WorldWideScience

Sample records for global atmospheric radioactivity

  1. Dynamics of radioactive lead isotopes in the global environmental atmosphere

    International Nuclear Information System (INIS)

    Koike, Yuya; Kosako, Toshiso

    2006-01-01

    Fundamental information of radioactive lead isotopes, which used as the atmospheric tracer in the global environmental atmosphere, is reviewed. Emanation and exhalation of Rn and Tn, parent nuclide, is stated. Some reports on measurement and application of short-lived lead isotopes are reported. Transfer of radioactive lead isotopes in the atmosphere, vertical profiles of radon, thoron, and short-lived lead isotopes for different turbulent mixing conditions, deposition to aerosol, basic processes of Rn decay product behavior in air defining 'unattached' and 'aerosol-attached' activities, seasonal variation of atmospheric 210 Pb concentration at Beijing and Chengdu, seasonal variation of atmospheric 212 Pb concentration at several observation sites in Japan Islands, and variation in the atmospheric concentration of 212 Pb along with SO 2 are shown. (S.Y.)

  2. Natural atmospheric radioactivity

    International Nuclear Information System (INIS)

    Renoux, A.

    1986-01-01

    After having summed up the different old or new units, used in radioactivity and radioprotection, the origins of atmospheric radioactivity are reported. Next the authors deal with the air content in radon, thoron and their radioactive descendants, insisting on the variations of the radon air content and on the radioactive balance between radon and its descendants. Then a few notions concerning the natural radioactive aerosol are developed: electric charge state, granulometric distribution. The possible effects of natural atmospheric radioactivity on man are studied with a distinction between inner irradiation and outer irradiation, an average assessment is shown. Finally the important problem of radon in inhabitations is approached [fr

  3. Environmental radioactivity. Global transport, distribution and its long-term variation

    International Nuclear Information System (INIS)

    Hirose, Katsumi

    2015-01-01

    Fukushima Dai-ichi Nuclear Power Plant (F1NPP) accident, which occurred as a result of huge earthquake and resulting tsunami, had a severe impact on world communities as did Japanese, because of cause of serious radioactivity contamination in the environment. Long-term effects of radioactivity contamination from F1NPP are concerned. To assess the long-term environmental effects of the F1NPP accident, it is important to review the history of global radioactivity contamination, which started from Hiroshima and Nagasaki nuclear explosions in Aug. 1945. Radionuclides released in the environment as a result of atmospheric nuclear explosions, nuclear reactor accident and others are migrated between atmosphere, hydrosphere, biosphere and lithosphere according to natural processes. We describe long-term environmental behaviors of anthropogenic radionuclides derived from the atmospheric nuclear explosions and others, which is useful to predict the behaviors and fate of the F1NPP-derived radionuclides. (author)

  4. Atmospheric natural radioactivity outdoors

    International Nuclear Information System (INIS)

    Renoux, A.

    1985-01-01

    Following a short account of natural atmospheric radioactivity, radon concentrations are given as well as their variations with time obtained by means of a original apparatus developped in Brest. The radioactive equilibrium of radon and its daughters is then considered, many experiments demonstrating that equilibrium is seldom reached even for 218 Po (RaA). Finally, some characteristics of natural radioactive aerosols are studied: charge, particle size distribution (demonstrating they are fine aerosols since only 30 per cent are made of particles with radii exceeding 0,1 μm) [fr

  5. Global risk of radioactive fallout after major nuclear reactor accidents

    International Nuclear Information System (INIS)

    Lelieveld, J.; Kunkel, D.; Lawrence, M.G.

    2012-01-01

    Major reactor accidents of nuclear power plants are rare, yet the consequences are catastrophic. But what is meant by ''rare''? And what can be learned from the Chernobyl and Fukushima incidents? Here we assess the cumulative, global risk of exposure to radioactivity due to atmospheric dispersion of gases and particles following severe nuclear accidents (the most severe ones on the International Nuclear Event Scale, INES 7), using particulate "1"3"7Cs and gaseous "1"3"1I as proxies for the fallout. Our results indicate that previously the occurrence of INES 7 major accidents and the risks of radioactive contamination have been underestimated. Using a global model of the atmosphere we compute that on average, in the event of a major reactor accident of any nuclear power plant worldwide, more than 90% of emitted "1"3"7Cs would be transported beyond 50 km and about 50% beyond 1000 km distance before being deposited. This corroborates that such accidents have large-scale and trans-boundary impacts. Although the emission strengths and atmospheric removal processes of "1"3"7Cs and "1"3"1I are quite different, the radioactive contamination patterns over land and the human exposure due to deposition are computed to be similar. High human exposure risks occur around reactors in densely populated regions, notably in West Europe and South Asia, where a major reactor accident can subject around 30 million people to radioactive contamination. The recent decision by Germany to phase out its nuclear reactors will reduce the national risk, though a large risk will still remain from the reactors in neighbouring countries.

  6. Analysis on the atmospheric dispersion of radioactive materials

    International Nuclear Information System (INIS)

    Nagai, Haruyasu

    2012-01-01

    JAEA has been developing a new prediction system of comprehensive movement, SPEEDI-MP (SPEEDI Multi-model Package), which can treat continuously and strictly with the migration behavior of radioactive materials at atmosphere, sea, and land region. JAEA has been further promoting the detail analysis of atmospheric migration of radioactive materials dispersed by an accident. Then, using a part of this system, the atmospheric-diversion prediction system, WSPEEDI-II, the atmospheric diversion mass and the atmospheric diffusion analysis were carried out. This issue reports the summary. (M.H.)

  7. Fifty years of atmospheric radioactivity monitoring by the German Meteorological Service

    International Nuclear Information System (INIS)

    2006-01-01

    At a commemorative event at the Langen Training and Congress Center on 8 and 9 June 2005 it was brought to the attention of the audience that the German Meteorological Service has been charged with the sovereign task of monitoring atmospheric radioactivity since 8 August 1955. The purpose of this commission at the time was to measure traces of radioactivity in the atmosphere and precipitation and make forecasts on the movement of radioactive air masses. This was motivated by the above-ground nuclear tests carried out by the USA and the Soviet Union and the resulting measurable increase in atmospheric radioactivity levels. Equipped as it was with the necessary infrastructure the German Meteorological Service offered to take on this monitoring task. The importance of being able to assess the meteorological situation and provide data on radioactivity levels in the atmosphere and precipitation became apparent in 1986 after the reactor disaster of Chernobyl. When the Law on Preventive Radiation Protection was enacted in 1986 it was therefore only logical for the German Meteorological Service's commission to monitor atmospheric radioactivity levels to be renewed

  8. Parameters of atmospheric radioactivity in Bulgaria

    International Nuclear Information System (INIS)

    Yaneva, B.; Todorov, P.; Georgieva, D.

    2006-01-01

    Bulgaria is a country which is located on the Balkan Peninsula, at the Eastern part of Europe. There are a lot of polluting sources, which can affect the environmental parameters and human health. One of these parameters is a radioactivity. It can be as a result from natural and anthropological sources. One of the most important sources of radiological influence to the environment and its components is from atmosphere. Anthropological sources of atmospheric pollution are Nuclear power plants, different kinds of industrial plants, and so on. The systematic control on these parameters is made by the Ministry of environment and water in Bulgaria. The atmospheric radioactivity research is based on collecting of many samples and its examine. The collecting of these aerosol samples on different kind of filters is automatic and it is put into practice by fixed stations located in some of the main towns in Bulgaria - Sofia, Varna, Burgas, Vratza and Montana. The required amount of air for each sample is 1000m 3 . These samples are analyzed by gamma-spectrometry analysis for determination of specifies activity of natural and anthropological radionuclides in them. Monitoring data for the atmospheric radioactivity can be characterized by concentrations of Cs-137, Be-7. The results show that concentrations of Cs-137 are 3 and the concentrations for Be-7 vary from 0.7 to 15.7 mBq/m 3 . Other important radionuclides are Sr-90, Uranium and Ra-226

  9. Some considerations about the natural atmospheric radioactive aerosol

    International Nuclear Information System (INIS)

    Renoux, A.; Madelaine, G.

    1985-01-01

    From experiments made in Brest by the use of a semi-automatic device for direct measurements of atmospheric radon (the double filter method), we obtained daily average values of Radon 222 concentration, and establish that the values obtained are completely different according to the wind direction. We establish that radioactive balance is never realized in the air between radon and its daughters RaA(Po218), RaB(Pb214) and RaC(Bi214); the state of radioactive balance strongly depends on wind direction. We also study the ionic state of the radioactive aerosol accruing from Radon 222. Using an experimental system consisting of absolute filters, diffusion batteries, cascade impactors and ions tubes, we establish the size distribution of natural radioactive aerosol. We thus show 40% of the natural atmospheric radioactivity is located on particles whose radii are inferior to 2 . 10-2 mm. A good agreement is provided between the theory and our experimental points

  10. Global atmospheric changes.

    OpenAIRE

    Piver, W T

    1991-01-01

    Increasing concentrations of CO2 and other greenhouse gases in the atmosphere can be directly related to global warming. In terms of human health, because a major cause of increasing atmospheric concentrations of CO2 is the increased combustion of fossil fuels, global warming also may result in increases in air pollutants, acid deposition, and exposure to ultraviolet (UV) radiation. To understand better the impacts of global warming phenomena on human health, this review emphasizes the proces...

  11. Regional forecasting with global atmospheric models

    International Nuclear Information System (INIS)

    Crowley, T.J.; North, G.R.; Smith, N.R.

    1994-05-01

    This report was prepared by the Applied Research Corporation (ARC), College Station, Texas, under subcontract to Pacific Northwest Laboratory (PNL) as part of a global climate studies task. The task supports site characterization work required for the selection of a potential high-level nuclear waste repository and is part of the Performance Assessment Scientific Support (PASS) Program at PNL. The work is under the overall direction of the Office of Civilian Radioactive Waste Management (OCRWM), US Department of Energy Headquarters, Washington, DC. The scope of the report is to present the results of the third year's work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain several studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals

  12. Global atmospheric changes.

    Science.gov (United States)

    Piver, W T

    1991-12-01

    Increasing concentrations of CO2 and other greenhouse gases in the atmosphere can be directly related to global warming. In terms of human health, because a major cause of increasing atmospheric concentrations of CO2 is the increased combustion of fossil fuels, global warming also may result in increases in air pollutants, acid deposition, and exposure to ultraviolet (UV) radiation. To understand better the impacts of global warming phenomena on human health, this review emphasizes the processes that are responsible for the greenhouse effect, air pollution, acid deposition, and increased exposure to UV radiation.

  13. Study of radio-active ions in the atmosphere

    International Nuclear Information System (INIS)

    Renoux, A.

    1965-01-01

    A comparative study is made of active, deposits of radon and thoron in suspension in the atmosphere by means of α radiation counting, using ZELENY tubes, scattering equipment, filter papers or membranes. It has been possible to show the existence of small and large ions which are negative and positive, as well as of neutral radio-active nuclei; their properties are studied. A theoretical interpretation of the results is presented. The average content of radon (using the Ra A concentration) and of Th B in the air has been determined. The radioactive equilibrium between radon and its daughter products in atmospheric air are examined. The techniques developed for active radon and thoron deposits are applied to the study of artificial radio-activity, the analyses being carried out by means of γ spectrometry. (author) [fr

  14. On the design of a global detection system for airborne radioactivity

    International Nuclear Information System (INIS)

    Rodhe, H.; Hamrud, M.

    1984-01-01

    Requirements are investigated for a global network of air sampling stations to have a reasonable efficiency for detecting emissions to the atmosphere of radioactive material anywhere on Earth. It is found that some 50 stations should be enough to detect within 15 days and with a probability of at least 25 percent a nuclear explosion with a fission yield larger than or equal to 1 kt. If the probability limit is set at 90 percent, a substantially greater number of stations is required. (author.)

  15. Simulation of atmospheric dispersion of radioactivity from the Chernobyl accident

    International Nuclear Information System (INIS)

    Lange, R.; Sullivan, T.J.; Gudiksen, P.H.

    1989-07-01

    Measurements of airborne radioactivity over Europe, Japan, and the United States indicated that the release from the Chernobyl reactor accident in the Soviet Union on April 26, 1986 contained a wide spectrum of fission up to heights of 7 km or more within a few days after the initial explosion. This high-altitude presence of radioactivity would in part be attributable to atmospheric dynamics factors other than the thermal energy released in the initial explosion. Indications were that two types of releases had taken place -- an initial powerful explosion followed by days of a less energetic reactor fire. The Atmospheric Release Advisory Capability (ARAC) at the Lawrence Livermore National Laboratory (LLNL) utilized three-dimensional atmospheric dispersion models to determine the characteristics of the source term (release) and the evolution of the spatial distributions of the airborne radioactivity as it was transported over Europe and subsequently over the northern hemisphere. This paper describes the ARAC involvement and the results of the hemispheric model calculations which graphically depict the extensive dispersal of radioactivity. 1 fig

  16. Measurement of radioactivity in the atmosphere and pollution nearby an atomic centre

    International Nuclear Information System (INIS)

    Labeyrie, J.; Weill, J.

    1955-01-01

    The French Atomic Energy Commission (CEA) is particularly interested in studies on atmospheric radioactivity by reason of the necessity to control the atmosphere nearby nuclear plants as uranium mines, nuclear reactors and hot laboratories or radioactive materials treatment plants. Thus, the CEA developed different apparatus to control and monitor the atmosphere nearby its sites. These air monitors are essentially of two types: the first one, called 'Babar', monitors smokes, fogs and dusts, the second type is an ionization chamber and measures the concentration of radioactive gas in the air. The functioning and sensitivity of these two systems are discussed. (M.P.)

  17. (Chemistry of the global atmosphere)

    Energy Technology Data Exchange (ETDEWEB)

    Marland, G.

    1990-09-27

    The traveler attended the conference The Chemistry of the Global Atmosphere,'' and presented a paper on the anthropogenic emission of carbon dioxide (CO{sub 2}) to the atmosphere. The conference included meetings of the International Global Atmospheric Chemistry (IGAC) programme, a core project of the International Geosphere/Biosphere Programme (IGBP) and the traveler participated in meetings on the IGAC project Development of Global Emissions Inventories'' and agreed to coordinate the working group on CO{sub 2}. Papers presented at the conference focused on the latest developments in analytical methods, modeling and understanding of atmospheric CO{sub 2}, CO, CH{sub 4}, N{sub 2}O, SO{sub 2}, NO{sub x}, NMHCs, CFCs, and aerosols.

  18. Natural and anthropogenic pollution of the global atmosphere

    International Nuclear Information System (INIS)

    Jaworowski, Z.

    1999-01-01

    Results of determination of natural radionuclides, fission products and heavy metals in contemporary and pre-industrial ice from 14 glaciers in Southern and Northern Hemisphere, and in aerosols collected during three decades from seven altitudes between 0 and 15 km in the troposphere and atmosphere, were used for determinations of fluxes of man-made and natural pollutants into the global atmosphere. For these determinations 137 Cs from nuclear explosions and natural 210 Pb were used as tracers. Concentration of natural radionuclides and heavy metals in ice deposited before industrial revolution were higher than the contemporary precipitation presented as firn in high mountain and polar glaciers. This is due probably to volcanic activity which was higher before the first part of 20 th century. Man-made contribution to the total atmospheric flux is now 3.5% for 226 Ra, 12% for U, 7.4% for Pb, 011% for Cd, 62% for V and 5.8 for Hg. The mass of annual global wet precipitation, determined for the first time with radioactive tracers, is 5.7·10 1 7 kg. In Poland the lowest concentration of stable lead in human bones is now in highly industrialized southern districts. Lead level in medieval human bones from these districts reached up to 370 μg/g. Its current average level in inhabitants of southern Poland is 3.5 μg/g, i. e. similar as 1800 years ago. (author)

  19. Global Atmosphere Watch Workshop on Measurement-Model Fusion for Global Total Atmospheric Deposition (MMF-GTAD)

    Science.gov (United States)

    The World Meteorological Organization’s (WMO) Global Atmosphere Watch (GAW) Programme coordinates high-quality observations of atmospheric composition from global to local scales with the aim to drive high-quality and high-impact science while co-producing a new generation of pro...

  20. Global Atmosphere Watch Workshop on Measurement-Model ...

    Science.gov (United States)

    The World Meteorological Organization’s (WMO) Global Atmosphere Watch (GAW) Programme coordinates high-quality observations of atmospheric composition from global to local scales with the aim to drive high-quality and high-impact science while co-producing a new generation of products and services. In line with this vision, GAW’s Scientific Advisory Group for Total Atmospheric Deposition (SAG-TAD) has a mandate to produce global maps of wet, dry and total atmospheric deposition for important atmospheric chemicals to enable research into biogeochemical cycles and assessments of ecosystem and human health effects. The most suitable scientific approach for this activity is the emerging technique of measurement-model fusion for total atmospheric deposition. This technique requires global-scale measurements of atmospheric trace gases, particles, precipitation composition and precipitation depth, as well as predictions of the same from global/regional chemical transport models. The fusion of measurement and model results requires data assimilation and mapping techniques. The objective of the GAW Workshop on Measurement-Model Fusion for Global Total Atmospheric Deposition (MMF-GTAD), an initiative of the SAG-TAD, was to review the state-of-the-science and explore the feasibility and methodology of producing, on a routine retrospective basis, global maps of atmospheric gas and aerosol concentrations as well as wet, dry and total deposition via measurement-model

  1. Ozone, Climate, and Global Atmospheric Change.

    Science.gov (United States)

    Levine, Joel S.

