series of Action Teams were created to plan for adaptation to impending environmental changes. As the 26th largest emitter of carbon dioxide on a global scale, Florida needs to act aggressively to create a clean energy footprint as part of its statewide initiatives but with global impacts. This case study examines the process and expected outcomes undertaken by a regional government that anticipates the need for stringent adaptation.

  8. Sustainable Mobility: Using a Global Energy Model to Inform Vehicle Technology Choices in a Decarbonized Economy

    Directory of Open Access Journals (Sweden)

    Timothy Wallington

    2013-04-01

    Full Text Available The reduction of CO2 emissions associated with vehicle use is an important element of a global transition to sustainable mobility and is a major long-term challenge for society. Vehicle and fuel technologies are part of a global energy system, and assessing the impact of the availability of clean energy technologies and advanced vehicle technologies on sustainable mobility is a complex task. The global energy transition (GET model accounts for interactions between the different energy sectors, and we illustrate its use to inform vehicle technology choices in a decarbonizing economy. The aim of this study is to assess how uncertainties in future vehicle technology cost, as well as how developments in other energy sectors, affect cost-effective fuel and vehicle technology choices. Given the uncertainties in future costs and efficiencies for light-duty vehicle and fuel technologies, there is no clear fuel/vehicle technology winner that can be discerned at the present time. We conclude that a portfolio approach with research and development of multiple fuel and vehicle technology pathways is the best way forward to achieve the desired result of affordable and sustainable personal mobility. The practical ramifications of this analysis are illustrated in the portfolio approach to providing sustainable mobility adopted by the Ford Motor Company.

  9. Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply.

    Science.gov (United States)

    Klaysom, Chalida; Cath, Tazhi Y; Depuydt, Tom; Vankelecom, Ivo F J

    2013-08-21

    Osmotically driven membrane processes (ODMP) have gained renewed interest in recent years and they might become a potential solution for the world's most challenging problems of water and energy scarcity. Though the concept of utilizing osmotic pressure difference between high and low salinity streams across semipermeable membranes has been explored for several decades, lack of optimal membranes and draw solutions hindered competition between forward osmosis (FO) and pressure retarded osmosis (PRO) with existing water purification and power generation technologies, respectively. Driven by growing global water scarcity and by energy cost and negative environmental impacts, novel membranes and draw solutions are being developed for ODMPs, mass and heat transfer in osmotic process are becoming better understood, and new applications of ODMPs are emerging. Therefore, OMDPs might become promising green technologies to provide clean water and clean energy from abundantly available renewable resources. This review focuses primarily on new insights into osmotic membrane transport mechanisms and on novel membranes and draw solutions that are currently being developed. Furthermore, the effects of operating conditions on the overall performance of osmotic membranes will be highlighted and future perspectives will be presented.

  10. New energy introduction vision in Chiba Prefecture; Chibaken shin energy donyu vision

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Surveys and discussions were given on establishing a new energy introduction vision in Chiba Prefecture. The basic conception for new energy introduction regarded important the handling of global environment problems, improvement of the global environment, enhancement in energy security, and assurance of the regional performance of disaster prevention. New energy introduction is thought making it possible to create attractive urban spaces, make living environment more agreeable, and promote and breed new industries including the eco-business. Important measures may include the followings: introduction of new and economic energies in multiple ways for individual buildings and facilities, development of environment symbiotic cities utilizing new energies, improvement of region symbiotic cities in industrial zones, effective utilization of energies from wide-area refuses and wastes, establishment of an urban type cleaning plant that utilizes effectively energies from general wastes, new energy utilization in coordination with agricultural activities, utilization of new energies in fishery industry areas, and expansion in use of clean energy fueled automobiles including natural gas fueled automobiles. (NEDO)

  11. Energy and cost total cost management discussion: The global gas industry

    International Nuclear Information System (INIS)

    Batten, R.M.

    1995-01-01

    Gas has emerged as one of the most desirable fuels for a wide range of applications that previously have been supplied by oil, coal, or nuclear energy. Compared to these, it is environmentally clean and burns at efficiencies far in excess of competitive fuels. The penetration of gas as the fuel of choice in most parts of the world is still modest. This is particularly true in newly-developed countries that are engaged in rapid industrialization and where rates of growth in the gross domestic products are two or three times greater than in the Organization for Economic Cooperation and Development (OECD) countries. I will not attempt here to survey the world gas scene comprehensively. I will, however, attempt to focus on some aspects of the industry that could be the trigger points for global development. These triggers are occurring all along the gas chain, by which I mean the entire process of bringing gas to the customer from discovery through delivery. The chain includes exploration and production, power generation, transmission, and distribution. I describe an industry that is on the verge of truly global status, which is fast overcoming the remaining obstacles to transnational trade, and which has unusually exciting long-term prospects. It does have a good way to go before it achieves the maturity of the international oil industry, but in the last few years there has been a tremendous growth of confidence among both investors and users. The global gas industry is certainly developing at a fast pace, and the world can only benefit from the wider availability of this clean, economic, and efficient hydrocarbon

  12. Clean Energy Consumption and Economic Growth: A Case Study for Developing Countries

    OpenAIRE

    Fotourehchi, Zahra

    2017-01-01

    In this paper, we analyze the long-run causality relationship between renewable/clean energy consumption and economic growth during the period 1990-2012 for 42 developing countries, under the Canning and Pedroni (2008) long-run causality test, which indicates that there is long-run positive causality running from renewable energy to real GDP. This means that for developing countries where renewable energy consumption has a positive long-run causal effect on real GDP, renewable energy dependen...

  13. Mesoporous materials for clean energy technologies.

    Science.gov (United States)

    Linares, Noemi; Silvestre-Albero, Ana M; Serrano, Elena; Silvestre-Albero, Joaquín; García-Martínez, Javier

    2014-11-21

    Alternative energy technologies are greatly hindered by significant limitations in materials science. From low activity to poor stability, and from mineral scarcity to high cost, the current materials are not able to cope with the significant challenges of clean energy technologies. However, recent advances in the preparation of nanomaterials, porous solids, and nanostructured solids are providing hope in the race for a better, cleaner energy production. The present contribution critically reviews the development and role of mesoporosity in a wide range of technologies, as this provides for critical improvements in accessibility, the dispersion of the active phase and a higher surface area. Relevant examples of the development of mesoporosity by a wide range of techniques are provided, including the preparation of hierarchical structures with pore systems in different scale ranges. Mesoporosity plays a significant role in catalysis, especially in the most challenging processes where bulky molecules, like those obtained from biomass or highly unreactive species, such as CO2 should be transformed into most valuable products. Furthermore, mesoporous materials also play a significant role as electrodes in fuel and solar cells and in thermoelectric devices, technologies which are benefiting from improved accessibility and a better dispersion of materials with controlled porosity.

  14. A global perspective on energy: health effects and injustices.

    Science.gov (United States)

    Wilkinson, Paul; Smith, Kirk R; Joffe, Michael; Haines, Andrew

    2007-09-15

    The exploitation of fossil fuels is integral to modern living and has been a key element of the rapid technological, social, and cultural changes of the past 250 years. Although such changes have brought undeniable benefits, this exploitation has contributed to a burden of illness through pollution of local and regional environments, and is the dominant cause of climate change. This pattern of development is therefore unsustainable at a global level. At the same time, about 2.4 billion of the world's population, disadvantaged by lack of access to clean energy, are exposed to high levels of indoor air pollutants from the inefficient burning of biomass fuels. Even in high-income countries, many people live in fuel poverty, and throughout the world, increasingly sedentary lifestyles (to which fossil-fuel-dependent transport systems contribute) are leading to chronic disease and injuries. Energy security is also an issue of growing concern to many governments in both the developed and developing world, and a potential source of international tension and conflict. In this Series, we examine the opportunities to improve health, reduce climate effects, and promote development through realistic adjustments in the way energy and food are produced and consumed.

  15. Energy and global warming impacts of CFC alternative technologies

    International Nuclear Information System (INIS)

    Fischer, S.K.; Fairchild, P.D.; Hughes, P.J.

    1992-01-01

    Chlorofluorocarbons (CFCs) are used in a number of applications, and volumes of CFCs used grew at a tremendous pace during the 1960s and 1970s. However, in the mid-1980s, it was confirmed that these extremely useful chemicals contribute to the destruction of stratospheric ozone. These chemicals are being phased out of use rapidly to protect the ozone layer and it is very important that the replacements for CFSs do not result in a net increase in global warming by introducing less efficient processes that lead to higher energy use and increased carbon dioxide emissions. A study was conducted to identify those alternative chemicals and technologies that could replace CFCs in energy related applications before the year 2000, and to assess the total potential impact of these alternatives on global warming. The analysis for this project included an estimate of the direct effects from the release of blowing agents, refrigerants, and solvents into the atmosphere and the indirect effects in the form of carbon dioxide emissions resulting from energy use for commercial and residential heating and cooling, household and commercial refrigeration, building and automobile air-conditioning, and general metal and electronics solvent cleaning. The discussion in this paper focuses on those aspects of the study relevant to refrigeration and air-conditioning. In general the use of hydrofluorocarbon (HFC) and hydrochlorofluorocarbon (HCFC) alternatives for CFCs lead to large and sometimes dramatic reduction in total equivalent warming impact (TEWI), lifetime equivalent CO 2 emission. Most of the reductions result from decreased direct effects without significant changes in energy use. 3 refs., 3 figs., 1 tab

  16. Market failures and barriers as a basis for clean energy policies

    International Nuclear Information System (INIS)

    Brown, M.A.

    2001-01-01

    This paper provides compelling evidence that large-scale market failures and barriers prevent consumers in the United States from obtaining energy services at least cost. Assessments of numerous energy policies and programs suggest that public interventions can overcome many of these market obstacles. By articulating these barriers and reviewing the literature on ways of addressing them, this paper provides a strong justification for the policy portfolios that define the ''Scenarios for a Clean Energy Future'', a study conducted by five National Laboratories. These scenarios are described in other papers published in this special issue of Energy Policy. (author)

  17. Basic environmental principles for the promotion of clean and efficient energy

    International Nuclear Information System (INIS)

    Hanmer, R.; Connor-Lajambe, H.

    1994-01-01

    The purpose of this paper is to reiterate what might be considered basic principles for promoting clean and efficient energy. These principles have very important implications for the design of energy supply and transportation facilities, but they go far beyond that to unify such design with the design, use and maintenance of many other types of facilities and goods. These principles also affect the way we consider energy security in the context of sustainable development. In annex, this paper presents the recommendation of the Council, with a list of environmentally favourable energy options. (TEC). 2 refs., Annex

  18. International Clean Energy System Using Hydrogen Conversion (WE-NET). subtask 2. Research study on promotion of international cooperation; Suiso riyo kokusai clean energy system gijutsu (WE-NET). subtask 2. Kokusai kyoryoku suishin no tame no chosa kento

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This paper describes the research result on promotion of international cooperation in the WE-NET project in fiscal 1996. The WE-NET project aims at development of the total system for hydrogen production, transport, storage and utilization, and construction of the earth-friendly innovative global clean energy network integrating elemental technologies. Since the standpoint is different between latent resource supplying countries and technology supplying countries, the WE-NET project should be constantly promoted under international understanding and cooperation. The committee distributed the annual summary report prepared by NEDO to overseas organizations, and made positive PR activities in the 11th World Conference and others. The committee made the evaluation on the improvement effect of air pollution by introducing a hydrogen vehicle in combination with Stanford University, and preparation of PR video tapes for hydrogen energy. Preliminary arrangement of Internet home pages, establishment of a long-term vision for international cooperation, and proposal toward the practical WE-NET are also made. 9 figs., 13 tabs.

  19. The hydrogen: a clean and durable energy; L'hydrogene: une energie propre et durable

    Energy Technology Data Exchange (ETDEWEB)

    Alleau, Th. [Association Francaise de l' Hydrogene (France); Nejat Veziroglu, T. [Clean Energy Research Institute, University of Miami (United States); Lequeux, G. [Commission europeenne, DG de la Recherche, Bruxelles (Belgium)

    2000-07-01

    All the scientific experts agree, the hydrogen will be the energy vector of the future. During this conference day on the hydrogen, the authors recalled the actual economic context of the energy policy with the importance of the environmental policy and the decrease of the fossil fuels. The research programs and the attitudes of the France and the other countries facing the hydrogen are also discussed, showing the great interest for this clean and durable energy. They underline the importance of an appropriate government policy, necessary to develop the technology of the hydrogen production, storage and use. (A.L.B.)

  20. Clean coal technologies: A business report

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The book contains four sections as follows: (1) Industry trends: US energy supply and demand; The clean coal industry; Opportunities in clean coal technologies; International market for clean coal technologies; and Clean Coal Technology Program, US Energy Department; (2) Environmental policy: Clean Air Act; Midwestern states' coal policy; European Community policy; and R ampersand D in the United Kingdom; (3) Clean coal technologies: Pre-combustion technologies; Combustion technologies; and Post-combustion technologies; (4) Clean coal companies. Separate abstracts have been prepared for several sections or subsections for inclusion on the data base

  1. Global Energy Issues and Alternate Fueling

    Science.gov (United States)

    Hendricks, Robert C.

    2007-01-01

    This viewgraph presentation describes world energy issues and alternate fueling effects on aircraft design. The contents include: 1) US Uses about 100 Quad/year (1 Q = 10(exp 15) Btu) World Energy Use: about 433 Q/yr; 2) US Renewable Energy about 6%; 3) Nuclear Could Grow: Has Legacy Problems; 4) Energy Sources Primarily NonRenewable Hydrocarbon; 5) Notes; 6) Alternate Fuels Effect Aircraft Design; 7) Conventional-Biomass Issue - Food or Fuel; 8) Alternate fuels must be environmentally benign; 9) World Carbon (CO2) Emissions Problem; 10) Jim Hansen s Global Warming Warnings; 11) Gas Hydrates (Clathrates), Solar & Biomass Locations; 12) Global Energy Sector Response; 13) Alternative Renewables; 14) Stratospheric Sulfur Injection Global Cooling Switch; 15) Potential Global Energy Sector Response; and 16) New Sealing and Fluid Flow Challenges.

  2. Potential impacts of energy efficiency policies in the U.S. industry: Results from the clean energy futures study

    International Nuclear Information System (INIS)

    Worrell, Ernst; Price, Lynn

    2001-01-01

    Scenarios for a Clean Energy Future (CEF) studied the role that efficient clean energy technologies can play in meeting the economic and environmental challenges for our future energy supply. The study describes a portfolio of policies that would motivate energy users and businesses to invest in innovative energy efficient technologies. On the basis of the portfolios, two policy scenarios have been developed, i.e. a moderate scenario and an advanced scenario. We focus on the industrial part of the CEF-study. The studied policies include a wide scope of activities, which are organized under the umbrella of voluntary industrial sector agreements. The policies for the policy scenarios have been modeled using the National Energy Modeling System (CEF-NEMS). Under the reference scenario industrial energy use would grow to 41 Quads in 2020, compared to 34.8 Quads in 1997, with an average improvement of the energy intensity by 1.1% per year. In the Moderate scenario the annual improvement is a bout 1.5%/year, leading to primary energy use of 37.8 Quads in 2020, resulting in 10% lower CO2 emissions by 2020 compared to the reference scenario. In the Advanced scenario the annual improvement increases to 1.8% per year, leading to primary energy use of 34.3 Quads in 2020, and 29% lower CO2 emissions. We report on the policies, assumptions and results for industry

  3. Coal cleaning: a viable strategy for reduced carbon emissions and improved environment in China?

    International Nuclear Information System (INIS)

    Glomsroed, Solveig; Wei Taoyuan

    2005-01-01

    China is a dominant energy consumer in global context and current energy forecasts emphasise that China's future energy consumption also will rely heavily on coal. The coal use is the major source of the greenhouse gas CO 2 and particles causing serious health damage. This paper looks into the question if coal washing might work as low cost strategy for both CO 2 and particle emission reductions. Coal washing removes dirt and rock from raw coal, resulting in a coal product with higher thermal energy and less air pollutants. Coal cleaning capacity has so far not been developed in line with the market potential. In this paper an emerging market for cleaned coal is studied within a CGE model for China. The macro approach catches the repercussions of coal cleaning through increased energy efficiency, lower coal transportation costs and crowding out effect of investments in coal washing plants. Coal cleaning stimulates economic growth and reduces particle emissions, but total energy use, coal use and CO 2 emissions increase through a rebound effect supported by the vast reserve of underemployed labourers. A carbon tax on fossil fuel combustion has a limited effect on total emissions. The reason is a coal leakage to tax exempted processing industries

  4. Engineered Transport in Microporous Materials and Membranes for Clean Energy Technologies.

    Science.gov (United States)

    Li, Changyi; Meckler, Stephen M; Smith, Zachary P; Bachman, Jonathan E; Maserati, Lorenzo; Long, Jeffrey R; Helms, Brett A

    2018-02-01

    Many forward-looking clean-energy technologies hinge on the development of scalable and efficient membrane-based separations. Ongoing investment in the basic research of microporous materials is beginning to pay dividends in membrane technology maturation. Specifically, improvements in membrane selectivity, permeability, and durability are being leveraged for more efficient carbon capture, desalination, and energy storage, and the market adoption of membranes in those areas appears to be on the horizon. Herein, an overview of the microporous materials chemistry driving advanced membrane development, the clean-energy separations employing them, and the theoretical underpinnings tying membrane performance to membrane structure across multiple length scales is provided. The interplay of pore architecture and chemistry for a given set of analytes emerges as a critical design consideration dictating mass transport outcomes. Opportunities and outstanding challenges in the field are also discussed, including high-flux 2D molecular-sieving membranes, phase-change adsorbents as performance-enhancing components in composite membranes, and the need for quantitative metrologies for understanding mass transport in heterophasic materials and in micropores with unusual chemical interactions with analytes of interest. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The role of government in supporting the emergence of clean energy venture capital investing in Switzerland

    International Nuclear Information System (INIS)

    Buerer, M.J.; Wuestenhagen, R.

    2005-01-01

    This report for the Swiss Federal Office of Energy (SFOE) takes a look at the role of the Swiss government in supporting the provision of venture capital for clean energy projects. Topics examined include the lack of sufficient venture capital investment in clean energy technology, the situation encountered in Switzerland today as far as energy entrepreneurship is concerned, key challenges and cultural, legal and fiscal aspects. Present government support in these areas, the relevance of current Swiss programmes and improvements that are to be made are also discussed. Also, activities in other countries are examined and suggestions are made concerning new activities to improve the situation in Switzerland

  6. The role of government in supporting the emergence of clean energy venture capital investing in Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Buerer, M J; Wuestenhagen, R

    2005-07-01

    This report for the Swiss Federal Office of Energy (SFOE) takes a look at the role of the Swiss government in supporting the provision of venture capital for clean energy projects. Topics examined include the lack of sufficient venture capital investment in clean energy technology, the situation encountered in Switzerland today as far as energy entrepreneurship is concerned, key challenges and cultural, legal and fiscal aspects. Present government support in these areas, the relevance of current Swiss programmes and improvements that are to be made are also discussed. Also, activities in other countries are examined and suggestions are made concerning new activities to improve the situation in Switzerland.

  7. Clean coal technologies

    International Nuclear Information System (INIS)

    Aslanyan, G.S.

    1993-01-01

    According to the World Energy Council (WEC), at the beginning of the next century three main energy sources - coal, nuclear power and oil will have equal share in the world's total energy supply. This forecast is also valid for the USSR which possesses more than 40% of the world's coal resources and continuously increases its coal production (more than 700 million tons of coal are processed annually in the USSR). The stringent environmental regulations, coupled with the tendency to increase the use of coal are the reasons for developing different concepts for clean coal utilization. In this paper, the potential efficiency and environmental performance of different clean coal production cycles are considered, including technologies for coal clean-up at the pre-combustion stage, advanced clean combustion methods and flue gas cleaning systems. Integrated systems, such as combined gas-steam cycle and the pressurized fluidized bed boiler combined cycle, are also discussed. The Soviet National R and D program is studying new methods for coal utilization with high environmental performance. In this context, some basic research activities in the field of clean coal technology in the USSR are considered. Development of an efficient vortex combustor, a pressurized fluidized bed gasifier, advanced gas cleaning methods based on E-beam irradiation and plasma discharge, as well as new catalytic system, are are presented. In addition, implementation of technological innovations for retrofitting and re powering of existing power plants is discussed. (author)

  8. Financial Incentives to Enable Clean Energy Deployment: Policy Overview and Good Practices

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Sadie [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-02-24

    Financial incentives have been widely implemented by governments around the world to support scaled up deployment of renewable energy and energy efficiency technologies and practices. As of 2015, at least 48 countries have adopted financial incentives to support renewable energy and energy efficiency deployment. Broader clean energy strategies and plans provide a crucial foundation for financial incentives that often complement regulatory policies such as renewable energy targets, standards, and other mandates. This policy brief provides a primer on key financial incentive design elements, lessons from different country experiences, and curated support resources for more detailed and country-specific financial incentive design information.

  9. Global energy context: future scenarios

    International Nuclear Information System (INIS)

    Beretta, Gian Paolo

    2006-01-01

    After a brief analysis of the history of global energy consumption, this paper discusses a plausible scenario of energy needs and related carbon emissions for the rest of the century. The global outlook and the probable evolution of several factors that impact on energy policy considerations - even on the local scale - demonstrate the great complexity and planetary dimension of the problems, as well as the almost certain sterility of out-of-context domestic energy-policy measures [it

  10. Evaluation of the combined betatron and momentum cleaning in point 3 in terms of cleaning efficiency and energy deposition for the LHC Collimation upgrade

    CERN Document Server

    Lari, L; Boccone, V; Brugger, M; Cerutti, F; Ferrari, A; Rossi, A; Versaci, R; Vlachoudis, V; Wollmann, D; Mereghetti, A; Faus-Golfe, A

    2011-01-01

    The Phase I LHC Collimation System Upgrade could include moving part of the Betatron Cleaning from LHC Point 7 to Point 3 to improve both operation flexibility and intensity reach. In addition, the partial relocation of beam losses from the current Betatron cleaning region at Point 7 will mitigate the risks of Single Event Upsets to equipment installed in adjacent and partly not sufficient shielded areas. The combined Betatron and Momentum Cleaning at Point 3 implies that new collimators have to be added as well as to implement a new collimator aperture layout. This paper shows the whole LHC Collimator Efficiency variation with the new layout at different beam energies. As part of the evaluation, energy deposition distribution in the IR3 region give indications about the effect of this new implementations not only on the collimators themselves but also on the other beam line elements as well as in the IR3 surrounding areas.

  11. Green initiative impact on stock prices: A quantitative study of the clean energy industry

    Science.gov (United States)

    Jurisich, John M.

    The purpose of this quantitative ex post facto research study was to explore the relationship between green initiative expense disclosures and stock prices of 46 NASDAQ listed Clean Edge Green Energy global companies from 2007 to 2010. The independent variables were sales and marketing, environmental, customer and supplier, community, and corporate governance practices that were correlated with the dependent variable in the study of stock prices. Expense disclosures were examined in an effort to measure the impact of green initiative programs and to expose the interrelationships between green initiative expense disclosures and fluctuations of stock prices. The data for the research was secondary data from existing annual reports. A statistically significant relationship was revealed between environmental practices and changes in stock prices. The study results also provided substantial evidence for leadership and managerial decision making to reduce or increase green initiative practices to maximize shareholder wealth of their respective organizations.

  12. Nuclear system for problems of environment, economy, and energy. (1) Nuclear energy role and potential for energy system in Asia

    International Nuclear Information System (INIS)

    Ujita, Hiroshi; Matsui, Kazuaki; Sekimoto, Hiroshi

    2005-01-01

    Role and potential of nuclear energy system in the energy options is discussed from the viewpoint of sustainable development with protecting from global warming. It is important for mitigation of global warming that the developing countries will use nuclear power effectively. The policy that nuclear power is considered as Clean Development Mechanism would be the good measure for that. (author)

  13. Coalbed methane: Clean energy for the world

    Science.gov (United States)

    Ahmed, A.-J.; Johnston, S.; Boyer, C.; Lambert, S.W.; Bustos, O.A.; Pashin, J.C.; Wray, A.

    2009-01-01

    Coalbed methane (CBM) has the potential to emerge as a significant clean energy resource. It also has the potential to replace other diminishing hydrocarbon reserves. The latest developments in technologies and methodologies are playing a key role in harnessing this unconventional resource. Some of these developments include adaptations of existing technologies used in conventional oil and gas generations, while others include new applications designed specifically to address coal's unique properties. Completion techniques have been developed that cause less damage to the production mechanisms of coal seams, such as those occurring during cementing operations. Stimulation fluids have also been engineered specifically to enhance CBM production. Deep coal deposits that remain inaccessible by conventional mining operations offer CBM development opportunities.

  14. Nuclear energy worldwide

    International Nuclear Information System (INIS)

    Fertel, M.

    2000-01-01

    In this short paper the author provides a list of tables and charts concerning the nuclear energy worldwide, the clean air benefits of nuclear energy, the nuclear competitiveness and the public opinion. He shows that the nuclear energy has a vital role to play in satisfying global energy and environmental goals. (A.L.B)

  15. Comprehensive evaluation of global energy interconnection development index

    Science.gov (United States)

    Liu, Lin; Zhang, Yi

    2018-04-01

    Under the background of building global energy interconnection and realizing green and low-carbon development, this article constructed the global energy interconnection development index system which based on the current situation of global energy interconnection development. Through using the entropy method for the weight analysis of global energy interconnection development index, and then using gray correlation method to analyze the selected countries, this article got the global energy interconnection development index ranking and level classification.

  16. Impact of the Clean Development Mechanism on wind energy investments in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Tunc, Murat; Pak, Ruhan [Yeditepe Univ., Istanbul (Turkey). Systems Engineering Dept.

    2012-12-01

    As carbon trading continues to be implemented on both a national and an international scale, it is becoming an important factor in renewable energy investment decisions. Turkey, with continuous growth of carbon dioxide emission and energy consumption since 2001, ratified the Kyoto Protocol in 2009 and began registration of projects with greenhouse gas reductions in 2010. In light of these developments, wind energy resources with a potential of 48,000 MW are among the most efficient and effective solutions for clean and sustainable energy in Turkey. The aim of our study is to reveal the importance of the Clean Development Mechanism (CDM) of the Kyoto Protocol on wind energy investment decisions. A broad review of wind energy in Turkey is given, and then, a comprehensive feasibility study of a wind energy firm with a valuation model including Certified Emission Reduction (CER) prices is applied to a case study, the Mega Metallurgy Power. With a holistic and interdisciplinary system engineering approach, results are obtained using comprehensive analysis of technology, emission, and power generation of a wind energy firm linked to a valuation model. This comprehensive model sets the investment decision-making criteria, the enterprise value comparison with total financing. Finally, a sensitivity analysis is run to show that the enterprise value is positively correlated with CER prices. Based on these results, it is concluded that if the world's largest carbon offsetting program, the CDM, prevails after 2012, CER prices will have a positive impact on wind energy firm valuations and related investment decisions. (orig.)

  17. Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion.

    Science.gov (United States)

    Wang, Changlong; Astruc, Didier

    2014-01-01

    This review provides the basic concepts, an overall survey and the state-of-the art of plasmon-based nanogold photocatalysis using visible light including fundamental understanding and major applications to organic reactions and clean energy-conversion systems. First, the basic concepts of localized surface plasmon resonance (LSPR) are recalled, then the major preparation methods of AuNP-based plasmonic photocatalysts are reviewed. The major part of the review is dedicated to the latest progress in the application of nanogold plasmonic photocatalysis to organic transformations and energy conversions, and the proposed mechanisms are discussed. In conclusion, new challenges and perspectives are proposed and analyzed.

  18. Enact legislation supporting residential property assessed clean energy financing (PACE)

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Devashree

    2012-11-15

    Congress should enact legislation that supports residential property assessed clean energy (PACE) programs in the nation’s states and metropolitan areas. Such legislation should require the Federal Housing Finance Agency (FHFA) to allow Fannie Mae and Freddie Mac to purchase residential mortgages with PACE assessments while at the same time providing responsible underwriting standards and a set of benchmarks for residential PACE assessments in order to minimize financial risks to mortgage holders. Congressional support of residential PACE financing will improve energy efficiency, encourage job creation, and foster economic growth in the nation’s state and metropolitan areas.

  19. 2015 Renewable Energy Data Book

    Energy Technology Data Exchange (ETDEWEB)

    Beiter, Philipp [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tian, Tian [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-11-01

    The Renewable Energy Data Book for 2015 provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  20. 2015 Renewable Energy Data Book

    Energy Technology Data Exchange (ETDEWEB)

    Beiter, Philipp; Tian, Tian

    2016-11-01

    The 2015 Renewable Energy Data Book provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  1. 2014 Renewable Energy Data Book

    Energy Technology Data Exchange (ETDEWEB)

    Beiter, Philipp

    2015-11-01

    The Renewable Energy Data Book for 2014 provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  2. 2016 Renewable Energy Data Book

    Energy Technology Data Exchange (ETDEWEB)

    2017-12-29

    The 2016 Renewable Energy Data Book provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  3. 2010 Renewable Energy Data Book (Book)

    Energy Technology Data Exchange (ETDEWEB)

    Gelman, R.

    2011-10-01

    This Renewable Energy Data Book for 2010 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

  4. 2011 Renewable Energy Data Book (Book)

    Energy Technology Data Exchange (ETDEWEB)

    Gelman, R.

    2012-10-01

    This Renewable Energy Data Book for 2011 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

  5. Plasma cleaning for waste minimization

    Energy Technology Data Exchange (ETDEWEB)

    Ward, P.P.

    1993-07-01

    Although plasma cleaning is a recognized substitute for solvent cleaning in removing organic contaminants, some universal problems in plasma cleaning processes prevent wider use of plasma techniques. Lack of understanding of the fundamental mechanisms of the process, unreliable endpoint detection techniques, and slow process times make plasma cleaning processes less than desirable. Our approach to address these plasma cleaning problems is described. A comparison of plasma cleaning rates of oxygen and oxygen/sulfur hexafluoride gases shows that fluorine-containing plasmas can enhance etch rates by 400% over oxygen alone. A discussion of various endpoint indication techniques is discussed and compared for application suitability. Work toward a plasma cleaning database is discussed. In addition to the global problems of plasma cleaning, an experiment where the specific mixed-waste problem of removal of machine oils from radioactive scrap metal is discussed.

