WorldWideScience

Sample records for global atmospheric trace

  1. Towards uncertainty estimates in global operational forecasts of trace gases in the Copernicus Atmosphere Monitoring System

    Huijnen, V.; Bouarar, I.; Chabrillat, S. H.; Christophe, Y.; Thierno, D.; Karydis, V.; Marecal, V.; Pozzer, A.; Flemming, J.

    2017-12-01

    Operational atmospheric composition analyses and forecasts such as developed in the Copernicus Atmosphere Monitoring Service (CAMS) rely on modules describing emissions, chemical conversion, transport and removal processing, as well as data assimilation methods. The CAMS forecasts can be used to drive regional air quality models across the world. Critical analyses of uncertainties in any of these processes are continuously needed to advance the quality of such systems on a global scale, ranging from the surface up to the stratosphere. With regard to the atmospheric chemistry to describe the fate of trace gases, the operational system currently relies on a modified version of the CB05 chemistry scheme for the troposphere combined with the Cariolle scheme to describe stratospheric ozone, as integrated in ECMWF's Integrated Forecasting System (IFS). It is further constrained by assimilation of satellite observations of CO, O3 and NO2. As part of CAMS we have recently developed three fully independent schemes to describe the chemical conversion throughout the atmosphere. These parameterizations originate from parent model codes in MOZART, MOCAGE and a combination of TM5/BASCOE. In this contribution we evaluate the correspondence and elemental differences in the performance of the three schemes in an otherwise identical model configuration (excluding data-assimilation) against a large range of in-situ and satellite-based observations of ozone, CO, VOC's and chlorine-containing trace gases for both troposphere and stratosphere. This analysis aims to provide a measure of model uncertainty in the operational system for tracers that are not, or poorly, constrained by data assimilation. It aims also to provide guidance on the directions for further model improvement with regard to the chemical conversion module.

  2. Global atmospheric changes.

    Piver, W T

    1991-01-01

    Increasing concentrations of CO2 and other greenhouse gases in the atmosphere can be directly related to global warming. In terms of human health, because a major cause of increasing atmospheric concentrations of CO2 is the increased combustion of fossil fuels, global warming also may result in increases in air pollutants, acid deposition, and exposure to ultraviolet (UV) radiation. To understand better the impacts of global warming phenomena on human health, this review emphasizes the proces...

  3. Global atmospheric changes.

    Piver, W T

    1991-12-01

    Increasing concentrations of CO2 and other greenhouse gases in the atmosphere can be directly related to global warming. In terms of human health, because a major cause of increasing atmospheric concentrations of CO2 is the increased combustion of fossil fuels, global warming also may result in increases in air pollutants, acid deposition, and exposure to ultraviolet (UV) radiation. To understand better the impacts of global warming phenomena on human health, this review emphasizes the processes that are responsible for the greenhouse effect, air pollution, acid deposition, and increased exposure to UV radiation.

  4. Atmosphere-Ocean Coupling through Trace Gases

    Tegtmeier, S.; Atlas, E. L.; Krüger, K.; Lennartz, S. T.; Marandino, C. A.; Patra, P. K.; Quack, B.; Schlundt, C.

    2017-12-01

    Halogen- and sulfur-containing trace gases, as well as other volatile organic compounds (VOCs, such as isoprene) from biogeochemical marine sources are important constituents of the ocean and the atmosphere. These compounds exert wide-ranging influence on atmospheric chemical processes and climate interactions, as well as on human health in coastal regions. In their reactive form, they can affect the oxidizing capacity of the air and lead to the formation of new particles or the growth of existing ones. In this contribution, marine derived halogen-, sulfur-, and oxygen-containing compounds will be discussed. Their net flux into the atmosphere and their impact on atmospheric processes is analyzed based on observations and model simulations.

  5. PREP-CHEM-SRC – 1.0: a preprocessor of trace gas and aerosol emission fields for regional and global atmospheric chemistry models

    S. R. Freitas

    2011-05-01

    Full Text Available The preprocessor PREP-CHEM-SRC presented in the paper is a comprehensive tool aiming at preparing emission fields of trace gases and aerosols for use in atmospheric-chemistry transport models. The considered emissions are from the most recent databases of urban/industrial, biogenic, biomass burning, volcanic, biofuel use and burning from agricultural waste sources. For biomass burning, emissions can be also estimated directly from satellite fire detections using a fire emission model included in the tool. The preprocessor provides emission fields interpolated onto the transport model grid. Several map projections can be chosen. The inclusion of these emissions in transport models is also presented. The preprocessor is coded using Fortran90 and C and is driven by a namelist allowing the user to choose the type of emissions and the databases.

  6. Compendium of NASA data base for the global tropospheric experiment's Transport and Atmospheric Chemistry Near the Equator-Atlantic (TRACE-A)

    Gregory, Gerald L.; Scott, A. Donald, Jr.

    1995-01-01

    This compendium describes aircraft data that are available from NASA's Transport and Atmospheric Chemistry near the Equator - Atlantic (TRACE-A) conducted in September/October 1992. The broad objectives of TRACE-A were to study chemical processes and long-range transport associated with South American and African continental outflow during periods of widespread vegetation burning, and to understand the ozone enhancements observed from satellite data measured over the southern tropical Atlantic Ocean during the September/October time period. Flight experiments were conducted from Brazil, South Africa, Namibia, and the Ascension Island. This document provides a representation of aircraft data that are available from NASA Langley's Distributed Active Archive Center (DAAC). The data format of time series and altitude profile plots is not intended to support original analyses, but to assist the reader in identifying data that are of interest. This compendium is for only the NASA aircraft data. The DAAC data base includes numerous supporting data-meteorological products, results from surface studies, satellite observations, and data from sonde releases.

  7. (Chemistry of the global atmosphere)

    Marland, G.

    1990-09-27

    The traveler attended the conference The Chemistry of the Global Atmosphere,'' and presented a paper on the anthropogenic emission of carbon dioxide (CO{sub 2}) to the atmosphere. The conference included meetings of the International Global Atmospheric Chemistry (IGAC) programme, a core project of the International Geosphere/Biosphere Programme (IGBP) and the traveler participated in meetings on the IGAC project Development of Global Emissions Inventories'' and agreed to coordinate the working group on CO{sub 2}. Papers presented at the conference focused on the latest developments in analytical methods, modeling and understanding of atmospheric CO{sub 2}, CO, CH{sub 4}, N{sub 2}O, SO{sub 2}, NO{sub x}, NMHCs, CFCs, and aerosols.

  8. Problems in global atmospheric chemistry

    Crutzen, Paul J.

    1993-02-01

    The chemistry of the atmosphere is substantially influenced by a wide range of chemical processes which are primarily driven by the action of ultraviolet radiation of wavelengths shorter than 320 nm (UV-B) on ozone and water vapor. This leads to the formation of hydroxyl (OH) radicals which, despite very low tropospheric concentrations, remove most gases that are emitted into the atmosphere by natural and anthropogenic processes. Therefore, although only about 10% of all atmospheric ozone is located in the troposphere, through the formation of OH, it determines the oxidation efficiency of the atmosphere and is, therefore, of the utmost importance for maintaining its chemical composition. Due to a variety of human activities, especially through increasing emissions of CH4, CO, and NOx, the concentrations of tropospheric ozone and hydroxyl are expected to be increasing in polluted and decreasing in clean tropospheric environments. Altogether, this may be leading to an overall decrease in the oxidation efficiency of the atmosphere, contributing to a gradual buildup of several longlived trace gases that are primarily removed by reaction with OH. In the stratosphere, especially due to catalytic reactions of chlorine-containing gases of industrial origin, ozone is being depleted, most drastically noted during the early spring months over Antarctica. Because ozone is the only atmospheric constituent that can significantly absorb solar radiation in the wavelength region 240 - 320 nm, this loss of ozone enhances the penetration of biologically harmful UV-B radiation to the earth's surface with ensuing negative consequences for the biosphere. Several of the aforementioned chemically active trace gases with growing trends in the atmosphere are also efficient greenhouse gases. Together they can exert a warming effect on the earth's climate about equal to that of carbon dioxide.

  9. Global Atmosphere Watch Workshop on Measurement-Model ...

    The World Meteorological Organization’s (WMO) Global Atmosphere Watch (GAW) Programme coordinates high-quality observations of atmospheric composition from global to local scales with the aim to drive high-quality and high-impact science while co-producing a new generation of products and services. In line with this vision, GAW’s Scientific Advisory Group for Total Atmospheric Deposition (SAG-TAD) has a mandate to produce global maps of wet, dry and total atmospheric deposition for important atmospheric chemicals to enable research into biogeochemical cycles and assessments of ecosystem and human health effects. The most suitable scientific approach for this activity is the emerging technique of measurement-model fusion for total atmospheric deposition. This technique requires global-scale measurements of atmospheric trace gases, particles, precipitation composition and precipitation depth, as well as predictions of the same from global/regional chemical transport models. The fusion of measurement and model results requires data assimilation and mapping techniques. The objective of the GAW Workshop on Measurement-Model Fusion for Global Total Atmospheric Deposition (MMF-GTAD), an initiative of the SAG-TAD, was to review the state-of-the-science and explore the feasibility and methodology of producing, on a routine retrospective basis, global maps of atmospheric gas and aerosol concentrations as well as wet, dry and total deposition via measurement-model

  10. Relationship between epiphytic lichens, trace elements and gaseous atmospheric pollutants

    Dobben, van H.F.; Wamelink, G.W.W.; Braak, ter C.J.F.

    2001-01-01

    A study was conducted to determine the joint effect of gaseous atmospheric pollutants and trace elements on epiphytic lichens. We used our data to test the hypothesis that lichens are generally insensitive to toxic effects of trace elements, and can therefore be used as accumulator organisms to

  11. Forecasting global atmospheric CO2

    Agusti-Panareda, A.; Massart, S.; Boussetta, S.; Balsamo, G.; Beljaars, A.; Engelen, R.; Jones, L.; Peuch, V.H.; Chevallier, F.; Ciais, P.; Paris, J.D.; Sherlock, V.

    2014-01-01

    A new global atmospheric carbon dioxide (CO 2 ) real-time forecast is now available as part of the preoperational Monitoring of Atmospheric Composition and Climate - Interim Implementation (MACC-II) service using the infrastructure of the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). One of the strengths of the CO 2 forecasting system is that the land surface, including vegetation CO 2 fluxes, is modelled online within the IFS. Other CO 2 fluxes are prescribed from inventories and from off-line statistical and physical models. The CO 2 forecast also benefits from the transport modelling from a state-of-the-art numerical weather prediction (NWP) system initialized daily with a wealth of meteorological observations. This paper describes the capability of the forecast in modelling the variability of CO 2 on different temporal and spatial scales compared to observations. The modulation of the amplitude of the CO 2 diurnal cycle by near-surface winds and boundary layer height is generally well represented in the forecast. The CO 2 forecast also has high skill in simulating day-to-day synoptic variability. In the atmospheric boundary layer, this skill is significantly enhanced by modelling the day-to-day variability of the CO 2 fluxes from vegetation compared to using equivalent monthly mean fluxes with a diurnal cycle. However, biases in the modelled CO 2 fluxes also lead to accumulating errors in the CO 2 forecast. These biases vary with season with an underestimation of the amplitude of the seasonal cycle both for the CO 2 fluxes compared to total optimized fluxes and the atmospheric CO 2 compared to observations. The largest biases in the atmospheric CO 2 forecast are found in spring, corresponding to the onset of the growing season in the Northern Hemisphere. In the future, the forecast will be re-initialized regularly with atmospheric CO 2 analyses based on the assimilation of CO 2 products retrieved from satellite

  12. A numerical study for global atmospheric transport-chemistry problems

    E.J. Spee (Edwin); J.G. Verwer (Jan); P.M. de Zeeuw (Paul); J.G. Blom (Joke); W. Hundsdorfer (Willem)

    1998-01-01

    htmlabstractAtmospheric air quality modeling relies in part on numerical simulation. Required numerical simulations are often hampered by lack of computer capacity and computational speed. This problem is most severe in the field of global modeling where transport and exchange of trace constituents

  13. A numerical study for global atmospheric transport-chemistry problems

    E.J. Spee (Edwin); J.G. Verwer (Jan); P.M. de Zeeuw (Paul); J.G. Blom (Joke); W. Hundsdorfer (Willem)

    1997-01-01

    textabstractAtmospheric air quality modeling relies in part on numerical simulation. Required numerical simulations are often hampered by lack of computer capacity and computational speed. This problem is most severe in the field of global modeling where transport and exchange of trace constituents

  14. Establishment of an atmospheric observatory for trace gases and atmospheric oxygen in Namibia

    Morgan, E.; Lavrič, J.; Seely, M.; Heimann, M.

    2012-04-01

    Continuous, high-precision measurements of greenhouse and other biogeochemically significant atmospheric gases help to establish a global baseline and create important data for the study of atmospheric transport, biogeochemical fluxes, and human emissions. Also, they can validate models and ground- and space-based remote sensing and complement airborne atmospheric measurements. There are currently few such facilities on the African continent. To reduce this gap in the global observational system, we are establishing an atmospheric observatory at Gobabeb, Namibia. Continuous measurements of the atmospheric O2/N2 ratio and biogeochemical trace gases (CO2, CH4, N2O, CO) will be accompanied by a regular flask sampling program. Our observatory also represents an opportunity to forge partnerships with local and global scientific organizations. The site is well located to study the natural and anthropogenic gas fluxes on the southern subtropical African continent, and the air-sea gas fluxes of the nearby Benguela Current system off the Namibian coast. This current system drives one of the four major eastern-boundary upwelling ecosystems, creating zones of intensive primary production that influence the budgets of atmospheric gases via air-sea exchange. Another feature of interest is the large biomass burning region in central and southern Africa. An analysis of HYSPLIT air mass back trajectories from Gobabeb indicate that the dominant origin of air at the site is from one of these two areas. On-site installation of the standalone measurement system, which is installed in a 20' container, is scheduled for the first half of 2012. We present here the detailed setup of the system and first performance data.

  15. Applications of stable isotope analysis to atmospheric trace gas budgets

    Brenninkmeijer C. A.M.

    2009-02-01

    Full Text Available Stable isotope analysis has become established as a useful method for tracing the budgets of atmospheric trace gases and even atmospheric oxygen. Several new developments are briefly discussed in a systematic way to give a practical guide to the scope of recent work. Emphasis is on applications and not on instrumental developments. Processes and reactions are less considered than applications to resolve trace gas budgets. Several new developments are promising and applications hitherto not considered to be possible may allow new uses.

  16. Combustion's impact on the global atmosphere

    Prather, M.J.; Logan, J.A.

    1994-01-01

    The combustion of a hydrocarbon fuel removes molecular oxygen (O 2 ) from the atmosphere and releases equivalent amounts of water (H 2 ) and carbon dioxide (CO 2 ), almost always with trace amounts of numerous other compounds including hydrocarbon (CH 4 , C 2 H 2 , C 2 H 4 , C 2 H 6 , C 3 H 8 , C 6 H 6 , CH 3 CHO, etc.), carbon monoxide (CO), nitrogen oxides (NO, N 2 O) and reduced nitrogen (NH 3 and HCN), sulfur gases (SO 2 , OCS, CS 2 ), halocarbons (CH 3 Al and CH 3 Br), and particles. A review of the atmospheric budgets of these gases shows that burning of fossil fuels and recent biomass has led to global alterations in the composition of the atmosphere. Combustion is clearly responsible for most of the enhanced greenhouse forcing to date (through CO 2 , tropospheric O 3 , soot) and also some counteracting effects (through SO 2 ). It has had minimal impact on stratospheric O 3 (through CH 3 Cl, CH 3 Br, CH 4 ), but has likely changed the tropospheric oxidant levels (through CO, NO x , NMHC), at least over the northern hemisphere. Most of the important greenhouse gases and tropospheric oxidant gases have significant natural sources, which are not well defined today and may be changing; and thus, quantifying the role of combustion is difficult. 113 refs

  17. Atmospheric trace metal concentrations in Suspended Particulate ...

    The air particulate samples were collected from the kitchens, living rooms and outdoor environment of five households in the community. The quantification of the trace metals was done using Atomic Absorption spectrometry method, employing HNO based wet digestion. High baseline concentration of SPMwere obtained ...

  18. ARTEAM - Advanced ray tracing with earth atmospheric models

    Kunz, G.J.; Moerman, M.M.; Eijk, A.M.J. van

    2002-01-01

    The Advanced Ray Tracing with Earth Atmospheric Models (ARTEAM) aims at a description of the electro-optical propagation environment in the marine atmospheric surface layer. For given meteorological conditions, the model evaluates height- and range-resolved transmission losses, refraction and

  19. Ozone, Climate, and Global Atmospheric Change.

    Levine, Joel S.

    1992-01-01

    Presents an overview of global atmospheric problems relating to ozone depletion and global warming. Provides background information on the composition of the earth's atmosphere and origin of atmospheric ozone. Describes causes, effects, and evidence of ozone depletion and the greenhouse effect. A vignette provides a summary of a 1991 assessment of…

  20. Integrated method for the measurement of trace nitrogenous atmospheric bases

    D. Key

    2011-12-01

    Full Text Available Nitrogenous atmospheric bases are thought to play a key role in the global nitrogen cycle, but their sources, transport, and sinks remain poorly understood. Of the many methods available to measure such compounds in ambient air, few meet the current need of being applicable to the complete range of potential analytes and fewer still are convenient to implement using instrumentation that is standard to most laboratories. In this work, an integrated approach to measuring trace, atmospheric, gaseous nitrogenous bases has been developed and validated. The method uses a simple acid scrubbing step to capture and concentrate the bases as their phosphite salts, which then are derivatized and analyzed using GC/MS and/or LC/MS. The advantages of both techniques in the context of the present measurements are discussed. The approach is sensitive, selective, reproducible, as well as convenient to implement and has been validated for different sampling strategies. The limits of detection for the families of tested compounds are suitable for ambient measurement applications (e.g., methylamine, 1 pptv; ethylamine, 2 pptv; morpholine, 1 pptv; aniline, 1 pptv; hydrazine, 0.1 pptv; methylhydrazine, 2 pptv, as supported by field measurements in an urban park and in the exhaust of on-road vehicles.

  1. Trace gases and other potential perturbations to global climate

    Wang, W.; Wuebbles, D.J.; Washington, W.M.; Isaacs, R.G.; Molnar, G.

    1986-01-01

    We review the various natural and anthropogenic factors that may affect the climate. The purpose is to summarize our understanding of these factors and their potential future climatic effects so that CO 2 -induced climate change can be viewed in a proper context. The factors we discuss include trace gases, anthropogenic and volcanic aerosols, variation of solar constant, change of surface characteristics, and releases of waste heat. We discuss the origins of the various natural and anthropogenic perturbations, the physical and chemical processes and their interactions, model sensitivity calculations, and model projections of their potential future climatic effects. The discussions center on trace gases because of their potentially large climatic effects. It appears that the increases of atmospheric trace gases of other kinds in addition to CO 2 could have important climatic effects. The model calculations suggest that the combined effect of these other trace gases, and the associated change of atmospheric ozone and water vapor distributions, could potentially warm the climate by an amount comparable in magnitude to the effect of doubling the CO 2 . Aerosols of anthropogenic origins may have substantial effects on regional climate, while the volcanic aerosols may have an effect on large-scale climate for up to a few years after injection. Changes of surface characteristics and releases of waste heat may also have substantial effects on the regional climate, but these effects are most likely to be small when compared with the effect of CO 2 increase. Changes of solar constant could have an effect on the global scale, but the time scale is much longer. There is much more that needs to be learned with regard to the above mentioned natural and anthropogenic factors that may affect the climate. A brief summary of those needs is presented

  2. Loess as an environmental archive of atmospheric trace element deposition

    Blazina, T.; Winkel, L. H.

    2013-12-01

    Environmental archives such as ice cores, lake sediment cores, and peat cores have been used extensively to reconstruct past atmospheric deposition of trace elements. These records have provided information about how anthropogenic activities such as mining and fossil fuel combustion have disturbed the natural cycles of various atmospherically transported trace elements (e.g. Pb, Hg and Se). While these records are invaluable for tracing human impacts on such trace elements, they often provide limited information about the long term natural cycles of these elements. An assumption of these records is that the observed variations in trace element input, prior to any assumed anthropogenic perturbations, represent the full range of natural variations. However, records such as those mentioned above which extend back to a maximum of ~400kyr may not capture the potentially large variations of trace element input occurring over millions of years. Windblown loess sediments, often representing atmospheric deposition over time scales >1Ma, are the most widely distributed terrestrial sediments on Earth. These deposits have been used extensively to reconstruct continental climate variability throughout the Quaternary and late Neogene periods. In addition to being a valuable record of continental climate change, loess deposits may represent a long term environmental archive of atmospheric trace element deposition and may be combined with paleoclimate records to elucidate how fluctuations in climate have impacted the natural cycle of such elements. Our research uses the loess-paleosol deposits on the Chinese Loess Plateau (CLP) to quantify how atmospheric deposition of trace elements has fluctuated in central China over the past 6.8Ma. The CLP has been used extensively to reconstruct past changes of East Asian monsoon system (EAM). We present a suite of trace element concentration records (e.g. Pb, Hg, and Se) from the CLP which exemplifies how loess deposits can be used as an

  3. Molecular line parameters for the atmospheric trace molecule spectroscopy experiment

    Brown, L. R.; Farmer, C. B.; Toth, R. A.; Rinsland, Curtis P.

    1987-01-01

    During its first mission in 1985 onboard Spacelab 3, the ATMOS (atmospheric trace molecule spectroscopy) instrument, a high speed Fourier transform spectrometer, produced a large number of high resolution infrared solar absorption spectra recorded in the occultation mode. The analysis and interpretation of these data in terms of composition, chemistry, and dynamics of the earth's upper atmosphere required good knowledge of the molecular line parameters for those species giving rise to the absorptions in the atmospheric spectra. This paper describes the spectroscopic line parameter database compiled for the ATMOS experiment and referenced in other papers describing ATMOS results. With over 400,000 entries, the linelist catalogs parameters of 46 minor and trace species in the 1-10,000/cm region.

  4. Soil-atmosphere trace gas exchange in semiarid and arid zones.

    Galbally, Ian E; Kirstine, Wayne V; Meyer, C P Mick; Wang, Ying Ping

    2008-01-01

    A review is presented on trace gas exchange of CH4, CO, N2O, and NOx arising from agriculture and natural sources in the world's semiarid and arid zones due to soil processes. These gases are important contributors to the radiative forcing and the chemistry of the atmosphere. Quantitative information is summarized from the available studies. Between 5 and 40% of the global soil-atmosphere exchange for these gases (CH4, CO, N2O, and NOx) may occur in semiarid and arid zones, but for each of these gases there are fewer than a dozen studies to support the individual estimates, and these are from a limited number of locations. Significant differences in the biophysical and chemical processes controlling these trace gas exchanges are identified through the comparison of semiarid and arid zones with the moist temperate or wet/dry savanna land regions. Therefore, there is a poorly quantified understanding of the contribution of these regions to the global trace gas cycles and atmospheric chemistry. More importantly, there is a poor understanding of the feedback between these exchanges, global change, and regional land use and air pollution issues. A set of research issues is presented.

  5. Inter-hemispheric gradient of atmospheric trace gases in the Pacific

    Lowe, D.; Manning, M.; Brailsford, G.; Bromley, T.; Moss, R.; Ferretti, D.

    1997-01-01

    Measurements of atmospheric trace gases show that the concentrations and isotopic compositions of these species can change dramatically across the intertropical convergence zone (ITCZ) separating the two hemispheres. Because the anthropogenic sources of virtually all trace gases are greater in the northern than in the southern hemisphere, concentrations of the species are lower in the southern hemisphere. Typically the concentration gradient is inversely proportional to the lifetime of the trace gas in the atmosphere. Hence understanding the transport across the ITCZ is crucial to determining the variation of important trace gases in the New Zealand region. Container ships are being used to collect large clean air samples on voyages across the Pacific on great circle routes between Auckland (New Zealand), Honolulu (Hawaii) and Los Angeles and Seattle on the US West coast. Measurements on these samples are being used to supplement extensive carbon isotope measurements of atmospheric methane made at fixed sites in the southern hemisphere: Baring Head (New Zealand), Suva (Fiji) and Scott Base (Antarctica) to provide information on the global methane cycle. The authors present the first results of high precision measurements of the stable isotopes of atmospheric carbon monoxide and methane in transects across the equator. These have been obtained using a Finnigan MAT 252 high precision isotope ratio mass spectrometer with a modified miniature inlet system and a stringent calibration protocol. Overall precision for δ 13 C in ambient methane and carbon monoxide in clean air approaches 0.02 per thousand which helps provide information on several subtle processes controlling the abundance of the trace gases in the atmosphere. The 13 C in methane and carbon dioxide data show remarkable seasonal variations across the intertropical convergence zone (ITCZ) and may be used to infer aspects of transport of gases to extra tropical regions in the southern hemisphere

  6. Trace elements in the atmosphere over South Africa

    Wells, R.B.; Van As, D.

    1976-01-01

    Natural sources of trace elements in the atmosphere are suspended soil particles, the evaporation of sea spray and smoke from veld fires. In urban and industrialised areas the main sources are fossil-fuel power plants, metallurgical smelters, blast furnaces, incinerators, automobiles, fossil-fueled locomotives and open fires in the Black townships. Often a source can be recognised by the relative concentrations of particular trace elements. A monitoring programme was established in 1974 by the Air Pollution Research Group of the CSIR and the Isotope and Radiation Division of the Atomic Energy Board in order to study the levels of trace elements in urban areas such as Johannesburg, Cape Town, and Durban, to measure the effects of industrialisation on trace elements levels in developing areas such as Richards Bay and Saldanha Bay and also to determine baseline values in rural areas. Extremely sensitive analytical techniques, e.g. neutron activation and atomic absorption were used for the analyses of filter samples. Methods of sampling and analysis are discussed and the preliminary results of this programme are presented

  7. Our changing atmosphere: Trace gases and the greenhouse effect

    Rowland, F.S.

    1991-01-01

    A very important factor in the scientific evaluation of greenhouse warming during the last decade has been the realization that this is not just a problem of increasing CO 2 but is rather a more general problem of increasing concentrations of many trace gases. CFCs are increasing at 5% per year with CFC-113 going up at a more rapid rate; methane approximately 1% per year; CO 2 by 0.5% per year; N 2 O about 0.2% per year. These rates of increase have been fed into detailed models of the infrared absorbing characteristics of the atmosphere, and have provided the estimated relative contributions from the various trace gases. Carbon dioxide is still the major contributor to the greenhouse effect, and its yearly contribution appears to be increasing. An important question for dealing with the greenhouse effect will be the full understanding of these CO 2 concentration changes. The total amount of carbon from the burning of fossil fuel that is going into the atmosphere is considerably larger than the carbon dioxide increase registered in the atmosphere. Appreciable CO 2 contributions are also being received from the burning of the tropical forests. The procedures necessary to solve the chlorofluorocarbon problem have been put into place on an international scale and have begun to be implemented. We still have left for the future, however, efforts to reduce emissions of carbon dioxide, methane, and nitrous oxide

  8. Atmospheric methane: Sources, sinks, and role in global change

    Khalil, M.A.K.

    1993-01-01

    Atmospheric methane is thought to be the most important trace gas involved in man-made climate change. It may be second only to carbon dioxide in causing global warming. Methane affects also the oxidizing capacity of the atmosphere by controlling tropospheric OH radicals and creating O 3 , and it affects the ozone layer in the stratosphere by contributing water vapor and removing chlorine atoms. In the long term, methane is a natural product of life on earth, reaching high concentrations during warm and biologically productive epochs. Yet the scientific understanding of atmospheric methane has evolved mostly during the past decade after it was shown that concentrations were rapidly rising. Because of the environmental importance of methane, North Atlantic Treaty Organization's Scientific and Environmental Affairs Division commissioned an Advanced Research Workshop. This book is the result of such a conference held during the week of 6 October 1991 at Timberline Lodge on Mount Hood near Portland, Oregon. (orig./KW)

  9. Global Change in the Upper Atmosphere

    Laštovička, Jan; Akmaev, R. A.; Beig, G.; Bremer, J.; Emmert, J. T.

    2006-01-01

    Roč. 314, č. 5803 (2006), s. 1253-1254 ISSN 0036-8075 R&D Projects: GA MŠk OC 091 Institutional research plan: CEZ:AV0Z30420517 Keywords : Global change * Upper Atmosphere * Ionosphere Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 30.028, year: 2006

  10. The atmosphere: Global commons to protect

    Obasi, G.O.P.

    1996-01-01

    One of the most important greenhouse gases is CO 2 , whose concentration in the atmosphere has increased from 280 parts per million by volume (ppmv) to 358ppmv in 1994, giving a general increase of over 27 per cent since pre-industrial times. This increase has been attributed largely to fossil fuel combustion. Significant increases have also been observed in atmospheric concentrations of the other greenhouse gases, including methane, nitrous oxide and global tropospheric ozone. Concentrations of methane and nitrous oxide have, for example, grown by 145 per cent and 15 per cent respectively since pre-industrial times. Such increases have been linked to the rapid world population growth, which has resulted in increasing demands for energy, food, water, shelter and other basic needs. Computer models indicate that the continued accumulation of greenhouse gases in the atmosphere could result in global climate change and global warming. As some uncertainties still exists in the model predictions, it may take a few more years to uniquely separate human-induced climate change signals from natural climate variability in global climate trends

  11. Global Modeling Study of the Bioavailable Atmospheric Iron Supply to the Global Ocean

    Myriokefalitakis, S.; Krol, M. C.; van Noije, T.; Le Sager, P.

    2017-12-01

    Atmospheric deposition of trace constituents acts as a nutrient source to the open ocean and affect marine ecosystem. Dust is known as a major source of nutrients to the global ocean, but only a fraction of these nutrients is released in a bioavailable form that can be assimilated by the marine biota. Iron (Fe) is a key micronutrient that significantly modulates gross primary production in the High-Nutrient-Low-Chlorophyll (HNLC) oceans, where macronutrients like nitrate are abundant, but primary production is limited by Fe scarcity. The global atmospheric Fe cycle is here parameterized in the state-of-the-art global Earth System Model EC-Earth. The model takes into account the primary emissions of both insoluble and soluble Fe forms, associated with mineral dust and combustion aerosols. The impact of atmospheric acidity and organic ligands on mineral dissolution processes, is parameterized based on updated experimental and theoretical findings. Model results are also evaluated against available observations. Overall, the link between the labile Fe atmospheric deposition and atmospheric composition changes is here demonstrated and quantified. This work has been financed by the Marie-Curie H2020-MSCA-IF-2015 grant (ID 705652) ODEON (Online DEposition over OceaNs; modeling the effect of air pollution on ocean bio-geochemistry in an Earth System Model).

  12. Regional forecasting with global atmospheric models

    Crowley, T.J.; North, G.R.; Smith, N.R.

    1994-05-01

    The scope of the report is to present the results of the fourth year's work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals

  13. Global atmospheric chemistry – which air matters

    M. J. Prather

    2017-07-01

    Full Text Available An approach for analysis and modeling of global atmospheric chemistry is developed for application to measurements that provide a tropospheric climatology of those heterogeneously distributed, reactive species that control the loss of methane and the production and loss of ozone. We identify key species (e.g., O3, NOx, HNO3, HNO4, C2H3NO5, H2O, HOOH, CH3OOH, HCHO, CO, CH4, C2H6, acetaldehyde, acetone and presume that they can be measured simultaneously in air parcels on the scale of a few km horizontally and a few tenths of a km vertically. As a first step, six global models have prepared such climatologies sampled at the modeled resolution for August with emphasis on the vast central Pacific Ocean basin. Objectives of this paper are to identify and characterize differences in model-generated reactivities as well as species covariances that could readily be discriminated with an unbiased climatology. A primary tool is comparison of multidimensional probability densities of key species weighted by the mass of such parcels or frequency of occurrence as well as by the reactivity of the parcels with respect to methane and ozone. The reactivity-weighted probabilities tell us which parcels matter in this case, and this method shows skill in differentiating among the models' chemistry. Testing 100 km scale models with 2 km measurements using these tools also addresses a core question about model resolution and whether fine-scale atmospheric structures matter to the overall ozone and methane budget. A new method enabling these six global chemistry–climate models to ingest an externally sourced climatology and then compute air parcel reactivity is demonstrated. Such an objective climatology containing these key species is anticipated from the NASA Atmospheric Tomography (ATom aircraft mission (2015–2020, executing profiles over the Pacific and Atlantic Ocean basins. This modeling study addresses a core part of the design of ATom.

  14. Regional forecasting with global atmospheric models

    Crowley, T.J.; North, G.R.; Smith, N.R.

    1994-05-01

    This report was prepared by the Applied Research Corporation (ARC), College Station, Texas, under subcontract to Pacific Northwest Laboratory (PNL) as part of a global climate studies task. The task supports site characterization work required for the selection of a potential high-level nuclear waste repository and is part of the Performance Assessment Scientific Support (PASS) Program at PNL. The work is under the overall direction of the Office of Civilian Radioactive Waste Management (OCRWM), US Department of Energy Headquarters, Washington, DC. The scope of the report is to present the results of the third year's work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain several studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals

  15. Ultrasensitive detection of atmospheric trace gases using frequency modulation spectroscopy

    Cooper, David E.

    1986-01-01

    Frequency modulation (FM) spectroscopy is a new technique that promises to significantly extend the state-of-the-art in point detection of atmospheric trace gases. FM spectroscopy is essentially a balanced bridge optical heterodyne approach in which a small optical absorption or dispersion from an atomic or molecular species of interest generates an easily detected radio frequency (RF) signal. This signal can be monitored using standard RF signal processing techniques and is, in principle, limited only by the shot noise generated in the photodetector by the laser source employed. The use of very high modulation frequencies which exceed the spectral width of the probed absorption line distinguishes this technique from the well-known derivative spectroscopy which makes use of low (kHz) modulation frequencies. FM spectroscopy was recently extended to the 10 micron infrared (IR) spectral region where numerous polyatomic molecules exhibit characteristic vibrational-rotational bands. In conjunction with tunable semiconductor diode lasers, the quantum-noise-limited sensitivity of the technique should allow for the detection of absorptions as small as .00000001 in the IR spectral region. This sensitivity would allow for the detection of H2O2 at concentrations as low as 1 pptv with an integration time of 10 seconds.

  16. Vectorization and parallelization of a numerical scheme for 3D global atmospheric transport-chemistry problems

    E.J. Spee (Edwin); P.M. de Zeeuw (Paul); J.G. Verwer (Jan); J.G. Blom (Joke); W. Hundsdorfer (Willem)

    1996-01-01

    textabstractAtmospheric air quality modeling relies in part on numerical simulation. Required numerical simulations are often hampered by lack of computer capacity and computational speed. This problem is most severe in the field of global modeling where transport and exchange of trace constituents

  17. Global atmospheric particle formation from CERN CLOUD measurements

    Dunne, Eimear M.; Gordon, Hamish; Carslaw, Kenneth S.

    2017-04-01

    New particle formation (or nucleation) is acknowledged as a significant source of climate-relevant aerosol throughout the atmosphere. However, performing atmospherically relevant nucleation experiments in a laboratory setting is extremely challenging. As a result, until now, the parameterisations used to represent new particle formation in global aerosol models were largely based on in-situ observations or theoretical nucleation models, and usually only represented the binary H2SO4-H2O system. Several different chemicals can affect particle formation rates, even at extremely low trace concentrations, which are technically challenging to measure directly. Nucleation rates also respond to environmental changes in e.g. temperature in a highly non-linear fashion. The CERN CLOUD experiment was designed to provide the most controlled and accurate nucleation rate measurements to date, over the full range of free tropospheric temperatures and down to sulphuric acid concentrations of the order of 105 cm-3. We will present a parameterisation of inorganic nucleation rates for use in global models, based on these measurements, which includes four separate nucleation pathways: binary neutral, binary ion-induced, ternary neutral, and ternary ion-induced. Both inorganic and organic nucleation parameterisations derived from CLOUD measurements have been implemented in the GLOMAP global aerosol model. The parameterisations depend on temperature and on concentrations of sulphuric acid, ammonia, organic vapours, and ions. One of CLOUD's main original goals was to determine the sensitivity of atmospheric aerosol to changes in the nucleation rate over a solar cycle. We will show that, in a present-day atmosphere, the changes in climate-relevant aerosol (in the form of cloud-level cloud condensation nuclei) over a solar cycle are on average about 0.1%, with local changes of less than 1%. In contrast, anthropogenic changes in ammonia since pre-industrial times were estimated to have a

  18. A Global Atmospheric Model of Meteoric Iron

    Feng, Wuhu; Marsh, Daniel R.; Chipperfield, Martyn P.; Janches, Diego; Hoffner, Josef; Yi, Fan; Plane, John M. C.

    2013-01-01

    The first global model of meteoric iron in the atmosphere (WACCM-Fe) has been developed by combining three components: the Whole Atmosphere Community Climate Model (WACCM), a description of the neutral and ion-molecule chemistry of iron in the mesosphere and lower thermosphere (MLT), and a treatment of the injection of meteoric constituents into the atmosphere. The iron chemistry treats seven neutral and four ionized iron containing species with 30 neutral and ion-molecule reactions. The meteoric input function (MIF), which describes the injection of Fe as a function of height, latitude, and day, is precalculated from an astronomical model coupled to a chemical meteoric ablation model (CABMOD). This newly developed WACCM-Fe model has been evaluated against a number of available ground-based lidar observations and performs well in simulating the mesospheric atomic Fe layer. The model reproduces the strong positive correlation of temperature and Fe density around the Fe layer peak and the large anticorrelation around 100 km. The diurnal tide has a significant effect in the middle of the layer, and the model also captures well the observed seasonal variations. However, the model overestimates the peak Fe+ concentration compared with the limited rocket-borne mass spectrometer data available, although good agreement on the ion layer underside can be obtained by adjusting the rate coefficients for dissociative recombination of Fe-molecular ions with electrons. Sensitivity experiments with the same chemistry in a 1-D model are used to highlight significant remaining uncertainties in reaction rate coefficients, and to explore the dependence of the total Fe abundance on the MIF and rate of vertical transport.

  19. NOAA/NCEP Global Forecast System (GFS) Atmospheric Model

    National Oceanic and Atmospheric Administration, Department of Commerce — U.S. National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) numerical weather...

  20. Taking the atmosphere's pulse: The application of GC-IRMS to stable isotopes in atmospheric trace gases

    Lowe, D.C.; Ferretti, D.J.; Francey, R.J.; Allison, C.E.

    2001-01-01

    Since the industrial revolution, the abundance of many atmospheric trace gases has changed significantly. This is of concern because many of these trace species play a fundamental role in determining physical and chemical properties of the atmosphere important for maintaining life on earth. The impacts of the changes have been studied by a combination of analytical and theoretical modelling techniques. Stable isotope measurements made by conventional dual inlet IRMS for example, have provided valuable constraints on the budgets and removal mechanisms of key atmospheric trace gases. Unfortunately, in most cases, the application of these methods has been limited, because large air samples and cumbersome off line processing techniques are required to pre-concentrate enough gas for analysis. GC-IRMS offers a very attractive alternative because it combines on line processing with air sample size requirements typically 1000 times less than used in conventional techniques. In this article we focus on the requirements imposed on GC-IRMS by some of the current applications in atmospheric trace gas research. In addition, we examine some of the analytical and calibration aspects of the method applied to this kind of work. We finish with a summary of some of the comparative advantages and disadvantages of the GC-IRMS technique and some suggestions for future research using the method applied to specific atmospheric trace gases. (author)

  1. Trace Atmospheric Gas Analyzer (TAGA) Dispersant Data for BP Spil/Deepwater Horizon - August 2010

    U.S. Environmental Protection Agency — The Trace Atmospheric Gas Analyzer (TAGA) buses are self-contained mobile laboratories that conduct instant-result monitoring of air quality at particular locations....

  2. Atmospheric carbon dioxide and the global carbon cycle

    Trabalka, J R [ed.

    1985-12-01

    This state-of-the-art volume presents discussions on the global cycle of carbon, the dynamic balance among global atmospheric CO2 sources and sinks. Separate abstracts have been prepared for the individual papers. (ACR)

  3. Atmospheric pollution in an urban environment by tree bark biomonitoring--part I: trace element analysis.

    Guéguen, Florence; Stille, Peter; Lahd Geagea, Majdi; Boutin, René

    2012-03-01

    Tree bark has been shown to be a useful biomonitor of past air quality because it accumulates atmospheric particulate matter (PM) in its outermost structure. Trace element concentrations of tree bark of more than 73 trees allow to elucidate the impact of past atmospheric pollution on the urban environment of the cities of Strasbourg and Kehl in the Rhine Valley. Compared to the upper continental crust (UCC) tree barks are strongly enriched in Mn, Ni, Cu, Zn, Cd and Pb. To assess the degree of pollution of the different sites in the cities, a geoaccumulation index I(geo) was applied. Global pollution by V, Ni, Cr, Sb, Sn and Pb was observed in barks sampled close to traffic axes. Cr, Mo, Cd pollution principally occurred in the industrial area. A total geoaccumulation index I(GEO-tot) was defined; it is based on the total of the investigated elements and allows to evaluate the global pollution of the studied environment by assembling the I(geo) indices on a pollution map. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Global multiplicity of dietary standards for trace elements.

    Freeland-Graves, Jeanne H; Lee, Jane J

    2012-06-01

    Consistent guidelines across the world for dietary standards of trace elements remain elusive. Harmonization of dietary standards has been suggested by international agencies to facilitate consistency in food and nutrition policies and international trade. Yet significant barriers exist to standardize recommendations on a global basis, such as vast differences in geography, food availability and transport; cultural, social and economic constraints, and biological diversity. Simple commonality is precluded further by the variety of terminologies among countries and regions related to diet. Certain unions have created numerous nutritional descriptive categories for standards, while other large countries are limited to only a few. This paper will explore the global multiplicity of dietary standards and efforts for harmonization. Copyright © 2012 Elsevier GmbH. All rights reserved.

  5. Global simulation of aromatic volatile organic compounds in the atmosphere

    Cabrera Perez, David; Taraborrelli, Domenico; Pozzer, Andrea

    2015-04-01

    Among the large number of chemical compounds in the atmosphere, the organic group plays a key role in the tropospheric chemistry. Specifically the subgroup called aromatics is of great interest. Aromatics are the predominant trace gases in urban areas due to high emissions, primarily by vehicle exhausts and fuel evaporation. They are also present in areas where biofuel is used (i.e residential wood burning). Emissions of aromatic compounds are a substantial fraction of the total emissions of the volatile organic compounds (VOC). Impact of aromatics on human health is very important, as they do not only contribute to the ozone formation in the urban environment, but they are also highly toxic themselves, especially in the case of benzene which is able to trigger a range of illness under long exposure, and of nitro-phenols which cause detrimental for humans and vegetation even at very low concentrations. The aim of this work is to assess the atmospheric impacts of aromatic compounds on the global scale. The main goals are: lifetime and budget estimation, mixing ratios distribution, net effect on ozone production and OH loss for the most emitted aromatic compounds (benzene, toluene, xylenes, ethylbenzene, styrene and trimethylbenzenes). For this purpose, we use the numerical chemistry and climate simulation ECHAM/MESSy Atmospheric Chemistry (EMAC) model to build the global atmospheric budget for the most emitted and predominant aromatic compounds in the atmosphere. A set of emissions was prepared in order to include biomass burning, vegetation and anthropogenic sources of aromatics into the model. A chemical mechanism based on the Master Chemical Mechanism (MCM) was developed to describe the chemical oxidation in the gas phase of these aromatic compounds. MCM have been reduced in terms of number of chemical equation and species in order to make it affordable in a 3D model. Additionally other features have been added, for instance the production of HONO via ortho

  6. History of chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric Gases Experiment (AGAGE

    R. G. Prinn

    2018-06-01

    to determine the average concentrations and trends of tropospheric hydroxyl radicals (OH from the rates of destruction of atmospheric trichloroethane (CH3CCl3, HFCs, and HCFCs and estimates of their emissions; (5 to determine from atmospheric observations and estimates of their destruction rates the magnitudes and distributions by region of surface sources and sinks of all measured gases; (6 to provide accurate data on the global accumulation of many of these trace gases that are used to test the synoptic-, regional-, and global-scale circulations predicted by three-dimensional models; and (7 to provide global and regional measurements of methane, carbon monoxide, and molecular hydrogen and estimates of hydroxyl levels to test primary atmospheric oxidation pathways at midlatitudes and the tropics. Network Information and Data Repository: http://agage.mit.edu/data or http://cdiac.ess-dive.lbl.gov/ndps/alegage.html (https://doi.org/10.3334/CDIAC/atg.db1001.

  7. The global atmospheric environment for the next generation

    Dentener, F.; Stevenson, D.; Ellingsen, K.; Noije, van T.; Schultz, M.; Amann, M.; Atherton, C.; Bell, N.; Bergmann, D.; Bey, I.; Bouwman, L.; Butler, T.; Cofala, J.; Collins, B.; Drevet, J.; Doherty, R.; Eickhout, B.; Eskes, H.; Fiore, A.; Gauss, M.; Hauglustaine, D.; Horowitz, L.; Isaksen, I.S.A.; Josse, B.; Lawrence, M.; Krol, M.C.; Lamarque, J.F.; Montanaro, V.; Müller, J.F.; Peuch, V.H.; Pitari, G.; Pyle, J.; Rast, S.; Rodriguez, J.; Sanderson, M.; Savage, N.H.; Shindell, D.; Strahan, S.; Szopa, S.; Sudo, K.; Dingenen, van R.; Wild, O.; Zeng, G.

    2006-01-01

    Air quality, ecosystem exposure to nitrogen deposition, and climate change are intimately coupled problems: we assess changes in the global atmospheric environment between 2000 and 2030 using 26 state-of-the-art global atmospheric chemistry models and three different emissions scenarios. The first

  8. Trace elements controlling the atmospheric circulation. Atmospheric environmental research as part of future FhG research

    1986-11-01

    Atmospheric trace substances such as methane (CH/sub 4/), ozone and nitrogen oxides (NO/sub x/) essentially influence the biosphere. FhG research work will be consisting in the long-term measurement of trace substance concentrations in different places (e.g. South Africa, Italy, Thailand or China). An air container packed with measuring instruments and data storage equipment was sent to South America with scientists on board measuring the distribution of trace substances over the northern and southern hemisphere.

  9. Statistical equilibrium equations for trace elements in stellar atmospheres

    Kubat, Jiri

    2010-01-01

    The conditions of thermodynamic equilibrium, local thermodynamic equilibrium, and statistical equilibrium are discussed in detail. The equations of statistical equilibrium and the supplementary equations are shown together with the expressions for radiative and collisional rates with the emphasize on the solution for trace elements.

  10. enrichment factor of atmospheric trace metal using zirconium

    user

    Twelve (12) elements (Cl, K, Ca, Ti, V, Fe, Ni, Cu, Zn, Ba, Sr, and Zr ) were detected in total suspended particulate matter (TSP) ..... Ni and V didn't show spatial variation (p>0.05). For K, ..... K.A. Wet deposition of trace metals to a remote.

  11. Global Atmosphere Watch Workshop on Measurement-Model Fusion for Global Total Atmospheric Deposition (MMF-GTAD)

    The World Meteorological Organization’s (WMO) Global Atmosphere Watch (GAW) Programme coordinates high-quality observations of atmospheric composition from global to local scales with the aim to drive high-quality and high-impact science while co-producing a new generation of pro...

  12. A Fourier transform infrared trace gas and isotope analyser for atmospheric applications

    D. W. T. Griffith

    2012-10-01

    Full Text Available Concern in recent decades about human impacts on Earth's climate has led to the need for improved and expanded measurement capabilities of greenhouse gases in the atmosphere. In this paper we describe in detail an in situ trace gas analyser based on Fourier Transform Infrared (FTIR spectroscopy that is capable of simultaneous and continuous measurements of carbon dioxide (CO2, methane (CH4, carbon monoxide (CO, nitrous oxide (N2O and 13C in CO2 in air with high precision. High accuracy is established by reference to measurements of standard reference gases. Stable water isotopes can also be measured in undried airstreams. The analyser is automated and allows unattended operation with minimal operator intervention. Precision and accuracy meet and exceed the compatibility targets set by the World Meteorological Organisation – Global Atmosphere Watch for baseline measurements in the unpolluted troposphere for all species except 13C in CO2.

    The analyser is mobile and well suited to fixed sites, tower measurements, mobile platforms and campaign-based measurements. The isotopic specificity of the optically-based technique and analysis allows its application in isotopic tracer experiments, for example in tracing variations of 13C in CO2 and 15N in N2O. We review a number of applications illustrating use of the analyser in clean air monitoring, micrometeorological flux and tower measurements, mobile measurements on a train, and soil flux chamber measurements.

  13. Potential Trace Metal–Organic Complexation in the Atmosphere

    Hiroshi Okochi

    2002-01-01

    Full Text Available It is possible that metal–organic complexation enhances the uptake of gaseous organic compounds and the solubility of metals in aerosols and atmospheric water. We investigated potential atmospheric organic ligands and the enhanced uptake of hydroxy-, oxo-, and dicarboxylic acids as well as dicarbonyls into atmospheric aqueous aerosol. We examined complexation with transition metals (iron, manganese, nickel, copper, zinc and lead on the basis of available references and our experimental data. Humic-like substances are most likely ligands in the atmosphere, although this is a poorly characterized material. A number of polycarboxylic acids and hydroxy forms (e.g., citric and tartronic acids effectively complex metals such as copper in atmospheric aerosols. The simple equilibrium model calculations show that the effect of the complexation on the gas–aqueous phase partition of gaseous atmospheric ligands is quite small for the ligands with the high physical Henry’s law constants, e.g., dicarboxylic acids represented by oxalic acid, even if they have high affinity with metal ions. The lower Henry’s law constants of the α-dicarbonyls, such as glyoxal and methylglyoxal, mean that the complexation could lead to profound increases in their partition into the aqueous phase. Despite quantum mechanical arguments for copper–glyoxal complexes, experiments showed no evidence of complexation between either hydrated or unhydrated α-dicarbonyls and the cupric ion. By contrast the β-dicarbonyl, malondialdehyde, has properties that would allow it to partition into atmospheric water via the complexation with metal ions under some conditions.

  14. The atmospheric electric global circuit. [thunderstorm activity

    Kasemir, H. W.

    1979-01-01

    The hypothesis that world thunderstorm activity represents the generator for the atmospheric electric current flow in the earth atmosphere between ground and the ionosphere is based on a close correlation between the magnitude and the diurnal variation of the supply current (thunderstorm generator current) and the load current (fair weather air-earth current density integrated over the earth surface). The advantages of using lightning survey satellites to furnish a base for accepting or rejecting the thunderstorm generator hypothesis are discussed.

  15. Bioindication of atmospheric trace metals - With special references to megacities

    Markert, Bernd; Wuenschmann, Simone; Fraenzle, Stefan; Graciana Figueiredo, Ana Maria; Ribeiro, Andreza P.; Wang Meie

    2011-01-01

    After considering the particular problems of atmospheric pollution in megacities, i.e. agglomerations larger than 5 mio. inhabitants, with urbanization of World's population going on steadily, possibilities of active biomonitoring by means of green plants are discussed. Based on specific definitions of active and passive bioindication the chances of monitoring heavy metals in Sao Paulo megacity were demonstrated (first results published before). This is to show that there is need for increased use of bioindication to tackle the particular problems of megacities concerning environmental 'health', the data to be processed according to the Multi-Markered-Bioindication-Concept (MMBC). Comparison to other work shows this approach to be reasonable. - Highlights: → Chemical Pollution. → Bioindication. → Multi-Markered-Bioindication-Concept (MMBC). → Mega cities. - Bioindication is a relevant technique for observing the atmospheric deposition of chemical elements of the environment in megacities.

  16. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases Fiscal Year 2000 Annual Report; ANNUAL

    Cushman, R.M.

    2001-01-01

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including concentrations of carbon dioxide (CO(sub 2)) and other radiatively active gases in the atmosphere; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; emissions of CO(sub 2) and other trace gases to the atmosphere; long-term climate trends; the effects of elevated CO(sub 2) on vegetation; and the vulnerability of coastal areas to rising sea levels

  17. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases Fiscal Year 2000 Annual Report

    Cushman, R.M.

    2001-11-15

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including concentrations of carbon dioxide (CO{sub 2}) and other radiatively active gases in the atmosphere; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; emissions of CO{sub 2} and other trace gases to the atmosphere; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea levels.

  18. The biosphere as a driver of global atmospheric change

    Levine, J.S.

    1991-01-01

    The effects of the biosphere on the evolution of atmospheric oxygen and ozone, and the consequences of that development for global atmospheric change, are discussed. Attention is given to the impact of oxygen and ozone on atmospheric photolysis rates, the effect of oxygen on the biogenic production of nitrous oxide and nitric oxide, and the effects of the evolution of atmospheric oxygen on fires and biomass burning. The influence of the latter on atmospheric processes, particularly the production of methane, carbon dioxide, and carbon monoxide, is considered. 41 refs

  19. Pilot Institute on Global Change on Trace Gases and the Biosphere, 1988

    Eddy, J. A.; Moore, B.

    1998-01-01

    Table of Contents: Summary; Background; General Framework for a Series of Institutes on Global Change; The 1988 Pilot Institute on Global Changes: Trace Gases and the Biosphere; Budget; List of Acronyms; and Attachments.

  20. ISLSCP II GlobalView: Atmospheric Methane Concentrations

    National Aeronautics and Space Administration — ABSTRACT: The GlobalView Methane (CH4) data product contains synchronized and smoothed time series of atmospheric CH4 concentrations at selected sites that were...

  1. ISLSCP II GlobalView: Atmospheric Methane Concentrations

    National Aeronautics and Space Administration — The GlobalView Methane (CH4) data product contains synchronized and smoothed time series of atmospheric CH4 concentrations at selected sites that were created using...

  2. Osmium isotopic tracing of atmospheric emissions from an aluminum smelter

    Gogot, Julien; Poirier, André; Boullemant, Amiel

    2015-09-01

    We present for the first time the use of osmium isotopic composition as a tracer of atmospheric emissions from an aluminum smelter, where alumina (extracted from bauxite) is reduced through electrolysis into metallic aluminum using carbonaceous anodes. These anodes are consumed in the process; they are made of petroleum coke and pitch and have high Re/Os elementary ratio. Due to the relatively large geological age of their source material, their osmium shows a high content of radiogenic 187Os produced from in situ187Re radioactive decay. The radiogenic isotopic composition (187Os/188Os ∼ 2.5) of atmospheric particulate emissions from this smelter is different from that of other typical anthropogenic osmium sources (that come from ultramafic geological contexts with unradiogenic Os isotopes, e.g., 187Os/188Os < 0.2) and also different from average eroding continental crust 187Os/188Os ratios (ca. 1.2). This study demonstrates the capacity of osmium measurements to monitor particulate matter emissions from the Al-producing industry.

  3. Opo lidar sounding of trace atmospheric gases in the 3 - 4 μm spectral range

    Romanovskii, Oleg A.; Sadovnikov, Sergey A.; Kharchenko, Olga V.; Yakovlev, Semen V.

    2018-04-01

    The applicability of a KTA crystal-based laser system with optical parametric oscillators (OPO) generation to lidar sounding of the atmosphere in the spectral range 3-4 μm is studied in this work. A technique developed for lidar sounding of trace atmospheric gases (TAG) is based on differential absorption lidar (DIAL) method and differential optical absorption spectroscopy (DOAS). The DIAL-DOAS technique is tested to estimate its efficiency for lidar sounding of atmospheric trace gases. The numerical simulation performed shows that a KTA-based OPO laser is a promising source of radiation for remote DIAL-DOAS sounding of the TAGs under study along surface tropospheric paths. A possibility of using a PD38-03-PR photodiode for the DIAL gas analysis of the atmosphere is shown.

  4. The broad-band overlap problem in atmospheric trace gases

    Subasilar, B.

    1991-01-01

    In relation to a better understanding of climate change and the related greenhouse problem, one way of projecting for the next decades is through general circulation models (GCMs). The only input as a driving force in the changing atmospheric and oceanic circulation patterns is the amount of heat perturbation either due to natural or man-caused activities. Among these, CO 2 concentrations resulting from the latter has been observed to be accelerating at alarmingly high rates especially after the advent of the industrialization which just began in the last century. In addition to that, collective effects of other greenhouse gases (freons, SO 2 , H 2 O, CH 4 , etc.) are as important as CO 2 . Hence, it is evident from the above considerations that, in the predictions of climate models, the heat input which triggers changes in the atmospheric patterns, should be formulated accurately. In order to realize this objective, in this research, beginning with the available line parameter data, the problems of absorption have been investigated and attacked in the frame known as the broad band modeling since that is the only best and fastest manageable representation for GCMs. The first step was the construction of a full broad band (intra band overlap) model that was also flexible enough to accommodate the individual peculiarities of the bands. Before, the well known and very useful Ramanathan model had a limited applicability in the concentration scale, and it was also not systematically or successfully incorporated into an inter band overlap picture. Then, the established ideas that served as bases up to present, have been employed but found to have a limited practical applicability when it came to predict the inter band overlaps

  5. Biogenic and pyrogenic emissions from Africa and their impact on the global atmosphere

    Scholes, Mary; Andreae, M.O.

    2000-01-01

    Tropical regions, with their high biological activity, have the potential to emit large amounts of trace gases and aerosols to the atmosphere. This can take the form of trace gas fluxes from soils and vegetation, where gaseous species are produced and consumed by living organisms, or of smoke emissions from vegetation fires. In the last decade, considerable scientific effort has gone into quantifying these fluxes from the African continent. We find that both biogenic and pyrogenic emissions have a powerful impact on regional and global atmospheric chemistry, particularly on photooxidation processes and tropospheric ozone. The emissions of radiatively active gases and aerosols from the African continent are likely to have a significant climatic effect, but presently available data are not sufficient for reliable quantitative estimates of this effect

  6. On the "well-mixed" assumption and numerical 2-D tracing of atmospheric moisture

    H. F. Goessling

    2013-06-01

    Full Text Available Atmospheric water vapour tracers (WVTs are an elegant tool to determine source–sink relations of moisture "online" in atmospheric general circulation models (AGCMs. However, it is sometimes desirable to establish such relations "offline" based on already existing atmospheric data (e.g. reanalysis data. One simple and frequently applied offline method is 2-D moisture tracing. It makes use of the "well-mixed" assumption, which allows for treating the vertical dimension integratively. Here we scrutinise the "well-mixed" assumption and 2-D moisture tracing by means of analytical considerations in combination with AGCM-WVT simulations. We find that vertically well-mixed conditions are seldom met. Due to the presence of vertical inhomogeneities, 2-D moisture tracing (i neglects a significant degree of fast-recycling, and (ii results in erroneous advection where the direction of the horizontal winds varies vertically. The latter is not so much the case in the extratropics, but in the tropics this can lead to large errors. For example, computed by 2-D moisture tracing, the fraction of precipitation in the western Sahel that originates from beyond the Sahara is ~40%, whereas the fraction that originates from the tropical and Southern Atlantic is only ~4%. According to full (i.e. 3-D moisture tracing, however, both regions contribute roughly equally, showing that the errors introduced by the 2-D approximation can be substantial.

  7. Atmospheric wet deposition of mercury and other trace elements in Pensacola, Florida

    W. M. Landing

    2010-05-01

    Full Text Available In an effort to understand and quantify the impact of local, regional, and far-distant atmospheric mercury sources to rainfall mercury deposition in the Pensacola, Florida watershed, a program of event-based rainfall sampling was started in late 2004. Modified Aerochem-Metrics wet/dry rainfall samplers were deployed at three sites in the region around the Crist coal-fired power plant and event-based samples were collected continuously for three years. Samples were analyzed for total Hg and a suite of trace elements including Al, As, Ba, Bi, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, La, Li, Mg, Mn, Na, Nb, Ni, P, Pb, Sb, Se, Si, Sn, Sr, Th, U, V, and Zn. Nutrients (ammonia and nitrate and major anions (chloride and sulfate were also measured on each sample. Multivariate statistical methods were used to sort these tracers into factors that represent potential source categories contributing to the rainfall chemistry. As, Hg, Sb, Se, Sn, and non sea-salt sulfate were all significantly correlated (R>0.6 with one factor which we interpret as an anthropogenic source term reflecting input from coal combustion throughout the southeastern US. Using ratios of total Hg to volatile elements, we estimate that 22–33% of the rainfall Hg results from coal combustion in the southeastern US with the majority coming from the global background.

  8. Optical remote sensing of properties and concentrations of atmospheric trace constituents

    Vladutescu, Daniela Viviana

    application is the detection of water vapor in the atmosphere. Water vapor is an important greenhouse gas due to its high concentration in the atmosphere (parts per thousand), among the trace constituents, and its interaction with tropospheric aerosols particles. The upward convection of water vapor and aerosols due to intense heating of the ground lead to aggregation of water particles or ice on aerosols in the air forming different types of clouds at various altitudes. In this regard a reliable method of retrieving atmospheric water vapor profiles is presented in the third part of the paper. The proposed technique here is the Raman lidar procedure that is calibrated afterwards. The accuracy of the water vapor measurements is obtained by calibration techniques based on different techniques that where compared and validated. The calibration method is based on data fusion from different sources like: GPS (global positioning system) sunphotometer, radiosonde. The condensation of water vapor on aerosols is affecting their size, shape, refractive index and chemical composition. The warming or cooling effect of the clouds hence formed are both possible depending on the cloud location, cover, composition and structure. The effect of these clouds on radiative global forcing and therefore on the short and long term global climate is of high interest in the scientific world. In an effort to understand the hygroscopic properties of aerosols, a major interest is manifested in obtaining accurate vertical water vapor profiles simultaneously with aerosol extinction and backscatter profiles. A reliable method of retrieving atmospheric water vapor profiles and aerosols backscatter and extinction in the same atmospheric volume is presented in the fourth chapter of the paper. As mentioned above the determination of greenhouse gases and other molecular pollutants is important in process control as well as environmental monitoring. Since many molecular vibrational modes are in the infrared

  9. Trace organic compounds in wet atmospheric deposition: an overview

    Steinheimer, T.R.; Johnson, S.M.

    1987-01-01

    An overview of the occurrence of organic compounds in wet atmospheric deposition is given. Multiplicity of sources and problems associated with source identification are discussed. Available literature is reviewed by using citations from Chemical Abstracts and Water Resources Abstracts through June 1985 and includes reports published through December 1984 that summarize current knowledge. Approaches to the chemical determination of organic compounds in precipitation are examined in addition to aspects of sampling protocols. Best methods for sample collection and preparation for instrumental analysis continue to be discussed among various investigators. Automatic wet-deposition-only devices for collection and extraction are preferred. Classes of organic compounds that have been identified in precipitation include a spectrum of compounds with differing properties of acidity or basicity, polarity, and water solubility. Those compounds that have been reported in rainfall, snowfall, and ice include hydrocarbons (both aromatic and nonaromatic), chlorinated derivatives of these hydrocarbons, carbonyl compounds (both acidic and nonacidic), and carboxylic acids and esters. Formic and acetic are the most abundant organic acids present. Cloudwater, fogwater, and mist also have been collected and analyzed for organic composition.

  10. Atmospherically deposited trace metals from bulk mineral concentrate port operations.

    Taylor, Mark Patrick

    2015-05-15

    Although metal exposures in the environment have declined over the last two decades, certain activities and locations still present a risk of harm to human health. This study examines environmental dust metal and metalloid hazards (arsenic, cadmium, lead and nickel) associated with bulk mineral transport, loading and unloading port operations in public locations and children's playgrounds in the inner city of Townsville, northern Queensland. The mean increase in lead on post-play hand wipes (965 μg/m(2)/day) across all sites was more than 10-times the mean pre-play loadings (95 μg/m(2)/day). Maximum loading values after a 10-minute play period were 3012 μg/m(2), more than seven times the goal of 400 μg/m(2) used by the Government of Western Australia (2011). Maximum daily nickel post-play hand loadings (404 μg/m(2)) were more than 26 times above the German Federal Immission Control Act 2002 annual benchmark of 15 μg/m(2)/day. Repeat sampling over the 5-day study period showed that hands and surfaces were re-contaminated daily from the deposition of metal-rich atmospheric dusts. Lead isotopic composition analysis of dust wipes ((208)Pb/(207)Pb and (206)Pb/(207)Pb) showed that surface dust lead was similar to Mount Isa type ores, which are exported through the Port of Townsville. While dust metal contaminant loadings are lower than other mining and smelting towns in Australia, they exceeded national and international benchmarks for environmental quality. The lessons from this study are clear - even where operations are considered acceptable by managing authorities, targeted assessment and monitoring can be used to evaluate whether current management practices are truly best practice. Reassessment can identify opportunities for improvement and maximum environmental and human health protection. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Determination of traces of fluorine and hydrofluoric acid in the atmosphere

    Francois, H.; Grand-Clement, A.M.; Faltot, G.

    1963-01-01

    As some publications highlighted hazards related to the presence of dispersed fluorine and hydrofluoric acid in the atmosphere, the authors, after a brief recall of some measurement devices presented in some publications, present an experimental set-up which aims at measuring traces of these compounds in the atmosphere. They notably describe the preparation of a controlled fluorine atmosphere, discuss the efficiency of the absorption-based trap, report the study of the electrolytic analysis cell, discuss its calibration. They also report the study of the influence of temperature and of the presence of disturbing ions

  12. Atmospheric pollution for trace elements in the remote high-altitude atmosphere in central Asia as recorded in snow from Mt. Qomolangma (Everest) of the Himalayas.

    Lee, Khanghyun; Hur, Soon Do; Hou, Shugui; Hong, Sungmin; Qin, Xiang; Ren, Jiawen; Liu, Yapping; Rosman, Kevin J R; Barbante, Carlo; Boutron, Claude F

    2008-10-01

    A series of 42 snow samples covering over a one-year period from the fall of 2004 to the summer of 2005 were collected from a 2.1-m snow pit at a high-altitude site on the northeastern slope of Mt. Everest. These samples were analyzed for Al, V, Cr, Mn, Co, Ni, Cu, Zn, As, Rb, Sr, Cd, Sb, Pb, and Bi in order to characterize the relative contributions from anthropogenic and natural sources to the fallout of these elements in central Himalayas. Our data were also considered in the context of monsoon versus non-monsoon seasons. The mean concentrations of the majority of the elements were determined to be at the pg g(-1) level with a strong variation in concentration with snow depth. While the mean concentrations of most of the elements were significantly higher during the non-monsoon season than during the monsoon season, considerable variability in the trace element inputs to the snow was observed during both periods. Cu, Zn, As, Cd, Sb, and Bi displayed high crustal enrichment factors (EFc) in most samples, while Cr, Ni, Rb, and Pb show high EFc values in some of the samples. Our data indicate that anthropogenic inputs are potentially important for these elements in the remote high-altitude atmosphere in the central Himalayas. The relationship between the EFc of each element and the Al concentration indicates that a dominant input of anthropogenic trace elements occurs during both the monsoon and non-monsoon seasons, when crustal contribution is relatively minor. Finally, a comparison of the trace element fallout fluxes calculated in our samples with those recently obtained at Mont Blanc, Greenland, and Antarctica provides direct evidence for a geographical gradient of the atmospheric pollution with trace elements on a global scale.

  13. Dynamics of radioactive lead isotopes in the global environmental atmosphere

    Koike, Yuya; Kosako, Toshiso

    2006-01-01

    Fundamental information of radioactive lead isotopes, which used as the atmospheric tracer in the global environmental atmosphere, is reviewed. Emanation and exhalation of Rn and Tn, parent nuclide, is stated. Some reports on measurement and application of short-lived lead isotopes are reported. Transfer of radioactive lead isotopes in the atmosphere, vertical profiles of radon, thoron, and short-lived lead isotopes for different turbulent mixing conditions, deposition to aerosol, basic processes of Rn decay product behavior in air defining 'unattached' and 'aerosol-attached' activities, seasonal variation of atmospheric 210 Pb concentration at Beijing and Chengdu, seasonal variation of atmospheric 212 Pb concentration at several observation sites in Japan Islands, and variation in the atmospheric concentration of 212 Pb along with SO 2 are shown. (S.Y.)

  14. Solar atmosphere wave dynamics generated by solar global oscillating eigenmodes

    Griffiths, M. K.; Fedun, V.; Erdélyi, R.; Zheng, R.

    2018-01-01

    The solar atmosphere exhibits a diverse range of wave phenomena, where one of the earliest discovered was the five-minute global acoustic oscillation, also referred to as the p-mode. The analysis of wave propagation in the solar atmosphere may be used as a diagnostic tool to estimate accurately the physical characteristics of the Sun's atmospheric layers. In this paper, we investigate the dynamics and upward propagation of waves which are generated by the solar global eigenmodes. We report on a series of hydrodynamic simulations of a realistically stratified model of the solar atmosphere representing its lower region from the photosphere to low corona. With the objective of modelling atmospheric perturbations, propagating from the photosphere into the chromosphere, transition region and low corona, generated by the photospheric global oscillations the simulations use photospheric drivers mimicking the solar p-modes. The drivers are spatially structured harmonics across the computational box parallel to the solar surface. The drivers perturb the atmosphere at 0.5 Mm above the bottom boundary of the model and are placed coincident with the location of the temperature minimum. A combination of the VALIIIC and McWhirter solar atmospheres are used as the background equilibrium model. We report how synthetic photospheric oscillations may manifest in a magnetic field free model of the quiet Sun. To carry out the simulations, we employed the magnetohydrodynamics code, SMAUG (Sheffield MHD Accelerated Using GPUs). Our results show that the amount of energy propagating into the solar atmosphere is consistent with a model of solar global oscillations described by Taroyan and Erdélyi (2008) using the Klein-Gordon equation. The computed results indicate a power law which is compared to observations reported by Ireland et al. (2015) using data from the Solar Dynamics Observatory/Atmospheric Imaging Assembly.

  15. Challenges in Modeling of the Global Atmosphere

    Janjic, Zavisa; Djurdjevic, Vladimir; Vasic, Ratko; Black, Tom

    2015-04-01

    ") with significant amplitudes can develop. Due to their large scales, that are comparable to the scales of the dominant Rossby waves, such fictitious solutions are hard to identify and remove. Another new challenge on the global scale is that the limit of validity of the hydrostatic approximation is rapidly being approached. Having in mind the sensitivity of extended deterministic forecasts to small disturbances, we may need global non-hydrostatic models sooner than we think. The unified Non-hydrostatic Multi-scale Model (NMMB) that is being developed at the National Centers for Environmental Prediction (NCEP) as a part of the new NOAA Environmental Modeling System (NEMS) will be discussed as an example. The non-hydrostatic dynamics were designed in such a way as to avoid over-specification. The global version is run on the latitude-longitude grid, and the polar filter selectively slows down the waves that would otherwise be unstable. The model formulation has been successfully tested on various scales. A global forecasting system based on the NMMB has been run in order to test and tune the model. The skill of the medium range forecasts produced by the NMMB is comparable to that of other major medium range models. The computational efficiency of the global NMMB on parallel computers is good.

  16. Global atmospheric particle formation from CERN CLOUD measurements

    Dunne, E M; Kurten, A; Almeida, J; Duplissy, J; Williamson, C; Ortega, I K; Pringle, K J; Adamov, A; Baltensperger, U; Barmet, P; Benduhn, F; Bianchi, F; Breitenlechner, M; Clarke, A; Curtius, J; Dommen, J; Donahue, N M; Ehrhart, S; Flagan, R C; Franchin, A; Guida, R; Hakala, J; Hansel, A; Heinritzi, M; Jokinen, T; Kangasluoma, J; Kirkby, J; Kulmala, M; Kupc, A; Lawler, M J; Lehtipalo, K; Makhmutov, V; Mann, G; Mathot, S; Merikanto, J; Miettinen, P; Nenes, A; Onnela, A; Rap, A; Reddington, C L S; Riccobono, F; Richards, N A D; Rissanen, M P; Rondo, L; Sarnela, N; Schobesberger, S; Sengupta, K; Simon, M; Sipila, M; Smith, J N; Stozkhov, Y; Tome, A; Trostl, J; Wagner, P E; Wimmer, D; Winkler, P M; Worsnop, D R; Carslaw, K S

    2016-01-01

    Fundamental questions remain about the origin of newly formed atmospheric aerosol particles because data from laboratory measurements have been insufficient to build global models. In contrast, gas-phase chemistry models have been based on laboratory kinetics measurements for decades. Here we build a global model of aerosol formation using extensive laboratory-measured nucleation rates involving sulfuric acid, ammonia, ions and organic compounds. The simulations and a comparison with atmospheric observations show that nearly all nucleation throughout the present-day atmosphere involves ammonia or biogenic organic compounds in addition to sulfuric acid. A significant fraction of nucleation involves ions, but the relatively weak dependence on ion concentrations indicates that for the processes studied variations in cosmic ray intensity do not significantly affect climate via nucleation in the present-day atmosphere.

  17. Global atmospheric particle formation from CERN CLOUD measurements.

    Dunne, Eimear M; Gordon, Hamish; Kürten, Andreas; Almeida, João; Duplissy, Jonathan; Williamson, Christina; Ortega, Ismael K; Pringle, Kirsty J; Adamov, Alexey; Baltensperger, Urs; Barmet, Peter; Benduhn, Francois; Bianchi, Federico; Breitenlechner, Martin; Clarke, Antony; Curtius, Joachim; Dommen, Josef; Donahue, Neil M; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Guida, Roberto; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Jokinen, Tuija; Kangasluoma, Juha; Kirkby, Jasper; Kulmala, Markku; Kupc, Agnieszka; Lawler, Michael J; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mann, Graham; Mathot, Serge; Merikanto, Joonas; Miettinen, Pasi; Nenes, Athanasios; Onnela, Antti; Rap, Alexandru; Reddington, Carly L S; Riccobono, Francesco; Richards, Nigel A D; Rissanen, Matti P; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Sengupta, Kamalika; Simon, Mario; Sipilä, Mikko; Smith, James N; Stozkhov, Yuri; Tomé, Antonio; Tröstl, Jasmin; Wagner, Paul E; Wimmer, Daniela; Winkler, Paul M; Worsnop, Douglas R; Carslaw, Kenneth S

    2016-12-02

    Fundamental questions remain about the origin of newly formed atmospheric aerosol particles because data from laboratory measurements have been insufficient to build global models. In contrast, gas-phase chemistry models have been based on laboratory kinetics measurements for decades. We built a global model of aerosol formation by using extensive laboratory measurements of rates of nucleation involving sulfuric acid, ammonia, ions, and organic compounds conducted in the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber. The simulations and a comparison with atmospheric observations show that nearly all nucleation throughout the present-day atmosphere involves ammonia or biogenic organic compounds, in addition to sulfuric acid. A considerable fraction of nucleation involves ions, but the relatively weak dependence on ion concentrations indicates that for the processes studied, variations in cosmic ray intensity do not appreciably affect climate through nucleation in the present-day atmosphere. Copyright © 2016, American Association for the Advancement of Science.

