WorldWideScience

Sample records for global carbon model

  1. Modeling of the global carbon cycle - isotopic data requirements

    Ciais, P.

    1994-01-01

    Isotopes are powerful tools to constrain carbon cycle models. For example, the combinations of the CO 2 and the 13 C budget allows to calculate the net-carbon fluxes between atmosphere, ocean, and biosphere. Observations of natural and bomb-produced radiocarbon allow to estimate gross carbon exchange fluxes between different reservoirs and to deduce time scales of carbon overturning in important reservoirs. 18 O in CO 2 is potentially a tool to make the deconvolution of C fluxes within the land biosphere (assimilation vs respirations). The scope of this article is to identify gaps in our present knowledge about isotopes in the light of their use as constraint for the global carbon cycle. In the following we will present a list of some future data requirements for carbon cycle models. (authors)

  2. A global predictive model of carbon in mangrove soils

    Jardine, Sunny L; Siikamäki, Juha V

    2014-01-01

    Mangroves are among the most threatened and rapidly vanishing natural environments worldwide. They provide a wide range of ecosystem services and have recently become known for their exceptional capacity to store carbon. Research shows that mangrove conservation may be a low-cost means of reducing CO 2 emissions. Accordingly, there is growing interest in developing market mechanisms to credit mangrove conservation projects for associated CO 2 emissions reductions. These efforts depend on robust and readily applicable, but currently unavailable, localized estimates of soil carbon. Here, we use over 900 soil carbon measurements, collected in 28 countries by 61 independent studies, to develop a global predictive model for mangrove soil carbon. Using climatological and locational data as predictors, we explore several predictive modeling alternatives, including machine-learning methods. With our predictive model, we construct a global dataset of estimated soil carbon concentrations and stocks on a high-resolution grid (5 arc min). We estimate that the global mangrove soil carbon stock is 5.00 ± 0.94 Pg C (assuming a 1 meter soil depth) and find this stock is highly variable over space. The amount of carbon per hectare in the world’s most carbon-rich mangroves (approximately 703 ± 38 Mg C ha −1 ) is roughly a 2.6 ± 0.14 times the amount of carbon per hectare in the world’s most carbon-poor mangroves (approximately 272 ± 49 Mg C ha −1 ). Considerable within country variation in mangrove soil carbon also exists. In Indonesia, the country with the largest mangrove soil carbon stock, we estimate that the most carbon-rich mangroves contain 1.5 ± 0.12 times as much carbon per hectare as the most carbon-poor mangroves. Our results can aid in evaluating benefits from mangrove conservation and designing mangrove conservation policy. Additionally, the results can be used to project changes in mangrove soil carbon stocks based on changing climatological

  3. A global predictive model of carbon in mangrove soils

    Jardine, Sunny L.; Siikamäki, Juha V.

    2014-10-01

    Mangroves are among the most threatened and rapidly vanishing natural environments worldwide. They provide a wide range of ecosystem services and have recently become known for their exceptional capacity to store carbon. Research shows that mangrove conservation may be a low-cost means of reducing CO2 emissions. Accordingly, there is growing interest in developing market mechanisms to credit mangrove conservation projects for associated CO2 emissions reductions. These efforts depend on robust and readily applicable, but currently unavailable, localized estimates of soil carbon. Here, we use over 900 soil carbon measurements, collected in 28 countries by 61 independent studies, to develop a global predictive model for mangrove soil carbon. Using climatological and locational data as predictors, we explore several predictive modeling alternatives, including machine-learning methods. With our predictive model, we construct a global dataset of estimated soil carbon concentrations and stocks on a high-resolution grid (5 arc min). We estimate that the global mangrove soil carbon stock is 5.00 ± 0.94 Pg C (assuming a 1 meter soil depth) and find this stock is highly variable over space. The amount of carbon per hectare in the world’s most carbon-rich mangroves (approximately 703 ± 38 Mg C ha-1) is roughly a 2.6 ± 0.14 times the amount of carbon per hectare in the world’s most carbon-poor mangroves (approximately 272 ± 49 Mg C ha-1). Considerable within country variation in mangrove soil carbon also exists. In Indonesia, the country with the largest mangrove soil carbon stock, we estimate that the most carbon-rich mangroves contain 1.5 ± 0.12 times as much carbon per hectare as the most carbon-poor mangroves. Our results can aid in evaluating benefits from mangrove conservation and designing mangrove conservation policy. Additionally, the results can be used to project changes in mangrove soil carbon stocks based on changing climatological predictors, e.g. to

  4. Soil carbon model alternatives for ECHAM5/JSBACH climate model: Evaluation and impacts on global carbon cycle estimates

    Thum, T.; Raisanen, P.; Sevanto, S.

    2011-01-01

    The response of soil organic carbon to climate change might lead to significant feedbacks affecting global warming. This response can be studied by coupled climate-carbon cycle models but so far the description of soil organic carbon cycle in these models has been quite simple. In this work we used...... the coupled climate-carbon cycle model ECHAM5/JSBACH (European Center/Hamburg Model 5/Jena Scheme for Biosphere-Atmosphere Coupling in Hamburg) with two different soil carbon modules, namely (1) the original soil carbon model of JSBACH called CBALANCE and (2) a new soil carbon model Yasso07, to study...... the interaction between climate variability and soil organic carbon. Equivalent ECHAM5/JSBACH simulations were conducted using both soil carbon models, with freely varying atmospheric CO2 for the last 30 years (1977-2006). In this study, anthropogenic CO2 emissions and ocean carbon cycle were excluded. The new...

  5. Evaluation of black carbon estimations in global aerosol models

    Y. Zhao

    2009-11-01

    Full Text Available We evaluate black carbon (BC model predictions from the AeroCom model intercomparison project by considering the diversity among year 2000 model simulations and comparing model predictions with available measurements. These model-measurement intercomparisons include BC surface and aircraft concentrations, aerosol absorption optical depth (AAOD retrievals from AERONET and Ozone Monitoring Instrument (OMI and BC column estimations based on AERONET. In regions other than Asia, most models are biased high compared to surface concentration measurements. However compared with (column AAOD or BC burden retreivals, the models are generally biased low. The average ratio of model to retrieved AAOD is less than 0.7 in South American and 0.6 in African biomass burning regions; both of these regions lack surface concentration measurements. In Asia the average model to observed ratio is 0.7 for AAOD and 0.5 for BC surface concentrations. Compared with aircraft measurements over the Americas at latitudes between 0 and 50N, the average model is a factor of 8 larger than observed, and most models exceed the measured BC standard deviation in the mid to upper troposphere. At higher latitudes the average model to aircraft BC ratio is 0.4 and models underestimate the observed BC loading in the lower and middle troposphere associated with springtime Arctic haze. Low model bias for AAOD but overestimation of surface and upper atmospheric BC concentrations at lower latitudes suggests that most models are underestimating BC absorption and should improve estimates for refractive index, particle size, and optical effects of BC coating. Retrieval uncertainties and/or differences with model diagnostic treatment may also contribute to the model-measurement disparity. Largest AeroCom model diversity occurred in northern Eurasia and the remote Arctic, regions influenced by anthropogenic sources. Changing emissions, aging, removal, or optical properties within a single model

  6. The global carbon cycle

    Maier-Reimer, E.

    1991-01-01

    Basic concepts of the global carbon cycle on earth are described; by careful analyses of isotopic ratios, emission history and oceanic ventilation rates are derived, which provide crucial tests for constraining and calibrating models. Effects of deforestation, fertilizing, fossil fuel burning, soil erosion, etc. are quantified and compared, and the oceanic carbon process is evaluated. Oceanic and terrestrial biosphere modifications are discussed and a carbon cycle model is proposed

  7. Global Carbon Budget 2017

    Le Quere, Corinne; Andrew, Robbie M.; Friedlingstein, Pierre; Sitch, Stephen; Pongratz, Julia; Manning, Andrew C.; Korsbakken, Jan Ivar; Peters, Glen P.; Canadell, Josep G.; Jackson, Robert B.; Boden, Thomas A.; Tans, Pieter P.; Andrews, Oliver D.; Arora, Vivek K.; Bakker, Dorothee C. E.; Barbero, Leticia; Becker, Meike; Betts, Richard A.; Bopp, Laurent; Chevallier, Frederic; Chini, Louise P.; Ciais, Philippe; Cosca, Catherine E.; Cross, Jessica; Currie, Kim; Gasser, Thomas; Harris, Ian; Hauck, Judith; Haverd, Vanessa; Houghton, Richard A.; Hunt, Christopher W.; Hurtt, George; Ilyina, Tatiana; Jain, Atul K.; Kato, Etsushi; Kautz, Markus; Keeling, Ralph F.; Goldewijk, Kees Klein; Koertzinger, Arne; Landschuetzer, Peter; Lefevre, Nathalie; Lenton, Andrew; Lienert, Sebastian; Lima, Ivan; Lombardozzi, Danica; Metzl, Nicolas; Millero, Frank; Monteiro, Pedro M. S.; Munro, David R.; Nabel, Julia E. M. S.; Nakaoka, Shin-ichiro; Nojiri, Yukihiro; Padin, X. Antonio; Peregon, Anna; Pfeil, Benjamin; Pierrot, Denis; Poulter, Benjamin; Rehder, Gregor; Reimer, Janet; Roedenbeck, Christian; Schwinger, Jorg; Seferian, Roland; Skjelvan, Ingunn; Stocker, Benjamin D.; Tian, Hanqin; Tilbrook, Bronte; Tubiello, Francesco N.; van der Laan-Luijkx, Ingrid T.; van der Werf, Guido R.; van Heuven, Steven; Viovy, Nicolas; Vuichard, Nicolas; Walker, Anthony P.; Watson, Andrew J.; Wiltshire, Andrew J.; Zaehle, Soenke; Zhu, Dan

    2018-01-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere - the "global carbon budget" - is important to better understand the global carbon cycle, support the development of climate policies, and project

  8. Bacteria in the greenhouse: Modeling the role of oceanic plankton in the global carbon cycle

    Ducklow, H.W.; Fasham, M.J.R.

    1992-01-01

    To plan effectively to deal with the greenhouse effect, a fundamental understanding is needed of the biogeochemical and physical machinery that cycles carbon in the global system; in addition, models are needed of the carbon cycle to project the effects of increasing carbon dioxide. In this chapter, a description is given of efforts to simulate the cycling of carbon and nitrogen in the upper ocean, concentrating on the model's treatment of marine phytoplankton, and what it reveals of their role in the biogeochemical cycling of carbon between the ocean and atmosphere. The focus is on the upper ocean because oceanic uptake appears to regulate the level of carbon dioxide in the atmosphere

  9. Estimation of Global 1km-grid Terrestrial Carbon Exchange Part I: Developing Inputs and Modelling

    Sasai, T.; Murakami, K.; Kato, S.; Matsunaga, T.; Saigusa, N.; Hiraki, K.

    2015-12-01

    Global terrestrial carbon cycle largely depends on a spatial pattern in land cover type, which is heterogeneously-distributed over regional and global scales. However, most studies, which aimed at the estimation of carbon exchanges between ecosystem and atmosphere, remained within several tens of kilometers grid spatial resolution, and the results have not been enough to understand the detailed pattern of carbon exchanges based on ecological community. Improving the sophistication of spatial resolution is obviously necessary to enhance the accuracy of carbon exchanges. Moreover, the improvement may contribute to global warming awareness, policy makers and other social activities. In this study, we show global terrestrial carbon exchanges (net ecosystem production, net primary production, and gross primary production) with 1km-grid resolution. As methodology for computing the exchanges, we 1) developed a global 1km-grid climate and satellite dataset based on the approach in Setoyama and Sasai (2013); 2) used the satellite-driven biosphere model (Biosphere model integrating Eco-physiological And Mechanistic approaches using Satellite data: BEAMS) (Sasai et al., 2005, 2007, 2011); 3) simulated the carbon exchanges by using the new dataset and BEAMS by the use of a supercomputer that includes 1280 CPU and 320 GPGPU cores (GOSAT RCF of NIES). As a result, we could develop a global uniform system for realistically estimating terrestrial carbon exchange, and evaluate net ecosystem production in each community level; leading to obtain highly detailed understanding of terrestrial carbon exchanges.

  10. Sources of uncertainties in modelling black carbon at the global scale

    Vignati, E.; Karl, M.; Krol, M.C.; Wilson, J.; Stier, P.; Cavalli, F.

    2010-01-01

    Our understanding of the global black carbon (BC) cycle is essentially qualitative due to uncertainties in our knowledge of its properties. This work investigates two source of uncertainties in modelling black carbon: those due to the use of different schemes for BC ageing and its removal rate in

  11. Testing the performance of a Dynamic Global Ecosystem Model: Water balance, carbon balance, and vegetation structure

    Kucharik, Christopher J.; Foley, Jonathan A.; Delire, Christine; Fisher, Veronica A.; Coe, Michael T.; Lenters, John D.; Young-Molling, Christine; Ramankutty, Navin; Norman, John M.; Gower, Stith T.

    2000-09-01

    While a new class of Dynamic Global Ecosystem Models (DGEMs) has emerged in the past few years as an important tool for describing global biogeochemical cycles and atmosphere-biosphere interactions, these models are still largely untested. Here we analyze the behavior of a new DGEM and compare the results to global-scale observations of water balance, carbon balance, and vegetation structure. In this study, we use version 2 of the Integrated Biosphere Simulator (IBIS), which includes several major improvements and additions to the prototype model developed by Foley et al. [1996]. IBIS is designed to be a comprehensive model of the terrestrial biosphere; the model represents a wide range of processes, including land surface physics, canopy physiology, plant phenology, vegetation dynamics and competition, and carbon and nutrient cycling. The model generates global simulations of the surface water balance (e.g., runoff), the terrestrial carbon balance (e.g., net primary production, net ecosystem exchange, soil carbon, aboveground and belowground litter, and soil CO2 fluxes), and vegetation structure (e.g., biomass, leaf area index, and vegetation composition). In order to test the performance of the model, we have assembled a wide range of continental and global-scale data, including measurements of river discharge, net primary production, vegetation structure, root biomass, soil carbon, litter carbon, and soil CO2 flux. Using these field data and model results for the contemporary biosphere (1965-1994), our evaluation shows that simulated patterns of runoff, NPP, biomass, leaf area index, soil carbon, and total soil CO2 flux agree reasonably well with measurements that have been compiled from numerous ecosystems. These results also compare favorably to other global model results.

  12. Global assessment of ocean carbon export by combining satellite observations and food-web models

    Siegel, D. A.; Buesseler, K. O.; Doney, S. C.; Sailley, S. F.; Behrenfeld, M. J.; Boyd, P. W.

    2014-03-01

    The export of organic carbon from the surface ocean by sinking particles is an important, yet highly uncertain, component of the global carbon cycle. Here we introduce a mechanistic assessment of the global ocean carbon export using satellite observations, including determinations of net primary production and the slope of the particle size spectrum, to drive a food-web model that estimates the production of sinking zooplankton feces and algal aggregates comprising the sinking particle flux at the base of the euphotic zone. The synthesis of observations and models reveals fundamentally different and ecologically consistent regional-scale patterns in export and export efficiency not found in previous global carbon export assessments. The model reproduces regional-scale particle export field observations and predicts a climatological mean global carbon export from the euphotic zone of 6 Pg C yr-1. Global export estimates show small variation (typically model parameter values. The model is also robust to the choices of the satellite data products used and enables interannual changes to be quantified. The present synthesis of observations and models provides a path for quantifying the ocean's biological pump.

  13. Global carbon monoxide cycle: Modeling and data analysis

    Arellano, Avelino F., Jr.

    The overarching goal of this dissertation is to develop robust, spatially and temporally resolved CO sources, using global chemical transport modeling, CO measurements from Climate Monitoring and Diagnostic Laboratory (CMDL) and Measurement of Pollution In The Troposphere (MOPITT), under the framework of Bayesian synthesis inversion. To rigorously quantify the CO sources, I conducted five sets of inverse analyses, with each set investigating specific methodological and scientific issues. The first two inverse analyses separately explored two different CO observations to estimate CO sources by region and sector. Under a range of scenarios relating to inverse methodology and data quality issues, top-down estimates using CMDL CO surface and MOPITT CO remote-sensed measurements show consistent results particularly on a significantly large fossil fuel/biofuel (FFBF) emission in East Asia than present bottom-up estimates. The robustness of this estimate is strongly supported by forward and inverse modeling studies in the region particularly from TRansport and Chemical Evolution over the Pacific (TRACE-P) campaign. The use of high-resolution measurement for the first time in CO inversion also draws attention to a methodology issue that the range of estimates from the scenarios is larger than posterior uncertainties, suggesting that estimate uncertainties may be underestimated. My analyses highlight the utility of top-down approach to provide additional constraints on present global estimates by also pointing to other discrepancies including apparent underestimation of FFBF from Africa/Latin America and biomass burning (BIOM) sources in Africa, southeast Asia and north-Latin America, indicating inconsistencies on our current understanding of fuel use and land-use patterns in these regions. Inverse analysis using MOPITT is extended to determine the extent of MOPITT information and estimate monthly regional CO sources. A major finding, which is consistent with other

  14. Global Carbon Budget 2016

    Le Quéré, Corinne; Andrew, Robbie M.; Canadell, Josep G.; Sitch, Stephen; Ivar Korsbakken, Jan; Peters, Glen P.; Manning, Andrew C.; Boden, Thomas A.; Tans, Pieter P.; Houghton, Richard A.; Keeling, Ralph F.; Alin, Simone; Andrews, Oliver D.; Anthoni, Peter; Barbero, Leticia; Bopp, Laurent; Chevallier, Frédéric; Chini, Louise P.; Ciais, Philippe; Currie, Kim; Delire, Christine; Doney, Scott C.; Friedlingstein, Pierre; Gkritzalis, Thanos; Harris, Ian A; Hauck, Judith; Haverd, Vanessa; Hoppema, Mario; Klein Goldewijk, Kees; Jain, Atul K.; Kato, Etsushi; Körtzinger, Arne; Landschützer, Peter; Lefèvre, Nathalie; Lenton, Andrew; Lienert, Sebastian; Lombardozzi, Danica; Melton, Joe R.; Metzl, Nicolas; Millero, Frank; Monteiro, Pedro M S; Munro, David R.; Nabel, Julia E M S; Nakaoka, Shin Ichiro; O'Brien, Kevin; Olsen, Are; Omar, Abdirahman M.; Ono, Tsuneo; Pierrot, Denis; Poulter, Benjamin; Rödenbeck, Christian; Salisbury, Joe; Schuster, Ute; Schwinger, Jörg; Séférian, Roland; Skjelvan, Ingunn; Stocker, Benjamin D.; Sutton, Adrienne J.; Takahashi, Taro; Tian, Hanqin; Tilbrook, Bronte; Van Der Laan-Luijkx, Ingrid T.; Van Der Werf, Guido R.; Viovy, Nicolas; Walker, Anthony P.; Wiltshire, Andrew J.; Zaehle, Sönke

    2016-01-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere-the "global carbon budget"-is important to better understand the global carbon cycle, support the development of climate policies, and project future

  15. Global Carbon Budget 2016

    Quéré, Le Corinne; Andrew, Robbie M.; Canadell, Josep G.; Sitch, Stephen; Korsbakken, Jan Ivar; Peters, Glen P.; Manning, Andrew C.; Boden, Thomas A.; Tans, Pieter P.; Houghton, Richard A.; Keeling, Ralph F.; Alin, Simone; Andrews, Oliver D.; Anthoni, Peter; Barbero, Leticia; Bopp, Laurent; Chevallier, Frédéric; Chini, Louise P.; Ciais, Philippe; Currie, Kim; Delire, Christine; Doney, Scott C.; Friedlingstein, Pierre; Gkritzalis, Thanos; Harris, Ian; Hauck, Judith; Haverd, Vanessa; Hoppema, Mario; Klein Goldewijk, Kees; Jain, Atul K.; Kato, Etsushi; Körtzinger, Arne; Landschützer, Peter; Lefèvre, Nathalie; Lenton, Andrew; Lienert, Sebastian; Lombardozzi, Danica; Melton, Joe R.; Metzl, Nicolas; Millero, Frank; Monteiro, Pedro M.S.; Munro, David R.; Nabel, Julia E.M.S.; Nakaoka, S.; O'Brien, Kevin; Olsen, Are; Omar, Abdirahman M.; Ono, Tsuneo; Pierrot, Denis; Poulter, Benjamin; Rödenbeck, Christian; Salisbury, Joe; Schuster, Ute; Schwinger, Jörg; Séférian, Roland; Skjelvan, Ingunn; Stocker, Benjamin D.; Sutton, Adrienne J.; Takahashi, Taro; Tian, Hanqin; Tilbrook, Bronte; Laan-Luijkx, van der Ingrid T.; Werf, van der Guido R.; Viovy, Nicolas; Walker, Anthony P.; Wiltshire, Andrew J.; Zaehle, Sönke

    2016-01-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project

  16. Global carbon budget 2013

    Le Quere, C.; Moriarty, R.; Jones, S.D.; Boden, T.A.; Peters, G.P.; Andrew, R.M.; Andres, R.J.; Ciais, P.; Bopp, L.; Maignan, F.; Viovy, N.

    2014-01-01

    Accurate assessment of anthropogenic carbon dioxide (CO 2 ) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO 2 emissions from fossil-fuel combustion and cement production (EFF) are based on energy statistics, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO 2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO 2 sink (SOCEAN) is based on observations from the 1990's, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated for the first time in this budget with data products based on surveys of ocean CO 2 measurements. The global residual terrestrial CO 2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO 2 and land cover change (some including nitrogen-carbon interactions). All uncertainties are reported as ±1, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2003-2012), EFF was 8.6±0.4 GtC yr -1 , ELUC 0.9±0.5 GtC yr -1 , GATM 4.3±0

  17. A simple global carbon and energy coupled cycle model for global warming simulation: sensitivity to the light saturation effect

    Ichii, Kazuhito; Murakami, Kazutaka; Mukai, Toshikazu; Yamaguchi, Yasushi; Ogawa, Katsuro

    2003-01-01

    A simple Earth system model, the Four-Spheres Cycle of Energy and Mass (4-SCEM) model, has been developed to simulate global warming due to anthropogenic CO 2 emission. The model consists of the Atmosphere-Earth Heat Cycle (AEHC) model, the Four Spheres Carbon Cycle (4-SCC) model, and their feedback processes. The AEHC model is a one-dimensional radiative convective model, which includes the greenhouse effect of CO 2 and H 2 O, and one cloud layer. The 4-SCC model is a box-type carbon cycle model, which includes biospheric CO 2 fertilization, vegetation area variation, the vegetation light saturation effect and the HILDA oceanic carbon cycle model. The feedback processes between carbon cycle and climate considered in the model are temperature dependencies of water vapor content, soil decomposition and ocean surface chemistry. The future status of the global carbon cycle and climate was simulated up to the year 2100 based on the 'business as usual' (IS92a) emission scenario, followed by a linear decline in emissions to zero in the year 2200. The atmospheric CO 2 concentration reaches 645 ppmv in 2100 and a peak of 760 ppmv approximately in the year 2170, and becomes a steady state with 600 ppmv. The projected CO 2 concentration was lower than those of the past carbon cycle studies, because we included the light saturation effect of vegetation. The sensitivity analysis showed that uncertainties derived from the light saturation effect of vegetation and land use CO 2 emissions were the primary cause of uncertainties in projecting future CO 2 concentrations. The climate feedback effects showed rather small sensitivities compared with the impacts of those two effects. Satellite-based net primary production trends analyses can somewhat decrease the uncertainty in quantifying CO 2 emissions due to land use changes. On the other hand, as the estimated parameter in vegetation light saturation was poorly constrained, we have to quantify and constrain the effect more

  18. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model

    Cox, P.M.; Betts, R.A.; Jones, C.D.; Spall, S.A.; Totterdell, I.J.

    2000-01-01

    The continued increase in the atmospheric concentration of carbon dioxide due to anthropogenic emissions is predicted to lead to significant changes in climate. About half of the current emissions are being absorbed by the ocean and by land ecosystems, but this absorption is sensitive to climate as well as to atmospheric carbon dioxide concentrations, creating a feedback loop. General circulation models have generally excluded the feedback between climate and the biosphere, using static vegetation distributions and CO 2 concentrations from simple carbon-cycle models that do not include climate change. Here we present results from a fully coupled, three-dimensional carbon-climate model, indicating that carbon-cycle feedbacks could significantly accelerate climate change over the twenty-first century. We find that under a 'business as usual' scenario, the terrestrial biosphere acts as an overall carbon sink until about 2050, but turns into a source thereafter. By 2100, the ocean uptake rate of 5 Gt C yr -1 is balanced by the terrestrial carbon source, and atmospheric CO 2 concentrations are 250 p.p.m.v. higher in our fully coupled simulation than in uncoupled carbon models, resulting in a global-mean warming of 5.5 K, as compared to 4 K without the carbon-cycle feedback. (author)

  19. Carbon stock and carbon turnover in boreal and temperate forests - Integration of remote sensing data and global vegetation models

    Thurner, Martin; Beer, Christian; Carvalhais, Nuno; Forkel, Matthias; Tito Rademacher, Tim; Santoro, Maurizio; Tum, Markus; Schmullius, Christiane

    2016-04-01

    Long-term vegetation dynamics are one of the key uncertainties of the carbon cycle. There are large differences in simulated vegetation carbon stocks and fluxes including productivity, respiration and carbon turnover between global vegetation models. Especially the implementation of climate-related mortality processes, for instance drought, fire, frost or insect effects, is often lacking or insufficient in current models and their importance at global scale is highly uncertain. These shortcomings have been due to the lack of spatially extensive information on vegetation carbon stocks, which cannot be provided by inventory data alone. Instead, we recently have been able to estimate northern boreal and temperate forest carbon stocks based on radar remote sensing data. Our spatially explicit product (0.01° resolution) shows strong agreement to inventory-based estimates at a regional scale and allows for a spatial evaluation of carbon stocks and dynamics simulated by global vegetation models. By combining this state-of-the-art biomass product and NPP datasets originating from remote sensing, we are able to study the relation between carbon turnover rate and a set of climate indices in northern boreal and temperate forests along spatial gradients. We observe an increasing turnover rate with colder winter temperatures and longer winters in boreal forests, suggesting frost damage and the trade-off between frost adaptation and growth being important mortality processes in this ecosystem. In contrast, turnover rate increases with climatic conditions favouring drought and insect outbreaks in temperate forests. Investigated global vegetation models from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT, are able to reproduce observation-based spatial climate - turnover rate relationships only to a limited extent. While most of the models compare relatively well in terms of NPP, simulated

  20. Exploring global carbon turnover and radiocarbon cycling in terrestrial biosphere models

    Graven, H. D.; Warren, H.

    2017-12-01

    The uptake of carbon into terrestrial ecosystems through net primary productivity (NPP) and the turnover of that carbon through various pathways are the fundamental drivers of changing carbon stocks on land, in addition to human-induced and natural disturbances. Terrestrial biosphere models use different formulations for carbon uptake and release, resulting in a range of values in NPP of 40-70 PgC/yr and biomass turnover times of about 25-40 years for the preindustrial period in current-generation models from CMIP5. Biases in carbon uptake and turnover impact simulated carbon uptake and storage in the historical period and later in the century under changing climate and CO2 concentration, however evaluating global-scale NPP and carbon turnover is challenging. Scaling up of plot-scale measurements involves uncertainty due to the large heterogeneity across ecosystems and biomass types, some of which are not well-observed. We are developing the modelling of radiocarbon in terrestrial biosphere models, with a particular focus on decadal 14C dynamics after the nuclear weapons testing in the 1950s-60s, including the impact of carbon flux trends and variability on 14C cycling. We use an estimate of the total inventory of excess 14C in the biosphere constructed by Naegler and Levin (2009) using a 14C budget approach incorporating estimates of total 14C produced by the weapons tests and atmospheric and oceanic 14C observations. By simulating radiocarbon in simple biosphere box models using carbon fluxes from the CMIP5 models, we find that carbon turnover is too rapid in many of the simple models - the models appear to take up too much 14C and release it too quickly. Therefore many CMIP5 models may also simulate carbon turnover that is too rapid. A caveat is that the simple box models we use may not adequately represent carbon dynamics in the full-scale models. Explicit simulation of radiocarbon in terrestrial biosphere models would allow more robust evaluation of biosphere

  1. Sources of uncertainties in modelling black carbon at the global scale

    E. Vignati

    2010-03-01

    Full Text Available Our understanding of the global black carbon (BC cycle is essentially qualitative due to uncertainties in our knowledge of its properties. This work investigates two source of uncertainties in modelling black carbon: those due to the use of different schemes for BC ageing and its removal rate in the global Transport-Chemistry model TM5 and those due to the uncertainties in the definition and quantification of the observations, which propagate through to both the emission inventories, and the measurements used for the model evaluation.

    The schemes for the atmospheric processing of black carbon that have been tested with the model are (i a simple approach considering BC as bulk aerosol and a simple treatment of the removal with fixed 70% of in-cloud black carbon concentrations scavenged by clouds and removed when rain is present and (ii a more complete description of microphysical ageing within an aerosol dynamics model, where removal is coupled to the microphysical properties of the aerosol, which results in a global average of 40% in-cloud black carbon that is scavenged in clouds and subsequently removed by rain, thus resulting in a longer atmospheric lifetime. This difference is reflected in comparisons between both sets of modelled results and the measurements. Close to the sources, both anthropogenic and vegetation fire source regions, the model results do not differ significantly, indicating that the emissions are the prevailing mechanism determining the concentrations and the choice of the aerosol scheme does not influence the levels. In more remote areas such as oceanic and polar regions the differences can be orders of magnitude, due to the differences between the two schemes. The more complete description reproduces the seasonal trend of the black carbon observations in those areas, although not always the magnitude of the signal, while the more simplified approach underestimates black carbon concentrations by orders of

  2. Diagnosis and Quantification of Climatic Sensitivity of Carbon Fluxes in Ensemble Global Ecosystem Models

    Wang, W.; Hashimoto, H.; Milesi, C.; Nemani, R. R.; Myneni, R.

    2011-12-01

    Terrestrial ecosystem models are primary scientific tools to extrapolate our understanding of ecosystem functioning from point observations to global scales as well as from the past climatic conditions into the future. However, no model is nearly perfect and there are often considerable structural uncertainties existing between different models. Ensemble model experiments thus become a mainstream approach in evaluating the current status of global carbon cycle and predicting its future changes. A key task in such applications is to quantify the sensitivity of the simulated carbon fluxes to climate variations and changes. Here we develop a systematic framework to address this question solely by analyzing the inputs and the outputs from the models. The principle of our approach is to assume the long-term (~30 years) average of the inputs/outputs as a quasi-equlibrium of the climate-vegetation system while treat the anomalies of carbon fluxes as responses to climatic disturbances. In this way, the corresponding relationships can be largely linearized and analyzed using conventional time-series techniques. This method is used to characterize three major aspects of the vegetation models that are mostly important to global carbon cycle, namely the primary production, the biomass dynamics, and the ecosystem respiration. We apply this analytical framework to quantify the climatic sensitivity of an ensemble of models including CASA, Biome-BGC, LPJ as well as several other DGVMs from previous studies, all driven by the CRU-NCEP climate dataset. The detailed analysis results are reported in this study.

  3. Global Carbon Budget 2017

    Le Quéré, Corinne; Andrew, Robbie M.; Friedlingstein, Pierre; Sitch, Stephen; Pongratz, Julia; Manning, Andrew C.; Korsbakken, Jan Ivar; Peters, Glen P.; Canadell, Josep G.; Jackson, Robert B.; Boden, Thomas A.; Tans, Pieter P.; Andrews, Oliver D.; Arora, Vivek K.; Bakker, Dorothee C. E.; Barbero, Leticia; Becker, Meike; Betts, Richard A.; Bopp, Laurent; Chevallier, Frédéric; Chini, Louise P.; Ciais, Philippe; Cosca, Catherine E.; Cross, Jessica; Currie, Kim; Gasser, Thomas; Harris, Ian; Hauck, Judith; Haverd, Vanessa; Houghton, Richard A.; Hunt, Christopher W.; Hurtt, George; Ilyina, Tatiana; Jain, Atul K.; Kato, Etsushi; Kautz, Markus; Keeling, Ralph F.; Klein Goldewijk, Kees; Körtzinger, Arne; Landschützer, Peter; Lefèvre, Nathalie; Lenton, Andrew; Lienert, Sebastian; Lima, Ivan; Lombardozzi, Danica; Metzl, Nicolas; Millero, Frank; Monteiro, Pedro M. S.; Munro, David R.; Nabel, Julia E. M. S.; Nakaoka, Shin-ichiro; Nojiri, Yukihiro; Padin, X. Antonio; Peregon, Anna; Pfeil, Benjamin; Pierrot, Denis; Poulter, Benjamin; Rehder, Gregor; Reimer, Janet; Rödenbeck, Christian; Schwinger, Jörg; Séférian, Roland; Skjelvan, Ingunn; Stocker, Benjamin D.; Tian, Hanqin; Tilbrook, Bronte; Tubiello, Francesco N.; van der Laan-Luijkx, Ingrid T.; van der Werf, Guido R.; van Heuven, Steven; Viovy, Nicolas; Vuichard, Nicolas; Walker, Anthony P.; Watson, Andrew J.; Wiltshire, Andrew J.; Zaehle, Sönke; Zhu, Dan

    2018-03-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere - the global carbon budget - is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on land-cover change data and bookkeeping models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2007-2016), EFF was 9.4 ± 0.5 GtC yr-1, ELUC 1.3 ± 0.7 GtC yr-1, GATM 4.7 ± 0.1 GtC yr-1, SOCEAN 2.4 ± 0.5 GtC yr-1, and SLAND 3.0 ± 0.8 GtC yr-1, with a budget imbalance BIM of 0.6 GtC yr-1 indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in EFF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr-1. Also for 2016, ELUC was 1.3 ± 0.7 GtC yr-1, GATM was 6.1 ± 0.2 GtC yr-1, SOCEAN was 2.6 ± 0.5 GtC yr-1, and SLAND was 2.7 ± 1.0 GtC yr-1, with a small BIM of -0.3 GtC. GATM continued to be higher in 2016 compared to the past decade (2007-2016), reflecting in part the high fossil emissions and the small SLAND

  4. Global Carbon Budget 2017

    C. Le Quéré

    2018-03-01

    Full Text Available Accurate assessment of anthropogenic carbon dioxide (CO2 emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the global carbon budget – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO2 emissions from fossil fuels and industry (EFF are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC, mainly deforestation, are based on land-cover change data and bookkeeping models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN and terrestrial CO2 sink (SLAND are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM, the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2007–2016, EFF was 9.4 ± 0.5 GtC yr−1, ELUC 1.3 ± 0.7 GtC yr−1, GATM 4.7 ± 0.1 GtC yr−1, SOCEAN 2.4 ± 0.5 GtC yr−1, and SLAND 3.0 ± 0.8 GtC yr−1, with a budget imbalance BIM of 0.6 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in EFF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr−1. Also for 2016, ELUC was 1.3 ± 0.7 GtC yr−1, GATM was 6.1 ± 0.2 GtC yr−1, SOCEAN was 2.6 ± 0.5 GtC yr−1, and SLAND was 2.7 ± 1.0 GtC yr−1, with a small BIM of −0.3 GtC. GATM continued to be

  5. Simulated effects of nitrogen saturation the global carbon budget using the IBIS model

    Lu, Xuehe; Jiang, Hong; Liu, Jinxun; Zhang, Xiuying; Jin, Jiaxin; Zhu, Qiuan; Zhang, Zhen; Peng, Changhui

    2016-01-01

    Over the past 100 years, human activity has greatly changed the rate of atmospheric N (nitrogen) deposition in terrestrial ecosystems, resulting in N saturation in some regions of the world. The contribution of N saturation to the global carbon budget remains uncertain due to the complicated nature of C-N (carbon-nitrogen) interactions and diverse geography. Although N deposition is included in most terrestrial ecosystem models, the effect of N saturation is frequently overlooked. In this study, the IBIS (Integrated BIosphere Simulator) was used to simulate the global-scale effects of N saturation during the period 1961–2009. The results of this model indicate that N saturation reduced global NPP (Net Primary Productivity) and NEP (Net Ecosystem Productivity) by 0.26 and 0.03 Pg C yr−1, respectively. The negative effects of N saturation on carbon sequestration occurred primarily in temperate forests and grasslands. In response to elevated CO2 levels, global N turnover slowed due to increased biomass growth, resulting in a decline in soil mineral N. These changes in N cycling reduced the impact of N saturation on the global carbon budget. However, elevated N deposition in certain regions may further alter N saturation and C-N coupling.

  6. Combined simulation of carbon and water isotopes in a global ocean model

    Paul, André; Krandick, Annegret; Gebbie, Jake; Marchal, Olivier; Dutkiewicz, Stephanie; Losch, Martin; Kurahashi-Nakamura, Takasumi; Tharammal, Thejna

    2013-04-01

    Carbon and water isotopes are included as passive tracers in the MIT general circulation model (MITgcm). The implementation of the carbon isotopes is based on the existing MITgcm carbon cycle component and involves the fractionation processes during photosynthesis and air-sea gas exchange. Special care is given to the use of a real freshwater flux boundary condition in conjunction with the nonlinear free surface of the ocean model. The isotopic content of precipitation and water vapor is obtained from an atmospheric GCM (the NCAR CAM3) and mapped onto the MITgcm grid system, but the kinetic fractionation during evaporation is treated explicitly in the ocean model. In a number of simulations, we test the sensitivity of the carbon isotope distributions to the formulation of fractionation during photosynthesis and compare the results to modern observations of δ13C and Δ14C from GEOSECS, WOCE and CLIVAR. Similarly, we compare the resulting distribution of oxygen isotopes to modern δ18O data from the NASA GISS Global Seawater Oxygen-18 Database. The overall agreement is good, but there are discrepancies in the carbon isotope composition of the surface water and the oxygen isotope composition of the intermediate and deep waters. The combined simulation of carbon and water isotopes in a global ocean model will provide a framework for studying present and past states of ocean circulation such as postulated from deep-sea sediment records.

  7. A Global Data Analysis for Representing Sediment and Particulate Organic Carbon Yield in Earth System Models

    Tan, Zeli; Leung, L. Ruby; Li, Hongyi; Tesfa, Teklu; Vanmaercke, Matthias; Poesen, Jean; Zhang, Xuesong; Lu, Hui; Hartmann, Jens

    2017-12-01

    Although sediment yield (SY) from water erosion is ubiquitous and its environmental consequences are well recognized, its impacts on the global carbon cycle remain largely uncertain. This knowledge gap is partly due to the lack of soil erosion modeling in Earth System Models (ESMs), which are important tools used to understand the global carbon cycle and explore its changes. This study analyzed sediment and particulate organic carbon yield (CY) data from 1,081 and 38 small catchments (0.1-200 km2), respectively, in different environments across the globe. Using multiple statistical analysis techniques, we explored environmental factors and hydrological processes important for SY and CY modeling in ESMs. Our results show clear correlations of high SY with traditional agriculture, seismicity and heavy storms, as well as strong correlations between SY and annual peak runoff. These highlight the potential limitation of SY models that represent only interrill and rill erosion because shallow overland flow and rill flow have limited transport capacity due to their hydraulic geometry to produce high SY. Further, our results suggest that SY modeling in ESMs should be implemented at the event scale to produce the catastrophic mass transport during episodic events. Several environmental factors such as seismicity and land management that are often not considered in current catchment-scale SY models can be important in controlling global SY. Our analyses show that SY is likely the primary control on CY in small catchments and a statistically significant empirical relationship is established to calculate SY and CY jointly in ESMs.

  8. A Global Data Analysis for Representing Sediment and Particulate Organic Carbon Yield in Earth System Models

    Tan, Zeli [Pacific Northwest National Laboratory, Richland WA USA; Leung, L. Ruby [Pacific Northwest National Laboratory, Richland WA USA; Li, Hongyi [Montana State University, Bozeman MT USA; Tesfa, Teklu [Pacific Northwest National Laboratory, Richland WA USA; Vanmaercke, Matthias [Département de Géographie, Université de Liège, Liege Belgium; Poesen, Jean [Department of Earth and Environmental Sciences, Division of Geography, KU Leuven, Leuven Belgium; Zhang, Xuesong [Pacific Northwest National Laboratory, Richland WA USA; Lu, Hui [Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing China; Hartmann, Jens [Institute for Geology, Center for Earth System Research and Sustainability, Universität Hamburg, Hamburg Germany

    2017-12-01

    Although sediment yield (SY) from water erosion is ubiquitous and its environmental consequences are well recognized, its impacts on the global carbon cycle remain largely uncertain. This knowledge gap is partly due to the lack of soil erosion modeling in Earth System Models (ESMs), which are important tools used to understand the global carbon cycle and explore its changes. This study analyzed sediment and particulate organic carbon yield (CY) data from 1081 and 38 small catchments (0.1-200 km27 ), respectively, in different environments across the globe. Using multiple statistical analysis techniques, we explored environmental factors and hydrological processes important for SY and CY modeling in ESMs. Our results show clear correlations of high SY with traditional agriculture, seismicity and heavy storms, as well as strong correlations between SY and annual peak runoff. These highlight the potential limitation of SY models that represent only interrill and rill erosion because shallow overland flow and rill flow have limited transport capacity due to their hydraulic geometry to produce high SY. Further, our results suggest that SY modeling in ESMs should be implemented at the event scale to produce the catastrophic mass transport during episodic events. Several environmental factors such as seismicity and land management that are often not considered in current catchment-scale SY models can be important in controlling global SY. Our analyses show that SY is likely the primary control on CY in small catchments and a statistically significant empirical relationship is established to calculate SY and CY jointly in ESMs.

  9. Global Carbon Budget 2016

    Le Quéré, Corinne; Andrew, Robbie M.; Canadell, Josep G.; Sitch, Stephen; Korsbakken, Jan Ivar; Peters, Glen P.; Manning, Andrew C.; Boden, Thomas A.; Tans, Pieter P.; Houghton, Richard A.; Keeling, Ralph F.; Alin, Simone; Andrews, Oliver D.; Anthoni, Peter; Barbero, Leticia; Bopp, Laurent; Chevallier, Frédéric; Chini, Louise P.; Ciais, Philippe; Currie, Kim; Delire, Christine; Doney, Scott C.; Friedlingstein, Pierre; Gkritzalis, Thanos; Harris, Ian; Hauck, Judith; Haverd, Vanessa; Hoppema, Mario; Klein Goldewijk, Kees; Jain, Atul K.; Kato, Etsushi; Körtzinger, Arne; Landschützer, Peter; Lefèvre, Nathalie; Lenton, Andrew; Lienert, Sebastian; Lombardozzi, Danica; Melton, Joe R.; Metzl, Nicolas; Millero, Frank; Monteiro, Pedro M. S.; Munro, David R.; Nabel, Julia E. M. S.; Nakaoka, Shin-ichiro; O'Brien, Kevin; Olsen, Are; Omar, Abdirahman M.; Ono, Tsuneo; Pierrot, Denis; Poulter, Benjamin; Rödenbeck, Christian; Salisbury, Joe; Schuster, Ute; Schwinger, Jörg; Séférian, Roland; Skjelvan, Ingunn; Stocker, Benjamin D.; Sutton, Adrienne J.; Takahashi, Taro; Tian, Hanqin; Tilbrook, Bronte; van der Laan-Luijkx, Ingrid T.; van der Werf, Guido R.; Viovy, Nicolas; Walker, Anthony P.; Wiltshire, Andrew J.; Zaehle, Sönke

    2016-11-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere - the "global carbon budget" - is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates and consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models. We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2006-2015), EFF was 9

  10. Global Carbon Budget 2015

    Le Quéré, C.; Moriarty, R.; Andrew, R. M.; Canadell, J. G.; Sitch, S.; Korsbakken, J. I.; Friedlingstein, P.; Peters, G. P.; Andres, R. J.; Boden, T. A.; Houghton, R. A.; House, J. I.; Keeling, R. F.; Tans, P.; Arneth, A.; Bakker, D. C. E.; Barbero, L.; Bopp, L.; Chang, J.; Chevallier, F.; Chini, L. P.; Ciais, P.; Fader, M.; Feely, R. A.; Gkritzalis, T.; Harris, I.; Hauck, J.; Ilyina, T.; Jain, A. K.; Kato, E.; Kitidis, V.; Klein Goldewijk, K.; Koven, C.; Landschützer, P.; Lauvset, S. K.; Lefèvre, N.; Lenton, A.; Lima, I. D.; Metzl, N.; Millero, F.; Munro, D. R.; Murata, A.; Nabel, J. E. M. S.; Nakaoka, S.; Nojiri, Y.; O'Brien, K.; Olsen, A.; Ono, T.; Pérez, F. F.; Pfeil, B.; Pierrot, D.; Poulter, B.; Rehder, G.; Rödenbeck, C.; Saito, S.; Schuster, U.; Schwinger, J.; Séférian, R.; Steinhoff, T.; Stocker, B. D.; Sutton, A. J.; Takahashi, T.; Tilbrook, B.; van der Laan-Luijkx, I. T.; van der Werf, G. R.; van Heuven, S.; Vandemark, D.; Viovy, N.; Wiltshire, A.; Zaehle, S.; Zeng, N.

    2015-12-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates as well as consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover change (some including nitrogen-carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global

  11. Strong constraint on modelled global carbon uptake using solar-induced chlorophyll fluorescence data.

    MacBean, Natasha; Maignan, Fabienne; Bacour, Cédric; Lewis, Philip; Peylin, Philippe; Guanter, Luis; Köhler, Philipp; Gómez-Dans, Jose; Disney, Mathias

    2018-01-31

    Accurate terrestrial biosphere model (TBM) simulations of gross carbon uptake (gross primary productivity - GPP) are essential for reliable future terrestrial carbon sink projections. However, uncertainties in TBM GPP estimates remain. Newly-available satellite-derived sun-induced chlorophyll fluorescence (SIF) data offer a promising direction for addressing this issue by constraining regional-to-global scale modelled GPP. Here, we use monthly 0.5° GOME-2 SIF data from 2007 to 2011 to optimise GPP parameters of the ORCHIDEE TBM. The optimisation reduces GPP magnitude across all vegetation types except C4 plants. Global mean annual GPP therefore decreases from 194 ± 57 PgCyr -1 to 166 ± 10 PgCyr -1 , bringing the model more in line with an up-scaled flux tower estimate of 133 PgCyr -1 . Strongest reductions in GPP are seen in boreal forests: the result is a shift in global GPP distribution, with a ~50% increase in the tropical to boreal productivity ratio. The optimisation resulted in a greater reduction in GPP than similar ORCHIDEE parameter optimisation studies using satellite-derived NDVI from MODIS and eddy covariance measurements of net CO 2 fluxes from the FLUXNET network. Our study shows that SIF data will be instrumental in constraining TBM GPP estimates, with a consequent improvement in global carbon cycle projections.

  12. Global Carbon Budget 2016

    Quéré, Corinne Le; Andrew, Robbie M.; Canadell, Josep G.; Sitch, Stephen; Korsbakken, Jan Ivar; Peters, Glen P.; Manning, Andrew C.; Boden, Thomas A.; Tans, Pieter P.; Houghton, Richard A.; hide

    2016-01-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere the global carbon budget is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates and consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models. We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as +/- 1(sigma), reflecting the current capacity to characterize the annual estimates of each component of the global carbon budget. For the last decade available (2006-2015), EFF was 9

  13. Global carbon inequality

    Hubacek, Klaus; Baiocchi, Giovanni; Feng, Kuishuang; Munoz Castillo, Raul; Sun, Laixiang; Xue, Jinjun

    2017-01-01

    Global climate change and inequality are inescapably linked both in terms of who contributes climate change and who suffers the consequences. This fact is also partly reflected in two United Nations (UN) processes: on the one hand, the Paris Agreement of the UN Framework Convention on Climate Change under which countries agreed to hold the increase in the global average temperature to below 2 C above pre-industrial levels and, on the other hand, the UN's Sustainable Development Goals aiming to end poverty. These agreements are seen as important foundation to put the world nations on a sustainable pathway. However, how these agreements can be achieved or whether they are even mutually compatible is less clear. We explore the global carbon inequality between and within countries and the carbon implications of poverty alleviation by combining detailed consumer expenditure surveys for different income categories for a wide range of countries with an environmentally extended multi-regional input-output approach to estimate carbon footprints of different household groups, globally, and assess the carbon implications of moving the poorest people out of poverty. Given the current context, increasing income leads to increasing carbon footprints and makes global targets for mitigating greenhouse gases more difficult to achieve given the pace of technological progress and current levels of fossil fuel dependence. We conclude that the huge level of carbon inequality requires a critical discussion of undifferentiated income growth. Current carbon-intensive lifestyles and consumption patterns need to enter the climate discourse to a larger extent. (orig.)

  14. Evaluation and intercomparison of three-dimensional global marine carbon cycle models

    Caldeira, K., LLNL

    1998-07-01

    The addition of carbon dioxide to the atmosphere from fossil fuel burning and deforestation has profound implications for the future of the earth`s climate and hence for humankind itself. Society is looking toward the community of environmental scientists to predict the consequences of increased atmospheric carbon dioxide so that sound input can be provided to economists, environmental engineers, and, ultimately, policy makers. Environmental scientists have responded to this challenge through the creation of several ambitious, highly-coordinated programs, each focused on a different aspect of the climate system. Recognizing that numerical models, be they relatively simple statistical-empirical models or highly complex process-oriented models, are the only means for predicting the future of the climate system, all of these programs include the development of accurate, predictive models as a central goal. The Joint Global Ocean Flux Study (JGOFS) is one such program, and was built on the well-founded premise that biological, chemical and physical oceanographic processes have a profound influence on the C0{sub 2} content of the atmosphere. The, cap-stone, phase of JGOFS, the Synthesis and Modeling Project (SMP), is charged with the development of models that can be used in the prediction of future air-sea partitioning of C0{sub 2}. JGOFS, particularly the SMP phase, has a number of interim goals as well, including the determination of fluxes and inventories of carbon in the modern ocean that air germane to the air-sea partitioning of C0{sub 2}. Models have a role to play here too, because many of these fluxes and inventories, such as the distributions of anthropogenic dissolved inorganic carbon (DIC), new primary production and aphotic zone remineralization, while not amenable to direct observation on the large scale, can be determined using a variety of modeling approaches (Siegenthaler and Oeschger, 1987; Maier-Reimer and Hasselman, 1987, Bacastow and Maier

  15. Exploring diurnal and seasonal characteristics of global carbon cycle with GISS Model E2 GCM

    Aleinov, I. D.; Kiang, N. Y.; Romanou, A.

    2017-12-01

    The ability to properly model surface carbon fluxes on the diurnal and seasonal time scale is a necessary requirement for understanding of the global carbon cycle. It is also one of the most challenging tasks faced by modern General Circulation Models (GCMs) due to complexity of the algorithms and variety of relevant spatial and temporal scales. The observational data, though abundant, is difficult to interpret at the global scale, because flux tower observations are very sparse for large impact areas (such as Amazon and African rainforest and most of Siberia) and satellite missions often struggle to produce sufficiently high confidence data over the land and may be missing CO2 amounts near the surface due to the nature of the method. In this work we use the GISS Model E2 GCM to perform a subset of experiments proposed by the Coupled Climate-Carbon Cycle Model Intercomparison Project (C4MIP) and relate the results to available observations.The GISS Model E2 GCM is currently equipped with a complete global carbon cycle algorithm. Its surface carbon fluxes are computed by the Ent Terrestrial Biosphere Model (Ent TBM) over the land with observed leaf area index of the Moderate Resolution Imaging Spectrometer (MODIS) and by the NASA Ocean Biogeochemistry Model (NOBM) over the ocean. The propagation of atmospheric CO2 is performed by a generic Model E2 tracer algorithm, which is based on a quadratic upstream method (Prather 1986). We perform a series spin-up experiments for preindustrial climate conditions and fixed preindustrial atmospheric CO2 concentration. First, we perform separate spin-up simulations each for terrestrial and ocean carbon. We then combine the spun-up states and perform a coupled spin-up simulation until the model reaches a sufficient equilibrium. We then release restrictions on CO2 concentration and allow it evolve freely, driven only by simulated surface fluxes. We then study the results of the unforced run, comparing the amplitude and the phase

  16. Changing global carbon cycle

    Canadell, Pep

    2007-01-01

    Full text: The increase in atmospheric carbon dioxide (C02) is the single largest human perturbation on the earth's radiative balance contributing to climate change. Its rate of change reflects the balance between anthropogenic carbon emissions and the dynamics of a number of terrestrial and ocean processes that remove or emit C02. It is the long term evolution of this balance that will determine to large extent the speed and magnitude of the human induced climate change and the mitigation requirements to stabilise atmospheric C02 concentrations at any given level. In this talk, we show new trends in global carbon sources and sinks, with particularly focus on major shifts occurring since 2000 when the growth rate of atmospheric C02 has reached its highest level on record. The acceleration in the C02 growth results from the combination of several changes in properties of the carbon cycle, including: acceleration of anthropogenic carbon emissions; increased carbon intensity of the global economy, and decreased efficiency of natural carbon sinks. We discuss in more detail some of the possible causes of the reduced efficiency of natural carbon sinks on land and oceans, such as the decreased net sink in the Southern Ocean and on terrestrial mid-latitudes due to world-wide occurrence of drought. All these changes reported here characterise a carbon cycle that is generating stronger than expected climate forcing, and sooner than expected

  17. A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation

    Cai, Yiyong; Newth, David; Finnigan, John; Gunasekera, Don

    2015-01-01

    Highlights: • This paper introduces the design of a hybrid energy-economy model, GTEM-C. • The model offers a unified tool to analyse the energy-carbon-environment nexus. • Results are presented on global energy transformation due to carbon mitigation. • Electrification with renewable energies can contain the spiking of carbon prices. - Abstract: This paper introduces the design of the CSIRO variant of the Global Trade and Environment model (GTEM-C). GTEM-C is a hybrid model that combines the top-down macroeconomic representation of a computable general equilibrium model with the bottom-up engineering details of energy production. The model features detailed accounting for global energy flows that are embedded in traded energy goods, and it offers a unified framework to analyse the energy-carbon-environment nexus. As an illustrative example, we present simulation results on global energy transformation under the Intergovernmental Panel on Climate Change’s representative carbon pathways 4.5 and 8.5. By testing the model’s sensitivity to the relevant parameter, we find that the pace of electrification will significantly contain the spiking of carbon prices because electricity can be produced from carbon-free or less carbon-intensive technologies. The decoupling of energy use and carbon footprint, due to the uptake of clean electricity technologies, such as nuclear, wind, solar, and carbon capture and storage, allows the world to maintain high level of energy consumption, which is essential to economic growth

  18. Derivation of a northern-hemispheric biomass map for use in global carbon cycle models

    Thurner, Martin; Beer, Christian; Santoro, Maurizio; Carvalhais, Nuno; Wutzler, Thomas; Schepaschenko, Dmitry; Shvidenko, Anatoly; Kompter, Elisabeth; Levick, Shaun; Schmullius, Christiane

    2013-04-01

    (C)/ha(Forest)) and broadleaf/mixed forests (58.0 ± 22.1 Mg(C)/ha(Forest)), whereas boreal forests have a carbon density of only 40.0 ± 15.4 Mg(C)/ha(Forest). While European forest carbon stocks are relatively small, the carbon density is higher compared to the other continents. The derived biomass map substantially improves the knowledge on the current carbon stocks of the northern-hemispheric boreal and temperate forests, serving as a new benchmark for spatially explicit and consistent biomass mapping with moderate spatial resolution. This product can be of great value for global carbon cycle models as well as national carbon monitoring systems. Further investigations concentrate on improving biomass parameterizations and representations in such kind of models. The presented map will help to improve the simulation of biomass spatial patterns and variability and enables identifying the dominant influential factors like climatic conditions and disturbances.

  19. Global carbon inequality

    Hubacek, Klaus [University of Maryland, Department of Geographical Sciences, College Park, MD (United States); Masaryk University, Department of Environmental Studies, Brno (Czech Republic); Baiocchi, Giovanni [University of Maryland, Department of Geographical Sciences, College Park, MD (United States); University of Maryland, Department of Economics, College Park, MD (United States); Feng, Kuishuang [University of Maryland, Department of Geographical Sciences, College Park, MD (United States); Munoz Castillo, Raul [University of Maryland, Department of Geographical Sciences, College Park, MD (United States); Interamerican Development Bank, Washington, DC (United States); Sun, Laixiang [University of Maryland, Department of Geographical Sciences, College Park, MD (United States); SOAS, University of London, London (United Kingdom); International Institute for Applied Systems Analysis (IIASA), Laxenburg (Austria); Xue, Jinjun [Nagoya University, Graduate School of Economics, Nagoya (Japan); Hubei University of Economics, Wuhan (China)

    2017-12-01

    Global climate change and inequality are inescapably linked both in terms of who contributes climate change and who suffers the consequences. This fact is also partly reflected in two United Nations (UN) processes: on the one hand, the Paris Agreement of the UN Framework Convention on Climate Change under which countries agreed to hold the increase in the global average temperature to below 2 C above pre-industrial levels and, on the other hand, the UN's Sustainable Development Goals aiming to end poverty. These agreements are seen as important foundation to put the world nations on a sustainable pathway. However, how these agreements can be achieved or whether they are even mutually compatible is less clear. We explore the global carbon inequality between and within countries and the carbon implications of poverty alleviation by combining detailed consumer expenditure surveys for different income categories for a wide range of countries with an environmentally extended multi-regional input-output approach to estimate carbon footprints of different household groups, globally, and assess the carbon implications of moving the poorest people out of poverty. Given the current context, increasing income leads to increasing carbon footprints and makes global targets for mitigating greenhouse gases more difficult to achieve given the pace of technological progress and current levels of fossil fuel dependence. We conclude that the huge level of carbon inequality requires a critical discussion of undifferentiated income growth. Current carbon-intensive lifestyles and consumption patterns need to enter the climate discourse to a larger extent. (orig.)

  20. SiB3 Modeled Global 1-degree Hourly Biosphere-Atmosphere Carbon Flux, 1998-2006

    National Aeronautics and Space Administration — The Simple Biosphere Model, Version 3 (SiB3) was used to produce a global data set of hourly carbon fluxes between the atmosphere and the terrestrial biosphere for...

  1. Global Carbon-and-Conservation Models, Global Eco-States? Ecuador’s Yasuní-ITT Initiative and Governance Implications

    Conny Davidsen

    2013-05-01

    Full Text Available The “global carbon age” marks a structural change far beyond the economic realms of implementing carbon trade, affecting the fabric of global environmental governance and its actors. Carbon trade and conservation in the Global South have taken on various forms, and climate change mitigation efforts in light of continued rainforest deforestation are scrambling to establish effective approaches. Ecuador’s Yasuní-ITT Initiative proposes a new global carbon-and-conservation model in the Ecuadorian Amazon that leaves oil reserves of the Yasuní Ishpingo Tambococha Tiputini (ITT oil fields underground, in exchange for international compensation payments that would be based on voluntary contributions of governments and nongovernmental actors in an international conservation partnership and trust fund under the auspices of the United Nations Development Programme. This model suggests far-reaching consequences, as it introduces new global scales for the sharing and management of environmental costs within a framework of neoliberal cost internalization. The analysis in this paper uses the concept of the “ecological state” (Duit, 2008 as a theoretical point of departure to examine the trans-scalar implications of such a carbon-and-conservation model on global governance structures toward a “global ecological state” (or global eco-state.

  2. Modeling vegetation and carbon dynamics of managed grasslands at the global scale with LPJmL 3.6

    Rolinski, Susanne; Müller, Christoph; Heinke, Jens; Weindl, Isabelle; Biewald, Anne; Bodirsky, Benjamin Leon; Bondeau, Alberte; Boons-Prins, Eltje R.; Bouwman, Alexander F.; Leffelaar, Peter A.; te Roller, Johnny A.; Schaphoff, Sibyll; Thonicke, Kirsten

    2018-02-01

    Grassland management affects the carbon fluxes of one-third of the global land area and is thus an important factor for the global carbon budget. Nonetheless, this aspect has been largely neglected or underrepresented in global carbon cycle models. We investigate four harvesting schemes for the managed grassland implementation of the dynamic global vegetation model (DGVM) Lund-Potsdam-Jena managed Land (LPJmL) that facilitate a better representation of actual management systems globally. We describe the model implementation and analyze simulation results with respect to harvest, net primary productivity and soil carbon content and by evaluating them against reported grass yields in Europe. We demonstrate the importance of accounting for differences in grassland management by assessing potential livestock grazing densities as well as the impacts of grazing, grazing intensities and mowing systems on soil carbon stocks. Grazing leads to soil carbon losses in polar or arid regions even at moderate livestock densities (management options enables assessments of the global grassland production and its impact on the terrestrial biogeochemical cycles but requires a global data set on current grassland management.

  3. A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere

    Y. P. Wang

    2010-07-01

    Full Text Available Carbon storage by many terrestrial ecosystems can be limited by nutrients, predominantly nitrogen (N and phosphorus (P, in addition to other environmental constraints, water, light and temperature. However the spatial distribution and the extent of both N and P limitation at the global scale have not been quantified. Here we have developed a global model of carbon (C, nitrogen (N and phosphorus (P cycles for the terrestrial biosphere. Model estimates of steady state C and N pool sizes and major fluxes between plant, litter and soil pools, under present climate conditions, agree well with various independent estimates. The total amount of C in the terrestrial biosphere is 2767 Gt C, and the C fractions in plant, litter and soil organic matter are 19%, 4% and 77%. The total amount of N is 135 Gt N, with about 94% stored in the soil, 5% in the plant live biomass, and 1% in litter. We found that the estimates of total soil P and its partitioning into different pools in soil are quite sensitive to biochemical P mineralization. The total amount of P (plant biomass, litter and soil excluding occluded P in soil is 17 Gt P in the terrestrial biosphere, 33% of which is stored in the soil organic matter if biochemical P mineralization is modelled, or 31 Gt P with 67% in soil organic matter otherwise.

    This model was used to derive the global distribution and uncertainty of N or P limitation on the productivity of terrestrial ecosystems at steady state under present conditions. Our model estimates that the net primary productivity of most tropical evergreen broadleaf forests and tropical savannahs is reduced by about 20% on average by P limitation, and most of the remaining biomes are N limited; N limitation is strongest in high latitude deciduous needle leaf forests, and reduces its net primary productivity by up to 40% under present conditions.

  4. Modeling soil organic carbon dynamics and their driving factors in the main global cereal cropping systems

    Wang, Guocheng; Zhang, Wen; Sun, Wenjuan; Li, Tingting; Han, Pengfei

    2017-10-01

    Changes in the soil organic carbon (SOC) stock are determined by the balance between the carbon input from organic materials and the output from the decomposition of soil C. The fate of SOC in cropland soils plays a significant role in both sustainable agricultural production and climate change mitigation. The spatiotemporal changes of soil organic carbon in croplands in response to different carbon (C) input management and environmental conditions across the main global cereal systems were studied using a modeling approach. We also identified the key variables that drive SOC changes at a high spatial resolution (0.1° × 0.1°) and over a long timescale (54 years from 1961 to 2014). A widely used soil C turnover model (RothC) and state-of-the-art databases of soil and climate variables were used in the present study. The model simulations suggested that, on a global average, the cropland SOC density increased at annual rates of 0.22, 0.45 and 0.69 Mg C ha-1 yr-1 under crop residue retention rates of 30, 60 and 90 %, respectively. Increasing the quantity of C input could enhance soil C sequestration or reduce the rate of soil C loss, depending largely on the local soil and climate conditions. Spatially, under a specific crop residue retention rate, relatively higher soil C sinks were found across the central parts of the USA, western Europe, and the northern regions of China. Relatively smaller soil C sinks occurred in the high-latitude regions of both the Northern and Southern hemispheres, and SOC decreased across the equatorial zones of Asia, Africa and America. We found that SOC change was significantly influenced by the crop residue retention rate (linearly positive) and the edaphic variable of initial SOC content (linearly negative). Temperature had weak negative effects, and precipitation had significantly negative impacts on SOC changes. The results can help guide carbon input management practices to effectively mitigate climate change through soil C

  5. Modeling soil organic carbon dynamics and their driving factors in the main global cereal cropping systems

    G. Wang

    2017-10-01

    Full Text Available Changes in the soil organic carbon (SOC stock are determined by the balance between the carbon input from organic materials and the output from the decomposition of soil C. The fate of SOC in cropland soils plays a significant role in both sustainable agricultural production and climate change mitigation. The spatiotemporal changes of soil organic carbon in croplands in response to different carbon (C input management and environmental conditions across the main global cereal systems were studied using a modeling approach. We also identified the key variables that drive SOC changes at a high spatial resolution (0.1°  ×  0.1° and over a long timescale (54 years from 1961 to 2014. A widely used soil C turnover model (RothC and state-of-the-art databases of soil and climate variables were used in the present study. The model simulations suggested that, on a global average, the cropland SOC density increased at annual rates of 0.22, 0.45 and 0.69 Mg C ha−1 yr−1 under crop residue retention rates of 30, 60 and 90 %, respectively. Increasing the quantity of C input could enhance soil C sequestration or reduce the rate of soil C loss, depending largely on the local soil and climate conditions. Spatially, under a specific crop residue retention rate, relatively higher soil C sinks were found across the central parts of the USA, western Europe, and the northern regions of China. Relatively smaller soil C sinks occurred in the high-latitude regions of both the Northern and Southern hemispheres, and SOC decreased across the equatorial zones of Asia, Africa and America. We found that SOC change was significantly influenced by the crop residue retention rate (linearly positive and the edaphic variable of initial SOC content (linearly negative. Temperature had weak negative effects, and precipitation had significantly negative impacts on SOC changes. The results can help guide carbon input management practices to

  6. Development of a system emulating the global carbon cycle in Earth system models

    Tachiiri, K.; Hargreaves, J. C.; Annan, J. D.; Oka, A.; Abe-Ouchi, A.; Kawamiya, M.

    2010-08-01

    Recent studies have indicated that the uncertainty in the global carbon cycle may have a significant impact on the climate. Since state of the art models are too computationally expensive for it to be possible to explore their parametric uncertainty in anything approaching a comprehensive fashion, we have developed a simplified system for investigating this problem. By combining the strong points of general circulation models (GCMs), which contain detailed and complex processes, and Earth system models of intermediate complexity (EMICs), which are quick and capable of large ensembles, we have developed a loosely coupled model (LCM) which can represent the outputs of a GCM-based Earth system model, using much smaller computational resources. We address the problem of relatively poor representation of precipitation within our EMIC, which prevents us from directly coupling it to a vegetation model, by coupling it to a precomputed transient simulation using a full GCM. The LCM consists of three components: an EMIC (MIROC-lite) which consists of a 2-D energy balance atmosphere coupled to a low resolution 3-D GCM ocean (COCO) including an ocean carbon cycle (an NPZD-type marine ecosystem model); a state of the art vegetation model (Sim-CYCLE); and a database of daily temperature, precipitation, and other necessary climatic fields to drive Sim-CYCLE from a precomputed transient simulation from a state of the art AOGCM. The transient warming of the climate system is calculated from MIROC-lite, with the global temperature anomaly used to select the most appropriate annual climatic field from the pre-computed AOGCM simulation which, in this case, is a 1% pa increasing CO2 concentration scenario. By adjusting the effective climate sensitivity (equivalent to the equilibrium climate sensitivity for an energy balance model) of MIROC-lite, the transient warming of the LCM could be adjusted to closely follow the low sensitivity (with an equilibrium climate sensitivity of 4.0 K

  7. Development of a system emulating the global carbon cycle in Earth system models

    K. Tachiiri

    2010-08-01

    Full Text Available Recent studies have indicated that the uncertainty in the global carbon cycle may have a significant impact on the climate. Since state of the art models are too computationally expensive for it to be possible to explore their parametric uncertainty in anything approaching a comprehensive fashion, we have developed a simplified system for investigating this problem. By combining the strong points of general circulation models (GCMs, which contain detailed and complex processes, and Earth system models of intermediate complexity (EMICs, which are quick and capable of large ensembles, we have developed a loosely coupled model (LCM which can represent the outputs of a GCM-based Earth system model, using much smaller computational resources. We address the problem of relatively poor representation of precipitation within our EMIC, which prevents us from directly coupling it to a vegetation model, by coupling it to a precomputed transient simulation using a full GCM. The LCM consists of three components: an EMIC (MIROC-lite which consists of a 2-D energy balance atmosphere coupled to a low resolution 3-D GCM ocean (COCO including an ocean carbon cycle (an NPZD-type marine ecosystem model; a state of the art vegetation model (Sim-CYCLE; and a database of daily temperature, precipitation, and other necessary climatic fields to drive Sim-CYCLE from a precomputed transient simulation from a state of the art AOGCM. The transient warming of the climate system is calculated from MIROC-lite, with the global temperature anomaly used to select the most appropriate annual climatic field from the pre-computed AOGCM simulation which, in this case, is a 1% pa increasing CO2 concentration scenario.