  6. Energy efficient biological air cleaning for farm stable ventilation; Energieffektiv biologisk luftrensning til staldventilation

    Energy Technology Data Exchange (ETDEWEB)

    Groenborg Nicolaisen, C.; Hansen, Mads P.R. [Teknologisk Institut, Aarhus (Denmark); Stroem, J.; Soerensen, Keld [DXT. Danish Exergy Technology A/S, Skoerping (Denmark); Goetke, C. [Lokalenergi Aarhus, Viby J. (Denmark); Morsing, S.; Soerensen, Lars C. [SKOV A/S, Roslev (Denmark); Ladegaerd Jensen, T.; Pedersen, Poul [Videncenter for svineproduktion, Copenhagen (Denmark)

    2013-05-01

    The project has been designed to reduce energy consumption for air purification by 30% while having a payback period of maximum 3 years. The project has achieved very significant results which are far above the target. Particularly satisfying is the wide range of new components that are launched in late 2012. By implementing the newly developed system at 100% cleaning (LPC 13 ventilators and Dynamic multistep control) in relation to Best Practice (SKOV's original system with DA600 fans) in a concrete pigsty, a saving of 61% and a simple payback of 1.7 years is achieved. Similarly, it is found that the energy used for pump operation can be reduced by 37% with the new Dynamic sprinkling control. At 20% cleaning a potential saving of 15% per year and a payback period of between 0 and 5 years was found, which is dependent on the desired performance as the capacities in the bio-filter's upper capacity range between 26 thousand to 30 thousand m3 / h entails costs for an additional extraction unit in the new solution. Furthermore, the newly developed components proved highly suitable for standard installations without air cleaning where a savings potential is 53% and the payback period 1.5 years. Product-wise, the project formed the basis for the development of: 1. New energy-efficient ventilation units (LPC11, 12,13) that are suitable for air purification; 2. A new energy-saving control principle (Dynamic Multi-Step) which is particularly suitable for low-energy ventilators; 3. A new energy-saving flow measurement system for ventilating ducts (Dynamic air to the central exhaust); 4. An energy-saving pressure control in common ducts (pressure control as a function of outside temperature); 5. Proposal for a new energy-saving pump operation for sprinkling of biological filters (Dynamic sprinkling). (LN)

  7. Global energy / CO2 projections

    International Nuclear Information System (INIS)

    Sinyak, Y.

    1990-09-01

    Section headings are: (1) Social and economic problems of the 21 st century and the role of energy supply systems (2) Energy-environment interactions as a central point of energy research activities (3) New ways of technological progress and its impacts on energy demand and supply (4) Long-term global energy projections (5) Comparative analysis of global long-term energy / CO 2 studies (6) Conclusions. The author shows that, in order to alleviate the negative impacts of energy systems on the climate, it will be necessary to undertake tremendous efforts to improve the energy use efficiency, to drastically change the primary energy mix, and, at the same time, to take action to reduce greenhouse emissions from other sources and increase the CO 2 sink through enhanced reforestation. (Quittner)

  8. Carbon pricing comes clean

    International Nuclear Information System (INIS)

    De Wit, Elisa

    2011-01-01

    Together with the Clean Energy Bill, the implications of the Australian Federal Government's climate change legislative package are far reaching. Norton Rose gives business a heads-up in this breakdown of the draft legislation underpinning the carbon pricing and clean energy scheme. It is a summary of Norton Rose's full analysis.

  9. Economics of Energy Conservation: A Case Study

    OpenAIRE

    Gunatilake, Herath; Padmakanthi, Dhammika

    2008-01-01

    Global energy security relies heavily on exhaustible fossil fuels, whose use contributes significantly to global environmental problems. The recent unprecedented rise in oil prices and the threat of global warming highlight the urgent need for solutions to the energy and environment problem. Shifting to clean renewable energy sources - the long-term solution - has been slow despite efforts of the global community since the 1970s. Demand side management (DSM) is part of the solution to the ene...

  10. The contribution of foreign direct investment to clean energy use, carbon emissions and economic growth

    International Nuclear Information System (INIS)

    Lee, Jung Wan

    2013-01-01

    The paper investigates the contributions of foreign direct investment (FDI) net inflows to clean energy use, carbon emissions, and economic growth. The paper employs cointegration tests to examine a long-run equilibrium relationship among the variables and fixed effects models to examine the magnitude of FDI contributions to the other variables. The paper analyzes panel data of 19 nations of the G20 from 1971 to 2009. The test results indicate that FDI has played an important role in economic growth for the G20 whereas it limits its impact on an increase in CO 2 emissions in the economies. The research finds no compelling evidence of FDI link with clean energy use. Given the results, the paper discusses FDI's potential role in achieving green growth goals. - Highlights: ► FDI inflows strongly lead to economic growth in the G20. ► FDI inflows lead to an increase in energy use in the G20. ► FDI inflows are in no relation to CO 2 emissions in the G20. ► FDI inflows are in no relation to clean energy use in the G20. ► Economic growth is in negative relation to CO 2 emissions in the G20

  11. Evaluation of Potential Locations for Siting Small Modular Reactors near Federal Energy Clusters to Support Federal Clean Energy Goals

    Energy Technology Data Exchange (ETDEWEB)

    Belles, Randy J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Omitaomu, Olufemi A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-09-01

    Geographic information systems (GIS) technology was applied to analyze federal energy demand across the contiguous US. Several federal energy clusters were previously identified, including Hampton Roads, Virginia, which was subsequently studied in detail. This study provides an analysis of three additional diverse federal energy clusters. The analysis shows that there are potential sites in various federal energy clusters that could be evaluated further for placement of an integral pressurized-water reactor (iPWR) to support meeting federal clean energy goals.

  12. Enabling optimal energy options under the Clean Development Mechanism

    International Nuclear Information System (INIS)

    Gilau, Asmerom M.; Van Buskirk, Robert; Small, Mitchell J.

    2007-01-01

    This paper addresses the cost effectiveness of renewable energy technologies in achieving low abatement costs and promoting sustainable developments under the Clean Development Mechanism (CDM). According to the results of our optimal energy option's analysis, at project scale, compared with a diesel-only energy option, photovoltaic (PV)-diesel (PVDB), wind-diesel (WDB) and PV-wind-diesel (PVWDB) hybrids are very cost-effective energy options. Moreover, energy options with high levels of renewable energy, including 100% renewables, have the lowest net present cost and they are already cost effective without CDM. On the other hand, while the removal of about 87% carbon dioxide emissions could be achieved at negative cost, initial investment could increase by a factor of 40, which is one of the primary barriers hindering wider renewable energy applications in developing countries, among others. Thus, in order to increase developing countries' participation in the carbon market, CDM policy should shift from a purely market-oriented approach to investigating how to facilitate renewable energy projects through barrier removal. Thus, we recommend that further research should focus on how to efficiently remove renewable energy implementation barriers as a means to improve developing countries' participation in meaningful emission reduction while at the same time meeting the needs of sustainable economic development

  13. Global wind energy outlook 2006

    International Nuclear Information System (INIS)

    2006-09-01

    The global market for wind power has been expanding faster than any other source of renewable energy. From just 4,800 MW in 1995 the world total has multiplied more than twelve-fold to reach over 59,000 MW at the end of 2005. The international market is expected to have an annual turnover in 2006 of more than euro 13 billion, with an estimated 150,000 people employed around the world. The success of the industry has attracted investors from the mainstream finance and traditional energy sectors. In a number of countries the proportion of electricity generated by wind power is now challenging conventional fuels. The Global Wind Energy Outlook 2006 reports that over a third of the world's electricity - crucially including that required by industry - can realistically be supplied by wind energy by the middle of the century. The report provides an industry blueprint that explains how wind power could supply 34% of the world's electricity by 2050. Most importantly, it concludes that if wind turbine capacity implemented on this scale it would save 113 billion tonnes of CO2 from entering the atmosphere by 2050. This places wind power as one of the world's most important energy sources for the 21st century. The 'Global Wind Energy Outlook 2006' runs three different scenarios for wind power - a Reference scenario based on figures from the International Energy Agency (IEA); a Moderate version which assumes that current targets for renewable energy are successful; and an advanced version assuming that all policy options in favour of renewables have been adopted. These are then set against two scenarios for global energy demand. Under the Reference scenario, growth in demand is again based on IEA projections; under the High Energy Efficiency version, a range of energy efficiency measures result in a substantial reduction in demand

  14. Improvement of training set structure in fusion data cleaning using Time-Domain Global Similarity method

    International Nuclear Information System (INIS)

    Liu, J.; Lan, T.; Qin, H.

    2017-01-01

    Traditional data cleaning identifies dirty data by classifying original data sequences, which is a class-imbalanced problem since the proportion of incorrect data is much less than the proportion of correct ones for most diagnostic systems in Magnetic Confinement Fusion (MCF) devices. When using machine learning algorithms to classify diagnostic data based on class-imbalanced training set, most classifiers are biased towards the major class and show very poor classification rates on the minor class. By transforming the direct classification problem about original data sequences into a classification problem about the physical similarity between data sequences, the class-balanced effect of Time-Domain Global Similarity (TDGS) method on training set structure is investigated in this paper. Meanwhile, the impact of improved training set structure on data cleaning performance of TDGS method is demonstrated with an application example in EAST POlarimetry-INTerferometry (POINT) system.

  15. Multi-criteria planning of nuclear contribution to the goals of clean electricity in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Martin-del-Campo, C., E-mail: cecilia.martin.del.campo@gmail.com [Universidad Nacional Autonoma de Mexico, Departamento de Sistemas Energeticos, Facultad de Ingenieria (Mexico)

    2014-07-01

    Three scenarios of electricity expansion planning were developed to analyze nuclear technology's contributions to the socioeconomic development, mitigation of global climate change and energy security. The scenarios were developed based on minimal cost optimization satisfying the energy demand and the non-fossil electricity targets established by the Mexican National Energy Strategy (MexNES) of no more than 65% of annual electricity production using fossil fuels by 2024 and drop down to 60% by 2035. Special attention was paid to wind and nuclear as clean energy options to produce electricity. An analysis decision based on the Position Vector of Minimum Regret was applied to rank the different plans in terms of the criteria. Results showed that nuclear power must definitely participate in the Mexican electricity expansion in order to meet the goals of clean energy set by the MexNES. (author)

  16. 2013 Renewable Energy Data Book (Book)

    Energy Technology Data Exchange (ETDEWEB)

    Esterly, S.

    2014-12-01

    This Renewable Energy Data Book for 2013 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investment.

  17. The clean energy future of Saskatchewan. Evaluating the potential for nuclear power in Saskatchewan

    Energy Technology Data Exchange (ETDEWEB)

    Harry, I. [SaskPower, Clean Energy Group, Regina, Saskatchewan (Canada)

    2013-07-01

    The clean energy direction of Saskatchewan is very dependent on the vision of the energy future. Saskatchewan has depended strongly on coal as a base load asset and embracing the future will depend on creating multiple pathways. This presentation will explore the pathways and the reasons why they are important.

  18. Canada's clean energy technology and the Bay area market : a needs assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-03-15

    This study was conducted to develop market intelligence related to clean energy technologies in Northern California, including both commercial and demonstration technologies. The study was developed as a tool for exploring engagement between Canadian and Californian businesses and partnering opportunities. The study examined technologies for solar power and photovoltaics; hydrogen and fuel cells; and waste-to-energy. A list of more than 150 organizations, government agencies, business associations, and utilities was prepared. The survey also included the establishment of contact points with large facilities, public spaces, bus fleets, and major capital projects. Fifty-nine interviews were also conducted as part of the study. Results of the study indicated that the biggest challenge concerning most individuals was the need to reduce energy consumption while maintaining reliability. Many interviewees expressed an interest in operating waste-to-energy facilities. Fifty interviewees indicated that they were planning to use or already used solar technologies. An analysis of clean energy needs was also included. The study indicated that many local governments are reluctant to embrace new, highly visible technologies. Only sophisticated organizations with unique energy demands have considered the use of fuel cell technologies. 1 fig.

  19. Covalent Organic Framework Electrocatalysts for Clean Energy Conversion.

    Science.gov (United States)

    Lin, Chun-Yu; Zhang, Detao; Zhao, Zhenghang; Xia, Zhenhai

    2018-02-01

    Covalent organic frameworks (COFs) are promising for catalysis, sensing, gas storage, adsorption, optoelectricity, etc. owning to the unprecedented combination of large surface area, high crystallinity, tunable pore size, and unique molecular architecture. Although COFs are in their initial research stage, progress has been made in the design and synthesis of COF-based electrocatalysis for the oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, and CO 2 reduction in energy conversion and fuel generation. Design principles are also established for some of the COF materials toward rational design and rapid screening of the best electrocatalysts for a specific application. Herein, the recent advances in the design and synthesis of COF-based catalysts for clean energy conversion and storage are presented. Future research directions and perspectives are also being discussed for the development of efficient COF-based electrocatalysts. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Alternate Energy Report, Koleda Childress Inc., dated June 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-06-30

    Policies and programs on alternate energy and the status of global warming concerns in the United States are reported. The Senate Energy Committee reported out its National Energy Security Act, which is an attempt to draft a comprehensive national energy strategy to address energy and environmental problems. The House approved $446 million to fund fossil energy programs for fiscal 1992 to implement the Clean Coal Program as scheduled. The Department of Energy has received 33 clean coal technology project proposals, worth more than $6.5 billion, under the fourth round of the Clean Coal Technology Program. Both House and Senate enacted a legislation to grant credit for offsetting CO2 emissions when bringing new plants into operation. The U.S. National Academy of Sciences stated that there were sufficient potential hazards to justify an immediate action in spite of uncertainties in the global warming issue and requested that therefore the Administration prepare a number of promptly practicable policy options. (NEDO)

  1. Economic and environmental aspects on energy alternatives for a clean air -- wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Calanter, P.; Serban, O. [Bucharest Academy of Economic Studies (Romania). Doctoral School; Dragomir, A. [SC CEPSTRA GRUP SRL, Bucharest (Romania)

    2011-07-01

    Fossil fuels combustion in the energy sector is a major contribution to the generation of greenhouse gases emission (GHG) -- mainly carbon dioxide. Emissions reduction represents an important means to protect the environment and to improve the health status of the population -- the major requirement in the context of a sustainble development strategy -- knowing the association of the greenhouse effect with climate change. Fossil fuels are limited and expensive resources. According to the Romanian National Agency for Mineral Resources (2009), under the current extraction level the national oil and gas resources are industrial exploitable for 15 years, while coal would be available for about 30 years. At present, the alternative of renewable energy -- solar, wind, geothermal, hydro, and biomass -- is becoming more and more attractive at the global scale. The use of renewable energy offers a clean alternative for energy production, which allows considerable reduction in emissions of greenhouse gases, contributing to climate change mitigation efforts, and also savings of fossil fuels limited resources. Wind energy represents an increasingly more attractive alternative in Romania. Regulations concern not only investment and operation of installations, but also energy recovery and environmental protection. Even though the use of the entire national wind energy potential could determine a significant GHG emissions reduction, the technology, infrastructure and environmental restrictions limits wind energy valorization. Wind farms development, sustained by landscape, wind speed distribution and investors financial promotion, competes with the prudence imposed by the potential environmental impact (biodiversity, microclimate, etc), and the lack of historical data and information structuring. Adequate organization and dissemination of relevant information might be valuable for investors and sustainable development strategies. To estimate the GHG emissions reduction in Romania

  2. Interactive Cosegmentation Using Global and Local Energy Optimization

    OpenAIRE

    Xingping Dong,; Jianbing Shen,; Shao, Ling; Yang, Ming-Hsuan

    2015-01-01

    We propose a novel interactive cosegmentation method using global and local energy optimization. The global energy includes two terms: 1) the global scribbled energy and 2) the interimage energy. The first one utilizes the user scribbles to build the Gaussian mixture model and improve the cosegmentation performance. The second one is a global constraint, which attempts to match the histograms of common objects. To minimize the local energy, we apply the spline regression to learn the smoothne...

  3. Cleaning the air with renewable energy : briefing note

    International Nuclear Information System (INIS)

    2002-09-01

    The Clean Air Renewable Energy Coalition promotes the development of the renewable energy industry in Canada. It acknowledges the effort that the Canadian government has taken to advance investment in renewable energy, but the Coalition is concerned that these investments alone will not achieve the desired objectives without additional policy development by federal, provincial and territorial governments. This report presents an overview of 7 proposals designed to promote and advance renewable energy in Canada. The benefits of these proposals include cleaner air, improved health, engaging public and industry participation in climate change initiatives, and fostering innovation and entrepreneurship in the sector. Brief details were presented for the following 7 proposals: (1) establish a national low-impact renewable energy target for Canada, (2) increase the Wind Power Production Incentive (WPPI) to 2.7 cent per kilowatt hour to ensure appropriate investment in wind energy and harmonization with the United States, (3) extend incentive programs similar to the WPPI to other renewable energy technologies, (4) work with other levels of government to implement policy mechanisms to meet the recommended national renewable energy target, (5) expand the Market Incentive Program (MIP) funding to 30 million dollars per year to 2012 and consult with the provinces and territories to develop a broad-based consumer green energy rebate and education program, (6) identify mechanisms to ensure a meaningful role for renewable energy to contribute to the country's climate change strategy, and (7) develop a Wind Energy Mapping and Wind Measurement Initiative. In a recent update, the Coalition states that low environmental impact renewable energy needs market recognition for its environmental and social benefits. In general, these benefits are not financially valued in energy market pricing. In addition, energy sources that impact significantly on the environment are not financially

  4. Cleaning the air with renewable energy : briefing note

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-09-01

    The Clean Air Renewable Energy Coalition promotes the development of the renewable energy industry in Canada. It acknowledges the effort that the Canadian government has taken to advance investment in renewable energy, but the Coalition is concerned that these investments alone will not achieve the desired objectives without additional policy development by federal, provincial and territorial governments. This report presents an overview of 7 proposals designed to promote and advance renewable energy in Canada. The benefits of these proposals include cleaner air, improved health, engaging public and industry participation in climate change initiatives, and fostering innovation and entrepreneurship in the sector. Brief details were presented for the following 7 proposals: (1) establish a national low-impact renewable energy target for Canada, (2) increase the Wind Power Production Incentive (WPPI) to 2.7 cent per kilowatt hour to ensure appropriate investment in wind energy and harmonization with the United States, (3) extend incentive programs similar to the WPPI to other renewable energy technologies, (4) work with other levels of government to implement policy mechanisms to meet the recommended national renewable energy target, (5) expand the Market Incentive Program (MIP) funding to 30 million dollars per year to 2012 and consult with the provinces and territories to develop a broad-based consumer green energy rebate and education program, (6) identify mechanisms to ensure a meaningful role for renewable energy to contribute to the country's climate change strategy, and (7) develop a Wind Energy Mapping and Wind Measurement Initiative. In a recent update, the Coalition states that low environmental impact renewable energy needs market recognition for its environmental and social benefits. In general, these benefits are not financially valued in energy market pricing. In addition, energy sources that impact significantly on the environment are not

  5. Clean Energy Solutions Center and SE4All: Partnering to Support Country Actions

    Energy Technology Data Exchange (ETDEWEB)

    2016-05-01

    Since 2012, the Clean Energy Solutions Center (Solutions Center) and Sustainable Energy for All (SE4All) have partnered to deliver information, knowledge and expert assistance to policymakers and practitioners in countries actively working to achieve SE4All objectives. Through SE4All efforts, national governments are implementing integrated country actions to strategically transform their energy markets. This fact sheet details the Solutions Center and SE4All partnership and available areas of technical assistance.

  6. Absence of translational energy accomodation of O2 on clean and oxidized tungsten, specularly and diffusely scattered

    International Nuclear Information System (INIS)

    Auerbach, D.; Becker, C.; Cowin, J.; Wharton, L.

    1977-01-01

    The authors have determined by a direct molecular beam velocity measurement that translational energy accomodation of O 2 molecules scattered from a reactive hot polycrystalline tungsten target is very inefficient. Translational energy accomodation is inefficient whether the surface is clean or covered with oxygen atoms to a varying extent, even though in the latter case the scattering is diffuse. On a clean tungsten surface the scattering of the O 2 is specular. The results shows directly that diffuse scattering does not imply or require large energy accomodation. They also show that this surface covered with atoms matching the incoming beam atoms is not an efficient energy accomodator. Thus a diminished role for mass matching in energy transfer is apparent. (Auth.)

  7. Financing clean energy development in the emerging economies: the need for innovation

    International Nuclear Information System (INIS)

    Parker, Nicholas

    1994-01-01

    The World Energy Council's Commission ''Energy for Tomorrow's World'' points out that the emerging economies (the developing countries and the economies in transition) face increasingly daunting challenges in meeting their energy service requirements and in ensuring their energy needs are met in an environmentally-sustainable manner. Rising to the environmental challenge will require the diffusion of cleaner and more efficient energy production, transportation and end-use technologies. Greater efficiency is required if only to reduce growing shortages in meeting national power requirements. Against this backdrop, this article will examine: whether or not the funding needs of clean energy development in the emerging economies are being met; and what kinds of financial innovation might be required to accelerate the diffusion of cleaner energy technologies. (author)

  8. Atlas of world energies: is a fair and clean development possible?

    International Nuclear Information System (INIS)

    Merenne-Schoumaker, B.; Barre, B.; Bailly, A.

    2011-01-01

    There is no possible human activity without a minimum of energy. The differences in the access to energy explains the huge disparities between regions. While developed countries have the possibility to limit their energy consumption without threatening the quality of life of their citizens, the energy needs for the economic development of the rest of the world are enormous. There is no energy production and consumption without harmful effect and environmental impact. This impact is increasing with the population and is threatening the low income groups first. This atlas, rich of more than 200 maps and info-graphies, takes stock of the energy question and allows to understand the different energy stakes that make the core of the 21. century dilemma: how to conciliate the development of societies and the environmental constraints? Can we cultivate even more biofuels without starving the Earth? Is nuclear energy the solution for the environment? Can coal be clean? Are renewable energy sources viable? (J.S.)

  9. Global risks from energy consumption

    International Nuclear Information System (INIS)

    von Hippel, F.

    1983-01-01

    A discussion of some of the global risks associated with current and frequently proposed future levels of consumption of energy from oil, coal, fission, fusion, and renewable sources points out the the dangers are serious and relatively near term. These include world war over Persian Gulf oil, climate change due to the buildup of atmospheric carbon dioxide, the accelerated proliferation of nuclear weapons, and competition between food and energy for land and water. The author urges placing a greater emphasis on how we use energy and how to reduce energy waste. At the levels of consumption which economically justified levels of energy efficiency could bring about, enough flexibility could develop in our choice of a future energy-supply mix to dramatically reduce the associated global risks. 47 references, 3 figures

  10. Global energy confinement in TORE SUPRA

    International Nuclear Information System (INIS)

    Hoang, G.T.; Bizarro, J.P.; Genile, B. de; Hutter, Th.; Laurent, L.; Litaudon, X.; Moreau, D.; Peysson, Y.; Tonon, G.; Houtte, D. van

    1992-01-01

    The global energy confinement behaviour of mixed Ohmic/Lower Hybrid driven Tore Supra plasmas has been analysed at various densities. In contradiction with L-mode ITER scaling law, this analysis indicates that the global energy confinement time depends strongly on the plasma density and the isotopic dependence seems not to be observed. The thermal electron energy content of steady-state discharges is in good agreement with the offset linear Rebut-Lallia scaling law. During current ramp experiments, the global energy confinement time was found to depend on the internal self-inductance (li). Improved confinement has been obtained for a steady-state 0.8 MA plasma where the plasma current profile is peaked by LH waves (li ∼1.8). In this case, the global confinement time is found to be about 40% higher than the value predicted by the Rebut-Lallia scaling law. (author) 3 refs., 6 figs

  11. Hydrogen energy strategies and global stability and unrest

    International Nuclear Information System (INIS)

    Midilli, A.; Dincer, I.; Rosen, M.A.

    2004-01-01

    This paper focuses on hydrogen energy strategies and global stability and unrest. In order to investigate the strategic relationship between these concepts, two empirical relations that describe the effects of fossil fuels on global stability and global unrest are developed. These relations incorporate predicted utilization ratios for hydrogen energy from non-fossil fuels, and are used to investigate whether hydrogen utilization can reduce the negative global effects related to fossil fuel use, eliminate or reduce the possibilities of global energy conflicts, and contribute to achieving world stability. It is determined that, if utilization of hydrogen from non-fossil fuels increases, for a fixed usage of petroleum, coal and natural gas, the level of global unrest decreases. However, if the utilization ratio of hydrogen energy from non-fossil fuels is lower than 100%, the level of global stability decreases as the symptoms of global unrest increase. It is suggested that, to reduce the causes of global unrest and increase the likelihood of global stability in the future, hydrogen energy should be widely and efficiently used, as one component of plans for sustainable development. (author)

  12. Modeling a clean energy standard for electricity: Policy design implications for emissions, supply, prices, and regions

    International Nuclear Information System (INIS)

    Paul, Anthony; Palmer, Karen; Woerman, Matt

    2013-01-01

    The electricity sector is responsible for roughly 40% of U.S. carbon dioxide (CO 2 ) emissions, and a reduction in CO 2 emissions from electricity generation is an important component of the U.S. strategy to reduce greenhouse gas emissions. Toward that goal, several proposals for a clean energy standard (CES) have been put forth, including one espoused by the Obama administration that calls for 80% clean electricity by 2035 phased in from current levels of roughly 40%. This paper looks at the effects of such a policy on CO 2 emissions from the electricity sector, the mix of technologies used to supply electricity, electricity prices, and regional flows of clean energy credits. The CES leads to a 30% reduction in cumulative CO 2 emissions between 2013 and 2035 and results in dramatic reductions in generation from conventional coal. The policy also results in fairly modest increases on national electricity prices, but this masks a wide variety of effects across regions. - Highlights: ► We model a clean energy standard (CES) for electricity at 80% by 2035. ► We analyze effects on CO 2 emissions, investment, prices, and credit trading. ► 80% CES leads to 30% reduction in cumulative CO 2 emissions by 2035. ► Modest national average electricity price increase masks regional heterogeneity

  13. The Global Energy Challenge:A Contextual Framework

    OpenAIRE

    Connolly, David

    2011-01-01

    This report gives a brief overview of the global energy challenge and subsequently outlines how and where renewable energy could be developed to solve these issues. The report does not go into a lot of detail on these issues and hence, it is meant as an overview only.The report begins by outlining the causes of global climate change, concluding that energy-related emissions are the primary contributors to the problem. As a result, global energy production is analysed in more detail, discussin...

  14. The Clean Air Act

    International Nuclear Information System (INIS)

    Coburn, L.L.

    1990-01-01

    The Clean Air Act amendments alter the complex laws affecting atmospheric pollution and at the same time have broad implications for energy. Specifically, the Clean Air Act amendments for the first time deal with the environmental problem of acid deposition in a way that minimizes energy and economic impacts. By relying upon a market-based system of emission trading, a least cost solution will be used to reduce sulfur dioxide (SO 2 ) emissions by almost 40 percent. The emission trading system is the centerpiece of the Clean Air Act (CAA) amendments effort to resolve energy and environmental interactions in a manner that will maximize environmental solutions while minimizing energy impacts. This paper will explore how the present CAA amendments deal with the emission trading system and the likely impact of the emission trading system and the CAA amendments upon the electric power industry

  15. U.S. DOE Intermountain Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Case, Patti [Etc Group, LLC, Salt Lake City, UT (United States)

    2013-09-30

    The Intermountain Clean Energy Application Center helped promote, assist, and transform the market for combined heat and power (CHP), including waste heat to power and district energy with CHP, in the intermountain states of Arizona, Colorado, New Mexico, Utah, and Wyoming. We accomplished these objectives through a combination of the following methods, which proved in concert to be a technically and economically effective strategy: o Identifying and facilitating high-impact CHP projects o Helping industrial, commercial, institutional, federal, and other large energy users in evaluating the economic and technical viability of potential CHP systems o Disseminating essential information about CHP including benefits, technologies, applications, project development, project financing, electric and gas utility incentives, and state policies o Coordinating and collaborating on CHP advancement with regional stakeholders including electric utilities, gas utilities, state energy offices, municipal development and planning personnel, trade associations, industry groups, non-profits, energy users, and others Outcomes of the project included increased understanding of and deployment of efficient and well-designed CHP systems in the states of Arizona, Colorado, New Mexico, Utah, and Wyoming. Increased CHP deployment helps the United States to enhance energy efficiency, strengthen the competitiveness of American industries, promote economic growth, foster a robust and resilient energy infrastructure, reduce emissions of air pollutants and greenhouse gases, and increase the use of market-ready advanced technologies. Specific outcomes included direct assistance to energy-intensive industrial facilities and other businesses, workshops and CHP tours, communication materials, and state policy education, all contributing to implementation of CHP systems in the intermountain region.

  16. 2012 Renewable Energy Data Book (Book)

    Energy Technology Data Exchange (ETDEWEB)

    Gelman, R.

    2013-10-01

    This Renewable Energy Data Book for 2012 provides facts and figures in a graphical format on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investment.

  17. Portfolio Optimization of Nanomaterial Use in Clean Energy Technologies.

    Science.gov (United States)

    Moore, Elizabeth A; Babbitt, Callie W; Gaustad, Gabrielle; Moore, Sean T

    2018-04-03

    While engineered nanomaterials (ENMs) are increasingly incorporated in diverse applications, risks of ENM adoption remain difficult to predict and mitigate proactively. Current decision-making tools do not adequately account for ENM uncertainties including varying functional forms, unique environmental behavior, economic costs, unknown supply and demand, and upstream emissions. The complexity of the ENM system necessitates a novel approach: in this study, the adaptation of an investment portfolio optimization model is demonstrated for optimization of ENM use in renewable energy technologies. Where a traditional investment portfolio optimization model maximizes return on investment through optimal selection of stock, ENM portfolio optimization maximizes the performance of energy technology systems by optimizing selective use of ENMs. Cumulative impacts of multiple ENM material portfolios are evaluated in two case studies: organic photovoltaic cells (OPVs) for renewable energy and lithium-ion batteries (LIBs) for electric vehicles. Results indicate ENM adoption is dependent on overall performance and variance of the material, resource use, environmental impact, and economic trade-offs. From a sustainability perspective, improved clean energy applications can help extend product lifespans, reduce fossil energy consumption, and substitute ENMs for scarce incumbent materials.