    1992-01-01

    Presents an overview of global atmospheric problems relating to ozone depletion and global warming. Provides background information on the composition of the earth's atmosphere and origin of atmospheric ozone. Describes causes, effects, and evidence of ozone depletion and the greenhouse effect. A vignette provides a summary of a 1991 assessment of…

  2. Charging and coagulation of radioactive and nonradioactive particles in the atmosphere

    International Nuclear Information System (INIS)

    Kim, Yong-ha; Yiacoumi, Sotira

    2016-01-01

    Charging and coagulation influence one another and impact the particle charge and size distributions in the atmosphere. However, few investigations to date have focused on the coagulation kinetics of atmospheric particles accumulating charge. This study presents three approaches to include mutual effects of charging and coagulation on the microphysical evolution of atmospheric particles such as radioactive particles. The first approach employs ion balance, charge balance, and a bivariate population balance model (PBM) to comprehensively calculate both charge accumulation and coagulation rates of particles. The second approach involves a much simpler description of charging, and uses a monovariate PBM and subsequent effects of charge on particle coagulation. The third approach is further simplified assuming that particles instantaneously reach their steady-state charge distributions. It is found that compared to the other two approaches, the first approach can accurately predict time-dependent changes in the size and charge distributions of particles over a wide size range covering from the free molecule to continuum regimes. The other two approaches can reliably predict both charge accumulation and coagulation rates for particles larger than about 0.04 micrometers and atmospherically relevant conditions. These approaches are applied to investigate coagulation kinetics of particles accumulating charge in a radioactive neutralizer, the urban atmosphere, and an atmospheric system containing radioactive particles. Limitations of the approaches are discussed.

  3. Atmospheric transport, diffusion, and deposition of radioactivity

    International Nuclear Information System (INIS)

    Crawford, T.V.

    1969-01-01

    From a meteorological standpoint there are two types of initial sources for atmospheric diffusion from Plowshare applications. One is the continuous point-source plume - a slow, small leak from an underground engineering application. The other is the large cloud produced almost instantaneously from a cratering application. For the purposes of this paper the effluent from neither type has significant fall speed. Both are carried by the prevailing wind, but the statistics of diffusion for each type are different. The use of constant altitude, isobaric and isentropic techniques for predicting the mean path of the effluent is briefly discussed. Limited data are used to assess the accuracy of current trajectory forecast techniques. Diffusion of continuous point-source plumes has been widely studied; only a brief review is given of the technique used and the variability of their results with wind speed and atmospheric stability. A numerical model is presented for computing the diffusion of the 'instantaneously-produced' large clouds. This model accounts for vertical and diurnal changes in atmospheric turbulence, wet and dry deposition, and radioactivity decay. Airborne concentrations, cloud size, and deposition on the ground are calculated. Pre- and post-shot calculations of cloud center, ground level concentration of gross radioactivity, and dry and wet deposition of iodine-131 are compared with measurements on Cabriolet and Buggy. (author)

  4. Atmospheric transport, diffusion, and deposition of radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, T V [Lawrence Radiation Laboratory, Livermore, CA (United States)

    1969-07-01

    From a meteorological standpoint there are two types of initial sources for atmospheric diffusion from Plowshare applications. One is the continuous point-source plume - a slow, small leak from an underground engineering application. The other is the large cloud produced almost instantaneously from a cratering application. For the purposes of this paper the effluent from neither type has significant fall speed. Both are carried by the prevailing wind, but the statistics of diffusion for each type are different. The use of constant altitude, isobaric and isentropic techniques for predicting the mean path of the effluent is briefly discussed. Limited data are used to assess the accuracy of current trajectory forecast techniques. Diffusion of continuous point-source plumes has been widely studied; only a brief review is given of the technique used and the variability of their results with wind speed and atmospheric stability. A numerical model is presented for computing the diffusion of the 'instantaneously-produced' large clouds. This model accounts for vertical and diurnal changes in atmospheric turbulence, wet and dry deposition, and radioactivity decay. Airborne concentrations, cloud size, and deposition on the ground are calculated. Pre- and post-shot calculations of cloud center, ground level concentration of gross radioactivity, and dry and wet deposition of iodine-131 are compared with measurements on Cabriolet and Buggy. (author)

  5. Regional forecasting with global atmospheric models; Third year report

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, T.J.; North, G.R.; Smith, N.R. [Applied Research Corp., College Station, TX (United States)

    1994-05-01

    This report was prepared by the Applied Research Corporation (ARC), College Station, Texas, under subcontract to Pacific Northwest Laboratory (PNL) as part of a global climate studies task. The task supports site characterization work required for the selection of a potential high-level nuclear waste repository and is part of the Performance Assessment Scientific Support (PASS) Program at PNL. The work is under the overall direction of the Office of Civilian Radioactive Waste Management (OCRWM), US Department of Energy Headquarters, Washington, DC. The scope of the report is to present the results of the third year`s work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain several studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals.

  6. Atmospheric dispersion models of radioactivity releases

    International Nuclear Information System (INIS)

    Oza, R.B.

    2016-01-01

    In view of the rapid industrialization in recent time, atmospheric dispersion models have become indispensible 'tools' to ensure that the effects of releases are well within the acceptable limits set by the regulatory authority. In the case of radioactive releases from the nuclear facility, though negligible in quantity and many a times not even measurable, it is required to demonstrate the compliance of these releases to the regulatory limits set by the regulatory authority by carrying out radiological impact assessment. During routine operations of nuclear facility, the releases are so low that environmental impact is usually assessed with the help of atmospheric dispersion models as it is difficult to distinguish negligible contribution of nuclear facility to relatively high natural background radiation. The accidental releases from nuclear facility, though with negligible probability of occurrence, cannot be ruled out. In such cases, the atmospheric dispersion models are of great help to emergency planners for deciding the intervention actions to minimize the consequences in public domain and also to workout strategies for the management of situation. In case of accidental conditions, the atmospheric dispersion models are also utilized for the estimation of probable quantities of radionuclides which might have got released to the atmosphere. Thus, atmospheric dispersion models are an essential tool for nuclear facility during routine operation as well as in the case of accidental conditions

  7. Measurement of radioactive aerosols as an original indicator of atmospheric pollution in urban areas

    International Nuclear Information System (INIS)

    Le Petit, G.; Millies-Lacroix, J. C.

    1998-01-01

    The Service Radioanalyses, Chimie et Environnment (Departement Analyses Surveillance de l'Environnement) of the French Atomic Energy Commission, located in suburban Paris, has for many years been conducting atmospheric radioactivity measurements. Since 1994, the laboratory has been using high volume air samplers equipped with filters for the weekly collection of atmospheric aerosols at a mean rate of about 600 m 3 .h -1 . The polypropylene filters, with a collection efficiency in excess of 93%, are compacted after sampling. The atmospheric radioactivity is measured by HP Ge gamma spectrometry after decay of short-lived natural relationship products. A study conducted in 1996 shows good correlation between the evolution with time of some of the indicators routinely used by AIRPARIF, the organization in charge of monitoring the air quality in the Ile-de-France region, to measure atmospheric pollution in the Paris area (SO 2 , NO) and that related to radioactivity of terrestrial ( 210 Pb, 40 K) and anthropogenic ( 137 Cs) origin, as well as the amount of aerosols collected. Further, the distribution in time of the atmospheric radioactivity of cosmogenic origin ( 7 Be) shows a yearly evolution somewhat similar to that observed with ozone

  8. Results of concentration measurements of artificial radioactive aerosols in the lower atmosphere; Resultats des mesures de concentration, dans la basse atmosphere, des aerosols radioactifs artificiels

    Energy Technology Data Exchange (ETDEWEB)

    Ardouin, B; Jehanno, C; Labeyrie, J; Lambert, G; Tanaevsky, O; Vassy, E [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    This report gives the results of the measurements of artificial gross-{beta}-radioactivity in aerosols in the lower atmosphere; these measurements have been made by the Electronic Physics Service of the Electronic Department, and by the Atmospheric Physics Laboratory of the Paris Science Faculty. The measurements were begun in September 1956 and were continued in an increasing number of stations both in France and in the rest of the world. The present report deals with the period up to the end of august 1961, that is up to the end of the nuclear moratorium. After recalling the constitution and the properties of radioactive aerosols present in the atmosphere, the authors describe the measurement methods, estimate their accuracy and discuss various aspects of the results. (authors) [French] Ce rapport contient les resultats des mesures de radioactivite {beta} globale d'origine artificielle des aerosols dans la basse atmosphere, effectuees conjointement par le Service d'Electronique Physique du Departement d'Electronique et le Laboratoire de Physique de l'Atmosphere de la Faculte des Sciences de Paris. Les mesures ont commence en septembre 1956 et ont ete poursuivies dans un nombre croissant de stations, tant en France que dans le reste du monde. Le present rapport s'arrete a la fin aout 1961, c'est-a-dire au moment de la reprise des essais nucleaires. Apres avoir rappele la constitution et les proprietes des aerosols radioactifs presents dans l'atmosphere, les auteurs indiquent les methodes de mesure utilisees, evaluent leur precision et discutent les differents aspects des resultats de leurs mesures. (auteurs)

  9. An analytical model for radioactive pollutant release simulation in the atmospheric boundary layer

    International Nuclear Information System (INIS)

    Weymar, Guilherme J.; Vilhena, Marco T.; Bodmann, Bardo E.J.; Buske, Daniela; Quadros, Regis

    2013-01-01

    Simulations of emission of radioactive substances in the atmosphere from the Brazilian nuclear power plant Angra 1 are a necessary tool for control and elaboration of emergency plans as a preventive action for possible accidents. In the present work we present an analytical solution for radioactive pollutant dispersion in the atmosphere, solving the time-dependent three-dimensional advection-diffusion equation. The experiment here used as a reference in the simulations consisted of the controlled releases of radioactive tritiated water vapor from the meteorological tower close to the power plant at Itaorna Beach. The wind profile was determined using experimental meteorological data and the micrometeorological parameters were calculated from empirical equations obtained in the literature. We report on a novel analytical formulation for the concentration of products of a radioactive chain released in the atmospheric boundary layer and solve the set of coupled equations for each chain radionuclide by the GILTT solution, assuming the decay of all progenitors radionuclide for each equation as source term. Further we report on numerical simulations, as an explicit but fictitious example and consider three radionuclides in the radioactive chain of Uranium 235. (author)

  10. An analytical model for radioactive pollutant release simulation in the atmospheric boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Weymar, Guilherme J.; Vilhena, Marco T.; Bodmann, Bardo E.J., E-mail: guicefetrs@gmail.com, E-mail: mtmbvilhena@gmail.com, E-mail: bejbodmann@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Buske, Daniela; Quadros, Regis, E-mail: danielabuske@gmail.com, E-mail: quadros99@gmail.com [Universidade Federal de Pelotas (UFPel), Capao do Leao, RS (Brazil). Programa de Pos-Graduacao em Modelagem Matematica

    2013-07-01

    Simulations of emission of radioactive substances in the atmosphere from the Brazilian nuclear power plant Angra 1 are a necessary tool for control and elaboration of emergency plans as a preventive action for possible accidents. In the present work we present an analytical solution for radioactive pollutant dispersion in the atmosphere, solving the time-dependent three-dimensional advection-diffusion equation. The experiment here used as a reference in the simulations consisted of the controlled releases of radioactive tritiated water vapor from the meteorological tower close to the power plant at Itaorna Beach. The wind profile was determined using experimental meteorological data and the micrometeorological parameters were calculated from empirical equations obtained in the literature. We report on a novel analytical formulation for the concentration of products of a radioactive chain released in the atmospheric boundary layer and solve the set of coupled equations for each chain radionuclide by the GILTT solution, assuming the decay of all progenitors radionuclide for each equation as source term. Further we report on numerical simulations, as an explicit but fictitious example and consider three radionuclides in the radioactive chain of Uranium 235. (author)

  11. Evaluation of food contamination and health risks caused by radioactive fallout released from atmospheric nuclear detonation tests

    International Nuclear Information System (INIS)

    Shimada, Yoko; Ito, Yoshihiko; Yoneda, Minoru; Morisawa, Shinsuke

    2011-01-01

    Before Fukushima Daiichi nuclear disaster, radionuclide like 137 Cs released from atmospheric nuclear detonation tests and Chernobyl disaster has been transported worldwide in the environment and finally taken up by humans through various pathways. In this research, dietary intake of 137 Cs and the related health risks to Japanese caused by chronic global radioactive food contamination from 1945 to 2010 were evaluated by using the mathematical model for the evaluation of global distribution of 137 Cs with food ingestion and domestic and international food supply model. The results of this evaluation can show a background situation before Fukushima disaster and give important information for the risk assessment of this disaster. (author)

  12. Measurement of radioactive aerosols as an original indicator of atmospheric pollution in urban areas

    International Nuclear Information System (INIS)

    Le Petit, G.; Millies-Lacroix, J.-C.; Simon, F.

    1998-01-01

    The Service Radioanalyses, Chimie et Environnement (Departement Analyses Surveillance de l'Environnement) of the French Atomic Energy Commission, located in suburban Paris, has for many years been conducting atmospheric radioactivity measurements. Since 1994, the laboratory has been using high volume air samplers equipped with filters for the weekly collection of atmospheric aerosols at a mean rate of about 600 m 3 .h -1 . The polypropylene filters, with a collection efficiency in excess of 93%, are compacted after sampling. The atmospheric radioactivity is measured by HP Ge gamma spectrometry after decay of short-lived natural relationship products. A study conducted in 1996 shows good correlation between the evolution with time of some of the indicators routinely used by AIRPARIF, the organization in charge of monitoring of the air quality in the Ile-de-France region, to measure atmospheric pollution in the Paris area (SO 2 , NO) and that related to radioactivity of terrestrial ( 210 Pb, 40 K) and anthropogenic ( 137 Cs) origin, as well as the amount of aerosols collected. Further, the distribution in time of the atmospheric radioactivity of cosmogenic origin ( 7 Be) shows a yearly evolution somewhat similar to that observed with ozone. (author). 16 refs., 21 figs., 1 tab

  13. Analysis of the atmospheric 7Be radioactivity by neural network

    International Nuclear Information System (INIS)

    Moroz, Z.; Myslek-Laurikainen, B.; Matul, M.; Mikolajewski, S.; Preibisz, Z.; Trzaskowaka, H.; Kownacki, C.

    2002-01-01

    Computational methods of artificial intelligence (neural networks) and modern signal processing (wavelet decomposition were applied for the analysis of atmospheric 7 Be radioactivity data. Measurements were performed each week during 1994-2001 in the sampling station placed at Swider Geophysical Observatory. Raw data as well as those averaged over 4 and 10 weeks were used. Ability of the neural networks for the purpose of representation, interpolation and prediction was tested. The corresponding relative errors are calculated. Next, the time sequences were decomposed using the wavelet method and eight components of different time scales were obtained. Neural networks were applied separately to each of those components. Application of such analysis and their possible extensions useful for the construction of phenomeno-logical models of atmospheric radioactivity are discussed. (author)

  14. Aerosols radioactivity in the Bratislava atmosphere

    International Nuclear Information System (INIS)

    Sykora, I.; Chudy, M.; Durana, L.; Holy, K.; Meresova, J.

    2001-01-01

    In our laboratory we measured temporal variation of 7 Be concentration in the atmosphere in period 1977 -1994 years. The aerosols were collected through every month at Hydrometeorological Institute in Bratislava-Koliba, latitude 48 grad 10' and altitude 286 m above sea level. Since end of year 2000 we have started to continue monitoring radioactivity of atmosphere aerosols in new locality in Bratislava-Mlynska dolina. Beside 7 Be we measured also 210 Pb radionuclide aerosols concentration. For measured values 7 Be concentrations are considered corrections for decay radionuclide during the time of filters collection, time between end of collection and measurement and decay during the time of measurement. Obtained results for 7 Be concentrations in aerosols shows seasonal summer maximum, but for 210 Pb concentration in aerosols the seasonal variations are not evident. The temporal variations of this radionuclide which is originated in ground-level atmosphere are more sensitive on meteorological factors and can be also influenced by the industrial activity. For better understanding is needed long term monitoring. (authors)

  15. Influence of weather conditions on natural radioactivity

    International Nuclear Information System (INIS)

    Simion, Florin; Simion, Elena; Cuculeanu, Vasile; Mihalcea, Ion

    2011-01-01

    This paper presents the dependence of the natural radioactivity on atmospheric weather conditions: air temperature, atmospheric pressure, wind speed, atmospherical precipitations and relative humidity. The values used in the paper were taken from the environmental radioactivity monitoring in Botosani city, Romania, as measured by the Environmental Radioactivity Surveillance Station. Daily global measurements of atmospheric deposition beta and atmospheric aerosols as well were carried out, including the indirect determination of radon and thoron, and the absorbed gamma dose rate in air, as well. Sampling and measurement frequency depended on the type of sample analyzed as follows: atmospheric deposition were taken daily, atmospheric aerosols were collected 4 times/day, with a sampling interval of 5 hours while the air absorbed dose rate was determined at a hourly rate. The coefficient of multiple correlation between the type of analysis and weather conditions, was determined. By using multiple linear regression it was highlighted the natural radioactivity dependence on the atmospheric conditions and meteorological parameters by a mathematical expression that can be used to determine missing values in a time series of measured data. By predicting the measured values our procedure can be considered as a validation process of the measurement accuracy

  16. Abnormal radioactivity of the atmosphere. [In French

    Energy Technology Data Exchange (ETDEWEB)

    Garrigue, H

    1952-01-01

    Further measurements on the radioactivity of the atmosphere near Puy de Dome are tabulated. The activity in April 1952 with a mean life of 25 hrs was ascribed to the complex particles A. In June 1952 an activity with a mean life of 100 to 400 hrs was attributed to the previously observed A'' particles. The activity associated with the A'' particles was also observed in the soil and air.