    By adjusting the effective climate sensitivity (equivalent to the equilibrium climate sensitivity for an energy balance model of MIROC-lite, the transient warming of the LCM could be adjusted to closely follow the low sensitivity (with an equilibrium

  8. The terrestrial carbon cycle on the regional and global scale : modeling, uncertainties and policy relevance

    Minnen, van J.G.

    2008-01-01

    Contains the chapters: The importance of three centuries of climate and land-use change for the global and regional terrestrial carbon cycle; and The terrestrial C cycle and its role in the climate change policy

  9. Initializing carbon cycle predictions from the Community Land Model by assimilating global biomass observations

    Fox, A. M.; Hoar, T. J.; Smith, W. K.; Moore, D. J.

    2017-12-01

    The locations and longevity of terrestrial carbon sinks remain uncertain, however it is clear that in order to predict long-term climate changes the role of the biosphere in surface energy and carbon balance must be understood and incorporated into earth system models (ESMs). Aboveground biomass, the amount of carbon stored in vegetation, is a key component of the terrestrial carbon cycle, representing the balance of uptake through gross primary productivity (GPP), losses from respiration, senescence and mortality over hundreds of years. The best predictions of current and future land-atmosphere fluxes are likely from the integration of process-based knowledge contained in models and information from observations of changes in carbon stocks using data assimilation (DA). By exploiting long times series, it is possible to accurately detect variability and change in carbon cycle dynamics through monitoring ecosystem states, for example biomass derived from vegetation optical depth (VOD), and use this information to initialize models before making predictions. To make maximum use of information about the current state of global ecosystems when using models we have developed a system that combines the Community Land Model (CLM) with the Data Assimilation Research Testbed (DART), a community tool for ensemble DA. This DA system is highly innovative in its complexity, completeness and capabilities. Here we described a series of activities, using both Observation System Simulation Experiments (OSSEs) and real observations, that have allowed us to quantify the potential impact of assimilating VOD data into CLM-DART on future land-atmosphere fluxes. VOD data are particularly suitable to use in this activity due to their long temporal coverage and appropriate scale when combined with CLM, but their absolute values rely on many assumptions. Therefore, we have had to assess the implications of the VOD retrieval algorithms, with an emphasis on detecting uncertainty due to

  10. The role of residence time in diagnostic models of global carbon storage capacity: model decomposition based on a traceable scheme.

    Yizhao, Chen; Jianyang, Xia; Zhengguo, Sun; Jianlong, Li; Yiqi, Luo; Chengcheng, Gang; Zhaoqi, Wang

    2015-11-06

    As a key factor that determines carbon storage capacity, residence time (τE) is not well constrained in terrestrial biosphere models. This factor is recognized as an important source of model uncertainty. In this study, to understand how τE influences terrestrial carbon storage prediction in diagnostic models, we introduced a model decomposition scheme in the Boreal Ecosystem Productivity Simulator (BEPS) and then compared it with a prognostic model. The result showed that τE ranged from 32.7 to 158.2 years. The baseline residence time (τ'E) was stable for each biome, ranging from 12 to 53.7 years for forest biomes and 4.2 to 5.3 years for non-forest biomes. The spatiotemporal variations in τE were mainly determined by the environmental scalar (ξ). By comparing models, we found that the BEPS uses a more detailed pool construction but rougher parameterization for carbon allocation and decomposition. With respect to ξ comparison, the global difference in the temperature scalar (ξt) averaged 0.045, whereas the moisture scalar (ξw) had a much larger variation, with an average of 0.312. We propose that further evaluations and improvements in τ'E and ξw predictions are essential to reduce the uncertainties in predicting carbon storage by the BEPS and similar diagnostic models.

  11. The carbon cycle in a land surface model: modelling, validation and implementation at a global scale; Cycle du carbone dans un modele de surface continentale: modelisation, validation et mise en oeuvre a l'echelle globale

    Gibelin, A.L

    2007-05-15

    ISBA-A-gs is an option of the CNRM land surface model ISBA which allows for the simulation of carbon exchanges between the terrestrial biosphere and the atmosphere. The model was implemented for the first time at the global scale as a stand-alone model. Several global simulations were performed to assess the sensitivity of the turbulent fluxes and Leaf Area Index to a doubling of the CO{sub 2} atmospheric concentration, and to the climate change simulated by the end of the 21. century. In addition, a new option of ISBA, referred to as ISBA-CC, was developed in order to simulate a more detailed ecosystem respiration by separating the autotrophic respiration and the heterotrophic respiration. The vegetation dynamics and the carbon fluxes were validated at a global scale using satellite datasets, and at a local scale using data from 26 sites of the FLUXNET network. All these results show that the model is sufficiently realistic to be coupled with a general circulation model, in order to account for interactions between the terrestrial biosphere, the atmosphere and the carbon cycle. (author)

  12. The carbon cycle in a land surface model: modelling, validation and implementation at a global scale; Cycle du carbone dans un modele de surface continentale: modelisation, validation et mise en oeuvre a l'echelle globale

    Gibelin, A L

    2007-05-15

    ISBA-A-gs is an option of the CNRM land surface model ISBA which allows for the simulation of carbon exchanges between the terrestrial biosphere and the atmosphere. The model was implemented for the first time at the global scale as a stand-alone model. Several global simulations were performed to assess the sensitivity of the turbulent fluxes and Leaf Area Index to a doubling of the CO{sub 2} atmospheric concentration, and to the climate change simulated by the end of the 21. century. In addition, a new option of ISBA, referred to as ISBA-CC, was developed in order to simulate a more detailed ecosystem respiration by separating the autotrophic respiration and the heterotrophic respiration. The vegetation dynamics and the carbon fluxes were validated at a global scale using satellite datasets, and at a local scale using data from 26 sites of the FLUXNET network. All these results show that the model is sufficiently realistic to be coupled with a general circulation model, in order to account for interactions between the terrestrial biosphere, the atmosphere and the carbon cycle. (author)

  13. Technical Report Series on Global Modeling and Data Assimilation. Volume 31; Global Surface Ocean Carbon Estimates in a Model Forced by MERRA

    Gregg, Watson W.; Casey, Nancy W.; Rousseaux, Cecile S.

    2013-01-01

    MERRA products were used to force an established ocean biogeochemical model to estimate surface carbon inventories and fluxes in the global oceans. The results were compared to public archives of in situ carbon data and estimates. The model exhibited skill for ocean dissolved inorganic carbon (DIC), partial pressure of ocean CO2 (pCO2) and air-sea fluxes (FCO2). The MERRA-forced model produced global mean differences of 0.02% (approximately 0.3 microns) for DIC, -0.3% (about -1.2 (micro) atm; model lower) for pCO2, and -2.3% (-0.003 mol C/sq m/y) for FCO2 compared to in situ estimates. Basin-scale distributions were significantly correlated with observations for all three variables (r=0.97, 0.76, and 0.73, P<0.05, respectively for DIC, pCO2, and FCO2). All major oceanographic basins were represented as sources to the atmosphere or sinks in agreement with in situ estimates. However, there were substantial basin-scale and local departures.

  14. Large-Scale Variation in Forest Carbon Turnover Rate and its Relation to Climate - Remote Sensing vs. Global Vegetation Models

    Carvalhais, N.; Thurner, M.; Beer, C.; Forkel, M.; Rademacher, T. T.; Santoro, M.; Tum, M.; Schmullius, C.

    2015-12-01

    While vegetation productivity is known to be strongly correlated to climate, there is a need for an improved understanding of the underlying processes of vegetation carbon turnover and their importance at a global scale. This shortcoming has been due to the lack of spatially extensive information on vegetation carbon stocks, which we recently have been able to overcome by a biomass dataset covering northern boreal and temperate forests originating from radar remote sensing. Based on state-of-the-art products on biomass and NPP, we are for the first time able to study the relation between carbon turnover rate and a set of climate indices in northern boreal and temperate forests. The implementation of climate-related mortality processes, for instance drought, fire, frost or insect effects, is often lacking or insufficient in current global vegetation models. In contrast to our observation-based findings, investigated models from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT, are able to reproduce spatial climate - turnover rate relationships only to a limited extent. While most of the models compare relatively well to observation-based NPP, simulated vegetation carbon stocks are severely biased compared to our biomass dataset. Current limitations lead to considerable uncertainties in the estimated vegetation carbon turnover, contributing substantially to the forest feedback to climate change. Our results are the basis for improving mortality concepts in global vegetation models and estimating their impact on the land carbon balance.

  15. Modeling global mangrove soil carbon stocks: filling the gaps in coastal environments

    Rovai, A.; Twilley, R.

    2017-12-01

    We provide an overview of contemporaneous global mangrove soil organic carbon (SOC) estimates, focusing on a framework to explain disproportionate differences among observed data as a way to improve global estimates. This framework is based on a former conceptual model, the coastal environmental setting, in contrast to the more popular latitude-based hypotheses largely believed to explain hemispheric variation in mangrove ecosystem properties. To demonstrate how local and regional estimates of SOC linked to coastal environmental settings can render more realistic global mangrove SOC extrapolations we combined published and unpublished data, yielding a total of 106 studies, reporting on 552 sites from 43 countries. These sites were classified into distinct coastal environmental setting types according to two concurrent worldwide typology of nearshore coastal systems classifications. Mangrove SOC density varied substantially across coastal environmental settings, ranging from 14.9 ± 0.8 in river dominated (deltaic) soils to 53.9 ± 1.6 mg cm-3 (mean ± SE) in karstic coastlines. Our findings reveal striking differences between published values and contemporary global mangrove SOC extrapolation based on country-level mean reference values, particularly for karstic-dominated coastlines where mangrove SOC stocks have been underestimated by up to 50%. Correspondingly, climate-based global estimates predicted lower mangrove SOC density values (32-41 mg C cm-3) for mangroves in karstic environments, differing from published (21-126 mg C cm-3) and unpublished (47-58 mg C cm-3) values. Moreover, climate-based projections yielded higher SOC density values (27-70 mg C cm-3) for river-dominated mangroves compared to lower ranges reported in the literature (11-24 mg C cm-3). We argue that this inconsistent reporting of SOC stock estimates between river-dominated and karstic coastal environmental settings is likely due to the omission of geomorphological and geophysical

  16. Modelling global change impacts on soil carbon contents of agro-silvo-pastoral Mediterranean systems

    Lozano-García, Beatriz; Muñoz-Rojas, Miriam; Parras-Alcántara, Luis

    2016-04-01

    . 2013. Land use and management effects on carbon and nitrogen in Mediterranean Cambisols. Agric. Ecosyst. Environ. 179, 208- 214. Muñoz-Rojas, M., Jordán, A., Zavala, L.M., González-Peñaloza, F.A., De la Rosa, D., Pino-Mejias, R., Anaya-Romero, M., 2013. Modelling soil organic carbon stocks in global change scenarios: a CarboSOIL application. Biogeosciences 10, 8253-8268. Muñoz-Rojas, M., Abd-Elmabod, S.K., Jordán, A., Zavala, L.M., Anaya-Romero, M., De la Rosa, D., 2014. Potential soil organic carbon stocks in semi arid areas under climate change scenarios: an application of CarboSOIL model in northern Egypt. Geophysical Research Abstracts Vol. 16 EGU2014-638-3, EGU General Assembly. Muñoz-Rojas, M., Doro, L., Ledda, L. and Francaviglia, R. 2015. Application of CarboSOIL model to predict the effects of climate change on soil organic carbon stocks in agro-silvo-pastoral Mediterranean management. Agriculture, ecosystems and environment 202, 8-16. Parras-Alcántara, L., Lozano-García, B., Brevik, E.C., Cerdá, A. 2015. Soil organic carbon stocks assessment in Mediterranean natural areas: A comparison of entire soil profiles and soil control sections. Journal of Environmental Management 15, 155-215.

  17. Minimizing the wintertime low bias of Northern Hemisphere carbon monoxide in global model simulations

    Stein, Olaf; Schultz, Martin G.; Bouarar, Idir; Clark, Hannah; Huijnen, Vincent; Gaudel, Audrey; George, Maya; Clerbaux, Cathy

    2015-04-01

    Carbon monoxide (CO) is a product of incomplete combustion and is also produced from oxidation of volatile organic compounds (VOC) in the atmosphere. It is of interest as an indirect greenhouse gas and an air pollutant causing health effects and is thus subject to emission restrictions. CO acts as a major sink for the OH radical and as a precursor for tropospheric ozone and affects the oxidizing capacity of the atmosphere as well as regional air quality. Despite the developments in the global modelling of chemistry and of the parameterization of the physical processes, CO concentrations remain underestimated during NH winter by most state-of-the-art chemical transport models. The resulting model bias can in principle originate from either an underestimation of CO sources or an overestimation of its sinks. We address both the role of sources and sinks with a series of MOZART chemistry transport model sensitivity simulations for the year 2008 and compare our results to observational data from ground-based stations, satellite observations, and from MOZAIC tropospheric profile measurements on passenger aircraft. Our base case simulation using the MACCity emission inventory (Granier et al. 2011) underestimates the near-surface Northern Hemispheric CO mixing ratios by more than 20 ppb from December to April with a maximal bias of 40 ppb in January. The bias is strongest for the European region (up to 75 ppb in January). From our sensitivity studies the mismatch between observed and modelled atmospheric CO concentrations can be explained by a combination of the following emission inventory shortcuts: (i) missing anthropogenic wintertime CO emissions from traffic or other combustion processes, (ii) missing anthropogenic VOC emissions, (iii) an exaggerated downward trend in the RCP8.5 scenario underlying the MACCity inventory, (iv) a lack of knowledge about the seasonality of emissions. Deficiencies in the parameterization of the dry deposition velocities can also lead to

  18. Climate-induced interannual variability of marine primary and export production in three global coupled climate carbon cycle models

    B. Schneider

    2008-04-01

    Full Text Available Fully coupled climate carbon cycle models are sophisticated tools that are used to predict future climate change and its impact on the land and ocean carbon cycles. These models should be able to adequately represent natural variability, requiring model validation by observations. The present study focuses on the ocean carbon cycle component, in particular the spatial and temporal variability in net primary productivity (PP and export production (EP of particulate organic carbon (POC. Results from three coupled climate carbon cycle models (IPSL, MPIM, NCAR are compared with observation-based estimates derived from satellite measurements of ocean colour and results from inverse modelling (data assimilation. Satellite observations of ocean colour have shown that temporal variability of PP on the global scale is largely dominated by the permanently stratified, low-latitude ocean (Behrenfeld et al., 2006 with stronger stratification (higher sea surface temperature; SST being associated with negative PP anomalies. Results from all three coupled models confirm the role of the low-latitude, permanently stratified ocean for anomalies in globally integrated PP, but only one model (IPSL also reproduces the inverse relationship between stratification (SST and PP. An adequate representation of iron and macronutrient co-limitation of phytoplankton growth in the tropical ocean has shown to be the crucial mechanism determining the capability of the models to reproduce observed interactions between climate and PP.

  19. The Effects of Chlorophyll Assimilation on Carbon Fluxes in a Global Biogeochemical Model. [Technical Report Series on Global Modeling and Data Assimilation

    Koster, Randal D. (Editor); Rousseaux, Cecile Severine; Gregg, Watson W.

    2014-01-01

    In this paper, we investigated whether the assimilation of remotely-sensed chlorophyll data can improve the estimates of air-sea carbon dioxide fluxes (FCO2). Using a global, established biogeochemical model (NASA Ocean Biogeochemical Model, NOBM) for the period 2003-2010, we found that the global FCO2 values produced in the free-run and after assimilation were within -0.6 mol C m(sup -2) y(sup -1) of the observations. The effect of satellite chlorophyll assimilation was assessed in 12 major oceanographic regions. The region with the highest bias was the North Atlantic. Here the model underestimated the fluxes by 1.4 mol C m(sup -2) y(sup -1) whereas all the other regions were within 1 mol C m(sup -2) y(sup -1) of the data. The FCO2 values were not strongly impacted by the assimilation, and the uncertainty in FCO2 was not decreased, despite the decrease in the uncertainty in chlorophyll concentration. Chlorophyll concentrations were within approximately 25% of the database in 7 out of the 12 regions, and the assimilation improved the chlorophyll concentration in the regions with the highest bias by 10-20%. These results suggest that the assimilation of chlorophyll data does not considerably improve FCO2 estimates and that other components of the carbon cycle play a role that could further improve our FCO2 estimates.

  20. Seasonality of global and Arctic black carbon processes in the Arctic Monitoring and Assessment Programme models: Global and Arctic Black Carbon Processes

    Mahmood, Rashed [School of Earth and Ocean Sciences, University of Victoria, Victoria British Columbia Canada; Department of Meteorology, COMSATS Institute of Information Technology, Islamabad Pakistan; von Salzen, Knut [School of Earth and Ocean Sciences, University of Victoria, Victoria British Columbia Canada; Canadian Center for Climate Modelling and Analysis, Environment and Climate Change Canada, University of Victoria, Victoria British Columbia Canada; Flanner, Mark [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor Michigan USA; Sand, Maria [Center for International Climate and Environmental Research-Oslo, Oslo Norway; Langner, Joakim [Swedish Meteorological and Hydrological Institute, Norrköping Sweden; Wang, Hailong [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Huang, Lin [Climate Chemistry Measurements and Research, Environment and Climate Change Canada, Toronto Ontario Canada

    2016-06-22

    This study quantifies black carbon (BC) processes in three global climate models and one chemistry transport model, with focus on the seasonality of BC transport, emissions, wet and dry deposition in the Arctic. In the models, transport of BC to the Arctic from lower latitudes is the major BC source for this region while Arctic emissions are very small. All models simulated a similar annual cycle of BC transport from lower latitudes to the Arctic, with maximum transport occurring in July. Substantial differences were found in simulated BC burdens and vertical distributions, with CanAM (NorESM) producing the strongest (weakest) seasonal cycle. CanAM also has the shortest annual mean residence time for BC in the Arctic followed by SMHI-MATCH, CESM and NorESM. The relative contribution of wet and dry deposition rates in removing BC varies seasonally and is one of the major factors causing seasonal variations in BC burdens in the Arctic. Overall, considerable differences in wet deposition efficiencies in the models exist and are a leading cause of differences in simulated BC burdens. Results from model sensitivity experiments indicate that scavenging of BC in convective clouds acts to substantially increase the overall efficiency of BC wet deposition in the Arctic, which leads to low BC burdens and a more pronounced seasonal cycle compared to simulations without convective BC scavenging. In contrast, the simulated seasonality of BC concentrations in the upper troposphere is only weakly influenced by wet deposition in stratiform (layer) clouds whereas lower tropospheric concentrations are highly sensitive.

  1. Forward Modeling of Carbonate Proxy Data from Planktonic Foraminifera using Oxygen Isotope Tracers in a Global Ocean Model

    Schmidt, Gavin A.

    1999-01-01

    The distribution and variation of oxygen isotopes in seawater are calculated using the Goddard Institute for Space Studies global ocean model. Simple ecological models are used to estimate the planktonic foraminiferal abundance as a function of depth, column temperature, season, light intensity, and density stratification. These models are combined to forward model isotopic signals recorded in calcareous ocean sediment. The sensitivity of the results to the changes in foraminiferal ecology, secondary calcification, and dissolution are also examined. Simulated present-day isotopic values for ecology relevant for multiple species compare well with core-top data. Hindcasts of sea surface temperature and salinity are made from time series of the modeled carbonate isotope values as the model climate changes. Paleoclimatic inferences from these carbonate isotope records are strongly affected by erroneous assumptions concerning the covariations of temperature, salinity, and delta (sup 18)O(sub w). Habitat-imposed biases are less important, although errors due to temperature-dependent abundances can be significant.

  2. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model

    Yue, C.; Ciais, P.; Luyssaert, S.; Cadule, P.; Harden, J.; Randerson, J.; Bellassen, V.; Wang, T.; Piao, S.L.; Poulter, B.; Viovy, N.

    2013-01-01

    Stand-replacing fires are the dominant fire type in North American boreal forests. They leave a historical legacy of a mosaic landscape of different aged forest cohorts. This forest age dynamics must be included in vegetation models to accurately quantify the role of fire in the historical and current regional forest carbon balance. The present study adapted the global process-based vegetation model ORCHIDEE to simulate the CO2 emissions from boreal forest fire and the subsequent recovery after a stand-replacing fire; the model represents postfire new cohort establishment, forest stand structure and the self-thinning process. Simulation results are evaluated against observations of three clusters of postfire forest chronosequences in Canada and Alaska. The variables evaluated include: fire carbon emissions, CO2 fluxes (gross primary production, total ecosystem respiration and net ecosystem exchange), leaf area index, and biometric measurements (aboveground biomass carbon, forest floor carbon, woody debris carbon, stand individual density, stand basal area, and mean diameter at breast height). When forced by local climate and the atmospheric CO2 history at each chronosequence site, the model simulations generally match the observed CO2 fluxes and carbon stock data well, with model-measurement mean square root of deviation comparable with the measurement accuracy (for CO2 flux ~100 g C m−2 yr−1, for biomass carbon ~1000 g C m−2 and for soil carbon ~2000 g C m−2). We find that the current postfire forest carbon sink at the evaluation sites, as observed by chronosequence methods, is mainly due to a combination of historical CO2 increase and forest succession. Climate change and variability during this period offsets some of these expected carbon gains. The negative impacts of climate were a likely consequence of increasing water stress caused by significant temperature increases that were not matched by concurrent increases in precipitation. Our simulation

  3. Photosynthesis-dependent Isoprene Emission from Leaf to Planet in a Global Carbon-chemistry-climate Model

    Unger, N.; Harper, K.; Zeng, Y.; Kiang, N. Y.; Alienov, I.; Arneth, A.; Schurgers, G.; Amelynck, C.; Goldstein, A.; Guenther, A.; hide

    2013-01-01

    We describe the implementation of a biochemical model of isoprene emission that depends on the electron requirement for isoprene synthesis into the FarquharBallBerry leaf model of photosynthesis and stomatal conductance that is embedded within a global chemistry-climate simulation framework. The isoprene production is calculated as a function of electron transport-limited photosynthesis, intercellular and atmospheric carbon dioxide concentration, and canopy temperature. The vegetation biophysics module computes the photosynthetic uptake of carbon dioxide coupled with the transpiration of water vapor and the isoprene emission rate at the 30 min physical integration time step of the global chemistry-climate model. In the model, the rate of carbon assimilation provides the dominant control on isoprene emission variability over canopy temperature. A control simulation representative of the present-day climatic state that uses 8 plant functional types (PFTs), prescribed phenology and generic PFT-specific isoprene emission potentials (fraction of electrons available for isoprene synthesis) reproduces 50 of the variability across different ecosystems and seasons in a global database of 28 measured campaign-average fluxes. Compared to time-varying isoprene flux measurements at 9 select sites, the model authentically captures the observed variability in the 30 min average diurnal cycle (R2 6496) and simulates the flux magnitude to within a factor of 2. The control run yields a global isoprene source strength of 451 TgC yr1 that increases by 30 in the artificial absence of plant water stress and by 55 for potential natural vegetation.

  4. Modeling Root Exudation, Priming and Protection in Soil Carbon Responses to Elevated CO2 from Ecosystem to Global Scales

    Sulman, B. N.; Phillips, R.; Shevliakova, E.; Oishi, A. C.; Pacala, S. W.

    2014-12-01

    The sensitivity of soil organic carbon (SOC) to changing environmental conditions represents a critical uncertainty in coupled carbon cycle-climate models. Much of this uncertainty arises from our limited understanding of the extent to which plants induce SOC losses (through accelerated decomposition or "priming") or promote SOC gains (via stabilization through physico-chemical protection). We developed a new SOC model, "Carbon, Organisms, Rhizosphere and Protection in the Soil Environment" (CORPSE), to examine the net effect of priming and protection in response to rising atmospheric CO2, and conducted simulations of rhizosphere priming effects at both ecosystem and global scales. At the ecosystem scale, the model successfully captured and explained disparate SOC responses at the Duke and Oak Ridge free-air CO2 enrichment (FACE) experiments. We show that stabilization of "new" carbon in protected SOC pools may equal or exceed microbial priming of "old" SOC in ecosystems with readily decomposable litter (e.g. Oak Ridge). In contrast, carbon losses owing to priming dominate the net SOC response in ecosystems with more resistant litters (e.g. Duke). For global simulations, the model was fully integrated into the Geophysical Fluid Dynamics Laboratory (GFDL) land model LM3. Globally, priming effects driven by enhanced root exudation and expansion of the rhizosphere reduced SOC storage in the majority of terrestrial areas, partially counterbalancing SOC gains from the enhanced ecosystem productivity driven by CO2 fertilization. Collectively, our results suggest that SOC stocks globally depend not only on temperature and moisture, but also on vegetation responses to environmental changes, and that protected C may provide an important constraint on priming effects.

  5. Photosynthesis-dependent isoprene emission from leaf to planet in a global carbon-chemistry-climate model

    Unger, N.; Harper, K.; Zheng, Y.; Kiang, N. Y.; Aleinov, I.; Arneth, A.; Schurgers, G.; Amelynyck, C.; Goldstein, A.; Guenther, A.; Heinesch, B.; Hewitt, C. N.; Karl, T.; Laffineur, Q.; Langford, B.

    2013-01-01

    We describe the implementation of a biochemical model of isoprene emission that depends on the electron requirement for isoprene synthesis into the Farquhar–Ball–Berry leaf model of photosynthesis and stomatal conductance that is embedded within a global chemistry-climate simulation framework. The isoprene production is calculated as a function of electron transport-limited photosynthesis, intercellular and atmospheric carbon dioxide concentration, and canopy temperature. Th...

  6. Assessment of Anthropogenic and Climatic Impacts on the Global Carbon Cycle Using a 3-D Model Constrained by Isotopic Carbon Measurements and Remote Sensing of Vegetation

    Keeling, Charles D.; Piper, S. C.

    1998-01-01

    Our original proposal called for improved modeling of the terrestrial biospheric carbon cycle, specifically using biome-specific process models to account for both the energy and water budgets of plant growth, to facilitate investigations into recent changes in global atmospheric CO2 abundance and regional distribution. The carbon fluxes predicted by these models were to be incorporated into a global model of CO2 transport to establish large-scale regional fluxes of CO2 to and from the terrestrial biosphere subject to constraints imposed by direct measurements of atmospheric CO2 and its 13C/12C isotopic ratio. Our work was coordinated with a NASA project (NASA NAGW-3151) at the University of Montana under the direction of Steven Running, and was partially funded by the Electric Power Research Institute. The primary objective of this project was to develop and test the Biome-BGC model, a global biological process model with a daily time step which simulates the water, energy and carbon budgets of plant growth. The primary product, the unique global gridded daily land temperature, and the precipitation data set which was used to drive the process model is described. The Biome-BGC model was tested by comparison with a simpler biological model driven by satellite-derived (NDVI) Normalized Difference Vegetation Index and (PAR) Photosynthetically Active Radiation data and by comparison with atmospheric CO2 observations. The simple NDVI model is also described. To facilitate the comparison with atmospheric CO2 observations, a three-dimensional atmospheric transport model was used to produce predictions of atmospheric CO2 variations given CO2 fluxes owing to (NPP) Net Primary Productivity and heterotrophic respiration that were produced by the Biome-BGC model and by the NDVI model. The transport model that we used in this project, and errors associated with transport simulations, were characterized by a comparison of 12 transport models.

  7. Evaluation of climate-related carbon turnover processes in global vegetation models for boreal and temperate forests.

    Thurner, Martin; Beer, Christian; Ciais, Philippe; Friend, Andrew D; Ito, Akihiko; Kleidon, Axel; Lomas, Mark R; Quegan, Shaun; Rademacher, Tim T; Schaphoff, Sibyll; Tum, Markus; Wiltshire, Andy; Carvalhais, Nuno

    2017-08-01

    Turnover concepts in state-of-the-art global vegetation models (GVMs) account for various processes, but are often highly simplified and may not include an adequate representation of the dominant processes that shape vegetation carbon turnover rates in real forest ecosystems at a large spatial scale. Here, we evaluate vegetation carbon turnover processes in GVMs participating in the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP, including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT) using estimates of vegetation carbon turnover rate (k) derived from a combination of remote sensing based products of biomass and net primary production (NPP). We find that current model limitations lead to considerable biases in the simulated biomass and in k (severe underestimations by all models except JeDi and VISIT compared to observation-based average k), likely contributing to underestimation of positive feedbacks of the northern forest carbon balance to climate change caused by changes in forest mortality. A need for improved turnover concepts related to frost damage, drought, and insect outbreaks to better reproduce observation-based spatial patterns in k is identified. As direct frost damage effects on mortality are usually not accounted for in these GVMs, simulated relationships between k and winter length in boreal forests are not consistent between different regions and strongly biased compared to the observation-based relationships. Some models show a response of k to drought in temperate forests as a result of impacts of water availability on NPP, growth efficiency or carbon balance dependent mortality as well as soil or litter moisture effects on leaf turnover or fire. However, further direct drought effects such as carbon starvation (only in HYBRID4) or hydraulic failure are usually not taken into account by the investigated GVMs. While they are considered dominant large-scale mortality agents, mortality mechanisms related to insects and

  8. Modeling Carbon Exchange

    Sellers, Piers

    2012-01-01

    Model results will be reviewed to assess different methods for bounding the terrestrial role in the global carbon cycle. It is proposed that a series of climate model runs could be scoped that would tighten the limits on the "missing sink" of terrestrial carbon and could also direct future satellite image analyses to search for its geographical location and understand its seasonal dynamics.

  9. Substantial global carbon uptake by cement carbonation

    Xi, Fengming; Davis, Steven J.; Ciais, Philippe; Crawford-Brown, Douglas; Guan, Dabo; Pade, Claus; Shi, Tiemao; Syddall, Mark; Lv, Jie; Ji, Lanzhu; Bing, Longfei; Wang, Jiaoyue; Wei, Wei; Yang, Keun-Hyeok; Lagerblad, Björn

    2016-01-01

    Calcination of carbonate rocks during the manufacture of cement produced 5% of global CO2 emissions from all industrial process and fossil-fuel combustion in 20131, 2. Considerable attention has been paid to quantifying these industrial process emissions from cement production2, 3, but the natural reversal of the process—carbonation—has received little attention in carbon cycle studies. Here, we use new and existing data on cement materials during cement service life, demolition, and secondar...

  10. Photosynthesis-dependent isoprene emission from leaf to planet in a global carbon-chemistry-climate model

    N. Unger

    2013-10-01

    Full Text Available We describe the implementation of a biochemical model of isoprene emission that depends on the electron requirement for isoprene synthesis into the Farquhar–Ball–Berry leaf model of photosynthesis and stomatal conductance that is embedded within a global chemistry-climate simulation framework. The isoprene production is calculated as a function of electron transport-limited photosynthesis, intercellular and atmospheric carbon dioxide concentration, and canopy temperature. The vegetation biophysics module computes the photosynthetic uptake of carbon dioxide coupled with the transpiration of water vapor and the isoprene emission rate at the 30 min physical integration time step of the global chemistry-climate model. In the model, the rate of carbon assimilation provides the dominant control on isoprene emission variability over canopy temperature. A control simulation representative of the present-day climatic state that uses 8 plant functional types (PFTs, prescribed phenology and generic PFT-specific isoprene emission potentials (fraction of electrons available for isoprene synthesis reproduces 50% of the variability across different ecosystems and seasons in a global database of 28 measured campaign-average fluxes. Compared to time-varying isoprene flux measurements at 9 select sites, the model authentically captures the observed variability in the 30 min average diurnal cycle (R2 = 64–96% and simulates the flux magnitude to within a factor of 2. The control run yields a global isoprene source strength of 451 TgC yr−1 that increases by 30% in the artificial absence of plant water stress and by 55% for potential natural vegetation.

  11. Photosynthesis-dependent isoprene emission from leaf to planet in a global carbon-chemistry-climate model

    Unger, N.; Harper, K.; Zheng, Y.; Kiang, N. Y.; Aleinov, I.; Arneth, A.; Schurgers, G.; Amelynck, C.; Goldstein, A.; Guenther, A.; Heinesch, B.; Hewitt, C. N.; Karl, T.; Laffineur, Q.; Langford, B.; McKinney, K. A.; Misztal, P.; Potosnak, M.; Rinne, J.; Pressley, S.; Schoon, N.; Serça, D.

    2013-10-01

    We describe the implementation of a biochemical model of isoprene emission that depends on the electron requirement for isoprene synthesis into the Farquhar-Ball-Berry leaf model of photosynthesis and stomatal conductance that is embedded within a global chemistry-climate simulation framework. The isoprene production is calculated as a function of electron transport-limited photosynthesis, intercellular and atmospheric carbon dioxide concentration, and canopy temperature. The vegetation biophysics module computes the photosynthetic uptake of carbon dioxide coupled with the transpiration of water vapor and the isoprene emission rate at the 30 min physical integration time step of the global chemistry-climate model. In the model, the rate of carbon assimilation provides the dominant control on isoprene emission variability over canopy temperature. A control simulation representative of the present-day climatic state that uses 8 plant functional types (PFTs), prescribed phenology and generic PFT-specific isoprene emission potentials (fraction of electrons available for isoprene synthesis) reproduces 50% of the variability across different ecosystems and seasons in a global database of 28 measured campaign-average fluxes. Compared to time-varying isoprene flux measurements at 9 select sites, the model authentically captures the observed variability in the 30 min average diurnal cycle (R2 = 64-96%) and simulates the flux magnitude to within a factor of 2. The control run yields a global isoprene source strength of 451 TgC yr-1 that increases by 30% in the artificial absence of plant water stress and by 55% for potential natural vegetation.

  12. Photosynthesis-dependent isoprene emission from leaf to planet in a global carbon-chemistry-climate model

    Unger, N.; Harper, K.; Zheng, Y.; Kiang, N. Y.; Aleinov, I.; Arneth, Almut; Schurgers, G.; Amelynck, C.; Goldstein, Allen H.; Guenther, Alex B.; Heinesch, B.; Hewitt, C. N.; Karl, T.; Laffineur, Q.; Langford, B.; McKinney, Karena A.; Misztal, P.; Potosnak, M.; Rinne, J.; Pressley, S.; Schoon, N.; Serca, D.

    2013-10-22

    We describe the implementation of a biochemical model of isoprene emission that depends on the electron requirement for isoprene synthesis into the Farquhar/Ball- Berry leaf model of photosynthesis and stomatal conductance that is embedded within a global chemistry-climate simulation framework. The isoprene production is calculated as a function of electron transport-limited photosynthesis, intercellular carbon dioxide concentration, and canopy temperature. The vegetation biophysics module computes the photosynthetic uptake of carbon dioxide coupled with the transpiration of water vapor and the isoprene emission rate at the 30 min physical integration time step of the global chemistry-climate model. In the model, the rate of carbon assimilation provides the dominant control on isoprene emission variability over canopy temperature. A control simulation representative of the present day climatic state that uses plant functional types (PFTs), prescribed phenology and generic PFT-specific isoprene emission potentials (fraction of electrons available for isoprene synthesis) reproduces 50% of the variability across different ecosystems and seasons in a global database of measured campaign-average fluxes. Compared to time-varying isoprene flux measurements at select sites, the model authentically captures the observed variability in the 30 min average diurnal cycle (R2 = 64-96 %) and simulates the flux magnitude to within a factor of 2. The control run yields a global isoprene source strength of 451 TgC yr-1 that increases by 30% in the artificial absence of plant water stress and by 55% for potential natural vegetation.

  13. Carbon cost of plant nitrogen acquisition: global carbon cycle impact from an improved plant nitrogen cycle in the Community Land Model.

    Shi, Mingjie; Fisher, Joshua B; Brzostek, Edward R; Phillips, Richard P

    2016-03-01

    Plants typically expend a significant portion of their available carbon (C) on nutrient acquisition - C that could otherwise support growth. However, given that most global terrestrial biosphere models (TBMs) do not include the C cost of nutrient acquisition, these models fail to represent current and future constraints to the land C sink. Here, we integrated a plant productivity-optimized nutrient acquisition model - the Fixation and Uptake of Nitrogen Model - into one of the most widely used TBMs, the Community Land Model. Global plant nitrogen (N) uptake is dynamically simulated in the coupled model based on the C costs of N acquisition from mycorrhizal roots, nonmycorrhizal roots, N-fixing microbes, and retranslocation (from senescing leaves). We find that at the global scale, plants spend 2.4 Pg C yr(-1) to acquire 1.0 Pg N yr(-1) , and that the C cost of N acquisition leads to a downregulation of global net primary production (NPP) by 13%. Mycorrhizal uptake represented the dominant pathway by which N is acquired, accounting for ~66% of the N uptake by plants. Notably, roots associating with arbuscular mycorrhizal (AM) fungi - generally considered for their role in phosphorus (P) acquisition - are estimated to be the primary source of global plant N uptake owing to the dominance of AM-associated plants in mid- and low-latitude biomes. Overall, our coupled model improves the representations of NPP downregulation globally and generates spatially explicit patterns of belowground C allocation, soil N uptake, and N retranslocation at the global scale. Such model improvements are critical for predicting how plant responses to altered N availability (owing to N deposition, rising atmospheric CO2 , and warming temperatures) may impact the land C sink. © 2015 John Wiley & Sons Ltd.

  14. Optimization of Terrestrial Ecosystem Model Parameters Using Atmospheric CO2 Concentration Data With the Global Carbon Assimilation System (GCAS)

    Chen, Zhuoqi; Chen, Jing M.; Zhang, Shupeng; Zheng, Xiaogu; Ju, Weiming; Mo, Gang; Lu, Xiaoliang

    2017-12-01

    The Global Carbon Assimilation System that assimilates ground-based atmospheric CO2 data is used to estimate several key parameters in a terrestrial ecosystem model for the purpose of improving carbon cycle simulation. The optimized parameters are the leaf maximum carboxylation rate at 25°C (Vmax25), the temperature sensitivity of ecosystem respiration (Q10), and the soil carbon pool size. The optimization is performed at the global scale at 1° resolution for the period from 2002 to 2008. The results indicate that vegetation from tropical zones has lower Vmax25 values than vegetation in temperate regions. Relatively high values of Q10 are derived over high/midlatitude regions. Both Vmax25 and Q10 exhibit pronounced seasonal variations at middle-high latitudes. The maxima in Vmax25 occur during growing seasons, while the minima appear during nongrowing seasons. Q10 values decrease with increasing temperature. The seasonal variabilities of Vmax25 and Q10 are larger at higher latitudes. Optimized Vmax25 and Q10 show little seasonal variabilities at tropical regions. The seasonal variabilities of Vmax25 are consistent with the variabilities of LAI for evergreen conifers and broadleaf evergreen forests. Variations in leaf nitrogen and leaf chlorophyll contents may partly explain the variations in Vmax25. The spatial distribution of the total soil carbon pool size after optimization is compared favorably with the gridded Global Soil Data Set for Earth System. The results also suggest that atmospheric CO2 data are a source of information that can be tapped to gain spatially and temporally meaningful information for key ecosystem parameters that are representative at the regional and global scales.

  15. Data-mining analysis of the global distribution of soil carbon in observational databases and Earth system models

    Hashimoto, Shoji; Nanko, Kazuki; Ťupek, Boris; Lehtonen, Aleksi

    2017-03-01

    Future climate change will dramatically change the carbon balance in the soil, and this change will affect the terrestrial carbon stock and the climate itself. Earth system models (ESMs) are used to understand the current climate and to project future climate conditions, but the soil organic carbon (SOC) stock simulated by ESMs and those of observational databases are not well correlated when the two are compared at fine grid scales. However, the specific key processes and factors, as well as the relationships among these factors that govern the SOC stock, remain unclear; the inclusion of such missing information would improve the agreement between modeled and observational data. In this study, we sought to identify the influential factors that govern global SOC distribution in observational databases, as well as those simulated by ESMs. We used a data-mining (machine-learning) (boosted regression trees - BRT) scheme to identify the factors affecting the SOC stock. We applied BRT scheme to three observational databases and 15 ESM outputs from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) and examined the effects of 13 variables/factors categorized into five groups (climate, soil property, topography, vegetation, and land-use history). Globally, the contributions of mean annual temperature, clay content, carbon-to-nitrogen (CN) ratio, wetland ratio, and land cover were high in observational databases, whereas the contributions of the mean annual temperature, land cover, and net primary productivity (NPP) were predominant in the SOC distribution in ESMs. A comparison of the influential factors at a global scale revealed that the most distinct differences between the SOCs from the observational databases and ESMs were the low clay content and CN ratio contributions, and the high NPP contribution in the ESMs. The results of this study will aid in identifying the causes of the current mismatches between observational SOC databases and ESM outputs

  16. The surface energy, water, carbon flux and their intercorrelated seasonality in a global climate-vegetation coupled model

    Li Dan.; Jinjun Ji

    2007-01-01

    The sensible and latent heat fluxes, representatives of the physical exchange processes of energy and water between land and air, are the two crucial variables controlling the surface energy partitioning related to temperature and humidity. The net primary production (NPP), the major carbon flux exchange between vegetation and atmosphere, is of great importance for the terrestrial ecosystem carbon cycle. The fluxes are simulated by a two-way coupled model, Atmosphere-Vegetation Interaction Model-Global Ocean-Atmosphere-Land System Model (AVIM-GOALS) in which the surface physical and physiological processes are coupled with general circulation model (GCM), and the global spatial and temporal variation of the fluxes is studied. The simulated terrestrial surface physical fluxes are consistent with the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis (ERA40) in the global distribution, but the magnitudes are generally 20-40 W/m 2 underestimated. The annual NPP agrees well with the International Geosphere Biosphere Programme (IGBP) NPP data except for the lower value in northern high latitudes. The surface physical fluxes, leaf area index (LAI) and NPP of the global mid-latitudes, especially between 30 deg N-50 deg N, show great variation in annual oscillation amplitudes. And all physical and biological fields in northern mid-latitudes have the largest seasonality with a high statistical significance of 99.9%. The seasonality of surface physical fluxes, LAI and NPP are highly correlated with each other. The meridional three-peak pattern of seasonal change emerges in northern mid-latitudes, which indicates the interaction of topographical gradient variation of surface fluxes and vegetation phenology on these three latitudinal belts

  17. Africa and the global carbon cycle

    Denning A Scott

    2007-03-01

    Full Text Available Abstract The African continent has a large and growing role in the global carbon cycle, with potentially important climate change implications. However, the sparse observation network in and around the African continent means that Africa is one of the weakest links in our understanding of the global carbon cycle. Here, we combine data from regional and global inventories as well as forward and inverse model analyses to appraise what is known about Africa's continental-scale carbon dynamics. With low fossil emissions and productivity that largely compensates respiration, land conversion is Africa's primary net carbon release, much of it through burning of forests. Savanna fire emissions, though large, represent a short-term source that is offset by ensuing regrowth. While current data suggest a near zero decadal-scale carbon balance, interannual climate fluctuations (especially drought induce sizeable variability in net ecosystem productivity and savanna fire emissions such that Africa is a major source of interannual variability in global atmospheric CO2. Considering the continent's sizeable carbon stocks, their seemingly high vulnerability to anticipated climate and land use change, as well as growing populations and industrialization, Africa's carbon emissions and their interannual variability are likely to undergo substantial increases through the 21st century.

  18. GFDL's ESM2 global coupled climate-carbon Earth System Models. Part I: physical formulation and baseline simulation characteristics

    Dunne, John P.; John, Jasmin G.; Adcroft, Alistair J.; Griffies, Stephen M.; Hallberg, Robert W.; Shevalikova, Elena; Stouffer, Ronald J.; Cooke, William; Dunne, Krista A.; Harrison, Matthew J.; Krasting, John P.; Malyshev, Sergey L.; Milly, P.C.D.; Phillipps, Peter J.; Sentman, Lori A.; Samuels, Bonita L.; Spelman, Michael J.; Winton, Michael; Wittenberg, Andrew T.; Zadeh, Niki

    2012-01-01

    We describe the physical climate formulation and simulation characteristics of two new global coupled carbon-climate Earth System Models, ESM2M and ESM2G. These models demonstrate similar climate fidelity as the Geophysical Fluid Dynamics Laboratory's previous CM2.1 climate model while incorporating explicit and consistent carbon dynamics. The two models differ exclusively in the physical ocean component; ESM2M uses Modular Ocean Model version 4.1 with vertical pressure layers while ESM2G uses Generalized Ocean Layer Dynamics with a bulk mixed layer and interior isopycnal layers. Differences in the ocean mean state include the thermocline depth being relatively deep in ESM2M and relatively shallow in ESM2G compared to observations. The crucial role of ocean dynamics on climate variability is highlighted in the El Niño-Southern Oscillation being overly strong in ESM2M and overly weak ESM2G relative to observations. Thus, while ESM2G might better represent climate changes relating to: total heat content variability given its lack of long term drift, gyre circulation and ventilation in the North Pacific, tropical Atlantic and Indian Oceans, and depth structure in the overturning and abyssal flows, ESM2M might better represent climate changes relating to: surface circulation given its superior surface temperature, salinity and height patterns, tropical Pacific circulation and variability, and Southern Ocean dynamics. Our overall assessment is that neither model is fundamentally superior to the other, and that both models achieve sufficient fidelity to allow meaningful climate and earth system modeling applications. This affords us the ability to assess the role of ocean configuration on earth system interactions in the context of two state-of-the-art coupled carbon-climate models.

  19. Shifts in nitrogen acquisition strategies enable enhanced terrestrial carbon storage under elevated CO2 in a global model

    Sulman, B. N.; Brzostek, E. R.; Menge, D.; Malyshev, S.; Shevliakova, E.

    2017-12-01

    Earth System Model (ESM) projections of terrestrial carbon (C) uptake are critical to understanding the future of the global C cycle. Current ESMs include intricate representations of photosynthetic C fixation in plants, allowing them to simulate the stimulatory effect of increasing atmospheric CO2 levels on photosynthesis. However, they lack sophisticated representations of plant nutrient acquisition, calling into question their ability to project the future land C sink. We conducted simulations using a new model of terrestrial C and nitrogen (N) cycling within the Geophysical Fluid Dynamics Laboratory (GFDL) global land model LM4 that uses a return on investment framework to simulate global patterns of N acquisition via fixation of N2 from the atmosphere, scavenging of inorganic N from soil solution, and mining of organic N from soil organic matter (SOM). We show that these strategies drive divergent C cycle responses to elevated CO2 at the ecosystem scale, with the scavenging strategy leading to N limitation of plant growth and the mining strategy facilitating stimulation of plant biomass accumulation over decadal time scales. In global simulations, shifts in N acquisition from inorganic N scavenging to organic N mining along with increases in N fixation supported long-term acceleration of C uptake under elevated CO2. Our results indicate that the ability of the land C sink to mitigate atmospheric CO2 levels is tightly coupled to the functional diversity of ecosystems and their capacity to change their N acquisition strategies over time. Incorporation of these mechanisms into ESMs is necessary to improve confidence in model projections of the global C cycle.

  20. Globalizing carbon lock-in

    Unruh, Gregory C.; Carrillo-Hermosilla, Javier

    2006-01-01

    This paper extends the arguments surrounding carbon lock-in elaborated in Unruh (Energy Policy 28 (2000) 817; 30 (2002) 317) to countries currently undergoing industrialization. It argues that, for numerous reasons, industrializing countries are unlikely to leapfrog carbon intensive energy development. On the contrary, carbon lock-in may be globalizing and could further constrain climate change mitigation options. It is then argued that many policy recommendations ignore carbon lock-in, possibly limiting their potential for successful implementation. The paper then discusses four policy approaches that appear to have advantages given lock-in conditions. It is recognized, however, that relative ease of implementation does not necessarily equate with superiority. Instead, it is merely a path dependent outcome of past development decisions. Pursuing policies on the basis of relative implementation ease may help address the issue of climate change, but could also result in sub-optimal outcomes along other dimensions of sustainable development

  1. Climate Impacts of CALIPSO-Guided Corrections to Black Carbon Aerosol Vertical Distributions in a Global Climate Model

    Kovilakam, Mahesh; Mahajan, Salil; Saravanan, R.; Chang, Ping

    2017-01-01

    Here, we alleviate the bias in the tropospheric vertical distribution of black carbon aerosols (BC) in the Community Atmosphere Model (CAM4) using the Cloud-Aerosol and Infrared Pathfinder Satellite Observations (CALIPSO)-derived vertical profiles. A suite of sensitivity experiments are conducted with 1x, 5x, and 10x the present-day model estimated BC concentration climatology, with (corrected, CC) and without (uncorrected, UC) CALIPSO-corrected BC vertical distribution. The globally averaged top of the atmosphere radiative flux perturbation of CC experiments is ~8–50% smaller compared to uncorrected (UC) BC experiments largely due to an increase in low-level clouds. The global average surface temperature increases, the global average precipitation decreases, and the ITCZ moves northward with the increase in BC radiative forcing, irrespective of the vertical distribution of BC. Further, tropical expansion metrics for the poleward extent of the Northern Hemisphere Hadley cell (HC) indicate that simulated HC expansion is not sensitive to existing model biases in BC vertical distribution.

  2. McGill wetland model: evaluation of a peatland carbon simulator developed for global assessments

    F. St-Hilaire

    2010-11-01

    Full Text Available We developed the McGill Wetland Model (MWM based on the general structure of the Peatland Carbon Simulator (PCARS and the Canadian Terrestrial Ecosystem Model. Three major changes were made to PCARS: (1 the light use efficiency model of photosynthesis was replaced with a biogeochemical description of photosynthesis; (2 the description of autotrophic respiration was changed to be consistent with the formulation of photosynthesis; and (3 the cohort, multilayer soil respiration model was changed to a simple one box peat decomposition model divided into an oxic and anoxic zones by an effective water table, and a one-year residence time litter pool. MWM was then evaluated by comparing its output to the estimates of net ecosystem production (NEP, gross primary production (GPP and ecosystem respiration (ER from 8 years of continuous measurements at the Mer Bleue peatland, a raised ombrotrophic bog located in southern Ontario, Canada (index of agreement [dimensionless]: NEP = 0.80, GPP = 0.97, ER = 0.97; systematic RMSE [g C m−2 d−1]: NEP = 0.12, GPP = 0.07, ER = 0.14; unsystematic RMSE: NEP = 0.15, GPP = 0.27, ER = 0.23. Simulated moss NPP approximates what would be expected for a bog peatland, but shrub NPP appears to be underestimated. Sensitivity analysis revealed that the model output did not change greatly due to variations in water table because of offsetting responses in production and respiration, but that even a modest temperature increase could lead to converting the bog from a sink to a source of CO2. General weaknesses and further developments of MWM are discussed.

  3. Comparison of modeling approaches for carbon partitioning: Impact on estimates of global net primary production and equilibrium biomass of woody vegetation from MODIS GPP

    Ise, Takeshi; Litton, Creighton M.; Giardina, Christian P.; Ito, Akihiko

    2010-12-01

    Partitioning of gross primary production (GPP) to aboveground versus belowground, to growth versus respiration, and to short versus long-lived tissues exerts a strong influence on ecosystem structure and function, with potentially large implications for the global carbon budget. A recent meta-analysis of forest ecosystems suggests that carbon partitioning to leaves, stems, and roots varies consistently with GPP and that the ratio of net primary production (NPP) to GPP is conservative across environmental gradients. To examine influences of carbon partitioning schemes employed by global ecosystem models, we used this meta-analysis-based model and a satellite-based (MODIS) terrestrial GPP data set to estimate global woody NPP and equilibrium biomass, and then compared it to two process-based ecosystem models (Biome-BGC and VISIT) using the same GPP data set. We hypothesized that different carbon partitioning schemes would result in large differences in global estimates of woody NPP and equilibrium biomass. Woody NPP estimated by Biome-BGC and VISIT was 25% and 29% higher than the meta-analysis-based model for boreal forests, with smaller differences in temperate and tropics. Global equilibrium woody biomass, calculated from model-specific NPP estimates and a single set of tissue turnover rates, was 48 and 226 Pg C higher for Biome-BGC and VISIT compared to the meta-analysis-based model, reflecting differences in carbon partitioning to structural versus metabolically active tissues. In summary, we found that different carbon partitioning schemes resulted in large variations in estimates of global woody carbon flux and storage, indicating that stand-level controls on carbon partitioning are not yet accurately represented in ecosystem models.

  4. Spatiotemporal models of global soil organic carbon stock to support land degradation assessments at regional and global scales: limitations, challenges and opportunities

    Hengl, Tomislav; Heuvelink, Gerard; Sanderman, Jonathan; MacMillan, Robert

    2017-04-01

    There is an increasing interest in fitting and applying spatiotemporal models that can be used to assess and monitor soil organic carbon stocks (SOCS), for example, in support of the '4 pourmille' initiative aiming at soil carbon sequestration towards climate change adaptation and mitigation and UN's Land Degradation Neutrality indicators and similar degradation assessment projects at regional and global scales. The land cover mapping community has already produced several spatiotemporal data sets with global coverage and at relatively fine resolution e.g. USGS MODIS land cover annual maps for period 2000-2014; European Space Agency land cover maps at 300 m resolution for the year 2000, 2005 and 2010; Chinese GlobeLand30 dataset available for years 2000 and 2010; Columbia University's WRI GlobalForestWatch with deforestation maps at 30 m resolution for the period 2000-2016 (Hansen et al. 2013). These data sets can be used for land degradation assessment and scenario testing at global and regional scales (Wei et al 2014). Currently, however, no compatible global spatiotemporal data sets exist on status of soil quality and/or soil health (Powlson et al. 2013). This paper describes an initial effort to devise and evaluate a procedure for mapping spatio-temporal changes in SOC stocks using a complete stack of soil forming factors (climate, relief, land cover, land use, lithology and living organisms) represented mainly through remote sensing based time series of Earth images. For model building we used some 75,000 geo-referenced soil profiles and a stacks space-time covariates (land cover, land use, biomass, climate) at two standard resolutions: (1) 10 km resolution with data available for period 1920-2014 and (2) 1000 m resolution with data available for period 2000-2014. The initial results show that, although it is technically feasible to produce space time estimates of SOCS that demonstrate the procedure, the estimates are relatively uncertain (<45% of variation

  5. Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation modelORCHIDEE - Part 1: Simulating historical global burned area and fire regimes

    C. Yue; P. Ciais; P. Cadule; K. Thonicke; S. Archibald; B. Poulter; W. M. Hao; S. Hantson; F. Mouillot; P. Friedlingstein; F. Maignan; N. Viovy

    2014-01-01

    Fire is an important global ecological process that influences the distribution of biomes, with consequences for carbon, water, and energy budgets. Therefore it is impossible to appropriately model the history and future of the terrestrial ecosystems and the climate system without including fire. This study incorporates the process-based prognostic fire module SPITFIRE...

  6. The ocean quasi-homogeneous layer model and global cycle of carbon dioxide in system of atmosphere-ocean

    Glushkov, Alexander; Glushkov, Alexander; Loboda, Nataliya; Khokhlov, Valery; Serbov, Nikoly; Svinarenko, Andrey

    The purpose of this paper is carrying out the detailed model of the CO2 global turnover in system of "atmosphere-ocean" with using the ocean quasi-homogeneous layer model. Practically all carried out models are functioning in the average annual regime and accounting for the carbon distribution in bio-sphere in most general form (Glushkov et al, 2003). We construct a modified model for cycle of the carbon dioxide, which allows to reproduce a season dynamics of carbon turnover in ocean with account of zone ocean structure (up quasi-homogeneous layer, thermocline and deepest layer). It is taken into account dependence of the CO2 transfer through the bounder between atmosphere and ocean upon temperature of water and air, wind velocity, buffer mechanism of the CO2 dissolution. The same program is realized for atmosphere part of whole system. It is obtained a tempo-ral and space distribution for concentration of non-organic carbon in ocean, partial press of dissolute CO2 and value of exchange on the border between atmosphere and ocean. It is estimated a role of the wind intermixing of the up ocean layer. The increasing of this effect leads to increasing the plankton mass and further particles, which are transferred by wind, contribute to more quick immersion of microscopic shells and organic material. It is fulfilled investigation of sen-sibility of the master differential equations system solutions from the model parameters. The master differential equa-tions system, describing a dynamics of the CO2 cycle, is numerically integrated by the four order Runge-Cutt method under given initial values of valuables till output of solution on periodic regime. At first it is indicated on possible real-zation of the chaos scenario in system. On our data, the difference of the average annual values for the non-organic car-bon concentration in the up quasi-homogeneous layer between equator and extreme southern zone is 0.15 mol/m3, be-tween the equator and extreme northern zone is 0

  7. Inter-annual variability of the atmospheric carbon dioxide concentrations as simulated with global terrestrial biosphere models and an atmospheric transport model

    Fujita, Daisuke; Saeki, Tazu; Nakazawa, Takakiyo [Tohoku Univ., Sendai (Japan). Center for Atmospheric and Oceanic Studies; Ishizawa, Misa; Maksyutov, Shamil [Inst. for Global Change Research, Yokohama (Japan). Frontier Research System for Global Change; Thornton, Peter E. [National Center for Atmospheric Research, Boulder, CO (United States). Climate and Global Dynamics Div.

    2003-04-01

    Seasonal and inter-annual variations of atmospheric CO{sub 2} for the period from 1961 to 1997 have been simulated using a global tracer transport model driven by a new version of the Biome BioGeochemical Cycle model (Biome-BGC). Biome-BGC was forced by daily temperature and precipitation from the NCEP reanalysis dataset, and the calculated monthly-averaged CO{sub 2} fluxes were used as input to the global transport model. Results from an inter-comparison with the Carnegie-Ames-Stanford Approach model (CASA) and the Simulation model of Carbon CYCLE in Land Ecosystems (Sim-CYCLE) model are also reported. The phase of the seasonal cycle in the Northern Hemisphere was reproduced generally well by Biome-BGC, although the amplitude was smaller compared to the observations and to the other biosphere models. The CO{sub 2} time series simulated by Biome-BGC were compared to the global CO{sub 2} concentration anomalies from the observations at Mauna Loa and the South Pole. The modeled concentration anomalies matched the phase of the inter-annual variations in the atmospheric CO{sub 2} observations; however, the modeled amplitude was lower than the observed value in several cases. The result suggests that a significant part of the inter-annual variability in the global carbon cycle can be accounted for by the terrestrial biosphere models. Simulations performed with another climate-based model, Sim-CYCLE, produced a larger amplitude of inter-annual variability in atmospheric CO{sub 2}, making the amplitude closer to the observed range, but with a more visible phase mismatch in a number of time periods. This may indicate the need to increase the Biome-BGC model sensitivity to seasonal and inter-annual changes in temperature and precipitation.

  8. Inter-annual variability of the atmospheric carbon dioxide concentrations as simulated with global terrestrial biosphere models and an atmospheric transport model

    Fujita, Daisuke; Saeki, Tazu; Nakazawa, Takakiyo; Ishizawa, Misa; Maksyutov, Shamil; Thornton, Peter E.

    2003-01-01

    Seasonal and inter-annual variations of atmospheric CO 2 for the period from 1961 to 1997 have been simulated using a global tracer transport model driven by a new version of the Biome BioGeochemical Cycle model (Biome-BGC). Biome-BGC was forced by daily temperature and precipitation from the NCEP reanalysis dataset, and the calculated monthly-averaged CO 2 fluxes were used as input to the global transport model. Results from an inter-comparison with the Carnegie-Ames-Stanford Approach model (CASA) and the Simulation model of Carbon CYCLE in Land Ecosystems (Sim-CYCLE) model are also reported. The phase of the seasonal cycle in the Northern Hemisphere was reproduced generally well by Biome-BGC, although the amplitude was smaller compared to the observations and to the other biosphere models. The CO 2 time series simulated by Biome-BGC were compared to the global CO 2 concentration anomalies from the observations at Mauna Loa and the South Pole. The modeled concentration anomalies matched the phase of the inter-annual variations in the atmospheric CO 2 observations; however, the modeled amplitude was lower than the observed value in several cases. The result suggests that a significant part of the inter-annual variability in the global carbon cycle can be accounted for by the terrestrial biosphere models. Simulations performed with another climate-based model, Sim-CYCLE, produced a larger amplitude of inter-annual variability in atmospheric CO 2 , making the amplitude closer to the observed range, but with a more visible phase mismatch in a number of time periods. This may indicate the need to increase the Biome-BGC model sensitivity to seasonal and inter-annual changes in temperature and precipitation

  9. Joint Application of Concentrations and Isotopic Signatures to Investigate the Global Atmospheric Carbon Monoxide Budget: Inverse Modeling Approach

    Park, K.; Mak, J. E.; Emmons, L. K.

    2008-12-01

    Carbon monoxide is not only an important component for determining the atmospheric oxidizing capacity but also a key trace gas in the atmospheric chemistry of the Earth's background environment. The global CO cycle and its change are closely related to both the change of CO mixing ratio and the change of source strength. Previously, to estimate the global CO budget, most top-down estimation techniques have been applied the concentrations of CO solely. Since CO from certain sources has a unique isotopic signature, its isotopes provide additional information to constrain its sources. Thus, coupling the concentration and isotope fraction information enables to tightly constrain CO flux by its sources and allows better estimations on the global CO budget. MOZART4 (Model for Ozone And Related chemical Tracers), a 3-D global chemical transport model developed at NCAR, MPI for meteorology and NOAA/GFDL and is used to simulate the global CO concentration and its isotopic signature. Also, a tracer version of MOZART4 which tagged for C16O and C18O from each region and each source was developed to see their contributions to the atmosphere efficiently. Based on the nine-year-simulation results we analyze the influences of each source of CO to the isotopic signature and the concentration. Especially, the evaluations are focused on the oxygen isotope of CO (δ18O), which has not been extensively studied yet. To validate the model performance, CO concentrations and isotopic signatures measured from MPI, NIWA and our lab are compared to the modeled results. The MOZART4 reproduced observational data fairly well; especially in mid to high latitude northern hemisphere. Bayesian inversion techniques have been used to estimate the global CO budget with combining observed and modeled CO concentration. However, previous studies show significant differences in their estimations on CO source strengths. Because, in addition to the CO mixing ratio, isotopic signatures are independent tracers

  10. A comprehensive set of benchmark tests for a land surface model of simultaneous fluxes of water and carbon at both the global and seasonal scale

    E. Blyth

    2011-04-01

    Full Text Available Evaluating the models we use in prediction is important as it allows us to identify uncertainties in prediction as well as guiding the priorities for model development. This paper describes a set of benchmark tests that is designed to quantify the performance of the land surface model that is used in the UK Hadley Centre General Circulation Model (JULES: Joint UK Land Environment Simulator. The tests are designed to assess the ability of the model to reproduce the observed fluxes of water and carbon at the global and regional spatial scale, and on a seasonal basis. Five datasets are used to test the model: water and carbon dioxide fluxes from ten FLUXNET sites covering the major global biomes, atmospheric carbon dioxide concentrations at four representative stations from the global network, river flow from seven catchments, the seasonal mean NDVI over the seven catchments and the potential land cover of the globe (after the estimated anthropogenic changes have been removed. The model is run in various configurations and results are compared with the data.

    A few examples are chosen to demonstrate the importance of using combined use of observations of carbon and water fluxes in essential in order to understand the causes of model errors. The benchmarking approach is suitable for application to other global models.

  11. Global Carbon Reservoir Oxidative Ratios

    Masiello, C. A.; Gallagher, M. E.; Hockaday, W. C.

    2010-12-01

    Photosynthesis and respiration move carbon and oxygen between the atmosphere and the biosphere at a ratio that is characteristic of the biogeochemical processes involved. This ratio is called the oxidative ratio (OR) of photosynthesis and respiration, and is defined as the ratio of moles of O2 per moles of CO2. This O2/CO2 ratio is a characteristic of biosphere-atmosphere gas fluxes, much like the 13C signature of CO2 transferred between the biosphere and the atmosphere has a characteristic signature. OR values vary on a scale of 0 (CO2) to 2 (CH4), with most ecosystem values clustered between 0.9 and 1.2. Just as 13C can be measured for both carbon fluxes and carbon pools, OR can also be measured for fluxes and pools and can provide information about the processes involved in carbon and oxygen cycling. OR values also provide information about reservoir organic geochemistry because pool OR values are proportional to the oxidation state of carbon (Cox) in the reservoir. OR may prove to be a particularly valuable biogeochemical tracer because of its ability to couple information about ecosystem gas fluxes with ecosystem organic geochemistry. We have developed 3 methods to measure the OR of ecosystem carbon reservoirs and intercalibrated them to assure that they yield accurate, intercomparable data. Using these tools we have built a large enough database of biomass and soil OR values that it is now possible to consider the implications of global patterns in ecosystem OR values. Here we present a map of the natural range in ecosystem OR values and begin to consider its implications. One striking pattern is an apparent offset between soil and biospheric OR values: soil OR values are frequently higher than that of their source biomass. We discuss this trend in the context of soil organic geochemistry and gas fluxes.

  12. A novel assessment of the role of land-use and land-cover change in the global carbon cycle, using a new Dynamic Global Vegetation Model version of the CABLE land surface model

    Haverd, Vanessa; Smith, Benjamin; Nieradzik, Lars; Briggs, Peter; Canadell, Josep

    2017-04-01

    In recent decades, terrestrial ecosystems have sequestered around 1.2 PgC y-1, an amount equivalent to 20% of fossil-fuel emissions. This land carbon flux is the net result of the impact of changing climate and CO2 on ecosystem productivity (CO2-climate driven land sink ) and deforestation, harvest and secondary forest regrowth (the land-use change (LUC) flux). The future trajectory of the land carbon flux is highly dependent upon the contributions of these processes to the net flux. However their contributions are highly uncertain, in part because the CO2-climate driven land sink and LUC components are often estimated independently, when in fact they are coupled. We provide a novel assessment of global land carbon fluxes (1800-2015) that integrates land-use effects with the effects of changing climate and CO2 on ecosystem productivity. For this, we use a new land-use enabled Dynamic Global Vegetation Model (DGVM) version of the CABLE land surface model, suitable for use in attributing changes in terrestrial carbon balance, and in predicting changes in vegetation cover and associated effects on land-atmosphere exchange. In this model, land-use-change is driven by prescribed gross land-use transitions and harvest areas, which are converted to changes in land-use area and transfer of carbon between pools (soil, litter, biomass, harvested wood products and cleared wood pools). A novel aspect is the treatment of secondary woody vegetation via the coupling between the land-use module and the POP (Populations Order Physiology) module for woody demography and disturbance-mediated landscape heterogeneity. Land-use transitions to and from secondary forest tiles modify the patch age distribution within secondary-vegetated tiles, in turn affecting biomass accumulation and turnover rates and hence the magnitude of the secondary forest sink. The resulting secondary forest patch age distribution also influences the magnitude of the secondary forest harvest and clearance fluxes

  13. Global Ocean Carbon and Biogeochemistry Coordination

    Telszewski, Maciej; Tanhua, Toste; Palacz, Artur

    2016-04-01

    The complexity of the marine carbon cycle and its numerous connections to carbon's atmospheric and terrestrial pathways means that a wide range of approaches have to be used in order to establish it's qualitative and quantitative role in the global climate system. Ocean carbon and biogeochemistry research, observations, and modelling are conducted at national, regional, and global levels to quantify the global ocean uptake of atmospheric CO2 and to understand controls of this process, the variability of uptake and vulnerability of carbon fluxes into the ocean. These science activities require support by a sustained, international effort that provides a central communication forum and coordination services to facilitate the compatibility and comparability of results from individual efforts and development of the ocean carbon data products that can be integrated with the terrestrial, atmospheric and human dimensions components of the global carbon cycle. The International Ocean Carbon Coordination Project (IOCCP) was created in 2005 by the IOC of UNESCO and the Scientific Committee on Oceanic Research. IOCCP provides an international, program-independent forum for global coordination of ocean carbon and biogeochemistry observations and integration with global carbon cycle science programs. The IOCCP coordinates an ever-increasing set of observations-related activities in the following domains: underway observations of biogeochemical water properties, ocean interior observations, ship-based time-series observations, large-scale ocean acidification monitoring, inorganic nutrients observations, biogeochemical instruments and autonomous sensors and data and information creation. Our contribution is through the facilitation of the development of globally acceptable strategies, methodologies, practices and standards homogenizing efforts of the research community and scientific advisory groups as well as integrating the ocean biogeochemistry observations with the

  14. Smaller global and regional carbon emissions from gross land use change when considering sub-grid secondary land cohorts in a global dynamic vegetation model

    Yue, Chao; Ciais, Philippe; Li, Wei

    2018-02-01

    Several modelling studies reported elevated carbon emissions from historical land use change (ELUC) by including bidirectional transitions on the sub-grid scale (termed gross land use change), dominated by shifting cultivation and other land turnover processes. However, most dynamic global vegetation models (DGVMs) that have implemented gross land use change either do not account for sub-grid secondary lands, or often have only one single secondary land tile over a model grid cell and thus cannot account for various rotation lengths in shifting cultivation and associated secondary forest age dynamics. Therefore, it remains uncertain how realistic the past ELUC estimations are and how estimated ELUC will differ between the two modelling approaches with and without multiple sub-grid secondary land cohorts - in particular secondary forest cohorts. Here we investigated historical ELUC over 1501-2005 by including sub-grid forest age dynamics in a DGVM. We run two simulations, one with no secondary forests (Sageless) and the other with sub-grid secondary forests of six age classes whose demography is driven by historical land use change (Sage). Estimated global ELUC for 1501-2005 is 176 Pg C in Sage compared to 197 Pg C in Sageless. The lower ELUC values in Sage arise mainly from shifting cultivation in the tropics under an assumed constant rotation length of 15 years, being 27 Pg C in Sage in contrast to 46 Pg C in Sageless. Estimated cumulative ELUC values from wood harvest in the Sage simulation (31 Pg C) are however slightly higher than Sageless (27 Pg C) when the model is forced by reconstructed harvested areas because secondary forests targeted in Sage for harvest priority are insufficient to meet the prescribed harvest area, leading to wood harvest being dominated by old primary forests. An alternative approach to quantify wood harvest ELUC, i.e. always harvesting the close-to-mature forests in both Sageless and Sage, yields similar values of 33 Pg C by both

  15. Ocean acidification over the next three centuries using a simple global climate carbon-cycle model: projections and sensitivities

    Hartin, Corinne A.; Bond-Lamberty, Benjamin; Patel, Pralit; Mundra, Anupriya

    2016-08-01

    Continued oceanic uptake of anthropogenic CO2 is projected to significantly alter the chemistry of the upper oceans over the next three centuries, with potentially serious consequences for marine ecosystems. Relatively few models have the capability to make projections of ocean acidification, limiting our ability to assess the impacts and probabilities of ocean changes. In this study we examine the ability of Hector v1.1, a reduced-form global model, to project changes in the upper ocean carbonate system over the next three centuries, and quantify the model's sensitivity to parametric inputs. Hector is run under prescribed emission pathways from the Representative Concentration Pathways (RCPs) and compared to both observations and a suite of Coupled Model Intercomparison (CMIP5) model outputs. Current observations confirm that ocean acidification is already taking place, and CMIP5 models project significant changes occurring to 2300. Hector is consistent with the observational record within both the high- (> 55°) and low-latitude oceans (< 55°). The model projects low-latitude surface ocean pH to decrease from preindustrial levels of 8.17 to 7.77 in 2100, and to 7.50 in 2300; aragonite saturation levels (ΩAr) decrease from 4.1 units to 2.2 in 2100 and 1.4 in 2300 under RCP 8.5. These magnitudes and trends of ocean acidification within Hector are largely consistent with the CMIP5 model outputs, although we identify some small biases within Hector's carbonate system. Of the parameters tested, changes in [H+] are most sensitive to parameters that directly affect atmospheric CO2 concentrations – Q10 (terrestrial respiration temperature response) as well as changes in ocean circulation, while changes in ΩAr saturation levels are sensitive to changes in ocean salinity and Q10. We conclude that Hector is a robust tool well suited for rapid ocean acidification

  16. Satellite observations of tropospheric ammonia and carbon monoxide: Global distributions, regional correlations and comparisons to model simulations

    Ammonia (NH3) and carbon monoxide (CO) are primary pollutants emitted to the Earth's atmosphere from common as well as distinct sources associated with anthropogenic and natural activities. The seasonal and global distributions and correlations of NH3 and CO from the Tropospheric...