  18. Wind energy in a global world

    DEFF Research Database (Denmark)

    Hjuler Jensen, Peter

    2007-01-01

    For the past 25 years there has been a dramatic development in the wind energy sector, with regard to the increase in overall utilisation of wind energy as well as technological development, the development of markets and expectations to the role of wind energy in the global electricity supply...... system. The purpose of this paper is to outline developments in the global capacity of wind energy this past quarter of a century, including technology, market aspects, scientific developments, testing and certification, formulation of standards and scenarios for the future development of wind energy...

  19. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy ? FY11 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sidheswaran, Meera; Destaillats, Hugo; Cohn, Sebastian; Sullivan, Douglas P.; Fisk, William J.

    2011-10-31

    The research carried out in this project focuses on developing novel volatile organic compounds (VOCs) air cleaning technologies needed to enable energy-saving reductions in ventilation rates. we targeted a VOC air cleaning system that could enable a 50% reduction in ventilation rates. In a typical commercial HVAC system that provides a mixture of recirculated and outdoor air, a VOC air cleaner in the supply airstream must have a 15% to 20% VOC removal efficiency to counteract a 50% reduction in outdoor air supply.

  20. FY 1999 report on the study/survey of how to spread clean energy vehicles and let people know them and the method for it; 1999 nendo chosa hokokusho. Clean energy jidosha fukyu keihatsu no arikata oyobi fukyu keihatsu shuho kento chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of letting the general public widely know of clean energy vehicles (electric car, hybrid car, natural gas car and methanol car) and making more effective/more efficient spread of them, investigational study was made of the method to spread them and let people know them. For the spread, it is important to confirm the feedback of information from the persons for PR at the time of conducting PR activities. As to the method using TV, radio, newspaper, magazine, etc., the following are pointed out: only a few information can be appealed; there is a possibility of the information being buried in a lot of other information; it seems difficult to get timely response. For this project, town events and exhibition events were considered suitable, and the results of the effects/efficiencies expressed in the actual figures by carrying out 'Clean Energy Festa' were studied. As a result, comprehension of 'new energy' and 'clean energy vehicle' and changes in the attitude were confirmed through the questionnaire survey, etc. (NEDO)

  1. Regional and global exergy and energy efficiencies

    Energy Technology Data Exchange (ETDEWEB)

    Nakicenovic, N; Kurz, R [International Inst. for Applied Systems Analysis, Laxenburg (Austria). Environmentally Compatible Energy Strategies (Ecuador) Project; Gilli, P V [Graz Univ. of Technology (Austria)

    1996-03-01

    We present estimates of global energy efficiency by applying second-law (exergy) analysis to regional and global energy balances. We use a uniform analysis of national and regional energy balances and aggregate these balances first for three main economic regions and subsequently into world totals. The procedure involves assessment of energy and exergy efficiencies at each step of energy conversion, from primary exergy to final and useful exergy. Ideally, the analysis should be extended to include actual delivered energy services; unfortunately, data are scarce and only rough estimates can be given for this last stage of energy conversion. The overall result is that the current global primary to useful exergy efficiency is about one-tenth of the theoretical maximum and the service efficiency is even lower. (Author)

  2. Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Owen; Worrell, Ernst

    2005-08-03

    be unused and convert it to electricity or useful thermal energy. Recycled energy produces no or little increase in fossil fuel consumption and pollutant emissions. Examples of energy recycling methods include industrial gasification technologies to increase energy recovery, as well as less traditional CHP technologies, and the use of energy that is typically discarded from pressure release vents or from the burning and flaring of waste streams. These energy recovery technologies have the ability to reduce costs for power generation. This report is a preliminary study of the potential contribution of this ''new'' generation of clean recycled energy supply technologies to the power supply of the United States. For each of the technologies this report provides a short technical description, as well as an estimate of the potential for application in the U.S., estimated investment and operation costs, as well as impact on air pollutant emission reductions. The report summarizes the potential magnitude of the benefits of these new technologies. The report does not yet provide a robust cost-benefit analysis. It is stressed that the report provides a preliminary assessment to help focus future efforts by the federal government to further investigate the opportunities offered by new clean power generation technologies, as well as initiate policies to support further development and uptake of clean power generation technologies.

  3. Alternative bio-based fuels for aviation: the clean airports program

    International Nuclear Information System (INIS)

    Shauck, M.E.; Zanin, M.G.

    1997-01-01

    The Renewable Aviation Fuels Development Center at Baylor University in Waco, Texas, has been designated as the national coordinator of the Clean Airports Program. The U.S. Dept. of Energy (US DOE) conferred this designation in March 1996. This program, a spin-off of the Clean Cities Program, was initiated to increase the use of alternative fuels in aviation. The two major fuels used in aviation are the current piston engine aviation gasoline and the current turbine engine fuel. The environmental impact of each of these fuels is significant. Aviation gasoline (100LL), currently used in the general aviation piston engine fleet, contributes 100% of the emissions containing lead in the U.S. today. Turbine engine fuel (jet fuel) produces two major environmental impacts: a local one, in the vicinity of the airports, and a global impact on climate change. The Clean Airports Program was established to achieve and maintain clean air at and in the vicinity of airports, through the use of alternative fuel-powered air and ground transportation vehicles. (author)

  4. Atmospheric deterioration of clean surface of epitaxial (001)-YBaCuO films studied by low-energy electron diffraction

    International Nuclear Information System (INIS)

    Ohara, Tomoyuki; Sakuta, Ken; Kamishiro, Makio; Kobayashi, Takeshi

    1991-01-01

    The effects of gas exposure on the clean surface of the epitaxial YBaCuO thin films were closely investigated using the low-energy electron diffraction (LEED) method. The clean surface was obtained by in-vacuum annealing at 500degC. Once the clean surface was exposed to air, even at room temperature, the LEED spots disappeared or sometimes became faint. To ensure the degradation mechanism of the YBaCuO clean surface, the specimens were exposed to pure O 2 and N 2 gases separately and measured by LEED. As a result, it was found that O 2 is very safe but N 2 serves as a poisonous gas for the YBaCuO clean surface. (author)

  5. Clean energy proposals are chance for nuclear to have rightful place at policy table

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, John [nuclear 24, Redditch (United Kingdom)

    2017-06-15

    Foratom, the Brussels based trade association for the nuclear industry in Europe, published a position paper on the European Commission's 'Clean Energy for All Europeans' package of EU legislative proposals. The proposals seek to improve the functioning of the energy market and ensure all energy technologies can compete on a level-playing field without jeopardising climate and energy targets. If Europe seeks to have a coherent and inclusive energy policy, which encompasses all lowcarbon contributors, nuclear must be allowed a place at the policy table.

  6. Making the clean available: Escaping India’s Chulha Trap

    International Nuclear Information System (INIS)

    Smith, Kirk R.; Sagar, Ambuj

    2014-01-01

    Solid cookfuel pollution is the largest energy-related health risk globally and most important cause of ill-health for Indian women and girls. At 700 million cooking with open biomass chulhas, the Indian population exposed has not changed in several decades, in spite of hundreds of programs to make the “available clean”, i.e. to burn biomass cleanly in advanced stoves. While such efforts continue, there is need to open up another front to attack this health hazard. Gas and electric cooking, which are clean at the household, are already the choice for one-third of Indians. Needed is a new agenda to make the “clean available”, i.e., to vigorously extend these clean fuels into populations that are caught in the Chulha Trap. This will require engaging new actors including the power and petroleum ministries as well as the ministry of health, which have not to date been directly engaged in addressing this problem. It will have implications for LPG imports, distribution networks, and electric and gas user technologies, as well as setting new priorities for electrification and biofuels, but at heart needs to be addressed as a health problem, not one of energy access, if it is to be solved effectively. - Highlights: • Pollution from cooking with solid fuels is largest health hazard for Indian women and girls. • 700 million Indians are caught in a trap using solid fuels with little change in number exposed for decades. • Efforts to make the biomass fuel clean through advanced stoves have made only modest progress in decades. • A major new effort is needed to make the clean available, in the form of gas and electricity. • This will require forging new partnerships and rethinking how these fuels are currently promoted

  7. Global challenges in energy

    International Nuclear Information System (INIS)

    Dorian, James P.; Franssen, Herman T.; Simbeck, Dale R. MD

    2006-01-01

    Environmental and security concerns are stimulating global interest in hydrogen power, renewable energy, and advanced transportation technologies, but no significant movement away from oil and a carbon-based world economy is expected soon. Over the longer-term, however, a transition from fossil fuels to a non-carbon-based economy will likely occur, affecting the type of environment future generations may encounter. Key challenges will face the world's energy industry over the next few decades to ensure a smooth transition-challenges which will require government and industry solutions beginning as early as today. This paper identifies four critical challenges in energy and the choices which will have to be made on how best to confront growing pollution caused by fossil fuels and how to facilitate an eventual revolutionary-like transition to a non-carbon-based global economy

  8. Clean Coal Technology Demonstration Program: Program update 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The Clean Coal Technology Demonstration Program (also referred to as the CCT Program) is a $6.9 billion cost-shared industry/government technology development effort. The program is to demonstrate a new generation of advanced coal-based technologies, with the most promising technologies being moved into the domestic and international marketplace. Technology has a vital role in ensuring that coal can continue to serve U.S. energy interests and enhance opportunities for economic growth and employment while meeting the national committment to a clean and healthy global environment. These technologies are being advanced through the CCT Program. The CCT Program supports three substantive national objectives: ensuring a sustainable environment through technology; enhancing energy efficiency and reliability; providing opportunities for economic growth and employment. The technologies being demonstrated under the CCT Program reduce the emissions of sulfur oxides, nitrogen oxides, greenhouse gases, hazardous air pollutants, solid and liquid wastes, and other emissions resulting from coal use or conversion to other fuel forms. These emissions reductions are achieved with efficiencies greater than or equal to currently available technologies.

  9. Renewables 2013. Global Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Sawin, J. L. [and others

    2013-07-01

    Renewable energy markets, industries, and policy frameworks have evolved rapidly in recent years. The Renewables Global Status Report provides a comprehensive and timely overview of renewable energy market, industry, investment, and policy developments worldwide. It relies on the most recent data available, provided by many contributors and researchers from around the world, all of which is brought together by a multi-disciplinary authoring team. The report covers recent developments, current status, and key trends; by design, it does not provide analysis or forecasts. This latest Renewables Global Status Report saw: a shift in investment patterns that led to a global decrease in clean energy investment; continuing growth in installed capacity due to significant technology cost reductions and increased investment in developing countries; renewables progressively supplementing established electricity systems, demonstrating that the implementation of suitable policies can enable the successful integration of higher shares of variable renewables; and the emergence of integrated policy approaches that link energy efficiency measures with the implementation of renewable energy technologies.

  10. Clean energy for Europe in transition

    International Nuclear Information System (INIS)

    Zaleski, C.P.

    1992-01-01

    Energy, an important subject, cannot be validly discussed alone. For some time already, most experts agree that is necessary to include the environmental effects if one seeks a valid discussion. It appears now this was especially pointed out by the dramatic changes in Russia and other Eastern and Central European countries that the only efficient way to discuss energy is even more global. That discussion should, of course, include economics and the politico-economic system, but also society-people's motivations, mentality, education and finally a touch of philosophy, notably value systems. The debates of the third MIEC conference were characterized by their interdisciplinary character. The organizers tried to address these different issues by having them discussed together while emphasizing in different sessions specific aspects like economics and political system society, education, and value system and finally scientific and technical aspects of new energy technology. This meeting presents 28 papers of which 15 are in the INIS and Energy database scope. In the first and the second issue, the subject studied is energy policy in transition economy. The third issue describes the relationships between energy, environment and society. In the two last issues, the problems of safety in nuclear industry are studied

  11. Deliberate Science, Continuum Magazine: Clean Energy Innovation at NREL, Winter 2012 (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2012-02-01

    This quarterly magazine is dedicated to stepping beyond the technical journals to reveal NREL's vital work in a real-world context for our stakeholders. Continuum provides insights into the latest and most impactful clean energy innovations, while spotlighting those talented researchers and unique facilities that make it all happen. This edition focuses on deliberate science.

  12. Hawaii Clean Energy Initiative Existing Building Energy Efficiency Analysis: November 17, 2009 - June 30, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Finch, P.; Potes, A.

    2010-06-01

    In June 2009, the State of Hawaii enacted an Energy Efficiency Portfolio Standard (EEPS) with a target of 4,300 gigawatt hours (GWh) by 2030 (Hawaii 2009). Upon setting this goal, the Hawaii Clean Energy Initiative, Booz Allen Hamilton (BAH), and the National Renewable Energy Laboratory (NREL), working with select local stakeholders, partnered to execute the first key step toward attaining the EEPS goal: the creation of a high-resolution roadmap outlining key areas of potential electricity savings. This roadmap was divided into two core elements: savings from new construction and savings from existing buildings. BAH focused primarily on the existing building analysis, while NREL focused on new construction forecasting. This report presents the results of the Booz Allen Hamilton study on the existing building stock of Hawaii, along with conclusions on the key drivers of potential energy efficiency savings and on the steps necessary to attain them.

  13. The Clean Energy Transfer : preliminary assesment of the potential for a clean energy transfer between Manitoba and Ontario

    International Nuclear Information System (INIS)

    2004-09-01

    Ontario may have an electrical power shortfall of as much as 25,000 MW by 2020, due to phase-out of coal fired plants, a general increase in demand and existing plants reaching the end of their design lives. Manitoba has approximately 5,000 MW of new hydroelectric power potential which could help to reduce this shortfall. This document reports on a study between the Manitoba government, the Ontario government, Manitoba Hydro, Hydro One, and the Ontario Independent Electricity Market Operator to provide an incremental transfer capability of 1,500 MW between the provinces. This is known as the Clean Energy Transfer Initiative (CETI). The current east-west transmission grid is limited to about 200 MW and is thus not sufficient for this project. Three transmission options have been studied. The report claims that CETI would be the largest single project in terms of greenhouse gas reductions. It is also claimed to potentially benefit Aboriginal groups by increasing employment and business opportunities. Also, tax revenues would be substantial. The most likely alternative energy supply is considered to be the combined cycle gas turbine which, according to the study, would cost about the same amount per MWh, excluding environmental credits. 4 tabs., 11 figs

  14. The Clean Energy Transfer : preliminary assesment of the potential for a clean energy transfer between Manitoba and Ontario

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-09-01

    Ontario may have an electrical power shortfall of as much as 25,000 MW by 2020, due to phase-out of coal fired plants, a general increase in demand and existing plants reaching the end of their design lives. Manitoba has approximately 5,000 MW of new hydroelectric power potential which could help to reduce this shortfall. This document reports on a study between the Manitoba government, the Ontario government, Manitoba Hydro, Hydro One, and the Ontario Independent Electricity Market Operator to provide an incremental transfer capability of 1,500 MW between the provinces. This is known as the Clean Energy Transfer Initiative (CETI). The current east-west transmission grid is limited to about 200 MW and is thus not sufficient for this project. Three transmission options have been studied. The report claims that CETI would be the largest single project in terms of greenhouse gas reductions. It is also claimed to potentially benefit Aboriginal groups by increasing employment and business opportunities. Also, tax revenues would be substantial. The most likely alternative energy supply is considered to be the combined cycle gas turbine which, according to the study, would cost about the same amount per MWh, excluding environmental credits. 4 tabs., 11 figs.

  15. Developing an NGSS Pedagogy for Climate Literacy and Energy Awareness Using the CLEAN Collection

    Science.gov (United States)

    Manning, C. L. B.; Taylor, J.; Oonk, D.; Sullivan, S. M.; Kirk, K.; Niepold, F., III

    2017-12-01

    The Next Generation Science Standards and A Framework for K-12 Science Education have introduced us to 3-dimensional science instruction. Together, these provide infinite opportunities to generate interesting problems inspiring instruction and motivating student learning. Finding good resources to support 3-dimensional learning is challenging. The Climate Literacy and Energy Awareness Network (CLEAN) as a comprehensive source of high-quality, NGSS-aligned resources that can be quickly and easily searched. Furthermore, teachers new to NGSS are asked to do the following: synthesize high quality, scientifically vetted resources to engage students in relevant phenomena, problems and projects develop place-awareness for where students live and learn encourage data analysis, modeling, and argumentation skills energize students to participate in finding possible solutions to the problems we face. These challenges are intensified when teaching climate science and energy technology, some of the most rapidly changing science and engineering fields. Educators can turn to CLEAN to find scientifically and pedagogically vetted resources to integrate into their lessons. In this presentation, we will introduce the newly developed Harmonics Planning Template, Guidance Videos and Flowchart that guide the development of instructionally-sound, NGSS-style units using the CLEAN collection of resources. To illustrate the process, three example units will be presented: Phenology - a place-based investigation, Debating the Grid - a deliberation on optimal energy grid solutions, and History of Earth's Atmosphere and Oceans - a data-rich collaborative investigation.

  16. Proceedings of the Clean and Efficient Use of Fossil Energy for Power Generation in Thailand. The Joint Eighth APEC Clean Fossil Energy Technical Seminar and the Seventh APEC Coal Flow Seminar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-30

    The convention named above held jointly by the two seminars also named above took place in Bangkok, Thailand, in the period October 30 through November 3. Open remarks were delivered by Mr. Piromsakdi Laparojkit, Secretary General of National Energy Policy Council, Thailand; Mr. Yoshito Yoshimura, Ministry of International Trade and Industry, Japan; Mr. Paul Toghe, Embassy of Australia in Bangkok; and Mr. Robert Gee, Department of Energy, U.S.A. There were ten technical sessions, in which presentations were made and discussion was held over coal in the APEC (Asia-Pacific Economic Cooperation Conference) economy, important role of coal and natural gas in developing economies, coal and environmental situation in Thailand, coal fired power plant related environmental issues, commercially available CCTs (clean coal technologies) in the APEC region, emerging technologies for reducing GHG (greenhouse gas) emissions, clean fuels in the APEC region, growing importance of IPPs (independent power producers) in the APEC region, cooperation among APEC economies, and the like. (NEDO)

  17. Global climate-friendly trade : Canada's chance to clean up

    International Nuclear Information System (INIS)

    Goldfarb, D.

    2010-03-01

    This paper discussed the global trade and investment in climate-friendly technologies, Canada's current position in this market, and the policy changes that are necessary for Canadian businesses to gain a stronger foothold in this sector. The global market for climate-friendly technologies is growing rapidly, but Canadian businesses have generally failed to exploit opportunities to export climate-friendly technologies and have generally lagged other countries in adopting such technologies developed elsewhere. Although Canadian businesses generally underperform in this sector, Canada does have notable strengths in 13 identified areas, including waste management technologies, energy technologies, and in parts of the value chains associated with wind and solar power. Targeting these areas of relative strength for further development could position Canada as a global leader in some climate-friendly technologies. For this to happen, Canadian governments need to establish clear policies, invest in research and development, and remove domestic and international barriers to the development and trade in climate-friendly technologies. 30 refs., 5 tabs., 5 figs.

  18. CURE: Clean use of reactor energy

    International Nuclear Information System (INIS)

    1990-05-01

    This paper presents the results of a joint Westinghouse Hanford Company (Westinghouse Hanford)-Pacific Northwest Laboratory (PNL) study that considered the feasibility of treating radioactive waste before disposal to reduce the inventory of long-lived radionuclides, making the waste more suitable for geologic disposal. The treatment considered here is one in which waste would be chemically separated so that long-lived radionuclides can be treated using specific processes appropriate for the nuclide. The technical feasibility of enhancing repository performance by this type of treatment is considered in this report. A joint Westinghouse Hanford-PNL study group developed a concept called the Clean Use of Reactor Energy (CURE), and evaluated the potential of current technology to reduce the long-lived radionuclide content in waste from the nuclear power industry. The CURE process consists of three components: chemical separation of elements that have significant quantities of long-lived radioisotopes in the waste, exposure in a neutron flux to transmute the radioisotopes to stable nuclides, and packaging of radionuclides that cannot be transmuted easily for storage or geologic disposal. 76 refs., 32 figs., 24 tabs

  19. The global and Canadian energy outlook

    International Nuclear Information System (INIS)

    Stewart, M.J.

    2006-01-01

    The global energy situation is rapidly changing. Global oil and gas trade is increasing, in an environment of rising prices, higher costs, greater environmental concerns, and growing security uncertainties. While predictions of shortages through depletion of oil and gas reserves are unfounded, the world must adapt to higher prices and changing trade patterns, as conventional reserves are increasingly being replaced un-conventional resources. Canada, drawing upon its vast natural resources and technological innovation, is positioned to be an even more important global energy leader in the 21st century. (author)

  20. Clean Coal Technology Programs: Program Update 2009

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-10-01

    The purpose of the Clean Coal Technology Programs: Program Update 2009 is to provide an updated status of the U.S. Department of Energy (DOE) commercial-scale demonstrations of clean coal technologies (CCT). These demonstrations have been performed under the Clean Coal Technology Demonstration Program (CCTDP), the Power Plant Improvement Initiative (PPII), and the Clean Coal Power Initiative (CCPI). Program Update 2009 provides: (1) a discussion of the role of clean coal technology demonstrations in improving the nation’s energy security and reliability, while protecting the environment using the nation’s most abundant energy resource—coal; (2) a summary of the funding and costs of the demonstrations; and (3) an overview of the technologies being demonstrated, along with fact sheets for projects that are active, recently completed, or recently discontinued.

  1. Recent Topical Research on Global, Energy, Health & Medical, and Tourism Economics, and Global Software

    OpenAIRE

    Chang, Chia-Lin; McAleer, Michael

    2017-01-01

    textabstractThe paper presents an overview of recent topical research on global, energy, health & medical, and tourism economics, and global software. We have interpreted “global” in the title of the Journal of Reviews on Global Economics to cover contributions that have a global impact on economics, thereby making it “global economics”. In this sense, the paper is concerned with papers on global, energy, health & medical, and tourism economics, as well as global software algorithms that have...

  2. Magnetic fusion development for global warming suppression

    International Nuclear Information System (INIS)

    Li Jiangang; Zhang Jie; Duan Xuru

    2010-01-01

    Energy shortage and environmental pollution are two critical issues for human beings in the 21st century. There is an urgent need for new sustainable energy to meet the fast growing demand for clean energy. Fusion is one of the few options which may be able to satisfy the requirement for large scale sustainable energy generation and global warming suppression and therefore must be developed as quickly as possible. Fusion research has been carried out for the past 50 years. It is too long to wait for another 50 years to generate electricity by fusion. A much more aggressive approach should be taken with international collaboration towards the early use of fusion energy to meet the urgent needs for energy and global warming suppression.

  3. Energy: global prospects 1985-2000

    International Nuclear Information System (INIS)

    Wilson, C.L.

    1978-01-01

    The results from the evaluation of global energy resources up to year 2000, done by the Group of Energetic Strategy of Energy Studies are presented. The studies were concentrated in the fuel supply and demand for the next 25 years, such as: petroleum, natural gas, coal and nuclear energy. The national and international energy policy are studied. (E.G.) [pt

  4. Social and ecological effects of biomass utilization and the willingness to use clean energy in the eastern Qinghai–Tibet plateau

    International Nuclear Information System (INIS)

    Ping, Xiaoge; Jiang, Zhigang; Li, Chunwang

    2012-01-01

    We conducted surveys in 19 villages on the Qinghai–Tibet plateau to explore the social and ecological effects of household biomass utilization and local people's willingness to use clean energy. Results showed that biomass was commonly used on this plateau. Dung combustion generated heavy indoor smoke in pastoral regions. Women were main dung collectors, who spent 1.8 h per day on dung collection. Crop residues and firewood were mainly collected by adults. Most respondents would like to rest while few chose to entertain or study when the time for biomass collection was saved. Tree numbers decreased in agricultural regions and grasslands deteriorated in pastoral regions recently according to most respondents. There were significant differences in the willingness to use modern energy, but no significant difference in the willingness to use clean energy among households from regions with different livelihoods. Almost all the respondents would like to use clean energy when there was no economic constraint but paid no attention to the environmental impact of fuel choice. Livelihood and region were main determinants in modern energy utilization, and energy price was the main determinant of fuel choice. Future energy development should focus on finding new ways to utilize biomass and exploring renewable energy. - Highlight: ► Rural household survey is done in 19 villages on the Qinghai–Tibet plateau. ► Biomass collection and utilization cost time and are bad for health and ecosystem. ► Price is the main determinant of fuel choice. ► Most households are willing to use clean energy but pay no attention to the environment. ► Future development should focus on finding new ways to utilize biomass and exploring renewable energy.

  5. Shifting Global Climate Governance: Creating Long-Term Goals Through UNFCCC Article 2

    Directory of Open Access Journals (Sweden)

    P. Brian Fisher

    2011-12-01

    Full Text Available I argue that the long-term risk of global climate change has been mischaracterized as an environmental issue, and therefore, solutions based solely on national emission targets will be ineffective. Thus, this paper argues for establishing long-term goals emphasizing both adaptation and clean energy to generate equitable and effective global climate policy that addresses this fundamental threat. This requires defining and operationalizing the overall objective contained in Article 2 of the United Nations Framework Convention on Climate Change. A second key aspect to operationalizing Article 2 is to understand those ‘particularly vulnerable’ as declared in the Article and in various climate agreements. Once operationalized, these long-term objectives can be achieved through approaches that emphasize the development of clean energy (and concomitant technology, and adaptation within vulnerable communities in their local context. It necessitates dropping formal mechanisms at the current core of the regime designed to regulate national emissions, and instead build the core of the regime around the ‘stabilization’ of both the climate system through clean energy and vulnerable people through effective adaptation.

  6. High resolution electron energy loss spectroscopy of clean and hydrogen covered Si(001) surfaces: first principles calculations.

    Science.gov (United States)

    Patterson, C H

    2012-09-07

    Surface phonons, conductivities, and loss functions are calculated for reconstructed (2×1), p(2×2) and c(4×2) clean Si(001) surfaces, and (2×1) H and D covered Si(001) surfaces. Surface conductivities perpendicular to the surface are significantly smaller than conductivities parallel to the surface. The surface loss function is compared to high resolution electron energy loss measurements. There is good agreement between calculated loss functions and experiment for H and D covered surfaces. However, agreement between experimental data from different groups and between theory and experiment is poor for clean Si(001) surfaces. Formalisms for calculating electron energy loss spectra are reviewed and the mechanism of electron energy losses to surface vibrations is discussed.

  7. Role and potential of renewable energy and energy efficiency for global energy supply

    Energy Technology Data Exchange (ETDEWEB)

    Krewitt, Wolfram; Nienhaus, Kristina [German Aerospace Center e.V. (DLR), Stuttgart (Germany); Klessmann, Corinna; Capone, Carolin; Stricker, Eva [Ecofys Germany GmbH, Berlin (Germany); Graus, Wina; Hoogwijk, Monique [Ecofys Netherlands BV, Utrecht (Netherlands); Supersberger, Nikolaus; Winterfeld, Uta von; Samadi, Sascha [Wuppertal Institute for Climate, Environment and Energy GmbH, Wuppertal (Germany)

    2009-12-15

    The analysis of different global energy scenarios in part I of the report confirms that the exploitation of energy efficiency potentials and the use of renewable energies play a key role in reaching global CO2 reduction targets. An assessment on the basis of a broad literature research in part II shows that the technical potentials of renewable energy technologies are a multiple of today's global final energy consumption. The analysis of cost estimates for renewable electricity generation technologies and even long term cost projections across the key studies in part III demonstrates that assumptions are in reasonable agreement. In part IV it is shown that by implementing technical potentials for energy efficiency improvements in demand and supply sectors by 2050 can be limited to 48% of primary energy supply in IEA's ''Energy Technology Perspectives'' baseline scenario. It was found that a large potential for cost-effective measures exists, equivalent to around 55-60% of energy savings of all included efficiency measures (part V). The results of the analysis on behavioural changes in part VI show that behavioural dimensions are not sufficiently included in energy scenarios. Accordingly major research challenges are revealed. (orig.)

  8. Clean power from deserts. The DESERTEC concept for energy, water and climate security

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    The main challenge for the future is to reclaim energy from renewable and clean sources in environmentally compatible ways. Here the deserts of the earth can play a key role. They receive about 700 times more energy from the sun than humankind consumes by burning fossil fuels, day by day. Deserts are the places with the best solar radiation conditions and with the least possible impact of collector deployment onto the biosphere on earth. In deserts, clean power can be produced by solar thermal power plants (CSP) in a truly sustainable way and at any volume of conceivable demand. Power can be transmitted with low losses by high voltage direct current (HVDC) lines to more than 90% of the world's population. This gives the deserts a new role: Together with the many other forms of accessible renewable energy the newly utilized desert would enable us to replace fossil fuels and thus end the ongoing destruction of our natural living conditions. To put this into practice, countries with deserts, countries with high energy demand and countries with technology competence must cooperate. This is an opportunity for the Mediterranean riparian regions of Europe, the Middle East and North Africa (EUMENA) to form a community for energy, water and climate security. With the political will, EUMENA countries could now launch 'EUMENA-DESERTEC' Program, to bring humankind back into balance with its environment, by putting deserts and technology into service for energy, water and climate security. This would be an important step towards creating a truly sustainable civilization.

  9. The Future of Nuclear Energy As a Primary Source for Clean Hydrogen Energy System in Developing Countries

    International Nuclear Information System (INIS)

    Ahmed, K.; Shaaban, H.

    2007-01-01

    The limited availability of fossil fuels compared to the increasing demand and the connected environmental questions have become topics of growing importance and international attention. Many other clean alternative sources of energy are available, but most of them are either relatively undeveloped technologically or are not yet fully utilized. Also, there is a need for a medium which can carry the produced energy to the consumer in a convenient and environmentally acceptable way. In this study, a fission reactor as a primary energy source with hydrogen as an energy carrier is suggested. An assessment of hydrogen production from nuclear energy is presented. A complete nuclear-electro-hydrogen energy system is proposed for a medium size city (population of 500,000). The whole energy requirement is assessed including residential, industrial and transportation energies. A preliminary economical and environmental impact study is performed on the proposed system. The presented work could be used as a nucleus for a feasibility study for applying this system in any newly established city

  10. Treatment analysis of incentive politics for renewable energy projects in the clean development mechanism (CDM): the Brazilian case; Analise do tratamento das politicas de incentivos a projetos de energias renovaveis no mecanismo de desenvolvimento limpo (MDL): o caso brasileiro

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Anamelia; Hauser, Philipp, Emails: anameliam@yahoo.com.br, philipphauser@web.de

    2010-07-01

    This paper analyses the politics for mitigation recently adopted by the Brazil, and discuss his treatment under the rules of CDM, viewing to contribute for a transparent solution which to allow the conciliation global and national politics for the clean expansion of the energy sector in Brazil.