  17. Size distributions of various radioactive aerosols in the ground-level atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, G.; Baust, E.

    1963-11-15

    To know the size spectra of radioactive aerosols is important for many reasons. Among others, the efficiency of measuring devices or biological processes, as for instance, retention in the lungs, depend on particle size.The work described deals mainly with two different components of radioactive aerosols in the atmosphere: the natural radon daughters and the fission products originating from nuclear test explosions.

  18. Protection of atmospheric air against radioactive gas and aerosol contaminants

    International Nuclear Information System (INIS)

    Zykova, A.S.

    1984-01-01

    Measures for contamination protection of atmospheric air subdivided into active and passive ones, are considered. The active measures envisage: development and application of waste-free flowsheets, use of flowsheets which restrict formation of gaseous-aerosol discharges; application of highly efficient treatment facilities torage. Dispersion of radioactive substances, released with discharges to the atmosphere, using high stacks; development of the corresponding site-selection solutions and arrangement of sanitary protective zones belong to passive measures. Measures for protection of atmospheric air also include waste and air contamination monitoring. The measures described are considered as applied to NPPs

  19. A study on the environmental behavior of global air pollutants based on the continuous measurements of atmospheric radon concentrations

    International Nuclear Information System (INIS)

    Iida, Takao; Yamazawa, Hiromi

    2003-01-01

    Radon is a useful natural radioactive tracer of air transportation of atmospheric pollution, since radon is a noble gas and chemically inert. The atmospheric radon concentration is usually measured by a high-sensitivity electrostatic collection method or a two-filter method. The variations of radon concentrations observed over a solitary island and in the upper atmosphere are suitable for comparing with those of air pollutants. Some numerical simulation models were used to study the radon global transport in the atmosphere. In East Asia, atmospheric radon and air pollutants are transported with the air stream from the continent of China to the Northwestern Pacific Ocean. It is necessary to clarify the transport mechanism from both radon observations at various locations and numerical simulation. (author)

  20. Estimation of global inventories of radioactive waste and other radioactive materials

    International Nuclear Information System (INIS)

    2008-06-01

    A variety of nuclear activities have been carried out in the second part of the twentieth century for different purposes. Initially the emphasis was on military applications, but with the passage of time the main focus of nuclear activities has shifted to peaceful uses of nuclear energy and to the use of radioactive material in industry, medicine and research. Regardless of the objectives, the nuclear activities generate radioactive waste. It was considered worthwhile to produce a set of worldwide data that could be assessed to evaluate the legacy of the nuclear activities performed up to the transition between the twentieth and the twenty first century. The assessment tries to cover the inventory of all the human produced radioactive material that can be considered to result from both military and civilian applications. This has caused remarkable difficulties since much of the data, particularly relating to military programmes, are not readily available. Consequently the data on the inventory of radioactive material should be considered as order-of-magnitude approximations. This report as a whole should be considered as a first iteration in a continuing process of updating and upgrading. The accumulations of radioactive materials can be considered a burden for human society, both at present and in the future, since they require continuing monitoring and control. Knowing the amounts and types of such radioactive inventories can help in the assessment of the relative burdens. Knowledge of the national or regional radioactive waste inventory is necessary for planning management operations, including the sizing and design of conditioning, storage and disposal facilities. A global inventory, either of radioactive waste or of other environmental accumulations of radioactive material, could be used to provide a perspective on the requirements and burdens associated with their management, by means of comparisons with the burdens caused by other types of waste or other

  1. The atmosphere: Global commons to protect

    International Nuclear Information System (INIS)

    Obasi, G.O.P.

    1996-01-01

    One of the most important greenhouse gases is CO 2 , whose concentration in the atmosphere has increased from 280 parts per million by volume (ppmv) to 358ppmv in 1994, giving a general increase of over 27 per cent since pre-industrial times. This increase has been attributed largely to fossil fuel combustion. Significant increases have also been observed in atmospheric concentrations of the other greenhouse gases, including methane, nitrous oxide and global tropospheric ozone. Concentrations of methane and nitrous oxide have, for example, grown by 145 per cent and 15 per cent respectively since pre-industrial times. Such increases have been linked to the rapid world population growth, which has resulted in increasing demands for energy, food, water, shelter and other basic needs. Computer models indicate that the continued accumulation of greenhouse gases in the atmosphere could result in global climate change and global warming. As some uncertainties still exists in the model predictions, it may take a few more years to uniquely separate human-induced climate change signals from natural climate variability in global climate trends

  2. Recent results on atmospheric radioactivity at Ibadan, Nigeria

    International Nuclear Information System (INIS)

    Adeniyi, M.O.; Oladiran, E.O.

    2006-01-01

    Measurements of alpha and beta radiations carried out in Ibadan (Nigeria) are presented. Activity of alpha radiation in the air is much lower than that of beta. The mean daily activity (Bq) ranged from 0.013 to 0.075 for alpha and from 1.475 to 76.136 for beta throughout the periods of investigation which include wet, dry and harmattan periods. The highest activity occurred during harmattan followed by wet period and the least was during the dry period. The harmattan dust originating from the Sahara desert is found to be radioactive. During wet period the aerosols and the condensation nuclei present in the atmosphere were also found to be radioactive to some extent. Background beta (β) and alpha (α) activities were found to have increased greatly over those earlier reported in the period between 1986/1987-2001/2002. Beta activity has two peaks at 19 and 6hLT while the peak time of alpha activity varies randomly throughout the periods of observation. The minima activities of alpha and beta occur throughout the day. The results showed that ambient α and β activities were highly correlated to atmospheric potential gradient

  3. Real Time Radioactivity Monitoring and its Interface with predictive atmospheric transport modelling

    International Nuclear Information System (INIS)

    Raes, F.

    1990-01-01

    After the Chernobyl accident, a programme was initiated at the Joint Research Centre of the Commission of the European Communities named 'Radioactivity Environmental Monitoring' (REM). The main aspects considered in REM are: data handling, atmospheric modelling and data quality control related to radioactivity in the environment. The first REM workshop was held in December 1987: 'Aerosol Measurements and Nuclear Accidents: A Reconsideration'. (CEC EUR 11755 EN). These are the proceedings of the second REM workshop, held in December 1989, dealing with real-time radioactivity monitoring and its interface with predictive atmospheric models. Atmospheric transport models, in applications extending over time scales of the order of a day or more become progressively less reliable to the extent that an interface with real-time radiological field data becomes highly desirable. Through international arrangements for early exchange of information in the event of a nuclear accident (European Community, IAEA) such data might become available on a quasi real-time basis. The question is how best to use such information to improve our predictive capabilities. During the workshop the present status of on-line monitoring networks for airborne radioactivity in the EC Member States has been reviewed. Possibilities were discussed to use data from such networks as soon as they become available, in order to update predictions made with long range transport models. This publication gives the full text of 13 presentations and a report of the Round Table Discussion held afterwards

  4. Study of the behaviour of artificial radioactive aerosols. Applications to some problems of atmospheric circulation (1963)

    International Nuclear Information System (INIS)

    Lambert, G.

    1963-11-01

    The aim of this work, consists in the examination of the behaviour of radioactive aerosols produced in the atmosphere by nuclear explosions, in order to deduce the most general laws governing atmospheric circulation and diffusion. After having given a general table of the radioactive aerosols present the authors consider the validity and the precision of the measurement methods and the concentration of the aerosols at ground level and in the upper atmosphere, as well as their deposition on the ground. The existence is thus demonstrated of a tropospheric equatorial barrier and of discontinuous and seasonal aspects of stratosphere-troposphere transfers. The role is shown of precipitations and dry auto-filtration in the lower atmosphere cleaning processes. This work makes it possible to describe the general behaviour of dust from the stratosphere, and to improve the total radioactive contamination of the globe. (author) [fr

  5. Virtual cascade impactors for the collection of radioactive atmospheric aerosols

    International Nuclear Information System (INIS)

    Berner, A.

    1988-01-01

    Starting from impaction theory, the properties of virtual impaction stages are discussed and compared to classical impactors. Virtual impaction stages offer the benefit of sampling coarse particles without bouncing and reentrainment, but turbulent mixing affects the performance of virtual stages. Future research should concentrate on special configurations for reducing the effects of turbulent mixing. Virtual impaction stages for sampling radioactive aerosols are to be designed in regard of the analytical requirements, the purpose of the measurements, and the aerosol. Therefore, the aerosol components expected in radioactive aerosols are discussed on the background of the multimodal model, which relates the size distribution to the genesis and the history of the aerosol. Reference is made to recent data of the radioactive atmospheric aerosol

  6. Some discussions on micrometeorology and atmospheric diffusion of classic and radioactive industrial pollutions. 3

    International Nuclear Information System (INIS)

    Veverka, O.; Valenta, V.; Vlachovsky, K.

    1977-01-01

    The vertical motion of an industrial plume, either conventional or radioactive is discussed and the respective formulas are given. The solution is given for the vertical rise of the plume and for the bent-over semi-horizontal plume under neutral, stable, and unstable atmospheric conditions. A theoretical model is described for the continuous rise of the radioactive plume under stable atmospheric conditions. The effective height is defined of the plume with regard to the shape of terrain and wind velocity. (J.P.)

  7. The global atmospheric environment for the next generation

    NARCIS (Netherlands)

    Dentener, F.; Stevenson, D.; Ellingsen, K.; Noije, van T.; Schultz, M.; Amann, M.; Atherton, C.; Bell, N.; Bergmann, D.; Bey, I.; Bouwman, L.; Butler, T.; Cofala, J.; Collins, B.; Drevet, J.; Doherty, R.; Eickhout, B.; Eskes, H.; Fiore, A.; Gauss, M.; Hauglustaine, D.; Horowitz, L.; Isaksen, I.S.A.; Josse, B.; Lawrence, M.; Krol, M.C.; Lamarque, J.F.; Montanaro, V.; Müller, J.F.; Peuch, V.H.; Pitari, G.; Pyle, J.; Rast, S.; Rodriguez, J.; Sanderson, M.; Savage, N.H.; Shindell, D.; Strahan, S.; Szopa, S.; Sudo, K.; Dingenen, van R.; Wild, O.; Zeng, G.

    2006-01-01

    Air quality, ecosystem exposure to nitrogen deposition, and climate change are intimately coupled problems: we assess changes in the global atmospheric environment between 2000 and 2030 using 26 state-of-the-art global atmospheric chemistry models and three different emissions scenarios. The first

  8. Forum on impact of radioactive materials on the atmospheric pollutant inventory and on the radioactivity uptake by plants

    International Nuclear Information System (INIS)

    1987-01-01

    This report contains 6 separately documented lectures about the following topics of the meeting: 1) Radiation exposure of plants caused by the reactor accident of Chernobyl; 2) Tritium and radiocarbon concentrations in trees; 3) Energetics of the atmospheric trace materials cycle; 4) Phenomenology of formation and decomposition of ozone in the lower atmosphere, and 5) Comparison of radioactivity levels and trace materials in the air. (PW)

  9. Indoor-atmospheric radon-related radioactivity affected by a change of ventilation strategy

    International Nuclear Information System (INIS)

    Kobayashi, Tuneo

    2006-01-01

    The present author has kept observation for concentrations of atmospheric radon, radon progeny and thoron progeny for several years at the campus of Fukushima Medical University. Accidentally, in the midst of an observation term, i.e., February 2005, the facility management group of the university changed a strategy for the manner of ventilation, probably because of a recession: tidy everyday ventilation of 7:30-24:00 into shortened weekday ventilation of 8:00-21:00 with weekend halts. This change of ventilation manner brought a clear alteration for the concentrations of radon-related natural radioactivity in indoor air. The present paper concerns an investigation of the effect of the ventilation strategy on the indoor-atmospheric radon-related radioactivity. (author)

  10. Maxine: A spreadsheet for estimating dose from chronic atmospheric radioactive releases

    Energy Technology Data Exchange (ETDEWEB)

    Jannik, Tim [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Bell, Evaleigh [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dixon, Kenneth [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-07-24

    MAXINE is an EXCEL© spreadsheet, which is used to estimate dose to individuals for routine and accidental atmospheric releases of radioactive materials. MAXINE does not contain an atmospheric dispersion model, but rather doses are estimated using air and ground concentrations as input. Minimal input is required to run the program and site specific parameters are used when possible. Complete code description, verification of models, and user’s manual have been included.

  11. Regularities in the behavior of radioactive aerosols in the near-earth atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Makhonko, K.P.; Avramenko, A.S.; Martynenko, V.P.; Volokitin, A.A.; Rabotnova, F.A.

    1979-10-01

    The relationship is considered between the power of nuclear explosions and mean annual magnitudes of surface concentrations and atmospheric fallout of long-lived isotopes which are products of these explosions. The role of Chinese nuclear explosions in pollution of the atmosphere over the territory of the USSR is demonstrated. Regularities are discussed about the annual course of concentrations of products of atmospheric nuclear explosions, features in concentration distribution over the territory of the USSR as well as the impact of the amount and type of atmospheric precipitation upon the formation of radioactive fallout.

  12. Study of radio-active ions in the atmosphere; Etude des ions radioactifs de l'atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Renoux, A [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1965-01-01

    A comparative study is made of active, deposits of radon and thoron in suspension in the atmosphere by means of {alpha} radiation counting, using ZELENY tubes, scattering equipment, filter papers or membranes. It has been possible to show the existence of small and large ions which are negative and positive, as well as of neutral radio-active nuclei; their properties are studied. A theoretical interpretation of the results is presented. The average content of radon (using the Ra A concentration) and of Th B in the air has been determined. The radioactive equilibrium between radon and its daughter products in atmospheric air are examined. The techniques developed for active radon and thoron deposits are applied to the study of artificial radio-activity, the analyses being carried out by means of {gamma} spectrometry. (author) [French] On effectue une etude comparative entre les depots actifs du radon et du thoron en suspension dont l'atmosphere a l'aide de comptages de rayonnement {alpha}, en utilisant des tubes de ZELENY, une batterie de diffusion, des papiers filtres ou des membranes. On met ainsi en evidence la presence de petits et gros ions negatifs et positifs, ainsi que celle de noyaux neutres radioactifs, et on etudie leurs proprietes. Une Interpretation theorique des resultats obtenus est developpee. On determine la teneur moyenne de l'air en radon (a partir de la concentration en Ra A) et en Th B. L'equilibre radioactif entre le radon et ses descendants, dans l'air atmospherique, est examine. Les Techniques mises au point pour les depots actifs du radon et du thoron sont appliquees a l'etude de la radioactivite artificielle, les depouillements s'effectuant par spectrometrie {gamma}. (auteur)

  13. Measurement of Kr-85 and Xe-133 as undisturbed tracers for the representing of atmospheric transport after disposal of radioactivity from nuclear facilities

    International Nuclear Information System (INIS)

    Frank, G.; Steinkopff, T.; Salvamoser, J.

    2016-01-01

    The Deutscher Wetterdienst (DWD, German Meteorological Service) operates since 1996 a sampling and measurement device for the radioactive rare gases Kr-85 and Xe-133 in Offenbach. These measurements are embedded in the German Measurement and Information System for Monitoring Environmental Radioactivity (Integriertes Mess- und Informationssystem zur Ueberwachung der Radioaktivitaet in der Umwelt, IMIS) [1]. In addition to these measurements the DWD is sampling rare gases in Potsdam and since 2014 in Trier in cooperation with the Bundesamt fuer Strahlenschutz (Federal Office for Radiation Protection, BfS). In the frame of the Global Atmosphere Watch (GAW)-program of the WMO the DWD operated a sampling station at the Zugspitze (Schneefernerhaus) from 1999 to 2005. This location at the Zugspitze is well suited for the observation of long distance transport of Kr-85 in the higher atmosphere. The DWD in Offenbach operates a complex analytical system for the measurement of Kr-85 and Xe-133 since 1998. This system consists of sampling with first enrichment, second enrichment, gas chromatographic separation and preparation of Krypton and Xenon and measurement of Kr-85 and Xe-133. Using the example Fukushima, it is shown, that the radioactive rare gases Kr-85 and Xe-133 are well undisturbed tracers for atmospheric transport in case of a nuclear accident or routine nuclear reprocessing plants. Measurements of Xe-133, I-131, Cs-137 and Kr-85 are correlated with source and atmospheric transport to the sampling sites at Offenbach and Potsdam.

  14. Global atmospheric dispersion modelling after the Fukushima accident

    Energy Technology Data Exchange (ETDEWEB)

    Suh, K.S.; Youm, M.K.; Lee, B.G.; Min, B.I. [Korea Atomic Energy Research Institute (Korea, Republic of); Raul, P. [Universidad de Sevilla (Spain)

    2014-07-01

    A large amount of radioactive material was released to the atmosphere due to the Fukushima nuclear accident in March 2011. The radioactive materials released into the atmosphere were mostly transported to the Pacific Ocean, but some of them were fallen on the surface due to dry and wet depositions in the northwest area from the Fukushima nuclear site. Therefore, northwest part of the nuclear site was seriously contaminated and it was designated with the restricted zone within a radius of 20 ∼ 30 km around the Fukushima nuclear site. In the early phase of the accident from 11 March to 30 March, the radioactive materials were dispersed to an area of the inland and offshore of the nuclear site by the variations of the wind. After the Fukushima accident, the radionuclides were detected through the air monitoring in the many places over the world. The radioactive plume was transported to the east part off the site by the westerly jet stream. It had detected in the North America during March 17-21, in European countries during March 23-24, and in Asia during from March 24 to April 6, 2011. The radioactive materials were overall detected across the northern hemisphere passed by 15 ∼ 20 days after the accident. Three dimensional numerical model was applied to evaluate the dispersion characteristics of the radionuclides released into the air. Simulated results were compared with measurements in many places over the world. Comparative results had good agreements in some places, but they had a little differences in some locations. The difference between the calculations and measurements are due to the meteorological data and relatively coarse resolutions in the model. Some radioactive materials were measured in Philippines, Taiwan, Hon Kong and South Korea during from March 23-28. It inferred that it was directly transported from the Fukushima by the northeastern monsoon winds. This event was well represented in the numerical model. Generally, the simulations had a good

  15. Global marine radioactivity database (GLOMARD)

    International Nuclear Information System (INIS)

    Povinec, P.P.; Gayol, J.; Togawa, O.