  17. Grazing the Commons. Global Carbon Emissions Forever?

    Melenberg, B. [CentER and Department of Econometrics and Operations Research, Tilburg University, Tilburg (Netherlands); Vollebergh, H.R.J. [Netherlands Environmental Assessment Agency PBL, Bilthoven (Netherlands); Dijkgraaf, E. [SEOR-ECRi and Tinbergen Institute, Erasmus University Rotterdam, Rotterdam (Netherlands)

    2011-02-15

    This paper presents the results from our investigation of the per-capita, long-term relation between carbon dioxide emissions and gross domestic product (GDP) for the world, obtained with the use of a new, flexible estimator. Consistent with simple economic growth models, we find that regional, population-weighted per-capita emissions systematically increase with income (scale effect) and usually decline over time (composition and technology effect). Both our in-sample results and out-of-sample scenarios indicate that this negative time effect is unlikely to compensate for the upward-income effect at a global level, in the near future. In particular, even if China's specialization in carbon-intensive industrial sectors would come to a halt, recent trends outside China make a reversal of the overall global trend very unlikely.

  18. Changes of global terrestrial carbon budget and major drivers in recent 30 years simulated using the remote sensing driven BEPS model

    Ju, W.; Chen, J.; Liu, R.; Liu, Y.

    2013-12-01

    The process-based Boreal Ecosystem Productivity Simulator (BEPS) model was employed in conjunction with spatially distributed leaf area index (LAI), land cover, soil, and climate data to simulate the carbon budget of global terrestrial ecosystems during the period from 1981 to 2008. The BEPS model was first calibrated and validated using gross primary productivity (GPP), net primary productivity (NPP), and net ecosystem productivity (NEP) measured in different ecosystems across the word. Then, four global simulations were conducted at daily time steps and a spatial resolution of 8 km to quantify the global terrestrial carbon budget and to identify the relative contributions of changes in climate, atmospheric CO2 concentration, and LAI to the global terrestrial carbon sink. The long term LAI data used to drive the model was generated through fusing Moderate Resolution Imaging Spectroradiometer (MODIS) and historical Advanced Very High Resolution Radiometer (AVHRR) data pixel by pixel. The meteorological fields were interpolated from the 0.5° global daily meteorological dataset produced by the land surface hydrological research group at Princeton University. The results show that the BEPS model was able to simulate carbon fluxes in different ecosystems. Simulated GPP, NPP, and NEP values and their temporal trends exhibited distinguishable spatial patterns. During the period from 1981 to 2008, global terrestrial ecosystems acted as a carbon sink. The averaged global totals of GPP NPP, and NEP were 122.70 Pg C yr-1, 56.89 Pg C yr-1, and 2.76 Pg C yr-1, respectively. The global totals of GPP and NPP increased greatly, at rates of 0.43 Pg C yr-2 (R2=0.728) and 0.26 Pg C yr-2 (R2=0.709), respectively. Global total NEP did not show an apparent increasing trend (R2= 0.036), averaged 2.26 Pg C yr-1, 3.21 Pg C yr-1, and 2.72 Pg C yr-1 for the periods from 1981 to 1989, from 1990 to 1999, and from 2000 to 2008, respectively. The magnitude and temporal trend of global

  19. Sensitivity of global and regional terrestrial carbon storage to the direct CO2 effect and climate change based on the CMIP5 model intercomparison.

    Peng, Jing; Dan, Li; Huang, Mei

    2014-01-01

    Global and regional land carbon storage has been significantly affected by increasing atmospheric CO2 concentration and climate change. Based on fully coupled climate-carbon-cycle simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5), we investigate sensitivities of land carbon storage to rising atmospheric CO2 concentration and climate change over the world and 21 regions during the 130 years. Overall, the simulations suggest that consistently spatial positive effects of the increasing CO2 concentrations on land carbon storage are expressed with a multi-model averaged value of 1.04 PgC per ppm. The stronger positive values are mainly located in the broad areas of temperate and tropical forest, especially in Amazon basin and western Africa. However, large heterogeneity distributed for sensitivities of land carbon storage to climate change. Climate change causes decrease in land carbon storage in most tropics and the Southern Hemisphere. In these regions, decrease in soil moisture (MRSO) and enhanced drought somewhat contribute to such a decrease accompanied with rising temperature. Conversely, an increase in land carbon storage has been observed in high latitude and altitude regions (e.g., northern Asia and Tibet). The model simulations also suggest that global negative impacts of climate change on land carbon storage are predominantly attributed to decrease in land carbon storage in tropics. Although current warming can lead to an increase in land storage of high latitudes of Northern Hemisphere due to elevated vegetation growth, a risk of exacerbated future climate change may be induced due to release of carbon from tropics.

  20. Sensitivity of global and regional terrestrial carbon storage to the direct CO2 effect and climate change based on the CMIP5 model intercomparison.

    Jing Peng

    Full Text Available Global and regional land carbon storage has been significantly affected by increasing atmospheric CO2 concentration and climate change. Based on fully coupled climate-carbon-cycle simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5, we investigate sensitivities of land carbon storage to rising atmospheric CO2 concentration and climate change over the world and 21 regions during the 130 years. Overall, the simulations suggest that consistently spatial positive effects of the increasing CO2 concentrations on land carbon storage are expressed with a multi-model averaged value of 1.04 PgC per ppm. The stronger positive values are mainly located in the broad areas of temperate and tropical forest, especially in Amazon basin and western Africa. However, large heterogeneity distributed for sensitivities of land carbon storage to climate change. Climate change causes decrease in land carbon storage in most tropics and the Southern Hemisphere. In these regions, decrease in soil moisture (MRSO and enhanced drought somewhat contribute to such a decrease accompanied with rising temperature. Conversely, an increase in land carbon storage has been observed in high latitude and altitude regions (e.g., northern Asia and Tibet. The model simulations also suggest that global negative impacts of climate change on land carbon storage are predominantly attributed to decrease in land carbon storage in tropics. Although current warming can lead to an increase in land storage of high latitudes of Northern Hemisphere due to elevated vegetation growth, a risk of exacerbated future climate change may be induced due to release of carbon from tropics.

  1. Atmospheric carbon dioxide and the global carbon cycle

    Trabalka, J R [ed.

    1985-12-01

    This state-of-the-art volume presents discussions on the global cycle of carbon, the dynamic balance among global atmospheric CO2 sources and sinks. Separate abstracts have been prepared for the individual papers. (ACR)

  2. The global carbon budget 1959–2011

    C. Le Quéré

    2013-05-01

    Full Text Available Accurate assessments of anthropogenic carbon dioxide (CO2 emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the climate policy process, and project future climate change. Present-day analysis requires the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. Here we describe datasets and a methodology developed by the global carbon cycle science community to quantify all major components of the global carbon budget, including their uncertainties. We discuss changes compared to previous estimates, consistency within and among components, and methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF are based on energy statistics, while emissions from Land-Use Change (ELUC, including deforestation, are based on combined evidence from land cover change data, fire activity in regions undergoing deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM is computed from the concentration. The mean ocean CO2 sink (SOCEAN is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. Finally, the global residual terrestrial CO2 sink (SLAND is estimated by the difference of the other terms. For the last decade available (2002–2011, EFF was 8.3 ± 0.4 PgC yr−1, ELUC 1.0 ± 0.5 PgC yr−1, GATM 4.3 ± 0.1PgC yr−1, SOCEAN 2.5 ± 0.5 PgC yr−1, and SLAND 2.6 ± 0.8 PgC yr−1. For year 2011 alone, EFF was 9.5 ± 0.5 PgC yr−1, 3.0 percent above 2010, reflecting a continued trend in these emissions; ELUC was 0.9 ± 0.5 PgC yr−1, approximately constant throughout the decade; GATM was 3.6 ± 0.2 PgC yr−1, SOCEAN was 2.7 ± 0.5 PgC yr−1, and SLAND was 4.1 ± 0.9 PgC yr−1. GATM was low in 2011

  3. The carbon footprint of global tourism

    Lenzen, Manfred; Sun, Ya-Yen; Faturay, Futu; Ting, Yuan-Peng; Geschke, Arne; Malik, Arunima

    2018-06-01

    Tourism contributes significantly to global gross domestic product, and is forecast to grow at an annual 4%, thus outpacing many other economic sectors. However, global carbon emissions related to tourism are currently not well quantified. Here, we quantify tourism-related global carbon flows between 160 countries, and their carbon footprints under origin and destination accounting perspectives. We find that, between 2009 and 2013, tourism's global carbon footprint has increased from 3.9 to 4.5 GtCO2e, four times more than previously estimated, accounting for about 8% of global greenhouse gas emissions. Transport, shopping and food are significant contributors. The majority of this footprint is exerted by and in high-income countries. The rapid increase in tourism demand is effectively outstripping the decarbonization of tourism-related technology. We project that, due to its high carbon intensity and continuing growth, tourism will constitute a growing part of the world's greenhouse gas emissions.

  4. Diffusion-type model of the global carbon cycle for the estimation of dose to the world population from releases of carbon-14 to the atmosphere

    Killough, G.G.

    1977-05-01

    A nonlinear dynamic model of the exchange of carbon among the atmosphere, terrestrial biosphere, and ocean is described and applied to estimating the radiation dose to the world's population from the release of 14 C to the atmosphere from the nuclear power industry. A computer implementation of the model, written in the IBM Continuous System Modeling Program III (CSMP III) simulation language, is presented. The model treats the ocean as a diffusive medium with respect to vertical transport of carbon, and the nonlinear variation of CO 2 partial pressure with the total inorganic carbon concentration in surface waters is taken into account in calculating the transfer rate from ocean to atmosphere. Transfers between the atmosphere and terrestrial biosphere are represented by nonlinear equations which consider CO 2 fertilization and impose a constraint on the ultimate total carbon mass in the biosphere

  5. Daily and 3-hourly Variability in Global Fire Emissions and Consequences for Atmospheric Model Predictions of Carbon Monoxide

    Mu, M.; Randerson, J. T.; vanderWerf, G. R.; Giglio, L.; Kasibhatla, P.; Morton, D.; Collatz, G. J.; DeFries, R. S.; Hyer, E. J.; Prins, E. M.; hide

    2011-01-01

    Attribution of the causes of atmospheric trace gas and aerosol variability often requires the use of high resolution time series of anthropogenic and natural emissions inventories. Here we developed an approach for representing synoptic- and diurnal-scale temporal variability in fire emissions for the Global Fire Emissions Database version 3 (GFED3). We disaggregated monthly GFED3 emissions during 2003.2009 to a daily time step using Moderate Resolution Imaging Spectroradiometer (MODIS) ]derived measurements of active fires from Terra and Aqua satellites. In parallel, mean diurnal cycles were constructed from Geostationary Operational Environmental Satellite (GOES) Wildfire Automated Biomass Burning Algorithm (WF_ABBA) active fire observations. Daily variability in fires varied considerably across different biomes, with short but intense periods of daily emissions in boreal ecosystems and lower intensity (but more continuous) periods of burning in savannas. These patterns were consistent with earlier field and modeling work characterizing fire behavior dynamics in different ecosystems. On diurnal timescales, our analysis of the GOES WF_ABBA active fires indicated that fires in savannas, grasslands, and croplands occurred earlier in the day as compared to fires in nearby forests. Comparison with Total Carbon Column Observing Network (TCCON) and Measurements of Pollution in the Troposphere (MOPITT) column CO observations provided evidence that including daily variability in emissions moderately improved atmospheric model simulations, particularly during the fire season and near regions with high levels of biomass burning. The high temporal resolution estimates of fire emissions developed here may ultimately reduce uncertainties related to fire contributions to atmospheric trace gases and aerosols. Important future directions include reconciling top ]down and bottom up estimates of fire radiative power and integrating burned area and active fire time series from

  6. Fusion power in a future low carbon global electricity system

    Cabal, H.; Lechón, Y.; Bustreo, C.

    2017-01-01

    Fusion is one of the technologies that may contribute to a future, low carbon, global energy supply system. In this article we investigate the role that it may play under different scenarios. The global energy model ETM (originally EFDA TIMES Model) has been used to analyse the participation...

  7. Daily and Hourly Variability in Global Fire Emissions and Consequences for Atmospheric Model Predictions of Carbon Monoxide

    Mu, M.; Randerson, J. T.; van der Werf, G. R.; Giglio, L.; Kasibhatla, P.; Morton, D.; Collatz, G. J.; DeFries, R. S.; Hyer, E. J.; Prins, E. M.; hide

    2011-01-01

    Attribution of the causes of atmospheric trace gas and aerosol variability often requires the use of high resolution time series of anthropogenic and natural emissions inventories. Here we developed an approach for representing synoptic- and diurnal-scale temporal variability in fire emissions for the Global Fire Emissions Database version 3 (GFED3). We distributed monthly GFED3 emissions during 2003-2009 on a daily time step using Moderate Resolution Imaging Spectroradiometer (MODIS)-derived measurements of active fires from Terra and Aqua satellites. In parallel, mean diurnal cycles were constructed from Geostationary Operational Environmental Satellite (GOES) active fire observations. We found that patterns of daily variability in fires varied considerably across different biomes, with short but intense periods of daily emissions in boreal ecosystems and lower intensity (but more continuous) periods of bunting in savannas. On diurnal timescales, our analysis of the GOES active fires indicated that fires in savannas, grasslands, and croplands occurred earlier in the day as compared to fires in nearby forests. Comparison with Total Carbon Column Observing Network (TCCON) and Measurements of Pollution in the Troposphere (MOPITT) column CO observations provided evidence that including daily variability in emissions moderately improved atmospheric model simulations, particularly during the fire season and near regions with high levels of biomass burning. The high temporal resolution estimates of fire emissions developed here may ultimately reduce uncertainties related to fire contributions to atmospheric trace gases and aerosols. Important future directions include reconciling top-down and bottom up estimates of fire radiative power and integrating burned area and active fire time series from multiple satellite sensors to improve daily emissions estimates.

  8. GlobalSoilMap and Global Carbon Predictions

    Hempel, Jonathan; McBratney, Alex B.; Arrouays, Dominique

    consistently produced soil property information at 100 m resolution across the world. This information will aid in solving some of the key environment and societal issues of the day, including food security, global climate change land degradation and carbon sequestration. Data would be produced using mostly...... the storehouse of existing legacy soils data along with geographic information and a range of covariates. A range of modeling techniques is used dependant on the complexity of the background soil survey information. The key soil properties that would be most useful to the modeling community and other users are...... of soil property values throughout the depth of each profile. Maps have been produced at the country level in the Australia, Canada, Denmark, Nigeria, South Korea and the US and work is on-going in many other parts of the world....

  9. Vulnerability of permafrost carbon to global warming. Part I: model description and role of heat generated by organic matter decomposition

    Khvorostyanov, D.V.; Ciais, G. (Laboratoire des Sciences du Climat et l' Environnement, Saclay (France)); Krinner, G. (Laboratoire de Glaciologie et Geophysique de l' Environnement, St Martin d' Heres (France)). e-mail: Dimitry.Khvorostiyanov@lsce.ipsl.fr; Heimann, M. (Max-Planck Inst. of Biogeochemistry, Jena (DE)); Zimov, S.A. (Northeast Science Station, Cherskii (RU))

    2008-07-01

    We constructed a new model to study the sensitivity of permafrost carbon stocks to future climate warming. The one-dimensional model solves an equation for diffusion of heat penetrating from the overlying atmosphere and takes into account additional in situ heat production by active soil microorganisms. Decomposition of frozen soil organic matter and produced CO{sub 2} and methane fluxes result from an interplay of soil heat conduction and phase transitions, respiration, methanogenesis and methanotrophy processes. Respiration and methanotrophy consume soil oxygen and thus can only develop in an aerated top-soil column. In contrast, methanogenesis is not limited by oxygen and can be sustained within the deep soil, releasing sufficient heat to further thaw in depth the frozen carbon-rich soil organic matter. Heat production that accompanies decomposition and methanotrophy can be an essential process providing positive feedback to atmospheric warming through self-sustaining transformation of initially frozen soil carbon into CO{sub 2} and CH{sub 4}. This supplementary heat becomes crucial, however, only under certain climate conditions. Oxygen limitation to soil respiration slows down the process, so that the mean flux of carbon released during the phase of intense decomposition is more than two times less than without oxygen limitation. Taking into account methanogenesis increases the mean carbon flux by 20%. Part II of this study deals with mobilization of frozen carbon stock in transient climate change scenarios with more elaborated methane module, which makes it possible to consider more general cases with various site configurations. Part I (this manuscript) studies mobilization of 400 GtC carbon stock of the Yedoma in response to a stepwise rapid warming focusing on the role of supplementary heat that is released to the soil during decomposition of organic matter

  10. Modelling fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE – Part 1: Simulating historical global burned area and fire regime

    Yue, C

    2014-01-01

    Full Text Available ., 2008; Turner et al., 1994) and biological diversity (Burton et al., 2008) and may also produce a higher rate of carbon emissions compared to small fires (Kasischke and Hoy, 2012). In some ecosystems, past climate warming is documented to have increased...

  11. Africa and the global carbon cycle

    Williams, CA

    2007-03-01

    Full Text Available The African continent has a large and growing role in the global carbon cycle, with potentially important climate change implications. However, the sparse observation network in and around the African continent means that Africa is one...

  12. Navigating the global carbon market

    Schneider, Malte; Hendrichs, Holger; Hoffmann, Volker H.

    2010-01-01

    From a slow start, the clean development mechanism (CDM) market has recently experienced enormous growth. However, the CDM market has been increasingly criticised, resulting in a lively debate about how to reform, complement, or replace it. In order to increase transparency and assist policy-makers in better understanding the current market, we depart from the traditional project-level perspective on CDM and analyse commercial activities by utilising data from UNEP Risoe's CDM Bazaar. To this end, we first establish a seven-step value chain by conducting a factor analysis on the commercial activities indicated in the Bazaar and, second, identify nine prevalent business models with a cluster analysis of all 495 participating organisations. Based on these analyses, we discuss potential impacts on the value chain of different policy scenarios that rely on carbon credits as incentive. We find that the importance of specific regulatory CDM know-how and general business activities such as finance varies strongly with the different policy scenarios. Our analysis serves to sensitise policy-makers and business about implications of different regulatory designs.

  13. A Conceptual Model for Projecting Coccolithophorid Growth, Calcification and Photosynthetic Carbon Fixation Rates in Response to Global Ocean Change

    Natasha A. Gafar

    2018-01-01

    Full Text Available Temperature, light and carbonate chemistry all influence the growth, calcification and photosynthetic rates of coccolithophores to a similar degree. There have been multiple attempts to project the responses of coccolithophores to changes in carbonate chemistry, but the interaction with light and temperature remains elusive. Here we devise a simple conceptual model to derive a fit equation for coccolithophorid growth, photosynthetic and calcification rates in response to simultaneous changes in carbonate chemistry, temperature and light conditions. The fit equation is able to account for up to 88% of the variability in measured metabolic rates. Equation projections indicate that temperature, light and carbonate chemistry all have different modulating effects on both optimal growth conditions and the sensitivity of responses to extreme environmental conditions. Calculations suggest that a single extreme environmental condition (CO2, temperature, light will reduce maximum rates regardless of how optimal the other environmental conditions may be. Thus, while the response of coccolithophores to ocean change depends on multiple variables, the one which is least optimal will have the most impact on overall rates. Finally, responses to ocean change are usually reported in terms of cellular rates. However, changes in cellular rates can be a poor predictor for assessing changes in production at the community level. We therefore introduce a new metric, the calcium carbonate production potential (CCPP, which combines the independent effects of changes in growth rate and cellular calcium carbonate content to assess how environmental changes will impact coccolith production. Direct comparison of CO2 impacts on cellular CaCO3 production rates and CCPP shows that while the former is still at 45% of its pre-industrial capacity at 1,000 μatm, the latter is reduced to 10%.

  14. Quantifying global soil carbon losses in response to warming.

    Crowther, T W; Todd-Brown, K E O; Rowe, C W; Wieder, W R; Carey, J C; Machmuller, M B; Snoek, B L; Fang, S; Zhou, G; Allison, S D; Blair, J M; Bridgham, S D; Burton, A J; Carrillo, Y; Reich, P B; Clark, J S; Classen, A T; Dijkstra, F A; Elberling, B; Emmett, B A; Estiarte, M; Frey, S D; Guo, J; Harte, J; Jiang, L; Johnson, B R; Kröel-Dulay, G; Larsen, K S; Laudon, H; Lavallee, J M; Luo, Y; Lupascu, M; Ma, L N; Marhan, S; Michelsen, A; Mohan, J; Niu, S; Pendall, E; Peñuelas, J; Pfeifer-Meister, L; Poll, C; Reinsch, S; Reynolds, L L; Schmidt, I K; Sistla, S; Sokol, N W; Templer, P H; Treseder, K K; Welker, J M; Bradford, M A

    2016-11-30

    The majority of the Earth's terrestrial carbon is stored in the soil. If anthropogenic warming stimulates the loss of this carbon to the atmosphere, it could drive further planetary warming. Despite evidence that warming enhances carbon fluxes to and from the soil, the net global balance between these responses remains uncertain. Here we present a comprehensive analysis of warming-induced changes in soil carbon stocks by assembling data from 49 field experiments located across North America, Europe and Asia. We find that the effects of warming are contingent on the size of the initial soil carbon stock, with considerable losses occurring in high-latitude areas. By extrapolating this empirical relationship to the global scale, we provide estimates of soil carbon sensitivity to warming that may help to constrain Earth system model projections. Our empirical relationship suggests that global soil carbon stocks in the upper soil horizons will fall by 30 ± 30 petagrams of carbon to 203 ± 161 petagrams of carbon under one degree of warming, depending on the rate at which the effects of warming are realized. Under the conservative assumption that the response of soil carbon to warming occurs within a year, a business-as-usual climate scenario would drive the loss of 55 ± 50 petagrams of carbon from the upper soil horizons by 2050. This value is around 12-17 per cent of the expected anthropogenic emissions over this period. Despite the considerable uncertainty in our estimates, the direction of the global soil carbon response is consistent across all scenarios. This provides strong empirical support for the idea that rising temperatures will stimulate the net loss of soil carbon to the atmosphere, driving a positive land carbon-climate feedback that could accelerate climate change.

  15. Carbon plants nutrition and global food security

    Mariani, Luigi

    2017-02-01

    To evaluate the effects of carbon nutrition on agricultural productivity, a physiological-process-based crop simulation model, driven by the 1961-1990 monthly climate data from global FAO dataset, was developed and applied to four crops (wheat, maize, rice and soybean -WMRS) which account for 64% of the global caloric consumption of humans. Five different temperatures and CO2 scenarios (current; glacial; pre-industrial; future_1 with 560 ppmv for CO2 and +2 °C for temperature; and future_2 with 800 ppmv for CO2 and +4 °C) were investigated. The relative values of WMRS global productions for past and future scenarios were, respectively, 49% of the present-day scenario for glacial, 82% for pre-industrial, 115% for future_1 and 124% for future_2. A sensitive growth of productivity of future scenarios (respectively to 117% and 134%) was observed if the northward shift of crops was allowed, and a strong increase was obtained without water limitation (from 151% to 157% for the five scenarios) and without biotic and abiotic stresses (from 30% to 40% for WMRS subject to the current scenario). Furthermore since the beginning of the Green Revolution (roughly happened between the '30s and the '50s of the twentieth century) production losses due to sub-optimal levels of CO2 and to biotic and abiotic stresses have been masked by the strong technological innovation trend still ongoing, which, in the last century, led to a strong increase in the global crop production (+400%-600%). These results show the crucial relevance of the future choices of research and development in agriculture (genetics, land reclamation, irrigation, plant protection, and so on) to ensure global food security.

  16. Geography of Global Forest Carbon Stocks & Dynamics

    Saatchi, S. S.; Yu, Y.; Xu, L.; Yang, Y.; Fore, A.; Ganguly, S.; Nemani, R. R.; Zhang, G.; Lefsky, M. A.; Sun, G.; Woodall, C. W.; Naesset, E.; Seibt, U. H.

    2014-12-01

    Spatially explicit distribution of carbon stocks and dynamics in global forests can greatly reduce the uncertainty in the terrestrial portion of the global carbon cycle by improving estimates of emissions and uptakes from land use activities, and help with green house gas inventory at regional and national scales. Here, we produce the first global distribution of carbon stocks in living woody biomass at ~ 100 m (1-ha) resolution for circa 2005 from a combination of satellite observations and ground inventory data. The total carbon stored in live woody biomass is estimated to be 337 PgC with 258 PgC in aboveground and 79 PgC in roots, and partitioned globally in boreal (20%), tropical evergreen (50%), temperate (12%), and woodland savanna and shrublands (15%). We use a combination of satellite observations of tree height, remote sensing data on deforestation and degradation to quantify the dynamics of these forests at the biome level globally and provide geographical distribution of carbon storage dynamics in terms sinks and sources globally.

  17. Global Carbon Cycle of the Precambrian Earth

    Wiewióra, Justyna

    The carbon isotopic composition of distinct Archaean geological records provides information about the global carbon cycle and emergence of life on early Earth. We utilized carbon isotopic records of Greenlandic carbonatites, diamonds, graphites, marbles, metacarbonates and ultramafic rocks...... in the surface environment and recycled back into the mantle In the third manuscript we investigate the carbon cycle components, which have maintained the carbon isotope composition of the mantle constant through time. Assuming constant organic ratio of the total carbon burial (f), we show that increased.......1‰) and metacarbonate ( -6.1 ± 0.1‰ to +1.5 ± 0.0‰) rocks from the ~3.8 Ga Isua Supracrustal Belt as resulting from the Rayleigh distillation process, which affected the ultramafic reservoir with initial δ13C between -2‰ and 0‰. Due to its high primary δ13C signature, carbon in the Isuan magnesite was most likely...

  18. Global Land Carbon Uptake from Trait Distributions

    Butler, E. E.; Datta, A.; Flores-Moreno, H.; Fazayeli, F.; Chen, M.; Wythers, K. R.; Banerjee, A.; Atkin, O. K.; Kattge, J.; Reich, P. B.

    2016-12-01

    Historically, functional diversity in land surface models has been represented through a range of plant functional types (PFTs), each of which has a single value for all of its functional traits. Here we expand the diversity of the land surface by using a distribution of trait values for each PFT. The data for these trait distributions is from a sub-set of the global database of plant traits, TRY, and this analysis uses three leaf traits: mass based nitrogen and phosphorus content and specific leaf area, which influence both photosynthesis and respiration. The data are extrapolated into continuous surfaces through two methodologies. The first, a categorical method, classifies the species observed in TRY into satellite estimates of their plant functional type abundances - analogous to how traits are currently assigned to PFTs in land surface models. Second, a Bayesian spatial method which additionally estimates how the distribution of a trait changes in accord with both climate and soil covariates. These two methods produce distinct patterns of diversity which are incorporated into a land surface model to estimate how the range of trait values affects the global land carbon budget.

  19. Global Delivery Models

    Manning, Stephan; Larsen, Marcus M.; Bharati, Pratyush

    2013-01-01

    This article examines antecedents and performance implications of global delivery models (GDMs) in global business services. GDMs require geographically distributed operations to exploit both proximity to clients and time-zone spread for efficient service delivery. We propose and empirically show...

  20. Soil Carbon Chemistry and Greenhouse Gas Production in Global Peatlands

    Normand, A. E.; Turner, B. L.; Lamit, L. J.; Smith, A. N.; Baiser, B.; Clark, M. W.; Hazlett, C.; Lilleskov, E.; Long, J.; Grover, S.; Reddy, K. R.

    2017-12-01

    Peatlands play a critical role in the global carbon cycle because they contain approximately 30% of the 1500 Pg of carbon stored in soils worldwide. However, the stability of these vast stores of carbon is under threat from climate and land-use change, with important consequences for global climate. Ecosystem models predict the impact of peatland perturbation on carbon fluxes based on total soil carbon pools, but responses could vary markedly depending on the chemical composition of soil organic matter. Here we combine experimental and observational studies to quantify the chemical nature and response to perturbation of soil organic matter in peatlands worldwide. We quantified carbon functional groups in a global sample of 125 freshwater peatlands using solid-state 13C nuclear magnetic resonance (NMR) spectroscopy to determine the drivers of molecular composition of soil organic matter. We then incubated a representative subset of the soils under aerobic and anaerobic conditions to determine how organic matter composition influences carbon dioxide (CO2) and methane (CH4) emissions following drainage or flooding. The functional chemistry of peat varied markedly at large and small spatial scales, due to long-term land use change, mean annual temperature, nutrient status, and vegetation, but not pH. Despite this variation, we found predictable responses of greenhouse gas production following drainage based on soil carbon chemistry, defined by a novel Global Peat Stability Index, with greater CO2 and CH4 fluxes from soils enriched in oxygen-containing organic carbon (O-alkyl C) and depleted in aromatic and hydrophobic compounds. Incorporation of the Global Peat Stability Index of peatland organic matter into earth system models and management strategies, which will improve estimates of GHG fluxes from peatlands and ultimately advance management to reduce carbon loss from these sensitive ecosystems.

  1. Environmental and economic effects of post-Kyoto carbon regimes. Results of simulations with the global model GINFORS

    Lutz, Christian; Meyer, Bernd

    2009-01-01

    Using the extensive and disaggregated global GINFORS model, consequences of different possible post-Kyoto regimes on the German and European economy and other major economies in the medium run until 2020 are depicted. The approach is very extensive and detailed in comparison to already existing analyses: this holds for the number of explicitly modelled countries (50 and 2 regions) and 41 economic sectors, input-output tables, the bilateral trade flows, the detailed coverage of behavioural parameters, the coverage of energy balances and CO 2 emissions as well as for the number and precise economic-political design of simulation runs. Global emissions will double until 2030 compared to 1990 levels without the existence of a far-reaching climate regime after 2012. A unilateral commitment of the EU would only be a 'drop in the bucket', which solely strengthens the credibility of the EU in international negotiations. A stabilisation of global emissions in 2020 compared to 2010, which is consistent with the 2 target of the EU can only be achieved, if all developed and at least the large emerging economies participate and if all possible existing market-ready reduction technologies are used. (author)

  2. Global ice sheet modeling

    Hughes, T.J.; Fastook, J.L.

    1994-05-01

    The University of Maine conducted this study for Pacific Northwest Laboratory (PNL) as part of a global climate modeling task for site characterization of the potential nuclear waste respository site at Yucca Mountain, NV. The purpose of the study was to develop a global ice sheet dynamics model that will forecast the three-dimensional configuration of global ice sheets for specific climate change scenarios. The objective of the third (final) year of the work was to produce ice sheet data for glaciation scenarios covering the next 100,000 years. This was accomplished using both the map-plane and flowband solutions of our time-dependent, finite-element gridpoint model. The theory and equations used to develop the ice sheet models are presented. Three future scenarios were simulated by the model and results are discussed

  3. Global controls on carbon storage in mangrove soils

    Rovai, André S.; Twilley, Robert R.; Castañeda-Moya, Edward; Riul, Pablo; Cifuentes-Jara, Miguel; Manrow-Villalobos, Marilyn; Horta, Paulo A.; Simonassi, José C.; Fonseca, Alessandra L.; Pagliosa, Paulo R.

    2018-06-01

    Global-scale variation in mangrove ecosystem properties has been explained using a conceptual framework linking geomorphological processes to distinct coastal environmental settings (CES) for nearly 50 years. However, these assumptions have not been empirically tested at the global scale. Here, we show that CES account for global variability in mangrove soil C:N:P stoichiometry and soil organic carbon (SOC) stocks. Using this ecogeomorphology framework, we developed a global model that captures variation in mangrove SOC stocks compatible with distinct CES. We show that mangrove SOC stocks have been underestimated by up to 50% (a difference of roughly 200 Mg ha-1) in carbonate settings and overestimated by up to 86% (around 400 Mg ha-1) in deltaic coastlines. Moreover, we provide information for 57 nations that currently lack SOC data, enabling these and other countries to develop or evaluate their blue carbon inventories.

  4. Carbon emission from global hydroelectric reservoirs revisited.

    Li, Siyue; Zhang, Quanfa

    2014-12-01

    Substantial greenhouse gas (GHG) emissions from hydropower reservoirs have been of great concerns recently, yet the significant carbon emitters of drawdown area and reservoir downstream (including spillways and turbines as well as river reaches below dams) have not been included in global carbon budget. Here, we revisit GHG emission from hydropower reservoirs by considering reservoir surface area, drawdown zone and reservoir downstream. Our estimates demonstrate around 301.3 Tg carbon dioxide (CO2)/year and 18.7 Tg methane (CH4)/year from global hydroelectric reservoirs, which are much higher than recent observations. The sum of drawdown and downstream emission, which is generally overlooked, represents 42 % CO2 and 67 % CH4 of the total emissions from hydropower reservoirs. Accordingly, the global average emissions from hydropower are estimated to be 92 g CO2/kWh and 5.7 g CH4/kWh. Nonetheless, global hydroelectricity could currently reduce approximate 2,351 Tg CO2eq/year with respect to fuel fossil plant alternative. The new findings show a substantial revision of carbon emission from the global hydropower reservoirs.

  5. Global agriculture and carbon trade-offs.

    Johnson, Justin Andrew; Runge, Carlisle Ford; Senauer, Benjamin; Foley, Jonathan; Polasky, Stephen

    2014-08-26

    Feeding a growing and increasingly affluent world will require expanded agricultural production, which may require converting grasslands and forests into cropland. Such conversions can reduce carbon storage, habitat provision, and other ecosystem services, presenting difficult societal trade-offs. In this paper, we use spatially explicit data on agricultural productivity and carbon storage in a global analysis to find where agricultural extensification should occur to meet growing demand while minimizing carbon emissions from land use change. Selective extensification saves ∼ 6 billion metric tons of carbon compared with a business-as-usual approach, with a value of approximately $1 trillion (2012 US dollars) using recent estimates of the social cost of carbon. This type of spatially explicit geospatial analysis can be expanded to include other ecosystem services and other industries to analyze how to minimize conflicts between economic development and environmental sustainability.

  6. The carbon cycle and global warming

    Anon.

    1991-01-01

    Five land-use-based approaches can be used to slow the buildup of CO 2 in the atmosphere: slowing or stopping the loss of existing forests, thus preserving current carbon reservoirs; adding to the planet's vegetative cover through reforestation or other means, thus enlarging living terrestrial carbon reservoirs; increasing the carbon stored in nonliving carbon reservoirs such as agricultural soils; increasing the carbon stored in artificial reservoirs, including timber products; and substituting sustainable biomass energy sources for fossil fuel consumption, thus reducing energy-related carbon emissions. These approaches are all based on the same basic premise: adding to the planet's net carbon stores in vegetative cover or soil, or preventing any net loss, will help moderate global warming by keeping atmospheric CO 2 levels lower than they would otherwise be. Because biotic policy options appear capable of contributing significantly to the mitigation of global warming while also furthering many other public policy objectives, their role deserves careful consideration on a country-by-country basis

  7. Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: Current status and future directions.

    Tian, Hanqin; Lu, Chaoqun; Yang, Jia; Banger, Kamaljit; Huntzinger, Deborah N; Schwalm, Christopher R; Michalak, Anna M; Cook, Robert; Ciais, Philippe; Hayes, Daniel; Huang, Maoyi; Ito, Akihiko; Jain, Atul K; Lei, Huimin; Mao, Jiafu; Pan, Shufen; Post, Wilfred M; Peng, Shushi; Poulter, Benjamin; Ren, Wei; Ricciuto, Daniel; Schaefer, Kevin; Shi, Xiaoying; Tao, Bo; Wang, Weile; Wei, Yaxing; Yang, Qichun; Zhang, Bowen; Zeng, Ning

    2015-06-01

    Soil is the largest organic carbon (C) pool of terrestrial ecosystems, and C loss from soil accounts for a large proportion of land-atmosphere C exchange. Therefore, a small change in soil organic C (SOC) can affect atmospheric carbon dioxide (CO 2 ) concentration and climate change. In the past decades, a wide variety of studies have been conducted to quantify global SOC stocks and soil C exchange with the atmosphere through site measurements, inventories, and empirical/process-based modeling. However, these estimates are highly uncertain, and identifying major driving forces controlling soil C dynamics remains a key research challenge. This study has compiled century-long (1901-2010) estimates of SOC storage and heterotrophic respiration (Rh) from 10 terrestrial biosphere models (TBMs) in the Multi-scale Synthesis and Terrestrial Model Intercomparison Project and two observation-based data sets. The 10 TBM ensemble shows that global SOC estimate ranges from 425 to 2111 Pg C (1 Pg = 10 15  g) with a median value of 1158 Pg C in 2010. The models estimate a broad range of Rh from 35 to 69 Pg C yr -1 with a median value of 51 Pg C yr -1 during 2001-2010. The largest uncertainty in SOC stocks exists in the 40-65°N latitude whereas the largest cross-model divergence in Rh are in the tropics. The modeled SOC change during 1901-2010 ranges from -70 Pg C to 86 Pg C, but in some models the SOC change has a different sign from the change of total C stock, implying very different contribution of vegetation and soil pools in determining the terrestrial C budget among models. The model ensemble-estimated mean residence time of SOC shows a reduction of 3.4 years over the past century, which accelerate C cycling through the land biosphere. All the models agreed that climate and land use changes decreased SOC stocks, while elevated atmospheric CO 2 and nitrogen deposition over intact ecosystems increased SOC stocks-even though the responses varied

  8. Global scale analysis and evaluation of an improved mechanistic representation of plant nitrogen and carbon dynamics in the Community Land Model (CLM)

    Ghimire, B.; Riley, W. J.; Koven, C. D.; Randerson, J. T.; Mu, M.; Kattge, J.; Rogers, A.; Reich, P. B.

    2014-12-01

    In many ecosystems, nitrogen is the most limiting nutrient for plant growth and productivity. However mechanistic representation of nitrogen uptake linked to root traits, and functional nitrogen allocation among different leaf enzymes involved in respiration and photosynthesis is currently lacking in Earth System models. The linkage between nitrogen availability and plant productivity is simplistically represented by potential photosynthesis rates, and is subsequently downregulated depending on nitrogen supply and other nitrogen consumers in the model (e.g., nitrification). This type of potential photosynthesis rate calculation is problematic for several reasons. Firstly, plants do not photosynthesize at potential rates and then downregulate. Secondly, there is considerable subjectivity on the meaning of potential photosynthesis rates. Thirdly, there exists lack of understanding on modeling these potential photosynthesis rates in a changing climate. In addition to model structural issues in representing photosynthesis rates, the role of plant roots in nutrient acquisition have been largely ignored in Earth System models. For example, in CLM4.5, nitrogen uptake is linked to leaf level processes (e.g., primarily productivity) rather than root scale process involved in nitrogen uptake. We present a new plant model for CLM with an improved mechanistic presentation of plant nitrogen uptake based on root scale Michaelis Menten kinetics, and stronger linkages between leaf nitrogen and plant productivity by inferring relationships observed in global databases of plant traits (including the TRY database and several individual studies). We also incorporate improved representation of plant nitrogen leaf allocation, especially in tropical regions where significant over-prediction of plant growth and productivity in CLM4.5 simulations exist. We evaluate our improved global model simulations using the International Land Model Benchmarking (ILAMB) framework. We conclude that

  9. An assessment of the potentials of nuclear power and carbon capture and storage in the long-term global warming mitigation options based on Asian Modeling Exercise scenarios

    Mori, Shunsuke

    2012-01-01

    This paper presents an evaluation of global warming mitigation options based on scenarios from the Asian Modeling Exercise. Using an extended version of the integrated assessment model MARIA-23 (Multiregional Approach for Resource and Industry Allocation), we analyze nuclear fuel recycling options, carbon capture and storage technologies (CCS), and biomass utilization. To assess the potential implications of decreased social acceptance of nuclear power in the wake of the Fukushima nuclear accident, additional scenarios including a nuclear power expansion limitation, are analyzed. We also evaluate MARIA-23 model simulation estimates of long-term contributions and interrelationships among nuclear power, biomass, and CCS. Finally, potential costs of nuclear limitation under carbon control policies are assessed. The simulation results in this paper suggest the following: (1) under the reference scenario, global GDP losses in climate limitation scenarios range from 1.3% per year to 3.9% per year in 2060, rising to between 3.5% per year and 4.5% per year in 2100; (2) the use of nuclear fuel reprocessing technologies increase rapidly in all carbon control policy scenarios; (3) under a scenario where the price of CO 2 is $30 and nuclear power expansion is strictly limited, GDP losses increase significantly—from 4.5% per year to 6.4% per year by 2100; (4) nuclear power and CCS are substitute mitigation technologies. With nuclear power technology available CCS deployment reaches approximately 15,000 Mt-CO 2 per year by 2010; without a nuclear power option, CCS deployment rises to more than 80,000 Mt-CO 2 per year; and (5) biomass utilization cannot fully compensate for limitations to nuclear power expansion in policy scenarios. In addition to examining the role of these three technologies on global scales, we report results for several major Asian regions, namely Japan, China, and India. China tends to deploy nuclear power (if available) in response to rapidly growing

  10. Regionalizing global climate models

    Pitman, A.J.; Arneth, A.; Ganzeveld, L.N.

    2012-01-01

    Global climate models simulate the Earth's climate impressively at scales of continents and greater. At these scales, large-scale dynamics and physics largely define the climate. At spatial scales relevant to policy makers, and to impacts and adaptation, many other processes may affect regional and

  11. Measuring Urban Carbon Footprint from Carbon Flows in the Global Supply Chain.

    Hu, Yuanchao; Lin, Jianyi; Cui, Shenghui; Khanna, Nina Zheng

    2016-06-21

    A global multiregional input-output (MRIO) model was built for eight Chinese cities to track their carbon flows. For in-depth understanding of urban carbon footprint from the perspectives of production, consumption, and trade balance, four kinds of footprints and four redefined measurement indicators were calculated. From the global supply chain, urban carbon inflows from Mainland China were larger than outflows, while the carbon outflows to European, principal North American countries and East Asia were much larger than inflows. With the rapid urbanization of China, Construction was the largest consumer and Utilities was the largest producer. Cities with higher consumption (such as Dalian, Tianjin, Shanghai, and Beijing) should change their consumption patterns, while cities with lower production efficiency (such as Dalian, Shanghai, Ningbo, and Chongqing) should improve their technology. The cities of net carbon consumption tended to transfer carbon emissions out of them by trading in carbon-intensive products, while the cities of net carbon production tended to produce carbon-intensive products for nonlocal consumers. Our results indicated that urban carbon abatement requires not only rational consumption and industrial symbiosis at the city level, but also tighter collaboration along all stages of the global supply chain.

  12. Greenhouse Gas Mitigation Options in ISEEM Global Energy Model: 2010-2050 Scenario Analysis for Least-Cost Carbon Reduction in Iron and Steel Sector

    Karali, Nihan; Xu, Tengfang; Sathaye, Jayant

    2013-12-01

    The goal of the modeling work carried out in this project was to quantify long-term scenarios for the future emission reduction potentials in the iron and steel sector. The main focus of the project is to examine the impacts of carbon reduction options in the U.S. iron and steel sector under a set of selected scenarios. In order to advance the understanding of carbon emission reduction potential on the national and global scales, and to evaluate the regional impacts of potential U.S. mitigation strategies (e.g., commodity and carbon trading), we also included and examined the carbon reduction scenarios in China’s and India’s iron and steel sectors in this project. For this purpose, a new bottom-up energy modeling framework, the Industrial Sector Energy Efficiency Modeling (ISEEM), (Karali et al. 2012) was used to provide detailed annual projections starting from 2010 through 2050. We used the ISEEM modeling framework to carry out detailed analysis, on a country-by-country basis, for the U.S., China’s, and India’s iron and steel sectors. The ISEEM model applicable to iron and steel section, called ISEEM-IS, is developed to estimate and evaluate carbon emissions scenarios under several alternative mitigation options - including policies (e.g., carbon caps), commodity trading, and carbon trading. The projections will help us to better understand emission reduction potentials with technological and economic implications. The database for input of ISEEM-IS model consists of data and information compiled from various resources such as World Steel Association (WSA), the U.S. Geological Survey (USGS), China Steel Year Books, India Bureau of Mines (IBM), Energy Information Administration (EIA), and recent LBNL studies on bottom-up techno-economic analysis of energy efficiency measures in the iron and steel sector of the U.S., China, and India, including long-term steel production in China. In the ISEEM-IS model, production technology and manufacturing details are

  13. The national security dividend of global carbon mitigation

    Mignone, Bryan K.

    2007-01-01

    Energy and environmental security objectives are often conflated in political circles and in the popular press. Results from a well-established integrated assessment model suggest that policies designed to stabilize atmospheric carbon dioxide concentrations at levels above ∼500 ppm generally do not align with policies to curb global oil dependence, because these atmospheric objectives can be achieved largely through reductions in global coal consumption. Policies designed to stabilize atmospheric carbon dioxide at levels below ∼500 ppm, on the other hand, directly facilitate the alignment of environmental and security objectives because atmospheric targets in this range demand significant reductions in both coal and oil use. Greater recognition that investment in carbon mitigation can yield significant security dividends may alter the political cost-benefit calculus of energy-importing nations and could increase the willingness of some key global actors to seek binding cooperative targets under any post-Kyoto climate treaty regime

  14. Comparison of modeling approaches for carbon partitioning: Impact on estimates of global net primary production and equilibrium biomass of woody vegetation from MODIS GPP

    Takeshi Ise; Creighton M. Litton; Christian P. Giardina; Akihiko Ito

    2010-01-01

    Partitioning of gross primary production (GPP) to aboveground versus belowground, to growth versus respiration, and to short versus long�]lived tissues exerts a strong influence on ecosystem structure and function, with potentially large implications for the global carbon budget. A recent meta-analysis of forest ecosystems suggests that carbon partitioning...

  15. Timing of carbon emissions from global forest clearance

    J. Mason Earles; Sonia Yeh; Kenneth E. Skog

    2012-01-01

    Land-use change, primarily from conventional agricultural expansion and deforestation, contributes to approximately 17% of global greenhouse-gas emissions1. The fate of cleared wood and subsequent carbon storage as wood products, however, has not been consistently estimated, and is largely ignored or oversimplified by most models estimating...

  16. Spatiotemporal distribution and national measurement of the global carbonate carbon sink.

    Li, Huiwen; Wang, Shijie; Bai, Xiaoyong; Luo, Weijun; Tang, Hong; Cao, Yue; Wu, Luhua; Chen, Fei; Li, Qin; Zeng, Cheng; Wang, Mingming

    2018-06-21

    The magnitudes, spatial distributions and contributions to global carbon budget of the global carbonate carbon sink (CCS) still remain uncertain, allowing the problem of national measurement of CCS remain unresolved which will directly influence the fairness of global carbon markets and emission trading. Here, based on high spatiotemporal resolution ecological, meteorological raster data and chemical field monitoring data, combining highly reliable machine learning algorithm with the thermodynamic dissolution equilibrium model, we estimated the new CCS of 0.89 ± 0.23 petagrams of carbon per year (Pg C yr -1 ), amounting to 74.50% of global net forest sink and accounting for 28.75% of terrestrial sinks or 46.81% of the missing sink. Our measurement for 142 nations of CCS showed that Russia, Canada, China and the USA contribute over half of the global CCS. We also presented the first global fluxes maps of the CCS with spatial resolution of 0.05°, exhibiting two peaks in equatorial regions (10°S to 10°N) and low latitudes (10°N to 35°N) in Northern Hemisphere. By contrast, there are no peaks in Southern Hemisphere. The greatest average carbon sink flux (CCSF), i.e., 2.12 tC ha -1  yr -1 , for 2000 to 2014 was contributed by tropical rainforest climate near the equator, and the smallest average CCSF was presented in tropical arid zones, showing a magnitude of 0.26 tC ha -1  yr -1 . This research estimated the magnitudes, spatial distributions, variations and contributions to the global carbon budget of the CCS in a higher spatiotemporal representativeness and expandability way, which, via multiple mechanisms, introduced an important sink in the terrestrial carbon sink system and the global missing sink and that can help us further reveal and support our understanding of global rock weathering carbon sequestration, terrestrial carbon sink system and global carbon cycle dynamics which make our understanding of global change more comprehensive

  17. Global Hail Model

    Werner, A.; Sanderson, M.; Hand, W.; Blyth, A.; Groenemeijer, P.; Kunz, M.; Puskeiler, M.; Saville, G.; Michel, G.

    2012-04-01

    Hail risk models are rare for the insurance industry. This is opposed to the fact that average annual hail losses can be large and hail dominates losses for many motor portfolios worldwide. Insufficient observational data, high spatio-temporal variability and data inhomogenity have hindered creation of credible models so far. In January 2012, a selected group of hail experts met at Willis in London in order to discuss ways to model hail risk at various scales. Discussions aimed at improving our understanding of hail occurrence and severity, and covered recent progress in the understanding of microphysical processes and climatological behaviour and hail vulnerability. The final outcome of the meeting was the formation of a global hail risk model initiative and the launch of a realistic global hail model in order to assess hail loss occurrence and severities for the globe. The following projects will be tackled: Microphysics of Hail and hail severity measures: Understand the physical drivers of hail and hailstone size development in different regions on the globe. Proposed factors include updraft and supercooled liquid water content in the troposphere. What are the thresholds drivers of hail formation around the globe? Hail Climatology: Consider ways to build a realistic global climatological set of hail events based on physical parameters including spatial variations in total availability of moisture, aerosols, among others, and using neural networks. Vulnerability, Exposure, and financial model: Use historical losses and event footprints available in the insurance market to approximate fragility distributions and damage potential for various hail sizes for property, motor, and agricultural business. Propagate uncertainty distributions and consider effects of policy conditions along with aggregating and disaggregating exposure and losses. This presentation provides an overview of ideas and tasks that lead towards a comprehensive global understanding of hail risk for

  18. Estimation of the global climate effect of brown carbon

    Zhang, A.; Wang, Y.; Zhang, Y.; Weber, R. J.; Song, Y.

    2017-12-01

    Carbonaceous aerosols significantly affect global radiative forcing and climate through absorption and scattering of sunlight. Black carbon (BC) and brown carbon (BrC) are light-absorbing carbonaceous aerosols. The global distribution and climate effect of BrC is uncertain. A recent study suggests that BrC absorption is comparable to BC in the upper troposphere over biomass burning region and that the resulting heating tends to stabilize the atmosphere. Yet current climate models do not include proper treatments of BrC. In this study, we derived a BrC global biomass burning emission inventory from Global Fire Emissions Database 4 (GFED4) and developed a BrC module in the Community Atmosphere Model version 5 (CAM5) of Community Earth System Model (CESM) model. The model simulations compared well to BrC observations of the Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) and Deep Convective Clouds and Chemistry Project (DC-3) campaigns and includes BrC bleaching. Model results suggested that BrC in the upper troposphere due to convective transport is as important an absorber as BC globally. Upper tropospheric BrC radiative forcing is particularly significant over the tropics, affecting the atmosphere stability and Hadley circulation.

  19. Grassland gross carbon dioxide uptake based on an improved model tree ensemble approach considering human interventions: global estimation and covariation with climate.

    Liang, Wei; Lü, Yihe; Zhang, Weibin; Li, Shuai; Jin, Zhao; Ciais, Philippe; Fu, Bojie; Wang, Shuai; Yan, Jianwu; Li, Junyi; Su, Huimin

    2017-07-01

    Grassland ecosystems act as a crucial role in the global carbon cycle and provide vital ecosystem services for many species. However, these low-productivity and water-limited ecosystems are sensitive and vulnerable to climate perturbations and human intervention, the latter of which is often not considered due to lack of spatial information regarding the grassland management. Here by the application of a model tree ensemble (MTE-GRASS) trained on local eddy covariance data and using as predictors gridded climate and management intensity field (grazing and cutting), we first provide an estimate of global grassland gross primary production (GPP). GPP from our study compares well (modeling efficiency NSE = 0.85 spatial; NSE between 0.69 and 0.94 interannual) with that from flux measurement. Global grassland GPP was on average 11 ± 0.31 Pg C yr -1 and exhibited significantly increasing trend at both annual and seasonal scales, with an annual increase of 0.023 Pg C (0.2%) from 1982 to 2011. Meanwhile, we found that at both annual and seasonal scale, the trend (except for northern summer) and interannual variability of the GPP are primarily driven by arid/semiarid ecosystems, the latter of which is due to the larger variation in precipitation. Grasslands in arid/semiarid regions have a stronger (33 g C m -2  yr -1 /100 mm) and faster (0- to 1-month time lag) response to precipitation than those in other regions. Although globally spatial gradients (71%) and interannual changes (51%) in GPP were mainly driven by precipitation, where most regions with arid/semiarid climate zone, temperature and radiation together shared half of GPP variability, which is mainly distributed in the high-latitude or cold regions. Our findings and the results of other studies suggest the overwhelming importance of arid/semiarid regions as a control on grassland ecosystems carbon cycle. Similarly, under the projected future climate change, grassland ecosystems in these regions will

  20. Monthly, global emissions of carbon dioxide from fossil fuel consumption

    Andres, R. J.; Marland, G.; Boden, T. A. (Environmental Sciences Div., Oak Ridge National Laboratory, Oak Ridge, TN (United States)), e-mail: andresrj@ornl.gov; Gregg, J. S. (Risoe DTU National Laboratory for Sustainable Energy, Roskilde (Denmark)); Losey, L. (Dept. of Space Studies, Univ. of North Dakota, Grand Forks, ND (United States))

    2011-07-15

    This paper examines available data, develops a strategy and presents a monthly, global time series of fossil-fuel carbon dioxide emissions for the years 1950-2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80% of global total emissions. These data were then used in a Monte Carlo approach to proxy for all remaining countries. The proportional-proxy methodology estimates by fuel group the fraction of annual emissions emitted in each country and month. Emissions from solid, liquid and gas fuels are explicitly modelled by the proportional-proxy method. The primary conclusion from this study is the global monthly time series is statistically significantly different from a uniform distribution throughout the year. Uncertainty analysis of the data presented show that the proportional-proxy method used faithfully reproduces monthly patterns in the data and the global monthly pattern of emissions is relatively insensitive to the exact proxy assignments used. The data and results presented here should lead to a better understanding of global and regional carbon cycles, especially when the mass data are combined with the stable carbon isotope data in atmospheric transport models

  1. 1km Global Terrestrial Carbon Flux: Estimations and Evaluations

    Murakami, K.; Sasai, T.; Kato, S.; Saito, M.; Matsunaga, T.; Hiraki, K.; Maksyutov, S. S.

    2017-12-01

    Estimating global scale of the terrestrial carbon flux change with high accuracy and high resolution is important to understand global environmental changes. Furthermore the estimations of the global spatiotemporal distribution may contribute to the political and social activities such as REDD+. In order to reveal the current state of terrestrial carbon fluxes covering all over the world and a decadal scale. The satellite-based diagnostic biosphere model is suitable for achieving this purpose owing to observing on the present global land surface condition uniformly at some time interval. In this study, we estimated the global terrestrial carbon fluxes with 1km grids by using the terrestrial biosphere model (BEAMS). And we evaluated our new carbon flux estimations on various spatial scales and showed the transition of forest carbon stocks in some regions. Because BEAMS required high resolution meteorological data and satellite data as input data, we made 1km interpolated data using a kriging method. The data used in this study were JRA-55, GPCP, GOSAT L4B atmospheric CO2 data as meteorological data, and MODIS land product as land surface satellite data. Interpolating process was performed on the meteorological data because of insufficient resolution, but not on MODIS data. We evaluated our new carbon flux estimations using the flux tower measurement (FLUXNET2015 Datasets) in a point scale. We used 166 sites data for evaluating our model results. These flux sites are classified following vegetation type (DBF, EBF, ENF, mixed forests, grass lands, croplands, shrub lands, Savannas, wetlands). In global scale, the BEAMS estimations was underestimated compared to the flux measurements in the case of carbon uptake and release. The monthly variations of NEP showed relatively high correlations in DBF and mixed forests, but the correlation coefficients of EBF, ENF, and grass lands were less than 0.5. In the meteorological factors, air temperature and solar radiation showed

  2. Seagrass meadows as a globally significant carbonate reservoir

    Mazarrasa, I.; Marbà , N.; Lovelock, C. E.; Serrano, O.; Lavery, P. S.; Fourqurean, J. W.; Kennedy, H.; Mateo, M. A.; Krause-Jensen, D.; Steven, A. D. L.; Duarte, Carlos M.

    2015-01-01

    There has been growing interest in quantifying the capacity of seagrass ecosystems to act as carbon sinks as a natural way of offsetting anthropogenic carbon emissions to the atmosphere. However, most of the efforts have focused on the particulate organic carbon (POC) stocks and accumulation rates and ignored the particulate inorganic carbon (PIC) fraction, despite important carbonate pools associated with calcifying organisms inhabiting the meadows, such as epiphytes and benthic invertebrates, and despite the relevance that carbonate precipitation and dissolution processes have in the global carbon cycle. This study offers the first assessment of the global PIC stocks in seagrass sediments using a synthesis of published and unpublished data on sediment carbonate concentration from 403 vegetated and 34 adjacent un-vegetated sites. PIC stocks in the top 1 m of sediment ranged between 3 and 1660 Mg PIC ha−1, with an average of 654 ± 24 Mg PIC ha−1, exceeding those of POC reported in previous studies by about a factor of 5. Sedimentary carbonate stocks varied across seagrass communities, with meadows dominated by Halodule, Thalassia or Cymodocea supporting the highest PIC stocks, and tended to decrease polewards at a rate of −8 ± 2 Mg PIC ha−1 per degree of latitude (general linear model, GLM; p < 0.0003). Using PIC concentrations and estimates of sediment accretion in seagrass meadows, the mean PIC accumulation rate in seagrass sediments is found to be 126.3 ± 31.05 g PIC m−2 yr−1. Based on the global extent of seagrass meadows (177 000 to 600 000 km2), these ecosystems globally store between 11 and 39 Pg of PIC in the top metre of sediment and accumulate between 22 and 75 Tg PIC yr−1, representing a significant contribution to the carbonate dynamics of coastal areas. Despite the fact that these high rates of carbonate accumulation imply CO2

  3. Seagrass meadows as a globally significant carbonate reservoir

    Mazarrasa, I.

    2015-08-24

    There has been growing interest in quantifying the capacity of seagrass ecosystems to act as carbon sinks as a natural way of offsetting anthropogenic carbon emissions to the atmosphere. However, most of the efforts have focused on the particulate organic carbon (POC) stocks and accumulation rates and ignored the particulate inorganic carbon (PIC) fraction, despite important carbonate pools associated with calcifying organisms inhabiting the meadows, such as epiphytes and benthic invertebrates, and despite the relevance that carbonate precipitation and dissolution processes have in the global carbon cycle. This study offers the first assessment of the global PIC stocks in seagrass sediments using a synthesis of published and unpublished data on sediment carbonate concentration from 403 vegetated and 34 adjacent un-vegetated sites. PIC stocks in the top 1 m of sediment ranged between 3 and 1660 Mg PIC ha−1, with an average of 654 ± 24 Mg PIC ha−1, exceeding those of POC reported in previous studies by about a factor of 5. Sedimentary carbonate stocks varied across seagrass communities, with meadows dominated by Halodule, Thalassia or Cymodocea supporting the highest PIC stocks, and tended to decrease polewards at a rate of −8 ± 2 Mg PIC ha−1 per degree of latitude (general linear model, GLM; p < 0.0003). Using PIC concentrations and estimates of sediment accretion in seagrass meadows, the mean PIC accumulation rate in seagrass sediments is found to be 126.3 ± 31.05 g PIC m−2 yr−1. Based on the global extent of seagrass meadows (177 000 to 600 000 km2), these ecosystems globally store between 11 and 39 Pg of PIC in the top metre of sediment and accumulate between 22 and 75 Tg PIC yr−1, representing a significant contribution to the carbonate dynamics of coastal areas. Despite the fact that these high rates of carbonate accumulation imply CO2

  4. Approach to modelling spatial changes of plant carbon: nitrogen ratios in southern Africa in relation to anticipated global climate change

    Kunz, RP

    1995-03-01

    Full Text Available animals and herbivorous insects. Equations relating the assimilation of total carbon and nitrogen rates to monthly air temperature, the ambient CO2 level and soil fertility were used together with detailed spatial climatic and soil databases to simulate...

  5. Terrestrial nitrogen-carbon cycle interactions at the global scale.

    Zaehle, S

    2013-07-05

    Interactions between the terrestrial nitrogen (N) and carbon (C) cycles shape the response of ecosystems to global change. However, the global distribution of nitrogen availability and its importance in global biogeochemistry and biogeochemical interactions with the climate system remain uncertain. Based on projections of a terrestrial biosphere model scaling ecological understanding of nitrogen-carbon cycle interactions to global scales, anthropogenic nitrogen additions since 1860 are estimated to have enriched the terrestrial biosphere by 1.3 Pg N, supporting the sequestration of 11.2 Pg C. Over the same time period, CO2 fertilization has increased terrestrial carbon storage by 134.0 Pg C, increasing the terrestrial nitrogen stock by 1.2 Pg N. In 2001-2010, terrestrial ecosystems sequestered an estimated total of 27 Tg N yr(-1) (1.9 Pg C yr(-1)), of which 10 Tg N yr(-1) (0.2 Pg C yr(-1)) are due to anthropogenic nitrogen deposition. Nitrogen availability already limits terrestrial carbon sequestration in the boreal and temperate zone, and will constrain future carbon sequestration in response to CO2 fertilization (regionally by up to 70% compared with an estimate without considering nitrogen-carbon interactions). This reduced terrestrial carbon uptake will probably dominate the role of the terrestrial nitrogen cycle in the climate system, as it accelerates the accumulation of anthropogenic CO2 in the atmosphere. However, increases of N2O emissions owing to anthropogenic nitrogen and climate change (at a rate of approx. 0.5 Tg N yr(-1) per 1°C degree climate warming) will add an important long-term climate forcing.

  6. The changing global carbon cycle: Linking plant-soil carbon dynamics to global consequences

    Chapin, F. S.; McFarland, J.; McGuire, David A.; Euskirchen, E.S.; Ruess, Roger W.; Kielland, K.

    2009-01-01

    Most current climate-carbon cycle models that include the terrestrial carbon (C) cycle are based on a model developed 40 years ago by Woodwell & Whittaker (1968) and omit advances in biogeochemical understanding since that time. Their model treats net C emissions from ecosystems as the balance between net primary production (NPP) and heterotrophic respiration (HR, i.e. primarily decomposition).

  7. Contribution of soil respiration to the global carbon equation.

    Xu, Ming; Shang, Hua

    2016-09-20

    Soil respiration (Rs) is the second largest carbon flux next to GPP between the terrestrial ecosystem (the largest organic carbon pool) and the atmosphere at a global scale. Given their critical role in the global carbon cycle, Rs measurement and modeling issues have been well reviewed in previous studies. In this paper, we briefly review advances in soil organic carbon (SOC) decomposition processes and the factors affecting Rs. We examine the spatial and temporal distribution of Rs measurements available in the literature and found that most of the measurements were conducted in North America, Europe, and East Asia, with major gaps in Africa, East Europe, North Asia, Southeast Asia, and Australia, especially in dry ecosystems. We discuss the potential problems of measuring Rs on slope soils and propose using obliquely-cut soil collars to solve the existing problems. We synthesize previous estimates of global Rs flux and find that the estimates ranged from 50 PgC/yr to 98 PgC/yr and the error associated with each estimation was also high (4 PgC/yr to 33.2 PgC/yr). Using a newly integrated database of Rs measurements and the MODIS vegetation map, we estimate that the global annual Rs flux is 94.3 PgC/yr with an estimation error of 17.9 PgC/yr at a 95% confidence level. The uneven distribution of Rs measurements limits our ability to improve the accuracy of estimation. Based on the global estimation of Rs flux, we found that Rs is highly correlated with GPP and NPP at the biome level, highlighting the role of Rs in global carbon budgets. Copyright © 2016. Published by Elsevier GmbH.

  8. Soil organic matter dynamics and the global carbon cycle

    Post, W.M.; Emanuel, W.R.; King, A.W.

    1992-01-01

    The large size and potentially long residence time of the soil organic matter pool make it an important component of the global carbon cycle. Net terrestrial primary production of about 60 Pg C·yr -1 is, over a several-year period of time, balanced by an equivalent flux of litter production and subsequent decomposition of detritus and soil organic matter. We will review many of the major factors that influence soil organic matter dynamics that need to be explicitly considered in development of global estimates of carbon turnover in the world's soils. We will also discuss current decomposition models that are general enough to be used to develop a representation of global soil organic matter dynamics

  9. Chemistry of organic carbon in soil with relationship to the global carbon cycle

    Post, W.M. III.

    1988-01-01

    Various ecosystem disturbances alter the balances between production of organic matter and its decomposition and therefore change the amount of carbon in soil. The most severe perturbation is conversion of natural vegetation to cultivated crops. Conversion of natural vegetation to cultivated crops results in a lowered input of slowly decomposing material which causes a reduction in overall carbon levels. Disruption of soil matrix structure by cultivation leads to lowered physical protection of organic matter resulting in an increased net mineralization rate of soil carbon. Climate change is another perturbation that affects the amount and composition of plant production, litter inputs, and decomposition regimes but does not affect soil structure directly. Nevertheless, large changes in soil carbon storage are probable with anticipated CO 2 induced climate change, particularly in northern latitudes where anticipated climate change will be greatest (MacCracken and Luther 1985) and large amounts of soil organic matter are found. It is impossible, given the current state of knowledge of soil organic matter processes and transformations to develop detailed process models of soil carbon dynamics. Largely phenomenological models appear to be developing into predictive tools for understanding the role of soil organic matter in the global carbon cycle. In particular, these models will be useful in quantifying soil carbon changes due to human land-use and to anticipated global climate and vegetation changes. 47 refs., 7 figs., 2 tabs

  10. The Global Flood Model

    Williams, P.; Huddelston, M.; Michel, G.; Thompson, S.; Heynert, K.; Pickering, C.; Abbott Donnelly, I.; Fewtrell, T.; Galy, H.; Sperna Weiland, F.; Winsemius, H.; Weerts, A.; Nixon, S.; Davies, P.; Schiferli, D.