  11. Framing clean energy campaigns to promote civic engagement among parents

    Science.gov (United States)

    Hanus, Nichole; Wong-Parodi, Gabrielle; Hoyos, Lisa; Rauch, Molly

    2018-03-01

    Civic engagement is one important way citizens can influence the rate of decarbonization in the electricity sector. However, motivating engagement can be challenging even if people are affected and interested in participating. Here we employed a randomized controlled trial to assess the effect of clean energy campaigns emphasizing cost savings, health, climate, or health and climate, or no additional information at all (control) on civic engagement behaviors (signing a petition or making a phone call). We targeted parents as they have been shown to be powerful agents of political and business practice change in other contexts, and hence, could play an important role in the decarbonization of the electricity sector. In Study 1, we recruited n = 292 parents already engaged in climate advocacy; in Study 2, we recruited a representative sample of n = 1254 parents drawn from the general public. Both studies were conducted in Michigan, Florida, and California, as these states have sizable advocacy group membership, divergent energy profiles, and strategic importance to the climate movement. In both studies, we find the odds of taking action are reduced by over 90% when participants are asked to make a phone call and leave a voicemail message, versus signing an online petition. Among the parents already engaged in advocacy, we observe a ceiling effect regarding attitudes towards clean energy and find the cost campaign produces unintended consequences. Among our public sample, we find that participants who believe the campaign to be credible and comprehendible are more likely to take action than those who discredit the campaign or do not understand its message. Additionally, we find parents who have children under the age of 18 negatively adjust their attitudes towards fossil fuels after being presented with health information. Ultimately, we find that campaign messages can influence energy attitudes and parents are willing to take action on the topic if the

  12. Integrating global energy and climate governance: The changing role of the International Energy Agency

    International Nuclear Information System (INIS)

    Heubaum, Harald; Biermann, Frank

    2015-01-01

    Despite the long-recognized interlinkages between global energy consumption and climate change, there has historically been only limited policy interaction, let alone integration, between the two fields. This compartmentalization is mirrored in scholarship, where much research has focused on the fragmentation of, respectively, global energy and global climate governance, but only little has been said about how these fields might be integrated. Our analysis of the International Energy Agency’s (IEA) changing activities in recent years shows that governance integration – both within global energy governance and between global energy and climate governance – is now happening. The IEA has broadened its portfolio to embrace the full spectrum of energy issues, including renewable energy and climate change; it has built and is expanding key partnerships with both the UN climate convention and the International Renewable Energy Agency (IRENA); and it has become an authoritative advocate for the inter-related goals of a low-carbon transition and climate change mitigation. We show that these developments are not the result of a top-down plan, but have rather emerged through the Agency’s various efforts to pursue its energy-centric mandate in a fast-changing global policy environment. - Highlights: • Assesses integration between global energy and global climate governance. • Analyzes organizational change in the IEA and its impact on governance integration. • Discusses recent activities and advocacy by the IEA in relation to climate change.

  13. 76 FR 30325 - Application to Export Electric Energy; E-T Global Energy, LLC

    Science.gov (United States)

    2011-05-25

    ... Export Electric Energy; E-T Global Energy, LLC AGENCY: Office of Electricity Delivery and Energy... authority to transmit electric energy from the United States to Mexico pursuant to section 202(e) of the... an application from E-T Global for authority to transmit electric energy from the United States to...

  14. Clean Power Generation from the Intractable Natural Coalfield Fires: Turn Harm into Benefit.

    Science.gov (United States)

    Shi, Bobo; Su, Hetao; Li, Jinshi; Qi, Haining; Zhou, Fubao; Torero, José L; Chen, Zhongwei

    2017-07-13

    The coal fires, a global catastrophe for hundreds of years, have been proved extremely difficult to control, and hit almost every coal-bearing area globally. Meanwhile, underground coal fires contain tremendous reservoir of geothermal energy. Approximately one billion tons of coal burns underground annually in the world, which could generate ~1000 GW per annum. A game-changing approach, environmentally sound thermal energy extraction from the intractable natural coalfield fires, is being developed by utilizing the waste energy and reducing the temperature of coalfield fires at the same time. Based on the Seebeck effect of thermoelectric materials, the temperature difference between the heat medium and cooling medium was employed to directly convert thermal energy into clean electrical energy. By the time of December 2016, the power generation from a single borehole at Daquan Lake fire district in Xinjiang has been exceeded 174.6 W. The field trial demonstrates that it is possible to exploit and utilize the waste heat resources in the treated coal fire areas. It promises a significant impact on the structure of global energy generation and can also promote progress in thermoelectric conversion materials, geothermal exploration, underground coal fires control and other energy related areas.

  15. Teaching about Climate and Energy using NGSS-aligned resources from the CLEAN Collection and a new Earth System Investigation framework

    Science.gov (United States)

    Ledley, T. S.; Gold, A. U.; Grogan, M.; Sullivan, S. M.; Lockwood, J.; Youngman, E.; Manning, C. L. B.; Holzer, M.; Niepold, F., III

    2016-12-01

    The Climate Literacy and Energy Awareness Network (CLEAN) Collection of reviewed educational climate and energy science resources for grades 6­16 has been aligned with the Next Generation Science Standards (NGSS). The CLEAN resources stand-alone and can thus be used by educators to supplement or build their existing curriculum. However, CLEAN has developed a template of how resources can also be organized into NGSS­aligned units that teachers can use to integrate climate and Earth science into their classes. In this presentation we will describe how to search the CLEAN Collection with an NGSS lens, and present the new framework of building Earth System Investigation units following the NGSS Practices. We will also showcase two examples of such NGSS-aligned Earth System Investigations, which use the new framework, and model the three­ dimensional learning advocated for in the NGSS.

  16. Alternative Solvents and Technologies for Precision Cleaning of Aerospace Components

    Science.gov (United States)

    Grandelli, Heather; Maloney, Phillip; DeVor, Robert; Hintze, Paul

    2014-01-01

    Precision cleaning solvents for aerospace components and oxygen fuel systems, including currently used Vertrel-MCA, have a negative environmental legacy, high global warming potential, and have polluted cleaning sites. Thus, alternative solvents and technologies are being investigated with the aim of achieving precision contamination levels of less than 1 mg/sq ft. The technologies being evaluated are ultrasonic bath cleaning, plasma cleaning and supercritical carbon dioxide cleaning.

  17. Technology Learning Ratios in Global Energy Models

    International Nuclear Information System (INIS)

    Varela, M.

    2001-01-01

    The process of introduction of a new technology supposes that while its production and utilisation increases, also its operation improves and its investment costs and production decreases. The accumulation of experience and learning of a new technology increase in parallel with the increase of its market share. This process is represented by the technological learning curves and the energy sector is not detached from this process of substitution of old technologies by new ones. The present paper carries out a brief revision of the main energy models that include the technology dynamics (learning). The energy scenarios, developed by global energy models, assume that the characteristics of the technologies are variables with time. But this trend is incorporated in a exogenous way in these energy models, that is to say, it is only a time function. This practice is applied to the cost indicators of the technology such as the specific investment costs or to the efficiency of the energy technologies. In the last years, the new concept of endogenous technological learning has been integrated within these global energy models. This paper examines the concept of technological learning in global energy models. It also analyses the technological dynamics of the energy system including the endogenous modelling of the process of technological progress. Finally, it makes a comparison of several of the most used global energy models (MARKAL, MESSAGE and ERIS) and, more concretely, about the use these models make of the concept of technological learning. (Author) 17 refs

  18. Ecomuseums (on Clean Energy, Cycle Tourism and Civic Crowdfunding: A New Match for Sustainability?

    Directory of Open Access Journals (Sweden)

    Francesca Simeoni

    2018-03-01

    Full Text Available An ecomuseum is an ‘instrument’ to share the interests of a region and protect its cultural, historical and natural heritage. Cycle tourism is a sustainable type of tourism. Civic crowdfunding is a method of raising funds from a community for the fulfilment of civic initiatives. Starting from the literature on the link between cycle tourism and sustainability, the interaction between renewable energy resources and tourism, and finally the place-based dimension of a civic crowdfunding campaign, the purpose of this study is to show that an ecomuseum focused on clean energy has the potential to attract cycle tourists, increase the numbers of funders, as well as attract the interest of the municipality, not-for-profit associations and energy and tourism firms, and thus significantly enhance its beneficial effects on sustainability from economic, social and environmental points of view. This study employed an action research method to gain in-depth knowledge of this issue, as well as a qualitative case study approach to present and discuss the results. The principal result of this study is the identification of a potential way to create sustainability, via the match between an ecomuseum devoted to clean energy, cycle tourism and civic crowdfunding.

  19. Privatization and the globalization of energy markets

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report reviews recent global efforts to privatize energy resources and outlines the opportunities and challenges privatization has presented to U.S. and foreign multinational energy companies. The group of energy companies studied in this report includes the major U.S. petroleum companies and many foreign companies. The foreign companies reviewed include state-run energy enterprises, recently privatized energy enterprises, and foreign multinationals that have been privately held. The privatization of non-petroleum energy industries, such as electricity generation and transmission, natural gas transmission, and coal mining, are also discussed. Overseas investments made by electric companies, natural gas companies, and coal companies are included. The report is organized into six chapters: (1) economics of privatization; (2) petroleum privatization efforts among non-U.S. Organization for Economic Cooperation and Development nations; (3) petroleum privatization efforts in Latin America; (4) privatization in socialist and former socialist regimes; (5) privatization efforts in global electric power generation, transmission, and distribution industries; and (6) privatization and globalization of world coal.

  20. Global climate-oriented building energy use scenarios

    International Nuclear Information System (INIS)

    Harvey, L.D. Danny

    2014-01-01

    This paper explores the extent to which global fuel use in buildings could be reduced, and the growth in global electricity use in buildings limited, by applying stringent (factor of 3–4) improvements to recent building codes for new buildings worldwide and large (factor of 2–3) reductions in the energy use of existing buildings through renovations. The analysis is carried out for 10 different socio-economic regions of the world, taking into account existing building stock and energy intensities in each region and projected changes in population and income, which in most parts of the world will drive large increases in building floor area. A stock turnover model is applied to project changes in heating, cooling, service hot water (SHW) and non-thermal electricity demand with various rates of improvement in standards for new and renovated buildings, and various rates of renovation and demolition of existing buildings. For a scenario in which population peaks at about 9 billion and global average per capita GDP increases to twice the 2010 value by 2100, the global fuel demand could be reduced by a factor of four while limiting maximum annual electricity demand to twice the 2010 value. - Highlights: • A detailed model for generating global scenarios of building energy use is presented. • Drivers of increasing energy use are population and per capita GDP in 10 regions. • Heating, cooling and ventilation energy uses are projected using a stock turnover model. • Global building fuel demand could decrease by 60–80% by 2100 relative to 2010. • Global building electricity demand could be limited to a 100–200% increase

  1. Energy principle with global invariants

    International Nuclear Information System (INIS)

    Bhattacharjee, A.; Dewar, R.L.

    1981-04-01

    A variational principle is proposed for constructing equilibria with minimum energy in a toroidal plasma. The total energy is minimized subject to global invariants which act as constraints during relaxation of the plasma. These global integrals of motion are preserved exactly for all idea motions and approximately for a wide class of resistive motions. We assume, specifically, that relaxation of the plasma is dominated by a tearing mode of single helicity. Equilibria with realistic current density and pressure profiles may be constructed in this theory, which is also used here to study current penetration in tokamaks. The second variation of the free energy functional is computed. It is shown that if the second variation of any equilibrium constructed in this theory is positive, the equilibrium satisfies the necessary and sufficient conditions for ideal stability

  2. Dynamics of clean coal-fired power generation development in China

    International Nuclear Information System (INIS)

    Yue, Li

    2012-01-01

    Coal-fired power technology will play an important role over a long period in China. Clean coal-fired power technology is essential for the global GHG emission reduction. Recently, advanced supercritical (SC)/ultra-supercritical (USC) technology has made remarkable progress in China and greatly contributed to energy saving and emission reduction. This study analyzes the dynamics of SC/USC development in China from an integrated perspective. The result indicates that, besides the internal demand, the effective implementation of domestic public policy and technology transfer contributed greatly to the development of SC/USC technology in China. In future low carbon scenario, SC/USC coal-fired power technology might still be the most important power generation technology in China until 2040, and will have a significant application prospect in other developing countries. The analysis makes a very useful introduction for other advanced energy technology development, including a renewable energy technology, in China and other developing countries. - Highlights: ► The US/USC technology is the key clean coal-fired power technology in current China. ► The domestic policy and technology transfer largely contributed to their development. ► This makes a useful introduction for the development of renewable energy in China.

  3. Texas Clean Energy Project: Topical Report, Phase 1 - February 2010-December 2012

    Energy Technology Data Exchange (ETDEWEB)

    Mattes, Karl

    2012-11-01

    Summit Texas Clean Energy, LLC (STCE) is developing the Texas Clean Energy Project (TCEP or the project) to be located near Penwell, Texas. The TCEP will include an Integrated Gasification Combined Cycle (IGCC) plant with a nameplate capacity of 400 megawatts electric (MWe), combined with the production of urea fertilizer and the capture, utilization and storage of carbon dioxide (CO2) sold commercially for regional use in enhanced oil recovery (EOR) in the Permian Basin of west Texas. The TCEP will utilize coal gasification technology to convert Powder River Basin subbituminous coal delivered by rail from Wyoming into a synthetic gas (syngas) which will be cleaned and further treated so that at least 90 percent of the overall carbon entering the facility will be captured. The clean syngas will then be divided into two high-hydrogen (H2) concentration streams, one of which will be combusted as a fuel in a combined cycle power block for power generation and the other converted into urea fertilizer for commercial sale. The captured CO2 will be divided into two streams: one will be used in producing the urea fertilizer and the other will be compressed for transport by pipeline for offsite use in EOR and permanent underground sequestration. The TCEP was selected by the U.S. Department of Energy (DOE) Office of Fossil Energy (FE) for cost-shared co-funded financial assistance under Round 3 of its Clean Coal Power Initiative (CCPI). A portion of this financial assistance was budgeted and provided for initial development, permitting and design activities. STCE and the DOE executed a Cooperative Agreement dated January 29, 2010, which defined the objectives of the project for all phases. During Phase 1, STCE conducted and completed all objectives defined in the initial development, permitting and design portions of the Cooperative Agreement. This topical report summarizes all work associated with the project objectives, and additional work

  4. The Clean Air Act Amendments of 1990: Opportunities for Promoting Renewable Energy; Final Report: December 11, 2000

    Energy Technology Data Exchange (ETDEWEB)

    Wooley, D.R.; Morss, E.M. (Young, Sommer, Ward, Ritzenberg, Wooley, Baker and Moore, LLC, Albany, New York)

    2001-01-08

    This report explores key aspects of the intersection between the nation's clean air and energy goals and proposes alternatives for encouraging renewable energy in the context of the federal Clean Air Act (CAA). As with most environmental statutes enacted in the early 1970s, the 1970 CAA embraced a somewhat rigid ''command-and-control'' approach to achieving its clean air goals. Although effective, this approach has been criticized for discouraging creative and cost-effective solutions to reducing air emissions. In response to this concern, Congress included the first significant market-based program to address an environmental problem-in this case, acid rain caused by sulfur dioxide (SO2) emissions from power plants-in the 1990 CAA Amendments. This program prompted the federal government and various state governments to pursue other market-based programs to address air pollution problems. Ten years have elapsed since the passage of the 1990 CAA Amendments, so the time is ripe to consider expanding opportunities for renewable energy development in the reform of clean air policies. A significant potential for renewables exists in conjunction with international efforts to reduce emissions of greenhouse gases (GHG), including CO2. Unfortunately, Congressional opposition to international GHG reduction agreements makes it difficult to develop GHG emission-reduction programs, including a cap-and-trade alternative, that would enable the renewables industry to harness this potential. The renewable industry can, however, track developments both nationally and internationally to ensure that the programs developed adequately address renewables.

  5. National Renewable Energy Policy in a Global World

    Science.gov (United States)

    Jeong, Minji

    Increasing trade of renewable energy products has significantly contributed to reducing the costs of renewable energy sources, but at the same time, it has generated protectionist policies, which may negatively affect the trend of the cost reduction. Although a few recent studies examined the rise of renewable energy protectionism and trade disputes, they are limited in addressing the conflict between the original goal of traditional renewable energy policies and the new protectionist policies under the globalized renewable energy industry. To fill this gap, this dissertation explores how the globalized renewable energy industry has changed national renewable energy policies. Through three analyses, three aspects of the globalized renewable energy industry are examined: the rise of multinational corporations, international interactions among actors, and the changes of the global and domestic market conditions. First analysis investigates how multinational renewable energy corporations have affected national policies. A content analysis of the annual reports of 15 solar photovoltaic multinational corporation shows that solar multinationals have been influenced by national policies and have adapted to the changes rather than having attempted to change national policies. Second analysis examines how diverse actors have framed renewable energy trade issues through a network analysis of the Chinese solar panel issue in the United States. The result shows that the Chinese solar panel issue was framed differently from the traditional environmental frame of renewable energy, being dominated by multinational corporations headquartered in other countries. Third analysis explores what has caused the increasing diversity in national renewable energy policies through the case studies of the U.S. and South Korea. The result reveals that the globalization of solar industry has affected the diversification of solar policies in two countries by generating both challenges, which

  6. The impacts of wind technology advancement on future global energy

    International Nuclear Information System (INIS)

    Zhang, Xiaochun; Ma, Chun; Song, Xia; Zhou, Yuyu; Chen, Weiping

    2016-01-01

    Highlights: • Integrated assessment model perform a series of scenarios of technology advances. • Explore the potential roles of wind energy technology advance in global energy. • Technology advance impacts on energy consumption and global low carbon market. • Technology advance influences on global energy security and stability. - Abstract: To avoid additional global warming and environmental damage, energy systems need to rely on the use of low carbon technologies like wind energy. However, supply uncertainties, production costs, and energy security are the main factors considered by the global economies when reshaping their energy systems. Here, we explore the potential roles of wind energy technology advancement in future global electricity generations, costs, and energy security. We use an integrated assessment model performing a series of technology advancement scenarios. The results show that double of the capital cost reduction causes 40% of generation increase and 10% of cost ​decrease on average in the long-term global wind electricity market. Today’s technology advancement could bring us the benefit of increasing electricity production in the future 40–50 years, and decreasing electricity cost in the future 90–100 years. The technology advancement of wind energy can help to keep global energy security and stability. An aggressive development and deployment of wind energy could in the long-term avoid 1/3 of gas and 1/28 of coal burned, and keep 1/2 biomass and 1/20 nuclear fuel saved from the global electricity system. The key is that wind resources are free and carbon-free. The results of this study are useful in broad coverage ranges from innovative technologies and systems of renewable energy to the economic industrial and domestic use of energy with no or minor impact on the environment.

  7. Renewable: A key component of our global energy future

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, D.

    1995-12-31

    Inclusion of renewable energy sources in national and international energy strategies is a key component of a viable global energy future. The global energy balance is going to shift radically in the near future brought about by significant increases in population in China and India, and increases in the energy intensity of developing countries. To better understand the consequences of such global shifts in energy requirements and to develop appropriate energy strategies to respond to these shifts, we need to look at the factors driving choices among supply options by geopolitical consumers and the impact these factors can have on the future energy mix.

  8. Algal Turf Scrubbers: Cleaning Water While Capturing Solar Energy

    International Nuclear Information System (INIS)

    Adey, W.

    2009-01-01

    Algal Turfs and Algal Turf Scrubbers (ATS) Algal Turfs are bio diverse communities of unicellular to filamentous algae of all major algal phyla. Algal Turf Scrubbers (ATS) are bioengineered ecosystems dominated by algal turfs. They clean water to very high quality, and remove CO 2 from the atmosphere by capturing solar energy at rates 10 times that of agriculture and 50 times that of forestry. ATS was invented at the Smithsonian Institution, by scientist, Walter Adey in the 1980s as a tool for controlling water quality in highly diverse model ecosystems. The technology received extensive R and D for aqua cultural, municipal, and industrial water cleaning by Dr. Adey, using venture capital, through the 1990s. Later, Hydro Mentia, Inc., of Ocala, Florida, engineered ATS to landscape scale of 20-50 Mgpd (it is important to note that this is a modular system, capable of expanding to any size.) A 2005 independent study of ATS, by the South Florida Water Management District and the IFAS Institute of the University of Florida, certified ATS as 5-100 times more cost efficient at removing nutrients from Everglades canal waters than the next competitor, the STA, a managed marsh system. ATS and STA were the final contestants in a 15-year study of nine technologies, and ATS was the only technology that created a use able byproduct.

  9. 1998 Annual Study Report. Surveys on seeds for global environmental technologies, including those for energy saving; 1998 nendo chosa hokokusho. Sho energy nado chikyu kankyo taisaku gijutsu no seeds ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The energy-saving and other global environmental technologies are surveyed by collecting relevant information from various institutes, both abroad and domestic, to contribute to development of ceramic gas turbines. USA has announced a climate change plan, based on the five principles, to promote utilization of high-efficiency technologies and development of new clean technologies. UK is promoting to improve energy efficiency, along with liberalization of its energy markets. Germany concentrates its efforts in the 'Program for Energy Research and Energy Technologies.' France places emphasis on prevention of air pollution and rational use of energy. The R and D trends at public institutes, e.g., universities, for global environmental technologies are surveyed, from which a total of 14 themes are extracted as the seed technologies. At the same time, a total of 9 techniques potentially applicable to the seeds are extracted by mainly reviewing JICST and patent information, and assessed. The R&D trends of the IPCC-related researchers are also surveyed, but provide no theme directly applicable to the seeds. Most of the related themes at the private and public institutes surveyed, both domestic and abroad, are concentrated on carbon dioxide. (NEDO)

  10. Long-term scenarios for global energy demand and supply. Four global greenhouse mitigation scenarios. Final report

    International Nuclear Information System (INIS)

    Soerensen, B.; Meibom, P.; Kuemmel, B.

    1999-01-01

    The scenario method is used to investigate energy demand and supply systems for the 21st century. A geographical information system (GIS) is employed to assess the spatial match between supply and demand, and the robustness of the scenario against changes in assumptions is discussed, for scenarios using fossil fuels without carbon dioxide emissions, nuclear fuels with reduced accident and proliferation risks, and renewable energy from local and from more centralised installations: The year 2050 demand scenario is based on a very high goal satisfaction in all regions of the world, for the middle UN population projection. All energy efficiency measures that are technically ready and economic today are assumed in effect by year 2050. An increased fraction of total activities are assumed to occur in non-material sectors. Technical, economic and implementation issues are discussed, including the resilience to changes in particularly demand assumptions and the type of framework that would allow energy policy to employ any of (or a mix of) the scenario options. Results are presented as average energy flows per unit of land area. This geographically based presentation method gives additional insights, particularly for the dispersed renewable energy systems, but in all cases it allows to identify the need for energy transmission and trade between regions, and to display it in a visually suggestive fashion. The scenarios are examples of greenhouse mitigation scenarios, all characterised by near-zero emissions of greenhouse gases to the atmosphere. All are more expensive than the present system, but only if the cost of the negative impacts from the current system is neglected. As options for global energy policy during the next decades, the clean fossil and the renewable energy options (possibly in combination) are the only realistic ones, because the safe nuclear option requires research and development that most likely will take longer time, if it can at all be carried

  11. Long-term scenarios for global energy demand and supply. Four global greenhouse mitigation scenarios. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, B; Meibom, P [Technical Univ. of Denmark, Lyngby (Denmark); Kuemmel, B [Royal Agricultural and Veterinary Univ., Tastrup (Denmark)

    1999-01-01

    The scenario method is used to investigate energy demand and supply systems for the 21st century. A geographical information system (GIS) is employed to assess the spatial match between supply and demand, and the robustness of the scenario against changes in assumptions is discussed, for scenarios using fossil fuels without carbon dioxide emissions, nuclear fuels with reduced accident and proliferation risks, and renewable energy from local and from more centralised installations: The year 2050 demand scenario is based on a very high goal satisfaction in all regions of the world, for the middle UN population projection. All energy efficiency measures that are technically ready and economic today are assumed in effect by year 2050. An increased fraction of total activities are assumed to occur in non-material sectors. Technical, economic and implementation issues are discussed, including the resilience to changes in particularly demand assumptions and the type of framework that would allow energy policy to employ any of (or a mix of) the scenario options. Results are presented as average energy flows per unit of land area. This geographically based presentation method gives additional insights, particularly for the dispersed renewable energy systems, but in all cases it allows to identify the need for energy transmission and trade between regions, and to display it in a visually suggestive fashion. The scenarios are examples of greenhouse mitigation scenarios, all characterised by near-zero emissions of greenhouse gases to the atmosphere. All are more expensive than the present system, but only if the cost of the negative impacts from the current system is neglected. As options for global energy policy during the next decades, the clean fossil and the renewable energy options (possibly in combination) are the only realistic ones, because the safe nuclear option requires research and development that most likely will take longer time, if it can at all be carried

  12. Energy and global environment

    International Nuclear Information System (INIS)

    Fyfe, W.S.; Powell, M.A.

    1991-01-01

    At present about 90% of the world's energy consumption is met by the fossil carbon fuel used in the form of coal, oil and natural gas. This results into release of vast amounts of waste gas CO 2 into the atmosphere posing a threat to the global environment. Moreover this energy source is not sustainable (renewable) and its use amounts to spending Earth's capital resources. The options to this energy source are biomass energy, hydro power, solar energy, geothermal energy and nuclear energy. The potentials, limitations, geological impact and environmental dangers, if any, of these sources are discussed in brief. Energy conservation through energy efficient systems is also one more option. Problems and potential for change to sustainable energy systems with respect to India and Canada are examined. Finally it is pointed out that the ultimate solution to the world's energy problem lies in population control and population reduction. This will make possible for the world to have a sustainable energy system primarily based on solar energy. (M.G.B.). 15 refs

  13. Clean Coal: myth or reality? At the heart of the energy-climate equation, capturing and storing CO2 - Proceedings of the 2007 Le Havre's international meetings

    International Nuclear Information System (INIS)

    Rufenacht, Antoine; Brodhag, Christian; Mocilnikar, Antoine-Tristan; Bennaceur, Kamel; Esseid, Ablaziz; Lemoine, Stephane; Prevot, Henri; Diercks, Thorsten; Jaclot, Francois; Fache, Dominique; Coulon, Pierre-Jean; Capris, Renaud; TRANIE, Jean-Pascal; Le Thiez, Pierre; Marliave, Luc de; Perrin, Nicolas; Paelinck, Philippe; Clodic, Denis; Thabussot, Laurent; Alf, Martin; Boon, Gustaaf; Giger, Francois; Bisseaud, Jean-Michel; Michel, Patrick; Poyer, Luc; Biebuyck, Christian; Kalaydjian, Francois; Roulet, Claude; Bonijoly, Didier; Gresillon, Francois Xavier; Bonneville, Alain; Tauziede, Christian; Munier, Gilles; Moncomble, Jean-Eudes; Frois, Bernard; Charmant, Marcel; Thybaud, Nathalie; Fares, Tewfik; Lacave, Jean-Marc; Duret, Benoit; Gerard, Bernard

    2007-03-01

    This document comprises the French and English versions of the executive summary of the RIH 2007 meetings, followed by the available presentations (slides). Content: - Symposium Opening: Government and the Coal Issue; 1 - First Session - Energy, Climate, Coal: - Scenarios for energy technologies and CO 2 emissions: Energy outlooks, CO 2 emissions, Technologies (Kamel BENNACEUR); - The global situation of coal: The situation of the international steam coal market, Change in this market, Total's position in this business, Major challenges for the future (Ablaziz ESSEID); - Coal markets: availability, competitiveness, and growing maturity (Stephane LEMOINE); - Coal in the geopolitics of greenhouse gases (Henri PREVOT); - Questions; 2 - Second Session - Coal Economy: - Opportunities and challenges for coal in the European energy mix: the Commission's energy package: The European situation, The European energy mix, The role of EURACOAL (Thorsten DIERCKS); - The development of a coal bed in Lucenay-les-Aix and Cossaye in the Massif Central (Francois JACLOT); - The Russian view of coal's place in the energy mix (Dominique FACHE); - Coal, a key to development in Niger (Pierre-Jean COULON); - The energy and environmental efficiency of coal-fired power plants associated with heating networks (Renaud CAPRIS); - The Valorca project: efficient and immediate use of coal, and strong outlooks for the future (Jean-Pascal TRANIE); - Questions; 3 - Third and Forth Sessions - Clean Power Plants: - CO 2 capture systems (Pierre LE THIEZ); - CO 2 geological capture and storage in the Lacq basin (Luc de MARLIAVE); - Clean coal: Air Liquide technology developments and industrial solutions (Nicolas PERRIN); - Clean combustion and CO 2 (Philippe PAELINCK); - CO 2 capture by freezing/defrosting at low temperatures (Denis CLODIC); - Questions; - Using the experience of a large corporation (ENDESA), to develop clean energy: coal (Laurent THABUSSOT); - Pathways to reduce CO 2

  14. Wind energy technology: an option for a renewable clean environment energy. Low impact renewable energy: options for a clean environment and healthy Canadian economy

    International Nuclear Information System (INIS)

    Salmon, J.