    1999-01-01

    In response to the request of Member States and under the IAEA's mandate, the IAEA Marine Environment Laboratory (MEL) in Monaco has established and maintains a Global Marine Radioactivity Database (GLOMARD). It is a vast project compiling radionuclide measurements taken in the marine environment. It consists of systematic input of all radionuclide concentration data available for sea water, sediment, biota and suspended matter. The GLOMARD is therefore a powerful tool for the researchers of MEL as it integrates the results of analyses in most of the areas of the marine environment which have been investigated

  16. Influence of radioactivity on surface charging and aggregation kinetics of particles in the atmosphere.

    Science.gov (United States)

    Kim, Yong-Ha; Yiacoumi, Sotira; Lee, Ida; McFarlane, Joanna; Tsouris, Costas

    2014-01-01

    Radioactivity can influence surface interactions, but its effects on particle aggregation kinetics have not been included in transport modeling of radioactive particles. In this research, experimental and theoretical studies have been performed to investigate the influence of radioactivity on surface charging and aggregation kinetics of radioactive particles in the atmosphere. Radioactivity-induced charging mechanisms have been investigated at the microscopic level, and heterogeneous surface potential caused by radioactivity is reported. The radioactivity-induced surface charging is highly influenced by several parameters, such as rate and type of radioactive decay. A population balance model, including interparticle forces, has been employed to study the effects of radioactivity on particle aggregation kinetics in air. It has been found that radioactivity can hinder aggregation of particles because of similar surface charging caused by the decay process. Experimental and theoretical studies provide useful insights into the understanding of transport characteristics of radioactive particles emitted from severe nuclear events, such as the recent accident of Fukushima or deliberate explosions of radiological devices.

  17. Atlas of the global distribution of atmospheric heating during the global weather experiment

    Science.gov (United States)

    Schaack, Todd K.; Johnson, Donald R.

    1991-01-01

    Global distributions of atmospheric heating for the annual cycle of the Global Weather Experiment are estimated from the European Centre for Medium-Range Weather Forecasts (ECMWF) Level 3b data set. Distributions of monthly, seasonally, and annually averaged heating are presented for isentropic and isobaric layers within the troposphere and for the troposphere as a whole. The distributions depict a large-scale structure of atmospheric heating that appears spatially and temporally consistent with known features of the global circulation and the seasonal evolution.

  18. The development of radioactivity diffusion model in global ocean

    International Nuclear Information System (INIS)

    Nakano, M.; Watanabe, H.; Katagiri, H.

    2000-01-01

    The radioactivity diffusion model in global ocean has been developing in order to assess the long-term behavior of radioactive materials for discharge from nuclear facility. The model system consists of two parts. One is to calculate current velocity; and the other is for particle chasing. Both systems are executed by Macintosh personal computer. A lot of techniques to estimate ocean current velocity were investigated in geophysical field. The robust diagnosis model advocated by Sarmiento and Bryan was applied to build the numerical calculation system for getting the current velocity field in global scale. The latitudinal and longitudinal lattices were 2 degrees each and the number of vertical layer was 15. The movement of radioactive materials by current and diffusion were calculated using the particle chasing system. The above-mentioned current velocity field and the initial particle positions at will were read by the system. The movement of a particle was calculated using the interpolated current data step by step. The diffusion of a particle was calculated by random walk method. The model was verified by using the fallout data from atmospheric nuclear test. Yearly and latitudinal fallout data was adopted from UNSCEAR1977. The calculation result was compared with the observation data that includes total amount and vertical profile of Cs-137 and Pu-239,240 in the North Pacific Ocean. The result of the verification was agreed with the following general knowledge. Though the fallout amount between 40N and 50N was the biggest in the world, the amount in the seawater between 40N and 50N was smaller than that in south of 40N because of horizontal transportation, which carried water from north to south. As for vertical profile, Cs-137 could be accurately calculated except the surface layer. However the observation peak of Pu-239,240 existed deeper than the calculation peak. This model could calculate the vertical profile of Cs-137 because most of Cs exists as dissolved

  19. Studies on the radioactivity of the atmosphere. [In French

    Energy Technology Data Exchange (ETDEWEB)

    Garrigue, H

    1951-01-01

    The existence in the atmosphere of a radioactive substance, labeled A, of several hours half life has been confirmed in flights at 3300 m, and at a ground station at 1460 m. Concentrations of Rn, Tn, A, and A' observed from March 15 to August 14, 1951, are tabulated. The concentration of substance A, of 20- to 30- hr half life, is related to atomic explosions and precipitation.

  20. Measurement of radioactivity in the atmosphere and pollution nearby an atomic centre; Mesure de la radioactivite de l'atmosphere et de la pollution au voisinage d'un centre atomique

    Energy Technology Data Exchange (ETDEWEB)

    Labeyrie, J; Weill, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    The French Atomic Energy Commission (CEA) is particularly interested in studies on atmospheric radioactivity by reason of the necessity to control the atmosphere nearby nuclear plants as uranium mines, nuclear reactors and hot laboratories or radioactive materials treatment plants. Thus, the CEA developed different apparatus to control and monitor the atmosphere nearby its sites. These air monitors are essentially of two types: the first one, called 'Babar', monitors smokes, fogs and dusts, the second type is an ionization chamber and measures the concentration of radioactive gas in the air. The functioning and sensitivity of these two systems are discussed. (M.P.)

  1. Global marine radioactivity database (GLOMARD)

    International Nuclear Information System (INIS)

    2000-06-01

    The GLOMARD stores all available data on marine radioactivity in seawater, suspended matter, sediments and biota. The database provides critical input to the evaluation of the environmental radionuclide levels in regional seas and the world's oceans. It can be used as a basis for the assessment of the radiation doses to local, regional and global human populations and to marine biota. It also provides information on temporal trends of radionuclide levels in the marine environment and identifies gaps in available information. The database contains information on the sources of the data; the laboratories performing radionuclide analysis; the type of samples (seawater, sediment, biota) and associated details (such as volume and weight); the sample treatment, analytical methods, and measuring instruments; and the analysed results (such as radionuclide concentrations, uncertainties, temperature, salinity, etc.). The current version of the GLOMARD allows the input, maintenance and extraction of data for the production of various kinds of maps using external computer programs. Extracted data are processed by these programs to produce contour maps representing radionuclide distributions in studied areas. To date, development work has concentrated on the Barents and Kara Seas in the Arctic and the Sea of Japan in the northwest Pacific Ocean, in connection with the investigation of radioactive waste dumping sites, as well as on marine radioactivity assessment of the Mururoa and Fangataufa nuclear weapons tests sites in French Polynesia. Further data inputs and evaluations are being carried out for the Black and Mediterranean Seas. In the framework of the project on Worldwide Marine Radioactivity Studies, background levels of 3 H, 90 Sr, 137 Cs and 239,240 Pu in water, sediment and biota of the world's oceans and seas will be established

  2. NOAA/NCEP Global Forecast System (GFS) Atmospheric Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — U.S. National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) numerical weather...

  3. Study to build up method for determining radioactivity of H-3 in atmosphere

    International Nuclear Information System (INIS)

    Vuong Thu Bac; Nguyen Thi Thu Ha; Vo Thi Anh; Ha Thi Lan Anh; Cao Duc Viet; Duong Van Thang; Dinh Thi Bich Lieu

    2015-01-01

    Tritium is the radioactive isotope of the hydrogen element (denoted as T or H-3). Main chemical forms of Tritium in the atmosphere are Tritium vapor (HTO) and gaseous Tritium (HT). HTO and HT were collected simultaneously by the MARC-7000 Tritium sampler. The sampler has been specifically designed for capturing Tritium most efficiently using a series of four sample bottles, a cooling system and a system of Palladium-Alumina catalytic oven. Air Tritium samples were collected at a flow rate of 30 L/h continuously for duration up to 15 days depending on atmospheric humidity. Average efficiency of H-3 collection in the atmosphere was 74.82 %. The collected samples were enriched by electrolytic method. The electrolysed samples were purified afterward by distillation with PbCl_2 for alkali precipitation. Finally the samples were mixed with Packard Ultima Gold LLT cocktail in proportion of 1:1 and measured by the TRI CARB 3170 TR/SL Liquid scintillation counting system in a total period of 1000 min. Minimum detectable activity (MDA) was about of 4 mBq/m"3. Relative error was less than 11%. 24 air samples in Hanoi for one year from 11/2013 to 10/2014 were collected and analyzed. Monthly average radioactivity of H-3 was 22.39 mBq/m"3 and its standard deviation was 4.84 mBq/m"3. This value was 5.6 times higher than MDA value and equivalent to H-3 background level in several countries. The obtained technical procedure is applicable to determine Tritium radioactivity in the atmosphere. (author)

  4. Radioactive aerosol detection station for near real-time atmospheric monitoring

    International Nuclear Information System (INIS)

    Mason, L.R.; Bohner, John D.

    1997-01-01

    A radionuclide aerosol detection station has been developed to measure radioactivity in the environment. The objective is to monitor the atmosphere for anthropogenic radioactivity that could be indicative of nuclear weapons tests to verify the Comprehensive Nuclear Test Ban Treaty. Eighty stations will form the backbone of the International Monitoring System in which stations are linked to a central analysis facility called the International Data Centre. Data are transmitted to this centre in near real-time to facilitate rapid detection. Principal process of the field measurement are collection, separation, and assay. Collection of airborne radioactivity is achieved through high-volume air sampling. Aerosols separation is accomplished by high-efficiency particulate filtration. Radionuclides assay is achieved by in-situ high resolution gamma spectrometry. These modules are integrated into a unit that provides power, control, and communication support subsystems. Station operation is semi-automatic requiring only minimal human interaction. (author). 6 refs., 3 figs., 3 tabs

  5. Measurement of artificial radioactivity in the atmosphere at Ottawa, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Terentiuk, F

    1958-01-01

    In recent years there has been considerable interest in the artificial radioactivity in the atmosphere originating from atomic and thermonuclear explosions. For the past year daily measurements of radioactivity have been made at Ottawa. The sampling times corresponded to air volumes of 425 cubic metric and 2000 cubic meters, respectively. Filters were kept for a period of 3 days before measurements were made in order to permit natural activity resulting from daughter products of radon and thoron to decay to a negligible value. Measurements of the gross beta activity from the filters were made directly with end-window Geiger tubes. Filters showing considerable initial radioactivity were measured at intervals of a few days in order to obtain the rate of decay of the activity. It was hoped that the data obtained would make it possible to fix the date of the explosion responsible for the filter activity but the fixing of dates was very uncertain.

  6. Biomass burning studies and the International Global Atmospheric Chemistry (IGAC) Project

    International Nuclear Information System (INIS)

    Prinn, R.G.

    1991-01-01

    The perturbations to local and regional atmospheric chemistry caused by biomass burning also have global significance. The International Global Atmospheric Chemistry (IGAC) Project was created by scientists from over twenty countries in response to the growing interest concern about atmospheric chemical changes and their potential impact on mankind. The goal of the IGAC is to develop a fundamental understanding of the natural and anthropogenic processes that determine the chemical composition of the atmosphere and the interactions between atmospheric composition and biospheric and climatic processes. A specific objective is to accurately predict changes over the next century in the composition and chemistry of the global atmosphere. Current activities, leaders and scientists involved are presented in this chapter

  7. Bioavailable atmospheric phosphorous supply to the global ocean: a 3-D global modeling study

    Science.gov (United States)

    Myriokefalitakis, Stelios; Nenes, Athanasios; Baker, Alex R.; Mihalopoulos, Nikolaos; Kanakidou, Maria

    2016-12-01

    The atmospheric cycle of phosphorus (P) is parameterized here in a state-of-the-art global 3-D chemistry transport model, taking into account primary emissions of total P (TP) and soluble P (DP) associated with mineral dust, combustion particles from natural and anthropogenic sources, bioaerosols, sea spray and volcanic aerosols. For the present day, global TP emissions are calculated to be roughly 1.33 Tg-P yr-1, with the mineral sources contributing more than 80 % to these emissions. The P solubilization from mineral dust under acidic atmospheric conditions is also parameterized in the model and is calculated to contribute about one-third (0.14 Tg-P yr-1) of the global DP atmospheric source. To our knowledge, a unique aspect of our global study is the explicit modeling of the evolution of phosphorus speciation in the atmosphere. The simulated present-day global annual DP deposition flux is 0.45 Tg-P yr-1 (about 40 % over oceans), showing a strong spatial and temporal variability. Present-day simulations of atmospheric P aerosol concentrations and deposition fluxes are satisfactory compared with available observations, indicating however an underestimate of about 70 % on current knowledge of the sources that drive the P atmospheric cycle. Sensitivity simulations using preindustrial (year 1850) anthropogenic and biomass burning emission scenarios showed a present-day increase of 75 % in the P solubilization flux from mineral dust, i.e., the rate at which P is converted into soluble forms, compared to preindustrial times, due to increasing atmospheric acidity over the last 150 years. Future reductions in air pollutants due to the implementation of air-quality regulations are expected to decrease the P solubilization flux from mineral dust by about 30 % in the year 2100 compared to the present day. Considering, however, that all the P contained in bioaerosols is readily available for uptake by marine organisms, and also accounting for all other DP sources, a total

  8. Global atmospheric particle formation from CERN CLOUD measurements

    CERN Document Server

    Dunne, E M; Kurten, A; Almeida, J; Duplissy, J; Williamson, C; Ortega, I K; Pringle, K J; Adamov, A; Baltensperger, U; Barmet, P; Benduhn, F; Bianchi, F; Breitenlechner, M; Clarke, A; Curtius, J; Dommen, J; Donahue, N M; Ehrhart, S; Flagan, R C; Franchin, A; Guida, R; Hakala, J; Hansel, A; Heinritzi, M; Jokinen, T; Kangasluoma, J; Kirkby, J; Kulmala, M; Kupc, A; Lawler, M J; Lehtipalo, K; Makhmutov, V; Mann, G; Mathot, S; Merikanto, J; Miettinen, P; Nenes, A; Onnela, A; Rap, A; Reddington, C L S; Riccobono, F; Richards, N A D; Rissanen, M P; Rondo, L; Sarnela, N; Schobesberger, S; Sengupta, K; Simon, M; Sipila, M; Smith, J N; Stozkhov, Y; Tome, A; Trostl, J; Wagner, P E; Wimmer, D; Winkler, P M; Worsnop, D R; Carslaw, K S

    2016-01-01

    Fundamental questions remain about the origin of newly formed atmospheric aerosol particles because data from laboratory measurements have been insufficient to build global models. In contrast, gas-phase chemistry models have been based on laboratory kinetics measurements for decades. Here we build a global model of aerosol formation using extensive laboratory-measured nucleation rates involving sulfuric acid, ammonia, ions and organic compounds. The simulations and a comparison with atmospheric observations show that nearly all nucleation throughout the present-day atmosphere involves ammonia or biogenic organic compounds in addition to sulfuric acid. A significant fraction of nucleation involves ions, but the relatively weak dependence on ion concentrations indicates that for the processes studied variations in cosmic ray intensity do not significantly affect climate via nucleation in the present-day atmosphere.

  9. Global biomass burning. Atmospheric, climatic, and biospheric implications

    International Nuclear Information System (INIS)

    Levine, J.S.

    1991-01-01

    Biomass burning is a significant source of atmospheric gases and, as such, may contribute to global climate changes. Biomass burning includes burning forests and savanna grasslands for land clearing, burning agricultural stubble and waste after harvesting, and burning biomass fuels. The chapters in this volume include the following topics: remote sensing of biomass burning from space;geographical distribution of burning; combustion products of burning in tropical, temperate and boreal ecosystems; burning as a global source of atmospheric gases and particulates; impacts of biomass burning gases and particulates on global climate; and the role of biomass burning on biodiversity and past global extinctions. A total of 1428 references are cited for the 63 chapters. Individual chapters are indexed separately for the data bases

  10. Global Modeling Study of the Bioavailable Atmospheric Iron Supply to the Global Ocean

    Science.gov (United States)

    Myriokefalitakis, S.; Krol, M. C.; van Noije, T.; Le Sager, P.

    2017-12-01

    Atmospheric deposition of trace constituents acts as a nutrient source to the open ocean and affect marine ecosystem. Dust is known as a major source of nutrients to the global ocean, but only a fraction of these nutrients is released in a bioavailable form that can be assimilated by the marine biota. Iron (Fe) is a key micronutrient that significantly modulates gross primary production in the High-Nutrient-Low-Chlorophyll (HNLC) oceans, where macronutrients like nitrate are abundant, but primary production is limited by Fe scarcity. The global atmospheric Fe cycle is here parameterized in the state-of-the-art global Earth System Model EC-Earth. The model takes into account the primary emissions of both insoluble and soluble Fe forms, associated with mineral dust and combustion aerosols. The impact of atmospheric acidity and organic ligands on mineral dissolution processes, is parameterized based on updated experimental and theoretical findings. Model results are also evaluated against available observations. Overall, the link between the labile Fe atmospheric deposition and atmospheric composition changes is here demonstrated and quantified. This work has been financed by the Marie-Curie H2020-MSCA-IF-2015 grant (ID 705652) ODEON (Online DEposition over OceaNs; modeling the effect of air pollution on ocean bio-geochemistry in an Earth System Model).