    2012-04-01

    Recently, a Global Flood Model (GFM) initiative has been proposed by Willis, UK Met Office, Esri, Deltares and IBM. The idea is to create a global community platform that enables better understanding of the complexities of flood risk assessment to better support the decisions, education and communication needed to mitigate flood risk. The GFM will provide tools for assessing the risk of floods, for devising mitigation strategies such as land-use changes and infrastructure improvements, and for enabling effective pre- and post-flood event response. The GFM combines humanitarian and commercial motives. It will benefit: - The public, seeking to preserve personal safety and property; - State and local governments, seeking to safeguard economic activity, and improve resilience; - NGOs, similarly seeking to respond proactively to flood events; - The insurance sector, seeking to understand and price flood risk; - Large corporations, seeking to protect global operations and supply chains. The GFM is an integrated and transparent set of modules, each composed of models and data. For each module, there are two core elements: a live "reference version" (a worked example) and a framework of specifications, which will allow development of alternative versions. In the future, users will be able to work with the reference version or substitute their own models and data. If these meet the specification for the relevant module, they will interoperate with the rest of the GFM. Some "crowd-sourced" modules could even be accredited and published to the wider GFM community. Our intent is to build on existing public, private and academic work, improve local adoption, and stimulate the development of multiple - but compatible - alternatives, so strengthening mankind's ability to manage flood impacts. The GFM is being developed and managed by a non-profit organization created for the purpose. The business model will be inspired from open source software (eg Linux): - for non-profit usage

  11. Dissolved inorganic carbon and alkalinity fluxes from coastal marine sediments: Model estimates for different shelf environments and sensitivity to global change

    Krumins, V.; Gehlen, M.; Arndt, S.; Van Cappellen, P.; Regnier, P.

    2013-01-01

    We present a one-dimensional reactive transport model to estimate benthic fluxes of dissolved inorganic carbon (DIC) and alkalinity (AT) from coastal marine sediments. The model incorporates the transport processes of sediment accumulation, molecular diffusion, bioturbation and bioirrigation,

  12. Global Volcano Model

    Sparks, R. S. J.; Loughlin, S. C.; Cottrell, E.; Valentine, G.; Newhall, C.; Jolly, G.; Papale, P.; Takarada, S.; Crosweller, S.; Nayembil, M.; Arora, B.; Lowndes, J.; Connor, C.; Eichelberger, J.; Nadim, F.; Smolka, A.; Michel, G.; Muir-Wood, R.; Horwell, C.

    2012-04-01

    Over 600 million people live close enough to active volcanoes to be affected when they erupt. Volcanic eruptions cause loss of life, significant economic losses and severe disruption to people's lives, as highlighted by the recent eruption of Mount Merapi in Indonesia. The eruption of Eyjafjallajökull, Iceland in 2010 illustrated the potential of even small eruptions to have major impact on the modern world through disruption of complex critical infrastructure and business. The effects in the developing world on economic growth and development can be severe. There is evidence that large eruptions can cause a change in the earth's climate for several years afterwards. Aside from meteor impact and possibly an extreme solar event, very large magnitude explosive volcanic eruptions may be the only natural hazard that could cause a global catastrophe. GVM is a growing international collaboration that aims to create a sustainable, accessible information platform on volcanic hazard and risk. We are designing and developing an integrated database system of volcanic hazards, vulnerability and exposure with internationally agreed metadata standards. GVM will establish methodologies for analysis of the data (eg vulnerability indices) to inform risk assessment, develop complementary hazards models and create relevant hazards and risk assessment tools. GVM will develop the capability to anticipate future volcanism and its consequences. NERC is funding the start-up of this initiative for three years from November 2011. GVM builds directly on the VOGRIPA project started as part of the GRIP (Global Risk Identification Programme) in 2004 under the auspices of the World Bank and UN. Major international initiatives and partners such as the Smithsonian Institution - Global Volcanism Program, State University of New York at Buffalo - VHub, Earth Observatory of Singapore - WOVOdat and many others underpin GVM.

  13. Ten years of multiple data stream assimilation with the ORCHIDEE land surface model to improve regional to global simulated carbon budgets: synthesis and perspectives on directions for the future

    Peylin, P. P.; Bacour, C.; MacBean, N.; Maignan, F.; Bastrikov, V.; Chevallier, F.

    2017-12-01

    Predicting the fate of carbon stocks and their sensitivity to climate change and land use/management strongly relies on our ability to accurately model net and gross carbon fluxes. However, simulated carbon and water fluxes remain subject to large uncertainties, partly because of unknown or poorly calibrated parameters. Over the past ten years, the carbon cycle data assimilation system at the Laboratoire des Sciences du Climat et de l'Environnement has investigated the benefit of assimilating multiple carbon cycle data streams into the ORCHIDEE LSM, the land surface component of the Institut Pierre Simon Laplace Earth System Model. These datasets have included FLUXNET eddy covariance data (net CO2 flux and latent heat flux) to constrain hourly to seasonal time-scale carbon cycle processes, remote sensing of the vegetation activity (MODIS NDVI) to constrain the leaf phenology, biomass data to constrain "slow" (yearly to decadal) processes of carbon allocation, and atmospheric CO2 concentrations to provide overall large scale constraints on the land carbon sink. Furthermore, we have investigated technical issues related to multiple data stream assimilation and choice of optimization algorithm. This has provided a wide-ranging perspective on the challenges we face in constraining model parameters and thus better quantifying, and reducing, model uncertainty in projections of the future global carbon sink. We review our past studies in terms of the impact of the optimization on key characteristics of the carbon cycle, e.g. the partition of the northern latitudes vs tropical land carbon sink, and compare to the classic atmospheric flux inversion approach. Throughout, we discuss our work in context of the abovementioned challenges, and propose solutions for the community going forward, including the potential of new observations such as atmospheric COS concentrations and satellite-derived Solar Induced Fluorescence to constrain the gross carbon fluxes of the ORCHIDEE

  14. Tropical wetlands: A missing link in the global carbon cycle?

    Sjögersten, Sofie; Black, Colin R; Evers, Stephanie; Hoyos-Santillan, Jorge; Wright, Emma L; Turner, Benjamin L

    2014-01-01

    Tropical wetlands are not included in Earth system models, despite being an important source of methane (CH4) and contributing a large fraction of carbon dioxide (CO2) emissions from land use, land use change, and forestry in the tropics. This review identifies a remarkable lack of data on the carbon balance and gas fluxes from undisturbed tropical wetlands, which limits the ability of global change models to make accurate predictions about future climate. We show that the available data on in situ carbon gas fluxes in undisturbed forested tropical wetlands indicate marked spatial and temporal variability in CO2 and CH4 emissions, with exceptionally large fluxes in Southeast Asia and the Neotropics. By upscaling short-term measurements, we calculate that approximately 90 ± 77 Tg CH4 year−1 and 4540 ± 1480 Tg CO2 year−1 are released from tropical wetlands globally. CH4 fluxes are greater from mineral than organic soils, whereas CO2 fluxes do not differ between soil types. The high CO2 and CH4 emissions are mirrored by high rates of net primary productivity and litter decay. Net ecosystem productivity was estimated to be greater in peat-forming wetlands than on mineral soils, but the available data are insufficient to construct reliable carbon balances or estimate gas fluxes at regional scales. We conclude that there is an urgent need for systematic data on carbon dynamics in tropical wetlands to provide a robust understanding of how they differ from well-studied northern wetlands and allow incorporation of tropical wetlands into global climate change models. PMID:26074666

  15. Constraining the global carbon budget from global to regional scales - The measurement challenge

    Francey, R.J.; Rayner, P.J.; Allison, C.E.

    2002-01-01

    The Global Carbon Cycle can be modelled by a Bayesian synthesis inversion technique, where measured atmospheric CO 2 concentrations and isotopic compositions are analysed by use of an atmospheric transport model and estimates of regional sources and sinks of atmospheric carbon. The uncertainty associated to carbon flux estimates even on a regional scale can be improved considerably using the inversion technique. In this approach, besides the necessary control on the precision of atmospheric transport models and on the constraints for surface fluxes, an important component is the calibration of atmospheric CO 2 concentration and isotope measurements. The recent improved situation in respect to data comparability is discussed using results of conducted interlaboratory comparison exercises and larger scale calibration programs are proposed for the future to further improve the comparability of analytical data. (author)

  16. Global variation of carbon use efficiency in terrestrial ecosystems

    Tang, Xiaolu; Carvalhais, Nuno; Moura, Catarina; Reichstein, Markus

    2017-04-01

    Carbon use efficiency (CUE), defined as the ratio between net primary production (NPP) and gross primary production (GPP), is an emergent property of vegetation that describes its effectiveness in storing carbon (C) and is of significance for understanding C biosphere-atmosphere exchange dynamics. A constant CUE value of 0.5 has been widely used in terrestrial C-cycle models, such as the Carnegie-Ames-Stanford-Approach model, or the Marine Biological Laboratory/Soil Plant-Atmosphere Canopy Model, for regional or global modeling purposes. However, increasing evidence argues that CUE is not constant, but varies with ecosystem types, site fertility, climate, site management and forest age. Hence, the assumption of a constant CUE of 0.5 can produce great uncertainty in estimating global carbon dynamics between terrestrial ecosystems and the atmosphere. Here, in order to analyze the global variations in CUE and understand how CUE varies with environmental variables, a global database was constructed based on published data for crops, forests, grasslands, wetlands and tundra ecosystems. In addition to CUE data, were also collected: GPP and NPP; site variables (e.g. climate zone, site management and plant function type); climate variables (e.g. temperature and precipitation); additional carbon fluxes (e.g. soil respiration, autotrophic respiration and heterotrophic respiration); and carbon pools (e.g. stem, leaf and root biomass). Different climate metrics were derived to diagnose seasonal temperature (mean annual temperature, MAT, and maximum temperature, Tmax) and water availability proxies (mean annual precipitation, MAP, and Palmer Drought Severity Index), in order to improve the local representation of environmental variables. Additionally were also included vegetation phenology dynamics as observed by different vegetation indices from the MODIS satellite. The mean CUE of all terrestrial ecosystems was 0.45, 10% lower than the previous assumed constant CUE of 0

  17. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance : Insights from a global process-based vegetation model

    Yue, Chao; Ciais, P.; Luyssaert, S.; Cadule, Patricia; Harden, J. L.; Randerson, J.; Bellassen, V.; Wang, T.; Piao, S.L.; Poulter, B.; Viovy, N.

    2013-01-01

    Stand-replacing fires are the dominant fire type in North American boreal forests. They leave a historical legacy of a mosaic landscape of different aged forest cohorts. This forest age dynamics must be included in vegetation models to accurately quantify the role of fire in the historical and

  18. Global anthropogenic emissions of particulate matter including black carbon

    Klimont, Zbigniew; Kupiainen, Kaarle; Heyes, Chris; Purohit, Pallav; Cofala, Janusz; Rafaj, Peter; Borken-Kleefeld, Jens; Schöpp, Wolfgang

    2017-07-01

    This paper presents a comprehensive assessment of historical (1990-2010) global anthropogenic particulate matter (PM) emissions including the consistent and harmonized calculation of mass-based size distribution (PM1, PM2. 5, PM10), as well as primary carbonaceous aerosols including black carbon (BC) and organic carbon (OC). The estimates were developed with the integrated assessment model GAINS, where source- and region-specific technology characteristics are explicitly included. This assessment includes a number of previously unaccounted or often misallocated emission sources, i.e. kerosene lamps, gas flaring, diesel generators, refuse burning; some of them were reported in the past for selected regions or in the context of a particular pollutant or sector but not included as part of a total estimate. Spatially, emissions were calculated for 172 source regions (as well as international shipping), presented for 25 global regions, and allocated to 0.5° × 0.5° longitude-latitude grids. No independent estimates of emissions from forest fires and savannah burning are provided and neither windblown dust nor unpaved roads emissions are included. We estimate that global emissions of PM have not changed significantly between 1990 and 2010, showing a strong decoupling from the global increase in energy consumption and, consequently, CO2 emissions, but there are significantly different regional trends, with a particularly strong increase in East Asia and Africa and a strong decline in Europe, North America, and the Pacific region. This in turn resulted in important changes in the spatial pattern of PM burden, e.g. European, North American, and Pacific contributions to global emissions dropped from nearly 30 % in 1990 to well below 15 % in 2010, while Asia's contribution grew from just over 50 % to nearly two-thirds of the global total in 2010. For all PM species considered, Asian sources represented over 60 % of the global anthropogenic total, and residential combustion

  19. Global anthropogenic emissions of particulate matter including black carbon

    Z. Klimont

    2017-07-01

    Full Text Available This paper presents a comprehensive assessment of historical (1990–2010 global anthropogenic particulate matter (PM emissions including the consistent and harmonized calculation of mass-based size distribution (PM1, PM2. 5, PM10, as well as primary carbonaceous aerosols including black carbon (BC and organic carbon (OC. The estimates were developed with the integrated assessment model GAINS, where source- and region-specific technology characteristics are explicitly included. This assessment includes a number of previously unaccounted or often misallocated emission sources, i.e. kerosene lamps, gas flaring, diesel generators, refuse burning; some of them were reported in the past for selected regions or in the context of a particular pollutant or sector but not included as part of a total estimate. Spatially, emissions were calculated for 172 source regions (as well as international shipping, presented for 25 global regions, and allocated to 0.5°  ×  0.5° longitude–latitude grids. No independent estimates of emissions from forest fires and savannah burning are provided and neither windblown dust nor unpaved roads emissions are included. We estimate that global emissions of PM have not changed significantly between 1990 and 2010, showing a strong decoupling from the global increase in energy consumption and, consequently, CO2 emissions, but there are significantly different regional trends, with a particularly strong increase in East Asia and Africa and a strong decline in Europe, North America, and the Pacific region. This in turn resulted in important changes in the spatial pattern of PM burden, e.g. European, North American, and Pacific contributions to global emissions dropped from nearly 30 % in 1990 to well below 15 % in 2010, while Asia's contribution grew from just over 50 % to nearly two-thirds of the global total in 2010. For all PM species considered, Asian sources represented over 60 % of the global

  20. Evaluation of the Committed Carbon Emissions and Global Warming due to the Permafrost Carbon Feedback

    Elshorbany, Y. F.; Schaefer, K. M.; Jafarov, E. E.; Yumashev, D.; Hope, C.

    2017-12-01

    We quantify the increase in carbon emissions and temperature due to Permafrost Carbon feedback (PCF), defined as the amplification of anthropogenic warming due to carbon emissions from thawing permafrost (i.e., of near-surface layers to 3 m depth). We simulate the Committed PCF emissions, the cumulative total emissions from thawing permafrost by 2300 for a given global temperature increase by 2100, and investigate the resulting global warming using the Simple Biosphere/Carnegie-Ames-Stanford Approach SiBCASA model. We estimate the committed PCF emissions and warming for the Fifth Assessment Report, Representative Concentration Pathway scenarios 4.5 and 8.5 using two ensembles of five projections. For the 2 °C warming target of the global climate change treaty, committed PCF emissions increase to 24 Gt C by 2100 and 76 Gt C by 2300 and the committed PCF warming is 0.23 °C by 2300. Our calculations show that as the global temperature increase by 2100 approaches 5.8 °C, the entire stock of frozen carbon thaws out, resulting in maximum committed PCF emissions of 560 Gt C by 2300.

  1. Simultaneous reproduction of global carbon exchange and storage of terrestrial forest ecosystems

    Kondo, M.; Ichii, K.

    2012-12-01

    Understanding the mechanism of the terrestrial carbon cycle is essential for assessing the impact of climate change. Quantification of both carbon exchange and storage is the key to the understanding, but it often associates with difficulties due to complex entanglement of environmental and physiological factors. Terrestrial ecosystem models have been the major tools to assess the terrestrial carbon budget for decades. Because of its strong association with climate change, carbon exchange has been more rigorously investigated by the terrestrial biosphere modeling community. Seeming success of model based assessment of carbon budge often accompanies with the ill effect, substantial misrepresentation of storage. In practice, a number of model based analyses have paid attention solely on terrestrial carbon fluxes and often neglected carbon storage such as forest biomass. Thus, resulting model parameters are inevitably oriented to carbon fluxes. This approach is insufficient to fully reduce uncertainties about future terrestrial carbon cycles and climate change because it does not take into account the role of biomass, which is equivalently important as carbon fluxes in the system of carbon cycle. To overcome this issue, a robust methodology for improving the global assessment of both carbon budget and storage is needed. One potentially effective approach to identify a suitable balance of carbon allocation proportions for each individual ecosystem. Carbon allocations can influence the plant growth by controlling the amount of investment acquired from photosynthesis, as well as carbon fluxes by controlling the carbon content of leaves and litter, both are active media for photosynthesis and decomposition. Considering those aspects, there may exist the suitable balance of allocation proportions enabling the simultaneous reproduction of carbon budget and storage. The present study explored the existence of such suitable balances of allocation proportions, and examines the

  2. The Open Global Glacier Model

    Marzeion, B.; Maussion, F.

    2017-12-01

    Mountain glaciers are one of the few remaining sub-systems of the global climate system for which no globally applicable, open source, community-driven model exists. Notable examples from the ice sheet community include the Parallel Ice Sheet Model or Elmer/Ice. While the atmospheric modeling community has a long tradition of sharing models (e.g. the Weather Research and Forecasting model) or comparing them (e.g. the Coupled Model Intercomparison Project or CMIP), recent initiatives originating from the glaciological community show a new willingness to better coordinate global research efforts following the CMIP example (e.g. the Glacier Model Intercomparison Project or the Glacier Ice Thickness Estimation Working Group). In the recent past, great advances have been made in the global availability of data and methods relevant for glacier modeling, spanning glacier outlines, automatized glacier centerline identification, bed rock inversion methods, and global topographic data sets. Taken together, these advances now allow the ice dynamics of glaciers to be modeled on a global scale, provided that adequate modeling platforms are available. Here, we present the Open Global Glacier Model (OGGM), developed to provide a global scale, modular, and open source numerical model framework for consistently simulating past and future global scale glacier change. Global not only in the sense of leading to meaningful results for all glaciers combined, but also for any small ensemble of glaciers, e.g. at the headwater catchment scale. Modular to allow combinations of different approaches to the representation of ice flow and surface mass balance, enabling a new kind of model intercomparison. Open source so that the code can be read and used by anyone and so that new modules can be added and discussed by the community, following the principles of open governance. Consistent in order to provide uncertainty measures at all realizable scales.

  3. Role of volcanic forcing on future global carbon cycle

    J. F. Tjiputra

    2011-06-01

    Full Text Available Using a fully coupled global climate-carbon cycle model, we assess the potential role of volcanic eruptions on future projection of climate change and its associated carbon cycle feedback. The volcanic-like forcings are applied together with a business-as-usual IPCC-A2 carbon emissions scenario. We show that very large volcanic eruptions similar to Tambora lead to short-term substantial global cooling. However, over a long period, smaller eruptions similar to Pinatubo in amplitude, but set to occur frequently, would have a stronger impact on future climate change. In a scenario where the volcanic external forcings are prescribed with a five-year frequency, the induced cooling immediately lower the global temperature by more than one degree before it returns to the warming trend. Therefore, the climate change is approximately delayed by several decades, and by the end of the 21st century, the warming is still below two degrees when compared to the present day period. Our climate-carbon feedback analysis shows that future volcanic eruptions induce positive feedbacks (i.e., more carbon sink on both the terrestrial and oceanic carbon cycle. The feedback signal on the ocean is consistently smaller than the terrestrial counterpart and the feedback strength is proportionally related to the frequency of the volcanic eruption events. The cooler climate reduces the terrestrial heterotrophic respiration in the northern high latitude and increases net primary production in the tropics, which contributes to more than 45 % increase in accumulated carbon uptake over land. The increased solubility of CO2 gas in seawater associated with cooler SST is offset by a reduced CO2 partial pressure gradient between the ocean and the atmosphere, which results in small changes in net ocean carbon uptake. Similarly, there is nearly no change in the seawater buffer capacity simulated between the different volcanic scenarios. Our study shows that even

  4. Global-warming forecasting models

    Moeller, K.P.

    1992-01-01

    In spite of an annual man-made quantity of about 20 billion tons, carbon dioxide has remained a trace gas in the atmosphere (350 ppm at present). The reliability of model calculations which forecast temperatures is dicussed in view of the world-wide increase in carbon dioxides. Computer simulations reveal a general, serious threat to the future of mankind. (DG) [de

  5. Global Delivery Models

    Manning, Stephan; Møller Larsen, Marcus; Bharati, Pratyush

    -zone spread allowing for 24/7 service delivery and access to resources. Based on comprehensive data we show that providers are likely to establish GDM configurations when clients value access to globally distributed talent pools and speed of service delivery, and in particular when services are highly...

  6. Global Delivery Models

    Manning, Stephan; Møller Larsen, Marcus; Bharati, Pratyush M.

    2015-01-01

    antecedents and contingencies of setting up GDM structures. Based on comprehensive data we show that providers are likely to establish GDM location configurations when clients value access to globally distributed talent and speed of service delivery, in particular when services are highly commoditized...

  7. Mesoscale Effects on Carbon Export: A Global Perspective

    Harrison, Cheryl S.; Long, Matthew C.; Lovenduski, Nicole S.; Moore, Jefferson K.

    2018-04-01

    Carbon export from the surface to the deep ocean is a primary control on global carbon budgets and is mediated by plankton that are sensitive to physical forcing. Earth system models generally do not resolve ocean mesoscale circulation (O(10-100) km), scales that strongly affect transport of nutrients and plankton. The role of mesoscale circulation in modulating export is evaluated by comparing global ocean simulations conducted at 1° and 0.1° horizontal resolution. Mesoscale resolution produces a small reduction in globally integrated export production (export production can be large (±50%), with compensating effects in different ocean basins. With mesoscale resolution, improved representation of coastal jets block off-shelf transport, leading to lower export in regions where shelf-derived nutrients fuel production. Export is further reduced in these regions by resolution of mesoscale turbulence, which restricts the spatial area of production. Maximum mixed layer depths are narrower and deeper across the Subantarctic at higher resolution, driving locally stronger nutrient entrainment and enhanced summer export production. In energetic regions with seasonal blooms, such as the Subantarctic and North Pacific, internally generated mesoscale variability drives substantial interannual variation in local export production. These results suggest that biogeochemical tracer dynamics show different sensitivities to transport biases than temperature and salinity, which should be considered in the formulation and validation of physical parameterizations. Efforts to compare estimates of export production from observations and models should account for large variability in space and time expected for regions strongly affected by mesoscale circulation.

  8. Global ocean carbon uptake: magnitude, variability and trends

    R. Wanninkhof

    2013-03-01

    Full Text Available The globally integrated sea–air anthropogenic carbon dioxide (CO2 flux from 1990 to 2009 is determined from models and data-based approaches as part of the Regional Carbon Cycle Assessment and Processes (RECCAP project. Numerical methods include ocean inverse models, atmospheric inverse models, and ocean general circulation models with parameterized biogeochemistry (OBGCMs. The median value of different approaches shows good agreement in average uptake. The best estimate of anthropogenic CO2 uptake for the time period based on a compilation of approaches is −2.0 Pg C yr−1. The interannual variability in the sea–air flux is largely driven by large-scale climate re-organizations and is estimated at 0.2 Pg C yr−1 for the two decades with some systematic differences between approaches. The largest differences between approaches are seen in the decadal trends. The trends range from −0.13 (Pg C yr−1 decade−1 to −0.50 (Pg C yr−1 decade−1 for the two decades under investigation. The OBGCMs and the data-based sea–air CO2 flux estimates show appreciably smaller decadal trends than estimates based on changes in carbon inventory suggesting that methods capable of resolving shorter timescales are showing a slowing of the rate of ocean CO2 uptake. RECCAP model outputs for five decades show similar differences in trends between approaches.

  9. [Regional and global estimates of carbon stocks and carbon sequestration capacity in forest ecosystems: A review].

    Liu, Wei-wei; Wang, Xiao-ke; Lu, Fei; Ouyang, Zhi-yun

    2015-09-01

    As a dominant part of terrestrial ecosystems, forest ecosystem plays an important role in absorbing atmospheric CO2 and global climate change mitigation. From the aspects of zonal climate and geographical distribution, the present carbon stocks and carbon sequestration capacity of forest ecosystem were comprehensively examined based on the review of the latest literatures. The influences of land use change on forest carbon sequestration were analyzed, and factors that leading to the uncertainty of carbon sequestration assessment in forest ecosystem were also discussed. It was estimated that the current forest carbon stock was in the range of 652 to 927 Pg C and the carbon sequestration capacity was approximately 4.02 Pg C · a(-1). In terms of zonal climate, the carbon stock and carbon sequestration capacity of tropical forest were the maximum, about 471 Pg C and 1.02-1.3 Pg C · a(-1) respectively; then the carbon stock of boreal forest was about 272 Pg C, while its carbon sequestration capacity was the minimum, approximately 0.5 Pg C · a(-1); for temperate forest, the carbon stock was minimal, around 113 to 159 Pg C and its carbon sequestration capacity was 0.8 Pg C · a(-1). From the aspect of geographical distribution, the carbon stock of forest ecosystem in South America was the largest (187.7-290 Pg C), then followed by European (162.6 Pg C), North America (106.7 Pg C), Africa (98.2 Pg C) and Asia (74.5 Pg C), and Oceania (21.7 Pg C). In addition, carbon sequestration capacity of regional forest ecosystem was summed up as listed below: Tropical South America forest was the maximum (1276 Tg C · a(-1)), then were Tropical Africa (753 Tg C · a(-1)), North America (248 Tg C · a(-1)) and European (239 Tg C · a(-1)), and East Asia (98.8-136.5 Tg C · a(-1)) was minimum. To further reduce the uncertainty in the estimations of the carbon stock and carbon sequestration capacity of forest ecosystem, comprehensive application of long-term observation, inventories

  10. Using an Explicit Emission Tagging Method in Global Modeling of Source-Receptor Relationships for Black Carbon in the Arctic: Variations, Sources and Transport Pathways

    Wang, Hailong; Rasch, Philip J.; Easter, Richard C.; Singh, Balwinder; Zhang, Rudong; Ma, Po-Lun; Qian, Yun; Ghan, Steven J.; Beagley, Nathaniel

    2014-11-27

    We introduce an explicit emission tagging technique in the Community Atmosphere Model to quantify source-region-resolved characteristics of black carbon (BC), focusing on the Arctic. Explicit tagging of BC source regions without perturbing the emissions makes it straightforward to establish source-receptor relationships and transport pathways, providing a physically consistent and computationally efficient approach to produce a detailed characterization of the destiny of regional BC emissions and the potential for mitigation actions. Our analysis shows that the contributions of major source regions to the global BC burden are not proportional to the respective emissions due to strong region-dependent removal rates and lifetimes, while the contributions to BC direct radiative forcing show a near-linear dependence on their respective contributions to the burden. Distant sources contribute to BC in remote regions mostly in the mid- and upper troposphere, having much less impact on lower-level concentrations (and deposition) than on burden. Arctic BC concentrations, deposition and source contributions all have strong seasonal variations. Eastern Asia contributes the most to the wintertime Arctic burden. Northern Europe emissions are more important to both surface concentration and deposition in winter than in summer. The largest contribution to Arctic BC in the summer is from Northern Asia. Although local emissions contribute less than 10% to the annual mean BC burden and deposition within the Arctic, the per-emission efficiency is much higher than for major non-Arctic sources. The interannual variability (1996-2005) due to meteorology is small in annual mean BC burden and radiative forcing but is significant in yearly seasonal means over the Arctic. When a slow aging treatment of BC is introduced, the increase of BC lifetime and burden is source-dependent. Global BC forcing-per-burden efficiency also increases primarily due to changes in BC vertical distributions. The

  11. The role of urbanization in the global carbon cycle

    Galina eChurkina

    2016-01-01

    Full Text Available Urban areas account for more than 70% of CO2 emissions from burning fossil fuels. Urban expansion in tropics is responsible for 5% of the annual emissions from land use change. Here I show that the effect of urbanization on the global carbon cycle extends beyond these emissions. I quantify the contribution of urbanization to the major carbon fluxes and pools globally and identify gaps crucial for predicting the evolution of the carbon cycle in the future. Urban residents currently control ~22 (12-40 % of the land carbon uptake (112 PgC/yr and ~24 (15-39 % of the carbon emissions (117 PgC/yr from land globally. Urbanization resulted in the creation of new carbon pools on land such as buildings (~6.7 PgC and landfills (~30 PgC. Together these pools store 1.6 (±0.3 % of the total vegetation and soil carbon pools globally. The creation and maintenance of these new pools has been associated with high emissions of CO2, which are currently better understood than the processes associated with the dynamics of these pools and accompanying uptake of carbon. Predictions of the future trajectories of the global carbon cycle will require a much better understanding of how urban development affects the carbon cycle over the long term.

  12. Global nuclear material control model

    Dreicer, J.S.; Rutherford, D.A.

    1996-01-01

    The nuclear danger can be reduced by a system for global management, protection, control, and accounting as part of a disposition program for special nuclear materials. The development of an international fissile material management and control regime requires conceptual research supported by an analytical and modeling tool that treats the nuclear fuel cycle as a complete system. Such a tool must represent the fundamental data, information, and capabilities of the fuel cycle including an assessment of the global distribution of military and civilian fissile material inventories, a representation of the proliferation pertinent physical processes, and a framework supportive of national or international perspective. They have developed a prototype global nuclear material management and control systems analysis capability, the Global Nuclear Material Control (GNMC) model. The GNMC model establishes the framework for evaluating the global production, disposition, and safeguards and security requirements for fissile nuclear material

  13. Estimation of Global 1km-grid Terrestrial Carbon Exchange Part II: Evaluations and Applications

    Murakami, K.; Sasai, T.; Kato, S.; Niwa, Y.; Saito, M.; Takagi, H.; Matsunaga, T.; Hiraki, K.; Maksyutov, S. S.; Yokota, T.

    2015-12-01

    Global terrestrial carbon cycle largely depends on a spatial pattern in land cover type, which is heterogeneously-distributed over regional and global scales. Many studies have been trying to reveal distribution of carbon exchanges between terrestrial ecosystems and atmosphere for understanding global carbon cycle dynamics by using terrestrial biosphere models, satellite data, inventory data, and so on. However, most studies remained within several tens of kilometers grid spatial resolution, and the results have not been enough to understand the detailed pattern of carbon exchanges based on ecological community and to evaluate the carbon stocks by forest ecosystems in each countries. Improving the sophistication of spatial resolution is obviously necessary to enhance the accuracy of carbon exchanges. Moreover, the improvement may contribute to global warming awareness, policy makers and other social activities. We show global terrestrial carbon exchanges (net ecosystem production, net primary production, and gross primary production) with 1km-grid resolution. The methodology for these estimations are shown in the 2015 AGU FM poster "Estimation of Global 1km-grid Terrestrial Carbon Exchange Part I: Developing Inputs and Modelling". In this study, we evaluated the carbon exchanges in various regions with other approaches. We used the satellite-driven biosphere model (BEAMS) as our estimations, GOSAT L4A CO2 flux data, NEP retrieved by NICAM and CarbonTracer2013 flux data, for period from Jun 2001 to Dec 2012. The temporal patterns for this period were indicated similar trends between BEAMS, GOSAT, NICAM, and CT2013 in many sub-continental regions. Then, we estimated the terrestrial carbon exchanges in each countries, and could indicated the temporal patterns of the exchanges in large carbon stock regions.Global terrestrial carbon cycle largely depends on a spatial pattern of land cover type, which is heterogeneously-distributed over regional and global scales. Many

  14. The role of boreal forests and forestry in the global carbon budget : a synthesis

    Fyles, I.H.; Shaw, C.H.; Apps, M.J.; Karjalainen, T.; Stocks, B.J.; Running, S.W.; Kurz, W.A.; Weyerhaeuser, G.Jr.; Jarvis, P.G.

    2002-10-01

    This paper provides a synthesis of all papers presented at the conference on the role of boreal forests in the global carbon budget. The scientific community is recognizing the critical links between boreal forest ecosystems, carbon dynamics and global climate change. This paper addresses the five main topics discussed at the conference including: (1) carbon stocks and fluxes, (2) the effects of natural disturbances on carbon dynamics, (3) effects of management practices on carbon dynamics, (4) afforestation and carbon sequestration, and (5) effects of climate change and elevated carbon dioxide concentration on carbon dynamics. Large-scale model simulations suggest that increased global temperatures will result in increased net ecosystem productivity (NEP). Several model simulations also indicate that net primary productivity (NPP) will increase. While most forest stands are currently carbon sinks, disturbances such as fire, insects and tree harvesting make forests susceptible to becoming a source of carbon. In contrast, some studies suggest that climate change will cause shifting vegetation patterns, increased soil carbon and higher forest productivity that may result in higher sequestration of carbon in the boreal forest. 84 refs.

  15. Description, calibration and sensitivity analysis of the local ecosystem submodel of a global model of carbon and nitrogen cycling and the water balance in the terrestrial biosphere

    Kercher, J.R. [Lawrence Livermore National Lab., CA (United States); Chambers, J.Q. [Lawrence Livermore National Lab., CA (United States)]|[California Univ., Santa Barbara, CA (United States). Dept. of Biological Sciences

    1995-10-01

    We have developed a geographically-distributed ecosystem model for the carbon, nitrogen, and water dynamics of the terrestrial biosphere TERRA. The local ecosystem model of TERRA consists of coupled, modified versions of TEM and DAYTRANS. The ecosystem model in each grid cell calculates water fluxes of evaporation, transpiration, and runoff; carbon fluxes of gross primary productivity, litterfall, and plant and soil respiration; and nitrogen fluxes of vegetation uptake, litterfall, mineralization, immobilization, and system loss. The state variables are soil water content; carbon in live vegetation; carbon in soil; nitrogen in live vegetation; organic nitrogen in soil and fitter; available inorganic nitrogen aggregating nitrites, nitrates, and ammonia; and a variable for allocation. Carbon and nitrogen dynamics are calibrated to specific sites in 17 vegetation types. Eight parameters are determined during calibration for each of the 17 vegetation types. At calibration, the annual average values of carbon in vegetation C, show site differences that derive from the vegetation-type specific parameters and intersite variation in climate and soils. From calibration, we recover the average C{sub v} of forests, woodlands, savannas, grasslands, shrublands, and tundra that were used to develop the model initially. The timing of the phases of the annual variation is driven by temperature and light in the high latitude and moist temperate zones. The dry temperate zones are driven by temperature, precipitation, and light. In the tropics, precipitation is the key variable in annual variation. The seasonal responses are even more clearly demonstrated in net primary production and show the same controlling factors.

  16. Game theoretic analysis for carbon emission permits trading among multiple world regions with an optimizing global energy model; Saitekikagata sekai energy model ni motozuku tachiikikan CO2 haishutsu kyokasho torihiki no game ronteki bunseki

    Akimoto, K.; Matsunaga, A.; Fujii, Y. [Yokohama National University, Yokohama (Japan); Yamaji, K. [The University of Tokyo, Tokyo (Japan)

    1998-10-01

    Carbon emissions which would cause global warming were agreed to be constrained at COP3 in Kyoto. In addition, carton emission permits trading was also approved to be introduced. The emission permits trading is expected to achieve efficient carbon emission reduction, equalizing the marginal costs of the emission reduction for the participating countries. In other words, the permits trading allows participants to reduce emissions where it is least expensive to do so. However, the inadequate introduction of the trading systems may impose unfairly greater burden on some countries, and therefore careful evaluation of the system would be indispensable for its implementation. In this paper, we attempt to analyze the emission permits trading. using the theory of cooperative games with a global energy model of optimization type. We assumed that seven world regions as players participate the permits trading system under the condition of the emission reduction target presented at COP3 and so on, and show the nucleolus of the grand coalition games, and the computational results of primary energy supplies and CO2 shadow prices. The insights of this research indicate that in order to stabilize the grand coalition, a noticeable amount of additional transfer of money would be needed besides the payments associated with the emission permits trading. 10 refs., 7 figs., 5 tabs.

  17. Simulations of the global carbon cycle and anthropogenic CO{sub 2} transient. Annual report

    Sarmiento, J.L.

    1994-07-01

    This research focuses on improving the understanding of the anthropogenic carbon dioxide transient using observations and models of the past and present. In addition, an attempt is made to develop an ability to predict the future of the carbon cycle in response to continued anthropogenic perturbations and climate change. Three aspects of the anthropogenic carbon budget were investigated: (1) the globally integrated budget at the present time; (2) the time history of the carbon budget; and (3) the spatial distribution of carbon fluxes. One of the major activities of this study was the participation in the model comparison study of Enting, et al. [1994] carried out in preparation for the IPCC 1994 report.

  18. Simulations of the global carbon cycle and anthropogenic CO2 transient

    Sarmiento, J.L.

    1994-01-01

    This research focuses on improving the understanding of the anthropogenic carbon dioxide transient using observations and models of the past and present. In addition, an attempt is made to develop an ability to predict the future of the carbon cycle in response to continued anthropogenic perturbations and climate change. Three aspects of the anthropogenic carbon budget were investigated: (1) the globally integrated budget at the present time; (2) the time history of the carbon budget; and (3) the spatial distribution of carbon fluxes. One of the major activities of this study was the participation in the model comparison study of Enting, et al. [1994] carried out in preparation for the IPCC 1994 report

  19. Soil salinity decreases global soil organic carbon stocks.

    Setia, Raj; Gottschalk, Pia; Smith, Pete; Marschner, Petra; Baldock, Jeff; Setia, Deepika; Smith, Jo

    2013-11-01

    Saline soils cover 3.1% (397 million hectare) of the total land area of the world. The stock of soil organic carbon (SOC) reflects the balance between carbon (C) inputs from plants, and losses through decomposition, leaching and erosion. Soil salinity decreases plant productivity and hence C inputs to the soil, but also microbial activity and therefore SOC decomposition rates. Using a modified Rothamsted Carbon model (RothC) with a newly introduced salinity decomposition rate modifier and a plant input modifier we estimate that, historically, world soils that are currently saline have lost an average of 3.47 tSOC ha(-1) since they became saline. With the extent of saline soils predicted to increase in the future, our modelling suggests that world soils may lose 6.8 Pg SOC due to salinity by the year 2100. Our findings suggest that current models overestimate future global SOC stocks and underestimate net CO2 emissions from the soil-plant system by not taking salinity effects into account. From the perspective of enhancing soil C stocks, however, given the lower SOC decomposition rate in saline soils, salt tolerant plants could be used to sequester C in salt-affected areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. The Global Carbon Cycle: It's a Small World

    Ineson, Philip; Milcu, Alexander; Subke, Jens-Arne; Wildman, Dennis; Anderson, Robert; Manning, Peter; Heinemeyer, Andreas

    2010-05-01

    Predicting future atmospheric concentrations of carbon dioxide (CO2), together with the impacts of these changes on global climate, are some of the most urgent and important challenges facing mankind. Modelling is the only way in which such predictions can be made, leading to the current generation of increasingly complex computer simulations, with associated concerns about embedded assumptions and conflicting model outputs. Alongside analysis of past climates, the GCMs currently represent our only hope of establishing the importance of potential runaway positive feedbacks linking climate change and atmospheric greenhouse gases yet the incorporation of necessary biospheric responses into GCMs markedly increases the uncertainty of predictions. Analysis of the importance of the major components of the global carbon (C) cycle reveals that an understanding of the conditions under which the terrestrial biosphere could switch from an overall carbon (C) sink to a source is critical to our ability to make future climate predictions. Here we present an alternative approach to assessing the short term biotic (plant and soil) sensitivities to elevated temperature and atmospheric CO2 through the use of a purely physical analogue. Centred on the concept of materially-closed systems containing scaled-down ratios of the global C stocks for the atmosphere, vegetation and soil we show that, in these model systems, the terrestrial biosphere is able to buffer a rise of 3oC even when coupled to very strong CO2-temperature positive feedbacks. The system respiratory response appears to be extremely well linked to temperature and is critical in deciding atmospheric concentrations of CO2. Simulated anthropogenic emissions of CO2 into the model systems showed an initial corresponding increase in atmospheric CO2 but, somewhat surprisingly, CO2 concentrations levelled off at ca. 480 p.p.m.v., despite continuing additions of CO2. Experiments were performed in which reversion of atmospheric

  1. Reversible and irreversible impacts of greenhouse gas emissions in multi-century projections with the NCAR global coupled carbon cycle-climate model

    Froelicher, Thomas L.; Joos, Fortunat [University of Bern, Climate and Environmental Physics, Physics Institute, Bern (Switzerland); University of Bern, Oeschger Centre for Climate Change Research, Bern (Switzerland)

    2010-12-15

    The legacy of historical and the long-term impacts of 21st century greenhouse gas emissions on climate, ocean acidification, and carbon-climate feedbacks are investigated with a coupled carbon cycle-climate model. Emission commitment scenarios with zero emissions after year 2100 and 21st century emissions of 1,800, 900, and 0 gigatons of carbon are run up to year 2500. The reversibility and irreversibility of impacts is quantified by comparing anthropogenically-forced regional changes with internal, unforced climate variability. We show that the influence of historical emissions and of non-CO{sub 2} agents is largely reversible on the regional scale. Forced changes in surface temperature and precipitation become smaller than internal variability for most land and ocean grid cells in the absence of future carbon emissions. In contrast, continued carbon emissions over the 21st century cause irreversible climate change on centennial to millennial timescales in most regions and impacts related to ocean acidification and sea level rise continue to aggravate for centuries even if emissions are stopped in year 2100. Undersaturation of the Arctic surface ocean with respect to aragonite, a mineral form of calcium carbonate secreted by marine organisms, is imminent and remains widespread. The volume of supersaturated water providing habitat to calcifying organisms is reduced from preindustrial 40 to 25% in 2100 and to 10% in 2300 for the high emission case. We conclude that emission trading schemes, related to the Kyoto Process, should not permit trading between emissions of relatively short-lived agents and CO{sub 2} given the irreversible impacts of anthropogenic carbon emissions. (orig.)

  2. Systematic framework for carbon dioxide capture and utilization processes to reduce the global carbon dioxide emissions

    Frauzem, Rebecca; Plaza, Cristina Calvera; Gani, Rafiqul

    information-data on various carbon dioxide emission sources and available capture-utilization technologies; the model and solution libraries [2]; and the generic 3-stage approach for determining more sustainable solutions [3] through superstructure (processing networks) based optimization – adopted for global...... need to provide, amongst other options: useful data from in-house databases on carbon dioxide emission sources; mathematical models from a library of process-property models; numerical solvers from library of implemented solvers; and, work-flows and data-flows for different benefit scenarios...... to be investigated. It is useful to start by developing a prototype framework and then augmenting its application range by increasing the contents of its databases, libraries and work-flows and data-flows. The objective is to present such a prototype framework with its implemented database containing collected...

  3. Global Environmental Change: An integrated modelling approach

    Den Elzen, M.

    1993-01-01

    Two major global environmental problems are dealt with: climate change and stratospheric ozone depletion (and their mutual interactions), briefly surveyed in part 1. In Part 2 a brief description of the integrated modelling framework IMAGE 1.6 is given. Some specific parts of the model are described in more detail in other Chapters, e.g. the carbon cycle model, the atmospheric chemistry model, the halocarbon model, and the UV-B impact model. In Part 3 an uncertainty analysis of climate change and stratospheric ozone depletion is presented (Chapter 4). Chapter 5 briefly reviews the social and economic uncertainties implied by future greenhouse gas emissions. Chapters 6 and 7 describe a model and sensitivity analysis pertaining to the scientific uncertainties and/or lacunae in the sources and sinks of methane and carbon dioxide, and their biogeochemical feedback processes. Chapter 8 presents an uncertainty and sensitivity analysis of the carbon cycle model, the halocarbon model, and the IMAGE model 1.6 as a whole. Part 4 presents the risk assessment methodology as applied to the problems of climate change and stratospheric ozone depletion more specifically. In Chapter 10, this methodology is used as a means with which to asses current ozone policy and a wide range of halocarbon policies. Chapter 11 presents and evaluates the simulated globally-averaged temperature and sea level rise (indicators) for the IPCC-1990 and 1992 scenarios, concluding with a Low Risk scenario, which would meet the climate targets. Chapter 12 discusses the impact of sea level rise on the frequency of the Dutch coastal defence system (indicator) for the IPCC-1990 scenarios. Chapter 13 presents projections of mortality rates due to stratospheric ozone depletion based on model simulations employing the UV-B chain model for a number of halocarbon policies. Chapter 14 presents an approach for allocating future emissions of CO 2 among regions. (Abstract Truncated)

  4. Sources and delivery of carbon, nitrogen, and phosphorus to the coastal zone: An overview of global Nutrient Export from Watersheds (NEWS) models and their application

    Seitzinger, S.P.; Harrison, J.A.; Dumont, E.L.; Beusen, A.H.W.; Bouwman, A.F.

    2005-01-01

    An overview of the first spatially explicit, multielement (N, P, and C), multiform (dissolved inorganic: DIN, DIP; dissolved organic: DOC, DON, DOP; and particulate: POC, PN, PP) predictive model system of river nutrient export from watersheds (Global Nutrient Export from Watersheds (NEWS)) is

  5. Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors

    Atul Jain; Xiaojuan Yang; Haroon Kheshgi; A. David McGuire; Wilfred Post; David. Kicklighter

    2009-01-01

    Nitrogen cycle dynamics have the capacity to attenuate the magnitude of global terrestrial carbon sinks and sources driven by CO2 fertilization and changes in climate. In this study, two versions of the terrestrial carbon and nitrogen cycle components of the Integrated Science Assessment Model (ISAM) are used to evaluate how variation in nitrogen...

  6. Establishing a Supervised Classification of Global Blue Carbon Mangrove Ecosystems

    Baltezar, P.

    2016-12-01

    Understanding change in mangroves over time will aid forest management systems working to protect them from over exploitation. Mangroves are one of the most carbon dense terrestrial ecosystems on the planet and are therefore a high priority for sustainable forest management. Although they represent 1% of terrestrial cover, they could account for about 10% of global carbon emissions. The foundation of this analysis uses remote sensing to establish a supervised classification of mangrove forests for discrete regions in the Zambezi Delta of Mozambique and the Rufiji Delta of Tanzania. Open-source mapping platforms provided a dynamic space for analyzing satellite imagery in the Google Earth Engine (GEE) coding environment. C-Band Synthetic Aperture Radar data from Sentinel 1 was used in the model as a mask by optimizing SAR parameters. Exclusion metrics identified within Global Land Surface Temperature data from MODIS and the Shuttle Radar Topography Mission were used to accentuate mangrove features. Variance was accounted for in exclusion metrics by statistically calculating thresholds for radar, thermal, and elevation data. Optical imagery from the Landsat 8 archive aided a quality mosaic in extracting the highest spectral index values most appropriate for vegetative mapping. The enhanced radar, thermal, and digital elevation imagery were then incorporated into the quality mosaic. Training sites were selected from Google Earth imagery and used in the classification with a resulting output of four mangrove cover map models for each site. The model was assessed for accuracy by observing the differences between the mangrove classification models to the reference maps. Although the model was over predicting mangroves in non-mangrove regions, it was more accurately classifying mangrove regions established by the references. Future refinements will expand the model with an objective degree of accuracy.

  7. Global patterns of aboveground carbon stock and sequestration in mangroves

    GUSTAVO C.D. ESTRADA

    Full Text Available ABSTRACT In order to contribute to understand the factors that control the provisioning of the ecosystem service of carbon storage by mangroves, data on carbon stock and sequestration in the aboveground biomass (AGB from 73 articles were averaged and tested for the dependence on latitude, climatic parameters, physiographic types and age. Global means of carbon stock (78.0 ± 64.5 tC.ha-1 and sequestration (2.9 ± 2.2 tC.ha-1.yr-1 showed that mangroves are among the forest ecosystems with greater capacity of carbon storage in AGB per area. On the global scale, carbon stock increases toward the equator (R²=0.22 and is dependent on 13 climatic parameters, which can be integrated in the following predictive equation: Carbon Stock in AGB = -16.342 + (8.341 x Isothermality + (0.021 x Annual Precipitation [R²=0.34; p < 0.05]. It was shown that almost 70% of carbon stock variability is explained by age. Carbon stock and sequestration also vary according to physiographic types, indicating the importance of hydroperiod and edaphic parameters to the local variability of carbon stock. By demonstrating the contribution of local and regional-global factors to carbon stock, this study provides information to the forecast of the effects of future climate changes and local anthropogenic forcings on this ecosystem service.

  8. Carbon and environmental footprinting of global biofuel production

    Hammond, Geoff P.; Seth, S.M.

    2013-01-01

    The carbon and environmental footprints associated with the global production of biofuels have been computed from a baseline of 2007-2009 out until 2019. Estimates of future global biofuel production were adopted from OECD-FAO and related projections. In order to determine the footprints associated with these (essentially 'first generation') biofuel resources, the overall environmental footprint was disaggregated into bioproductive land, built land, carbon, embodied energy, materials and wast...

  9. Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets.

    Zomer, Robert J; Neufeldt, Henry; Xu, Jianchu; Ahrends, Antje; Bossio, Deborah; Trabucco, Antonio; van Noordwijk, Meine; Wang, Mingcheng

    2016-07-20

    Agroforestry systems and tree cover on agricultural land make an important contribution to climate change mitigation, but are not systematically accounted for in either global carbon budgets or national carbon accounting. This paper assesses the role of trees on agricultural land and their significance for carbon sequestration at a global level, along with recent change trends. Remote sensing data show that in 2010, 43% of all agricultural land globally had at least 10% tree cover and that this has increased by 2% over the previous ten years. Combining geographically and bioclimatically stratified Intergovernmental Panel on Climate Change (IPCC) Tier 1 default estimates of carbon storage with this tree cover analysis, we estimated 45.3 PgC on agricultural land globally, with trees contributing >75%. Between 2000 and 2010 tree cover increased by 3.7%, resulting in an increase of >2 PgC (or 4.6%) of biomass carbon. On average, globally, biomass carbon increased from 20.4 to 21.4 tC ha(-1). Regional and country-level variation in stocks and trends were mapped and tabulated globally, and for all countries. Brazil, Indonesia, China and India had the largest increases in biomass carbon stored on agricultural land, while Argentina, Myanmar, and Sierra Leone had the largest decreases.

  10. The carbon dioxide thermometer and the cause of global warming

    Calder, Nigel

    1999-01-01

    Carbon dioxide in the air may be increasing because the world is warming. This possibility, which contradicts the hypothesis of an enhanced greenhouse warming driven by manmade emissions, is here pursued in two ways. First, increments in carbon dioxide are treated as readings of a natural thermometer that tracks global and hemispheric temperature deviations, as gauged by meteorologists' thermometers. Calibration of the carbon dioxide thermometer to conventional temperatures then leads to a history of carbon dioxide since 1856 that diverges from the ice-core record. Secondly, the increments of carbon dioxide can also be accounted for, without reference to temperature, by the combined effects of cosmic rays, El Nino and volcanoes. The most durable effect is due to cosmic rays. A solar wind history, used as a long-term proxy for the cosmic rays, gives a carbon dioxide history similar to that inferred from the global temperature deviations. (author)

  11. Old-growth forests as global carbon sinks

    Luyssaert, S; Schulze, E.D.; Börner, A.

    2008-01-01

    Old- growth forests remove carbon dioxide from the atmosphere(1,2) at rates that vary with climate and nitrogen deposition(3). The sequestered carbon dioxide is stored in live woody tissues and slowly decomposing organic matter in litter and soil(4). Old- growth forests therefore serve as a global

  12. Carbon Dioxide and Global Warming: A Failed Experiment

    Ribeiro, Carla

    2014-01-01

    Global warming is a current environmental issue that has been linked to an increase in anthropogenic carbon dioxide in the atmosphere. To raise awareness of the problem, various simple experiments have been proposed to demonstrate the effect of carbon dioxide on the planet's temperature. This article describes a similar experiment, which…

  13. Modeling seasonal changes of atmospheric carbon dioxide and carbon 13

    Gillette, D.A.; Box, E.O.

    1986-01-01

    A two-dimensional (latitude-altitude) model of atmospheric CO 2 and δ 13 C was constructed to simulate some features of seasonal carbon cycle fluctuations. The model simulates air-sea exchange, atmospheric diffusion, and fossil fuel carbon sources, which are functions of time and latitude. In addition, it uses biosphere-atmosphere fluxes of carbon that are based on global-scale biological models of vegetation growth and decay. Results of the model show fair agreement with observational results for CO 2 and δ 13 C seasonal fluctuations. Their model results have far northern fluctuations with smaller amplitudes than are observed. Analysis of sources of CO 2 change at given latitudes shows that, for far southern latitudes, southern hemisphere biospheric fluxes are dominant in affecting the seasonal CO 2 fluctuations. Long-term decrease of δ 13 C for the model is larger than for observations. This may be due to errors in the formulation for oceanic fluxes for 13 C in the model or to a net uptake of carbon by the biosphere

  14. Feedback of global warming to soil carbon cycling in forest ecosystems

    Nakane, Kaneyuki

    1993-01-01

    Thus in this study the simulation of soil carbon cycling and dynamics of its storage in several types of mature forests developed from the cool-temperate to the tropics was carried out for quantitatively assessing carbon loss from the soil under several scenarios of global warming, based on the model of soil carbon cycling in forest ecosystems (Nakane et al. 1984, 1987 and Nakane 1992). (J.P.N.)

  15. The Global Tsunami Model (GTM)

    Lorito, S.; Basili, R.; Harbitz, C. B.; Løvholt, F.; Polet, J.; Thio, H. K.

    2017-12-01

    The tsunamis occurred worldwide in the last two decades have highlighted the need for a thorough understanding of the risk posed by relatively infrequent but often disastrous tsunamis and the importance of a comprehensive and consistent methodology for quantifying the hazard. In the last few years, several methods for probabilistic tsunami hazard analysis have been developed and applied to different parts of the world. In an effort to coordinate and streamline these activities and make progress towards implementing the Sendai Framework of Disaster Risk Reduction (SFDRR) we have initiated a Global Tsunami Model (GTM) working group with the aim of i) enhancing our understanding of tsunami hazard and risk on a global scale and developing standards and guidelines for it, ii) providing a portfolio of validated tools for probabilistic tsunami hazard and risk assessment at a range of scales, and iii) developing a global tsunami hazard reference model. This GTM initiative has grown out of the tsunami component of the Global Assessment of Risk (GAR15), which has resulted in an initial global model of probabilistic tsunami hazard and risk. Started as an informal gathering of scientists interested in advancing tsunami hazard analysis, the GTM is currently in the process of being formalized through letters of interest from participating institutions. The initiative has now been endorsed by the United Nations International Strategy for Disaster Reduction (UNISDR) and the World Bank's Global Facility for Disaster Reduction and Recovery (GFDRR). We will provide an update on the state of the project and the overall technical framework, and discuss the technical issues that are currently being addressed, including earthquake source recurrence models, the use of aleatory variability and epistemic uncertainty, and preliminary results for a probabilistic global hazard assessment, which is an update of the model included in UNISDR GAR15.

  16. Biomass energy and the global carbon balance

    Hall, D.O.; House, J.I.

    1994-01-01

    Studies on climate change and energy production increasingly recognise the crucial role of biological systems. Carbon sinks in forests (above and below ground), CO 2 emissions from deforestation, planting trees for carbon storage, and biomass as a substitute for fossil fuels are some of the key issues which arise. Halting deforestation is of paramount importance, but there is also great potential for reforestation of degraded lands, agroforestry and improved forest management. It is concluded that biomass energy plantations and other types of energy cropping could be a more effective strategy for carbon mitigation than simply growing trees as a carbon store, particularly on higher productivity lands. Use of the biomass produced as an energy source has the added advantage of a wide range of other environmental, social and economic benefits. (author)

  17. Critical carbon input to maintain current soil organic carbon stocks in global wheat systems.

    Wang, Guocheng; Luo, Zhongkui; Han, Pengfei; Chen, Huansheng; Xu, Jingjing

    2016-01-13

    Soil organic carbon (SOC) dynamics in croplands is a crucial component of global carbon (C) cycle. Depending on local environmental conditions and management practices, typical C input is generally required to reduce or reverse C loss in agricultural soils. No studies have quantified the critical C input for maintaining SOC at global scale with high resolution. Such information will provide a baseline map for assessing soil C dynamics under potential changes in management practices and climate, and thus enable development of management strategies to reduce C footprint from farm to regional scales. We used the soil C model RothC to simulate the critical C input rates needed to maintain existing soil C level at 0.1° × 0.1° resolution in global wheat systems. On average, the critical C input was estimated to be 2.0 Mg C ha(-1) yr(-1), with large spatial variability depending on local soil and climatic conditions. Higher C inputs are required in wheat system of central United States and western Europe, mainly due to the higher current soil C stocks present in these regions. The critical C input could be effectively estimated using a summary model driven by current SOC level, mean annual temperature, precipitation, and soil clay content.

  18. Quantified carbon input for maintaining existing soil organic carbon stocks in global wheat systems

    Wang, G.

    2017-12-01

    Soil organic carbon (SOC) dynamics in croplands is a crucial component of global carbon (C) cycle. Depending on local environmental conditions and management practices, typical C input is generally required to reduce or reverse C loss in agricultural soils. No studies have quantified the critical C input for maintaining SOC at global scale with high resolution. Such information will provide a baseline map for assessing soil C dynamics under potential changes in management practices and climate, and thus enable development of management strategies to reduce C footprint from farm to regional scales. We used the soil C model RothC to simulate the critical C input rates needed to maintain existing soil C level at 0.1°× 0.1° resolution in global wheat systems. On average, the critical C input was estimated to be 2.0 Mg C ha-1 yr-1, with large spatial variability depending on local soil and climatic conditions. Higher C inputs are required in wheat system of central United States and western Europe, mainly due to the higher current soil C stocks present in these regions. The critical C input could be effectively estimated using a summary model driven by current SOC level, mean annual temperature, precipitation, and soil clay content.

  19. Influence of multiple global change drivers on terrestrial carbon storage

    Yue, Kai; Fornara, Dario A; Yang, Wanqin

    2017-01-01

    The interactive effects of multiple global change drivers on terrestrial carbon (C) storage remain poorly understood. Here, we synthesise data from 633 published studies to show how the interactive effects of multiple drivers are generally additive (i.e. not differing from the sum of their indivi......The interactive effects of multiple global change drivers on terrestrial carbon (C) storage remain poorly understood. Here, we synthesise data from 633 published studies to show how the interactive effects of multiple drivers are generally additive (i.e. not differing from the sum...... additive effects of multiple global change drivers into future assessments of the C storage ability of terrestrial ecosystems....

  20. The carbon-sequestration potential of a global afforestation program

    Nilsson, S.; Schopfhauser, W.

    1995-01-01

    The authors analyzed the changes in the carbon cycle that could be achieved with a global large-scale afforestation program that is economically, politically and technically feasible. They estimated that of the areas regarded as suitable for large-scale plantations, only about 345 million ha would actually be available for plantations and agroforestry for the sole purpose of sequestering carbon. The maximum annual rate of carbon fixation (1.48 Gt/yr) would only be achieved 60 years after the establishment of the plantation - 1.14 Gt by above-ground biomass and 0.34 Gt by below-ground biomass. Over the periods from 1995 to 2095, a total of 104 Gt of carbon would be sequestered. This is substantially lower than the amount of carbon required to offset current carbon emissions (3.8 Gt/yr) in order to stabilize the carbon content of the atmosphere. 108 refs., 1 fig., 14 tabs

  1. Achieving Carbon Neutrality in the Global Aluminum Industry

    Das, Subodh

    2012-02-01

    In the 21st century, sustainability is widely regarded as the new corporate culture, and leading manufacturing companies (Toyota, GE, and Alcoa) and service companies (Google and Federal Express) are striving towards carbon neutrality. The current carbon footprint of the global aluminum industry is estimated at 500 million metric tonnes carbon dioxide equivalent (CO2eq), representing about 1.7% of global emissions from all sources. For the global aluminum industry, carbon neutrality is defined as a state where the total "in-use" CO2eq saved from all products in current use, including incremental process efficiency improvements, recycling, and urban mining activities, equals the CO2eq expended to produce the global output of aluminum. This paper outlines an integrated and quantifiable plan for achieving "carbon neutrality" in the global aluminum industry by advocating five actionable steps: (1) increase use of "green" electrical energy grid by 8%, (2) reduce process energy needs by 16%, (3) deploy 35% of products in "in-use" energy saving applications, (4) divert 6.1 million metric tonnes/year from landfills, and (5) mine 4.5 million metric tonnes/year from aluminum-rich "urban mines." Since it takes 20 times more energy to make aluminum from bauxite ore than to recycle it from scrap, the global aluminum industry could set a reasonable, self-imposed energy/carbon neutrality goal to incrementally increase the supply of recycled aluminum by at least 1.05 metric tonnes for every tonne of incremental production via primary aluminum smelter capacity. Furthermore, the aluminum industry can and should take a global leadership position by actively developing internationally accepted and approved carbon footprint credit protocols.

  2. The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale.

    Hursh, Andrew; Ballantyne, Ashley; Cooper, Leila; Maneta, Marco; Kimball, John; Watts, Jennifer

    2017-05-01

    Soil respiration (Rs) is a major pathway by which fixed carbon in the biosphere is returned to the atmosphere, yet there are limits to our ability to predict respiration rates using environmental drivers at the global scale. While temperature, moisture, carbon supply, and other site characteristics are known to regulate soil respiration rates at plot scales within certain biomes, quantitative frameworks for evaluating the relative importance of these factors across different biomes and at the global scale require tests of the relationships between field estimates and global climatic data. This study evaluates the factors driving Rs at the global scale by linking global datasets of soil moisture, soil temperature, primary productivity, and soil carbon estimates with observations of annual Rs from the Global Soil Respiration Database (SRDB). We find that calibrating models with parabolic soil moisture functions can improve predictive power over similar models with asymptotic functions of mean annual precipitation. Soil temperature is comparable with previously reported air temperature observations used in predicting Rs and is the dominant driver of Rs in global models; however, within certain biomes soil moisture and soil carbon emerge as dominant predictors of Rs. We identify regions where typical temperature-driven responses are further mediated by soil moisture, precipitation, and carbon supply and regions in which environmental controls on high Rs values are difficult to ascertain due to limited field data. Because soil moisture integrates temperature and precipitation dynamics, it can more directly constrain the heterotrophic component of Rs, but global-scale models tend to smooth its spatial heterogeneity by aggregating factors that increase moisture variability within and across biomes. We compare statistical and mechanistic models that provide independent estimates of global Rs ranging from 83 to 108 Pg yr -1 , but also highlight regions of uncertainty

  3. Extending the relationship between global warming and cumulative carbon emissions to multi-millennial timescales

    Frölicher, Thomas L; Paynter, David J

    2015-01-01

    The transient climate response to cumulative carbon emissions (TCRE) is a highly policy-relevant quantity in climate science. The TCRE suggests that peak warming is linearly proportional to cumulative carbon emissions and nearly independent of the emissions scenario. Here, we use simulations of the Earth System Model (ESM) from the Geophysical Fluid Dynamics Laboratory (GFDL) to show that global mean surface temperature may increase by 0.5 °C after carbon emissions are stopped at 2 °C global warming, implying an increase in the coefficient relating global warming to cumulative carbon emissions on multi-centennial timescales. The simulations also suggest a 20% lower quota on cumulative carbon emissions allowed to achieve a policy-driven limit on global warming. ESM estimates from the Coupled Model Intercomparison Project Phase 5 (CMIP5–ESMs) qualitatively agree on this result, whereas Earth System Models of Intermediate Complexity (EMICs) simulations, used in the IPCC 5th assessment report to assess the robustness of TCRE on multi-centennial timescales, suggest a post-emissions decrease in temperature. The reason for this discrepancy lies in the smaller simulated realized warming fraction in CMIP5–ESMs, including GFDL ESM2M, than in EMICs when carbon emissions increase. The temperature response to cumulative carbon emissions can be characterized by three different phases and the linear TCRE framework is only valid during the first phase when carbon emissions increase. For longer timescales, when emissions tape off, two new metrics are introduced that better characterize the time-dependent temperature response to cumulative carbon emissions: the equilibrium climate response to cumulative carbon emissions and the multi-millennial climate response to cumulative carbon emissions. (letter)

  4. Global low-carbon transition and China's response strategies

    Jian-Kun He

    2016-12-01

    Full Text Available The Paris Agreement establishes a new mechanism for post-2020 global climate governance, and sets long-term goals for global response to climate change, which will accelerate worldwide low-carbon transformation of economic development pattern, promote the revolutionary reform of energy system, boost a fundamental change in the mode of social production and consumption, and further the civilization of human society from industrial civilization to eco-civilization. The urgency of global low-carbon transition will reshape the competition situation of world's economy, trade and technology. Taking the construction of eco-civilization as a guide, China explores green and low-carbon development paths, establishes ambitious intended nationally determined contribution (INDC targets and action plans, advances energy production and consumption revolution, and speeds up the transformation of economic development pattern. These strategies and actions not only confirm to the trend of the world low-carbon transition, but also meet the intrinsic requirements for easing the domestic resources and environment constraints and realizing sustainable development. They are multi-win-win strategies for promotion of economic development and environmental protection and mitigation of carbon emissions. China should take the global long-term emission reduction targets as a guide, and formulate medium and long-term low-carbon development strategy, build the core competitiveness of low-carbon advanced technology and development pattern, and take an in-depth part in global governance so as to reflect the responsibility of China as a great power in constructing a community of common destiny for all mankind and addressing global ecological crisis.

  5. Global scale groundwater flow model

    Sutanudjaja, Edwin; de Graaf, Inge; van Beek, Ludovicus; Bierkens, Marc

    2013-04-01

    As the world's largest accessible source of freshwater, groundwater plays vital role in satisfying the basic needs of human society. It serves as a primary source of drinking water and supplies water for agricultural and industrial activities. During times of drought, groundwater sustains water flows in streams, rivers, lakes and wetlands, and thus supports ecosystem habitat and biodiversity, while its large natural storage provides a buffer against water shortages. Yet, the current generation of global scale hydrological models does not include a groundwater flow component that is a crucial part of the hydrological cycle and allows the simulation of groundwater head dynamics. In this study we present a steady-state MODFLOW (McDonald and Harbaugh, 1988) groundwater model on the global scale at 5 arc-minutes resolution. Aquifer schematization and properties of this groundwater model were developed from available global lithological model (e.g. Dürr et al., 2005; Gleeson et al., 2010; Hartmann and Moorsdorff, in press). We force the groundwtaer model with the output from the large-scale hydrological model PCR-GLOBWB (van Beek et al., 2011), specifically the long term net groundwater recharge and average surface water levels derived from routed channel discharge. We validated calculated groundwater heads and depths with available head observations, from different regions, including the North and South America and Western Europe. Our results show that it is feasible to build a relatively simple global scale groundwater model using existing information, and estimate water table depths within acceptable accuracy in many parts of the world.

  6. Global warming and carbon taxation. Optimal policy and the role of administration costs

    Williams, M.

    1995-01-01

    This paper develops a model relating CO 2 emissions to atmosphere concentrations, global temperature change and economic damages. For a variety of parameter assumptions, the model provides estimates of the marginal cost of emissions in various years. The optimal carbon tax is a function of the marginal emission cost and the costs of administering the tax. This paper demonstrates that under any reasonable assumptions, the optimal carbon tax is zero for at least several decades. (author)

  7. The topology of non-linear global carbon dynamics: from tipping points to planetary boundaries

    Anderies, J M; Carpenter, S R; Steffen, Will; Rockström, Johan

    2013-01-01

    We present a minimal model of land use and carbon cycle dynamics and use it to explore the relationship between non-linear dynamics and planetary boundaries. Only the most basic interactions between land cover and terrestrial, atmospheric, and marine carbon stocks are considered in the model. Our goal is not to predict global carbon dynamics as it occurs in the actual Earth System. Rather, we construct a conceptually reasonable heuristic model of a feedback system between different carbon stocks that captures the qualitative features of the actual Earth System and use it to explore the topology of the boundaries of what can be called a ‘safe operating space’ for humans. The model analysis illustrates the existence of dynamic, non-linear tipping points in carbon cycle dynamics and the potential complexity of planetary boundaries. Finally, we use the model to illustrate some challenges associated with navigating planetary boundaries. (letter)

  8. The topology of non-linear global carbon dynamics: from tipping points to planetary boundaries

    Anderies, J. M.; Carpenter, S. R.; Steffen, Will; Rockström, Johan

    2013-12-01

    We present a minimal model of land use and carbon cycle dynamics and use it to explore the relationship between non-linear dynamics and planetary boundaries. Only the most basic interactions between land cover and terrestrial, atmospheric, and marine carbon stocks are considered in the model. Our goal is not to predict global carbon dynamics as it occurs in the actual Earth System. Rather, we construct a conceptually reasonable heuristic model of a feedback system between different carbon stocks that captures the qualitative features of the actual Earth System and use it to explore the topology of the boundaries of what can be called a ‘safe operating space’ for humans. The model analysis illustrates the existence of dynamic, non-linear tipping points in carbon cycle dynamics and the potential complexity of planetary boundaries. Finally, we use the model to illustrate some challenges associated with navigating planetary boundaries.