    1999-01-01

    As Canada debates ways to address climate change, the country's low-impact renewable energy industries want to ensure that Canadians are provided with all of the options available to them. Accordingly, they have come together to create Options for a Clean Environment and Healthy Canadian Economy. Recognizing there is no 'silver bullet' solution to climate change, this document identifies an important suite of measures that, along with others, will allow Canada to achieve its long-term economic and environmental goals. The measures described in this document represent an investment in Canada's future. If implemented, they will reduce annual greenhouse gas (GHG) emissions by more than 12 million tonnes (Mt) by the year 2010 (roughly 8% of Canada's reduction target), create thousands of new jobs, and reduce health-care costs by millions of dollars each year. The most significant dividends from these measures, however, will occur after 2010 as a result of having set in motion fundamental changes in the attitudes of Canadians and the nature of the Canadian energy market. By 2020, the spin-off actions prompted by these measures will likely have resulted in GHG reductions twice as great as those achieved in 2010. This document highlights the opportunities associated specifically with Canada's low-impact renewable energy resources. These are non-fossil-fuel resources that are replenished through the earth's natural cycles and have a minimal impact on the environment and human health. They include wind, solar, earth energy, run-of-river hydro and sustainable biomass fuels. These resources can replace fossil fuels in a variety of areas, including electricity and space and water heating. Fuel cells, although not a renewable resource in themselves, are a promising technology that in combination with renewables have the potential to deliver versatile low-impact electricity. The document also identifies opportunities associated with the increased use of passive renewable energy

  15. Clean Coal Day '94 Hokkaido International Seminar; Clean coal day '94 Hokkaido kokusai seminar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    The lectures given at the seminar were 1) Coal energy be friendly toward the earth, 2) Clean coal technology in the United Kingdom, and 3) How clean coal should be in Australia. In lecture 1), remarks are made on the importance of coal and its future, coal that protects forest, whether coal is a dirty fuel, coal combustion tests started relative to environmental pollution, acid rain in China and coal combustion, briquets effective in energy conservation, etc. In lecture 2), remarks are made on the importance of coal utilization in the United Kingdom, current state of coal utilization in power generation, problems related to gasification furnaces, problems related to combustors, problems related to high-temperature gas cleaning, function of cleaning filters, advantages of high-temperature gas treatment, actualities of gas combustors, studies of gas combustors, etc. In lecture 3), remarks are made on Australia's coal situation, problems related to clean coal technology, problems related to coal preparation technology, potentialities of Australian brown coal, coal utilization in power generation, need of new technology development, current state of coal utilization in Australia, coal utilization in metal-making industry, international cooperation on technology, etc. (NEDO)

  16. Recent topical research on global, energy, health & medical, and tourism economics, and global software: An overview

    OpenAIRE

    Chang, Chia-Lin; McAleer, Michael

    2017-01-01

    textabstractThe paper presents an overview of recent topical research on global, energy, health & medical, and tourism economics, and global software. We have interpreted "global" in the title of the Journal of Reviews on Global Economics to cover contributions that have a global impact on economics, thereby making it "global economics". In this sense, the paper is concerned with papers on global, energy, health & medical, and tourism economics, as well as global software algorithms that have...

  17. Clean air strategy for Alberta: Background project reports

    International Nuclear Information System (INIS)

    1991-06-01

    As a background to the development of a clean air strategy for Alberta, reports are presented which cover the definition of what clean air is, the applicability of full cost accounting to this strategy, market-based approaches to managing Alberta air emissions, gas and electric utility incentives programs for energy efficiency, energy efficiency legislation in Alberta and other jurisdictions, initiatives which address emissions reduction in the transportation sector, coordination of science and technology relevant to clean air issues, and initiatives in energy and environmental education

  18. Nuclear Energy is the Answer to Cope with the Lack of Energy and Global Warming

    International Nuclear Information System (INIS)

    Wisnu Arya Wardhana

    2009-01-01

    This paper of nuclear energy is the answer to cope with the lack of energy and global warming based on the analysis of energy demand which is increasing rapidly, meanwhile the energy reserve is limited and decreased. Mostly world′s energy is generated by fossil fuel energy, mainly oil and coal. Fossil fuel energy and industrial activities produce green house gases (GHG) such as : COx, CH 4 , N 2 O, and CFC which cause of global warming. Global warming gives bad impact to environment and to human being. Every country in the world needs sufficient energy, but the energy resources is limited and decreased. The answer for this solution must be an energy source which does not produce green house gases. Why nuclear energy is chosen to cope with the lack of energy and global warming will be explained briefly in this paper. (author)

  19. Clean utilization of coal

    International Nuclear Information System (INIS)

    Yueruem, Y.

    1992-01-01

    This volume contains 23 lectures presented at the Advanced Study Institute on 'Chemistry and Chemical Engineering of Catalytic Solid Fuel Conversion for the Production of Clean Synthetic Fuels', which was held at Akcay, Edremit, Turkey, between 21 July and August 3, 1991. Three main subjects: structure and reactivity of coal; cleaning of coal and its products, and factors affecting the environmental balance of energy usage and solutions for the future, were discussed in the Institute and these are presented under six groups in the book: Part 1. Structure and reactivity of coal; Part 2. Factors affecting environmental balance; Part 3. Pre-usage cleaning operations and processes; Part 4. Upgrading of coal liquids and gases; Part 5. Oxygen enriched processes; and Part 6. Probable future solution for energy and pollution problems. Separate abstracts have been prepared for all the lectures

  20. Future Transportation with Smart Grids and Sustainable Energy

    Directory of Open Access Journals (Sweden)

    Gustav R. Grob

    2009-10-01

    Full Text Available Transportation is facing fundamental change due to the rapid depletion of fossil fuels, environmental and health problems, the growing world population, rising standards of living with more individual mobility and the globalization of trade with its increasing international transport volume. To cope with these serious problems benign, renewable energy systems and much more efficient drives must be multiplied as rapidly as possible to replace the polluting combustion engines with their much too low efficiency and high fuel logistics cost. Consequently the vehicles of the future must be non-polluting and super-efficient, i.e. electric. The energy supply must come via smart grids from clean energy sources not affecting the health, climate and biosphere. It is shown how this transition to the clean, sustainable energy age is possible, feasible and why it is urgent. The important role of international ISO, IEC and ITU standards and the need for better legislation by means of the Global Energy Charter for Sustainable Development are also highlighted.

  1. Accelerating the global nuclear renaissance: the central challenge of sustainable development

    International Nuclear Information System (INIS)

    Ritch, J.

    2006-01-01

    The rebirth of nuclear energy has become an unmistakable reality that is gathering speed and momentum on the full world stage. All around the world, old-school anti-nuclear environmentalism is being eclipsed by a new realism that recognises nuclear energy's essential virtue: its capacity to deliver cleanly generated power safely, reliably, and on a massive scale. For serious environmentalists, the real challenge is that nuclear energy is not yet growing fast enough to play its needed role in the clean-energy revolution our world so desperately needs. A fair assessment shows that not one of the commonly cited ''public concerns'' poses a reasonable obstacle to a global expansion of nuclear power: Proliferation, Operational Safety, Cost Reduction, Waste Management. In three areas, governments must take decisive action to grow the nuclear industry: (1) Construct a comprehensive global regime to curtail greenhouse emissions; (2) Elevate nuclear investment to a national and international policy priority; and (3) Support educational development of the nuclear profession for an expanded global role. The global nuclear industry will be indispensable if humanity is to preserve the environment that enabled civilisation to evolve. Governments must emerge from postures of timidity and equivocation to act decisively in support of that industry. Our world is in dire peril, and we have no time to lose

  2. Quality of institution and the FEG (forest, energy intensity, and globalization) -environment relationships in sub-Saharan Africa.

    Science.gov (United States)

    Amuakwa-Mensah, Franklin; Adom, Philip Kofi

    2017-07-01

    The current share of sub-Saharan Africa in global carbon dioxide emissions is negligible compared to major contributors like Asia, Americas, and Europe. This trend is, however, likely to change given that both economic growth and rate of urbanization in the region are projected to be robust in the future. The current study contributes to the literature by examining both the direct and the indirect impacts of quality of institution on the environment. Specifically, we investigate whether the institutional setting in the region provides some sort of a complementary role in the environment-FEG relationships. We use the panel two-step system generalized method of moments (GMM) technique to deal with the simultaneity problem. Data consists of 43 sub-Saharan African countries. The result shows that energy inefficiency compromises environmental standards. However, the quality of the institutional setting helps moderate this negative consequences; countries with good institutions show greater prospects than countries with poor institutions. On the other hand, globalization of the region and increased forest size generate positive environmental outcomes in the region. Their impacts are, however, independent of the quality of institution. Afforestation programs, promotion of other clean energy types, and investment in energy efficiency, basic city infrastructure, and regulatory and institutional structures, are desirable policies to pursue to safeguard the environment.

  3. Clean air renewable energy (CARE) coalition : a case study

    International Nuclear Information System (INIS)

    Lambert, G.; Pollock, D.

    2002-01-01

    This paper highlights the opportunity for new partnerships between business and non-governmental organizations in the field of sustainable development through the growing convergence of interests. The authors also briefly describe both Suncor Energy and the Pembina Institute for Appropriate Development stances on sustainable development. Since 1990, both organizations have collaborated on the future of the emerging renewable energy industry. Renewable energy represents an energy source diversification through the regional creation of jobs and improved air quality and associated benefits resulting from the reductions in greenhouse gas emissions. The Clean Air Renewable Energy Coalition (Coalition) was established in December 2000 in order to assess the barriers to capital investment in the renewable energy industry. It was revealed that the international community as a whole was further ahead than Canada in terms of renewable support, production and export of technology and services. Some of the challenges facing the industry are: low demand for renewables and low supply. The coalition allowed for the joint identification of desired policy changes, such as new tax incentives for renewable energy supply and demand. Efforts were made in inviting the support of industry, municipalities and environmental non governmental organizations. The list of members that have joined the coalition to date was shown. The coalition is asking for consumer green energy credit, designed for the creation of demand and the education of the general public, and producer incentives to increase supply. The proposals were explained, as well as the strategic principles underlying them. A new tax incentive was announced in the December 2001 Canadian federal budget. The authors concluded by mentioning some future opportunities and the lessons learned on the importance of the right partners, of broad-based advocacy, of targeted and focuses messages, and of evolutionary change

  4. Clean air renewable energy (CARE) coalition : a case study

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, G. [Suncor Energy, Fort McMurray, AB (Canada); Pollock, D. [Pembina Institute for Appropriate Development, Drayton Valley, AB (Canada)

    2002-07-01

    This paper highlights the opportunity for new partnerships between business and non-governmental organizations in the field of sustainable development through the growing convergence of interests. The authors also briefly describe both Suncor Energy and the Pembina Institute for Appropriate Development stances on sustainable development. Since 1990, both organizations have collaborated on the future of the emerging renewable energy industry. Renewable energy represents an energy source diversification through the regional creation of jobs and improved air quality and associated benefits resulting from the reductions in greenhouse gas emissions. The Clean Air Renewable Energy Coalition (Coalition) was established in December 2000 in order to assess the barriers to capital investment in the renewable energy industry. It was revealed that the international community as a whole was further ahead than Canada in terms of renewable support, production and export of technology and services. Some of the challenges facing the industry are: low demand for renewables and low supply. The coalition allowed for the joint identification of desired policy changes, such as new tax incentives for renewable energy supply and demand. Efforts were made in inviting the support of industry, municipalities and environmental non governmental organizations. The list of members that have joined the coalition to date was shown. The coalition is asking for consumer green energy credit, designed for the creation of demand and the education of the general public, and producer incentives to increase supply. The proposals were explained, as well as the strategic principles underlying them. A new tax incentive was announced in the December 2001 Canadian federal budget. The authors concluded by mentioning some future opportunities and the lessons learned on the importance of the right partners, of broad-based advocacy, of targeted and focuses messages, and of evolutionary change.

  5. Global analysis of the techno-economic potential of renewable energy hybrid systems on small islands

    International Nuclear Information System (INIS)

    Blechinger, P.; Cader, C.; Bertheau, P.; Huyskens, H.; Seguin, R.; Breyer, C.

    2016-01-01

    Globally, small islands below 100,000 inhabitants represent a large number of diesel based mini-grids. With volatile fossil fuel costs which are most likely to increase in the long-run and competitive renewable energy technologies the introduction of such sustainable power generation system seems a viable and environmental friendly option. Nevertheless the implementation of renewable energies on small islands is quite low based on high transaction costs and missing knowledge according to the market potential. Our work provides a global overview on the small island landscape showing the respective population, economic activity, energy demand, and fuel costs for almost 1800 islands with approximately 20 million inhabitants currently supplied by 15 GW of diesel plants. Based on these parameters a detailed techno-economic assessment of the potential integration of solar PV, wind power, and battery storage into the power supply system was performed for each island. The focus on solar and wind was set due to the lack of data on hydro and geothermal potential for a global island study. It revealed that almost 7.5 GW of photovoltaic and 14 GW of wind power could be economically installed and operated on these islands reducing the GHG-emissions and fuel consumption by approximately 50%. In total numbers more than 20 million tons of GHG emissions can be reduced by avoiding the burning of 7.8 billion liters of diesel per year. Cost savings of around 9 USDct/kWh occur on average by implementing these capacities combined with 5.8 GWh of battery storage. This detailed techno-economic evaluation of renewable energies enables policy makers and investors to facilitate the implementation of clean energy supply systems on small islands. To accelerate the implementation of this enormous potential we give specific policy recommendations such as the introduction of proper regulations. - Highlights: • GIS analysis has identified approximately 1800 small island energy systems with

  6. Forward drive: the race to build the clean car of the future

    Energy Technology Data Exchange (ETDEWEB)

    Motavalli, Jim

    2001-10-15

    This comprehensive account of the past, present and future of the automobile examines the key trends, key technologies and key players involved in the race to develop clean, environmentally friendly vehicles that are affordable and that do not compromise on safety or design. Undertaking a rigorous interrogation of our global dependency on oil, the author demonstrates just how unwise and unnecessary this is in light of current developments such as the fuel cell revolution and the increasing viability of hybrid cars, which use both petrol and electricity - innovations that could signal a new era of clean, sustainable energy. The arguments put forward draw on support from an eclectic range of sources - including industry insiders, scientists, economists and environmentalists - to make for an enlightening read. (Author)

  7. Clean generation of electric energy; Generacion limpia de energia electrica

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Juan M.; Torres, Emmanuel [Centro de Investigacion y de Estudios Avanzados (CINVESTAV), Unidad Guadalajara (Mexico)

    2006-10-15

    This article deals on the existing alternatives of renewable energy for generation of electricity free from polluting sequels within the Mexican territory and presents a global overview on the electricity generation in Mexico. Wind power, hydraulic energy, biomass, photovoltaic and fuel cells are sources of renewable energy that could contribute to Mexico's sustainable development, for this reason it is discussed on the main sources of renewable energy in Mexico - solar and wind energy, mini-hydraulic, biomass and geothermal -, on their development and evolution, cost, insertion projects and obstacles for their correct development in this country. [Spanish] Este articulo versa sobre las alternativas de energia renovable existentes para una generacion de electricidad libre de secuelas contaminantes dentro del territorio mexicano y presenta un panorama global sobre la generacion de electricidad en Mexico. La energia eolica, hidraulica, biomasa, fotovoltaica y las celdas de combustible son fuentes de energia renovable que podrian contribuir al desarrollo sustentable de Mexico, por esto se arguye sobre las principales fuentes de energia renovable en Mexico -energia solar, eolica, minihidraulica, biomasa y geotermia-, sobre su desarrollo y evolucion, costo, proyectos de insercion y obstaculos para su correcto desarrollo en ese pais.

  8. Barriers to clean development mechanism renewable energy projects in Mexico

    International Nuclear Information System (INIS)

    Lokey, Elizabeth

    2009-01-01

    Mexico is not reaching its full potential to capture benefits from clean development mechanism (CDM) projects because of its limited market for independent power producers (IPPs) and the barriers imposed on these entities by the state-run electric utility that controls most of the country's generation and transmission. This state-run entity has pursued CDM revenues only in isolated cases where international financial assistance was given because it is bound by law to pursue the least-cost generation option for its customers. Recent changes in Mexican legislation that provide incentives for renewable energy development could open the marketplace for these types of projects. (author)

  9. Global Energy Assessment. Toward a Sustainable Future

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, T B; Nakicenovic, N; Patwardhan, A; Gomez-Echeverri, L [eds.

    2012-11-01

    The Global Energy Assessment (GEA) brings together over 300 international researchers to provide an independent, scientifically based, integrated and policy-relevant analysis of current and emerging energy issues and options. It has been peer-reviewed anonymously by an additional 200 international experts. The GEA assesses the major global challenges for sustainable development and their linkages to energy; the technologies and resources available for providing energy services; future energy systems that address the major challenges; and the policies and other measures that are needed to realize transformational change toward sustainable energy futures. The GEA goes beyond existing studies on energy issues by presenting a comprehensive and integrated analysis of energy challenges, opportunities and strategies, for developing, industrialized and emerging economies. This volume is an invaluable resource for energy specialists and technologists in all sectors (academia, industry and government) as well as policymakers, development economists and practitioners in international organizations and national governments.

  10. Clean Cities Now Vol. 16.1

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-05-01

    Biannual newsletter for the U.S. Department of Energy's Clean Cities initiative. The newsletter includes feature stories on advanced vehicle deployment, idle reduction, and articles on Clean Cities coalition successes across the country.

  11. Clean coal initiatives in Indiana

    Science.gov (United States)

    Bowen, B.H.; Irwin, M.W.; Sparrow, F.T.; Mastalerz, Maria; Yu, Z.; Kramer, R.A.

    2007-01-01

    Purpose - Indiana is listed among the top ten coal states in the USA and annually mines about 35 million short tons (million tons) of coal from the vast reserves of the US Midwest Illinois Coal Basin. The implementation and commercialization of clean coal technologies is important to the economy of the state and has a significant role in the state's energy plan for increasing the use of the state's natural resources. Coal is a substantial Indiana energy resource and also has stable and relatively low costs, compared with the increasing costs of other major fuels. This indigenous energy source enables the promotion of energy independence. The purpose of this paper is to outline the significance of clean coal projects for achieving this objective. Design/methodology/approach - The paper outlines the clean coal initiatives being taken in Indiana and the research carried out at the Indiana Center for Coal Technology Research. Findings - Clean coal power generation and coal for transportation fuels (coal-to-liquids - CTL) are two major topics being investigated in Indiana. Coking coal, data compilation of the bituminous coal qualities within the Indiana coal beds, reducing dependence on coal imports, and provision of an emissions free environment are important topics to state legislators. Originality/value - Lessons learnt from these projects will be of value to other states and countries.

  12. Chapter 6: New Products and Product Categories in the Global Forest Sector

    Science.gov (United States)

    Zhiyong Cai; Alan W. Rudie; Nicole M. Stark; Ronald C. Sabo; Sally A. Ralph

    2013-01-01

    Forests, covering about 30% of the earth’s land area, are a major component in the global ecosystem, influencing the carbon cycle, climate change, habitat protection, clean water supplies, and sustainable economies (FAO 2011). Globally, the vast cellulosic resource found in forests provides about half of all major industrial raw materials for renewable energy, chemical...

  13. The core of the global warming problem: energy

    International Nuclear Information System (INIS)

    Hu, E.

    2005-01-01

    From the thermodynamic point of view, the global warming problem is an 'energy balance' problem. The heat (energy) accumulation in the earth and its atmosphere is the cause of global warming. This accumulation is mainly due to the imbalance of (solar) energy reaching and the energy leaving the earth, caused by 'greenhouse effect' in which the CO 2 and other greenhouse gases play a critical role; so that balance of the energy entering and leaving the earth should be the key to solve the problem. Currently in the battle of tackling the global warming, we mainly focus on the development of CO 2 -related measures, i.e., emission reduction, CO 2 sequestration, and CO 2 recycle technologies. It is right in technical aspect, because they are attempting to thin the CO 2 'blanket' around the earth. However, 'Energy' that is the core of the problem has been overlooked, at least in management/policy aspect. This paper is proposing an 'Energy Credit' i.e., the energy measure concept as an alternative to the 'CO 2 credit' that is currently in place in the proposed emission trading scheme. The proposed energy credit concept has the advantages such as covering broad activities related to the global warming and not just direct emissions. Three examples are given in the paper to demonstrate the concept of the energy measure and its advantages over the CO 2 credit concept. (Author)

  14. The globalization and environmental sustainability of LNG: Is LNG a fuel for the 21st century?

    Energy Technology Data Exchange (ETDEWEB)

    Sakmar, Susan

    2010-09-15

    As the world enters the 21st Century, policy makers around the world are grappling with issues related to energy security, energy poverty, global climate change, and the need to reduce greenhouse gas emissions while meeting an expected increase in demand for all energy sources. As a clean burning fuel, many policy leaders have suggested that LNG can play an important role as the world struggles to develop a more environmental sustainable energy future. Others claim that the safety and environmental impact of LNG, including life-cycle emissions, may nullify any clean burning benefit LNG might otherwise provide.

  15. Clean fuel for demanding environmental markets

    Energy Technology Data Exchange (ETDEWEB)

    Josewicz, W.; Natschke, D.E. [Acurex Environmental Corp., Research Triangle Park, NC (United States)

    1995-12-31

    Acurex Environmental Corporation is bringing Clean Fuel to the environmentally demand Krakow market, through the cooperative agreement with the U.S. Department of Energy. Clean fuel is a proprietary clean burning coal-based energy source intended for use in stoves and hand stoked boilers. Clean Fuel is a home heating fuel that is similar in form and function to raw coal, but is more environmentally friendly and lower in cost. The heating value of Clean Fuel is 24,45 kJ/kg. Extensive sets of confirmation runs were conducted in the Academy of Mining and Metallurgy in the Krakow laboratories. It demonstrated up to 54 percent reduction of particulate matter emission, up to 35 percent reduction of total hydrocarbon emissions. Most importantly, polycyclic aromatic hydrocarbons (toxic and carcinogens compounds) emissions were reduced by up to 85 percent, depending on species measured. The above comparison was made against premium chunk coal that is currently available in Krakow for approximately $83 to 93/ton. Clean Fuel will be made available in Krakow at a price approximately 10 percent lower than that of the premium chunk coal.

  16. Wind-energy harnessing - global, national and local considerations

    International Nuclear Information System (INIS)

    Price, T.; Bunn, J.

    1996-01-01

    A review of the global issues of wind-energy capture and use is given, along with a case for developing the wind-energy potential of part of the Rhymney Valley, South Wales. Such an energy-supply project should be incorporated into an integrated energy and environmental strategy for the region. This would not only yield benefits with respect to the local, national and global environments, but also aid in enhancing the quality of life for the Rhymney Valley region and its inhabitants. (UK)

  17. Revolution...Now The Future Arrives for Five Clean Energy Technologies – 2016 Update

    Energy Technology Data Exchange (ETDEWEB)

    Donohoo-Vallett, Paul

    2016-09-30

    Decades of investments by the federal government and industry in five key clean energy technologies are making an impact today. The cost of land-based wind power, utility and distributed photovoltaic (PV) solar power, light emitting diodes (LEDs), and electric vehicles (EVs) has fallen by 41% to as high as 94% since 2008. These cost reductions have enabled widespread adoption of these technologies with deployment increasing across the board.

  18. Global Energy Challenges of the 21. Century and Nuclear Energy

    International Nuclear Information System (INIS)

    Gagarinskiy, Andrey

    2008-01-01

    The paper considers the world energy demand till the middle of the century, as well as possible forecasting solution for this challenge. On the base of the mathematical model developed in the Kurchatov Institute in 2003- 2006, the vision of the global nuclear energy system and its potential contribution in the energy mix was analyzed. The rate of rapprochement between specific energy consumptions in different countries of the world is a key parameter determining the energy market strain. It was shown that a continuation of the current world trends of this rapprochement would result in an energy resource deficit already in the nearest future. The energy mix picture would contain an 'unsatisfied demand' area of about 10 000 Mtoe of total energy to be consumed by the mid-century Supposing that the mankind has to meet the 'unsatisfied demand' by nuclear energy, the global energy challenges of the 21. century energy do not impose any upper limit on nuclear energy development, the scale of which would be determined by development opportunities. Russia, as one of the pioneers of the First Nuclear Era, possesses great experience of solving the key issues of nuclear energy of the 20. century, and is capable to play an important role in dealing with the challenges faced by nuclear in the 21. century. (authors)

  19. An overview of global activities in generation

    International Nuclear Information System (INIS)

    Grender-Jones, D.; Koenig, J.W.

    1990-01-01

    This paper examines the global trends in power generation. The topics of the paper include the issues affecting power production in North America, trends in Central and South America, changes in the European power generation market as the result of moving to a competitive market, self-sufficiency and energy exporting in Asia and the Far East, political turmoil and weak economies limit power generation prospects in Africa, and pollution clean-up and energy production in the Middle East.s

  20. Energy and ethics. Ethical aspects of a future global power generation; Energie und Ethik. Ethische Aspekte zukuenftiger globaler Stromerzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Gethmann, C.F. [Duisburg-Essen Univ. (Germany). Inst. fuer Philosophie; Europaeische Akademie Bad Neuenahr-Ahrweiler GmbH, Essen (Germany)

    2008-07-01

    The article deals with ethical questions regarding a future global energy supply by considering the normative aspects of economic efficiency, long-term liabilities, environmental sustainability, social acceptability and distributive equity. Regarding the ethical issues dealt with in the debate on the global energy supply, in particular two postulates arise: Both an improvement in knowledge and an improvement in the categories and procedures of ethical reflection are required. (orig.)

  1. Preliminary Public Design Report for the Texas Clean Energy Project: Topical Report - Phase 1, June 2010-July 2011

    Energy Technology Data Exchange (ETDEWEB)

    Mattes, Karl

    2012-02-01

    Summit Texas Clean Energy, LLC (Summit) is developing the Texas Clean Energy Project (TCEP or the project) to be located near Penwell, Texas. The TCEP will include an Integrated Gasification Combined Cycle (IGCC) plant with a nameplate capacity of 400 megawatts electric (MWe), combined with the production of urea fertilizer and the capture, utilization and storage of carbon dioxide (CO2) sold commercially for regional use in enhanced oil recovery (EOR) in the Permian Basin of west Texas. The TCEP will utilize coal gasification technology to convert Powder River Basin sub-bituminous coal delivered by rail from Wyoming into a synthetic gas (syngas) which will be cleaned and further treated so that at least 90 percent of the overall carbon entering the facility will be captured. The clean syngas will then be divided into two high-hydrogen (H2) concentration streams, one of which will be combusted as a fuel in a combined cycle power block for power generation and the other converted into urea fertilizer for commercial sale. The captured CO2 will be divided into two streams: one will be used in producing the urea fertilizer and the other will be compressed for transport by pipeline for offsite use in EOR. The TCEP was selected by the U.S. Department of Energy (DOE) Office of Fossil Energy (FE) for cost-shared co-funded financial assistance under Round 3 of its Clean Coal Power Initiative (CCPI). A portion of this financial assistance was budgeted and provided for initial development, permitting and design activities. Front-end Engineering and Design (FEED) commenced in June 2010 and was completed in July 2011, setting the design basis for entering into the detailed engineering phase of the project. During Phase 1, TCEP conducted and completed the FEED, applied for and received its air construction permit, provided engineering and other technical information required for development of the draft Environmental Impact Statement, and

  2. An assessement of global energy resource economic potentials

    International Nuclear Information System (INIS)

    Mercure, Jean-François; Salas, Pablo

    2012-01-01

    This paper presents an assessment of global economic energy potentials for all major natural energy resources. This work is based on both an extensive literature review and calculations using natural resource assessment data. Economic potentials are presented in the form of cost-supply curves, in terms of energy flows for renewable energy sources, or fixed amounts for fossil and nuclear resources, with strong emphasis on uncertainty, using a consistent methodology that allow direct comparisons to be made. In order to interpolate through available resource assessment data and associated uncertainty, a theoretical framework and a computational methodology are given based on statistical properties of different types of resources, justified empirically by the data, and used throughout. This work aims to provide a global database for natural energy resources ready to integrate into models of energy systems, enabling to introduce at the same time uncertainty over natural resource assessments. The supplementary material provides theoretical details and tables of data and parameters that enable this extensive database to be adapted to a variety of energy systems modelling frameworks. -- Highlights: ► Global energy potentials for all major energy resources are reported. ► Theory and methodology for calculating economic energy potentials is given. ► An uncertainty analysis for all energy economic potentials is carried out.

  3. Clean air strategy for Alberta: Report to the ministers

    International Nuclear Information System (INIS)

    1991-11-01

    As a response to continuing discussions on the impact of fossil fuels on global warming, acid deposition, and smog, a clean air strategy consultation program was announced by Alberta's Ministers of Energy and Environment to encourage public discussion on air emissions resulting from the production and use of energy. The consultation program had three objectives: to help identify and clarify the most important issues associated with energy production and use which need to be addressed in developing a clean air strategy; to outline practical and achievable actions which can be taken to reduce emissions; and to develop program and policy recommendations to the provincial government. The consultation program included workshops and regional sessions, as well as background research. The discussions, findings, and conclusions from the program are summarized. Several air quality management challenges were identified, including the need for a more comprehensive system for managing air quality; the priority of local air quality issues and problems; the need to address cumulative regional emissions and impacts; and scientific and economic uncertainties. A number of goals have been developed to address these challenges, such as implementation of a comprehensive air quality management system, identification of cost-effective energy conservation and efficiency opportunities, development of innovative and targeted solutions to manage cumulative emissions, and improvement of the gathering and application of scientific and technical knowledge regarding atmospheric processes and effects. A glossary of terms is included. 12 figs., 17 tabs

  4. Closing the Gap GEF Experiences in Global Energy Efficiency

    CERN Document Server

    Yang, Ming

    2013-01-01

    Energy efficiency plays and will continue to play an important role in the world to save energy and mitigate greenhouse gas (GHG) emissions. However, little is known on how much additional capital should be invested to ensure using energy efficiently as it should be, and very little is known which sub-areas, technologies, and countries shall achieve maximum greenhouse gas emissions mitigation per dollar of investment in energy efficiency worldwide. Analyzing completed and slowly moving energy efficiency projects by the Global Environment Facility during 1991-2010, Closing the Gap: GEF Experiences in Global Energy Efficiency evaluates impacts of multi-billion-dollar investments in the world energy efficiency. It covers the following areas: 1.       Reviewing the world energy efficiency investment and disclosing the global energy efficiency gap and market barriers that cause the gap; 2.       Leveraging private funds with public funds and other resources in energy efficiency investments; using...

  5. Solar panel cleaning robot

    Science.gov (United States)

    Nalladhimmu, Pavan Kumar Reddy; Priyadarshini, S.