  18. Study of particle size and trace metal distribution in atmospheric aerosols of islamabad

    Shah, M.H.; Shaheen, N.

    2009-01-01

    Atmospheric aerosol samples were collected on glass fibre filters using high volume air samplers Half of each aerosol sample was solubilized in nitric acid/hydrochloric acid based wet digestion method and the concentration of trace metals was determined through flame atomic absorption spectrophotometer. Among the eight trace metals analyzed, mean concentration recorded for Zn (844 ng/m3), Fe (642 ng/m3) and Pb (253 ng/m3), was found to be higher than mean levels of Mn, Cr and Co. The size distribution of the collected particulate samples was carried out on mastersizer, which revealed PM/sub 100-10/ as the major fraction (55 %) followed by PM/sub 2.5-10/ (28 %). The correlation study evidenced a strong tendency of trace metals to be associated with fine particulate fractions. The atmospheric trace metal levels showed that the mean metal concentrations in the atmosphere of Islamabad are far higher than background and European urban sites mainly due to the anthropogenic emissions. (author)

  19. Thermal Band Atmospheric Correction Using Atmospheric Profiles Derived from Global Positioning System Radio Occultation and the Atmospheric Infrared Sounder

    Pagnutti, Mary; Holekamp, Kara; Stewart, Randy; Vaughan, Ronald D.

    2006-01-01

    This Rapid Prototyping Capability study explores the potential to use atmospheric profiles derived from GPS (Global Positioning System) radio occultation measurements and by AIRS (Atmospheric Infrared Sounder) onboard the Aqua satellite to improve surface temperature retrieval from remotely sensed thermal imagery. This study demonstrates an example of a cross-cutting decision support technology whereby NASA data or models are shown to improve a wide number of observation systems or models. The ability to use one data source to improve others will be critical to the GEOSS (Global Earth Observation System of Systems) where a large number of potentially useful systems will require auxiliary datasets as input for decision support. Atmospheric correction of thermal imagery decouples TOA radiance and separates surface emission from atmospheric emission and absorption. Surface temperature can then be estimated from the surface emission with knowledge of its emissivity. Traditionally, radiosonde sounders or atmospheric models based on radiosonde sounders, such as the NOAA (National Oceanic & Atmospheric Administration) ARL (Air Resources Laboratory) READY (Real-time Environmental Application and Display sYstem), provide the atmospheric profiles required to perform atmospheric correction. Unfortunately, these types of data are too spatially sparse and too infrequently taken. The advent of high accuracy, global coverage, atmospheric data using GPS radio occultation and AIRS may provide a new avenue for filling data input gaps. In this study, AIRS and GPS radio occultation derived atmospheric profiles from the German Aerospace Center CHAMP (CHAllenging Minisatellite Payload), the Argentinean Commission on Space Activities SAC-C (Satellite de Aplicaciones Cientificas-C), and the pair of NASA GRACE (Gravity Recovery and Climate Experiment) satellites are used as input data in atmospheric radiative transport modeling based on the MODTRAN (MODerate resolution atmospheric

  20. Use of mosses as biomonitors of atmospheric deposition of trace elements

    Steinnes, E.

    2000-01-01

    Some basic facts about the use of mosses as biomonitors of atmospheric trace element deposition are reviewed, and advantages and limitations of this approach are discussed, largely on the basis of experience from regular use of this technique in Norway over the last 20 years. Topics discussed include different versions of the moss technique, mechanisms and efficiencies of trace element uptake, conversion of concentrations in moss to bulk deposition rates, and contribution from sources other than air pollution to the elemental composition of different elements. Suggestions are presented for further work in order to extend the use of mosses as biomonitors. (author)

  1. Mars Global Reference Atmospheric Model 2010 Version: Users Guide

    Justh, H. L.

    2014-01-01

    This Technical Memorandum (TM) presents the Mars Global Reference Atmospheric Model 2010 (Mars-GRAM 2010) and its new features. Mars-GRAM is an engineering-level atmospheric model widely used for diverse mission applications. Applications include systems design, performance analysis, and operations planning for aerobraking, entry, descent and landing, and aerocapture. Additionally, this TM includes instructions on obtaining the Mars-GRAM source code and data files as well as running Mars-GRAM. It also contains sample Mars-GRAM input and output files and an example of how to incorporate Mars-GRAM as an atmospheric subroutine in a trajectory code.

  2. Global biomass burning. Atmospheric, climatic, and biospheric implications

    Levine, J.S.

    1991-01-01

    Biomass burning is a significant source of atmospheric gases and, as such, may contribute to global climate changes. Biomass burning includes burning forests and savanna grasslands for land clearing, burning agricultural stubble and waste after harvesting, and burning biomass fuels. The chapters in this volume include the following topics: remote sensing of biomass burning from space;geographical distribution of burning; combustion products of burning in tropical, temperate and boreal ecosystems; burning as a global source of atmospheric gases and particulates; impacts of biomass burning gases and particulates on global climate; and the role of biomass burning on biodiversity and past global extinctions. A total of 1428 references are cited for the 63 chapters. Individual chapters are indexed separately for the data bases

  3. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases, Fiscal Year 2002 Annual Report

    Cushman, R.M.

    2003-08-28

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including atmospheric concentrations and atmospheric emissions of carbon dioxide (CO{sub 2}) and other radiatively active gases; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea levels.

  4. The role of neutron activation analysis for trace elements characterization, analysis and certification in atmospheric particulates

    Rizzio, Enrico; Gallorini, Mario

    2002-01-01

    The Neutron Activation Analysis (NAA) owns these requirements and is universally accepted as one of the most reliable analytical tools for trace and ultratrace elements determination. Its use in trace elements atmospheric pollution related studies has been and is still extensive as can be demonstrate by several specific works and detailed reviews. In this work, the application of this nuclear technique, in solving a series of different analytical problems related to trace elements in air pollution processes is reported. Examples and results are given on the following topics: characterization of urban and rural airborne particulate samples; particles size distribution in the different inhalable and respirable fractions (PM10 and PM 2.5); certification of related Standard Reference Materials for data quality assurance. (author)

  5. Biodiversity Meets the Atmosphere: A Global View of Forest Canopies

    C. M. P. Ozanne; D. Anhuf; S. L. Boulter; M. Keller; R. L. Kitching; C. Korner; F. C. Meinzer; A. W. Mitchell; T. Nakashizuka; P. L. Silva Dias; N. E. Stork; S. J. Wright; M Yoshimura

    2003-01-01

    The forest canopy is the functional interface between 90% of Earth’s terrestrial biomass and the atmosphere. Multidisciplinary research in the canopy has expanded concepts of global species richness, physiological processes, and the provision of ecosystem services. Trees respond in a species-specific manner to elevated carbon dioxide levels, while climate change...

  6. Divergent pheromone-mediated insect behaviour under global atmospheric change

    Edward B. Mondor; Michelle N. Tremblay; Caroline S. Awmack; Richard L. Lindroth

    2004-01-01

    While the effects of global atmospheric changes on vegetation and resulting insect populations('bottom-up interactions') are being increasingly studied, how these gases modify interactions among insects and their natural enemies ('top-down interactions') is less clear. As natural enemy efficacy is governed largely by behavioural mechanisms, altered...

  7. Central Tibetan Plateau atmospheric trace metals contamination: a 500-year record from the Puruogangri ice core

    Beaudon, E.; Gabrielli, P.; Sierra Hernandez, R.; Wegner, A.; Thompson, L. G.

    2017-12-01

    Since the 1980s, Asia has experienced enormous industrial development from rapid population growth, industrialization and consequent large-scale environmental changes. The inherent generated atmospheric pollution currently contributes to half of all Earth's anthropogenic trace metals emissions. Asian trace metal aerosols, when deposited on glaciers of the surrounding mountains of the Tibetan Plateau (TP), leave a characteristic chemical fingerprint. Interpreting trace element (TE) records from glaciers implies a thorough comprehension of their provenance and temporal variability. It is then essential to discriminate the TEs' natural background components from their anthropogenic components. Here we present 500-year TE records from the Puruogangri ice core (Tibet, China) that provide a highly resolved account of the impact of past atmospheric influences, environmental processes and human activities on the central TP. A decreasing aeolian dust input to the ice cap allowed the detection of an atmospheric pollution signal. The anthropogenic pollution contribution emerges in the record since the early 1900s and increases substantially after 1935. The metallurgy (Zn, Pb and steel smelting) emission products from the former Soviet Union and especially from central Asia likely enhanced the anthropogenic deposition to the Puruogangri ice cap between 1935 and 1980, suggesting that the westerlies served as a conveyor of atmospheric pollution to central Tibet. The impact of this industrial pollution cumulated with that of the hemispheric coal and gasoline combustion which are respectively traced by Sb and Pb enrichment in the ice. The Chinese steel production accompanying the Great Leap Forward (1958-1961) and the Chinese Cultural Revolution (1966-1976) is proposed as a secondary but proximal source of Pb pollution affecting the ice cap between 1958 and 1976. The most recent decade (1980-1992) of the enrichment time series suggests that Puruogangri ice cap recorded the early

  8. NASA/MSFC FY90 Global Scale Atmospheric Processes Research Program Review

    Leslie, Fred W. (Editor)

    1990-01-01

    Research supported by the Global Atmospheric Research Program at the Marshall Space Flight Center on atmospheric remote sensing, meteorology, numerical weather forecasting, satellite data analysis, cloud precipitation, atmospheric circulation, atmospheric models and related topics is discussed.

  9. Quantification of trace elements and speciation of iron in atmospheric particulate matter

    Upadhyay, Nabin

    Trace metal species play important roles in atmospheric redox processes and in the generation of oxidants in cloud systems. The chemical impact of these elements on atmospheric and cloud chemistry is dependent on their occurrence, solubility and speciation. First, analytical protocols have been developed to determine trace elements in particulate matter samples collected for carbonaceous analysis. The validated novel protocols were applied to the determination of trace elements in particulate samples collected in the remote marine atmosphere and urban areas in Arizona to study air pollution issues. The second part of this work investigates on solubility and speciation in environmental samples. A detailed study on the impact of the nature and strength of buffer solutions on solubility and speciation of iron lead to a robust protocol, allowing for comparative measurements in matrices representative of cloud water conditions. Application of this protocol to samples from different environments showed low iron solubility (less than 1%) in dust-impacted events and higher solubility (5%) in anthropogenically impacted urban samples. In most cases, Fe(II) was the dominant oxidation state in the soluble fraction of iron. The analytical protocol was then applied to investigate iron processing by fogs. Field observations showed that only a small fraction (1%) of iron was scavenged by fog droplets for which each of the soluble and insoluble fraction were similar. A coarse time resolution limited detailed insights into redox cycling within fog system. Overall results suggested that the major iron species in the droplets was Fe(1I) (80% of soluble iron). Finally, the occurrence and sources of emerging organic pollutants in the urban atmosphere were investigated. Synthetic musk species are ubiquitous in the urban environment (less than 5 ng m-3) and investigations at wastewater treatment plants showed that wastewater aeration basins emit a substantial amount of these species to

  10. Atlas of the global distribution of atmospheric heating during the global weather experiment

    Schaack, Todd K.; Johnson, Donald R.

    1991-01-01

    Global distributions of atmospheric heating for the annual cycle of the Global Weather Experiment are estimated from the European Centre for Medium-Range Weather Forecasts (ECMWF) Level 3b data set. Distributions of monthly, seasonally, and annually averaged heating are presented for isentropic and isobaric layers within the troposphere and for the troposphere as a whole. The distributions depict a large-scale structure of atmospheric heating that appears spatially and temporally consistent with known features of the global circulation and the seasonal evolution.

  11. Tracing Uganda's global primary organic pineapple value chain ...

    The organic sector is one of the fastest growing sectors globally. ... opportunity for developing countries to export high value products in the global market. ... It is clear from the study that the chain is private- sector-driven, has relatively young ...

  12. Travelling Methods: Tracing the Globalization of Qualitative Communication Research

    Bryan C. Taylor

    2016-05-01

    Full Text Available Existing discussion of the relationships between globalization, communication research, and qualitative methods emphasizes two images: the challenges posed by globalization to existing communication theory and research methods, and the impact of post-colonial politics and ethics on qualitative research. We draw in this paper on a third image – qualitative research methods as artifacts of globalization – to explore the globalization of qualitative communication research methods. Following a review of literature which tentatively models this process, we discuss two case studies of qualitative research in the disciplinary subfields of intercultural communication and media audience studies. These cases elaborate the forces which influence the articulation of national, disciplinary, and methodological identities which mediate the globalization of qualitative communication research methods.

  13. Toward GEOS-6, A Global Cloud System Resolving Atmospheric Model

    Putman, William M.

    2010-01-01

    NASA is committed to observing and understanding the weather and climate of our home planet through the use of multi-scale modeling systems and space-based observations. Global climate models have evolved to take advantage of the influx of multi- and many-core computing technologies and the availability of large clusters of multi-core microprocessors. GEOS-6 is a next-generation cloud system resolving atmospheric model that will place NASA at the forefront of scientific exploration of our atmosphere and climate. Model simulations with GEOS-6 will produce a realistic representation of our atmosphere on the scale of typical satellite observations, bringing a visual comprehension of model results to a new level among the climate enthusiasts. In preparation for GEOS-6, the agency's flagship Earth System Modeling Framework [JDl] has been enhanced to support cutting-edge high-resolution global climate and weather simulations. Improvements include a cubed-sphere grid that exposes parallelism; a non-hydrostatic finite volume dynamical core, and algorithm designed for co-processor technologies, among others. GEOS-6 represents a fundamental advancement in the capability of global Earth system models. The ability to directly compare global simulations at the resolution of spaceborne satellite images will lead to algorithm improvements and better utilization of space-based observations within the GOES data assimilation system

  14. Nonlinear dynamics of global atmospheric and earth system processes

    Zhang, Taiping; Verbitsky, Mikhail; Saltzman, Barry; Mann, Michael E.; Park, Jeffrey; Lall, Upmanu

    1995-01-01

    During the grant period, the authors continued ongoing studies aimed at enhancing their understanding of the operation of the atmosphere as a complex nonlinear system interacting with the hydrosphere, biosphere, and cryosphere in response to external radiative forcing. Five papers were completed with support from the grant, representing contributions in three main areas of study: (1) theoretical studies of the interactive atmospheric response to changed biospheric boundary conditions measurable from satellites; (2) statistical-observational studies of global-scale temperature variability on interannual to century time scales; and (3) dynamics of long-term earth system changes associated with ice sheet surges.

  15. Trace Atmospheric Gas Analyzer (TAGA) Volatile Organic Compound (VOC) Data for BP Spill/Deepwater Horizon - June 2010

    U.S. Environmental Protection Agency — The Trace Atmospheric Gas Analyzer (TAGA) buses are self-contained mobile laboratories that conduct instant-result monitoring of air quality at particular locations....

  16. Trace Atmospheric Gas Analyzer (TAGA) Volatile Organic Compound (VOC) Data for BP Spill/Deepwater Horizon - August 2010

    U.S. Environmental Protection Agency — The Trace Atmospheric Gas Analyzer (TAGA) buses are self-contained mobile laboratories that conduct instant-result monitoring of air quality at particular locations....

  17. Trace Atmospheric Gas Analyzer (TAGA) Volatile Organic Compound (VOC) Data for BP Spill/Deepwater Horizon - July 2010

    U.S. Environmental Protection Agency — The Trace Atmospheric Gas Analyzer (TAGA) buses are self-contained mobile laboratories that conduct instant-result monitoring of air quality at particular locations....

  18. Trace Atmospheric Gas Analyzer (TAGA) Volatile Organic Compound (VOC) Data for BP Spill/Deepwater Horizon - May 2010

    U.S. Environmental Protection Agency — The Trace Atmospheric Gas Analyzer (TAGA) buses are self-contained mobile laboratories that conduct instant-result monitoring of air quality at particular locations....

  19. Improving InSAR geodesy using Global Atmospheric Models

    Jolivet, Romain; Agram, Piyush Shanker; Lin, Nina Y.; Simons, Mark; Doin, Marie-Pierre; Peltzer, Gilles; Li, Zhenghong

    2014-03-01

    Spatial and temporal variations of pressure, temperature, and water vapor content in the atmosphere introduce significant confounding delays in interferometric synthetic aperture radar (InSAR) observations of ground deformation and bias estimates of regional strain rates. Producing robust estimates of tropospheric delays remains one of the key challenges in increasing the accuracy of ground deformation measurements using InSAR. Recent studies revealed the efficiency of global atmospheric reanalysis to mitigate the impact of tropospheric delays, motivating further exploration of their potential. Here we explore the effectiveness of these models in several geographic and tectonic settings on both single interferograms and time series analysis products. Both hydrostatic and wet contributions to the phase delay are important to account for. We validate these path delay corrections by comparing with estimates of vertically integrated atmospheric water vapor content derived from the passive multispectral imager Medium-Resolution Imaging Spectrometer, onboard the Envisat satellite. Generally, the performance of the prediction depends on the vigor of atmospheric turbulence. We discuss (1) how separating atmospheric and orbital contributions allows one to better measure long-wavelength deformation and (2) how atmospheric delays affect measurements of surface deformation following earthquakes, and (3) how such a method allows us to reduce biases in multiyear strain rate estimates by reducing the influence of unevenly sampled seasonal oscillations of the tropospheric delay.

  20. Climate-chemical interactions and effects of changing atmospheric trace gases

    Ramanathan, V.; Callis, L.; Cess, R.; Hansen, J.; Isaksen, I.; Lacis, A.; Kuhn, W.; Luther, F.; Mahlman, J.; Reck, R.; Schlesinger, M.

    1992-01-01

    The problem concerning the greenhouse effects of human activities has broadened in scope from the CO 2 -climate problem to the trace gas-climate problem. The climate effects of non-CO 2 trace gases are strongly governed by interactions between chemistry, radiation, and dynamics. The authors discuss in detail the nature of the trace gas radiative heating and describe the importance of radiative-chemical interactions within the troposphere and the stratosphere. They make an assessment of the trace gas effects on troposphere-stratosphere temperature trends for the period covering the preindustrial era to the present and for the next several decades. Non-CO 2 greenhouse gases in the atmosphere are now adding to the greenhouse effect by an amount comparable to the effect of CO 2 . The rate of decadal increase of the total greenhouse forcing is now 3-6 times greater than the mean rate for the period 1850-1960. Time-dependent calculations with a simplified one-dimensional diffusive ocean model suggest that a surface warming about 0.4-0.8 K should have occurred during 1850 to 1980. For the various trace gas scenarios considered in this study, the equilibrium surface warming for the period 1980 to 2030 ranges from 0.8 to 4.1 K. This wide range in the projected warming is due to the range in the assumed scenario as well as due to the threefold uncertainty in the sensitivity of climate models. For the 180-year period from 1850 to 2030, their analysis suggests a trace gas-induced cumulative equilibrium surface warming in the range of 1.5 to 6.1 K

  1. The trace-elements of the atmospheric aerosol of the Amazon basin

    Orsini, C.M.Q.; Artaxo Netto, P.E.; Tabacniks, M.H.

    1981-05-01

    The distribution of the trace-elements AL, Si, P, S, CL, K, Ca, Ti, Fe and V in the atmospheric aerosol of the Amazon Basin was determined by means of samples collected between August 23 and September 2 of 1980, at a remote place located in the Amazon Forest, about 30 Km NE of the city of Manaus, Brazil. 33 samples were succesfully analyzed by the PIXE method (Particle Induced X-Ray Emission) by using α-particle beam of the Pelletron Accelerator of the University of Sao Paulo, and the results revealed that the trace-elements S and K have a large predominance, mainly as fine particle size relative to the others; this fact is consistent with the statement that the natural cycles of these two elements are critically involved in the biophysical processes responsible for the life of the tropical rain forest of the Amazon. (Author) [pt

  2. Trace-element evidence for the origin of desert varnish by direct aqueous atmospheric deposition

    Thiagarajan, Nivedita; Aeolus Lee, Cin-Ty

    2004-07-01

    Smooth rock surfaces in arid environments are often covered with a thin coating of Fe-Mn oxyhydroxides known as desert varnish. It is debated whether such varnish is formed (a) by slow diagenesis of dust particles deposited on rock surfaces, (b) by leaching from the underlying rock substrate, or (c) by direct deposition of dissolved constituents in the atmosphere. Varnishes collected from smooth rock surfaces in the Mojave Desert and Death Valley, California are shown here to have highly enriched and fractionated trace-element abundances relative to upper continental crust (UCC). They are highly enriched in Co, Ni, Pb and the rare-earth elements (REEs). In particular, they have anomalously high Ce/La and low Y/Ho ratios. These features can only be explained by preferential scavenging of Co, Ni, Pb and the REEs by Fe-Mn oxyhydroxides in an aqueous environment. High field strength elements (HFSEs: Zr, Hf, Ta, Nb, Th), however, show only small enrichments despite the fact that these elements should also be strongly scavenged by Fe-Mn oxyhydroxides. This suggests that their lack of enrichment is a feature inherited from a solution initially poor in HFSEs. The first two scenarios for varnish formation can be ruled out as follows. The high enrichment factors of Fe, Mn and many trace elements cannot be generated by mass loss associated with post-depositional diagenesis of dust particles because such a process predicts only a small increase in concentration. In addition, the highly fractionated abundance patterns of particle reactive element pairs (e.g., Ce/La and Y/Ho) rules out leaching of the rock substrate. This is because if leaching were to occur, varnishes would grow from the inside to the outside, and thus any particle-reactive trace element leached from the substrate would be quantitatively sequestered in the Fe-Mn oxyhydroxide layers, prohibiting any significant elemental fractionations. One remaining possibility is that the Fe, Mn and trace metals in varnish are

  3. Comment on 'Current Budget of the Atmospheric Electric Global Circuit'

    Driscoll, Kevin T.; Blakeslee, Richard J.

    1996-01-01

    In this paper, three major issues relevant to Kasemir's new model will be addressed. The first concerns Kasemir's assertion that there are significant differences between the potentials associated with the new model and the conventional model. A recalculation of these potentials reveals that both models provide equivalent results for the potential difference between the Earth and ionosphere. The second issue to be addressed is Kasemir's assertion that discrepancies in the electric potentials associated with both models can be attributed to modeling the Earth as a sphere, instead of as a planar surface. A simple analytical comparison will demonstrate that differences in the equations for the potentials of the atmosphere derived with a spherical and a planar Earth are negligible for applications to global current flow. Finally, the third issue to be discussed is Kasemir's claim that numerous aspects of the conventional model are incorrect, including the role of the ionosphere in global current flow as well as the significance of cloud-to-ground lightning in supplying charge to the global circuit. In order to refute these misconceptions, it will be shown that these aspects related to the flow of charge in the atmosphere are accurately described by the conventional model of the global circuit.

  4. Tracing the Slow Food Movement: local foodscapes and global networks

    Hendrikx, B.; Dormans, S.E.M.; Lagendijk, A.

    2012-01-01

    Over the last two decades alternative food practices have mushroomed across the globe. This proliferation has changed local food scapes, infusing localities with new ideas and ways of food production, circulation and consumption. It has also created global networks of innovation and

  5. Infrasonic ray tracing applied to mesoscale atmospheric structures: refraction by hurricanes.

    Bedard, Alfred J; Jones, R Michael

    2013-11-01

    A ray-tracing program is used to estimate the refraction of infrasound by the temperature structure of the atmosphere and by hurricanes represented by a Rankine-combined vortex wind plus a temperature perturbation. Refraction by the hurricane winds is significant, giving rise to regions of focusing, defocusing, and virtual sources. The refraction of infrasound by the temperature anomaly associated with a hurricane is small, probably no larger than that from uncertainties in the wind field. The results are pertinent to interpreting ocean wave generated infrasound in the vicinities of tropical cyclones.

  6. Atmospheric CO{sub 2}, trace gas and CN concentrations in Vaerrioe

    Ahonen, T; Aalto, P; Kulmala, M; Rannik, U; Vesala, T [Helsinki Univ. (Finland). Dept. of Physics; Hari, P; Pohja, T [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1996-12-31

    The Vaerrioe environmental measurement station is founded in 1991. The aim of the station is to obtain more information on air quality influenced by Kola industrial areas and effects of pollutants on photosynthesis in subarctic climate. In the station air quality and meteorological quantities are measured together with photosynthesis, which makes it quite unique in comparison with other measurement stations located in northern Finland. The measurements also provide information of aerosol and trace gas concentrations in order to study the direct and indirect aerosol effects on climate. These measurements also increase the knowledge of atmospheric chemistry and deposition in subarctic conditions

  7. Atmospheric CO{sub 2}, trace gas and CN concentrations in Vaerrioe

    Ahonen, T.; Aalto, P.; Kulmala, M.; Rannik, U.; Vesala, T. [Helsinki Univ. (Finland). Dept. of Physics; Hari, P.; Pohja, T. [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1995-12-31

    The Vaerrioe environmental measurement station is founded in 1991. The aim of the station is to obtain more information on air quality influenced by Kola industrial areas and effects of pollutants on photosynthesis in subarctic climate. In the station air quality and meteorological quantities are measured together with photosynthesis, which makes it quite unique in comparison with other measurement stations located in northern Finland. The measurements also provide information of aerosol and trace gas concentrations in order to study the direct and indirect aerosol effects on climate. These measurements also increase the knowledge of atmospheric chemistry and deposition in subarctic conditions

  8. Observational constraints on the global atmospheric budget of ethanol

    V. Naik

    2010-06-01

    Full Text Available Energy security and climate change concerns have led to the promotion of biomass-derived ethanol, an oxygenated volatile organic compound (OVOC, as a substitute for fossil fuels. Although ethanol is ubiquitous in the troposphere, our knowledge of its current atmospheric budget and distribution is limited. Here, for the first time we use a global chemical transport model in conjunction with atmospheric observations to place constraints on the ethanol budget, noting that additional measurements of ethanol (and its precursors are still needed to enhance confidence in our estimated budget. Global sources of ethanol in the model include 5.0 Tg yr−1 from industrial sources and biofuels, 9.2 Tg yr−1 from terrestrial plants, ~0.5 Tg yr−1 from biomass burning, and 0.05 Tg yr−1 from atmospheric reactions of the ethyl peroxy radical (C2H5O2 with itself and with the methyl peroxy radical (CH3O2. The resulting atmospheric lifetime of ethanol in the model is 2.8 days. Gas-phase oxidation by the hydroxyl radical (OH is the primary global sink of ethanol in the model (65%, followed by dry deposition (25%, and wet deposition (10%. Over continental areas, ethanol concentrations predominantly reflect direct anthropogenic and biogenic emission sources. Uncertainty in the biogenic ethanol emissions, estimated at a factor of three, may contribute to the 50% model underestimate of observations in the North American boundary layer. Current levels of ethanol measured in remote regions are an order of magnitude larger than those in the model, suggesting a major gap in understanding. Stronger constraints on the budget and distribution of ethanol and OVOCs are a critical step towards assessing the impacts of increasing the use of ethanol as a fuel.

  9. Carbon Dioxide Information Analysis Center and World Data Center-A for atmospheric trace gases: FY 1993 activities

    Cushman, R.M. [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; Stoss, F.W. [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center]|[Univ. of Tennessee, Knoxville, TN (United States). Energy, Environment, and Resources Center

    1994-01-01

    During the course of a fiscal year, Oak Ridge National Laboratory`s Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specialty publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIAC`s staff also provide technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC`s staff. This report provides an account of the activities accomplished by CDIAC (including World Data Center-A for Atmospheric Trace Gases) during the period October 1, 1992, to September 30, 1993. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC`s response to those inquiries. An analysis and description of the preparation and distribution of NDPS, CMPS, technical reports, newsletters, fact sheets, specialty publications, and reprints are provided. Comments and descriptions of CDIAC`s information management systems, professional networking, and special bilateral agreements are also presented.

  10. Carbon Dioxide Information Analysis Center and World Data Center-A for atmospheric trace gases: FY 1993 activities

    Cushman, R.M.; Stoss, F.W.; Univ. of Tennessee, Knoxville, TN

    1994-01-01

    During the course of a fiscal year, Oak Ridge National Laboratory's Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specialty publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIAC's staff also provide technical responses to specific inquiries related to carbon dioxide (CO 2 ), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC's staff. This report provides an account of the activities accomplished by CDIAC (including World Data Center-A for Atmospheric Trace Gases) during the period October 1, 1992, to September 30, 1993. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC's response to those inquiries. An analysis and description of the preparation and distribution of NDPS, CMPS, technical reports, newsletters, fact sheets, specialty publications, and reprints are provided. Comments and descriptions of CDIAC's information management systems, professional networking, and special bilateral agreements are also presented

  11. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases Fiscal Year 1999 Annual Report

    Cushman, R.M.

    2000-03-31

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global-change data and information analysis center of the Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has--since its inception in 1982--enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including concentrations of carbon dioxide (CO{sub 2}) and other radiatively active gases in the atmosphere; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; emissions of CO{sub 2} and other trace gases to the atmosphere; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea level. CDIAC is located within the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. CDIAC is co-located with ESD researchers investigating global-change topics, such as the global carbon cycle and the effects of carbon dioxide on vegetation. CDIAC staff are also connected with current ORNL research on related topics, such as renewable energy and supercomputing technologies. CDIAC is supported by the Environmental Sciences Division (Jerry Elwood, Acting Director) of DOE's Office of Biological and Environmental Research. CDIAC's FY 1999 budget was 2.2M dollars. CDIAC represents the DOE in the multi-agency Global Change Data and Information System. Bobbi Parra, and Wanda Ferrell on an interim basis, is DOE's Program Manager with responsibility for CDIAC. CDIAC comprises three groups, Global Change Data, Computer Systems, and

  12. Subterranean karst environments as a global sink for atmospheric methane

    Webster, Kevin D.; Drobniak, Agnieszka; Etiope, Giuseppe; Mastalerz, Maria; Sauer, Peter E.; Schimmelmann, Arndt

    2018-03-01

    The air in subterranean karst cavities is often depleted in methane (CH4) relative to the atmosphere. Karst is considered a potential sink for the atmospheric greenhouse gas CH4 because its subsurface drainage networks and solution-enlarged fractures facilitate atmospheric exchange. Karst landscapes cover about 14% of earth's continental surface, but observations of CH4 concentrations in cave air are limited to localized studies in Gibraltar, Spain, Indiana (USA), Vietnam, Australia, and by incomplete isotopic data. To test if karst is acting as a global CH4 sink, we measured the CH4 concentrations, δ13CCH4, and δ2HCH4 values of cave air from 33 caves in the USA and three caves in New Zealand. We also measured CO2 concentrations, δ13CCO2, and radon (Rn) concentrations to support CH4 data interpretation by assessing cave air residence times and mixing processes. Among these caves, 35 exhibited subatmospheric CH4 concentrations in at least one location compared to their local atmospheric backgrounds. CH4 concentrations, δ13CCH4, and δ2HCH4 values suggest that microbial methanotrophy within caves is the primary CH4 consumption mechanism. Only 5 locations from 3 caves showed elevated CH4 concentrations compared to the atmospheric background and could be ascribed to local CH4 sources from sewage and outgassing swamp water. Several associated δ13CCH4 and δ2HCH4 values point to carbonate reduction and acetate fermentation as biochemical pathways of limited methanogenesis in karst environments and suggest that these pathways occur in the environment over large spatial scales. Our data show that karst environments function as a global CH4 sink.

  13. Investigation of different types of filters for atmospheric trace elements analysis by three analytical techniques

    Ali, A.E.; Bacso, J.

    1996-01-01

    Different atmospheric aerosol samples were collected on three types of filters. Disks of both loaded and clean areas of each kind of filter were investigated by XRF, PIXE and Scanning Electron Microscope (SEM) methods. The blank concentration values of the elements Al, Si, P, S, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Br and Pb in the three types of filters are discussed. It is found that for trace elemental analysis, the Nuclepore membrane filters are the most suitable for sampling. These have much lower blank element concentration values than the glass fibres and ash free filters. It was found also that the PIXE method is a more reliable analytical technique for atmospheric aerosol particles than the other methods. (author). 20 refs., 3 figs., 3 tabs

  14. Correlation of trace element content in air particulates with solar meteorological data in the atmosphere of Athens

    Kanias, G.D.; Grimanis, A.P.; Viras, L.G.

    2003-01-01

    Relation between the trace element content in air particulates and solar meteorological data in the atmospheric environment of Athens, Greece, was studied. For this purpose, Sm, Br, As, Na, K, La, Ce, Cr, Ag, Sc, Fe, Zn, Co, Sb, Th were determined by INAA in respirable aerosols collected during winter 1993-1994. The results showed that the average cloudiness, sunshine, and the total solar radiation (sun and sky) on a horizontal surface, (3 variables) have no relation with trace element variation. However, diffuse solar radiation (sun and sky) on a horizontal surface seems to have statistically significant relationship with some of the trace element variation. It forms a single component with some trace elements after the application of the factor analysis. The increase of the same solar variable in the Athens City center, is one of the factors which cannot permit the emission of trace elements in the atmospheric environment from dust soil and car tires. (author)

  15. Natural and anthropogenic pollution of the global atmosphere

    Jaworowski, Z.

    1999-01-01

    Results of determination of natural radionuclides, fission products and heavy metals in contemporary and pre-industrial ice from 14 glaciers in Southern and Northern Hemisphere, and in aerosols collected during three decades from seven altitudes between 0 and 15 km in the troposphere and atmosphere, were used for determinations of fluxes of man-made and natural pollutants into the global atmosphere. For these determinations 137 Cs from nuclear explosions and natural 210 Pb were used as tracers. Concentration of natural radionuclides and heavy metals in ice deposited before industrial revolution were higher than the contemporary precipitation presented as firn in high mountain and polar glaciers. This is due probably to volcanic activity which was higher before the first part of 20 th century. Man-made contribution to the total atmospheric flux is now 3.5% for 226 Ra, 12% for U, 7.4% for Pb, 011% for Cd, 62% for V and 5.8 for Hg. The mass of annual global wet precipitation, determined for the first time with radioactive tracers, is 5.7·10 1 7 kg. In Poland the lowest concentration of stable lead in human bones is now in highly industrialized southern districts. Lead level in medieval human bones from these districts reached up to 370 μg/g. Its current average level in inhabitants of southern Poland is 3.5 μg/g, i. e. similar as 1800 years ago. (author)

  16. Trace element contents in atmospheric suspended particles: inferences from instrumental neutron activation analysis

    Querol, X.; Alastuey, A.; Lopez-Soler, A.; Boix, A.; Sanfeliu, T.; Martynov, V.V.; Piven, P.I.; Kabina, L.P.; Souschov, P.A.

    1997-01-01

    This study focuses on the determination of trace element concentrations in total suspended particles by instrumental neutron activation analysis (INAA) in two different areas in Northeastern Spain (a rural area influenced by the emissions of a large coal-fired power station, and the urban and industrial areas of Castellon). Total suspended particles were sampled by means of standard MCV high- and medium-volume captors, using cellulose membrane filters of 0.8 and 0.45 μm pore size. Preliminary research was performed on the homogeneous distribution of elements in the sample filters and on the study of blank filters for the calculations of the background average element contents. The results obtained allowed to distinguish different major anthropogenic sources of trace elements in the atmosphere at the sampling sites: (a) Zr, Hf, Sc, U and Th are related to atmospheric pollution derived from the ceramic industry of the Castellon area; (b) As, Cr, Cs, Rb, Sb, Se, Zn are related to traffic and other industrial emission in the Castellon area, and As, Cr, Sb and Zn to power generation emissions in the rural area. (orig.). With 3 figs., 5 tabs

  17. INTRODUCTION: Anticipated changes in the global atmospheric water cycle

    Allan, Richard P.; Liepert, Beate G.

    2010-06-01

    The atmospheric branch of the water cycle, although containing just a tiny fraction of the Earth's total water reserves, presents a crucial interface between the physical climate (such as large-scale rainfall patterns) and the ecosystems upon which human societies ultimately depend. Because of the central importance of water in the Earth system, the question of how the water cycle is changing, and how it may alter in future as a result of anthropogenic changes, present one of the greatest challenges of this century. The recent Intergovernmental Panel on Climate Change report on Climate Change and Water (Bates et al 2008) highlighted the increasingly strong evidence of change in the global water cycle and associated environmental consequences. It is of critical importance to climate prediction and adaptation strategies that key processes in the atmospheric water cycle are precisely understood and determined, from evaporation at the surface of the ocean, transport by the atmosphere, condensation as cloud and eventual precipitation, and run-off through rivers following interaction with the land surface, sub-surface, ice, snow and vegetation. The purpose of this special focus issue of Environmental Research Letters on anticipated changes in the global atmospheric water cycle is to consolidate the recent substantial advances in understanding past, present and future changes in the global water cycle through evidence built upon theoretical understanding, backed up by observations and borne out by climate model simulations. Thermodynamic rises in water vapour provide a central constraint, as discussed in a guest editorial by Bengtsson (2010). Theoretical implications of the Clausius-Clapeyron equation are presented by O'Gorman and Muller (2010) and with reference to a simple model (Sherwood 2010) while observed humidity changes confirm these anticipated responses at the land and ocean surface (Willett et al 2008). Rises in low-level moisture are thought to fuel an

  18. Potential for the use of reconstructed IASI radiances in the detection of atmospheric trace gases

    N. C. Atkinson

    2010-07-01

    Full Text Available Principal component (PC analysis has received considerable attention as a technique for the extraction of meteorological signals from hyperspectral infra-red sounders such as the Infrared Atmospheric Sounding Interferometer (IASI and the Atmospheric Infrared Sounder (AIRS. In addition to achieving substantial bit-volume reductions for dissemination purposes, the technique can also be used to generate reconstructed radiances in which random instrument noise has been reduced. Studies on PC analysis of hyperspectral infrared sounder data have been undertaken in the context of numerical weather prediction, instrument monitoring and geophysical variable retrieval, as well as data compression. This study examines the potential of PC analysis for chemistry applications.

    A major concern in the use of PC analysis for chemistry is that the spectral features associated with trace gases may not be well represented in the reconstructed spectra, either due to deficiencies in the training set or due to the limited number of PC scores used in the radiance reconstruction. In this paper we show examples of reconstructed IASI radiances for several trace gases: ammonia, sulphur dioxide, methane and carbon monoxide. It is shown that care must be taken in the selection of spectra for the initial training set: an iterative technique, in which outlier spectra are added to a base training set, gives the best results. For the four trace gases examined, key features of the chemical signatures are retained in the reconstructed radiances, whilst achieving a substantial reduction in instrument noise.

    A new regional re-transmission service for IASI is scheduled to start in 2010, as part of the EUMETSAT Advanced Retransmission Service (EARS. For this EARS-IASI service it is intended to include PC scores as part of the data stream. The paper describes the generation of the reference eigenvectors for this new service.

  19. ANSTO radon monitoring within the WMO global atmosphere watch programme

    Zahorowski, W.; Chambers, S.; Sisoutham, O.; Werczynski, S.

    2003-01-01

    A brief overview of results from the ANSTO radon programmes at the Cape Grim (Tasmania) and Mauna Loa Observatory (Hawaii), World Meteorological Organisation Global Atmosphere Watch stations it presented. At Cape Grim, a 100 mBq m 3 threshold on radon concentration observations has proven to be a suitable criterion for Baseline monitoring. Furthermore, analysis of the Cape Grim Baseline radon data has enabled the characterisation of the oceanic radon flux over the Southern Ocean Cape Grim fetch region. Radon observations at the Mauna Loa Observatory, in conjunction with back trajectory analysis, have helped to identify the source regions of the most pervasive pollution events in the atmosphere of the Pacific Basin. The seasonal variability in the strength of terrestrial influence on Pacific air masses has also been characterised

  20. Global atmospheric concentrations and source strength of ethane

    Blake, D. R.; Rowland, F. S.

    1986-01-01

    A study of the variation in ethane (C2H6) concentration between northern and southern latitudes over three years is presented together with a new estimate of its source strength. Ethane concentrations vary from 0.07 to 2 p.p.b.v. (parts per billion by volume) in air samples collected in remote surface locations in the Pacific (latitude 71 N-47 S) in all four seasons between September 1984 and June 1985. The variations are consistent with southerly transport from sources located chiefly in the Northern Hemisphere, further modified by seasonal variations in the strength of the reaction of C2H6 with OH radicals. These global data can be combined with concurrent data for CH4 and the laboratory reaction rates of each with OH to provide an estimate of three months as the average atmospheric lifetime for C2H6 and 13 + or - 3 Mtons for its annual atmospheric release.

  1. The global change research center atmospheric chemistry model

    Moraes, Jr., Francis Perry [Oregon Graduate Inst. of Science and Technology, Portland, OR (United States)

    1995-01-01

    This work outlines the development of a new model of the chemistry of the natural atmosphere. The model is 2.5-dimensional, having spatial coordinates height, latitude, and, the half-dimension, land and ocean. The model spans both the troposphere and stratosphere, although the troposphere is emphasized and the stratosphere is simple and incomplete. The chemistry in the model includes the Ox, HOx, NOx, and methane cycles in a highly modular fashion which allows model users great flexibility in selecting simulation parameters. A detailed modeled sensitivity analysis is also presented. A key aspect of the model is its inclusion of clouds. The model uses current understanding of the distribution and optical thickness of clouds to determine the true radiation distribution in the atmosphere. As a result, detailed studies of the radiative effects of clouds on the distribution of both oxidant concentrations and trace gas removal are possible. This work presents a beginning of this study with model results and discussion of cloud effects on the hydroxyl radical.

  2. Cyclo-octafluorobutane (PFC-318) in the global atmosphere

    Muhle, J.; Vollmer, M. K.; Fraser, P. J.; Rhee, T. S.; Ivy, D. J.; Arnold, T.; Harth, C. M.; Salameh, P.; O'Doherty, S.; Young, D.; Steele, P.; Krummel, P. B.; Leist, M.; Schmidbauer, N.; Lunder, C.; Kim, J.; Kim, K.; Reimann, S.; Simmonds, P.; Prinn, R. G.; Weiss, R. F.

    2010-12-01

    PFC-318 (c-C4F8, cyclo-octafluorobutane) is a long-lived (3200 years) perfluorocarbon (PFC) greenhouse gas with a high 100-year Global Warming Potential (GWP100 = 10,300) and a wide range of industrial uses. We extend previous atmospheric measurements of PFC-318 in the Cape Grim Air Archive (Oram, 1999) with our new in situ measurements from remote and urban AGAGE (Advanced Global Atmospheric Gases Experiment) and affiliated stations. Our longest in situ record is from the Jungfraujoch observatory in the Swiss Alps, and our data set is augmented by measurements of flasks from the King Sejong and Troll coastal Antarctic stations and several locations in the Northern Hemisphere. In mid-2009 we find ˜1.25 ppt (parts-per-trillion, dry mol fraction) in the Northern Hemisphere and ˜1.20 ppt in the Southern Hemisphere, with rise rates of ˜0.03 ppt/yr and an interhemispheric ratio of ˜1.04. We obtain PFC-318 emissions for 2008-2010 of ˜1 Gg/yr using a simple box model, and preliminary measurements of older archived air at SIO indicate similar emissions since at the least the late 1990s. In contrast, the EDGAR v4 emissions database estimates much lower PFC-318 emissions of 0.02 Gg/yr for 2005. Using GWP100 we calculate ˜10 million tons of CO2-equivalent PFC-318 emissions/yr for 2008-2010, about double the CO2-equivalent PFC-218 annual emissions, or 0.4 times the CO2-equivalent PFC-116 annual emissions, reported for 2008-2009 by Mühle et al. (2010). Thus PFC-318 is the third most important PFC in terms of CO2-equivalent emissions. We find mostly baseline conditions at remote AGAGE stations and urban sites in the USA, Europe, and Australia, in contrast to frequent above baseline conditions at Gosan station, Jeju Island, South Korea, indicating significant emission sources in East Asia as found by Saito et al. (2010). Oram, D.E., Trends of long-lived anthropogenic halocarbons in the Southern Hemisphere and model calculation of global emissions, Ph.D. thesis, University

  3. Perfluorocarbons in the global atmosphere: tetrafluoromethane, hexafluoroethane, and octafluoropropane

    J. Mühle

    2010-06-01

    Full Text Available We present atmospheric baseline growth rates from the 1970s to the present for the long-lived, strongly infrared-absorbing perfluorocarbons (PFCs tetrafluoromethane (CF4, hexafluoroethane (C2F6, and octafluoropropane (C3F8 in both hemispheres, measured with improved accuracies (~1–2% and precisions (<0.3%, or <0.2 ppt (parts per trillion dry air mole fraction, for CF4; <1.5%, or <0.06 ppt, for C2F6; <4.5%, or <0.02 ppt, for C3F8 within the Advanced Global Atmospheric Gases Experiment (AGAGE. Pre-industrial background values of 34.7±0.2 ppt CF4 and 0.1±0.02 ppt C2F6 were measured in air extracted from Greenland ice and Antarctic firn. Anthropogenic sources are thought to be primary aluminum production (CF4, C2F6, C3F8, semiconductor production (C2F6, CF4, C3F8 and refrigeration use (C3F8. Global emissions calculated with the AGAGE 2-D 12-box model are significantly higher than most previous emission estimates. The sum of CF4 and C2F6 emissions estimated from aluminum production and non-metal production are lower than observed global top-down emissions, with gaps of ~6 Gg/yr CF4 in recent years. The significant discrepancies between previous CF4, C2F6, and C3F8 emission estimates and observed global top-down emissions estimated from AGAGE measurements emphasize the need for more accurate, transparent, and complete emission reporting, and for verification with atmospheric measurements to assess the emission sources of these long-lived and potent greenhouse gases, which alter the radiative budget of the atmosphere, essentially permanently, once emitted.

  4. Atmospheric reaction systems as null-models to identify structural traces of evolution in metabolism.

    Petter Holme

    Full Text Available The metabolism is the motor behind the biological complexity of an organism. One problem of characterizing its large-scale structure is that it is hard to know what to compare it to. All chemical reaction systems are shaped by the same physics that gives molecules their stability and affinity to react. These fundamental factors cannot be captured by standard null-models based on randomization. The unique property of organismal metabolism is that it is controlled, to some extent, by an enzymatic machinery that is subject to evolution. In this paper, we explore the possibility that reaction systems of planetary atmospheres can serve as a null-model against which we can define metabolic structure and trace the influence of evolution. We find that the two types of data can be distinguished by their respective degree distributions. This is especially clear when looking at the degree distribution of the reaction network (of reaction connected to each other if they involve the same molecular species. For the Earth's atmospheric network and the human metabolic network, we look into more detail for an underlying explanation of this deviation. However, we cannot pinpoint a single cause of the difference, rather there are several concurrent factors. By examining quantities relating to the modular-functional organization of the metabolism, we confirm that metabolic networks have a more complex modular organization than the atmospheric networks, but not much more. We interpret the more variegated modular arrangement of metabolism as a trace of evolved functionality. On the other hand, it is quite remarkable how similar the structures of these two types of networks are, which emphasizes that the constraints from the chemical properties of the molecules has a larger influence in shaping the reaction system than does natural selection.

  5. Regional forecasting with global atmospheric models; Third year report

    Crowley, T.J.; North, G.R.; Smith, N.R. [Applied Research Corp., College Station, TX (United States)

    1994-05-01

    This report was prepared by the Applied Research Corporation (ARC), College Station, Texas, under subcontract to Pacific Northwest Laboratory (PNL) as part of a global climate studies task. The task supports site characterization work required for the selection of a potential high-level nuclear waste repository and is part of the Performance Assessment Scientific Support (PASS) Program at PNL. The work is under the overall direction of the Office of Civilian Radioactive Waste Management (OCRWM), US Department of Energy Headquarters, Washington, DC. The scope of the report is to present the results of the third year`s work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain several studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals.

  6. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases Fiscal Year 2001 Annual Report

    Cushman, R.M.

    2002-10-15

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including concentrations of carbon dioxide (CO{sub 2}) and other radiatively active gases in the atmosphere; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; emissions of CO{sub 2} and other trace gases to the atmosphere; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea levels. CDIAC is located within the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. CDIAC is co-located with ESD researchers investigating global-change topics, such as the global carbon cycle and the effects of carbon dioxide on climate and vegetation. CDIAC staff are also connected with current ORNL research on related topics, such as renewable energy and supercomputing technologies. CDIAC is supported by the Environmental Sciences Division (Jerry Elwood, Director) of DOE's Office of Biological and Environmental Research. CDIAC represents DOE in the multi-agency Global Change Data and Information System (GCDIS). Wanda Ferrell is DOE's Program Manager with overall responsibility for CDIAC. Roger Dahlman is responsible for CDIAC's AmeriFlux tasks, and Anna Palmisano for CDIAC's Ocean Data tasks. CDIAC is made

  7. Towards a Global Unified Model of Europa's Tenuous Atmosphere

    Plainaki, Christina; Cassidy, Tim A.; Shematovich, Valery I.; Milillo, Anna; Wurz, Peter; Vorburger, Audrey; Roth, Lorenz; Galli, André; Rubin, Martin; Blöcker, Aljona; Brandt, Pontus C.; Crary, Frank; Dandouras, Iannis; Jia, Xianzhe; Grassi, Davide; Hartogh, Paul; Lucchetti, Alice; McGrath, Melissa; Mangano, Valeria; Mura, Alessandro; Orsini, Stefano; Paranicas, Chris; Radioti, Aikaterini; Retherford, Kurt D.; Saur, Joachim; Teolis, Ben

    2018-02-01

    Despite the numerous modeling efforts of the past, our knowledge on the radiation-induced physical and chemical processes in Europa's tenuous atmosphere and on the exchange of material between the moon's surface and Jupiter's magnetosphere remains limited. In lack of an adequate number of in situ observations, the existence of a wide variety of models based on different scenarios and considerations has resulted in a fragmentary understanding of the interactions of the magnetospheric ion population with both the moon's icy surface and neutral gas envelope. Models show large discrepancy in the source and loss rates of the different constituents as well as in the determination of the spatial distribution of the atmosphere and its variation with time. The existence of several models based on very different approaches highlights the need of a detailed comparison among them with the final goal of developing a unified model of Europa's tenuous atmosphere. The availability to the science community of such a model could be of particular interest in view of the planning of the future mission observations (e.g., ESA's JUpiter ICy moons Explorer (JUICE) mission, and NASA's Europa Clipper mission). We review the existing models of Europa's tenuous atmosphere and discuss each of their derived characteristics of the neutral environment. We also discuss discrepancies among different models and the assumptions of the plasma environment in the vicinity of Europa. A summary of the existing observations of both the neutral and the plasma environments at Europa is also presented. The characteristics of a global unified model of the tenuous atmosphere are, then, discussed. Finally, we identify needed future experimental work in laboratories and propose some suitable observation strategies for upcoming missions.

  8. Tracing the Atmospheric Source of Desert Nitrates Using Δ 17O

    Michalski, G. M.; Holve, M.; Feldmeier, J.; Bao, H.; Reheis, M.; Bockheim, J. G.; Thiemens, M. H.

    2001-05-01

    Mineral, caliche, and soil nitrates are found throughout the worlds deserts, including the cold dry Wright Valley of Antarctica, the Atacama desert in Chile and the Mojave desert in the southwest United States. Several authors have suggested biologic sources of these nitrates while others have postulated atmospheric deposition. A recent study utilizing 18O indicated that 30%, and perhaps 100%, of nitrates found in the Atacama and Mojave were of atmospheric origin [1]. A more quantitative assessment of the source strength of atmospheric nitrates was impossible because of the high variability of δ 18 18O of atmospheric nitrates and uncertainties in conditions of biologic production. Mass independently fractionated (MIF) processes are defined and quantified by the equation Δ 17O = δ 17O - .52x δ 18O. MIF processes are associated with the photochemistry of trace gases in the atmosphere and have been found in O3, N2O, CO, and sulfate aerosols . A large MIF (Δ 17O ~ 28 ‰ ) in nitrate aerosols collected in polluted regions was recently reported [2]. Here we extend measurements of MIF in nitrate to the dry deposition of nitrate in less polluted areas (Mojave desert). In addition we trace the MIF signal as it accumulates in the regolith as nitrate salts and minerals and is mixed with biologically produced nitrate (nitrification). Also examined were the isotopic composition of soil nitrates from Antarctic dry valleys. Dust samples were collected as part of the NADP program and soils were collected throughout the Mojave and Death Valley regions of California. Isotope analysis was done in addition to soluble ion content (Cl, NO3, SO4). Dust samples collected by dry deposition samplers showed a large MIF > 20‰ approaching values measured in urban nitrate aerosol. Soils collected throughout the region showed large variations in Δ 17O from ~ 0 to 18 ‰ . The low Δ 17O values are nitrates dominated by biologic nitrification and higher values are nitrates derived by

  9. The oceanic cycle and global atmospheric budget of carbonyl sulfide

    Weiss, P.S.

    1994-12-31

    A significant portion of stratospheric air chemistry is influenced by the existence of carbonyl sulfide (COS). This ubiquitous sulfur gas represents a major source of sulfur to the stratosphere where it is converted to sulfuric acid aerosol particles. Stratospheric aerosols are climatically important because they scatter incoming solar radiation back to space and are able to increase the catalytic destruction of ozone through gas phase reactions on particle surfaces. COS is primarily formed at the surface of the earth, in both marine and terrestrial environments, and is strongly linked to natural biological processes. However, many gaps in the understanding of the global COS cycle still exist, which has led to a global atmospheric budget that is out of balance by a factor of two or more, and a lack of understanding of how human activity has affected the cycling of this gas. The goal of this study was to focus on COS in the marine environment by investigating production/destruction mechanisms and recalculating the ocean-atmosphere flux.

  10. Global atmospheric budget of simple monocyclic aromatic compounds

    D. Cabrera-Perez

    2016-06-01

    Full Text Available The global atmospheric budget and distribution of monocyclic aromatic compounds is estimated, using an atmospheric chemistry general circulation model. Simulation results are evaluated with an ensemble of surface and aircraft observations with the goal of understanding emission, production and removal of these compounds.Anthropogenic emissions provided by the RCP database represent the largest source of aromatics in the model (≃ 23 TgC year−1 and biomass burning from the GFAS inventory the second largest (≃ 5 TgC year−1. The simulated chemical production of aromatics accounts for  ≃ 5 TgC year−1. The atmospheric burden of aromatics sums up to 0.3 TgC. The main removal process of aromatics is photochemical decomposition (≃ 27 TgC  year−1, while wet and dry deposition are responsible for a removal of  ≃ 4 TgC year−1.Simulated mixing ratios at the surface and elsewhere in the troposphere show good spatial and temporal agreement with the observations for benzene, although the model generally underestimates mixing ratios. Toluene is generally well reproduced by the model at the surface, but mixing ratios in the free troposphere are underestimated. Finally, larger discrepancies are found for xylenes: surface mixing ratios are not only overestimated but also a low temporal correlation is found with respect to in situ observations.

  11. Atmospheric wet and dry deposition of trace elements at 10 sites in Northern China

    Pan, Y. P.; Wang, Y. S.

    2015-01-01

    Atmospheric deposition is considered to be a major process that removes pollutants from the atmosphere and an important source of nutrients and contaminants for ecosystems. Trace elements (TEs), especially toxic metals deposited on plants and into soil or water, can cause substantial damage to the environment and human health due to their transfer and accumulation in food chains. Despite public concerns, quantitative knowledge of metal deposition from the atmosphere to ecosystems remains scarce. To advance our understanding of the spatiotemporal variations in the magnitudes, pathways, compositions and impacts of atmospherically deposited TEs, precipitation (rain and snow) and dry-deposited particles were collected simultaneously at 10 sites in Northern China from December 2007 to November 2010. The measurements showed that the wet and dry depositions of TEs in the target areas were orders of magnitude higher than previous observations within and outside China, generating great concern over the potential risks. The spatial distribution of the total (wet plus dry) deposition flux was consistent with that of the dry deposition, with a significant decrease from industrial and urban areas to suburban, agricultural and rural sites, while the wet deposition exhibited less spatial variation. In addition, the seasonal variation of wet deposition was also different from that of dry deposition, although they were both governed by the precipitation and emission patterns. For the majority of TEs that exist as coarse particles, dry deposition dominated the total flux at each site. This was not the case for potassium, nickel, arsenic, lead, zinc, cadmium, selenium, silver and thallium, for which the relative importance between wet and dry deposition fluxes varied by site. Whether wet deposition is the major atmospheric cleansing mechanism for the TEs depends on the size distribution of the particles. We found that atmospheric inputs of copper, lead, zinc, cadmium, arsenic and

  12. Bioavailable atmospheric phosphorous supply to the global ocean: a 3-D global modeling study

    Myriokefalitakis, Stelios; Nenes, Athanasios; Baker, Alex R.; Mihalopoulos, Nikolaos; Kanakidou, Maria

    2016-12-01

    The atmospheric cycle of phosphorus (P) is parameterized here in a state-of-the-art global 3-D chemistry transport model, taking into account primary emissions of total P (TP) and soluble P (DP) associated with mineral dust, combustion particles from natural and anthropogenic sources, bioaerosols, sea spray and volcanic aerosols. For the present day, global TP emissions are calculated to be roughly 1.33 Tg-P yr-1, with the mineral sources contributing more than 80 % to these emissions. The P solubilization from mineral dust under acidic atmospheric conditions is also parameterized in the model and is calculated to contribute about one-third (0.14 Tg-P yr-1) of the global DP atmospheric source. To our knowledge, a unique aspect of our global study is the explicit modeling of the evolution of phosphorus speciation in the atmosphere. The simulated present-day global annual DP deposition flux is 0.45 Tg-P yr-1 (about 40 % over oceans), showing a strong spatial and temporal variability. Present-day simulations of atmospheric P aerosol concentrations and deposition fluxes are satisfactory compared with available observations, indicating however an underestimate of about 70 % on current knowledge of the sources that drive the P atmospheric cycle. Sensitivity simulations using preindustrial (year 1850) anthropogenic and biomass burning emission scenarios showed a present-day increase of 75 % in the P solubilization flux from mineral dust, i.e., the rate at which P is converted into soluble forms, compared to preindustrial times, due to increasing atmospheric acidity over the last 150 years. Future reductions in air pollutants due to the implementation of air-quality regulations are expected to decrease the P solubilization flux from mineral dust by about 30 % in the year 2100 compared to the present day. Considering, however, that all the P contained in bioaerosols is readily available for uptake by marine organisms, and also accounting for all other DP sources, a total

  13. A survey of atmospheric trace elements in the U.K

    Cawse, P.A.

    1976-08-01

    Concentrations of some 36 trace and major elements were measured in air particulate, rainwater and dry deposition samples collected each month at seven non-urban sites in the U.K. from January to December 1975. The samples were bulked for analysis each quarter year, and the majority were analysed by instrumental neutron activation analysis. The main objectives were to provide information on concentrations of elements in air to compare with urban measurements, to study the longer term trends in atmospheric concentrations, and to record the deposition inventory to the ground. Continuity of data from the sampling station network has been maintained since January 1972, but at the Wraymires site in north-west England operations began one year earlier. (author)

  14. Evaluating the suitability of different environmental samples for tracing atmospheric pollution in industrial areas.

    Francová, Anna; Chrastný, Vladislav; Šillerová, Hana; Vítková, Martina; Kocourková, Jana; Komárek, Michael

    2017-01-01

    Samples of lichens, snow and particulate matter (PM 10 , 24 h) are used for the source identification of air pollution in the heavily industrialized region of Ostrava, Upper Silesia, Czech Republic. An integrated approach that uses different environmental samples for metal concentration and Pb isotope analyses was applied. The broad range of isotope ratios in the samples indicates a combination of different pollution sources, the strongest among them being the metallurgical industry, bituminous coal combustion and traffic. Snow samples are proven as the most relevant indicator for tracing metal(loid)s and recent local contamination in the atmosphere. Lichens can be successfully used as tracers of the long-term activity of local and remote sources of contamination. The combination of PM 10 with snow can provide very useful information for evaluation of current pollution sources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Use of Spanish Moss as an atmospheric monitor for trace elements

    Padaki, P.M.; McWilliams, E.L.; James, W.D

    1992-01-01

    Samples of Spanish Moss (Tillandsia usneoides L.) were analyzed by neutron activation analysis (NAA) and inductively coupled argon plasma emission spectrometry (ICP) for trace elements as atmospheric environmental monitors. The plant material was collected at a single location in east Texas, then deployed along a 6*6 matrix gridwork in the extreme northeastern corner of the state. The study area includes several possible pollution sources including fossil fuel fired power plants. Two separate study periods were conducted, one during the summer months of 1989 and the other the following winter. Concentrations of about 35 elements were determined and contour plots for each element were prepared for each study period. Concentration ranges were found to be somewhat lower than those reported in other studies using epihytic plants as environmental indicators. Initial correlations between elements and the possible relationships to pollution sources are discussed. (author) 10 refs.; 3 figs.; 1 tab

  16. Temporal and spatial trends studied by lichen analysis: atmospheric deposition of trace elements in Mexico

    Aspiazu, J.; Cervantes, L.; Ramirez, J.; Lopez, J.; Villasenor, P. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Ramos, R.; Munoz, R. [Secretaria del Medio Ambiente, Gestion Ambiental del Aire, Mexico City (Mexico)

    2007-07-01

    Ball moss on Tillandsia recurvata (Bromeliaceae), collected in an area previously identified as unpolluted, was transplanted to thirteen bio-monitoring sites in the downtown and metropolitan areas of Mexico City (which cover a surface of 9,560 km{sup 2}) during the periods August 2002 - January 2003 and July 2003 - October 2003. A total of 52 lichens (weighing 300 g) were transplanted to each place. Two were analysed as zero or reference, El Chico National Park, a location 100 Km upwind from the city and the remaining 26 were hung in nylon net bags in order to be able to collect two transplanted tree month, out of every season over a one-year period. The concentrations were measured by the quantitative PIXE method based on an extemal beam facility. The atmospheric deposition for trace elements was inferred by its concentration in lichen samples collected in 2002 from 13 sites in Mexico and compared with data from a similar survey in 2003. The concentration of Cr, Cu, Co, Fe, Mn, Ni, Pb and Zn and other elements was determined for each sample. Maps for each element were drawn after a geostatistical estimate of the metal concentration in the sample was made. Maps were drawn for all elements with the estimated values. Geographical distribution patterns were obtained for the different metals, reflecting the contribution of natural and anthropogenic emission sources. The deposition patterns of V, As, Se, Cd and Pb are substantially influenced by long-range transport from other parts of Mexico City. For Cr, Fe, Co, Ni, and Cu, the deposition patterns are largely determined by contribution from point sources within Mexico and in the metropolitan area. The lichen data for Br and, in part, Se reflect an airborne supply from the environment. Contributions to trace element concentrations in lichen sources other than atmospheric deposition are identified and discussed. The Spatial and temporal variations in the distribution of metal concentration are discussed. (Author)

  17. Temporal and spatial trends studied by lichen analysis: atmospheric deposition of trace elements in Mexico

    Aspiazu, J.; Cervantes, L.; Ramirez, J.; Lopez, J.; Villasenor, P.; Ramos, R.; Munoz, R.

    2007-01-01

    Ball moss on Tillandsia recurvata (Bromeliaceae), collected in an area previously identified as unpolluted, was transplanted to thirteen bio-monitoring sites in the downtown and metropolitan areas of Mexico City (which cover a surface of 9,560 km 2 ) during the periods August 2002 - January 2003 and July 2003 - October 2003. A total of 52 lichens (weighing 300 g) were transplanted to each place. Two were analysed as zero or reference, El Chico National Park, a location 100 Km upwind from the city and the remaining 26 were hung in nylon net bags in order to be able to collect two transplanted tree month, out of every season over a one-year period. The concentrations were measured by the quantitative PIXE method based on an extemal beam facility. The atmospheric deposition for trace elements was inferred by its concentration in lichen samples collected in 2002 from 13 sites in Mexico and compared with data from a similar survey in 2003. The concentration of Cr, Cu, Co, Fe, Mn, Ni, Pb and Zn and other elements was determined for each sample. Maps for each element were drawn after a geostatistical estimate of the metal concentration in the sample was made. Maps were drawn for all elements with the estimated values. Geographical distribution patterns were obtained for the different metals, reflecting the contribution of natural and anthropogenic emission sources. The deposition patterns of V, As, Se, Cd and Pb are substantially influenced by long-range transport from other parts of Mexico City. For Cr, Fe, Co, Ni, and Cu, the deposition patterns are largely determined by contribution from point sources within Mexico and in the metropolitan area. The lichen data for Br and, in part, Se reflect an airborne supply from the environment. Contributions to trace element concentrations in lichen sources other than atmospheric deposition are identified and discussed. The Spatial and temporal variations in the distribution of metal concentration are discussed. (Author)

  18. Active moss biomonitoring of trace elements with Sphagnum girgensohnii moss bags in relation to atmospheric bulk deposition in Belgrade, Serbia

    Anicic, M.; Tasic, M.; Frontasyeva, M.V.; Tomasevic, M.; Rajsic, S.; Mijic, Z.; Popovic, A.

    2009-01-01

    Active biomonitoring with wet and dry moss bags was used to examine trace element atmospheric deposition in the urban area of Belgrade. The element accumulation capability of Sphagnum girgensohnii Russow was tested in relation to atmospheric bulk deposition. Moss bags were mounted for five 3-month periods (July 2005-October 2006) at three representative urban sites. For the same period monthly bulk atmospheric deposition samples were collected. The concentrations of Al, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd, and Pb were determined by instrumental neutron activation analyses and atomic absorption spectrometry. Significant accumulation of most elements occurred in the exposed moss bags compared with the initial moss content. High correlations between the elements in moss and bulk deposits were found for V, Cu, As, and Ni. The enrichment factors of the elements for both types of monitor followed the same pattern at the corresponding sites. - Accumulated trace elements in the moss Sphagnum girgensohnii reflect atmospheric deposition

  19. Opo lidar sounding of trace atmospheric gases in the 3 – 4 μm spectral range

    Romanovskii Oleg A.

    2018-01-01

    Full Text Available The applicability of a KTA crystal-based laser system with optical parametric oscillators (OPO generation to lidar sounding of the atmosphere in the spectral range 3–4 μm is studied in this work. A technique developed for lidar sounding of trace atmospheric gases (TAG is based on differential absorption lidar (DIAL method and differential optical absorption spectroscopy (DOAS. The DIAL-DOAS technique is tested to estimate its efficiency for lidar sounding of atmospheric trace gases. The numerical simulation performed shows that a KTA-based OPO laser is a promising source of radiation for remote DIAL-DOAS sounding of the TAGs under study along surface tropospheric paths. A possibility of using a PD38-03-PR photodiode for the DIAL gas analysis of the atmosphere is shown.

  20. Trace gas emissions to the atmosphere by biomass burning in the west African savannas

    Frouin, Robert J.; Iacobellis, Samuel F.; Razafimpanilo, Herisoa; Somerville, Richard C. J.

    1994-01-01

    Savanna fires and atmospheric carbon dioxide (CO2) detection and estimating burned area using Advanced Very High Resolution Radiometer_(AVHRR) reflectance data are investigated in this two part research project. The first part involves carbon dioxide flux estimates and a three-dimensional transport model to quantify the effect of north African savanna fires on atmospheric CO2 concentration, including CO2 spatial and temporal variability patterns and their significance to global emissions. The second article describes two methods used to determine burned area from AVHRR data. The article discusses the relationship between the percentage of burned area and AVHRR channel 2 reflectance (the linear method) and Normalized Difference Vegetation Index (NDVI) (the nonlinear method). A comparative performance analysis of each method is described.

  1. ENSO events are induced by the Global Atmosphere Oscillation

    Serykh, Ilya; Byshev, Vladimir; Neiman, Victor; Romanov, Juri

    2014-05-01

    The large-scale anomalies in the planetary fields of the principal hydro-meteorological characteristics were found to appear prior the beginning and during the main phase of the El Niño - Southern Oscillation (ENSO) phenomenon in the Pacific Ocean. The anomalies were interpreted as manifestation of the interannual Global Atmosphere Oscillation (GAO) in dynamics of the modern climatic system. The key feature of the GAO baric structure is a large-scale positive anomaly in tropical area (30N-30S, 50W-170E) surrounded by negative anomaly bending its outer boundaries. Eventually, such reconstruction of the atmospheric pressure field over tropical zone as a consequence of the GAO leads to Walker circulation cell reversal which is immediately followed by the next El Niño process starting. Spatio-temporal structure of the anomalous hydro-meteorological fields developing under impact of the GAO was analyzed using the monthly-mean atmospheric pressure data at sea level (HadSLP2) and near-surface temperature (CRUTEM4) prepared by GB Met Office Hadley Centre for period of 1948-2012, also we used wind data from US NCEP/NCAR reanalysis for the same period. Due to the presence of feed-forwards and feedbacks in the climate dynamics, the large-scale anomalies of characteristics appearing after the GAO cause their back effect on the system of interaction of the ocean-atmosphere-land. This is the secondary impact which can be implemented either by direct exchange of properties between the adjacent areas (this is seen most explicitly in the Indo-Pacific Region), or owing to teleconnections between the concrete climatic subsystems in different parts of the Earth. It is apparently that the secondary, or indirect, GAO impact spreading through the system of general atmospheric circulation has a certain phase shift in different areas, which depends first on the distance from the respective climatic anomalies, in particular, from the most intensive of them, appearing in the equatorial

  2. 1988 Pilot Institute on Global Change on trace gases and the biosphere

    Eddy, J.A.; Moore, B. III

    1998-07-01

    This proposal seeks multi-agency funding to conduct an international, multidisciplinary 1988 Pilot Institute on Global Change to take place from August 7 through 21, 1988, on the topic: Trace Gases and the Biosphere. The institute, to be held in Snowmass, Colorado, is envisioned as a pilot version of a continuing series of institutes on Global Change (IGC). This proposal seeks support for the 1988 pilot institute only. The concept and structure for the continuing series, and the definition of the 1988 pilot institute, were developed at an intensive and multidisciplinary Summer Institute Planning Meeting in Boulder, Colorado, on August 24--25, 1987. The theme for the 1988 PIGC, Trace Gases and the Biosphere, will focus a concerted, high-level multidisciplinary effort on a scientific problem central to the Global Change Program. Dramatic year-to-year increases in the global concentrations of radiatively-active trace gases such as methane and carbon dioxide are now well documented. The predicted climatic effects of these changes lend special urgency to efforts to study the biospheric sources and sinks of these gases and to clarify their interactions and role in the geosphere-biosphere system.

  3. Robust extraction of baseline signal of atmospheric trace species using local regression

    Ruckstuhl, A. F.; Henne, S.; Reimann, S.; Steinbacher, M.; Vollmer, M. K.; O'Doherty, S.; Buchmann, B.; Hueglin, C.

    2012-11-01

    The identification of atmospheric trace species measurements that are representative of well-mixed background air masses is required for monitoring atmospheric composition change at background sites. We present a statistical method based on robust local regression that is well suited for the selection of background measurements and the estimation of associated baseline curves. The bootstrap technique is applied to calculate the uncertainty in the resulting baseline curve. The non-parametric nature of the proposed approach makes it a very flexible data filtering method. Application to carbon monoxide (CO) measured from 1996 to 2009 at the high-alpine site Jungfraujoch (Switzerland, 3580 m a.s.l.), and to measurements of 1,1-difluoroethane (HFC-152a) from Jungfraujoch (2000 to 2009) and Mace Head (Ireland, 1995 to 2009) demonstrates the feasibility and usefulness of the proposed approach. The determined average annual change of CO at Jungfraujoch for the 1996 to 2009 period as estimated from filtered annual mean CO concentrations is -2.2 ± 1.1 ppb yr-1. For comparison, the linear trend of unfiltered CO measurements at Jungfraujoch for this time period is -2.9 ± 1.3 ppb yr-1.

  4. Robust extraction of baseline signal of atmospheric trace species using local regression

    A. F. Ruckstuhl

    2012-11-01

    Full Text Available The identification of atmospheric trace species measurements that are representative of well-mixed background air masses is required for monitoring atmospheric composition change at background sites. We present a statistical method based on robust local regression that is well suited for the selection of background measurements and the estimation of associated baseline curves. The bootstrap technique is applied to calculate the uncertainty in the resulting baseline curve. The non-parametric nature of the proposed approach makes it a very flexible data filtering method. Application to carbon monoxide (CO measured from 1996 to 2009 at the high-alpine site Jungfraujoch (Switzerland, 3580 m a.s.l., and to measurements of 1,1-difluoroethane (HFC-152a from Jungfraujoch (2000 to 2009 and Mace Head (Ireland, 1995 to 2009 demonstrates the feasibility and usefulness of the proposed approach.

    The determined average annual change of CO at Jungfraujoch for the 1996 to 2009 period as estimated from filtered annual mean CO concentrations is −2.2 ± 1.1 ppb yr−1. For comparison, the linear trend of unfiltered CO measurements at Jungfraujoch for this time period is −2.9 ± 1.3 ppb yr−1.

  5. Spanish Moss as an atmospheric tracer for trace elements from fossil fuel burning power plants

    James, W.D.; Padaki, P.; McWilliams, E.L.