  9. Global carbon sequestration in tidal, saline wetland soils

    Chmura, G.L.; Anisfeld, S.C.; Cahoon, D.R.; Lynch, J.C.

    2003-01-01

    Wetlands represent the largest component of the terrestrial biological carbon pool and thus play an important role in global carbon cycles. Most global carbon budgets, however, have focused on dry land ecosystems that extend over large areas and have not accounted for the many small, scattered carbon-storing ecosystems such as tidal saline wetlands. We compiled data for 154 sites in mangroves and salt marshes from the western and eastern Atlantic and Pacific coasts, as well as the Indian Ocean, Mediterranean Ocean, and Gulf of Mexico. The set of sites spans a latitudinal range from 22.4??S in the Indian Ocean to 55.5??N in the northeastern Atlantic. The average soil carbon density of mangrove swamps (0.055 ?? 0.004 g cm-3) is significantly higher than the salt marsh average (0.039 ?? 0.003 g cm-3). Soil carbon density in mangrove swamps and Spartina patens marshes declines with increasing average annual temperature, probably due to increased decay rates at higher temperatures. In contrast, carbon sequestration rates were not significantly different between mangrove swamps and salt marshes. Variability in sediment accumulation rates within marshes is a major control of carbon sequestration rates masking any relationship with climatic parameters. Globally, these combined wetlands store at least 44.6 Tg C yr-1 and probably more, as detailed areal inventories are not available for salt marshes in China and South America. Much attention has been given to the role of freshwater wetlands, particularly northern peatlands, as carbon sinks. In contrast to peatlands, salt marshes and mangroves release negligible amounts of greenhouse gases and store more carbon per unit area. Copyright 2003 by the American Geophysical Union.

  10. A global map of mangrove forest soil carbon at 30 m spatial resolution

    Sanderman, Jonathan; Hengl, Tomislav; Fiske, Greg; Solvik, Kylen; Adame, Maria Fernanda; Benson, Lisa; Bukoski, Jacob J.; Carnell, Paul; Cifuentes-Jara, Miguel; Donato, Daniel; Duncan, Clare; Eid, Ebrahem M.; Ermgassen, Philine zu; Ewers Lewis, Carolyn J.; Macreadie, Peter I.; Glass, Leah; Gress, Selena; Jardine, Sunny L.; Jones, Trevor G.; Ndemem Nsombo, Eugéne; Mizanur Rahman, Md; Sanders, Christian J.; Spalding, Mark; Landis, Emily

    2018-05-01

    With the growing recognition that effective action on climate change will require a combination of emissions reductions and carbon sequestration, protecting, enhancing and restoring natural carbon sinks have become political priorities. Mangrove forests are considered some of the most carbon-dense ecosystems in the world with most of the carbon stored in the soil. In order for mangrove forests to be included in climate mitigation efforts, knowledge of the spatial distribution of mangrove soil carbon stocks are critical. Current global estimates do not capture enough of the finer scale variability that would be required to inform local decisions on siting protection and restoration projects. To close this knowledge gap, we have compiled a large georeferenced database of mangrove soil carbon measurements and developed a novel machine-learning based statistical model of the distribution of carbon density using spatially comprehensive data at a 30 m resolution. This model, which included a prior estimate of soil carbon from the global SoilGrids 250 m model, was able to capture 63% of the vertical and horizontal variability in soil organic carbon density (RMSE of 10.9 kg m‑3). Of the local variables, total suspended sediment load and Landsat imagery were the most important variable explaining soil carbon density. Projecting this model across the global mangrove forest distribution for the year 2000 yielded an estimate of 6.4 Pg C for the top meter of soil with an 86–729 Mg C ha‑1 range across all pixels. By utilizing remotely-sensed mangrove forest cover change data, loss of soil carbon due to mangrove habitat loss between 2000 and 2015 was 30–122 Tg C with >75% of this loss attributable to Indonesia, Malaysia and Myanmar. The resulting map products from this work are intended to serve nations seeking to include mangrove habitats in payment-for- ecosystem services projects and in designing effective mangrove conservation strategies.

  11. Improving carbon model phenology using data assimilation

    Exrayat, Jean-François; Smallman, T. Luke; Bloom, A. Anthony; Williams, Mathew

    2015-04-01

    Carbon cycle dynamics is significantly impacted by ecosystem phenology, leading to substantial seasonal and inter-annual variation in the global carbon balance. Representing inter-annual variability is key for predicting the response of the terrestrial ecosystem to climate change and disturbance. Existing terrestrial ecosystem models (TEMs) often struggle to accurately simulate observed inter-annual variability. TEMs often use different phenological models based on plant functional type (PFT) assumptions. Moreover, due to a high level of computational overhead in TEMs they are unable to take advantage of globally available datasets to calibrate their models. Here we describe the novel CARbon DAta MOdel fraMework (CARDAMOM) for data assimilation. CARDAMOM is used to calibrate the Data Assimilation Linked Ecosystem Carbon version 2 (DALEC2) model using Bayes' Theorem within a Metropolis Hastings - Markov Chain Monte Carlo (MH-MCMC). CARDAMOM provides a framework which combines knowledge from observations, such as remotely sensed LAI, and heuristic information in the form of Ecological and Dynamical Constraints (EDCs). The EDCs are representative of real world processes and constrain parameter interdependencies and constrain carbon dynamics. We used CARDAMOM to bring together globally spanning datasets of LAI and the DALEC2 and DALEC2-GSI models. These analyses allow us to investigate the sensitivity ecosystem processes to the representation of phenology. DALEC2 uses an analytically solved model of phenology which is invariant between years. In contrast DALEC2-GSI uses a growing season index (GSI) calculated as a function of temperature, vapour pressure deficit (VPD) and photoperiod to calculate bud-burst and leaf senescence, allowing the model to simulate inter-annual variability in response to climate. Neither model makes any PFT assumptions about the phenological controls of a given ecosystem, allowing the data alone to determine the impact of the meteorological

  12. Global impact of carbon-14 from nuclear power reactors

    Moghissi, A.A.; Carter, M.W.

    1977-01-01

    Carbon-14 is produced by nuclear power reactors, predominently as a result of the interaction of a neutron and nitrogen-14 both in the fuel and in the coolant. Several other reactions also contribute to the production of carbon-14. Present operational procedures, in general, for reactors and fuel reprocessing plants result in the release of carbon-14 into the environment. Combustion of fossil fuels and certain industrial operations contribute to the supply of CO 2 in the atmosphere and this contribution is essentially free of carbon-14. Future carbon-14 burdens by assuming a thorough mixing of all CO 2 in the atmosphere is predicted. Available data on electric power generation, fossil fuel combustion and certain other information are used to calculate the projected specific activity of carbon-14 by the year 2000 and the twenty-first century. According to these calculations, the global population dose from carbon-14 can be substantial. Also, carbon-14 in the vicinity of nuclear power reactors is considered. Because of the chemistry of carbon-14, it is shown that local problems may be more significant around BWR's as compared to PWR's. Based on environmental considerations of carbon-14, its increasing production and discharge into the atmosphere, and available control technology, it is recommended that nitrogen use and its presence be minimized in pertinent reactor components and operations

  13. Global emission inventory and atmospheric transport of black carbon. Evaluation of the associated exposure

    Wang, Rong

    2015-06-01

    This thesis presents research focusing on the improvement of high-resolution global black carbon (BC) emission inventory and application in assessing the population exposure to ambient BC. A particular focus of the thesis is on the construction of a high-resolution (both spatial and sectorial) fuel consumption database, which is used to develop the emission inventory of black carbon. Above all, the author updates the global emission inventory of black carbon, a resource subsequently used to study the atmospheric transport of black carbon over Asia with the help of a high-resolution nested model. The thesis demonstrates that spatial bias in fuel consumption and BC emissions can be reduced by means of the sub-national disaggregation approach. Using the inventory and nested model, ambient BC concentrations can be better validated against observations. Lastly, it provides a complete uncertainty analysis of global black carbon emissions, and this uncertainty is taken into account in the atmospheric modeling, helping to better understand the role of black carbon in regional and global air pollution.

  14. Atmospheric Carbon Dioxide and the Global Carbon Cycle: The Key Uncertainties

    Peng, T. H.; Post, W. M.; DeAngelis, D. L.; Dale, V. H.; Farrell, M. P.

    1987-12-01

    The biogeochemical cycling of carbon between its sources and sinks determines the rate of increase in atmospheric CO{sub 2} concentrations. The observed increase in atmospheric CO{sub 2} content is less than the estimated release from fossil fuel consumption and deforestation. This discrepancy can be explained by interactions between the atmosphere and other global carbon reservoirs such as the oceans, and the terrestrial biosphere including soils. Undoubtedly, the oceans have been the most important sinks for CO{sub 2} produced by man. But, the physical, chemical, and biological processes of oceans are complex and, therefore, credible estimates of CO{sub 2} uptake can probably only come from mathematical models. Unfortunately, one- and two-dimensional ocean models do not allow for enough CO{sub 2} uptake to accurately account for known releases. Thus, they produce higher concentrations of atmospheric CO{sub 2} than was historically the case. More complex three-dimensional models, while currently being developed, may make better use of existing tracer data than do one- and two-dimensional models and will also incorporate climate feedback effects to provide a more realistic view of ocean dynamics and CO{sub 2} fluxes. The instability of current models to estimate accurately oceanic uptake of CO{sub 2} creates one of the key uncertainties in predictions of atmospheric CO{sub 2} increases and climate responses over the next 100 to 200 years.

  15. Carbon dioxide: Global warning for nephrologists.

    Marano, Marco; D'Amato, Anna; Cantone, Alessandra

    2016-09-06

    The large prevalence of respiratory acid-base disorders overlapping metabolic acidosis in hemodialysis population should prompt nephrologists to deal with the partial pressure of carbon dioxide (pCO2) complying with the reduced bicarbonate concentration. What the most suitable formula to compute pCO2 is reviewed. Then, the neglected issue of CO2 content in the dialysis fluid is under the spotlight. In fact, a considerable amount of CO2 comes to patients' bloodstream every hemodialysis treatment and "acidosis by dialysate" may occur if lungs do not properly clear away this burden of CO2. Moreover, vascular access recirculation may be easy diagnosed by detecting CO2 in the arterial line of extracorporeal circuit if CO2-enriched blood from the filter reenters arterial needle.

  16. Global Analysis, Interpretation, and Modelling: First Science Conference

    Sahagian, Dork

    1995-01-01

    Topics considered include: Biomass of termites and their emissions of methane and carbon dioxide - A global database; Carbon isotope discrimination during photosynthesis and the isotope ratio of respired CO2 in boreal forest ecosystems; Estimation of methane emission from rice paddies in mainland China; Climate and nitrogen controls on the geography and timescales of terrestrial biogeochemical cycling; Potential role of vegetation feedback in the climate sensitivity of high-latitude regions - A case study at 6000 years B.P.; Interannual variation of carbon exchange fluxes in terrestrial ecosystems; and Variations in modeled atmospheric transport of carbon dioxide and the consequences for CO2 inversions.

  17. Carbonate-silicate cycle models of the long-term carbon cycle, carbonate accumulation in the oceans, and climate

    Caldeira, K.G.

    1991-01-01

    Several models of the long-term carbon cycle, incorporating models of the carbonate-silicate cycle, were developed and utilized to investigate issues relating to global climate and the causes and consequences of changes in calcium carbonate accumulation in the oceans. Model results indicate that the marked mid-Cretaceous (120 Ma) global warming could be explained by increased rates of release of carbon dioxide from subduction-zone metamorphism and mid-ocean-ridges, in conjunction with paleogeographic factors. Since the mid-Cretaceous, the primary setting for calcium carbonate accumulation in the oceans has shifted from shallow-water to deep-water environments. Model results suggest that this shift could have major consequences for the carbonate-silicate cycle and climate, and lead to significant increases in the flux of metamorphic carbon dioxide to the atmosphere. Increases in pelagic carbonate productivity, and decreases in tropical shallow-water area available for neritic carbonate accumulation, have both been proposed as the primary cause of this shift. Two lines of evidence developed here (one involving a statistical analysis of Tertiary carbonate-accumulation and oxygen-isotope data, and another based on modeling the carbonate-silicate cycle and ocean chemistry) suggest that a decrease in tropical shallow-water area was more important than increased pelagic productivity in explaining this shift. Model investigations of changes in ocean chemistry at the Cretaceous/Tertiary (K/T) boundary (66 Ma) indicate that variations in deep-water carbonate productivity may affect shallow-water carbonate accumulation rates through a mechanism involving surface-water carbonate-ion concentration. In the aftermath of the K/T boundary event, deep-water carbonate production and accumulation were significantly reduced as a result of the extinction of calcareous plankton

  18. The role of forest disturbance in global forest mortality and terrestrial carbon fluxes

    Pugh, Thomas; Arneth, Almut; Smith, Benjamin; Poulter, Benjamin

    2017-04-01

    Large-scale forest disturbance dynamics such as insect outbreaks, wind-throw and fires, along with anthropogenic disturbances such as logging, have been shown to turn forests from carbon sinks into intermittent sources, often quite dramatically so. There is also increasing evidence that disturbance regimes in many regions are changing as a result of climatic change and human land-management practices. But how these landscape-scale events fit into the wider picture of global tree mortality is not well understood. Do such events dominate global carbon turnover, or are their effects highly regional? How sensitive is global terrestrial carbon exchange to realistic changes in the occurrence rate of such disturbances? Here, we combine recent advances in global satellite observations of stand-replacing forest disturbances and in compilations of forest inventory data, with a global terrestrial ecosystem model which incorporates an explicit representation of the role of disturbance in forest dynamics. We find that stand-replacing disturbances account for a fraction of wood carbon turnover that varies spatially from less than 5% in the tropical rainforest to ca. 50% in the mid latitudes, and as much as 90% in some heavily-managed regions. We contrast the size of the land-atmosphere carbon flux due to this disturbance with other components of the terrestrial carbon budget. In terms of sensitivity, we find a quasi log-linear relationship of disturbance rate to total carbon storage. Relatively small changes in disturbance rates at all latitudes have marked effects on vegetation carbon storage, with potentially very substantial implications for the global terrestrial carbon sink. Our results suggest a surprisingly small effect of disturbance type on large-scale forest vegetation dynamics and carbon storage, with limited evidence of widespread increases in nitrogen limitation as a result of increasing future disturbance. However, the influence of disturbance type on soil carbon

  19. A New Synthetic Global Biomass Carbon Map for the year 2010

    Spawn, S.; Lark, T.; Gibbs, H.

    2017-12-01

    Satellite technologies have facilitated a recent boom in high resolution, large-scale biomass estimation and mapping. These data are the input into a wide range of global models and are becoming the gold standard for required national carbon (C) emissions reporting. Yet their geographical and/or thematic scope may exclude some or all parts of a given country or region. Most datasets tend to focus exclusively on forest biomass. Grasslands and shrublands generally store less C than forests but cover nearly twice as much global land area and may represent a significant portion of a given country's biomass C stock. To address these shortcomings, we set out to create synthetic, global above- and below-ground biomass maps that combine recently-released satellite based data of standing forest biomass with novel estimates for non-forest biomass stocks that are typically neglected. For forests we integrated existing publicly available regional, global and biome-specific biomass maps and modeled below ground biomass using empirical relationships described in the literature. For grasslands, we developed models for both above- and below-ground biomass based on NPP, mean annual temperature and precipitation to extrapolate field measurements across the globe. Shrubland biomass was extrapolated from existing regional biomass maps using environmental factors to generate the first global estimate of shrub biomass. Our new synthetic map of global biomass carbon circa 2010 represents an update to the IPCC Tier-1 Global Biomass Carbon Map for the Year 2000 (Ruesch and Gibbs, 2008) using the best data currently available. In the absence of a single seamless remotely sensed map of global biomass, our synthetic map provides the only globally-consistent source of comprehensive biomass C data and is valuable for land change analyses, carbon accounting, and emissions modeling.

  20. Parallel Computing for Terrestrial Ecosystem Carbon Modeling

    Wang, Dali; Post, Wilfred M.; Ricciuto, Daniel M.; Berry, Michael

    2011-01-01

    Terrestrial ecosystems are a primary component of research on global environmental change. Observational and modeling research on terrestrial ecosystems at the global scale, however, has lagged behind their counterparts for oceanic and atmospheric systems, largely because the unique challenges associated with the tremendous diversity and complexity of terrestrial ecosystems. There are 8 major types of terrestrial ecosystem: tropical rain forest, savannas, deserts, temperate grassland, deciduous forest, coniferous forest, tundra, and chaparral. The carbon cycle is an important mechanism in the coupling of terrestrial ecosystems with climate through biological fluxes of CO 2 . The influence of terrestrial ecosystems on atmospheric CO 2 can be modeled via several means at different timescales. Important processes include plant dynamics, change in land use, as well as ecosystem biogeography. Over the past several decades, many terrestrial ecosystem models (see the 'Model developments' section) have been developed to understand the interactions between terrestrial carbon storage and CO 2 concentration in the atmosphere, as well as the consequences of these interactions. Early TECMs generally adapted simple box-flow exchange models, in which photosynthetic CO 2 uptake and respiratory CO 2 release are simulated in an empirical manner with a small number of vegetation and soil carbon pools. Demands on kinds and amount of information required from global TECMs have grown. Recently, along with the rapid development of parallel computing, spatially explicit TECMs with detailed process based representations of carbon dynamics become attractive, because those models can readily incorporate a variety of additional ecosystem processes (such as dispersal, establishment, growth, mortality etc.) and environmental factors (such as landscape position, pest populations, disturbances, resource manipulations, etc.), and provide information to frame policy options for climate change

  1. The global distribution of leaf chlorophyll content and seasonal controls on carbon uptake

    Croft, H.; Chen, J. M.; Luo, X.; Bartlett, P. A.; Staebler, R. M.; He, L.; Mo, G.; Luo, S.; Simic, A.; Arabian, J.; He, Y.; Zhang, Y.; Beringer, J.; Hutley, L. B.; Noland, T. L.; Arellano, P.; Stahl, C.; Homolová, L.; Bonal, D.; Malenovský, Z.; Yi, Q.; Amiri, R.

    2017-12-01

    Leaf chlorophyll (ChlLeaf) is crucial to biosphere-atmosphere exchanges of carbon and water, and the functioning of terrestrial ecosystems. Improving the accuracy of modelled photosynthetic carbon uptake is a central priority for understanding ecosystem response to a changing climate. A source of uncertainty within gross primary productivity (GPP) estimates is the failure to explicitly consider seasonal controls on leaf photosynthetic potential. Whilst the inclusion of ChlLeafinto carbon models has shown potential to provide a physiological constraint, progress has been hampered by the absence of a spatially-gridded, global chlorophyll product. Here, we present the first spatially-continuous, global view of terrestrial ChlLeaf, at weekly intervals. Satellite-derived ChlLeaf was modelled using a physically-based radiative transfer modelling approach, with a two stage model inversion method. 4-Scale and SAIL canopy models were first used to model leaf-level reflectance from ENIVSAT MERIS 300m satellite data. The PROSPECT leaf model was then used to derive ChlLeaf from the modelled leaf reflectance. This algorithm was validated using measured ChlLeaf data from 248 measurements within 26 field locations, covering six plant functional types (PFTs). Modelled results show very good relationships with measured data, particularly for deciduous broadleaf forests (R2 = 0.67; pmake an important step towards improving the accuracy of global carbon budgets.

  2. GEM - The Global Earthquake Model

    Smolka, A.

    2009-04-01

    Over 500,000 people died in the last decade due to earthquakes and tsunamis, mostly in the developing world, where the risk is increasing due to rapid population growth. In many seismic regions, no hazard and risk models exist, and even where models do exist, they are intelligible only by experts, or available only for commercial purposes. The Global Earthquake Model (GEM) answers the need for an openly accessible risk management tool. GEM is an internationally sanctioned public private partnership initiated by the Organisation for Economic Cooperation and Development (OECD) which will establish an authoritative standard for calculating and communicating earthquake hazard and risk, and will be designed to serve as the critical instrument to support decisions and actions that reduce earthquake losses worldwide. GEM will integrate developments on the forefront of scientific and engineering knowledge of earthquakes, at global, regional and local scale. The work is organized in three modules: hazard, risk, and socio-economic impact. The hazard module calculates probabilities of earthquake occurrence and resulting shaking at any given location. The risk module calculates fatalities, injuries, and damage based on expected shaking, building vulnerability, and the distribution of population and of exposed values and facilities. The socio-economic impact module delivers tools for making educated decisions to mitigate and manage risk. GEM will be a versatile online tool, with open source code and a map-based graphical interface. The underlying data will be open wherever possible, and its modular input and output will be adapted to multiple user groups: scientists and engineers, risk managers and decision makers in the public and private sectors, and the public-at- large. GEM will be the first global model for seismic risk assessment at a national and regional scale, and aims to achieve broad scientific participation and independence. Its development will occur in a

  3. Mitigation of Global Warming with Focus on Personal Carbon Allowances

    Meyer, Niels I

    2008-01-01

    The mitigation of global warming requires new efficient systems and methods. The paper presents a new proposal called personal carbon allowances with caps on the CO2 emission from household heating and electricity and on emission from transport in private cars and in personal air flights. Results...

  4. Global spatiotemporal distribution of soil respiration modeled using a global database

    Hashimoto, S.; Carvalhais, N.; Ito, A.; Migliavacca, M.; Nishina, K.; Reichstein, M.

    2015-07-01

    The flux of carbon dioxide from the soil to the atmosphere (soil respiration) is one of the major fluxes in the global carbon cycle. At present, the accumulated field observation data cover a wide range of geographical locations and climate conditions. However, there are still large uncertainties in the magnitude and spatiotemporal variation of global soil respiration. Using a global soil respiration data set, we developed a climate-driven model of soil respiration by modifying and updating Raich's model, and the global spatiotemporal distribution of soil respiration was examined using this model. The model was applied at a spatial resolution of 0.5°and a monthly time step. Soil respiration was divided into the heterotrophic and autotrophic components of respiration using an empirical model. The estimated mean annual global soil respiration was 91 Pg C yr-1 (between 1965 and 2012; Monte Carlo 95 % confidence interval: 87-95 Pg C yr-1) and increased at the rate of 0.09 Pg C yr-2. The contribution of soil respiration from boreal regions to the total increase in global soil respiration was on the same order of magnitude as that of tropical and temperate regions, despite a lower absolute magnitude of soil respiration in boreal regions. The estimated annual global heterotrophic respiration and global autotrophic respiration were 51 and 40 Pg C yr-1, respectively. The global soil respiration responded to the increase in air temperature at the rate of 3.3 Pg C yr-1 °C-1, and Q10 = 1.4. Our study scaled up observed soil respiration values from field measurements to estimate global soil respiration and provide a data-oriented estimate of global soil respiration. The estimates are based on a semi-empirical model parameterized with over one thousand data points. Our analysis indicates that the climate controls on soil respiration may translate into an increasing trend in global soil respiration and our analysis emphasizes the relevance of the soil carbon flux from soil to

  5. The Bern Simple Climate Model (BernSCM) v1.0: an extensible and fully documented open-source re-implementation of the Bern reduced-form model for global carbon cycle-climate simulations

    Strassmann, Kuno M.; Joos, Fortunat

    2018-05-01

    The Bern Simple Climate Model (BernSCM) is a free open-source re-implementation of a reduced-form carbon cycle-climate model which has been used widely in previous scientific work and IPCC assessments. BernSCM represents the carbon cycle and climate system with a small set of equations for the heat and carbon budget, the parametrization of major nonlinearities, and the substitution of complex component systems with impulse response functions (IRFs). The IRF approach allows cost-efficient yet accurate substitution of detailed parent models of climate system components with near-linear behavior. Illustrative simulations of scenarios from previous multimodel studies show that BernSCM is broadly representative of the range of the climate-carbon cycle response simulated by more complex and detailed models. Model code (in Fortran) was written from scratch with transparency and extensibility in mind, and is provided open source. BernSCM makes scientifically sound carbon cycle-climate modeling available for many applications. Supporting up to decadal time steps with high accuracy, it is suitable for studies with high computational load and for coupling with integrated assessment models (IAMs), for example. Further applications include climate risk assessment in a business, public, or educational context and the estimation of CO2 and climate benefits of emission mitigation options.

  6. The Bern Simple Climate Model (BernSCM v1.0: an extensible and fully documented open-source re-implementation of the Bern reduced-form model for global carbon cycle–climate simulations

    K. M. Strassmann

    2018-05-01

    Full Text Available The Bern Simple Climate Model (BernSCM is a free open-source re-implementation of a reduced-form carbon cycle–climate model which has been used widely in previous scientific work and IPCC assessments. BernSCM represents the carbon cycle and climate system with a small set of equations for the heat and carbon budget, the parametrization of major nonlinearities, and the substitution of complex component systems with impulse response functions (IRFs. The IRF approach allows cost-efficient yet accurate substitution of detailed parent models of climate system components with near-linear behavior. Illustrative simulations of scenarios from previous multimodel studies show that BernSCM is broadly representative of the range of the climate–carbon cycle response simulated by more complex and detailed models. Model code (in Fortran was written from scratch with transparency and extensibility in mind, and is provided open source. BernSCM makes scientifically sound carbon cycle–climate modeling available for many applications. Supporting up to decadal time steps with high accuracy, it is suitable for studies with high computational load and for coupling with integrated assessment models (IAMs, for example. Further applications include climate risk assessment in a business, public, or educational context and the estimation of CO2 and climate benefits of emission mitigation options.

  7. Takaful Models and Global Practices

    Akhter, Waheed

    2010-01-01

    There is a global interest in Islamic finance in general and Takāful in particular. The main feature that differentiates Takāful services from conventional ones is Sharī‟ah compliance nature of these services. Investors are taking keen interest in this potential market as Muslims constitute about one fourth of the world population (Muslim population, 2006). To streamline operations of a Takāful company, management and Sharī‟ah experts have developed different operational models for Takāful bu...

  8. Global investigation of the nonlinear dynamics of carbon nanotubes

    Xu, Tiantian

    2016-11-17

    Understanding the complex nonlinear dynamics of carbon nanotubes (CNTs) is essential to enable utilization of these structures in devices and practical applications. We present in this work an investigation of the global nonlinear dynamics of a slacked CNT when actuated by large electrostatic and electrodynamic excitations. The coexistence of several attractors is observed. The CNT is modeled as an Euler–Bernoulli beam. A reduced-order model based on the Galerkin method is developed and utilized to simulate the static and dynamic responses. Critical computational challenges are posed due to the complicated form of the electrostatic force, which describes the interaction between the upper electrode, consisting of the cylindrically shaped CNT, and the lower electrode. Toward this, we approximate the electrostatic force using the Padé expansion. We explore the dynamics near the primary and superharmonic resonances. The nanostructure exhibits several attractors with different characteristics. To achieve deep insight and describe the complexity and richness of the behavior, we analyze the nonlinear response from an attractor-basins point of view. The competition of attractors is highlighted. Compactness and/or fractality of their basins are discussed. Both the effects of varying the excitation frequency and amplitude are examined up to the dynamic pull-in instability.

  9. The carbon-budget approach to climate stabilization: Cost-effective subglobal versus global action

    Eichner, Thomas; Pethig, Rüdiger

    2010-01-01

    Scientific expertise suggests that mitigating extreme world-wide climate change damages requires avoiding increases in the world mean temperature exceeding 2 degrees Celsius. To achieve the two degree target, the cumulated global emissions must not exceed some limit, the so-called global carbon budget. In a two-period two country general equilibrium model with a finite stock of fossil fuels we compare the cooperative cost-effective policy with the unilateral cost-effective policy of restricti...

  10. The carbon-budget approach to climate stabilization: Costeffective subglobal versus global action

    Eichner, Thomas; Pethig, Rüdiger

    2010-01-01

    Scientific expertise suggests that mitigating extreme world-wide climate change damages requires avoiding increases in the world mean temperature exceeding 2ê Celsius. To achieve the two degree target, the cumulated global emissions must not exceed some limit, the so-called global carbon budget. In a two-period twocountry general equilibrium model with a finite stock of fossil fuels we compare the cooperative cost-effective policy with the unilateral cost-effective policy of restricting emiss...

  11. Carbon emission intensity in electricity production: A global analysis

    Ang, B.W.; Su, Bin

    2016-01-01

    We study changes in the aggregate carbon intensity (ACI) for electricity at the global and country levels. The ACI is defined as the energy-related CO_2 emissions in electricity production divided by the electricity produced. It is a performance indicator since a decrease in its value is a desirable outcome from the environmental and climate change viewpoints. From 1990 to 2013, the ACI computed at the global level decreased only marginally. However, fairly substantial decreases were observed in many countries. This apparent anomaly arises from a geographical shift in global electricity production with countries having a high ACI increasingly taking up a larger electricity production share. It is found that globally and in most major electricity producing countries, reduction in their ACI was due mainly to improvements in the thermal efficiency of electricity generation rather than to fuel switching. Estimates of the above-mentioned effects are made using LMDI decomposition analysis. Our study reveals several challenges in reducing global CO_2 emissions from the electricity production sector although technically the reduction potential for the sector is known to be great. - Highlights: •Variations of aggregate carbon intensity (ACI) for electricity of world countries are analysed. •Main drivers of changes in ACI of major electricity producing countries are studied using index decomposition analysis. •Geographical shift in electricity production had a significant impact on global ACI. •Improvements in the thermal efficiency of generation were the main driver of reduction in ACI.

  12. The decadal state of the terrestrial carbon cycle : Global retrievals of terrestrial carbon allocation, pools, and residence times

    Bloom, A Anthony; Exbrayat, Jean-François; van der Velde, Ivar R; Feng, Liang; Williams, Mathew

    2016-01-01

    The terrestrial carbon cycle is currently the least constrained component of the global carbon budget. Large uncertainties stem from a poor understanding of plant carbon allocation, stocks, residence times, and carbon use efficiency. Imposing observational constraints on the terrestrial carbon cycle

  13. Quantifying the Effects of Historical Land Cover Conversion Uncertainty on Global Carbon and Climate Estimates

    Di Vittorio, A. V.; Mao, J.; Shi, X.; Chini, L.; Hurtt, G.; Collins, W. D.

    2018-01-01

    Previous studies have examined land use change as a driver of global change, but the translation of land use change into land cover conversion has been largely unconstrained. Here we quantify the effects of land cover conversion uncertainty on the global carbon and climate system using the integrated Earth System Model. Our experiments use identical land use change data and vary land cover conversions to quantify associated uncertainty in carbon and climate estimates. Land cover conversion uncertainty is large, constitutes a 5 ppmv range in estimated atmospheric CO2 in 2004, and generates carbon uncertainty that is equivalent to 80% of the net effects of CO2 and climate and 124% of the effects of nitrogen deposition during 1850-2004. Additionally, land cover uncertainty generates differences in local surface temperature of over 1°C. We conclude that future studies addressing land use, carbon, and climate need to constrain and reduce land cover conversion uncertainties.

  14. Global potential for carbon sequestration. Geographical distribution, country risk and policy implications

    Benitez, Pablo C.; McCallum, Ian; Obersteiner, Michael; Yamagata, Yoshiki

    2007-01-01

    We have provided a framework for identifying least-cost sites for afforestation and reforestation and deriving carbon sequestration cost curves at a global level in a scenario of limited information. Special attention is given to country risk in developing countries and the sensitivity to spatial datasets. Our model results suggest that within 20 years and considering a carbon price of USD 50/tC, tree-planting activities could offset 1 year of global carbon emissions in the energy sector. However, if we account for country risk considerations-associated with political, economic and financial risks - carbon sequestration is reduced by approximately 60%. With respect to the geography of supply, illustrated by grid-scale maps, we find that most least-cost sites are located in regions of developing countries such as the Sub-Sahara, Southeast Brazil and Southeast Asia. (author)

  15. Quantification of the "global" authigenic carbonate δ13C value and implications for carbon cycling

    Loyd, S. J.

    2017-12-01

    Relationships among early Earth ocean chemistry, atmospheric chemistry and the evolution/radiation of life have been inferred from carbon isotope compositions (δ13C) of marine carbonates. Under steady-state conditions, the isotope compositions of marine carbonates reflect both the amount and δ13C of carbon entering and leaving the oceans. Recently the traditional "two-output" (marine carbonate and organic matter) mass-balance equation has been modified to include a third, authigenic carbonate output term. However, the formation mechanisms of authigenic carbonates remain poorly understood, particularly from a global prospective. The utility of the new mass-balance approach will be limited until authigenic carbonates are better characterized (e.g., through δ13C analyses). Authigenic carbonates form largely as a result of 1) the respiratory degradation of organic matter (e.g., sulfate reduction), 2) the oxidation of methane and 3) the production of methane. These major reaction pathways can produce authigenic carbonates with highly variable δ13C compositions (δ13Cac). Spatiotemporal variation in the extent and prevalence of different pathways therefore exert a first order control on "global" δ13Cac. Here, values are compiled from new and existing data sets and a modern, global δ13Cac is calculated. When calculated as an average of all data or an averaged mean of individual sites, this value is very similar to normal marine sedimentary organic matter. This finding suggests that marine sediments behave largely as closed systems in the context of organic matter degradation and carbonate authigenesis. In addition, the lack of significant difference between authigenic and organic δ13C implies that these two mass-balance output terms can be considered collectively in more recent time intervals. It may be appropriate to separate these two terms when characterizing more ancient settings when redox characteristics promoted more reducing organic matter degradation

  16. Terrestrial gross carbon dioxide uptake : Global distribution and covariation with climate

    Beer, Christian; Reichstein, Markus; Tomelleri, Enrico; Ciais, Philippe; Jung, Martin; Carvalhais, Nuno; Rödenbeck, Christian; Arain, M. Altaf; Baldocchi, Dennis D.; Bonan, Gordon B.; Bondeau, Alberte; Cescatti, Alessandro; Lasslop, Gitta; Lindroth, Anders; Lomas, Mark; Luyssaert, Sebastiaan; Margolis, Hank; Oleson, Keith W.; Roupsard, Olivier; Veenendaal, Elmar; Viovy, Nicolas; Williams, Christopher M.; Woodward, F. Ian; Papale, Dario

    2010-01-01

    Terrestrial gross primary production (GPP) is the largest global CO 2 flux driving several ecosystem functions. We provide an observation-based estimate of this flux at 123 ± 8 petagrams of carbon per year (Pg C year-1) using eddy covariance flux data and various diagnostic models. Tropical forests

  17. Modelling Sublimation of Carbon Dioxide

    Winkel, Brian

    2012-01-01

    In this article, the author reports results in their efforts to model sublimation of carbon dioxide and the associated kinetics order and parameter estimation issues in their model. They have offered the reader two sets of data and several approaches to determine the rate of sublimation of a piece of solid dry ice. They presented several models…

  18. Intersection carbon monoxide modeling

    Zamurs, J.

    1990-01-01

    In this note the author discusses the need for better air quality mobile source models near roadways and intersections. To develop the improved models, a better understanding of emissions and their relation to ambient concentrations is necessary. The database for the modal model indicates that vehicles do have different emission levels for different engine operating modes. If the modal approach is used information is needed on traffic signal phasing, queue lengths, delay times, acceleration rates, deceleration rates, capacity, etc. Dispersion estimates using current air quality models may be inaccurate because the models do not take into account intersecting traffic streams, multiple buildings of varying setbacks, height, and spacing

  19. Modeling of global biomass policies

    Gielen, Dolf; Fujino, Junichi; Hashimoto, Seiji; Moriguchi, Yuichi

    2003-01-01

    This paper discusses the BEAP model and its use for the analysis of biomass policies for CO 2 emission reduction. The model considers competing land use, trade and leakage effects, and competing emission reduction strategies. Two policy scenarios are presented. In case of a 2040 time horizon the results suggest that a combination of afforestation and limited use of biomass for energy and materials constitutes the most attractive set of strategies. In case of a 'continued Kyoto' scenario including afforestation permit trade, the results suggest 5.1 Gt emission reduction based on land use change in 2020, two thirds of the total emission reduction by then. In case of global emission reduction, land use, land use change and forestry (LULUCF) accounts for one quarter of the emission reduction. However these results depend on the modeling time horizon. In case of a broader time horizon, maximized biomass production is more attractive than LULUCF. This result can be interpreted as a warning against a market based trading scheme for LULUCF credits. The model results suggest that the bioenergy market is dominated by transportation fuels and heating, and to a lesser extent feedstocks. Bioelectricity does not gain a significant market share in case competing CO 2 -free electricity options such as CO 2 capture and sequestration and nuclear are considered. To some extent trade in agricultural food products such as beef and cereals will be affected by CO 2 policies

  20. Modeling of global biomass policies

    Gielen, D.; Fujino, Junichi; Hashimoto, Seiji; Moriguchi, Yuichi

    2003-01-01

    This paper discusses the BEAP model and its use for the analysis of biomass policies for CO 2 emission reduction. The model considers competing land use, trade and leakage effects, and competing emission reduction strategies. Two policy scenarios are presented. In case of a 2040 time horizon the results suggest that a combination of afforestation and limited use of biomass for energy and materials constitutes the most attractive set of strategies. In case of a 'continued Kyoto' scenario including afforestation permit trade, the results suggest 5.1 Gt emission reduction based on land use change in 2020, two thirds of the total emission reduction by then. In case of global emission reduction, land use, land use change and forestry (LULUCF) accounts for one quarter of the emission reduction. However these results depend on the modeling time horizon. In case of a broader time horizon, maximized biomass production is more attractive than LULUCF. This result can be interpreted as a warning against a market based trading scheme for LULUCF credits. The model results suggest that the bioenergy market is dominated by transportation fuels and heating, and to a lesser extent feedstocks. Bioelectricity does not gain a significant market share in case competing CO 2 -free electricity options such as CO 2 capture and sequestration and nuclear are considered. To some extent trade in agricultural food products such as beef and cereals will be affected by CO 2 policies. (Author)

  1. Monthly, global emissions of carbon dioxide from fossil fuel consumption

    Andres, R.J.; Gregg, Jay Sterling; Losey, L.

    2011-01-01

    This paper examines available data, develops a strategy and presents a monthly, global time series of fossil-fuel carbon dioxide emissions for the years 1950–2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80......% of global total emissions. These data were then used in a Monte Carlo approach to proxy for all remaining countries. The proportional-proxy methodology estimates by fuel group the fraction of annual emissions emitted in each country and month. Emissions from solid, liquid and gas fuels are explicitly...

  2. Scenario and modelling uncertainty in global mean temperature change derived from emission driven Global Climate Models

    Booth, B. B. B.; Bernie, D.; McNeall, D.; Hawkins, E.; Caesar, J.; Boulton, C.; Friedlingstein, P.; Sexton, D.

    2012-09-01

    We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission driven rather than concentration driven perturbed parameter ensemble of a Global Climate Model (GCM). These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration driven simulations (with 10-90 percentile ranges of 1.7 K for the aggressive mitigation scenario up to 3.9 K for the high end business as usual scenario). A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 degrees (RCP8.5) and even under aggressive mitigation (RCP2.6) temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission driven experiments, they do not change existing expectations (based on previous concentration driven experiments) on the timescale that different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in case of SRES A1B and the Representative Concentration Pathways (RCPs), the concentration pathways used to drive GCM ensembles lies towards the lower end of our simulated distribution. This design decision (a legecy of previous assessments) is likely to lead concentration driven experiments to under-sample strong feedback responses in concentration driven projections. Our ensemble of emission driven simulations span the global temperature response of other multi-model frameworks except at the low end, where combinations of low climate sensitivity and low carbon cycle feedbacks lead to responses outside our ensemble range. The ensemble simulates a number of high end responses which lie above the CMIP5 carbon

  3. An isopycnic ocean carbon cycle model

    K. M. Assmann

    2010-02-01

    Full Text Available The carbon cycle is a major forcing component in the global climate system. Modelling studies, aiming to explain recent and past climatic changes and to project future ones, increasingly include the interaction between the physical and biogeochemical systems. Their ocean components are generally z-coordinate models that are conceptually easy to use but that employ a vertical coordinate that is alien to the real ocean structure. Here, we present first results from a newly-developed isopycnic carbon cycle model and demonstrate the viability of using an isopycnic physical component for this purpose. As expected, the model represents well the interior ocean transport of biogeochemical tracers and produces realistic tracer distributions. Difficulties in employing a purely isopycnic coordinate lie mainly in the treatment of the surface boundary layer which is often represented by a bulk mixed layer. The most significant adjustments of the ocean biogeochemistry model HAMOCC, for use with an isopycnic coordinate, were in the representation of upper ocean biological production. We present a series of sensitivity studies exploring the effect of changes in biogeochemical and physical processes on export production and nutrient distribution. Apart from giving us pointers for further model development, they highlight the importance of preformed nutrient distributions in the Southern Ocean for global nutrient distributions. The sensitivity studies show that iron limitation for biological particle production, the treatment of light penetration for biological production, and the role of diapycnal mixing result in significant changes of nutrient distributions and liniting factors of biological production.

  4. Self-organized global control of carbon emissions

    Zhao, Zhenyuan; Fenn, Daniel J.; Hui, Pak Ming; Johnson, Neil F.

    2010-09-01

    There is much disagreement concerning how best to control global carbon emissions. We explore quantitatively how different control schemes affect the collective emission dynamics of a population of emitting entities. We uncover a complex trade-off which arises between average emissions (affecting the global climate), peak pollution levels (affecting citizens’ everyday health), industrial efficiency (affecting the nation’s economy), frequency of institutional intervention (affecting governmental costs), common information (affecting trading behavior) and market volatility (affecting financial stability). Our findings predict that a self-organized free-market approach at the level of a sector, state, country or continent can provide better control than a top-down regulated scheme in terms of market volatility and monthly pollution peaks. The control of volatility also has important implications for any future derivative carbon emissions market.

  5. Author Correction: The carbon footprint of global tourism

    Lenzen, Manfred; Sun, Ya-Yen; Faturay, Futu; Ting, Yuan-Peng; Geschke, Arne; Malik, Arunima

    2018-06-01

    In the version of this Article originally published, in the penultimate paragraph of the section "Gas species and supply chains", in the sentence "In this assessment, the contribution of air travel emissions amounts to 20% (0.9 GtCO2e) of tourism's global carbon footprint..." the values should have read "12% (0.55 GtCO2e)"; this error has now been corrected, and Supplementary Table 9 has been amended to clarify this change.

  6. Soil fauna: key to new carbon models

    Filser, Juliane; Faber, Jack H.; Tiunov, Alexei V.; Brussaard, Lijbert; Frouz, Jan; De Deyn, Gerlinde; Uvarov, Alexei V.; Berg, Matty P.; Lavelle, Patrick; Loreau, Michel; Wall, Diana H.; Querner, Pascal; Eijsackers, Herman; José Jiménez, Juan

    2016-11-01

    Soil organic matter (SOM) is key to maintaining soil fertility, mitigating climate change, combatting land degradation, and conserving above- and below-ground biodiversity and associated soil processes and ecosystem services. In order to derive management options for maintaining these essential services provided by soils, policy makers depend on robust, predictive models identifying key drivers of SOM dynamics. Existing SOM models and suggested guidelines for future SOM modelling are defined mostly in terms of plant residue quality and input and microbial decomposition, overlooking the significant regulation provided by soil fauna. The fauna controls almost any aspect of organic matter turnover, foremost by regulating the activity and functional composition of soil microorganisms and their physical-chemical connectivity with soil organic matter. We demonstrate a very strong impact of soil animals on carbon turnover, increasing or decreasing it by several dozen percent, sometimes even turning C sinks into C sources or vice versa. This is demonstrated not only for earthworms and other larger invertebrates but also for smaller fauna such as Collembola. We suggest that inclusion of soil animal activities (plant residue consumption and bioturbation altering the formation, depth, hydraulic properties and physical heterogeneity of soils) can fundamentally affect the predictive outcome of SOM models. Understanding direct and indirect impacts of soil fauna on nutrient availability, carbon sequestration, greenhouse gas emissions and plant growth is key to the understanding of SOM dynamics in the context of global carbon cycling models. We argue that explicit consideration of soil fauna is essential to make realistic modelling predictions on SOM dynamics and to detect expected non-linear responses of SOM dynamics to global change. We present a decision framework, to be further developed through the activities of KEYSOM, a European COST Action, for when mechanistic SOM models

  7. The Century-Long Challenge of Global Carbon Management

    Socolow, R.

    2002-05-01

    The time scale of the global carbon management is a century, not a decade and not a millennium. A century is the ratio of 1000 billion metric tons of carbon [Gt(C)] to 10 Gt(C)/yr. 1000 Gt(C) is the future emissions that will lead to approximately a doubling of the pre-industrial atmospheric CO2 concentration, 280 ppm, assuming the total net ocean plus terrestrial sink remains at half the strength of this source - since 2.1 Gt (C) = 1 ppm, and the concentration today is already 370 ppm. Doubling is the most widely used boundary between acceptable and unacceptable Greenhouse-related environmental disruption, or, in the language of the Framework Convention on Climate Change, the onset of "dangerous anthropogenic interference with the climate system." And 10 Gt(C)/yr is a conservative estimate of the average annual fossil-fuel carbon source over the century; it is now between 6 and 7 Gt(C). Conventional oil and gas are not sufficiently abundant to generate a serious Greenhouse problem on their own. Well before their cumulative carbon emissions reach 1000 Gt(C), both are expected to become non-competitive as a result of growing costs of access (costs related to resources being very deep underground, or below very deep water, or very remote, or very small.) But several times 1000 Gt(C) of coal resources will probably be competitive with non-fossil fuel alternatives, as will "unconventional" oil and gas resources, such as tar sands. The world will not be saved from a serious Greenhouse problem by fossil fuel depletion. There are four mitigation strategies for avoiding dangerous interference with the climate system. Fossil fuels can cease to dominate the global energy system well before the end of the century, yielding large market share to some combination of renewable energy and nuclear (fission and fusion) energy sources. Fossil fuels can continue to dominate, but most of the carbon in the century's fossil fuels can be prevented from reaching the atmosphere (fossil-carbon

  8. 'Carbon-Money Exchange' to contain global warming and deforestation

    Nagase, Kozo

    2005-01-01

    This paper builds a basic theory of 'Carbon-Money Exchange' in which carbon as currency in nature's household (ecosystems) and money as currency in humankind's household (economy) are exchanged just like in a foreign exchange. The simple chemical equation below makes it possible (CO 2 →C+O 2 =C+O 2 →CO 2 ). The left-hand side represents the work of plants to remove atmospheric CO 2 . The right-hand side represents the work of humans as fossil fuel consumers to produce it. The exchange of the two currencies is possible by copying the fossil fuel market. The paper concludes that this new exchange can automatically contain global warming and deforestation, replacing onerous emissions trading. Moreover, it could revolutionize the conventional economy, creating counter-capitalism, or 'carbonism'

  9. Carbonic Anhydrase: An Efficient Enzyme with Possible Global Implications

    Christopher D. Boone

    2013-01-01

    Full Text Available As the global atmospheric emissions of carbon dioxide (CO2 and other greenhouse gases continue to grow to record-setting levels, so do the demands for an efficient and inexpensive carbon sequestration system. Concurrently, the first-world dependence on crude oil and natural gas provokes concerns for long-term availability and emphasizes the need for alternative fuel sources. At the forefront of both of these research areas are a family of enzymes known as the carbonic anhydrases (CAs, which reversibly catalyze the hydration of CO2 into bicarbonate. CAs are among the fastest enzymes known, which have a maximum catalytic efficiency approaching the diffusion limit of 108 M−1s−1. As such, CAs are being utilized in various industrial and research settings to help lower CO2 atmospheric emissions and promote biofuel production. This review will highlight some of the recent accomplishments in these areas along with a discussion on their current limitations.

  10. Climate change impacts on soil carbon storage in global croplands: 1901-2010

    Ren, W.; Tian, H.

    2015-12-01

    New global data finds 12% of earth's surface in cropland at present. Croplands will take on the responsibility to support approximate 60% increase in food production by 2050 as FAO estimates. In addition to nutrient supply to plants, cropland soils also play a major source and sink of greenhouse gases regulating global climate system. It is a big challenge to understand how soils function under global changes, but it is also a great opportunity for agricultural sector to manage soils to assure sustainability of agroecosystems and mitigate climate change. Previous studies have attempted to investigate the impacts of different land uses and climates on cropland soil carbon storage. However, large uncertainty still exists in magnitude and spatiotemporal patterns of global cropland soil organic carbon, due to the lack of reliable environmental databases and relatively poorly understanding of multiple controlling factors involved climate change and land use etc. Here, we use a process-based agroecosystem model (DLEM-Ag) in combination with diverse data sources to quantify magnitude and tempo-spatial patterns of soil carbon storage in global croplands during 1901-2010. We also analyze the relative contributions of major environmental variables (climate change, land use and management etc.). Our results indicate that intensive land use management may hidden the vulnerability of cropland soils to climate change in some regions, which may greatly weaken soil carbon sequestration under future climate change.

  11. Next Generation Carbon-Nitrogen Dynamics Model

    Xu, C.; Fisher, R. A.; Vrugt, J. A.; Wullschleger, S. D.; McDowell, N. G.

    2012-12-01

    Nitrogen is a key regulator of vegetation dynamics, soil carbon release, and terrestrial carbon cycles. Thus, to assess energy impacts on the global carbon cycle and future climates, it is critical that we have a mechanism-based and data-calibrated nitrogen model that simulates nitrogen limitation upon both above and belowground carbon dynamics. In this study, we developed a next generation nitrogen-carbon dynamic model within the NCAR Community Earth System Model (CESM). This next generation nitrogen-carbon dynamic model utilized 1) a mechanistic model of nitrogen limitation on photosynthesis with nitrogen trade-offs among light absorption, electron transport, carboxylation, respiration and storage; 2) an optimal leaf nitrogen model that links soil nitrogen availability and leaf nitrogen content; and 3) an ecosystem demography (ED) model that simulates the growth and light competition of tree cohorts and is currently coupled to CLM. Our three test cases with changes in CO2 concentration, growing temperature and radiation demonstrate the model's ability to predict the impact of altered environmental conditions on nitrogen allocations. Currently, we are testing the model against different datasets including soil fertilization and Free Air CO2 enrichment (FACE) experiments across different forest types. We expect that our calibrated model will considerably improve our understanding and predictability of vegetation-climate interactions.itrogen allocation model evaluations. The figure shows the scatter plots of predicted and measured Vc,max and Jmax scaled to 25 oC (i.e.,Vc,max25 and Jmax25) at elevated CO2 (570 ppm, test case one), reduced radiation in canopy (0.1-0.9 of the radiation at the top of canopy, test case two) and reduced growing temperature (15oC, test case three). The model is first calibrated using control data under ambient CO2 (370 ppm), radiation at the top of the canopy (621 μmol photon/m2/s), the normal growing temperature (30oC). The fitted model

  12. A global carbon assimilation system based on a dual optimization method

    Zheng, H.; Li, Y.; Chen, J. M.; Wang, T.; Huang, Q.; Huang, W. X.; Wang, L. H.; Li, S. M.; Yuan, W. P.; Zheng, X.; Zhang, S. P.; Chen, Z. Q.; Jiang, F.

    2015-02-01

    Ecological models are effective tools for simulating the distribution of global carbon sources and sinks. However, these models often suffer from substantial biases due to inaccurate simulations of complex ecological processes. We introduce a set of scaling factors (parameters) to an ecological model on the basis of plant functional type (PFT) and latitudes. A global carbon assimilation system (GCAS-DOM) is developed by employing a dual optimization method (DOM) to invert the time-dependent ecological model parameter state and the net carbon flux state simultaneously. We use GCAS-DOM to estimate the global distribution of the CO2 flux on 1° × 1° grid cells for the period from 2001 to 2007. Results show that land and ocean absorb -3.63 ± 0.50 and -1.82 ± 0.16 Pg C yr-1, respectively. North America, Europe and China contribute -0.98 ± 0.15, -0.42 ± 0.08 and -0.20 ± 0.29 Pg C yr-1, respectively. The uncertainties in the flux after optimization by GCAS-DOM have been remarkably reduced by more than 60%. Through parameter optimization, GCAS-DOM can provide improved estimates of the carbon flux for each PFT. Coniferous forest (-0.97 ± 0.27 Pg C yr-1) is the largest contributor to the global carbon sink. Fluxes of once-dominant deciduous forest generated by the Boreal Ecosystems Productivity Simulator (BEPS) are reduced to -0.78 ± 0.23 Pg C yr-1, the third largest carbon sink.

  13. Soil Carbon and Nitrogen Cycle Modeling

    Woo, D.; Chaoka, S.; Kumar, P.; Quijano, J. C.

    2012-12-01

    Second generation bioenergy crops, such as miscanthus (Miscantus × giganteus) and switchgrass (Panicum virgatum), are regarded as clean energy sources, and are an attractive option to mitigate the human-induced climate change. However, the global climate change and the expansion of perennial grass bioenergy crops have the power to alter the biogeochemical cycles in soil, especially, soil carbon storages, over long time scales. In order to develop a predictive understanding, this study develops a coupled hydrological-soil nutrient model to simulate soil carbon responses under different climate scenarios such as: (i) current weather condition, (ii) decreased precipitation by -15%, and (iii) increased temperature up to +3C for four different crops, namely miscanthus, switchgrass, maize, and natural prairie. We use Precision Agricultural Landscape Modeling System (PALMS), version 5.4.0, to capture biophysical and hydrological components coupled with a multilayer carbon and ¬nitrogen cycle model. We apply the model at daily time scale to the Energy Biosciences Institute study site, located in the University of Illinois Research Farms, in Urbana, Illinois. The atmospheric forcing used to run the model was generated stochastically from parameters obtained using available data recorded in Bondville Ameriflux Site. The model simulations are validated with observations of drainage and nitrate and ammonium concentrations recorded in drain tiles during 2011. The results of this study show (1) total soil carbon storage of miscanthus accumulates most noticeably due to the significant amount of aboveground plant carbon, and a relatively high carbon to nitrogen ratio and lignin content, which reduce the litter decomposition rate. Also, (2) the decreased precipitation contributes to the enhancement of total soil carbon storage and soil nitrogen concentration because of the reduced microbial biomass pool. However, (3) an opposite effect on the cycle is introduced by the increased

  14. Progress in Global Multicompartmental Modelling of DDT

    Stemmler, I.; Lammel, G.

    2009-04-01

    input parameters. Furthermore, better resolution of some processes could improve model performance. References: Marsland S.J., Haak H., Jungclaus J.H., Latif M., Röske F. (2003): The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modelling 5, 91-127 Maier-Reimer E. , Kriest I., Segschneider J., Wetzel P. : The HAMburg Ocean Carbon Cycle Model HAMOCC 5.1 - Technical Description Release 1.1 (2005),Reports on Earth System Science 14 Stier P. , Feichter J. (2005), Kinne S., Kloster S., Vignati E., Wilson J.Ganzeveld L., Tegen I., Werner M., Blakanski Y., Schulz M., Boucher O., Minikin A., Petzold A.: The aerosol-climate model ECHAM5-HAM. Atmos. Chem. Phys 5, 1125-1156 Semeena V.S., Feichter J., Lammel G. (2006): Impact of the regional climate and substance properties on the fate and atmospheric long-range transport of persistent organic pollutants - examples of DDT and γ-HCH. Atmos. Chem. Phys. 6, 1231-1248

  15. Towards a global assessment of pyrogenic carbon from vegetation fires.

    Santín, Cristina; Doerr, Stefan H; Kane, Evan S; Masiello, Caroline A; Ohlson, Mikael; de la Rosa, Jose Maria; Preston, Caroline M; Dittmar, Thorsten

    2016-01-01

    The production of pyrogenic carbon (PyC; a continuum of organic carbon (C) ranging from partially charred biomass and charcoal to soot) is a widely acknowledged C sink, with the latest estimates indicating that ~50% of the PyC produced by vegetation fires potentially sequesters C over centuries. Nevertheless, the quantitative importance of PyC in the global C balance remains contentious, and therefore, PyC is rarely considered in global C cycle and climate studies. Here we examine the robustness of existing evidence and identify the main research gaps in the production, fluxes and fate of PyC from vegetation fires. Much of the previous work on PyC production has focused on selected components of total PyC generated in vegetation fires, likely leading to underestimates. We suggest that global PyC production could be in the range of 116-385 Tg C yr(-1) , that is ~0.2-0.6% of the annual terrestrial net primary production. According to our estimations, atmospheric emissions of soot/black C might be a smaller fraction of total PyC (<2%) than previously reported. Research on the fate of PyC in the environment has mainly focused on its degradation pathways, and its accumulation and resilience either in situ (surface soils) or in ultimate sinks (marine sediments). Off-site transport, transformation and PyC storage in intermediate pools are often overlooked, which could explain the fate of a substantial fraction of the PyC mobilized annually. We propose new research directions addressing gaps in the global PyC cycle to fully understand the importance of the products of burning in global C cycle dynamics. © 2015 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  16. Global carbon cycle and possible disturbances due to man's interventions

    Pankrath, J

    1979-01-01

    Global atmospheric CO/sub 2/ concentration has increased since the beginning of reliable monitoring in 1958 at a mean rate of about 0.9 ppM CO/sub 2//y. Now, atmospheric, CO/sub 2/ concentration is at 330 ppM. From about 1860 up to 1974, man's intervention in the global carbon cycle caused a likely increase of 76.6 x 10/sup 15/ g C, corresponding to 36 ppM CO/sub 2/ in the atmosphere, if a preindustrial content of 294 ppM CO/sub 2/ or 625.3 x 10/sup 15/ g C is adopted to be valid. A further rise of atmospheric CO/sub 2/ seems to be inevitable and probably will be responsible for a climatic warming in the next several decades; therefore, a global examination of carbon reservoirs and carbon fluxes has been undertaken to determine their storage capacity for excess carbon which originated mainly from burning of fossil fuels and from land clearing. During 1860 to 1974 about 136 x 10/sup 15/ g C have been emitted into the atmosphere by fossil fuel combustion and cement production. At present, the emission rate is about 5 x 10/sup 15/ g C/y. The worldwide examination of carbon release, primarily by deforestation and soil cultivation since 1860, is estimated to be about 120 x 10/sup 15/ g C. The net transfer of carbon to the atmosphere owing to man's interference with the biosphere is now believed to be about 2.4 x 10/sup 15/ g C/y. An oceanic uptake of rougly 179 x 10/sup 15/ g C since 1860 is open to discussion. According to the chemical buffering of sea surface water only about 35.5 x 10/sup 15/ g C could have been absorbed. It is argued, however, that oceanic circulations might have been more effective in removing atmospheric excess carbon of anthropogenic origin.

  17. Spatial-Temporal Variations of Embodied Carbon Emission in Global Trade Flows: 41 Economies and 35 Sectors

    Jing Tian; Hua Liao; Ce Wang

    2014-01-01

    The spatial-temporal variations of embodied carbon emissions in international trade at global scope are still unclear. This paper studies the variations of outflows and inflows of embodied carbon emissions at 35-disaggregated sectors level of 41 countries and regions, and an integrated world input-output model is employed. It also examines what would happen if there were not international trade flows in China, USA and Finland, the representatives of three different levels of the global balanc...

  18. Impacts of climate mitigation strategies in the energy sector on global land use and carbon balance

    Engström, Kerstin; Lindeskog, Mats; Olin, Stefan; Hassler, John; Smith, Benjamin

    2017-09-01

    Reducing greenhouse gas emissions to limit damage to the global economy climate-change-induced and secure the livelihoods of future generations requires ambitious mitigation strategies. The introduction of a global carbon tax on fossil fuels is tested here as a mitigation strategy to reduce atmospheric CO2 concentrations and radiative forcing. Taxation of fossil fuels potentially leads to changed composition of energy sources, including a larger relative contribution from bioenergy. Further, the introduction of a mitigation strategy reduces climate-change-induced damage to the global economy, and thus can indirectly affect consumption patterns and investments in agricultural technologies and yield enhancement. Here we assess the implications of changes in bioenergy demand as well as the indirectly caused changes in consumption and crop yields for global and national cropland area and terrestrial biosphere carbon balance. We apply a novel integrated assessment modelling framework, combining three previously published models (a climate-economy model, a socio-economic land use model and an ecosystem model). We develop reference and mitigation scenarios based on the narratives and key elements of the shared socio-economic pathways (SSPs). Taking emissions from the land use sector into account, we find that the introduction of a global carbon tax on the fossil fuel sector is an effective mitigation strategy only for scenarios with low population development and strong sustainability criteria (SSP1 Taking the green road). For scenarios with high population growth, low technological development and bioenergy production the high demand for cropland causes the terrestrial biosphere to switch from being a carbon sink to a source by the end of the 21st century.

  19. Impacts of climate mitigation strategies in the energy sector on global land use and carbon balance

    K. Engström

    2017-09-01

    Full Text Available Reducing greenhouse gas emissions to limit damage to the global economy climate-change-induced and secure the livelihoods of future generations requires ambitious mitigation strategies. The introduction of a global carbon tax on fossil fuels is tested here as a mitigation strategy to reduce atmospheric CO2 concentrations and radiative forcing. Taxation of fossil fuels potentially leads to changed composition of energy sources, including a larger relative contribution from bioenergy. Further, the introduction of a mitigation strategy reduces climate-change-induced damage to the global economy, and thus can indirectly affect consumption patterns and investments in agricultural technologies and yield enhancement. Here we assess the implications of changes in bioenergy demand as well as the indirectly caused changes in consumption and crop yields for global and national cropland area and terrestrial biosphere carbon balance. We apply a novel integrated assessment modelling framework, combining three previously published models (a climate–economy model, a socio-economic land use model and an ecosystem model. We develop reference and mitigation scenarios based on the narratives and key elements of the shared socio-economic pathways (SSPs. Taking emissions from the land use sector into account, we find that the introduction of a global carbon tax on the fossil fuel sector is an effective mitigation strategy only for scenarios with low population development and strong sustainability criteria (SSP1 Taking the green road. For scenarios with high population growth, low technological development and bioenergy production the high demand for cropland causes the terrestrial biosphere to switch from being a carbon sink to a source by the end of the 21st century.

  20. Second-best carbon taxation in the global economy: The Green Paradox and carbon leakage revisited

    van der Ploeg, F.

    2016-01-01

    Acceleration of global warming resulting from a future carbon tax is large if the price elasticities of oil demand are large and that of oil supply is small. The fall in the world interest rate weakens this weak Green Paradox effect, especially if intertemporal substitution is weak. Still, social

  1. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget

    Cole, J.; Prairie, Y.T.; Caraco, N.; McDowell, W.H.; Tranvil, L.; Striegl, R.G.; Duarte, C.M.; Kortelainen, P.; Downing, J.A.; Middelburg, J.J.; Melack, J.

    2007-01-01

    Because freshwater covers such a small fraction of the Earth’s surface area, inland freshwater ecosystems (particularly lakes, rivers, and reservoirs) have rarely been considered as potentially important quantitative components of the carbon cycle at either global or regional scales. By taking

  2. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle

    Edward A.G. Schuur; James Bockheim; Josep G. Canadell; Eugenie Euskirchen; Christopher B. Field; Sergey V. Goryachkin; Stefan Hagemann; Peter Kuhry; Peter M. Lafleur; Hanna Lee; Galina Mazhitova; Frederick E. Nelson; Annette Rinke; Vladimir E. Romanovsky; Nikolay Shiklomanov; Charles Tarnocai; Sergey Venevsky; Jason G. Vogel; Sergei A. Zimov

    2008-01-01

    Thawing permafrost and the resulting microbial decomposition of previously frozen organic carbon (C) is one of the most significant potential feedbacks from terrestrial ecosystems to the atmosphere in a changing climate. In this article we present an overview of the global permafrost C pool and of the processes that might transfer this C into the atmosphere, as well as...

  3. Increase of carbon cycle feedback with climate sensitivity: results from a coupled climate and carbon cycle model

    Govindasamy, B.; Thompson, S.; Mirin, A.; Wickett, M.; Caldeira, K.; Delire, C.

    2005-01-01

    Coupled climate and carbon cycle modelling studies have shown that the feedback between global warming and the carbon cycle, in particular the terrestrial carbon cycle, could accelerate climate change and result in greater warming. In this paper we investigate the sensitivity of this feedback for year 2100 global warming in the range of 0 to 8 K. Differing climate sensitivities to increased CO 2 content are imposed on the carbon cycle models for the same emissions. Emissions from the SRES A2 scenario are used. We use a fully coupled climate and carbon cycle model, the INtegrated Climate and CArbon model (INCCA), the NCAR/DOE Parallel Climate Model coupled to the IBIS terrestrial biosphere model and a modified OCMIP ocean biogeochemistry model. In our integrated model, for scenarios with year 2100 global warming increasing from 0 to 8 K, land uptake decreases from 47% to 29% of total CO 2 emissions. Due to competing effects, ocean uptake (16%) shows almost no change at all. Atmospheric CO 2 concentration increases are 48% higher in the run with 8 K global climate warming than in the case with no warming. Our results indicate that carbon cycle amplification of climate warming will be greater if there is higher climate sensitivity to increased atmospheric CO 2 content; the carbon cycle feedback factor increases from 1.13 to 1.48 when global warming increases from 3.2 to 8 K

  4. Accounting for carbon cycle feedbacks in a comparison of the global warming effects of greenhouse gases

    Gillett, Nathan P; Matthews, H Damon

    2010-01-01

    Greenhouse gases other than CO 2 make a significant contribution to human-induced climate change, and multi-gas mitigation strategies are cheaper to implement than those which limit CO 2 emissions alone. Most practical multi-gas mitigation strategies require metrics to relate the climate warming effects of CO 2 and other greenhouse gases. Global warming potential (GWP), defined as the ratio of time-integrated radiative forcing of a particular gas to that of CO 2 following a unit mass emission, is the metric used in the Kyoto Protocol, and we define mean global temperature change potential (MGTP) as an equivalent metric of the temperature response. Here we show that carbon-climate feedbacks inflate the GWPs and MGTPs of methane and nitrous oxide by ∼ 20% in coupled carbon-climate model simulations of the response to a pulse of 50 x 1990 emissions, due to a warming-induced release of CO 2 from the land biosphere and ocean. The magnitude of this effect is expected to be dependent on the model, but it is not captured at all by the analytical models usually used to calculate metrics such as GWP. We argue that the omission of carbon cycle dynamics has led to a low bias of uncertain but potentially substantial magnitude in metrics of the global warming effect of other greenhouse gases, and we suggest that the carbon-climate feedback should be considered when greenhouse gas metrics are calculated and applied.

  5. Stable isotopic constraints on global soil organic carbon turnover

    Wang, Chao; Houlton, Benjamin Z.; Liu, Dongwei; Hou, Jianfeng; Cheng, Weixin; Bai, Edith

    2018-02-01

    Carbon dioxide release during soil organic carbon (SOC) turnover is a pivotal component of atmospheric CO2 concentrations and global climate change. However, reliably measuring SOC turnover rates on large spatial and temporal scales remains challenging. Here we use a natural carbon isotope approach, defined as beta (β), which was quantified from the δ13C of vegetation and soil reported in the literature (176 separate soil profiles), to examine large-scale controls of climate, soil physical properties and nutrients over patterns of SOC turnover across terrestrial biomes worldwide. We report a significant relationship between β and calculated soil C turnover rates (k), which were estimated by dividing soil heterotrophic respiration rates by SOC pools. ln( - β) exhibits a significant linear relationship with mean annual temperature, but a more complex polynomial relationship with mean annual precipitation, implying strong-feedbacks of SOC turnover to climate changes. Soil nitrogen (N) and clay content correlate strongly and positively with ln( - β), revealing the additional influence of nutrients and physical soil properties on SOC decomposition rates. Furthermore, a strong (R2 = 0.76; p turnover and thereby improving predictions of multiple global change influences over terrestrial C-climate feedback.