  11. Coupling of magnetospheric electrical effects into the global atmospheric electrical circuit

    International Nuclear Information System (INIS)

    Hays, P.B.; Roble, R.G.

    1979-01-01

    A quasi-static model of global atmospheric electricity has been constructed (Hays and Roble, 1978) to study the electrical processes in the lower atmosphere and the coupling between solar- and upper- atmosphere-induced variations superimposed upon the global electrical circuit. The paper reviews the essential features of this model and discusses the results obtained thus far on the effects of magnetospheric convection and substorms on the global atmospheric electrical circuit. A schematic diagram of the global quasi-static model is given. It is assumed that thunderstorms act as dipole generators, each with a positive center at the top of the cloud and a negative center a few kilometers lower than the positive center

  12. Performing Free Radioactive Certificate as an Effort to Protect Import and Export Commodities in Globalization Era

    International Nuclear Information System (INIS)

    Kunto-Wiharto; Syarbaini

    2001-01-01

    Several activities such as nuclear weapon tests, nuclear fuel reprocessing and nuclear accidents have caused radioactive contamination in local, regional and global environment. In globalization and free trade era, every country will be faced to the condition with the movable commodities from and to another countries. Global contamination through import and export commodities is a problem will be found every country in the future. Therefore, performing free radioactive certification on import and export commodities must be carried out to protect a member of public and environment from radioactive contamination. (author)

  13. ARANO - a computer program for the assessment of radiological consequences of atmospheric radioactive releases

    International Nuclear Information System (INIS)

    Savolainen, I.; Vuori, S.

    1980-09-01

    A short description of the calculation possibilities, methods and of the structure of the computer code system ARANO is given, in addition to the input quide. The code can be employed in the calculation of environmental radiological consequences caused by radioactive materials released to atmosphere. Results can be individual doses for different organs at given distances from the release point, collective doses, numbers of persons exceeding given dose limits, numbers of casualties, areas polluted by deposited activity and losses of investments or production due to radioactive contamination. Both a case with a single release and atmospheric dispersion situation and a group of radioactive release and dispersions with discrete probability distributions can be considered. If the radioactive releases or the dispersion conditions are described by probability distributions, the program assesses the magnitudes of the specified effects in all combinations of the release and dispersion situations and then calculates the expectation values and the cumulative probability distributions of the effects. The vertical mixing in the atmosphere is described with a Ksub(Z)-model. In the lateral direction the plume is assumed to be Gaussian, and the release duration can be taken into account in the σsub(y)-values. External gamma dose from the release plume is calculated on the basis of a data file which has been created by 3-dimensional integration. Dose due to inhalation and due to gamma radiation from the contaminated ground are calculated by using appropriate dose conversion factors, which are collected into two mutually alternative block data subprograms. (author)

  14. Global risk from the atmospheric dispersion of radionuclides by nuclear power plant accidents in the coming decades

    Energy Technology Data Exchange (ETDEWEB)

    Christoudias, T.; Proestos, Y. [The Cyprus Institute, Nicosia (Cyprus); Lelieveld, J. [The Cyprus Institute, Nicosia (Cyprus); Max Planck Institute for Chemistry, Mainz (Germany)

    2014-07-01

    We estimate the global risk from the release and atmospheric dispersion of radionuclides from nuclear power plant accidents using the EMAC atmospheric chemistry-general circulation model. We included all nuclear reactors that are currently operational, under construction and planned or proposed. We implemented constant continuous emissions from each location in the model and simulated atmospheric transport and removal via dry and wet deposition processes over 20 years (2010-2030), driven by boundary conditions based on the IPCC A2 future emissions scenario. We present global overall and seasonal risk maps for potential surface layer concentrations and ground deposition of radionuclides, and estimate potential doses to humans from inhalation and ground-deposition exposures to radionuclides. We find that the risk of harmful doses due to inhalation is typically highest in the Northern Hemisphere during boreal winter, due to relatively shallow boundary layer development and limited mixing. Based on the continued operation of the current nuclear power plants, we calculate that the risk of radioactive contamination to the citizens of the USA will remain to be highest worldwide, followed by India and France. By including stations under construction and those that are planned and proposed, our results suggest that the risk will become highest in China, followed by India and the USA.

  15. Atmospheric carbon dioxide and the global carbon cycle

    Energy Technology Data Exchange (ETDEWEB)

    Trabalka, J R [ed.

    1985-12-01

    This state-of-the-art volume presents discussions on the global cycle of carbon, the dynamic balance among global atmospheric CO2 sources and sinks. Separate abstracts have been prepared for the individual papers. (ACR)

  16. Thermal Band Atmospheric Correction Using Atmospheric Profiles Derived from Global Positioning System Radio Occultation and the Atmospheric Infrared Sounder

    Science.gov (United States)

    Pagnutti, Mary; Holekamp, Kara; Stewart, Randy; Vaughan, Ronald D.

    2006-01-01

    This Rapid Prototyping Capability study explores the potential to use atmospheric profiles derived from GPS (Global Positioning System) radio occultation measurements and by AIRS (Atmospheric Infrared Sounder) onboard the Aqua satellite to improve surface temperature retrieval from remotely sensed thermal imagery. This study demonstrates an example of a cross-cutting decision support technology whereby NASA data or models are shown to improve a wide number of observation systems or models. The ability to use one data source to improve others will be critical to the GEOSS (Global Earth Observation System of Systems) where a large number of potentially useful systems will require auxiliary datasets as input for decision support. Atmospheric correction of thermal imagery decouples TOA radiance and separates surface emission from atmospheric emission and absorption. Surface temperature can then be estimated from the surface emission with knowledge of its emissivity. Traditionally, radiosonde sounders or atmospheric models based on radiosonde sounders, such as the NOAA (National Oceanic & Atmospheric Administration) ARL (Air Resources Laboratory) READY (Real-time Environmental Application and Display sYstem), provide the atmospheric profiles required to perform atmospheric correction. Unfortunately, these types of data are too spatially sparse and too infrequently taken. The advent of high accuracy, global coverage, atmospheric data using GPS radio occultation and AIRS may provide a new avenue for filling data input gaps. In this study, AIRS and GPS radio occultation derived atmospheric profiles from the German Aerospace Center CHAMP (CHAllenging Minisatellite Payload), the Argentinean Commission on Space Activities SAC-C (Satellite de Aplicaciones Cientificas-C), and the pair of NASA GRACE (Gravity Recovery and Climate Experiment) satellites are used as input data in atmospheric radiative transport modeling based on the MODTRAN (MODerate resolution atmospheric

  17. Kalman filtration of radiation monitoring data from atmospheric dispersion of radioactive materials

    DEFF Research Database (Denmark)

    Drews, M.; Lauritzen, B.; Madsen, H.

    2004-01-01

    A Kalman filter method using off-site radiation monitoring data is proposed as a tool for on-line estimation of the source term for short-range atmospheric dispersion of radioactive materials. The method is based on the Gaussian plume model, in which the plume parameters including the source term...

  18. Global atmospheric particle formation from CERN CLOUD measurements.

    Science.gov (United States)

    Dunne, Eimear M; Gordon, Hamish; Kürten, Andreas; Almeida, João; Duplissy, Jonathan; Williamson, Christina; Ortega, Ismael K; Pringle, Kirsty J; Adamov, Alexey; Baltensperger, Urs; Barmet, Peter; Benduhn, Francois; Bianchi, Federico; Breitenlechner, Martin; Clarke, Antony; Curtius, Joachim; Dommen, Josef; Donahue, Neil M; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Guida, Roberto; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Jokinen, Tuija; Kangasluoma, Juha; Kirkby, Jasper; Kulmala, Markku; Kupc, Agnieszka; Lawler, Michael J; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mann, Graham; Mathot, Serge; Merikanto, Joonas; Miettinen, Pasi; Nenes, Athanasios; Onnela, Antti; Rap, Alexandru; Reddington, Carly L S; Riccobono, Francesco; Richards, Nigel A D; Rissanen, Matti P; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Sengupta, Kamalika; Simon, Mario; Sipilä, Mikko; Smith, James N; Stozkhov, Yuri; Tomé, Antonio; Tröstl, Jasmin; Wagner, Paul E; Wimmer, Daniela; Winkler, Paul M; Worsnop, Douglas R; Carslaw, Kenneth S

    2016-12-02

    Fundamental questions remain about the origin of newly formed atmospheric aerosol particles because data from laboratory measurements have been insufficient to build global models. In contrast, gas-phase chemistry models have been based on laboratory kinetics measurements for decades. We built a global model of aerosol formation by using extensive laboratory measurements of rates of nucleation involving sulfuric acid, ammonia, ions, and organic compounds conducted in the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber. The simulations and a comparison with atmospheric observations show that nearly all nucleation throughout the present-day atmosphere involves ammonia or biogenic organic compounds, in addition to sulfuric acid. A considerable fraction of nucleation involves ions, but the relatively weak dependence on ion concentrations indicates that for the processes studied, variations in cosmic ray intensity do not appreciably affect climate through nucleation in the present-day atmosphere. Copyright © 2016, American Association for the Advancement of Science.

  19. Natural radioactivity balance in the atmosphere of the southern hemisphere

    International Nuclear Information System (INIS)

    Lambert, G.; Ardouin, B.; Polian, G.; Sanak, J.

    1972-01-01

    It is well known that radon-222 is a radioactive rare gas, continuously produced in the soil by the disintegration of radium-226. Radon can diffuse in the soil and is outgassed into the atmosphere from the surface of the continents at the rate of about 0.7 atoms/ (cm 2 -second). Whenever the soil is covered by snow or even an iceshelf, the flux of radon becomes negligible. Surficial sea water also contains radium-226 and the oceans could release into the atmosphere a part of the produced radon. Therefore a small flux of 10 -2 atoms/(cm 2 -second) can be expected from the surface of the oceans. The radon-222 half-life of 3.8 days is long enough so that the measured radon is usually of continental origin even in the middle of any main ocean. However, below 50 0 South, it is difficult to attribute the radon to either a continental or oceanic origin. Data are presented on seasonal and altitudinal variations in radon-220, lead-210, polonium-210, and radon-222 concentrations in air samples from various locations in the Southern Hemisphere. The relation of air mass circulation in the Antartic to radioactivity in air is discussed. (U.S.)

  20. Solar atmosphere wave dynamics generated by solar global oscillating eigenmodes

    Science.gov (United States)

    Griffiths, M. K.; Fedun, V.; Erdélyi, R.; Zheng, R.

    2018-01-01

    The solar atmosphere exhibits a diverse range of wave phenomena, where one of the earliest discovered was the five-minute global acoustic oscillation, also referred to as the p-mode. The analysis of wave propagation in the solar atmosphere may be used as a diagnostic tool to estimate accurately the physical characteristics of the Sun's atmospheric layers. In this paper, we investigate the dynamics and upward propagation of waves which are generated by the solar global eigenmodes. We report on a series of hydrodynamic simulations of a realistically stratified model of the solar atmosphere representing its lower region from the photosphere to low corona. With the objective of modelling atmospheric perturbations, propagating from the photosphere into the chromosphere, transition region and low corona, generated by the photospheric global oscillations the simulations use photospheric drivers mimicking the solar p-modes. The drivers are spatially structured harmonics across the computational box parallel to the solar surface. The drivers perturb the atmosphere at 0.5 Mm above the bottom boundary of the model and are placed coincident with the location of the temperature minimum. A combination of the VALIIIC and McWhirter solar atmospheres are used as the background equilibrium model. We report how synthetic photospheric oscillations may manifest in a magnetic field free model of the quiet Sun. To carry out the simulations, we employed the magnetohydrodynamics code, SMAUG (Sheffield MHD Accelerated Using GPUs). Our results show that the amount of energy propagating into the solar atmosphere is consistent with a model of solar global oscillations described by Taroyan and Erdélyi (2008) using the Klein-Gordon equation. The computed results indicate a power law which is compared to observations reported by Ireland et al. (2015) using data from the Solar Dynamics Observatory/Atmospheric Imaging Assembly.

  1. ISLSCP II GlobalView: Atmospheric Methane Concentrations

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The GlobalView Methane (CH4) data product contains synchronized and smoothed time series of atmospheric CH4 concentrations at selected sites that were...

  2. NASA/MSFC FY88 Global Scale Atmospheric Processes Research Program Review

    Science.gov (United States)

    Wilson, Greg S. (Editor); Leslie, Fred W. (Editor); Arnold, J. E. (Editor)

    1989-01-01

    Interest in environmental issues and the magnitude of the environmental changes continues. One way to gain more understanding of the atmosphere is to make measurements on a global scale from space. The Earth Observation System is a series of new sensors to measure globally atmospheric parameters. Analysis of satellite data by developing algorithms to interpret the radiance information improves the understanding and also defines requirements for these sensors. One measure of knowledge of the atmosphere lies in the ability to predict its behavior. Use of numerical and experimental models provides a better understanding of these processes. These efforts are described in the context of satellite data analysis and fundamental studies of atmospheric dynamics which examine selected processes important to the global circulation.

  3. Global Change in the Upper Atmosphere

    Czech Academy of Sciences Publication Activity Database

    Laštovička, Jan; Akmaev, R. A.; Beig, G.; Bremer, J.; Emmert, J. T.

    2006-01-01

    Roč. 314, č. 5803 (2006), s. 1253-1254 ISSN 0036-8075 R&D Projects: GA MŠk OC 091 Institutional research plan: CEZ:AV0Z30420517 Keywords : Global change * Upper Atmosphere * Ionosphere Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 30.028, year: 2006

  4. ISLSCP II GlobalView: Atmospheric Methane Concentrations

    Data.gov (United States)

    National Aeronautics and Space Administration — The GlobalView Methane (CH4) data product contains synchronized and smoothed time series of atmospheric CH4 concentrations at selected sites that were created using...

  5. NASA/MSFC FY90 Global Scale Atmospheric Processes Research Program Review

    Science.gov (United States)

    Leslie, Fred W. (Editor)

    1990-01-01

    Research supported by the Global Atmospheric Research Program at the Marshall Space Flight Center on atmospheric remote sensing, meteorology, numerical weather forecasting, satellite data analysis, cloud precipitation, atmospheric circulation, atmospheric models and related topics is discussed.

  6. A procedure for estimating site specific derived limits for the discharge of radioactive material to the atmosphere

    CERN Document Server

    Hallam, J; Jones, J A

    1983-01-01

    Generalised Derived Limits (GDLs) for the discharge of radioactive material to the atmosphere are evaluated using parameter values to ensure that the exposure of the critical group is unlikely to be underestimated significantly. Where the discharge is greater than about 5% of the GDL, a more rigorous estimate of the derived limit may be warranted. This report describes a procedure for estimating site specific derived limits for discharges of radioactivity to the atmosphere taking into account the conditions of the release and the location and habits of the exposed population. A worksheet is provided to assist in carrying out the required calculations.

  7. Land–atmosphere feedbacks amplify aridity increase over land under global warming

    Science.gov (United States)

    Berg, Alexis; Findell, Kirsten; Lintner, Benjamin; Giannini, Alessandra; Seneviratne, Sonia I.; van den Hurk, Bart; Lorenz, Ruth; Pitman, Andy; Hagemann, Stefan; Meier, Arndt; Cheruy, Frédérique; Ducharne, Agnès; Malyshev, Sergey; Milly, Paul C. D.

    2016-01-01

    The response of the terrestrial water cycle to global warming is central to issues including water resources, agriculture and ecosystem health. Recent studies indicate that aridity, defined in terms of atmospheric supply (precipitation, P) and demand (potential evapotranspiration, Ep) of water at the land surface, will increase globally in a warmer world. Recently proposed mechanisms for this response emphasize the driving role of oceanic warming and associated atmospheric processes. Here we show that the aridity response is substantially amplified by land–atmosphere feedbacks associated with the land surface’s response to climate and CO2 change. Using simulations from the Global Land Atmosphere Coupling Experiment (GLACE)-CMIP5 experiment, we show that global aridity is enhanced by the feedbacks of projected soil moisture decrease on land surface temperature, relative humidity and precipitation. The physiological impact of increasing atmospheric CO2 on vegetation exerts a qualitatively similar control on aridity. We reconcile these findings with previously proposed mechanisms by showing that the moist enthalpy change over land is unaffected by the land hydrological response. Thus, although oceanic warming constrains the combined moisture and temperature changes over land, land hydrology modulates the partitioning of this enthalpy increase towards increased aridity.

  8. Size distribution of natural aerosols and radioactive particles issued from radon, in marine and hardly polluted urban atmospheres

    International Nuclear Information System (INIS)

    Tymen, Georges.

    1979-03-01

    With a view to studying the natural radioactive particles produced by atttachment of 222 Rn daughters on environmental aerosol particles, the behaviours of CASELLA MK2 and ANDERSEN cascade impactors were first investigated. Their characteristic stage diameters were determined and size distributions of airborne particles were obtained in various situations. Moreover, an experimental and automatic equipment for measuring radon was devised and a method was developed in order to evaluate RaA, RaB, RaC concentrations in the free atmosphere. A degree of radioactive desequilibrium between 222 Rn and its daughters, more important than that in other locations was thus demonstrated. Furthermore, by means of various aerosol collection systems (ion tubes, diffusion batteries, cascade impactors, filters), the cumulative size distribution of natural radioactivity was established in the air, at ground level. Finally, from a theory of attachment of small radioactive ions on atmospheric particles, a tentative explanation of experimental results was made [fr

  9. Surveillance of radioactivity in the atmosphere by the Deutscher Wetterdienst (DWD) in the framework of nuclear emergency response programmes

    International Nuclear Information System (INIS)

    Steinkopff, T.; Dalheimer, A.; Dyck, W.; Fay, B.; Glaab, H.; Jacobsen, I.