    1991-01-01

    Samples of Spanish Moss (Tillandsia usneoides) were analyzed by neutron activation analysis (NAA), inductively coupled argon plasma emission spectrometry (ICP), and x-ray fluorescence analysis (XRF) for trace elements as atmospheric environmental monitors. In particular, certain elements thought likely to be contributed to the atmosphere by combustion of fossil fuels were studied in samples collected along two transects, an east/west transect from the Louisiana line west to Dallas and a north/south transect from the Limestone electric Generating Station north to Dallas. Plants were sampled during peak electric generating periods in the summer, as well as following planned outages during the winter months. Se, As and several other volatile species known to concentrate in fly ash particles which are likely to escape power plant collection devices were shown to correlate with downwind directions of plant plumes. Attempts to determine levels of sulfur taken up by the plants which can be attributed to fossil fuel combustion through the use of these marker elements have also be made

  6. Atmospheric pressure loading effects on Global Positioning System coordinate determinations

    Vandam, Tonie M.; Blewitt, Geoffrey; Heflin, Michael B.

    1994-01-01

    Earth deformation signals caused by atmospheric pressure loading are detected in vertical position estimates at Global Positioning System (GPS) stations. Surface displacements due to changes in atmospheric pressure account for up to 24% of the total variance in the GPS height estimates. The detected loading signals are larger at higher latitudes where pressure variations are greatest; the largest effect is observed at Fairbanks, Alaska (latitude 65 deg), with a signal root mean square (RMS) of 5 mm. Out of 19 continuously operating GPS sites (with a mean of 281 daily solutions per site), 18 show a positive correlation between the GPS vertical estimates and the modeled loading displacements. Accounting for loading reduces the variance of the vertical station positions on 12 of the 19 sites investigated. Removing the modeled pressure loading from GPS determinations of baseline length for baselines longer than 6000 km reduces the variance on 73 of the 117 baselines investigated. The slight increase in variance for some of the sites and baselines is consistent with expected statistical fluctuations. The results from most stations are consistent with approximately 65% of the modeled pressure load being found in the GPS vertical position measurements. Removing an annual signal from both the measured heights and the modeled load time series leaves this value unchanged. The source of the remaining discrepancy between the modeled and observed loading signal may be the result of (1) anisotropic effects in the Earth's loading response, (2) errors in GPS estimates of tropospheric delay, (3) errors in the surface pressure data, or (4) annual signals in the time series of loading and station heights. In addition, we find that using site dependent coefficients, determined by fitting local pressure to the modeled radial displacements, reduces the variance of the measured station heights as well as or better than using the global convolution sum.

  7. Sources of Sahelian-Sudan moisture: Insights from a moisture-tracing atmospheric model

    Salih, Abubakr A. M.; Zhang, Qiong; Pausata, Francesco S. R.; Tjernström, Michael

    2016-07-01

    The summer rainfall across Sahelian-Sudan is one of the main sources of water for agriculture, human, and animal needs. However, the rainfall is characterized by large interannual variability, which has attracted extensive scientific efforts to understand it. This study attempts to identify the source regions that contribute to the Sahelian-Sudan moisture budget during July through September. We have used an atmospheric general circulation model with an embedded moisture-tracing module (Community Atmosphere Model version 3), forced by observed (1979-2013) sea-surface temperatures. The result suggests that about 40% of the moisture comes with the moisture flow associated with the seasonal migration of the Intertropical Convergence Zone (ITCZ) and originates from Guinea Coast, central Africa, and the Western Sahel. The Mediterranean Sea, Arabian Peninsula, and South Indian Ocean regions account for 10.2%, 8.1%, and 6.4%, respectively. Local evaporation and the rest of the globe supply the region with 20.3% and 13.2%, respectively. We also compared the result from this study to a previous analysis that used the Lagrangian model FLEXPART forced by ERA-Interim. The two approaches differ when comparing individual regions, but are in better agreement when neighboring regions of similar atmospheric flow features are grouped together. Interannual variability with the rainfall over the region is highly correlated with contributions from regions that are associated with the ITCZ movement, which is in turn linked to the Atlantic Multidecadal Oscillation. Our result is expected to provide insights for the effort on seasonal forecasting of the rainy season over Sahelian Sudan.

  8. GTSO: Global Trace Synchronization and Ordering Mechanism for Wireless Sensor Network Monitoring Platforms

    Bonastre, Alberto; Ors, Rafael

    2017-01-01

    Monitoring is one of the best ways to evaluate the behavior of computer systems. When the monitored system is a distributed system—such as a wireless sensor network (WSN)—the monitoring operation must also be distributed, providing a distributed trace for further analysis. The temporal sequence of occurrence of the events registered by the distributed monitoring platform (DMP) must be correctly established to provide cause-effect relationships between them, so the logs obtained in different monitor nodes must be synchronized. Many of synchronization mechanisms applied to DMPs consist in adjusting the internal clocks of the nodes to the same value as a reference time. However, these mechanisms can create an incoherent event sequence. This article presents a new method to achieve global synchronization of the traces obtained in a DMP. It is based on periodic synchronization signals that are received by the monitor nodes and logged along with the recorded events. This mechanism processes all traces and generates a global post-synchronized trace by scaling all times registered proportionally according with the synchronization signals. It is intended to be a simple but efficient offline mechanism. Its application in a WSN-DMP demonstrates that it guarantees a correct ordering of the events, avoiding the aforementioned issues. PMID:29295494

  9. GTSO: Global Trace Synchronization and Ordering Mechanism for Wireless Sensor Network Monitoring Platforms.

    Navia, Marlon; Campelo, José Carlos; Bonastre, Alberto; Ors, Rafael

    2017-12-23

    Monitoring is one of the best ways to evaluate the behavior of computer systems. When the monitored system is a distributed system-such as a wireless sensor network (WSN)-the monitoring operation must also be distributed, providing a distributed trace for further analysis. The temporal sequence of occurrence of the events registered by the distributed monitoring platform (DMP) must be correctly established to provide cause-effect relationships between them, so the logs obtained in different monitor nodes must be synchronized. Many of synchronization mechanisms applied to DMPs consist in adjusting the internal clocks of the nodes to the same value as a reference time. However, these mechanisms can create an incoherent event sequence. This article presents a new method to achieve global synchronization of the traces obtained in a DMP. It is based on periodic synchronization signals that are received by the monitor nodes and logged along with the recorded events. This mechanism processes all traces and generates a global post-synchronized trace by scaling all times registered proportionally according with the synchronization signals. It is intended to be a simple but efficient offline mechanism. Its application in a WSN-DMP demonstrates that it guarantees a correct ordering of the events, avoiding the aforementioned issues.

  10. Global Analysis of Climate Change Projection Effects on Atmospheric Rivers

    Espinoza, Vicky; Waliser, Duane E.; Guan, Bin; Lavers, David A.; Ralph, F. Martin

    2018-05-01

    A uniform, global approach is used to quantify how atmospheric rivers (ARs) change between Coupled Model Intercomparison Project Phase 5 historical simulations and future projections under the Representative Concentration Pathway (RCP) 4.5 and RCP8.5 warming scenarios. The projections indicate that while there will be 10% fewer ARs in the future, the ARs will be 25% longer, 25% wider, and exhibit stronger integrated water vapor transports (IVTs) under RCP8.5. These changes result in pronounced increases in the frequency (IVT strength) of AR conditions under RCP8.5: 50% (25%) globally, 50% (20%) in the northern midlatitudes, and 60% (20%) in the southern midlatitudes. The models exhibit systematic low biases across the midlatitudes in replicating historical AR frequency ( 10%), zonal IVT ( 15%), and meridional IVT ( 25%), with sizable intermodel differences. A more detailed examination of six regions strongly impacted by ARs suggests that the western United States, northwestern Europe, and southwestern South America exhibit considerable intermodel differences in projected changes in ARs.

  11. Fleet Numerical Meteorology and Oceanography Center (FNMOC) Navy Operational Global Atmospheric Prediction System (NOGAPS)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Navy Operational Global Atmospheric Prediction System (NOGAPS) provides numerical guidance and products in support of a wide range of Navy oceanographic and...

  12. Carbon dioxide Information Analysis Center and World Data Center: A for Atmospheric trace gases. Annual progress report, FY 1994

    Burtis, M.D. [comp.] [Tennessee Univ., Knoxville, TN (United States). Energy, Environment and Resources Center; Cushman, R.M.; Boden, T.A.; Jones, S.B.; Nelson, T.R.; Stoss, F.W. [Oak Ridge National Lab., TN (United States)

    1995-03-01

    This report summarizes the activities and accomplishments made by the Carbon Dioxide Information Analysis Center and World Data Center-A for Atmospheric Trace Gases during the fiscal year 1994. Topics discussed in this report include; organization and staff, user services, systems, communications, Collaborative efforts with China, networking, ocean data and activities of the World Data Center-A.

  13. Evidence that global evapotranspiration makes a substantial contribution to the global atmospheric temperature slowdown

    Leggett, L. Mark W.; Ball, David A.

    2018-02-01

    The difference between the time series trend for temperature expected from the increasing level of atmospheric CO2 and that for the (more slowly rising) observed temperature has been termed the global surface temperature slowdown. In this paper, we characterise the single time series made from the subtraction of these two time series as the `global surface temperature gap'. We also develop an analogous atmospheric CO2 gap series from the difference between the level of CO2 and first-difference CO2 (that is, the change in CO2 from one period to the next). This paper provides three further pieces of evidence concerning the global surface temperature slowdown. First, we find that the present size of both the global surface temperature gap and the CO2 gap is unprecedented over a period starting at least as far back as the 1860s. Second, ARDL and Granger causality analyses involving the global surface temperature gap against the major candidate physical drivers of the ocean heat sink and biosphere evapotranspiration are conducted. In each case where ocean heat data was available, it was significant in the models: however, evapotranspiration, or its argued surrogate precipitation, also remained significant in the models alongside ocean heat. In terms of relative scale, the standardised regression coefficient for evapotranspiration was repeatedly of the same order of magnitude as—typically as much as half that for—ocean heat. The foregoing is evidence that, alongside the ocean heat sink, evapotranspiration is also likely to be making a substantial contribution to the global atmospheric temperature outcome. Third, there is evidence that both the ocean heat sink and the evapotranspiration process might be able to continue into the future to keep the temperature lower than the level-of-CO2 models would suggest. It is shown that this means there can be benefit in using the first-difference CO2 to temperature relationship shown in Leggett and Ball (Atmos Chem Phys 15

  14. Historical record of concentrations of atmospheric trace components deduced from a glacier in the Alps

    Doescher, A.

    1996-07-01

    A 109 m ice core from a high-alpine glacier (Colle Gnifetti, Monte Rosa massif, 4440 m a.s.l., Switzerland) was used to reconstruct the history of atmospheric trace components. Concentrations of the anions chloride, nitrate, sulfate and the cations sodium, ammonium, potassium, magnesium and calcium were measured with 2.5-5.0 cm resolution in the top 70 m of a 109 m long of the ice core. Dating of the ice core was performed using stratigraphic markers such as historically known Saharan dust events, the atomic bomb horizon and volcanic eruptions and supplemented with the 210 Pb nuclear dating. The record covers the time period from about 1755-1981. The concentrations of nitrate and sulfate show an exponential increase from 1930 and 1870 until 1965, respectively. The factors of increase were 2.3±0.3 and 5.8±0.9, respectively. The chloride concentrations remained constant during this period. A good agreement between the concentrations of sulfate, which were corrected for the contribution of seasalt and mineral dust and the European SO 2 -emissions was found for the last 100 years. The concentrations of sodium, potassium, magnesium and calcium did not show a trend. The concentrations of ammonium increased exponentially between 1870 and 1960 by a factor of 2.2±0.4. The different sources of the trace components were identified using correlation analysis. Sodium and chloride originated from seasalt, magnesium and calcium from geologic erosion. For both, the industrial and pre-industrial period, the dominant source of ammonium and nitrate was conversion of the gaseous precursors NH 3 and HNO 3 . Sulfate concentrations in the industrial period originated from the anthropogenically emitted SO 2 , whereas in the pre-industrial period the geologic source dominated. The Colle Gnifetti accumulates mainly summer snow, and therefore, several test drillings were performed to find a new site with higher accumulation rate. (author) figs., 17 tabs., 50 refs

  15. Trace elements partitioning during coal combustion in fluidized bed under O{sub 2}/CO{sub 2} atmosphere

    Li, Haixin; Zhao, Changsui; Liang, Cai; Duan, Lunbo; Chen, Huichao [Southeast Univ., Nanjing (China). School of Energy and Environment

    2013-07-01

    Experiments were conducted to investigate the effects of temperature and O{sub 2}/CO{sub 2} atmosphere on trace elements (Cr, Mn, Co, Ni, Cd, Pb, Hg, As, Se) partitioning during combustion of Xuzhou bituminous coal in a 6 kWth fluidized bed. Inductively coupled plasma mass spectrometry (ICP-MS) and atomic fluorescence spectrometry (AFS) were used to determine trace elements contents in raw coal, bottom ash, fly ash and flue gas. The results indicate that with bed temperature increase, the relative enrichment of all the trace elements except Cr in bottom ash decreases suggesting that their volatility is enhanced. The relative enrichments of hardly volatile elements, like Cr and Mn in fly ash increase with bed temperature increase while those of partially volatile and highly volatile elements in fly ash are opposite. The relative enrichments of trace elements except Cr and Mn in fly ash are higher than those in bottom ash. Increasing bed temperature promotes elements like As, Se and Hg to migrate to vapor phase, Mn to migrate to fly ash and Cr to migrate to both bottom ash and fly ash. 21%O{sub 2}/79%CO{sub 2} atmosphere improves the volatility of Cr, Mn, Co, Se and their migration to fly ash, while restrains the volatility of As, Ni, Pb. It has little effect on the volatility of Hg but improves its migration to fly ash. Mass balance ratio was also calculated to observe trace elements distribution in bottom ash, fly ash and flue gas. There is no much difference in trace elements distribution between the two atmospheres. It can be seen that the trace elements proportion in fly ash is much greater, and more than 40% of Hg is distributed in the gas phase. Most of Hg and Se volatilize during combustion. The mass balance ratios are 87 {proportional_to} 129% which is considered acceptable.

  16. Correlations between atmospheric aerosol trace element concentrations and red tide at Port Aransas, Texas, on the Gulf of Mexico

    Biegalski, S.R.; Villareal, T.A.

    2005-01-01

    Neutron activation analysis (NAA) was employed as an analytical technique to measure atmospheric aerosol concentrations of trace metals in Port Aransas, TX on the Gulf of Mexico. The sources of atmospheric aerosols and the seasonal variation of the sources are explored. High atmospheric iron concentrations are then shown to have a possible correlation to the occurrences of red tide in this region. The data shows that this correlation is plausible, but due to the many factors that affect red tide growth a definitive conclusion may not be reached. The period of study for these measurements was September 12, 2000 to January 4, 2002. (author)

  17. Factors controlling the solubility of trace metals in atmospheric aerosols over the Eastern Mediterranean

    Nikolaou, Panagiota; Mihalopoulos, Nikolaos; Kanakidou, Maria

    2015-04-01

    Atmospheric input of aerosols is recognized, as an important source of nutrients, for the oceans. The chemical interactions between aerosols and varying composition of air masses lead to different coating of their surfaces with sulfate, nitrate and organic compounds, increasing their solubility and their role as a carrier of nutrients and pollutants in ecosystems. Recent works have highlighted that atmospheric inputs of nutrients and trace metals can considerably influence the marine ecosystem functioning at semi-enclosed or enclosed water bodies such as the eastern Mediterranean. The current work aims to determine the sources and the factors controlling the variability of nutrients in the eastern Mediterranean. Special focus has been given on trace elements solubility, considered either as key nutrients for phytoplankton growth such as iron (Fe), phosphorus (P) or inhibitors such as copper (Cu). This has been accomplished by analyzing size segregated aerosol samples collected at the background site of Finokalia in Crete for an entire year. Phosphorus concentrations indicate important increases in air masses influenced both by anthropogenic activities in the northeast European countries and by dust outbreaks. The last is confirmed by the correlation observed between total P and dust concentrations and by the air mass backward trajectories computed by running the NOAA Hysplit Model (Hybrid Single - Particle Langrangian Integrated Trajectory (http://www.arl.noaa.gov/ready/hysplit4.html). Overall 73% of total P has been found to be associated with anthropogenic sources. The solubility of P and Fe has been found to be closely related to the acidity (pH) and dust amount in aerosols. The aerosol pH was predicted using thermodynamic modeling (ISORROPIA-II), meteorological observations (RH, T), and gas/particle observations. More specifically P and Fe solubility appears to be inversely related to the crustal elements levels, while it increases in acidic environment. The

  18. Atmospheric deposition of trace elements around Ulan Bator city studied by moss and lichen biomonitoring technique and INAA

    Ganbold, G.; Gehrbish, Sh.; Tsehndehehkhuu, Ts.; Gundorina, S.F.; Frontas'eva, M.V.; Ostrovnaya, T.M.; Pavlov, S.S.

    2005-01-01

    For the first time the moss and lichen biomonitoring technique has been applied to air pollution in Mongolia (Ulan-Bator, the capital city). INAA at the IBR-2 reactor has made it possible to determine the content of 35 elements in moss and lichen biomonitors. Samples collected at sites located 10-15 km from the center of Ulan-Bator were analyzed by Instrumental Neutron Activation Analysis (INAA) using epithermal neutrons. The mosses (Rhytidium rugosum, Thuidium abietinum, Entodon concinnus) and lichens (Cladonia stellaris, Parmelia separata) were used to study the atmospheric deposition of trace elements. It was shown that the suggested types of mosses could be used as suitable biomonitors to estimate the concentration levels of heavy metals and trace elements in Ulan-Bator atmospheric deposition. The results are compared to the data of atmospheric deposition of some European countries

  19. Atmospheric Deposition of Trace Elements Around Ulan-Bator City Studied by Moss and Lichen Biomonitoring Technique and INAA

    Ganbold, G; Gundorina, S F; Frontasyeva, M V; Ostrovnaya, T M; Pavlov, S S; Tsendeekhuu, T

    2005-01-01

    For the first time the moss and lichen biomonitoring technique has been applied to air pollution in Mongolia (Ulan-Bator, the capital city). INAA at the IBR-2 reactor has made it possible to determine the content of 35 elements in moss and lichen biomonitors. Samples collected at sites located 10-15 km from the center of Ulan-Bator were analyzed by Instrumental Neutron Activation Analysis (INAA) using epithermal neutrons. The mosses (\\textit{Rhytidium rugosum}, \\textit{Thuidium abietinum}, \\textit{Entodon concinnus}) and lichens (\\textit{Cladonia stellaris}, \\textit{Parmelia separata}) were used to study the atmospheric deposition of trace elements. It was shown that the suggested types of mosses could be used as suitable biomonitors to estimate the concentration levels of heavy metals and trace elements in Ulan-Bator atmospheric deposition. The results are compared to the data of atmospheric deposition of some European countries.

  20. Global atmospheric carbon budget: results from an ensemble of atmospheric CO2 inversions

    P. Peylin

    2013-10-01

    Full Text Available Atmospheric CO2 inversions estimate surface carbon fluxes from an optimal fit to atmospheric CO2 measurements, usually including prior constraints on the flux estimates. Eleven sets of carbon flux estimates are compared, generated by different inversions systems that vary in their inversions methods, choice of atmospheric data, transport model and prior information. The inversions were run for at least 5 yr in the period between 1990 and 2010. Mean fluxes for 2001–2004, seasonal cycles, interannual variability and trends are compared for the tropics and northern and southern extra-tropics, and separately for land and ocean. Some continental/basin-scale subdivisions are also considered where the atmospheric network is denser. Four-year mean fluxes are reasonably consistent across inversions at global/latitudinal scale, with a large total (land plus ocean carbon uptake in the north (−3.4 Pg C yr−1 (±0.5 Pg C yr−1 standard deviation, with slightly more uptake over land than over ocean, a significant although more variable source over the tropics (1.6 ± 0.9 Pg C yr−1 and a compensatory sink of similar magnitude in the south (−1.4 ± 0.5 Pg C yr−1 corresponding mainly to an ocean sink. Largest differences across inversions occur in the balance between tropical land sources and southern land sinks. Interannual variability (IAV in carbon fluxes is larger for land than ocean regions (standard deviation around 1.06 versus 0.33 Pg C yr−1 for the 1996–2007 period, with much higher consistency among the inversions for the land. While the tropical land explains most of the IAV (standard deviation ~ 0.65 Pg C yr−1, the northern and southern land also contribute (standard deviation ~ 0.39 Pg C yr−1. Most inversions tend to indicate an increase of the northern land carbon uptake from late 1990s to 2008 (around 0.1 Pg C yr−1, predominantly in North Asia. The mean seasonal cycle appears to be well constrained by the atmospheric data over

  1. Atmospheric trace elements in aerosols observed over the Southern Ocean and coastal East Antarctica

    Guojie Xu

    2014-11-01

    Full Text Available Atmospheric aerosol samples were collected over the Southern Ocean (SO and coastal East Antarctica (CEA during the austral summer of 2010/11. Samples were analysed for trace elements, including Na, Mg, K, Al, Fe, Mn, Ni, Cd and Se, by inductively coupled plasma mass spectrometry (ICP-MS. The mean atmospheric concentrations over the SO were 1100 ng m−3 for Na, 190 ng m−3 for Mg, 150 ng m−3 for Al, 14 ng m−3 for Fe, 0.46 ng m−3 for Mn and 0.25 ng m−3 for Se. Over CEA, the mean concentrations were 990 ng m−3 for Na, 180 ng m−3 for Mg, 190 ng m−3 for Al, 26 ng m−3 for Fe, 0.70 ng m−3 for Mn and 0.29 ng m−3 for Se. Particle size distributions, enrichment factors (EFs and correlation analysis indicate that Na, Mg and K mainly came from the marine source, while Al, Fe and Mn were mainly from the crustal source, which also contributed to Mg and K over CEA. High EFs were associated with Ni, Cd and Se, suggesting likely contributions from mixed sources from the Antarctic continent, long-range transport, marine biogenic emissions and anthropogenic emissions. Sea-salt elements (Na, Mg, K were mainly accumulated in the coarse mode, and crustal elements (Al, Fe, Mn presented a bimodal size distribution pattern. Bioactive elements (Fe, Ni, Cd were enriched in the fine mode, especially with samples collected over the SO, possibly affecting biogeochemical cycles in this oceanic region.

  2. ExoMars Trace Gas Orbiter provides atmospheric data during Aerobraking into its final orbit

    Svedhem, Hakan; Vago, Jorge L.; Bruinsma, Sean; Müller-Wodarg, Ingo; ExoMars 2016 Team

    2017-10-01

    After the arrival of the Trace Gas Orbiter (TGO) at Mars on 19 October 2016 a number of initial orbit change manoeuvres were executed and the spacecraft was put in an orbit with a 24 hour period and 74 degrees inclination. The spacecraft and its four instruments were thoroughly checked out after arrival and a few measurements and images were taken in November 2016 and in Feb-March 2017. The solar occultation observations have however not yet been possible due to lack of the proper geometry.On 15 March a long period of aerobraking to reach the final 400km semi-circular frozen orbit (370x430km, with a fixed pericentre latitude). This orbit is optimised for the payload observations and for the communication relay with the ExoMars Rover, due to arrive in 2021.The aerobraking is proceeding well and the final orbit is expected to be reached in April 2018. A large data set is being acquired for the upper atmosphere of Mars, from the limit of the sensitivity of the accelerometer, down to lowest altitude of the aerobraking at about 105km. Initial analysis has shown a highly variable atmosphere with a slightly lower density then predicted by existing models. Until the time of the abstract writing no dust storms have been observed.The ExoMars programme is a joint activity by the European Space Agency(ESA) and ROSCOSMOS, Russia. ESA is providing the TGO spacecraft and Schiaparelli (EDM) and two of the TGO instruments and ROSCOSMOS is providing the Proton launcher and the other two TGO instruments. After the arrival of the ExoMars 2020 mission, consisting of a Rover and a Surface platform also launched by a Proton rocket, the TGO will handle the communication between the Earth and the Rover and Surface Platform through its (NASA provided) UHF communication system.

  3. Clouds and the extratropical circulation response to global warming in a hierarchy of global atmosphere models

    Voigt, A.

    2017-12-01

    Climate models project that global warming will lead to substantial changes in extratropical jet streams. Yet, many quantitative aspects of warming-induced jet stream changes remain uncertain, and recent work has indicated an important role of clouds and their radiative interactions. Here, I will investigate how cloud-radiative changes impact the zonal-mean extratropical circulation response under global warming using a hierarchy of global atmosphere models. I will first focus on aquaplanet setups with prescribed sea-surface temperatures (SSTs), which reproduce the model spread found in realistic simulations with interactive SSTs. Simulations with two CMIP5 models MPI-ESM and IPSL-CM5A and prescribed clouds show that half of the circulation response can be attributed to cloud changes. The rise of tropical high-level clouds and the upward and poleward movement of midlatitude high-level clouds lead to poleward jet shifts. High-latitude low-level cloud changes shift the jet poleward in one model but not in the other. The impact of clouds on the jet operates via the atmospheric radiative forcing that is created by the cloud changes and is qualitatively reproduced in a dry Held-Suarez model, although the latter is too sensitive because of its simplified treatment of diabatic processes. I will then show that the aquaplanet results also hold when the models are used in a realistic setup that includes continents and seasonality. I will further juxtapose these prescribed-SST simulations with interactive-SST simulations and show that atmospheric and surface cloud-radiative interactions impact the jet poleward jet shifts in about equal measure. Finally, I will discuss the cloud impact on regional and seasonal circulation changes.

  4. The Global Monsoon as Seen through the Divergent Atmospheric Circulation.

    Trenberth, Kevin E.; Stepaniak, David P.; Caron, Julie M.

    2000-11-01

    A comprehensive description is given of the global monsoon as seen through the large-scale overturning in the atmosphere that changes with the seasons, and it provides a basis for delimiting the monsoon regions of the world. The analysis focuses on the mean annual cycle of the divergent winds and associated vertical motions, as given by the monthly mean fields for 1979-93 reanalyses from the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) and European Centre for Medium-Range Weather Forecasts (ECMWF), which are able to reproduce the dominant modes. A complex empirical orthogonal function analysis of the divergent circulation brings out two dominant modes with essentially the same vertical structures in all months of the year. The first mode, which depicts the global monsoon, has a simple vertical structure with a maximum in vertical motion at about 400 mb, divergence in the upper troposphere that is strongest at 150 mb and decays to zero amplitude above 70 mb, and convergence in the lower troposphere with a maximum at 925 mb (ECMWF) or 850 mb (NCEP). However, this mode has a rich three-dimensional spatial structure that evolves with the seasons. It accounts for 60% of the annual cycle variance of the divergent mass circulation and dominates the Hadley circulation as well as three overturning transverse cells. These include the Pacific Walker circulation; an Americas-Atlantic Walker circulation, both of which comprise rising motion in the west and sinking in the east; and a transverse cell over Asia, the Middle East, North Africa, and the Indian Ocean that has rising motion in the east and sinking toward the west. These exist year-round but migrate and evolve considerably with the seasons and have about a third to half of the mass flux of the peak Hadley cell. The annual cycle of the two Hadley cells reveals peak strength in early February and early August in both reanalyses.A second monsoon mode, which accounts for

  5. Global atmospheric model for mercury including oxidation by bromine atoms

    C. D. Holmes

    2010-12-01

    Full Text Available Global models of atmospheric mercury generally assume that gas-phase OH and ozone are the main oxidants converting Hg0 to HgII and thus driving mercury deposition to ecosystems. However, thermodynamic considerations argue against the importance of these reactions. We demonstrate here the viability of atomic bromine (Br as an alternative Hg0 oxidant. We conduct a global 3-D simulation with the GEOS-Chem model assuming gas-phase Br to be the sole Hg0 oxidant (Hg + Br model and compare to the previous version of the model with OH and ozone as the sole oxidants (Hg + OH/O3 model. We specify global 3-D Br concentration fields based on our best understanding of tropospheric and stratospheric Br chemistry. In both the Hg + Br and Hg + OH/O3 models, we add an aqueous photochemical reduction of HgII in cloud to impose a tropospheric lifetime for mercury of 6.5 months against deposition, as needed to reconcile observed total gaseous mercury (TGM concentrations with current estimates of anthropogenic emissions. This added reduction would not be necessary in the Hg + Br model if we adjusted the Br oxidation kinetics downward within their range of uncertainty. We find that the Hg + Br and Hg + OH/O3 models are equally capable of reproducing the spatial distribution of TGM and its seasonal cycle at northern mid-latitudes. The Hg + Br model shows a steeper decline of TGM concentrations from the tropics to southern mid-latitudes. Only the Hg + Br model can reproduce the springtime depletion and summer rebound of TGM observed at polar sites; the snowpack component of GEOS-Chem suggests that 40% of HgII deposited to snow in the Arctic is transferred to the ocean and land reservoirs, amounting to a net deposition flux to the Arctic of 60 Mg a−1. Summertime events of depleted Hg0 at Antarctic sites due to subsidence are much better simulated by

  6. Seasonal and spatial variations of atmospheric trace elemental deposition in the Aliaga industrial region, Turkey

    Kara, Melik; Dumanoglu, Yetkin; Altiok, Hasan; Elbir, Tolga; Odabasi, Mustafa; Bayram, Abdurrahman

    2014-11-01

    Atmospheric bulk deposition (wet + dry deposition) samples (n = 40) were collected concurrently at ten sites in four seasons between June 2009 and April 2010 in the Aliaga heavily industrialized region, Turkey, containing a number of significant air pollutant sources. Analyses of trace elements were carried out using inductively coupled plasma-mass spectrometry (ICP-MS). While there were significant differences in the particulate matter (PM) deposition fluxes among the sampling sites, seasonal variations were not statistically significant (Kruskal-Wallis test, p < 0.05). Both PM deposition and elemental fluxes were increased at the sampling sites in the vicinity of industrial activities. The crustal elements (i.e., Ca, Mg) and some anthropogenic elements (such as Fe, Zn, Mn, Pb, Cu, and Cr) were high, and the highest fluxes were mostly measured in summer and winter seasons. The enrichment factor (EF) and principal component analysis (PCA) was applied to the data to determine the possible sources in the study area. High EF values were obtained for the anthropogenic elements such as Ag, Cd, Zn, Pb, Cu and Sb. The possible sources were identified as anthropogenic sources (i.e., iron-steel production) (45.4%), crustal and re-suspended dust (27.1%), marine aerosol (7.9%), and coal and wood combustion (8.2%). Thus, the iron-steel production and its related activities were found to be the main pollutant sources for this region.

  7. Heavy Metals and Trace Elements Atmospheric Deposition Studies in Tula Region Using Moss Biomonitors Technique

    Ermakova, E V; Steinnes, E

    2002-01-01

    For the first time the moss biomonitors technique was used in air pollution studies in Tula Region (Central Russia), applying NAA, AAS. Moss samples were collected at 83 sites in accordance with the sampling strategy adopted in European projects on biomonitoring atmospheric deposition. A wide set of trace elements in mosses was determined. The method of epithermal neutron activation at IBR-2 reactor of FLNP JINR has made it possible to identify 33 elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, As, Br, Rb, Sr, Mo, Sb, I, Cs, Ba, La, Ce, Sm, Tb, Yb, Hf, Ta, W, Th, U) in the large-scale concentration range - from 10000 ppm for K to 0,001 ppm for Tb and Ta. Cu, Cd and Pb were determined by the flame AAS in the Norwegian Institute of Science and Technology. Using the graphical technique and principal component analysis allowed to separate plant, crustal and general pollution components in the moss. The obtained data will be used for constructing coloured maps of the distribution of elements over t...

  8. Atmospheric trace metal pollution in the Naples urban area based on results from moss and lichen bags

    Giordano, S.; Adamo, P.; Sorbo, S.; Vingiani, S.

    2005-01-01

    The results of trace element content analysed in Sphagnum capillifolium and Pseudevernia furfuracea exposed in bags in 1999 are reconsidered to evaluate the reliability of moss and lichen transplants to detect urban trace element atmospheric pollution, using Naples as a case example. After 4 months' exposure, trace element concentrations were at least twice as high as the pre-exposure values and in general higher in Sphagnum than in Pseudevernia. Moss samples were enriched in the following order: As = Cu > Mo > Pb > V > Co > Cr > Zn; lichen samples in the order: Mo > Cu > As = Co = Ni > V > Pb. Based on the calculation of a cumulative load factor, all sites located along the coast had higher trace element loads compared to sites in the hilly inland area. Complementary SEM, TEM and EDS observations showed, despite significant damage to tissue and cell integrity, the recurrent presence of particulate matter in moss and lichen, indicating the considerable presence of dust in the urban atmosphere which, according to chemical composition, may be due both to anthropogenic and natural sources such as volcanic rock and soil and sea salts. - Despite significant damage to tissue and cell integrity, moss and lichen in bags efficiently intercept airborne trace elements

  9. Source-receptor metrology and modeling of trace amounts of atmospheric pollutants

    Coddeville, P.

    2005-12-01

    This work deals with acid pollution and with its long distance transport using the metrology of trace amounts of pollutants in rural environment and the identification of the emission sources at the origin of acid atmospheric fallouts. Several French and foreign precipitation collectors have been evaluated and tested on the field. The measurement efficiency and limitations of four sampling systems for gas and particulate sulfur, ammonia and nitrous compounds have been evaluated. The limits of methods and the measurement uncertainties have been determined and calculated. A second aspect concerns the development of oriented receptor-type statistical models with the aim of improving the research of emission sources in smaller size areas defined by the cells of a geographical mesh. The construction of these models combines the pollution data of the sites with the informations about the trajectories of air masses. Results are given as probability or concentration fields revealing the areas potentially at the origin of pollutant emissions. Areas with strong pollutant emissions have been detected at the Polish, Czech and German borders and have been identified as responsible of pollution events encountered in Morvan region. Quantitative source-receptor relations have been also established. The different atmospheric transport profiles, their related frequency and concentration have been also evaluated using a dynamical clouds classification of air mass retro-trajectories. Finally, the first medium-term exploitation results (14 years) of precipitation data from measurement stations allow to perfectly identify the different meteorological regimes of the French territory by establishing a relation with the chemical composition of rainfalls. A west-east oriented increase of rainfall acidity is observed over the French territory. The pluviometry of the north-east area being among the highest of France, it generates more important deposits of acidifying compounds. The analysis

  10. Semiautomatic imputation of activity travel diaries : use of global positioning system traces, prompted recall, and context-sensitive learning algorithms

    Moiseeva, A.; Jessurun, A.J.; Timmermans, H.J.P.; Stopher, P.

    2016-01-01

    Anastasia Moiseeva, Joran Jessurun and Harry Timmermans (2010), ‘Semiautomatic Imputation of Activity Travel Diaries: Use of Global Positioning System Traces, Prompted Recall, and Context-Sensitive Learning Algorithms’, Transportation Research Record: Journal of the Transportation Research Board,

  11. Reactive trace gas emissions from stressed plants: a poorly characterized major source of atmospheric volatiles

    Niinemets, Ülo

    2017-04-01

    Vegetation constitutes the greatest source of reactive volatile organic compounds in the atmosphere. The current emission estimates primarily rely on constitutive emissions that are present only in some plant species. However, all plant species can be induced to emit reactive volatiles by different abiotic and biotic stresses, but the stress-dependent emissions have been largely neglected in emission measurements and models. This presentation provides an overview of systematic screening of stress-dependent volatile emissions from a broad range of structurally and physiologically divergent plant species from temperate to tropical ecosystems. Ozone, heat, drought and wounding stress were the abiotic stresses considered in the screening, while biotic stress included herbivory, chemical elicitors simulating herbivory and fungal infections. The data suggest that any moderate to severe stress leads to significant emissions of a rich blend of volatiles, including methanol, green leaf volatiles (the lipoxygenase pathway volatiles, dominated by C6 aldehydes, alcohols and derivatives), different mono- and sesquiterpenes and benzenoids. The release of volatiles occurs in stress severity-dependent manner, although the emission responses are often non-linear with more severe stresses resulting in disproportionately greater emissions. Stress volatile release is induced in both non-constitutive and constitutive volatile emitters, whereas the rate of constitutive volatile emissions in constitutive emitters is often reduced under environmental and biotic stresses. Given that plants in natural conditions often experience stress, this analysis suggests that global volatile emissions have been significantly underestimated. Furthermore, in globally changing hotter climates, the frequency and severity of both abiotic and biotic stresses is expected to increase. Thus, the stress-induced volatile emissions are predicted to play a dominant role in plant-atmosphere interactions in near

  12. On the Spectral Evolution of Helium-atmosphere White Dwarfs Showing Traces of Hydrogen

    Rolland, B.; Bergeron, P.; Fontaine, G.

    2018-04-01

    We present a detailed spectroscopic analysis of 115 helium-line (DB) and 28 cool, He-rich hydrogen-line (DA) white dwarfs based on atmosphere fits to optical spectroscopy and photometry. We find that 63% of our DB population show hydrogen lines, making them DBA stars. We also demonstrate the persistence of pure DB white dwarfs with no detectable hydrogen feature at low effective temperatures. Using state-of-the art envelope models, we next compute the total quantity of hydrogen, M H, that is contained in the outer convection zone as a function of effective temperature and atmospheric H/He ratio. We find that some (T eff, M H) pairs cannot physically exist as a homogeneously mixed structure; such a combination can only occur as stratified objects of the DA spectral type. On that basis, we show that the values of M H inferred for the bulk of the DBA stars are too large and incompatible with the convective dilution scenario. We also present evidence that the hydrogen abundances measured in DBA and cool, helium-rich white dwarfs cannot be globally accounted for by any kind of accretion mechanism onto a pure DB star. We suggest that cool, He-rich DA white dwarfs are most likely created by the convective mixing of a DA star with a thin hydrogen envelope; they are not cooled down DBAs. We finally explore several scenarios that could account for the presence of hydrogen in DBA stars.

  13. Characterization of atmospheric trace elements in the Puruogangri ice core: a preliminary account of Tibetan Plateau environmental and contamination histories

    Beaudon, E.; Gabrielli, P.; Sierra Hernandez, R.; Wegner, A.; Thompson, L. G.

    2014-12-01

    Asia is facing enormous challenges including large-scale environmental changes, rapid population growth and industrialization. The inherent generated pollution contributes to half of all Earth's anthropogenic trace metals emissions that, when deposited to glaciers of the surrounding mountains of the Third Pole region, leave a characteristic chemical fingerprint. Records of past atmospheric deposition preserved in snow and ice from Third Pole glaciers provide unique insights into changes of the chemical composition of the atmosphere and into the nature and intensity of the regional atmospheric circulation systems. The determination of the elemental composition of aeolian dust stored in Himalayan and Tibetan Plateau glaciers can help to qualify the potential contamination of glacial meltwater as a part of the greater fresh Asian water source. The 215 m long Puruogangri ice core retrieved in 2000 at 6500 m a.s.l. in central Tibetan Plateau (Western Tanggula Shan, China) provides one of the first multi-millennium-long environmental archives (spanning the last 7000 years and annually resolved for the last 400 years) obtained from the Tibetan Plateau region. The Puruogangri's area is climatologically of particular interest because of its location at the boundary between the monsoon (wet) and the westerly (dry) dominated atmospheric circulation. The major objective of this study is to determine the concentration of trace and ultra-trace elements in the Puruogangri ice core between 1600 and 2000 AD in order to characterize the atmospheric aerosols entrapped in the ice. Particular attention is given to assess the amount of trace elements originating from anthropogenic sources during both the pre-industrial and industrial periods. The distinction between the anthropogenic contribution and the crustal background may rely on the precise decoupling of the dry and wet seasons signals, the former being largely influenced by dust contribution.

  14. Assessing the ability to derive rates of polar middle-atmospheric descent using trace gas measurements from remote sensors

    Ryan, Niall J.; Kinnison, Douglas E.; Garcia, Rolando R.; Hoffmann, Christoph G.; Palm, Mathias; Raffalski, Uwe; Notholt, Justus

    2018-02-01

    We investigate the reliability of using trace gas measurements from remote sensing instruments to infer polar atmospheric descent rates during winter within 46-86 km altitude. Using output from the Specified Dynamics Whole Atmosphere Community Climate Model (SD-WACCM) between 2008 and 2014, tendencies of carbon monoxide (CO) volume mixing ratios (VMRs) are used to assess a common assumption of dominant vertical advection of tracers during polar winter. The results show that dynamical processes other than vertical advection are not negligible, meaning that the transport rates derived from trace gas measurements do not represent the mean descent of the atmosphere. The relative importance of vertical advection is lessened, and exceeded by other processes, during periods directly before and after a sudden stratospheric warming, mainly due to an increase in eddy transport. It was also found that CO chemistry cannot be ignored in the mesosphere due to the night-time layer of OH at approximately 80 km altitude. CO VMR profiles from the Kiruna Microwave Radiometer and the Microwave Limb Sounder were compared to SD-WACCM output, and show good agreement on daily and seasonal timescales. SD-WACCM CO profiles are combined with the CO tendencies to estimate errors involved in calculating the mean descent of the atmosphere from remote sensing measurements. The results indicate errors on the same scale as the calculated descent rates, and that the method is prone to a misinterpretation of the direction of air motion. The true rate of atmospheric descent is seen to be masked by processes, other than vertical advection, that affect CO. We suggest an alternative definition of the rate calculated using remote sensing measurements: not as the mean descent of the atmosphere, but as an effective rate of vertical transport for the trace gas under observation.

  15. Aerosol trace metals, particle morphology and total gaseous mercury in the atmosphere of Oxford, UK

    Witt, M. L. I.; Meheran, N.; Mather, T. A.; de Hoog, J. C. M.; Pyle, D. M.

    2010-04-01

    An investigation of atmospheric trace metals was conducted in Oxford, UK, a small city ˜60 miles northwest of London, in 2007 and 2008. Concentrations of Sr, Mo, Cd, Pb, V, Cr, Mn, Fe, Co, Ni, Cu and Zn in aerosol were measured in bulk and size segregated samples. In addition, total gaseous mercury (TGM) concentrations were monitored semi-continuously by cold vapour-atomic fluorescence spectroscopy. Metal concentrations in Oxford were intermediate between previously reported levels of UK rural and urban areas for most metals studied and levels of Cd, Ni and Pb were within European guidelines. Metal concentrations appeared to be influenced by higher traffic volume on a timescale of hours. The influence of traffic on the aerosols was also suggested by the observation of carbonaceous particles via scanning electron microscopy (SEM). Air mass back trajectories suggest air masses arriving in Oxford from London and mainland Europe contained the highest metal concentrations. Aerosol samples collected over Bonfire Weekend, a period of intense firework use and lighting of bonfires in the UK, showed metal concentrations 6-46 times higher than at other times. Strontium, a tracer of firework release, was present at higher concentrations and showed a change in its size distribution from the coarse to fine mode over Bonfire Weekend. The presence of an abundance of spherical Sr particles was also confirmed in SEM images. The average TGM concentration in Oxford was 3.17 ng m -3 (st. dev. 1.59) with values recorded between 1.32 and 23.2 ng m -3. This is a higher average value than reported from nearby rural locations, although during periods when air was arriving from the west, similar concentrations to these rural areas were seen in Oxford. Comparison to meteorological data suggests that TGM in Oxford's air is highest when wind is arriving from the east/southeast. This may be due to emissions from London/mainland Europe with a possible contribution from emissions from a local

  16. HARPA: A versatile three-dimensional Hamiltonian ray-tracing program for acoustic waves in the atmosphere above irregular terrain

    Jones, R. M.; Riley, J. P.; Georges, T. M.

    1986-08-01

    The modular FORTRAN 77 computer program traces the three-dimensional paths of acoustic rays through continuous model atmospheres by numerically integrating Hamilton's equations (a differential expression of Fermat's principle). The user specifies an atmospheric model by writing closed-form formulas for its three-dimensional wind and temperature (or sound speed) distribution, and by defining the height of the reflecting terrain vs. geographic latitude and longitude. Some general-purpose models are provided, or users can readily design their own. In addition to computing the geometry of each raypath, HARPA can calculate pulse travel time, phase time, Doppler shift (if the medium varies in time), absorption, and geometrical path length. The program prints a step-by-step account of a ray's progress. The 410-page documentation describes the ray-tracing equations and the structure of the program, and provides complete instructions, illustrated by a sample case.

  17. Development of a Ground-Based Atmospheric Monitoring Network for the Global Mercury Observation System (GMOS

    Sprovieri F.

    2013-04-01

    Full Text Available Consistent, high-quality measurements of atmospheric mercury (Hg are necessary in order to better understand Hg emissions, transport, and deposition on a global scale. Although the number of atmospheric Hg monitoring stations has increased in recent years, the available measurement database is limited and there are many regions of the world where measurements have not been extensively performed. Long-term atmospheric Hg monitoring and additional ground-based monitoring sites are needed in order to generate datasets that will offer new insight and information about the global scale trends of atmospheric Hg emissions and deposition. In the framework of the Global Mercury Observation System (GMOS project, a coordinated global observational network for atmospheric Hg is being established. The overall research strategy of GMOS is to develop a state-of-the-art observation system able to provide information on the concentration of Hg species in ambient air and precipitation on the global scale. This network is being developed by integrating previously established ground-based atmospheric Hg monitoring stations with newly established GMOS sites that are located both at high altitude and sea level locations, as well as in climatically diverse regions. Through the collection of consistent, high-quality atmospheric Hg measurement data, we seek to create a comprehensive assessment of atmospheric Hg concentrations and their dependence on meteorology, long-range atmospheric transport and atmospheric emissions.

  18. Atmospheric deposition of trace elements recorded in snow from the Mt. Nyainqêntanglha region, southern Tibetan Plateau.

    Huang, Jie; Kang, Shichang; Zhang, Qianggong; Guo, Junming; Chen, Pengfei; Zhang, Guoshuai; Tripathee, Lekhendra

    2013-08-01

    In May 2009, snowpit samples were collected from a high-elevation glacier in the Mt. Nyainqêntanglha region on the southern Tibetan Plateau. A set of elements (Al, V, Cr, Mn, Co, Ni, Cu, Zn, Cd, Hg and Pb) was analyzed to investigate the concentrations, deposition fluxes of trace elements, and the relative contributions from anthropogenic and natural sources deposited on the southern Tibetan Plateau. Concentrations of most of the trace elements in snowpit samples from the Zhadang glacier are significantly lower than those examined from central Asia (e.g., eastern Tien Shan), with higher concentrations during the non-monsoon season than during the monsoon season. The elements of Al, V, Cr, Mn, Co, and Ni display low crustal enrichment factors (EFs), while Cu, Zn, Cd, Hg, and Pb show high EF values in the snow samples, suggesting anthropogenic inputs are potentially important for these elements in the remote, high-elevation atmosphere on the southern Tibetan Plateau. Together with the fact that the concentration levels of such elements in the Mt. Nyainqêntanglha region are significantly higher than those observed on the south edge of the Tibetan Plateau, our results suggest that the high-elevation atmosphere on the southern Tibetan Plateau may be more sensitive to variations in the anthropogenic emissions of atmospheric trace elements than that in the central Himalayas. Moreover, the major difference between deposition fluxes estimated in our snow samples and those recently measured at Nam Co Station for elements such as Cr and Cu may suggest that atmospheric deposition of some of trace elements reconstructed from snowpits and ice cores could be grossly underestimated on the Tibetan Plateau. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Trace-Element Evidence for an Aqueous Atmospheric Origin of Desert Varnish: implications for the aqueous atmospheric input flux into the ocean

    Thiagarajan, N.; Lee, C.

    2003-12-01

    Desert varnish is a slow-growing dark patina commonly found on rock surfaces in arid environments. Varnishes consist of about 30% Mn and Fe oxides accompanied by oxides of Si, Al, Mg, K and Ca, which occur primarily in the form of clays. Although it is generally agreed that varnishes have an atmospheric origin, their exact formation mechanism remains highly debated. Two endmember hypotheses are gradual accumulation of wind-blown dust followed by diagenesis, and direct chemical precipitation of dissolved elements from atmospheric aerosols. To rule out one of these hypotheses, we investigated the trace-element systematics of varnishes, in particular, focusing on those elements that have contrasting solubilities in aqueous environments. If our trace element analyses are consistent with the varnishes being derived from dissolved atmospheric constituents then the data can be used to quantify the paleofluxes of the soluble fraction of atmospheric aerosols to various depositional environments. For example, this will have implications for the transport of metals to the ocean that are immediately biologically available. We collected varnishes deposited on smooth basaltic lava flow surfaces in the Cima Volcanic Field (Mojave Desert) and in Death Valley, California. The chosen lava flows retain original flow surface structure and are topographical highs; the effects of erosion are hence minimal. Varnishes were scraped off with a quartz rod to minimize trace element contamination and the trace element compositions were then determined by ICP-MS using an external synthetic standard for calibration. Our analyses show that the rare-earth elements (REEs), Co, Ni, and Pb are enriched 1.5 to 10 times relative to the upper continental crust (UCC) and that Nb, Ti, Ta, Hf, Th, Rb and Cs are depleted to varying degrees relative to UCC and the REEs. These fractionations can be explained by their differing chemical behaviors in aqueous environments. The extreme depletion in Rb and Cs

  20. Evaluation of trace elemental composition of aerosols in the atmosphere of Rawalpindi and Islamabad using radio analytical methods

    Qadir, Muhammad Abdul, E-mail: mabdulqadir@gmail.com [Institute of Chemistry, University of the Punjab, Lahore-54590 (Pakistan); Zaidi, Jamshaid Hussain [Pakistan Institute of Nuclear Science and Technology, Nilore, Islamabad Capital Territory (Pakistan); Ahmad, Shaikh Asrar; Gulzar, Asad [Division of Science and Technology, University of Education, Township, Lahore (Pakistan); Yaseen, Muhammad [Department of Chemistry, Gugrat University, Gugrat (Pakistan); Atta, Sadia; Tufail, Asma [Institute of Chemistry, University of the Punjab, Lahore-54590 (Pakistan)

    2012-05-15

    Geological and anthropogenic contributions to air pollution were monitored by analyzing aerosol particulates present in the atmosphere of Rawalpindi and Islamabad, Pakistan, using instrumental neutron activation for trace elemental analysis. A scanning electron microscope was used to study particulate size distribution and morphology. Twenty two elements were analyzed and their likely sources were identified. It was found that 69% of the suspended particulate matter in the atmosphere of Islamabad, and 52% in Rawalpindi, were of a diameter less than 3 {mu}m. The presence of Yb, Cs, Sc, Rb, Co, Eu, La, Ba, Zn and Hf indicates that a major portion of the trace elements in the aerosol particulates was due to the geological nature of the land, while Sc was considered to be arising from coal burning. The presence of Cr, Fe, Ce, Pb and Cd was attributed to anthropogenic activities at Rawalpindi and Islamabad. Unusually high concentrations of Mo and Nb were found in the atmosphere of Islamabad, based on soil derived aerosols. - Highlights: Black-Right-Pointing-Pointer Discussion is made on Total suspended Particulate (TSP) matter in the atmosphere. Black-Right-Pointing-Pointer Measurement of Radio active elements in the TSP by using SSNTD which was found non significant. Black-Right-Pointing-Pointer 23 Trace element analysis of the TSPs in the atmosphere of twin cities i.e. Rawalpindi and Islamabad and their relation to their sources by using Neutron activation analysis. Black-Right-Pointing-Pointer The mountain of Islamabad has some unique and important deposits of Nb and Gd , this paper will help the Geological survey of Pakistan to explore their deposits. Black-Right-Pointing-Pointer There is high level of TSPs>10 um, which is a great threat to the peoples of Islamabad.

  1. Evaluation of trace elemental composition of aerosols in the atmosphere of Rawalpindi and Islamabad using radio analytical methods

    Qadir, Muhammad Abdul; Zaidi, Jamshaid Hussain; Ahmad, Shaikh Asrar; Gulzar, Asad; Yaseen, Muhammad; Atta, Sadia; Tufail, Asma

    2012-01-01

    Geological and anthropogenic contributions to air pollution were monitored by analyzing aerosol particulates present in the atmosphere of Rawalpindi and Islamabad, Pakistan, using instrumental neutron activation for trace elemental analysis. A scanning electron microscope was used to study particulate size distribution and morphology. Twenty two elements were analyzed and their likely sources were identified. It was found that 69% of the suspended particulate matter in the atmosphere of Islamabad, and 52% in Rawalpindi, were of a diameter less than 3 μm. The presence of Yb, Cs, Sc, Rb, Co, Eu, La, Ba, Zn and Hf indicates that a major portion of the trace elements in the aerosol particulates was due to the geological nature of the land, while Sc was considered to be arising from coal burning. The presence of Cr, Fe, Ce, Pb and Cd was attributed to anthropogenic activities at Rawalpindi and Islamabad. Unusually high concentrations of Mo and Nb were found in the atmosphere of Islamabad, based on soil derived aerosols. - Highlights: ► Discussion is made on Total suspended Particulate (TSP) matter in the atmosphere. ► Measurement of Radio active elements in the TSP by using SSNTD which was found non significant. ► 23 Trace element analysis of the TSPs in the atmosphere of twin cities i.e. Rawalpindi and Islamabad and their relation to their sources by using Neutron activation analysis. ► The mountain of Islamabad has some unique and important deposits of Nb and Gd , this paper will help the Geological survey of Pakistan to explore their deposits. ► There is high level of TSPs>10 um, which is a great threat to the peoples of Islamabad.

  2. Russian contribution to ExoMars Trace Gas Orbiter: Atmospheric Chemistry Suite (ACS)

    Shakun, Alexey; Korablev, Oleg; Trokhimovskiy, Alexander; Grigoriev, Alexey; Anufreychik, Konstantin; Fedorova, Anna; Ignatiev, Nikolay; Ivanov, Yuriy; Moshkin, Boris; Kalinnikov, Yuriy; Montmessin, Franck

    2016-04-01

    Atmospheric Chemistry Suite (ACS) is a part of science payload of Trace Gas Orbiter (TGO), ExoMars mission. This project developed by European Space Agency (ESA) in collaboration with Russian Space Agency (Roscosmos). Russian contribution to ExoMars TGO is the Proton rocket and two science instruments ACS (three infrared spectrometers) and FREND (neutron detector). ACS consists of three infrared spectrometers (ACS/NIR, ACS/MIR and ACS/TIRVIM) capable to take spectral measurements from near to thermal infrared range simultaneously or separately. Spectrometric channels of ACS share common mechanical, electrical, and thermal interfaces. Electronic box (ACS/BE) provides to spectrometric channels power and data transfer interfaces. SpaceWire link is used for science data transfer and MIL-1553 link - for commanding and housekeeping data transfer. The NIR channel is an echelle spectrometer with acousto-optic tunable filter (AOTF) for the selection of diffraction orders. ACS NIR is capable to perform nadir and occultation observations. NIR covers the spectral range of 0.7-1.7 μm with resolving power of ~25000. NIR will perform unique for TGO instruments nightglow science (searching for O2, OH, NO nightglow emissions on Mars). From the 1.38 μm band NIR will do water vapour mapping in nadir and H2O vertical profiling in solar occultations. High resolution NIR measurements of 1.27 μm O2(a1Δg) dayglow will supply indirect ozone observations on the dayside on nadir. In solar occultation mode, the O2 vertical profiles will be measured from the surface (in case of low dust activity) to the 40 km altitude based on 0.76 μm absorption band. Together with MIR channel in solar occultation NIR will support the measurements of CO2 density profiles (based on 1.43 μm band) and aerosols characterization from 0.7 to 4 μm. The wide spectral range will allow not just determine aerosol particle sizes and density at different altitudes, but also distinguish between dust and ice particles

  3. Biomass burning studies and the International Global Atmospheric Chemistry (IGAC) Project

    Prinn, R.G.

    1991-01-01

    The perturbations to local and regional atmospheric chemistry caused by biomass burning also have global significance. The International Global Atmospheric Chemistry (IGAC) Project was created by scientists from over twenty countries in response to the growing interest concern about atmospheric chemical changes and their potential impact on mankind. The goal of the IGAC is to develop a fundamental understanding of the natural and anthropogenic processes that determine the chemical composition of the atmosphere and the interactions between atmospheric composition and biospheric and climatic processes. A specific objective is to accurately predict changes over the next century in the composition and chemistry of the global atmosphere. Current activities, leaders and scientists involved are presented in this chapter

  4. Oceans-land-atmosphere interactions and global change

    DileepKumar, M.

    Experiment: Widespread Air Pollution from South and Southeast Asia, Science, 291, 1031-1036. ... status today. As the oxygen content in air increased, mainly because of photosynthetic activities, more CO2 formation was favoured. However, it remained in trace levels (parts per million) in air because of its continuous removal by plants...

  5. Seasonal and global behavior of water vapor in the Mars atmosphere: Complete global results of the Viking atmospheric water detector experiment

    Jakosky, B.M.; Farmer, C.B.

    1982-01-01

    The water vapor content of the Mars atmosphere was measured from the Viking Orbiter Mars Atmospheric Water Detectors (MAWD) for a period of more than 1 Martian year, from June 1976 through April 1979. Results are presented in the form of global maps of column abundance for 24 periods throughout each Mars year. The data reduction incorporates spatial and seasonal variations in surface pressure and supplements earlier published versions of less complete data

  6. Characterization of atmospheric trace gases and particulate matter in Hangzhou, China

    Zhang, Gen; Xu, Honghui; Qi, Bing; Du, Rongguang; Gui, Ke; Wang, Hongli; Jiang, Wanting; Liang, Linlin; Xu, Wanyun

    2018-02-01

    The Yangtze River Delta (YRD) is one of the most densely populated regions in China with severe air quality issues that have not been fully understood. Thus, in this study, based on 1-year (2013) continuous measurement at a National Reference Climatological Station (NRCS, 30.22° N, 120.17° E; 41.7 m a.s.l.) in the center of Hangzhou in the YRD, we investigated the seasonal characteristics, interspecies relationships, and the local emissions and the regional potential source contributions of trace gases (including O3, NOx, NOy, SO2, and CO) and particulate matter (PM2.5 and PM10). Results revealed that severe two-tier air pollution (photochemical and haze pollution) occurred in this region, with frequent exceedances in O3 (38 days) and PM2.5 (62 days). O3 and PM2.5 both exhibited distinct seasonal variations with reversed patterns: O3 reaching a maximum in warm seasons (May and July) but PM2.5 reaching a maximum in cold seasons (November to January). The overall results from interspecies correlation indicated a strong local photochemistry favoring the O3 production under a volatile organic compound (VOC)-limited regime, whereas it moved towards an optimum O3 production zone during warm seasons, accompanied by the formation of secondary fine particulates under high O3. The emission maps of PM2.5, CO, NOx, and SO2 demonstrated that local emissions were significant for these species on a seasonal scale. The contributions from the regional transport among inland cities (Zhejiang, Jiangsu, Anhui, and Jiangxi Province) on a seasonal scale were further confirmed to be crucial to air pollution at the NRCS site by using backward trajectory simulations. Air masses transported from the offshore areas of the Yellow Sea, East Sea, and South Sea were also found to be highly relevant to the elevated O3 at the NRCS site through the analysis of potential source contribution function (PSCF). Case studies of photochemical pollution (O3) and haze (PM2.5) episodes both suggested the

  7. Detailed history of atmospheric trace elements from the Quelccaya ice core (Southern Peru) during the last 1200 years

    Uglietti, C.; Gabrielli, P.; Thompson, L. G.

    2013-12-01

    The recent increase in trace element concentrations, for example Cr, Cu, Zn, Ag, Pb, Bi, and U, in polar snow and ice has provided compelling evidence of a hemispheric change in atmospheric composition since the nineteenth century. This change has been concomitant with the expansion of the Industrial Revolution and points towards an anthropogenic source of trace elements in the atmosphere. There are very few low latitude trace element ice core records and these are believed to be sensitive to perturbations of regional significance. To date, these records have not been used to document a preindustrial anthropogenic impact on atmospheric composition at low latitudes. Ice cores retrieved from the tropical Andes are particularly interesting because they have the potential to reveal detailed information about the evolution and environmental consequences of mineral exploitation related to the Pre Inca Civilizations, the Inca Empire (1438-1533 AD) and the subsequent Spanish invasion and dominance (1532-1833 AD). The chemical record preserved in the ice of the Quelccaya ice cap (southern Peruvian Andes) offers the exceptional opportunity to geochemically constrain the composition of the tropical atmosphere at high resolution over the last ~1200 years. Quantification of twenty trace elements (Ag, Al, As, Bi, Cd, Co, Cr, Cu, Fe, Mn, Mo, Pb, Rb, Sb, Sn, Ti, Tl, U, V, and Zn) was performed by ICP-SFMS over 105 m of the Quelccaya North Dome core (5600 m asl, 128.57 m) by analyzing 2450 samples. This provides the first atmospheric trace element record in South America spanning continuously and at high resolution for the time period between 1990 and 790 AD. Ag, As, Bi, Cd, Cr, Co, Cu, Mn, Mo, Sb, Sn, Pb and Zn show increases in concentration and crustal enrichment factor starting at different times between 1450 and 1550 AD, in concomitance with the expansions of the Inca Empire and, subsequently, the Spanish Empire well before the inception of the Industrial Revolution. This

  8. Carbon inventories and atmospheric temperatures: A global and regional perspective

    DileepKumar, M.

    stream_size 3 stream_content_type text/plain stream_name Proc_Natl_Conf_Global_Temp_Rise_2007_133.pdf.txt stream_source_info Proc_Natl_Conf_Global_Temp_Rise_2007_133.pdf.txt Content-Encoding ISO-8859-1 Content-Type text...

  9. Global Hawk dropsonde observations of the Arctic atmosphere obtained during the Winter Storms and Pacific Atmospheric Rivers (WISPAR field campaign

    J. M. Intrieri

    2014-11-01

    Full Text Available In February and March of 2011, the Global Hawk unmanned aircraft system (UAS was deployed over the Pacific Ocean and the Arctic during the Winter Storms and Pacific Atmospheric Rivers (WISPAR field campaign. The WISPAR science missions were designed to (1 mprove our understanding of Pacific weather systems and the polar atmosphere; (2 evaluate operational use of unmanned aircraft for investigating these atmospheric events; and (3 demonstrate operational and research applications of a UAS dropsonde system at high latitudes. Dropsondes deployed from the Global Hawk successfully obtained high-resolution profiles of temperature, pressure, humidity, and wind information between the stratosphere and surface. The 35 m wingspan Global Hawk, which can soar for ~ 31 h at altitudes up to ~ 20 km, was remotely operated from NASA's Dryden Flight Research Center at Edwards Air Force Base (AFB in California. During the 25 h polar flight on 9–10 March 2011, the Global Hawk released 35 sondes between the North Slope of Alaska and 85° N latitude, marking the first UAS Arctic dropsonde mission of its kind. The polar flight transected an unusually cold polar vortex, notable for an associated record-level Arctic ozone loss, and documented polar boundary layer variations over a sizable ocean–ice lead feature. Comparison of dropsonde observations with atmospheric reanalyses reveal that, for this day, large-scale structures such as the polar vortex and air masses are captured by the reanalyses, while smaller-scale features, including low-level jets and inversion depths, are mischaracterized. The successful Arctic dropsonde deployment demonstrates the capability of the Global Hawk to conduct operations in harsh, remote regions. The limited comparison with other measurements and reanalyses highlights the potential value of Arctic atmospheric dropsonde observations where routine in situ measurements are practically nonexistent.

  10. GFDL CM2.1 Global Coupled Ocean-Atmosphere Model Water ...

    First page Back Continue Last page Overview Graphics. GFDL CM2.1 Global Coupled Ocean-Atmosphere Model Water Hosing Experiment with 1 Sv equivalent of Freshening Control Expt: 100 yrs After Hosing: 300 yrs.

  11. Software Test Description (STD) for the Globally Relocatable Navy Tide/Atmospheric Modeling System (PCTides)

    Posey, Pamela

    2002-01-01

    The purpose of this Software Test Description (STD) is to establish formal test cases to be used by personnel tasked with the installation and verification of the Globally Relocatable Navy Tide/Atmospheric Modeling System (PCTides...

  12. Coupling of magnetospheric electrical effects into the global atmospheric electrical circuit

    Hays, P.B.; Roble, R.G.

    1979-01-01

    A quasi-static model of global atmospheric electricity has been constructed (Hays and Roble, 1978) to study the electrical processes in the lower atmosphere and the coupling between solar- and upper- atmosphere-induced variations superimposed upon the global electrical circuit. The paper reviews the essential features of this model and discusses the results obtained thus far on the effects of magnetospheric convection and substorms on the global atmospheric electrical circuit. A schematic diagram of the global quasi-static model is given. It is assumed that thunderstorms act as dipole generators, each with a positive center at the top of the cloud and a negative center a few kilometers lower than the positive center

  13. Global land-atmosphere coupling associated with cold climate processes

    Dutra, Emanuel, 1983-

    2011-01-01

    Tese de doutoramento, Ciências Geofísicas e da Geoinformação (Meteorologia), Universidade de Lisboa, Faculdade de Ciências, 2011 This dissertation constitutes an assessment of the role of cold processes, associated with snow cover, in controlling the land-atmosphere coupling. The work was based on model simulations, including offline simulations with the land surface model HTESSEL, and coupled atmosphere simulations with the EC-EARTH climate model. A revised snow scheme was developed and t...

  14. Biomonitoring of atmospheric pollution (with emphasis on trace elements) - BioMAP. Proceedings of an international workshop

    2000-06-01

    Some organisms accumulate atmospheric contaminants over certain periods of time and concentrate them, thus allowing reliable analytical measurements if the organisms are suitably chosen. Measurements of contaminants accumulated by such organisms (biomonitors) provide information on the integrated exposure over an extended period of time. They may also be present in remote areas, and no expensive technical equipment is involved in collecting them. Therefore, biomonitoring can be an effective tool for pollutant mapping and trend monitoring by real time and retrospective analysis. The IAEA is making concerted efforts to promote the practical use of nuclear and related analytical techniques in studies of non-radioactive environmental pollutants that may impact human health, and one of the main emphases is on studying air contaminants. The idea of organizing a workshop on biomonitoring atmospheric pollution arose during an IAEA Technical Co-operation Project on Monitoring of Trace Element Air Pollution, carried out at the Instituto Tecnologico e Nuclear (ITN), Portugal, with substantial technical support by the Interfaculty Reactor Institute (IRI) of the Delft University of Technology (TUDelft), Netherlands. The International Workshop on Biomonitoring of Atmospheric Pollution (With Emphasis on Trace Elements) - BioMAP, was held in Lisbon, Portugal, from 21 to 24 September 1997. The meeting was organized in co-operation with the Instituto Tecnologico e Nuclear

  15. Biomonitoring of atmospheric pollution (with emphasis on trace elements) - BioMAP. Proceedings of an international workshop

    NONE

    2000-06-01

    Some organisms accumulate atmospheric contaminants over certain periods of time and concentrate them, thus allowing reliable analytical measurements if the organisms are suitably chosen. Measurements of contaminants accumulated by such organisms (biomonitors) provide information on the integrated exposure over an extended period of time. They may also be present in remote areas, and no expensive technical equipment is involved in collecting them. Therefore, biomonitoring can be an effective tool for pollutant mapping and trend monitoring by real time and retrospective analysis. The IAEA is making concerted efforts to promote the practicaluse of nuclear and related analytical techniques in studies of non-radioactive environmental pollutants that may impact human health, and one of the main emphases is on studying air contaminants. The idea of organizing a workshop on biomonitoring atmospheric pollution arose during an IAEA Technical Co-operation Project on Monitoring of Trace Element Air Pollution, carried out at the Instituto Tecnologico e Nuclear (ITN), Portugal, with substantial technical support by the Interfaculty Reactor Institute (IRI) of the Delft University of Technology (TUDelft), Netherlands. The International Workshop on Biomonitoring of Atmospheric Pollution (With Emphasis on Trace Elements) - BioMAP, was held in Lisbon, Portugal, from 21 to 24 September 1997. The meeting was organized in co-operation with the Instituto Tecnologico e Nuclear.

  16. A generalized ray-tracing procedure for an atmospheric Cherenkov imaging telescope and optical characteristics of the TACTIC light collector

    Tickoo, A.K.; Suthar, R.L.; Koul, R.; Sapru, M.L.; Kumar, N.; Kaul, C.L.; Yadav, K.K.; Thoudam, S.; Kaul, S.K.; Venugopal, K.; Kothari, M.; Goyal, H.C.; Chandra, P.; Dhar, V.K.; Rannot, R.C.; Koul, M.K.; Kaul, S.R.

    2005-01-01

    A generalized ray-tracing procedure has been developed, which facilitates the design of a multimirror-based light collector used in atmospheric Cherenkov telescopes. This procedure has been employed to study the optical characteristics of the 3.5 m diameter light collector of the TACTIC Imaging telescope. Comparison of the measured point-spread function of the light collector with the simulated performance of ideal Davies-Cotton and paraboloid designs has been made to determine an optimum arrangement of the 34 spherical mirror facets used in the telescope to obtain the best possible point-spread function. A description of the ray-tracing subroutine used for processing CORSIKA-generated Cherenkov data, required for carrying out Monte-Carlo simulation studies, is also discussed in the paper

  17. Global biomass burning: Atmospheric, climatic, and biospheric implications

    Levine, J.S.

    1991-01-01

    As a significant source of atmospheric gases, biomass burning must be addressed as a major environmental problem. Biomass burning includes burning forests and savanna grasslands for land clearing and conversion, burning agricultural stubble and waste after harvesting, and burning biomass fuels. The editor discusses the history of biomass burning and provides an overview of the individual chapters

  18. Nonlinear dynamics of global atmospheric and Earth-system processes

    Saltzman, Barry; Ebisuzaki, Wesley; Maasch, Kirk A.; Oglesby, Robert; Pandolfo, Lionel

    1991-01-01

    General Circulation Model (GCM) studies of the atmospheric response to change boundary conditions are discussed. Results are reported on an extensive series of numerical studies based on the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM) general circulation model. In these studies the authors determined the response to systematic changes in atmospheric CO2 ranging from 100 to 1000 ppm; to changes in the prescribed sea surface temperature (SST) in the Gulf of Mexico, such as occurred during the deglaciation phase of the last ice age; to changes in soil moisture over North America; and to changes in sea ice extent in the Southern Hemisphere. Study results show that the response of surface temperature and other variables is nearly logarithmic, with lower levels of CO2 implying greater sensitivity of the atmospheric state to changes in CO2. It was found that the surface temperature of the Gulf of Mexico exerts considerable control over the storm track and behavior of storm systems over the North Atlantic through its influence on evaporation and the source of latent heat. It was found that reductions in soil moisture can play a significant role in amplifying and maintaining North American drought, particularly when a negative soil moisture anomaly prevails late in the spring.

  19. Atmospheric rivers emerge as a global science and applications focus

    Ralph, F. Martin; Dettinger, Michael; Lavers, David A.; Gorodetskaya, Irina; Martin, Andrew; Viale, Maximilliano; White, Allen; Oakley, Nina; Rutz, Jonathan; Spackman, J. Ryan; Wernli, Heini; Cordeira, Jason

    2017-01-01

    Recent advances in atmospheric sciences and hydrology have identified the key role of atmo-spheric rivers (ARs) in determining the distribution of strong precipitation events in the midlatitudes. The growth of the subject is evident in the increase in scientific publications that discuss ARs (Fig. 1a). Combined with related phenomena, that is, warm conveyor belts (WCBs) and tropical moisture exports (TMEs), the frequency, position, and strength of ARs determine the occurrence of floods, droughts, and water resources in many parts of the world. A conference at the Scripps Institution of Oceanography in La Jolla, California, recently gathered over 100 experts in atmospheric, hydrologic, oceanic, and polar science; ecology; water management; and civil engineering to assess the state of AR science and to explore the need for new information. This first International Atmospheric Rivers Conference (IARC) allowed for much needed introductions and interactions across fields and regions, for example, participants came from five continents, and studies covered ARs in six continents and Greenland (Fig. 1b). IARC also fostered discussions of the status and future of AR science, and attendees strongly supported the idea of holding another IARC at the Scripps Institution of Oceanography in the summer of 2018.

  20. The Copernicus Atmosphere Monitoring Service: facilitating the prediction of air quality from global to local scales

    Engelen, R. J.; Peuch, V. H.

    2017-12-01

    The European Copernicus Atmosphere Monitoring Service (CAMS) operationally provides daily forecasts of global atmospheric composition and regional air quality. The global forecasting system is using ECMWF's Integrated Forecasting System (IFS), which is used for numerical weather prediction and which has been extended with modules for atmospheric chemistry, aerosols and greenhouse gases. The regional forecasts are produced by an ensemble of seven operational European air quality models that take their boundary conditions from the global system and provide an ensemble median with ensemble spread as their main output. Both the global and regional forecasting systems are feeding their output into air quality models on a variety of scales in various parts of the world. We will introduce the CAMS service chain and provide illustrations of its use in downstream applications. Both the usage of the daily forecasts and the usage of global and regional reanalyses will be addressed.

  1. Characterization of atmospheric trace gases and particulate matter in Hangzhou, China

    G. Zhang

    2018-02-01

    Full Text Available The Yangtze River Delta (YRD is one of the most densely populated regions in China with severe air quality issues that have not been fully understood. Thus, in this study, based on 1-year (2013 continuous measurement at a National Reference Climatological Station (NRCS, 30.22° N, 120.17° E; 41.7 m a.s.l. in the center of Hangzhou in the YRD, we investigated the seasonal characteristics, interspecies relationships, and the local emissions and the regional potential source contributions of trace gases (including O3, NOx, NOy, SO2, and CO and particulate matter (PM2.5 and PM10. Results revealed that severe two-tier air pollution (photochemical and haze pollution occurred in this region, with frequent exceedances in O3 (38 days and PM2.5 (62 days. O3 and PM2.5 both exhibited distinct seasonal variations with reversed patterns: O3 reaching a maximum in warm seasons (May and July but PM2.5 reaching a maximum in cold seasons (November to January. The overall results from interspecies correlation indicated a strong local photochemistry favoring the O3 production under a volatile organic compound (VOC-limited regime, whereas it moved towards an optimum O3 production zone during warm seasons, accompanied by the formation of secondary fine particulates under high O3. The emission maps of PM2.5, CO, NOx, and SO2 demonstrated that local emissions were significant for these species on a seasonal scale. The contributions from the regional transport among inland cities (Zhejiang, Jiangsu, Anhui, and Jiangxi Province on a seasonal scale were further confirmed to be crucial to air pollution at the NRCS site by using backward trajectory simulations. Air masses transported from the offshore areas of the Yellow Sea, East Sea, and South Sea were also found to be highly relevant to the elevated O3 at the NRCS site through the analysis of potential source contribution function (PSCF. Case studies of photochemical pollution (O3 and haze (PM2.5 episodes both

  2. Climate-chemical interactions and effects of changing atmospheric trace gases

    Ramanathan, V.; Callis, L.; Cess, R.; Hansen, J.; Isaksen, I.