  6. Evaluation of atmospheric aerosol and tropospheric ozone effects on global terrestrial ecosystem carbon dynamics

    Chen, Min

    The increasing human activities have produced large amounts of air pollutants ejected into the atmosphere, in which atmospheric aerosols and tropospheric ozone are considered to be especially important because of their negative impacts on human health and their impacts on global climate through either their direct radiative effect or indirect effect on land-atmosphere CO2 exchange. This dissertation dedicates to quantifying and evaluating the aerosol and tropospheric ozone effects on global terrestrial ecosystem dynamics using a modeling approach. An ecosystem model, the integrated Terrestrial Ecosystem Model (iTem), is developed to simulate biophysical and biogeochemical processes in terrestrial ecosystems. A two-broad-band atmospheric radiative transfer model together with the Moderate-Resolution Imaging Spectroradiometer (MODIS) measured atmospheric parameters are used to well estimate global downward solar radiation and the direct and diffuse components in comparison with observations. The atmospheric radiative transfer modeling framework were used to quantify the aerosol direct radiative effect, showing that aerosol loadings cause 18.7 and 12.8 W m -2 decrease of direct-beam Photosynthetic Active Radiation (PAR) and Near Infrared Radiation (NIR) respectively, and 5.2 and 4.4 W m -2 increase of diffuse PAR and NIR, respectively, leading to a total 21.9 W m-2 decrease of total downward solar radiation over the global land surface during the period of 2003-2010. The results also suggested that the aerosol effect may be overwhelmed by clouds because of the stronger extinction and scattering ability of clouds. Applications of the iTem with solar radiation data and with or without considering the aerosol loadings shows that aerosol loading enhances the terrestrial productions [Gross Primary Production (GPP), Net Primary Production (NPP) and Net Ecosystem Production (NEP)] and carbon emissions through plant respiration (RA) in global terrestrial ecosystems over the

  7. Incorporating nitrogen fixing cyanobacteria in the global biogeochemical model HAMOCC

    Paulsen, Hanna; Ilyina, Tatiana; Six, Katharina

    2015-04-01

    Nitrogen fixation by marine diazotrophs plays a fundamental role in the oceanic nitrogen and carbon cycle as it provides a major source of 'new' nitrogen to the euphotic zone that supports biological carbon export and sequestration. Since most global biogeochemical models include nitrogen fixation only diagnostically, they are not able to capture its spatial pattern sufficiently. Here we present the incorporation of an explicit, dynamic representation of diazotrophic cyanobacteria and the corresponding nitrogen fixation in the global ocean biogeochemical model HAMOCC (Hamburg Ocean Carbon Cycle model), which is part of the Max Planck Institute for Meteorology Earth system model (MPI-ESM). The parameterization of the diazotrophic growth is thereby based on available knowledge about the cyanobacterium Trichodesmium spp., which is considered as the most significant pelagic nitrogen fixer. Evaluation against observations shows that the model successfully reproduces the main spatial distribution of cyanobacteria and nitrogen fixation, covering large parts of the tropical and subtropical oceans. Besides the role of cyanobacteria in marine biogeochemical cycles, their capacity to form extensive surface blooms induces a number of bio-physical feedback mechanisms in the Earth system. The processes driving these interactions, which are related to the alteration of heat absorption, surface albedo and momentum input by wind, are incorporated in the biogeochemical and physical model of the MPI-ESM in order to investigate their impacts on a global scale. First preliminary results will be shown.

  8. Modelling MIZ dynamics in a global model

    Rynders, Stefanie; Aksenov, Yevgeny; Feltham, Daniel; Nurser, George; Naveira Garabato, Alberto

    2016-04-01

    Exposure of large, previously ice-covered areas of the Arctic Ocean to the wind and surface ocean waves results in the Arctic pack ice cover becoming more fragmented and mobile, with large regions of ice cover evolving into the Marginal Ice Zone (MIZ). The need for better climate predictions, along with growing economic activity in the Polar Oceans, necessitates climate and forecasting models that can simulate fragmented sea ice with a greater fidelity. Current models are not fully fit for the purpose, since they neither model surface ocean waves in the MIZ, nor account for the effect of floe fragmentation on drag, nor include sea ice rheology that represents both the now thinner pack ice and MIZ ice dynamics. All these processes affect the momentum transfer to the ocean. We present initial results from a global ocean model NEMO (Nucleus for European Modelling of the Ocean) coupled to the Los Alamos sea ice model CICE. The model setup implements a novel rheological formulation for sea ice dynamics, accounting for ice floe collisions, thus offering a seamless framework for pack ice and MIZ simulations. The effect of surface waves on ice motion is included through wave pressure and the turbulent kinetic energy of ice floes. In the multidecadal model integrations we examine MIZ and basin scale sea ice and oceanic responses to the changes in ice dynamics. We analyse model sensitivities and attribute them to key sea ice and ocean dynamical mechanisms. The results suggest that the effect of the new ice rheology is confined to the MIZ. However with the current increase in summer MIZ area, which is projected to continue and may become the dominant type of sea ice in the Arctic, we argue that the effects of the combined sea ice rheology will be noticeable in large areas of the Arctic Ocean, affecting sea ice and ocean. With this study we assert that to make more accurate sea ice predictions in the changing Arctic, models need to include MIZ dynamics and physics.

  9. On global and regional spectral evaluation of global geopotential models

    Ustun, A; Abbak, R A

    2010-01-01

    Spectral evaluation of global geopotential models (GGMs) is necessary to recognize the behaviour of gravity signal and its error recorded in spherical harmonic coefficients and associated standard deviations. Results put forward in this wise explain the whole contribution of gravity data in different kinds that represent various sections of the gravity spectrum. This method is more informative than accuracy assessment methods, which use external data such as GPS-levelling. Comparative spectral evaluation for more than one model can be performed both in global and local sense using many spectral tools. The number of GGMs has grown with the increasing number of data collected by the dedicated satellite gravity missions, CHAMP, GRACE and GOCE. This fact makes it necessary to measure the differences between models and to monitor the improvements in the gravity field recovery. In this paper, some of the satellite-only and combined models are examined in different scales, globally and regionally, in order to observe the advances in the modelling of GGMs and their strengths at various expansion degrees for geodetic and geophysical applications. The validation of the published errors of model coefficients is a part of this evaluation. All spectral tools explicitly reveal the superiority of the GRACE-based models when compared against the models that comprise the conventional satellite tracking data. The disagreement between models is large in local/regional areas if data sets are different, as seen from the example of the Turkish territory

  10. Global patterns in mangrove soil carbon stocks and losses

    Atwood, Trisha B.

    2017-06-26

    Mangrove soils represent a large sink for otherwise rapidly recycled carbon (C). However, widespread deforestation threatens the preservation of this important C stock. It is therefore imperative that global patterns in mangrove soil C stocks and their susceptibility to remineralization are understood. Here, we present patterns in mangrove soil C stocks across hemispheres, latitudes, countries and mangrove community compositions, and estimate potential annual CO2 emissions for countries where mangroves occur. Global potential CO2 emissions from soils as a result of mangrove loss were estimated to be ~7.0 Tg CO2e yr−1. Countries with the highest potential CO2 emissions from soils are Indonesia (3,410 Gg CO2e yr−1) and Malaysia (1,288 Gg CO2e yr−1). The patterns described serve as a baseline by which countries can assess their mangrove soil C stocks and potential emissions from mangrove deforestation.

  11. Global Action to Advance Carbon Capture and Storage

    NONE

    2013-06-01

    Representing one-fifth of total global CO2 emissions currently, industrial sectors such as cement, iron and steel, chemicals and refining are expected to emit even more CO2 over the coming decades. Carbon capture and storage (CCS) is currently the only large-scale mitigation option available to cut the emissions intensity of production by over 50% in these sectors. CCS is already proven in some industrial sectors, such as natural gas processing. Yet, the commercial-scale demonstration stage in key sectors such as iron and steel, cement or some processes in the refining sector has not been reached. To achieve decarbonisation goals, policy makers must pay more attention to industrial applications of CCS, while not undermining the global competitiveness of these sectors.

  12. Monitoring, modelling and managing Canada's forest carbon cycle

    Kurz, W.

    2005-01-01

    This paper presents information concerning the management of carbon stocks both globally and in Canada, with reference to the fact that forests may contribute to carbon emissions problems. Global fossil carbon emissions statistics were provided, as well as data of forest area per capita in Canada and various countries. Details of forest management options and carbon accounting with reference to the Kyoto Protocol were reviewed. An explanation of forest management credits in national accounts was provided. An explanation of carbon sinks and carbon sources was also presented, along with details of stand level carbon dynamics. A model for calculating landscape level carbon stocks was presented, with reference to increasing and decreasing disturbances. A hypothetical landscape example was provided. It was concluded that age-class structure affect the amount of carbon stored in landscape; age-class structure also affect carbon dynamics; and responses reflect the change in disturbance regimes. An overview of international reporting requirements was presented. Canadian harvests equal 54,000 tonnes of carbon per year. It was recommended that managed forests could increase carbon in forests while also managing carbon harvests to meet society's needs. A chart presenting forest management details was presented, along with a hypothetical landscape example and a forecast for cumulative changes after 50 years, The benefits and challenges of forest management were reviewed as well as options regarding salvaging and deforestation avoidance. A carbon budget model was presented. It was concluded that forests in Canada could be used in a greenhouse gas management strategy. However, changes in disturbance may mean the difference between net source or net sink. Details of biomass were presented and multi-mode combustion facilities. The feasibility of biomass as a fuel source was discussed, with reference to hydrogen fuel. Gas composition profiles were provided, as well as details of

  13. Human impacts on 20th century fire dynamics and implications for global carbon and water trajectories

    Li, Fang; Lawrence, David M.; Bond-Lamberty, Ben

    2018-03-01

    Fire is a fundamental Earth system process and the primary ecosystem disturbance on the global scale. It affects carbon and water cycles through changing terrestrial ecosystems, and at the same time, is regulated by weather and climate, vegetation characteristics, and, importantly, human ignitions and suppression (i.e., the direct human effect on fire). Here, we utilize the Community Land Model version 4.5 (CLM4.5) to quantify the impacts of changes in human ignition and suppression on fire dynamics and associated carbon and water cycles. We find that the impact is to significantly reduce the 20th century global burned area by a century average of 38 Mha/yr and by 103 Mha/yr at the end of the century. Land carbon gain is weakened by 17% over the 20th century, mainly due to increased human deforestation fires and associated escape fires (i.e., degradation fires) in the tropical humid forests, even though the decrease in burned area in many other regions due to human fire suppression acts to increase land carbon gain. The direct human effect on fire weakens the upward trend in global runoff throughout the century by 6% and enhances the upward trend in global evapotranspiration since 1945 by 7%. In addition, the above impacts in densely populated, highly developed (if population density > 0.1 person/km2), or moderately populated and developed regions are of opposite sign to those in other regions. Our study suggests that particular attention should be paid to human deforestation and degradation fires in the tropical humid forests when reconstructing and projecting fire carbon emissions and net atmosphere-land carbon exchange and estimating resultant impacts of direct human effect on fire.

  14. Human impacts on 20th century fire dynamics and implications for global carbon and water trajectories

    Li, Fang; Lawrence, David M.; Bond-Lamberty, Ben

    2018-03-01

    Fire is a fundamental Earth system process and the primary ecosystem disturbance on the global scale. It affects carbon and water cycles through changing terrestrial ecosystems, and at the same time, is regulated by weather and climate, vegetation characteristics, and, importantly, human ignitions and suppression (i.e., the direct human effect on fire). Here, we utilize the Community Land Model version 4.5 (CLM4.5) to quantify the impacts of changes in human ignition and suppression on fire dynamics and associated carbon and water cycles. We find that the impact is to significantly reduce the 20th century global burned area by a century average of 38 Mha/yr and by 103 Mha/yr at the end of the century. Land carbon gain is weakened by 17% over the 20th century, mainly due to increased human deforestation fires and associated escape fires (i.e., degradation fires) in the tropical humid forests, even though the decrease in burned area in many other regions due to human fire suppression acts to increase land carbon gain. The direct human effect on fire weakens the upward trend in global runoff throughout the century by 6% and enhances the upward trend in global evapotranspiration since ~ 1945 by 7%. In addition, the above impacts in densely populated, highly developed (if population density > 0.1 person/km2), or moderately populated and developed regions are of opposite sign to those in other regions. Our study suggests that particular attention should be paid to human deforestation and degradation fires in the tropical humid forests when reconstructing and projecting fire carbon emissions and net atmosphere-land carbon exchange and estimating resultant impacts of direct human effect on fire.

  15. The welfare cost of a global carbon tax when tax revenues are recycled

    Jaeger, William K.

    1995-01-01

    This paper assesses the welfare cost of a global carbon tax when tax revenues finance reductions in existing revenue-raising taxes. The analysis finds that by lowering the excess burden from existing taxes, a revenue-neutral carbon tax policy has a positive net welfare effect in the range required to aggressively slow climate change. Based on tax efficiency considerations alone, the optimal reduction in emissions is 37 percent. When benefits from avoiding greenhouse damages are included in the model, the optimal reduction is 40 percent. Even more stringent restraints, avoiding more than 90 percent of greenhouse damages, are shown to have positive net benefits

  16. Spherical Process Models for Global Spatial Statistics

    Jeong, Jaehong; Jun, Mikyoung; Genton, Marc G.

    2017-01-01

    Statistical models used in geophysical, environmental, and climate science applications must reflect the curvature of the spatial domain in global data. Over the past few decades, statisticians have developed covariance models that capture

  17. Geophysical Global Modeling for Extreme Crop Production Using Photosynthesis Models Coupled to Ocean SST Dipoles

    Kaneko, D.

    2016-12-01

    Climate change appears to have manifested itself along with abnormal meteorological disasters. Instability caused by drought and flood disasters is producing poor harvests because of poor photosynthesis and pollination. Fluctuations of extreme phenomena are increasing rapidly because amplitudes of change are much greater than average trends. A fundamental cause of these phenomena derives from increased stored energy inside ocean waters. Geophysical and biochemical modeling of crop production can elucidate complex mechanisms under seasonal climate anomalies. The models have progressed through their combination with global climate reanalysis, environmental satellite data, and harvest data on the ground. This study examined adaptation of crop production to advancing abnormal phenomena related to global climate change. Global environmental surface conditions, i.e., vegetation, surface air temperature, and sea surface temperature observed by satellites, enable global modeling of crop production and monitoring. Basic streams of the concepts of modeling rely upon continental energy flow and carbon circulation among crop vegetation, land surface atmosphere combining energy advection from ocean surface anomalies. Global environmental surface conditions, e.g., vegetation, surface air temperature, and sea surface temperature observed by satellites, enable global modeling of crop production and monitoring. The method of validating the modeling relies upon carbon partitioning in biomass and grains through carbon flow by photosynthesis using carbon dioxide unit in photosynthesis. Results of computations done for this study show global distributions of actual evaporation, stomata opening, and photosynthesis, presenting mechanisms related to advection effects from SST anomalies in the Pacific, Atlantic, and Indian oceans on global and continental croplands. For North America, climate effects appear clearly in severe atmospheric phenomena, which have caused drought and forest fires

  18. Global sensitivity analysis of DRAINMOD-FOREST, an integrated forest ecosystem model

    Shiying Tian; Mohamed A. Youssef; Devendra M. Amatya; Eric D. Vance

    2014-01-01

    Global sensitivity analysis is a useful tool to understand process-based ecosystem models by identifying key parameters and processes controlling model predictions. This study reported a comprehensive global sensitivity analysis for DRAINMOD-FOREST, an integrated model for simulating water, carbon (C), and nitrogen (N) cycles and plant growth in lowland forests. The...

  19. Assessing Students' Disciplinary and Interdisciplinary Understanding of Global Carbon Cycling

    You, Hye Sun; Marshall, Jill A.; Delgado, Cesar

    2018-01-01

    Global carbon cycling describes the movement of carbon through atmosphere, biosphere, geosphere, and hydrosphere; it lies at the heart of climate change and sustainability. To understand the global carbon cycle, students will require "interdisciplinary knowledge." While standards documents in science education have long promoted…

  20. Multiscale Modeling with Carbon Nanotubes

    Maiti, A

    2006-02-21

    Technologically important nanomaterials come in all shapes and sizes. They can range from small molecules to complex composites and mixtures. Depending upon the spatial dimensions of the system and properties under investigation computer modeling of such materials can range from equilibrium and nonequilibrium Quantum Mechanics, to force-field-based Molecular Mechanics and kinetic Monte Carlo, to Mesoscale simulation of evolving morphology, to Finite-Element computation of physical properties. This brief review illustrates some of the above modeling techniques through a number of recent applications with carbon nanotubes: nano electromechanical sensors (NEMS), chemical sensors, metal-nanotube contacts, and polymer-nanotube composites.

  1. Impacts of continental arcs on global carbon cycling and climate

    Lee, C. T.; Jiang, H.; Carter, L.; Dasgupta, R.; Cao, W.; Lackey, J. S.; Lenardic, A.; Barnes, J.; McKenzie, R.

    2017-12-01

    On myr timescales, climatic variability is tied to variations in atmospheric CO2, which in turn is driven by geologic sources of CO2 and modulated by the efficiency of chemical weathering and carbonate precipitation (sinks). Long-term variability in CO2 has largely been attributed to changes in mid-ocean ridge inputs or the efficiency of global weathering. For example, the Cretaceous greenhouse is thought to be related to enhanced oceanic crust production, while the late Cenozoic icehouse is attributed to enhanced chemical weathering associated with the Himalayan orogeny. Here, we show that continental arcs may play a more important role in controlling climate, both in terms of sources and sinks. Continental arcs differ from island arcs and mid-ocean ridges in that the continental plate through which arc magmas pass may contain large amounts of sedimentary carbonate, accumulated over the history of the continent. Interaction of arc magmas with crustal carbonates via assimilation, reaction or heating can significantly add to the mantle-sourced CO2 flux. Detrital zircons and global mapping of basement rocks shows that the length of continental arcs in the Cretaceous was more than twice that in the mid-Cenozoic; maps also show many of these arcs intersected crustal carbonates. The increased length of continental arc magmatism coincided with increased oceanic spreading rates, placing convergent margins into compression, which favors continental arcs. Around 50 Ma, however, nearly all the continental arcs in Eurasia and North America terminated as India collided with Eurasia and the western Pacific rolled back, initiating the Marianas-Tonga-Kermadec intra-oceanic subduction complex and possibly leading to a decrease in global CO2 production. Meanwhile, extinct continental arcs continued to erode, resulting in regionally enhanced chemical weathering unsupported by magmatic fluxes of CO2. Continental arcs, during their magmatic lifetimes, are thus a source of CO2, driving

  2. Global climate change, energy subsidies and national carbon taxes

    Larsen, B.; Shah, A.

    1995-01-01

    In the previous chapter of the book it is indicated that fossil-fuel burning is one of the main environmental culprits. Nevertheless, many countries continue to subsidize fossil fuels. In this chapter estimates of subsidies to energy and energy complements in OECD and non-OECD countries are provided. The authors conclude that the removal of energy subsidies in OECD countries on the order of US$30 billion annually (primarily in the US and Germany) and subsidies to complements on the order of US$50-90 (United States) are likely to have only little impact on CO-emissions. In contrast, the removal of energy subsidies of US$270-330 billion in non-OECD countries could substantially curb the growth of global CO 2 emissions, equivalent to the impact of a carbon tax on the order of US$60-70 per ton in the OECD countries. Nonetheless, even with the removal of energy subsidies, the growth in CO 2 emissions in non-OECD countries is projected to increase by 80% from the year 1990 to 2010. Furthermore, it is shown that the introduction of a revenue-neutral national carbon tax, in addition to energy subsidy removal, can yield significant health benefits from the reduction in local pollution. The authors note that carbon taxes are considerably less regressive relative to lifetime income or annual consumption expenditures than to annual income. 7 tabs., 23 refs

  3. Global model structures for ∗-modules

    Böhme, Benjamin

    2018-01-01

    We extend Schwede's work on the unstable global homotopy theory of orthogonal spaces and L-spaces to the category of ∗-modules (i.e., unstable S-modules). We prove a theorem which transports model structures and their properties from L-spaces to ∗-modules and show that the resulting global model...... structure for ∗-modules is monoidally Quillen equivalent to that of orthogonal spaces. As a consequence, there are induced Quillen equivalences between the associated model categories of monoids, which identify equivalent models for the global homotopy theory of A∞-spaces....

  4. Ocean carbon and heat variability in an Earth System Model

    Thomas, J. L.; Waugh, D.; Gnanadesikan, A.

    2016-12-01

    Ocean carbon and heat content are very important for regulating global climate. Furthermore, due to lack of observations and dependence on parameterizations, there has been little consensus in the modeling community on the magnitude of realistic ocean carbon and heat content variability, particularly in the Southern Ocean. We assess the differences between global oceanic heat and carbon content variability in GFDL ESM2Mc using a 500-year, pre-industrial control simulation. The global carbon and heat content are directly out of phase with each other; however, in the Southern Ocean the heat and carbon content are in phase. The global heat mutli-decadal variability is primarily explained by variability in the tropics and mid-latitudes, while the variability in global carbon content is primarily explained by Southern Ocean variability. In order to test the robustness of this relationship, we use three additional pre-industrial control simulations using different mesoscale mixing parameterizations. Three pre-industrial control simulations are conducted with the along-isopycnal diffusion coefficient (Aredi) set to constant values of 400, 800 (control) and 2400 m2 s-1. These values for Aredi are within the range of parameter settings commonly used in modeling groups. Finally, one pre-industrial control simulation is conducted where the minimum in the Gent-McWilliams parameterization closure scheme (AGM) increased to 600 m2 s-1. We find that the different simulations have very different multi-decadal variability, especially in the Weddell Sea where the characteristics of deep convection are drastically changed. While the temporal frequency and amplitude global heat and carbon content changes significantly, the overall spatial pattern of variability remains unchanged between the simulations.

  5. Quantification of effective plant rooting depth: advancing global hydrological modelling

    Yang, Y.; Donohue, R. J.; McVicar, T.

    2017-12-01

    Plant rooting depth (Zr) is a key parameter in hydrological and biogeochemical models, yet the global spatial distribution of Zr is largely unknown due to the difficulties in its direct measurement. Moreover, Zr observations are usually only representative of a single plant or several plants, which can differ greatly from the effective Zr over a modelling unit (e.g., catchment or grid-box). Here, we provide a global parameterization of an analytical Zr model that balances the marginal carbon cost and benefit of deeper roots, and produce a climatological (i.e., 1982-2010 average) global Zr map. To test the Zr estimates, we apply the estimated Zr in a highly transparent hydrological model (i.e., the Budyko-Choudhury-Porporato (BCP) model) to estimate mean annual actual evapotranspiration (E) across the globe. We then compare the estimated E with both water balance-based E observations at 32 major catchments and satellite grid-box retrievals across the globe. Our results show that the BCP model, when implemented with Zr estimated herein, optimally reproduced the spatial pattern of E at both scales and provides improved model outputs when compared to BCP model results from two already existing global Zr datasets. These results suggest that our Zr estimates can be effectively used in state-of-the-art hydrological models, and potentially biogeochemical models, where the determination of Zr currently largely relies on biome type-based look-up tables.

  6. Global land carbon sink response to temperature and precipitation varies with ENSO phase

    Fang, Yuanyuan; Michalak, Anna M.; Schwalm, Christopher R.; Huntzinger, Deborah N.; Berry, Joseph A.; Ciais, Philippe; Piao, Shilong; Poulter, Benjamin; Fisher, Joshua B.; Cook, Robert B.; Hayes, Daniel; Huang, Maoyi; Ito, Akihiko; Jain, Atul; Lei, Huimin; Lu, Chaoqun; Mao, Jiafu; Parazoo, Nicholas C.; Peng, Shushi; Ricciuto, Daniel M.; Shi, Xiaoying; Tao, Bo; Tian, Hanqin; Wang, Weile; Wei, Yaxing; Yang, Jia

    2017-05-01

    Climate variability associated with the El Niño-Southern Oscillation (ENSO) and its consequent impacts on land carbon sink interannual variability have been used as a basis for investigating carbon cycle responses to climate variability more broadly, and to inform the sensitivity of the tropical carbon budget to climate change. Past studies have presented opposing views about whether temperature or precipitation is the primary factor driving the response of the land carbon sink to ENSO. Here, we show that the dominant driver varies with ENSO phase. Whereas tropical temperature explains sink dynamics following El Niño conditions (rTG,P=0.59, p<0.01), the post La Niña sink is driven largely by tropical precipitation (rPG,T=-0.46, p=0.04). This finding points to an ENSO-phase-dependent interplay between water availability and temperature in controlling the carbon uptake response to climate variations in tropical ecosystems. We further find that none of a suite of ten contemporary terrestrial biosphere models captures these ENSO-phase-dependent responses, highlighting a key uncertainty in modeling climate impacts on the future of the global land carbon sink.

  7. NACP MsTMIP: Global and North American Driver Data for Multi-Model Intercomparison

    National Aeronautics and Space Administration — This data set provides environmental data that have been standardized and aggregated for use as input to carbon cycle models at global (0.5-degree resolution) and...

  8. NACP MsTMIP: Global and North American Driver Data for Multi-Model Intercomparison

    National Aeronautics and Space Administration — ABSTRACT: This data set provides environmental data that have been standardized and aggregated for use as input to carbon cycle models at global (0.5-degree...

  9. Global and regional ocean carbon uptake and climate change: sensitivity to a substantial mitigation scenario

    Vichi, Marcello; Masina, Simona; Navarra, Antonio [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Manzini, Elisa [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Max Planck Institute for Meteorology, Hamburg (Germany); Fogli, Pier Giuseppe [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Alessandri, Andrea [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); ENEA, Rome (Italy); Patara, Lavinia [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Leibniz Institute of Marine Sciences (IFM-GEOMAR), Kiel (Germany); Scoccimarro, Enrico [Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy)

    2011-11-15

    Under future scenarios of business-as-usual emissions, the ocean storage of anthropogenic carbon is anticipated to decrease because of ocean chemistry constraints and positive feedbacks in the carbon-climate dynamics, whereas it is still unknown how the oceanic carbon cycle will respond to more substantial mitigation scenarios. To evaluate the natural system response to prescribed atmospheric ''target'' concentrations and assess the response of the ocean carbon pool to these values, 2 centennial projection simulations have been performed with an Earth System Model that includes a fully coupled carbon cycle, forced in one case with a mitigation scenario and the other with the SRES A1B scenario. End of century ocean uptake with the mitigation scenario is projected to return to the same magnitude of carbon fluxes as simulated in 1960 in the Pacific Ocean and to lower values in the Atlantic. With A1B, the major ocean basins are instead projected to decrease the capacity for carbon uptake globally as found with simpler carbon cycle models, while at the regional level the response is contrasting. The model indicates that the equatorial Pacific may increase the carbon uptake rates in both scenarios, owing to enhancement of the biological carbon pump evidenced by an increase in Net Community Production (NCP) following changes in the subsurface equatorial circulation and enhanced iron availability from extratropical regions. NCP is a proxy of the bulk organic carbon made available to the higher trophic levels and potentially exportable from the surface layers. The model results indicate that, besides the localized increase in the equatorial Pacific, the NCP of lower trophic levels in the northern Pacific and Atlantic oceans is projected to be halved with respect to the current climate under a substantial mitigation scenario at the end of the twenty-first century. It is thus suggested that changes due to cumulative carbon emissions up to present and the

  10. The global warming, public goods and carbon market; Calentamiento global, bienes publicos y mercado de carbono

    Quadri de la Torre, Gabriel [EcoSecurities (Mexico)

    2007-07-15

    The global warming is an issue of the public goods, and demands an outstanding multilateral action, which must to ensure both efficiency and unchanging transition towards an economy of low intensity of carbon. The new system, which is going to replace the Kyoto Protocol, will have compromises for the developing countries and deep implication in the relative competitivity of the nations and companies. [Spanish] El calentamiento global es un problema de bienes publicos que exige una extraordinaria accion multilateral. Esta debe asegurar eficiencia y una transicion fluida hacia una economia de baja intensidad de carbono. El nuevo sistema que sucedera al Protocolo de Kyoto significara compromisos para los paises en vias de desarrollo, y tendra profundas implicaciones en la competitividad relativa de naciones y empresas.

  11. A New Global LAI Product and Its Use for Terrestrial Carbon Cycle Estimation

    Chen, J. M.; Liu, R.; Ju, W.; Liu, Y.

    2014-12-01

    For improving the estimation of the spatio-temporal dynamics of the terrestrial carbon cycle, a new time series of the leaf area index (LAI) is generated for the global land surface at 8 km resolution from 1981 to 2012 by combining AVHRR and MODIS satellite data. This product differs from existing LAI products in the following two aspects: (1) the non-random spatial distribution of leaves with the canopy is considered, and (2) the seasonal variation of the vegetation background is included. The non-randomness of the leaf spatial distribution in the canopy is considered using the second vegetation structural parameter named clumping index (CI), which quantifies the deviation of the leaf spatial distribution from the random case. Using the MODIS Bidirectional Reflectance Distribution Function product, a global map of CI is produced at 500 m resolution. In our LAI algorithm, CI is used to convert the effective LAI obtained from mono-angle remote sensing into the true LAI, otherwise LAI would be considerably underestimated. The vegetation background is soil in crop, grass and shrub but includes soil, grass, moss, and litter in forests. Through processing a large volume of MISR data from 2000 to 2010, monthly red and near-infrared reflectances of the vegetation background is mapped globally at 1 km resolution. This new LAI product has been validated extensively using ground-based LAI measurements distributed globally. In carbon cycle modeling, the use of CI in addition to LAI allows for accurate separation of sunlit and shaded leaves as an important step in terrestrial photosynthesis and respiration modeling. Carbon flux measurements over 100 sites over the globe are used to validate an ecosystem model named Boreal Ecosystem Productivity Simulator (BEPS). The validated model is run globally at 8 km resolution for the period from 1981 to 2012 using the LAI product and other spatial datasets. The modeled results suggest that changes in vegetation structure as quantified

  12. Trading carbon for food: global comparison of carbon stocks vs. crop yields on agricultural land.

    West, Paul C; Gibbs, Holly K; Monfreda, Chad; Wagner, John; Barford, Carol C; Carpenter, Stephen R; Foley, Jonathan A

    2010-11-16

    Expanding croplands to meet the needs of a growing population, changing diets, and biofuel production comes at the cost of reduced carbon stocks in natural vegetation and soils. Here, we present a spatially explicit global analysis of tradeoffs between carbon stocks and current crop yields. The difference among regions is striking. For example, for each unit of land cleared, the tropics lose nearly two times as much carbon (∼120 tons·ha(-1) vs. ∼63 tons·ha(-1)) and produce less than one-half the annual crop yield compared with temperate regions (1.71 tons·ha(-1)·y(-1) vs. 3.84 tons·ha(-1)·y(-1)). Therefore, newly cleared land in the tropics releases nearly 3 tons of carbon for every 1 ton of annual crop yield compared with a similar area cleared in the temperate zone. By factoring crop yield into the analysis, we specify the tradeoff between carbon stocks and crops for all areas where crops are currently grown and thereby, substantially enhance the spatial resolution relative to previous regional estimates. Particularly in the tropics, emphasis should be placed on increasing yields on existing croplands rather than clearing new lands. Our high-resolution approach can be used to determine the net effect of local land use decisions.

  13. Assessing carbon dioxide removal through global and regional ocean alkalinization under high and low emission pathways

    Lenton, Andrew; Matear, Richard J.; Keller, David P.; Scott, Vivian; Vaughan, Naomi E.

    2018-04-01

    Atmospheric carbon dioxide (CO2) levels continue to rise, increasing the risk of severe impacts on the Earth system, and on the ecosystem services that it provides. Artificial ocean alkalinization (AOA) is capable of reducing atmospheric CO2 concentrations and surface warming and addressing ocean acidification. Here, we simulate global and regional responses to alkalinity (ALK) addition (0.25 PmolALK yr-1) over the period 2020-2100 using the CSIRO-Mk3L-COAL Earth System Model, under high (Representative Concentration Pathway 8.5; RCP8.5) and low (RCP2.6) emissions. While regionally there are large changes in alkalinity associated with locations of AOA, globally we see only a very weak dependence on where and when AOA is applied. On a global scale, while we see that under RCP2.6 the carbon uptake associated with AOA is only ˜ 60 % of the total, under RCP8.5 the relative changes in temperature are larger, as are the changes in pH (140 %) and aragonite saturation state (170 %). The simulations reveal AOA is more effective under lower emissions, therefore the higher the emissions the more AOA is required to achieve the same reduction in global warming and ocean acidification. Finally, our simulated AOA for 2020-2100 in the RCP2.6 scenario is capable of offsetting warming and ameliorating ocean acidification increases at the global scale, but with highly variable regional responses.

  14. Global Health Innovation Technology Models

    Kimberly Harding

    2016-04-01

    Full Text Available Chronic technology and business process disparities between High Income, Low Middle Income and Low Income (HIC, LMIC, LIC research collaborators directly prevent the growth of sustainable Global Health innova‐ tion for infectious and rare diseases. There is a need for an Open Source-Open Science Architecture Framework to bridge this divide. We are proposing such a framework for consideration by the Global Health community, by utiliz‐ ing a hybrid approach of integrating agnostic Open Source technology and healthcare interoperability standards and Total Quality Management principles. We will validate this architecture framework through our programme called Project Orchid. Project Orchid is a conceptual Clinical Intelligence Exchange and Virtual Innovation platform utilizing this approach to support clinical innovation efforts for multi-national collaboration that can be locally sustainable for LIC and LMIC research cohorts. The goal is to enable LIC and LMIC research organizations to acceler‐ ate their clinical trial process maturity in the field of drug discovery, population health innovation initiatives and public domain knowledge networks. When sponsored, this concept will be tested by 12 confirmed clinical research and public health organizations in six countries. The potential impact of this platform is reduced drug discovery and public health innovation lag time and improved clinical trial interventions, due to reliable clinical intelligence and bio-surveillance across all phases of the clinical innovation process.

  15. Carbonate rock depositional models: A microfacies approach

    Carozzi, A.V.

    1988-01-01

    Carbonate rocks contain more than 50% by weight carbonate minerals such as calcite, dolomite, and siderite. Understanding how these rocks form can lead to more efficient methods of petroleum exploration. Micofacies analysis techniques can be used as a method of predicting models of sedimentation for carbonate rocks. Micofacies in carbonate rocks can be seen clearly only in thin sections under a microscope. This section analysis of carbonate rocks is a tool that can be used to understand depositional environments, diagenetic evolution of carbonate rocks, and the formation of porosity and permeability in carbonate rocks. The use of micofacies analysis techniques is applied to understanding the origin and formation of carbonate ramps, carbonate platforms, and carbonate slopes and basins. This book will be of interest to students and professionals concerned with the disciplines of sedimentary petrology, sedimentology, petroleum geology, and palentology.

  16. HYbrid Coordinate Ocean Model (HYCOM): Global

    National Oceanic and Atmospheric Administration, Department of Commerce — Global HYbrid Coordinate Ocean Model (HYCOM) and U.S. Navy Coupled Ocean Data Assimilation (NCODA) 3-day, daily forecast at approximately 9-km (1/12-degree)...

  17. ASTER Global Digital Elevation Model V002

    National Aeronautics and Space Administration — The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) was developed jointly by the U.S. National...

  18. A Global Assessment of the Chemical Recalcitrance of Seagrass Tissues: Implications for Long-Term Carbon Sequestration

    Stacey M. Trevathan-Tackett

    2017-06-01

    Full Text Available Seagrass ecosystems have recently been identified for their role in climate change mitigation due to their globally-significant carbon sinks; yet, the capacity of seagrasses to sequester carbon has been shown to vary greatly among seagrass ecosystems. The recalcitrant nature of seagrass tissues, or the resistance to degradation back into carbon dioxide, is one aspect thought to influence sediment carbon stocks. In this study, a global survey investigated how the macromolecular chemistry of seagrass leaves, sheaths/stems, rhizomes and roots varied across 23 species from 16 countries. The goal was to understand how this seagrass chemistry might influence the capacity of seagrasses to contribute to sediment carbon stocks. Three non-destructive analytical chemical analyses were used to investigate seagrass chemistry: thermogravimetric analysis (TGA and solid state 13C-NMR and infrared spectroscopy. A strong latitudinal influence on carbon quality was found, whereby temperate seagrasses contained 5% relatively more labile carbon, and tropical seagrasses contained 3% relatively more refractory carbon. Sheath/stem tissues significantly varied across taxa, with larger morphologies typically containing more refractory carbon than smaller morphologies. Rhizomes were characterized by a higher proportion of labile carbon (16% of total organic matter compared to 8–10% in other tissues; however, high rhizome biomass production and slower remineralization in anoxic sediments will likely enhance these below-ground tissues' contributions to long-term carbon stocks. Our study provides a standardized and global dataset on seagrass carbon quality across tissue types, taxa and geography that can be incorporated in carbon sequestration and storage models as well as ecosystem valuation and management strategies.

  19. Vulnerability of permafrost carbon to global warming. Part II: sensitivity of permafrost carbon stock to global warming

    Khvorostyanov, D.V.; Ciais, G. (Laboratoire des Sciences du Climat et l' Environnement, Saclay (France)); Krinner, G. (Laboratoire de Glaciologie et Geophysique de l' Environnement, St Martin d' Heres (France)). e-mail: Dimitry.Khvorostiyanov@lsce.ipsl.fr; Zimov, S.A. (Northeast Science Station, Cherskii (RU)); Corradi, C. (UNITUS, Univ. of Tuscia, Veterbo (Italy)); Guggenberger, G. (Inst. of Soil Science and Plant Nutrition, Martin-Luther-Univ., Halle-Wittenberg (DE))

    2008-07-01

    In the companion paper (Part I), we presented a model of permafrost carbon cycle to study the sensitivity of frozen carbon stocks to future climate warming. The mobilization of deep carbon stock of the frozen Pleistocene soil in the case of rapid stepwise increase of atmospheric temperature was considered. In this work, we adapted the model to be used also for floodplain tundra sites and to account for the processes in the soil active layer. The new processes taken into account are litter input and decomposition, plant-mediated transport of methane, and leaching of exudates from plant roots. The SRES-A2 transient climate warming scenario of the IPSL CM4 climate model is used to study the carbon fluxes from the carbon-rich Pleistocene soil with seasonal active-layer carbon cycling on top of it. For a point to the southwest from the western branch of Yedoma Ice Complex, where the climate warming is strong enough to trigger self-sustainable decomposition processes, about 256 kg C/m2, or 70% of the initial soil carbon stock under present-day climate conditions, are emitted to the atmosphere in about 120 yr, including 20 kg C/m2 released as methane. The total average flux of CO{sub 2} and methane emissions to the atmosphere during this time is of 2.1 kg C/m2/yr. Within the Yedoma, whose most part of the territory remains relatively cold, the emissions are much smaller: 0.2 kg C/m2/yr between 2050 and 2100 for Yakutsk area. In a test case with saturated upper-soil meter, when the runoff is insufficient to evacuate the meltwater, 0.05 kg CH{sub 4}/m2/yr on average are emitted as methane during 250 yr starting from 2050. The latter can translate to the upper bound of 1 GtC/yr in CO{sub 2} equivalent from the 1 million km2 area of the Yedoma

  20. A Global Stock and Bond Model

    Connor, Gregory

    1996-01-01

    Factor models are now widely used to support asset selection decisions. Global asset allocation, the allocation between stocks versus bonds and among nations, usually relies instead on correlation analysis of international equity and bond indexes. It would be preferable to have a single integrated framework for both asset selection and asset allocation. This framework would require a factor model applicable at an asset or country level, as well as at a global level,...

  1. Cumulative carbon emissions budgets consistent with 1.5 °C global warming

    Tokarska, Katarzyna B.; Gillett, Nathan P.

    2018-04-01

    The Paris Agreement1 commits ratifying parties to pursue efforts to limit the global temperature increase to 1.5 °C relative to pre-industrial levels. Carbon budgets2-5 consistent with remaining below 1.5 °C warming, reported in the IPCC Fifth Assessment Report (AR5)2,6,8, are directly based on Earth system model (Coupled Model Intercomparison Project Phase 5)7 responses, which, on average, warm more than observations in response to historical CO2 emissions and other forcings8,9. These models indicate a median remaining budget of 55 PgC (ref. 10, base period: year 1870) left to emit from January 2016, the equivalent to approximately five years of emissions at the 2015 rate11,12. Here we calculate warming and carbon budgets relative to the decade 2006-2015, which eliminates model-observation differences in the climate-carbon response over the historical period9, and increases the median remaining carbon budget to 208 PgC (33-66% range of 130-255 PgC) from January 2016 (with mean warming of 0.89 °C for 2006-2015 relative to 1861-188013-18). There is little sensitivity to the observational data set used to infer warming that has occurred, and no significant dependence on the choice of emissions scenario. Thus, although limiting median projected global warming to below 1.5 °C is undoubtedly challenging19-21, our results indicate it is not impossible, as might be inferred from the IPCC AR5 carbon budgets2,8.

  2. Global carbon impacts of using forest harvest residues for district heating in Vermont

    McLain, H.A.

    1998-01-01

    Forests in Vermont are selectively logged periodically to generate wood products and useful energy. Carbon remains stored in the wood products during their lifetime and in fossil fuel displaced by using these products in place of energy-intensive products. Additional carbon is sequestered by new forest growth, and the forest inventory is sustained using this procedure. A significant portion of the harvest residue can be used as biofuel in central plants to generate electricity and thermal energy, which also displaces the use of fossil fuels. The impact of this action on the global carbon balance was analyzed using a model derived from the Graz/Oak Ridge Carbon Accounting Model (GORCAM). The analysis showed that when forests are harvested only to manufacture wood products, more than 100 years are required to match the sequestered carbon present if the forest is left undisturbed. If part of the harvest residue is collected and used as biofuel in place of oil or natural gas, it is possible to reduce this time to about 90 years, but it is usually longer. Given that harvesting the forest for products will continue, carbon emission benefits relative to this practice can start within 10 to 70 years if part of the harvest residue is used as biofuel. This time is usually higher for electric generation plants, but it can be reduced substantially by converting to cogeneration operation. Cogeneration makes possible a ratio of carbon emission reduction for district heating to carbon emission increase for electricity generation in the range of 3 to 5. Additional sequestering benefits can be realized by using discarded wood products as biofuels

  3. A global gas flaring black carbon emission rate dataset from 1994 to 2012

    Huang, Kan; Fu, Joshua S.

    2016-11-01

    Global flaring of associated petroleum gas is a potential emission source of particulate matters (PM) and could be notable in some specific regions that are in urgent need of mitigation. PM emitted from gas flaring is mainly in the form of black carbon (BC), which is a strong short-lived climate forcer. However, BC from gas flaring has been neglected in most global/regional emission inventories and is rarely considered in climate modeling. Here we present a global gas flaring BC emission rate dataset for the period 1994-2012 in a machine-readable format. We develop a region-dependent gas flaring BC emission factor database based on the chemical compositions of associated petroleum gas at various oil fields. Gas flaring BC emission rates are estimated using this emission factor database and flaring volumes retrieved from satellite imagery. Evaluation using a chemical transport model suggests that consideration of gas flaring emissions can improve model performance. This dataset will benefit and inform a broad range of research topics, e.g., carbon budget, air quality/climate modeling, and environmental/human exposure.

  4. Microbial Carbonic Anhydrases in Biomimetic Carbon Sequestration for Mitigating Global Warming: Prospects and Perspectives

    Himadri Bose

    2017-08-01

    Full Text Available All the leading cities in the world are slowly becoming inhospitable for human life with global warming playing havoc with the living conditions. Biomineralization of carbon dioxide using carbonic anhydrase (CA is one of the most economical methods for mitigating global warming. The burning of fossil fuels results in the emission of large quantities of flue gas. The temperature of flue gas is quite high. Alkaline conditions are necessary for CaCO3 precipitation in the mineralization process. In order to use CAs for biomimetic carbon sequestration, thermo-alkali-stable CAs are, therefore, essential. CAs must be stable in the presence of various flue gas contaminants too. The extreme environments on earth harbor a variety of polyextremophilic microbes that are rich sources of thermo-alkali-stable CAs. CAs are the fastest among the known enzymes, which are of six basic types with no apparent sequence homology, thus represent an elegant example of convergent evolution. The current review focuses on the utility of thermo-alkali-stable CAs in biomineralization based strategies. A variety of roles that CAs play in various living organisms, the use of CA inhibitors as drug targets and strategies for overproduction of CAs to meet the demand are also briefly discussed.

  5. Microbial Carbonic Anhydrases in Biomimetic Carbon Sequestration for Mitigating Global Warming: Prospects and Perspectives.

    Bose, Himadri; Satyanarayana, Tulasi

    2017-01-01

    All the leading cities in the world are slowly becoming inhospitable for human life with global warming playing havoc with the living conditions. Biomineralization of carbon dioxide using carbonic anhydrase (CA) is one of the most economical methods for mitigating global warming. The burning of fossil fuels results in the emission of large quantities of flue gas. The temperature of flue gas is quite high. Alkaline conditions are necessary for CaCO 3 precipitation in the mineralization process. In order to use CAs for biomimetic carbon sequestration, thermo-alkali-stable CAs are, therefore, essential. CAs must be stable in the presence of various flue gas contaminants too. The extreme environments on earth harbor a variety of polyextremophilic microbes that are rich sources of thermo-alkali-stable CAs. CAs are the fastest among the known enzymes, which are of six basic types with no apparent sequence homology, thus represent an elegant example of convergent evolution. The current review focuses on the utility of thermo-alkali-stable CAs in biomineralization based strategies. A variety of roles that CAs play in various living organisms, the use of CA inhibitors as drug targets and strategies for overproduction of CAs to meet the demand are also briefly discussed.

  6. A global central banker competency model

    David W. Brits

    2014-07-01

    Full Text Available Orientation: No comprehensive, integrated competency model exists for central bankers. Due to the importance of central banks in the context of the ongoing global financial crisis, it was deemed necessary to design and validate such a model. Research purpose: To craft and validate a comprehensive, integrated global central banker competency model (GCBCM and to assess whether central banks using the GCBCM for training have a higher global influence. Motivation for the study: Limited consensus exists globally about what constitutes a ‘competent’ central banker. A quantitatively validated GCBCM would make a significant contribution to enhancing central banker effectiveness, and also provide a solid foundation for effective people management. Research approach, design and method: A blended quantitative and qualitative research approach was taken. Two sets of hypotheses were tested regarding the relationships between the GCBCM and the training offered, using the model on the one hand, and a central bank’s global influence on the other. Main findings: The GCBCM was generally accepted across all participating central banks globally, although some differences were found between central banks with higher and lower global influence. The actual training offered by central banks in terms of the model, however, is generally limited to technical-functional skills. The GCBCM is therefore at present predominantly aspirational. Significant differences were found regarding the training offered. Practical/managerial implications: By adopting the GCBCM, central banks would be able to develop organisation-specific competency models in order to enhance their organisational capabilities and play their increasingly important global role more effectively. Contribution: A generic conceptual framework for the crafting of a competency model with evaluation criteria was developed. A GCBCM was quantitatively validated.

  7. Accounting for carbon cycle feedbacks in a comparison of the global warming effects of greenhouse gases

    Gillett, Nathan P [Canadian Centre for Climate Modelling and Analysis, Environment Canada, University of Victoria, PO Box 1700, STN CSC, Victoria, BC, V8W 3V6 (Canada); Matthews, H Damon, E-mail: nathan.gillett@ec.gc.ca [Department of Geography, Planning and Environment, Concordia University, 1455 de Maisonneuve West, H 1255-26, Montreal, QC, H3G 1M8 (Canada)

    2010-07-15

    Greenhouse gases other than CO{sub 2} make a significant contribution to human-induced climate change, and multi-gas mitigation strategies are cheaper to implement than those which limit CO{sub 2} emissions alone. Most practical multi-gas mitigation strategies require metrics to relate the climate warming effects of CO{sub 2} and other greenhouse gases. Global warming potential (GWP), defined as the ratio of time-integrated radiative forcing of a particular gas to that of CO{sub 2} following a unit mass emission, is the metric used in the Kyoto Protocol, and we define mean global temperature change potential (MGTP) as an equivalent metric of the temperature response. Here we show that carbon-climate feedbacks inflate the GWPs and MGTPs of methane and nitrous oxide by {approx} 20% in coupled carbon-climate model simulations of the response to a pulse of 50 x 1990 emissions, due to a warming-induced release of CO{sub 2} from the land biosphere and ocean. The magnitude of this effect is expected to be dependent on the model, but it is not captured at all by the analytical models usually used to calculate metrics such as GWP. We argue that the omission of carbon cycle dynamics has led to a low bias of uncertain but potentially substantial magnitude in metrics of the global warming effect of other greenhouse gases, and we suggest that the carbon-climate feedback should be considered when greenhouse gas metrics are calculated and applied.

  8. Alpine hydropower in a low carbon economy: Assessing the local implication of global policies

    Anghileri, Daniela; Castelletti, Andrea; Burlando, Paolo

    2016-04-01

    In the global transition towards a more efficient and low-carbon economy, renewable energy plays a major role in displacing fossil fuels, meeting global energy demand while reducing carbon dioxide emissions. In Europe, Variable Renewable Sources (VRS), such as wind and solar power sources, are becoming a relevant share of the generation portfolios in many countries. Beside the indisputable social and environmental advantages of VRS, on the short medium term the VRS-induced lowering energy prices and increasing price's volatility might challenge traditional power sources and, among them, hydropower production, because of smaller incomes and higher maintenance costs associated to a more flexible operation of power systems. In this study, we focus on the Swiss hydropower sector analysing how different low-carbon targets and strategies established at the Swiss and European level might affect energy price formation and thus impact - through hydropower operation - water availability and ecosystems services at the catchment scale. We combine a hydrological model to simulate future water availability and an electricity market model to simulate future evolution of energy prices based on official Swiss and European energy roadmaps and CO2 price trends in the European Union. We use Multi-Objective optimization techniques to design alternative hydropower reservoir operation strategies, aiming to maximise the hydropower companies' income or to provide reliable energy supply with respect to the energy demand. This integrated model allows analysing to which extent global low-carbon policies impact reservoir operation at the local scale, and to gain insight on how to prioritise compensation measures and/or adaptation strategies to mitigate the impact of VRS on hydropower companies in increasingly water constrained settings. Numerical results are shown for a real-world case study in the Swiss Alps.

  9. Towards a paradigm shift in the modeling of soil organic carbon decomposition for earth system models

    He, Yujie

    Soils are the largest terrestrial carbon pools and contain approximately 2200 Pg of carbon. Thus, the dynamics of soil carbon plays an important role in the global carbon cycle and climate system. Earth System Models are used to project future interactions between terrestrial ecosystem carbon dynamics and climate. However, these models often predict a wide range of soil carbon responses and their formulations have lagged behind recent soil science advances, omitting key biogeochemical mechanisms. In contrast, recent mechanistically-based biogeochemical models that explicitly account for microbial biomass pools and enzyme kinetics that catalyze soil carbon decomposition produce notably different results and provide a closer match to recent observations. However, a systematic evaluation of the advantages and disadvantages of the microbial models and how they differ from empirical, first-order formulations in soil decomposition models for soil organic carbon is still needed. This dissertation consists of a series of model sensitivity and uncertainty analyses and identifies dominant decomposition processes in determining soil organic carbon dynamics. Poorly constrained processes or parameters that require more experimental data integration are also identified. This dissertation also demonstrates the critical role of microbial life-history traits (e.g. microbial dormancy) in the modeling of microbial activity in soil organic matter decomposition models. Finally, this study surveys and synthesizes a number of recently published microbial models and provides suggestions for future microbial model developments.

  10. Regional forecasting with global atmospheric models

    Crowley, T.J.; North, G.R.; Smith, N.R.

    1994-05-01

    The scope of the report is to present the results of the fourth year's work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals

  11. Tropical rainforests dominate multi-decadal variability of the global carbon cycle

    Zhang, X.; Wang, Y. P.; Peng, S.; Rayner, P. J.; Silver, J.; Ciais, P.; Piao, S.; Zhu, Z.; Lu, X.; Zheng, X.

    2017-12-01

    Recent studies find that inter-annual variability of global atmosphere-to-land CO2 uptake (NBP) is dominated by semi-arid ecosystems. However, the NBP variations at decadal to multi-decadal timescales are still not known. By developing a basic theory for the role of net primary production (NPP) and heterotrophic respiration (Rh) on NBP and applying it to 100-year simulations of terrestrial ecosystem models forced by observational climate, we find that tropical rainforests dominate the multi-decadal variability of global NBP (48%) rather than the semi-arid lands (35%). The NBP variation at inter-annual timescales is almost 90% contributed by NPP, but across longer timescales is progressively controlled by Rh that constitutes the response from the NPP-derived soil carbon input (40%) and the response of soil carbon turnover rates to climate variability (60%). The NBP variations of tropical rainforests is modulated by the ENSO and the PDO through their significant influences on temperature and precipitation at timescales of 2.5-7 and 25-50 years, respectively. This study highlights the importance of tropical rainforests on the multi-decadal variability of global carbon cycle, suggesting that we need to carefully differentiate the effect of NBP long-term fluctuations associated with ocean-related climate modes on the long-term trend in land sink.

  12. Spatio-temporal patterns and climate variables controlling of biomass carbon stock of global grassland ecosystems from 1982 to 2006

    Xia, Jiangzhou; Liu, Shuguang; Liang, Shunlin; Chen, Yang; Xu, Wenfang; Yuan, Wenping

    2014-01-01

    Grassland ecosystems play an important role in subsistence agriculture and the global carbon cycle. However, the global spatio-temporal patterns and environmental controls of grassland biomass are not well quantified and understood. The goal of this study was to estimate the spatial and temporal patterns of the global grassland biomass and analyze their driving forces using field measurements, Normalized Difference Vegetation Index (NDVI) time series from satellite data, climate reanalysis data, and a satellite-based statistical model. Results showed that the NDVI-based biomass carbon model developed from this study explained 60% of the variance across 38 sites globally. The global carbon stock in grassland aboveground live biomass was 1.05 Pg·C, averaged from 1982 to 2006, and increased at a rate of 2.43 Tg·C·y−1 during this period. Temporal change of the global biomass was significantly and positively correlated with temperature and precipitation. The distribution of biomass carbon density followed the precipitation gradient. The dynamics of regional grassland biomass showed various trends largely determined by regional climate variability, disturbances, and management practices (such as grazing for meat production). The methods and results from this study can be used to monitor the dynamics of grassland aboveground biomass and evaluate grassland susceptibility to climate variability and change, disturbances, and management.

  13. An audit of the global carbon budget: identifying and reducing sources of uncertainty

    Ballantyne, A. P.; Tans, P. P.; Marland, G.; Stocker, B. D.

    2012-12-01

    Uncertainties in our carbon accounting practices may limit our ability to objectively verify emission reductions on regional scales. Furthermore uncertainties in the global C budget must be reduced to benchmark Earth System Models that incorporate carbon-climate interactions. Here we present an audit of the global C budget where we try to identify sources of uncertainty for major terms in the global C budget. The atmospheric growth rate of CO2 has increased significantly over the last 50 years, while the uncertainty in calculating the global atmospheric growth rate has been reduced from 0.4 ppm/yr to 0.2 ppm/yr (95% confidence). Although we have greatly reduced global CO2 growth rate uncertainties, there remain regions, such as the Southern Hemisphere, Tropics and Arctic, where changes in regional sources/sinks will remain difficult to detect without additional observations. Increases in fossil fuel (FF) emissions are the primary factor driving the increase in global CO2 growth rate; however, our confidence in FF emission estimates has actually gone down. Based on a comparison of multiple estimates, FF emissions have increased from 2.45 ± 0.12 PgC/yr in 1959 to 9.40 ± 0.66 PgC/yr in 2010. Major sources of increasing FF emission uncertainty are increased emissions from emerging economies, such as China and India, as well as subtle differences in accounting practices. Lastly, we evaluate emission estimates from Land Use Change (LUC). Although relative errors in emission estimates from LUC are quite high (2 sigma ~ 50%), LUC emissions have remained fairly constant in recent decades. We evaluate the three commonly used approaches to estimating LUC emissions- Bookkeeping, Satellite Imagery, and Model Simulations- to identify their main sources of error and their ability to detect net emissions from LUC.; Uncertainties in Fossil Fuel Emissions over the last 50 years.

  14. Historical and future perspectives of global soil carbon response to climate and land-use changes

    Eglin, T.; Ciais, P.; Piao, S. L.; Barre, P.; Bellassen, V.; Cadule, P.; Chenu, C.; Gasser, T.; Koven, C.; Reichstein, M.; Smith, P.

    2010-11-01

    ABSTRACT In this paper, we attempt to analyse the respective influences of land-use and climate changes on the global and regional balances of soil organic carbon (SOC) stocks. Two time periods are analysed: the historical period 1901-2000 and the period 2000-2100. The historical period is analysed using a synthesis of published data as well as new global and regional model simulations, and the future is analysed using models only. Historical land cover changes have resulted globally in SOC release into the atmosphere. This human induced SOC decrease was nearly balanced by the net SOC increase due to higher CO2 and rainfall. Mechanization of agriculture after the 1950s has accelerated SOC losses in croplands, whereas development of carbon-sequestering practices over the past decades may have limited SOC loss from arable soils. In some regions (Europe, China and USA), croplands are currently estimated to be either a small C sink or a small source, but not a large source of CO2 to the atmosphere. In the future, according to terrestrial biosphere and climate models projections, both climate and land cover changes might cause a net SOC loss, particularly in tropical regions. The timing, magnitude, and regional distribution of future SOC changes are all highly uncertain. Reducing this uncertainty requires improving future anthropogenic CO2 emissions and land-use scenarios and better understanding of biogeochemical processes that control SOC turnover, for both managed and un-managed ecosystems.

  15. Carbon budgets of biological soil crusts at micro-, meso-, and global scales

    Sancho, Leopoldo G; Belnap, Jayne; Colesie, Claudia; Raggio, Jose; Weber, Bettina

    2016-01-01

    The importance of biocrusts in the ecology of arid lands across all continents is widely recognized. In spite of this broad distribution, contributions of biocrusts to the global biogeochemical cycles have only recently been considered. While these studies opened a new view on the global role of biocrusts, they also clearly revealed the lack of data for many habitats and of overall standards for measurements and analysis. In order to understand carbon cycling in biocrusts and the progress which has been made during the last 15 years, we offer a multi-scale approach covering different climatic regions. We also include a discussion on available measurement techniques at each scale: A micro-scale section focuses on the individual organism level, including modeling based on the combination of field and lab data. The meso-scale section addresses the CO2 exchange of a complete ecosystem or at the community level. Finally, we consider the contribution of biocrusts at a global scale, giving a general perspective of the most relevant findings regarding the role of biological soil crusts in the global terrestrial carbon cycle.

  16. Carbon dioxide dangers demonstration model

    Venezky, Dina; Wessells, Stephen

    2010-01-01

    Carbon dioxide is a dangerous volcanic gas. When carbon dioxide seeps from the ground, it normally mixes with the air and dissipates rapidly. However, because carbon dioxide gas is heavier than air, it can collect in snowbanks, depressions, and poorly ventilated enclosures posing a potential danger to people and other living things. In this experiment we show how carbon dioxide gas displaces oxygen as it collects in low-lying areas. When carbon dioxide, created by mixing vinegar and baking soda, is added to a bowl with candles of different heights, the flames are extinguished as if by magic.

  17. Qualitative models of global warming amplifiers

    Milošević, U.; Bredeweg, B.; de Kleer, J.; Forbus, K.D.

    2010-01-01

    There is growing interest from ecological experts to create qualitative models of phenomena for which numerical information is sparse or missing. We present a number of successful models in the field of environmental science, namely, the domain of global warming. The motivation behind the effort is

  18. Technology Learning Ratios in Global Energy Models

    Varela, M.

    2001-01-01

    The process of introduction of a new technology supposes that while its production and utilisation increases, also its operation improves and its investment costs and production decreases. The accumulation of experience and learning of a new technology increase in parallel with the increase of its market share. This process is represented by the technological learning curves and the energy sector is not detached from this process of substitution of old technologies by new ones. The present paper carries out a brief revision of the main energy models that include the technology dynamics (learning). The energy scenarios, developed by global energy models, assume that the characteristics of the technologies are variables with time. But this trend is incorporated in a exogenous way in these energy models, that is to say, it is only a time function. This practice is applied to the cost indicators of the technology such as the specific investment costs or to the efficiency of the energy technologies. In the last years, the new concept of endogenous technological learning has been integrated within these global energy models. This paper examines the concept of technological learning in global energy models. It also analyses the technological dynamics of the energy system including the endogenous modelling of the process of technological progress. Finally, it makes a comparison of several of the most used global energy models (MARKAL, MESSAGE and ERIS) and, more concretely, about the use these models make of the concept of technological learning. (Author) 17 refs

  19. Oil refining in a CO2 constrained world: Effects of carbon pricing on refineries globally

    Abdul-Manan, Amir F.N.; Arfaj, Abdullah; Babiker, Hassan

    2017-01-01

    Six aggregated refinery linear programming (LP) models were developed to represent actual refineries in North America, Latin America, Europe (including the CIS), Middle East, Asia (excluding China) and China. The models were used to conduct regional comparative assessments and to evaluate the effects of carbon pricing on refinery operations globally. We found that the average refinery energy efficiencies for the regions were estimated to range from 92.2% to 95.2%. The well-to-refinery gate carbon intensities for gasoline, diesel and jet fuels were estimated to be 17.1 (16.4–19.4), 13.3 (12.5–14.2) and 10.1 (9.6–10.8) gCO2eq/MJ, respectively. If refineries are forced to at least meet the 2014 regional volume demands for oil products, pricing CO 2 would not have an impact on either refinery productions, efficiency or emissions. If refineries are allowed to re-optimize production slates to reduce CO 2 emissions, refineries would opt to increase gasoline yield at the expense of diesel. This is counter intuitive since gasoline has a higher carbon intensity than diesel. The refinery bias against dieselization creates a supply preference toward a less efficient transportation end use. Here, we argue that if carbon pricing is not administered properly, this can lead to emissions leakage from refineries to the road transport sector. - Highlights: • Investigate actual refinery productions in 6 regions globally. • Refineries already operate at the most efficient levels. • Complex refineries tolerate higher CO 2 prices better. • Carbon pricing induces bias against dieselization. • Identify potential emissions leakage.

  20. Criterion 5: Maintenance of forest contributions to global carbon cycles

    Stephen R. Shifley; Francisco X. Aguilar; Nianfu Song; Susan I. Stewart; David J. Nowak; Dale D. Gormanson; W. Keith Moser; Sherri Wormstead; Eric J. Greenfield

    2012-01-01

    Northern forests cover more than 42 percent of the region and are enormous reservoirs of carbon. Through photosynthesis, live trees emit oxygen in exchange for carbon dioxide they pull from the atmosphere. As a tree grows it stores carbon in wood above and below ground, and sequestered carbon comprises about half of its dry weight. Dead trees and down logs are also...

  1. Meeting global policy commitments carbon sequestration and southern pine forests

    Kurt H. Johnsen; David N. Wear; R. Oren; R.O. Teskey; Felipe Sanchez; Rodney E. Will; John Butnor; D. Markewitz; D. Richter; T. Rials; H.L. Allen; J. Seiler; D. Ellsworth; Christopher Maier; G. Katul; P.M. Dougherty

    2001-01-01

    In managed forests, the amount of carbon further sequestered will be determined by (1) the increased amount of carbon in standing biomass (resulting from land-use changes and increased productivity); (2) the amount of recalcitrant carbon remaining below ground at the end of rotations; and (3) the amount of carbon sequestered in products created from harvested wood....

  2. Global learning on carbon capture and storage: A call for strong international cooperation on CCS demonstration

    Coninck, Heleen de; Stephens, Jennie C.; Metz, Bert

    2009-01-01

    Closing the gap between carbon dioxide capture and storage (CCS) rhetoric and technical progress is critically important to global climate mitigation efforts. Developing strong international cooperation on CCS demonstration with global coordination, transparency, cost-sharing and communication as guiding principles would facilitate efficient and cost-effective collaborative global learning on CCS, would allow for improved understanding of the global capacity and applicability of CCS, and would strengthen global trust, awareness and public confidence in the technology.

  3. Global reverse supply chain design for solid waste recycling under uncertainties and carbon emission constraint.

    Xu, Zhitao; Elomri, Adel; Pokharel, Shaligram; Zhang, Qin; Ming, X G; Liu, Wenjie

    2017-06-01

    The emergence of concerns over environmental protection, resource conservation as well as the development of logistics operations and manufacturing technology has led several countries to implement formal collection and recycling systems of solid waste. Such recycling system has the benefits of reducing environmental pollution, boosting the economy by creating new jobs, and generating income from trading the recyclable materials. This leads to the formation of a global reverse supply chain (GRSC) of solid waste. In this paper, we investigate the design of such a GRSC with a special emphasis on three aspects; (1) uncertainty of waste collection levels, (2) associated carbon emissions, and (3) challenges posed by the supply chain's global aspect, particularly the maritime transportation costs and currency exchange rates. To the best of our knowledge, this paper is the first attempt to integrate the three above-mentioned important aspects in the design of a GRSC. We have used mixed integer-linear programming method along with robust optimization to develop the model which is validated using a sample case study of e-waste management. Our results show that using a robust model by taking the complex interactions characterizing global reverse supply chain networks into account, we can create a better GRSC. The effect of uncertainties and carbon constraints on decisions to reduce costs and emissions are also shown. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Role of the marine biosphere in the global carbon cycle

    Longhurst, A.R.

    1991-01-01

    The geographical disequilibrium of our planet is due mainly to carbon sequestration by marine organisms over geological time. Changes in atmospheric CO 2 during interglacial-glacial transitions require biological sequestration of carbon in the oceans. Nutrient-limited export flux from new production in surface waters is the key process in this sequestrian. The most common model for export flux ignores potentially important nutrient sources and export mechanisms. Export flux occurs as a result of biological processes whose complexity appears not to be accommodated by the principal classes of simulation models, this being especially true for food webs dominated by single-celled protists whose trophic function is more dispersed than among the multicelled metazoa. The fashionable question concerning a hypothetical 'missing sink' for CO 2 emissions is unanswerable because of imprecision in our knowledge of critical flux rates. This question also diverts attention from more relevant studies of how the biological pump may be perturbed by climatic consequences of CO 2 emissions. Under available scenarios for climate change, such responses may seem more likely to reinforce, rather than mitigate, the rate of increase of atmospheric CO 2

  5. Integrating microbial diversity in soil carbon dynamic models parameters

    Louis, Benjamin; Menasseri-Aubry, Safya; Leterme, Philippe; Maron, Pierre-Alain; Viaud, Valérie

    2015-04-01

    sampling time in order to follow the dynamic of residue and soil organic matter mineralization. Diversity, structure and composition of microbial communities have been characterized before incubation time. The dynamic of carbon fluxes through CO2 emissions has been modelled through a simple model. Using statistical tools, relations between parameters of the model and microbial diversity indexes and/or pedological characteristics have been developed and integrated to the model. First results show that global diversity has an impact on the models parameters. Moreover, larger fungi diversity seems to lead to larger parameters representing decomposition rates and/or carbon use efficiencies than bacterial diversity. Classically, pedological factors such as soil pH and texture must also be taken into account.

  6. New global ICT-based business models

    The New Global Business model (NEWGIBM) book describes the background, theory references, case studies, results and learning imparted by the NEWGIBM project, which is supported by ICT, to a research group during the period from 2005-2011. The book is a result of the efforts and the collaborative ...... The NEWGIBM Cases Show? The Strategy Concept in Light of the Increased Importance of Innovative Business Models Successful Implementation of Global BM Innovation Globalisation Of ICT Based Business Models: Today And In 2020......The New Global Business model (NEWGIBM) book describes the background, theory references, case studies, results and learning imparted by the NEWGIBM project, which is supported by ICT, to a research group during the period from 2005-2011. The book is a result of the efforts and the collaborative....... The NEWGIBM book serves as a part of the final evaluation and documentation of the NEWGIBM project and is supported by results from the following projects: M-commerce, Global Innovation, Global Ebusiness & M-commerce, The Blue Ocean project, International Center for Innovation and Women in Business, NEFFICS...