    2018-04-01

    As the demand of electricity is increasing, there is need to using the renewable sources to produce the energy at present of power shortage, the use of solar energy could be beneficial to great extent and easy to get the maximum efficiency. There is an urgent in improving the efficiency of solar power generation. Current solar panels setups take a major power loss when unwanted obstructions cover the surface of the panels. To make solar energy more efficiency of solar array systems must be maximized efficiency evaluation of PV panels, that has been discussed with particular attention to the presence of dust on the efficiency of the PV panels have been highlighted. This paper gives the how the solar panel cleaning system works and designing of the cleaning system.

  6. Biomass energy, forests and global warming

    International Nuclear Information System (INIS)

    Rosillo-Calle, Frank; Hall, D.O.

    1992-01-01

    Biomass in all its forms currently provides about 14% of the world's energy, equivalent to 25 million bbl oil/day; in developing countries where it is the major energy source, biomass supplies 35% of total energy use. Although biomass energy use affects the flux of carbon to the atmosphere, the main carbon emission problem is caused by fossil fuels and land clearance for agriculture. Biomass fuels make no net contribution to atmospheric CO 2 if used sustainably. A major global revegetation and reforestation effort is a possible strategy to reduce CO 2 emissions and to slow the pace of climatic change. However, a more attractive alternative strategy might be to substitute fossil fuels, especially coal, with biomass grown specifically for this purpose producing modern fuels such as electricity, liquids and gases. This paper examines biomass energy use, devegetation, biomass burning, the implications for global warming and the ability of biomass to sequester CO 2 and substitute for fossil fuels. It also discusses some socioeconomic and political issues. (author)

  7. Recent Topical Research on Global, Energy, Health & Medical, and Tourism Economics, and Global Software

    NARCIS (Netherlands)

    C-L. Chang (Chia-Lin); M.J. McAleer (Michael)

    2017-01-01

    textabstractThe paper presents an overview of recent topical research on global, energy, health & medical, and tourism economics, and global software. We have interpreted “global” in the title of the Journal of Reviews on Global Economics to cover contributions that have a global impact on

  8. Clean coal technology roadmap: issues paper

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, B. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre

    2003-07-01

    The need for the Clean Coal Technology Roadmap is based on the climate change threat, Canada's commitment to the Kyoto protocol, and the need to keep options open in determining the future position of coal in Canada's energy mix. The current role of coal, issues facing coal-fired utilities, and greenhouse gas emission policies and environmental regulations are outlined. The IEA energy outlook (2002) and a National Energy Board draft concerning Canada's energy future are outlined. Environmental, market, and technical demands facing coal, technology options for existing facilities, screening new developments in technology, and clean coal options are considered. 13 figs. 5 tabs.

  9. Wind energy

    International Nuclear Information System (INIS)

    Kotevski, Darko

    2003-01-01

    Wind is not only free, it is inexhaustible. Wind energy has come a very long way since the prototypes of just 20 years ago. today's wind turbines are state-of-the-art technology - modular and quick to install anywhere where there is sufficient wind potential to provide secure, centralised or distributed generation. It is a global phenomenon, the world's fastest growing energy sector, a clean and effective modern technology that completely avoids pollution and thus reducing the 'green house' effect. (Original)

  10. Energy and globalization

    Science.gov (United States)

    Birjandi, Hossein Saremi

    Before the Industrial Revolution, nations required no energy fuel. People relied on human, animal, and wind and waterpower for energy need. Energy (oil) has resettled populations, elected officials in the free world, or changed the governments of the energy rich countries by force. Energy fueled wars, played the major factor in the might of those who have it or more importantly the abilities to acquire it by force. This dissertation researches the primacy of oil as an energy source from the time of oil's discovery to the present times. Between 1945 and 1960, the use of oil and gas doubled as power was generated for industries as steel, cement, metalworking and more important of all filling station hoses into automobiles gas tanks, thus energy swept people and societies quite literally off their feet. One in every six jobs in the industrial world hired by the giant automotive industries. The big five American oil companies spurred on by special tax benefit, these companies grew to gigantic sizes by taking out the best part of the nation's oil. Then, for greater growth, they leaped overseas and built up an immensely profitable system, in alliance with Anglo-Dutch Shell and British Petroleum, known as seven sisters. On the other side of the world, the energy producing nations form an alliance mainly to protect themselves from downward price fluctuations of oil. The struggle for survival in the global energy market forced those countries to get together and form OPEC, which is referred as an "oil cartel".

  11. Let People Bathe in Clean Energy. Regional new energy vision for Matsuyama Town; 2001 nendo Matsuyama machi chiiki shin energy vision. Toumeinal energy wo sosoide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-01

    For promoting the introduction of new energy and for enhancing people's consciousness of such at Matsuyama Town, Yamagata Prefecture, surveys and studies were conducted involving the amount of energy needed by the town, the amount of new energy resources in existence, and new energy introduction projects, and then a vision was formulated. The town demands 120,407-million kcal/year in energy comprising 56.8% from oil based fuels, 39.2% from electric power, and 4.1% from LP gas. As for consumption, 35.6% is consumed by households, 28.9% by industries, 21.3% by transportation, and 14.2% by commerce. The amount of carbon dioxide due to the consumption is estimated at 28,000 t-CO2/year. Key projects for new energy introduction were discussed, which included an eco-town project for introducing photovoltaic power generation systems, passive solar heat utilization systems, clean energy vehicles, and so forth, into public facilities; an eco-agriculture project for utilizing wind power generation and livestock excreta energy; an eco-park project for exhibiting new energies to the public; and an eco-school pilot model project. (NEDO)

  12. What is Clean Cities? October 2011 (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-10-01

    Brochure describes the Clean Cities program and includes the contact information for its 85 coalitions. Sponsored by the U.S. Department of Energy's (DOE) Vehicle Technologies Program (VTP), Clean Cities is a government-industry partnership that reduces petroleum consumption in the transportation sector. Clean Cities contributes to the energy, environmental, and economic security of the United States by supporting local decisions to reduce our dependence on imported petroleum. Established in 1993 in response to the Energy Policy Act (EPAct) of 1992, the partnership provides tools and resources for voluntary, community-centered programs to reduce consumption of petroleum-based fuels. In nearly 100 coalitions, government agencies and private companies voluntarily come together under the umbrella of Clean Cities. The partnership helps all parties identify mutual interests and meet the objectives of reducing the use of petroleum, developing regional economic opportunities, and improving air quality. Clean Cities deploys technologies and practices developed by VTP. These include idle-reduction equipment, electric-drive vehicles, fuel economy measures, and renewable and alternative fuels, such as natural gas, liquefied petroleum gas (propane), electricity, hydrogen, biofuels, and biogas. Idle-reduction equipment is targeted primarily to buses and heavy-duty trucks, which use more than 2 billion gallons of fuel every year in the United States while idling. Clean Cities fuel economy measures include public education on vehicle choice and fuel-efficient driving practices.

  13. 2012 Global Energy Competitiveness Index

    International Nuclear Information System (INIS)

    Lorot, Pascal; Lauriano do Rego, Wilfrid

    2012-01-01

    The 2012 Global Energy Competitiveness Index, a survey jointly conducted by Institut Choiseul and KPMG, is the first of its kind. It ranks 146 countries, grouping them into 5 categories ranging from the best performers to under-performers. The first edition of this annual study ranks the countries surveyed not only by continent but also according to the quality of their energy mix, electricity access and availability levels and the compatibility of their energy policies with environmental challenges. The governing bodies of the countries in the panel (relevant ministries and regulatory authorities) can gain much from this decision-making support tool that fosters dialogue on energy-related issues. The targeted audience also includes industry professionals, NGOs, international organisations and other economic players such as banks, consulting firms and specialist commercial law firms commercial law firms. Europe is by far the best performing continent ahead of the best performing continent, ahead of the Americas and Americas and even further ahead of Asia/Oceania and Africa. Generally speaking, the Nordic countries are among the best performers: Norway, Canada, Iceland, Denmark, Sweden and Finland rank, in this order, in the global Top 10. Four EU countries are among the global Top 10 (Denmark, Sweden, Finland and France) and five others (the United Kingdom, Austria, Germany, Slovakia and Spain) are in the Top 20. Surprisingly, Colombia stood out as the fifth most competitive country in terms of energy. Its outstanding performance is due to a strong energy mix (ranked second worldwide) and an energy strategy compatible with today's key environmental challenges. The apparent domination of Northern-hemisphere countries needs to be considered in conjunction with the results achieved by the other Seeming domination of be considered in conjunction with the results achieved by the other countries with regard to their energy mix and the environmental compatibility of

  14. 3 CFR 8431 - Proclamation 8431 of October 2, 2009. National Energy Awareness Month, 2009

    Science.gov (United States)

    2010-01-01

    ... investments in energy efficiency and clean energy today. Well-funded energy research and development will not... global competitiveness and national security. Innovation in energy technology will decrease our oil use..., engineers, and entrepreneurs bring new and improved energy technologies to homes and businesses in this...

  15. Clean energy : nuclear energy world

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-10-15

    This book explains the nuclear engineering to kids with easy way. There are explanations of birth of nuclear energy such as discover of nuclear and application of modern technology of nuclear energy, principles and structure of nuclear power plant, fuel, nuclear waste management, use of radiation for medical treatment, food supplies, industry, utilization of neutron. It indicates the future of nuclear energy as integral nuclear energy and nuclear fusion energy.

  16. Clean Coal Day '94 Hokkaido International Seminar; Clean coal day '94 Hokkaido kokusai seminar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    The lectures given at the seminar were 1) Coal energy be friendly toward the earth, 2) Clean coal technology in the United Kingdom, and 3) How clean coal should be in Australia. In lecture 1), remarks are made on the importance of coal and its future, coal that protects forest, whether coal is a dirty fuel, coal combustion tests started relative to environmental pollution, acid rain in China and coal combustion, briquets effective in energy conservation, etc. In lecture 2), remarks are made on the importance of coal utilization in the United Kingdom, current state of coal utilization in power generation, problems related to gasification furnaces, problems related to combustors, problems related to high-temperature gas cleaning, function of cleaning filters, advantages of high-temperature gas treatment, actualities of gas combustors, studies of gas combustors, etc. In lecture 3), remarks are made on Australia's coal situation, problems related to clean coal technology, problems related to coal preparation technology, potentialities of Australian brown coal, coal utilization in power generation, need of new technology development, current state of coal utilization in Australia, coal utilization in metal-making industry, international cooperation on technology, etc. (NEDO)

  17. Ocean cleaning stations under a changing climate: biological responses of tropical and temperate fish-cleaner shrimp to global warming.

    Science.gov (United States)

    Rosa, Rui; Lopes, Ana Rita; Pimentel, Marta; Faleiro, Filipa; Baptista, Miguel; Trübenbach, Katja; Narciso, Luis; Dionísio, Gisela; Pegado, Maria Rita; Repolho, Tiago; Calado, Ricardo; Diniz, Mário

    2014-10-01

    Cleaning symbioses play an important role in the health of certain coastal marine communities. These interspecific associations often occur at specific sites (cleaning stations) where a cleaner organism (commonly a fish or shrimp) removes ectoparasites/damaged tissue from a 'client' (a larger cooperating fish). At present, the potential impact of climate change on the fitness of cleaner organisms remains unknown. This study investigated the physiological and biochemical responses of tropical (Lysmata amboinensis) and temperate (L. seticaudata) cleaner shrimp to global warming. Specifically, thermal limits (CTMax), metabolic rates, thermal sensitivity, heat shock response (HSR), lipid peroxidation [malondialdehyde (MDA) concentration], lactate levels, antioxidant (GST, SOD and catalase) and digestive enzyme activities (trypsin and alkaline phosphatase) at current and warming (+3 °C) temperature conditions. In contrast to the temperate species, CTMax values decreased significantly from current (24-27 °C) to warming temperature conditions (30 °C) for the tropical shrimp, where metabolic thermal sensitivity was affected and the HSR was significantly reduced. MDA levels in tropical shrimp increased dramatically, indicating extreme cellular lipid peroxidation, which was not observed in the temperate shrimp. Lactate levels, GST and SOD activities were significantly enhanced within the muscle tissue of the tropical species. Digestive enzyme activities in the hepatopancreas of both species were significantly decreased by warmer temperatures. Our data suggest that the tropical cleaner shrimp will be more vulnerable to global warming than the temperate Lysmata seticaudata; the latter evolved in a relatively unstable environment with seasonal thermal variations that may have conferred greater adaptive plasticity. Thus, tropical cleaning symbioses may be challenged at a greater degree by warming-related anthropogenic forcing, with potential cascading effects on the health

  18. Global wind energy outlook 2008

    International Nuclear Information System (INIS)

    2008-10-01

    An overview is given of the global potential of wind power up to 2050. This potential could play a key part in achieving a decline in emissions by 2020, which the IPCC indicates is necessary to avoid the worst consequences of climate change. By 2020, wind power could save as much as 1.5 billion tonnes of CO2 every year, which would add up to over 10 billion tonnes in this timeframe. The report also explains how wind energy can provide up to 30% of the word's electricity by the middle of the century. More importantly, wind power could save as much as 1.5 billion tonnes of CO2 every year by 2020. GWEO 2008 explores three different scenarios for wind power: a Reference scenario based on figures from the International Energy Agency (IEA); a Moderate version which assumes that current targets for renewable energy are successful; and an Advanced Scenario which assumes that all policy options in favour of renewables have been adopted. These are then set against two demand projections for global energy demand. Wind energy has already become a mainstream power generation source in many regions around the world, and it is being deployed in over 70 countries. In addition to environmental benefits, wind energy also provides a sustainable answer to increasing concerns about security of energy supply and volatile fossil fuel prices. Moreover, wind energy is becoming a substantial factor in economic development, providing more than 350,000 'green collar' jobs today both in direct and indirect employment. By 2020, this figure is projected to increase to over 2 million

  19. Global energy modeling - A biophysical approach

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Michael

    2010-09-15

    This paper contrasts the standard economic approach to energy modelling with energy models using a biophysical approach. Neither of these approaches includes changing energy-returns-on-investment (EROI) due to declining resource quality or the capital intensive nature of renewable energy sources. Both of these factors will become increasingly important in the future. An extension to the biophysical approach is outlined which encompasses a dynamic EROI function that explicitly incorporates technological learning. The model is used to explore several scenarios of long-term future energy supply especially concerning the global transition to renewable energy sources in the quest for a sustainable energy system.

  20. FY 2001 report on the results of New Energy Adventure 2001 (advisory project); Shin ene adobencha 2001 (adobaizari jigyo) kekka hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-03-01

    For the purpose of deepening the understanding of new energy by general citizens, 'Clean Energy Festa' was held in Asahikawa city, Hokkaido, Takamatsu city, Kagawa prefecture, and Kamimashiki county, Kumamoto prefecture. The campaign at station was conducted at Yamagata station, Hiroshima station, Ogura station, Takamatsu station, Kobe station and Sapporo station, and the following were also carried out in various places of Japan: new energy lessons, visits to new energy facilities, and delivery of lectures on new energy. The program of Clean Energy Festa included the Dejimon (popular character doll) show, new energy quiz show, exhibition of new energy information and quiz about new energy, solar car workshop for parent/child, exhibition booths prepared by companies, corner for test ride on clean energy car, etc. As to visits to new energy facilities, visits were paid to snow/ice energy facilities, waste fuel production facilities, wind power generation facilities, photovoltaic power generation facilities, etc. Concerning the delivery of lectures on new energy, lectures were given on new energy and global environment, global warming, etc. (NEDO)

  1. Clean Coal Technology Demonstration Program: Project fact sheets 2000, status as of June 30, 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    The Clean Coal Technology Demonstration Program (CCT Program), a model of government and industry cooperation, responds to the Department of Energy's (DOE) mission to foster a secure and reliable energy system that is environmentally and economically sustainable. The CCT Program represents an investment of over $5.2 billion in advanced coal-based technology, with industry and state governments providing an unprecedented 66 percent of the funding. With 26 of the 38 active projects having completed operations, the CCT Program has yielded clean coal technologies (CCTs) that are capable of meeting existing and emerging environmental regulations and competing in a deregulated electric power marketplace. The CCT Program is providing a portfolio of technologies that will assure that U.S. recoverable coal reserves of 274 billion tons can continue to supply the nation's energy needs economically and in an environmentally sound manner. As the nation embarks on a new millennium, many of the clean coal technologies have realized commercial application. Industry stands ready to respond to the energy and environmental demands of the 21st century, both domestically and internationally, For existing power plants, there are cost-effective environmental control devices to control sulfur dioxide (S02), nitrogen oxides (NO,), and particulate matter (PM). Also ready is a new generation of technologies that can produce electricity and other commodities, such as steam and synthetic gas, and provide efficiencies and environmental performance responsive to global climate change concerns. The CCT Program took a pollution prevention approach as well, demonstrating technologies that remove pollutants or their precursors from coal-based fuels before combustion. Finally, new technologies were introduced into the major coal-based industries, such as steel production, to enhance environmental performance. Thanks in part to the CCT Program, coal--abundant, secure, and economical

  2. Fiscal 1998 achievement report. Research and development of advanced clean energy vehicles; 1998 nendo kokoritsu clean energy jidosha no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The efforts aim to develop advanced clean energy vehicles (ACEVs) which drive on substitutes of oil low in pollution, consuming 1/2 or less energy and emitting 1/2 or less CO2 than the existing vehicles. Studies conducted in fiscal 1998 covered high-efficiency hybrid power systems and ACEVs. Efforts to develop ACEVs involved a reformed methanol fuel cell hybrid passenger car of Nissan Motor Co., Ltd. (improvement on element technologies, study of methanol concentration); CNG (compressed natural gas) engine hybrid passenger car of Honda Research and Development Co., Ltd. (improvement on flywheels, studies of ANG (adsorbent natural gas) adsorbent and ANG tank); CNG ceramics engine hybrid cargo truck of Isuzu Ceramics Research Institute Co., Ltd. (fabrication of ceramics single-cylinder engine, design and fabrication of vehicle control system, fabrication of prototype); CNG lean burn engine hybrid cargo truck of Mitsubishi Motors Co., Ltd. (studies, designing, and fabrication of engine element parts); LNG engine hybrid bus of Nissan Diesel Motor Co., Ltd. (development of engine and power storage); and DME (dimethylether) engine hybrid bus of Hino Motors, Ltd. (development of DME fuel injection system and high-efficiency power storage). (NEDO)

  3. Clean Cities Now Vol. 17, No. 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-05-24

    Biannual newsletter for the U.S. Department of Energy's Clean Cities initiative. The newsletter includes feature stories on advanced vehicle deployment, idle reduction, and articles on Clean Cities coalition successes across the country.

  4. Global Scenarios of Air Pollution until 2030: Combining Air Quality, Climate Change and Energy Access Policies

    Science.gov (United States)

    Rao, S.; Dentener, F. J.; Klimont, Z.; Riahi, K.

    2011-12-01

    Outdoor air pollution is increasingly recognized as a significant contributor to global health outcomes. This has led to the implementation of a number of air quality policies worldwide, with total air pollution control costs in 2005 estimated at US$195 billion. More than 80% of the world's population is still found to be exposed to PM2.5 concentrations exceeding WHO air quality guidelines and health impacts resulting from these exposures estimated at around 2-5% of the global disease burden. Key questions to answer are 1) How will pollutant emissions evolve in the future given developments in the energy system and how will energy and environmental policies influence such emission trends. 2) What implications will this have for resulting exposures and related health outcomes. In order to answer these questions, varying levels of stringency of air quality legislation are analyzed in combination with policies on universal access to clean cooking fuels and limiting global temperature change to 2°C in 2100. Bottom-up methodologies using energy emissions modeling are used to derive sector-based pollutant emission trajectories until 2030. Emissions are spatially downscaled and used in combination with a global transport chemistry model to derive ambient concentrations of PM2.5. Health impacts of these exposures are further estimated consistent with WHO data and methodology. The results indicate that currently planned air quality legislation combined with rising energy demand will be insufficient in controlling future emissions growth in developing countries. In order to achieve significant reductions in pollutant emissions of the order of more than 50% from 2005 levels and reduce exposures to levels consistent with WHO standards, it will be necessary to increase the stringency of such legislations and combine them with policies on energy access and climate change. Combined policies also result in reductions in air pollution control costs as compared to those associated

  5. Investigation into introduction and promotion of clean energy cars; Clean energy jidosha no donyu sokushin ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Gazing the introduction target for fiscal 2000 and 2010, the paper arranged comprehensively and systematically the trend in Japan and overseas of clean energy cars and described subjects. Themes of the study to be promoted in terms of electric cars are: Li secondary batteries, heightening of performance of batteries such as Ni-hydrogen, power generation/power storage hybridization to make the long-distance travel possible. For the price reduction, the body is so made as to make it possible to select three kinds of power unit, that is, gasoline, hybrid, and electricity. Low noise and easy operation are also important. As to natural gas vehicles, the price is more than three times as high as that of gasoline vehicles, and relaxation of the related regulations on metal tanks, the Road Traffic Act, etc. is necessary. It is indispensable to establish quantity production and technical standards and reduce cost by the remodeling for bi-fueling with gasoline engines, development of FRP tanks, etc. Methanol vehicles are the closest to gasoline vehicles, but the introduction is delayed having no groups for generalization. Solar and hydrogen cars are promising, but are on a stage of developing the basic technology. 43 figs., 104 tabs.

  6. An international survey of cleaning and disinfection practices in the healthcare environment.

    Science.gov (United States)

    Kenters, Nikki; Gottlieb, Thomas; Hopman, Joost; Mehtar, Shaheen; Schweizer, Marin L; Tartari, Ermira; Huijskens, E G W; Voss, Andreas

    2018-05-14

    Antimicrobial resistance has become an urgent global health priority. Basic hygiene practices and cleaning and disinfection of the hospital environment are key in preventing pathogen cross-transmission. To our knowledge no studies have assessed the worldwide differences in cleaning and disinfection practices in healthcare facilities. The electronic survey described here was developed in order to evaluate differences in healthcare facility cleaning practices around the world. The International Society of Antimicrobial Chemotherapy (ISAC, formerly ISC), Infection Prevention and Control work group developed a survey with 30 multiple-choice questions. The questions were designed to assess the current cleaning practices in healthcare settings around the world. A total of 110 healthcare professionals, representing 23 countries participated in the online survey. In 96% of the facilities a written cleaning policy was present. Training of cleaning staff occurred in 70% of the facilities at the start of employment. Cleaning practices and monitoring of these practices varied. In summary, the survey enabled assessment and recognition of widely differing global practices in approaches to environmental cleaning and disinfection. Development of guideline recommendations for cleaning and disinfection could improve practices and set minimum standards worldwide. Copyright © 2018 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  7. Technology Learning Ratios in Global Energy Models; Ratios de Aprendizaje Tecnologico en Modelos Energeticos Globales

    Energy Technology Data Exchange (ETDEWEB)

    Varela, M.

    2001-07-01

    The process of introduction of a new technology supposes that while its production and utilisation increases, also its operation improves and its investment costs and production decreases. The accumulation of experience and learning of a new technology increase in parallel with the increase of its market share. This process is represented by the technological learning curves and the energy sector is not detached from this process of substitution of old technologies by new ones. The present paper carries out a brief revision of the main energy models that include the technology dynamics (learning). The energy scenarios, developed by global energy models, assume that the characteristics of the technologies are variables with time. But this tend is incorporated in a exogenous way in these energy models, that is to say, it is only a time function. This practice is applied to the cost indicators of the technology such as the specific investment costs or to the efficiency of the energy technologies. In the last years, the new concept of endogenous technological learning has been integrated within these global energy models. This paper examines the concept of technological learning in global energy models. It also analyses the technological dynamics of the energy systems including the endogenous modelling of the process of technological progress. Finally, it makes a comparison of several of the most used global energy models (MARKAL, MESSAGE and ERIS) and, more concretely, about the use these models make of the concept of technological learning. (Author) 17 refs.

  8. Energy crisis? The likelihood of a global energy crisis

    International Nuclear Information System (INIS)

    Franssen, H.

    2001-01-01

    This paper assess global energy problems and compares the energy crises of the 1970s with current US energy problems. The reaction of the OECD countries to the oil crises of 1973/4 and 1979/80, the perception of future oil supplies, and the difficulties faced by ordinary consumers in accepting that there is an energy crisis are discussed along with the Californian electricity crisis, the falling US natural gas supplies, and the low return on investment in the US refining industry. The prospect of another oil crisis, and the need for consumers to learn to live with price volatility are considered

  9. Microalgal hydrogen production: prospects of an essential technology for a clean and sustainable energy economy.

    Science.gov (United States)

    Bayro-Kaiser, Vinzenz; Nelson, Nathan

    2017-09-01

    Modern energy production is required to undergo a dramatic transformation. It will have to replace fossil fuel use by a sustainable and clean energy economy while meeting the growing world energy needs. This review analyzes the current energy sector, available energy sources, and energy conversion technologies. Solar energy is the only energy source with the potential to fully replace fossil fuels, and hydrogen is a crucial energy carrier for ensuring energy availability across the globe. The importance of photosynthetic hydrogen production for a solar-powered hydrogen economy is highlighted and the development and potential of this technology are discussed. Much successful research for improved photosynthetic hydrogen production under laboratory conditions has been reported, and attempts are underway to develop upscale systems. We suggest that a process of integrating these achievements into one system to strive for efficient sustainable energy conversion is already justified. Pursuing this goal may lead to a mature technology for industrial deployment.

  10. Global drivers for transformation of energy systems

    International Nuclear Information System (INIS)

    Christensen, John M.; Radka, M.

    2006-01-01

    With climate change gradually emerging as a major global environmental concern, illustrated by the establishment of the UN Framework Convention on Climate Change (UNFCCC) and later the negotiation of the Kyoto Protocol (KP)the role of the energy sector as the main emitter of greenhouse gases has brought a new political rationale for the development of more climate-friendly energy supply and increased efficiency. The last couple of years have seen the increasing importance in the global energy market of rapidly-expanding national economies, notably China and India. Together with other geopolitical developments such as political changes in some of the major oil producing regions, this has produced strong political concerns about future security of supply. This has been compounded by simultaneous dramatic increases in oil and gas prices. The role of energy supply as a key facilitator for economic development in the poorer regions of the world has been increasingly recognised over the last decade. Developing countries are devoting more attention to securing their future energy supplies for a variety of uses: industry, and urban uses and for the poorer communities in both rural and peri-urban areas communities. Global energy policy is therefore dominated by three overriding concerns making them drivers for future energy development activities: 1) security of supply; 2) climate change; 3) energy for development and poverty alleviation. The three areas are in several ways interlinked, and every energy policy or programme should ideally promote them allor at least not have negative effects in any area. In practice, however, many national policy landscapes have been dominated by just one of these factors. (au)

  11. Achieving cheap clean energy for all in the 21^st Century?

    Science.gov (United States)

    Gupta, Rajan

    2006-11-01

    Energy is essential for modern life and is a critical resource that we take for granted. Unfortunately, we are increasingly confronted by many unsettling questions: Is there enough cheap oil and gas remaining and should we start changing our life styles towards energy efficiency? What will be the price of oil and gas next year and will we face shortages? Are rising prices reflective of greed and manipulation or geopolitics or of real constraints? Will renewable sources provide a significant fraction of our energy needs? Is global warming already happening and is it a result of our ``addiction to oil''? If the answer to these is ``yes'', then what can we, as individuals, do to help ourselves, the nation, and the world? This talk will attempt to answer these questions by examining the global oil, gas and other resources, emerging constraints and opportunities, and geopolitics.

  12. From black to green energy. Geopolitics of global energy transition

    International Nuclear Information System (INIS)

    Slingerland, S.; Van Geuns, L.; Van der Linde, C.

    2008-05-01

    The transition to a global low-carbon energy sector is on the agenda of policymakers in the Netherlands, Europe and world-wide. However, the way in which the international political discussion takes place makes it far from clear that such a transition will indeed take place. Conflicts of interest between climate concerns, energy security, access to energy and profits made from fossil fuels should be analysed more properly and taken into account in international energy and climate negotiations in order to prevent that an energy crisis will be the only way forward towards a low-carbon energy sector. [nl

  13. Development of weightage for criteria affecting in retrofitting of existing building in Higher Learning Institution with clean energy initiatives

    Science.gov (United States)

    Izie Adiana Abidin, Nur; Aminuddin, Eeydzah; Zakaria, Rozana; Mazzuana Shamsuddin, Siti; Sahamir, Shaza Rina; Shahzaib, Jam; Nafis Abas, Darul

    2018-04-01

    Campus university building is the Higher Learning Institution (HLI) involves complex activities and operations, conserving the energy has become paramount important. There are several efforts taken by universities to improve its current energy use such as policy development, education, and adaption of energy conservation solution through retrofitting. This paper aims to highlight the importance of the criteria affecting in retrofitting of existing buildings with clean energy in order to achieve zero energy balance in buildings. The focus is given to the development of criteria for solar photovoltaic (solar PV), wind turbines and small-scale hydropower. A questionnaire survey was employed and distributed to the green building expert practitioner. Factor Analysis, Factor Score, and Weightage Factor were adapted as a method of analysis in order to produce the final result with weightage output for prioritization and ranking of the relevant criteria. The result performed assists to provide the stakeholders an overview of the important criteria that should be considered especially during the decision making to retrofit the existing buildings with clean energy resources. The criteria developed are also to establish a structured decision-making process and to ensure the selection of the decision or alternatives achieve the desired outcome.

  14. Estimating Solar Energy Potential in Buildings on a Global Level

    DEFF Research Database (Denmark)

    Petrichenko, Ksenia

    2015-01-01

    This chapter contributes to the debate around net-zero energy concept from a global perspective. By means of comprehensive modelling, it analyses how much global building energy consumption could be reduced through utilisation of building-integrated solar energy technologies and energy......-efficiency improvements. Valuable insights on the locations and building types, in which it is feasible to achieve a net-zero level of energy performance through solar energy utilisation, are presented in world maps....

  15. Energy Technology Perspectives 2012: Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-05

    Energy Technology Perspectives (ETP) is the International Energy Agency's most ambitious publication on new developments in energy technology. It demonstrates how technologies -- from electric vehicles to smart grids -- can make a decisive difference in achieving the objective of limiting the global temperature rise to 2 C and enhancing energy security. ETP 2012 presents scenarios and strategies to 2050, with the aim of guiding decision makers on energy trends and what needs to be done to build a clean, secure and competitive energy future.