    1987-01-01

    The paper considers trace gas-climate effects including the greenhouse effect of polyatomic trace gases, the nature of the radiative-chemical interactions, and radiative-dynamical interactions in the stratosphere, and the role of these effects in governing stratospheric climate change. Special consideration is given to recent developments in the investigations of the role of oceans in governing the transient climate responses, and a time-dependent estimate of the potential trace gas warming from the preindustrial era to the early 21st century. The importance of interacting modeling and observational efforts is emphasized. One of the problems remaining on the observational front is the lack of certainty in current estimates of the rate of growth of CO, O3, and NOx; the primary challenge is the design of a strategy that will minimize the sampling errors.

  3. Atmospheric dry deposition fluxes of trace elements measured in Bursa, Turkey

    Tasdemir, Yuecel; Kural, Can

    2005-01-01

    Trace element dry deposition fluxes were measured using a smooth, greased, knife-edge surrogate surface (KSS) holding greased Mylar strips in Bursa, Turkey. Sampling program was conducted between October 2002 and June 2003 and 46 dry deposition samples were collected. The average fluxes of crustal metals (Mg, Ca, and Fe) were one to four orders of magnitude higher than the fluxes of anthropogenic metals. Trace element fluxes ranged from 3 (Cd) to 24 230 (Ca) μg m -2 d -1 . The average trace element dry deposition fluxes measured in this study were similar to those measured in other urban areas. In addition, ambient air samples were also collected simultaneously with flux samples and concentrations of trace elements, collected with a TSP sampler, were between 0.7 and 4900 ng m -3 for Cd and Ca, respectively. The overall trace element dry deposition velocities, calculated by dividing the fluxes to the particle phase concentrations ranged from 2.3±1.7 cm s -1 (Pb) to 11.1±6.4 cm s -1 (Ni). These values are in good agreement with the values calculated using similar techniques. The anthropogenic and crustal contributions were estimated by employing enrichment factors (EFs) calculated relative to the average crustal composition. Low EFs for dry deposition samples were calculated. This is probably due to contamination of local dust and its important contribution to the collected samples. - Mechanical turbulence has an important influence on re-suspension and dry deposition of trace elements in an urban area

  4. Report to the International Global Atmospheric Chemistry Project

    Reisdorf, Jill [University Corporation for Atmospheric Research (UCAR/CPAESS), Boulder, CO (United States); Wiedinmyer, Christine [National Center for Atmospheric Research (NCAR/ACOM), Boulder, CO (United States)

    2017-04-21

    IGAC’s mission is to facilitate atmospheric chemistry research towards a sustainable world. This is achieved through IGAC’s three focal activities: fostering community, building capacity, and providing leadership. A key component to achieving IGAC’s mission is its developing early career program. These scientists join an international network early in their career that puts the cogs in motion to further facilitate atmospheric chemistry research at an international level for years to come. IGAC’s Science Conference is a primary mechanism for IGAC to build cooperation and disseminate scientific information across its international community. The first IGAC Science Conference was held in 1993 in Eilat, Israel. Since then, IGAC has successfully held fourteen science conferences, consistently becoming a biennial conference starting in 2002. The biennial IGAC Science Conference is regarded as THE international conference on atmospheric chemistry and participation in the conference is typically in the range of 350-650 participants. Since 2004, IGAC has included an Early Career Scientists Program as part of the conference to foster the next generation of scientists. IGAC believes, and has seen, that by allowing scientists to form an international network of colleagues early in their career that future international collaborations in atmospheric chemistry are enhanced. The 2016 IGAC Science Conference Early Career Program consisted of numerous events throughout the week giving these scientists the opportunity to not only create a community amongst themselves, but to also engage and build relationships with senior scientists. In order to support the Early Career Scientists Program, IGAC sought funding from international, regional and local organizations to provide Travel Grants to the conference based on an assessment of both need and merit. This conference summary reports on outcomes of the 2016 IGAC Science Conference and the Early Career Program, which included

  5. Global land-atmosphere coupling associated with cold climate processes

    Dutra, Emanuel

    This dissertation constitutes an assessment of the role of cold processes, associated with snow cover, in controlling the land-atmosphere coupling. The work was based on model simulations, including offline simulations with the land surface model HTESSEL, and coupled atmosphere simulations with the EC-EARTH climate model. A revised snow scheme was developed and tested in HTESSEL and EC-EARTH. The snow scheme is currently operational at the European Centre for Medium-Range Weather Forecasts integrated forecast system, and in the default configuration of EC-EARTH. The improved representation of the snowpack dynamics in HTESSEL resulted in improvements in the near surface temperature simulations of EC-EARTH. The new snow scheme development was complemented with the option of multi-layer version that showed its potential in modeling thick snowpacks. A key process was the snow thermal insulation that led to significant improvements of the surface water and energy balance components. Similar findings were observed when coupling the snow scheme to lake ice, where lake ice duration was significantly improved. An assessment on the snow cover sensitivity to horizontal resolution, parameterizations and atmospheric forcing within HTESSEL highlighted the role of the atmospheric forcing accuracy and snowpack parameterizations in detriment of horizontal resolution over flat regions. A set of experiments with and without free snow evolution was carried out with EC-EARTH to assess the impact of the interannual variability of snow cover on near surface and soil temperatures. It was found that snow cover interannual variability explained up to 60% of the total interannual variability of near surface temperature over snow covered regions. Although these findings are model dependent, the results showed consistency with previously published work. Furthermore, the detailed validation of the snow dynamics simulations in HTESSEL and EC-EARTH guarantees consistency of the results.

  6. Description of Atmospheric Conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)

    Abreu, P.; /Lisbon, IST; Aglietta, M.; /Turin U. /INFN, Turin; Ahlers, M.; /Wisconsin U., Madison; Ahn, E.J.; /Fermilab; Albuquerque, I.F.M.; /Sao Paulo U.; Allard, D.; /APC, Paris; Allekotte, I.; /Buenos Aires, CONICET; Allen, J.; /New York U.; Allison, P.; /Ohio State U.; Almela, A.; /Natl. Tech. U., San Nicolas /Buenos Aires, CONICET; Alvarez Castillo, J.; /Mexico U., ICN /Santiago de Compostela U.

    2012-01-01

    Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargue and averaged monthly models, the utility of the GDAS data is shown.

  7. Behavior of trace NO/sub X/ species in the nighttime urban atmosphere

    Killus, J.P.; Whitten, G.Z.

    1985-01-01

    Three trace NO/sub X/ species--HONO, NO 3 , and N 2 O 5 --may play important roles in urban smog formation. Alternative mechanisms for these species have recently been proposed. This report presents a brief analysis of simulation results indicating that the traditional chemistry for these species can still explain the results of some recent observational studies

  8. BP action on global warming alters political atmosphere

    Adam, P.

    1997-01-01

    British Petroleum appears to have acknowledged that the carbon dioxide emitted during the burning of fossil fuels, oils, gas and coal, may have a deleterious impact on global weather patterns and climatic conditions. This action has prompted carefully worded public responses by US-based oil companies and some nervous harrumphing in private by some of them. (Author)

  9. NASA/MSFC FY88 Global Scale Atmospheric Processes Research Program Review

    Wilson, Greg S. (Editor); Leslie, Fred W. (Editor); Arnold, J. E. (Editor)

    1989-01-01

    Interest in environmental issues and the magnitude of the environmental changes continues. One way to gain more understanding of the atmosphere is to make measurements on a global scale from space. The Earth Observation System is a series of new sensors to measure globally atmospheric parameters. Analysis of satellite data by developing algorithms to interpret the radiance information improves the understanding and also defines requirements for these sensors. One measure of knowledge of the atmosphere lies in the ability to predict its behavior. Use of numerical and experimental models provides a better understanding of these processes. These efforts are described in the context of satellite data analysis and fundamental studies of atmospheric dynamics which examine selected processes important to the global circulation.

  10. Biomass burning studies and the International Global Atmospheric Chemistry (IGAC) project

    Prinn, Ronald G.

    1991-01-01

    IGAC is an ambitious, decade-long and global research initiative concerned with major research challenges in the field of atmospheric chemistry; its chemists and ecosystem biologists are addressing the problems associated with global biomass burning (BMB). Among IGAC's goals is the achievement of a fundamental understanding of the natural and anthropogenic processes determining changes in atmospheric composition and chemistry, in order to allow century-long predictions. IGAC's studies have been organized into 'foci', encompassing the marine, tropical, polar, boreal, and midlatitude areas, as well as their global composite interactions. Attention is to be given to the effects of BMB on biogeochemical cycles.

  11. Ultrafast-Laser-Induced Backward Stimulated Raman Scattering for Tracing Atmospheric Gases

    Zheltiko A.

    2013-03-01

    Full Text Available By combining tunable broadband pulse generation with nonlinear spectral compression, we demonstrate a prototype scheme for highly selective coherent standoff sensing of air molecules and discuss its coupling to the recently demonstrated backward atmospheric lasing.

  12. Emergence of global scaling behaviour in the coupled Earth-atmosphere interaction

    Fallah, Bijan; Saberi, Abbas Ali; Sodoudi, Sahar

    2016-01-01

    Scale invariance property in the global geometry of Earth may lead to a coupled interactive behaviour between various components of the climate system. One of the most interesting correlations exists between spatial statistics of the global topography and the temperature on Earth. Here we show that the power-law behaviour observed in the Earth topography via different approaches, resembles a scaling law in the global spatial distribution of independent atmospheric parameters. We report on obs...

  13. 2.3. Global-scale atmospheric dispersion of microorganisms

    Griffin, Dale W.; Gonzalez-Martin, Cristina; Hoose, C.; Smith, D.J.; Delort, Anne-Marie; Amato, Pierre

    2018-01-01

    This chapter addresses long-range dispersion and the survival of microorganisms across a wide range of altitudes in Earth's atmosphere. Topics include mechanisms of dispersion, survivability of microorganisms known to be associated with long-range transport, natural and artificial sources of bioaerosols, residence time estimation through the use of proxy aerosols, transport and emission models, and monitoring assays (both culture and molecular based). We conclude with a discussion of the known limits for Earth's biosphere boundary, relating aerobiology studies to planetary exploration given the large degree of overlapping requirements for in situ studies (including low biomass life detection and contamination control).

  14. The use of Nerium Oleander as biomonitor for radionuclides and trace elements in atmospheric deposition

    Al-Masri, M.S.; Meslmani, Y.; Kharfan, K.; Alshamali, K.; Khalily, H.

    2008-01-01

    The possibility of using Nerium Oleander as biomonitor for radionuclides and trace elements in air for monitoring air pollution in Syrian cities has been studied. Nerium oleander leaves (old, young and fallen) and flowers in addition to air particulates and surface soil from different locations in Damascus, Aleppo, Tartous, Lattakia and Palmyra have been collected. The samples were collected for four period during 2004 and 2005. The samples were chemically analyzed to determine 137 Cs, 210 Pb and 210 Po. The results have shown high concentrations of the studied trace elements and radionuclides in old and fallen leaves; the highest concentrations were found to be in those samples collected from sites close to industrial areas. These findings indicate that the leaves of nerium oleander accumulate these elements. In addition, the studied elements concentration and especially Pb increased in nerium oleander leaves with leaves age. Moreover variation observed during the year are due to washing by rain water or resuspension by wind. The results have been statistically analyzed to determine the liner correlation coefficient between the studied element in different samples. A liner relation ship between Pb concentration in air particulates and old and fallen leaves has been observed. However, based on the obtained results, the Nerium Oleander can be used as biomonitors for trace elements and radionuclides.(author)

  15. The use of Nerium Oleander as biomonitor for radionuclides and trace elements in atmospheric deposition

    Al-Masri, M.S.; Meslmani, Y.; Kharfan, K.; Alshamali, K.; Khalily, H.

    2007-07-01

    The possibility of using Nerium Oleander as biomonitor for radionuclides and trace elements in air for monitoring air pollution in Syrian cities has been studied. Nerium oleander leaves (old, young and fallen) and flowers in addition to air particulates and surface soil from different locations in Damascus, Aleppo, Tartous, Lattakia and Palmyra have been collected. The samples were collected for four period during 2004 and 2005. The samples were chemically analyzed to determine 1 37C s, 2 10P b and 2 10P o. The results have shown high concentrations of the studied trace elements and radionuclides in old and fallen leaves; the highest concentrations were found to be in those samples collected from sites close to industrial areas. These findings indicate that the leaves of nerium oleander accumulate these elements. In addition, the studied elements concentration and especially Pb increased in nerium oleander leaves with leaves age. Moreover variation observed during the year are due to washing by rain water or resuspension by wind. The results have been statistically analyzed to determine the liner correlation coefficient between the studied element in different samples. A liner relation ship between Pb concentration in air particulates and old and fallen leaves has been observed. However, based on the obtained results, the Nerium Oleander can be used as biomonitors for trace elements and radionuclides.(author)

  16. Airborne mapping of Seoul's atmosphere: Trace gas measurements from GeoTASO during KORUS-AQ

    Nowlan, C. R.; Al-Saadi, J. A.; Castellanos, P.; Chance, K.; Gonzalez Abad, G.; Janz, S. J.; Judd, L.; Kowalewski, M. G.; Liu, X.

    2017-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument is a pushbroom airborne remote sensing instrument capable of making measurements of air quality and ocean color using backscattered UV and visible light. GeoTASO is an airborne test-bed for the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite missions, which will measure air quality over North America and Asia, respectively. GeoTASO also acts as a satellite analogue during field campaigns. GeoTASO flew on the NASA Langley Research Center UC-12 aircraft during the Korea-United States Air Quality Study in May-June 2016, collecting spectra over South Korea during 30 flights over 19 flight days. These observations can be used to derive 2-D maps of tropospheric trace gases including ozone, nitrogen dioxide, sulfur dioxide, formaldehyde, nitrous acid and glyoxal below the aircraft at spatial resolutions between 250 m x 250 m and 1 km x 1 km, depending on the gas. We present spatially resolved trace gas retrievals over Seoul and its surrounding industrial regions, and comparisons with correlative satellite and campaign data.

  17. Daily and Hourly Variability in Global Fire Emissions and Consequences for Atmospheric Model Predictions of Carbon Monoxide

    Mu, M.; Randerson, J. T.; van der Werf, G. R.; Giglio, L.; Kasibhatla, P.; Morton, D.; Collatz, G. J.; DeFries, R. S.; Hyer, E. J.; Prins, E. M.; hide

    2011-01-01

    Attribution of the causes of atmospheric trace gas and aerosol variability often requires the use of high resolution time series of anthropogenic and natural emissions inventories. Here we developed an approach for representing synoptic- and diurnal-scale temporal variability in fire emissions for the Global Fire Emissions Database version 3 (GFED3). We distributed monthly GFED3 emissions during 2003-2009 on a daily time step using Moderate Resolution Imaging Spectroradiometer (MODIS)-derived measurements of active fires from Terra and Aqua satellites. In parallel, mean diurnal cycles were constructed from Geostationary Operational Environmental Satellite (GOES) active fire observations. We found that patterns of daily variability in fires varied considerably across different biomes, with short but intense periods of daily emissions in boreal ecosystems and lower intensity (but more continuous) periods of bunting in savannas. On diurnal timescales, our analysis of the GOES active fires indicated that fires in savannas, grasslands, and croplands occurred earlier in the day as compared to fires in nearby forests. Comparison with Total Carbon Column Observing Network (TCCON) and Measurements of Pollution in the Troposphere (MOPITT) column CO observations provided evidence that including daily variability in emissions moderately improved atmospheric model simulations, particularly during the fire season and near regions with high levels of biomass burning. The high temporal resolution estimates of fire emissions developed here may ultimately reduce uncertainties related to fire contributions to atmospheric trace gases and aerosols. Important future directions include reconciling top-down and bottom up estimates of fire radiative power and integrating burned area and active fire time series from multiple satellite sensors to improve daily emissions estimates.

  18. Daily and 3-hourly Variability in Global Fire Emissions and Consequences for Atmospheric Model Predictions of Carbon Monoxide

    Mu, M.; Randerson, J. T.; vanderWerf, G. R.; Giglio, L.; Kasibhatla, P.; Morton, D.; Collatz, G. J.; DeFries, R. S.; Hyer, E. J.; Prins, E. M.; hide

    2011-01-01

    Attribution of the causes of atmospheric trace gas and aerosol variability often requires the use of high resolution time series of anthropogenic and natural emissions inventories. Here we developed an approach for representing synoptic- and diurnal-scale temporal variability in fire emissions for the Global Fire Emissions Database version 3 (GFED3). We disaggregated monthly GFED3 emissions during 2003.2009 to a daily time step using Moderate Resolution Imaging Spectroradiometer (MODIS) ]derived measurements of active fires from Terra and Aqua satellites. In parallel, mean diurnal cycles were constructed from Geostationary Operational Environmental Satellite (GOES) Wildfire Automated Biomass Burning Algorithm (WF_ABBA) active fire observations. Daily variability in fires varied considerably across different biomes, with short but intense periods of daily emissions in boreal ecosystems and lower intensity (but more continuous) periods of burning in savannas. These patterns were consistent with earlier field and modeling work characterizing fire behavior dynamics in different ecosystems. On diurnal timescales, our analysis of the GOES WF_ABBA active fires indicated that fires in savannas, grasslands, and croplands occurred earlier in the day as compared to fires in nearby forests. Comparison with Total Carbon Column Observing Network (TCCON) and Measurements of Pollution in the Troposphere (MOPITT) column CO observations provided evidence that including daily variability in emissions moderately improved atmospheric model simulations, particularly during the fire season and near regions with high levels of biomass burning. The high temporal resolution estimates of fire emissions developed here may ultimately reduce uncertainties related to fire contributions to atmospheric trace gases and aerosols. Important future directions include reconciling top ]down and bottom up estimates of fire radiative power and integrating burned area and active fire time series from

  19. Quantifying the Fluxes of Atmospherically Derived Trace Elements in the Arctic Ocean/Ice System using 7Be

    Landing, W. M.; Kadko, D. C.; Shelley, R.; Galfond, B.

    2016-02-01

    Aerosol deposition is an important pathway for delivering biologically-essential and anthropogenically-derived trace elements to the Arctic Ocean. Limited field study in the harsh Arctic environment has forced a reliance on poorly constrained models for the atmospheric deposition of trace elements. Here we use the cosmic ray produced radioisotope 7Be to link aerosol concentrations to flux to the Arctic water/ice system. Seawater, ice, snow, melt pond, and aerosol samples were collected during late summer 2011 as part of the RV Polarstern ARK-XXVI/3 campaign. The average 7Be aerosol loading was 0.018 dpm m-3 and we determined an average 7Be flux of 125 dpm m-2 d-1, consistent with results from previous studies in the region. None of the lithogenic aerosol elements showed any significant enrichment above crustal composition, while the pollution-type elements showed varying degrees of enrichment relative to crustal values. In addition to our own measurements, we use two years of continuous aerosol 7Be and trace element data from the Alert (Canada) monitoring site to generate seasonal and annual estimates for the fluxes of 7Be and trace elements to the Arctic water/ice system. Fluxes of 7Be are 30% higher in Winter (Nov-May) than in Summer (Jun-Oct) due to the strong seasonality in aerosol 7Be concentrations. Fluxes of lithogenic elements (Al, Mn, Fe) are 2-3 times higher in Summer, possibly due to local dust sources on Ellesmere Island. Fluxes of V and Pb are strongly correlated and are 2-3 times higher in Winter, while fluxes of Ni, Cu, and Zn are relatively uniform for both seasons.

  20. Atmospheric deposition of trace metals in Romania studied by the moss biomonitoring technique using NAA and AAS

    Lucaciu, A.; Timofte, L.; Vata, I.; Frontasyeva, M. V.; Oprea, C. D.; Culicov, O. A.; Steinnes, E.

    2003-01-01

    To characterize atmospheric deposition of trace elements in Romania, moss samples of Hylocomium splendens, Pleurozium schreberi and Hypnum cupressiforme were collected at 272 network sites (20 x 20 km) and in different years between 1995 and 2000. Instrumental neutron activation analysis (INAA) has been used for determination of 37 major, minor and trace elements (e.g. Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Br, Rb, Sr, Zr, Mo, Ag, Sb, I, Cs, Ba, La, Ce, Sm, Tb, Yb, Hf, Ta, W, Au, Th and U) in moss samples. Copper, cadmium and lead were determined by flame atomic absorption spectrometry (FAAS). In order to identify the sources of air pollution in Romania, the principal component analysis was applied on the overall data set, as well as on each data set. At least 74% of the total variance in data sets could be explained by four to six principal components, including soil dust, general pollution, sea-salt, foliar leaching and local point source categories. The highest concentrations of trace metals related to industrial activities were found in Transilvania Plateau (Cr, Fe, Co, Ni Cu, Zn As, Se, Mo, Ag, Cd, Sb, Ba, W and U) and in the South of Romania (Ni). Crustal enrichment factors, based on scandium, decrease in the order: Cd, Se, Sb, Pb, I, Cl, Br, Au, Ag, Zn, As, Cu, W, Mn, Zr, Hf, Mo, K, Rb, Ba, Cs, Ca, U, Mg, Th, Ce, La, Tb, Sm, Cr, Sr, Al, Ta, V, Yb, Fe, Ni, Co and Na. Comparison of the data from different surveyed regions revealed the differences in concentrations of air toxic elements related to specific industrial activities concerned. The trace metal levels in Romania were similar to those found by the other East-European countries participating in 2000 European moss survey, but significantly higher compared with Norway. (authors)

  1. Regional forecasting with global atmospheric models; Final report

    Crowley, T.J.; Smith, N.R. [Applied Research Corp., College Station, TX (United States)

    1994-05-01

    The purpose of the project was to conduct model simulations for past and future climate change with respect to the proposed Yucca Mtn. repository. The authors report on three main topics, one of which is boundary conditions for paleo-hindcast studies. These conditions are necessary for the conduction of three to four model simulations. The boundary conditions have been prepared for future runs. The second topic is (a) comparing the atmospheric general circulation model (GCM) with observations and other GCMs; and (b) development of a better precipitation data base for the Yucca Mtn. region for comparisons with models. These tasks have been completed. The third topic is preliminary assessments of future climate change. Energy balance model (EBM) simulations suggest that the greenhouse effect will likely dominate climate change at Yucca Mtn. for the next 10,000 years. The EBM study should improve rational choice of GCM CO{sub 2} scenarios for future climate change.

  2. Global Observations of Inorganic Gases in the Remote Atmosphere - First Observations from the Atmospheric Tomography Mission (ATom)

    Veres, P. R.; Neuman, J. A.

    2017-12-01

    The Atmospheric Tomography Mission (ATom) is a NASA field program that investigates the impact of human emissions on air quality and climate in remote regions of the atmosphere. NASA DC-8 flights during the ATom sampled the atmosphere over the Pacific and Atlantic Oceans, up to 12 km altitude and nearly from pole to pole. New observations of key species (e.g. N2O5, reactive halogens, nitrous acid) in these regions are provided during the third deployment of the NASA DC-8 research aircraft (October, 2017) by the NOAA iodide ion time-of-flight chemical ionization mass spectrometer (iCIMS). In this study, we will present the first observations of inorganic gas-phase species using iCIMS from the ATom 3 deployment. Laboratory results detailing the instrument performance including inlet response times, background characterization and sensitivity will be presented. We will show vertical profiles of newly measured trace gases derived from in-situ observations, and discuss the potential impact on the NOx, NOy and reactive halogen budgets.

  3. A new method based on low background instrumental neutron activation analysis for major, trace and ultra-trace element determination in atmospheric mineral dust from polar ice cores

    Baccolo, Giovanni, E-mail: giovanni.baccolo@mib.infn.it [Graduate School in Polar Sciences, University of Siena, Via Laterina 8, 53100, Siena (Italy); Department of Environmental Sciences, University of Milano-Bicocca, P.zza della Scienza 1, 20126, Milano (Italy); INFN, Section of Milano-Bicocca, P.zza della Scienza 3, 20126, Milano (Italy); Clemenza, Massimiliano [INFN, Section of Milano-Bicocca, P.zza della Scienza 3, 20126, Milano (Italy); Department of Physics, University of Milano-Bicocca, P.zza della Scienza 3, 20126, Milano (Italy); Delmonte, Barbara [Department of Environmental Sciences, University of Milano-Bicocca, P.zza della Scienza 1, 20126, Milano (Italy); Maffezzoli, Niccolò [Centre for Ice and Climate, Niels Bohr Institute, Juliane Maries Vej, 30, 2100, Copenhagen (Denmark); Nastasi, Massimiliano; Previtali, Ezio [INFN, Section of Milano-Bicocca, P.zza della Scienza 3, 20126, Milano (Italy); Department of Physics, University of Milano-Bicocca, P.zza della Scienza 3, 20126, Milano (Italy); Prata, Michele; Salvini, Andrea [LENA, University of Pavia, Pavia (Italy); Maggi, Valter [Department of Environmental Sciences, University of Milano-Bicocca, P.zza della Scienza 1, 20126, Milano (Italy); INFN, Section of Milano-Bicocca, P.zza della Scienza 3, 20126, Milano (Italy)

    2016-05-30

    Dust found in polar ice core samples present extremely low concentrations, in addition the availability of such samples is usually strictly limited. For these reasons the chemical and physical analysis of polar ice cores is an analytical challenge. In this work a new method based on low background instrumental neutron activation analysis (LB-INAA) for the multi-elemental characterization of the insoluble fraction of dust from polar ice cores is presented. Thanks to an accurate selection of the most proper materials and procedures it was possible to reach unprecedented analytical performances, suitable for ice core analyses. The method was applied to Antarctic ice core samples. Five samples of atmospheric dust (μg size) from ice sections of the Antarctic Talos Dome ice core were prepared and analyzed. A set of 37 elements was quantified, spanning from all the major elements (Na, Mg, Al, Si, K, Ca, Ti, Mn and Fe) to trace ones, including 10 (La, Ce, Nd, Sm, Eu, Tb, Ho, Tm, Yb and Lu) of the 14 natural occurring lanthanides. The detection limits are in the range of 10{sup −13}–10{sup −6} g, improving previous results of 1–3 orders of magnitude depending on the element; uncertainties lies between 4% and 60%. - Highlights: • A new method based on neutron activation for the multi-elemental characterization of atmospheric dust entrapped in polar ice cores is proposed. • 37 elements were quantified in μg size dust samples with detection limits ranging from 10{sup −13} to 10{sup −6} g. • A low background approach and a clean analytical protocol improved INAA performances to unprecedented levels for multi-elemental analyses.

  4. Global biomass burning - Atmospheric, climatic, and biospheric implicati ons [Introduction

    Zhu, Zhiliang; Teuber, K.B.

    1991-01-01

    On a global scale, the total biomass consumed by annual burning is about 8680 million tons of dry material; the estimated total biomass consumed by the burning of savanna grasslands, at 3690 million tons/year, exceeds all other biomass burning (BMB) components. These components encompass agricultural wastes burning, forest burning, and fuel wood burning. BMB is not restricted to the tropics, and is largely anthropogenic. Satellite measurements indicate significantly increased tropospheric concentrations of CO and ozone associated with BMB. BMB significantly enhances the microbial production and emission of NO(x) from soils, and of methane from wetlands

  5. Parameterization of dust emissions in the global atmospheric chemistry-climate model EMAC: impact of nudging and soil properties

    Astitha, M.; Lelieveld, J.; Kader, M. Abdel; Pozzer, A.; de Meij, A.

    2012-01-01

    Airborne desert dust influences radiative transfer, atmospheric chemistry and dynamics, as well as nutrient transport and deposition. It directly and indirectly affects climate on regional and global scales. Two versions of a parameterization scheme to compute desert dust emissions are incorporated into the atmospheric chemistry general circulation model EMAC (ECHAM5/MESSy2.41 Atmospheric Chemistry). One uses a global...

  6. Implications for human health of global atmospheric changes

    Guidotti, T.L.; Last, J.

    1991-01-01

    The possible impacts of the greenhouse effect, ozone depletion and ultraviolet irradiation, acid precipitation, and resulting demographic changes are reviewed, along with the implications of global ecological changes on society and sustainable development. Some manifestations of global warming caused by the greenhouse effect could include more frequently extreme weather conditions, rises in sea level, disruption of ocean currents, and changes in composition and distribution of vegetation. Consequences of these manifestations on human health include an increase in the frequency of droughts and heat waves, migration of disease carrying vectors to other areas, submergence of coastal areas and disruption of water supplies, destruction of tropical species potentially useful for medicinal purposes, and impaired production of crops leading to food shortages. Consequences of stratospheric ozone depletion due to chlorofluorocarbon pollution are thought to be a direct result of increased exposure to ultraviolet light; these consequences include higher risks of non-melanoma skin cancer. The effects of acid precipitation are thought to be primarily ecological and indirect. 61 refs,

  7. Determination of trace uranium in atmospheric precipitation of the Xiangjiang river valley by fission track method

    Zhai Pengji; Kang Tiesheng

    1986-01-01

    In this work the uranium contents in atmospheric precipitations in the region of the Xiangjiang River valley have been measured by fission track method, which range from 0.008 to 1.5 ppb. The majority of them are below 0.1 ppb. The uranium contents in the samples form different geographical positions are obviously different. Sometimes the differences in uranium contents of the samples from the same area collected at different times are also great. A preliminary discussion is given on the sources of uranium in atmospheric precipitation and on the reason of the difference in contents

  8. Global atmospheric dispersion modelling after the Fukushima accident

    Suh, K.S.; Youm, M.K.; Lee, B.G.; Min, B.I. [Korea Atomic Energy Research Institute (Korea, Republic of); Raul, P. [Universidad de Sevilla (Spain)

    2014-07-01

    A large amount of radioactive material was released to the atmosphere due to the Fukushima nuclear accident in March 2011. The radioactive materials released into the atmosphere were mostly transported to the Pacific Ocean, but some of them were fallen on the surface due to dry and wet depositions in the northwest area from the Fukushima nuclear site. Therefore, northwest part of the nuclear site was seriously contaminated and it was designated with the restricted zone within a radius of 20 ∼ 30 km around the Fukushima nuclear site. In the early phase of the accident from 11 March to 30 March, the radioactive materials were dispersed to an area of the inland and offshore of the nuclear site by the variations of the wind. After the Fukushima accident, the radionuclides were detected through the air monitoring in the many places over the world. The radioactive plume was transported to the east part off the site by the westerly jet stream. It had detected in the North America during March 17-21, in European countries during March 23-24, and in Asia during from March 24 to April 6, 2011. The radioactive materials were overall detected across the northern hemisphere passed by 15 ∼ 20 days after the accident. Three dimensional numerical model was applied to evaluate the dispersion characteristics of the radionuclides released into the air. Simulated results were compared with measurements in many places over the world. Comparative results had good agreements in some places, but they had a little differences in some locations. The difference between the calculations and measurements are due to the meteorological data and relatively coarse resolutions in the model. Some radioactive materials were measured in Philippines, Taiwan, Hon Kong and South Korea during from March 23-28. It inferred that it was directly transported from the Fukushima by the northeastern monsoon winds. This event was well represented in the numerical model. Generally, the simulations had a good

  9. Trace gas concentrations, intertropical convergence, atmospheric fronts, and ocean currents in the tropical Pacific m(Paper 8C1060)

    Wilkniss, P.E.; Rodgers, E.B.; Swinnerton, J.W.; Larson, R.E.; Lamontagne, R.A.

    1979-01-01

    Shipboard measurements of atmospheric 222 Rn, CO, and CH 4 and of dissolved CO in surface waters have been carried out in the equatorial Pacific on a cruise from Ecuador to Hawaii, Tahiti and Panama in March and April of 1974, and during transit from Los Angeles to Antarctica in November and December of 1972. The trace gas results, combined with conventional meteorological data and with satellite images from Nimbus 5 and the defense meteorological satellite project (DMSP), have provided descriptions of the intertropical convergence zones (ITCZ) near 04 0 N, 102 0 W and 03 0 N, 154 0 W in March of 1974, near 04 0 N, 86 0 W in April of 1974, and near 05 0 N, 139 0 W in November of 1972. In all cases the ITCZ seems to be located north of the south equatorial current (SEC) as shown by dissolved CO peaks in surface waters. In April of 1974 a 'second' ITCZ was observed near 01 0 S, 102 0 W just south of the SEC. A stationary front near Hawaii (20 0 N, 147 0 W) in March of 1974 was investigated. The ITCZ was marked by light shifting winds near a zone of heavy cloud cover and precipitation. In the eastern Tropical Pacific atmospheric 222 Rn increases distinctly north of the ITCZ and thus serves as an indicator for the ITCZ. CO and CH 4 do not always increase coincident with atmospheric 222 Rn. The atmospheric features of the stationary front near Hawaii are in many ways similar to those observed for the ITCZ. The front is marked by cloud cover, precipitation zone and light shifting winds. 222 Rn, CO and CH 4 increase signifantly behind the front in subsiding air which was traced back to the Asian continent. The variation of atmospheric 222 Rn, CO and CH 4 with time and geographical area over the equatorial Pacific seems to be a consequence of seasonal variations of the trade wind field and long range transport to the central Pacific from Asia and to the eastern equatorial Pacific from North and Central America

  10. Challenges in tracing the fate and effects of atmospheric polycyclic aromatic hydrocarbon deposition in vascular plants.

    Desalme, Dorine; Binet, Philippe; Chiapusio, Geneviève

    2013-05-07

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous organic pollutants that raise environmental concerns because of their toxicity. Their accumulation in vascular plants conditions harmful consequences to human health because of their position in the food chain. Consequently, understanding how atmospheric PAHs are taken up in plant tissues is crucial for risk assessment. In this review we synthesize current knowledge about PAH atmospheric deposition, accumulation in both gymnosperms and angiosperms, mechanisms of transfer, and ecological and physiological effects. PAHs emitted in the atmosphere partition between gas and particulate phases and undergo atmospheric deposition on shoots and soil. Most PAH concentration data from vascular plant leaves suggest that contamination occurs by both direct (air-leaf) and indirect (air-soil-root) pathways. Experimental studies demonstrate that PAHs affect plant growth, interfering with plant carbon allocation and root symbioses. Photosynthesis remains the most studied physiological process affected by PAHs. Among scientific challenges, identifying specific physiological transfer mechanisms and improving the understanding of plant-symbiont interactions in relation to PAH pollution remain pivotal for both fundamental and applied environmental sciences.

  11. Challenges and Opportunities in Modeling of the Global Atmosphere

    Janjic, Zavisa; Djurdjevic, Vladimir; Vasic, Ratko

    2016-04-01

    Modeling paradigms on global scales may need to be reconsidered in order to better utilize the power of massively parallel processing. For high computational efficiency with distributed memory, each core should work on a small subdomain of the full integration domain, and exchange only few rows of halo data with the neighbouring cores. Note that the described scenario strongly favors horizontally local discretizations. This is relatively easy to achieve in regional models. However, the spherical geometry complicates the problem. The latitude-longitude grid with local in space and explicit in time differencing has been an early choice and remained in use ever since. The problem with this method is that the grid size in the longitudinal direction tends to zero as the poles are approached. So, in addition to having unnecessarily high resolution near the poles, polar filtering has to be applied in order to use a time step of a reasonable size. However, the polar filtering requires transpositions involving extra communications as well as more computations. The spectral transform method and the semi-implicit semi-Lagrangian schemes opened the way for application of spectral representation. With some variations, such techniques are currently dominating in global models. Unfortunately, the horizontal non-locality is inherent to the spectral representation and implicit time differencing, which inhibits scaling on a large number of cores. In this respect the lat-lon grid with polar filtering is a step in the right direction, particularly at high resolutions where the Legendre transforms become increasingly expensive. Other grids with reduced variability of grid distances, such as various versions of the cubed sphere and the hexagonal/pentagonal ("soccer ball") grids, were proposed almost fifty years ago. However, on these grids, large-scale (wavenumber 4 and 5) fictitious solutions ("grid imprinting") with significant amplitudes can develop. Due to their large scales, that

  12. Global transport of thermophilic bacteria in atmospheric dust.

    Perfumo, Amedea; Marchant, Roger

    2010-04-01

    Aerosols from dust storms generated in the Sahara-Sahel desert area of Africa are transported north over Europe and periodically result in dry dust precipitation in the Mediterranean region. Samples of dust collected in Turkey and Greece following two distinct desert storm events contained viable thermophilic organisms of the genus Geobacillus, namely G. thermoglucosidasius and G. thermodenitrificans, and the recently reclassified Aeribacillus pallidus (formerly Geobacillus pallidus). We present here evidence that African dust storms create an atmospheric bridge between distant geographical regions and that they are also probably the source of thermophilic geobacilli later deposited over northern Europe by rainfall or dust plumes themselves. The same organisms (99% similarity in the 16S rDNA sequence) were found in dust collected in the Mediterranean region and inhabiting cool soils in Northern Ireland. This study also contributes new insights to the taxonomic identification of Geobacillus sp. Attempts to identify these organisms using 16S rRNA gene sequences have revealed that they contain multiple and diverse copies of the ribosomal RNA operon (up to 10 copies with nine different sequences), which dictates care in interpreting data about the systematics of this genus. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  13. Solving the Global Climate Monitoring Problem in the Atmosphere: Towards SI-tied Climate Records with Integrated Uncertainty Propagation

    Kirchengast, G.; Schwaerz, M.; Fritzer, J.; Schwarz, J.; Scherllin-Pirscher, B.; Steiner, A. K.

    2013-12-01

    Monitoring the atmosphere to gain accurate and long-term stable records of essential climate variables (ECVs) such as temperature and greenhouse gases is the backbone of contemporary atmospheric and climate science. Earth observation from space is the key to obtain such data globally in the atmosphere. Currently, however, not any existing satellite-based atmospheric ECV record can serve as authoritative benchmark over months to decades so that climate variability and change in the atmosphere are not yet reliably monitored. Radio occultation (RO) using Global Navigation Satellite System (GNSS) signals provides a unique opportunity to solve this problem in the free atmosphere (from ~1-2 km altitude upwards) for core ECVs: the thermodynamic variables temperature and pressure, and to some degree water vapor, which are key parameters for tracking climate change. On top of RO we have recently conceived next-generation methods, microwave and infrared-laser occultation and nadir-looking infrared-laser reflectometry. These can monitor a full set of thermo-dynamic ECVs (incl. wind) as well as the greenhouse gases such as carbon dioxide and methane as main drivers of climate change; for the latter we also target the boundary layer for tracking carbon sources and sinks. We briefly introduce to why the atmospheric climate monitoring challenge is unsolved so far and why just the above methods have the capabilities to break through. We then focus on RO, which already provided more than a decade of observations. RO accurately measures time delays from refraction of GNSS signals during atmospheric occultation events. This enables to tie RO-derived ECVs and their uncertainty to fundamental time standards, effectively the SI second, and to their unique long-term stability and narrow uncertainty. However, despite impressive advances since the pioneering RO mission GPS/Met in the mid-1990ties no rigorous trace from fundamental time to the ECVs (duly accounting also for relevant side

  14. The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter

    Korablev, O.; Montmessin, F.; Trokhimovskiy, A.; Fedorova, A. A.; Shakun, A. V.; Grigoriev, A. V.; Moshkin, B. E.; Ignatiev, N. I.; Forget, F.; Lefèvre, F.; Anufreychik, K.; Dzuban, I.; Ivanov, Y. S.; Kalinnikov, Y. K.; Kozlova, T. O.; Kungurov, A.; Makarov, V.; Martynovich, F.; Maslov, I.; Merzlyakov, D.; Moiseev, P. P.; Nikolskiy, Y.; Patrakeev, A.; Patsaev, D.; Santos-Skripko, A.; Sazonov, O.; Semena, N.; Semenov, A.; Shashkin, V.; Sidorov, A.; Stepanov, A. V.; Stupin, I.; Timonin, D.; Titov, A. Y.; Viktorov, A.; Zharkov, A.; Altieri, F.; Arnold, G.; Belyaev, D. A.; Bertaux, J. L.; Betsis, D. S.; Duxbury, N.; Encrenaz, T.; Fouchet, T.; Gérard, J.-C.; Grassi, D.; Guerlet, S.; Hartogh, P.; Kasaba, Y.; Khatuntsev, I.; Krasnopolsky, V. A.; Kuzmin, R. O.; Lellouch, E.; Lopez-Valverde, M. A.; Luginin, M.; Määttänen, A.; Marcq, E.; Martin Torres, J.; Medvedev, A. S.; Millour, E.; Olsen, K. S.; Patel, M. R.; Quantin-Nataf, C.; Rodin, A. V.; Shematovich, V. I.; Thomas, I.; Thomas, N.; Vazquez, L.; Vincendon, M.; Wilquet, V.; Wilson, C. F.; Zasova, L. V.; Zelenyi, L. M.; Zorzano, M. P.

    2018-02-01

    The Atmospheric Chemistry Suite (ACS) package is an element of the Russian contribution to the ESA-Roscosmos ExoMars 2016 Trace Gas Orbiter (TGO) mission. ACS consists of three separate infrared spectrometers, sharing common mechanical, electrical, and thermal interfaces. This ensemble of spectrometers has been designed and developed in response to the Trace Gas Orbiter mission objectives that specifically address the requirement of high sensitivity instruments to enable the unambiguous detection of trace gases of potential geophysical or biological interest. For this reason, ACS embarks a set of instruments achieving simultaneously very high accuracy (ppt level), very high resolving power (>10,000) and large spectral coverage (0.7 to 17 μm—the visible to thermal infrared range). The near-infrared (NIR) channel is a versatile spectrometer covering the 0.7-1.6 μm spectral range with a resolving power of ˜20,000. NIR employs the combination of an echelle grating with an AOTF (Acousto-Optical Tunable Filter) as diffraction order selector. This channel will be mainly operated in solar occultation and nadir, and can also perform limb observations. The scientific goals of NIR are the measurements of water vapor, aerosols, and dayside or night side airglows. The mid-infrared (MIR) channel is a cross-dispersion echelle instrument dedicated to solar occultation measurements in the 2.2-4.4 μm range. MIR achieves a resolving power of >50,000. It has been designed to accomplish the most sensitive measurements ever of the trace gases present in the Martian atmosphere. The thermal-infrared channel (TIRVIM) is a 2-inch double pendulum Fourier-transform spectrometer encompassing the spectral range of 1.7-17 μm with apodized resolution varying from 0.2 to 1.3 cm-1. TIRVIM is primarily dedicated to profiling temperature from the surface up to ˜60 km and to monitor aerosol abundance in nadir. TIRVIM also has a limb and solar occultation capability. The technical concept of

  15. Microwave assisted digestion of atmospheric aerosol samples followed by inductively coupled plasma mass spectrometry determination of trace elements

    Swami, K.; Judd, C.D.; Orsini, J.; Yang, K.X. [New York State Dept. of Health, Albany, NY (United States). Wadsworth Center for Labs. and Research; Husain, L. [New York State Dept. of Health, Albany, NY (United States). Wadsworth Center for Labs. and Research; Dept. of Environmental Health and Toxicology, State Univ. of New York, Albany (United States)

    2001-01-01

    A microwave digestion method in a closed vessel was developed for the determination of trace metals in atmospheric aerosols using inductively coupled plasma mass spectrometry (ICP-MS). A recovery study for the elements V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Sb, and Pb was conducted using multi-elemental standard solutions, NIST 1633b Trace Elements in Coal Fly Ash, and NIST 1648 Urban Particulate Matter. A simple digestion method using only HNO{sub 3}/H{sub 2}O{sub 2}gave good recoveries (90%-108%) for all elements except Cr in SRM 1648, but yielded low recoveries for SRM 1633b. A more robust method using HNO {sub 3}/H {sub 2}O {sub 2}/HF/H {sub 3}BO {sub 3} yielded higher recoveries (82%-103%) for the lighter elements (V - Zn) in SRM 1633b, and improved the Cr recovery in SRM 1648, but decreased the Se recovery in both SRMs. A comparative analysis of aerosol samples obtained at a remote mountain location Nathiagali, Pakistan (2.5 km above mean sea level), and Mayville, New York, downwind from the highly industrialized Midwestern United States, was carried out using Instrumental Neutron Activation Analysis (INAA) for the elements Cr, Mn, Fe, Co, Zn, As, Se, and Sb. The simple digestion method yielded excellent agreement for Cr, Fe, Zn, As, Se, and Sb, with slopes of the ICP-MS vs. INAA regressions of 0.90-1.00 and R {sup 2} values of 0.96-1.00. The regressions for Mn and Co had slopes of 0.82 and 0.84 with R {sup 2} values of 0.83 and 0.82, respectively. Addition of HF/H {sub 3}BO {sub 3} did not improve the correlation for any of the elements and degraded the precision somewhat. The technique provides sensitivity and accuracy for trace elements in relatively small aerosol samples used in atmospheric chemistry studies related to SO {sub 2} oxidation in cloud droplets. The ability to determine concentrations of a very large number of elements from a single analysis will permit source apportionment of various trace pollutants and hence strategies to control the

  16. Remote sensing for global change, climate change and atmosphere and ocean forecasting. Volume 1

    1992-01-01

    This volume is separated in three sessions. First part is on remote sensing for global change (with global modelling, land cover change on global scale, ocean colour studies of marine biosphere, biological and hydrological interactions and large scale experiments). Second part is on remote sensing for climate change (with earth radiation and clouds, sea ice, global climate research programme). Third part is on remote sensing for atmosphere and ocean forecasting (with temperatures and humidity, winds, data assimilation, cloud imagery, sea surface temperature, ocean waves and topography). (A.B.). refs., figs., tabs

  17. Satellite-Based Stratospheric and Tropospheric Measurements: Determination of Global Ozone and Other Trace Species

    Chance, Kelly

    2003-02-01

    This grant is an extension to our previous NASA Grant NAG5-3461, providing incremental funding to continue GOME (Global Ozone Monitoring Experiment) and SCIAMACHY (SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY) studies. This report summarizes research done under these grants through December 31, 2002. The research performed during this reporting period includes development and maintenance of scientific software for the GOME retrieval algorithms, consultation on operational software development for GOME, consultation and development for SCIAMACHY near-real-time (NRT) and off-line (OL) data products, and participation in initial SCIAMACHY validation studies. The Global Ozone Monitoring Experiment was successfully launched on the ERS-2 satellite on April 20, 1995, and remains working in normal fashion. SCIAMACHY was launched March 1, 2002 on the ESA Envisat satellite. Three GOME-2 instruments are now scheduled to fly on the Metop series of operational meteorological satellites (Eumetsat). K. Chance is a member of the reconstituted GOME Scientific Advisory Group, which will guide the GOME-2 program as well as the continuing ERS-2 GOME program.

  18. NASA/MSFC FY91 Global Scale Atmospheric Processes Research Program Review

    Leslie, Fred W. (Editor)

    1991-01-01

    The reports presented at the annual Marshall Research Review of Earth Science and Applications are compiled. The following subject areas are covered: understanding of atmospheric processes in a variety of spatial and temporal scales; measurements of geophysical parameters; measurements on a global scale from space; the Mission to Planet Earth Program (comprised of and Earth Observation System and the scientific strategy to analyze these data); and satellite data analysis and fundamental studies of atmospheric dynamics.

  19. Land–atmosphere feedbacks amplify aridity increase over land under global warming

    Berg, Alexis; Findell, Kirsten; Lintner, Benjamin; Giannini, Alessandra; Seneviratne, Sonia I.; van den Hurk, Bart; Lorenz, Ruth; Pitman, Andy; Hagemann, Stefan; Meier, Arndt; Cheruy, Frédérique; Ducharne, Agnès; Malyshev, Sergey; Milly, Paul C. D.

    2016-01-01

    The response of the terrestrial water cycle to global warming is central to issues including water resources, agriculture and ecosystem health. Recent studies indicate that aridity, defined in terms of atmospheric supply (precipitation, P) and demand (potential evapotranspiration, Ep) of water at the land surface, will increase globally in a warmer world. Recently proposed mechanisms for this response emphasize the driving role of oceanic warming and associated atmospheric processes. Here we show that the aridity response is substantially amplified by land–atmosphere feedbacks associated with the land surface’s response to climate and CO2 change. Using simulations from the Global Land Atmosphere Coupling Experiment (GLACE)-CMIP5 experiment, we show that global aridity is enhanced by the feedbacks of projected soil moisture decrease on land surface temperature, relative humidity and precipitation. The physiological impact of increasing atmospheric CO2 on vegetation exerts a qualitatively similar control on aridity. We reconcile these findings with previously proposed mechanisms by showing that the moist enthalpy change over land is unaffected by the land hydrological response. Thus, although oceanic warming constrains the combined moisture and temperature changes over land, land hydrology modulates the partitioning of this enthalpy increase towards increased aridity.

  20. Long-term decline of global atmospheric ethane concentrations and implications for methane.

    Simpson, Isobel J; Sulbaek Andersen, Mads P; Meinardi, Simone; Bruhwiler, Lori; Blake, Nicola J; Helmig, Detlev; Rowland, F Sherwood; Blake, Donald R

    2012-08-23

    After methane, ethane is the most abundant hydrocarbon in the remote atmosphere. It is a precursor to tropospheric ozone and it influences the atmosphere's oxidative capacity through its reaction with the hydroxyl radical, ethane's primary atmospheric sink. Here we present the longest continuous record of global atmospheric ethane levels. We show that global ethane emission rates decreased from 14.3 to 11.3 teragrams per year, or by 21 per cent, from 1984 to 2010. We attribute this to decreasing fugitive emissions from ethane's fossil fuel source--most probably decreased venting and flaring of natural gas in oil fields--rather than a decline in its other major sources, biofuel use and biomass burning. Ethane's major emission sources are shared with methane, and recent studies have disagreed on whether reduced fossil fuel or microbial emissions have caused methane's atmospheric growth rate to slow. Our findings suggest that reduced fugitive fossil fuel emissions account for at least 10-21 teragrams per year (30-70 per cent) of the decrease in methane's global emissions, significantly contributing to methane's slowing atmospheric growth rate since the mid-1980s.

  1. Atmospheric aerosol characterisation at Cape Grim and Global Warming

    Cohen, D.D.; Garton, D.

    1998-01-01

    The Australia Global Baseline monitoring station at Cape Grim in north western Tasmania is operated by the Australian Bureau of Meteorology. ANSTO has been sampling, measuring and characterising fine particles of 2.5 μm diameters and less (PM2.5) at Cape Grim since the middle of 1992. Accelerator based ion beam analysis (IBA) techniques [2-41 have been used to identify over 25 different elemental species present in over 500 filters collected to date. The elements measured by PIXE, PIGME, ERDA and RBS include, H, C, N, O, F, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, Br and Pb. Of the measured elements not listed the majority occurred at concentrations below 10 ng/m 3 . The average monthly mass variations over the 5 year period from 1992 to 1997 are given. The average non-soil potassium was 92% of the total potassium, showing that the vast majority of fine potassium was associated with smoke from biomass burning. The highest lead value of 542 ng/m 3 occurred on 21 June 1992 and was associated with 337 ng/m 3 of bromine which, after correction for bromine in sea salt (Na was 3 ), was about the correct ratio to be associated with combustion of leaded petrol in motor vehicles

  2. Emerging pattern of global change in the upper atmosphere and ionosphere

    J. Laštovička

    2008-05-01

    Full Text Available In the upper atmosphere, greenhouse gases produce a cooling effect, instead of a warming effect. Increases in greenhouse gas concentrations are expected to induce substantial changes in the mesosphere, thermosphere, and ionosphere, including a thermal contraction of these layers. In this article we construct for the first time a pattern of the observed long-term global change in the upper atmosphere, based on trend studies of various parameters. The picture we obtain is qualitative, and contains several gaps and a few discrepancies, but the overall pattern of observed long-term changes throughout the upper atmosphere is consistent with model predictions of the effect of greenhouse gas increases. Together with the large body of lower atmospheric trend research, our synthesis indicates that anthropogenic emissions of greenhouse gases are affecting the atmosphere at nearly all altitudes between ground and space.

  3. Tracing the fate of atmospheric nitrate deposited onto a forest ecosystem in Eastern Asia using Δ17O

    I. Noguchi

    2010-02-01

    Full Text Available The stable isotopic compositions of nitrate in precipitation (wet deposition and groundwater (spring, lake, and stream water were determined for the island of Rishiri, Japan, so as to use the 17O anomalies (Δ17O to trace the fate of atmospheric nitrate that had deposited onto the island ecosystem, which is a representative background forest ecosystem for eastern Asia. The deposited nitrate had large 17O anomalies with Δ17O values ranging from +20.8‰ to +34.5‰ (n = 32 with +26.2‰ being the annual average. The maximum Δ17O value of +34.5‰, obtained for precipitation on the 23rd to 24th of February 2007, was an extraordinarily large value among values for all samples of precipitation in Rishiri. Most nitrate in the sample might have been produced via NO3 radical in a highly polluted air mass that had been supplied from megacities on the eastern coast of the Asian continent. On the other hand, nitrate in groundwater had small Δ17O values ranging from +0.9‰ to 3.2‰ (n = 19, which corresponds to an mixing ratio of atmospheric nitrate to total nitrate of (7.4±2.6%. Comparing the inflow and outflow of atmospheric nitrate in groundwater within the island, we estimated that the direct drainage accounts for (8.8±4.6% of atmospheric nitrate that has deposited on the island and that the residual portion has undergone biological processing before being exported from the forest ecosystem.

  4. Source contribution to the bulk atmospheric deposition of minor and trace elements in a Northern Spanish coastal urban area

    Fernández-Olmo, Ignacio; Puente, Mariano; Montecalvo, Lucia; Irabien, Angel

    2014-08-01

    The bulk atmospheric deposition of the minor and trace elements As, Cd, Cr, Cu, Mn, Mo, Ni, Pb, Ti, V and Zn was investigated in Santander, a Northern Spanish coastal city. Bulk deposition samples were collected monthly for three years using a bottle/funnel device. Taking into account that heavy metals are bioavailable only in their soluble forms, water-soluble and water-insoluble fractions were evaluated separately for element concentration. The fluxes of the studied elements in the bulk deposition exhibited the following order: Zn > Mn ≫ Cu > Cr > Pb > V > Ni ≫ As > Mo > Cd. The fluxes of Zn and Mn were more than 10 times higher than those of the other elements, with maximum values of 554.5 and 334.1 μg m- 2 day- 1, respectively. Low solubilities (below 22%) were found for Cr, Ti and Pb, whereas the highest solubility was found for Zn (78%). With the exception of Cu, all of the studied metals in the water-soluble fraction of the atmospheric deposition showed seasonal dependence, due to the seasonal variability of precipitation. The enrichment factors (EFs) of Cu, Cd and Zn were higher than 100, indicating a clear anthropogenic origin. The EF of Mn (50) was below 100, but an exclusively industrial origin is suggested. Positive Matrix Factorisation (PMF) was used for the source apportionment of the studied minor and trace elements in the soluble fraction. Four factors were identified from PMF, and their chemical profiles were compared with those calculated from known sources that were previously identified in Santander Bay: two industrial sources, the first of which was characterised by Zn and Mn, which contributes 62.5% of the total deposition flux of the studied elements; a traffic source; and a maritime source. Zinc and Mn are considered to be the most characteristic pollutants of the studied area.

  5. A Global Overview of Exposure Levels and Biological Effects of Trace Elements in Penguins.

    Espejo, Winfred; Celis, José E; GonzÃlez-Acuña, Daniel; Banegas, Andiranel; Barra, Ricardo; Chiang, Gustavo

    2018-01-01

    Trace elements are chemical contaminants that can be present almost anywhere on the planet. The study of trace elements in biotic matrices is a topic of great relevance for the implications that it can have on wildlife and human health. Penguins are very useful, since they live exclusively in the Southern Hemisphere and represent about 90% of the biomass of birds of the Southern Ocean. The levels of trace elements (dry weight) in different biotic matrices of penguins were reviewed here. Maps of trace element records in penguins were included. Data on exposure and effects of trace elements in penguins were collected from the literature. The most reported trace elements in penguins are aluminum, arsenic, cadmium, lead, mercury, copper, zinc, and manganese. Trace elements have been measured in 11 of the 18 species of penguins. The most studied biotic matrices are feathers and excreta. Most of the studies have been performed in Antarctica and subantarctic Islands. Little is known about the interaction among metals, which could provide better knowledge about certain mechanisms of detoxification in penguins. Future studies of trace elements in penguins must incorporate other metals such as vanadium, cobalt, nickel, and chromium. Data of metals in the species such as Eudyptes pachyrhynchus, Eudyptes moseleyi, Eudyptes sclateri, Eudyptes robustus, Eudyptes schlegeli, Spheniscus demersus, Spheniscus mendiculus, and Megadyptes antipodes are urged. It is important to correlate levels of metals in different biotic matrices with the effects on different species and in different geographic locations.

  6. A study of trace elements in the atmosphere of PINSTECH, Nilore

    Rusheed, A.; Ahmed, S.; Mannan, A.; Qureshi, I. H.

    1987-06-01

    Atmospheric aerosol particulates of inorganic elements are usually transported to long distances from their source of emmision. The measurement of these elements in air provides useful information for understanding aerosol effects. Therefore studies were undertaken to determine the atmospheric concentration of some inorganic elements, 23 air filter samples of 24 hour duration were collected at Nilore, Islamabad area and analysed for 16 elements by neutron activation analysis (NAA). The concentration of 9 elements were determined in more than 12 samples. Comparison of the average concentration of these elements with those observed at other sites in U.S.A and U.K., indicate a distribution pattern similar to a non-urban site with very little pollution from industerial sources. Binary collection coefficients were calculated using the data of 9 principal elements of identify particulate sources. Co, Cr, Cs, Eu, Fe, Sc and Rb were assigned a crustal source, whereas Sb could possible has an anthropogenic source. Zn was found to have a constant nearby source the exact nature of which could be ascertained after a complete analysis of local soil and other possible sources near the site. (orign./A.B.)

  7. Retrieval Assimilation and Modeling of Atmospheric Water Vapor from Ground- and Space-Based GPS Networks: Investigation of the Global and Regional Hydrological Cycles

    Dickey, Jean O.

    1999-01-01

    Uncertainty over the response of the atmospheric hydrological cycle (particularly the distribution of water vapor and cloudiness) to anthropogenic forcing is a primary source of doubt in current estimates of global climate sensitivity, which raises severe difficulties in evaluating its likely societal impact. Fortunately, a variety of advanced techniques and sensors are beginning to shed new light on the atmospheric hydrological cycle. One of the most promising makes use of the sensitivity of the Global Positioning System (GPS) to the thermodynamic state, and in particular the water vapor content, of the atmosphere through which the radio signals propagate. Our strategy to derive the maximum benefit for hydrological studies from the rapidly increasing GPS data stream will proceed in three stages: (1) systematically analyze and archive quality-controlled retrievals using state-of-the-art techniques; (2) employ both currently available and innovative assimilation procedures to incorporate these determinations into advanced regional and global atmospheric models and assess their effects; and (3) apply the results to investigate selected scientific issues of relevance to regional and global hydrological studies. An archive of GPS-based estimation of total zenith delay (TZD) data and water vapor where applicable has been established with expanded automated quality control. The accuracy of the GPS estimates is being monitored; the investigation of systematic errors is ongoing using comparisons with water vapor radiometers. Meteorological packages have been implemented. The accuracy and utilization of the TZD estimates has been improved by implementing a troposphere gradient model. GPS-based gradients have been validated as real atmospheric moisture gradients, establishing a link between the estimated gradients and the passage of weather fronts. We have developed a generalized ray tracing inversion scheme that can be used to analyze occultation data acquired from space

  8. Three-pattern decomposition of global atmospheric circulation: part I—decomposition model and theorems

    Hu, Shujuan; Chou, Jifan; Cheng, Jianbo

    2018-04-01

    In order to study the interactions between the atmospheric circulations at the middle-high and low latitudes from the global perspective, the authors proposed the mathematical definition of three-pattern circulations, i.e., horizontal, meridional and zonal circulations with which the actual atmospheric circulation is expanded. This novel decomposition method is proved to accurately describe the actual atmospheric circulation dynamics. The authors used the NCEP/NCAR reanalysis data to calculate the climate characteristics of those three-pattern circulations, and found that the decomposition model agreed with the observed results. Further dynamical analysis indicates that the decomposition model is more accurate to capture the major features of global three dimensional atmospheric motions, compared to the traditional definitions of Rossby wave, Hadley circulation and Walker circulation. The decomposition model for the first time realized the decomposition of global atmospheric circulation using three orthogonal circulations within the horizontal, meridional and zonal planes, offering new opportunities to study the large-scale interactions between the middle-high latitudes and low latitudes circulations.

  9. Comparative study of the suitability of two lichen species for trace element atmospheric monitoring

    Saiki, Mitiko; Alves, Edson R.; Genezini, Frederico A., E-mail: mitiko@ipen.br, E-mail: eralves@ipen.br, E-mail: fredzini@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN-SP), Sao Paulo, SP (Brazil); Saldiva, Paulo H.N., E-mail: pepino@usp.br [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Faculdade de Medicina

    2013-07-01

    Lichens have been widely used in monitoring studies. Consequently, it is very useful to study the suitability of lichen species to monitor pollutants allowing in this way the best choice. The aim of this study was to compare the accumulation of trace elements by two epiphytic lichen species Canoparmelia texana (Tuck) Elix and Hale and Usnea amblyoclada (Mull. Arg.) Zahlbr. Five samples of each species were collected during the period from November 2010 in a same site far from downtown Sao Paulo city. Lichens collected from tree barks were cleaned, freeze-dried, ground and analyzed by neutron activation analysis. Aliquots of lichen samples and synthetic elemental standards were irradiated at the IEA-R1 nuclear research reactor. The induced gamma activities were measured using a hyperpure Ge detector coupled to a digital spectrum analyzer. Concentrations of As, Ba, Cd, Cr, Cs, Fe, Mg, Mn, Na, Rb, V and Zn were determined in both lichen species. The results demonstrated that both species can be used for evaluating air quality. The element concentrations showed difference between lichen species and also among their sampling periods. These differences may be attributed to the distinct mechanisms of element absorption by lichens as well as various other factors that affect their element accumulation. The comparative evaluation made calculating the ratios between C. texana species sample and that in Usnea amblyoclada for elemental concentrations indicated that, in general, foliose C. texana present similar or higher concentrations than those presented by fruticose Usnea. (author)

  10. A portable infrared laser spectrometer for flux measurements of trace gases at the geosphere–atmosphere interface

    Guimbaud, C; Catoire, V; Robert, C; Chartier, M; Pomathiod, L; Gogo, S; Laggoun-Défarge, F; Albéric, P; Grossel, A; Nicoullaud, B; Richard, G

    2011-01-01

    A portable infrared laser absorption spectrometer named SPIRIT (SPectromètre Infra-Rouge In situ Troposphérique) has been set up for the simultaneous flux measurements of trace gases at the geosphere–atmosphere interface. It uses a continuous wave distributed feedback room temperature quantum cascade laser and a patented new optical multi-pass cell. The aim of SPIRIT field studies is to get a better understanding of land and water bodies to atmosphere exchange mechanisms of greenhouse gases (GHG). The analytical procedures to derive concentrations and fluxes are described, as well as the performances of the instrument under field conditions. The ability of SPIRIT to assess space and time dependence emissions of two GHG—nitrous oxide (N 2 O) and methane (CH 4 )—for different types of ecosystems is demonstrated through in situ measurements on peatland, on fertilized soil, and on water body systems. The objectives of these investigations and preliminary significant results are reported

  11. Shot-Noise-Limited Dual-Beam Detector for Atmospheric Trace-Gas Monitoring with Near-Infrared Diode Lasers

    Durry, Georges; Pouchet, Ivan; Amarouche, Nadir; Danguy, Théodore; Megie, Gerard

    2000-10-01

    A dual-beam detector is used to measure atmospheric trace species by differential absorption spectroscopy with commercial near-infrared InGaAs laser diodes. It is implemented on the Spectrom tre Diodes Laser Accordables, a balloonborne tunable diode laser spectrometer devoted to the in situ monitoring of CH 4 and H 2 O. The dual-beam detector is made of simple analogical subtractor circuits combined with InGaAs photodiodes. The detection strategy consists in taking the balanced analogical difference between the reference and the sample signals detected at the input and the output of an open optical multipass cell to apply the full dynamic range of the measurements (16 digits) to the weak molecular absorption information. The obtained sensitivity approaches the shot-noise limit. With a 56-m optical cell, the detection limit obtained when the spectra is recorded within 8 ms is 10 4 (expressed in absorbance units). The design and performances of both a simple substractor and an upgraded feedback substractor circuit are discussed with regard to atmospheric in situ CH 4 absorption spectra measured in the 1.653- m region. Mixing ratios are obtained from the absorption spectra by application of a nonlinear least-squares fit to the full molecular line shape in conjunction with in situ P and T measurements.

  12. Tracing Carbon Cycling in the Atmosphere and Oceans During the Cretaceous Ocean Anoxic Event 2 (OAE2, 94Ma)

    Moran, S. A. M.; Boudinot, F. G.; Dildar, N.; Sepúlveda, J.

    2017-12-01

    We present a high-resolution record of compound-specific stable carbon isotope data from short-chain—aquatic algae—and long-chain n-alkanes—terrestrial plants—preserved in sedimentary sequences from the Smokey Hollow #1 (SH1) core in the Grand Staircase Escalante National Monument in southern Utah. The study area covered by SH1 core was situated at the western margin of the Western Interior Seaway during the Cretaceous Ocean Anoxic Event (OAE2, 94Ma.), and was characterized by high sedimentation rates and enhanced preservation of both marine and terrestrial organic matter. Short- and long-chain n-alkanes were isolated and purified from branched and cyclic aliphatic hydrocarbons using an optimized urea adduction protocol, and δ13Cn-alkane was measured using a Thermo MAT253 GC-C-IR-MS. We use the δ13Cn-alkane from aquatic and terrestrial sources to better understand carbon cycle interactions in the oceanic and atmospheric carbon pools across this event. Our results indicate that the δ13C of terrestrial plants experienced a faster and more pronounced positive carbon isotope excursion compared to marine sources. We will discuss how these results can inform models of carbon cycle interactions between the ocean and the atmosphere during greenhouse climates, and how they can be used to trace possible sources of CO2.

  13. Trace determination of the flame retardant tetrabromobisphenol A in the atmosphere by gas chromatography-mass spectrometry

    Xie Zhiyong; Ebinghaus, Ralf; Lohmann, Rainer; Heemken, Olaf; Caba, Armando; Puettmann, Wilhelm

    2007-01-01

    A simple and effective method has been developed for analysis of the flame retardant tetrabromobisphenol A (TBBPA) in environmental samples by using modified soxhlet extraction in combination with silica gel clean-up, derivatization with silylation reagent and gas chromatography-mass spectrometry (GC-MS) in selected ion monitoring mode (SIM). Satisfactory recoveries were achieved for the large volume sampling, soxhlet extraction and silica gel clean-up. The overall recovery is 79 ± 1%. The derivatization procedure is simple and fast, and produces stable TBBPA derivative. GC-MS with electronic impact (EI) ionization mode shows better detection power than using negative chemical ionization (NCI) mode. EI gives a method detection limit of 0.04 pg m -3 and enables to determine trace TBBPA in ambient air in remote area. The method was successfully applied to the determination of TBBPA in atmospheric samples collected over land and coastal regions. The concentrations of TBBPA ranged from below the method detection limit (0.04 pg m -3 ) to 0.85 pg m -3 . A declining trend with increasing latitude was present from the Wadden Sea to the Arctic. The atmospheric occurrence of TBBPA in the Arctic is significant and might imply that TBBPA has long-range transport potential

  14. Current and future levels of mercury atmospheric pollution on a global scale

    Pacyna, J. M.; Travnikov, O.; De Simone, F.; Hedgecock, I. M.; Sundseth, K.; Pacyna, E. G.; Steenhuisen, F.; Pirrone, N.; Munthe, J.; Kindbom, K.

    2016-01-01

    An assessment of current and future emissions, air concentrations, and atmospheric deposition of mercury worldwide is presented on the basis of results obtained during the performance of the EU GMOS (Global Mercury Observation System) project. Emission estimates for mercury were prepared with the

  15. Current and future levels of mercury atmospheric pollution on global scale

    Pacyna, Jozef M.; Travnikov, Oleg; De Simone, Francesco; Hedgecock, Ian M.; Sundseth, Kyrre; Pacyna, Elisabeth G.; Steenhuisen, Frits; Pirrone, Nicola; Munthe, John; Kindbom, Karin

    2016-01-01

    An assessment of current and future emissions, air concentrations and atmospheric deposition of mercury world-wide are presented on the basis of results obtained during the performance of the EU GMOS (Global Mercury Observation System) project. Emission estimates for mercury were prepared with the

  16. Simulation of preindustrial atmospheric methane to constrain the global source strength of natural wetlands

    Houweling, S; Dentener, F; Lelieveld, J

    2000-01-01

    Previous attempts to quantify the global source strength of CH4 from natural wetlands have resulted in a range of 90-260 TE(CH4) yr(-1). This relatively uncertain estimate significantly limits our understanding of atmospheric methane. In this study we reduce this uncertainty by simulating

  17. Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation.

    Tsuda, Toshitaka

    2014-01-01

    The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10-100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50-90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10-50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet.

  18. Biomonitoring of atmospheric pollution (with emphasis on trace elements) - BioMap II. Proceedings of an international workshop

    NONE

    2003-01-01

    Certain types of organisms integrate pollution over time, reducing the need for continuous chemical monitoring, thus avoiding the difficulty of interpreting 'snapshot' measurements and offering the potential of retrospective monitoring. Such organisms enrich the substance to be determined so that the analytical accessibility is improved and the measurement uncertainty reduced. By observing and measuring the changes in an appropriately selected organism, a conclusion as to the kind of pollution, its source, and its intensity can be drawn. The IAEA is making concerted efforts to promote the practical use of nuclear and related analytical techniques in studies of non-radioactive environmental pollutants that may impact on human health, and one of the main emphasis is on studying air contaminants. The IAEA has been systematically supporting biomonitoring atmospheric pollution for 10 years in the framework of its project on Environmental Pollution Monitoring and Research Using Nuclear and Related Analytical Techniques. The objective of this project is to identify the source and evaluate the fate of key non-radioactive environmental contaminants and provide the basis for improved health for human populations. The project has been implemented through a Coordinated Research Project on Validation and Application of Plants as Biomonitors of Trace Element Atmospheric Pollution Analysed by Nuclear and Related Techniques, several technical co-operation projects, and some dedicated analytical quality control activities. Within the scope of these efforts, the Second International Workshop on Biomonitoring of Atmospheric Pollution (with Emphasis on Trace Elements) - BioMAP, was organized as a follow-up to the 1997 BioMAP workshop held in Lisbon, Portugal. The proceedings of the first workshop were published in IAEA-TECDOC-1152. The second workshop was held in Praia da Vitoria, Azores Islands, Portugal, from 28 August to 3 September 2000. It was organized in co-operation with the

  19. Biomonitoring of atmospheric pollution (with emphasis on trace elements) - BioMap II. Proceedings of an international workshop

    2003-01-01

    Certain types of organisms integrate pollution over time, reducing the need for continuous chemical monitoring, thus avoiding the difficulty of interpreting 'snapshot' measurements and offering the potential of retrospective monitoring. Such organisms enrich the substance to be determined so that the analytical accessibility is improved and the measurement uncertainty reduced. By observing and measuring the changes in an appropriately selected organism, a conclusion as to the kind of pollution, its source, and its intensity can be drawn. The IAEA is making concerted efforts to promote the practical use of nuclear and related analytical techniques in studies of non-radioactive environmental pollutants that may impact on human health, and one of the main emphasis is on studying air contaminants. The IAEA has been systematically supporting biomonitoring atmospheric pollution for 10 years in the framework of its project on Environmental Pollution Monitoring and Research Using Nuclear and Related Analytical Techniques. The objective of this project is to identify the source and evaluate the fate of key non-radioactive environmental contaminants and provide the basis for improved health for human populations. The project has been implemented through a Coordinated Research Project on Validation and Application of Plants as Biomonitors of Trace Element Atmospheric Pollution Analysed by Nuclear and Related Techniques, several technical co-operation projects, and some dedicated analytical quality control activities. Within the scope of these efforts, the Second International Workshop on Biomonitoring of Atmospheric Pollution (with Emphasis on Trace Elements) - BioMAP, was organized as a follow-up to the 1997 BioMAP workshop held in Lisbon, Portugal. The proceedings of the first workshop were published in IAEA-TECDOC-1152. The second workshop was held in Praia da Vitoria, Azores Islands, Portugal, from 28 August to 3 September 2000. It was organized in co-operation with the

  20. An investigation of the sub-grid variability of trace gases and aerosols for global climate modeling

    Y. Qian

    2010-07-01

    Full Text Available One fundamental property and limitation of grid based models is their inability to identify spatial details smaller than the grid cell size. While decades of work have gone into developing sub-grid treatments for clouds and land surface processes in climate models, the quantitative understanding of sub-grid processes and variability for aerosols and their precursors is much poorer. In this study, WRF-Chem is used to simulate the trace gases and aerosols over central Mexico during the 2006 MILAGRO field campaign, with multiple spatial resolutions and emission/terrain scenarios. Our analysis focuses on quantifying the sub-grid variability (SGV of trace gases and aerosols within a typical global climate model grid cell, i.e. 75×75 km2.