  7. A high resolution global scale groundwater model

    de Graaf, Inge; Sutanudjaja, Edwin; van Beek, Rens; Bierkens, Marc

    2014-05-01

    As the world's largest accessible source of freshwater, groundwater plays a vital role in satisfying the basic needs of human society. It serves as a primary source of drinking water and supplies water for agricultural and industrial activities. During times of drought, groundwater storage provides a large natural buffer against water shortage and sustains flows to rivers and wetlands, supporting ecosystem habitats and biodiversity. Yet, the current generation of global scale hydrological models (GHMs) do not include a groundwater flow component, although it is a crucial part of the hydrological cycle. Thus, a realistic physical representation of the groundwater system that allows for the simulation of groundwater head dynamics and lateral flows is essential for GHMs that increasingly run at finer resolution. In this study we present a global groundwater model with a resolution of 5 arc-minutes (approximately 10 km at the equator) using MODFLOW (McDonald and Harbaugh, 1988). With this global groundwater model we eventually intend to simulate the changes in the groundwater system over time that result from variations in recharge and abstraction. Aquifer schematization and properties of this groundwater model were developed from available global lithological maps and datasets (Dürr et al., 2005; Gleeson et al., 2010; Hartmann and Moosdorf, 2013), combined with our estimate of aquifer thickness for sedimentary basins. We forced the groundwater model with the output from the global hydrological model PCR-GLOBWB (van Beek et al., 2011), specifically the net groundwater recharge and average surface water levels derived from routed channel discharge. For the parameterization, we relied entirely on available global datasets and did not calibrate the model so that it can equally be expanded to data poor environments. Based on our sensitivity analysis, in which we run the model with various hydrogeological parameter settings, we observed that most variance in groundwater

  8. Modeling Global Biogenic Emission of Isoprene: Exploration of Model Drivers

    Alexander, Susan E.; Potter, Christopher S.; Coughlan, Joseph C.; Klooster, Steven A.; Lerdau, Manuel T.; Chatfield, Robert B.; Peterson, David L. (Technical Monitor)

    1996-01-01

    Vegetation provides the major source of isoprene emission to the atmosphere. We present a modeling approach to estimate global biogenic isoprene emission. The isoprene flux model is linked to a process-based computer simulation model of biogenic trace-gas fluxes that operates on scales that link regional and global data sets and ecosystem nutrient transformations Isoprene emission estimates are determined from estimates of ecosystem specific biomass, emission factors, and algorithms based on light and temperature. Our approach differs from an existing modeling framework by including the process-based global model for terrestrial ecosystem production, satellite derived ecosystem classification, and isoprene emission measurements from a tropical deciduous forest. We explore the sensitivity of model estimates to input parameters. The resulting emission products from the global 1 degree x 1 degree coverage provided by the satellite datasets and the process model allow flux estimations across large spatial scales and enable direct linkage to atmospheric models of trace-gas transport and transformation.

  9. The Global Turnover Time Distribution of Soil Carbon Derived from a Meta-analysis of Radiocarbon Profiles

    He, Y.; Randerson, J. T.; Allison, S. D.; Torn, M. S.; Harden, J. W.; Smith, L. J.; van der Voort, T.; Trumbore, S.

    2015-12-01

    Soil is the largest terrestrial carbon reservoir and may influence the sign and magnitude of carbon cycle feedbacks under climate change. Soil carbon turnover times provide information about the sensitivity of carbon pools to changes in inputs and warming. The spatial and vertical distribution of soil carbon turnover times emerges from the interplay between climate, vegetation, and soil properties. Radiocarbon levels of soil organic matter can be used to estimate soil carbon turnover using models that take into account radioactive decay over centuries to millennia and inputs of 14C from atmospheric weapons testing ("bomb carbon") during the second half of the 20th century. By synthesizing more than 200 soil radiocarbon profiles from all major biomes and soil orders, we 1) explored the major controlling factors for soil carbon turnover times of surface and deeper soil layers; 2) developed predictive models (tree-based regression, support vector regression and linear regression models) of Δ14C that depends on depth, climate, vegetation, and soil types; and 3) extrapolated the predictive model to produce the first global distribution of soil carbon turnover times to the depth of 1m. Preliminary results indicated that climate and depth were primary controls of the vertical distribution of Δ14C, contributing to about 70% of the variability in our model. Vegetation and soil order exerted similar level of controls (about 15% each). The predictive model performed reasonably well with an R2 of 0.81 and RMSE (root-mean-squared error) of about 50‰ for topsoil and 100‰ for subsoil, as estimated using cross-validation. Extrapolation of the predictive model to the globe in combination with existing soil carbon information (e.g., Harmonized World Soil Database) indicated that more than half of the global total soil carbon in the top 1m had a turnover time of less than 500 years. Subsoils (30-100cm) had millennium-scale turnover times, with the majority (70%) turning over

  10. Soils and Global Change in the Carbon Cycle over Geological Time

    Retallack, G. J.

    2003-12-01

    Soils play an important role in the carbon cycle as the nutrition of photosynthesized biomass. Nitrogen fixed by microbes from air is a limiting nutrient for ecosystems within the first flush of ecological succession of new ground, and sulfur can limit some components of wetland ecosystems. But over the long term, the limiting soil nutrient is phosphorus extracted by weathering from minerals such as apatite (Vitousek et al., 1997a; Chadwick et al., 1999). Life has an especially voracious appetite for common alkali (Na+ and K+) and alkaline earth (Ca2+ and Mg2+) cations, supplied by hydrolytic weathering, which is in turn amplified by biological acidification (Schwartzmann and Volk, 1991; see Chapter 5.06). These mineral nutrients fuel photosynthetic fixation and chemical reduction of atmospheric CO2 into plants and plantlike microbes, which are at the base of the food chain. Plants and photosynthetic microbes are consumed and oxidized by animals, fungi, and other respiring microbes, which release CO2, methane, and water vapor to the air. These greenhouse gases absorb solar radiation more effectively than atmospheric oxygen and nitrogen, and are important regulators of planetary temperature and albedo (Kasting, 1992). Variations in solar insolation ( Kasting, 1992), mountainous topography ( Raymo and Ruddiman, 1992), and ocean currents ( Ramstein et al., 1997) also play a role in climate, but this review focuses on the carbon cycle. The carbon cycle is discussed in detail in Volume 8 of this Treatise.The greenhouse model for global paleoclimate has proven remarkably robust (Retallack, 2002), despite new challenges ( Veizer et al., 2000). The balance of producers and consumers is one of a number of controls on atmospheric greenhouse gas balance, because CO2 is added to the air from fumaroles, volcanic eruptions, and other forms of mantle degassing (Holland, 1984). Carbon dioxide is also consumed by burial as carbonate and organic matter within limestones and other

  11. B33C-0612: Evaluation of Simulated Biospheric Carbon Dioxide Fluxes and Atmospheric Concentrations Using Global in Situ Observations

    Philip, Sajeev; Johnson, Matthew S.; Potter, Christopher S.; Genovese, Vanessa

    2016-01-01

    Atmospheric mixing ratios of carbon dioxide (CO2) are largely controlled by anthropogenic emission sources and biospheric sources/sinks. Global biospheric fluxes of CO2 are controlled by complex processes facilitating the exchange of carbon between terrestrial ecosystems and the atmosphere. These processes which play a key role in these terrestrial ecosystem-atmosphere carbon exchanges are currently not fully understood, resulting in large uncertainties in the quantification of biospheric CO2 fluxes. Current models with these inherent deficiencies have difficulties simulating the global carbon cycle with high accuracy. We are developing a new modeling platform, GEOS-Chem-CASA by integrating the year-specific NASA-CASA (National Aeronautics and Space Administration - Carnegie Ames Stanford Approach) biosphere model with the GEOS-Chem (Goddard Earth Observation System-Chemistry) chemical transport model to improve the simulation of atmosphere-terrestrial ecosystem carbon exchange. We use NASA-CASA to explicitly represent the exchange of CO2 between terrestrial ecosystem and atmosphere by replacing the baseline GEOS-Chem land net CO2 flux and forest biomass burning CO2 emissions. We will present the estimation and evaluation of these "bottom-up" land CO2 fluxes, simulated atmospheric mixing ratios, and forest disturbance changes over the last decade. In addition, we will present our initial comparison of atmospheric column-mean dry air mole fraction of CO2 predicted by the model and those retrieved from NASA's OCO-2 (Orbiting Carbon Observatory-2) satellite instrument and model-predicted surface CO2 mixing ratios with global in situ observations. This evaluation is the first step necessary for our future work planned to constrain the estimates of biospheric carbon fluxes through "top-down" inverse modeling, which will improve our understanding of the processes controlling atmosphere-terrestrial ecosystem greenhouse gas exchanges, especially over regions which lack in

  12. Modeling Global Urbanization Supported by Nighttime Light Remote Sensing

    Zhou, Y.

    2015-12-01

    Urbanization, a major driver of global change, profoundly impacts our physical and social world, for example, altering carbon cycling and climate. Understanding these consequences for better scientific insights and effective decision-making unarguably requires accurate information on urban extent and its spatial distributions. In this study, we developed a cluster-based method to estimate the optimal thresholds and map urban extents from the nighttime light remote sensing data, extended this method to the global domain by developing a computational method (parameterization) to estimate the key parameters in the cluster-based method, and built a consistent 20-year global urban map series to evaluate the time-reactive nature of global urbanization (e.g. 2000 in Fig. 1). Supported by urban maps derived from nightlights remote sensing data and socio-economic drivers, we developed an integrated modeling framework to project future urban expansion by integrating a top-down macro-scale statistical model with a bottom-up urban growth model. With the models calibrated and validated using historical data, we explored urban growth at the grid level (1-km) over the next two decades under a number of socio-economic scenarios. The derived spatiotemporal information of historical and potential future urbanization will be of great value with practical implications for developing adaptation and risk management measures for urban infrastructure, transportation, energy, and water systems when considered together with other factors such as climate variability and change, and high impact weather events.

  13. Assessing global carbon burial during Oceanic Anoxic Event 2, Cenomanian-Turonian boundary event

    Owens, J. D.; Lyons, T. W.; Lowery, C. M.

    2017-12-01

    Reconstructing the areal extent and total amount of organic carbon burial during ancient events remains elusive even for the best documented oceanic anoxic event (OAE) in Earth history, the Cenomanian-Turonian boundary event ( 93.9 Ma), or OAE 2. Reports from 150 OAE 2 localities provide a wide global distribution. However, despite the large number of sections, the majority are found within the proto-Atlantic and Tethyan oceans and interior seaways. Considering these gaps in spatial coverage, the pervasive increase in organic carbon (OC) burial during OAE2 that drove carbon isotope values more positive (average of 4‰) can provide additional insight. These isotope data allow us to estimate the total global burial of OC, even for unstudied portions of the global ocean. Thus, we can solve for any `missing' OC sinks by comparing our estimates from a forward carbon-isotope box model with the known, mapped distribution of OC for OAE 2 sediments. Using the known OC distribution and reasonably extrapolating to the surrounding regions of analogous depositional conditions accounts for only 13% of the total seafloor, mostly in marginal marine settings. This small geographic area accounts for more OC burial than the entire modern ocean, but significantly less than the amount necessary to produce the observed isotope record. Using modern and OAE 2 average OC rates we extrapolate further to appropriate depositional settings in the unknown portions of seafloor, mostly deep abyssal plains. This addition significantly increases the predicted amount buried but still does not account for total burial. Additional sources, including hydrocarbon migration, lacustrine, and coal also cannot account for the missing OC. This difference points to unknown portions of the open ocean with high TOC contents or exceptionally high TOC in productive marginal marine regions, which are underestimated in our extrapolations. This difference might be explained by highly productive margins within the

  14. The CAFE model: A net production model for global ocean phytoplankton

    Silsbe, Greg M.; Behrenfeld, Michael J.; Halsey, Kimberly H.; Milligan, Allen J.; Westberry, Toby K.

    2016-12-01

    The Carbon, Absorption, and Fluorescence Euphotic-resolving (CAFE) net primary production model is an adaptable framework for advancing global ocean productivity assessments by exploiting state-of-the-art satellite ocean color analyses and addressing key physiological and ecological attributes of phytoplankton. Here we present the first implementation of the CAFE model that incorporates inherent optical properties derived from ocean color measurements into a mechanistic and accurate model of phytoplankton growth rates (μ) and net phytoplankton production (NPP). The CAFE model calculates NPP as the product of energy absorption (QPAR), and the efficiency (ϕμ) by which absorbed energy is converted into carbon biomass (CPhyto), while μ is calculated as NPP normalized to CPhyto. The CAFE model performance is evaluated alongside 21 other NPP models against a spatially robust and globally representative set of direct NPP measurements. This analysis demonstrates that the CAFE model explains the greatest amount of variance and has the lowest model bias relative to other NPP models analyzed with this data set. Global oceanic NPP from the CAFE model (52 Pg C m-2 yr-1) and mean division rates (0.34 day-1) are derived from climatological satellite data (2002-2014). This manuscript discusses and validates individual CAFE model parameters (e.g., QPAR and ϕμ), provides detailed sensitivity analyses, and compares the CAFE model results and parameterization to other widely cited models.

  15. Integrating Natural Gas Hydrates in the Global Carbon Cycle

    David Archer; Bruce Buffett

    2011-12-31

    We produced a two-dimensional geological time- and basin-scale model of the sedimentary margin in passive and active settings, for the simulation of the deep sedimentary methane cycle including hydrate formation. Simulation of geochemical data required development of parameterizations for bubble transport in the sediment column, and for the impact of the heterogeneity in the sediment pore fluid flow field, which represent new directions in modeling methane hydrates. The model is somewhat less sensitive to changes in ocean temperature than our previous 1-D model, due to the different methane transport mechanisms in the two codes (pore fluid flow vs. bubble migration). The model is very sensitive to reasonable changes in organic carbon deposition through geologic time, and to details of how the bubbles migrate, in particular how efficiently they are trapped as they rise through undersaturated or oxidizing chemical conditions and the hydrate stability zone. The active margin configuration reproduces the elevated hydrate saturations observed in accretionary wedges such as the Cascadia Margin, but predicts a decrease in the methane inventory per meter of coastline relative to a comparable passive margin case, and a decrease in the hydrate inventory with an increase in the plate subduction rate.

  16. [Measurement model of carbon emission from forest fire: a review].

    Hu, Hai-Qing; Wei, Shu-Jing; Jin, Sen; Sun, Long

    2012-05-01

    Forest fire is the main disturbance factor for forest ecosystem, and an important pathway of the decrease of vegetation- and soil carbon storage. Large amount of carbonaceous gases in forest fire can release into atmosphere, giving remarkable impacts on the atmospheric carbon balance and global climate change. To scientifically and effectively measure the carbonaceous gases emission from forest fire is of importance in understanding the significance of forest fire in the carbon balance and climate change. This paper reviewed the research progress in the measurement model of carbon emission from forest fire, which covered three critical issues, i. e., measurement methods of forest fire-induced total carbon emission and carbonaceous gases emission, affecting factors and measurement parameters of measurement model, and cause analysis of the uncertainty in the measurement of the carbon emissions. Three path selections to improve the quantitative measurement of the carbon emissions were proposed, i. e., using high resolution remote sensing data and improving algorithm and estimation accuracy of burned area in combining with effective fuel measurement model to improve the accuracy of the estimated fuel load, using high resolution remote sensing images combined with indoor controlled environment experiments, field measurements, and field ground surveys to determine the combustion efficiency, and combining indoor controlled environment experiments with field air sampling to determine the emission factors and emission ratio.

  17. Drought and Carbon Cycling of Grassland Ecosystems under Global Change: A Review

    Tianjie Lei

    2016-10-01

    Full Text Available In recent years, the increased intensity and duration of droughts have dramatically altered the structure and function of grassland ecosystems, which have been forced to adapt to this change in climate. Combinations of global change drivers such as elevated atmospheric CO2 concentration, warming, nitrogen (N deposition, grazing, and land-use change have influenced the impact that droughts have on grassland C cycling. This influence, to some extent, can modify the relationship between droughts and grassland carbon (C cycling in the multi-factor world. Unfortunately, prior reviews have been primarily anecdotal from the 1930s to the 2010s. We investigated the current state of the study on the interactive impacts of multiple factors under drought scenarios in grassland C cycling and provided scientific advice for dealing with droughts and managing grassland C cycling in a multi-factor world. Currently, adequate information is not available on the interaction between droughts and global change drivers, which would advance our understanding of grassland C cycling responses. It was determined that future experiments and models should specifically test how droughts regulate grassland C cycling under global changes. Previous multi-factor experiments of current and future global change conditions have studied various drought scenarios poorly, including changes in precipitation frequency and amplitude, timing, and interactions with other global change drivers. Multi-factor experiments have contributed to quantifying these potential changes and have provided important information on how water affects ecosystem processes under global change. There is an urgent need to establish a systematic framework that can assess ecosystem dynamic responses to droughts under current and future global change and human activity, with a focus on the combined effects of droughts, global change drivers, and the corresponding hierarchical responses of an ecosystem.

  18. Elevated temperature alters carbon cycling in a model microbial community

    Mosier, A.; Li, Z.; Thomas, B. C.; Hettich, R. L.; Pan, C.; Banfield, J. F.

    2013-12-01

    Earth's climate is regulated by biogeochemical carbon exchanges between the land, oceans and atmosphere that are chiefly driven by microorganisms. Microbial communities are therefore indispensible to the study of carbon cycling and its impacts on the global climate system. In spite of the critical role of microbial communities in carbon cycling processes, microbial activity is currently minimally represented or altogether absent from most Earth System Models. Method development and hypothesis-driven experimentation on tractable model ecosystems of reduced complexity, as presented here, are essential for building molecularly resolved, benchmarked carbon-climate models. Here, we use chemoautotropic acid mine drainage biofilms as a model community to determine how elevated temperature, a key parameter of global climate change, regulates the flow of carbon through microbial-based ecosystems. This study represents the first community proteomics analysis using tandem mass tags (TMT), which enable accurate, precise, and reproducible quantification of proteins. We compare protein expression levels of biofilms growing over a narrow temperature range expected to occur with predicted climate changes. We show that elevated temperature leads to up-regulation of proteins involved in amino acid metabolism and protein modification, and down-regulation of proteins involved in growth and reproduction. Closely related bacterial genotypes differ in their response to temperature: Elevated temperature represses carbon fixation by two Leptospirillum genotypes, whereas carbon fixation is significantly up-regulated at higher temperature by a third closely related genotypic group. Leptospirillum group III bacteria are more susceptible to viral stress at elevated temperature, which may lead to greater carbon turnover in the microbial food web through the release of viral lysate. Overall, this proteogenomics approach revealed the effects of climate change on carbon cycling pathways and other

  19. Intercomparison of terrestrial carbon fluxes and carbon use efficiency simulated by CMIP5 Earth System Models

    Kim, Dongmin; Lee, Myong-In; Jeong, Su-Jong; Im, Jungho; Cha, Dong Hyun; Lee, Sanggyun

    2017-12-01

    This study compares historical simulations of the terrestrial carbon cycle produced by 10 Earth System Models (ESMs) that participated in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Using MODIS satellite estimates, this study validates the simulation of gross primary production (GPP), net primary production (NPP), and carbon use efficiency (CUE), which depend on plant function types (PFTs). The models show noticeable deficiencies compared to the MODIS data in the simulation of the spatial patterns of GPP and NPP and large differences among the simulations, although the multi-model ensemble (MME) mean provides a realistic global mean value and spatial distributions. The larger model spreads in GPP and NPP compared to those of surface temperature and precipitation suggest that the differences among simulations in terms of the terrestrial carbon cycle are largely due to uncertainties in the parameterization of terrestrial carbon fluxes by vegetation. The models also exhibit large spatial differences in their simulated CUE values and at locations where the dominant PFT changes, primarily due to differences in the parameterizations. While the MME-simulated CUE values show a strong dependence on surface temperatures, the observed CUE values from MODIS show greater complexity, as well as non-linear sensitivity. This leads to the overall underestimation of CUE using most of the PFTs incorporated into current ESMs. The results of this comparison suggest that more careful and extensive validation is needed to improve the terrestrial carbon cycle in terms of ecosystem-level processes.

  20. Regional forecasting with global atmospheric models

    Crowley, T.J.; North, G.R.; Smith, N.R.

    1994-05-01

    This report was prepared by the Applied Research Corporation (ARC), College Station, Texas, under subcontract to Pacific Northwest Laboratory (PNL) as part of a global climate studies task. The task supports site characterization work required for the selection of a potential high-level nuclear waste repository and is part of the Performance Assessment Scientific Support (PASS) Program at PNL. The work is under the overall direction of the Office of Civilian Radioactive Waste Management (OCRWM), US Department of Energy Headquarters, Washington, DC. The scope of the report is to present the results of the third year's work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain several studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals

  1. Global Carbon Fiber Composites Supply Chain Competitiveness Analysis

    Sujit Das, Josh Warren, Devin West, Susan M. Schexnayder

    2016-05-01

    This analysis identifies key opportunities in the carbon fiber supply chain where resources and investments can help advance the clean energy economy. The report focuses on four application areas — wind energy, aerospace, automotive, and pressure vessels — that top the list of industries using carbon fiber and carbon fiber reinforced polymers. For each of the four application areas, the report addresses the supply and demand trends within that sector, supply chain, and costs of carbon fiber and components.

  2. Potential remobilization of belowground permafrost carbon under future global warming

    P. Kuhry; E. Dorrepaal; G. Hugelius; E.A.G. Schuur; C. Tarnocai

    2010-01-01

    Research on permafrost carbon has dramatically increased in the past few years. A new estimate of 1672 Pg C of belowground organic carbon in the northern circumpolar permafrost region more than doubles the previous value and highlights the potential role of permafrost carbon in the Earth System. Uncertainties in this new estimate remain due to relatively few available...

  3. Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012

    Hamilton, Stuart E.; Friess, Daniel A.

    2018-03-01

    Mangrove forests store high densities of organic carbon, which, when coupled with high rates of deforestation, means that mangroves have the potential to contribute substantially to carbon emissions. Consequently, mangroves are strong candidates for inclusion in nationally determined contributions (NDCs) to the United Nations Framework Convention on Climate Change (UNFCCC), and payments for ecosystem services (PES) programmes that financially incentivize the conservation of forested carbon stocks. This study quantifies annual mangrove carbon stocks from 2000 to 2012 at the global, national and sub-national levels, and global carbon emissions resulting from deforestation over the same time period. Globally, mangroves stored 4.19 Pg of carbon in 2012, with Indonesia, Brazil, Malaysia and Papua New Guinea accounting for more than 50% of the global stock. 2.96 Pg of the global carbon stock is contained within the soil and 1.23 Pg in the living biomass. Two percent of global mangrove carbon was lost between 2000 and 2012, equivalent to a maximum potential of 316,996,250 t of CO2 emissions.

  4. Global thermal models of the lithosphere

    Cammarano, F.; Guerri, M.

    2017-12-01

    Unraveling the thermal structure of the outermost shell of our planet is key for understanding its evolution. We obtain temperatures from interpretation of global shear-velocity (VS) models. Long-wavelength thermal structure is well determined by seismic models and only slightly affected by compositional effects and uncertainties in mineral-physics properties. Absolute temperatures and gradients with depth, however, are not well constrained. Adding constraints from petrology, heat-flow observations and thermal evolution of oceanic lithosphere help to better estimate absolute temperatures in the top part of the lithosphere. We produce global thermal models of the lithosphere at different spatial resolution, up to spherical-harmonics degree 24, and provide estimated standard deviations. We provide purely seismic thermal (TS) model and hybrid models where temperatures are corrected with steady-state conductive geotherms on continents and cooling model temperatures on oceanic regions. All relevant physical properties, with the exception of thermal conductivity, are based on a self-consistent thermodynamical modelling approach. Our global thermal models also include density and compressional-wave velocities (VP) as obtained either assuming no lateral variations in composition or a simple reference 3-D compositional structure, which takes into account a chemically depleted continental lithosphere. We found that seismically-derived temperatures in continental lithosphere fit well, overall, with continental geotherms, but a large variation in radiogenic heat is required to reconcile them with heat flow (long wavelength) observations. Oceanic shallow lithosphere below mid-oceanic ridges and young oceans is colder than expected, confirming the possible presence of a dehydration boundary around 80 km depth already suggested in previous studies. The global thermal models should serve as the basis to move at a smaller spatial scale, where additional thermo-chemical variations

  5. Assessment of Global Carbon Dioxide Concentration Using MODIS and GOSAT Data

    Hiroshi Tani

    2012-11-01

    Full Text Available Carbon dioxide (CO2 is the most important greenhouse gas (GHG in the atmosphere and is the greatest contributor to global warming. CO2 concentration data are usually obtained from ground observation stations or from a small number of satellites. Because of the limited number of observations and the short time series of satellite data, it is difficult to monitor CO2 concentrations on regional or global scales for a long time. The use of the remote sensing data such as the Advanced Very High Resolution Radiometer (AVHRR or Moderate Resolution Imaging Spectroradiometer (MODIS data can overcome these problems, particularly in areas with low densities of CO2 concentration watch stations. A model based on temperature (MOD11C3, vegetation cover (MOD13C2 and MOD15A2 and productivity (MOD17A2 of MODIS (which we have named the TVP model was developed in the current study to assess CO2 concentrations on a global scale. We assumed that CO2 concentration from the Thermal And Near infrared Sensor for carbon Observation (TANSO aboard the Greenhouse gases Observing SATellite (GOSAT are the true values and we used these values to check the TVP model accuracy. The results indicate that the accuracy of the TVP model is different in different continents: the greatest Pearson’s correlation coefficient (R2 was 0.75 in Eurasia (RMSE = 1.16 and South America (RMSE = 1.17; the lowest R2 was 0.57 in Australia (RMSE = 0.73. Compared with the TANSO-observed CO2 concentration (XCO2, we found that the accuracy throughout the World is between −2.56~3.14 ppm. Potential sources of TVP model uncertainties were also analyzed and identified.

  6. Assessment of global carbon dioxide concentration using MODIS and GOSAT data.

    Guo, Meng; Wang, Xiufeng; Li, Jing; Yi, Kunpeng; Zhong, Guosheng; Tani, Hiroshi

    2012-11-26

    Carbon dioxide (CO(2)) is the most important greenhouse gas (GHG) in the atmosphere and is the greatest contributor to global warming. CO(2) concentration data are usually obtained from ground observation stations or from a small number of satellites. Because of the limited number of observations and the short time series of satellite data, it is difficult to monitor CO(2) concentrations on regional or global scales for a long time. The use of the remote sensing data such as the Advanced Very High Resolution Radiometer (AVHRR) or Moderate Resolution Imaging Spectroradiometer (MODIS) data can overcome these problems, particularly in areas with low densities of CO(2) concentration watch stations. A model based on temperature (MOD11C3), vegetation cover (MOD13C2 and MOD15A2) and productivity (MOD17A2) of MODIS (which we have named the TVP model) was developed in the current study to assess CO(2) concentrations on a global scale. We assumed that CO(2) concentration from the Thermal And Near infrared Sensor for carbon Observation (TANSO) aboard the Greenhouse gases Observing SATellite (GOSAT) are the true values and we used these values to check the TVP model accuracy. The results indicate that the accuracy of the TVP model is different in different continents: the greatest Pearson's correlation coefficient (R2) was 0.75 in Eurasia (RMSE = 1.16) and South America (RMSE = 1.17); the lowest R2 was 0.57 in Australia (RMSE = 0.73). Compared with the TANSO-observed CO(2) concentration (XCO(2)), we found that the accuracy throughout the World is between -2.56~3.14 ppm. Potential sources of TVP model uncertainties were also analyzed and identified.

  7. Formulating Energy Policies Related to Fossil Fuel Use: Critical Uncertainties in the Global Carbon Cycle

    Post, W. M.; Dale, V. H.; DeAngelis, D. L.; Mann, L. K.; Mulholland, P. J.; O`Neill, R. V.; Peng, T. -H.; Farrell, M. P.

    1990-02-01

    The global carbon cycle is the dynamic interaction among the earth's carbon sources and sinks. Four reservoirs can be identified, including the atmosphere, terrestrial biosphere, oceans, and sediments. Atmospheric CO{sub 2} concentration is determined by characteristics of carbon fluxes among major reservoirs of the global carbon cycle. The objective of this paper is to document the knowns, and unknowns and uncertainties associated with key questions that if answered will increase the understanding of the portion of past, present, and future atmospheric CO{sub 2} attributable to fossil fuel burning. Documented atmospheric increases in CO{sub 2} levels are thought to result primarily from fossil fuel use and, perhaps, deforestation. However, the observed atmospheric CO{sub 2} increase is less than expected from current understanding of the global carbon cycle because of poorly understood interactions among the major carbon reservoirs.

  8. Spherical Process Models for Global Spatial Statistics

    Jeong, Jaehong

    2017-11-28

    Statistical models used in geophysical, environmental, and climate science applications must reflect the curvature of the spatial domain in global data. Over the past few decades, statisticians have developed covariance models that capture the spatial and temporal behavior of these global data sets. Though the geodesic distance is the most natural metric for measuring distance on the surface of a sphere, mathematical limitations have compelled statisticians to use the chordal distance to compute the covariance matrix in many applications instead, which may cause physically unrealistic distortions. Therefore, covariance functions directly defined on a sphere using the geodesic distance are needed. We discuss the issues that arise when dealing with spherical data sets on a global scale and provide references to recent literature. We review the current approaches to building process models on spheres, including the differential operator, the stochastic partial differential equation, the kernel convolution, and the deformation approaches. We illustrate realizations obtained from Gaussian processes with different covariance structures and the use of isotropic and nonstationary covariance models through deformations and geographical indicators for global surface temperature data. To assess the suitability of each method, we compare their log-likelihood values and prediction scores, and we end with a discussion of related research problems.

  9. On coupling global biome models with climate models

    Claussen, M.

    1994-01-01

    The BIOME model of Prentice et al. (1992; J. Biogeogr. 19: 117-134), which predicts global vegetation patterns in equilibrium with climate, was coupled with the ECHAM climate model of the Max-Planck-Institut fiir Meteorologie, Hamburg, Germany. It was found that incorporation of the BIOME model into ECHAM, regardless at which frequency, does not enhance the simulated climate variability, expressed in terms of differences between global vegetation patterns. Strongest changes are seen only betw...

  10. COLUMBUS. A global gas market model

    Hecking, Harald; Panke, Timo

    2012-03-15

    A model of the global gas market is presented which in its basic version optimises the future development of production, transport and storage capacities as well as the actual gas flows around the world assuming perfect competition. Besides the transport of natural gas via pipelines also the global market for liquefied natural gas (LNG) is modelled using a hub-and-spoke approach. While in the basic version of the model an inelastic demand and a piecewise-linear supply function are used, both can be changed easily, e.g. to a Golombek style production function or a constant elasticity of substitution (CES) demand function. Due to the usage of mixed complementary programming (MCP) the model additionally allows for the simulation of strategic behaviour of different players in the gas market, e.g. the gas producers.

  11. Constraining the carbon tetrachloride (CCl4) budget using its global trend and inter-hemispheric gradient

    Liang, Qing; Newman, Paul A.; Daniel, John S.; Reimann, Stefan; Hall, Bradley D.; Dutton, Geoff; Kuijpers, Lambert J. M.

    2014-07-01

    Carbon tetrachloride (CCl4) is a major anthropogenic ozone-depleting substance and greenhouse gas and has been regulated under the Montreal Protocol. However, the near-zero 2007-2012 emissions estimate based on the UNEP reported production and feedstock usage cannot be reconciled with the observed slow decline of atmospheric concentrations and the inter-hemispheric gradient (IHG) for CCl4. Our 3-D model simulations suggest that the observed IHG (1.5 ± 0.2 ppt for 2000-2012) is primarily caused by ongoing current emissions, while ocean and soil losses and stratosphere-troposphere exchange together contribute a small negative gradient (~0 - -0.3 ppt). Using the observed CCl4 global trend and IHG, we deduce that the mean global emissions for the 2000-2012 period are 393445 Gg/yr (~30% of the peak 1980s emissions) and a corresponding total lifetime of 353732 years.

  12. GLOMO - Global Mobility Model: Beschreibung und Ergebnisse

    Kühn, André; Novinsky, Patrick; Schade, Wolfgang

    2014-01-01

    The development of both, emerging markets as well as the already establish markets (USA, Japan, Europe), is highly relevant for future success of the export-oriented German automotive industry. This paper describes the so called Global Mobility Model (GLOMO) based on the system dynamics approach, which simulates the future development of car sales by segment and drive technology. The modularized model contains population, income and GDP development in order to describe the framework in the mo...

  13. Validation of A Global Hydrological Model

    Doell, P.; Lehner, B.; Kaspar, F.; Vassolo, S.

    Freshwater availability has been recognized as a global issue, and its consistent quan- tification not only in individual river basins but also at the global scale is required to support the sustainable use of water. The Global Hydrology Model WGHM, which is a submodel of the global water use and availability model WaterGAP 2, computes sur- face runoff, groundwater recharge and river discharge at a spatial resolution of 0.5. WGHM is based on the best global data sets currently available, including a newly developed drainage direction map and a data set of wetlands, lakes and reservoirs. It calculates both natural and actual discharge by simulating the reduction of river discharge by human water consumption (as computed by the water use submodel of WaterGAP 2). WGHM is calibrated against observed discharge at 724 gauging sta- tions (representing about 50% of the global land area) by adjusting a parameter of the soil water balance. It not only computes the long-term average water resources but also water availability indicators that take into account the interannual and seasonal variability of runoff and discharge. The reliability of the model results is assessed by comparing observed and simulated discharges at the calibration stations and at se- lected other stations. We conclude that reliable results can be obtained for basins of more than 20,000 km2. In particular, the 90% reliable monthly discharge is simu- lated well. However, there is the tendency that semi-arid and arid basins are modeled less satisfactorily than humid ones, which is partially due to neglecting river channel losses and evaporation of runoff from small ephemeral ponds in the model. Also, the hydrology of highly developed basins with large artificial storages, basin transfers and irrigation schemes cannot be simulated well. The seasonality of discharge in snow- dominated basins is overestimated by WGHM, and if the snow-dominated basin is uncalibrated, discharge is likely to be underestimated

  14. A Process-based Model of Global Lichen Productivity

    Porada, P.; Kleidon, A.

    2012-04-01

    Lichens and biotic crusts are abundant in most ecosystems of the world. They are the main autotrophic organisms in many deserts and at high altitudes and they can also be found in large amounts as epiphytes in some forests, especially in the boreal zone. They are characterised by a great variety of physiological properties, such as growth form, productivity or color. Due to the vast land surface areas covered by lichens, they may contribute significantly to the global terrestrial net carbon uptake. Furthermore, they potentially play an important role with respect to nutrient cycles in some ecosystems and they have the ability to enhance weathering at the surface on which they grow. A possible way to quantify these processes at the global scale is presented here in form of a process-based lichen model. This approach is based on the concepts used in many dynamical vegetation models and extends these methods to account for the specific properties of lichens. Hence, processes such as photosynthesis, respiration and water exchange are implemented as well as important trade-offs like photosynthetic capacity versus respiratory load and water content versus CO2 conductivity. The great physiological variability of lichens is incorporated directly into the model through ranges of possible parameter values, which are randomly sampled. In this way, many artificial lichen "species" are created and climate then acts as a filter to determine the species which are able to survive permanently. By averaging over the surviving "species", the model predicts lichen productivity as a function of climate input data such as temperature, radiation and precipitation at the global scale. Consequently, the contribution of lichens to the global carbon balance can be quantified. Moreover, global patterns of lichen biodiversity and other properties can be illustrated. The model can be extended to account for the nutrient dynamics of lichens, such as nitrogen fixation and the acquisition and

  15. Revised methane emissions factors and spatially distributed annual carbon fluxes for global livestock.

    Wolf, Julie; Asrar, Ghassem R; West, Tristram O

    2017-09-29

    Livestock play an important role in carbon cycling through consumption of biomass and emissions of methane. Recent research suggests that existing bottom-up inventories of livestock methane emissions in the US, such as those made using 2006 IPCC Tier 1 livestock emissions factors, are too low. This may be due to outdated information used to develop these emissions factors. In this study, we update information for cattle and swine by region, based on reported recent changes in animal body mass, feed quality and quantity, milk productivity, and management of animals and manure. We then use this updated information to calculate new livestock methane emissions factors for enteric fermentation in cattle, and for manure management in cattle and swine. Using the new emissions factors, we estimate global livestock emissions of 119.1 ± 18.2 Tg methane in 2011; this quantity is 11% greater than that obtained using the IPCC 2006 emissions factors, encompassing an 8.4% increase in enteric fermentation methane, a 36.7% increase in manure management methane, and notable variability among regions and sources. For example, revised manure management methane emissions for 2011 in the US increased by 71.8%. For years through 2013, we present (a) annual livestock methane emissions, (b) complete annual livestock carbon budgets, including carbon dioxide emissions, and (c) spatial distributions of livestock methane and other carbon fluxes, downscaled to 0.05 × 0.05 degree resolution. Our revised bottom-up estimates of global livestock methane emissions are comparable to recently reported top-down global estimates for recent years, and account for a significant part of the increase in annual methane emissions since 2007. Our results suggest that livestock methane emissions, while not the dominant overall source of global methane emissions, may be a major contributor to the observed annual emissions increases over the 2000s to 2010s. Differences at regional and local scales may help

  16. A model for global cycling of tritium

    Killough, G.G.; Kocher, D.C.

    1988-01-01

    Dynamic compartment models are widely used to describe global cycling of radionuclides for purposes of dose estimation. In this paper the authors present a new global tritium model that reproduces environmental time-series data on concentrations in precipitation, ocean surface waters, and surface fresh waters in the northern hemisphere, concentrations of atmospheric tritium in the southern hemisphere, and the latitude dependence of tritium in both hemispheres. Names TRICYCLE (for TRItium CYCLE) the model is based on the global hydrologic cycle and includes hemispheric stratospheric compartments, disaggregation of the troposphere and ocean surface waters into eight latitude zones, consideration of the different concentrations of atmospheric tritium over land and over the ocean, and a diffusive model for transport in the ocean. TRICYCLE reproduces the environmental data if it is assumed that about 50% of the tritium from atmospheric weapons testing was injected directly into the northern stratosphere as HTO. The model's latitudinal disaggregation permits taking into account the distribution of population. For a uniformly distributed release of HTO into the worldwide troposphere, TRICYCLE predicts a collective dose commitment to the world population that exceeds the NCRP model's corresponding prediction by a factor of three

  17. A model for global cycling of tritium

    Killough, G.G.; Kocher, D.C.

    1988-01-01

    Dynamic compartment models are widely used to describe global cycling of radionuclides for purposes of dose estimation. In this paper, we present a new global tritium model that reproduces environmental time-series data on concentrations in precipitation, ocean surface waters, and surface fresh waters in the northern hemisphere, concentrations of atmospheric tritium in the soutehrn hemisphere, and the latitude dependence of tritium in both hemispheres. Named TRICYCLE for Tritium CYCLE, the model is based on the global hydrologic cycle and includes hemisphereic stratospheric compartments, disaggregation of the troposphere and ocean surface waters into eight latitudezones, consideration of the different concentrations of atmospheric tritium over land and over the ocean, and a diffusive model for transport in the ocean. TRICYCLE reproduces the environmental data if we assume that about 50% of the tritium from atmospheric weapons testing was injected directly into the northern stratosphere as HTO. The models latitudinal disaggregation permits taking into account the distribution of population. For a unfiormaly distributed release of HTO into the worldwide troposphere, TRICYCLE predicts a collective dose commitment to the world population that exceeds the corresponding prediction by the NCRP model by about a factor of 3. 11 refs., 5 figs., 1 tab

  18. How Choice of Depth Horizon Influences the Estimated Spatial Patterns and Global Magnitude of Ocean Carbon Export Flux

    Palevsky, Hilary I.; Doney, Scott C.

    2018-05-01

    Estimated rates and efficiency of ocean carbon export flux are sensitive to differences in the depth horizons used to define export, which often vary across methodological approaches. We evaluate sinking particulate organic carbon (POC) flux rates and efficiency (e-ratios) in a global earth system model, using a range of commonly used depth horizons: the seasonal mixed layer depth, the particle compensation depth, the base of the euphotic zone, a fixed depth horizon of 100 m, and the maximum annual mixed layer depth. Within this single dynamically consistent model framework, global POC flux rates vary by 30% and global e-ratios by 21% across different depth horizon choices. Zonal variability in POC flux and e-ratio also depends on the export depth horizon due to pronounced influence of deep winter mixing in subpolar regions. Efforts to reconcile conflicting estimates of export need to account for these systematic discrepancies created by differing depth horizon choices.

  19. Global socioeconomic carbon stocks in long-lived products 1900–2008

    Lauk, Christian; Haberl, Helmut; Erb, Karl-Heinz; Gingrich, Simone; Krausmann, Fridolin

    2012-01-01

    A better understanding of the global carbon cycle as well as of climate change mitigation options such as carbon sequestration requires the quantification of natural and socioeconomic stocks and flows of carbon. A so-far under-researched aspect of the global carbon budget is the accumulation of carbon in long-lived products such as buildings and furniture. We present a comprehensive assessment of global socioeconomic carbon stocks and the corresponding in- and outflows during the period 1900–2008. These data allowed calculation of the annual carbon sink in socioeconomic stocks during this period. The study covers the most important socioeconomic carbon fractions, i.e. wood, bitumen, plastic and cereals. Our assessment was mainly based on production and consumption data for plastic, bitumen and wood products and the respective fractions remaining in stocks in any given year. Global socioeconomic carbon stocks were 2.3 GtC in 1900 and increased to 11.5 GtC in 2008. The share of wood in total C stocks fell from 97% in 1900 to 60% in 2008, while the shares of plastic and bitumen increased to 16% and 22%, respectively. The rate of gross carbon sequestration in socioeconomic stocks increased from 17 MtC yr −1 in 1900 to a maximum of 247 MtC yr −1 in 2007, corresponding to 2.2%–3.4% of global fossil-fuel-related carbon emissions. We conclude that while socioeconomic carbon stocks are not negligible, their growth over time is not a major climate change mitigation option and there is an only modest potential to mitigate climate change by the increase of socioeconomic carbon stocks. (letter)

  20. Global socioeconomic carbon stocks in long-lived products 1900-2008

    Lauk, Christian; Haberl, Helmut; Erb, Karl-Heinz; Gingrich, Simone; Krausmann, Fridolin

    2012-09-01

    A better understanding of the global carbon cycle as well as of climate change mitigation options such as carbon sequestration requires the quantification of natural and socioeconomic stocks and flows of carbon. A so-far under-researched aspect of the global carbon budget is the accumulation of carbon in long-lived products such as buildings and furniture. We present a comprehensive assessment of global socioeconomic carbon stocks and the corresponding in- and outflows during the period 1900-2008. These data allowed calculation of the annual carbon sink in socioeconomic stocks during this period. The study covers the most important socioeconomic carbon fractions, i.e. wood, bitumen, plastic and cereals. Our assessment was mainly based on production and consumption data for plastic, bitumen and wood products and the respective fractions remaining in stocks in any given year. Global socioeconomic carbon stocks were 2.3 GtC in 1900 and increased to 11.5 GtC in 2008. The share of wood in total C stocks fell from 97% in 1900 to 60% in 2008, while the shares of plastic and bitumen increased to 16% and 22%, respectively. The rate of gross carbon sequestration in socioeconomic stocks increased from 17 MtC yr-1 in 1900 to a maximum of 247 MtC yr-1 in 2007, corresponding to 2.2%-3.4% of global fossil-fuel-related carbon emissions. We conclude that while socioeconomic carbon stocks are not negligible, their growth over time is not a major climate change mitigation option and there is an only modest potential to mitigate climate change by the increase of socioeconomic carbon stocks.

  1. Incorrectly Interpreting the Carbon Mass Balance Technique Leads to Biased Emissions Estimates from Global Vegetation Fires

    Surawski, N. C.; Sullivan, A. L.; Roxburgh, S. H.; Meyer, M.; Polglase, P. J.

    2016-12-01

    Vegetation fires are a complex phenomenon and have a range of global impacts including influences on climate. Even though fire is a necessary disturbance for the maintenance of some ecosystems, a range of anthropogenically deleterious consequences are associated with it, such as damage to assets and infrastructure, loss of life, as well as degradation to air quality leading to negative impacts on human health. Estimating carbon emissions from fire relies on a carbon mass balance technique which has evolved with two different interpretations in the fire emissions community. Databases reporting global fire emissions estimates use an approach based on `consumed biomass' which is an approximation to the biogeochemically correct `burnt carbon' approach. Disagreement between the two methods occurs because the `consumed biomass' accounting technique assumes that all burnt carbon is volatilized and emitted. By undertaking a global review of the fraction of burnt carbon emitted to the atmosphere, we show that the `consumed biomass' accounting approach overestimates global carbon emissions by 4.0%, or 100 Teragrams, annually. The required correction is significant and represents 9% of the net global forest carbon sink estimated annually. To correctly partition burnt carbon between that emitted to the atmosphere and that remaining as a post-fire residue requires the post-burn carbon content to be estimated, which is quite often not undertaken in atmospheric emissions studies. To broaden our understanding of ecosystem carbon fluxes, it is recommended that the change in carbon content associated with burnt residues be accounted for. Apart from correctly partitioning burnt carbon between the emitted and residue pools, it enables an accounting approach which can assess the efficacy of fire management operations targeted at sequestering carbon from fire. These findings are particularly relevant for the second commitment period for the Kyoto protocol, since improved landscape fire

  2. North American Carbon Project (NACP) Regional Model-Model and Model-Data Intercomparison Project

    Huntzinger, D. N.; Post, W. M.; Jacobson, A. R.; Cook, R. B.

    2009-05-01

    Available observations are localized and widely separated in both space and time, so we depend heavily on models to characterize, understand, and predict carbon fluxes at regional and global scales. The results from each model differ because they use different approaches (forward vs. inverse), modeling strategies (detailed process, statistical, observation based), process representation, boundary conditions, initial conditions, and driver data. To investigate these differences we conducted a model-model and model-data comparison using available forward ecosystem model and atmospheric inverse output, along with regional scale inventory data. Forward or "bottom-up" models typically estimate carbon fluxes through a set of physiological relationships, and are based on our current mechanistic understanding of how carbon is exchanged within ecosystems. Inverse or "top-down" analyses use measured atmospheric concentrations of CO2, coupled with an atmospheric transport model to infer surface flux distributions. Although bottom-up models do fairly well at reproducing measured fluxes (i.e., net ecosystem exchange) at a given location, they vary considerably in their estimates of carbon flux over regional or continental scales, suggesting difficulty in scaling mechanistic relationships to large areas and/or timescales. Conversely, top-down inverse models predict fluxes that are quantitatively consistent with atmospheric measurements, suggesting that they are capturing large scale variability in flux quite well, but offer limited insights into the processes controlling this variability and how fluxes vary at fine spatial scales. The analyses focused on identifying and quantifying spatial and temporal patterns of carbon fluxes among the models; quantifying across-model variability, as well as comparing simulated or estimated surface fluxes and biomass to observed values at regional to continental scales for the period 2000-2005. The analysis focused on the following three

  3. Global nuclear material flow/control model

    Dreicer, J.S.; Rutherford, D.S.; Fasel, P.K.; Riese, J.M.

    1997-01-01

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The nuclear danger can be reduced by a system for global management, protection, control, and accounting as part of an international regime for nuclear materials. The development of an international fissile material management and control regime requires conceptual research supported by an analytical and modeling tool which treats the nuclear fuel cycle as a complete system. The prototype model developed visually represents the fundamental data, information, and capabilities related to the nuclear fuel cycle in a framework supportive of national or an international perspective. This includes an assessment of the global distribution of military and civilian fissile material inventories, a representation of the proliferation pertinent physical processes, facility specific geographic identification, and the capability to estimate resource requirements for the management and control of nuclear material. The model establishes the foundation for evaluating the global production, disposition, and safeguards and security requirements for fissile nuclear material and supports the development of other pertinent algorithmic capabilities necessary to undertake further global nuclear material related studies

  4. GLEAM version 3: Global Land Evaporation Datasets and Model

    Martens, B.; Miralles, D. G.; Lievens, H.; van der Schalie, R.; de Jeu, R.; Fernandez-Prieto, D.; Verhoest, N.

    2015-12-01

    Terrestrial evaporation links energy, water and carbon cycles over land and is therefore a key variable of the climate system. However, the global-scale magnitude and variability of the flux, and the sensitivity of the underlying physical process to changes in environmental factors, are still poorly understood due to limitations in in situ measurements. As a result, several methods have risen to estimate global patterns of land evaporation from satellite observations. However, these algorithms generally differ in their approach to model evaporation, resulting in large differences in their estimates. One of these methods is GLEAM, the Global Land Evaporation: the Amsterdam Methodology. GLEAM estimates terrestrial evaporation based on daily satellite observations of meteorological variables, vegetation characteristics and soil moisture. Since the publication of the first version of the algorithm (2011), the model has been widely applied to analyse trends in the water cycle and land-atmospheric feedbacks during extreme hydrometeorological events. A third version of the GLEAM global datasets is foreseen by the end of 2015. Given the relevance of having a continuous and reliable record of global-scale evaporation estimates for climate and hydrological research, the establishment of an online data portal to host these data to the public is also foreseen. In this new release of the GLEAM datasets, different components of the model have been updated, with the most significant change being the revision of the data assimilation algorithm. In this presentation, we will highlight the most important changes of the methodology and present three new GLEAM datasets and their validation against in situ observations and an alternative dataset of terrestrial evaporation (ERA-Land). Results of the validation exercise indicate that the magnitude and the spatiotemporal variability of the modelled evaporation agree reasonably well with the estimates of ERA-Land and the in situ

  5. Econometric modelling of international carbon tax regimes

    Smith, Clare; Hall, Stephen; Mabey, N.

    1995-01-01

    An economometric model of fossil fuel demand has been estimated for eight OECD countries, relating coal, oil and gas demands to GDP and prices. In addition a model of endogenous technical progress has been estimated, aiming to include both price induced innovation in energy and structural change in the economy as long-term determinants of energy consumption. A number of possible international carbon/energy tax agreements are simulated, showing the impacts on carbon dioxide emissions and comparing the two models. (author)

  6. Using measurements for evaluation of black carbon modeling

    S. Gilardoni

    2011-01-01

    Full Text Available The ever increasing use of air quality and climate model assessments to underpin economic, public health, and environmental policy decisions makes effective model evaluation critical. This paper discusses the properties of black carbon and light attenuation and absorption observations that are the key to a reliable evaluation of black carbon model and compares parametric and nonparametric statistical tools for the quantification of the agreement between models and observations. Black carbon concentrations are simulated with TM5/M7 global model from July 2002 to June 2003 at four remote sites (Alert, Jungfraujoch, Mace Head, and Trinidad Head and two regional background sites (Bondville and Ispra. Equivalent black carbon (EBC concentrations are calculated using light attenuation measurements from January 2000 to December 2005. Seasonal trends in the measurements are determined by fitting sinusoidal functions and the representativeness of the period simulated by the model is verified based on the scatter of the experimental values relative to the fit curves. When the resolution of the model grid is larger than 1° × 1°, it is recommended to verify that the measurement site is representative of the grid cell. For this purpose, equivalent black carbon measurements at Alert, Bondville and Trinidad Head are compared to light absorption and elemental carbon measurements performed at different sites inside the same model grid cells. Comparison of these equivalent black carbon and elemental carbon measurements indicates that uncertainties in black carbon optical properties can compromise the comparison between model and observations. During model evaluation it is important to examine the extent to which a model is able to simulate the variability in the observations over different integration periods as this will help to identify the most appropriate timescales. The agreement between model and observation is accurately described by the overlap of

  7. Global Optimization Ensemble Model for Classification Methods

    Anwar, Hina; Qamar, Usman; Muzaffar Qureshi, Abdul Wahab

    2014-01-01

    Supervised learning is the process of data mining for deducing rules from training datasets. A broad array of supervised learning algorithms exists, every one of them with its own advantages and drawbacks. There are some basic issues that affect the accuracy of classifier while solving a supervised learning problem, like bias-variance tradeoff, dimensionality of input space, and noise in the input data space. All these problems affect the accuracy of classifier and are the reason that there is no global optimal method for classification. There is not any generalized improvement method that can increase the accuracy of any classifier while addressing all the problems stated above. This paper proposes a global optimization ensemble model for classification methods (GMC) that can improve the overall accuracy for supervised learning problems. The experimental results on various public datasets showed that the proposed model improved the accuracy of the classification models from 1% to 30% depending upon the algorithm complexity. PMID:24883382

  8. Global Optimization Ensemble Model for Classification Methods

    Hina Anwar

    2014-01-01

    Full Text Available Supervised learning is the process of data mining for deducing rules from training datasets. A broad array of supervised learning algorithms exists, every one of them with its own advantages and drawbacks. There are some basic issues that affect the accuracy of classifier while solving a supervised learning problem, like bias-variance tradeoff, dimensionality of input space, and noise in the input data space. All these problems affect the accuracy of classifier and are the reason that there is no global optimal method for classification. There is not any generalized improvement method that can increase the accuracy of any classifier while addressing all the problems stated above. This paper proposes a global optimization ensemble model for classification methods (GMC that can improve the overall accuracy for supervised learning problems. The experimental results on various public datasets showed that the proposed model improved the accuracy of the classification models from 1% to 30% depending upon the algorithm complexity.

  9. An integrated model of soil, hydrology, and vegetation for carbon dynamics in wetland ecosystems

    Yu Zhang; Changsheng Li; Carl C. Trettin; Harbin Li; Ge Sun

    2002-01-01

    Wetland ecosystems are an important component in global carbon (C) cycles and may exert a large influence on global clinlate change. Predictions of C dynamics require us to consider interactions among many critical factors of soil, hydrology, and vegetation. However, few such integrated C models exist for wetland ecosystems. In this paper, we report a simulation model...

  10. Improved Hydrology over Peatlands in a Global Land Modeling System

    Bechtold, M.; Delannoy, G.; Reichle, R.; Koster, R.; Mahanama, S.; Roose, Dirk

    2018-01-01

    Peatlands of the Northern Hemisphere represent an important carbon pool that mainly accumulated since the last ice age under permanently wet conditions in specific geological and climatic settings. The carbon balance of peatlands is closely coupled to water table dynamics. Consequently, the future carbon balance over peatlands is strongly dependent on how hydrology in peatlands will react to changing boundary conditions, e.g. due to climate change or regional water level drawdown of connected aquifers or streams. Global land surface modeling over organic-rich regions can provide valuable global-scale insights on where and how peatlands are in transition due to changing boundary conditions. However, the current global land surface models are not able to reproduce typical hydrological dynamics in peatlands well. We implemented specific structural and parametric changes to account for key hydrological characteristics of peatlands into NASA's GEOS-5 Catchment Land Surface Model (CLSM, Koster et al. 2000). The main modifications pertain to the modeling of partial inundation, and the definition of peatland-specific runoff and evapotranspiration schemes. We ran a set of simulations on a high performance cluster using different CLSM configurations and validated the results with a newly compiled global in-situ dataset of water table depths in peatlands. The results demonstrate that an update of soil hydraulic properties for peat soils alone does not improve the performance of CLSM over peatlands. However, structural model changes for peatlands are able to improve the skill metrics for water table depth. The validation results for the water table depth indicate a reduction of the bias from 2.5 to 0.2 m, and an improvement of the temporal correlation coefficient from 0.5 to 0.65, and from 0.4 to 0.55 for the anomalies. Our validation data set includes both bogs (rain-fed) and fens (ground and/or surface water influence) and reveals that the metrics improved less for fens. In

  11. Spatially explicit modeling of particulate nutrient flux in Large global rivers

    Cohen, S.; Kettner, A.; Mayorga, E.; Harrison, J. A.

    2017-12-01

    Water, sediment, nutrient and carbon fluxes along river networks have undergone considerable alterations in response to anthropogenic and climatic changes, with significant consequences to infrastructure, agriculture, water security, ecology and geomorphology worldwide. However, in a global setting, these changes in fluvial fluxes and their spatial and temporal characteristics are poorly constrained, due to the limited availability of continuous and long-term observations. We present results from a new global-scale particulate modeling framework (WBMsedNEWS) that combines the Global NEWS watershed nutrient export model with the spatially distributed WBMsed water and sediment model. We compare the model predictions against multiple observational datasets. The results indicate that the model is able to accurately predict particulate nutrient (Nitrogen, Phosphorus and Organic Carbon) fluxes on an annual time scale. Analysis of intra-basin nutrient dynamics and fluxes to global oceans is presented.

  12. Global Analysis, Interpretation and Modelling: An Earth Systems Modelling Program

    Moore, Berrien, III; Sahagian, Dork

    1997-01-01

    The Goal of the GAIM is: To advance the study of the coupled dynamics of the Earth system using as tools both data and models; to develop a strategy for the rapid development, evaluation, and application of comprehensive prognostic models of the Global Biogeochemical Subsystem which could eventually be linked with models of the Physical-Climate Subsystem; to propose, promote, and facilitate experiments with existing models or by linking subcomponent models, especially those associated with IGBP Core Projects and with WCRP efforts. Such experiments would be focused upon resolving interface issues and questions associated with developing an understanding of the prognostic behavior of key processes; to clarify key scientific issues facing the development of Global Biogeochemical Models and the coupling of these models to General Circulation Models; to assist the Intergovernmental Panel on Climate Change (IPCC) process by conducting timely studies that focus upon elucidating important unresolved scientific issues associated with the changing biogeochemical cycles of the planet and upon the role of the biosphere in the physical-climate subsystem, particularly its role in the global hydrological cycle; and to advise the SC-IGBP on progress in developing comprehensive Global Biogeochemical Models and to maintain scientific liaison with the WCRP Steering Group on Global Climate Modelling.

  13. Modelling carbon emissions in electric systems

    Lau, E.T.; Yang, Q.; Forbes, A.B.; Wright, P.; Livina, V.N.

    2014-01-01

    Highlights: • We model carbon emissions in electric systems. • We estimate emissions in generated and consumed energy with UK carbon factors. • We model demand profiles with novel function based on hyperbolic tangents. • We study datasets of UK Elexon database, Brunel PV system and Irish SmartGrid. • We apply Ensemble Kalman Filter to forecast energy data in these case studies. - Abstract: We model energy consumption of network electricity and compute Carbon emissions (CE) based on obtained energy data. We review various models of electricity consumption and propose an adaptive seasonal model based on the Hyperbolic tangent function (HTF). We incorporate HTF to define seasonal and daily trends of electricity demand. We then build a stochastic model that combines the trends and white noise component and the resulting simulations are estimated using Ensemble Kalman Filter (EnKF), which provides ensemble simulations of groups of electricity consumers; similarly, we estimate carbon emissions from electricity generators. Three case studies of electricity generation and consumption are modelled: Brunel University photovoltaic generation data, Elexon national electricity generation data (various fuel types) and Irish smart grid data, with ensemble estimations by EnKF and computation of carbon emissions. We show the flexibility of HTF-based functions for modelling realistic cycles of energy consumption, the efficiency of EnKF in ensemble estimation of energy consumption and generation, and report the obtained estimates of the carbon emissions in the considered case studies

  14. Global modelling of Cryptosporidium in surface water

    Vermeulen, Lucie; Hofstra, Nynke

    2016-04-01

    Introduction Waterborne pathogens that cause diarrhoea, such as Cryptosporidium, pose a health risk all over the world. In many regions quantitative information on pathogens in surface water is unavailable. Our main objective is to model Cryptosporidium concentrations in surface waters worldwide. We present the GloWPa-Crypto model and use the model in a scenario analysis. A first exploration of global Cryptosporidium emissions to surface waters has been published by Hofstra et al. (2013). Further work has focused on modelling emissions of Cryptosporidium and Rotavirus to surface waters from human sources (Vermeulen et al 2015, Kiulia et al 2015). A global waterborne pathogen model can provide valuable insights by (1) providing quantitative information on pathogen levels in data-sparse regions, (2) identifying pathogen hotspots, (3) enabling future projections under global change scenarios and (4) supporting decision making. Material and Methods GloWPa-Crypto runs on a monthly time step and represents conditions for approximately the year 2010. The spatial resolution is a 0.5 x 0.5 degree latitude x longitude grid for the world. We use livestock maps (http://livestock.geo-wiki.org/) combined with literature estimates to calculate spatially explicit livestock Cryptosporidium emissions. For human Cryptosporidium emissions, we use UN population estimates, the WHO/UNICEF JMP sanitation country data and literature estimates of wastewater treatment. We combine our emissions model with a river routing model and data from the VIC hydrological model (http://vic.readthedocs.org/en/master/) to calculate concentrations in surface water. Cryptosporidium survival during transport depends on UV radiation and water temperature. We explore pathogen emissions and concentrations in 2050 with the new Shared Socio-economic Pathways (SSPs) 1 and 3. These scenarios describe plausible future trends in demographics, economic development and the degree of global integration. Results and

  15. Global energy modeling - A biophysical approach

    Dale, Michael

    2010-09-15

    This paper contrasts the standard economic approach to energy modelling with energy models using a biophysical approach. Neither of these approaches includes changing energy-returns-on-investment (EROI) due to declining resource quality or the capital intensive nature of renewable energy sources. Both of these factors will become increasingly important in the future. An extension to the biophysical approach is outlined which encompasses a dynamic EROI function that explicitly incorporates technological learning. The model is used to explore several scenarios of long-term future energy supply especially concerning the global transition to renewable energy sources in the quest for a sustainable energy system.

  16. Statistical models of global Langmuir mixing

    Li, Qing; Fox-Kemper, Baylor; Breivik, Øyvind; Webb, Adrean

    2017-05-01

    The effects of Langmuir mixing on the surface ocean mixing may be parameterized by applying an enhancement factor which depends on wave, wind, and ocean state to the turbulent velocity scale in the K-Profile Parameterization. Diagnosing the appropriate enhancement factor online in global climate simulations is readily achieved by coupling with a prognostic wave model, but with significant computational and code development expenses. In this paper, two alternatives that do not require a prognostic wave model, (i) a monthly mean enhancement factor climatology, and (ii) an approximation to the enhancement factor based on the empirical wave spectra, are explored and tested in a global climate model. Both appear to reproduce the Langmuir mixing effects as estimated using a prognostic wave model, with nearly identical and substantial improvements in the simulated mixed layer depth and intermediate water ventilation over control simulations, but significantly less computational cost. Simpler approaches, such as ignoring Langmuir mixing altogether or setting a globally constant Langmuir number, are found to be deficient. Thus, the consequences of Stokes depth and misaligned wind and waves are important.

  17. Modeling of the Global Water Cycle - Analytical Models

    Yongqiang Liu; Roni Avissar

    2005-01-01

    Both numerical and analytical models of coupled atmosphere and its underlying ground components (land, ocean, ice) are useful tools for modeling the global and regional water cycle. Unlike complex three-dimensional climate models, which need very large computing resources and involve a large number of complicated interactions often difficult to interpret, analytical...

  18. Mitigation of Global Warming with Focus on Personal Carbon Allowances

    The paper discusses a novel approach to address the carbon challenge by making it personal. Just as commodities like food and petrol are rationed at times of scarcity, carbon, in principle, can also be rationed, say, on a per capita basis. This, of course, raises serious equity issues since prese...

  19. Mangrove production and carbon sinks: A revision of global budget estimates

    Bouillon, S.; Borges, A.V.; Castaneda-Moya, E.; Diele, K.; Dittmar, T.; Duke, N.C.; Kristensen, E.; Lee, S.-Y.; Marchand, C.; Middelburg, J.J.; Rivera-Monroy, V. H.; Smith, T. J.; Twilley, R.R.

    2008-01-01

    Mangrove forests are highly productive but globally threatened coastal ecosystems, whose role in the carbon budget of the coastal zone has long been debated. Here we provide a comprehensive synthesis of the available data on carbon fluxes in mangrove ecosystems. A reassessment of global mangrove primary production from the literature results in a conservative estimate of ???-218 ?? 72 Tg C a-1. When using the best available estimates of various carbon sinks (organic carbon export, sediment burial, and mineralization), it appears that >50% of the carbon fixed by mangrove vegetation is unaccounted for. This unaccounted carbon sink is conservatively estimated at ??? 112 ?? 85 Tg C a-1, equivalent in magnitude to ??? 30-40% of the global riverine organic carbon input to the coastal zone. Our analysis suggests that mineralization is severely underestimated, and that the majority of carbon export from mangroves to adjacent waters occurs as dissolved inorganic carbon (DIC). CO2 efflux from sediments and creek waters and tidal export of DIC appear to be the major sinks. These processes are quantitatively comparable in magnitude to the unaccounted carbon sink in current budgets, but are not yet adequately constrained with the limited published data available so far. Copyright 2008 by the American Geophysical Union.

  20. ForC: a global database of forest carbon stocks and fluxes.

    Anderson-Teixeira, Kristina J; Wang, Maria M H; McGarvey, Jennifer C; Herrmann, Valentine; Tepley, Alan J; Bond-Lamberty, Ben; LeBauer, David S

    2018-06-01

    Forests play an influential role in the global carbon (C) cycle, storing roughly half of terrestrial C and annually exchanging with the atmosphere more than five times the carbon dioxide (CO 2 ) emitted by anthropogenic activities. Yet, scaling up from field-based measurements of forest C stocks and fluxes to understand global scale C cycling and its climate sensitivity remains an important challenge. Tens of thousands of forest C measurements have been made, but these data have yet to be integrated into a single database that makes them accessible for integrated analyses. Here we present an open-access global Forest Carbon database (ForC) containing previously published records of field-based measurements of ecosystem-level C stocks and annual fluxes, along with disturbance history and methodological information. ForC expands upon the previously published tropical portion of this database, TropForC (https://doi.org/10.5061/dryad.t516f), now including 17,367 records (previously 3,568) representing 2,731 plots (previously 845) in 826 geographically distinct areas. The database covers all forested biogeographic and climate zones, represents forest stands of all ages, and currently includes data collected between 1934 and 2015. We expect that ForC will prove useful for macroecological analyses of forest C cycling, for evaluation of model predictions or remote sensing products, for quantifying the contribution of forests to the global C cycle, and for supporting international efforts to inventory forest carbon and greenhouse gas exchange. A dynamic version of ForC is maintained at on GitHub (https://GitHub.com/forc-db), and we encourage the research community to collaborate in updating, correcting, expanding, and utilizing this database. ForC is an open access database, and we encourage use of the data for scientific research and education purposes. Data may not be used for commercial purposes without written permission of the database PI. Any publications using For

  1. Top-down constraints on disturbance dynamics in the terrestrial carbon cycle: effects at global and regional scales

    Bloom, A. A.; Exbrayat, J. F.; van der Velde, I.; Peters, W.; Williams, M.

    2014-12-01

    Large uncertainties preside over terrestrial carbon flux estimates on a global scale. In particular, the strongly coupled dynamics between net ecosystem productivity and disturbance C losses are poorly constrained. To gain an improved understanding of ecosystem C dynamics from regional to global scale, we apply a Markov Chain Monte Carlo based model-data-fusion approach into the CArbon DAta-MOdel fraMework (CARDAMOM). We assimilate MODIS LAI and burned area, plant-trait data, and use the Harmonized World Soil Database (HWSD) and maps of above ground biomass as prior knowledge for initial conditions. We optimize model parameters based on (a) globally spanning observations and (b) ecological and dynamic constraints that force single parameter values and parameter inter-dependencies to be representative of real world processes. We determine the spatial and temporal dynamics of major terrestrial C fluxes and model parameter values on a global scale (GPP = 123 +/- 8 Pg C yr-1 & NEE = -1.8 +/- 2.7 Pg C yr-1). We further show that the incorporation of disturbance fluxes, and accounting for their instantaneous or delayed effect, is of critical importance in constraining global C cycle dynamics, particularly in the tropics. In a higher resolution case study centred on the Amazon Basin we show how fires not only trigger large instantaneous emissions of burned matter, but also how they are responsible for a sustained reduction of up to 50% in plant uptake following the depletion of biomass stocks. The combination of these two fire-induced effects leads to a 1 g C m-2 d-1reduction in the strength of the net terrestrial carbon sink. Through our simulations at regional and global scale, we advocate the need to assimilate disturbance metrics in global terrestrial carbon cycle models to bridge the gap between globally spanning terrestrial carbon cycle data and the full dynamics of the ecosystem C cycle. Disturbances are especially important because their quick occurrence may have

  2. Scenario and modelling uncertainty in global mean temperature change derived from emission-driven global climate models

    B. B. B. Booth

    2013-04-01

    Full Text Available We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission-driven rather than concentration-driven perturbed parameter ensemble of a global climate model (GCM. These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration-driven simulations (with 10–90th percentile ranges of 1.7 K for the aggressive mitigation scenario, up to 3.9 K for the high-end, business as usual scenario. A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 K (RCP8.5 and even under aggressive mitigation (RCP2.6 temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission-driven experiments, they do not change existing expectations (based on previous concentration-driven experiments on the timescales over which different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in the case of SRES A1B and the Representative Concentration Pathways (RCPs, the concentration scenarios used to drive GCM ensembles, lies towards the lower end of our simulated distribution. This design decision (a legacy of previous assessments is likely to lead concentration-driven experiments to under-sample strong feedback responses in future projections. Our ensemble of emission-driven simulations span the global temperature response of the CMIP5 emission-driven simulations, except at the low end. Combinations of low climate sensitivity and low carbon cycle feedbacks lead to a number of CMIP5 responses to lie below our ensemble range. The ensemble simulates a number of high

  3. Scenario and modelling uncertainty in global mean temperature change derived from emission-driven global climate models

    Booth, B. B. B.; Bernie, D.; McNeall, D.; Hawkins, E.; Caesar, J.; Boulton, C.; Friedlingstein, P.; Sexton, D. M. H.