    2000-01-01

    The Deutscher Wetterdienst (DWD), German Meteorological Service, is charged with the surveillance of radioactivity in the atmosphere as a part of the emergency information network of the 'Integrated Measurement and Information System' (IMIS) in Germany. The results of measurements of radioactivity and the meteorological products are transferred regularly to this network. The DWD is also integrated into the Environmental Emergency Response Programme (EER) of the World Meteorological Organization (WMO) as a communication hub. The computer infrastructure, the operational experience in data management as well as the national and international communication systems in operation are significant arguments to run the early alert system on the surveillance of atmospheric radioactivity at the national meteorological service. (author)

  10. The biosphere as a driver of global atmospheric change

    International Nuclear Information System (INIS)

    Levine, J.S.

    1991-01-01

    The effects of the biosphere on the evolution of atmospheric oxygen and ozone, and the consequences of that development for global atmospheric change, are discussed. Attention is given to the impact of oxygen and ozone on atmospheric photolysis rates, the effect of oxygen on the biogenic production of nitrous oxide and nitric oxide, and the effects of the evolution of atmospheric oxygen on fires and biomass burning. The influence of the latter on atmospheric processes, particularly the production of methane, carbon dioxide, and carbon monoxide, is considered. 41 refs

  11. Innovative concept for a major breakthrough in atmospheric radioactive xenon detection for nuclear explosion monitoring

    International Nuclear Information System (INIS)

    Le Petit, G.; Cagniant, A.; Gross, P.; Achim, P.; Douysset, G.; Taffary, T.; Moulin, C.; Morelle, M.

    2013-01-01

    The verification regime of the comprehensive test ban treaty (CTBT) is based on a network of three different waveform technologies together with global monitoring of aerosols and noble gas in order to detect, locate and identify a nuclear weapon explosion down to 1 kt TNT equivalent. In case of a low intensity underground or underwater nuclear explosion, it appears that only radioactive gases, especially the noble gas which are difficult to contain, will allow identification of weak yield nuclear tests. Four radioactive xenon isotopes, 131m Xe, 133m Xe, 133 Xe and 135 Xe, are sufficiently produced in fission reactions and exhibit suitable half-lives and radiation emissions to be detected in atmosphere at low level far away from the release site. Four different monitoring CTBT systems, ARIX, ARSA, SAUNA, and SPALAX TM have been developed in order to sample and to measure them with high sensitivity. The latest developed by the French Atomic Energy Commission (CEA) is likely to be drastically improved in detection sensitivity (especially for the metastable isotopes) through a higher sampling rate, when equipped with a new conversion electron (CE)/X-ray coincidence spectrometer. This new spectrometer is based on two combined detectors, both exhibiting very low radioactive background: a well-type NaI(Tl) detector for photon detection surrounding a gas cell equipped with two large passivated implanted planar silicon chips for electron detection. It is characterized by a low electron energy threshold and a much better energy resolution for the CE than those usually measured with the existing CTBT equipments. Furthermore, the compact geometry of the spectrometer provides high efficiency for X-ray and for CE associated to the decay modes of the four relevant radioxenons. The paper focus on the design of this new spectrometer and presents spectroscopic performances of a prototype based on recent results achieved from both radioactive xenon standards and air sample

  12. Adsorption of radioactive I2 gas onto atmospheric aerosol

    International Nuclear Information System (INIS)

    Noguchi, Hiroshi; Murata, Mikio; Suzuki, Katsumi.

    1990-01-01

    Laboratory scale experiments on the adsorption of radioactive elemental iodine (I 2 ) gas onto atmospheric aerosol showed that the adsorption reached an equilibrium state in about twelve minutes at high initial I 2 concentrations. The proportion of iodine which was adsorbed on the aerosol gradually decreased with increading initial I 2 concentration ranging over 10 -13 to 10 -9 g/cm 3 at a reaction time of 31 min but was almost constant at a reaction time of 2 min. A fraction of iodine desorbed from particulate iodine as mainly I 2 gas. An adsorption isotherm of atmospheric aerosol for I 2 gas was estimated from the experimental data of long reaction time and high I 2 concentrations. Using this adsorption isotherm, a theoretical equation, which was similar to our previous equation, was derived to explain the experimental results. A geometric mean and standard deviation of sticking probability in the equation were estimated to be 1.2 x 10 -2 and 2.7, respectively. Almost all experimental data were within ranges of calculated results considering the geometric standard deviation of sticking probability. (author)

  13. Comment on 'On the long-range detection of radioactivity using electromagnetic radiation'

    International Nuclear Information System (INIS)

    Fuks, I.M.; Martynenko, S.I.

    2004-01-01

    The fact that the mesosphere is an electrically active element in the global atmospheric electric circuit provides a possible mechanism for troposphere-mesosphere-ionosphere coupling during releases of radioactive materials at the ground level, and this is discussed in this comment

  14. Behavior of radioactive organic iodide in an atmosphere of High Temperature Gas-cooled Reactor

    International Nuclear Information System (INIS)

    Saeki, Masakatsu; Nakashima, Mikio; Sagawa, Chiaki; Masaki, Nobuyuki; Hirabayashi, Takakuni; Aratono, Yasuyuki

    1990-06-01

    Formation and decomposition behavior of radioactive organic iodide have been studied in an atmosphere of High Temperature Gas-cooled Reactor (High Temperature Engineering Test Reactor, HTTR). Na 125 I was chosen for radioactive iodine source instead of CsI diffusing from coated fuel particles. Na 125 I adsorbed on graphite was heated in pure He and He containing O 2 or H 2 O atmosphere. The results obtained are as follows. It was proved that organic iodide was formed with organic radicals released from graphite even in He atmosphere. Thus, the interchange rate of inorganic iodide with organic iodide was remarkably decreased with prolonged preheat-treatment period at 1000degC. Organic iodide formed was easily decomposed by its recirculation into hot reaction tube kept at 900degC. When organic iodide was passed through powdered graphite bed, more than 70% was decomposed at 90degC. Oxygen and water vapour intermixed in He suppressed the interchange rate of inorganic iodide with organic iodide. These results suggest that organic iodide rarely exists in the pressure vessel under normal operating condition of HTTR, and, under hypothetical accident condition of HTTR, organic iodide fraction never exceeds the value used for a safety assessment of light water reactor. (author)

  15. Reducing the global threat of radiological terrorism in Central Asia and Caucus regions. The global threat reduction initiative approach to radioactive source security

    International Nuclear Information System (INIS)

    Smith, E.

    2010-01-01

    The security of radioactive sources is of worldwide concern, due to their wide use in civilian commerce and the potentially devastating effects of their misuse. In cooperation with host countries and international partners, the Global Threat Reduction Initiative has utilized a proven process for providing technical and financial assistance to protect radioactive sources in diverse uses and unique circumstances at hundreds of sites worldwide. The mission of the Department of Energy, National Nuclear Security Administration's program includes reducing the risk posed by vulnerable radiological materials that could be used in a Radioactive Dispersal Device). The program's objectives are to identify, consolidate, secure, and/or dispose of high-activity radiological materials to prevent their theft and malicious use. The Global Threat Reduction Initiative Program's scope is global, with projects in over 100 countries at more than 755 radiological sites, including industrial, medical and commercial facilities. In addition to working bilaterally, the Program works closely with the International Atomic Energy Agency (IAEA) and other partner countries. (author)

  16. Estimation of maximum credible atmospheric radioactivity concentrations and dose rates from nuclear tests

    International Nuclear Information System (INIS)

    Telegadas, K.

    1979-01-01

    A simple technique is presented for estimating maximum credible gross beta air concentrations from nuclear detonations in the atmosphere, based on aircraft sampling of radioactivity following each Chinese nuclear test from 1964 to 1976. The calculated concentration is a function of the total yield and fission yield, initial vertical radioactivity distribution, time after detonation, and rate of horizontal spread of the debris with time. calculated maximum credible concentrations are compared with the highest concentrations measured during aircraft sampling. The technique provides a reasonable estimate of maximum air concentrations from 1 to 10 days after a detonation. An estimate of the whole-body external gamma dose rate corresponding to the maximum credible gross beta concentration is also given. (author)

  17. A retrospect of anthropogenic radioactivity in the global marine environment

    DEFF Research Database (Denmark)

    Aarkrog, A.

    1998-01-01

    . The IAEA's IASAP study has evaluated the radiological consequences of these dumpings. In a recent international study (MARDOS) by the IAEA it was concluded that the doses to man from anthropogenic radionuclides in the marine environment are generally one to two orders of magnitude less than the doses from......Man-made radionuclides were introduced into the marine environment in the mid forties with the exploitation of nuclear fission for military purposes. Plutonium production reactors at Hanford, USA, released radioactivity to the Pacific Ocean via the Columbia River. In the former Soviet Union (FSU......) the military nuclear establishment at Cheliabinsk (later MAYAK) a few years later began direct discharging of fission products to the nearby Techa River, which is a part of the Ob river system, and the Arctic Ocean received man made radioactivity. In the 1950s, when atmospheric testing of thermonuclear weapons...

  18. Seasonal and global behavior of water vapor in the Mars atmosphere: Complete global results of the Viking atmospheric water detector experiment

    International Nuclear Information System (INIS)

    Jakosky, B.M.; Farmer, C.B.

    1982-01-01

    The water vapor content of the Mars atmosphere was measured from the Viking Orbiter Mars Atmospheric Water Detectors (MAWD) for a period of more than 1 Martian year, from June 1976 through April 1979. Results are presented in the form of global maps of column abundance for 24 periods throughout each Mars year. The data reduction incorporates spatial and seasonal variations in surface pressure and supplements earlier published versions of less complete data

  19. Extent and effects of atmospheric pollution on soils

    Energy Technology Data Exchange (ETDEWEB)

    Oden, S

    1972-01-01

    Man's activities take place mainly in a thin layer of air near the ground, and both direct and indirect emissions into the air give rise to local, regional or even global distribution of man-made products. Radioactive substances, insecticides, hydrocarbons, heavy metals and exhaust products from industries and urban areas are thus emitted into the atmosphere and they may be distributed all over the Globe. This widespread distribution is now a well-known fact for some compounds such as radioactive isotopes, chlorinated hydrocarbons (DDT) and lead. For other substances the distribution pattern is more local - or seems to be more local due to lack of information. In the long run, however, all emissions will be globally distributed.

  20. Worldwide marine radioactivity studies assessing the picture

    International Nuclear Information System (INIS)

    Povinec, P.P.; Togawa, O.

    1998-01-01

    A growing number of sources of radioactivity from human activities are found in the marine environment. They are known to include global nuclear fallout following atmospheric weapons tests, the Chernobyl accident, discharges of radionuclides from nuclear installations, past dumping of radioactive wastes, nuclear submarine accidents, contributions from nuclear testing sites, loss of radioactive sources, and the burn-up of satellites using radioisotopes as power sources. Overall, the world's marine environment contains radionuclides that differ from one region to another. Differences are due to dynamic marine environmental processes and the particular source of radionuclides in a region. Scientific assessments of marine radioactivity, therefore, require knowledge of both the source terms and oceanic processes. Radioactivity now is deposited unevenly over the world's oceans. Global fallout is known to be mainly due to nuclear weapon tests carried out in the 1960s. On the other hand, discharges from nuclear fuel reprocessing plants or past dumping of liquid and solid radioactive wastes generally are confined to more localized areas. Even so, soluble radionuclides have been transported over long distances by prevailing ocean currents. To estimate radionuclide inputs from local sources, scientists need to better understand the distribution of radionuclides throughout the world's oceans and seas. The understanding is important for analysing the results from scientific investigations of localized areas, such as part dumping sites, which then can be reviewed more thoroughly. As a contribution to fuller understanding of the marine environment, the IAEA's Marine Environment Laboratory (MEL) started a five-year project in 1996 entitled ''Research on Worldwide Marine Radioactivity (MARS)''. The work is supported by Japan's Science and Technology Agency (STA). This article briefly review this project, and describes related research activities and scientific investigations of MEL

  1. Biomass burning studies and the International Global Atmospheric Chemistry (IGAC) project

    Science.gov (United States)

    Prinn, Ronald G.

    1991-01-01

    IGAC is an ambitious, decade-long and global research initiative concerned with major research challenges in the field of atmospheric chemistry; its chemists and ecosystem biologists are addressing the problems associated with global biomass burning (BMB). Among IGAC's goals is the achievement of a fundamental understanding of the natural and anthropogenic processes determining changes in atmospheric composition and chemistry, in order to allow century-long predictions. IGAC's studies have been organized into 'foci', encompassing the marine, tropical, polar, boreal, and midlatitude areas, as well as their global composite interactions. Attention is to be given to the effects of BMB on biogeochemical cycles.

  2. Transboundary radioactive and chemical pollution simulation using an atmospheric/marine predicting system

    International Nuclear Information System (INIS)

    Telenta, B.; Antic, D.

    2001-01-01

    The atmospheric models can be used to simulate the transport of contaminants in typical accidental cases and for realistic meteorological conditions. Some numerical models for weather forecast can be used for near to real simulations of propagation of radioactive nuclides or classical chemical pollutants to the atmosphere. The various meteorological parameters are taken into account and various meteorological conditions, even complex ones, can be analyzed. The models can be used for very well assessment of the airborne pollution from energy sources and industrial installations, for comparative studies and for safety analysis. This report describes an proposal for a project of the transboundary pollution simulation, that can be used for the East Mediterranean Region. The project is based on the numerical models developed in the in simulating of the Chernobyl accident and similar hypothetical cases. The study is based on an atmospheric models developed in Euro-Mediterranean Centre on Insular Coastal Dynamics (ICoD), Foundation for International Studies, Valeta, Malta

  3. Evidence that global evapotranspiration makes a substantial contribution to the global atmospheric temperature slowdown

    Science.gov (United States)

    Leggett, L. Mark W.; Ball, David A.

    2018-02-01

    The difference between the time series trend for temperature expected from the increasing level of atmospheric CO2 and that for the (more slowly rising) observed temperature has been termed the global surface temperature slowdown. In this paper, we characterise the single time series made from the subtraction of these two time series as the `global surface temperature gap'. We also develop an analogous atmospheric CO2 gap series from the difference between the level of CO2 and first-difference CO2 (that is, the change in CO2 from one period to the next). This paper provides three further pieces of evidence concerning the global surface temperature slowdown. First, we find that the present size of both the global surface temperature gap and the CO2 gap is unprecedented over a period starting at least as far back as the 1860s. Second, ARDL and Granger causality analyses involving the global surface temperature gap against the major candidate physical drivers of the ocean heat sink and biosphere evapotranspiration are conducted. In each case where ocean heat data was available, it was significant in the models: however, evapotranspiration, or its argued surrogate precipitation, also remained significant in the models alongside ocean heat. In terms of relative scale, the standardised regression coefficient for evapotranspiration was repeatedly of the same order of magnitude as—typically as much as half that for—ocean heat. The foregoing is evidence that, alongside the ocean heat sink, evapotranspiration is also likely to be making a substantial contribution to the global atmospheric temperature outcome. Third, there is evidence that both the ocean heat sink and the evapotranspiration process might be able to continue into the future to keep the temperature lower than the level-of-CO2 models would suggest. It is shown that this means there can be benefit in using the first-difference CO2 to temperature relationship shown in Leggett and Ball (Atmos Chem Phys 15

  4. Long-term decline of global atmospheric ethane concentrations and implications for methane.

    Science.gov (United States)

    Simpson, Isobel J; Sulbaek Andersen, Mads P; Meinardi, Simone; Bruhwiler, Lori; Blake, Nicola J; Helmig, Detlev; Rowland, F Sherwood; Blake, Donald R

    2012-08-23

    After methane, ethane is the most abundant hydrocarbon in the remote atmosphere. It is a precursor to tropospheric ozone and it influences the atmosphere's oxidative capacity through its reaction with the hydroxyl radical, ethane's primary atmospheric sink. Here we present the longest continuous record of global atmospheric ethane levels. We show that global ethane emission rates decreased from 14.3 to 11.3 teragrams per year, or by 21 per cent, from 1984 to 2010. We attribute this to decreasing fugitive emissions from ethane's fossil fuel source--most probably decreased venting and flaring of natural gas in oil fields--rather than a decline in its other major sources, biofuel use and biomass burning. Ethane's major emission sources are shared with methane, and recent studies have disagreed on whether reduced fossil fuel or microbial emissions have caused methane's atmospheric growth rate to slow. Our findings suggest that reduced fugitive fossil fuel emissions account for at least 10-21 teragrams per year (30-70 per cent) of the decrease in methane's global emissions, significantly contributing to methane's slowing atmospheric growth rate since the mid-1980s.

  5. Development of a Ground-Based Atmospheric Monitoring Network for the Global Mercury Observation System (GMOS

    Directory of Open Access Journals (Sweden)

    Sprovieri F.

    2013-04-01

    Full Text Available Consistent, high-quality measurements of atmospheric mercury (Hg are necessary in order to better understand Hg emissions, transport, and deposition on a global scale. Although the number of atmospheric Hg monitoring stations has increased in recent years, the available measurement database is limited and there are many regions of the world where measurements have not been extensively performed. Long-term atmospheric Hg monitoring and additional ground-based monitoring sites are needed in order to generate datasets that will offer new insight and information about the global scale trends of atmospheric Hg emissions and deposition. In the framework of the Global Mercury Observation System (GMOS project, a coordinated global observational network for atmospheric Hg is being established. The overall research strategy of GMOS is to develop a state-of-the-art observation system able to provide information on the concentration of Hg species in ambient air and precipitation on the global scale. This network is being developed by integrating previously established ground-based atmospheric Hg monitoring stations with newly established GMOS sites that are located both at high altitude and sea level locations, as well as in climatically diverse regions. Through the collection of consistent, high-quality atmospheric Hg measurement data, we seek to create a comprehensive assessment of atmospheric Hg concentrations and their dependence on meteorology, long-range atmospheric transport and atmospheric emissions.