    Our results suggest that a simulation with 3-km horizontal grid spacing adequately reproduces the overall transport and mixing of trace gases and aerosols downwind of Mexico City, while 75-km horizontal grid spacing is insufficient to represent local emission and terrain-induced flows along the mountain ridge, subsequently affecting the transport and mixing of plumes from nearby sources. Therefore, the coarse model grid cell average may not correctly represent aerosol properties measured over polluted areas. Probability density functions (PDFs for trace gases and aerosols show that secondary trace gases and aerosols, such as O3, sulfate, ammonium, and nitrate, are more likely to have a relatively uniform probability distribution (i.e. smaller SGV over a narrow range of concentration values. Mostly inert and long-lived trace gases and aerosols, such as CO and BC, are more likely to have broad and skewed distributions (i.e. larger SGV over polluted regions. Over remote areas, all trace gases and aerosols are more uniformly distributed compared to polluted areas. Both CO and O3 SGV vertical profiles are nearly constant within the PBL during daytime, indicating that trace gases

  1. Upper limits to trace constituents in Jupiter's atmosphere from an analysis of its 5 micrometer spectrum

    Treffers, R. R.; Larson, H. P.; Fink, U.; Gautier, T. N.

    1978-01-01

    A high-resolution spectrum of Jupiter at 5 micrometers recorded at the Kuiper Airborne Observatory is used to determine upper limits to the column density of 19 molecules. The upper limits to the mixing ratios of SiH4, H2S, HCN, and simple hydrocarbons are discussed with respect to current models of Jupiter's atmosphere. These upper limits are compared to expectations based upon the solar abundance of the elements. This analysis permits upper limit measurements (SiH4), or actual detections (GeH4) of molecules with mixing ratios with hydrogen as low as 10 to the minus 9th power. In future observations at 5 micrometers the sensitivity of remote spectroscopic analyses should permit the study of constituents with mixing ratios as low as 10 to the minus 10th power, which would include the hydrides of such elements as Sn and As as well as numerous organic molecules.

  2. Poster 6: Influence of traces elements in the organic chemistry of upper atmosphere of Titan

    Mathe, Christophe; Carrasco, Nathalie; Trainer, Melissa G.; Gautier, Thomas; Gavilan, Lisseth; Dubois, David; Li, Xiang

    2016-06-01

    In the upper atmosphere of Titan, complex chemistry leads to the formation of organic aerosols. Since the work of Khare et al. in 1984, several experiments investigated the formation of Titan aerosols, so called tholins, in the laboratory. It has been suggested that nitrogen-containing compounds may contribute significantly to the aerosols formation process. In this study, we focused on the influence of pyridine, the simplest nitrogenous aromatic hydrocarbon, on the chemistry of Titan's atmosphere and on aerosol formation. To assess the effect of pyridine on aerosol formation chemistry, we used two different experimental setups : a capacitively coupled radio-frequency (electronic impact), and a VUV Deuterium lamp (photochemistry) in a collaboration between LATMOS (Guyancourt) and NASA-GSFC (Greenbelt), respectively. Aerosols produced with both setups were first analyzed using a FTIR-ATR (Fourier Transform Infrared spectroscopy - Attenuated Total Reflection) with a spectral range of 4000-800 cm-1 to characterize their optical properties. Next the samples were analysed using a Bruker Autoflex Speed MALDI mass spectrometer with a m/z range up to 2000 Da in order to infer their composition. Infrared spectroscopy analysis showed that tholins produced with a nitrogen-methane gas mixture (95:5) and nitrogenpyridine gas mixture (99:250ppm) present very similar spectra features. Tholins produced with a mixture of nitrogenmethane-pyridine (99:1:250ppm) do not present aliphatic CH2 or CH3 vibrational signatures. This could indicate a cyclic polymerization by a pyridine skeleton. Mass spectrometry is still in progress to confirm this.

  3. Relative enrichment of trace elements in atmospheric biomonitors - INAA results on tree bark and lichen thalli

    Pacheco, A.M.G.; Freitas, M.C.; Ventura, M.G

    2002-01-01

    Nuclear techniques, such as INAA and PIXE, are invaluable tools in environmental studies. Atmospheric biomonitoring, in particular, has been a preferential domain for their application, especially (yet not exclusively) due to their analytical robustness, minimal requirements as to sample preparation, and multi-elemental capabilities. The latter aspect is not just important for the complement they stand for each other, but also for the possibility of multiple determination, that may provide an in-depth picture of an elemental pool and, therefore, assist in data analysis, qualification and interpretation, even if some research had been originally designed to target specific, fewer elements. This paper addresses the relative magnitude of concentration patterns (by INAA) in epiphytic lichens (Parmelia spp.) and olive tree (Olea europaea Linn.) bark from an extended sampling in mainland Portugal, by looking at representative elements from natural and anthropogenic sources. Not seldom have higher plants been overlooked as indicators due to vascular and nutritional features, and also for supposedly yielding poorer analytical signals as a result of an inferior accumulation of airborne contaminants. A nonparametric assessment - correlation and sign trends - of raw and normalised (to a crustal reference) data has shown that while absolute concentrations are indeed (generally) higher in lichens, they also appear to be inflated by inputs from local circulation and/or re-suspension of previously deposited materials. On the contrary, the relative enrichment of non-crustal elements is almost invariably higher in bark than in lichens, which seems definitely at odds with the dim-accumulation scenario mentioned above. Even when the opposite occurs, the corresponding differences are non-significant but for Cl. Judging from these results, the question of signal magnitude - and the problem of biased atmospheric indication at large - could eventually stem more from the impact of soil

  4. Airborne measurements of NO{sub y} and impact of this trace gas on atmospheric chemistry

    Perros, P E; Marion, T [Paris-12 et 7 Univ., Laboratoire Interuniversitaire des Systemes Atmospheriques, 94 - Creteil (France)

    1999-05-01

    Nitrogen compounds play a key role in the ozone production processes. The airborne measurement of individual species is difficult compared to their global measurement. This can be done by the conversion of all the species (NO{sub y}) in NO followed by a subsequent analysis by chemiluminescence. Laboratory tests allow up to determine the main characteristics of such conversion. NO{sub y} measurements associated with NO{sub x} concentrations allow a quantitative and qualitative study of ozone production processes. In particular it is possible to determine the ozone production potential of an air mass, the ozone production efficiency and to specify the chemical regimes. (authors) 13 refs.

  5. Removal of Atmospheric Ethanol by Wet Deposition: A Global Flux Estimate

    Felix, J. D. D.; Willey, J. D.; Avery, B.; Thomas, R.; Mullaugh, K.; Kieber, R. J.; Mead, R. N.; Helms, J. R.; Campos, L.; Shimizu, M. S.; Guibbina, F.

    2017-12-01

    Global ethanol fuel consumption has increased exponentially over the last two decades and the US plans to double annual renewable fuel production in the next five years as required by the renewable fuel standard. Regardless of the technology or feedstock used to produce the renewable fuel, the primary end product will be ethanol. Increasing ethanol fuel consumption will have an impact on the oxidizing capacity of the atmosphere and increase atmospheric concentrations of the secondary pollutant peroxyacetyl nitrate as well a variety of VOCs with relatively high ozone reactivities (e.g. ethanol, formaldehyde, acetaldehyde). Despite these documented effects of ethanol emissions on atmospheric chemistry, current global atmospheric ethanol budget models have large uncertainties in the magnitude of ethanol sources and sinks. The presented work investigates the global wet deposition sink by providing the first estimate of the global wet deposition flux of ethanol (2.4 ± 1.6 Tg/yr) based on empirical wet deposition data (219 samples collected at 12 locations). This suggests the wet deposition sink removes between 6 and 17% of atmospheric ethanol annually. Concentrations of ethanol in marine wet deposition (25 ± 6 nM) were an order of magnitude less than in the majority of terrestrial deposition (345 ± 280 nM). Terrestrial deposition collected in locations impacted by high local sources of biofuel usage and locations downwind from ethanol distilleries were an order of magnitude higher in ethanol concentration (3090 ± 448 nM) compared to deposition collected in terrestrial locations not impacted by these sources. These results indicate that wet deposition of ethanol is heavily influenced by local sources and ethanol emission impacts on air quality may be more significant in highly populated areas. As established and developing countries continue to rapidly increase ethanol fuel consumption and subsequent emissions, understanding the magnitude of all ethanol sources and

  6. Heavy metals and trace elements in atmospheric fall-out: Their relationship with topsoil and wheat element composition

    Bermudez, Gonzalo M.A., E-mail: gbermudez@com.uncor.edu [Instituto Multidisciplinario de Biologia Vegetal (IMBIV), CONICET (Argentina); Catedra de Quimica General, FCEFyN, Universidad Nacional de Cordoba, Avda. Velez Sarsfield 1611, Ciudad Universitaria (X5016 GCA), Cordoba (Argentina); Jasan, Raquel; Pla, Rita [Tecnicas Analiticas Nucleares, Comision Nacional de Energia Atomica (CAE), Presbitero Gonzalez y Aragon N Degree-Sign 15 (B1802AYA), Ezeiza (Argentina); Pignata, Maria L. [Instituto Multidisciplinario de Biologia Vegetal (IMBIV), CONICET (Argentina); Catedra de Quimica General, FCEFyN, Universidad Nacional de Cordoba, Avda. Velez Sarsfield 1611, Ciudad Universitaria (X5016 GCA), Cordoba (Argentina)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer Metal and trace element deposition rates and concentrations in bulk samples. Black-Right-Pointing-Pointer Anthropogenic vs. natural sources were identified using enrichment factors and PCA. Black-Right-Pointing-Pointer Anthropogenic sources for Ca, Cd, Cu, Fe, Mn, Ni, Pb, Sb, U, Zn and lanthanides. Black-Right-Pointing-Pointer Main sources were a cement plant, chemical-mechanical industries, cities and mining. Black-Right-Pointing-Pointer Metals in wheat grain were predicted by soil and bulk deposition composition. - Abstract: The objectives of this study were to determine the average concentrations and deposition rates of 28 elements in atmospheric bulk deposition and to elucidate associations among topsoil, bulk deposition and wheat element composition. The fluxes of arsenic (As), copper (Cu), lead (Pb) and zinc (Zn) deposition in Cordoba were higher than in other agro-ecosystems, which reflects both natural (geochemistry and topsoil removal) and anthropogenic sources. High lanthanide, uranium (U) and thorium (Th) concentrations revealed the impact of an open cast uranium mine. The highest enrichment factors (EF) were those of Cu, Pb, Zn and nickel (Ni), with calcium (Ca) being the most prominent in the surroundings of a cement plant. Industries and the transport of airborne urban pollutants were the main anthropogenic sources for Ca, Cu, Ni, Pb, Zn, cadmium (Cd), iron (Fe), manganese (Mn) and antimony (Sb). The concentrations of metals in wheat grain were predicted using the topsoil and atmospheric fall-out composition with R{sup 2} = 0.90, with the latter being the best explanatory variable. The present study highlights the potential health hazards of wheat consumption (Environmental Protection Agency) by the assessment of heavy metals in bulk atmospheric deposition.

  7. Tracing changes in atmospheric moisture supply to the drying Southwest China

    C. Zhang

    2017-09-01

    Full Text Available Precipitation over Southwest China (SWC significantly decreased during 1979–2013. The months from July to September (JAS contributed the most to the decrease in precipitation. By tracing moisture sources of JAS precipitation over the SWC region, it is found that most moisture originates in regions from the northern Indian Ocean to SWC and from South China Sea to SWC. The major moisture contributing area is divided into an extended west region, SWC, and an extended east region. The extended west region is mainly influenced by the South Asian summer monsoon (SASM and the westerlies, while the extended east region is mainly influenced by the East Asian summer monsoon (EASM. The extended west, SWC, and extended east regions contribute 48.2, 15.5, and 24.5 % of the moisture for the SWC precipitation, respectively. Moisture supply from the extended west region decreased at a rate of −7.9 mm month−1 decade−1, whereas that from the extended east increased at a rate of 1.4 mm month−1 decade−1, resulting in an overall decrease in moisture supply. Further analysis reveals that the decline of JAS precipitation is mainly caused by change in the seasonal-mean component rather than the transient component of the moisture transport over the SWC region. In addition, the dynamic processes (i.e., changes in wind rather than the thermodynamic processes (i.e., changes in specific humidity are dominant in affecting the seasonal-mean moisture transport. A prevailing easterly anomaly of moisture transport that weakened moisture supply from the Indian Ocean is to a large extent responsible for the precipitation decrease over the SWC region.

  8. Real-time ambient air monitoring adjacent to the Houston ship channel for volatile organic compounds associated with the refinery operations using the trace atmospheric gas analyzer (TAGA)

    Mickunas, D.B.

    2009-01-01

    An Urban Air Toxic Monitoring Program was developed by the United States Environmental Protection Agency (US EPA) to help evaluate the potential toxic air pollution in urban areas. The Trace Atmospheric Gas Analyzer (TAGA) was used to monitor the ambient air for target compounds associated with industrial, motor vehicle, and natural emissions sources in areas adjacent to the Houston Ship Channel in Texas. In this study, the TAGA used triple quadrupole technology to perform qualitative and quantitative analyses for benzene, toluene, xylenes, styrene, 1,3-butadiene, methyl tert-butyl ether, and 1,2,3-trichloropropane. The concentrations for the various ion pairs of the target compounds were updated approximately every 2 seconds. The information was incorporated into the geographic information system (GIS) along with the global positioning system (GPS) information for the TAGA location, aerial views of the monitoring area, and meteorological data for the associated region. The information is used to isolate the emission sources and help reduce air pollution. The GPS output helps determine a path-averaged concentration along various routes. Combined with meteorological data, this information can be used in risk assessment to calculate downwind impacts associated with the target compounds under other meteorological conditions and to determine health impacts. It was concluded that the TAGA can provide rapid, accurate and reliable analytical information for monitoring ambient air. 2 refs., 1 tab., 9 figs

  9. Real-time ambient air monitoring adjacent to the Houston ship channel for volatile organic compounds associated with the refinery operations using the trace atmospheric gas analyzer (TAGA)

    Mickunas, D.B. [United States Environmental Protection Agency, Research Triangle Park, NC (United States). Environmental Response Team; Wood, J.; Weeks, W. [Lockheed Martin Response Engineering and Analytical Contract, Edison, NJ (Canada)

    2009-07-01

    An Urban Air Toxic Monitoring Program was developed by the United States Environmental Protection Agency (US EPA) to help evaluate the potential toxic air pollution in urban areas. The Trace Atmospheric Gas Analyzer (TAGA) was used to monitor the ambient air for target compounds associated with industrial, motor vehicle, and natural emissions sources in areas adjacent to the Houston Ship Channel in Texas. In this study, the TAGA used triple quadrupole technology to perform qualitative and quantitative analyses for benzene, toluene, xylenes, styrene, 1,3-butadiene, methyl tert-butyl ether, and 1,2,3-trichloropropane. The concentrations for the various ion pairs of the target compounds were updated approximately every 2 seconds. The information was incorporated into the geographic information system (GIS) along with the global positioning system (GPS) information for the TAGA location, aerial views of the monitoring area, and meteorological data for the associated region. The information is used to isolate the emission sources and help reduce air pollution. The GPS output helps determine a path-averaged concentration along various routes. Combined with meteorological data, this information can be used in risk assessment to calculate downwind impacts associated with the target compounds under other meteorological conditions and to determine health impacts. It was concluded that the TAGA can provide rapid, accurate and reliable analytical information for monitoring ambient air. 2 refs., 1 tab., 9 figs.

  10. Modeling the global atmospheric transport and deposition of mercury to the Great Lakes

    Mark D. Cohen

    2016-07-01

    Full Text Available Abstract Mercury contamination in the Great Lakes continues to have important public health and wildlife ecotoxicology impacts, and atmospheric deposition is a significant ongoing loading pathway. The objective of this study was to estimate the amount and source-attribution for atmospheric mercury deposition to each lake, information needed to prioritize amelioration efforts. A new global, Eulerian version of the HYSPLIT-Hg model was used to simulate the 2005 global atmospheric transport and deposition of mercury to the Great Lakes. In addition to the base case, 10 alternative model configurations were used to examine sensitivity to uncertainties in atmospheric mercury chemistry and surface exchange. A novel atmospheric lifetime analysis was used to characterize fate and transport processes within the model. Model-estimated wet deposition and atmospheric concentrations of gaseous elemental mercury (Hg(0 were generally within ∼10% of measurements in the Great Lakes region. The model overestimated non-Hg(0 concentrations by a factor of 2–3, similar to other modeling studies. Potential reasons for this disagreement include model inaccuracies, differences in atmospheric Hg fractions being compared, and the measurements being biased low. Lake Erie, downwind of significant local/regional emissions sources, was estimated by the model to be the most impacted by direct anthropogenic emissions (58% of the base case total deposition, while Lake Superior, with the fewest upwind local/regional sources, was the least impacted (27%. The U.S. was the largest national contributor, followed by China, contributing 25% and 6%, respectively, on average, for the Great Lakes. The contribution of U.S. direct anthropogenic emissions to total mercury deposition varied between 46% for the base case (with a range of 24–51% over all model configurations for Lake Erie and 11% (range 6–13% for Lake Superior. These results illustrate the importance of atmospheric

  11. Atmospheric deposition of trace elements in Norway studied by means of moss analysis

    Steinnes, E.

    1977-02-01

    The atmospheric deposition of 28 elements in different parts of Norway was studied by means of moss analysis. The species Hylocomium splendens was selected after a comparison of different species. For several elements large regional differences were found. The highest concentration of these elements were found in the southernmost part of the country and in places near the west coast with high annual precipitation. The lowest values were found in places with low annual precipitation in Eastern Norway and the interior parts of the more northerly parts of the country. Within each region the highest deposition was observed in places with high annual precipitation. For the elements Pb, Sb, As, and Se the observed concentration range amounted to a factor of about 20. In the case of Ag, Cd, Cs, and V the range was smaller, but still amounting to a factor of 10 or more. A lower but still distinct spread was observed for Cr, Mo, Cu, and Zn. For all these elements long distance transport from sources in the densely populated and heavily industrialized parts of Europe probably are of importance for the obsreved distribution. (Auth.)

  12. Analysis of Atmospheric Mercury and Associated Trace Gases in Dallas Fort Worth, TX (Barnett Shale area)

    Laine, P. L.; Talbot, R. W.; Lefer, B. L.; Flynn, J. H.

    2012-12-01

    Throughout the month of June 2011, a variety of air quality measurements were obtained in the Dallas Fort Worth (Barnett Shale) field campaign. Species such as Hg0, O3, CO, NO, NO2, SO2 were monitored continuously along with a variety of volatile organic carbon (VOC) species ranging in size from C2 (ethane) to C9 aromatics to sesquiterpines. Mixed layer boundary heights were also monitored by Ceilometer measurements. At first glance, the mercury data has peaks that reach as high as 750 ppqv (parts per quadrillion by volume) which is approximately a 5 fold increase over the typical background values observed (~ 150 ppqv). The Fort Worth area has underlying Barnett Shale with thousands of natural gas compressor stations scattered throughout the surrounding landscape. We believe that a potential source of the elevated Hg0 is the result of leakage from these stations under the nocturnal boundary layer. A closer look at diurnal variations and backward wind trajectories will yield information pertaining to the types of air masses spanning the area. We will utilize the suite of chemical and meteorological measurements conducted during the campaign to facilitate source identification for specific time periods. Analysis of these data should provide new information on as yet unexplored sources of atmospheric mercury.

  13. Historical and current use of spanish moss as a monitor of atmospheric trace metals

    Whitten, M.L.; Mossler, M.A.; Kosalwat, P.; Newman, J.R. [KBN Engineering and Applied Sciences, Inc., Gainesville, FL (United States)

    1995-12-31

    Spanish moss (Tillandsia usnesoides) is an epiphytic member of the pineapple family, Historically, tissue levels in this plant have illustrated the elevated concentration of lead near well traveled roads, as well as nickel and tin in the vicinity of battery fabrication or smelting facilities, respectively. From a survey of Spanish moss plants growing throughout the Southeast, mercury at or slightly above the limit of detection was present in eight of 128 samples. Five of these samples were collected in Florida. As part of a biomonitoring project, Spanish moss was collected from 1991 to 1993 around a waste-to-energy facility in Lake County, Florida, After three years, the percentage of Spanish moss samples which contained detectable levels of arsenic and cadmium decreased over time. Lead was detected in all samples collected throughout the monitoring period, but the mean concentration decreased from 3.7 mg/kg on a dry weight basis (1991) to 1.4 mg/kg (1993). This trend in lead levels may indicate clearance that is occurring due to the discontinuation of leaded gasoline. The percentage of moss samples containing mercury above the limit of detection increased from 67% (1991) to 97% (1993); however, mean concentrations do not support a trend in increasing concentration of this element (0.30 mg/kg on a fresh weight basis in 1991 vs. 0.19 mg/kg in 1993). Apparently, atmospheric metal concentrations are not increasing in the vicinity of the facility at this time.

  14. Relative enrichment of trace elements in atmospheric biomonitors - INAA results on tree bark and lichen thalli

    Pacheco, Adriano M.G.; Freitas, Maria Carmo; Ventura, Marcia G.

    2005-01-01

    Nuclear techniques, such as instrumental neutron activation analysis (INAA) or proton-induced X-ray emission (PIXE), are invaluable tools in environmental assessment. Atmospheric biomonitoring, in particular, has been a preferential domain for their application, especially (yet not exclusively) due to their analytical robustness, minimal requirements for sample preparation, and multi-elemental capabilities. The latter aspect is not just important for the complement they stand for each other, but also for the possibility of multiple determination, that may provide an in-depth picture of an elemental pool. This paper addresses the relative magnitude of concentration patterns (by INAA) in epiphytic lichens (Parmelia spp.) thalli and olive tree (Olea Europaea Linn.) bark from two sectors of a biological-monitoring network in mainland Portugal. While absolute concentrations of non-crustal elements are generally higher in lichens than in bark, the reverse of this applies, and to a larger extent, to their enrichment in each biomonitor. Raw data is thus likely to be inflated by local circulation and/or re-suspension of previously deposited materials. Judging from these results, the question of signal magnitude could eventually stem more from secondary, non-crustal inputs of local origin, and less from systemic characteristics of the present organisms. (authors)

  15. EDDY RESOLVING NUTRIENT ECODYNAMICS IN THE GLOBAL PARALLEL OCEAN PROGRAM AND CONNECTIONS WITH TRACE GASES IN THE SULFUR, HALOGEN AND NMHC CYCLES

    S. CHU; S. ELLIOTT

    2000-08-01

    Ecodynamics and the sea-air transfer of climate relevant trace gases are intimately coupled in the oceanic mixed layer. Ventilation of species such as dimethyl sulfide and methyl bromide constitutes a key linkage within the earth system. We are creating a research tool for the study of marine trace gas distributions by implementing coupled ecology-gas chemistry in the high resolution Parallel Ocean Program (POP). The fundamental circulation model is eddy resolving, with cell sizes averaging 0.15 degree (lat/long). Here we describe ecochemistry integration. Density dependent mortality and iron geochemistry have enhanced agreement with chlorophyll measurements. Indications are that dimethyl sulfide production rates must be adjusted for latitude dependence to match recent compilations. This may reflect the need for phytoplankton to conserve nitrogen by favoring sulfurous osmolytes. Global simulations are also available for carbonyl sulfide, the methyl halides and for nonmethane hydrocarbons. We discuss future applications including interaction with atmospheric chemistry models, high resolution biogeochemical snapshots and the study of open ocean fertilization.

  16. Quantifying atmospheric transport, chemistry, and mixing using a new trajectory-box model and a global atmospheric-chemistry GCM

    H. Riede

    2009-12-01

    Full Text Available We present a novel method for the quantification of transport, chemistry, and mixing along atmospheric trajectories based on a consistent model hierarchy. The hierarchy consists of the new atmospheric-chemistry trajectory-box model CAABA/MJT and the three-dimensional (3-D global ECHAM/MESSy atmospheric-chemistry (EMAC general circulation model. CAABA/MJT employs the atmospheric box model CAABA in a configuration using the atmospheric-chemistry submodel MECCA (M, the photochemistry submodel JVAL (J, and the new trajectory submodel TRAJECT (T, to simulate chemistry along atmospheric trajectories, which are provided offline. With the same chemistry submodels coupled to the 3-D EMAC model and consistent initial conditions and physical parameters, a unique consistency between the two models is achieved. Since only mixing processes within the 3-D model are excluded from the model consistency, comparisons of results from the two models allow to separate and quantify contributions of transport, chemistry, and mixing along the trajectory pathways. Consistency of transport between the trajectory-box model CAABA/MJT and the 3-D EMAC model is achieved via calculation of kinematic trajectories based on 3-D wind fields from EMAC using the trajectory model LAGRANTO. The combination of the trajectory-box model CAABA/MJT and the trajectory model LAGRANTO can be considered as a Lagrangian chemistry-transport model (CTM moving isolated air parcels. The procedure for obtaining the necessary statistical basis for the quantification method is described as well as the comprehensive diagnostics with respect to chemistry.

    The quantification method presented here allows to investigate the characteristics of transport, chemistry, and mixing in a grid-based 3-D model. The analysis of chemical processes within the trajectory-box model CAABA/MJT is easily extendable to include, for example, the impact of different transport pathways or of mixing processes onto

  17. Atmospheric redistribution of reactive nitrogen and phosphorus by wildfires and implications for global carbon cycling

    Randerson, J. T.; Xu, L.; Wiggins, E. B.; Chen, Y.; Riley, W. J.; Mekonnen, Z. A.; Pellegrini, A.; Mahowald, N. M.

    2017-12-01

    Fires are an important process regulating the redistribution of nutrients within terrestrial ecosystems. Frequently burning ecosystems such as savannas are a net source of N and P to the atmosphere each year, with atmospheric transport and dry and wet deposition increasing nutrient availability in downwind ecosystems and over the open ocean. Transport of N and P aerosols from savanna fires within the Hadley circulation contributes to nutrient deposition over tropical forests, yielding an important cross-biome nutrient transfer. Pyrodenitrification of reactive N increases with fire temperature and modified combustion efficiency, generating a global net biospheric loss of approximately 14 Tg N per year. Here we analyze atmospheric N and P redistribution using the Global Fire Emissions Database version 4s and the Accelerated Climate Modeling for Energy earth system model. We synthesize literature estimates of N and P concentrations in fire-emitted aerosols and ecosystem mass balance measurements to help constrain model estimates of these biosphere-atmosphere fluxes. In our analysis, we estimate the fraction of terrestrial net primary production (NPP) that is sustained by fire-emitted P and reactive N from upwind ecosystems. We then evaluate how recent global declines in burned area in savanna and grassland ecosystems may be changing nutrient availability in downwind ecosystems.

  18. The impact of vibrational Raman scattering of air on DOAS measurements of atmospheric trace gases

    Lampel, J.; Frieß, U.; Platt, U.

    2015-09-01

    In remote sensing applications, such as differential optical absorption spectroscopy (DOAS), atmospheric scattering processes need to be considered. After inelastic scattering on N2 and O2 molecules, the scattered photons occur as additional intensity at a different wavelength, effectively leading to "filling-in" of both solar Fraunhofer lines and absorptions of atmospheric constituents, if the inelastic scattering happens after the absorption. Measured spectra in passive DOAS applications are typically corrected for rotational Raman scattering (RRS), also called Ring effect, which represents the main contribution to inelastic scattering. Inelastic scattering can also occur in liquid water, and its influence on DOAS measurements has been observed over clear ocean water. In contrast to that, vibrational Raman scattering (VRS) of N2 and O2 has often been thought to be negligible, but it also contributes. Consequences of VRS are red-shifted Fraunhofer structures in scattered light spectra and filling-in of Fraunhofer lines, additional to RRS. At 393 nm, the spectral shift is 25 and 40 nm for VRS of O2 and N2, respectively. We describe how to calculate VRS correction spectra according to the Ring spectrum. We use the VRS correction spectra in the spectral range of 420-440 nm to determine the relative magnitude of the cross-sections of VRS of O2 and N2 and RRS of air. The effect of VRS is shown for the first time in spectral evaluations of Multi-Axis DOAS data from the SOPRAN M91 campaign and the MAD-CAT MAX-DOAS intercomparison campaign. The measurements yield in agreement with calculated scattering cross-sections that the observed VRS(N2) cross-section at 393 nm amounts to 2.3 ± 0.4 % of the cross-section of RRS at 433 nm under tropospheric conditions. The contribution of VRS(O2) is also found to be in agreement with calculated scattering cross-sections. It is concluded, that this phenomenon has to be included in the spectral evaluation of weak absorbers as it

  19. Quantifying Volcanic Emissions of Trace Elements to the Atmosphere: Ideas Based on Past Studies

    Rose, W. I.

    2003-12-01

    Extensive data exist from volcanological and geochemical studies about exotic elemental enrichments in volcanic emissions to the atmosphere but quantitative data are quite rare. Advanced, highly sensitive techniques of analysis are needed to detect low concentrations of some minor elements, especially during major eruptions. I will present data from studies done during low levels of activity (incrustations and silica tube sublimates at high temperature fumaroles, from SEM studies of particle samples collected in volcanic plumes and volcanic clouds, from geochemical analysis of volcanic gas condensates, from analysis of treated particle and gas filter packs) and a much smaller number that could reflect explosive activity (from fresh ashfall leachate geochemistry, and from thermodynamic codes modeling volatile emissions from magma). This data describes a highly variable pattern of elemental enrichments which are difficult to quantify, generalize and understand. Sampling in a routine way is difficult, and work in active craters has heightened our awareness of danger, which appropriately inhibits some sampling. There are numerous localized enrichments of minor elements that can be documented and others can be expected or inferred. There is a lack of systematic tools to measure minor element abundances in volcanic emissions. The careful combination of several methodologies listed above for the same volcanic vents can provide redundant data on multiple elements which could lead to overall quantification of minor element fluxes but there are challenging issues about detection. For quiescent plumes we can design combinations of measurements to quantify minor element emission rates. Doing a comparable methodology to succeed in measuring minor element fluxes for significant eruptions will require new strategies and/or ideas.

  20. Governing atmospheric sinks: the architecture of entitlements in the global commons

    Jouni Paavola

    2008-07-01

    Full Text Available This article revisits key works on the management of common-pool resources under common property arrangements, in order to elicit a broader notion of collective ownership for analysing institutional arrangements that govern the use of large-scale environmental resources such as biodiversity and atmospheric sinks. The article proposes a model for analysing the institutional design of governance solutions which draws attention to 1 tiers and levels, 2 organisation of generic governance functions, and 3 formulation of specific institutional rules. The article exemplifies these analytical solutions by examining the emerging governance framework for global atmospheric sinks. The article indicates how crucial parts of the institutional framework for governing atmospheric sinks are still missing, a shortcoming which maintains the ‘‘tragedy of the commons’’ in their use. The article suggests that a workable governance solution for global atmospheric sinks has to 1 cap the use of atmospheric sinks; 2 provide for a more equitable benefit sharing; 3 provide for compensation of climate change impacts and assistance for adaptation to climate change impacts; and 4 create institutional solutions for enhancing participation in environmental decisions in order to guarantee progress in and legitimacy of the governance framework.

  1. Atmospheric bulk deposition of polycyclic aromatic hydrocarbons in Shanghai: Temporal and spatial variation, and global comparison

    Feng, Daolun; Liu, Ying; Gao, Yi; Zhou, Jinxing; Zheng, Lirong; Qiao, Gang; Ma, Liming; Lin, Zhifen; Grathwohl, Peter

    2017-01-01

    Atmospheric deposition leads to accumulation of atmospheric polycyclic aromatic hydrocarbons (PAHs) on urban surfaces and topsoils. To capture the inherent variability of atmospheric deposition of PAHs in Shanghai's urban agglomeration, 85 atmospheric bulk deposition samples and 7 surface soil samples were collected from seven sampling locations during 2012–2014. Total fluxes of 17 PAHs were 587-32,300 ng m −2 day −1 , with a geometric mean of 2600 ng m −2 day −1 . The deposition fluxes were categorized as moderate to high on a global scale. Phenanthrene, fluoranthene and pyrene were major contributors. The spatial distribution of deposition fluxes revealed the influence of urbanization/industrialization and the relevance of local emissions. Meteorological conditions and more heating demand in cold season lead to a significant increase of deposition rates. Atmospheric deposition is the principal pathway of PAHs input to topsoils and the annual deposition load in Shanghai amounts to ∼4.5 tons (0.7 kg km −2 ) with a range of 2.5–10 tons (0.4–1.6 kg km −2 ). - Highlights: • PAH deposition flux in Shanghai is categorized as moderate to high on global scale. • Their spatial distribution reveals the influence of urbanization/industrialization. • Atmospheric deposition is the principal pathway of PAHs input to local topsoils. • Other pathways have to be considered for PAH input in urban soil. - Atmospheric deposition of PAHs revealed the influence of urbanization and industrialization and the relevance of local emissions on Shanghai topsoils.

  2. Combining microscopy with spectroscopic and chemical methods for tracing the origin of atmospheric fallouts from mining sites

    Navel, Aline; Uzu, Gaëlle; Spadini, Lorenzo [University Grenoble Alpes — LTHE UMR 5564–CNRS-INSU/UGA/INPG/IRD, 1025 rue de la Piscine, DU BP53 - 38041 Grenoble CEDEX 9 (France); Sobanska, Sophie [LASIR, (UMR CNRS 8516), Université de Lille 1, Bât. C5, 59655 Villeneuve d' Ascq CEDEX (France); Martins, Jean M.F., E-mail: jean.martins@yujf-grenoble.fr [University Grenoble Alpes — LTHE UMR 5564–CNRS-INSU/UGA/INPG/IRD, 1025 rue de la Piscine, DU BP53 - 38041 Grenoble CEDEX 9 (France)

    2015-12-30

    Highlights: • Numerous ancient mines are left over without specific care for contaminated wastes. • Sources similarity makes the tracing of the origin of metallic fallouts challenging. • Physico-chemical fingerprints of all metal-source sites and fallouts were established. • Combining physical/chemical methods allowed discriminating polluted fallouts origin. • A Hierarchical cluster analysis permitted to identify the dominant particles source. - Abstract: Populations living close to mining sites are often exposed to important heavy metal concentrations, especially through atmospheric fallouts. Identifying the main sources of metal-rich particles remains a challenge because of the similarity of the particle signatures from the polluted sites. This work provides an original combination of physical and chemical methods to determine the main sources of airborne particles impacting inhabited zones. Raman microspectrometry (RMS), X-ray diffraction (DRX), morphology analyses by microscopy and chemical composition were assessed. Geochemical analysis allowed the identification of target and source areas; XRD and RMS analysis identified the main mineral phases in association with their metal content and speciation. The characterization of the dominant minerals was combined with particle morphology analysis to identify fallout sources. The complete description of dust morphologies permitted the successful determination of a fingerprint of each source site. The analysis of these chemical and morphological fingerprints allowed identification of the mine area as the main contributor of metal-rich particles impacting the inhabited zone. In addition to the identification of the main sources of airborne particles, this study will also permit to better define the extent of polluted zones requiring remediation or protection from eolian erosion inducing metal-rich atmospheric fallouts.

  3. Combining microscopy with spectroscopic and chemical methods for tracing the origin of atmospheric fallouts from mining sites

    Navel, Aline; Uzu, Gaëlle; Spadini, Lorenzo; Sobanska, Sophie; Martins, Jean M.F.

    2015-01-01

    Highlights: • Numerous ancient mines are left over without specific care for contaminated wastes. • Sources similarity makes the tracing of the origin of metallic fallouts challenging. • Physico-chemical fingerprints of all metal-source sites and fallouts were established. • Combining physical/chemical methods allowed discriminating polluted fallouts origin. • A Hierarchical cluster analysis permitted to identify the dominant particles source. - Abstract: Populations living close to mining sites are often exposed to important heavy metal concentrations, especially through atmospheric fallouts. Identifying the main sources of metal-rich particles remains a challenge because of the similarity of the particle signatures from the polluted sites. This work provides an original combination of physical and chemical methods to determine the main sources of airborne particles impacting inhabited zones. Raman microspectrometry (RMS), X-ray diffraction (DRX), morphology analyses by microscopy and chemical composition were assessed. Geochemical analysis allowed the identification of target and source areas; XRD and RMS analysis identified the main mineral phases in association with their metal content and speciation. The characterization of the dominant minerals was combined with particle morphology analysis to identify fallout sources. The complete description of dust morphologies permitted the successful determination of a fingerprint of each source site. The analysis of these chemical and morphological fingerprints allowed identification of the mine area as the main contributor of metal-rich particles impacting the inhabited zone. In addition to the identification of the main sources of airborne particles, this study will also permit to better define the extent of polluted zones requiring remediation or protection from eolian erosion inducing metal-rich atmospheric fallouts.

  4. Simulation of trace metals and PAH atmospheric pollution over Greater Paris: Concentrations and deposition on urban surfaces

    Thouron, L.; Seigneur, C.; Kim, Y.; Legorgeu, C.; Roustan, Y.; Bruge, B.

    2017-10-01

    Urban areas can be subject not only to poor air quality, but also to contamination of other environmental media by air pollutants. Here, we address the potential transfer of selected air pollutants (two metals and three PAH) to urban surfaces. To that end, we simulate meteorology and air pollution from Europe to a Paris suburban neighborhood, using a four-level one-way nesting approach. The meteorological and air quality simulations use urban canopy sub-models in order to better represent the effect of the urban morphology on the air flow, atmospheric dispersion, and deposition of air pollutants to urban surfaces. This modeling approach allows us to distinguish air pollutant deposition among various urban surfaces (roofs, roads, and walls). Meteorological model performance is satisfactory, showing improved results compared to earlier simulations, although precipitation amounts are underestimated. Concentration simulation results are also satisfactory for both metals, with a fractional bias Paris region. The model simulation results suggest that both wet and dry deposition processes need to be considered when estimating the transfer of air pollutants to other environmental media. Dry deposition fluxes to various urban surfaces are mostly uniform for PAH, which are entirely present in fine particles. However, there is significantly less wall deposition compared to deposition to roofs and roads for trace metals, due to their coarse fraction. Meteorology, particle size distribution, and urban morphology are all important factors affecting air pollutant deposition. Future work should focus on the collection of data suitable to evaluate the performance of atmospheric models for both wet and dry deposition with fine spatial resolution.

  5. Evaluation of atmospheric aerosol and tropospheric ozone effects on global terrestrial ecosystem carbon dynamics

    Chen, Min

    The increasing human activities have produced large amounts of air pollutants ejected into the atmosphere, in which atmospheric aerosols and tropospheric ozone are considered to be especially important because of their negative impacts on human health and their impacts on global climate through either their direct radiative effect or indirect effect on land-atmosphere CO2 exchange. This dissertation dedicates to quantifying and evaluating the aerosol and tropospheric ozone effects on global terrestrial ecosystem dynamics using a modeling approach. An ecosystem model, the integrated Terrestrial Ecosystem Model (iTem), is developed to simulate biophysical and biogeochemical processes in terrestrial ecosystems. A two-broad-band atmospheric radiative transfer model together with the Moderate-Resolution Imaging Spectroradiometer (MODIS) measured atmospheric parameters are used to well estimate global downward solar radiation and the direct and diffuse components in comparison with observations. The atmospheric radiative transfer modeling framework were used to quantify the aerosol direct radiative effect, showing that aerosol loadings cause 18.7 and 12.8 W m -2 decrease of direct-beam Photosynthetic Active Radiation (PAR) and Near Infrared Radiation (NIR) respectively, and 5.2 and 4.4 W m -2 increase of diffuse PAR and NIR, respectively, leading to a total 21.9 W m-2 decrease of total downward solar radiation over the global land surface during the period of 2003-2010. The results also suggested that the aerosol effect may be overwhelmed by clouds because of the stronger extinction and scattering ability of clouds. Applications of the iTem with solar radiation data and with or without considering the aerosol loadings shows that aerosol loading enhances the terrestrial productions [Gross Primary Production (GPP), Net Primary Production (NPP) and Net Ecosystem Production (NEP)] and carbon emissions through plant respiration (RA) in global terrestrial ecosystems over the

  6. Correlations Between Extreme Atmospheric Hazards and Global Teleconnections: Implications for Multihazard Resilience

    Steptoe, H.; Jones, S. E. O.; Fox, H.

    2018-03-01

    Occurrences of concurrent extreme atmospheric hazards represent a significant area of uncertainty for organizations involved in disaster mitigation and risk management. Understanding risks posed by natural disasters and their relationship with global climate drivers is crucial in preparing for extreme events. In this review we quantify the strength of the physical mechanisms linking hazards and atmosphere-ocean processes. We demonstrate how research from the science community may be used to support disaster risk reduction and global sustainable development efforts. We examine peer-reviewed literature connecting 16 regions affected by extreme atmospheric hazards and eight key global drivers of weather and climate. We summarize current understanding of multihazard disaster risk in each of these regions and identify aspects of the global climate system that require further investigation to strengthen our resilience in these areas. We show that some drivers can increase the risk of concurrent hazards across different regions. Organizations that support disaster risk reduction, or underwrite exposure, in multiple regions may have a heightened risk of facing multihazard losses. We find that 15 regional hazards share connections via the El Niño-Southern Oscillation, with the Indian Ocean Dipole, North Atlantic Oscillation, and the Southern Annular Mode being secondary sources of significant regional interconnectivity. From a hazard perspective, rainfall over China shares the most connections with global drivers and has links to both Northern and Southern Hemisphere modes of variability. We use these connections to assess the global likelihood of concurrent hazard occurrence in support of multihazard resilience and disaster risk reduction goals.

  7. Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions

    Shen, Huizhong; Huang, Ye; Wang, Rong; Zhu, Dan; Li, Wei; Shen, Guofeng; Wang, Bin; Zhang, Yanyan; Chen, Yuanchen; Lu, Yan; Chen, Han; Li, Tongchao; Sun, Kang; Li, Bengang; Liu, Wenxin

    2013-01-01

    Global atmospheric emissions of 16 polycyclic aromatic hydrocarbons (PAHs) from 69 major sources were estimated for a period from 1960 to 2030. Regression models and a technology split method were used to estimate country and time specific emission factors, resulting in a new estimate of PAH emission factor variation among different countries and over time. PAH emissions in 2007 were spatially resolved to 0.1°× 0.1° grids based on a newly developed global high-resolution fuel combustion inven...

  8. A critical review of nuclear activation techniques for the determination of trace elements in atmospheric aerosols, particulates and sludge samples

    Dams, R.

    1992-01-01

    Activation analysis is one of the major techniques for the determination of many minor and trace elements in a large variety of solid environmental and pollution samples, such as atmospheric aerosols, particulate emissions, fly ash, coal, incineration ash and sewage sludge, etc. Neutron activation analysis of total, inhalable or respirable airborne particulate matter collected on a filter or in a cascade impactor on some substrate, is very popular. By Instrumental Neutron Activation Analysis (INAA) up to 45 elements can be determined. The irradiation and counting procedures can be adapted to optimize the sensitivity for particular elements. The precision is largely governed by counting statistics and a high accuracy can be obtained after calibration with multi-elemental standards. Radiochemical Neutron Activation Analysis (RNAA) is applied only when extremely low limits of determination are required. Instrumental Photon Activation Analysis (IPAA) is complementary to INAA, since some elements of environmental interest can be determined which do not produce appropriate radionuclides by neutron irradiation. Charged Particle Activation Analysis (CPAA) is used in particular circumstances such as for certification purposes or coupled to radiochemical separations for extremely low concentrations. (author)

  9. Tracking and Tracing Cyber-Attacks: Technical Challenges and Global Policy Issues

    Lipson, Howard

    2002-01-01

    .... The anonymity enjoyed by today's cyber-attackers poses a grave threat to the global information society, the progress of an information-based international economy, and the advancement of global...

  10. Using an atmospheric boundary layer model to force global ocean models

    Abel, Rafael; Böning, Claus

    2014-05-01

    Current practices in the atmospheric forcing of ocean model simulations can lead to unphysical behaviours. The problem lies in the bulk formulation of the turbulent air-sea fluxes in the conjunction with a prescribed, and unresponsive, atmospheric state (as given by reanalysis products). This can have impacts both on mesoscale processes as well as on the dynamics of the large-scale circulation. First, a possible local mismatch between the given atmospheric state and evolving sea surface temperature (SST) signatures can occur, especially for mesoscale features such as frontal areas, eddies, or near the sea ice edge. Any ocean front shift or evolution of mesoscale anomalies results in excessive, unrealistic surface fluxes due to the lack of atmospheric adaptation. Second, a subtle distortion in the sensitive balance of feedback processes being critical for the thermohaline circulation. Since the bulk formulations assume an infinite atmospheric heat capacity, resulting SST anomalies are strongly damped even on basin-scales (e.g. from trends in the Atlantic meridional overturning circulation). In consequence, an important negative feedback is eliminated, rendering the system excessively susceptible to small anomalies (or errors) in the freshwater fluxes. Previous studies (Seager et al., 1995, J. Clim.) have suggested a partial forcing issue remedy that aimed for a physically more realistic determination of air-sea fluxes by allowing some (thermodynamic) adaptation of the atmospheric boundary layer to SST changes. In this study a modernized formulation of this approach (Deremble et al., 2013, Mon. Weather Rev.; 'CheapAML') is implemented in a global ocean-ice model with moderate resolution (0.5°; ORCA05). In a set of experiments we explore the solution behaviour of this forcing approach (where only the winds are prescribed, while atmospheric temperature and humidity are computed), contrasting it with the solution obtained from the classical bulk formulation with a non

  11. Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions

    Yanxu Zhang,; Daniel J. Jacob,; Hannah M. Horowitz,; Long Chen,; Helen M. Amos,; Krabbenhoft, David P.; Franz Slemr,; Vincent L. St. Louis,; Elsie M. Sunderland,

    2015-01-01

    Observations of elemental mercury (Hg0) at sites in North America and Europe show large decreases (∼1–2% y−1) from 1990 to present. Observations in background northern hemisphere air, including Mauna Loa Observatory (Hawaii) and CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) aircraft flights, show weaker decreases (Asia. Implementation of our inventory in a global 3D atmospheric Hg simulation [GEOS-Chem (Goddard Earth Observing System-Chemistry)] coupled to land and ocean reservoirs reproduces the observed large-scale trends in atmospheric Hg0 concentrations and in HgII wet deposition. The large trends observed in North America and Europe reflect the phase-out of Hg from commercial products as well as the cobenefit from SO2 and NOx emission controls on coal-fired utilities.

  12. Tracing the Sources of Atmospheric Phosphorus Deposition to a Tropical Rain Forest in Panama Using Stable Oxygen Isotopes.

    Gross, A; Turner, B L; Goren, T; Berry, A; Angert, A

    2016-02-02

    Atmospheric dust deposition can be a significant source of phosphorus (P) in some tropical forests, so information on the origins and solubility of atmospheric P is needed to understand and predict patterns of forest productivity under future climate scenarios. We characterized atmospheric dust P across a seasonal cycle in a tropical lowland rain forest on Barro Colorado Nature Monument (BCNM), Republic of Panama. We traced P sources by combining remote sensing imagery with the first measurements of stable oxygen isotopes in soluble inorganic phosphate (δ(18)OP) in dust. In addition, we measured soluble inorganic and organic P concentrations in fine (1 μm) aerosol fractions and used this data to estimate the contribution of P inputs from dust deposition to the forest P budget. Aerosol dry mass was greater in the dry season (December to April, 5.6-15.7 μg m(-3)) than the wet season (May to November, 3.1-7.1 μg m(-3)). In contrast, soluble P concentrations in the aerosols were lower in the dry season (980-1880 μg P g(-1)) than the wet season (1170-3380 μg P g(-1)). The δ(18)OP of dry-season aerosols resembled that of nearby forest soils (∼19.5‰), suggesting a local origin. In the wet season, when the Trans-Atlantic Saharan dust belt moves north close to Panama, the δ(18)OP of aerosols was considerably lower (∼15.5‰), suggesting a significant contribution of long-distance dust P transport. Using satellite retrieved aerosol optical depth (AOD) and the P concentrations in aerosols we sampled in periods when Saharan dust was evident we estimate that the monthly P input from long distance dust transport during the period with highest Saharan dust deposition is 88 ± 31 g P ha(-1) month(-1), equivalent to between 10 and 29% of the P in monthly litter fall in nearby forests. These findings have important implications for our understanding of modern nutrient budgets and the productivity of tropical forests in the region under future climate scenarios.

  13. The atmospheric impacts of monoterpene ozonolysis on global stabilised Criegee intermediate budgets and SO2 oxidation: experiment, theory and modelling

    M. J. Newland

    2018-05-01

    Full Text Available The gas-phase reaction of alkenes with ozone is known to produce stabilised Criegee intermediates (SCIs. These biradical/zwitterionic species have the potential to act as atmospheric oxidants for trace pollutants such as SO2, enhancing the formation of sulfate aerosol with impacts on air quality and health, radiative transfer and climate. However, the importance of this chemistry is uncertain as a consequence of limited understanding of the abundance and atmospheric fate of SCIs. In this work we apply experimental, theoretical and numerical modelling methods to quantify the atmospheric impacts, abundance and fate of the structurally diverse SCIs derived from the ozonolysis of monoterpenes, the second most abundant group of unsaturated hydrocarbons in the atmosphere. We have investigated the removal of SO2 by SCIs formed from the ozonolysis of three atmospherically important monoterpenes (α-pinene, β-pinene and limonene in the presence of varying amounts of water vapour in large-scale simulation chamber experiments that are representative of boundary layer conditions. The SO2 removal displays a clear dependence on water vapour concentration, but this dependence is not linear across the range of [H2O] explored. At low [H2O] a strong dependence of SO2 removal on [H2O] is observed, while at higher [H2O] this dependence becomes much weaker. This is interpreted as being caused by the production of a variety of structurally (and hence chemically different SCIs in each of the systems studied, which displayed different rates of reaction with water and of unimolecular rearrangement or decomposition. The determined rate constants, k(SCI+H2O, for those SCIs that react primarily with H2O range from 4 to 310  ×  10−15 cm3 s−1. For those SCIs that predominantly react unimolecularly, determined rates range from 130 to 240 s−1. These values are in line with previous results for the (analogous stereo-specific SCI system of syn-/anti-CH3

  14. The atmospheric impacts of monoterpene ozonolysis on global stabilised Criegee intermediate budgets and SO2 oxidation: experiment, theory and modelling

    Newland, Mike J.; Rickard, Andrew R.; Sherwen, Tomás; Evans, Mathew J.; Vereecken, Luc; Muñoz, Amalia; Ródenas, Milagros; Bloss, William J.

    2018-05-01

    The gas-phase reaction of alkenes with ozone is known to produce stabilised Criegee intermediates (SCIs). These biradical/zwitterionic species have the potential to act as atmospheric oxidants for trace pollutants such as SO2, enhancing the formation of sulfate aerosol with impacts on air quality and health, radiative transfer and climate. However, the importance of this chemistry is uncertain as a consequence of limited understanding of the abundance and atmospheric fate of SCIs. In this work we apply experimental, theoretical and numerical modelling methods to quantify the atmospheric impacts, abundance and fate of the structurally diverse SCIs derived from the ozonolysis of monoterpenes, the second most abundant group of unsaturated hydrocarbons in the atmosphere. We have investigated the removal of SO2 by SCIs formed from the ozonolysis of three atmospherically important monoterpenes (α-pinene, β-pinene and limonene) in the presence of varying amounts of water vapour in large-scale simulation chamber experiments that are representative of boundary layer conditions. The SO2 removal displays a clear dependence on water vapour concentration, but this dependence is not linear across the range of [H2O] explored. At low [H2O] a strong dependence of SO2 removal on [H2O] is observed, while at higher [H2O] this dependence becomes much weaker. This is interpreted as being caused by the production of a variety of structurally (and hence chemically) different SCIs in each of the systems studied, which displayed different rates of reaction with water and of unimolecular rearrangement or decomposition. The determined rate constants, k(SCI+H2O), for those SCIs that react primarily with H2O range from 4 to 310 × 10-15 cm3 s-1. For those SCIs that predominantly react unimolecularly, determined rates range from 130 to 240 s-1. These values are in line with previous results for the (analogous) stereo-specific SCI system of syn-/anti-CH3CHOO. The experimental results are

  15. A global hybrid coupled model based on atmosphere-SST feedbacks

    Cimatoribus, Andrea A.; Drijfhout, Sybren S. [Royal Netherlands Meteorological Institute, De Bilt (Netherlands); Dijkstra, Henk A. [Utrecht University, Institute for Marine and Atmospheric Research Utrecht, Utrecht (Netherlands)

    2012-02-15

    A global hybrid coupled model is developed, with the aim of studying the effects of ocean-atmosphere feedbacks on the stability of the Atlantic meridional overturning circulation. The model includes a global ocean general circulation model and a statistical atmosphere model. The statistical atmosphere model is based on linear regressions of data from a fully coupled climate model on sea surface temperature both locally and hemispherically averaged, being the footprint of Atlantic meridional overturning variability. It provides dynamic boundary conditions to the ocean model for heat, freshwater and wind-stress. A basic but consistent representation of ocean-atmosphere feedbacks is captured in the hybrid coupled model and it is more than 10 times faster than the fully coupled climate model. The hybrid coupled model reaches a steady state with a climate close to the one of the fully coupled climate model, and the two models also have a similar response (collapse) of the Atlantic meridional overturning circulation to a freshwater hosing applied in the northern North Atlantic. (orig.)

  16. Preliminary assessment of the performance of a global coupled atmosphere-ocean model

    Cubasch, U.

    1990-01-01

    A low-resolution version of the ECMWF global atmosphere model has been coupled to a global ocean model developed at the Max Planck Institute in Hamburg. The atmosphere model is driven by the sea surface temperature and the ice thickness calculated by the ocean model, which, in return, is driven by the wind stress, the heat flux and the freshwater flux diagnosed by the atmosphere model. Even though each model reaches stationarity when integrated on its own, the coupling of both creates problems, since the fields calculated by each model are not consistent with the ones the other model has to have in order to stay stationary, because some of the fluxes are not balanced. In the coupled experiment the combined ocean-atmosphere system drifts toward a colder state. To counteract this problem, a flux correction has been applied which balances the mean biases of each model. This method almost eliminates the climate drift of the coupled model. Problems still arise over ice covered regions

  17. Global Dimming and Brightening Versus Atmospheric Column Transparency, Europe 1906-2007

    Ohvril, H.; Teral, H.; Neiman, L.; Kannel, Martin; Uustare, M.; Tee, M.; Russak, V.; Okulov, O.; Joeveer, A.; Kallis, A.; Ohvril, Tiiu; Terez, E.; Terez, G.; Gushchin, G.; Abakumova, G. M.; Gorbarenko, Ekaterina V.; Tsvetkov, Anatoly V.; Laulainen, Nels S.

    2009-05-09

    Multiannual changes in atmospheric column transparency based on measurements of direct solar radiation allow us to assess various tendencies in climatic changes. Variability of the atmospheric integral (broadband) transparency coefficient, calculated according to the Bouguer-Lambert law and transformed to a solar elevation of 30°, is used for two Russian locations, Pavlovsk and Moscow, one Ukrainian location, Feodosiya, and three Estonian locations, Tartu, Tõravere, and Tiirikoja, covering together a 102-year period, 1906–2007. The comparison of time series revealed significant parallelism. Multiannual trends demonstrate decrease in transparency during the postwar period until 1983/1984. The trend ends with a steep decline of transparency after a series of four volcanic eruptions of Soufriere (1979), Saint Helens (1980), Alaid (1981), and El Chichón (1982). From 1984/1985 to 1990 the atmosphere remarkably restored its clarity, which almost reached again the level of the 1960s. Following the eruption of Mount Pinatubo (June 1991), there was the most significant reduction in column transparency of the postwar period. However, from the end of 1990s, the atmosphere in all considered locations is characterized with high values of transparency. The clearing of the atmosphere (from 1993) evidently indicates a decrease in the content of aerosol particles and, besides the decline of volcanic activity, may therefore be also traced to environmentally oriented changes in technology (pollution prevention), to general industrial and agricultural decline in the territory of the former USSR and Eastern Europe after deep political changes in 1991, and in part to migration of some industries out of Europe.

  18. Global dimming and brightening versus atmospheric column transparency, Europe, 1906-2007

    Ohvril, Hanno; Teral, Hilda; Neiman, Lennart; Kannel, Martin; Uustare, Marika; Tee, Mati; Russak, Viivi; Okulov, Oleg; Jõeveer, Anne; Kallis, Ain; Ohvril, Tiiu; Terez, Edward I.; Terez, Galina A.; Gushchin, Gennady K.; Abakumova, Galina M.; Gorbarenko, Ekaterina V.; Tsvetkov, Anatoly V.; Laulainen, Nels

    2009-05-01

    Multiannual changes in atmospheric column transparency based on measurements of direct solar radiation allow us to assess various tendencies in climatic changes. Variability of the atmospheric integral (broadband) transparency coefficient, calculated according to the Bouguer-Lambert law and transformed to a solar elevation of 30°, is used for two Russian locations, Pavlovsk and Moscow, one Ukrainian location, Feodosiya, and three Estonian locations, Tartu, Tõravere, and Tiirikoja, covering together a 102-year period, 1906-2007. The comparison of time series revealed significant parallelism. Multiannual trends demonstrate decrease in transparency during the postwar period until 1983/1984. The trend ends with a steep decline of transparency after a series of four volcanic eruptions of Soufriere (1979), Saint Helens (1980), Alaid (1981), and El Chichón (1982). From 1984/1985 to 1990 the atmosphere remarkably restored its clarity, which almost reached again the level of the 1960s. Following the eruption of Mount Pinatubo (June 1991), there was the most significant reduction in column transparency of the postwar period. However, from the end of 1990s, the atmosphere in all considered locations is characterized with high values of transparency. The clearing of the atmosphere (from 1993) evidently indicates a decrease in the content of aerosol particles and, besides the decline of volcanic activity, may therefore be also traced to environmentally oriented changes in technology (pollution prevention), to general industrial and agricultural decline in the territory of the former USSR and Eastern Europe after deep political changes in 1991, and in part to migration of some industries out of Europe.

  19. Response of the global climate to changes in atmospheric chemical composition due to fossil fuel burning

    Hameed, S.; Cess, R. D.; Hogan, J. S.

    1980-01-01

    Recent modeling of atmospheric chemical processes (Logan et al, 1978; Hameed et al, 1979) suggests that tropospheric ozone and methane might significantly increase in the future as the result of increasing anthropogenic emissions of CO, NO(x), and CH4 due to fossil fuel burning. Since O3 and CH4 are both greenhouse gases, increases in their concentrations could augment global warming due to larger future amounts of atmospheric CO2. To test the possible climatic impact of changes in tropospheric chemical composition, a zonal energy-balance climate model has been combined with a vertically averaged tropospheric chemical model. The latter model includes all relevant chemical reactions which affect species derived from H2O, O2, CH4, and NO(x). The climate model correspondingly incorporates changes in the infrared heating of the surface-troposphere system resulting from chemically induced changes in tropospheric ozone and methane. This coupled climate-chemical model indicates that global climate is sensitive to changes in emissions of CO, NO(x) and CH4, and that future increases in these emissions could augment global warming due to increasing atmospheric CO2.

  20. Current and future levels of mercury atmospheric pollution on a global scale

    Pacyna, Jozef M.; Travnikov, Oleg; De Simone, Francesco; Hedgecock, Ian M.; Sundseth, Kyrre; Pacyna, Elisabeth G.; Steenhuisen, Frits; Pirrone, Nicola; Munthe, John; Kindbom, Karin

    2016-10-01

    An assessment of current and future emissions, air concentrations, and atmospheric deposition of mercury worldwide is presented on the basis of results obtained during the performance of the EU GMOS (Global Mercury Observation System) project. Emission estimates for mercury were prepared with the main goal of applying them in models to assess current (2013) and future (2035) air concentrations and atmospheric deposition of this contaminant. The combustion of fossil fuels (mainly coal) for energy and heat production in power plants and in industrial and residential boilers, as well as artisanal and small-scale gold mining, is one of the major anthropogenic sources of Hg emissions to the atmosphere at present. These sources account for about 37 and 25 % of the total anthropogenic Hg emissions globally, estimated to be about 2000 t. Emissions in Asian countries, particularly in China and India, dominate the total emissions of Hg. The current estimates of mercury emissions from natural processes (primary mercury emissions and re-emissions), including mercury depletion events, were estimated to be 5207 t year-1, which represents nearly 70 % of the global mercury emission budget. Oceans are the most important sources (36 %), followed by biomass burning (9 %). A comparison of the 2035 anthropogenic emissions estimated for three different scenarios with current anthropogenic emissions indicates a reduction of these emissions in 2035 up to 85 % for the best-case scenario. Two global chemical transport models (GLEMOS and ECHMERIT) have been used for the evaluation of future mercury pollution levels considering future emission scenarios. Projections of future changes in mercury deposition on a global scale simulated by these models for three anthropogenic emissions scenarios of 2035 indicate a decrease in up to 50 % deposition in the Northern Hemisphere and up to 35 % in Southern Hemisphere for the best-case scenario. The EU GMOS project has proved to be a very important

  1. Current and future levels of mercury atmospheric pollution on a global scale

    J. M. Pacyna

    2016-10-01

    Full Text Available An assessment of current and future emissions, air concentrations, and atmospheric deposition of mercury worldwide is presented on the basis of results obtained during the performance of the EU GMOS (Global Mercury Observation System project. Emission estimates for mercury were prepared with the main goal of applying them in models to assess current (2013 and future (2035 air concentrations and atmospheric deposition of this contaminant. The combustion of fossil fuels (mainly coal for energy and heat production in power plants and in industrial and residential boilers, as well as artisanal and small-scale gold mining, is one of the major anthropogenic sources of Hg emissions to the atmosphere at present. These sources account for about 37 and 25 % of the total anthropogenic Hg emissions globally, estimated to be about 2000 t. Emissions in Asian countries, particularly in China and India, dominate the total emissions of Hg. The current estimates of mercury emissions from natural processes (primary mercury emissions and re-emissions, including mercury depletion events, were estimated to be 5207 t year−1, which represents nearly 70 % of the global mercury emission budget. Oceans are the most important sources (36 %, followed by biomass burning (9 %. A comparison of the 2035 anthropogenic emissions estimated for three different scenarios with current anthropogenic emissions indicates a reduction of these emissions in 2035 up to 85 % for the best-case scenario. Two global chemical transport models (GLEMOS and ECHMERIT have been used for the evaluation of future mercury pollution levels considering future emission scenarios. Projections of future changes in mercury deposition on a global scale simulated by these models for three anthropogenic emissions scenarios of 2035 indicate a decrease in up to 50 % deposition in the Northern Hemisphere and up to 35 % in Southern Hemisphere for the best-case scenario. The EU GMOS project has

  2. The role of atmospheric nuclear explosions on the stagnation of global warming in the mid 20th century

    Fujii, Yoshiaki

    2011-04-01

    This study suggests that the cause of the stagnation in global warming in the mid 20th century was the atmospheric nuclear explosions detonated between 1945 and 1980. The estimated GST drop due to fine dust from the actual atmospheric nuclear explosions based on the published simulation results by other researchers (a single column model and Atmosphere-Ocean General Circulation Model) has served to explain the stagnation in global warming. Atmospheric nuclear explosions can be regarded as full-scale in situ tests for nuclear winter. The non-negligible amount of GST drop from the actual atmospheric explosions suggests that nuclear winter is not just a theory but has actually occurred, albeit on a small scale. The accuracy of the simulations of GST by IPCC would also be improved significantly by introducing the influence of fine dust from the actual atmospheric nuclear explosions into their climate models; thus, global warming behavior could be more accurately predicted.

  3. Atmospheric Carbon Dioxide and the Global Carbon Cycle: The Key Uncertainties

    Peng, T. H.; Post, W. M.; DeAngelis, D. L.; Dale, V. H.; Farrell, M. P.

    1987-12-01

    The biogeochemical cycling of carbon between its sources and sinks determines the rate of increase in atmospheric CO{sub 2} concentrations. The observed increase in atmospheric CO{sub 2} content is less than the estimated release from fossil fuel consumption and deforestation. This discrepancy can be explained by interactions between the atmosphere and other global carbon reservoirs such as the oceans, and the terrestrial biosphere including soils. Undoubtedly, the oceans have been the most important sinks for CO{sub 2} produced by man. But, the physical, chemical, and biological processes of oceans are complex and, therefore, credible estimates of CO{sub 2} uptake can probably only come from mathematical models. Unfortunately, one- and two-dimensional ocean models do not allow for enough CO{sub 2} uptake to accurately account for known releases. Thus, they produce higher concentrations of atmospheric CO{sub 2} than was historically the case. More complex three-dimensional models, while currently being developed, may make better use of existing tracer data than do one- and two-dimensional models and will also incorporate climate feedback effects to provide a more realistic view of ocean dynamics and CO{sub 2} fluxes. The instability of current models to estimate accurately oceanic uptake of CO{sub 2} creates one of the key uncertainties in predictions of atmospheric CO{sub 2} increases and climate responses over the next 100 to 200 years.

  4. A vegetation control on seasonal variations in global atmospheric mercury concentrations

    Jiskra, Martin; Sonke, Jeroen E.; Obrist, Daniel; Bieser, Johannes; Ebinghaus, Ralf; Myhre, Cathrine Lund; Pfaffhuber, Katrine Aspmo; Wängberg, Ingvar; Kyllönen, Katriina; Worthy, Doug; Martin, Lynwill G.; Labuschagne, Casper; Mkololo, Thumeka; Ramonet, Michel; Magand, Olivier; Dommergue, Aurélien

    2018-04-01

    Anthropogenic mercury emissions are transported through the atmosphere as gaseous elemental mercury (Hg(0)) before they are deposited to Earth's surface. Strong seasonality in atmospheric Hg(0) concentrations in the Northern Hemisphere has been explained by two factors: anthropogenic Hg(0) emissions are thought to peak in winter due to higher energy consumption, and atmospheric oxidation rates of Hg(0) are faster in summer. Oxidation-driven Hg(0) seasonality should be equally pronounced in the Southern Hemisphere, which is inconsistent with observations of constant year-round Hg(0) levels. Here, we assess the role of Hg(0) uptake by vegetation as an alternative mechanism for driving Hg(0) seasonality. We find that at terrestrial sites in the Northern Hemisphere, Hg(0) co-varies with CO2, which is known to exhibit a minimum in summer when CO2 is assimilated by vegetation. The amplitude of seasonal oscillations in the atmospheric Hg(0) concentration increases with latitude and is larger at inland terrestrial sites than coastal sites. Using satellite data, we find that the photosynthetic activity of vegetation correlates with Hg(0) levels at individual sites and across continents. We suggest that terrestrial vegetation acts as a global Hg(0) pump, which can contribute to seasonal variations of atmospheric Hg(0), and that decreasing Hg(0) levels in the Northern Hemisphere over the past 20 years can be partly attributed to increased terrestrial net primary production.

  5. Detection of traveling ionospheric disturbances induced by atmospheric gravity waves using the global positioning system

    Bassiri, Sassan; Hajj, George A.

    1993-01-01

    Natural and man-made events like earthquakes and nuclear explosions launch atmospheric gravity waves (AGW) into the atmosphere. Since the particle density decreases exponentially with height, the gravity waves increase exponentially in amplitude as they propagate toward the upper atmosphere and ionosphere. As atmospheric gravity waves approach the ionospheric heights, the neutral particles carried by gravity waves collide with electrons and ions, setting these particles in motion. This motion of charged particles manifests itself by wave-like fluctuations and disturbances that are known as traveling ionospheric disturbances (TID). The perturbation in the total electron content due to TID's is derived analytically from first principles. Using the tilted dipole magnetic field approximation and a Chapman layer distribution for the electron density, the variations of the total electron content versus the line-of-sight direction are numerically analyzed. The temporal variation associated with the total electron content measurements due to AGW's can be used as a means of detecting characteristics of the gravity waves. As an example, detection of tsunami generated earthquakes from their associated atmospheric gravity waves using the Global Positioning System is simulated.

  6. Atmospheric bulk deposition of polycyclic aromatic hydrocarbons in Shanghai: Temporal and spatial variation, and global comparison.

    Feng, Daolun; Liu, Ying; Gao, Yi; Zhou, Jinxing; Zheng, Lirong; Qiao, Gang; Ma, Liming; Lin, Zhifen; Grathwohl, Peter

    2017-11-01

    Atmospheric deposition leads to accumulation of atmospheric polycyclic aromatic hydrocarbons (PAHs) on urban surfaces and topsoils. To capture the inherent variability of atmospheric deposition of PAHs in Shanghai's urban agglomeration, 85 atmospheric bulk deposition samples and 7 surface soil samples were collected from seven sampling locations during 2012-2014. Total fluxes of 17 PAHs were 587-32,300 ng m -2 day -1 , with a geometric mean of 2600 ng m -2 day -1 . The deposition fluxes were categorized as moderate to high on a global scale. Phenanthrene, fluoranthene and pyrene were major contributors. The spatial distribution of deposition fluxes revealed the influence of urbanization/industrialization and the relevance of local emissions. Meteorological conditions and more heating demand in cold season lead to a significant increase of deposition rates. Atmospheric deposition is the principal pathway of PAHs input to topsoils and the annual deposition load in Shanghai amounts to ∼4.5 tons (0.7 kg km -2 ) with a range of 2.5-10 tons (0.4-1.6 kg km -2 ). Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Global emission inventory and atmospheric transport of black carbon. Evaluation of the associated exposure

    Wang, Rong

    2015-06-01

    This thesis presents research focusing on the improvement of high-resolution global black carbon (BC) emission inventory and application in assessing the population exposure to ambient BC. A particular focus of the thesis is on the construction of a high-resolution (both spatial and sectorial) fuel consumption database, which is used to develop the emission inventory of black carbon. Above all, the author updates the global emission inventory of black carbon, a resource subsequently used to study the atmospheric transport of black carbon over Asia with the help of a high-resolution nested model. The thesis demonstrates that spatial bias in fuel consumption and BC emissions can be reduced by means of the sub-national disaggregation approach. Using the inventory and nested model, ambient BC concentrations can be better validated against observations. Lastly, it provides a complete uncertainty analysis of global black carbon emissions, and this uncertainty is taken into account in the atmospheric modeling, helping to better understand the role of black carbon in regional and global air pollution.

  8. Changes on Mid-Latitude Cyclones due to Global Warming Simulated by a Global 20-km-mesh Atmospheric Model

    Miyamoto, K.

    2005-12-01

    I investigate how the intensity and the activity of mid-latitude cyclones change as a result of global warming, based on a time-slice experiment with a super-high resolution Atmospheric General Circulation Model (20-km mesh TL959L60 MRI/JMA AGCM). The model was developed by the RR2002 project "Development of Super High Resolution Global and Regional Climate Models" funded by the Japanese Ministry of Education, Culture, Sports, Science and Technology. In this context, I use a 10-year control simulation with the climatological SST and a 10-year time-slice global warming simulation using the SST anomalies derived from the SRES A1B scenario run with the MRI-CGCM2.3 (T42L30 atmosphere, 0.5-2.0 x 2.5 L23 ocean) corresponding to the end of the 21st century. I have analyzed the sea-level pressure field and the kinetic energy field of the wind at the 500 hPa pressure level associated with mid-latitude transients from October through April. According to a comparison of 10-day average fields between present and future in the North Pacific, some statistically significant changes are found in a warmer climate for the both of sea-level pressure and the kinetic energy fields. In particular, from late winter through early spring, the sea-level pressure decreases on many parts of the whole Pacific. The kinetic energy of the wind becomes higher on center of the basin. Therefore, I suppose the Aleutian Low is likely to settle in longer by about one month than the present. Hereafter, I plan to investigate what kind of phenomena may accompany the changes on mid-latitude transients.

  9. Determination of atmospheric parameters to estimate global radiation in areas of complex topography: Generation of global irradiation map

    Batlles, F.J.; Bosch, J.L. [Dpto. Fisica Aplicada, Universidad de Almeria, 04120 Almeria (Spain); Tovar-Pescador, J. [Dpto. Fisica, Universidad de Jaen, 23071 Jaen (Spain); Martinez-Durban, M. [Dpto. Ingenieria Lenguajes y Computacion, Universidad de Almeria, 04120 Almeria (Spain); Ortega, R. [Dpto. Edafologia y Quimica Agricola, Universidad de Almeria, 04120 Almeria (Spain); Miralles, I. [Dpto. Edafologia y Quimica Agricola, Universidad de Granada, 28071 Granada (Spain)

    2008-02-15

    Incoming shortwave solar radiation is an important parameter in environmental applications. A detailed spatial and temporal analysis of global solar radiation on the earth surface is needed in many applications, ranging from solar energy uses to the study of agricultural, forest and biological processes. At local scales, the topography is the most important factor in the distribution of solar radiation on the surface. The variability of the elevation, the surface orientation and the obstructions due to elevations are a source of great local differences in insolation and, consequently, in other variables as ground temperature. For this reason, several models based on GIS techniques have been recently developed, integrating topography to obtain the solar radiation on the surface. In this work, global radiation is analyzed with the Solar Analyst, a model implemented on ArcView, that computes the topographic parameters: altitude, latitude, slope and orientation (azimuth) and shadow effects. Solar Analyst uses as input parameters the diffuse fraction and the transmittance. These parameters are not usually available in radiometric networks in mountainous areas. In this work, a method to obtain both parameters from global radiation is proposed. Global radiation data obtained in two networks of radiometric stations is used: one located in Sierra Magina Natural Park (Spain) with 11 stations and another one located on the surroundings of Sierra Nevada Natural Park (Spain) with 14 stations. Daily solar irradiation is calculated from a digital terrain model (DTM), the daily diffuse fraction, K, and daily atmospheric transmittivity, {tau}. Results provided by the model have been compared with measured values. An overestimation for high elevations is observed, whereas low altitudes present underestimation. The best performance was also reported during summer months, and the worst results were obtained during winter. Finally, a yearly global solar irradiation map has been

  10. Joint Application of Concentrations and Isotopic Signatures to Investigate the Global Atmospheric Carbon Monoxide Budget: Inverse Modeling Approach

    Park, K.; Mak, J. E.; Emmons, L. K.