    2013-04-01

    We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission-driven rather than concentration-driven perturbed parameter ensemble of a global climate model (GCM). These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration-driven simulations (with 10-90th percentile ranges of 1.7 K for the aggressive mitigation scenario, up to 3.9 K for the high-end, business as usual scenario). A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 K (RCP8.5) and even under aggressive mitigation (RCP2.6) temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission-driven experiments, they do not change existing expectations (based on previous concentration-driven experiments) on the timescales over which different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in the case of SRES A1B and the Representative Concentration Pathways (RCPs), the concentration scenarios used to drive GCM ensembles, lies towards the lower end of our simulated distribution. This design decision (a legacy of previous assessments) is likely to lead concentration-driven experiments to under-sample strong feedback responses in future projections. Our ensemble of emission-driven simulations span the global temperature response of the CMIP5 emission-driven simulations, except at the low end. Combinations of low climate sensitivity and low carbon cycle feedbacks lead to a number of CMIP5 responses to lie below our ensemble range. The ensemble simulates a number of high-end responses which lie

  4. Twelve metropolitan carbon footprints. A preliminary comparative global assessment

    Sovacool, Benjamin K.; Brown, Marilyn A.

    2010-01-01

    A dearth of available data on carbon emissions and comparative analysis between metropolitan areas make it difficult to confirm or refute best practices and policies. To help provide benchmarks and expand our understanding of urban centers and climate change, this article offers a preliminary comparison of the carbon footprints of 12 metropolitan areas. It does this by examining emissions related to vehicles, energy used in buildings, industry, agriculture, and waste. The carbon emissions from these sources - discussed here as the metro area's partial carbon footprint - provide a foundation for identifying the pricing, land use, help metropolitan areas throughout the world respond to climate change. The article begins by exploring a sample of the existing literature on urban morphology and climate change and explaining the methodology used to calculate each area's carbon footprint. The article then depicts the specific carbon footprints for Beijing, Jakarta, London, Los Angeles, Manila, Mexico City, New Delhi, New York, Sao Paulo, Seoul, Singapore, and Tokyo and compares these to respective national averages. It concludes by offering suggestions for how city planners and policymakers can reduce the carbon footprint of these and possibly other large urban areas. (author)

  5. The missing biology in land carbon models (Invited)

    Prentice, I. C.; Cornwell, W.; Dong, N.; Maire, V.; Wang, H.; Wright, I.

    2013-12-01

    Models of terrestrial carbon cycling give divergent results, and recent developments - notably the inclusion of nitrogen-carbon cycle coupling - have apparently made matters worse. More extensive benchmarking of models would be highly desirable, but is not a panacea. Problems with current models include overparameterization (assigning separate sets of parameter values for each plant functional type can easily obscure more fundamental model limitations), and the widespread persistence of incorrect paradigms to describe plant responses to environment. Next-generation models require a more sound basis in observations and theory. A possible way forward will be outlined. It will be shown how the principle of optimization by natural selection can yield testable, general hypotheses about plant function. A specific optimality hypothesis about the control of CO2 drawdown versus water loss by leaves will be shown to yield global and quantitatively verifable predictions of plant behaviour as demonstrated in field gas-exchange measurements across species from different environments, and in the global pattern of stable carbon isotope discrimination by plants. Combined with the co-limitation hypothesis for the control of photosynthetic capacity and an economic approach to the costs of nutrient acquisition, this hypothesis provides a potential foundation for a comprehensive predictive understanding of the controls of primary production on land.

  6. On the linkages between the global carbon-nitrogen-phosphorus cycles

    Tanaka, Katsumasa; Mackenzie, Fred; Bouchez, Julien; Knutti, Reto

    2013-04-01

    State-of-the-art earth system models used for long-term climate projections are becoming ever more complex in terms of not only spatial resolution but also the number of processes. Biogeochemical processes are beginning to be incorporated into these models. The motivation of this study is to quantify how climate projections are influenced by biogeochemical feedbacks. In the climate modeling community, it is virtually accepted that climate-Carbon (C) cycle feedbacks accelerate the future warming (Cox et al. 2000; Friedlingstein et al. 2006). It has been demonstrated that the Nitrogen (N) cycle suppresses climate-C cycle feedbacks (Thornton et al. 2009). On the contrary, biogeochemical studies show that the coupled C-N-Phosphorus (P) cycles are intimately interlinked via biosphere and the N-P cycles amplify C cycle feedbacks (Ver et al. 1999). The question as to whether the N-P cycles enhance or attenuate C cycle feedbacks is debated and has a significant implication for projections of future climate. We delve into this problem by using the Terrestrial-Ocean-aTmosphere Ecosystem Model 3 (TOTEM3), a globally-aggregated C-N-P cycle box model. TOTEM3 is a process-based model that describes the biogeochemical reactions and physical transports involving these elements in the four domains of the Earth system: land, atmosphere, coastal ocean, and open ocean. TOTEM3 is a successor of earlier TOTEM models (Ver et al. 1999; Mackenzie et al. 2011). In our presentation, we provide an overview of fundamental features and behaviors of TOTEM3 such as the mass balance at the steady state and the relaxation time scales to various types of perturbation. We also show preliminary results to investigate how the N-P cycles influence the behavior of the C cycle. References Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184-187. Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh

  7. Global Carbon Fiber Composites. Supply Chain Competitiveness Analysis

    Das, Sujit [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Warren, Joshua A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); West, Devin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Schexnayder, Susan M. [Univ. of Tennessee, Knoxville, TN (United States)

    2016-05-01

    The objective of this study is to identify key opportunities in the carbon fiber (CF) supply chain where resources and investments can help advance the clean energy economy. The report focuses on four application areas—wind energy, aerospace, automotive, and pressure vessels—that top the list of industries using CF and carbon fiber reinforced polymers (CFRP) and are particularly relevant to the mission of U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (DOE EERE). For each of the four application areas, the report addresses the supply and demand trends within that sector, supply chain, and costs of carbon fiber and components.

  8. Spatial modeling of agricultural land use change at global scale

    Meiyappan, P.; Dalton, M.; O'Neill, B. C.; Jain, A. K.

    2014-11-01

    Long-term modeling of agricultural land use is central in global scale assessments of climate change, food security, biodiversity, and climate adaptation and mitigation policies. We present a global-scale dynamic land use allocation model and show that it can reproduce the broad spatial features of the past 100 years of evolution of cropland and pastureland patterns. The modeling approach integrates economic theory, observed land use history, and data on both socioeconomic and biophysical determinants of land use change, and estimates relationships using long-term historical data, thereby making it suitable for long-term projections. The underlying economic motivation is maximization of expected profits by hypothesized landowners within each grid cell. The model predicts fractional land use for cropland and pastureland within each grid cell based on socioeconomic and biophysical driving factors that change with time. The model explicitly incorporates the following key features: (1) land use competition, (2) spatial heterogeneity in the nature of driving factors across geographic regions, (3) spatial heterogeneity in the relative importance of driving factors and previous land use patterns in determining land use allocation, and (4) spatial and temporal autocorrelation in land use patterns. We show that land use allocation approaches based solely on previous land use history (but disregarding the impact of driving factors), or those accounting for both land use history and driving factors by mechanistically fitting models for the spatial processes of land use change do not reproduce well long-term historical land use patterns. With an example application to the terrestrial carbon cycle, we show that such inaccuracies in land use allocation can translate into significant implications for global environmental assessments. The modeling approach and its evaluation provide an example that can be useful to the land use, Integrated Assessment, and the Earth system modeling

  9. The mid-Cretaceous super plume, carbon dioxide, and global warming

    Caldeira, Ken; Rampino, Michael R.

    1991-01-01

    Carbon-dioxide releases associated with a mid-Cretaceous super plume and the emplacement of the Ontong-Java Plateau have been suggested as a principal cause of the mid-Cretaceous global warming. A carbonate-silicate cycle model is developed to quantify the possible climatic effects of these CO2 releases, utilizing four different formulations for the rate of silicate-rock weathering as a function of atmospheric CO2. CO2 emissions resulting from super-plume tectonics could have produced atmospheric CO2 levels from 3.7 to 14.7 times the modern preindustrial value of 285 ppm. Based on the temperature sensitivity to CO2 increases used in the weathering-rate formulations, this would cause a global warming of from 2.8 to 7.7 C over today's glogal mean temperature. Altered continental positions and higher sea level may have been contributed about 4.8 C to mid-Cretaceous warming. Thus, the combined effects of paleogeographic changes and super-plume related CO2 emissions could be in the range of 7.6 to 12.5 C, within the 6 to 14 C range previously estimated for mid-Cretaceous warming. CO2 releases from oceanic plateaus alone are unlikely to have been directly responsible for more than 20 percent of the mid-Cretaceous increase in atmospheric CO2.

  10. Carbon inventories and atmospheric temperatures: A global and regional perspective

    DileepKumar, M.

    stream_size 3 stream_content_type text/plain stream_name Proc_Natl_Conf_Global_Temp_Rise_2007_133.pdf.txt stream_source_info Proc_Natl_Conf_Global_Temp_Rise_2007_133.pdf.txt Content-Encoding ISO-8859-1 Content-Type text...

  11. Development of an Integrated Global Energy Model

    Krakowski, R.A.

    1999-01-01

    The primary objective of this research was to develop a forefront analysis tool for application to enhance understanding of long-term, global, nuclear-energy and nuclear-material futures. To this end, an existing economics-energy-environmental (E 3 ) model was adopted, modified, and elaborated to examine this problem in a multi-regional (13), long-term (approximately2,100) context. The E 3 model so developed was applied to create a Los Alamos presence in this E 3 area through ''niche analyses'' that provide input to the formulation of policies dealing with and shaping of nuclear-energy and nuclear-materials futures. Results from analyses using the E 3 model have been presented at a variety of national and international conferences and workshops. Through use of the E 3 model Los Alamos was afforded the opportunity to participate in a multi-national E 3 study team that is examining a range of global, long-term nuclear issues under the auspices of the IAEA during the 1998-99 period . Finally, the E 3 model developed under this LDRD project is being used as an important component in more recent Nuclear Material Management Systems (NMMS) project

  12. Drought Persistence Errors in Global Climate Models

    Moon, H.; Gudmundsson, L.; Seneviratne, S. I.

    2018-04-01

    The persistence of drought events largely determines the severity of socioeconomic and ecological impacts, but the capability of current global climate models (GCMs) to simulate such events is subject to large uncertainties. In this study, the representation of drought persistence in GCMs is assessed by comparing state-of-the-art GCM model simulations to observation-based data sets. For doing so, we consider dry-to-dry transition probabilities at monthly and annual scales as estimates for drought persistence, where a dry status is defined as negative precipitation anomaly. Though there is a substantial spread in the drought persistence bias, most of the simulations show systematic underestimation of drought persistence at global scale. Subsequently, we analyzed to which degree (i) inaccurate observations, (ii) differences among models, (iii) internal climate variability, and (iv) uncertainty of the employed statistical methods contribute to the spread in drought persistence errors using an analysis of variance approach. The results show that at monthly scale, model uncertainty and observational uncertainty dominate, while the contribution from internal variability is small in most cases. At annual scale, the spread of the drought persistence error is dominated by the statistical estimation error of drought persistence, indicating that the partitioning of the error is impaired by the limited number of considered time steps. These findings reveal systematic errors in the representation of drought persistence in current GCMs and suggest directions for further model improvement.

  13. A diagnostic study of temperature controls on global terrestrial carbon exchange

    Vukicevic, Tomislava; Schimel, David

    2001-01-01

    The observed interannual variability of atmospheric CO 2 reflects short-term variability in sources and sinks of CO 2 . Analyses using 13 C and O 2 suggest that much of the observed interannual variability is due to changes in terrestrial CO 2 exchange. First principles, empirical correlations and process models suggest a link between climate variation and net ecosystem exchange, but the scaling of ecological process studies to the globe is notoriously difficult. We sought to identify a component of global CO 2 exchange that varied coherently with land temperature anomalies using an inverse modeling approach. We developed a family of simplified spatially aggregated ecosystem models (designated K-model versions) consisting of five compartments: atmospheric CO 2 , live vegetation, litter, and two soil pools that differ in turnover times. The pools represent cumulative differences from mean storage due to temperature variability and can thus have positive or negative values. Uptake and respiration of CO 2 are assumed to be linearly dependent on temperature. One model version includes a simple representation of the nitrogen cycle in which changes in the litter and soil carbon pools result in stoichiometric release of plant-available nitrogen, the other omits the nitrogen feedback. The model parameters were estimated by inversion of the model against global temperature and CO 2 anomaly data using the variational method. We found that the temperature sensitivity of carbon uptake (NPP) was less than that of respiration in all model versions. Analyses of model and data also showed that temperature anomalies trigger ecosystem changes on multiple, lagged time-scales. Other recent studies have suggested a more active land biosphere at Northern latitudes in response to warming and longer growing seasons. Our results indicate that warming should increase NPP, consistent with this theory, but that respiration should increase more than NPP, leading to decreased or negative NEP. A

  14. Global Carbon Fiber Composites Supply Chain Competitiveness Analysis

    Das, Sujit [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Warren, Josh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); West, Devin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Schexnayder, Susan M. [Univ. of Tennessee, Knoxville, TN (United States)

    2016-05-01

    This study identifies key opportunities in the carbon fiber supply chain where the United States Department of Energy's Office of Energy Efficiency and Renewable Energy resources and investments can help the United States achieve or maintain a competitive advantage. The report focuses on four application areas--wind energy, aerospace, automotive, and pressure vessels--that top the list of industries using carbon fiber and carbon fiber reinforced polymers and are also particularly relevant to EERE's mission. For each of the four application areas, the report addresses the supply and demand trends within that sector, supply chain, and costs of carbon fiber and components, all contributing to a competitiveness assessment that addresses the United States' role in future industry growth. This report was prepared by researchers at Oak Ridge National Laboratory and the University of Tennessee for the Clean Energy Manufacturing Analysis Center.

  15. Gas flaring: Carbon dioxide contribution to global warming ...

    Journal Home > Vol 20, No 2 (2016) > ... The quantitative method of analysis showed that carbon dioxide from gas ... gas flaring cause environmental degradation, health risks and constitute financial loss to the local oil producing communities.

  16. Gas Flaring: Carbon dioxide Contribution to Global Warming ...

    PROF HORSFALL

    emissions resulting from high consumption of fossil fuels. Flaring been a ... method of analysis showed that carbon dioxide from gas flaring constitute 1% of the total ... Although of these, methane is potentially the most .... in some gas plants.

  17. ORCHIDEE-SOM: modeling soil organic carbon (SOC) and dissolved organic carbon (DOC) dynamics along vertical soil profiles in Europe

    Camino-Serrano, Marta; Guenet, Bertrand; Luyssaert, Sebastiaan; Ciais, Philippe; Bastrikov, Vladislav; De Vos, Bruno; Gielen, Bert; Gleixner, Gerd; Jornet-Puig, Albert; Kaiser, Klaus; Kothawala, Dolly; Lauerwald, Ronny; Peñuelas, Josep; Schrumpf, Marion; Vicca, Sara; Vuichard, Nicolas; Walmsley, David; Janssens, Ivan A.

    2018-03-01

    Current land surface models (LSMs) typically represent soils in a very simplistic way, assuming soil organic carbon (SOC) as a bulk, and thus impeding a correct representation of deep soil carbon dynamics. Moreover, LSMs generally neglect the production and export of dissolved organic carbon (DOC) from soils to rivers, leading to overestimations of the potential carbon sequestration on land. This common oversimplified processing of SOC in LSMs is partly responsible for the large uncertainty in the predictions of the soil carbon response to climate change. In this study, we present a new soil carbon module called ORCHIDEE-SOM, embedded within the land surface model ORCHIDEE, which is able to reproduce the DOC and SOC dynamics in a vertically discretized soil to 2 m. The model includes processes of biological production and consumption of SOC and DOC, DOC adsorption on and desorption from soil minerals, diffusion of SOC and DOC, and DOC transport with water through and out of the soils to rivers. We evaluated ORCHIDEE-SOM against observations of DOC concentrations and SOC stocks from four European sites with different vegetation covers: a coniferous forest, a deciduous forest, a grassland, and a cropland. The model was able to reproduce the SOC stocks along their vertical profiles at the four sites and the DOC concentrations within the range of measurements, with the exception of the DOC concentrations in the upper soil horizon at the coniferous forest. However, the model was not able to fully capture the temporal dynamics of DOC concentrations. Further model improvements should focus on a plant- and depth-dependent parameterization of the new input model parameters, such as the turnover times of DOC and the microbial carbon use efficiency. We suggest that this new soil module, when parameterized for global simulations, will improve the representation of the global carbon cycle in LSMs, thus helping to constrain the predictions of the future SOC response to global

  18. Decarbonizing the Global Economy - An Integrated Assessment of Low Carbon Emission Scenarios proposed in Climate Policy

    Hokamp, Sascha; Khabbazan, Mohammad Mohammadi

    2017-04-01

    In 2015, the Conference of the Parties (COP 21) reaffirmed to targeting the global mean temperature rise below 2 °C in 2100 while finding no consent on decarbonizing the global economy, and instead, the final agreement called for enhanced scientific investigation of low carbon emission scenarios (UNFCC, 2015). In addition, the Climate Action Network International (CAN) proposes Special Reports to address decarbonization and low carbon development including 1.5 °C scenarios (IPCC, 2016). In response to these developments, we investigate whether the carbon emission cuts, in accordance with the recent climate policy proposals, may reach the climate target. To tackle this research question, we employ the coupled climate-energy-economy integrated assessment Model of INvestment and endogenous technological Development (MIND, cf. Edenhofer et al., 2005, Neubersch et al. 2014). Extending MIND's climate module to the two-box version used in the Dynamic Integrated model of Climate and the Economy (DICE, cf. Nordhaus and Sztorc, 2013, Nordhaus 2014), we perform a cost-effectiveness analysis with constraints on anthropogenic carbon emissions. We show that a climate policy scenario with early decarbonization complies with the 2° C climate target, even without Carbon Capturing and Storage (CCS) or negative emissions (see van Vuuren et al., 2013, for negative emissions). However, using emission inertia of 3.7 percent annually, reflecting the inflexibility on transforming the energy sector, we find a climate policy with moderately low emissions from 2100 onwards at a cost in terms of Balanced Growth Equivalents (BGE, cf. Anthoff and Tol, 2009) of 0.764 % that requires an early (2035 vs. 2120) peak of investments in renewable energy production compared to a business-as-usual scenario. Hence, decarbonizing the global economy and achieving the 2 °C target might still be possible before 2100, but the window of opportunity is beginning to close. References: Anthoff, D., and Tol, R

  19. A framework for assessing global change risks to forest carbon stocks in the United States

    Christopher W. Woodall; Grant M. Domke; Karin L. Riley; Christopher M. Oswalt; Susan J. Crocker; Gary W. Yohe

    2013-01-01

    Among terrestrial environments, forests are not only the largest long-term sink of atmospheric carbon (C), but are also susceptible to global change themselves, with potential consequences including alterations of C cycles and potential C emission. To inform global change risk assessment of forest C across large spatial/temporal scales, this study constructed and...

  20. A satellite-based global landslide model

    A. Farahmand

    2013-05-01

    Full Text Available Landslides are devastating phenomena that cause huge damage around the world. This paper presents a quasi-global landslide model derived using satellite precipitation data, land-use land cover maps, and 250 m topography information. This suggested landslide model is based on the Support Vector Machines (SVM, a machine learning algorithm. The National Aeronautics and Space Administration (NASA Goddard Space Flight Center (GSFC landslide inventory data is used as observations and reference data. In all, 70% of the data are used for model development and training, whereas 30% are used for validation and verification. The results of 100 random subsamples of available landslide observations revealed that the suggested landslide model can predict historical landslides reliably. The average error of 100 iterations of landslide prediction is estimated to be approximately 7%, while approximately 2% false landslide events are observed.

  1. A hydroclimatic model of global fire patterns

    Boer, Matthias

    2015-04-01

    Satellite-based earth observation is providing an increasingly accurate picture of global fire patterns. The highest fire activity is observed in seasonally dry (sub-)tropical environments of South America, Africa and Australia, but fires occur with varying frequency, intensity and seasonality in almost all biomes on Earth. The particular combination of these fire characteristics, or fire regime, is known to emerge from the combined influences of climate, vegetation, terrain and land use, but has so far proven difficult to reproduce by global models. Uncertainty about the biophysical drivers and constraints that underlie current global fire patterns is propagated in model predictions of how ecosystems, fire regimes and biogeochemical cycles may respond to projected future climates. Here, I present a hydroclimatic model of global fire patterns that predicts the mean annual burned area fraction (F) of 0.25° x 0.25° grid cells as a function of the climatic water balance. Following Bradstock's four-switch model, long-term fire activity levels were assumed to be controlled by fuel productivity rates and the likelihood that the extant fuel is dry enough to burn. The frequency of ignitions and favourable fire weather were assumed to be non-limiting at long time scales. Fundamentally, fuel productivity and fuel dryness are a function of the local water and energy budgets available for the production and desiccation of plant biomass. The climatic water balance summarizes the simultaneous availability of biologically usable energy and water at a site, and may therefore be expected to explain a significant proportion of global variation in F. To capture the effect of the climatic water balance on fire activity I focused on the upper quantiles of F, i.e. the maximum level of fire activity for a given climatic water balance. Analysing GFED4 data for annual burned area together with gridded climate data, I found that nearly 80% of the global variation in the 0.99 quantile of F

  2. On coupling global biome models with climate models

    Claussen, M.

    1994-01-01

    The BIOME model of Prentice et al. (1992), which predicts global vegetation patterns in equilibrium with climate, is coupled with the ECHAM climate model of the Max-Planck-Institut fuer Meteorologie, Hamburg. It is found that incorporation of the BIOME model into ECHAM, regardless at which frequency, does not enhance the simulated climate variability, expressed in terms of differences between global vegetation patterns. Strongest changes are seen only between the initial biome distribution and the biome distribution computed after the first simulation period, provided that the climate-biome model is started from a biome distribution that resembles the present-day distribution. After the first simulation period, there is no significant shrinking, expanding, or shifting of biomes. Likewise, no trend is seen in global averages of land-surface parameters and climate variables. (orig.)

  3. Diamond carbon sources: a comparison of carbon isotope models

    Kirkley, M.B.; Otter, M.L.; Gurney, J.J.; Hill, S.J.

    1990-01-01

    The carbon isotope compositions of approximately 500 inclusion-bearing diamonds have been determined in the past decade. 98 percent of these diamonds readily fall into two broad categories on the basis of their inclusion mineralogies and compositions. These categories are peridotitic diamonds and eclogitic diamonds. Most peridotitic diamonds have δ 13 C values between -10 and -1 permil, whereas eclogitic diamonds have δ 13 C values between -28 and +2 permil. Peridotitic diamonds may represent primordial carbon, however, it is proposed that initially inhomogeneous δ 13 C values were subsequently homogenized, e.g. during melting and convection that is postulated to have occurred during the first billion years of the earth's existence. If this is the case, then the wider range of δ 13 C values exhibited by eclogitic diamonds requires a different explanation. Both the fractionation model and the subduction model can account for the range of observed δ 13 C values in eclogitic diamonds. 16 refs., 2 figs

  4. Tree-Based Global Model Tests for Polytomous Rasch Models

    Komboz, Basil; Strobl, Carolin; Zeileis, Achim

    2018-01-01

    Psychometric measurement models are only valid if measurement invariance holds between test takers of different groups. Global model tests, such as the well-established likelihood ratio (LR) test, are sensitive to violations of measurement invariance, such as differential item functioning and differential step functioning. However, these…

  5. Global and local level density models

    Koning, A.J.; Hilaire, S.; Goriely, S.

    2008-01-01

    Four different level density models, three phenomenological and one microscopic, are consistently parameterized using the same set of experimental observables. For each of the phenomenological models, the Constant Temperature Model, the Back-shifted Fermi gas Model and the Generalized Superfluid Model, a version without and with explicit collective enhancement is considered. Moreover, a recently published microscopic combinatorial model is compared with the phenomenological approaches and with the same set of experimental data. For each nuclide for which sufficient experimental data exists, a local level density parameterization is constructed for each model. Next, these local models have helped to construct global level density prescriptions, to be used for cases for which no experimental data exists. Altogether, this yields a collection of level density formulae and parameters that can be used with confidence in nuclear model calculations. To demonstrate this, a large-scale validation with experimental discrete level schemes and experimental cross sections and neutron emission spectra for various different reaction channels has been performed

  6. GEM-AQ/EC, an on-line global multi-scale chemical weather modelling system: model development and evaluation of global aerosol climatology

    S. L. Gong

    2012-09-01

    Full Text Available A global air quality modeling system GEM-AQ/EC was developed by implementing tropospheric chemistry and aerosol processes on-line into the Global Environmental Multiscale weather prediction model – GEM. Due to the multi-scale features of the GEM, the integrated model, GEM-AQ/EC, is able to investigate chemical weather at scales from global to urban domains. The current chemical mechanism is comprised of 50 gas-phase species, 116 chemical and 19 photolysis reactions, and is complemented by a sectional aerosol module CAM (The Canadian Aerosol Module with 5 aerosols types: sulphate, black carbon, organic carbon, sea-salt and soil dust. Monthly emission inventories of black carbon and organic carbon from boreal and temperate vegetation fires were assembled using the most reliable areas burned datasets by countries, from statistical databases and derived from remote sensing products of 1995–2004. The model was run for ten years from from 1995–2004 with re-analyzed meteorology on a global uniform 1° × 1° horizontal resolution domain and 28 hybrid levels extending up to 10 hPa. The simulating results were compared with various observations including surface network around the globe and satellite data. Regional features of global aerosols are reasonably captured including emission, surface concentrations and aerosol optical depth. For various types of aerosols, satisfactory correlations were achieved between modeled and observed with some degree of systematic bias possibly due to large uncertainties in the emissions used in this study. A global distribution of natural aerosol contributions to the total aerosols is obtained and compared with observations.

  7. Representing leaf and root physiological traits in CLM improves global carbon and nitrogen cycling predictions

    Ghimire, Bardan; Riley, William J.; Koven, Charles D.; Mu, Mingquan; Randerson, James T.

    2016-06-01

    In many ecosystems, nitrogen is the most limiting nutrient for plant growth and productivity. However, current Earth System Models (ESMs) do not mechanistically represent functional nitrogen allocation for photosynthesis or the linkage between nitrogen uptake and root traits. The current version of CLM (4.5) links nitrogen availability and plant productivity via (1) an instantaneous downregulation of potential photosynthesis rates based on soil mineral nitrogen availability, and (2) apportionment of soil nitrogen between plants and competing nitrogen consumers assumed to be proportional to their relative N demands. However, plants do not photosynthesize at potential rates and then downregulate; instead photosynthesis rates are governed by nitrogen that has been allocated to the physiological processes underpinning photosynthesis. Furthermore, the role of plant roots in nutrient acquisition has also been largely ignored in ESMs. We therefore present a new plant nitrogen model for CLM4.5 with (1) improved representations of linkages between leaf nitrogen and plant productivity based on observed relationships in a global plant trait database and (2) plant nitrogen uptake based on root-scale Michaelis-Menten uptake kinetics. Our model improvements led to a global bias reduction in GPP, LAI, and biomass of 70%, 11%, and 49%, respectively. Furthermore, water use efficiency predictions were improved conceptually, qualitatively, and in magnitude. The new model's GPP responses to nitrogen deposition, CO2 fertilization, and climate also differed from the baseline model. The mechanistic representation of leaf-level nitrogen allocation and a theoretically consistent treatment of competition with belowground consumers led to overall improvements in global carbon cycling predictions.

  8. Global assessment of promising forest management practices for sequestration of carbon

    Winjum, J.K.; Dixon, R.K.; Schroeder, P.E.

    1991-01-01

    In the 1980s, forests covered an estimated 4.08 billion hectares and contained a carbon pool of 1,400 gigatonnes, or 64% of the total terrestrial pool. Forest biomass productivity per unit of land can be enhanced by proper management practices and it is suggested that by implementing such practices, forests could store more carbon globally and thereby slow the increase in atmospheric CO 2 . Currently, only about 10% of world forests are managed at an active level. An assessment is presented of the amount of carbon that could be sequestered globally by implementing the practices of reforestation, afforestation, natural regeneration, silviculture, and agroforestry. The assessment is based on the development of a global database on managed forest and agroforestry systems. For each of the above five practices, the database contains information on carbon sequestered per hectare, implementation costs, and estimates of the amount of land technically suitable for such practices throughout the world. Results are presented for each practice in the boreal, temperate, and tropical regions. Preliminary estimates show that promising forestry and agroforestry practices could sequester, over a 50-y period, ca 50-100 gigatonnes of carbon at a cost of $170-340 million. This would be a significant contribution as a mitigating measure regarding atmospheric CO 2 buildup and projections for global warming, at present rates of anthropogenic carbon emissions (300-400 gigatonnes carbon over 50 y). 19 refs., 2 figs., 4 tabs

  9. A Global Model of Meteoric Sodium

    Marsh, Daniel R.; Janches, Diego; Feng, Wuhu; Plane, John M. C.

    2013-01-01

    A global model of sodium in the mesosphere and lower thermosphere has been developed within the framework of the National Center for Atmospheric Research's Whole Atmosphere Community Climate Model (WACCM). The standard fully interactive WACCM chemistry module has been augmented with a chemistry scheme that includes nine neutral and ionized sodium species. Meteoric ablation provides the source of sodium in the model and is represented as a combination of a meteoroid input function (MIF) and a parameterized ablation model. The MIF provides the seasonally and latitudinally varying meteoric flux which is modeled taking into consideration the astronomical origins of sporadic meteors and considers variations in particle entry angle, velocity, mass, and the differential ablation of the chemical constituents. WACCM simulations show large variations in the sodium constituents over time scales from days to months. Seasonality of sodium constituents is strongly affected by variations in the MIF and transport via the mean meridional wind. In particular, the summer to winter hemisphere flow leads to the highest sodium species concentrations and loss rates occurring over the winter pole. In the Northern Hemisphere, this winter maximum can be dramatically affected by stratospheric sudden warmings. Simulations of the January 2009 major warming event show that it caused a short-term decrease in the sodium column over the polar cap that was followed by a factor of 3 increase in the following weeks. Overall, the modeled distribution of atomic sodium in WACCM agrees well with both ground-based and satellite observations. Given the strong sensitivity of the sodium layer to dynamical motions, reproducing its variability provides a stringent test of global models and should help to constrain key atmospheric variables in this poorly sampled region of the atmosphere.

  10. Global adjoint tomography: first-generation model

    Bozdağ, Ebru

    2016-09-23

    We present the first-generation global tomographic model constructed based on adjoint tomography, an iterative full-waveform inversion technique. Synthetic seismograms were calculated using GPU-accelerated spectral-element simulations of global seismic wave propagation, accommodating effects due to 3-D anelastic crust & mantle structure, topography & bathymetry, the ocean load, ellipticity, rotation, and self-gravitation. Fréchet derivatives were calculated in 3-D anelastic models based on an adjoint-state method. The simulations were performed on the Cray XK7 named \\'Titan\\', a computer with 18 688 GPU accelerators housed at Oak Ridge National Laboratory. The transversely isotropic global model is the result of 15 tomographic iterations, which systematically reduced differences between observed and simulated three-component seismograms. Our starting model combined 3-D mantle model S362ANI with 3-D crustal model Crust2.0. We simultaneously inverted for structure in the crust and mantle, thereby eliminating the need for widely used \\'crustal corrections\\'. We used data from 253 earthquakes in the magnitude range 5.8 ≤ M ≤ 7.0. We started inversions by combining ~30 s body-wave data with ~60 s surface-wave data. The shortest period of the surface waves was gradually decreased, and in the last three iterations we combined ~17 s body waves with ~45 s surface waves. We started using 180 min long seismograms after the 12th iteration and assimilated minor- and major-arc body and surface waves. The 15th iteration model features enhancements of well-known slabs, an enhanced image of the Samoa/Tahiti plume, as well as various other plumes and hotspots, such as Caroline, Galapagos, Yellowstone and Erebus. Furthermore, we see clear improvements in slab resolution along the Hellenic and Japan Arcs, as well as subduction along the East of Scotia Plate, which does not exist in the starting model. Point-spread function tests demonstrate that we are approaching the

  11. Sub-grid scale representation of vegetation in global land surface schemes: implications for estimation of the terrestrial carbon sink

    J. R. Melton

    2014-02-01

    Full Text Available Terrestrial ecosystem models commonly represent vegetation in terms of plant functional types (PFTs and use their vegetation attributes in calculations of the energy and water balance as well as to investigate the terrestrial carbon cycle. Sub-grid scale variability of PFTs in these models is represented using different approaches with the "composite" and "mosaic" approaches being the two end-members. The impact of these two approaches on the global carbon balance has been investigated with the Canadian Terrestrial Ecosystem Model (CTEM v 1.2 coupled to the Canadian Land Surface Scheme (CLASS v 3.6. In the composite (single-tile approach, the vegetation attributes of different PFTs present in a grid cell are aggregated and used in calculations to determine the resulting physical environmental conditions (soil moisture, soil temperature, etc. that are common to all PFTs. In the mosaic (multi-tile approach, energy and water balance calculations are performed separately for each PFT tile and each tile's physical land surface environmental conditions evolve independently. Pre-industrial equilibrium CLASS-CTEM simulations yield global totals of vegetation biomass, net primary productivity, and soil carbon that compare reasonably well with observation-based estimates and differ by less than 5% between the mosaic and composite configurations. However, on a regional scale the two approaches can differ by > 30%, especially in areas with high heterogeneity in land cover. Simulations over the historical period (1959–2005 show different responses to evolving climate and carbon dioxide concentrations from the two approaches. The cumulative global terrestrial carbon sink estimated over the 1959–2005 period (excluding land use change (LUC effects differs by around 5% between the two approaches (96.3 and 101.3 Pg, for the mosaic and composite approaches, respectively and compares well with the observation-based estimate of 82.2 ± 35 Pg C over the same

  12. Southward shift of the global wind energy resource under high carbon dioxide emissions

    Karnauskas, Kristopher B.; Lundquist, Julie K.; Zhang, Lei

    2018-01-01

    The use of wind energy resource is an integral part of many nations' strategies towards realizing the carbon emissions reduction targets set forth in the Paris Agreement, and global installed wind power cumulative capacity has grown on average by 22% per year since 2006. However, assessments of wind energy resource are usually based on today's climate, rather than taking into account that anthropogenic greenhouse gas emissions continue to modify the global atmospheric circulation. Here, we apply an industry wind turbine power curve to simulations of high and low future emissions scenarios in an ensemble of ten fully coupled global climate models to investigate large-scale changes in wind power across the globe. Our calculations reveal decreases in wind power across the Northern Hemisphere mid-latitudes and increases across the tropics and Southern Hemisphere, with substantial regional variations. The changes across the northern mid-latitudes are robust responses over time in both emissions scenarios, whereas the Southern Hemisphere changes appear critically sensitive to each individual emissions scenario. In addition, we find that established features of climate change can explain these patterns: polar amplification is implicated in the northern mid-latitude decrease in wind power, and enhanced land-sea thermal gradients account for the tropical and southern subtropical increases.

  13. Fracture of Carbon Nanotube - Amorphous Carbon Composites: Molecular Modeling

    Jensen, Benjamin D.; Wise, Kristopher E.; Odegard, Gregory M.

    2015-01-01

    Carbon nanotubes (CNTs) are promising candidates for use as reinforcements in next generation structural composite materials because of their extremely high specific stiffness and strength. They cannot, however, be viewed as simple replacements for carbon fibers because there are key differences between these materials in areas such as handling, processing, and matrix design. It is impossible to know for certain that CNT composites will represent a significant advance over carbon fiber composites before these various factors have been optimized, which is an extremely costly and time intensive process. This work attempts to place an upper bound on CNT composite mechanical properties by performing molecular dynamics simulations on idealized model systems with a reactive forcefield that permits modeling of both elastic deformations and fracture. Amorphous carbon (AC) was chosen for the matrix material in this work because of its structural simplicity and physical compatibility with the CNT fillers. It is also much stiffer and stronger than typical engineering polymer matrices. Three different arrangements of CNTs in the simulation cell have been investigated: a single-wall nanotube (SWNT) array, a multi-wall nanotube (MWNT) array, and a SWNT bundle system. The SWNT and MWNT array systems are clearly idealizations, but the SWNT bundle system is a step closer to real systems in which individual tubes aggregate into large assemblies. The effect of chemical crosslinking on composite properties is modeled by adding bonds between the CNTs and AC. The balance between weakening the CNTs and improving fiber-matrix load transfer is explored by systematically varying the extent of crosslinking. It is, of course, impossible to capture the full range of deformation and fracture processes that occur in real materials with even the largest atomistic molecular dynamics simulations. With this limitation in mind, the simulation results reported here provide a plausible upper limit on

  14. Do forests have a say in global carbon markets for climate stabilization policy?

    Tavoni, M.; Bosetti, V. [Fondazione Eni Enrico Mattei, FEEM (Italy); Sohngen, B. [Ohio State Univ., Dept. of Agr., Env., and Dev. Economics (United States)

    2007-05-15

    While carbon sequestration was included in the Kyoto Protocol, its potential scope as a mitigation activity has been highly debated in subsequent negotiations. Notwithstanding the widespread research suggesting that biological sequestration of carbon can play an important role for reducing greenhouse gas emissions, the nations in the Kyoto Protocol have so far only haltingly incorporated forestry measures, for a variety of reasons. One concern revolved around the validity of measuring and monitoring land-based activities to prove that they provided additional carbon storage, as for example error bounds for measuring and monitoring carbon in forests are fairly large. A second reason for the setbacks to forest sequestration regarded whether carbon sequestration would reduce carbon prices and consequently the quantity of abatement provided by the energy sector. Only the energy sector, after all, can ensure permanent reductions in CO{sub 2} emissions. This concern implies that forest carbon sequestration could be large enough to influence carbon prices in a global carbon market. Clearly, if prices are lower the deployment of low carbon measures and technologies could be delayed, for example by reducing incentives for technological evolution. Yet, enriching the mitigation portfolio with forestry could bring a significant contribution. Global policies meant to stabilize greenhouse gas concentrations in the future will arguably require a vast bundle of measures to meet ambitious targets. The first set of concerns has been widely addressed in a range of publications, including those of the Intergovernmental Panel on Climate Change. Remarkably less attention has been devoted to the second set of concerns. In this article we try to fill the gap by analyzing the impact biological carbon sequestration has on a policy to stabilize carbon emissions. In doing so we are able to evaluate a potentially attractive mitigation option like carbon sinks accounting for the influence the

  15. Challenges in Modeling of the Global Atmosphere

    Janjic, Zavisa; Djurdjevic, Vladimir; Vasic, Ratko; Black, Tom

    2015-04-01

    ") with significant amplitudes can develop. Due to their large scales, that are comparable to the scales of the dominant Rossby waves, such fictitious solutions are hard to identify and remove. Another new challenge on the global scale is that the limit of validity of the hydrostatic approximation is rapidly being approached. Having in mind the sensitivity of extended deterministic forecasts to small disturbances, we may need global non-hydrostatic models sooner than we think. The unified Non-hydrostatic Multi-scale Model (NMMB) that is being developed at the National Centers for Environmental Prediction (NCEP) as a part of the new NOAA Environmental Modeling System (NEMS) will be discussed as an example. The non-hydrostatic dynamics were designed in such a way as to avoid over-specification. The global version is run on the latitude-longitude grid, and the polar filter selectively slows down the waves that would otherwise be unstable. The model formulation has been successfully tested on various scales. A global forecasting system based on the NMMB has been run in order to test and tune the model. The skill of the medium range forecasts produced by the NMMB is comparable to that of other major medium range models. The computational efficiency of the global NMMB on parallel computers is good.

  16. The Impact of Variable Phytoplankton Stoichiometry on Projections of Primary Production, Food Quality, and Carbon Uptake in the Global Ocean

    Kwiatkowski, Lester; Aumont, Olivier; Bopp, Laurent; Ciais, Philippe

    2018-04-01

    Ocean biogeochemical models are integral components of Earth system models used to project the evolution of the ocean carbon sink, as well as potential changes in the physical and chemical environment of marine ecosystems. In such models the stoichiometry of phytoplankton C:N:P is typically fixed at the Redfield ratio. The observed stoichiometry of phytoplankton, however, has been shown to considerably vary from Redfield values due to plasticity in the expression of phytoplankton cell structures with different elemental compositions. The intrinsic structure of fixed C:N:P models therefore has the potential to bias projections of the marine response to climate change. We assess the importance of variable stoichiometry on 21st century projections of net primary production, food quality, and ocean carbon uptake using the recently developed Pelagic Interactions Scheme for Carbon and Ecosystem Studies Quota (PISCES-QUOTA) ocean biogeochemistry model. The model simulates variable phytoplankton C:N:P stoichiometry and was run under historical and business-as-usual scenario forcing from 1850 to 2100. PISCES-QUOTA projects similar 21st century global net primary production decline (7.7%) to current generation fixed stoichiometry models. Global phytoplankton N and P content or food quality is projected to decline by 1.2% and 6.4% over the 21st century, respectively. The largest reductions in food quality are in the oligotrophic subtropical gyres and Arctic Ocean where declines by the end of the century can exceed 20%. Using the change in the carbon export efficiency in PISCES-QUOTA, we estimate that fixed stoichiometry models may be underestimating 21st century cumulative ocean carbon uptake by 0.5-3.5% (2.0-15.1 PgC).

  17. Characterizing post-industrial changes in the ocean carbon cycle in an Earth system model

    Matsumoto, Katsumi; Tokos, Kathy S.; Chikamoto, Megumi O. (Geology and Geophysics, Univ. of Minnesota, MN (United States)), e-mail: katsumi@umn.edu; Ridgwell, Andy (School of Geographical Sciences, Univ. of Bristol, Bristol (United Kingdom))

    2010-10-22

    Understanding the oceanic uptake of carbon from the atmosphere is essential for better constraining the global budget, as well as for predicting the air-borne fraction of CO{sub 2} emissions and thus degree of climate change. Gaining this understanding is difficult, because the 'natural' carbon cycle, the part of the global carbon cycle unaltered by CO{sub 2} emissions, also responds to climate change and ocean acidification. Using a global climate model of intermediate complexity, we assess the evolution of the natural carbon cycle over the next few centuries. We find that physical mechanisms, particularly Atlantic meridional overturning circulation and gas solubility, alter the natural carbon cycle the most and lead to a significant reduction in the overall oceanic carbon uptake. Important biological mechanisms include reduced organic carbon export production due to reduced nutrient supply, increased organic carbon production due to higher temperatures and reduced CaCO{sub 3} production due to increased ocean acidification. A large ensemble of model experiments indicates that the most important source of uncertainty in ocean uptake projections in the near term future are the upper ocean vertical diffusivity and gas exchange coefficient. By year 2300, the model's climate sensitivity replaces these two and becomes the dominant factor as global warming continues

  18. Modeling the dynamics of carbon dioxide removal in the atmosphere

    Shyam Sundar

    2014-12-01

    Full Text Available The temperature of Earth's surface is increasing over the past few years due to emission of global warming gases such as CO2, CH4 and NOx from industries, power plants, etc., leading to several adverse effects on human and his environment. Therefore, the question of their removal/reduction from the atmosphere is very important. In this paper, a nonlinear mathematical model to study the removal/reduction of carbon dioxide by using suitable absorbent (such as aqueous ammonia solution, amines, sodium hydroxide, etc. near the source of emission and externally introducing liquid species in the atmosphere is presented. Dynamical properties of the model which include local and global stabilities for the equilibrium are analyzed carefully. Model analysis is performed by considering three physical situations i.e. when both absorbent and the liquid species are used, only absorbent is used and only liquid species is used. It is shown that the concentration of carbon dioxide decreases as the rate of introduction of absorbent in the absorber increases. It decreases further as the rate of introduction of liquid species. Thus, the concentration of carbon dioxide would be reduced by a large amount if adequate amount of absorbent is used near the source of emission. The remaining amount can be reduced further by infusing liquid drops in the atmosphere. Numerical simulations are also carried out to support the analytical results.

  19. Global variation in the cost of increasing ecosystem carbon

    Larjavaara, Markku; Kanninen, Markku; Gordillo, Harold; Koskinen, Joni; Kukkonen, Markus; Käyhkö, Niina; Larson, Anne M.; Wunder, Sven

    2018-01-01

    Slowing the reduction, or increasing the accumulation, of organic carbon stored in biomass and soils has been suggested as a potentially rapid and cost-effective method to reduce the rate of atmospheric carbon increase1. The costs of mitigating climate change by increasing ecosystem carbon relative to the baseline or business-as-usual scenario has been quantified in numerous studies, but results have been contradictory, as both methodological issues and substance differences cause variability2. Here we show, based on 77 standardized face-to-face interviews of local experts with the best possible knowledge of local land-use economics and sociopolitical context in ten landscapes around the globe, that the estimated cost of increasing ecosystem carbon varied vastly and was perceived to be 16-27 times cheaper in two Indonesian landscapes dominated by peatlands compared with the average of the eight other landscapes. Hence, if reducing emissions from deforestation and forest degradation (REDD+) and other land-use mitigation efforts are to be distributed evenly across forested countries, for example, for the sake of international equity, their overall effectiveness would be dramatically lower than for a cost-minimizing distribution.

  20. The CarbonTracker Data Assimilation Shell (CTDAS) v1.0: implementation and global carbon balance 2001-2015

    van der Laan-Luijkx, Ingrid T.; van der Velde, Ivar R.; van der Veen, Emma; Tsuruta, Aki; Stanislawska, Karolina; Babenhauserheide, Arne; Zhang, Hui Fang; Liu, Yu; He, Wei; Chen, Huilin; Masarie, Kenneth A.; Krol, Maarten C.; Peters, Wouter

    2017-07-01

    Data assimilation systems are used increasingly to constrain the budgets of reactive and long-lived gases measured in the atmosphere. Each trace gas has its own lifetime, dominant sources and sinks, and observational network (from flask sampling and in situ measurements to space-based remote sensing) and therefore comes with its own optimal configuration of the data assimilation. The CarbonTracker Europe data assimilation system for CO2 estimates global carbon sources and sinks, and updates are released annually and used in carbon cycle studies. CarbonTracker Europe simulations are performed using the new modular implementation of the data assimilation system: the CarbonTracker Data Assimilation Shell (CTDAS). Here, we present and document this redesign of the data assimilation code that forms the heart of CarbonTracker, specifically meant to enable easy extension and modification of the data assimilation system. This paper also presents the setup of the latest version of CarbonTracker Europe (CTE2016), including the use of the gridded state vector, and shows the resulting carbon flux estimates. We present the distribution of the carbon sinks over the hemispheres and between the land biosphere and the oceans. We show that with equal fossil fuel emissions, 2015 has a higher atmospheric CO2 growth rate compared to 2014, due to reduced net land carbon uptake in later year. The European carbon sink is especially present in the forests, and the average net uptake over 2001-2015 was 0. 17 ± 0. 11 PgC yr-1 with reductions to zero during drought years. Finally, we also demonstrate the versatility of CTDAS by presenting an overview of the wide range of applications for which it has been used so far.

  1. Designer policy for carbon and biodiversity co-benefits under global change

    Bryan, Brett A.; Runting, Rebecca K.; Capon, Tim; Perring, Michael P.; Cunningham, Shaun C.; Kragt, Marit E.; Nolan, Martin; Law, Elizabeth A.; Renwick, Anna R.; Eber, Sue; Christian, Rochelle; Wilson, Kerrie A.

    2016-03-01

    Carbon payments can help mitigate both climate change and biodiversity decline through the reforestation of agricultural land. However, to achieve biodiversity co-benefits, carbon payments often require support from other policy mechanisms such as regulation, targeting, and complementary incentives. We evaluated 14 policy mechanisms for supplying carbon and biodiversity co-benefits through reforestation of carbon plantings (CP) and environmental plantings (EP) in Australia’s 85.3 Mha agricultural land under global change. The reference policy--uniform payments (bidders are paid the same price) with land-use competition (both CP and EP eligible for payments), targeting carbon--achieved significant carbon sequestration but negligible biodiversity co-benefits. Land-use regulation (only EP eligible) and two additional incentives complementing the reference policy (biodiversity premium, carbon levy) increased biodiversity co-benefits, but mostly inefficiently. Discriminatory payments (bidders are paid their bid price) with land-use competition were efficient, and with multifunctional targeting of both carbon and biodiversity co-benefits increased the biodiversity co-benefits almost 100-fold. Our findings were robust to uncertainty in global outlook, and to key agricultural productivity and land-use adoption assumptions. The results suggest clear policy directions, but careful mechanism design will be key to realising these efficiencies in practice. Choices remain for society about the amount of carbon and biodiversity co-benefits desired, and the price it is prepared to pay for them.

  2. Precipitation and Carbon-Water Coupling Jointly Control the Interannual Variability of Global Land Gross Primary Production

    Zhang, Yao; Xiao, Xiangming; Guanter, Luis; Zhou, Sha; Ciais, Philippe; Joiner, Joanna; Sitch, Stephen; Wu, Xiaocui; Nabel, Julian; Dong, Jinwei; hide

    2016-01-01

    Carbon uptake by terrestrial ecosystems is increasing along with the rising of atmospheric CO2 concentration. Embedded in this trend, recent studies suggested that the interannual variability (IAV) of global carbon fluxes may be dominated by semi-arid ecosystems, but the underlying mechanisms of this high variability in these specific regions are not well known. Here we derive an ensemble of gross primary production (GPP) estimates using the average of three data-driven models and eleven process-based models. These models are weighted by their spatial representativeness of the satellite-based solar-induced chlorophyll fluorescence (SIF). We then use this weighted GPP ensemble to investigate the GPP variability for different aridity regimes. We show that semi-arid regions contribute to 57% of the detrended IAV of global GPP. Moreover, in regions with higher GPP variability, GPP fluctuations are mostly controlled by precipitation and strongly coupled with evapotranspiration (ET). This higher GPP IAV in semi-arid regions is co-limited by supply (precipitation)-induced ET variability and GPP-ET coupling strength. Our results demonstrate the importance of semi-arid regions to the global terrestrial carbon cycle and posit that there will be larger GPP and ET variations in the future with changes in precipitation patterns and dryland expansion.

  3. Past and present of sediment and carbon biogeochemical cycling models

    F. T. Mackenzie

    2004-01-01

    Full Text Available The global carbon cycle is part of the much more extensive sedimentary cycle that involves large masses of carbon in the Earth's inner and outer spheres. Studies of the carbon cycle generally followed a progression in knowledge of the natural biological, then chemical, and finally geological processes involved, culminating in a more or less integrated picture of the biogeochemical carbon cycle by the 1920s. However, knowledge of the ocean's carbon cycle behavior has only within the last few decades progressed to a stage where meaningful discussion of carbon processes on an annual to millennial time scale can take place. In geologically older and pre-industrial time, the ocean was generally a net source of CO2 emissions to the atmosphere owing to the mineralization of land-derived organic matter in addition to that produced in situ and to the process of CaCO3 precipitation. Due to rising atmospheric CO2 concentrations because of fossil fuel combustion and land use changes, the direction of the air-sea CO2 flux has reversed, leading to the ocean as a whole being a net sink of anthropogenic CO2. The present thickness of the surface ocean layer, where part of the anthropogenic CO2 emissions are stored, is estimated as of the order of a few hundred meters. The oceanic coastal zone net air-sea CO2 exchange flux has also probably changed during industrial time. Model projections indicate that in pre-industrial times, the coastal zone may have been net heterotrophic, releasing CO2 to the atmosphere from the imbalance between gross photosynthesis and total respiration. This, coupled with extensive CaCO3 precipitation in coastal zone environments, led to a net flux of CO2 out of the system. During industrial time the coastal zone ocean has tended to reverse its trophic status toward a non-steady state situation of net autotrophy, resulting in net uptake of anthropogenic CO2 and storage of carbon in the coastal ocean, despite the significant calcification

  4. Simulating the impacts of disturbances on forest carbon cycling in North America: processes, data, models, and challenges

    Shuguang Liu; Ben Bond-Lamberty; Jeffrey A. Hicke; Rodrigo Vargas; Shuqing Zhao; Jing Chen; Steven L. Edburg; Yueming Hu; Jinxun Liu; A. David McGuire; Jingfeng Xiao; Robert Keane; Wenping Yuan; Jianwu Tang; Yiqi Luo; Christopher Potter; Jennifer Oeding

    2011-01-01

    Forest disturbances greatly alter the carbon cycle at various spatial and temporal scales. It is critical to understand disturbance regimes and their impacts to better quantify regional and global carbon dynamics. This review of the status and major challenges in representing the impacts of disturbances in modeling the carbon dynamics across North America revealed some...

  5. Global plastic models for computerized structural analysis

    Roche, R.L.; Hoffmann, A.

    1977-01-01

    In many types of structures, it is possible to use generalized stresses (like membrane forces, bending moment, torsion moment...) to define a yield surface for a part of the structure. Analysis can be achieved by using the HILL's principle and a hardening rule. The whole formulation is said 'Global Plastic Model'. Two different global models are used in the CEASEMT system for structural analysis, one for shell analysis and the other for piping analysis (in plastic or creep field). In shell analysis the generalized stresses chosen are the membrane forces and bending (including torsion) moments. There is only one yield condition for a normal to the middle surface and no integration along the thickness is required. In piping analysis, the choice of generalized stresses is bending moments, torsional moment, hoop stress and tension stress. There is only a set of stresses for a cross section and no integration over the cross section area is needed. Connected strains are axis curvature, torsion, uniform strains. The definition of the yield surface is the most important item. A practical way is to use a diagonal quadratic function of the stress components. But the coefficients are depending of the shape of the pipe element, especially for curved segments. Indications will be given on the yield functions used. Some examples of applications in structural analysis are added to the text

  6. Liquid surface model for carbon nanotube energetics

    Solov'yov, Ilia; Mathew, Maneesh; Solov'yov, Andrey V.

    2008-01-01

    an important insight in the energetics and stability of nanotubes of different chirality and might be important for the understanding of nanotube growth process. For the computations we use empirical Brenner and Tersoff potentials and discuss their applicability to the study of carbon nanotubes. From......In the present paper we developed a model for calculating the energy of single-wall carbon nanotubes of arbitrary chirality. This model, which we call as the liquid surface model, predicts the energy of a nanotube with relative error less than 1% once its chirality and the total number of atoms...... the calculated energies we determine the elastic properties of the single-wall carbon nanotubes (Young modulus, curvature constant) and perform a comparison with available experimental measurements and earlier theoretical predictions....

  7. LPJmL4 - a dynamic global vegetation model with managed land - Part 2: Model evaluation

    Schaphoff, Sibyll; Forkel, Matthias; Müller, Christoph; Knauer, Jürgen; von Bloh, Werner; Gerten, Dieter; Jägermeyr, Jonas; Lucht, Wolfgang; Rammig, Anja; Thonicke, Kirsten; Waha, Katharina

    2018-04-01

    The dynamic global vegetation model LPJmL4 is a process-based model that simulates climate and land use change impacts on the terrestrial biosphere, agricultural production, and the water and carbon cycle. Different versions of the model have been developed and applied to evaluate the role of natural and managed ecosystems in the Earth system and the potential impacts of global environmental change. A comprehensive model description of the new model version, LPJmL4, is provided in a companion paper (Schaphoff et al., 2018c). Here, we provide a full picture of the model performance, going beyond standard benchmark procedures and give hints on the strengths and shortcomings of the model to identify the need for further model improvement. Specifically, we evaluate LPJmL4 against various datasets from in situ measurement sites, satellite observations, and agricultural yield statistics. We apply a range of metrics to evaluate the quality of the model to simulate stocks and flows of carbon and water in natural and managed ecosystems at different temporal and spatial scales. We show that an advanced phenology scheme improves the simulation of seasonal fluctuations in the atmospheric CO2 concentration, while the permafrost scheme improves estimates of carbon stocks. The full LPJmL4 code including the new developments will be supplied open source through https://gitlab.pik-potsdam.de/lpjml/LPJmL" target="_blank">https://gitlab.pik-potsdam.de/lpjml/LPJmL. We hope that this will lead to new model developments and applications that improve the model performance and possibly build up a new understanding of the terrestrial biosphere.

  8. Modeling global scene factors in attention

    Torralba, Antonio

    2003-07-01

    Models of visual attention have focused predominantly on bottom-up approaches that ignored structured contextual and scene information. I propose a model of contextual cueing for attention guidance based on the global scene configuration. It is shown that the statistics of low-level features across the whole image can be used to prime the presence or absence of objects in the scene and to predict their location, scale, and appearance before exploring the image. In this scheme, visual context information can become available early in the visual processing chain, which allows modulation of the saliency of image regions and provides an efficient shortcut for object detection and recognition. 2003 Optical Society of America

  9. Global embedding of fibre inflation models

    Cicoli, Michele [Dipartimento di Fisica e Astronomia, Università di Bologna,via Irnerio 46, 40126 Bologna (Italy); INFN - Sezione di Bologna,viale Berti Pichat 6/2, 40127 Bologna (Italy); Abdus Salam ICTP,Strada Costiera 11, Trieste 34151 (Italy); Muia, Francesco [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Rd., Oxford OX1 3NP (United Kingdom); Shukla, Pramod [Abdus Salam ICTP,Strada Costiera 11, Trieste 34151 (Italy)

    2016-11-30

    We present concrete embeddings of fibre inflation models in globally consistent type IIB Calabi-Yau orientifolds with closed string moduli stabilisation. After performing a systematic search through the existing list of toric Calabi-Yau manifolds, we find several examples that reproduce the minimal setup to embed fibre inflation models. This involves Calabi-Yau manifolds with h{sup 1,1}=3 which are K3 fibrations over a ℙ{sup 1} base with an additional shrinkable rigid divisor. We then provide different consistent choices of the underlying brane set-up which generate a non-perturbative superpotential suitable for moduli stabilisation and string loop corrections with the correct form to drive inflation. For each Calabi-Yau orientifold setting, we also compute the effect of higher derivative contributions and study their influence on the inflationary dynamics.

  10. A Global Atmospheric Model of Meteoric Iron

    Feng, Wuhu; Marsh, Daniel R.; Chipperfield, Martyn P.; Janches, Diego; Hoffner, Josef; Yi, Fan; Plane, John M. C.

    2013-01-01

    The first global model of meteoric iron in the atmosphere (WACCM-Fe) has been developed by combining three components: the Whole Atmosphere Community Climate Model (WACCM), a description of the neutral and ion-molecule chemistry of iron in the mesosphere and lower thermosphere (MLT), and a treatment of the injection of meteoric constituents into the atmosphere. The iron chemistry treats seven neutral and four ionized iron containing species with 30 neutral and ion-molecule reactions. The meteoric input function (MIF), which describes the injection of Fe as a function of height, latitude, and day, is precalculated from an astronomical model coupled to a chemical meteoric ablation model (CABMOD). This newly developed WACCM-Fe model has been evaluated against a number of available ground-based lidar observations and performs well in simulating the mesospheric atomic Fe layer. The model reproduces the strong positive correlation of temperature and Fe density around the Fe layer peak and the large anticorrelation around 100 km. The diurnal tide has a significant effect in the middle of the layer, and the model also captures well the observed seasonal variations. However, the model overestimates the peak Fe+ concentration compared with the limited rocket-borne mass spectrometer data available, although good agreement on the ion layer underside can be obtained by adjusting the rate coefficients for dissociative recombination of Fe-molecular ions with electrons. Sensitivity experiments with the same chemistry in a 1-D model are used to highlight significant remaining uncertainties in reaction rate coefficients, and to explore the dependence of the total Fe abundance on the MIF and rate of vertical transport.

  11. The Software Architecture of Global Climate Models

    Alexander, K. A.; Easterbrook, S. M.

    2011-12-01

    It has become common to compare and contrast the output of multiple global climate models (GCMs), such as in the Climate Model Intercomparison Project Phase 5 (CMIP5). However, intercomparisons of the software architecture of GCMs are almost nonexistent. In this qualitative study of seven GCMs from Canada, the United States, and Europe, we attempt to fill this gap in research. We describe the various representations of the climate system as computer programs, and account for architectural differences between models. Most GCMs now practice component-based software engineering, where Earth system components (such as the atmosphere or land surface) are present as highly encapsulated sub-models. This architecture facilitates a mix-and-match approach to climate modelling that allows for convenient sharing of model components between institutions, but it also leads to difficulty when choosing where to draw the lines between systems that are not encapsulated in the real world, such as sea ice. We also examine different styles of couplers in GCMs, which manage interaction and data flow between components. Finally, we pay particular attention to the varying levels of complexity in GCMs, both between and within models. Many GCMs have some components that are significantly more complex than others, a phenomenon which can be explained by the respective institution's research goals as well as the origin of the model components. In conclusion, although some features of software architecture have been adopted by every GCM we examined, other features show a wide range of different design choices and strategies. These architectural differences may provide new insights into variability and spread between models.

  12. Sensitivities in global scale modeling of isoprene

    R. von Kuhlmann

    2004-01-01

    Full Text Available A sensitivity study of the treatment of isoprene and related parameters in 3D atmospheric models was conducted using the global model of tropospheric chemistry MATCH-MPIC. A total of twelve sensitivity scenarios which can be grouped into four thematic categories were performed. These four categories consist of simulations with different chemical mechanisms, different assumptions concerning the deposition characteristics of intermediate products, assumptions concerning the nitrates from the oxidation of isoprene and variations of the source strengths. The largest differences in ozone compared to the reference simulation occured when a different isoprene oxidation scheme was used (up to 30-60% or about 10 nmol/mol. The largest differences in the abundance of peroxyacetylnitrate (PAN were found when the isoprene emission strength was reduced by 50% and in tests with increased or decreased efficiency of the deposition of intermediates. The deposition assumptions were also found to have a significant effect on the upper tropospheric HOx production. Different implicit assumptions about the loss of intermediate products were identified as a major reason for the deviations among the tested isoprene oxidation schemes. The total tropospheric burden of O3 calculated in the sensitivity runs is increased compared to the background methane chemistry by 26±9  Tg( O3 from 273 to an average from the sensitivity runs of 299 Tg(O3. % revised Thus, there is a spread of ± 35% of the overall effect of isoprene in the model among the tested scenarios. This range of uncertainty and the much larger local deviations found in the test runs suggest that the treatment of isoprene in global models can only be seen as a first order estimate at present, and points towards specific processes in need of focused future work.

  13. Towards accounting for dissolved iron speciation in global ocean models

    A. Tagliabue

    2011-10-01

    Full Text Available The trace metal iron (Fe is now routinely included in state-of-the-art ocean general circulation and biogeochemistry models (OGCBMs because of its key role as a limiting nutrient in regions of the world ocean important for carbon cycling and air-sea CO2 exchange. However, the complexities of the seawater Fe cycle, which impact its speciation and bioavailability, are simplified in such OGCBMs due to gaps in understanding and to avoid high computational costs. In a similar fashion to inorganic carbon speciation, we outline a means by which the complex speciation of Fe can be included in global OGCBMs in a reasonably cost-effective manner. We construct an Fe speciation model based on hypothesised relationships between rate constants and environmental variables (temperature, light, oxygen, pH, salinity and assumptions regarding the binding strengths of Fe complexing organic ligands and test hypotheses regarding their distributions. As a result, we find that the global distribution of different Fe species is tightly controlled by spatio-temporal environmental variability and the distribution of Fe binding ligands. Impacts on bioavailable Fe are highly sensitive to assumptions regarding which Fe species are bioavailable and how those species vary in space and time. When forced by representations of future ocean circulation and climate we find large changes to the speciation of Fe governed by pH mediated changes to redox kinetics. We speculate that these changes may exert selective pressure on phytoplankton Fe uptake strategies in the future ocean. In future work, more information on the sources and sinks of ocean Fe ligands, their bioavailability, the cycling of colloidal Fe species and kinetics of Fe-surface coordination reactions would be invaluable. We hope our modeling approach can provide a means by which new observations of Fe speciation can be tested against hypotheses of the processes present in governing the ocean Fe cycle in an

  14. Simplifiying global biogeochemistry models to evaluate methane emissions

    Gerber, S.; Alonso-Contes, C.

    2017-12-01

    Process-based models are important tools to quantify wetland methane emissions, particularly also under climate change scenarios, evaluating these models is often cumbersome as they are embedded in larger land-surface models where fluctuating water table and the carbon cycle (including new readily decomposable plant material) are predicted variables. Here, we build on these large scale models but instead of modeling water table and plant productivity we provide values as boundary conditions. In contrast, aerobic and anaerobic decomposition, as well as soil column transport of oxygen and methane are predicted by the model. Because of these simplifications, the model has the potential to be more readily adaptable to the analysis of field-scale data. Here we determine the sensitivity of the model to specific setups, parameter choices, and to boundary conditions in order to determine set-up needs and inform what critical auxiliary variables need to be measured in order to better predict field-scale methane emissions from wetland soils. To that end we performed a global sensitivity analysis that also considers non-linear interactions between processes. The global sensitivity analysis revealed, not surprisingly, that water table dynamics (both mean level and amplitude of fluctuations), and the rate of the carbon cycle (i.e. net primary productivity) are critical determinants of methane emissions. The depth-scale where most of the potential decomposition occurs also affects methane emissions. Different transport mechanisms are compensating each other to some degree: If plant conduits are constrained, methane emissions by diffusive flux and ebullition compensate to some degree, however annual emissions are higher when plants help to bypass methanotrophs in temporally unsaturated upper layers. Finally, while oxygen consumption by plant roots help creating anoxic conditions it has little effect on overall methane emission. Our initial sensitivity analysis helps guiding

  15. Estimating global "blue carbon" emissions from conversion and degradation of vegetated coastal ecosystems.

    Linwood Pendleton

    Full Text Available Recent attention has focused on the high rates of annual carbon sequestration in vegetated coastal ecosystems--marshes, mangroves, and seagrasses--that may be lost with habitat destruction ('conversion'. Relatively unappreciated, however, is that conversion of these coastal ecosystems also impacts very large pools of previously-sequestered carbon. Residing mostly in sediments, this 'blue carbon' can be released to the atmosphere when these ecosystems are converted or degraded. Here we provide the first global estimates of this impact and evaluate its economic implications. Combining the best available data on global area, land-use conversion rates, and near-surface carbon stocks in each of the three ecosystems, using an uncertainty-propagation approach, we estimate that 0.15-1.02 Pg (billion tons of carbon dioxide are being released annually, several times higher than previous estimates that account only for lost sequestration. These emissions are equivalent to 3-19% of those from deforestation globally, and result in economic damages of $US 6-42 billion annually. The largest sources of uncertainty in these estimates stems from limited certitude in global area and rates of land-use conversion, but research is also needed on the fates of ecosystem carbon upon conversion. Currently, carbon emissions from the conversion of vegetated coastal ecosystems are not included in emissions accounting or carbon market protocols, but this analysis suggests they may be disproportionally important to both. Although the relevant science supporting these initial estimates will need to be refined in coming years, it is clear that policies encouraging the sustainable management of coastal ecosystems could significantly reduce carbon emissions from the land-use sector, in addition to sustaining the well-recognized ecosystem services of coastal habitats.

  16. Reviews and syntheses: Calculating the global contribution of coralline algae to total carbon burial

    van der Heijden, L. H.; Kamenos, N. A.

    2015-11-01

    The ongoing increase in anthropogenic carbon dioxide (CO2) emissions is changing the global marine environment and is causing warming and acidification of the oceans. Reduction of CO2 to a sustainable level is required to avoid further marine change. Many studies investigate the potential of marine carbon sinks (e.g. seagrass) to mitigate anthropogenic emissions, however, information on storage by coralline algae and the beds they create is scant. Calcifying photosynthetic organisms, including coralline algae, can act as a CO2 sink via photosynthesis and CaCO3 dissolution and act as a CO2 source during respiration and CaCO3 production on short-term timescales. Long-term carbon storage potential might come from the accumulation of coralline algae deposits over geological timescales. Here, the carbon storage potential of coralline algae is assessed using meta-analysis of their global organic and inorganic carbon production and the processes involved in this metabolism. Net organic and inorganic production were estimated at 330 g C m-2 yr-1 and 900 g CaCO3 m-2 yr-1 respectively giving global organic/inorganic C production of 0.7/1.8 × 109 t C yr-1. Calcium carbonate production by free-living/crustose coralline algae (CCA) corresponded to a sediment accretion of 70/450 mm kyr-1. Using this potential carbon storage for coralline algae, the global production of free-living algae/CCA was 0.4/1.2 × 109 t C yr-1 suggesting a total potential carbon sink of 1.6 × 109 tonnes per year. Coralline algae therefore have production rates similar to mangroves, salt marshes and seagrasses representing an as yet unquantified but significant carbon store, however, further empirical investigations are needed to determine the dynamics