  16. Clean Energy Application Centers: Annual Metrics Report for Fiscal Year 2012

    Energy Technology Data Exchange (ETDEWEB)

    Schweitzer, Martin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-02-01

    Between fiscal year (FY) 2010 and 2013, the U.S. Department of Energy (DOE) funded nine Clean Energy Application Centers (CEACs) with national coverage to promote and assist in transforming the market for Combined Heat and Power (CHP), Waste Heat to Power CHP, and district energy (DE) with CHP1. Prior to that, similar services were provided by eight Regional Application Centers (RACs). The key services that the CEACs provided were market assessments, education and outreach, and technical assistance. There were eight regional CEACs, each of which served a specific area of the country, and a separate center operated by the International District Energy Association (IDEA) which supported the regional centers with technical assistance, education, training, publicity, and outreach related to district energy with CHP. Oak Ridge National Laboratory (ORNL) has performed four previous studies of CEAC activities. The first one examined what the centers had done each year from the initiation of the program through FY 2008; the second addressed center activities for FY 2009; the third one focused on what was accomplished in FY 2010; and the fourth looked at the CEACs’ FY 2011 accomplishments, with a heightened emphasis on the adoption of CHP\\DE technologies and the activities thought to be most closely related to CHP/DE development and use. The most recent study, documented in this report, examines CEAC activities in FY 2012.

  17. Stuart Energy's experiences in developing 'Hydrogen Energy Station' infrastructure

    International Nuclear Information System (INIS)

    Crilly, B.

    2004-01-01

    'Full text:' With over 50 years experience, Stuart Energy is the global leader in the development, manufacture and integration of multi-use hydrogen infrastructure products that use the Company's proprietary IMET hydrogen generation water electrolysis technology. Stuart Energy offers its customers the power of hydrogen through its integrated Hydrogen Energy Station (HES) that provides clean, secure and distributed hydrogen. The HES can be comprised of five modules: hydrogen generation, compression, storage, fuel dispensing and / or power generation. This paper discusses Stuart Energy's involvement with over 10 stations installed in recent years throughout North America, Asia and Europe while examining the economic and environmental benefits of these systems. (author)

  18. Global energy demand outlook

    International Nuclear Information System (INIS)

    Hatcher, S.R.

    1999-01-01

    Perhaps the most compelling issue the world will face in the next century is the quality of life of the increasing populations of the poorer regions of the world. Energy is the key to generating wealth and protecting the environment. Today, most of the energy generated comes from fossil fuels and there should be enough for an increase in consumption over the next half century. However, this is likely to be impacted by the Kyoto Protocol on carbon dioxide emissions. Various authoritative studies lead to a global energy demand projection of between 850 to 1070 EJ per year in the mid-21 st century, which is nearly three times as much as the world uses today. The studies further indicate that, unless there is a major thrust by governments to create incentives and/or to levy heavy taxes, the use of fossil fuels will continue to increase and there will be a major increase in carbon dioxide emissions globally. Most of the increase will come from the newly industrializing countries which do not have the technology or financial resources to install non-carbon energy sources such as nuclear power, and the new renewable energy technologies. The real issue for the nuclear industry is investment cost. Developing countries, in particular will have difficulty in raising capital for energy projects with a high installed cost and will have difficulties in raising large blocks of capital. A reduction in investment costs of the order of 50% with a short construction schedule is in order if nuclear power is to compete and contribute significantly to energy supply and the reduction of carbon dioxide emissions. Current nuclear power plants and methods are simply not suited to the production of plants that will compete in this situation. Mass production designs are needed to get the benefits of cost reduction. Water cooled reactors are well demonstrated and positioned to achieve the cost reduction necessary but only via some radical thinking on the part of the designers. The reactors of

  19. Economic Impacts from the Boulder County, Colorado, ClimateSmart Loan Program: Using Property-Assessed Clean Energy Financing

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, M.; Cliburn, J. K.; Coughlin, J.

    2011-04-01

    This report examines the economic impacts (including job creation) from the Boulder County, Colorado, ClimateSmart Loan Program (CSLP), an example of Property-Assessed Clean Energy (PACE) financing. The CSLP was the first test of PACE financing on a multi-jurisdictional level (involving individual cities as well as the county government). It was also the first PACE program to comprehensively address energy efficiency measures and renewable energy, and it was the first funded by a public offering of both taxable and tax-exempt bonds.

  20. Global energy efficiency governance in the context of climate politics

    International Nuclear Information System (INIS)

    Gupta, J.; Ivanova, A.

    2009-01-01

    This paper argues that energy efficiency and conservation is a noncontroversial, critical, and equitable option for rich and poor alike. Although there is growing scientific and political consensus on its significance as an important option at global and national level, the political momentum for taking action is not commensurate with the potential in the sector or the urgency with which measures need to be taken to deal with climate change. The current global energy (efficiency) governance framework is diffuse. This paper submits that there are four substantive reasons why global governance should play a complementary role in promoting energy efficiency worldwide. Furthermore, given that market mechanisms are unable to rapidly mobilize energy efficiency projects and that there are no clear vested interests in this field which involves a large number of actors, there is need for a dedicated agency to promote energy efficiency and conservation. This paper provides an overview of energy efficiency options presented by IPCC, the current energy efficiency governance structure at global level, and efforts taken at supranational and national levels, and makes suggestions for a governance framework.

  1. Clean Cities 2011 Annual Metrics Report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.

    2012-12-01

    This report details the petroleum savings and vehicle emissions reductions achieved by the U.S. Department of Energy's Clean Cities program in 2011. The report also details other performance metrics, including the number of stakeholders in Clean Cities coalitions, outreach activities by coalitions and national laboratories, and alternative fuel vehicles deployed.

  2. Clean Cities 2010 Annual Metrics Report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.

    2012-10-01

    This report details the petroleum savings and vehicle emissions reductions achieved by the U.S. Department of Energy's Clean Cities program in 2010. The report also details other performance metrics, including the number of stakeholders in Clean Cities coalitions, outreach activities by coalitions and national laboratories, and alternative fuel vehicles deployed.

  3. The global contribution of energy consumption by product exports from China.

    Science.gov (United States)

    Tang, Erzi; Peng, Chong

    2017-06-01

    This paper presents a model to analyze the mechanism of the global contribution of energy usage by product exports. The theoretical analysis is based on the perspective that contribution estimates should be in relatively smaller sectors in which the production characteristics could be considered, such as the productivity distribution for each sector. Then, we constructed a method to measure the global contribution of energy usage. The simple method to estimate the global contribution is the percentage of goods export volume compared to the GDP as a multiple of total energy consumption, but this method underestimates the global contribution because it ignores the structure of energy consumption and product export in China. According to our measurement method and based on the theoretical analysis, we calculated the global contribution of energy consumption only by industrial manufactured product exports in a smaller sector per industry or manufacturing sector. The results indicated that approximately 42% of the total energy usage in the whole economy for China in 2013 was contributed to foreign regions. Along with the primary products and service export in China, the global contribution of energy consumption for China in 2013 by export was larger than 42% of the total energy usage.

  4. Emissions in 2001 conform the reference scenario (GE WLO with high oil price) and including Clean and Efficient

    International Nuclear Information System (INIS)

    Kroon, P.; Menkveld, M.

    2008-08-01

    This memo shows the calculation of an estimate for the total greenhouse gas emissions in 2011 in the reference scenario (GE WLO is the Dutch abbreviation for Global Economy and Welfare and Environment), including the impact of the Clean and Efficient programme from the assessment of ECN (Energy research Centre of the Netherlands) and MNP (Netherlands Environmental Assessment Agency) [nl

  5. Diversity, globalization and the ways of nature

    Energy Technology Data Exchange (ETDEWEB)

    Anton, D.J.

    1995-11-01

    During the last few years, technological advances and the reorganization of the international framework of economies, societies, and states have brought about profound changes with widespread socioeconomic effects. This book reviews global trends and their effects on the environment and on reducing global diversity. These trends include the information revolution, development of global financial markets and of more efficient international transport, and international migration. Environmental consequences noted include global pollution, deforestation, water shortages, and destruction of large ecosystems. The author uses examples from Africa, Latin America, and the Caribbean to illustrate the history of environmental degradation and its relation to globalization. He also discusses the importance of clean energy for planetary survival, the urban environmental challenge, the importance of diversity for human survival, and strategies for the future.

  6. Recent topical research on global, energy, health & medical, and tourism economics, and global software: An overview

    NARCIS (Netherlands)

    C-L. Chang (Chia-Lin); M.J. McAleer (Michael)

    2017-01-01

    textabstractThe paper presents an overview of recent topical research on global, energy, health & medical, and tourism economics, and global software. We have interpreted "global" in the title of the Journal of Reviews on Global Economics to cover contributions that have a global impact on

  7. Clean Cities Now Vol. 17, No. 2

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-10-23

    The Fall 2013 issue of the biannual newsletter for the U.S. Department of Energy's Clean Cities initiative. The newsletter includes feature stories on deployment of alternative fuels and advanced vehicles, and articles on Clean Cities coalition successes across the country.

  8. Global energy perspective of Turkey

    International Nuclear Information System (INIS)

    Sen, H. Mete

    2006-01-01

    Global energy demand is growing rapidly at an average rate of 4% per year in parallel with the economy while EU-25 has only 0,8% during the last decade. Total primary energy supply is 87 818 000 toe of which 72% was imported; in comparison the average dependency rate is 49,5% in the EU. Such excessive dependency creates harmful effects on the national economy. Oil and natural gas imports bill was 19,5 billion US $ in 2005. Primary energy demand growth rate is twice as much of the production rate in the period 1980 2004. Fossil fuels accounts for 86% of Turkeys global energy supply in 2004. Population growth rate is one of the major parameters affecting the energy balance. Energy and electricity consumptions per capita are still one third of the EUs average.. Turkeys coal reserves needs to be utilized at higher rate and hydropower, wind power and geothermal energy potentials should be developed in order to decrease the imported energy dependence, soon. Due to the buy or pay bilateral agreements with suppliers, storage capabilities should be realized for excessive natural gas supply. Turkeys average growth rate of electricity production is 8,1% while installed capacity has 8,5% for the last 25 years. The present total installed capacity is 39 020 MW in which renewables has a share of 34%. Total electricity production was 162 TWh in 2005 of which 75,4% was supplied by thermal power plants. Share of natural gas is 44% of the annual electricity production. Considering the present power plants and the ones under construction, electricity supply and demand will be in balance till the year of 2010 (with high demand scenario) or 2015 (with low demand scenario). Nuclear power is being considered for electricity supply security after 2015. But, the general approach for supply security is first to develop the domestic coal reserves, renewable energy resources.

  9. Energy globalization; La globalizacion de la energia

    Energy Technology Data Exchange (ETDEWEB)

    Andres, Tierno

    1997-08-01

    Toward the future, the petroleum could stop to be the main energy source in the world and the oil companies will only survive if they are adjusted to the new winds that blow in the general energy sector. It will no longer be enough to be the owner of the resource (petroleum or gas) so that a company subsists and be profitable in the long term. The future, it will depend in great measure of the vision with which the oil companies face the globalization concept that begins to experience the world in the energy sector. Concepts like globalization, competition, integration and diversification is something that the companies of the hydrocarbons sector will have very present. Globalization means that it should be been attentive to what happens in the world, beyond of the limits of its territory, or to be caught by competitive surprises that can originate in very distant places. The search of cleaner and friendlier energy sources with the means it is not the only threat that it should fear the petroleum. Their substitution for electricity in the big projects of massive transport, the technology of the communications, the optic fiber and the same relationships with the aboriginal communities are aspects that also compete with the future of the petroleum.

  10. The role of LP gas in eradicating energy poverty

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Michael; Behuria, Sarthak

    2010-09-15

    LP Gas is an ideal solution for dealing with energy poverty. Clean burning, low carbon, extremely efficient, requiring minimal infrastructure or R and D investment and with plentiful long term global supply, LP Gas can be quickly introduced to play an important role in eradicating energy poverty and steering both industrialised and developing countries onto more sustainable energy development paths.

  11. Energy management in buildings using photovoltaics

    CERN Document Server

    Papadopoulou, Elena

    2012-01-01

    Although fossil fuels remain the primary global energy source, developing and expanding economies are creating an ever-widening gap between supply and demand. Efficient energy management offers a cost-effective opportunity for both industrialized and developing nations to limit the enormous financial and environmental costs associated with burning fossil fuels. The implication of photovoltaic systems in particular presents the potential for clean and sustainable electrical energy to be generated from an unrestricted source. Energy Management in Buildings Using Photovoltaics demonstrates how ad

  12. Testing Open-Air Storage of Stumps to Provide Clean Biomass for Energy Production

    Directory of Open Access Journals (Sweden)

    Luigi Pari

    2017-10-01

    Full Text Available When orchards reach the end of the productive cycle, the stumps removal becomes a mandatory operation to allow new soil preparation and to establish new cultivations. The exploitation of the removed stump biomass seems a valuable option, especially in the growing energy market of the biofuels; however, the scarce quality of the material obtained after the extraction compromises its marketability, making this product a costly waste to be disposed. In this regard, the identification of affordable strategies for the extraction and the cleaning of the material will be crucial in order to provide to plantation owners the chance to sell the biomass and offset the extraction costs. Mechanical extraction and cleaning technologies have been already tested on forest stumps, but these systems work on the singular piece and would be inefficient in the conditions of an intensive orchard, where stumps are small and numerous. The objective of this study was to test the possibility to exploit a natural stumps cleaning system through open-air storage. The tested stumps were obtained from two different vineyards, extracted with an innovative stump puller specifically designed for continuous stump removal in intensively-planted orchards. The effects of weathering were evaluated to determine the fuel quality immediately after the extraction and after a storage period of six months with respect to moisture content, ash content, and heating value. Results indicated interesting storage performance, showing also different dynamics depending on the stumps utilized.

  13. Renewable Energy Investment in Emerging Markets: Evaluating Improvements to the Clean Development Mechanism

    Directory of Open Access Journals (Sweden)

    Amy Tang

    2014-06-01

    Full Text Available In the past, industrialized countries have invested in or financed numerous renewable energy projects in developing countries, primarily through the Clean Development Mechanism (CDM of the Kyoto Protocol. However, critics have pointed to its bureaucratic structure, problems with additionality and distorted credit prices as ill-equipped to streamline renewable energy investment. In this paper, we simulate the impact of policy on investment decisions on whether or not to invest in wind energy infrastructure in India, Brazil and China. Data from 2,578 past projects as well as literature on investor behaviour is used to inform the model structure and parameters. Our results show that the CDM acts differently in each country and reveal that while streamlining the approval process and reconsidering additionality can lead to non-trivial increase in total investment, stabilizing policy and decreasing investment risk will do the most to spur investment.

  14. Relevance of Clean Coal Technology for India’s Energy Security: A Policy Perspective

    Science.gov (United States)

    Garg, Amit; Tiwari, Vineet; Vishwanathan, Saritha

    2017-07-01

    Climate change mitigation regimes are expected to impose constraints on the future use of fossil fuels in order to reduce greenhouse gas (GHG) emissions. In 2015, 41% of total final energy consumption and 64% of power generation in India came from coal. Although almost a sixth of the total coal based thermal power generation is now super critical pulverized coal technology, the average CO2 emissions from the Indian power sector are 0.82 kg-CO2/kWh, mainly driven by coal. India has large domestic coal reserves which give it adequate energy security. There is a need to find options that allow the continued use of coal while considering the need for GHG mitigation. This paper explores options of linking GHG emission mitigation and energy security from 2000 to 2050 using the AIM/Enduse model under Business-as-Usual scenario. Our simulation analysis suggests that advanced clean coal technologies options could provide promising solutions for reducing CO2 emissions by improving energy efficiencies. This paper concludes that integrating climate change security and energy security for India is possible with a large scale deployment of advanced coal combustion technologies in Indian energy systems along with other measures.

  15. Computational approaches to energy materials

    CERN Document Server

    Catlow, Richard; Walsh, Aron

    2013-01-01

    The development of materials for clean and efficient energy generation and storage is one of the most rapidly developing, multi-disciplinary areas of contemporary science, driven primarily by concerns over global warming, diminishing fossil-fuel reserves, the need for energy security, and increasing consumer demand for portable electronics. Computational methods are now an integral and indispensable part of the materials characterisation and development process.   Computational Approaches to Energy Materials presents a detailed survey of current computational techniques for the

  16. Clean Cities Now, Vol. 18, No. 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-04-30

    The Spring 2014 edition of the semi-annual newsletter for the U.S. Department of Energy's Clean Cities initiative. The newsletter includes feature stories on deployment of alternative fuels and advanced vehicles, and articles on Clean Cities coalition successes across the country.

  17. Laser cleaning of the contaminations on the surface of tire mould

    Science.gov (United States)

    Ye, Yayun; Jia, Baoshen; Chen, Jing; Jiang, Yilan; Tang, Hongping; Wang, Haijun; Luan, Xiaoyu; Liao, Wei; Zhang, Chuanchao; Yao, Caizhen

    2017-07-01

    During the manufacturing of tires, surface pollutants on tire mould will lead to the production of unqualified tires. Tire moulds need to be regularly cleaned. Laser cleaning is recognized as a non-destructive, effective, precise and environmental friendly method. In this paper, laser cleaning was used to remove contaminants on tire mould surface. First, laser induced damage experiments were performed. The results showed that the roughness and hardness of the cast steel sample surface seldom changed under the energy range of 140.1-580.2 mJ laser irradiation 1 pulse and the energy range of 44.7-168.9 mJ laser irradiation 100 pulses. In the laser cleaning experiments, the cleaning thresholds and the optimal cleaning parameters were obtained. Results indicated that laser cleaning was safe and effective for tire mould contamination removal.

  18. Total scattering investigation of materials for clean energy applications: the importance of the local structure.

    Science.gov (United States)

    Malavasi, Lorenzo

    2011-04-21

    In this Perspective article we give an account of the application of total scattering methods and pair distribution function (PDF) analysis to the investigation of materials for clean energy applications such as materials for solid oxide fuel cells and lithium batteries, in order to show the power of this technique in providing new insights into the structure-property correlation in this class of materials.

  19. Global energy subsidies: An analytical taxonomy

    International Nuclear Information System (INIS)

    McKitrick, Ross

    2017-01-01

    Governments around the world have pledged to eliminate or sharply reduce subsidies to energy firms in order to increase economic efficiency and reduce environmental externalities. Yet definitions of subsidies vary widely and, as a result, estimates of their global magnitude vary by orders of magnitude. I review why energy subsidies are so difficult to define and measure. I show why some non-standard measures are very poor proxies for subsidy costs and in fact may vary inversely with them. In particular, recent attempts to treat unpriced externalities as subsidies yield especially misleading results. In general, energy subsidies as conventionally understood do exist but only comprise a small portion of some very large recently-reported estimates, the bulk of which are indirect measures that may have little connection with actual costs to governments or allocational inefficiencies. - Highlights: • Estimates of national and global energy subsidies vary widely. • Microeconomic tools help clarify the various definitions in use. • Some indirect measures are invalid as proxies for normal subsidy costs. • Distorting subsidies do exist but are likely on the low end of some recent reports.

  20. State perspectives on clean coal technology deployment

    Energy Technology Data Exchange (ETDEWEB)

    Moreland, T. [State of Illinois Washington Office, Washington, DC (United States)

    1997-12-31

    State governments have been funding partners in the Clean Coal Technology program since its beginnings. Today, regulatory and market uncertainties and tight budgets have reduced state investment in energy R and D, but states have developed program initiatives in support of deployment. State officials think that the federal government must continue to support these technologies in the deployment phase. Discussions of national energy policy must include attention to the Clean Coal Technology program and its accomplishments.

  1. Remarks - Global energy outlook and externalities

    International Nuclear Information System (INIS)

    Gray, J.E.

    1994-01-01

    The author presents a global energy outlook, for the period 1990-2010. Then, he presents some views on the subject of externalities, some regulations and proscriptions about internalization of costs are detailed. (TEC)

  2. Energy Provider: Delivered Energy Efficiency: A global stock-taking based on case studies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    In 2011 the IEA and the Regulatory Assistance Project (RAP) took on a work programme focused on the role of energy providers in delivering energy efficiency to end-users. This work was part of the IEA’s contribution to the PEPDEE Task Group, which falls under the umbrella of the International Partnership on Energy Efficiency Cooperation (IPEEC). In addition to organizing regional dialogues between governments, regulators, and energy providers, the PEPDEE work stream conducted global stock-takings of regulatory mechanisms adopted by governments to obligate or encourage energy providers to delivery energy savings and the energy savings activities of energy providers. For its part the IEA conducted a global review of energy provider-delivered energy savings programmes. The IEA reached out to energy providers to identify the energy savings activities they engaged in. Some 250 energy saving activities were considered, and 41 detailed case studies spanning 18 countries were developed. Geographic balance was a major consideration, and much effort was expended identifying energy provider-delivered energy savings case studies from around the world. Taken together these case studies represent over USD 1 billion in annual spending, or about 8% of estimated energy provider spending on energy efficiency.

  3. Global revolution: a status report on renewable energy worldwide

    International Nuclear Information System (INIS)

    Martinot, Eric

    2005-01-01

    With at least 48 countries around the world having some type of renewable energy promotion policy, and increasingly favourable economics, renewables are seeing strong growth and increasing significance. In 2004, global investment in renewables reached US$30 billion. More than 1.7 million people are directly employed by the industry and the 180 GW of installed renewables represents 4% of global capacity. The author discusses the state of renewables in 2005, based on the Just-released 'Renewables 2005 Global Status Report' which was sponsored by the REN21 Renewable Energy Policy Network and involved over 100 collaborators, under the headings: investment trends; industry and market trends; policies to promote renewable energy. (UK)

  4. Global Energy Trends - 2016 edition

    International Nuclear Information System (INIS)

    2016-01-01

    Based on its 2015 data for G20 countries, Enerdata analyses the trends of the world energy markets. The full report presents in-depth information on the energy markets as well as upcoming trends for all energies in the G20. With over 400 premium sources, Enerdata analysts highlight major developments in 2015 concerning global demand, supply and key indicators across the globe. Key Points: 2.8%: The weakest economic growth since 2002: If the economic activity of OECD countries improved slightly (USA, EU...), that of non - OECD countries slowed down, particularly in China, and with some even declining (Brazil and Russia). +0.5%: Near stagnation of energy consumption: As with last year, 2015 saw weak growth in energy consumption for G20 countries (10.8 Gtoe, or +0.5%, while the 10-year average exceeds 2%). Within the OECD, consumption declined slightly. In non-OECD countries, the evolution becomes historic with an increase limited to 1.3%, compared to a 10-year average of 5%. Besides the direct impact of the economic downturn mentioned above, this result comes largely from China where the near stagnation of energy consumption confirms a trend beginning in 2014 towards a less energy-intensive economy. 0: Stability of CO_2 emissions - cyclical or structural?: After the surprising slowdown in 2014, 2015 also saw a stable level of CO_2 -energy emissions (27 GtCO_2). A direct result from the stagnation in energy consumption, this figure also results from a slight modification in the power mix, in particular from the decline in coal consumption (China, USA..). -3 %: Decrease in the carbon intensity of the economy: In 2015 we acknowledge a 3% decrease in carbon intensity compared to an historical average of -1.5%/year; this progress comes from a decrease in China (stability of energy consumption and decrease of coal share in the mix) and in the USA (more gas, less coal). A trend still far away from climate change targets set at the COP21: On the climate side, the stagnation

  5. Sustainable energy for cashew production chain using innovative clean technology project developments

    Energy Technology Data Exchange (ETDEWEB)

    Pannir Selvam, P.V.; Nandenha, Julio; Santiago, Brunno Henrique de Souza; Silva, Rosalia Tatiane da [Universidade Federal do Rio Grande do Norte (GPEC/DEQ/UFRN), Lagoa Nova, RN (Brazil). Dept. de Engenharia Quimica. Grupo de Pesquisa em Engenharia de Custos e Processos], e-mail: pannirbr@gmail.com

    2006-07-01

    The main objective is to develop a new process synthesis based on the residual biomass waste for the energy production applied to the fruit processing plant with co-production of hot, cold thermal energy using biogas from the wood biomass and animal wastes. After carried out the bibliographical research about the current state of art technology, an engineering project had been developed with the use of the software Super Pro Designer V 4.9. Some simulations of processes of the fast pyrolysis, gasification, bio digestion, generation of energy have been realized including the system integration of energy production as innovation of the present work. Three cases study have been developed: first, the current process of conventional energy using combustion, another one using combined pyrolysis and gasification, and the last one with bio digestion for combined power, heat and chilling. The results about the project investment and the cost analysis, economic viability and cash balance were obtained using software Orc 2004. Several techno-economic parameters of the selected cases study involving process innovation were obtained and compared, where a better energy and materials utilization were observed in relation to conventional process. This project which is still in development phase, involves small scale energy integrated system design. The energy and the process integration cashew fruit production chain, based on the clean technology process design, has enable significant improvement in terms of economic and environmental using optimal system configurations with viability and sustainability. (author)

  6. Forecast and analysis of the ratio of electric energy to terminal energy consumption for global energy internet

    Science.gov (United States)

    Wang, Wei; Zhong, Ming; Cheng, Ling; Jin, Lu; Shen, Si

    2018-02-01

    In the background of building global energy internet, it has both theoretical and realistic significance for forecasting and analysing the ratio of electric energy to terminal energy consumption. This paper firstly analysed the influencing factors of the ratio of electric energy to terminal energy and then used combination method to forecast and analyse the global proportion of electric energy. And then, construct the cointegration model for the proportion of electric energy by using influence factor such as electricity price index, GDP, economic structure, energy use efficiency and total population level. At last, this paper got prediction map of the proportion of electric energy by using the combination-forecasting model based on multiple linear regression method, trend analysis method, and variance-covariance method. This map describes the development trend of the proportion of electric energy in 2017-2050 and the proportion of electric energy in 2050 was analysed in detail using scenario analysis.

  7. Alternative Fuel News: Official Publication of the U.S. Department of Energy's Clean Cities Network and the Alternative Fuels Data Center (Vol. 5, No. 2)

    International Nuclear Information System (INIS)

    LaRocque, T.

    2001-01-01

    A quarterly magazine with articles the proposed National Energy Policy; the 2001 National Clean Cities Conference including Clean Cities Coalition Award and National Partner Award recipients; station cars (shared my multiple drivers); and new emissions-reducing incentives in Texas

  8. Energy security in the 21. century

    Energy Technology Data Exchange (ETDEWEB)

    Randall, S.J. [Calgary Univ., AB (Canada)

    2002-07-01

    The traditional and current issues regarding the security of energy supplies is reviewed with particular emphasis on the oil sector and the implications of the terrorist attack on New York and Washington on September 11, 2001. In November 2001, the Committee on Sustainable Energy of the United Nations Economic Commission for Europe (UNECE) issued a press release about energy-related environmental problems and the need to factor in the danger of terrorist attacks on energy installations. The presentation examines the current levels of energy demand, expected areas of growth, and changing patterns of energy supply for the United States. The impact that growth in the industrial states of China will have in the global scheme of the petroleum industry is also discussed. Levels of political stability and security in many parts of the world are reviewed with particular reference to the Near and Middle East, Africa, Asia and Latin America. It is noted that liberalization and globalization are favouring the agglomeration of capital and labour into larger and larger multinational energy companies, which raises the concern about excessive market power. In its 2001 analysis of energy outlook, the International Energy Agency indicated that the reserves of oil, natural gas, coal and uranium are more than adequate to meet projected demand growth until at least 2020, by which time new technologies such as hydrogen-based fuel cells, clean coal burning and carbon sequestration will hold out the prospect of abundant, clean energy supplies. 15 refs., 6 figs.

  9. Energy security in the 21. century

    International Nuclear Information System (INIS)

    Randall, S.J.

    2002-01-01

    The traditional and current issues regarding the security of energy supplies is reviewed with particular emphasis on the oil sector and the implications of the terrorist attack on New York and Washington on September 11, 2001. In November 2001, the Committee on Sustainable Energy of the United Nations Economic Commission for Europe (UNECE) issued a press release about energy-related environmental problems and the need to factor in the danger of terrorist attacks on energy installations. The presentation examines the current levels of energy demand, expected areas of growth, and changing patterns of energy supply for the United States. The impact that growth in the industrial states of China will have in the global scheme of the petroleum industry is also discussed. Levels of political stability and security in many parts of the world are reviewed with particular reference to the Near and Middle East, Africa, Asia and Latin America. It is noted that liberalization and globalization are favouring the agglomeration of capital and labour into larger and larger multinational energy companies, which raises the concern about excessive market power. In its 2001 analysis of energy outlook, the International Energy Agency indicated that the reserves of oil, natural gas, coal and uranium are more than adequate to meet projected demand growth until at least 2020, by which time new technologies such as hydrogen-based fuel cells, clean coal burning and carbon sequestration will hold out the prospect of abundant, clean energy supplies. 15 refs., 6 figs

  10. Energy and the new politics of the environment

    International Nuclear Information System (INIS)

    Leggett, J.