    2008-12-01

    Carbon monoxide is not only an important component for determining the atmospheric oxidizing capacity but also a key trace gas in the atmospheric chemistry of the Earth's background environment. The global CO cycle and its change are closely related to both the change of CO mixing ratio and the change of source strength. Previously, to estimate the global CO budget, most top-down estimation techniques have been applied the concentrations of CO solely. Since CO from certain sources has a unique isotopic signature, its isotopes provide additional information to constrain its sources. Thus, coupling the concentration and isotope fraction information enables to tightly constrain CO flux by its sources and allows better estimations on the global CO budget. MOZART4 (Model for Ozone And Related chemical Tracers), a 3-D global chemical transport model developed at NCAR, MPI for meteorology and NOAA/GFDL and is used to simulate the global CO concentration and its isotopic signature. Also, a tracer version of MOZART4 which tagged for C16O and C18O from each region and each source was developed to see their contributions to the atmosphere efficiently. Based on the nine-year-simulation results we analyze the influences of each source of CO to the isotopic signature and the concentration. Especially, the evaluations are focused on the oxygen isotope of CO (δ18O), which has not been extensively studied yet. To validate the model performance, CO concentrations and isotopic signatures measured from MPI, NIWA and our lab are compared to the modeled results. The MOZART4 reproduced observational data fairly well; especially in mid to high latitude northern hemisphere. Bayesian inversion techniques have been used to estimate the global CO budget with combining observed and modeled CO concentration. However, previous studies show significant differences in their estimations on CO source strengths. Because, in addition to the CO mixing ratio, isotopic signatures are independent tracers

  11. Global Warming, New Climate, New Atmospheric Circulation and New Water Cycle in North Africa

    Karrouk, M. S.

    2017-12-01

    Global warming has now reached the energetic phase of H2O's return to the ground after the saturation of the atmosphere in evaporation since the 80s and 90s of the last century, which were characterized by severe droughts, mainly in Africa.This phase is the result of the accumulation of thermal energy exchanges in the Earth-Ocean-Atmosphere system that resulted in the thrust reversal of the energy balance toward the poles. This situation is characterized by a new thermal distribution: above the ocean, the situation is more in surplus compared to the mainland, or even opposite when the balance is negative on the land, and in the atmosphere, warm thermal advection easily reach the North Pole (planetary crests), as well as cold advection push deep into North Africa and the Gulf of Mexico (planetary valleys: Polar Vortex).This "New Ground Energy Balance" establishes a "New Meridian Atmospheric Circulation (MAC)" with an undulating character throughout the year, including the winter characterized by intense latitudinal very active energy exchanges between the surplus areas (tropical) and the deficit (polar) on the one hand, and the atmosphere, the ocean and the continent on the other.The excess radiation balance increases the potential evaporation of the atmosphere and provides a new geographical distribution of Moisture and Water worldwide: the excess water vapor is easily converted by cold advection (Polar Vortex) to heavy rains that cause floods or snow storms that paralyze the normal functioning of human activities, which creates many difficulties for users and leaves damage and casualties, but ensures water availability missing since a long time in many parts of the world, in Africa, Europe and America.The new thermal distribution reorganizes the geography of atmospheric pressure: the ocean energy concentration is transmitted directly to the atmosphere, and the excess torque is pushed northward. The Azores anticyclone is strengthened and is a global lock by the

  12. Daily and 3-hourly variability in global fire emissions and consequences for atmospheric model predictions of carbon monoxide

    Mu, M.; Randerson, J.T; van der Werf, G.R.; Giglio, L.; Kasibhatla, P.; Morton, D.; Collatz, G.J.; DeFries, R.S.; Hyer, E.J.; Prins, E.M.; Griffith, D.; Wunch, D.; Toon, G.C.; Sherlock, V.; Wennberg, P.O.

    2011-01-01

    Attribution of the causes of atmospheric trace gas and aerosol variability often requires the use of high resolution time series of anthropogenic and natural emissions inventories. Here we developed an approach for representing synoptic-and diurnal-scale temporal variability in fire emissions for

  13. Impact of bulk atmospheric motion on local and global containment heat transfer

    Green, J.A.; Almenas, K.

    1995-01-01

    Local and global correlations for condensing energy transfer in the presence of noncondensable gases in a containment facility have been evaluated. The database employed stems from the E11.2 and E11.4 tests conducted at the German HDR facility. The HDR containment is a 11060-ml, 60-m-high decommissioned light water reactor. The tests simulated long-term (up to 56 h) accident conditions. Numerous instrumented structural blocks (concrete and lead) were located throughout the containment to provide detailed local heat transfer measurements. These data represent what is probably the most extensive database of integral energy transfer measurements available. It is well established that the major resistance to condensation heat transfer in the presence of noncondensable gases is a gaseous boundary layer that builds up in front of the condensing surface. Correlations that seek to model heat transfer for these conditions should depend on parameters that most strongly determine the buildup and thickness of this boundary layer. Two of the most important parameters are the vapor/noncondensable concentration ratio and the local atmospheric motion. Secondary parameters include the atmosphere-to-surface temperature difference, the pressure, and condensing surface properties. The HDR tests are unique in terms of the quantity and variety of instrumentation employed. However, one of the most important parameters, the local bulk atmospheric velocity, is inherently difficult to measure, and only fragmentary measurements are available even in the HDR data-base. A detailed analysis of these data is presented by Green. This study uses statistical methods to evaluate local and global empirical correlations that do not include the atmospheric velocity. The magnitude of the differences between the correlations emphasizes the importance of the local atmospheric velocity and serves to illustrate the accuracy limits of correlations that neglect this essential parameter

  14. Effects of trace of nitrogen on the helium atmospheric pressure plasma jet interacting with a dielectric substrate

    Ning, Wenjun; Dai, Dong; Zhang, Yuhui; Han, Yongxia; Li, Licheng

    2018-03-01

    Experimental observations and simulation results regarding a pure He atmospheric pressure plasma jet (APPJ) and He  +  N2 APPJs interacting with a downstream dielectric substrate are presented in this paper. Experiments utilizing spatial-temporal imaging show that, in the case of the pure He APPJ, an annular plasma-substrate interaction pattern is formed. With the introduction of N2, the plasma is more uniformly distributed on the substrate surface, appearing a solid interaction pattern. The experimental measurements indicate 0.5% N2 mixture is the optimal condition to achieve the most intense discharge, while the plasma-substrate contact area is slightly reduced by 6.1% in comparison to that of the pure He APPJ. A 2D self-consistent fluid model is constructed to provide insights into the role of the addition of trace of N2 on the discharge dynamics. The discharge morphologies predicated by the model is in principle consistent with the experimental observations. The simulation reveals that the conversion from the annular plasma-substrate interaction pattern to the solid one is attributed to the synthetic effect of the addition of N2 and the presentence of the substrate acting as the cathode to enhance the local electric field. In the solid interaction pattern, the Penning ionization makes a significant contribution to the surface discharge, especially in the afterglow region. The dominant positive ions (N2+ and N4+ ) and the reactive oxygen and nitrogen species including O and N gain remarkable increment in the flux intensity to the central surface, which merits great application potential.

  15. Spatial and temporal variation in domestic biofuel consumption rates and patterns in Zimbabwe: implications for atmospheric trace gas emission

    Ludwig, J.; Andreae, M.O.; Helas, G.; Marufu, L.; University of Utrecht; Lelieveld, J.

    1999-01-01

    An ecologically nationwide and all-year-round domestic biofuel consumption study was conducted in Zimbabwe from January 1996 to March 1997. The study aimed at (a) establishing the determinants and magnitudes of spatial and temporal variations in biofuel consumption rates, (b) estimating the overall mean national rural and urban consumption rates, and (c) estimating the contribution of domestic biomass burning in Zimbabwe to the emission of atmospheric trace gases. The main source of spatial variation in biofuel consumption rates was found to be settlement type (rural or urban). Within a settlement type, per capita consumption rates varied in time and space with household size, ambient temperature, and physical availability. In rural areas wood and agricultural residues were consumed at national average rates of 1.3±0.2 and 0.07±0.01 tonnes capita -1 year -1 , respectively. In urban centres wood was consumed at an average rate of 0.4±0.26 tonnes capita -1 year -1 . These consumption rates translate into emission outputs from Zimbabwe of 4.6 Tg CO 2 -C year -1 , 0.4 Tg CO-C year -1 , 5.3 Gg NO-N year -1 , 14.5 Gg CH 4 -C year -1 , 24.2 Gg NMHC-C year -1 , 2.9 Gg organic acid-C year -1 (formic and acetic acids) and 48.4 Gg aerosol-C year -1 . For CO 2 , CO, and NO, these domestic biofuel emissions represent 41±6%, 67±6%, and 8±1%, respectively, of the total output of all sources evaluated and documented in Zimbabwe to date. This means that of the studied sources, domestic biomass burning is the major source of CO 2 and CO emission in Zimbabwe

  16. The bark of the branches of holm oak (Quercus ilex L.) for a retrospective study of trace elements in the atmosphere

    Drava, Giuliana; Brignole, Daniele; Giordani, Paolo; Minganti, Vincenzo

    2017-01-01

    Tree bark has proved to be a useful bioindicator for trace elements in the atmosphere, however it reflects an exposure occurring during an unidentified period of time, so it provides spatial information about the distribution of contaminants in a certain area, but it cannot be used to detect temporal changes or trends, which is an important achievement in environmental studies. In order to obtain information about a known period of time, the bark collected from the annual segments of tree branches can be used, allowing analyses going back 10–15 years with annual resolution. In the present study, the concentrations of As, Cd, Co, Cu, Fe, Mn, Ni, Pb, V and Zn were measured by atomic emission spectrometry in a series of samples covering the period from 2001 to 2013 in an urban environment. Downward time trends were significant for Cd, Pb and Zn. The only trace element showing an upward time trend was V. The concentrations of the remaining six trace elements were constant over time, showing that their presence in bark is not simply proportional to the duration of exposure. This approach, which is simple, reliable and widely applicable at a low cost, allows the “a posteriori” reconstruction of atmospheric trace element deposition when or where no monitoring programme is in progress and no other natural archives are available. - Highlights: • Branch bark allows the historical reconstruction of atmospheric trace elements. • This approach is simple, reliable, widely applicable and “a posteriori”. • Downward time trends were found for Cd, Pb and Zn; upward trend for V.

  17. The bark of the branches of holm oak (Quercus ilex L.) for a retrospective study of trace elements in the atmosphere

    Drava, Giuliana, E-mail: drava@difar.unige.it; Brignole, Daniele; Giordani, Paolo; Minganti, Vincenzo

    2017-04-15

    Tree bark has proved to be a useful bioindicator for trace elements in the atmosphere, however it reflects an exposure occurring during an unidentified period of time, so it provides spatial information about the distribution of contaminants in a certain area, but it cannot be used to detect temporal changes or trends, which is an important achievement in environmental studies. In order to obtain information about a known period of time, the bark collected from the annual segments of tree branches can be used, allowing analyses going back 10–15 years with annual resolution. In the present study, the concentrations of As, Cd, Co, Cu, Fe, Mn, Ni, Pb, V and Zn were measured by atomic emission spectrometry in a series of samples covering the period from 2001 to 2013 in an urban environment. Downward time trends were significant for Cd, Pb and Zn. The only trace element showing an upward time trend was V. The concentrations of the remaining six trace elements were constant over time, showing that their presence in bark is not simply proportional to the duration of exposure. This approach, which is simple, reliable and widely applicable at a low cost, allows the “a posteriori” reconstruction of atmospheric trace element deposition when or where no monitoring programme is in progress and no other natural archives are available. - Highlights: • Branch bark allows the historical reconstruction of atmospheric trace elements. • This approach is simple, reliable, widely applicable and “a posteriori”. • Downward time trends were found for Cd, Pb and Zn; upward trend for V.

  18. Atmospheric input of trace substances into the North Sea and the Baltic Sea. Stoffeintrag in Nord- und Ostsee ueber die Atmosphaere

    Grassl, H; Eppel, D; Petersen, G; Schneider, B; Weber, H; Gandrass, J; Reinhardt, K H; Wodarg, D; Fliess, J

    1989-01-01

    The concentrations and deposition of atmospheric trace substances were measured over the Kiel Bight and the Southern North Sea. A European longrange-transport model was used to calculate the atmospheric concentrations of trace metals and their deposition into the North Sea and the Baltic Sea. Natural and anthropogenic emitted element concentrations could be separated definitely by the measurements, and preferred transport directions of anthropogenic contributions could be found. Concentrations measured over the North Sea could be related to the surrounding emission areas by airmass trajectory analyses. The deposition measurements show that the main removal process is due to deposition by precipitation. Calculated and measured concentrations at several receptor points agreed well. The model results confirm the dominating role of wet deposition. It could be shown that extrapolations from measurements at coastal stations to the whole sea area tend to overestimate the total deposition into North Sea and Baltic Sea. (orig.) With 78 refs., 26 tabs., 85 figs.

  19. Natural gas fugitive emissions rates constrained by global atmospheric methane and ethane.

    Schwietzke, Stefan; Griffin, W Michael; Matthews, H Scott; Bruhwiler, Lori M P

    2014-07-15

    The amount of methane emissions released by the natural gas (NG) industry is a critical and uncertain value for various industry and policy decisions, such as for determining the climate implications of using NG over coal. Previous studies have estimated fugitive emissions rates (FER)--the fraction of produced NG (mainly methane and ethane) escaped to the atmosphere--between 1 and 9%. Most of these studies rely on few and outdated measurements, and some may represent only temporal/regional NG industry snapshots. This study estimates NG industry representative FER using global atmospheric methane and ethane measurements over three decades, and literature ranges of (i) tracer gas atmospheric lifetimes, (ii) non-NG source estimates, and (iii) fossil fuel fugitive gas hydrocarbon compositions. The modeling suggests an upper bound global average FER of 5% during 2006-2011, and a most likely FER of 2-4% since 2000, trending downward. These results do not account for highly uncertain natural hydrocarbon seepage, which could lower the FER. Further emissions reductions by the NG industry may be needed to ensure climate benefits over coal during the next few decades.

  20. January and July global distributions of atmospheric heating for 1986, 1987, and 1988

    Schaack, Todd K.; Johnson, Donald R.

    1994-01-01

    Three-dimensional global distributions of atmospheric heating are estimated for January and July of the 3-year period 1986-88 from the European Center for Medium Weather Forecasts (ECMWF) Tropical Ocean Global Atmosphere (TOGA) assimilated datasets. Emphasis is placed on the interseasonal and interannual variability of heating both locally and regionally. Large fluctuations in the magnitude of heating and the disposition of maxima/minima in the Tropics occur over the 3-year period. This variability, which is largely in accord with anomalous precipitation expected during the El Nino-Southern Oscillation (ENSO) cycle, appears realistic. In both January and July, interannual differences of 1.0-1.5 K/day in the vertically averaged heating occur over the tropical Pacific. These interannual regional differences are substantial in comparison with maximum monthly averaged heating rates of 2.0-2.5 K/day. In the extratropics, the most prominent interannual variability occurs along the wintertime North Atlantic cyclone track. Vertical profiles of heating from selected regions also reveal large interannual variability. Clearly evident is the modulation of the heating within tropical regions of deep moist convection associated with the evolution of the ENSO cycle. The heating integrated over continental and oceanic basins emphasizes the impact of land and ocean surfaces on atmospheric energy balance and depicts marked interseasonal and interannual large-scale variability.

  1. A global high-resolution model experiment on the predictability of the atmosphere

    Judt, F.

    2016-12-01

    Forecasting high-impact weather phenomena is one of the most important aspects of numerical weather prediction (NWP). Over the last couple of years, a tremendous increase in computing power has facilitated the advent of global convection-resolving NWP models, which allow for the seamless prediction of weather from local to planetary scales. Unfortunately, the predictability of specific meteorological phenomena in these models is not very well known. This raises questions about which forecast problems are potentially tractable, and what is the value of global convection-resolving model predictions for the end user. To address this issue, we use the Yellowstone supercomputer to conduct a global high-resolution predictability experiment with the recently developed Model for Prediction Across Scales (MPAS). The computing power of Yellowstone enables the model to run at a globally uniform resolution of 4 km with 55 vertical levels (>2 billion grid cells). These simulations, which require 3 million core-hours for the entire experiment, allow for the explicit treatment of organized deep moist convection (i.e., thunderstorm systems). Resolving organized deep moist convection alleviates grave limitations of previous predictability studies, which either used high-resolution limited-area models or global simulations with coarser grids and cumulus parameterization. By computing the error growth characteristics in a set of "identical twin" model runs, the experiment will clarify the intrinsic predictability limits of atmospheric phenomena on a wide range of scales, from severe thunderstorms to global-scale wind patterns that affect the distribution of tropical rainfall. Although a major task by itself, this study is intended to be exploratory work for a future predictability experiment going beyond of what has so far been feasible. We hope to use CISL's new Cheyenne supercomputer to conduct a similar predictability experiments on a global mesh with 1-2 km resolution. This

  2. The global atmospheric electric circuit and its effects on cloud microphysics

    Tinsley, B A

    2008-01-01

    This review is an overview of progress in understanding the theory and observation of the global atmospheric electric circuit, with the focus on its dc aspects, and its short and long term variability. The effects of the downward ionosphere-earth current density, J z , on cloud microphysics, with its variability as an explanation for small observed changes in weather and climate, will also be reviewed. The global circuit shows responses to external as well as internal forcing. External forcing arises from changes in the distribution of conductivity due to changes in the cosmic ray flux and other energetic space particle fluxes, and at high magnetic latitudes from solar wind electric fields. Internal forcing arises from changes in the generators and changes in volcanic and anthropogenic aerosols in the troposphere and stratosphere. All these result in spatial and temporal variation in J z . Variations in J z affect the production of space charge in layer clouds, with the charges being transferred to droplets and aerosol particles. New observations and new analyses are consistent with non-negligible effects of the charges on the microphysics of such clouds. Observed effects are small, but of high statistical significance for cloud cover and precipitation changes, with resulting atmospheric temperature, pressure and dynamics changes. These effects are detectable on the day-to-day timescale for repeated J z changes of order 10%, and are thus second order electrical effects. The implicit first order effects have not, as yet, been incorporated into basic cloud and aerosol physics. Long term (multidecadal through millennial) global circuit changes, due to solar activity modulating the galactic cosmic ray flux, are an order of magnitude greater at high latitudes and in the stratosphere, as can be inferred from geological cosmogenic isotope records. Proxies for climate change in the same stratified depositories show strong correlations of climate with the inferred global

  3. The global atmospheric electric circuit and its effects on cloud microphysics

    Tinsley, B A [Physics Department and Center for Space Sciences, WT15, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX, 75080-3021 (United States)], E-mail: Tinsley@UTDallas.edu

    2008-06-15

    This review is an overview of progress in understanding the theory and observation of the global atmospheric electric circuit, with the focus on its dc aspects, and its short and long term variability. The effects of the downward ionosphere-earth current density, J{sub z}, on cloud microphysics, with its variability as an explanation for small observed changes in weather and climate, will also be reviewed. The global circuit shows responses to external as well as internal forcing. External forcing arises from changes in the distribution of conductivity due to changes in the cosmic ray flux and other energetic space particle fluxes, and at high magnetic latitudes from solar wind electric fields. Internal forcing arises from changes in the generators and changes in volcanic and anthropogenic aerosols in the troposphere and stratosphere. All these result in spatial and temporal variation in J{sub z}. Variations in J{sub z} affect the production of space charge in layer clouds, with the charges being transferred to droplets and aerosol particles. New observations and new analyses are consistent with non-negligible effects of the charges on the microphysics of such clouds. Observed effects are small, but of high statistical significance for cloud cover and precipitation changes, with resulting atmospheric temperature, pressure and dynamics changes. These effects are detectable on the day-to-day timescale for repeated J{sub z} changes of order 10%, and are thus second order electrical effects. The implicit first order effects have not, as yet, been incorporated into basic cloud and aerosol physics. Long term (multidecadal through millennial) global circuit changes, due to solar activity modulating the galactic cosmic ray flux, are an order of magnitude greater at high latitudes and in the stratosphere, as can be inferred from geological cosmogenic isotope records. Proxies for climate change in the same stratified depositories show strong correlations of climate with the

  4. Mapping the spatial distribution of global anthropogenic mercury atmospheric emission inventories

    Wilson, Simon J.; Steenhuisen, Frits; Pacyna, Jozef M.; Pacyna, Elisabeth G.

    This paper describes the procedures employed to spatially distribute global inventories of anthropogenic emissions of mercury to the atmosphere, prepared by Pacyna, E.G., Pacyna, J.M., Steenhuisen, F., Wilson, S. [2006. Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment, this issue, doi:10.1016/j.atmosenv.2006.03.041], and briefly discusses the results of this work. A new spatially distributed global emission inventory for the (nominal) year 2000, and a revised version of the 1995 inventory are presented. Emissions estimates for total mercury and major species groups are distributed within latitude/longitude-based grids with a resolution of 1×1 and 0.5×0.5°. A key component in the spatial distribution procedure is the use of population distribution as a surrogate parameter to distribute emissions from sources that cannot be accurately geographically located. In this connection, new gridded population datasets were prepared, based on the CEISIN GPW3 datasets (CIESIN, 2004. Gridded Population of the World (GPW), Version 3. Center for International Earth Science Information Network (CIESIN), Columbia University and Centro Internacional de Agricultura Tropical (CIAT). GPW3 data are available at http://beta.sedac.ciesin.columbia.edu/gpw/index.jsp). The spatially distributed emissions inventories and population datasets prepared in the course of this work are available on the Internet at www.amap.no/Resources/HgEmissions/

  5. Characterizing the Upper Atmosphere of Titan using the Titan Global Ionosphere- Thermosphere Model: Nitrogen and Methane.

    Bell, J. M.; Waite, J. H.; Bar-Nun, A.; Bougher, S. W.; Ridley, A. J.; Magee, B.

    2008-12-01

    Recently, a great deal of effort has been put forth to explain the Cassini Ion-Neutral Mass Spectrometer (Waite et al [2004]) in-situ measurements of Titan's upper atmosphere (e.g. Muller-Wodarg [2008], Strobel [2008], Yelle et al [2008]). Currently, the community seems to agree that large amounts of CH4 are escaping from Titan's upper atmosphere at a rate of roughly 2.0 x 1027 molecules of CH4/s (3.33 x 1028 amu/s), representing a significant mass source to the Kronian Magnetosphere. However, such large escape fluxes from Titan are currently not corroborated by measurements onboard the Cassini Spacecraft. Thus, we posit another potential scenario: Aerosol depletion of atmospheric methane. Using the three-dimensional Titan Global Ionosphere-Thermosphere Model (T-GITM) (Bell et al [2008]), we explore the possible removal mechanisms of atmospheric gaseous constituents by these aerosols. Titan simulations are directly compared against Cassini Ion-Neutral Mass Spectrometer in-situ densities of N2 and CH4. From this work, we can then compare and contrast this aerosol depletion scenario against the currently posited hydrodynamic escape scenario, illustrating the merits and shortcomings of both.

  6. Atmospheric evidence for a global secular increase in carbon isotopic discrimination of land photosynthesis

    Keeling, Ralph F.; Graven, Heather D.; Welp, Lisa R.; Resplandy, Laure; Bi, Jian; Piper, Stephen C.; Sun, Ying; Bollenbacher, Alane; Meijer, Harro A. J.

    2017-09-01

    A decrease in the 13C/12C ratio of atmospheric CO2 has been documented by direct observations since 1978 and from ice core measurements since the industrial revolution. This decrease, known as the 13C-Suess effect, is driven primarily by the input of fossil fuel-derived CO2 but is also sensitive to land and ocean carbon cycling and uptake. Using updated records, we show that no plausible combination of sources and sinks of CO2 from fossil fuel, land, and oceans can explain the observed 13C-Suess effect unless an increase has occurred in the 13C/12C isotopic discrimination of land photosynthesis. A trend toward greater discrimination under higher CO2 levels is broadly consistent with tree ring studies over the past century, with field and chamber experiments, and with geological records of C3 plants at times of altered atmospheric CO2, but increasing discrimination has not previously been included in studies of long-term atmospheric 13C/12C measurements. We further show that the inferred discrimination increase of 0.014 ± 0.007‰ ppm-1 is largely explained by photorespiratory and mesophyll effects. This result implies that, at the global scale, land plants have regulated their stomatal conductance so as to allow the CO2 partial pressure within stomatal cavities and their intrinsic water use efficiency to increase in nearly constant proportion to the rise in atmospheric CO2 concentration.

  7. SiB3 Modeled Global 1-degree Hourly Biosphere-Atmosphere Carbon Flux, 1998-2006

    National Aeronautics and Space Administration — The Simple Biosphere Model, Version 3 (SiB3) was used to produce a global data set of hourly carbon fluxes between the atmosphere and the terrestrial biosphere for...

  8. HURRICANE AND SEVERE STORM SENTINEL (HS3) GLOBAL HAWK ADVANCED VERTICAL ATMOSPHERIC PROFILING SYSTEM (AVAPS) DROPSONDE SYSTEM V2

    National Aeronautics and Space Administration — The Hurricane and Severe Storm Sentinel (HS3) Global Hawk Advanced Vertical Atmospheric Profiling System (AVAPS) Dropsonde System dataset was collected by the...

  9. Development and characterization of food-grade tracers for the global grain tracing and recall system.

    Lee, Kyung-Min; Armstrong, Paul R; Thomasson, J Alex; Sui, Ruixiu; Casada, Mark; Herrman, Timothy J

    2010-10-27

    Tracing grain from the farm to its final processing destination as it moves through multiple grain-handling systems, storage bins, and bulk carriers presents numerous challenges to existing record-keeping systems. This study examines the suitability of coded caplets to trace grain, in particular, to evaluate methodology to test tracers' ability to withstand the rigors of a commercial grain handling and storage systems as defined by physical properties using measurement technology commonly applied to assess grain hardness and end-use properties. Three types of tracers to dispense into bulk grains for tracing the grain back to its field of origin were developed using three food-grade substances [processed sugar, pregelatinized starch, and silicified microcrystalline cellulose (SMCC)] as a major component in formulations. Due to a different functionality of formulations, the manufacturing process conditions varied for each tracer type, resulting in unique variations in surface roughness, weight, dimensions, and physical and spectroscopic properties before and after coating. The applied two types of coating [pregelatinized starch and hydroxypropylmethylcellulose (HPMC)] using an aqueous coating system containing appropriate plasticizers showed uniform coverage and clear coating. Coating appeared to act as a barrier against moisture penetration, to protect against mechanical damage of the surface of the tracers, and to improve the mechanical strength of tracers. The results of analysis of variance (ANOVA) tests showed the type of tracer, coating material, conditioning time, and a theoretical weight gain significantly influenced the morphological and physical properties of tracers. Optimization of these factors needs to be pursued to produce desirable tracers with consistent quality and performance when they flow with bulk grains throughout the grain marketing channels.

  10. COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT

    Prusa, Joseph

    2012-05-08

    This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAG's advanced dynamics core with the physics of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer- reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited.

  11. A global perspective on atmospheric blocking using GPS radio occultation – one decade of observations

    L. Brunner

    2017-12-01

    Full Text Available Atmospheric blocking represents a weather pattern where a stationary high-pressure system weakens or reverses the climatological westerly flow at mid-latitudes for up to several weeks. It is closely connected to strong anomalies in key atmospheric variables such as geopotential height, temperature, and humidity. Here we provide, for the first time, a comprehensive, global perspective on atmospheric blocking and related impacts by using an observation-based data set from Global Positioning System (GPS radio occultation (RO from 2006 to 2016. The main blocking regions in both hemispheres and seasonal variations are found to be represented well in RO data. The effect of blocking on vertically resolved temperature and humidity anomalies in the troposphere and lower stratosphere is investigated for blocking regions in the Northern and Southern hemispheres, respectively. We find a statistically significant correlation of blocking with positive temperature anomalies, exceeding 3 K in the troposphere, and a reversal above the tropopause with negative temperature anomalies below −3 K in the lower stratosphere. Specific humidity is positively correlated with temperature throughout the troposphere with larger anomalies revealed in the Southern Hemisphere. At the eastern and equatorward side of the investigated blocking regions, a band of tropospheric cold anomalies reveals advection of cold air by anticyclonic motion around blocking highs, which is less distinct in the Southern Hemisphere due to stronger zonal flow. We find GPS RO to be a promising new data set for blocking research that gives insight into the vertical atmospheric structure, especially in light of the expected increase in data coverage that future missions will provide.

  12. Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions

    Yanxu Zhang,; Daniel J. Jacob,; Hannah M. Horowitz,; Long Chen,; Helen M. Amos,; Krabbenhoft, David P.; Franz Slemr,; Vincent L. St. Louis,; Elsie M. Sunderland,

    2015-01-01

    Observations of elemental mercury (Hg0) at sites in North America and Europe show large decreases (∼1–2% y−1) from 1990 to present. Observations in background northern hemisphere air, including Mauna Loa Observatory (Hawaii) and CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) aircraft flights, show weaker decreases (inventories indicating flat or increasing emissions over that period. However, the inventories have three major flaws: (i) they do not account for the decline in atmospheric release of Hg from commercial products; (ii) they are biased in their estimate of artisanal and small-scale gold mining emissions; and (iii) they do not properly account for the change in Hg0/HgII speciation of emissions from coal-fired utilities after implementation of emission controls targeted at SO2 and NOx. We construct an improved global emission inventory for the period 1990 to 2010 accounting for the above factors and find a 20% decrease in total Hg emissions and a 30% decrease in anthropogenic Hg0 emissions, with much larger decreases in North America and Europe offsetting the effect of increasing emissions in Asia. Implementation of our inventory in a global 3D atmospheric Hg simulation [GEOS-Chem (Goddard Earth Observing System-Chemistry)] coupled to land and ocean reservoirs reproduces the observed large-scale trends in atmospheric Hg0 concentrations and in HgII wet deposition. The large trends observed in North America and Europe reflect the phase-out of Hg from commercial products as well as the cobenefit from SO2 and NOx emission controls on coal-fired utilities.

  13. Global Effects of Superparameterization on Hydrothermal Land-Atmosphere Coupling on Multiple Timescales

    Qin, Hongchen; Pritchard, Michael S.; Kooperman, Gabriel J.; Parishani, Hossein

    2018-02-01

    Many conventional General Circulation Models (GCMs) in the Global Land-Atmosphere Coupling Experiment (GLACE) tend to produce what is now recognized as overly strong land-atmosphere (L-A) coupling. We investigate the effects of cloud Superparameterization (SP) on L-A coupling on timescales beyond diurnal where it has been recently shown to have a favorable muting effect hydrologically. Using the Community Atmosphere Model v3.5 (CAM3.5) and its Superparameterized counterpart SPCAM3.5, we conducted soil moisture interference experiments following the GLACE and Atmospheric Model Intercomparison Project (AMIP) protocols. The results show that, on weekly-to-subseasonal timescales, SP also mutes hydrologic L-A coupling. This is detectable globally, and happens through the evapotranspiration-precipitation segment. But on seasonal timescales, SP does not exhibit detectable effects on hydrologic L-A coupling. Two robust regional effects of SP on thermal L-A coupling have also been explored. Over the Arabian Peninsula, SP reduces thermal L-A coupling through a straightforward control by mean rainfall reduction. More counterintuitively, over the Southwestern US and Northern Mexico, SP enhances the thermal L-A coupling in a way that is independent of rainfall and soil moisture. This signal is associated with a systematic and previously unrecognized effect of SP that produces an amplified Bowen ratio, and is detectable in multiple SP model versions and experiment designs. In addition to amplifying the present-day Bowen ratio, SP is found to amplify the climate sensitivity of Bowen ratio as well, which likely plays a role in influencing climate change predictions at the L-A interface.

  14. New Constraints on Terrestrial Surface-Atmosphere Fluxes of Gaseous Elemental Mercury Using a Global Database.

    Agnan, Yannick; Le Dantec, Théo; Moore, Christopher W; Edwards, Grant C; Obrist, Daniel

    2016-01-19

    Despite 30 years of study, gaseous elemental mercury (Hg(0)) exchange magnitude and controls between terrestrial surfaces and the atmosphere still remain uncertain. We compiled data from 132 studies, including 1290 reported fluxes from more than 200,000 individual measurements, into a database to statistically examine flux magnitudes and controls. We found that fluxes were unevenly distributed, both spatially and temporally, with strong biases toward Hg-enriched sites, daytime and summertime measurements. Fluxes at Hg-enriched sites were positively correlated with substrate concentrations, but this was absent at background sites. Median fluxes over litter- and snow-covered soils were lower than over bare soils, and chamber measurements showed higher emission compared to micrometeorological measurements. Due to low spatial extent, estimated emissions from Hg-enriched areas (217 Mg·a(-1)) were lower than previous estimates. Globally, areas with enhanced atmospheric Hg(0) levels (particularly East Asia) showed an emerging importance of Hg(0) emissions accounting for half of the total global emissions estimated at 607 Mg·a(-1), although with a large uncertainty range (-513 to 1353 Mg·a(-1) [range of 37.5th and 62.5th percentiles]). The largest uncertainties in Hg(0) fluxes stem from forests (-513 to 1353 Mg·a(-1) [range of 37.5th and 62.5th percentiles]), largely driven by a shortage of whole-ecosystem fluxes and uncertain contributions of leaf-atmosphere exchanges, questioning to what degree ecosystems are net sinks or sources of atmospheric Hg(0).

  15. Global and exponential attractors of the three dimensional viscous primitive equations of large-scale moist atmosphere

    You, Bo; Li, Fang

    2016-01-01

    This paper is concerned with the long-time behavior of solutions for the three dimensional viscous primitive equations of large-scale moist atmosphere. We prove the existence of a global attractor for the three dimensional viscous primitive equations of large-scale moist atmosphere by asymptotic a priori estimate and construct an exponential attractor by using the smoothing property of the semigroup generated by the three dimensional viscous primitive equations of large-scale moist atmosphere...

  16. Global observations and modeling of atmosphere-surface exchange of elemental mercury: a critical review

    Zhu, Wei; Lin, Che-Jen; Wang, Xun; Sommar, Jonas; Fu, Xuewu; Feng, Xinbin

    2016-04-01

    Reliable quantification of air-surface fluxes of elemental Hg vapor (Hg0) is crucial for understanding mercury (Hg) global biogeochemical cycles. There have been extensive measurements and modeling efforts devoted to estimating the exchange fluxes between the atmosphere and various surfaces (e.g., soil, canopies, water, snow, etc.) in the past three decades. However, large uncertainties remain due to the complexity of Hg0 bidirectional exchange, limitations of flux quantification techniques and challenges in model parameterization. In this study, we provide a critical review on the state of science in the atmosphere-surface exchange of Hg0. Specifically, the advancement of flux quantification techniques, mechanisms in driving the air-surface Hg exchange and modeling efforts are presented. Due to the semi-volatile nature of Hg0 and redox transformation of Hg in environmental media, Hg deposition and evasion are influenced by multiple environmental variables including seasonality, vegetative coverage and its life cycle, temperature, light, moisture, atmospheric turbulence and the presence of reactants (e.g., O3, radicals, etc.). However, the effects of these processes on flux have not been fundamentally and quantitatively determined, which limits the accuracy of flux modeling. We compile an up-to-date global observational flux database and discuss the implication of flux data on the global Hg budget. Mean Hg0 fluxes obtained by micrometeorological measurements do not appear to be significantly greater than the fluxes measured by dynamic flux chamber methods over unpolluted surfaces (p = 0.16, one-tailed, Mann-Whitney U test). The spatiotemporal coverage of existing Hg0 flux measurements is highly heterogeneous with large data gaps existing in multiple continents (Africa, South Asia, Middle East, South America and Australia). The magnitude of the evasion flux is strongly enhanced by human activities, particularly at contaminated sites. Hg0 flux observations in East

  17. Application of PIXE technique to studies on global warming/cooling effect of atmospheric aerosols

    Kasahara, M.; Hoeller, R.; Tohno, S.; Onishi, Y.; Ma, C.-J.

    2002-01-01

    During the last decade, the importance of global warming has been recognized worldwide. Atmospheric aerosols play an important role in the global warming/cooling effects. The physicochemical properties of aerosol particles are fundamental to understanding such effects. In this study, the PIXE technique was applied to measure the average chemical properties of aerosols. Micro-PIXE was also applied to investigate the mixing state of the individual aerosol particle. The chemical composition data were used to estimate the optical properties of aerosols. The average values of aerosol radiative forcing were -1.53 w/m 2 in Kyoto and +3.3 w/m 2 in Nagoya, indicating cooling and warming effects respectively. The difference of radiative forcing in the two cities may be caused by the large difference in chemical composition of aerosols

  18. African land degradation in a world of global atmospheric change: fertilization conceals degradation?

    Le, Lulseged Tamene, Paul L. G. Vlek, Quang Bao

    2009-04-01

    Land degradation is one of the most widespread environmental problems worldwide. The sub-Saharan Africa (SSA) is one of the most seriously affected regions with huge implications on food security and economic development. To plan plausible management measures, understanding the magnitude of the problem and identification of hotspot areas are necessary. Analysis of remote sensing and climate data observed from space for the period 1982 - 2003 showed significant improvement in vegetation productivity across 30% of SSA with decline on 5% of the subcontinent. Global change in atmospheric chemistry is likely responsible for the observed increasing trend in vegetation productivity. Such widespread greening observed from space could mask anthropogenic land degradation processes such as land conversion, selective logging, and soil nutrient mining. To assess this possible masking effect, a re-analysis of the vegetation productivity dynamics, taking into account atmospheric fertilization, was conducted. This was performed by analyzing the long-term trend in vegetation productivity of pristine lands (areas with minimum human- and climate- related impacts) identified across different biomes in SSA. The baseline slope values of biomass accrual calculated for those pristine lands were estimated and used to re-calculate the long-term trend of green biomass with and without the impact of atmospheric fertilization. This ultimately enabled to delineate the areas that would have experienced significant loss in vegetation productivity had the atmospheric chemistry not changed. The result suggests that seven times more than the area of actual productivity decline in SSA is affected by land degradation processes that are concealed by atmospheric fertilization. With this rate of surreptitious loss of vital land attributes and with the current rate of population growth (3%), the SSA subcontinent may soon lack the land resources necessary to foster economic development. Spatially

  19. Basic characteristics of atmospheric particles, trace gases and meteorology in a relatively clean Southern African Savannah environment

    L. Laakso

    2008-08-01

    Full Text Available We have analyzed one year (July 2006–July 2007 of measurement data from a relatively clean background site located in dry savannah in South Africa. The annual-median trace gas concentrations were equal to 0.7 ppb for SO2, 1.4 ppb for NOx, 36 ppb for O3 and 105 ppb for CO. The corresponding PM1, PM2.5 and PM10 concentrations were 9.0, 10.5 and 18.8 μg m−3, and the annual median total particle number concentration in the size range 10–840 nm was 2340 cm−3. During Easterly winds, influence of industrial sources approximately 150 km away from the measurement site was clearly visible, especially in SO2 and NOx concentrations. Of gases, NOx and CO had a clear annual, and SO2, NOx and O3 clear diurnal cycle. Atmospheric new-particle formation was observed to take place in more than 90% of the analyzed days. The days with no new particle formation were cloudy or rainy days. The formation rate of 10 nm particles varied in the range of 0.1–28 cm−3 s−1 (median 1.9 cm−3 s−1 and nucleation mode particle growth rates were in the range 3–21 nm h−1 (median 8.5 nm h−1. Due to high formation and growth rates, observed new particle formation gives a significant contribute to the number of cloud condensation nuclei budget, having a potential to affect the regional climate forcing patterns.

  20. Monte Carlo climate change forecasts with a global coupled ocean-atmosphere model

    Cubasch, U.; Santer, B.D.; Hegerl, G.; Hoeck, H.; Maier-Reimer, E.; Mikolajwicz, U.; Stoessel, A.; Voss, R.

    1992-01-01

    The Monte Carlo approach, which has increasingly been used during the last decade in the field of extended range weather forecasting, has been applied for climate change experiments. Four integrations with a global coupled ocean-atmosphere model have been started from different initial conditions, but with the same greenhouse gas forcing according to the IPCC scenario A. All experiments have been run for a period of 50 years. The results indicate that the time evolution of the global mean warming depends strongly on the initial state of the climate system. It can vary between 6 and 31 years. The Monte Carlo approach delivers information about both the mean response and the statistical significance of the response. While the individual members of the ensemble show a considerable variation in the climate change pattern of temperature after 50 years, the ensemble mean climate change pattern closely resembles the pattern obtained in a 100 year integration and is, at least over most of the land areas, statistically significant. The ensemble averaged sea-level change due to thermal expansion is significant in the global mean and locally over wide regions of the Pacific. The hydrological cycle is also significantly enhanced in the global mean, but locally the changes in precipitation and soil moisture are masked by the variability of the experiments. (orig.)

  1. Global Calibration of Multi-Cameras Based on Refractive Projection and Ray Tracing

    Mingchi Feng

    2017-10-01

    Full Text Available Multi-camera systems are widely applied in the three dimensional (3D computer vision, especially when multiple cameras are distributed on both sides of the measured object. The calibration methods of multi-camera systems are critical to the accuracy of vision measurement and the key is to find an appropriate calibration target. In this paper, a high-precision camera calibration method for multi-camera systems based on transparent glass checkerboards and ray tracing is described, and is used to calibrate multiple cameras distributed on both sides of the glass checkerboard. Firstly, the intrinsic parameters of each camera are obtained by Zhang’s calibration method. Then, multiple cameras capture several images from the front and back of the glass checkerboard with different orientations, and all images contain distinct grid corners. As the cameras on one side are not affected by the refraction of glass checkerboard, extrinsic parameters can be directly calculated. However, the cameras on the other side are influenced by the refraction of glass checkerboard, and the direct use of projection model will produce a calibration error. A multi-camera calibration method using refractive projection model and ray tracing is developed to eliminate this error. Furthermore, both synthetic and real data are employed to validate the proposed approach. The experimental results of refractive calibration show that the error of the 3D reconstruction is smaller than 0.2 mm, the relative errors of both rotation and translation are less than 0.014%, and the mean and standard deviation of reprojection error of the four-camera system are 0.00007 and 0.4543 pixels, respectively. The proposed method is flexible, highly accurate, and simple to carry out.

  2. Supporting Trust in Globally Distributed Software Teams: The Impact of Visualized Collaborative Traces on Perceived Trustworthiness

    Trainer, Erik Harrison

    2012-01-01

    Trust plays an important role in collaborations because it creates an environment in which people can openly exchange ideas and information with one another and engineer innovative solutions together with less perceived risk. The rise in globally distributed software development has created an environment in which workers are likely to have less…

  3. Technical Note: A new global database of trace gases and aerosols from multiple sources of high vertical resolution measurements

    G. E. Bodeker

    2008-09-01

    Full Text Available A new database of trace gases and aerosols with global coverage, derived from high vertical resolution profile measurements, has been assembled as a collection of binary data files; hereafter referred to as the "Binary DataBase of Profiles" (BDBP. Version 1.0 of the BDBP, described here, includes measurements from different satellite- (HALOE, POAM II and III, SAGE I and II and ground-based measurement systems (ozonesondes. In addition to the primary product of ozone, secondary measurements of other trace gases, aerosol extinction, and temperature are included. All data are subjected to very strict quality control and for every measurement a percentage error on the measurement is included. To facilitate analyses, each measurement is added to 3 different instances (3 different grids of the database where measurements are indexed by: (1 geographic latitude, longitude, altitude (in 1 km steps and time, (2 geographic latitude, longitude, pressure (at levels ~1 km apart and time, (3 equivalent latitude, potential temperature (8 levels from 300 K to 650 K and time.

    In contrast to existing zonal mean databases, by including a wider range of measurement sources (both satellite and ozonesondes, the BDBP is sufficiently dense to permit calculation of changes in ozone by latitude, longitude and altitude. In addition, by including other trace gases such as water vapour, this database can be used for comprehensive radiative transfer calculations. By providing the original measurements rather than derived monthly means, the BDBP is applicable to a wider range of applications than databases containing only monthly mean data. Monthly mean zonal mean ozone concentrations calculated from the BDBP are compared with the database of Randel and Wu, which has been used in many earlier analyses. As opposed to that database which is generated from regression model fits, the BDBP uses the original (quality controlled measurements with no smoothing applied in any

  4. Multi-model global assessment of subseasonal prediction skill of atmospheric rivers

    Deflorio, M. J.

    2017-12-01

    Atmospheric rivers (ARs) are global phenomena that are characterized by long, narrow plumes of water vapor transport. They are most often observed in the midlatitudes near climatologically active storm track regions. Because of their frequent association with floods, landslides, and other hydrological impacts on society, there is significant incentive at the intersection of academic research, water management, and policymaking to understand the skill with which state-of-the-art operational weather models can predict ARs weeks-to-months in advance. We use the newly assembled Subseasonal-to-Seasonal (S2S) database, which includes extensive hindcast records of eleven operational weather models, to assess global prediction skill of atmospheric rivers on S2S timescales. We develop a metric to assess AR skill that is suitable for S2S timescales by counting the total number of AR days which occur over each model and observational grid cell during a 2-week time window. This "2-week AR occurrence" metric is suitable for S2S prediction skill assessment because it does not consider discrete hourly or daily AR objects, but rather a smoothed representation of AR occurrence over a longer period of time. Our results indicate that several of the S2S models, especially the ECMWF model, show useful prediction skill in the 2-week forecast window, with significant interannual variation in some regions. We also present results from an experimental forecast of S2S AR prediction skill using the ECMWF and NCEP models.

  5. The atmosphere as a global commons : responsible caring and equitable sharing

    Hallman, D.G. [World Council of Churches, Toronto, ON (Canada)

    2000-06-01

    The World Council of Churches (WCC) views climate change issues from a theological and ethical perspective. This justice statement regarding climate change was prepared by the WCC in anticipation of the sixth session of the Conference of Parties (COP6) held in the Hague, Netherlands in November 2000. The statement presents the atmosphere as a global commons which envelops the Earth, nurturing and protecting life. Their statement urges that economic and political powers cannot be allowed to hinder the health of the atmosphere nor claim possession of it. The WCC pairs human responsibility with climate change and recognizes that the problem is caused largely by rich industrialized countries, the consequences of which will be suffered mostly by developing nations and by future generations. The statement emphasized that we must be held responsible for the destructive impact of our actions which are leading to climate change. The WCC argued that emissions trading under the Kyoto Protocol would violate the criterion of ecological effectiveness because it would not ensure a reduction in actual emissions. Trading mechanisms such as proposed under the Clean Development Mechanism would raise issues of equity and justice and would risk exacerbating inequities between rich and poor countries. The WCC made several recommendations for COP6. One of them was to refocus climate change negotiations on to options that meet the criteria of environmental effectiveness, equity, responsibility and economic efficiency with priority given to emissions reduction strategies in high per capita polluting countries. This statement also made reference to the use of a Global Atmospheric Commons Fund which would help impoverished countries to move towards a non-carbon economy focusing on renewable energy sources such as solar, biomass, wind and small scale hydroelectric.

  6. Climate forcings and climate sensitivities diagnosed from atmospheric global circulation models

    Anderson, Bruce T. [Boston University, Department of Geography and Environment, Boston, MA (United States); Knight, Jeff R.; Ringer, Mark A. [Met Office Hadley Centre, Exeter (United Kingdom); Deser, Clara; Phillips, Adam S. [National Center for Atmospheric Research, Boulder, CO (United States); Yoon, Jin-Ho [University of Maryland, Cooperative Institute for Climate and Satellites, Earth System Science Interdisciplinary Center, College Park, MD (United States); Cherchi, Annalisa [Centro Euro-Mediterraneo per i Cambiamenti Climatici, and Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy)

    2010-12-15

    Understanding the historical and future response of the global climate system to anthropogenic emissions of radiatively active atmospheric constituents has become a timely and compelling concern. At present, however, there are uncertainties in: the total radiative forcing associated with changes in the chemical composition of the atmosphere; the effective forcing applied to the climate system resulting from a (temporary) reduction via ocean-heat uptake; and the strength of the climate feedbacks that subsequently modify this forcing. Here a set of analyses derived from atmospheric general circulation model simulations are used to estimate the effective and total radiative forcing of the observed climate system due to anthropogenic emissions over the last 50 years of the twentieth century. They are also used to estimate the sensitivity of the observed climate system to these emissions, as well as the expected change in global surface temperatures once the climate system returns to radiative equilibrium. Results indicate that estimates of the effective radiative forcing and total radiative forcing associated with historical anthropogenic emissions differ across models. In addition estimates of the historical sensitivity of the climate to these emissions differ across models. However, results suggest that the variations in climate sensitivity and total climate forcing are not independent, and that the two vary inversely with respect to one another. As such, expected equilibrium temperature changes, which are given by the product of the total radiative forcing and the climate sensitivity, are relatively constant between models, particularly in comparison to results in which the total radiative forcing is assumed constant. Implications of these results for projected future climate forcings and subsequent responses are also discussed. (orig.)

  7. Evaluation of the reactive nitrogen budget of the remote atmosphere in global models using airborne measurements

    Murray, L. T.; Strode, S. A.; Fiore, A. M.; Lamarque, J. F.; Prather, M. J.; Thompson, C. R.; Peischl, J.; Ryerson, T. B.; Allen, H.; Blake, D. R.; Crounse, J. D.; Brune, W. H.; Elkins, J. W.; Hall, S. R.; Hintsa, E. J.; Huey, L. G.; Kim, M. J.; Moore, F. L.; Ullmann, K.; Wennberg, P. O.; Wofsy, S. C.

    2017-12-01

    Nitrogen oxides (NOx ≡ NO + NO2) in the background atmosphere are critical precursors for the formation of tropospheric ozone and OH, thereby exerting strong influence on surface air quality, reactive greenhouse gases, and ecosystem health. The impact of NOx on atmospheric composition and climate is sensitive to the relative partitioning of reactive nitrogen between NOx and longer-lived reservoir species of the total reactive nitrogen family (NOy) such as HNO3, HNO4, PAN and organic nitrates (RONO2). Unfortunately, global chemistry-climate models (CCMs) and chemistry-transport models (CTMs) have historically disagreed in their reactive nitrogen budgets outside of polluted continental regions, and we have lacked in situ observations with which to evaluate them. Here, we compare and evaluate the NOy budget of six global models (GEOS-Chem CTM, GFDL AM3 CCM, GISS E2.1 CCM, GMI CTM, NCAR CAM CCM, and UCI CTM) using new observations of total reactive nitrogen and its member species from the NASA Atmospheric Tomography (ATom) mission. ATom has now completed two of its four planned deployments sampling the remote Pacific and Atlantic basins of both hemispheres with a comprehensive suite of measurements for constraining reactive photochemistry. All six models have simulated conditions climatologically similar to the deployments. The GMI and GEOS-Chem CTMs have in addition performed hindcast simulations using the MERRA-2 reanalysis, and have been sampled along the flight tracks. We evaluate the performance of the models relative to the observations, and identify factors contributing to their disparate behavior using known differences in model oxidation mechanisms, heterogeneous loss pathways, lightning and surface emissions, and physical loss processes.

  8. Glacial-interglacial water cycle, global monsoon and atmospheric methane changes

    Guo, Zhengtang; Wu, Haibin [Chinese Academy of Sciences, Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Beijing (China); Zhou, Xin [Chinese Academy of Sciences, Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Beijing (China); University of Science and Technology of China, School of Earth and Space Sciences and Institute of Polar Environment, Hefei (China)

    2012-09-15

    The causes of atmospheric methane (CH{sub 4}) changes are still a major contention, in particular with regards to the relative contributions of glacial-interglacial cycles, monsoons in both hemispheres and the late Holocene human intervention. Here, we explore the CH{sub 4} signals in the Antarctic EPICA Dome C and Vostok ice records using the methods of timeseries analyses and correlate them with insolation and geological records to address these issues. The results parse out three distinct groups of CH{sub 4} signals attributable to different drivers. The first group ({proportional_to}80% variance), well tracking the marine {delta}{sup 18}O record, is attributable to glacial-interglacial modulation on the global water cycle with the effects shared by wetlands at all latitudes, from monsoonal and non-monsoonal regions in both hemispheres. The second group ({proportional_to}15% variance), centered at the {proportional_to}10-kyr semi-precession frequency, is linkable with insolation-driven tropical monsoon changes in both hemispheres. The third group ({proportional_to}5% variance), marked by millennial frequencies, is seemingly related with the combined effect of ice-volume and bi-hemispheric insolation changes at the precession bands. These results indicate that bi-hemispheric monsoon changes have been a constant driver of atmospheric CH{sub 4}. This mechanism also partially explains the Holocene CH{sub 4} reversal since {proportional_to}5 kyr BP besides the human intervention. In the light of these results, we propose that global monsoon can be regarded as a system consisting of two main integrated components, one primarily driven by the oscillations of Inter-Tropical Convergence Zone (ITCZ) in response to the low-latitude summer insolation changes, anti-phase between the two hemispheres (i.e. the ITCZ monsoon component); and another modulated by the glacial-interglacial cycles, mostly synchronous at the global scale (i.e. the glacial-interglacial monsoon

  9. Ecological geochemical assessment and source identification of trace elements in atmospheric deposition of an emerging industrial area: Beibu Gulf economic zone.

    Zhong, Cong; Yang, Zhongfang; Jiang, Wei; Hu, Baoqing; Hou, Qingye; Yu, Tao; Li, Jie

    2016-12-15

    Industrialization and urbanization have led to a deterioration in air quality and provoked some serious environmental concerns. Fifty-four samples of atmospheric deposition were collected from an emerging industrial area and analyzed to determine the concentrations of 11 trace elements (As, Cd, Cu, Fe, Hg, Mn, Mo, Pb, Se, S and Zn). Multivariate geostatistical analyses were conducted to determine the spatial distribution, possible sources and enrichment degrees of trace elements in atmospheric deposition. Results indicate that As, Fe and Mo mainly originated from soil, their natural parent materials, while the remaining trace elements were strongly influenced by anthropogenic or natural activities, such as coal combustion in coal-fired power plants (Pb, Se and S), manganese ore (Mn, Cd and Hg) and metal smelting (Cu and Zn). The results of ecological geochemical assessment indicate that Cd, Pb and Zn are the elements of priority concern, followed by Mn and Cu, and other heavy metals, which represent little threat to local environment. It was determine that the resuspension of soil particles impacted the behavior of heavy metals by 55.3%; the impact of the coal-fired power plants was 18.9%; and the contribution of the local manganese industry was 9.6%. The comparison of consequences from various statistical methods (principal component analysis (PCA), cluster analysis (CA), enrichment factor (EF) and absolute principle component score (APCS)-multiple linear regression (MLR)) confirmed the credibility of this research. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Evidence of global-scale As, Mo, Sb, and Tl atmospheric pollution in the antarctic snow.

    Hong, Sungmin; Soyol-Erdene, Tseren-Ochir; Hwang, Hee Jin; Hong, Sang Bum; Hur, Soon Do; Motoyama, Hidaeki

    2012-11-06

    We report the first comprehensive and reliable time series for As, Mo, Sb, and Tl in the snowpack from Dome Fuji in the central East Antarctic Plateau. Our results show significant enrichment of these elements due to either anthropogenic activities or large volcanic eruptions during the past 50 years. With respect to the values reported from 1960 to 1964, we observed the maximum increases in crustal enrichment factors (EFs) for As (a factor of ~15), Mo (~4), Sb (~4), and Tl (~2) during the period between the 1970s and 1990s, reflecting the global dispersion of anthropogenic pollutants of these elements, even to the most remote areas on Earth. Such enrichments are likely related to emissions of trace elements from nonferrous metal smelting and fossil fuel combustion processes in South America, especially in Chile. A drastic decrease in the As concentration and its EF values was observed after the year 2000 in response to the introduction of environmental regulations in the 1990s to reduce As emissions from the copper industry, primarily in Chile. The observed decrease suggests that governmental regulations for pollution control are effective in reducing air pollution at both the regional and global level.

  11. Global transport and localized layering of metallic ions in the upper atmospherer

    L. N. Carter

    1999-02-01

    Full Text Available A numerical model has been developed which is capable of simulating all phases of the life cycle of metallic ions, and results are described and interpreted herein for the typical case of Fe+ ions. This cycle begins with the initial deposition of metallics through meteor ablation and sputtering, followed by conversion of neutral Fe atoms to ions through photoionization and charge exchange with ambient ions. Global transport arising from daytime electric fields and poleward/ downward di.usion along geomagnetic field lines, localized transport and layer formation through de- scending convergent nulls in the thermospheric wind field, and finally annihilation by chemical neutralization and compound formation are treated. The model thus sheds new light on the interdependencies of the physical and chemical processes a.ecting atmospheric metallics. Model output analysis confirms the dominant role of both global and local transport to the ion's life cycle, showing that upward forcing from the equatorial electric field is critical to global movement, and that diurnal and semidiurnal tidal winds are responsible for the forma- tion of dense ion layers in the 90±250 km height region. It is demonstrated that the assumed combination of sources, chemical sinks, and transport mechanisms actually produces F-region densities and E-region layer densities similar to those observed. The model also shows that zonal and meridional winds and electric fields each play distinct roles in local transport, whereas the ion distribution is relatively insensitive to reasonable variations in meteoric deposition and chemical reaction rates.Key words. Ionosphere (ion chemistry and composition; ionosphere-atmosphere interactions.

  12. Global transport and localized layering of metallic ions in the upper atmospherer

    L. N. Carter

    Full Text Available A numerical model has been developed which is capable of simulating all phases of the life cycle of metallic ions, and results are described and interpreted herein for the typical case of Fe+ ions. This cycle begins with the initial deposition of metallics through meteor ablation and sputtering, followed by conversion of neutral Fe atoms to ions through photoionization and charge exchange with ambient ions. Global transport arising from daytime electric fields and poleward/ downward di.usion along geomagnetic field lines, localized transport and layer formation through de- scending convergent nulls in the thermospheric wind field, and finally annihilation by chemical neutralization and compound formation are treated. The model thus sheds new light on the interdependencies of the physical and chemical processes a.ecting atmospheric metallics. Model output analysis confirms the dominant role of both global and local transport to the ion's life cycle, showing that upward forcing from the equatorial electric field is critical to global movement, and that diurnal and semidiurnal tidal winds are responsible for the forma- tion of dense ion layers in the 90±250 km height region. It is demonstrated that the assumed combination of sources, chemical sinks, and transport mechanisms actually produces F-region densities and E-region layer densities similar to those observed. The model also shows that zonal and meridional winds and electric fields each play distinct roles in local transport, whereas the ion distribution is relatively insensitive to reasonable variations in meteoric deposition and chemical reaction rates.

    Key words. Ionosphere (ion chemistry and composition; ionosphere-atmosphere interactions.

  13. A variable resolution nonhydrostatic global atmospheric semi-implicit semi-Lagrangian model

    Pouliot, George Antoine

    2000-10-01

    The objective of this project is to develop a variable-resolution finite difference adiabatic global nonhydrostatic semi-implicit semi-Lagrangian (SISL) model based on the fully compressible nonhydrostatic atmospheric equations. To achieve this goal, a three-dimensional variable resolution dynamical core was developed and tested. The main characteristics of the dynamical core can be summarized as follows: Spherical coordinates were used in a global domain. A hydrostatic/nonhydrostatic switch was incorporated into the dynamical equations to use the fully compressible atmospheric equations. A generalized horizontal variable resolution grid was developed and incorporated into the model. For a variable resolution grid, in contrast to a uniform resolution grid, the order of accuracy of finite difference approximations is formally lost but remains close to the order of accuracy associated with the uniform resolution grid provided the grid stretching is not too significant. The SISL numerical scheme was implemented for the fully compressible set of equations. In addition, the generalized minimum residual (GMRES) method with restart and preconditioner was used to solve the three-dimensional elliptic equation derived from the discretized system of equations. The three-dimensional momentum equation was integrated in vector-form to incorporate the metric terms in the calculations of the trajectories. Using global re-analysis data for a specific test case, the model was compared to similar SISL models previously developed. Reasonable agreement between the model and the other independently developed models was obtained. The Held-Suarez test for dynamical cores was used for a long integration and the model was successfully integrated for up to 1200 days. Idealized topography was used to test the variable resolution component of the model. Nonhydrostatic effects were simulated at grid spacings of 400 meters with idealized topography and uniform flow. Using a high

  14. Long-term global distribution of earth's shortwave radiation budget at the top of atmosphere

    N. Hatzianastassiou

    2004-01-01

    Full Text Available The mean monthly shortwave (SW radiation budget at the top of atmosphere (TOA was computed on 2.5° longitude-latitude resolution for the 14-year period from 1984 to 1997, using a radiative transfer model with long-term climatological data from the International Satellite Cloud Climatology Project (ISCCP-D2 supplemented by data from the National Centers for Environmental Prediction – National Center for Atmospheric Research (NCEP-NCAR Global Reanalysis project, and other global data bases such as TIROS Operational Vertical Sounder (TOVS and Global Aerosol Data Set (GADS. The model radiative fluxes at TOA were validated against Earth Radiation Budget Experiment (ERBE S4 scanner satellite data (1985–1989. The model is able to predict the seasonal and geographical variation of SW TOA fluxes. On a mean annual and global basis, the model is in very good agreement with ERBE, overestimating the outgoing SW radiation at TOA (OSR by 0.93 Wm-2 (or by 0.92%, within the ERBE uncertainties. At pixel level, the OSR differences between model and ERBE are mostly within ±10 Wm-2, with ±5 Wm-2 over extended regions, while there exist some geographic areas with differences of up to 40 Wm-2, associated with uncertainties in cloud properties and surface albedo. The 14-year average model results give a planetary albedo equal to 29.6% and a TOA OSR flux of 101.2 Wm-2. A significant linearly decreasing trend in OSR and planetary albedo was found, equal to 2.3 Wm-2 and 0.6% (in absolute values, respectively, over the 14-year period (from January 1984 to December 1997, indicating an increasing solar planetary warming. This planetary SW radiative heating occurs in the tropical and sub-tropical areas (20° S–20° N, with clouds being the most likely cause. The computed global mean OSR anomaly ranges within ±4 Wm-2, with signals from El Niño and La Niña events or Pinatubo eruption, whereas significant negative OSR anomalies, starting from year 1992, are also

  15. Ontology development for provenance tracing in National Climate Assessment of the US Global Change Research Program

    Fu, Linyun; Ma, Xiaogang; Zheng, Jin; Goldstein, Justin; Duggan, Brian; West, Patrick; Aulenbach, Steve; Tilmes, Curt; Fox, Peter

    2014-05-01

    This poster will show how we used a case-driven iterative methodology to develop an ontology to represent the content structure and the associated provenance information in a National Climate Assessment (NCA) report of the US Global Change Research Program (USGCRP). We applied the W3C PROV-O ontology to implement a formal representation of provenance. We argue that the use case-driven, iterative development process and the application of a formal provenance ontology help efficiently incorporate domain knowledge from earth and environmental scientists in a well-structured model interoperable in the context of the Web of Data.

  16. Ontology development for provenance tracing in National Climate Assessment of the US Global Change Research Program

    Ma, X.; Zheng, J. G.; Goldstein, J.; Duggan, B.; Xu, J.; Du, C.; Akkiraju, A.; Aulenbach, S.; Tilmes, C.; Fox, P. A.

    2013-12-01

    The periodical National Climate Assessment (NCA) of the US Global Change Research Program (USGCRP) [1] produces reports about findings of global climate change and the impacts of climate change on the United States. Those findings are of great public and academic concerns and are used in policy and management decisions, which make the provenance information of findings in those reports especially important. The USGCRP is developing a Global Change Information System (GCIS), in which the NCA reports and associated provenance information are the primary records. We were modeling and developing Semantic Web applications for the GCIS. By applying a use case-driven iterative methodology [2], we developed an ontology [3] to represent the content structure of a report and the associated provenance information. We also mapped the classes and properties in our ontology into the W3C PROV-O ontology [4] to realize the formal presentation of provenance. We successfully implemented the ontology in several pilot systems for a recent National Climate Assessment report (i.e., the NCA3). They provide users the functionalities to browse and search provenance information with topics of interest. Provenance information of the NCA3 has been made structured and interoperable by applying the developed ontology. Besides the pilot systems we developed, other tools and services are also able to interact with the data in the context of the 'Web of data' and thus create added values. Our research shows that the use case-driven iterative method bridges the gap between Semantic Web researchers and earth and environmental scientists and is able to be deployed rapidly for developing Semantic Web applications. Our work also provides first-hand experience for re-using the W3C PROV-O ontology in the field of earth and environmental sciences, as the PROV-O ontology is recently ratified (on 04/30/2013) by the W3C as a recommendation and relevant applications are still rare. [1] http

  17. Future atmospheric abundances and climate forcings from scenarios of global and regional hydrofluorocarbon (HFC) emissions

    Velders, Guus J. M.; Fahey, David W.; Daniel, John S.; Andersen, Stephen O.; McFarland, Mack

    2015-12-01

    Hydrofluorocarbons (HFCs) are manufactured for use as substitutes for ozone-depleting substances that are being phased out globally under Montreal Protocol regulations. While HFCs do not deplete ozone, many are potent greenhouse gases that contribute to climate change. Here, new global scenarios show that baseline emissions of HFCs could reach 4.0-5.3 GtCO2-eq yr-1 in 2050. The new baseline (or business-as-usual) scenarios are formulated for 10 HFC compounds, 11 geographic regions, and 13 use categories. The scenarios rely on detailed data reported by countries to the United Nations; projections of gross domestic product and population; and recent observations of HFC atmospheric abundances. In the baseline scenarios, by 2050 China (31%), India and the rest of Asia (23%), the Middle East and northern Africa (11%), and the USA (10%) are the principal source regions for global HFC emissions; and refrigeration (40-58%) and stationary air conditioning (21-40%) are the major use sectors. The corresponding radiative forcing could reach 0.22-0.25 W m-2 in 2050, which would be 12-24% of the increase from business-as-usual CO2 emissions from 2015 to 2050. National regulations to limit HFC use have already been adopted in the European Union, Japan and USA, and proposals have been submitted to amend the Montreal Protocol to substantially reduce growth in HFC use. Calculated baseline emissions are reduced by 90% in 2050 by implementing the North America Montreal Protocol amendment proposal. Global adoption of technologies required to meet national regulations would be sufficient to reduce 2050 baseline HFC consumption by more than 50% of that achieved with the North America proposal for most developed and developing countries.

  18. Modelling the atmospheric transport of trace metals from Europe to the North Sea and the Baltic Sea

    Petersen, G; Weber, H; Grassl, H [GKSS-Forschungszentrum Geesthacht G.m.b.H., Geesthacht-Tesperhude (Germany, F.R.). Inst. fuer Physik

    1989-01-01

    Within the framework of a research contract with the German Federal Environmental Agency the long range transport of trace metals over Europe and the deposition of trace metals into the North Sea and the Baltic Sea are estimated using the EMEP- (European Monitoring and Evaluation Programme) trajectory model. The methodology for the model calculations is explained. Preliminary results for the total deposition of lead into the North Sea and the Baltic Sea show, that the calculated values are lower than previous estimates based on extrapolations from measurements at coastal sites and ship measurements in the southern Baltic Sea, respectively. (orig.).

  19. (ETHNO-)MEDICAL ETHICS IN GLOBALIZING CHINA: TRACING LOCAL KNOWLEDGE AND ADAPTATION OF BIOMEDICINE.

    Micollier, Evelyne

    2015-12-01

    Encounters between several bodies of therapeutic knowledge have led to a restructuring of the entire health system, including a transformation in medical ethics. Defining "new ethics" with both Chinese and international characteristics, is part of the ongoing knowledge production process: plural health ideas, practices and medical sciences develop within the broader framework of social and economic transition. Such transition simultaneously reveals and encourages China's influence and position in an era of globalization including in the technical and knowledge production domains. Re-alignments in medical ethics in Reform China (post-1979) highlight a rather under-explored aspect of medical plurality enabling these ethics to be used as an analytical lens to provide information about social and political issues. In this article, two sets of ethical principles, one from Late Imperial China (Late Ming Era), the other from post-Mao China (1980s), are detailed and analysed. They were selected as case-studies mainly because they reflected at the time of their emergence an on-going radical change in society in the realm of health and medicine. Therefore both sets unveil the process of legitimizing a "Chinese medicine" in a context of epistemological shift: such a process takes various conceptual and practicalforms framed along the lines of the current dominant ideological system and constrained by socio-economic and political factors. Finally, issues relative to research ethics, bioethics and the New Health Reform guidelines raised in the 2000s, which represents also a significant historical turn for China, are discussed. Drawn from the overall discussion throughout the text, several concluding remarks contribute to advocate for "win-win" encounters--from the East to the West and from the South to the South, and for more implementable transnational/global ethics designing.

  20. The role of moisture transport between ground and atmosphere in global change

    Rind, D.; Rosenzweig, C.; Stieglitz, M.

    1997-01-01

    Projections of the effect of climate change on future water availability are examined by reviewing the formulations used to calculate moisture transport between the ground and the atmosphere. General circulation models and climate change impact models have substantially different formulations for evapotranspiration, so their projections of future water availability often disagree, even though they use the same temperature and precipitation forecasts. General circulation models forecast little change in tropical and subtropical water availability, while impact models show severe water and agricultural shortages. A comparison of observations and modeling techniques shows that the parameterizations in general circulation models likely lead to an underestimate of the impacts of global warming on soil moisture and vegetation. Such errors would crucially affect the temperature and precipitation forecasts used in impact models. Some impact model evaporation formulations are probably more appropriate than those in general circulation models, but important questions remain. More observations are needed, especially in the vicinity of forests, to determine appropriate parameterizations

  1. Predicting Earth orientation changes from global forecasts of atmosphere-hydrosphere dynamics

    Dobslaw, Henryk; Dill, Robert

    2018-02-01

    Effective Angular Momentum (EAM) functions obtained from global numerical simulations of atmosphere, ocean, and land surface dynamics are routinely processed by the Earth System Modelling group at Deutsches GeoForschungsZentrum. EAM functions are available since January 1976 with up to 3 h temporal resolution. Additionally, 6 days-long EAM forecasts are routinely published every day. Based on hindcast experiments with 305 individual predictions distributed over 15 months, we demonstrate that EAM forecasts improve the prediction accuracy of the Earth Orientation Parameters at all forecast horizons between 1 and 6 days. At day 6, prediction accuracy improves down to 1.76 mas for the terrestrial pole offset, and 2.6 mas for Δ UT1, which correspond to an accuracy increase of about 41% over predictions published in Bulletin A by the International Earth Rotation and Reference System Service.

  2. A global climatology of stratospheric gravity waves from Atmospheric Infrared Sounder observations

    Hoffmann, Lars; Xue, Xianghui; Alexander, M. Joan

    2014-05-01

    We present the results of a new study that aims on the detection and classification of `hotspots' of stratospheric gravity waves on a global scale. The analysis is based on a nine-year record (2003 to 2011) of radiance measurements by the Atmospheric Infrared Sounder (AIRS) aboard NASA's Aqua satellite. We detect the presence of stratospheric gravity waves based on 4.3 micron brightness temperature variances. Our method is optimized for peak events, i.e., strong gravity wave events for which the local variance considerably exceeds background levels. We estimated the occurrence frequencies of these peak events for different seasons and time of day and used the results to find local maxima of gravity wave activity. In addition, we use AIRS radiances at 8.1 micron to simultaneously detect convective events, including deep convection in the tropics and mesoscale convective systems at mid latitudes. We classified the gravity waves according to their sources, based on seasonal occurrence frequencies for convection and by means of topographic data. Our study reproduces well-known hotspots of gravity waves, e.g., the mountain wave hotspots at the Andes and the Antarctic Peninsula or the convective hotspot during the thunderstorm season over the North American Great Plains. However, the high horizontal resolution of the AIRS observations also helped us to locate several smaller hotspots, which were partly unknown or poorly studied so far. Most of these smaller hotspots are found near orographic features like small mountain ranges, in coastal regions, in desert areas, or near isolated islands. This new study will help to select the most promising regions and seasons for future observational studies of gravity waves. Reference: Hoffmann, L., X. Xue, and M. J. Alexander, A global view of stratospheric gravity wave hotspots located with Atmospheric Infrared Sounder observations, J. Geophys. Res., 118, 416-434, doi:10.1029/2012JD018658, 2013.

  3. First results of the observations of trace gases in the Martian atmosphere by the Planetary Fourier Spectrometer onboard the Mars Express

    Titov, D. V.; Ignatiev, N.; Formisano, V.; Grassi, D.; Giuranna, M.; Maturilli, A.; Piccioni, G.; Moroz, V. I.; Lellouch, E.; Encrenaz, T.; Pfs Team

    High spectral resolution observations of Mars by the PFS/Mars Express provide new insight into the atmospheric composition. Spectral features of atmospheric CO2 and its isotopes at 15, 4.3, 2.7, 1.4 μ m, CO at 4.7 and 2.35 μ m, and H2O at 40, 2.56, and 1.38 μ m as well as solar spectral features are clearly identified in the PFS spectra. HDO spectral details at 3.7 μ m were also tentatively detected. The paper will present qualitative and quantitative analysis of the PFS spectra in the regions of spectral bands of trace gases. Abundance of minor constituents will be determined using complete radiative transfer modeling including possible non-LTE effects. We will also present results of search for other minor species with emphasis on the limb observations that provide higher air mass factor.

  4. Certification of Markets, Markets of Certificates: Tracing Sustainability in Global Agro-Food Value Chains

    Arthur P. J. Mol

    2015-09-01

    Full Text Available There is a blossoming of voluntary certification initiatives for sustainable agro-food products and production processes. With these certification initiatives come traceability in supply chains, to guarantee the sustainability of the products consumed. No systematic analysis exists of traceability systems for sustainability in agro-food supply chains. Hence, the purpose of this article is to analyze the prevalence of four different traceability systems to guarantee sustainability; to identify the factors that determine the kind of traceability systems applied in particular supply chains; and to assess what the emergence of economic and market logics in traceability mean for sustainability. Two conclusions are drawn. Globalizing markets for sustainable agro-food products induces the emergence of book-and-claim traceability systems, but the other three systems (identity preservation, segregation and mass balance will continue to exist as different factors drive traceability requirements in different supply chains. Secondly, traceability itself is becoming a market driven by economic and market logics, and this may have consequences for sustainability in agro-food supply chains in the future.