  6. Toward GEOS-6, A Global Cloud System Resolving Atmospheric Model

    Science.gov (United States)

    Putman, William M.

    2010-01-01

    NASA is committed to observing and understanding the weather and climate of our home planet through the use of multi-scale modeling systems and space-based observations. Global climate models have evolved to take advantage of the influx of multi- and many-core computing technologies and the availability of large clusters of multi-core microprocessors. GEOS-6 is a next-generation cloud system resolving atmospheric model that will place NASA at the forefront of scientific exploration of our atmosphere and climate. Model simulations with GEOS-6 will produce a realistic representation of our atmosphere on the scale of typical satellite observations, bringing a visual comprehension of model results to a new level among the climate enthusiasts. In preparation for GEOS-6, the agency's flagship Earth System Modeling Framework [JDl] has been enhanced to support cutting-edge high-resolution global climate and weather simulations. Improvements include a cubed-sphere grid that exposes parallelism; a non-hydrostatic finite volume dynamical core, and algorithm designed for co-processor technologies, among others. GEOS-6 represents a fundamental advancement in the capability of global Earth system models. The ability to directly compare global simulations at the resolution of spaceborne satellite images will lead to algorithm improvements and better utilization of space-based observations within the GOES data assimilation system

  7. Research on atmospheric radioactivity. [In French

    Energy Technology Data Exchange (ETDEWEB)

    Garrigue, H

    1954-01-01

    In flight at 2800 m, traces of radioactive particles were gathered, by means of a corona effect similar to that of Sella, and of long period, on April 24, 1954. At Puy-de-Dome (1465 m) after a fall of rain and snow on May 3 to 4, 1954, samples of the fallen residue showed very feeble radioactivity of period 10 days or more. This radioactivity of the airborne particles was independent of their probable natural electrical charge and mobility and was indicative of an atomic cloud.

  8. A methodology for the evaluation of collective doses arising from radioactive discharges to the atmosphere

    International Nuclear Information System (INIS)

    Hallam, J.; Linsley, G.S.

    1980-01-01

    The ICRP recommend the use of optimisation as a means of ensuring that the total detriment from any practice is appropriately small in relation to the benefit resulting from its introduction. The calculation of total health detriment requires the evaluation of the complete dose distribution throughout the irradiated population from all isotopes via all pathways. This paper describes methods for the evaluation of collective dose, which may be used in the assessment of detriment. The stages in the assessment of collective dose from an atmospheric release can be summarised as follows: (1) An atmospheric dispersion model is used to evaluate the spatial distribution of activity and thereby the dose to an individual from inhalation and external irradiation at any position with respect to the discharge point. (2) The UK population distribution on a 1 x 1 km grid is then used for the evaluation of collective dose from these pathways. (3) Foodchain models are used to estimate the radioactivity per unit mass in a range of different foodstuffs per unit deposition rate or surface deposit. (4) The distribution of agricultural practices in the UK on a 5 x 5 km grid, taken together with the atmospheric dispersion model allows the estimation of the total activity reaching man via food, and hence the collective dose. This combination of models and data arrays allows assessments to be made of the collective dose due to atmospheric releases of radioactive materials at any geographical location in the United Kingdom. (author)

  9. Forecasting global atmospheric CO2

    International Nuclear Information System (INIS)

    Agusti-Panareda, A.; Massart, S.; Boussetta, S.; Balsamo, G.; Beljaars, A.; Engelen, R.; Jones, L.; Peuch, V.H.; Chevallier, F.; Ciais, P.; Paris, J.D.; Sherlock, V.

    2014-01-01

    A new global atmospheric carbon dioxide (CO 2 ) real-time forecast is now available as part of the preoperational Monitoring of Atmospheric Composition and Climate - Interim Implementation (MACC-II) service using the infrastructure of the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). One of the strengths of the CO 2 forecasting system is that the land surface, including vegetation CO 2 fluxes, is modelled online within the IFS. Other CO 2 fluxes are prescribed from inventories and from off-line statistical and physical models. The CO 2 forecast also benefits from the transport modelling from a state-of-the-art numerical weather prediction (NWP) system initialized daily with a wealth of meteorological observations. This paper describes the capability of the forecast in modelling the variability of CO 2 on different temporal and spatial scales compared to observations. The modulation of the amplitude of the CO 2 diurnal cycle by near-surface winds and boundary layer height is generally well represented in the forecast. The CO 2 forecast also has high skill in simulating day-to-day synoptic variability. In the atmospheric boundary layer, this skill is significantly enhanced by modelling the day-to-day variability of the CO 2 fluxes from vegetation compared to using equivalent monthly mean fluxes with a diurnal cycle. However, biases in the modelled CO 2 fluxes also lead to accumulating errors in the CO 2 forecast. These biases vary with season with an underestimation of the amplitude of the seasonal cycle both for the CO 2 fluxes compared to total optimized fluxes and the atmospheric CO 2 compared to observations. The largest biases in the atmospheric CO 2 forecast are found in spring, corresponding to the onset of the growing season in the Northern Hemisphere. In the future, the forecast will be re-initialized regularly with atmospheric CO 2 analyses based on the assimilation of CO 2 products retrieved from satellite

  10. Regional forecasting with global atmospheric models

    International Nuclear Information System (INIS)

    Crowley, T.J.; North, G.R.; Smith, N.R.

    1994-05-01

    The scope of the report is to present the results of the fourth year's work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals

  11. Comment on 'On the long-range detection of radioactivity using electromagnetic radiation'

    Energy Technology Data Exchange (ETDEWEB)

    Fuks, I.M. E-mail: iosif.fuks@noaa.gov; Martynenko, S.I. E-mail: sergey.i.martynenko@univer.kharkov.ua

    2004-05-01

    The fact that the mesosphere is an electrically active element in the global atmospheric electric circuit provides a possible mechanism for troposphere-mesosphere-ionosphere coupling during releases of radioactive materials at the ground level, and this is discussed in this comment.

  12. Three-pattern decomposition of global atmospheric circulation: part I—decomposition model and theorems

    Science.gov (United States)

    Hu, Shujuan; Chou, Jifan; Cheng, Jianbo

    2018-04-01

    In order to study the interactions between the atmospheric circulations at the middle-high and low latitudes from the global perspective, the authors proposed the mathematical definition of three-pattern circulations, i.e., horizontal, meridional and zonal circulations with which the actual atmospheric circulation is expanded. This novel decomposition method is proved to accurately describe the actual atmospheric circulation dynamics. The authors used the NCEP/NCAR reanalysis data to calculate the climate characteristics of those three-pattern circulations, and found that the decomposition model agreed with the observed results. Further dynamical analysis indicates that the decomposition model is more accurate to capture the major features of global three dimensional atmospheric motions, compared to the traditional definitions of Rossby wave, Hadley circulation and Walker circulation. The decomposition model for the first time realized the decomposition of global atmospheric circulation using three orthogonal circulations within the horizontal, meridional and zonal planes, offering new opportunities to study the large-scale interactions between the middle-high latitudes and low latitudes circulations.

  13. History of chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric Gases Experiment (AGAGE

    Directory of Open Access Journals (Sweden)

    R. G. Prinn

    2018-06-01

    Full Text Available We present the organization, instrumentation, datasets, data interpretation, modeling, and accomplishments of the multinational global atmospheric measurement program AGAGE (Advanced Global Atmospheric Gases Experiment. AGAGE is distinguished by its capability to measure globally, at high frequency, and at multiple sites all the important species in the Montreal Protocol and all the important non-carbon-dioxide (non-CO2 gases assessed by the Intergovernmental Panel on Climate Change (CO2 is also measured at several sites. The scientific objectives of AGAGE are important in furthering our understanding of global chemical and climatic phenomena. They are the following: (1 to accurately measure the temporal and spatial distributions of anthropogenic gases that contribute the majority of reactive halogen to the stratosphere and/or are strong infrared absorbers (chlorocarbons, chlorofluorocarbons – CFCs, bromocarbons, hydrochlorofluorocarbons – HCFCs, hydrofluorocarbons – HFCs and polyfluorinated compounds (perfluorocarbons – PFCs, nitrogen trifluoride – NF3, sulfuryl fluoride – SO2F2, and sulfur hexafluoride – SF6 and use these measurements to determine the global rates of their emission and/or destruction (i.e., lifetimes; (2 to accurately measure the global distributions and temporal behaviors and determine the sources and sinks of non-CO2 biogenic–anthropogenic gases important to climate change and/or ozone depletion (methane – CH4, nitrous oxide – N2O, carbon monoxide – CO, molecular hydrogen – H2, methyl chloride – CH3Cl, and methyl bromide – CH3Br; (3 to identify new long-lived greenhouse and ozone-depleting gases (e.g., SO2F2, NF3, heavy PFCs (C4F10, C5F12, C6F14, C7F16, and C8F18 and hydrofluoroolefins (HFOs; e.g., CH2  =  CFCF3 have been identified in AGAGE, initiate the real-time monitoring of these new gases, and reconstruct their past histories from AGAGE, air archive, and firn air measurements; (4

  14. A global hybrid coupled model based on atmosphere-SST feedbacks

    Energy Technology Data Exchange (ETDEWEB)

    Cimatoribus, Andrea A.; Drijfhout, Sybren S. [Royal Netherlands Meteorological Institute, De Bilt (Netherlands); Dijkstra, Henk A. [Utrecht University, Institute for Marine and Atmospheric Research Utrecht, Utrecht (Netherlands)

    2012-02-15

    A global hybrid coupled model is developed, with the aim of studying the effects of ocean-atmosphere feedbacks on the stability of the Atlantic meridional overturning circulation. The model includes a global ocean general circulation model and a statistical atmosphere model. The statistical atmosphere model is based on linear regressions of data from a fully coupled climate model on sea surface temperature both locally and hemispherically averaged, being the footprint of Atlantic meridional overturning variability. It provides dynamic boundary conditions to the ocean model for heat, freshwater and wind-stress. A basic but consistent representation of ocean-atmosphere feedbacks is captured in the hybrid coupled model and it is more than 10 times faster than the fully coupled climate model. The hybrid coupled model reaches a steady state with a climate close to the one of the fully coupled climate model, and the two models also have a similar response (collapse) of the Atlantic meridional overturning circulation to a freshwater hosing applied in the northern North Atlantic. (orig.)

  15. Mars Global Reference Atmospheric Model 2010 Version: Users Guide

    Science.gov (United States)

    Justh, H. L.

    2014-01-01

    This Technical Memorandum (TM) presents the Mars Global Reference Atmospheric Model 2010 (Mars-GRAM 2010) and its new features. Mars-GRAM is an engineering-level atmospheric model widely used for diverse mission applications. Applications include systems design, performance analysis, and operations planning for aerobraking, entry, descent and landing, and aerocapture. Additionally, this TM includes instructions on obtaining the Mars-GRAM source code and data files as well as running Mars-GRAM. It also contains sample Mars-GRAM input and output files and an example of how to incorporate Mars-GRAM as an atmospheric subroutine in a trajectory code.

  16. Radioactive contamination processes during 14-21 March after the Fukushima accident: What does atmospheric electric field measurements tell us?

    Science.gov (United States)

    Takeda, M.; Yamauchi, M.; Makino, M.; Owada, T.; Miyagi, I.

    2012-04-01

    Ionizing radiation from the radioactive material is known to increase atmospheric electric conductivity, and hence to decrease vertical downward atmospheric DC electric field at ground level, or potential gradient (PG). In the past, the drop of PG has been observed after rain-induced radioactive fallout (wet contamination) after nuclear tests or after the Chernobyl disaster. After the nuclear accident Fukushima Dai-ichi nuclear power plant (FNPP) that started 11 March 2011, the PG also at Kakioka, 150 km southwest from the FNPP, also dropped a by one order of magnitude. Unlike the past examples, the PG drop was two-stepped on 14 March and 20 March. Both correspond to two largest southward release of radioactive material according to the data from the radiation dose rate measurement network. We compare the Kakioka's PG data with the radiation dose rate data at different places to examine the fallout processes of both on 14 March and on 20 March. The former turned out to be dry contamination by surface wind, leaving a substantial amount of fallout floating near the ground. The latter turned out to be wet contamination by rain after transport by relatively low-altitude wind, and the majority of the fallout settled to the ground at this time. It is recommended that all nuclear power plant to have a network of PG observation surrounding the plant. Takeda, et al. (2011): Initial effect of the Fukushima accident on atmospheric electricity, Geophys. Res. Lett., 38, L15811, doi:10.1029/2011GL048511. Yamauchi, et al. (2012): Settlement process of radioactive dust to the ground inferred from the atmospheric electric field measurement, Ann. Geophys., 30, 49-56, doi:10.5194/angeo-30-49-2012.

  17. Global atmospheric particle formation from CERN CLOUD measurements

    Science.gov (United States)

    Dunne, Eimear M.; Gordon, Hamish; Carslaw, Kenneth S.

    2017-04-01

    New particle formation (or nucleation) is acknowledged as a significant source of climate-relevant aerosol throughout the atmosphere. However, performing atmospherically relevant nucleation experiments in a laboratory setting is extremely challenging. As a result, until now, the parameterisations used to represent new particle formation in global aerosol models were largely based on in-situ observations or theoretical nucleation models, and usually only represented the binary H2SO4-H2O system. Several different chemicals can affect particle formation rates, even at extremely low trace concentrations, which are technically challenging to measure directly. Nucleation rates also respond to environmental changes in e.g. temperature in a highly non-linear fashion. The CERN CLOUD experiment was designed to provide the most controlled and accurate nucleation rate measurements to date, over the full range of free tropospheric temperatures and down to sulphuric acid concentrations of the order of 105 cm-3. We will present a parameterisation of inorganic nucleation rates for use in global models, based on these measurements, which includes four separate nucleation pathways: binary neutral, binary ion-induced, ternary neutral, and ternary ion-induced. Both inorganic and organic nucleation parameterisations derived from CLOUD measurements have been implemented in the GLOMAP global aerosol model. The parameterisations depend on temperature and on concentrations of sulphuric acid, ammonia, organic vapours, and ions. One of CLOUD's main original goals was to determine the sensitivity of atmospheric aerosol to changes in the nucleation rate over a solar cycle. We will show that, in a present-day atmosphere, the changes in climate-relevant aerosol (in the form of cloud-level cloud condensation nuclei) over a solar cycle are on average about 0.1%, with local changes of less than 1%. In contrast, anthropogenic changes in ammonia since pre-industrial times were estimated to have a

  18. Investigations of radioactivity level variations in Armenia after the Chernobyl accident

    International Nuclear Information System (INIS)

    Nalbandyan, A.

    2006-01-01

    The problem of radioactive pollution of biosphere has been acquiring a special topicality after nuclear weapon testing and NPP-induced accidents that have already brought to global pollution of the Earth with radioactive substances. One of visual examples of regional radioactive pollution is dispersion of emissions all over the territory of Central Europe after the Chernobyl accident, which aftermaths impacted Armenia, as well. Monitoring investigations in the Ararat Valley showed a precise peak of gross radioactivity of atmospheric fallout in 1986 - the year of Chernobyl accident. Gross mean annual radioactivity was established 1783 10 7 Bq/KXm 2 yr. Later, a sharp fall in the activity was observed. Mostly, radioactive fallout consisted of short-lived radionuclides. Measurements for 1986-1987 showed that gross β-radioactivity level in soils amounted to 977-1022 Bq/KXg, repeated measurements in 1991 allowed establishing 640-656 Bq/KXg. A precise indicator of radioactive emissions that reached Armenia after the Chernobyl accident was a short-lived radionuclide 134 Cs (T 1 /2=2.07 yr) identified in soils. Measurements made 2 years later showed half as much decay of 134 Cs, and in some points established were its traces only. 137 Cs/134 Cs ratio in varied 1.4 to 1.8 in atmospheric fallout and 2.1 to 33.4 in soils. Thus, monitoring investigations evidence a regional character of Chernobyl emission dispersion, this being proved by investigations of radioactivity level variations in Armenia, too

  19. Simulated atmospheric disperison of radioactive material released in an urban area

    International Nuclear Information System (INIS)

    Akins, R.E.; Church, H.W.; Tierney, M.S.

    1977-01-01

    A combination of Gaussian plume and particle-in-cell techniques is used to simulate the atmospheric transport and dispersion of a puff release of radioactive material. The release is caused by an accident that is assumed to occur during the shipment of the radioactive material through central New York City. The simulation provides estimates of volumetric and surface concentrations of the dispersed material that are used to predict radiation doses incurred by the City's population in the event of an accidental release. In the simulation, the release point is arbitrary and the material is assumed to be either a gas or fine particles. The Gaussian plume model follows cloud concentrations from the release time until times when transport over distances up to 500 m has been achieved. The released cloud may stabilize at street level or above the mean buildings height; at a street intersection or in the middle of the block. The possibility of the formation of multiple clouds, owing to circumstances of wind flow direction and street geometry, is allowed

  20. Atmospheric dispersion of radioactive materials

    International Nuclear Information System (INIS)

    Chino, Masamichi

    1988-01-01

    The report describes currently available techniques for predicting the dispersion of accidentally released radioactive materials and techniques for visualization using computer graphics. A simulation study is also made on the dispersion of radioactive materials released from the Chernobyl plant. The simplest models include the Gauss plume model and the puff model, which cannot serve to analyze the effects of the topography, vertical wind shear, temperature inversion layer, etc. Numerical analysis methods using advection and dispersion equations are widely adopted for detailed evaluation of dispersion in an emergency. An objective analysis model or a hydrodynamical model is often used to calculate the air currents which are required to determine the advection. A small system based on the puff model is widely adopted in Europe, where the topography is considered to have only simple effects. A more sophisticated large-sized system is required in nuclear facilities located in an area with more complex topographic features. An emergency system for dispersion calculation should be equipped with a graphic display to serve for quick understanding of the radioactivity distribution. (Nogami, K.)