    1991-01-01

    Prevent pollution, with clean technologies. These may be words befitting an industry with wastes affected by international laws such as the London Dumping Convention, but what about the wastes of the energy business? The LDC has adopted the precautionary principle. Where global warming is concerned - if the world's climate scientists are to be believed - adopting the precautionary principle would require a global cut in anthropogenic carbon dioxide emissions of more than 60%. The LDC intends to outlaw, globally, all dumping of industrial waste at sea by 1995. Who can imagine a world in which the Global Climate Convention (for which negotiations begin in February) could or would countenance outlawing, globally, all dumping of energy-related waste in the atmosphere by 199 5 (author)

  11. Local and global Casimir energies for a semitransparent cylindrical shell

    International Nuclear Information System (INIS)

    Cavero-Pelaez, Ines; Milton, Kimball A; Kirsten, Klaus

    2007-01-01

    The local Casimir energy density and the global Casimir energy for a massless scalar field associated with a λδ-function potential in a (3 + 1)-dimensional circular cylindrical geometry are considered. The global energy is examined for both weak and strong coupling, the latter being the well-studied Dirichlet cylinder case. For weak coupling, through O(λ 2 ), the total energy is shown to vanish by both analytic and numerical arguments, based both on Green's-function and zeta-function techniques. Divergences occurring in the calculation are shown to be absorbable by renormalization of physical parameters of the model. The global energy may be obtained by integrating the local energy density only when the latter is supplemented by an energy term residing precisely on the surface of the cylinder. The latter is identified as the integrated local energy density of the cylindrical shell when the latter is physically expanded to have finite thickness. Inside and outside the δ-function shell, the local energy density diverges as the surface of the shell is approached; the divergence is weakest when the conformal stress tensor is used to define the energy density. A real global divergence first occurs in O(λ 3 ), as anticipated, but the proof is supplied here for the first time; this divergence is entirely associated with the surface energy and does not reflect divergences in the local energy density as the surface is approached

  12. The path to clean energy: direct coupling of nuclear and renewable technologies for thermal and electrical applications

    Energy Technology Data Exchange (ETDEWEB)

    Bragg-Sitton, Shannon [Idaho National Lab. (INL), Idaho Falls, ID (United States). Nuclear Fuel Performance and Design; Boardman, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States). Advanced Process and Decision Systems; Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States). Strategic Energy Analysis Center

    2015-07-01

    The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can significantly reduce environmental impacts in an efficient and economically viable manner while utilizing both clean energy generation sources and hydrocarbon resources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean nuclear and renewable energy generation sources. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of providing energy (thermal or electrical) where it is needed, when it is needed. For the purposes of this work, the hybrid system would integrate two or more energy resources to generate two or more products, one of which must be an energy commodity, such as electricity or transportation fuel. This definition requires coupling of subsystems ‘‘behind’’ the electrical transmission bus, where energy flows are dynamically apportioned as necessary to meet demand and the system has a single connection to the grid that provides dispatchable electricity as required while capital intensive generation assets operate at full capacity. Development of integrated energy systems for an “energy park” must carefully consider the intended location and the associated regional resources, traditional industrial processes, energy delivery infrastructure, and markets to identify viable region-specific system configurations. This paper will provide an overview of the current status of regional hybrid energy system design, development and application of dynamic analysis tools to assess technical and economic performance, and

  13. U.S. Department of Energy Critical Materials Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, D.; Diamond, D.; Li, J.; Sandalow, D.; Telleen, P.; Wanner, B.

    2010-12-01

    This report examines the role of rare earth metals and other materials in the clean energy economy. It was prepared by the U.S. Department of Energy (DOE) based on data collected and research performed during 2010. Its main conclusions include: (a) Several clean energy technologies -- including wind turbines, electric vehicles, photovoltaic cells and fluorescent lighting -- use materials at risk of supply disruptions in the short term. Those risks will generally decrease in the medium and long term. (b) Clean energy technologies currently constitute about 20 percent of global consumption of critical materials. As clean energy technologies are deployed more widely in the decades ahead, their share of global consumption of critical materials will likely grow. (c) Of the materials analyzed, five rare earth metals (dysprosium, neodymium, terbium, europium and yttrium), as well as indium, are assessed as most critical in the short term. For this purpose, 'criticality' is a measure that combines importance to the clean energy economy and risk of supply disruption. (d) Sound policies and strategic investments can reduce the risk of supply disruptions, especially in the medium and long term. (e) Data with respect to many of the issues considered in this report are sparse. In the report, DOE describes plans to (i) develop its first integrated research agenda addressing critical materials, building on three technical workshops convened by the Department during November and December 2010; (ii) strengthen its capacity for information-gathering on this topic; and (iii) work closely with international partners, including Japan and Europe, to reduce vulnerability to supply disruptions and address critical material needs. DOE will work with other stakeholders -- including interagency colleagues, Congress and the public -- to shape policy tools that strengthen the United States' strategic capabilities. DOE also announces its plan to develop an updated critical

  14. The U.S. department of energy program on hydrogen production

    International Nuclear Information System (INIS)

    Henderson, David; Paster, Mark

    2003-01-01

    Clean forms of energy are needed to support sustainable global economics growth while mitigating greenhouse gas emissions and impacts on air quality. To address these challenges, the U.S. President's National Energy Policy and the U.S. Department of Energy's (DOE's) Strategic Plan call for expanding the development of diverse domestic energy supplies. Working with industry, the Department developed a national vision roadmap for moving toward a hydrogen economy-a solution that holds the potential to provide sustainable clean, safe, secure, affordable, and reliable energy. DOE has examined and organized its hydrogen activities in pursuit of this national vision. This includes the development of fossil and renewable sources, as well as nuclear technologies capable of economically producing large quantities of hydrogen. (author)

  15. Holistic processes and practices for clean energy in strengthening bioeconomic strategies (INDO-NORDEN)

    Science.gov (United States)

    Shurpali, Narasinha J.; Parameswaran, Binod; Raud, Merlin; Pumpanen, Jukka; Sippula, Olli; Jokiniemi, Jorma; Lusotarinen, Sari; Virkajarvi, Perttu

    2017-04-01

    We are proud to introduce the project, INDO-NORDEN, funded in response to the Science and Technology call of the INNO INDIGO Partnership Program (IPP) on Biobased Energy. The project is scheduled to begin from April 2017. The proposed project aims to address both subtopics of the call, Biofuels and From Waste to Energy with research partners from Finland (coordinating unit), India and Estonia. The EU and India share common objectives in enhancing energy security, promoting energy efficiency and energy safety, and the pursuit of sustainable development of clean and renewable energy source. The main objective of INDO-NORDEN is to investigate, evaluate and develop efficient processes and land use practices of transforming forest and agricultural biomass, agricultural residues and farm waste into clean fuels (solid, liquid or gas), by thermochemical or biochemical conversions. Forestry and agriculture are the major bioenergy sectors in Finland. Intensive forest harvesting techniques are being used in Finland to enhance the share of bioenergy in the total energy consumption in the future. However, there are no clear indications how environmentally safe are these intensive forestry practices in Finland. We address this issue through field studies addressing the climate impacts on the ecosystem carbon balance and detailed life cycle assessment. The role of agriculture in Finland is expected to grow significantly in the years to come. Here, we follow a holistic field experimental approach addressing several major issues relevant to Nordic agriculture under changing climatic conditions - soil nutrient management, recycling of nutrients, farm and agricultural waste management, biogas production potentials, greenhouse gas inventorying and entire production chain analysis. There is a considerable potential for process integration in the biofuel sector. This project plans to develop biofuel production processes adopted in Estonia and India with a major aim of enhancing biofuel

  16. Global Energy Forecasting Competition 2012

    DEFF Research Database (Denmark)

    Hong, Tao; Pinson, Pierre; Fan, Shu

    2014-01-01

    The Global Energy Forecasting Competition (GEFCom2012) attracted hundreds of participants worldwide, who contributed many novel ideas to the energy forecasting field. This paper introduces both tracks of GEFCom2012, hierarchical load forecasting and wind power forecasting, with details...... on the aspects of the problem, the data, and a summary of the methods used by selected top entries. We also discuss the lessons learned from this competition from the organizers’ perspective. The complete data set, including the solution data, is published along with this paper, in an effort to establish...

  17. Global Geopotential Energy & Stress Field

    DEFF Research Database (Denmark)

    Schiffer, Christian; Nielsen, S.B.

    of the oceanic lithosphere. An entire modelling of the shallow Geopotential Energy is hereby approached, not taking into account possible deeper signals but all lithospheric signals for the subsequent stress calculation. Therefore a global lithospheric density model is necessary to calculate the corresponding...... response to Geopotential Energy and the Geoid. A linearized inverse method fits a lithospheric reference model to reproduce measured data sets, such as topography and surface heat flow, while assuming isostasy and solving the steady state heat equation. A FEM code solves the equations of equilibrium...

  18. Clean Coal Day '93. Hokkaido Seminar; Clean Coal Day '93. Hokkaido Seminar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-01

    The titles of the lectures in this record are 1) Coal energy be friendly toward the earth, 2) Future development of coal-fired thermal power generation, 3) Current status of research and development of coalbed methane in the U.S., and 4) PFBC (pressurized fluidized bed combustion combined cycle) system. Under title 1), the reason is explained why coal is back as an energy source and is made much of. The actualities of coal being labelled as a dirty energy source are explained. The rapid growth of demand for coal in Asia is commented on and what is expected of clean coal technology is stated. Under title 2), it is predicted that atomic energy, LNG (liquefied natural gas), and coal will be the main energy sources for electric power in Japan. Under title 3), it is stated that 10% of America's total amount of methane production is attributable to coal mining, that methane is the cleanest of the hydrocarbon fuels although it is a pollution source from an environmental point of view, and that it is therefore reasonable to have its collection and utilization placed in the domain of clean coal technology. Under title 4), a PFBC system to serve as the No. 3 machine for the Tomahigashi-Atsuma power plant is described. (NEDO)

  19. Petroleum industry is cleaning up its act -- Self-cleaning filters to maximize profits, minimize waste and reduce liability

    International Nuclear Information System (INIS)

    Williams, D.

    2004-01-01

    Recent steps taken by the petroleum industry to control end-of-pipe pollution and to minimize waste at the source by changing over to self-cleaning, backwashable filters instead of the traditional disposable filters such as bags or cartridges, are discussed. Various self-cleaning filter systems and their advantages are described, using REACTOGARD which provides total protection for catalysts in fixed-bed reactors and EROSIONGARD, used in fluidized catalytic crackers, as examples. Both filter systems have been developed by RPA Process Technologies, Inc., a global leader in industrial filtration systems. Major advantages attributed to self-cleaning filters include significantly reduced costs through reducing the number of catalyst change-out cycles, maximized platform productivity through virtually eliminating the risk of plugged wells, reduced waste through ability to recycle cleaning liquids, increased profits through shorter return-on-investment cycles, reduced emissions and reduced future liability through higher safety in the workplace; also reduced pollution of landfill sites. 1 photo

  20. Global warning policy, energy, and the Chinese economy

    International Nuclear Information System (INIS)

    Rose, A.; Benavides, J.; Lim, D.; Frias, O.

    1996-01-01

    China is the world's largest user of coal and a major generator of greenhouse gases. This paper addresses whether the country can reconfigure its energy structure without hindering its future economic development. The authors construct a dynamic linear programming model of the Chinese economy and use it to simulate five alternative strategies to stabilize CO 2 emissions at 20% of projected year 2000 baseline levels. The results, under more optimistic assumptions, indicate this goal can be achieved with no growth penalty. However, if major technological changes relating to energy conservation and coal displacement, as well as vastly increasing availabilities of clean fuels, are not forthcoming, China could suffer a significant decline in its rate of economic growth. 38 refs., 1 fig., 5 tabs

  1. Solar energy innovation and Silicon Valley

    Science.gov (United States)

    Kammen, Daniel M.

    2015-03-01

    The growth of the U. S. and global solar energy industry depends on a strong relationship between science and engineering innovation, manufacturing, and cycles of policy design and advancement. The mixture of the academic and industrial engine of innovation that is Silicon Valley, and the strong suite of environmental policies for which California is a leader work together to both drive the solar energy industry, and keep Silicon Valley competitive as China, Europe and other area of solar energy strength continue to build their clean energy sectors.

  2. Does nuclear energy save global environment?

    International Nuclear Information System (INIS)

    Matsui, Kazuaki

    2006-01-01

    Since the ecological footprint analysis in 1970s suggested changing consumption patterns and overpopulation concerns, energy policy such as energy conservation and use of renewable energy has become of prime importance. Several results of the long-term energy demand and supply analysis in 2050 or 2100 to reduce drastically carbon dioxide emission as a measure against global warming, showed the necessity of nuclear power deployment as well as maximum efforts to save energy, exploitation of the separation and disposal of carbon dioxide, and shifting energy sources to fuels that emit less greenhouse gases or non-fossil fuels. As a promising means to contribute to long-term energy supply, nuclear power generation is expected with improving safety, economic efficiency, environmental adaptability, and nuclear proliferation resistance of the technologies. (T.Tanaka)

  3. Democratic energy policy making

    International Nuclear Information System (INIS)

    Tronconi, P.A.

    1991-01-01

    The author stresses the need for greater public participation, in particular, by organized labour in the role of organizer-coordinator, in the creation and implementation of local and regional clean energy-environmental protection programs. These would conform to innovative national strategies which would adapt the traditional short-sighted economic growth-energy use models still used by many industrialized countries, to current global requirements - that of harmonized global development and environmental protection to satisfy present needs without compromising the capacity of future generations, of developing, as well as, developed countries, to satisfy their own needs. With reference energy policies of Italy, heavily dependent on oil and gas imports, the author points out the strategic importance and technical-economic feasibility of energy conservation. He then makes suggestions on how to overcome past failures, due primarily to excessive bureaucracy and scarce investment, in the realization of effective energy conservation programs

  4. Hydrogen evolution by fermentation using seaweed as substrates and the contribution to the clean energy production

    Energy Technology Data Exchange (ETDEWEB)

    Tanisho, S.; Suganuma, T.; Yamaguchi, A. [Yokohama National Univ. (Japan). Dept. of Environmental Sciences

    2001-07-01

    It is an important theme in Japan to use the sea for energy production, because Japan is surrounded by seas on all sides. Brown algae such as Laminaria have high value as the substrate of fermentative hydrogen production, since they have very high growth rate and also have high ability on the productivity of mannitol. I would like to present about the affection of salt concentration on the hydrogen production of Enterobacter aerogenes, and also the contribution on clean energy production by the seaweed cultivation in Japan. (orig.)

  5. Long range global warming

    International Nuclear Information System (INIS)

    Rolle, K.C.; Pulkrabek, W.W.; Fiedler, R.A.

    1995-01-01

    This paper explores one of the causes of global warming that is often overlooked, the direct heating of the environment by engineering systems. Most research and studies of global warming concentrate on the modification that is occurring to atmospheric air as a result of pollution gases being added by various systems; i.e., refrigerants, nitrogen oxides, ozone, hydrocarbons, halon, and others. This modification affects the thermal radiation balance between earth, sun and space, resulting in a decrease of radiation outflow and a slow rise in the earth's steady state temperature. For this reason the solution to the problem is perceived as one of cleaning up the processes and effluents that are discharged into the environment. In this paper arguments are presented that suggest, that there is a far more serious cause for global warming that will manifest itself in the next two or three centuries; direct heating from the exponential growth of energy usage by humankind. Because this is a minor contributor to the global warming problem at present, it is overlooked or ignored. Energy use from the combustion of fuels and from the output of nuclear reactions eventually is manifest as warming of the surroundings. Thus, as energy is used at an ever increasing rate the consequent global warming also increases at an ever increasing rate. Eventually this rate will become equal to a few percent of solar radiation. When this happens the earth's temperature will have risen by several degrees with catastrophic results. The trends in world energy use are reviewed and some mathematical models are presented to suggest future scenarios. These models can be used to predict when the global warming problem will become undeniably apparent, when it will become critical, and when it will become catastrophic

  6. Long-term global nuclear energy and fuel cycle strategies

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1997-01-01

    The Global Nuclear Vision Project is examining, using scenario building techniques, a range of long-term nuclear energy futures. The exploration and assessment of optimal nuclear fuel-cycle and material strategies is an essential element of the study. To this end, an established global E 3 (energy/economics/environmental) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Consistent nuclear energy scenarios are constructed using this multi-regional E 3 model, wherein future demands for nuclear power are projected in price competition with other energy sources under a wide range of long-term demographic (population, workforce size and productivity), economic (price-, population-, and income-determined demand for energy services, price- and population-modified GNP, resource depletion, world-market fossil energy prices), policy (taxes, tariffs, sanctions), and top-level technological (energy intensity and end-use efficiency improvements) drivers. Using the framework provided by the global E 3 model, the impacts of both external and internal drivers are investigated. The ability to connect external and internal drivers through this modeling framework allows the study of impacts and tradeoffs between fossil- versus nuclear-fuel burning, that includes interactions between cost, environmental, proliferation, resource, and policy issues

  7. Long-term global nuclear energy and fuel cycle strategies

    Energy Technology Data Exchange (ETDEWEB)

    Krakowski, R.A. [Los Alamos National Lab., NM (United States). Technology and Safety Assessment Div.

    1997-09-24

    The Global Nuclear Vision Project is examining, using scenario building techniques, a range of long-term nuclear energy futures. The exploration and assessment of optimal nuclear fuel-cycle and material strategies is an essential element of the study. To this end, an established global E{sup 3} (energy/economics/environmental) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Consistent nuclear energy scenarios are constructed using this multi-regional E{sup 3} model, wherein future demands for nuclear power are projected in price competition with other energy sources under a wide range of long-term demographic (population, workforce size and productivity), economic (price-, population-, and income-determined demand for energy services, price- and population-modified GNP, resource depletion, world-market fossil energy prices), policy (taxes, tariffs, sanctions), and top-level technological (energy intensity and end-use efficiency improvements) drivers. Using the framework provided by the global E{sup 3} model, the impacts of both external and internal drivers are investigated. The ability to connect external and internal drivers through this modeling framework allows the study of impacts and tradeoffs between fossil- versus nuclear-fuel burning, that includes interactions between cost, environmental, proliferation, resource, and policy issues.

  8. German energy transition at the crossroad: global pressures or green energy island

    International Nuclear Information System (INIS)

    Umbach, Frank

    2015-05-01

    In reaction to the March 2011 nuclear disaster that occurred in Fukushima/Japan, Germany has unilaterally decided to launch an energy transition of hitherto unseen dimensions. Berlin set extremely ambitious objectives such as phasing out nuclear energy by 2020, as well as, in the long run, the creation of a sustainable and autarkic energy system. Reactions to this decision differed. Within her own country, Angela Merkel's energy transition was largely acclaimed, although it represented a total u-turn with respect to the previous policy which consisted of prolonging nuclear reactors' lifespan. Abroad and notably among Germany's European partners, it has, in turn, been heavily criticized. These partners had not been consulted prior to decisions being taken, despite the huge impact these decisions had and continue to have on their own energy security. Four years after Angela Merkel announced the German energy transition, it is obvious that a lot of effort still needs to be put into it and that the objectives defined are far from having been reached. German energy policy has failed to adapt to its global context, notably characterized by the U.S. shale gas revolution, geopolitical upheaval, the great polluters' absent willingness to commit to climate protection, etc. At the time being, it has also failed to find a sustainable equilibrium between environmental protection, energy security and economic competitiveness. Moreover, Germany needs to act in accordance with its European partners, without whom it will not be able to tackle the global challenge of climate change and attain to European energy security. If Germany fails to reach these objectives, it may see its competitiveness and geopolitical influence decline at the global level, which would also have repercussions on the EU's standing in the world. (author)

  9. NREL Topic 1 Final Report: Cohesive Application of Standards-Based Connected Devices to Enable Clean Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Hudgins, Andrew P. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sparn, Bethany F. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jin, Xin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Seal, Brian [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States)

    2018-02-21

    This document is the final report of a two-year development, test, and demonstration project entitled 'Cohesive Application of Standards-Based Connected Devices to Enable Clean Energy Technologies.' The project was part of the National Renewable Energy Laboratory's (NREL) Integrated Network Test-bed for Energy Grid Research and Technology (INTEGRATE) initiative. The Electric Power Research Institute (EPRI) and a team of partners were selected by NREL to carry out a project to develop and test how smart, connected consumer devices can act to enable the use of more clean energy technologies on the electric power grid. The project team includes a set of leading companies that produce key products in relation to achieving this vision: thermostats, water heaters, pool pumps, solar inverters, electric vehicle supply equipment, and battery storage systems. A key requirement of the project was open access at the device level - a feature seen as foundational to achieving a future of widespread distributed generation and storage. The internal intelligence, standard functionality and communication interfaces utilized in this project result in the ability to integrate devices at any level, to work collectively at the level of the home/business, microgrid, community, distribution circuit or other. Collectively, the set of products serve as a platform on which a wide range of control strategies may be developed and deployed.

  10. Factors responsible for the stability and the existence of a clean energy gap of a silicon nanocluster

    International Nuclear Information System (INIS)

    Liu, Lei; Jayanthi, C. S.; Wu, Shi-Yu

    2001-01-01

    We present a critical theoretical study of electronic properties of silicon nanoclusters, in particular the roles played by symmetry, relaxation, and hydrogen passivation on the stability, the gap states and the energy gap of the system using the order N [O(N)] nonorthogonal tight-binding molecular dynamics and the local analysis of electronic structure. We find that for an unrelaxed cluster with its atoms occupying the regular tetrahedral network, the presence of undistorted local bonding configuration is sufficient for the appearance of a small clean energy gap. However, the energy gap of the unrelaxed cluster does not start at the highest occupied molecular orbital (HOMO). In fact, between the HOMO and the lower edge of the energy gap, localized dangling bond states are found. With hydrogen passivation, the localized dangling bond states are eliminated, resulting in a wider and clean energy gap. Relaxation of these hydrogen passivated clusters does not alter either the structure or the energy gap appreciably. However, if the silicon clusters are allowed to relax first, the majority of the dangling bonds are eliminated but additional defect states due to bond distortion appear, making the energy gap dirty. Hydrogen passivation of these relaxed clusters will further eliminate most of the remnant dangling bonds but no appreciable effect on the defect states associated with bond distortions will take place, thus still resulting in a dirty gap. For the hydrogen-passivated Si N nanoclusters with no bond distortion and no overall symmetry, we have studied the variation of the energy gap as a function of size of the cluster for N in the range of 80< N<6000. The dependence of the energy gap on the size shows similar behavior to that for silicon nanoclusters with no bond distortion but possessing overall symmetry

  11. Utility-Scale Future, Continuum Magazine: Clean Energy Innovation at NREL, Spring 2011, Issue 1 Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    2011-08-01

    This quarterly magazine is dedicated to stepping beyond the technical journals to reveal NREL's vital work in a real-world context for our stakeholders. Continuum provides insights into the latest and most impactful clean energy innovations, while spotlighting those talented researchers and unique facilities that make it all happen. This edition focuses on creating a utility-scale future.

  12. Global warming and obesity: a systematic review.

    Science.gov (United States)

    An, R; Ji, M; Zhang, S

    2018-02-01

    Global warming and the obesity epidemic are two unprecedented challenges mankind faces today. A literature search was conducted in the PubMed, Web of Science, EBSCO and Scopus for articles published until July 2017 that reported findings on the relationship between global warming and the obesity epidemic. Fifty studies were identified. Topic-wise, articles were classified into four relationships - global warming and the obesity epidemic are correlated because of common drivers (n = 21); global warming influences the obesity epidemic (n = 13); the obesity epidemic influences global warming (n = 13); and global warming and the obesity epidemic influence each other (n = 3). We constructed a conceptual model linking global warming and the obesity epidemic - the fossil fuel economy, population growth and industrialization impact land use and urbanization, motorized transportation and agricultural productivity and consequently influences global warming by excess greenhouse gas emission and the obesity epidemic by nutrition transition and physical inactivity; global warming also directly impacts obesity by food supply/price shock and adaptive thermogenesis, and the obesity epidemic impacts global warming by the elevated energy consumption. Policies that endorse deployment of clean and sustainable energy sources, and urban designs that promote active lifestyles, are likely to alleviate the societal burden of global warming and obesity. © 2017 World Obesity Federation.

  13. Asia energy mixes from socio-economic and environmental perspectives

    International Nuclear Information System (INIS)

    Thavasi, V.; Ramakrishna, S.

    2009-01-01

    Sustainable clean energy is the top social, economic, and environmental agenda of political leaders, policy makers, enlightened business executives, and civil society in Asia. Strong economic growth in Asia has caused a great demand for energy which has resulted in an enormous increase in CO 2 emissions. The association of Southeast Asian nations (ASEAN), India, China, South Korea and Japan are the most important regions in Asia as their economies have been growing steadily. These countries though heavily dependent on fossil fuels have stepped up their measures towards low-carbon society amid domestic affordability challenges and changing global mindset. This report highlights the current energy scenario in these countries and their effort towards an affordable and sustainable clean energy future. The energy policy to enhance energy security and improve environmental sustainability is also explicated in this article. (author)

  14. Exploiting coalbed methane and protecting the global environment

    Energy Technology Data Exchange (ETDEWEB)

    Yuheng, Gao

    1996-12-31

    The global climate change caused by greenhouse gases (GHGs) emission has received wide attention from all countries in the world. Global environmental protection as a common problem has confronted the human being. As a main component of coalbed methane, methane is an important factor influencing the production safety of coal mine and threatens the lives of miners. The recent research on environment science shows that methane is a very harmful GHG. Although methane gas has very little proportion in the GHGs emission and its stayed period is also very short, it has very obvious impact on the climate change. From the estimation, methane emission in the coal-mining process is only 10% of the total emission from human`s activities. As a clean energy, Methane has mature recovery technique before, during and after the process of mining. Thus, coalbed methane is the sole GHG generated in the human`s activities and being possible to be reclaimed and utilized. Compared with the global greenhouse effect of other GHGs emission abatement, coalbed methane emission abatement can be done in very low cost with many other benefits: (1) to protect global environment; (2) to improve obviously the safety of coal mine; and (3) to obtain a new kind of clean energy. Coal is the main energy in China, and coalbed contains very rich methane. According to the exploration result in recent years, about 30000{approximately}35000 billion m{sup 2} methane is contained in the coalbed below 2000 m in depth. China has formed a good development base in the field of reclamation and utilization of coalbed methane. The author hopes that wider international technical exchange and cooperation in the field will be carried out.

  15. Ultrasonic aqueous cleaning as a replacement for chlorinated solvent cleaning

    International Nuclear Information System (INIS)

    Thompson, L.M.; Simandl, R.F.

    1992-01-01

    The Oak Ridge Y-12 Plant has been involved in the replacement of chlorinated solvents since 1982. One of the most successful replacement efforts has been the substitution of vapor degreasers or soak tanks using chlorinated solvents with ultrasonic cleaning using aqueous detergents. Recently, funding was obtained from the Department of Energy Office (DOE) of Technology Development to demonstrate this technology. A unit has been procured and installed in the vacuum pump shop area to replace the use of a solvent soak tank. Initially, the solvents used in the shop were CFC-113 and a commercial brand cleaner which contained both perchloroethylene and methylene chloride. While the ultrasonic unit was being procured, a terpene-based solvent was used. Generally, parts were soaked overnight in order to soften baked-on vanish. Many times, wire brushing was used to help remove remaining contamination. Initial testing with the ultrasonic cleaner indicated cleaning times of 20 min were as effective as the overnight solvent soaks in removing contamination. Wire brushing was also not required following the ultrasonic cleaning as was sometimes required with the solvent soak

  16. Alternate Energy Report, Koleda Childress Inc., dated July 15, 1991

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-07-15

    Concerning alternate energy, a report is made on the status of policies and plans, private sector activities, and global warming mitigation measures in the United States. A Clean Coal Technology Efficiency Improvement Act was introduced in the House of Representatives. Ms Linda Stuntz was named acting Assistant Secretary of Fossil Energy, Department of Energy. The Department of Energy has released a status report on the 35 clean coal projects selected for financial assistance. In the private sector, the Atlantic Richfield Company has announced that it has designed a new reformulated gasoline that rivals methanol in its ability to reduce emissions from motor vehicles. The new gasoline reduces hydrocarbon emissions by 28 percent, evaporative emissions by 36 percent, and nitrogen oxide emissions by 26 percent as compared with conventional gasoline. The United Nations-sponsored second negotiating session in Geneva for an international climate treaty was completed in June, but there was no little substantive progress. It is supposed that the British government is ready to step up international pressure on the United States to take decisive steps to cope with global warming. (NEDO)

  17. Strategic area : energy and petroleum - resources and environment : annual report 2007

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    Energy is needed to provide for essential human needs like food, housing, clothing, transportation, health and recreation - in short what is needed to live a good life on this planet. By the end of this century, emission of greenhouse gases needs to be curbed. At the same time around 6 billion new citizens may join in at the global dinner table. How to produce sufficient amounts of clean energy for a future peaceful and sustainable society is today's largest challenge. There will be a great demand for new knowledge, new technology and new solutions. This is a global challenge which will involve a lot of people in many countries. NTNU, together with SINTEF, wants to play an active and productive role to supply the necessary scientific input to the global transformation processes needed to achieve a sustainable future. The overall goal is to develop new knowledge and educate the people who can turn that knowledge into clean energy solutions. A successful transition to clean and sustainable energy systems will depend on global innovation processes. Although the solutions that will be implemented will reflect local resources and conditions, they will emerge from the application of a mixture of key technologies with which NTNU and SINTEF are actively working: 1. Efficient and sustainable generation, transport and end-user utilization of energy, including oil and gas. 2. Carbon dioxide capture and storage. 3. Renewable energy. Probably, electricity and hydrogen will be the main energy carriers of the future, together with biofuels and biomass. Yet, it is important to propose - within the same time frame - a variety of possible technological solutions to allow for social choices and local concerns. Norway may be considered an 'energy country'. Thus, NTNU and SINTEF have established substantial energy related activity. Today, more than 750 scientists are involved in the efforts to create a cleaner future. This 'family' includes 170 professors and

  18. Energy Technology Perspectives 2012: Executive Summary [Italian version

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Energy Technology Perspectives (ETP) is the International Energy Agency’s most ambitious publication on new developments in energy technology. It demonstrates how technologies – from electric vehicles to smart grids – can make a decisive difference in achieving the objective of limiting the global temperature rise to 2°C and enhancing energy security. ETP 2012 presents scenarios and strategies to 2050, with the aim of guiding decision makers on energy trends and what needs to be done to build a clean, secure and competitive energy future.

  19. Energy Technology Perspectives 2012: Executive Summary [French version

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Energy Technology Perspectives (ETP) is the International Energy Agency’s most ambitious publication on new developments in energy technology. It demonstrates how technologies – from electric vehicles to smart grids – can make a decisive difference in achieving the objective of limiting the global temperature rise to 2°C and enhancing energy security. ETP 2012 presents scenarios and strategies to 2050, with the aim of guiding decision makers on energy trends and what needs to be done to build a clean, secure and competitive energy future.

  20. Energy Technology Perspectives 2012: Executive Summary [Spanish version

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Energy Technology Perspectives (ETP) is the International Energy Agency’s most ambitious publication on new developments in energy technology. It demonstrates how technologies – from electric vehicles to smart grids – can make a decisive difference in achieving the objective of limiting the global temperature rise to 2°C and enhancing energy security. ETP 2012 presents scenarios and strategies to 2050, with the aim of guiding decision makers on energy trends and what needs to be done to build a clean, secure and competitive energy future.