  5. A New Appraisal of Northern Peatlands and Global Atmospheric Methane Over the Holocene

    MacDonald, G. M.; Holmquist, J. R.; Kremenetski, K.; Loisel, J.

    2015-12-01

    Use of large databases of peat cores to examine linkages between northern peatlands and atmospheric CH4 over the Holocene has been prone to uncertainties regarding 1. comparability of radiocarbon techniques and material dated, 2. appropriate summed probability distributions, 3. spatial representativeness of the sites, particularly in capturing sites south of the subarctic, 4. potential impacts of local lateral peatland expansion versus continental-scale peatland initiation, particularly in the late Holocene, and 5. impacts of changes in the proportion of high methane-producing fens vs Sphagnum bogs. We present a comparison of radiocarbon measurements from conventional counts, atomic mass spectrometry and differing peat materials to demonstrate a general compatibility of the various types of dates. We compare and apply several summed probability distribution methods to minimize any statistical bias in our analysis. We then present our analysis of a new data set of 7571 peatland cores from 4420 sites that extend into the temperate zone. Of these, 3732 cores inform on lateral expansion and 329 dates constrain the timing of fen-bog transition. Based on these data in original and gridded form we show that widespread peat initiation commenced at 16 kcal yr BP and reached a maximum rate at 11-8 kcal yr BP. Most sites began as fens, and peak transition to bogs occurred between 5 and 3 kcal yr BP, with a 1000 year lag between Eurasia and North America. There is no global late Holocene increase in lateral expansion. Based on modeled northern peatland area and ratio of fen/bog sites, CH4 production from northern peatlands increased rapidly from 11 to 9 cal yr BP, followed by slower increase until reaching a maximum at 5 kcal yr BP at 25 Tg per yr. From 4 kcal yr BP to Present, bogs become a dominant feature in the northern peatland landscape and CH4 production decreased to reach modern-day levels at about 20 Tg per yr. Northern peatlands have been a key infleunce on global

  6. Wavelet-based Adaptive Mesh Refinement Method for Global Atmospheric Chemical Transport Modeling

    Rastigejev, Y.

    2011-12-01

    Numerical modeling of global atmospheric chemical transport presents enormous computational difficulties, associated with simulating a wide range of time and spatial scales. The described difficulties are exacerbated by the fact that hundreds of chemical species and thousands of chemical reactions typically are used for chemical kinetic mechanism description. These computational requirements very often forces researches to use relatively crude quasi-uniform numerical grids with inadequate spatial resolution that introduces significant numerical diffusion into the system. It was shown that this spurious diffusion significantly distorts the pollutant mixing and transport dynamics for typically used grid resolution. The described numerical difficulties have to be systematically addressed considering that the demand for fast, high-resolution chemical transport models will be exacerbated over the next decade by the need to interpret satellite observations of tropospheric ozone and related species. In this study we offer dynamically adaptive multilevel Wavelet-based Adaptive Mesh Refinement (WAMR) method for numerical modeling of atmospheric chemical evolution equations. The adaptive mesh refinement is performed by adding and removing finer levels of resolution in the locations of fine scale development and in the locations of smooth solution behavior accordingly. The algorithm is based on the mathematically well established wavelet theory. This allows us to provide error estimates of the solution that are used in conjunction with an appropriate threshold criteria to adapt the non-uniform grid. Other essential features of the numerical algorithm include: an efficient wavelet spatial discretization that allows to minimize the number of degrees of freedom for a prescribed accuracy, a fast algorithm for computing wavelet amplitudes, and efficient and accurate derivative approximations on an irregular grid. The method has been tested for a variety of benchmark problems

  7. Atmospheric SO{sub 2}. Global measurements using aircraft-based CIMS

    Fiedler, V.

    2008-06-27

    Aircraft based measurements of tropospheric sulfur dioxide, SO{sub 2}, have been carried out during four campaigns in South America (TROCCINOX), Australia (SCOUT-O3), Europe (INTEX/MEGAPLUME) and Africa (AMMA). SO{sub 2} has been measured by chemical ionization mass spectrometry (CIMS), permanently online calibrated with isotopically labelled SO{sub 2}. The measurement method is described thoroughly in this work and the measured data are presented. Moreover, the data of the different regions are compared in general and typical air mass situations with SO{sub 2} enhancement are shown. A detailed analysis of four SO{sub 2} pollution plume cases emphasizes the main features: long-range transport, SO{sub 2} from metal smelters/volcanoes or from biomass burning. The SO{sub 2} measurements are analyzed in the light of simultaneously measured trace gas, particle and meteorological data. Air mass trajectory models (FLEXPART or HYSPLIT) are employed for a determination of the pollution origin. Further going evaluations with the aerosol model AEROFOR complete the analyses and point out, that the measured SO{sub 2} mole fractions are sufficient to explain new particle formation and growth. Finally, a first comparison of the measured SO{sub 2} to results from a global circulation model (ECHAM) with implemented sulfur chemistry showed a significant underestimation of the measured SO{sub 2} mole fraction by the model in the free troposphere. (orig.)

  8. Vorticity-divergence semi-Lagrangian global atmospheric model SL-AV20: dynamical core

    Tolstykh, Mikhail; Shashkin, Vladimir; Fadeev, Rostislav; Goyman, Gordey

    2017-05-01

    SL-AV (semi-Lagrangian, based on the absolute vorticity equation) is a global hydrostatic atmospheric model. Its latest version, SL-AV20, provides global operational medium-range weather forecast with 20 km resolution over Russia. The lower-resolution configurations of SL-AV20 are being tested for seasonal prediction and climate modeling. The article presents the model dynamical core. Its main features are a vorticity-divergence formulation at the unstaggered grid, high-order finite-difference approximations, semi-Lagrangian semi-implicit discretization and the reduced latitude-longitude grid with variable resolution in latitude. The accuracy of SL-AV20 numerical solutions using a reduced lat-lon grid and the variable resolution in latitude is tested with two idealized test cases. Accuracy and stability of SL-AV20 in the presence of the orography forcing are tested using the mountain-induced Rossby wave test case. The results of all three tests are in good agreement with other published model solutions. It is shown that the use of the reduced grid does not significantly affect the accuracy up to the 25 % reduction in the number of grid points with respect to the regular grid. Variable resolution in latitude allows us to improve the accuracy of a solution in the region of interest.

  9. Changes in precipitation extremes projected by a 20-km mesh global atmospheric model

    Akio Kitoh

    2016-03-01

    Full Text Available High-resolution modeling is necessary to project weather and climate extremes and their future changes under global warming. A global high-resolution atmospheric general circulation model with grid size about 20 km is able to reproduce climate fields as well as regional-scale phenomena such as monsoonal rainfall, tropical and extratropical cyclones, and heavy precipitation. This 20-km mesh model is applied to project future changes in weather and climate extremes at the end of the 21st century with four different spatial patterns in sea surface temperature (SST changes: one with the mean SST changes by the 28 models of the Coupled Model Intercomparison Project Phase 5 (CMIP5 under the Representative Concentration Pathways (RCP-8.5 scenario, and the other three obtained from a cluster analysis, in which tropical SST anomalies derived from the 28 CMIP5 models were grouped. Here we focus on future changes in regional precipitation and its extremes. Various precipitation indices averaged over the Twenty-two regional land domains are calculated. Heavy precipitation indices (maximum 5-day precipitation total and maximum 1-day precipitation total increase in all regional domains, even where mean precipitation decrease (Southern Africa, South Europe/Mediterranean, Central America. South Asia is the domain of the largest extreme precipitation increase. In some domains, different SST patterns result in large precipitation changes, possibly related to changes in large-scale circulations in the tropical Pacific.

  10. Rapid global ocean-atmosphere response to Southern Ocean freshening during the last glacial.

    Turney, Chris S M; Jones, Richard T; Phipps, Steven J; Thomas, Zoë; Hogg, Alan; Kershaw, A Peter; Fogwill, Christopher J; Palmer, Jonathan; Bronk Ramsey, Christopher; Adolphi, Florian; Muscheler, Raimund; Hughen, Konrad A; Staff, Richard A; Grosvenor, Mark; Golledge, Nicholas R; Rasmussen, Sune Olander; Hutchinson, David K; Haberle, Simon; Lorrey, Andrew; Boswijk, Gretel; Cooper, Alan

    2017-09-12

    Contrasting Greenland and Antarctic temperatures during the last glacial period (115,000 to 11,650 years ago) are thought to have been driven by imbalances in the rates of formation of North Atlantic and Antarctic Deep Water (the 'bipolar seesaw'). Here we exploit a bidecadally resolved 14 C data set obtained from New Zealand kauri (Agathis australis) to undertake high-precision alignment of key climate data sets spanning iceberg-rafted debris event Heinrich 3 and Greenland Interstadial (GI) 5.1 in the North Atlantic (~30,400 to 28,400 years ago). We observe no divergence between the kauri and Atlantic marine sediment 14 C data sets, implying limited changes in deep water formation. However, a Southern Ocean (Atlantic-sector) iceberg rafted debris event appears to have occurred synchronously with GI-5.1 warming and decreased precipitation over the western equatorial Pacific and Atlantic. An ensemble of transient meltwater simulations shows that Antarctic-sourced salinity anomalies can generate climate changes that are propagated globally via an atmospheric Rossby wave train.A challenge for testing mechanisms of past climate change is the precise correlation of palaeoclimate records. Here, through climate modelling and the alignment of terrestrial, ice and marine 14 C and 10 Be records, the authors show that Southern Ocean freshwater hosing can trigger global change.

  11. Atmospheric lead and heavy metal pollution records from a Belgian peat bog spanning the last two millenia: Human impact on a regional to global scale

    Vleeschouwer, Francois de [URAP, Departement de Geologie, Universite de Liege, Allee du 6 Aout B18 Sart Tilman B4000 - Liege (Belgium)]. E-mail: fdevleeschouwer@student.ulg.ac.be; Gerard, Laetitia [URAP, Departement de Geologie, Universite de Liege, Allee du 6 Aout B18 Sart Tilman B4000 - Liege (Belgium); Goormaghtigh, Catherine [Unite de recherche: ' Isotopes, Petrologie et Environnement' , Departement des Sciences de la Terre et de l' Environnement, CP 160/02 Universite Libre de Bruxelles, Avenue FD. Roosevelt, 50, B-1050 Bruxelles (Belgium); Mattielli, Nadine [Unite de recherche: ' Isotopes, Petrologie et Environnement' , Departement des Sciences de la Terre et de l' Environnement, CP 160/02 Universite Libre de Bruxelles, Avenue FD. Roosevelt, 50, B-1050 Bruxelles (Belgium); Le Roux, Gael [Institute of Environmental Geochemistry, University of Heidelberg, Im Neuenheimer Feld 236 B-69120 Heidelberg (Germany); Fagel, Nathalie [URAP, Departement de Geologie, Universite de Liege, Allee du 6 Aout B18 Sart Tilman B4000 - Liege (Belgium)

    2007-05-15

    Europe has been continuously polluted throughout the last two millennia. During the Roman Empire, these pollutions were mainly from ore extraction and smelting across Europe. Then, during the Middle Ages and the Early times of Industrial revolution (i.e. 1750), these pollutions extended to coal burning and combustion engine. Belgian ombrotrophic peat bogs have proved an effective archive of these pollutants and provide the opportunity to reconstruct the history of atmospheric deposition in NW Europe. The results of recent and past trace metal accumulation and Pb isotopes from a one-meter peat core (in the Misten peat bog) have been derived using XRF and Nu-plasma MC-ICP-MS. Combined with {sup 14}C and {sup 210}Pb dates these data have enabled us to trace fluxes in anthropogenic pollution back to original Roman times. Several periods of well-known Pb pollution events are clearly recorded including the Early and Late Roman Empire, the Middle Ages and the second industrial revolution. Also recorded is the introduction of leaded gasoline, and more recently the introduction of unleaded gasoline. Lead isotopes in this site have also enabled us to fingerprint several regional and global sources of anthropogenic particles.

  12. Atmospheric lead and heavy metal pollution records from a Belgian peat bog spanning the last two millenia. Human impact on a regional to global scale

    De Vleeschouwer, Francois; Gerard, Laetitia; Fagel, Nathalie [URAP, Departement de Geologie, Universite de Liege, Allee du 6 Aout B18 Sart Tilman B4000 - Liege (Belgium); Goormaghtigh, Catherine; Mattielli, Nadine [Unite de recherche: ' ' Isotopes, Petrologie et Environnement' ' , Departement des Sciences de la Terre et de l' Environnement, CP 160/02 Universite Libre de Bruxelles, Avenue FD. Roosevelt, 50, B-1050 Bruxelles (Belgium); Le Roux, Gael [Institute of Environmental Geochemistry, University of Heidelberg, Im Neuenheimer Feld 236 B-69120 Heidelberg (Germany)

    2007-05-15

    Europe has been continuously polluted throughout the last two millennia. During the Roman Empire, these pollutions were mainly from ore extraction and smelting across Europe. Then, during the Middle Ages and the Early times of Industrial revolution (i.e. 1750), these pollutions extended to coal burning and combustion engine. Belgian ombrotrophic peat bogs have proved an effective archive of these pollutants and provide the opportunity to reconstruct the history of atmospheric deposition in NW Europe. The results of recent and past trace metal accumulation and Pb isotopes from a one-meter peat core (in the Misten peat bog) have been derived using XRF and Nu-plasma MC-ICP-MS. Combined with {sup 14}C and {sup 210}Pb dates these data have enabled us to trace fluxes in anthropogenic pollution back to original Roman times. Several periods of well-known Pb pollution events are clearly recorded including the Early and Late Roman Empire, the Middle Ages and the second industrial revolution. Also recorded is the introduction of leaded gasoline, and more recently the introduction of unleaded gasoline. Lead isotopes in this site have also enabled us to fingerprint several regional and global sources of anthropogenic particles. (author)

  13. Oxidation of elemental mercury in the atmosphere; Constraints imposed by global scale modelling

    Bergan, Torbjoern; Rodhe, Henning [Stockholm Univ. (Sweden). Dept. of Meteorology

    2000-05-01

    Based on the global mercury model published by Bergan et al. (1999), we present here further results from simulations where the central theme has been to evaluate the role of ozone and the hydroxyl radical as possible gas phase oxidants for the oxidation of elemental mercury in the atmosphere. The magnitude of natural and man-made mercury emissions are taken from recent literature estimates and the flux from land areas is assumed to vary by season. We consider only two mercury reservoirs, elemental mercury, Hg{sup 0}, and the more soluble divalent form, Hgll. Wet and dry deposition of Hgll is explicitly treated. Applying monthly mean fields of ozone for the oxidation of gas phase Hg{sup 0} and using the reaction rate by Hall (1995) yields a global transformation of Hg{sup 0} to Hgll which is too slow to keep the simulated concentration of Hg{sup 0} near observed values. This shows that there are additional important removal processes for Hg{sup 0} or that the reaction rate proposed by Hall (1995) is too slow. A simulation in which the oxidation rate was artificially increased, so that the global turn-over time of Hg{sup 0} was one year and the simulated average concentration of Hg{sup 0} was realistic, produced latitudinal and seasonal variations in Hg{sup 0} that did not support the hypothesis that gas phase reaction with O{sub 3} is the major oxidation process for Hg{sup 0}. Recent studies indicate that OH may be an important gas phase oxidant for Hg{sup 0}. Using OH as the oxidant and applying the preliminary oxidation rate by Sommar et al. (1999) gave an unrealistically large removal of Hg{sup 0} from the atmosphere. From calculations using a slower reaction rate, corresponding to a turn-over time of Hg{sup 0} of one year, we calculated concentrations of both Hg{sup 0} in surface air and Hgll in precipitation which correspond, both in magnitude and temporal variation, to seasonal observations in Europe and North America. This result supports the suggestion that

  14. Explicit calculation of indirect global warming potentials for halons using atmospheric models

    D. J. Wuebbles

    2009-11-01

    Full Text Available The concept of Global Warming Potentials (GWPs has been extensively used in policy consideration as a relative index for comparing the climate impact of an emitted greenhouse gas (GHG, relative to carbon dioxide with equal mass emissions. Ozone depletion due to emission of chlorinated or brominated halocarbons leads to cooling of the climate system in the opposite direction to the direct warming contribution by halocarbons as GHGs. This cooling is a key indirect effect of the halocarbons on climatic radiative forcing, which is accounted for by indirect GWPs. With respect to climate, it is critical to understand net influences considering direct warming and indirect cooling effects especially for Halons due to the greater ozone-depleting efficiency of bromine over chlorine. Until now, the indirect GWPs have been calculated using a parameterized approach based on the concept of Equivalent Effective Stratospheric Chlorine (EESC and the observed ozone depletion over the last few decades. As a step towards obtaining indirect GWPs through a more robust approach, we use atmospheric models to explicitly calculate the indirect GWPs of Halon-1211 and Halon-1301 for a 100-year time horizon. State-of-the-art global chemistry-transport models (CTMs were used as the computational tools to derive more realistic ozone depletion changes caused by an added pulse emission of the two major Halons at the surface. The radiative forcings on climate from the ozone changes have been calculated for indirect GWPs using an atmospheric radiative transfer model (RTM. The simulated temporal variations of global average total column Halons after a pulse perturbation follow an exponential decay with an e-folding time which is consistent with the expected chemical lifetimes of the Halons. Our calculated indirect GWPs for the two Halons are much smaller than those from past studies but are within a single standard deviation of WMO (2007 values and the direct GWP values derived

  15. Atmospheric solar tides and their electrodynamic effects. I. The global Ssub(q) current system

    Forbes, J M; Lindzen, R S [Harvard Univ., Cambridge, Mass. (USA)

    1976-09-01

    This paper is Part I of a study dealing with the electrodynamic consequences of solar tides in the E-region of the Earth's atmosphere. The major result to emerge from Part I is that E-region dynamo action of combined diurnal and semidiurnal winds consistent with measurements is found to account for the Ssub(q) variations in ground magnetic data, without having to resort to electric fields of plasmaspheric origin as suggested in the recent literature. Real discrepancies of the order of 20% in amplitude and 1 to 2 h in phase still exist between the data and the present theoretical model. The model couples a global thin-shell dynamo solution which takes into account the vertical structure of the winds with a full three-dimensional model of the equatorial electrojet. Part I is primarily concerned with the classical thin-shell global solution, whereas Part II (Forbes et al., J. Atmos. Terr. Phys.; 38:911 (1976)) deals solely with the equatorial electrojet; however, the equatorial magnetic variations to be presented here are taken from Part II. Previous global dynamo models have utilized winds which are shown to be unrealistic by recent measurements and dissipative tidal theory, and do not include the important effects of vertical current flow at the magnetic equator. Inclusion of vertical current effects, which are discussed in detail in Part II, relaxes the need for E-region diurnal wind speeds as large as those required by previous workers to reproduce the Ssub(q) current system. Computed vertical structures of the Ssub(q) currents explain some puzzling features of the few midlatitude rocket magnetometer measurements that are available. The Joule heating by Ssub(q) currents is comparable to solar EUV heating above 60/sup 0/N, but contribute negligibly to the total heat budget of the thermosphere.

  16. Isoprene emission response to drought and the impact on global atmospheric chemistry

    Jiang, Xiaoyan; Guenther, Alex; Potosnak, Mark; Geron, Chris; Seco, Roger; Karl, Thomas; Kim, Saewung; Gu, Lianhong; Pallardy, Stephen

    2018-06-01

    Biogenic isoprene emissions play a very important role in atmospheric chemistry. These emissions are strongly dependent on various environmental conditions, such as temperature, solar radiation, plant water stress, ambient ozone and CO2 concentrations, and soil moisture. Current biogenic emission models (i.e., Model of Emissions of Gases and Aerosols from Nature, MEGAN) can simulate emission responses to some of the major driving variables, such as short-term variations in temperature and solar radiation, but the other factors are either missing or poorly represented. In this paper, we propose a new modelling approach that considers the physiological effects of drought stress on plant photosynthesis and isoprene emissions for use in the MEGAN3 biogenic emission model. We test the MEGAN3 approach by integrating the algorithm into the existing MEGAN2.1 biogenic emission model framework embedded into the global Community Land Model of the Community Earth System Model (CLM4.5/CESM1.2). Single-point simulations are compared against available field measurements at the Missouri Ozarks AmeriFlux (MOFLUX) field site. The modelling results show that the MEGAN3 approach of using of a photosynthesis parameter (Vcmax) and soil wetness factor (βt) to determine the drought activity factor leads to better simulated isoprene emissions in non-drought and drought periods. The global simulation with the MEGAN3 approach predicts a 17% reduction in global annual isoprene emissions, in comparison to the value predicted using the default CLM4.5/MEGAN2.1 without any drought effect. This reduction leads to changes in surface ozone and oxidants in the areas where the reduction of isoprene emissions is observed. Based on the results presented in this study, we conclude that it is important to simulate the drought-induced response of biogenic isoprene emission accurately in the coupled Earth System model.

  17. Distributions of Polycyclic Aromatic Hydrocarbons, Aromatic Ketones, Carboxylic Acids, and Trace Metals in Arctic Aerosols: Long-Range Atmospheric Transport, Photochemical Degradation/Production at Polar Sunrise.

    Singh, Dharmendra Kumar; Kawamura, Kimitaka; Yanase, Ayako; Barrie, Leonard A

    2017-08-15

    The distributions, correlations, and source apportionment of aromatic acids, aromatic ketones, polycyclic aromatic hydrocarbons (PAHs), and trace metals were studied in Canadian high Arctic aerosols. Nineteen PAHs including minor sulfur-containing heterocyclic PAH (dibenzothiophene) and major 6 carcinogenic PAHs were detected with a high proportion of fluoranthene followed by benzo[k]fluoranthene, pyrene, and chrysene. However, in the sunlit period of spring, their concentrations significantly declined likely due to photochemical decomposition. During the polar sunrise from mid-March to mid-April, benzo[a]pyrene to benzo[e]pyrene ratios significantly dropped, and the ratios diminished further from late April to May onward. These results suggest that PAHs transported over the Arctic are subjected to strong photochemical degradation at polar sunrise. Although aromatic ketones decreased in spring, concentrations of some aromatic acids such as benzoic and phthalic acids increased during the course of polar sunrise, suggesting that aromatic hydrocarbons are oxidized to result in aromatic acids. However, PAHs do not act as the major source for low molecular weight (LMW) diacids such as oxalic acid that are largely formed at polar sunrise in the arctic atmosphere because PAHs are 1 to 2 orders of magnitude less abundant than LMW diacids. Correlations of trace metals with organics, their sources, and the possible role of trace transition metals are explained.

  18. Estimation of Atmospheric Methane Surface Fluxes Using a Global 3-D Chemical Transport Model

    Chen, Y.; Prinn, R.

    2003-12-01

    Accurate determination of atmospheric methane surface fluxes is an important and challenging problem in global biogeochemical cycles. We use inverse modeling to estimate annual, seasonal, and interannual CH4 fluxes between 1996 and 2001. The fluxes include 7 time-varying seasonal (3 wetland, rice, and 3 biomass burning) and 3 steady aseasonal (animals/waste, coal, and gas) global processes. To simulate atmospheric methane, we use the 3-D chemical transport model MATCH driven by NCEP reanalyzed observed winds at a resolution of T42 ( ˜2.8° x 2.8° ) in the horizontal and 28 levels (1000 - 3 mb) in the vertical. By combining existing datasets of individual processes, we construct a reference emissions field that represents our prior guess of the total CH4 surface flux. For the methane sink, we use a prescribed, annually-repeating OH field scaled to fit methyl chloroform observations. MATCH is used to produce both the reference run from the reference emissions, and the time-dependent sensitivities that relate individual emission processes to observations. The observational data include CH4 time-series from ˜15 high-frequency (in-situ) and ˜50 low-frequency (flask) observing sites. Most of the high-frequency data, at a time resolution of 40-60 minutes, have not previously been used in global scale inversions. In the inversion, the high-frequency data generally have greater weight than the weekly flask data because they better define the observational monthly means. The Kalman Filter is used as the optimal inversion technique to solve for emissions between 1996-2001. At each step in the inversion, new monthly observations are utilized and new emissions estimates are produced. The optimized emissions represent deviations from the reference emissions that lead to a better fit to the observations. The seasonal processes are optimized for each month, and contain the methane seasonality and interannual variability. The aseasonal processes, which are less variable, are

  19. A study on the environmental behavior of global air pollutants based on the continuous measurements of atmospheric radon concentrations

    Iida, Takao; Yamazawa, Hiromi

    2003-01-01

    Radon is a useful natural radioactive tracer of air transportation of atmospheric pollution, since radon is a noble gas and chemically inert. The atmospheric radon concentration is usually measured by a high-sensitivity electrostatic collection method or a two-filter method. The variations of radon concentrations observed over a solitary island and in the upper atmosphere are suitable for comparing with those of air pollutants. Some numerical simulation models were used to study the radon global transport in the atmosphere. In East Asia, atmospheric radon and air pollutants are transported with the air stream from the continent of China to the Northwestern Pacific Ocean. It is necessary to clarify the transport mechanism from both radon observations at various locations and numerical simulation. (author)

  20. Fighting global warming by greenhouse gas removal: destroying atmospheric nitrous oxide thanks to synergies between two breakthrough technologies.

    Ming, Tingzhen; de Richter, Renaud; Shen, Sheng; Caillol, Sylvain

    2016-04-01

    Even if humans stop discharging CO2 into the atmosphere, the average global temperature will still increase during this century. A lot of research has been devoted to prevent and reduce the amount of carbon dioxide (CO2) emissions in the atmosphere, in order to mitigate the effects of climate change. Carbon capture and sequestration (CCS) is one of the technologies that might help to limit emissions. In complement, direct CO2 removal from the atmosphere has been proposed after the emissions have occurred. But, the removal of all the excess anthropogenic atmospheric CO2 will not be enough, due to the fact that CO2 outgases from the ocean as its solubility is dependent of its atmospheric partial pressure. Bringing back the Earth average surface temperature to pre-industrial levels would require the removal of all previously emitted CO2. Thus, the atmospheric removal of other greenhouse gases is necessary. This article proposes a combination of disrupting techniques to transform nitrous oxide (N2O), the third most important greenhouse gas (GHG) in terms of current radiative forcing, which is harmful for the ozone layer and possesses quite high global warming potential. Although several scientific publications cite "greenhouse gas removal," to our knowledge, it is the first time innovative solutions are proposed to effectively remove N2O or other GHGs from the atmosphere other than CO2.

  1. Quantitative sampling and analysis of trace elements in atmospheric aerosols: impactor characterization and Synchrotron-XRF mass calibration

    A. Richard

    2010-10-01

    Full Text Available Identification of trace elements in ambient air can add substantial information to pollution source apportionment studies, although they do not contribute significantly to emissions in terms of mass. A method for quantitative size and time-resolved trace element evaluation in ambient aerosols with a rotating drum impactor and synchrotron radiation based X-ray fluorescence is presented. The impactor collection efficiency curves and size segregation characteristics were investigated in an experiment with oil and salt particles. Cutoff diameters were determined through the ratio of size distributions measured with two particle sizers. Furthermore, an external calibration technique to empirically link fluorescence intensities to ambient concentrations was developed. Solutions of elemental standards were applied with an ink-jet printer on thin films and area concentrations were subsequently evaluated with external wet chemical methods. These customized and reusable reference standards enable quantification of different data sets analyzed under varying experimental conditions.

  2. Trace element analysis of single synthetic fibres by proton induced X-ray analysis in a helium atmosphere

    Ahmed, M.; Cookson, J.A.

    1976-10-01

    A technique for measuring the trace element content of synthetic fibres by detecting X-rays produced by 3 MeV proton bombardment has been developed. Largely to reduce the problems of removing heat from the fibres, an arrangement was used in which the beam was brought out of the vacuum into air or helium. Kapton, aluminium, nickel and molybdenum were tested for suitability as exit windows. Of these, aluminium produced significantly the most background in X-ray spectra while helium was found to be significantly better than air as the medium around the targets. With a kapton window, helium in the target chamber, and suitable collimation, trace element concentration down to a few parts per million could be measured when quantities of fibre of only a few times 10 -5 g were available for analysis. (author)

  3. Baseline atmospheric program Australia 1993

    Francey, R.J.; Dick, A.L.; Derek, N.

    1996-01-01

    This publication reports activities, program summaries and data from the Cape Grim Baseline Air Pollution Station in Tasmania, during the calendar year 1993. These activities represent Australia's main contribution to the Background Air Pollution Monitoring Network (BAPMoN), part of the World Meteorological Organization's Global Atmosphere Watch (GAW). The report includes 5 research reports covering trace gas sampling, ozone and radon interdependence, analysis of atmospheric dimethylsulfide and carbon-disulfide, sampling of trace gas composition of the troposphere, and sulfur aerosol/CCN relationship in marine air. Summaries of program reports for the calendar year 1993 are also included. Tabs., figs., refs

  4. Relating Nimbus-7 37 GHz data to global land-surface evaporation, primary productivity and the atmospheric CO2 concentration

    Choudhury, B. J.

    1988-01-01

    Global observations at 37 GHz by the Nimbus-7 SMMR are related to zonal variations of land surface evaporation and primary productivity, as well as to temporal variations of atmospheric CO2 concentration. The temporal variation of CO2 concentration and the zonal variations of evaporation and primary productivity are shown to be highly correlated with the satellite sensor data. The potential usefulness of the 37-GHz data for global biospheric and climate studies is noted.

  5. Greenhouse effect of trace gases, 1970-1980

    Lacis, A.; Hansen, J.; Lee, P.; Lebedeff, S.; Mitchell, T.

    1981-01-01

    Increased abundances were measured for several trace atmospheric gases in the decade 1970-1980. The equilibrium greenhouse warming for the measured increments of CH4, chlorofluorocarbons and N2O is between 50% and 100% of the equilibrium warming for the measured increase of atmospheric CO2 during the same 10 years. The combined warming of CO2 and trace gases should exceed natural global temperature variability in the 1980's and cause the global mean temperature to rise above the maximum of the late 1930's.

  6. B33C-0612: Evaluation of Simulated Biospheric Carbon Dioxide Fluxes and Atmospheric Concentrations Using Global in Situ Observations

    Philip, Sajeev; Johnson, Matthew S.; Potter, Christopher S.; Genovese, Vanessa

    2016-01-01

    Atmospheric mixing ratios of carbon dioxide (CO2) are largely controlled by anthropogenic emission sources and biospheric sources/sinks. Global biospheric fluxes of CO2 are controlled by complex processes facilitating the exchange of carbon between terrestrial ecosystems and the atmosphere. These processes which play a key role in these terrestrial ecosystem-atmosphere carbon exchanges are currently not fully understood, resulting in large uncertainties in the quantification of biospheric CO2 fluxes. Current models with these inherent deficiencies have difficulties simulating the global carbon cycle with high accuracy. We are developing a new modeling platform, GEOS-Chem-CASA by integrating the year-specific NASA-CASA (National Aeronautics and Space Administration - Carnegie Ames Stanford Approach) biosphere model with the GEOS-Chem (Goddard Earth Observation System-Chemistry) chemical transport model to improve the simulation of atmosphere-terrestrial ecosystem carbon exchange. We use NASA-CASA to explicitly represent the exchange of CO2 between terrestrial ecosystem and atmosphere by replacing the baseline GEOS-Chem land net CO2 flux and forest biomass burning CO2 emissions. We will present the estimation and evaluation of these "bottom-up" land CO2 fluxes, simulated atmospheric mixing ratios, and forest disturbance changes over the last decade. In addition, we will present our initial comparison of atmospheric column-mean dry air mole fraction of CO2 predicted by the model and those retrieved from NASA's OCO-2 (Orbiting Carbon Observatory-2) satellite instrument and model-predicted surface CO2 mixing ratios with global in situ observations. This evaluation is the first step necessary for our future work planned to constrain the estimates of biospheric carbon fluxes through "top-down" inverse modeling, which will improve our understanding of the processes controlling atmosphere-terrestrial ecosystem greenhouse gas exchanges, especially over regions which lack in

  7. Recent global CO2 flux inferred from atmospheric CO2 observations and its regional analyses

    J. M. Chen

    2011-11-01

    Full Text Available The net surface exchange of CO2 for the years 2002–2007 is inferred from 12 181 atmospheric CO2 concentration data with a time-dependent Bayesian synthesis inversion scheme. Monthly CO2 fluxes are optimized for 30 regions of the North America and 20 regions for the rest of the globe. Although there have been many previous multiyear inversion studies, the reliability of atmospheric inversion techniques has not yet been systematically evaluated for quantifying regional interannual variability in the carbon cycle. In this study, the global interannual variability of the CO2 flux is found to be dominated by terrestrial ecosystems, particularly by tropical land, and the variations of regional terrestrial carbon fluxes are closely related to climate variations. These interannual variations are mostly caused by abnormal meteorological conditions in a few months in the year or part of a growing season and cannot be well represented using annual means, suggesting that we should pay attention to finer temporal climate variations in ecosystem modeling. We find that, excluding fossil fuel and biomass burning emissions, terrestrial ecosystems and oceans absorb an average of 3.63 ± 0.49 and 1.94 ± 0.41 Pg C yr−1, respectively. The terrestrial uptake is mainly in northern land while the tropical and southern lands contribute 0.62 ± 0.47, and 0.67 ± 0.34 Pg C yr−1 to the sink, respectively. In North America, terrestrial ecosystems absorb 0.89 ± 0.18 Pg C yr−1 on average with a strong flux density found in the south-east of the continent.

  8. Spatial patterns of atmospheric trace elements in 11 tourist cities of China using Sabina chinesis L. needles as biomonitors

    Zhang, Z.H.; Chai, Z.F.; Mao, X.Y.

    2004-01-01

    In 1999 investigation, the needles of Sabina chinesis L. from 11 hot spot tourist cities extending over China were collected as biomonitors for evaluation of atmospheric elemental differences in those cities. Thirty five elements were determined by instrumental neutron activation analysis (INAA). The experimental data reflected the environmental alteration in the cities that have different geographical position, population burden and industrialized level. Eventually by using the data processed by factor analysis (FA) and subsequent cluster analysis (CA), the cities were grouped into six sorts of the urban atmospheric deposition with corresponding elements. (author)

  9. Estimate of the largest Lyapunov characteristic exponent of a high dimensional atmospheric global circulation model: a sensitivity analysis

    Guerrieri, A.

    2009-01-01

    In this report the largest Lyapunov characteristic exponent of a high dimensional atmospheric global circulation model of intermediate complexity has been estimated numerically. A sensitivity analysis has been carried out by varying the equator-to-pole temperature difference, the space resolution and the value of some parameters employed by the model. Chaotic and non-chaotic regimes of circulation have been found. [it

  10. Variations in atmospheric PM trace metal content in Spanish towns: Illustrating the chemical complexity of the inorganic urban aerosol cocktail

    Moreno, Teresa; Querol, Xavier; Alastuey, Andrés; Viana, Mar; Salvador, Pedro; Sánchez de la Campa, Ana; Artiñano, Begoña; de la Rosa, Jesús; Gibbons, Wes

    The majority of the Spanish urban population breathe air containing inhalable ambient airborne particles at average concentrations of 30-46 μg m -3 (PM 10) and 20-30 μg m -3 (PM 2.5). Even though the average weight of inhaled urban aerosol is commonly similar, however, there can be large chemical differences between the ambient dusts from different towns, including the more bioreactive elements such as some metals. In this context, we compare the source-apportioned trace metal content of airborne PM 10 and PM 2.5 collected daily over a 1-year period from six population centres in Spain: Barcelona, Alcobendas, Llodio, Huelva, Tarragona and Las Palmas de Gran Canaria. Total average trace metal (ΣTM) PM 10 and PM 2.5 contents vary by up to a factor of around 3, reaching a maximum of ΣTM 10 811 ng m -3 and ΣTM 2.5 503 ng m -3 at Llodio, an industrial but humid site with the lowest PM 10 mass levels but high contamination by Zn, Pb, Mn, Sn, Ni and Cr. In contrast, pollution at Huelva, although another industrially influenced site, instead emphasises Cu and As, whereas Barcelona, where traffic emissions and resuspension contribute to some of the highest average PM 10 levels in Spain, has unusually raised levels of Ti, V and Ba. Such variations in both daily and annual average PM bulk chemistry, particularly in potentially toxic trace metals concentrated in the finer aerosols (such as Cd, As, Pb, Hg and Ni), predict that PM health effects on resident populations from different towns are unlikely to be the same.

  11. Atmospheric dayglow diagnostics involving the O2(b-X) Atmospheric band emission: Global Oxygen and Temperature (GOAT) mapping

    Slanger, T. G.; Pejaković, D. A.; Kostko, O.; Matsiev, D.; Kalogerakis, K. S.

    2017-03-01

    The terrestrial dayglow displays prominent emission features from the 0-0 and 1-1 bands of the O2 Atmospheric band system in the 760-780 nm region. We present an analysis of observations in this wavelength region recorded by the Space Shuttle during the Arizona Airglow Experiment. A major conclusion is that the dominant product of O(1D) + O2 energy transfer is O2(b, v = 1), a result that corroborates our previous laboratory studies. Moreover, critical to the interpretation of dayglow is the possible interference by N2 and N2+ bands in the 760-780 nm region, where the single-most important component is the N2 1PG 3-1 band that overlaps with the O2(b-X) 0-0 band. When present, this background must be accounted for to reveal the O2(b-X) 0-0 and 1-1 bands for altitudes at which the O2 and N2/N2+ emissions coincide. Finally, we exploit the very different collisional behavior of the two lowest O2(b) vibrational levels to outline a remote sensing technique that provides information on Atmospheric composition and temperature from space-based observations of the 0-0 and 1-1 O2 atmospheric bands.

  12. Rationale and Methods for Archival Sampling and Analysis of Atmospheric Trace Chemical Contaminants On Board Mir and Recommendations for the International Space Station

    Perry, J. L.; James, J. T.; Cole, H. E.; Limero, T. F.; Beck, S. W.

    1997-01-01

    Collection and analysis of spacecraft cabin air samples are necessary to assess the cabin air quality with respect to crew health. Both toxicology and engineering disciplines work together to achieve an acceptably clean cabin atmosphere. Toxicology is concerned with limiting the risk to crew health from chemical sources, setting exposure limits, and analyzing air samples to determine how well these limits are met. Engineering provides the means for minimizing the contribution of the various contaminant generating sources by providing active contamination control equipment on board spacecraft and adhering to a rigorous material selection and control program during the design and construction of the spacecraft. A review of the rationale and objectives for sampling spacecraft cabin atmospheres is provided. The presently-available sampling equipment and methods are reviewed along with the analytical chemistry methods employed to determine trace contaminant concentrations. These methods are compared and assessed with respect to actual cabin air quality monitoring needs. Recommendations are presented with respect to the basic sampling program necessary to ensure an acceptably clean spacecraft cabin atmosphere. Also, rationale and recommendations for expanding the scope of the basic monitoring program are discussed.

  13. The signature of atmospheric tides in sub-daily variations of Earth rotation as unveiled by globally-gridded atmospheric angular momentum functions

    Schindelegger, M.; Böhm, J.; Salstein, D. A.; Schuh, H.

    2012-12-01

    Thermally-driven atmospheric tides provide a small but distinct contribution to shortperiod variations of Earth rotation parameters (ERP). The effect of diurnal and semi-diurnal tides, commonly denoted as S1 and S2, respectively, is in the range of 2 - 10 uas for polar motion and 2 - 10 uas for changes in length-of-day (LOD). Even though ocean tides represent a much more dominant driving agent for ERP fluctuations at short time scales, high-frequency atmospheric effects are non-negligible, particularly given the prospective measurement accuracy of space geodetic techniques. However, previous studies, such as Brzezinski et al. (2002), de Viron et al. (2005) or Schindelegger et al. (2011), have been noticeably inconclusive on the exact amplitude and phase values of S1 and S2 atmospheric excitation signals. This study aims at shedding light on the origin of these uncertainties with respect to the axial component of Earth's rotation vector by investigating times series of atmospheric angular momentum (AAM) functions that are given on global grids and computed from three-hourly meteorological data of the European Centre for Medium-Range Weather Forecasts (ECMWF). The signature of diurnal and semi-diurnal atmospheric tides is clearly visible in the gridded axial AAM functions, revealing a distinct spatial and temporal phase difference between pressure and wind tidal constituents of about ± π. It is shown that due to this counterbalance and the explicit axisymmetric spatial structure of S1 and S2, the net effect in sub-diurnal AAM (which is calculated from the global sum of gridded AAM functions) is always a small quantity, particularly sensitive to minor differences between the analysis fields of numerical weather models.

  14. Three-pattern decomposition of global atmospheric circulation: part II—dynamical equations of horizontal, meridional and zonal circulations

    Hu, Shujuan; Cheng, Jianbo; Xu, Ming; Chou, Jifan

    2018-04-01

    The three-pattern decomposition of global atmospheric circulation (TPDGAC) partitions three-dimensional (3D) atmospheric circulation into horizontal, meridional and zonal components to study the 3D structures of global atmospheric circulation. This paper incorporates the three-pattern decomposition model (TPDM) into primitive equations of atmospheric dynamics and establishes a new set of dynamical equations of the horizontal, meridional and zonal circulations in which the operator properties are studied and energy conservation laws are preserved, as in the primitive equations. The physical significance of the newly established equations is demonstrated. Our findings reveal that the new equations are essentially the 3D vorticity equations of atmosphere and that the time evolution rules of the horizontal, meridional and zonal circulations can be described from the perspective of 3D vorticity evolution. The new set of dynamical equations includes decomposed expressions that can be used to explore the source terms of large-scale atmospheric circulation variations. A simplified model is presented to demonstrate the potential applications of the new equations for studying the dynamics of the Rossby, Hadley and Walker circulations. The model shows that the horizontal air temperature anomaly gradient (ATAG) induces changes in meridional and zonal circulations and promotes the baroclinic evolution of the horizontal circulation. The simplified model also indicates that the absolute vorticity of the horizontal circulation is not conserved, and its changes can be described by changes in the vertical vorticities of the meridional and zonal circulations. Moreover, the thermodynamic equation shows that the induced meridional and zonal circulations and advection transport by the horizontal circulation in turn cause a redistribution of the air temperature. The simplified model reveals the fundamental rules between the evolution of the air temperature and the horizontal, meridional

  15. Lichens as biomonitor and INAA as analytical technique: a very effective formula for trace elements atmospheric pollution studies

    Bergamaschi, L.; Rizzio, E.; Giaveri, G.; Brandone, A.; Gallorini, M.; Salvini, A.

    2002-01-01

    In this work, a preliminary investigation employing epiphytic lichens and Instrumental Neutron Activation Analysis (INAA) was carried out to evaluate the trace elements (TE) distribution in different areas of an Alpine region in north Italy characterized by the presence of many wool industrial settlements. Air particulate matter and soils samples were collected and analyzed for the determination of more than 25 TE. These results gave information on the actual concentrations in ng/m3 of the TE in the air and allowed the determination of their Enrichment Factors (EFs) calculated from the analysis of the soils and normalized using the concentration of scandium as reference natural element. In the same site, different epiphytic lichens and surrounding soils samples were collected too and, following the same procedure, analyzed for the determination of the trace elements and for the calculation of the corresponding EFs. The comparison between the EFs obtained from the air particulate and the lichens made it possible the verifying if both series of samples (air particulate and lichens) could give similar EFs values for those elements considered of anthropic origin; obtaining information about the bioaccumulation ability of the different lichen species for these pollutant elements; selecting the lichen species that could be used as monitors for the area under investigation

  16. Analytical–numerical global model of atmospheric-pressure radio-frequency capacitive discharges

    Lazzaroni, C; Chabert, P; Lieberman, M A; Lichtenberg, A J; Leblanc, A

    2012-01-01

    A one-dimensional hybrid analytical–numerical global model of atmospheric-pressure, radio-frequency (rf) driven capacitive discharges is developed. The feed gas is assumed to be helium with small admixtures of oxygen or nitrogen. The electrical characteristics are modeled analytically as a current-driven homogeneous discharge. The electron power balance is solved analytically to determine a time-varying Maxwellian electron temperature, which oscillates on the rf timescale. Averaging over the rf period yields effective rate coefficients for gas phase activated processes. The particle balance relations for all species are then integrated numerically to determine the equilibrium discharge parameters. The coupling of analytical solutions of the time-varying discharge and electron temperature dynamics, and numerical solutions of the discharge chemistry, allows for a fast solution of the discharge equilibrium. Variations of discharge parameters with discharge composition and rf power are determined. Comparisons are made to more accurate but numerically costly fluid models, with space and time variations, but with the range of parameters limited by computational time. (paper)

  17. Biogenic non-methane hydrocarbons (NMHC). Nature`s contribution to regional and global atmospheric chemistry

    Klockow, D.; Hoffman, T. [Inst. of Spectrochemistry and Applied Spectroscopy, Dortmund (Germany)

    1995-12-31

    Terrestrial vegetation provides an important source of volatile hydrocarbons, especially isoprene, monoterpenes and in addition possibly sesquiterpenes as well as oxygenated compounds. Although there exist considerable uncertainties in the estimation of the magnitude of these biogenic NMHC emissions, it is generally accepted that the majority of global NMHC release is from natural and not from anthropogenic sources. Taking into consideration the high reactivity of the mostly unsaturated biogenic emissions, their impact on tropospheric processes can be assumed to be of great importance. Together with anthropogenic NO{sub x} emissions, the highly reactive natural alkenes can act as precursors in photochemical oxidant formation and contribute to regional-scale air pollution. Their oxidation in the atmosphere and the subsequent gas-to-particle conversion of the products lead to the formation of organic aerosols. Because of the formation of phytotoxic compounds, the interaction of the biogenic hydrocarbons with ozone inside or outside the leaves and needles of plants has been suggested to play a role in forest decline. (author)

  18. THOR: A NEW AND FLEXIBLE GLOBAL CIRCULATION MODEL TO EXPLORE PLANETARY ATMOSPHERES

    Mendonça, João M.; Grimm, Simon L.; Grosheintz, Luc; Heng, Kevin, E-mail: joao.mendonca@csh.unibe.ch, E-mail: kevin.heng@csh.unibe.ch [University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012, Bern (Switzerland)

    2016-10-01

    We have designed and developed, from scratch, a global circulation model (GCM) named THOR that solves the three-dimensional nonhydrostatic Euler equations. Our general approach lifts the commonly used assumptions of a shallow atmosphere and hydrostatic equilibrium. We solve the “pole problem” (where converging meridians on a sphere lead to increasingly smaller time steps near the poles) by implementing an icosahedral grid. Irregularities in the grid, which lead to grid imprinting, are smoothed using the “spring dynamics” technique. We validate our implementation of spring dynamics by examining calculations of the divergence and gradient of test functions. To prevent the computational time step from being bottlenecked by having to resolve sound waves, we implement a split-explicit method together with a horizontally explicit and vertically implicit integration. We validate our GCM by reproducing the Earth and hot-Jupiter-like benchmark tests. THOR was designed to run on graphics processing units (GPUs), which allows for physics modules (radiative transfer, clouds, chemistry) to be added in the future, and is part of the open-source Exoclimes Simulation Platform (www.exoclime.org).

  19. A method for daily global solar radiation estimation from two instantaneous values using MODIS atmospheric products

    Xu, Xiaojun; Du, Huaqiang; Zhou, Guomo; Mao, Fangjie; Li, Pingheng; Fan, Weiliang; Zhu, Dien

    2016-01-01

    Accurate information on the temporal and spatial distributions of solar radiation is very important in many scientific fields. In this study, instantaneous solar irradiances on a horizontal surface at 10:30 and 13:30 local time (LT) were calculated from Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric data products with relatively high spatial resolution using a solar radiation model. These solar irradiances were combined to derive half-hourly averages of solar irradiance (HASI) and daily global solar radiation (GSR) on a horizontal surface using linear interpolation, piecewise linear regression, and quadratic polynomial regression. Compared with field observations, the HASI were estimated accurately when the total cloud fraction (TCF) was 0.6. Overall, the daily GSR estimated in this study was better than that estimated by the Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis of NASA. The daily GSR estimated in this study was underestimated, whereas it was overestimated by MERRA. The combination of the daily GSR estimates of this study and MERRA offers a simple and feasible technique for reducing uncertainty in daily GSR estimates. - Highlights: • Daily GSR is integrated from two observations from the MODIS products. • Daily GSR from the MODIS products is underestimated. • Biases were attributed primarily to variations in the total cloud percent. • Combining daily GSR estimates from the MODIS and the MERRA increases accuracy.

  20. The state of greenhouse gases in the atmosphere using global observations through 2013

    Tarasova, Oksana; Koide, Hiroshi; Dlugokencky, Ed; Montzka, Stephen A.; Keeling, Ralph; Tanhua, Toste; Lorenzoni, Laura

    2015-04-01

    We present results from the tenth annual Greenhouse Gas Bulletin (http://www.wmo.int/pages/prog/arep/gaw/ ghg/GHGbulletin.html) of the World Meteorological Organization (WMO). The results are based on research and observations performed by laboratories contributing to the WMO Global Atmosphere Watch (GAW) Programme (www.wmo.int/gaw). The Bulletin presents results of global analyses of observational data collected according to GAW recommended practices and submitted to the World Data Center for Greenhouse Gases (WDCGG), and for the first time, it includes a summary of ocean acidification. Bulletins are prepared by the WMO/GAW Scientific Advisory Group for Greenhouse Gases (http://www.wmo.int/pages/prog/arep/gaw/ScientificAdvisoryGroups.html) in collaboration with WDCGG. The summary of ocean acidification and trends in ocean pCO2 was jointly produced by the International Ocean Carbon Coordination Project (IOCCP) of the Intergovernmental Oceanographic Commission of UNESCO (IOC-UNESCO), the Scientific Committee on Oceanic Research (SCOR), and the Ocean Acidification International Coordination Centre (OA-ICC) of the International Atomic Energy Agency (IAEA). The tenth Bulletin included a special edition published prior to the United Nations Climate Summit in September 2014. The scope of this edition was to demonstrate the level of emission reduction necessary to stabilize radiative forcing by long-lived greenhouse gases. It shows in particular that a reduction in radiative forcing from its current level (2.92 W m-2 in 2013) requires significant reductions in anthropogenic emissions of all major greenhouse gases. Observations used for global analysis are collected at more than 100 marine and terrestrial sites worldwide for CO2 and CH4 and at a smaller number of sites for other greenhouse gases. Globally averaged dry-air mole fractions of carbon dioxide, methane and nitrous oxide derived from this network reached new highs in 2013, with CO2 at 396.0 ± 0.1 ppm, CH4 at

  1. THOR: A NEW AND FLEXIBLE GLOBAL CIRCULATION MODEL TO EXPLORE PLANETARY ATMOSPHERES

    Mendonça, João M.; Grimm, Simon L.; Grosheintz, Luc; Heng, Kevin

    2016-01-01

    We have designed and developed, from scratch, a global circulation model (GCM) named THOR that solves the three-dimensional nonhydrostatic Euler equations. Our general approach lifts the commonly used assumptions of a shallow atmosphere and hydrostatic equilibrium. We solve the “pole problem” (where converging meridians on a sphere lead to increasingly smaller time steps near the poles) by implementing an icosahedral grid. Irregularities in the grid, which lead to grid imprinting, are smoothed using the “spring dynamics” technique. We validate our implementation of spring dynamics by examining calculations of the divergence and gradient of test functions. To prevent the computational time step from being bottlenecked by having to resolve sound waves, we implement a split-explicit method together with a horizontally explicit and vertically implicit integration. We validate our GCM by reproducing the Earth and hot-Jupiter-like benchmark tests. THOR was designed to run on graphics processing units (GPUs), which allows for physics modules (radiative transfer, clouds, chemistry) to be added in the future, and is part of the open-source Exoclimes Simulation Platform (www.exoclime.org).

  2. Biogenic non-methane hydrocarbons (NMHC). Nature`s contribution to regional and global atmospheric chemistry

    Klockow, D; Hoffman, T [Inst. of Spectrochemistry and Applied Spectroscopy, Dortmund (Germany)

    1996-12-31

    Terrestrial vegetation provides an important source of volatile hydrocarbons, especially isoprene, monoterpenes and in addition possibly sesquiterpenes as well as oxygenated compounds. Although there exist considerable uncertainties in the estimation of the magnitude of these biogenic NMHC emissions, it is generally accepted that the majority of global NMHC release is from natural and not from anthropogenic sources. Taking into consideration the high reactivity of the mostly unsaturated biogenic emissions, their impact on tropospheric processes can be assumed to be of great importance. Together with anthropogenic NO{sub x} emissions, the highly reactive natural alkenes can act as precursors in photochemical oxidant formation and contribute to regional-scale air pollution. Their oxidation in the atmosphere and the subsequent gas-to-particle conversion of the products lead to the formation of organic aerosols. Because of the formation of phytotoxic compounds, the interaction of the biogenic hydrocarbons with ozone inside or outside the leaves and needles of plants has been suggested to play a role in forest decline. (author)

  3. Global Mercury Observatory System (GMOS): measurements of atmospheric mercury in Celestun, Yucatan, Mexico during 2012.

    Velasco, Antonio; Arcega-Cabrera, Flor; Oceguera-Vargas, Ismael; Ramírez, Martha; Ortinez, Abraham; Umlauf, Gunther; Sena, Fabrizio

    2016-09-01

    Within the Global Mercury Observation System (GMOS) project, long-term continuous measurements of total gaseous mercury (TGM) were carried out by a monitoring station located at Celestun, Yucatan, Mexico, a coastal site along the Gulf of Mexico. The measurements covered the period from January 28th to October 17th, 2012. TGM data, at the Celestun site, were obtained using a high-resolution mercury vapor analyzer. TGM data show values from 0.50 to 2.82 ng/m(3) with an annual average concentration of 1.047 ± 0.271 ng/m(3). Multivariate analyses of TGM and meteorological variables suggest that TGM is correlated with the vertical air mass distribution in the atmosphere, which is influenced by diurnal variations in temperature and relative humidity. Diurnal variation is characterized by higher nighttime mercury concentrations, which might be influenced by convection currents between sea and land. The back trajectory analysis confirmed that local sources do not significantly influence TGM variations. This study shows that TGM monitoring at the Celestun site fulfills GMOS goals for a background site.

  4. Inter-annual variability of the atmospheric carbon dioxide concentrations as simulated with global terrestrial biosphere models and an atmospheric transport model

    Fujita, Daisuke; Saeki, Tazu; Nakazawa, Takakiyo [Tohoku Univ., Sendai (Japan). Center for Atmospheric and Oceanic Studies; Ishizawa, Misa; Maksyutov, Shamil [Inst. for Global Change Research, Yokohama (Japan). Frontier Research System for Global Change; Thornton, Peter E. [National Center for Atmospheric Research, Boulder, CO (United States). Climate and Global Dynamics Div.

    2003-04-01

    Seasonal and inter-annual variations of atmospheric CO{sub 2} for the period from 1961 to 1997 have been simulated using a global tracer transport model driven by a new version of the Biome BioGeochemical Cycle model (Biome-BGC). Biome-BGC was forced by daily temperature and precipitation from the NCEP reanalysis dataset, and the calculated monthly-averaged CO{sub 2} fluxes were used as input to the global transport model. Results from an inter-comparison with the Carnegie-Ames-Stanford Approach model (CASA) and the Simulation model of Carbon CYCLE in Land Ecosystems (Sim-CYCLE) model are also reported. The phase of the seasonal cycle in the Northern Hemisphere was reproduced generally well by Biome-BGC, although the amplitude was smaller compared to the observations and to the other biosphere models. The CO{sub 2} time series simulated by Biome-BGC were compared to the global CO{sub 2} concentration anomalies from the observations at Mauna Loa and the South Pole. The modeled concentration anomalies matched the phase of the inter-annual variations in the atmospheric CO{sub 2} observations; however, the modeled amplitude was lower than the observed value in several cases. The result suggests that a significant part of the inter-annual variability in the global carbon cycle can be accounted for by the terrestrial biosphere models. Simulations performed with another climate-based model, Sim-CYCLE, produced a larger amplitude of inter-annual variability in atmospheric CO{sub 2}, making the amplitude closer to the observed range, but with a more visible phase mismatch in a number of time periods. This may indicate the need to increase the Biome-BGC model sensitivity to seasonal and inter-annual changes in temperature and precipitation.

  5. Inter-annual variability of the atmospheric carbon dioxide concentrations as simulated with global terrestrial biosphere models and an atmospheric transport model

    Fujita, Daisuke; Saeki, Tazu; Nakazawa, Takakiyo; Ishizawa, Misa; Maksyutov, Shamil; Thornton, Peter E.

    2003-01-01

    Seasonal and inter-annual variations of atmospheric CO 2 for the period from 1961 to 1997 have been simulated using a global tracer transport model driven by a new version of the Biome BioGeochemical Cycle model (Biome-BGC). Biome-BGC was forced by daily temperature and precipitation from the NCEP reanalysis dataset, and the calculated monthly-averaged CO 2 fluxes were used as input to the global transport model. Results from an inter-comparison with the Carnegie-Ames-Stanford Approach model (CASA) and the Simulation model of Carbon CYCLE in Land Ecosystems (Sim-CYCLE) model are also reported. The phase of the seasonal cycle in the Northern Hemisphere was reproduced generally well by Biome-BGC, although the amplitude was smaller compared to the observations and to the other biosphere models. The CO 2 time series simulated by Biome-BGC were compared to the global CO 2 concentration anomalies from the observations at Mauna Loa and the South Pole. The modeled concentration anomalies matched the phase of the inter-annual variations in the atmospheric CO 2 observations; however, the modeled amplitude was lower than the observed value in several cases. The result suggests that a significant part of the inter-annual variability in the global carbon cycle can be accounted for by the terrestrial biosphere models. Simulations performed with another climate-based model, Sim-CYCLE, produced a larger amplitude of inter-annual variability in atmospheric CO 2 , making the amplitude closer to the observed range, but with a more visible phase mismatch in a number of time periods. This may indicate the need to increase the Biome-BGC model sensitivity to seasonal and inter-annual changes in temperature and precipitation

  6. The global impact of the transport sectors on atmospheric aerosol: simulations for year 2000 emissions

    M. Righi

    2013-10-01

    Full Text Available We use the EMAC (ECHAM/MESSy Atmospheric Chemistry global model with the aerosol module MADE (Modal Aerosol Dynamics model for Europe, adapted for global applications to quantify the impact of transport emissions (land transport, shipping and aviation on the global aerosol. We consider a present-day (2000 scenario according to the CMIP5 (Climate Model Intercomparison Project Phase 5 emission data set developed in support of the IPCC (Intergovernmental Panel on Climate Change Fifth Assessment Report. The model takes into account particle mass and number emissions: The latter are derived from mass emissions under different assumptions on the size distribution of particles emitted by the three transport sectors. Additional sensitivity experiments are performed to quantify the effects of the uncertainties behind such assumptions. The model simulations show that the impact of the transport sectors closely matches the emission patterns. Land transport is the most important source of black carbon (BC pollution in the USA, Europe and the Arabian Peninsula, contributing up to 60–70% of the total surface-level BC concentration in these regions. Shipping contributes about 40–60% of the total aerosol sulfate surface-level concentration along the most-traveled routes of the northern Atlantic and northern Pacific oceans, with a significant impact (~ 10–20% along the coastlines. Aviation mostly affects aerosol number, contributing about 30–40% of the particle number concentration in the northern midlatitudes' upper troposphere (7–12 km, although significant effects are also simulated at the ground, due to the emissions from landing and take-off cycles. The transport-induced perturbations to the particle number concentrations are very sensitive to the assumptions on the size distribution of emitted particles, with the largest uncertainties (about one order of magnitude obtained for the land transport sector. The simulated climate impacts, due to

  7. International Comprehensive Ocean Atmosphere Data Set (ICOADS) And NCEI Global Marine Observations

    National Oceanic and Atmospheric Administration, Department of Commerce — International Comprehensive Ocean Atmosphere Data Set (ICOADS) consists of digital data set DSI-1173, archived at the National Center for Environmental Information...

  8. Interactions Between Atmospheric Aerosols and Marine Boundary Layer Clouds on Regional and Global Scales

    Wang, Zhen

    Airborne aerosols are crucial atmospheric constituents that are involved in global climate change and human life qualities. Understanding the nature and magnitude of aerosol-cloud-precipitation interactions is critical in model predictions for atmospheric radiation budget and the water cycle. The interactions depend on a variety of factors including aerosol physicochemical complexity, cloud types, meteorological and thermodynamic regimes and data processing techniques. This PhD work is an effort to quantify the relationships among aerosol, clouds, and precipitation on both global and regional scales by using satellite retrievals and aircraft measurements. The first study examines spatial distributions of conversion rate of cloud water to rainwater in warm maritime clouds over the globe by using NASA A-Train satellite data. This study compares the time scale of the onset of precipitation with different aerosol categories defined by values of aerosol optical depth, fine mode fraction, and Angstrom Exponent. The results indicate that conversion time scales are actually quite sensitive to lower tropospheric static stability (LTSS) and cloud liquid water path (LWP), in addition to aerosol type. Analysis shows that tropical Pacific Ocean is dominated by the highest average conversion rate while subtropical warm cloud regions (far northeastern Pacific Ocean, far southeastern Pacific Ocean, Western Africa coastal area) exhibit the opposite result. Conversion times are mostly shorter for lower LTSS regimes. When LTSS condition is fixed, higher conversion rates coincide with higher LWP and lower aerosol index categories. After a general global view of physical property quantifications, the rest of the presented PhD studies is focused on regional airborne observations, especially bulk cloud water chemistry and aerosol aqueous-phase reactions during the summertime off the California coast. Local air mass origins are categorized into three distinct types (ocean, ships, and land

  9. Bootstrap inversion technique for atmospheric trace gas source detection and quantification using long open-path laser measurements

    C. B. Alden

    2018-03-01

    Full Text Available Advances in natural gas extraction technology have led to increased activity in the production and transport sectors in the United States and, as a consequence, an increased need for reliable monitoring of methane leaks to the atmosphere. We present a statistical methodology in combination with an observing system for the detection and attribution of fugitive emissions of methane from distributed potential source location landscapes such as natural gas production sites. We measure long (> 500 m, integrated open-path concentrations of atmospheric methane using a dual frequency comb spectrometer and combine measurements with an atmospheric transport model to infer leak locations and strengths using a novel statistical method, the non-zero minimum bootstrap (NZMB. The new statistical method allows us to determine whether the empirical distribution of possible source strengths for a given location excludes zero. Using this information, we identify leaking source locations (i.e., natural gas wells through rejection of the null hypothesis that the source is not leaking. The method is tested with a series of synthetic data inversions with varying measurement density and varying levels of model–data mismatch. It is also tested with field observations of (1 a non-leaking source location and (2 a source location where a controlled emission of 3.1  ×  10−5 kg s−1 of methane gas is released over a period of several hours. This series of synthetic data tests and outdoor field observations using a controlled methane release demonstrates the viability of the approach for the detection and sizing of very small leaks of methane across large distances (4+ km2 in synthetic tests. The field tests demonstrate the ability to attribute small atmospheric enhancements of 17 ppb to the emitting source location against a background of combined atmospheric (e.g., background methane variability and measurement uncertainty of 5 ppb (1σ, when

  10. Bootstrap inversion technique for atmospheric trace gas source detection and quantification using long open-path laser measurements

    Alden, Caroline B.; Ghosh, Subhomoy; Coburn, Sean; Sweeney, Colm; Karion, Anna; Wright, Robert; Coddington, Ian; Rieker, Gregory B.; Prasad, Kuldeep

    2018-03-01

    Advances in natural gas extraction technology have led to increased activity in the production and transport sectors in the United States and, as a consequence, an increased need for reliable monitoring of methane leaks to the atmosphere. We present a statistical methodology in combination with an observing system for the detection and attribution of fugitive emissions of methane from distributed potential source location landscapes such as natural gas production sites. We measure long (> 500 m), integrated open-path concentrations of atmospheric methane using a dual frequency comb spectrometer and combine measurements with an atmospheric transport model to infer leak locations and strengths using a novel statistical method, the non-zero minimum bootstrap (NZMB). The new statistical method allows us to determine whether the empirical distribution of possible source strengths for a given location excludes zero. Using this information, we identify leaking source locations (i.e., natural gas wells) through rejection of the null hypothesis that the source is not leaking. The method is tested with a series of synthetic data inversions with varying measurement density and varying levels of model-data mismatch. It is also tested with field observations of (1) a non-leaking source location and (2) a source location where a controlled emission of 3.1 × 10-5 kg s-1 of methane gas is released over a period of several hours. This series of synthetic data tests and outdoor field observations using a controlled methane release demonstrates the viability of the approach for the detection and sizing of very small leaks of methane across large distances (4+ km2 in synthetic tests). The field tests demonstrate the ability to attribute small atmospheric enhancements of 17 ppb to the emitting source location against a background of combined atmospheric (e.g., background methane variability) and measurement uncertainty of 5 ppb (1σ), when measurements are averaged over 2 min. The

  11. Trace analysis in the atmosphere, water bodies and uranium ores by means of X-ray fluorescence

    Perez Novara, A.M.

    1986-01-01

    Analysis with X-ray fluorescence is an instrumental method that evaluates concentrations, at trace levels, of elements in samples of all kinds. The applications of this method are broad, specially useful in the analysis of metals as contaminators in air and water, and as impurities in minerals. The preparation of the samples is very important to obtain good accuracy, and at the same time, you should make a series of standards of known concentrations so you can compare the counting of each sample against the standard, for each of the elements. You should make, depending on the nature of the sample, several corrections with respect to the background, interferences, overlaps, or for effects of a third element. (author)

  12. Tobacco industry's elaborate attempts to control a global track and trace system and fundamentally undermine the Illicit Trade Protocol.

    Gilmore, Anna B; Gallagher, Allen W A; Rowell, Andy

    2018-06-13

    The Illicit Trade Protocol (ITP) requires a global track and trace (T&T) system to reduce tobacco smuggling. Given the tobacco industry's (TI) historical involvement in tobacco smuggling, it stipulates that T&T 'shall not be performed by or delegated to the tobacco industry'. This paper explores the rationale for & nature of the TI's effors to influence the ITP & its T&T system. Analysis of leaked TI documents and publicly available data; ,investigation of front groups, trademark and patent ownership. Growing & diverse sources of evidence indicate that the TI remains involved in tobacco smuggling and that TI cigarettes account for around two-thirds of the illicit cigarette market. The TI therefore has a vested interest in controlling the global T&T system aimed to curtail this behaviour. To this end, Philip Morris International (PMI) adapted its pack marker system, Codentify, to meet T&T requirements, licensed it for free to its three major competitors who then collectively promoted it to governments using front groups and third parties including companies claiming to be independent despite clear TI links. PMI also sought to suggest Codentify was independent by selling some parts of its intellectual property on Codentify while retaining others, leaving a complex web of shared interests. In Africa, British American Tobacco used payments to obtain data suggesting its smaller competitor companies were evading taxes and secure influence with tax authorities. Regulatory capture has been enhanced by a public relations effort involving TI funding for conferences, training, research, and international police and anti-corruption organisations. Collectively this has created public messaging and a powerful network of organisations supportive of the TI's misleading postion on illicit. Governments should assume the TI seeks to control T&T systems in order to avoid scrutiny and minimise excise tax payments and that any T&T system based on Codentify, on intellectual property

  13. Concentrations and Origins of Atmospheric Lead and Other Trace Species at a Rural Site in Northern China

    Li, Can; Wen, Tianxue; Li, Zhanqing; Dickerson, Russell R.; Yang, Yongjie; Zhao, Yanan; Wang, Yuesi; Tsay, Si-Chee

    2010-01-01

    In this study we analyze the ambient levels of lead and other trace species in the bulk aerosol samples from a rural site approx.70 km ESE of Beijing in spring 2005. Lead (0.28+/-0.24 micro-g/cu m, average +/- standard deviation), along with several pollution \\related trace elements, was enriched by over 100 fold relative to the Earth's crust. The ambient lead levels showing large synoptic variations were well-correlated with other anthropogenic pollutants (e.g., CO and SO2). The Unmix receptor model resolved four factors in the aerosol composition data: a biomass burning source, an industrial and coal combustion source, a secondary aerosol source, and a dust source. The first three sources were strongest in weak southerly winds ahead of cold fronts, while the dust source peaked in strong northerly winds behind cold fronts. The second source, primarily representing emissions from industrial processes and relatively small \\scale coal burning such as in home and institutional heating, was identified as the main source of ambient lead in this study. Mobile sources might also contribute to this factor, but there was no distinct evidence of emissions due to combustion of leaded gasoline, despite a correlation between lead and CO. Potential source contribution function, calculated from backward trajectories and aerosol composition, further reveals that lead observed in this study was predominantly from the populated and industrialized areas to the south and SW of Xianghe, rather than Beijing to the west. Our results and several recent studies show that the lead levels in suburban areas near big cities in China, although generally lower than those in industrial districts and urban areas, are substantial (near or above 0.15 micro-g/cu m). More extensive studies on airborne lead and its emission sources in China are called for.

  14. Flexible global ocean-atmosphere-land system model. A modeling tool for the climate change research community

    Zhou, Tianjun; Yu, Yongqiang; Liu, Yimin; Wang, Bin

    2014-01-01

    First book available on systematic evaluations of the performance of the global climate model FGOALS. Covers the whole field, ranging from the development to the applications of this climate system model. Provide an outlook for the future development of the FGOALS model system. Offers brief introduction about how to run FGOALS. Coupled climate system models are of central importance for climate studies. A new model known as FGOALS (the Flexible Global Ocean-Atmosphere-Land System model), has been developed by the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP, CAS), a first-tier national geophysical laboratory. It serves as a powerful tool, both for deepening our understanding of fundamental mechanisms of the climate system and for making decadal prediction and scenario projections of future climate change. ''Flexible Global Ocean-Atmosphere-Land System Model: A Modeling Tool for the Climate Change Research Community'' is the first book to offer systematic evaluations of this model's performance. It is comprehensive in scope, covering both developmental and application-oriented aspects of this climate system model. It also provides an outlook of future development of FGOALS and offers an overview of how to employ the model. It represents a valuable reference work for researchers and professionals working within the related areas of climate variability and change.

  15. Flexible global ocean-atmosphere-land system model. A modeling tool for the climate change research community

    Zhou, Tianjun; Yu, Yongqiang; Liu, Yimin; Wang, Bin (eds.) [Chinese Academy of Sciences, Beijing, (China). Inst. of Atmospheric Physics

    2014-04-01

    First book available on systematic evaluations of the performance of the global climate model FGOALS. Covers the whole field, ranging from the development to the applications of this climate system model. Provide an outlook for the future development of the FGOALS model system. Offers brief introduction about how to run FGOALS. Coupled climate system models are of central importance for climate studies. A new model known as FGOALS (the Flexible Global Ocean-Atmosphere-Land System model), has been developed by the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP, CAS), a first-tier national geophysical laboratory. It serves as a powerful tool, both for deepening our understanding of fundamental mechanisms of the climate system and for making decadal prediction and scenario projections of future climate change. ''Flexible Global Ocean-Atmosphere-Land System Model: A Modeling Tool for the Climate Change Research Community'' is the first book to offer systematic evaluations of this model's performance. It is comprehensive in scope, covering both developmental and application-oriented aspects of this climate system model. It also provides an outlook of future development of FGOALS and offers an overview of how to employ the model. It represents a valuable reference work for researchers and professionals working within the related areas of climate variability and change.

  16. High-resolution reconstruction of atmospheric deposition of trace metals and metalloids since AD 1400 recorded by ombrotrophic peat cores in Hautes-Fagnes, Belgium.

    Allan, Mohammed; Le Roux, Gaël; De Vleeschouwer, François; Bindler, Richard; Blaauw, Maarten; Piotrowska, Natalia; Sikorski, Jaroslaw; Fagel, Nathalie

    2013-07-01

    The objective of our study was to determine the trace metal accumulation rates in the Misten bog, Hautes-Fagnes, Belgium, and assess these in relation to established histories of atmospheric emissions from anthropogenic sources. To address these aims we analyzed trace metals and metalloids (Pb, Cu, Ni, As, Sb, Cr, Co, V, Cd and Zn), as well as Pb isotopes, using XRF, Q-ICP-MS and MC-ICP-MS, respectively in two 40-cm peat sections, spanning the last 600 yr. The temporal increase of metal fluxes from the inception of the Industrial Revolution to the present varies by a factor of 5-50, with peak values found between AD 1930 and 1990. A cluster analysis combined with Pb isotopic composition allows the identification of the main sources of Pb and by inference of the other metals, which indicates that coal consumption and metallurgical activities were the predominant sources of pollution during the last 600 years. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Jovian atmospheres

    Allison, M.; Travis, L.D.

    1986-10-01

    A conference on the atmosphere of Jupiter produced papers in the areas of thermal and ortho-para hydrogen structure, clouds and chemistry, atmospheric structure, global dynamics, synoptic features and processes, atmospheric dynamics, and future spaceflight opportunities. A session on the atmospheres of Uranus and Neptune was included, and the atmosphere of Saturn was discussed in several papers

  18. Evolution and challenges of dynamic global vegetation models for some aspects of plant physiology and elevated atmospheric CO2.

    Rezende, L F C; Arenque, B C; Aidar, S T; Moura, M S B; Von Randow, C; Tourigny, E; Menezes, R S C; Ometto, J P H B

    2016-07-01

    Dynamic global vegetation models (DGVMs) simulate surface processes such as the transfer of energy, water, CO2, and momentum between the terrestrial surface and the atmosphere, biogeochemical cycles, carbon assimilation by vegetation, phenology, and land use change in scenarios of varying atmospheric CO2 concentrations. DGVMs increase the complexity and the Earth system representation when they are coupled with atmospheric global circulation models (AGCMs) or climate models. However, plant physiological processes are still a major source of uncertainty in DGVMs. The maximum velocity of carboxylation (Vcmax), for example, has a direct impact over productivity in the models. This parameter is often underestimated or imprecisely defined for the various plant functional types (PFTs) and ecosystems. Vcmax is directly related to photosynthesis acclimation (loss of response to elevated CO2), a widely known phenomenon that usually occurs when plants are subjected to elevated atmospheric CO2 and might affect productivity estimation in DGVMs. Despite this, current models have improved substantially, compared to earlier models which had a rudimentary and very simple representation of vegetation-atmosphere interactions. In this paper, we describe this evolution through generations of models and the main events that contributed to their improvements until the current state-of-the-art class of models. Also, we describe some main challenges for further improvements to DGVMs.

  19. Geophysical excitation of LOD/UT1 estimated from the output of the global circulation models of the atmosphere - ERA-40 reanalysis and of the ocean - OMCT

    Korbacz, A.; Brzeziński, A.; Thomas, M.

    2008-04-01

    We use new estimates of the global atmospheric and oceanic angular momenta (AAM, OAM) to study the influence on LOD/UT1. The AAM series was calculated from the output fields of the atmospheric general circulation model ERA-40 reanalysis. The OAM series is an outcome of global ocean model OMCT simulation driven by global fields of the atmospheric parameters from the ERA- 40 reanalysis. The excitation data cover the period between 1963 and 2001. Our calculations concern atmospheric and oceanic effects in LOD/UT1 over the periods between 20 days and decades. Results are compared to those derived from the alternative AAM/OAM data sets.

  20. Transport of nitrogen oxides, carbon monoxide and ozone to the Alpine Global Atmosphere Watch stations Jungfraujoch (Switzerland), Zugspitze and Hohenpeissenberg (Germany), Sonnblick (Austria) and Mt. Krvavec (Slovenia)

    Kaiser, August; Scheifinger, Helfried; Spangl, Wolfgang; Weiss, Andrea; Gilge, Stefan; Fricke, Wolfgang; Ries, Ludwig; Cemas, Danijel; Jesenovec, Brigita

    The Alpine stations Zugspitze, Hohenpeissenberg, Sonnblick, Jungfraujoch and Mt. Krvavec contribute to the Global Atmosphere Watch Programme (GAW) of the World Meteorological Organization (WMO). The aim of GAW is the surveillance of the large-scale chemical composition of the atmosphere. Thus, the detection of air pollutant transport from regional sources is of particular interest. In this paper, the origin of NO x (measured with a photo-converter), CO and O 3 at the four Alpine GAW stations is studied by trajectory residence time statistics. Although these methods originated during the early 1980s, no comprehensive study of different atmospheric trace gases measured simultaneously at several background observatories in the Alps was conducted up to present. The main NO x source regions detected by the trajectory statistics are the northwest of Europe and the region covering East Germany, Czech Republic and southeast Poland, whereas the main CO source areas are the central, north eastern and eastern parts of Europe with some gradient from low to high latitudes. Subsiding air masses from west and southwest are relatively poor in NO x and CO. The statistics for ozone show strong seasonal effects. Near ground air masses are poor in ozone in winter but rich in ozone in summer. The main source for high ozone concentration in winter is air masses that subside from higher elevations, often enhanced by foehn effects at Hohenpeissenberg. During summer, the Mediterranean constitutes an important additional source for high ozone concentrations. Especially during winter, large differences between Hohenpeissenberg and the higher elevated stations are found. Hohenpeissenberg is frequently within the inversion, whereas the higher elevated stations are above the inversion. Jungfraujoch is the only station where the statistics detect an influence of air rich in CO and NO x from the Po Basin.

  1. Further promotion of the use of mosses and lichens for studies of atmospheric deposition of trace elements

    Steinnes, Eiliv

    2001-01-01

    Some recent and ongoing studies related to the use of mosses as biomonitors of atmospheric metal deposition are briefly reviewed. Issues discussed in particular are the conversion of concentration in moss to absolute deposition values, introduction of a second-generation ICP-MS instrument for moss analysis, determination of stable lead isotope ratios in mosses for source apportionment, and temporal trends of lead and cadmium deposition in Norway. A novel nuclear technique for the determination of fluorine in mosses surrounding an aluminium smelter is presented. (author)

  2. Clouds in ECMWF's 30 KM Resolution Global Atmospheric Forecast Model (TL639)

    Cahalan, R. F.; Morcrette, J. J.

    1999-01-01

    Global models of the general circulation of the atmosphere resolve a wide range of length scales, and in particular cloud structures extend from planetary scales to the smallest scales resolvable, now down to 30 km in state-of-the-art models. Even the highest resolution models do not resolve small-scale cloud phenomena seen, for example, in Landsat and other high-resolution satellite images of clouds. Unresolved small-scale disturbances often grow into larger ones through non-linear processes that transfer energy upscale. Understanding upscale cascades is of crucial importance in predicting current weather, and in parameterizing cloud-radiative processes that control long term climate. Several movie animations provide examples of the temporal and spatial variation of cloud fields produced in 4-day runs of the forecast model at the European Centre for Medium-Range Weather Forecasts (ECMWF) in Reading, England, at particular times and locations of simultaneous measurement field campaigns. model resolution is approximately 30 km horizontally (triangular truncation TL639) with 31 vertical levels from surface to stratosphere. Timestep of the model is about 10 minutes, but animation frames are 3 hours apart, at timesteps when the radiation is computed. The animations were prepared from an archive of several 4-day runs at the highest available model resolution, and archived at ECMWF. Cloud, wind and temperature fields in an approximately 1000 km X 1000 km box were retrieved from the archive, then approximately 60 Mb Vis5d files were prepared with the help of Graeme Kelly of ECMWF, and were compressed into MPEG files each less than 3 Mb. We discuss the interaction of clouds and radiation in the model, and compare the variability of cloud liquid as a function of scale to that seen in cloud observations made in intensive field campaigns. Comparison of high-resolution global runs to cloud-resolving models, and to lower resolution climate models is leading to better

  3. A Non-hydrostatic Atmospheric Model for Global High-resolution Simulation

    Peng, X.; Li, X.

    2017-12-01

    A three-dimensional non-hydrostatic atmosphere model, GRAPES_YY, is developed on the spherical Yin-Yang grid system in order to enforce global high-resolution weather simulation or forecasting at the CAMS/CMA. The quasi-uniform grid makes the computation be of high efficiency and free of pole problem. Full representation of the three-dimensional Coriolis force is considered in the governing equations. Under the constraint of third-order boundary interpolation, the model is integrated with the semi-implicit semi-Lagrangian method using the same code on both zones. A static halo region is set to ensure computation of cross-boundary transport and updating Dirichlet-type boundary conditions in the solution process of elliptical equations with the Schwarz method. A series of dynamical test cases, including the solid-body advection, the balanced geostrophic flow, zonal flow over an isolated mountain, development of the Rossby-Haurwitz wave and a baroclinic wave, are carried out, and excellent computational stability and accuracy of the dynamic core has been confirmed. After implementation of the physical processes of long and short-wave radiation, cumulus convection, micro-physical transformation of water substances and the turbulent processes in the planetary boundary layer include surface layer vertical fluxes parameterization, a long-term run of the model is then put forward under an idealized aqua-planet configuration to test the model physics and model ability in both short-term and long-term integrations. In the aqua-planet experiment, the model shows an Earth-like structure of circulation. The time-zonal mean temperature, wind components and humidity illustrate reasonable subtropical zonal westerly jet, meridional three-cell circulation, tropical convection and thermodynamic structures. The specific SST and solar insolation being symmetric about the equator enhance the ITCZ and tropical precipitation, which concentrated in tropical region. Additional analysis and

  4. Atmospheric pCO2 reconstructed across five early Eocene global warming events

    Cui, Ying; Schubert, Brian A.

    2017-11-01

    Multiple short-lived global warming events, known as hyperthermals, occurred during the early Eocene (56-52 Ma). Five of these events - the Paleocene-Eocene Thermal Maximum (PETM or ETM1), H1 (or ETM2), H2, I1, and I2 - are marked by a carbon isotope excursion (CIE) within both marine and terrestrial sediments. The magnitude of CIE, which is a function of the amount and isotopic composition of carbon added to the ocean-atmosphere system, varies significantly between marine versus terrestrial substrates. Here we use the increase in carbon isotope fractionation by C3 land plants in response to increased pCO2 to reconcile this difference and reconstruct a range of background pCO2 and peak pCO2 for each CIE, provided two potential carbon sources: methane hydrate destabilization and permafrost-thawing/organic matter oxidation. Although the uncertainty on each pCO2 estimate using this approach is low (e.g., median uncertainty = + 23% / - 18%), this work highlights the potential for significant systematic bias in the pCO2 estimate resulting from sampling resolution, substrate type, diagenesis, and environmental change. Careful consideration of each of these factors is required especially when applying this approach to a single marine-terrestrial CIE pair. Given these limitations, we provide an upper estimate for background early Eocene pCO2 of 463 +248/-131 ppmv (methane hydrate scenario) to 806 +127/-104 ppmv (permafrost-thawing/organic matter oxidation scenario). These results, which represent the first pCO2 proxy estimates directly tied to the Eocene hyperthermals, demonstrate that early Eocene warmth was supported by background pCO2 less than ∼3.5× preindustrial levels and that pCO2 > 1000 ppmv may have occurred only briefly, during hyperthermal events.

  5. A Scalable Version of the Navy Operational Global Atmospheric Prediction System Spectral Forecast Model

    Thomas E. Rosmond

    2000-01-01

    Full Text Available The Navy Operational Global Atmospheric Prediction System (NOGAPS includes a state-of-the-art spectral forecast model similar to models run at several major operational numerical weather prediction (NWP centers around the world. The model, developed by the Naval Research Laboratory (NRL in Monterey, California, has run operational at the Fleet Numerical Meteorological and Oceanographic Center (FNMOC since 1982, and most recently is being run on a Cray C90 in a multi-tasked configuration. Typically the multi-tasked code runs on 10 to 15 processors with overall parallel efficiency of about 90%. resolution is T159L30, but other operational and research applications run at significantly lower resolutions. A scalable NOGAPS forecast model has been developed by NRL in anticipation of a FNMOC C90 replacement in about 2001, as well as for current NOGAPS research requirements to run on DOD High-Performance Computing (HPC scalable systems. The model is designed to run with message passing (MPI. Model design criteria include bit reproducibility for different processor numbers and reasonably efficient performance on fully shared memory, distributed memory, and distributed shared memory systems for a wide range of model resolutions. Results for a wide range of processor numbers, model resolutions, and different vendor architectures are presented. Single node performance has been disappointing on RISC based systems, at least compared to vector processor performance. This is a common complaint, and will require careful re-examination of traditional numerical weather prediction (NWP model software design and data organization to fully exploit future scalable architectures.

  6. Atmospheric trace elements and Pb isotopes at an offshore site, Ieodo Ocean Research Station, in the East China Sea from June to October 2015

    Lee, S.; Han, C.; Shin, D.; Hur, S. D.; Jun, S. J.; Kim, Y. T.; Hong, S.

    2016-12-01

    East Asia, especially China, has become a major anthropogenic source region of trace elements due to the rapid industrialization and urbanization in the past decades. Numerous studies reported that anthropogenic pollutants from East Asia are transported by westerly winds during winter to spring across the Pacific to North America and beyond. Here we report elemental concentrations and Pb isotope ratios in airborne particles from Ieodo Ocean Research Station (IORS) located in the middle of the East China Sea (32.07o N, 125.10o E). A total of 30 aerosol samples (PM2.5-10) were collected between 18 June and 30 October 2015 and analyzed for trace elements (Zn, As, Mo, Cd, Sb, Ba, Tl, and Pb) and Pb isotopes using ICP-SFMS and TIMS, respectively. The mean concentrations of trace elements ranged from 0.06 ng m-3 for Tl to 10.1 ng m-3 for Zn. These values are much lower (up to several orders) than those at unban sites in East Asia, confirming a low level of air pollution at IORS due to the remoteness of the site from major sources of anthropogenic pollutants. On the other hand, the mean crustal enrichment factors, calculated using Ba as a conservative crustal element, are much higher than unity (84 for Tl, 100 for Mo, 140 for Pb, 166 for Zn, 262 for As, 526 for Cd, and 570 for Sb, respectively), indicating that these elements are of anthropogenic origin. Combining the Pb isotope ratios and the HYSPLIT model 5-day backward trajectory analysis, we have identified episodic long-range transport of air pollutants from diverse source regions of China, Korea, Japan and Taiwan to the site in summer (June to August). By comparison, an increasing long-range transport of pollution from China was observed in autumn (September and October). Finally, our study shows that IORS is an ideal background site for monitoring levels of concentrations and source origins of atmospheric trace elements in East Asia.

  7. Comprehensive measurements of atmospheric OH reactivity and trace species within a suburban forest near Tokyo during AQUAS-TAMA campaign

    Ramasamy, Sathiyamurthi; Nagai, Yoshihide; Takeuchi, Nobuhiro; Yamasaki, Shohei; Shoji, Koki; Ida, Akira; Jones, Charlotte; Tsurumaru, Hiroshi; Suzuki, Yuhi; Yoshino, Ayako; Shimada, Kojiro; Nakashima, Yoshihiro; Kato, Shungo; Hatakeyama, Shiro; Matsuda, Kazuhide; Kajii, Yoshizumi

    2018-07-01

    Total OH reactivity, which gives the instantaneous loss rate of OH radicals due to reactive species, is an invaluable technique to understand regional air quality, as it gives the overall reactivity of the air mass, the fraction of each trace species reactive to OH, the fraction of missing sinks, O3 formation potential, etc. Total OH reactivity measurement was conducted in a small suburban forest located ∼30 km from Tokyo during the air quality study at field museum TAMA (AQUAS-TAMA) campaign in early autumn 2012 and summer 2013. The average measured OH reactivities during that autumn and summer were 7.4 s-1 and 11.4 s-1, respectively. In summer, isoprene was the major contributor, accounting for 28.2% of the OH reactivity, as a result of enhanced light-dependent biogenic emission, whereas NO2 was major contributor in autumn, accounting for 19.6%, due to the diminished contribution from isoprene as a result of lower solar strength. Higher missing OH reactivity 34% was determined in summer, and linear regression analysis showed that oxygenated VOCs could be the potential candidates for missing OH reactivity. Lower missing OH reactivity 25% was determined in autumn and it was significantly reduced (11%) if the interference of peroxy radicals to the measured OH reactivity were considered.

  8. Trace elements in atmospheric particulate matter over a coal burning power production area of western Macedonia, Greece.

    Petaloti, Christina; Triantafyllou, Athanasios; Kouimtzis, Themistoklis; Samara, Constantini

    2006-12-01

    Total suspended particle (TSP) concentrations were determined in the Eordea basin (western Macedonia, Greece), an area with intensive lignite burning for power generation. The study was conducted over a one-year period (November 2000-November 2001) at 10 sites located at variable distances from the power plants. Ambient TSP samples were analyzed for 27 major, minor and trace elements. Annual means of TSP concentrations ranged between 47+/-33 microg m(-3) and 110+/-50 microg m(-3) at 9 out of the 10 sites. Only the site closest to the power stations and the lignite conveyor belts exhibited annual TSP levels (210+/-97 microg m(-3)) exceeding the European standard (150 microg m(-3), 80/779/EEC). Concentrations of TSP and almost all elemental components exhibited significant spatial variations; however, the elemental profiles of TSP were quite similar among all sites suggesting that they are affected by similar source types. At all sites, statistical analysis indicated insignificant (Pmining activities.

  9. Sequential Extractions and Toxicity Potential of Trace Metals Absorbed into Airborne Particles in an Urban Atmosphere of Southwestern Nigeria

    Emmanuel Gbenga Olumayede

    2018-01-01

    Full Text Available The paper investigates the hypothesis that biotoxicities of trace metals depend not only on the concentration as expressed by the total amount, but also on their geochemical fractions and bioavailability. Airborne particles were collected using SKC Air Check XR 5000 high volume Sampler at a human breathing height of 1.5–2.0 meters, during the dry season months from November 2014 to March 2015 at different locations in Akure (7°10′N and 5°15′E. The geochemical-based sequential extractions were performed on the particles using a series of increasingly stringent solutions selected to extract metals (Cd, Cu, Cr, Ni, Pb, Zn, and Mn into four operational geochemical phases—exchangeable, reducible, organic, and residual—and then quantified using an Atomic Absorption Spectrophotometer. The results showed metals concentration of order Pb > Cr > Cd > Zn > Ni > Cu > Mn. However, most metals in the samples exist in nonmobile fractions: exchangeable (6.43–16.2%, reducible (32.58–47.39%, organic (4.73–9.88%, and residual (18.28–27.53%. The pollution indices show ingestion as the leading route of metal exposure, with noncarcinogenic (HQ and cancer risk (HI for humans in the area being higher than 1.0 × 10−4, indicating a health threat.

  10. Direct atmospheric pressure chemical ionization-tandem mass spectrometry for the continuous real-time trace analysis of benzene, toluene, ethylbenzene, and xylenes in ambient air.

    Badjagbo, Koffi; Picard, Pierre; Moore, Serge; Sauvé, Sébastien

    2009-05-01

    Real-time monitoring of benzene, toluene, ethylbenzene, and xylenes (BTEX) in ambient air is essential for the early warning detection associated with the release of these hazardous chemicals and in estimating the potential exposure risks to humans and the environment. We have developed a tandem mass spectrometry (MS/MS) method for continuous real-time determination of ambient trace levels of BTEX. The technique is based on the sampling of air via an atmospheric pressure inlet directly into the atmospheric pressure chemical ionization (APCI) source. The method is linear over four orders of magnitude, with correlation coefficients greater than 0.996. Low limits of detection in the range 1-2 microg/m(3) are achieved for BTEX. The reliability of the method was confirmed through the evaluation of quality parameters such as repeatability and reproducibility (relative standard deviation below 8% and 10%, respectively) and accuracy (over 95%). The applicability of this method to real-world samples was evaluated through measurements of BTEX levels in real ambient air samples and results were compared with a reference GC-FID method. This direct APCI-MS/MS method is suitable for real-time analysis of BTEX in ambient air during regulation surveys as well as for the monitoring of industrial processes or emergency situations.

  11. Direct detection of benzene, toluene, and ethylbenzene at trace levels in ambient air by atmospheric pressure chemical ionization using a handheld mass spectrometer.

    Huang, Guangming; Gao, Liang; Duncan, Jason; Harper, Jason D; Sanders, Nathaniel L; Ouyang, Zheng; Cooks, R Graham

    2010-01-01

    The capabilities of a portable mass spectrometer for real-time monitoring of trace levels of benzene, toluene, and ethylbenzene in air are illustrated. An atmospheric pressure interface was built to implement atmospheric pressure chemical ionization for direct analysis of gas-phase samples on a previously described miniature mass spectrometer (Gao et al. Anal. Chem.2006, 78, 5994-6002). Linear dynamic ranges, limits of detection and other analytical figures of merit were evaluated: for benzene, a limit of detection of 0.2 parts-per-billion was achieved for air samples without any sample preconcentration. The corresponding limits of detection for toluene and ethylbenzene were 0.5 parts-per-billion and 0.7 parts-per-billion, respectively. These detection limits are well below the compounds' permissible exposure levels, even in the presence of added complex mixtures of organics at levels exceeding the parts-per-million level. The linear dynamic ranges of benzene, toluene, and ethylbenzene are limited to approximately two orders of magnitude by saturation of the detection electronics. 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  12. Peat bogs and their organic soils: Archives of atmospheric change and global environmentalsignificance (Philippe Duchaufour Medal Lecture)

    Shotyk, William

    2013-04-01

    A bog is much more than a waterlogged ecosystem where organic matter accumulates as peat. Peatlands such as bogs represent a critical link between the atmosphere, hydrosphere, and biosphere. Plants growing at the surface of ombrotrophic bogs receive nutrients exclusively from the atmosphere. Despite the variations in redox status caused by seasonal fluctuations in depth to water table, the low pHof the waters, and abundance of dissolved organic matter, bogs preserve a remarkably reproducible history of atmospheric pollution, climate change, landscape evolution and human history. For example, peat cores from bogs in Europe and North America have provided detailed reconstructions of the changing rates and sources of Ag, Cd, Hg, Pb, Sb, and Tl, providing new insights into the geochemical cycles of these elements, including the massive perturbations induced by human activities beginning many thousands of years ago. Despite the low pH, and perhaps because of the abundance of dissolved organic matter, bogs preserve many silicate and aluminosilicate minerals which renders them valuable archives of atmospheric dust deposition and the climate changes which drive them. In the deeper, basal peat layers of the bog, in the minerotrophic zone where pore waters are affected bymineral-water interactions in the underlying and surrounding soils and sediments, peat serves as animportant link to the hydrosphere, efficiently removing from the imbibed groundwaters such trace elements as As, Cu, Mo, Ni, Se, V, and U. These removal processes, while incompletely understood, are so effective that measuring the dissolved fraction of trace elements in the pore waters becomes a considerable challenge even for the most sophisticated analytical laboratories. While the trace elements listed above are removed from groundwaters (along with P and S), elements such as Fe and Mn are added to the waters because of reductive dissolution, an important first step in the formation of lacustrine Fe and Mn

  13. Emerging pattern of global change in the upper atmosphere and ionosphere

    Laštovička, Jan; Akmaev, R. A.; Beig, G.; Bremer, J.; Emmert, J. T.; Jacobi, C.; Jarvis, M.J.; Nedoluha, G.; Portnyagin, Yu. I.; Ulich, T.

    2008-01-01

    Roč. 26, č. 5 (2008), s. 1255-1268 ISSN 0992-7689 R&D Projects: GA MŠk OC 091 Institutional research plan: CEZ:AV0Z30420517 Keywords : Atmospheric composition and structure * Thermosphere – composition and chemistry * Evolution of the atmosphere * Ionosphere * Ionosphere-atmosphere interactions Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.660, year: 2008 http://www.ann-geophys.net/26/1255/2008/

  14. Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network

    F. Sprovieri

    2016-09-01

    Full Text Available Long-term monitoring of data of ambient mercury (Hg on a global scale to assess its emission, transport, atmospheric chemistry, and deposition processes is vital to understanding the impact of Hg pollution on the environment. The Global Mercury Observation System (GMOS project was funded by the European Commission (http://www.gmos.eu and started in November 2010 with the overall goal to develop a coordinated global observing system to monitor Hg on a global scale, including a large network of ground-based monitoring stations, ad hoc periodic oceanographic cruises and measurement flights in the lower and upper troposphere as well as in the lower stratosphere. To date, more than 40 ground-based monitoring sites constitute the global network covering many regions where little to no observational data were available before GMOS. This work presents atmospheric Hg concentrations recorded worldwide in the framework of the GMOS project (2010–2015, analyzing Hg measurement results in terms of temporal trends, seasonality and comparability within the network. Major findings highlighted in this paper include a clear gradient of Hg concentrations between the Northern and Southern hemispheres, confirming that the gradient observed is mostly driven by local and regional sources, which can be anthropogenic, natural or a combination of both.

  15. Reconstruction of atmospheric trace metals pollution in Southwest China using sediments from a large and deep alpine lake: Historical trends, sources and sediment focusing.

    Lin, Qi; Liu, Enfeng; Zhang, Enlou; Nath, Bibhash; Shen, Ji; Yuan, Hezhong; Wang, Rong

    2018-02-01

    Atmospheric pollution, one of the leading environmental problems in South and East Asia, and its impact on the terrestrial environmental quality remain poorly understood particularly in alpine areas where both historical and present-day mining and smelting operations might leave an imprint. Here, we reconstructed atmospheric trace metals pollution during the past century using core sediments from a large and deep alpine lake in Southwest China. The implication of in lake and/or in watershed sediment focusing in pollution quantification is discussed by analyzing 15 sediment cores. Factor analysis and enrichment factor indicated Cd, Pb and Sb as the typical pollutants. Distinct peaks of Pb and Sb pollution were observed around the 1920s, but little Pb pollution was detected in recent decades, different from other studies in similar regions. Cadmium pollution was observed until the mid-1980s synchronized with Sb. The distinctive variations in atmospheric trace metal pollution process in Southwest China highlight the regional and sub-regional sources of metal pollutants, which should be primarily attributed to non-ferrous metal smelting emissions. Both natural and anthropogenic metals showed wide concentration ranges though exhibited similar temporal trends in the 15 cores. Spatial variations of anthropogenic metals were influenced by the in-watershed pollutants remobilization, whereas, natural metals were regulated by the detrital materials in the sub-basin. In-lake sediment focusing had little influence on the spatial distributions of all metals, different from the traditional sediment focusing pattern observed in small lakes. Anthropogenic Cd accumulation in sediments ranged from 1.5 to 10.1mgm -2 in a specific core with an average of 6.5mgm -2 for the entire lake, highlighting that a reliable whole-lake pollutant budget requires an analysis of multiple cores. Our study suggests that the management of aquatic ecosystem health should take the remobilization of in

  16. GEOTRACES – An international study of the global marine biogeochemical cycles of trace elements and their isotopes

    Henderson, G.M.; Anderson, R.F.; Adkins, J.; Andersson, P.; Boyle, E.A.; Cutter, Greg; Baar, H. de; Eisenhauer, Anton; Frank, Martin; Francois, R.; Orians, Kristin; Gamo, T.; German, C.; Jenkins, W.; Moffett, J.

    2007-01-01

    Trace elements serve important roles as regulators of ocean processes including marine ecosystem dynamics and carbon cycling. The role of iron, for instance, is well known as a limiting micronutrient in the surface ocean. Several other trace elements also play crucial roles in ecosystem function and their supply therefore controls the structure, and possibly the productivity, of marine ecosystems. Understanding the biogeochemical cycling of these micronutrients requires knowledge of their div...

  17. Using barometric time series of the IMS infrasound network for a global analysis of thermally induced atmospheric tides

    Hupe, Patrick; Ceranna, Lars; Pilger, Christoph

    2018-04-01

    The International Monitoring System (IMS) has been established to monitor compliance with the Comprehensive Nuclear-Test-Ban Treaty and comprises four technologies, one of which is infrasound. When fully established, the IMS infrasound network consists of 60 sites uniformly distributed around the globe. Besides its primary purpose of determining explosions in the atmosphere, the recorded data reveal information on other anthropogenic and natural infrasound sources. Furthermore, the almost continuous multi-year recordings of differential and absolute air pressure allow for analysing the atmospheric conditions. In this paper, spectral analysis tools are applied to derive atmospheric dynamics from barometric time series. Based on the solar atmospheric tides, a methodology for performing geographic and temporal variability analyses is presented, which is supposed to serve for upcoming studies related to atmospheric dynamics. The surplus value of using the IMS infrasound network data for such purposes is demonstrated by comparing the findings on the thermal tides with previous studies and the Modern-Era Retrospective analysis for Research and Applications Version 2 (MERRA-2), which represents the solar tides well in its surface pressure fields. Absolute air pressure recordings reveal geographical characteristics of atmospheric tides related to the solar day and even to the lunar day. We therefore claim the chosen methodology of using the IMS infrasound network to be applicable for global and temporal studies on specific atmospheric dynamics. Given the accuracy and high temporal resolution of the barometric data from the IMS infrasound network, interactions with gravity waves and planetary waves can be examined in future for refining the knowledge of atmospheric dynamics, e.g. the origin of tidal harmonics up to 9 cycles per day as found in the barometric data sets. Data assimilation in empirical models of solar tides would be a valuable application of the IMS infrasound

  18. Characterisation and quantification of trace metal elements in atmospheric deposition and particularities in the Aspe valley (Pyrenees): implementation of road traffic air quality indicators

    Veschambre, S.

    2006-04-01

    This study of inputs of trace metal elements (TME) in the Aspe valley (Pyrenees Atlantiques) has two objectives: (1) to define a reference state of metallic contaminants for the monitoring of road traffic emissions since the opening of the Somport tunnel and, (2) to evaluate sources and climatic conditions which contribute to TME inputs in the Aspe valley. To establish air quality indicators, TME (Al, Na, Mg, K, V, Mn, Cr, Zn, Cu, Rb, Cd, Sn, Sb, Ba, Ce, Pb and U) and lead isotopic ratios ( 208 Pb/ 206 Pb, 206 Pb/ 207 Pb and 208 Pb/ 207 Pb) were determined in the atmospheric receptors (fresh snow, wet deposition, atmospheric particulates and lichen). Sampling and analyses with ultra clean procedures were employed for TME quantification. Variability of atmospheric receptors studied, allows integration on a daily and pluri-annual temporal scale and a spatial scale in the North-South axis of the valley and as a function of the altitude from the road. The Aspe valley presents a level of contamination characteristic of remote European areas and the metallic contaminants identified are Cd, Sb, Zn, Cu, Pb and Sn. In the low valley, air quality indicators indicate contaminant contributions (i) from local emissions of domestic heat sources, from agricultural burning practices and road traffic, and (ii) from regional anthropogenic sources of waste incinerators, metallurgic industries and urban centres. In altitude, the valley is significantly influenced by wind erosion and long range transport of TME in the Northern Hemisphere. Characterisation of TME and the isotopic ratios of Pb in the Somport tunnel indicate (i) a significant emission of Cu, Sb, Zn and Ba and (ii) an isotopic composition from a slightly radiogenic source even though Pb concentrations indicate low emissions from road traffic emissions. Nevertheless, the low traffic volume in the Aspe valley prevents conclusive evidence of significant contamination from road traffic. (author)

  19. Atmospheric concentrations and trends of poly- and perfluoroalkyl substances (PFAS) and volatile methyl siloxanes (VMS) over 7 years of sampling in the Global Atmospheric Passive Sampling (GAPS) network.

    Rauert, Cassandra; Shoieb, Mahiba; Schuster, Jasmin K; Eng, Anita; Harner, Tom

    2018-07-01

    Poly- and per-fluoroalkyl substances (PFAS) and volatile methyl siloxanes (VMS) were monitored at 21 sites in the Global Atmospheric Passive Sampling (GAPS) Network. Atmospheric concentrations previously reported from 2009 were compared to concentrations measured at these sites in 2013 and 2015, to assess trends over 7 years of monitoring. Concentrations of the fluorotelomer alcohols (FTOHs) and fluorinated sulfonamides and sulfonamidoethanols (FOSAs and FOSEs) were stable at these sites from 2009 to 2015 with no significant difference (p > 0.05) in concentrations. Elevated concentrations of all the neutral PFAS were detected at the urban sites as compared to the polar/background sites. The perfluorosulfonic acids (PFSAs), meanwhile, saw a significant increase (p  0.05). Concentrations of the PFSAs and the PFCAs were similar at all location types, showing the global reach of these persistent compounds. Concentrations of the cyclic VMS (cVMS) were at least an order of magnitude higher than the linear VMS (lVMS) and the PFAS. Octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5) and dodecamethylcyclohexasiloxane (D6) saw a weak significant increase in concentrations from 2009 to 2013 (p < 0.05), however, hexamethylcyclotrisiloxane (D3) had a strong significant decrease in concentrations from 2009 to 2015 (p < 0.01). Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. The effect of global-scale divergent circulation on the atmospheric water vapor transport and maintenance

    Chen, Tsing-Chang

    1988-01-01

    The detection, distribution, and dynamics of atmospheric water on Earth was examined. How the high levels of water vapor and precipitation that occur over the tropics during the monsoon season result from the development of a strong divergent atmospheric circulation is discussed.

  1. COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT

    Gutowski, William J.; Prusa, Joseph M.; Smolarkiewicz, Piotr K.

    2012-05-08

    This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAG's advanced dynamics core with the "physics" of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer-reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited. 3a. EULAG Advances EULAG is a non-hydrostatic, parallel computational model for all-scale geophysical flows. EULAG's name derives from its two computational options: EULerian (flux form) or semi-LAGrangian (advective form). The model combines nonoscillatory forward-in-time (NFT) numerical algorithms with a robust elliptic Krylov solver. A signature feature of EULAG is that it is formulated in generalized time-dependent curvilinear coordinates. In particular, this enables grid adaptivity. In total, these features give EULAG novel advantages over many existing dynamical cores. For EULAG itself, numerical advances included refining boundary conditions and filters for optimizing model performance in polar regions. We also added flexibility to the model's underlying formulation, allowing it to work with the pseudo-compressible equation set of Durran in addition to EULAG's standard anelastic formulation. Work in collaboration with others also extended the

  2. SPICAM: studying the global structure and composition of the Martian atmosphere

    Bertaux, J.-L.; Fonteyn, D.; Korablev, O.; Chassefre, E.; Dimarellis, E.; Dubois, J. P.; Hauchecorne, A.; Lefèvre, F.; Cabane, M.; Rannou, P.; Levasseur-Regourd, A. C.; Cernogora, G.; Quemerais, E.; Hermans, C.; Kockarts, G.; Lippens, C.; de Maziere, M.; Moreau, D.; Muller, C.; Neefs, E.; Simon, P. C.; Forget, F.; Hourdin, F.; Talagrand, O.; Moroz, V. I.; Rodin, A.; Sandel, B.; Stern, A.

    2004-08-01

    The SPICAM (SPectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars) instrument consists of two spectrometers. The UV spectrometer addresses key issues about ozone and its H2O coupling, aerosols, the atmospheric vertical temperature structure and the ionosphere. The IR spectrometer is aimed primarily at H2O and abundances and vertical profiling of H2O and aerosols. SPICAM's density/temperature profiles will aid the development of meteorological and dynamical atmospheric models from the surface up to 160 km altitude. UV observations of the upper atmosphere will study the ionosphere and its direct interaction with the solar wind. They will also allow a better understanding of escape mechanisms, crucial for insight into the long-term evolution of the atmosphere.

  3. For how long can we predict the weather? - Insights into atmospheric predictability from global convection-allowing simulations

    Judt, Falko

    2017-04-01

    A tremendous increase in computing power has facilitated the advent of global convection-resolving numerical weather prediction (NWP) models. Although this technological breakthrough allows for the seamless prediction of weather from local to global scales, the predictability of multiscale weather phenomena in these models is not very well known. To address this issue, we conducted a global high-resolution (4-km) predictability experiment using the Model for Prediction Across Scales (MPAS), a state-of-the-art global NWP model developed at the National Center for Atmospheric Research. The goals of this experiment are to investigate error growth from convective to planetary scales and to quantify the intrinsic, scale-dependent predictability limits of atmospheric motions. The globally uniform resolution of 4 km allows for the explicit treatment of organized deep moist convection, alleviating grave limitations of previous predictability studies that either used high-resolution limited-area models or global simulations with coarser grids and cumulus parameterization. Error growth is analyzed within the context of an "identical twin" experiment setup: the error is defined as the difference between a 20-day long "nature run" and a simulation that was perturbed with small-amplitude noise, but is otherwise identical. It is found that in convectively active regions, errors grow by several orders of magnitude within the first 24 h ("super-exponential growth"). The errors then spread to larger scales and begin a phase of exponential growth after 2-3 days when contaminating the baroclinic zones. After 16 days, the globally averaged error saturates—suggesting that the intrinsic limit of atmospheric predictability (in a general sense) is about two weeks, which is in line with earlier estimates. However, error growth rates differ between the tropics and mid-latitudes as well as between the troposphere and stratosphere, highlighting that atmospheric predictability is a complex

  4. Compendium of NASA Data Base for the Global Tropospheric Experiment's Transport and Chemical Evolution Over the Pacific (TRACE-P). Volume 1; DC-8

    Kleb, Mary M.; Scott, A. Donald, Jr.

    2003-01-01

    This report provides a compendium of NASA aircraft data that are available from NASA's Global Tropospheric Experiment's (GTE) Transport and Chemical Evolution over the Pacific (TRACE-P) Mission. The broad goal of TRACE-P was to characterize the transit and evolution of the Asian outflow over the western Pacific. Conducted from February 24 through April 10, 2001, TRACE-P integrated airborne, satellite- and ground-based observations, as well as forecasts from aerosol and chemistry models. The format of this compendium utilizes data plots (time series) of selected data acquired aboard the NASA/Dryden DC-8 (vol. 1) and NASA/Wallops P-3B (vol. 2) aircraft during TRACE-P. The purpose of this document is to provide a representation of aircraft data that are available in archived format via NASA Langley s Distributed Active Archive Center (DAAC) and through the GTE Project Office archive. The data format is not intended to support original research/analyses, but to assist the reader in identifying data that are of interest.

  5. Compendium of NASA Data Base for the Global Tropospheric Experiment's Transport and Chemical Evolution Over the Pacific (TRACE-P). Volume 2; P-3B

    Kleb, Mary M.; Scott, A. Donald, Jr.

    2003-01-01

    This report provides a compendium of NASA aircraft data that are available from NASA's Global Tropospheric Experiment's (GTE) Transport and Chemical Evolution over the Pacific (TRACE-P) Mission. The broad goal of TRACE-P was to characterize the transit and evolution of the Asian outflow over the western Pacific. Conducted from February 24 through April 10, 2001, TRACE-P integrated airborne, satellite- and ground based observations, as well as forecasts from aerosol and chemistry models. The format of this compendium utilizes data plots (time series) of selected data acquired aboard the NASA/Dryden DC-8 (vol. 1) and NASA/Wallops P-3B (vol. 2) aircraft during TRACE-P. The purpose of this document is to provide a representation of aircraft data that are available in archived format via NASA Langley's Distributed Active Archive Center (DAAC) and through the GTE Project Office archive. The data format is not intended to support original research/analyses, but to assist the reader in identifying data that are of interest.

  6. Evaluation of the impact of atmospheric ozone and aerosols on the horizontal global/diffuse UV Index at Livorno (Italy)

    Scaglione, Daniele; Giulietti, Danilo; Morelli, Marco

    2016-08-01

    A study was conducted at Livorno (Italy) to evaluate the impact of atmospheric aerosols and ozone on the solar UV radiation and its diffuse component at ground in clear sky conditions. Solar UV radiation has been quantified in terms of UV Index (UVI), following the ISO 17166:1999/CIE S007/E-1998 international standard. UVI has been calculated by exploiting the libRadtran radiative transfer modelling software as a function of both the Aerosols Optical Depth (AOD) and the Total Ozone Column (TOC). In particular AOD and TOC values have been remotely sensed by the Ozone Monitoring Instrument (OMI) on board the NASA's EOS (Earth Observing System) satellites constellation. An experimental confirmation was also obtained by exploiting global UVI ground-based measurements from the 26/9/14 to 12/8/15 and diffuse UVI ground-based measurements from the 17/5/15 to 12/8/15. For every considered value of Solar Zenith Angle (SZA) and atmospheric condition, estimates and measurements confirm that the diffuse component contributes for more than 50% on the global UV radiation. Therefore an exposure of human skin also to diffuse solar UV radiation can be potentially harmful for health and need to be accurately monitored, e.g. by exploiting innovative applications such as a mobile app with a satellite-based UV dosimeter that has been developed. Global and diffuse UVI variations due to the atmosphere are primarily caused by the TOC variations (typically cyclic): the maximum TOC variation detected by OMI in the area under study leads to a corresponding variation in global and diffuse UVI of about 50%. Aerosols in the area concerned, mainly of maritime nature, have instead weaker effects causing a maximum variation of the global and diffuse UVI respectively of 9% and 35% with an SZA of 20° and respectively of 13% and 10% with an SZA of 60°.

  7. Regional pattern and interannual variations in global terrestrial carbon uptake in response to changes in climate and atmospheric CO2

    Cao, Mingkui; Tao, B.; Li, Kerang; Prince, Stephen D.; Small, J.

    2005-01-01

    Atmospheric measurements indicate that the terrestrial carbon sink increased substantially from the 1980s to the 1990s, but which factors and regions were responsible for the increase are not well identified yet. Using process- and remote sensing-based ecosystem models, we show that changes in climate and atmospheric CO 2 in the period 1981-2000 enhanced net ecosystem production (NEP) and caused major geographical changes in the global distribution of NEP. In the 1980s the Americas accounted for almost all of the global NEP, but in the 1990s NEP in Eurasia and Africa became higher than that of the Americas. The year-to-year variation in global NEP was up to 2.5 Pg C (1 Pg = 10 15 g), in which 1.4 Pg C was attributable to the El Nino Southern Oscillation cycle (ENSO). NEP clearly decreased in El Nino and increased in La Nina in South America and Africa, but the response in North America and Eurasia was mixed. The estimated NEP increases accounted for only 30% of the global terrestrial carbon sink but can explain almost all of the increase from the 1980s to the 1990s. Because a large part of the increase in NEP was driven by the long-term trend of climate and atmospheric CO 2 , the increase in the global terrestrial carbon sink from the 1980s to the 1990s was a continuation of the trend since the middle of the twentieth century, rather than merely a consequence of short-time climate variability

  8. Trace determination of 13 haloacetamides in drinking water using liquid chromatography triple quadrupole mass spectrometry with atmospheric pressure chemical ionization.

    Chu, Wenhai; Gao, Naiyun; Yin, Daqiang; Krasner, Stuart W; Templeton, Michael R

    2012-04-27

    The haloacetamides (HAcAms) are disinfection by-products (DBPs) in drinking water which are currently receiving increased scientific attention due to their elevated toxicity relative to regulated disinfection by-products. A simultaneous determination method of 13 HAcAms, combining solid-phase extraction (SPE) enrichment, liquid chromatographic (LC) separation, and triple quadrupole mass spectrometry (tqMS) detection with atmospheric pressure chemical ionization (APCI) using selective reaction monitoring in positive mode, was developed to measure HAcAms, including chlorinated, brominated, and iodinated analogs. Ammonium chloride and Oasis HLB were selected as the dechlorinating reagent and polymeric SPE sorbent of HAcAm samples. The used tqMS apparatus showed higher sensitivity for the studied HAcAms in the APCI mode than electrospray ionization. 13 HAcAms were separated by LC in 9.0 min, and the detection limits ranged from 7.6 to 19.7 ng/L. The SPE-LC/tqMS method was successfully applied to quantify 13 HAcAms in drinking water samples for the first time, and first indentified tribromoacetamide and chloroiodoacetamide as DBPs in drinking water. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. The atmospheric boundary layer in the CSIRO global climate model: simulations versus observations

    Garratt, J. R.; Rotstayn, L. D.; Krummel, P. B.

    2002-07-01

    A 5-year simulation of the atmospheric boundary layer in the CSIRO global climate model (GCM) is compared with detailed boundary-layer observations at six locations, two over the ocean and four over land. Field observations, in the form of surface fluxes and vertical profiles of wind, temperature and humidity, are generally available for each hour over periods of one month or more in a single year. GCM simulations are for specific months corresponding to the field observations, for each of five years. At three of the four land sites (two in Australia, one in south-eastern France), modelled rainfall was close to the observed climatological values, but was significantly in deficit at the fourth (Kansas, USA). Observed rainfall during the field expeditions was close to climatology at all four sites. At the Kansas site, modelled screen temperatures (Tsc), diurnal temperature amplitude and sensible heat flux (H) were significantly higher than observed, with modelled evaporation (E) much lower. At the other three land sites, there is excellent correspondence between the diurnal amplitude and phase and absolute values of each variable (Tsc, H, E). Mean monthly vertical profiles for specific times of the day show strong similarities: over land and ocean in vertical shape and absolute values of variables, and in the mixed-layer and nocturnal-inversion depths (over land) and the height of the elevated inversion or height of the cloud layer (over the sea). Of special interest is the presence climatologically of early morning humidity inversions related to dewfall and of nocturnal low-level jets; such features are found in the GCM simulations. The observed day-to-day variability in vertical structure is captured well in the model for most sites, including, over a whole month, the temperature range at all levels in the boundary layer, and the mix of shallow and deep mixed layers. Weaknesses or unrealistic structure include the following, (a) unrealistic model mixed

  10. Representation of the tropical stratospheric zonal wind in global atmospheric reanalyses

    Y. Kawatani

    2016-06-01

    Full Text Available This paper reports on a project to compare the representation of the monthly-mean zonal wind in the equatorial stratosphere among major global atmospheric reanalysis data sets. The degree of disagreement among the reanalyses is characterized by the standard deviation (SD of the monthly-mean zonal wind and this depends on latitude, longitude, height, and the phase of the quasi-biennial oscillation (QBO. At each height the SD displays a prominent equatorial maximum, indicating the particularly challenging nature of the reanalysis problem in the low-latitude stratosphere. At 50–70 hPa the geographical distributions of SD are closely related to the density of radiosonde observations. The largest SD values are over the central Pacific, where few in situ observations are available. At 10–20 hPa the spread among the reanalyses and differences with in situ observations both depend significantly on the QBO phase. Notably the easterly-to-westerly phase transitions in all the reanalyses except MERRA are delayed relative to those directly observed in Singapore. In addition, the timing of the easterly-to-westerly phase transitions displays considerable variability among the different reanalyses and this spread is much larger than for the timing of the westerly-to-easterly phase changes. The eddy component in the monthly-mean zonal wind near the Equator is dominated by zonal wavenumber 1 and 2 quasi-stationary planetary waves propagating from midlatitudes in the westerly phase of the QBO. There generally is considerable disagreement among the reanalyses in the details of the quasi-stationary waves near the Equator. At each level, there is a tendency for the agreement to be best near the longitude of Singapore, suggesting that the Singapore observations act as a strong constraint on all the reanalyses. Our measures of the quality of the reanalysis clearly show systematic improvement over the period considered (1979–2012. The SD among the reanalysis

  11. The global pyrogenic carbon cycle and its impact on the level of atmospheric CO2 over past and future centuries.

    Landry, Jean-Sébastien; Matthews, H Damon

    2017-08-01

    The incomplete combustion of vegetation and dead organic matter by landscape fires creates recalcitrant pyrogenic carbon (PyC), which could be consequential for the global carbon budget if changes in fire regime, climate, and atmospheric CO 2 were to substantially affect gains and losses of PyC on land and in oceans. Here, we included global PyC cycling in a coupled climate-carbon model to assess the role of PyC in historical and future simulations, accounting for uncertainties through five sets of parameter estimates. We obtained year-2000 global stocks of (Central estimate, likely uncertainty range in parentheses) 86 (11-154), 47 (2-64), and 1129 (90-5892) Pg C for terrestrial residual PyC (RPyC), marine dissolved PyC, and marine particulate PyC, respectively. PyC cycling decreased atmospheric CO 2 only slightly between 1751 and 2000 (by 0.8 Pg C for the Central estimate) as PyC-related fluxes changed little over the period. For 2000 to 2300, we combined Representative Concentration Pathways (RCPs) 4.5 and 8.5 with stable or continuously increasing future fire frequencies. For the increasing future fire regime, the production of new RPyC generally outpaced the warming-induced accelerated loss of existing RPyC, so that PyC cycling decreased atmospheric CO 2 between 2000 and 2300 for most estimates (by 4-8 Pg C for Central). For the stable fire regime, however, PyC cycling usually increased atmospheric CO 2 (by 1-9 Pg C for Central), and only the most extreme choice of parameters maximizing PyC production and minimizing PyC decomposition led to atmospheric CO 2 decreases under RCPs 4.5 and 8.5 (by 5-8 Pg C). Our results suggest that PyC cycling will likely reduce the future increase in atmospheric CO 2 if landscape fires become much more frequent; however, in the absence of a substantial increase in fire frequency, PyC cycling might contribute to, rather than mitigate, the future increase in atmospheric CO 2 . © 2016 John Wiley & Sons Ltd.

  12. Periodic DFT study of acidic trace atmospheric gas molecule adsorption on Ca- and Fe-doped MgO(001) surface basic sites.

    Baltrusaitis, Jonas; Hatch, Courtney; Orlando, Roberto

    2012-08-02

    The electronic properties of undoped and Ca- or Fe-doped MgO(001) surfaces, as well as their propensity toward atmospheric acidic gas (CO2, SO2, and NO2) uptake was investigated with an emphasis on gas adsorption on the basic MgO oxygen surface sites, O(surf), using periodic density functional theory (DFT) calculations. Adsorption energy calculations show that MgO doping will provide stronger interactions of the adsorbate with the O(surf) sites than the undoped MgO for a given adsorbate molecule. Charge transfer from the iron atom in Fe-doped MgO(001) to NO2 was shown to increase the binding interaction between adsorbate by an order of magnitude, when compared to that of undoped and Ca-doped MgO(001) surfaces. Secondary binding interactions of adsorbate oxygen atoms were observed with surface magnesium sites at distances close to those of the Mg-O bond within the crystal. These interactions may serve as a preliminary step for adsorption and facilitate further adsorbate transformations into other binding configurations. Impacts on global atmospheric chemistry are discussed as these adsorption phenomena can affect atmospheric gas budgets via altered partitioning and retention on mineral aerosol surfaces.

  13. Effects of land use on surface–atmosphere exchanges of trace gases and energy in Borneo: comparing fluxes over oil palm plantations and a rainforest

    Fowler, David; Nemitz, Eiko; Misztal, Pawel; Di Marco, Chiara; Skiba, Ute; Ryder, James; Helfter, Carole; Cape, J. Neil; Owen, Sue; Dorsey, James; Gallagher, Martin W.; Coyle, Mhairi; Phillips, Gavin; Davison, Brian; Langford, Ben; MacKenzie, Rob; Muller, Jennifer; Siong, Jambery; Dari-Salisburgo, Cesare; Di Carlo, Piero; Aruffo, Eleonora; Giammaria, Franco; Pyle, John A.; Hewitt, C. Nicholas

    2011-01-01

    This paper reports measurements of land–atmosphere fluxes of sensible and latent heat, momentum, CO2, volatile organic compounds (VOCs), NO, NO2, N2O and O3 over a 30 m high rainforest canopy and a 12 m high oil palm plantation in the same region of Sabah in Borneo between April and July 2008. The daytime maximum CO2 flux to the two canopies differs by approximately a factor of 2, 1200 mg C m−2 h−1 for the oil palm and 700 mg C m−2 h−1 for the rainforest, with the oil palm plantation showing a substantially greater quantum efficiency. Total VOC emissions are also larger over the oil palm than over the rainforest by a factor of 3. Emissions of isoprene from the oil palm canopy represented 80 per cent of the VOC emissions and exceeded those over the rainforest in similar light and temperature conditions by on average a factor of 5. Substantial emissions of estragole (1-allyl-4-methoxybenzene) from the oil palm plantation were detected and no trace of this VOC was detected in or above the rainforest. Deposition velocities for O3 to the rainforest were a factor of 2 larger than over oil palm. Emissions of nitrous oxide were larger from the soils of the oil palm plantation than from the soils of the rainforest by approximately 25 per cent. It is clear from the measurements that the large change in the species composition generated by replacing rainforest with oil palm leads to profound changes in the net exchange of most of the trace gases measured, and thus on the chemical composition of the boundary layer over these surfaces. PMID:22006962

  14. Historical record of concentrations of atmospheric trace components deduced from a glacier in the Alps; Historische Entwicklung von atmosphaerischen Spurenstoffkonzentrationen rekonstruiert aus Firn und Eis alpiner Gletscher

    Doescher, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-07-01

    A 109 m ice core from a high-alpine glacier (Colle Gnifetti, Monte Rosa massif, 4440 m a.s.l., Switzerland) was used to reconstruct the history of atmospheric trace components. Concentrations of the anions chloride, nitrate, sulfate and the cations sodium, ammonium, potassium, magnesium and calcium were measured with 2.5-5.0 cm resolution in the top 70 m of a 109 m long of the ice core. Dating of the ice core was performed using stratigraphic markers such as historically known Saharan dust events, the atomic bomb horizon and volcanic eruptions and supplemented with the {sup 210}Pb nuclear dating. The record covers the time period from about 1755-1981. The concentrations of nitrate and sulfate show an exponential increase from 1930 and 1870 until 1965, respectively. The factors of increase were 2.3{+-}0.3 and 5.8{+-}0.9, respectively. The chloride concentrations remained constant during this period. A good agreement between the concentrations of sulfate, which were corrected for the contribution of seasalt and mineral dust and the European SO{sub 2}-emissions was found for the last 100 years. The concentrations of sodium, potassium, magnesium and calcium did not show a trend. The concentrations of ammonium increased exponentially between 1870 and 1960 by a factor of 2.2{+-}0.4. The different sources of the trace components were identified using correlation analysis. Sodium and chloride originated from seasalt, magnesium and calcium from geologic erosion. For both, the industrial and pre-industrial period, the dominant source of ammonium and nitrate was conversion of the gaseous precursors NH{sub 3} and HNO{sub 3}. Sulfate concentrations in the industrial period originated from the anthropogenically emitted SO{sub 2}, whereas in the pre-industrial period the geologic source dominated. The Colle Gnifetti accumulates mainly summer snow, and therefore, several test drillings were performed to find a new site with higher accumulation rate. figs., 17 tabs., 50 refs.

  15. Potential use of the non-random distribution of N2 and N2O mole masses in the atmosphere as a tool for tracing atmospheric mixing and isotope fractionation processes

    Well, R.; Langel, R.; Reineking, A.

    2002-01-01

    The variation in the natural abundance of 15 N in atmospheric gas species is often used to determine the mixing of trace gases from different sources. With conventional budget calculations one unknown quantity can be determined if the remaining quantities are known. From 15 N tracer studies in soils with highly enriched 15 N-nitrate a procedure is known to calculate the mixing of atmospheric and soil derived N 2 based on the measurement of the 30/28 and 29/28 ratios in gas samples collected from soil covers. Because of the non-random distribution of the mole masses 30 N 2 , 29 N 2 and 28 N 2 in the mixing gas it is possible to calculate two quantities simultaneously, i.e. the mixing ratio of atmospheric and soil derived N 2 , and the isotopic signature of the soil derived N 2 . Routine standard measurements of laboratory air had suggested a non-random distribution of N 2 -mole masses. The objective of this study was to investigate and explain the existence of non-random distributions of 15 N 15 N, 14 N 15 N and 14 N 14 N in N 2 and N 2 O in environmental samples. The calculation of theoretical isotope data resulting from hypothetical mixing of two sources differing in 15 N natural abundance demonstrated, that the deviation from an ideal random distribution of mole masses is not detectable with the current precision of mass spectrometry. 15 N-analysis of N 2 or N 2 O was conducted with randomised and non-randomised replicate samples of different origin. 15 N abundance as calculated from 29/28 ratios were generally higher in randomised samples. The differences between the treatments ranged between 0.05 and 0.17 δper mille 15 N. It was concluded that the observed randomisation effect is probably caused by 15 N 15 N fractionation during environmental processes. (author)

  16. Multianalytical determination of trace elements in atmospheric biomonitors by k0-INAA, ICP-MS and AAS

    Freitas, M. C.; Pacheco, A. M. G.; Dionísio, I.; Sarmento, S.; Baptista, M. S.; Vasconcelos, M. T. S. D.; Cabral, J. P.

    2006-08-01

    Elemental contents of atmospheric biomonitors—epiphytic lichens and tree bark, exposed in continuous and discontinuous modes—have been assessed through k0-standardised instrumental neutron activation analysis ( k0-INAA) (two different institutions), inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS). Certified reference materials—ISE-921 (river clay), NIST-1547 (peach leaves), ICHTJ-INCT-TL-1 (tea leaves; TL-1 hereinafter) and IAEA-336 (lichen material), and nonparametric statistics—rank-order correlations (Spearman RS) and enhanced-sign tests (Wilcoxon T)—were used for analytical control and data comparison, respectively. In general, quality of procedures was deemed good, except for k0-INAA in determining Br, Cu and Na, all likely affected by high counting statistics, and/or contamination issues (the latter). Results for Cu, Ni, Pb and Sr (by both ICP-MS and AAS) revealed that, despite an outstanding correlation (asymptotic p=0.000), they could be viewed as statistically equal for Cu only: AAS tended to yield higher values for Pb and Ni, and lower ones for Sr. The comparison between ICP-MS and k0-INAA data from TUDelft, for Al, Ca, Cu, Mg, Mn, Na, Ti and V, showed an excellent correlation (as above) and random (relative) magnitude for Cu, Mg, Mn and Ti only: ICP-MS tended to yield higher values for Al, Na and V, and lower ones for Ca, whereas between k0-INAA data from TUDelft and ITN, for Br, Ca and Na, resulted in systematically higher [Br] and [Ca] variates from TUDelft, even if all corresponding data sets were found to correlate at stringent significance levels. In a few cases, though—Ca, Sr in lichens; Pb in bark—matrix effects did appear to interfere in the outcome of matched-pairs, signed-rank tests, since random hierarchy of variates could be asserted just when lichen and bark data sets were processed separately.

  17. Enhancing atmospheric mercury research in China to improve the current understanding of the global mercury cycle: the need for urgent and closely coordinated efforts.

    Ci, Zhijia; Zhang, Xiaoshan; Wang, Zhangwei

    2012-06-05

    The current understanding of the global mercury (Hg) cycle remains uncertain because Hg behavior in the environment is very complicated. The special property of Hg causes the atmosphere to be the most important medium for worldwide dispersion and transformation. The source and fate of atmospheric Hg and its interaction with the surface environment are the essential topics in the global Hg cycle. Recent declining measurement trends of Hg in the atmosphere are in apparent conflict with the increasing trends in global anthropogenic Hg emissions. As the single largest country contributor of anthropogenic Hg emission, China's role in the global Hg cycle will become more and more important in the context of the decreasing man-made Hg emission from developed regions. However, much less Hg information in China is available. As a global pollutant which undergoes long-range transport and is persistence in the environment, increasing Hg knowledge in China could not only promote the Hg regulation in this country but also improve the understanding of the fundamental of the global Hg cycle and further push the abatement of this toxin on a global scale. Then the atmospheric Hg research in China may be a breakthrough for improving the current understanding of the global Hg cycle. However, due to the complex behavior of Hg in the atmosphere, a deeper understanding of the atmospheric Hg cycle in China needs greater cooperation across fields.

  18. Sea surface temperature as a proxy for convective gravity wave excitation: a study based on global gravity wave observations in the middle atmosphere

    J. Y. Jia

    2014-11-01

    Full Text Available Absolute values of gravity wave momentum flux (GWMF deduced from satellite measurements by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER instrument and the High Resolution Dynamics Limb Sounder (HIRDLS are correlated with sea surface temperature (SST with the aim of identifying those oceanic regions for which convection is a major source of gravity waves (GWs. Our study identifies those latitude bands where high correlation coefficients indicate convective excitation with confidence. This is based on a global ray-tracing simulation, which is used to delineate the source and wind-filtering effects. Convective GWs are identified at the eastern coasts of the continents and over the warm water regions formed by the warm ocean currents, in particular the Gulf Stream and the Kuroshio. Potential contributions of tropical cyclones to the excitation of the GWs are discussed. Convective excitation can be identified well into the mid-mesosphere. In propagating upward, the centers of GWMF formed by convection shift poleward. Some indications of the main forcing regions are even shown for the upper mesosphere/lower thermosphere (MLT.

  19. Parameterization of dust emissions in the global atmospheric chemistry-climate model EMAC: impact of nudging and soil properties

    Astitha, M.; Lelieveld, J.; Abdel Kader, M.; Pozzer, A.; de Meij, A.

    2012-11-01

    Airborne desert dust influences radiative transfer, atmospheric chemistry and dynamics, as well as nutrient transport and deposition. It directly and indirectly affects climate on regional and global scales. Two versions of a parameterization scheme to compute desert dust emissions are incorporated into the atmospheric chemistry general circulation model EMAC (ECHAM5/MESSy2.41 Atmospheric Chemistry). One uses a globally uniform soil particle size distribution, whereas the other explicitly accounts for different soil textures worldwide. We have tested these two versions and investigated the sensitivity to input parameters, using remote sensing data from the Aerosol Robotic Network (AERONET) and dust concentrations and deposition measurements from the AeroCom dust benchmark database (and others). The two versions are shown to produce similar atmospheric dust loads in the N-African region, while they deviate in the Asian, Middle Eastern and S-American regions. The dust outflow from Africa over the Atlantic Ocean is accurately simulated by both schemes, in magnitude, location and seasonality. Approximately 70% of the modelled annual deposition data and 70-75% of the modelled monthly aerosol optical depth (AOD) in the Atlantic Ocean stations lay in the range 0.5 to 2 times the observations for all simulations. The two versions have similar performance, even though the total annual source differs by ~50%, which underscores the importance of transport and deposition processes (being the same for both versions). Even though the explicit soil particle size distribution is considered more realistic, the simpler scheme appears to perform better in several locations. This paper discusses the differences between the two versions of the dust emission scheme, focusing on their limitations and strengths in describing the global dust cycle and suggests possible future improvements.

  20. Parameterization of dust emissions in the global atmospheric chemistry-climate model EMAC: impact of nudging and soil properties

    M. Astitha

    2012-11-01

    Full Text Available Airborne desert dust influences radiative transfer, atmospheric chemistry and dynamics, as well as nutrient transport and deposition. It directly and indirectly affects climate on regional and global scales. Two versions of a parameterization scheme to compute desert dust emissions are incorporated into the atmospheric chemistry general circulation model EMAC (ECHAM5/MESSy2.41 Atmospheric Chemistry. One uses a globally uniform soil particle size distribution, whereas the other explicitly accounts for different soil textures worldwide. We have tested these two versions and investigated the sensitivity to input parameters, using remote sensing data from the Aerosol Robotic Network (AERONET and dust concentrations and deposition measurements from the AeroCom dust benchmark database (and others. The two versions are shown to produce similar atmospheric dust loads in the N-African region, while they deviate in the Asian, Middle Eastern and S-American regions. The dust outflow from Africa over the Atlantic Ocean is accurately simulated by both schemes, in magnitude, location and seasonality. Approximately 70% of the modelled annual deposition data and 70–75% of the modelled monthly aerosol optical depth (AOD in the Atlantic Ocean stations lay in the range 0.5 to 2 times the observations for all simulations. The two versions have similar performance, even though the total annual source differs by ~50%, which underscores the importance of transport and deposition processes (being the same for both versions. Even though the explicit soil particle size distribution is considered more realistic, the simpler scheme appears to perform better in several locations. This paper discusses the differences between the two versions of the dust emission scheme, focusing on their limitations and strengths in describing the global dust cycle and suggests possible future improvements.

  1. Next generation global Earth atmospheric composition sounders for the decadal survey requirements and roadmaps

    National Aeronautics and Space Administration — This task follows directly from an "A Team" study conducted in April 2013 to identify the future space based atmospheric composition measurements required to inform...

  2. Global structure and composition of the martian atmosphere with SPICAM on Mars express

    Bertaux, Jean-Loup; Korablev, O.; Fonteyn, D.; Guibert, S.; Chassefière, E.; Lefèvre, F.; Dimarellis, E.; Dubois, J. P.; Hauchecorne, A.; Cabane, M.; Rannou, P.; Levasseur-Regourd, A. C.; Cernogora, G.; Quémerais, E.; Hermans, C.; Kockarts, G.; Lippens, C.; de Maziere, M.; Moreau, D.; Muller, C.; Neefs, E.; Simon, P. C.; Forget, F.; Hourdin, F.; Talagrand, O.; Moroz, V. I.; Rodin, A.; Sandel, B.; Stern, A.

    SPectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars (SPICAM) Light, a light-weight (4.7 kg) UV-IR instrument to be flown on Mars Express orbiter, is dedicated to the study of the atmosphere and ionosphere of Mars. A UV spectrometer (118-320 nm, resolution 0.8 nm) is dedicated to nadir viewing, limb viewing and vertical profiling by stellar and solar occultation (3.8 kg). It addresses key issues about ozone, its coupling with H2O, aerosols, atmospheric vertical temperature structure and ionospheric studies. UV observations of the upper atmosphere will allow studies of the ionosphere through the emissions of CO, CO+, and CO2+, and its direct interaction with the solar wind. An IR spectrometer (1.0-1.7 μm, resolution 0.5-1.2 nm) is dedicated primarily to nadir measurements of H2O abundances simultaneously with ozone measured in the UV, and to vertical profiling during solar occultation of H2O, CO2, and aerosols. The SPICAM Light near-IR sensor employs a pioneering technology acousto-optical tunable filter (AOTF), leading to a compact and light design. Overall, SPICAM Light is an ideal candidate for future orbiter studies of Mars, after Mars Express, in order to study the interannual variability of martian atmospheric processes. The potential contribution to a Mars International Reference Atmosphere is clear.

  3. Investigating the global transport of trace species and the stratoshere-troposphere-exchange with the Lagrangian model ECHAM4/ATTILA; Untersuchungen zum globalen Spurenstofftransport und Stratosphaeren-Troposphaeren-Austausch mit dem Lagrangeschen Modell ECHAM4/ATTILA

    Reithmeier, C.

    2001-07-01

    Investigating the chemical composition of the atmosphere and its influence on the global climate involves a large number of trace species. Therefore, the Lagrangian transport scheme ATTILA has been developed in this thesis. ATTILA runs online in the general circulation model ECHAM4 and, thus, can be used efficiently for studies involving many tracers. The present study discusses the problems which arise when applying Lagrangian methods on long range and global scale, and describes in detail the solutions developed for ATTILA. Transport experiments with both short-lived and long-lived tracers clearly show that ATTILA is numerically much less diffusive than the operational semi-Lagrangian scheme of ECHAM. It could be shown that the enhanced meridional transport in the tropopause region and the overestimated downward flux through the tropopause in ECHAM are rather due to the numerical properties of the semi-Lagrangian scheme than due to an incorrect circulation. Furthermore, the stratospheric dynamics has been investigated in this study by analysing trajectories and by calculating age spectra and mass fluxes. (orig.)

  4. Reviews and syntheses: An empirical spatiotemporal description of the global surface-atmosphere carbon fluxes: opportunities and data limitations

    Zscheischler, Jakob; Mahecha, Miguel D.; Avitabile, Valerio; Calle, Leonardo; Carvalhais, Nuno; Ciais, Philippe; Gans, Fabian; Gruber, Nicolas; Hartmann, Jens; Herold, Martin; Ichii, Kazuhito; Jung, Martin; Landschützer, Peter; Laruelle, Goulven G.; Lauerwald, Ronny; Papale, Dario; Peylin, Philippe; Poulter, Benjamin; Ray, Deepak; Regnier, Pierre; Rödenbeck, Christian; Roman-Cuesta, Rosa M.; Schwalm, Christopher; Tramontana, Gianluca; Tyukavina, Alexandra; Valentini, Riccardo; van der Werf, Guido; West, Tristram O.; Wolf, Julie E.; Reichstein, Markus

    2017-08-01

    Understanding the global carbon (C) cycle is of crucial importance to map current and future climate dynamics relative to global environmental change. A full characterization of C cycling requires detailed information on spatiotemporal patterns of surface-atmosphere fluxes. However, relevant C cycle observations are highly variable in their coverage and reporting standards. Especially problematic is the lack of integration of the carbon dioxide (CO2) exchange of the ocean, inland freshwaters and the land surface with the atmosphere. Here we adopt a data-driven approach to synthesize a wide range of observation-based spatially explicit surface-atmosphere CO2 fluxes from 2001 to 2010, to identify the state of today's observational opportunities and data limitations. The considered fluxes include net exchange of open oceans, continental shelves, estuaries, rivers, and lakes, as well as CO2 fluxes related to net ecosystem productivity, fire emissions, loss of tropical aboveground C, harvested wood and crops, as well as fossil fuel and cement emissions. Spatially explicit CO2 fluxes are obtained through geostatistical and/or remote-sensing-based upscaling, thereby minimizing biophysical or biogeochemical assumptions encoded in process-based models. We estimate a bottom-up net C exchange (NCE) between the surface (land, ocean, and coastal areas) and the atmosphere. Though we provide also global estimates, the primary goal of this study is to identify key uncertainties and observational shortcomings that need to be prioritized in the expansion of in situ observatories. Uncertainties for NCE and its components are derived using resampling. In many regions, our NCE estimates agree well with independent estimates from other sources such as process-based models and atmospheric inversions. This holds for Europe (mean ± 1 SD: 0.8 ± 0.1 PgC yr-1, positive numbers are sources to the atmosphere), Russia (0.1 ± 0.4 PgC yr-1), East Asia (1.6 ± 0.3 PgC yr-1), South Asia (0.3 ± 0

  5. Global risk from the atmospheric dispersion of radionuclides by nuclear power plant accidents in the coming decades

    Christoudias, T.; Proestos, Y. [The Cyprus Institute, Nicosia (Cyprus); Lelieveld, J. [The Cyprus Institute, Nicosia (Cyprus); Max Planck Institute for Chemistry, Mainz (Germany)

    2014-07-01

    We estimate the global risk from the release and atmospheric dispersion of radionuclides from nuclear power plant accidents using the EMAC atmospheric chemistry-general circulation model. We included all nuclear reactors that are currently operational, under construction and planned or proposed. We implemented constant continuous emissions from each location in the model and simulated atmospheric transport and removal via dry and wet deposition processes over 20 years (2010-2030), driven by boundary conditions based on the IPCC A2 future emissions scenario. We present global overall and seasonal risk maps for potential surface layer concentrations and ground deposition of radionuclides, and estimate potential doses to humans from inhalation and ground-deposition exposures to radionuclides. We find that the risk of harmful doses due to inhalation is typically highest in the Northern Hemisphere during boreal winter, due to relatively shallow boundary layer development and limited mixing. Based on the continued operation of the current nuclear power plants, we calculate that the risk of radioactive contamination to the citizens of the USA will remain to be highest worldwide, followed by India and France. By including stations under construction and those that are planned and proposed, our results suggest that the risk will become highest in China, followed by India and the USA.

  6. Positive feedback between global warming and atmospheric CO2 concentration inferred from past climate change

    Scheffer, M.; Brovkin, V.; Cox, P.M.

    2006-01-01

    There is good evidence that higher global temperatures will promote a rise of greenhouse gas levels, implying a positive feedback which will increase the effect of anthropogenic emissions on global temperatures. However, the magnitude of this effect predicted by the available models remains highly

  7. Global 3D radiation-hydrodynamics models of AGB stars. Effects of convection and radial pulsations on atmospheric structures

    Freytag, B.; Liljegren, S.; Höfner, S.

    2017-04-01

    Context. Observations of asymptotic giant branch (AGB) stars with increasing spatial resolution reveal new layers of complexity of atmospheric processes on a variety of scales. Aims: To analyze the physical mechanisms that cause asymmetries and surface structures in observed images, we use detailed 3D dynamical simulations of AGB stars; these simulations self-consistently describe convection and pulsations. Methods: We used the CO5BOLD radiation-hydrodynamics code to produce an exploratory grid of global "star-in-a-box" models of the outer convective envelope and the inner atmosphere of AGB stars to study convection, pulsations, and shock waves and their dependence on stellar and numerical parameters. Results: The model dynamics are governed by the interaction of long-lasting giant convection cells, short-lived surface granules, and strong, radial, fundamental-mode pulsations. Radial pulsations and shorter wavelength, traveling, acoustic waves induce shocks on various scales in the atmosphere. Convection, waves, and shocks all contribute to the dynamical pressure and, thus, to an increase of the stellar radius and to a levitation of material into layers where dust can form. Consequently, the resulting relation of pulsation period and stellar radius is shifted toward larger radii compared to that of non-linear 1D models. The dependence of pulsation period on luminosity agrees well with observed relations. The interaction of the pulsation mode with the non-stationary convective flow causes occasional amplitude changes and phase shifts. The regularity of the pulsations decreases with decreasing gravity as the relative size of convection cells increases. The model stars do not have a well-defined surface. Instead, the light is emitted from a very extended inhomogeneous atmosphere with a complex dynamic pattern of high-contrast features. Conclusions: Our models self-consistently describe convection, convectively generated acoustic noise, fundamental-mode radial

  8. High-throughput trace analysis of explosives in water by laser diode thermal desorption/atmospheric pressure chemical ionization-tandem mass spectrometry.

    Badjagbo, Koffi; Sauvé, Sébastien

    2012-07-03

    Harmful explosives can accumulate in natural waters in the long term during their testing, usage, storage, and dumping and can pose a health risk to humans and the environment. For the first time, attachment of small anions to neutral molecules in laser diode thermal desorption/atmospheric pressure chemical ionization was systematically investigated for the direct determination of trace nitroaromatics, nitrate esters, and nitramine explosives in water. Using ammonium chloride as an additive improved the instrument response for all the explosives tested and promoted the formation of several characteristic adduct ions. The method performs well achieving good linearity over at least 2 orders of magnitude, with coefficients of determination greater than 0.995. The resulting limits of detection are in the range of 0.009-0.092 μg/L. River water samples were successfully analyzed by the proposed method with accuracy in the range of 96-98% and a response time of 15 s, without any further pretreatment or chromatographic separation.

  9. PRELIMINARY RESULTS OF ATMOSPHERIC DEPOSITION OF MAJOR AND TRACE ELEMENTS IN THE GREATER AND LESSER CAUCASUS MOUNTAINS STUDIED BY THE MOSS TECHNIQUE AND NEUTRON ACTIVATION ANALYSIS

    S. Shetekauri

    2015-05-01

    Full Text Available The method of moss biomonitoring of atmospheric deposition of trace elements was applied for the first time in the western Caucasus Mountains to assess the environmental situation in this region. The sixteen moss samples have been collected in 2014 summer growth period along altitudinal gradients in the range of altitudes from 600 m to 2665 m. Concentrations of Na, Mg, Al, Cl, K, Ca, Ti, V, Mn, Fe, Zn, As, Br, Rb, Mo, Cd, I, Sb, Ba, La, Sm, W, Au, and U determined by neutron activation analysis in the moss samples are reported. A comparison with the data for moss collected in Norway (pristine area was carried out.  Multivariate statistical analysis of the results was used for assessment pollution sources in the studied part of the Caucasus. The increase in concentrations of most of elements with rising altitude due to gradually disappearing vegetation cover and wind erosion of soil was observed. A comparison with the available data for moss collected in the Alps at the same altitude (~ 2500 m was performed.

  10. Trace-element measurements in atmospheric biomonitors--A look at the relative performance of INAA and PIXE on olive-tree bark

    Pacheco, Adriano M.G.; Freitas, Maria do Carmo; Reis, Miguel A.

    2003-01-01

    As part of an ongoing evaluation of its suitability for atmospheric biomonitoring, bark from olive trees (Olea europaea Linn.) has been collected and searched for trace elements by means of two nuclear-analytical techniques--instrumental neutron activation analysis (INAA) and proton-induced X-ray emission (PIXE). The sampling for the present study was carried out across two separate sections of an established grid for air-quality surveys in mainland Portugal. The dual location comprises 58 collection sites--littoral-north (29 sites) and littoral-centre (29 sites). Both techniques are intrinsically accurate and may be seen to complement each other in the way that, as a whole