  1. Natural Radioactivity Accumulated in the Arctic from Long-range Atmospheric Transport - Observations in Canadian Monitoring Stations

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing; Zhang, Weihua [Radiation Protection Bureau, Health Canada, 775 Brookfield Road, Ottawa K1A 1C1 (Canada)

    2014-07-01

    In the environment, the main sources of naturally occurring radionuclides come from radionuclides in the uranium decay series. Activity concentrations of uranium decay series radionuclides may vary considerably from place to place depending on the geological characteristics at the location. Their releases to the atmosphere are mainly through radon ({sup 222}Rn), a radioactive noble gas occurring naturally as an indirect decay product of uranium in soils and rocks. Due to the abundance of uranium, radon continuously emanates from continental land masses. With radon as the main source of naturally occurring radioactivity in the environment, one would think that the Arctic should be an area of low background radiation, because a considerable area of the Arctic is covered by glaciers and permafrost, and radon emanation rate has been reported to be negligible from those glacier and permafrost areas. However, available data have shown the opposite. The elevated level of naturally occurring radioactivity in the Arctic is due to natural sources outside of the Arctic, mainly through long-range atmospheric transport of radon and radon progeny. In some cases, natural radioactivity can accumulate to relatively high levels and become a health concern or a limiting factor of country food consumption. By definition, contaminants are undesirable substances which can cause harm to the environment, the biota, and humans. We can call these naturally accumulating radiological burdens to the Arctic 'natural contaminants' to distinguish them from the traditional meaning of contamination, the 'artificial contaminants' which are attributable to industrial or man-made sources. This paper reviews information available in the literature, analyses long-term atmospheric monitoring data in the Canadian high Arctic, sub-Arctic and mid-latitude sites, and provides discussion on research needed to address questions, such as how heavily the Arctic has been impacted by the

  2. Probabilistic siting analysis of nuclear power plants emphasizing atmospheric dispersion of radioactive releases and radiation-induced health effects

    International Nuclear Information System (INIS)

    Savolainen, Ilkka

    1980-01-01

    A presentation is made of probabilistic evaluation schemes for nuclear power plant siting. Effects on health attributable to ionizing radiation are reviewed, for the purpose of assessment of the numbers of the most important health effect cases in light-water reactor accidents. The atmospheric dispersion of radioactive releases from nuclear power plants is discussed, and there is presented an environmental consequence assessment model in which the radioactive releases and atmospheric dispersion of the releases are treated by the application of probabilistic methods. In the model, the environmental effects arising from exposure to radiation are expressed as cumulative probability distributions and expectation values. The probabilistic environmental consequence assessment model has been applied to nuclear power plant site evaluation, including risk-benefit and cost-benefit analyses, and the comparison of various alternative sites. (author)

  3. Removal of Atmospheric Ethanol by Wet Deposition: A Global Flux Estimate

    Science.gov (United States)

    Felix, J. D. D.; Willey, J. D.; Avery, B.; Thomas, R.; Mullaugh, K.; Kieber, R. J.; Mead, R. N.; Helms, J. R.; Campos, L.; Shimizu, M. S.; Guibbina, F.

    2017-12-01

    Global ethanol fuel consumption has increased exponentially over the last two decades and the US plans to double annual renewable fuel production in the next five years as required by the renewable fuel standard. Regardless of the technology or feedstock used to produce the renewable fuel, the primary end product will be ethanol. Increasing ethanol fuel consumption will have an impact on the oxidizing capacity of the atmosphere and increase atmospheric concentrations of the secondary pollutant peroxyacetyl nitrate as well a variety of VOCs with relatively high ozone reactivities (e.g. ethanol, formaldehyde, acetaldehyde). Despite these documented effects of ethanol emissions on atmospheric chemistry, current global atmospheric ethanol budget models have large uncertainties in the magnitude of ethanol sources and sinks. The presented work investigates the global wet deposition sink by providing the first estimate of the global wet deposition flux of ethanol (2.4 ± 1.6 Tg/yr) based on empirical wet deposition data (219 samples collected at 12 locations). This suggests the wet deposition sink removes between 6 and 17% of atmospheric ethanol annually. Concentrations of ethanol in marine wet deposition (25 ± 6 nM) were an order of magnitude less than in the majority of terrestrial deposition (345 ± 280 nM). Terrestrial deposition collected in locations impacted by high local sources of biofuel usage and locations downwind from ethanol distilleries were an order of magnitude higher in ethanol concentration (3090 ± 448 nM) compared to deposition collected in terrestrial locations not impacted by these sources. These results indicate that wet deposition of ethanol is heavily influenced by local sources and ethanol emission impacts on air quality may be more significant in highly populated areas. As established and developing countries continue to rapidly increase ethanol fuel consumption and subsequent emissions, understanding the magnitude of all ethanol sources and

  4. Global atmospheric chemistry – which air matters

    Directory of Open Access Journals (Sweden)

    M. J. Prather

    2017-07-01

    Full Text Available An approach for analysis and modeling of global atmospheric chemistry is developed for application to measurements that provide a tropospheric climatology of those heterogeneously distributed, reactive species that control the loss of methane and the production and loss of ozone. We identify key species (e.g., O3, NOx, HNO3, HNO4, C2H3NO5, H2O, HOOH, CH3OOH, HCHO, CO, CH4, C2H6, acetaldehyde, acetone and presume that they can be measured simultaneously in air parcels on the scale of a few km horizontally and a few tenths of a km vertically. As a first step, six global models have prepared such climatologies sampled at the modeled resolution for August with emphasis on the vast central Pacific Ocean basin. Objectives of this paper are to identify and characterize differences in model-generated reactivities as well as species covariances that could readily be discriminated with an unbiased climatology. A primary tool is comparison of multidimensional probability densities of key species weighted by the mass of such parcels or frequency of occurrence as well as by the reactivity of the parcels with respect to methane and ozone. The reactivity-weighted probabilities tell us which parcels matter in this case, and this method shows skill in differentiating among the models' chemistry. Testing 100 km scale models with 2 km measurements using these tools also addresses a core question about model resolution and whether fine-scale atmospheric structures matter to the overall ozone and methane budget. A new method enabling these six global chemistry–climate models to ingest an externally sourced climatology and then compute air parcel reactivity is demonstrated. Such an objective climatology containing these key species is anticipated from the NASA Atmospheric Tomography (ATom aircraft mission (2015–2020, executing profiles over the Pacific and Atlantic Ocean basins. This modeling study addresses a core part of the design of ATom.

  5. Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation.

    Science.gov (United States)

    Tsuda, Toshitaka

    2014-01-01

    The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10-100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50-90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10-50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet.

  6. Settlement process of radioactive dust to the ground inferred from the atmospheric electric field measurement

    Science.gov (United States)

    Yamauchi, M.; Takeda, M.; Makino, M.; Owada, T.; Miyagi, I.

    2012-01-01

    Radioactive materials from the accident at Fukushima Dai-ichi nuclear power plant (FNPP) in March 2011 spread over a large area, increasing the atmospheric electric conductivity by their ionizing effect, and reducing the vertical (downward) component of the DC electric field near the ground, or potential gradient (PG). PG data at Kakioka, 150 km away from the FNPP, showed independent changes compared to the radiation dose rate, and a comparison of these data revealed the local dynamics of the radioactive dust. (1) The initial drop of the PG to almost zero during 14-15 March is most likely due to radioactive dust suspended in the air near the ground during cloudy weather. (2) An episode of PG increase to more than 50 V m-1 on 16 March is most likely due to the re-suspension of the radioactive dust from the surface and subsequent removal from Kakioka by the strong wind from the non-contaminated area. (3) Low but finite values of the PG during 16-20 March most likely reflect a reduced amount of radioactive material near the ground after the above wind transported away the majority of the suspended radioactive dust. (4) Very low values of the PG after substantial rain on 20-22 March most likely reflect settlement of the radioactive material by rain-induced fallout. (5) Temporal recovery of daily variations from the end of March to the middle of April with low nighttime fair-weather baseline PG most likely reflects re-suspension of the radioactive dust into the air from the ground and trees, and subsequent transport to the other region or fallout to the ground until late April. (6) Weakening of the daily variation and gradual recovery of the nighttime fair-weather baseline after mid-April suggests a complete settlement of the radioactive material to the ground with partial migration to the subsurface.

  7. Radioactively contaminated metallic materials: the search for a global solution; Materiales metalicos con contaminacion radiactiva: en busca de una solucion global

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, S.

    2009-07-01

    Radioactively contaminated metallic materials: the search for a global solution. Tarragona hosted the first International Conference on Control and Management of Inadvertent Radioactive Material in Metal Scrap, which was sponsored by the IAEA and organised by various Spanish entities, among them the CSN. The meeting served for the exchange of ideas and precautionary measures, a field in which Spain already has a long and recognised experience, and focussed on the voluntary Protocol, endorsed by the majority of the Spanish steelyards. (Author)

  8. The discovery and history of knowledge of natural atmospheric radioactivity

    International Nuclear Information System (INIS)

    Renoux, A.

    1996-01-01

    Everybody knows that the radioactivity was discovered, 100 years ago, by the Frenchman Henri Becquerel at Paris, in Feb. 1896, stemmed from the discovery of X-rays by Roentgen in the preceding year. In 1899, Rutherford was able to show the existence of α and β rays, and in 1900 Villard showed the presence of a third class of rays, the γ rays. The discovery of the rare radioactive gas radon is attributed to P. and M. Curie in 1898 and F. Dorn in 1900. Thoron ( 220 Rn) was discovered by Rutherford and Owens in 1899-1900 and Actinon ( 219 Rn) by Debierne and Geisel about the same time. The radon's radiotoxicity was studied in France since 1904 by Bouchard and Balthazard and in 1924 it was formulated the hypothesis that the great mortality observed in the uranium miners of Schneeberg in Germany and Joachimsthal in Czechoslovakia was maybe due to the radon. But, in fact, Elster and Geitel were the first to see that the radioactivity is present in the atmosphere in about 1901. After this date, many investigations were made (M. Curie, for example), but it is during the fifties and, of course, until today that the most numerous works were developed. In this paper, we speak about the researches of the after second war pioneers: Evans, Wilkening, Kawano, Israel, Junge, Schuman, Bricard... Renoux, Madelaine, Blanc, Fontan, Siksna, Chamberlain, Dyson, Nolan, etc. and the works developed later. Finally, we reach to the nineties, period where the works are particularly directed in the aim of radon and radon progeny indoor, with in particular, many works effectuated in France. (author). 78 refs., 17 figs., 2 tabs

  9. The role of cosmic rays in the atmospheric processes

    Energy Technology Data Exchange (ETDEWEB)

    Stozhkov, Y I [Lebedev Physical Institute, Russian Academy of Sciences, 119991, Leninsky Prospect, 53, Moscow (Russian Federation)

    2003-05-01

    The energy flux of galactic cosmic rays falling on the earth's atmosphere is small in comparison with solar electromagnetic irradiation (by 10{sup 8} times). But at altitudes of h {approx} 3 to 35 km in the atmosphere, cosmic rays are the only ionization source (from the ground level up to h {approx} 3 km, natural radioactivity is an additional source of ionization). Solar activity modulates cosmic ray flux. The cosmic rays produce atmospheric ions that define the electrical properties of the atmosphere. The electric charges play a very important role in the processes of cloud and thundercloud formation in the operation of the global electric circuit. The changes in electric properties of the atmosphere influence weather and climate. Thus, we have the following chain of the solar terrestrial relationship: solar activity - cosmic ray modulation - changes in the global electric properties of the atmosphere - changes in weather and climate. The following questions are discussed in this paper: light ion production in the atmosphere, role of electric charges in the formation of clouds and thunderclouds, experimental evidences of the relationships between cosmic ray flux and atmospheric current and lightning.

  10. The role of cosmic rays in the atmospheric processes

    International Nuclear Information System (INIS)

    Stozhkov, Y I

    2003-01-01

    The energy flux of galactic cosmic rays falling on the earth's atmosphere is small in comparison with solar electromagnetic irradiation (by 10 8 times). But at altitudes of h ∼ 3 to 35 km in the atmosphere, cosmic rays are the only ionization source (from the ground level up to h ∼ 3 km, natural radioactivity is an additional source of ionization). Solar activity modulates cosmic ray flux. The cosmic rays produce atmospheric ions that define the electrical properties of the atmosphere. The electric charges play a very important role in the processes of cloud and thundercloud formation in the operation of the global electric circuit. The changes in electric properties of the atmosphere influence weather and climate. Thus, we have the following chain of the solar terrestrial relationship: solar activity - cosmic ray modulation - changes in the global electric properties of the atmosphere - changes in weather and climate. The following questions are discussed in this paper: light ion production in the atmosphere, role of electric charges in the formation of clouds and thunderclouds, experimental evidences of the relationships between cosmic ray flux and atmospheric current and lightning

  11. Governing atmospheric sinks: the architecture of entitlements in the global commons

    Directory of Open Access Journals (Sweden)

    Jouni Paavola

    2008-07-01

    Full Text Available This article revisits key works on the management of common-pool resources under common property arrangements, in order to elicit a broader notion of collective ownership for analysing institutional arrangements that govern the use of large-scale environmental resources such as biodiversity and atmospheric sinks. The article proposes a model for analysing the institutional design of governance solutions which draws attention to 1 tiers and levels, 2 organisation of generic governance functions, and 3 formulation of specific institutional rules. The article exemplifies these analytical solutions by examining the emerging governance framework for global atmospheric sinks. The article indicates how crucial parts of the institutional framework for governing atmospheric sinks are still missing, a shortcoming which maintains the ‘‘tragedy of the commons’’ in their use. The article suggests that a workable governance solution for global atmospheric sinks has to 1 cap the use of atmospheric sinks; 2 provide for a more equitable benefit sharing; 3 provide for compensation of climate change impacts and assistance for adaptation to climate change impacts; and 4 create institutional solutions for enhancing participation in environmental decisions in order to guarantee progress in and legitimacy of the governance framework.

  12. Evaluation of the atmospheric stability and it influence in the radiological environmental impact of the treatment plant and radioactive waste storage (PTDR)

    International Nuclear Information System (INIS)

    Ramos V, E.O.; Cornejo D, N.

    2006-01-01

    It is well-known that the meteorological variables as the atmospheric stability, influence in the atmospheric dispersion of radioactive pollutants, for that as regards radiological safety, it constitutes a demand the evaluation of their impact in the process before mentioned. The present work exposes the results of the study of the radiological impact of our PTDR that it allowed to know the influence of this meteorological parameter in the atmospheric dispersion of radioactive pollutants in its location. To such effects they were processed by means of the methodology of Pasquill - Gifford, data of time zone observations of this meteorological variable obtained in the proximities of the installation, being modeled the worst conditions in atmospheric liberation of their radionuclides inventory, valuing stops the 2 critical considered population groups the doses received by inhalation of polluted air and ingestion of water and polluted products, as well as, for external irradiation from the radioactive cloud and the floor. The obtained annual effective doses due to the modeling situation reach until a mSv, except for the Ra-226 that are lightly superior, implying a risk radiological acceptable chord to the international standard. To the above-mentioned a reduced probability of occurrence of events initiators of the evaluated accidental sequence is added. (Author)

  13. Global Hawk dropsonde observations of the Arctic atmosphere obtained during the Winter Storms and Pacific Atmospheric Rivers (WISPAR field campaign

    Directory of Open Access Journals (Sweden)

    J. M. Intrieri

    2014-11-01

    Full Text Available In February and March of 2011, the Global Hawk unmanned aircraft system (UAS was deployed over the Pacific Ocean and the Arctic during the Winter Storms and Pacific Atmospheric Rivers (WISPAR field campaign. The WISPAR science missions were designed to (1 mprove our understanding of Pacific weather systems and the polar atmosphere; (2 evaluate operational use of unmanned aircraft for investigating these atmospheric events; and (3 demonstrate operational and research applications of a UAS dropsonde system at high latitudes. Dropsondes deployed from the Global Hawk successfully obtained high-resolution profiles of temperature, pressure, humidity, and wind information between the stratosphere and surface. The 35 m wingspan Global Hawk, which can soar for ~ 31 h at altitudes up to ~ 20 km, was remotely operated from NASA's Dryden Flight Research Center at Edwards Air Force Base (AFB in California. During the 25 h polar flight on 9–10 March 2011, the Global Hawk released 35 sondes between the North Slope of Alaska and 85° N latitude, marking the first UAS Arctic dropsonde mission of its kind. The polar flight transected an unusually cold polar vortex, notable for an associated record-level Arctic ozone loss, and documented polar boundary layer variations over a sizable ocean–ice lead feature. Comparison of dropsonde observations with atmospheric reanalyses reveal that, for this day, large-scale structures such as the polar vortex and air masses are captured by the reanalyses, while smaller-scale features, including low-level jets and inversion depths, are mischaracterized. The successful Arctic dropsonde deployment demonstrates the capability of the Global Hawk to conduct operations in harsh, remote regions. The limited comparison with other measurements and reanalyses highlights the potential value of Arctic atmospheric dropsonde observations where routine in situ measurements are practically nonexistent.

  14. Perfluorocarbons in the global atmosphere: tetrafluoromethane, hexafluoroethane, and octafluoropropane

    Directory of Open Access Journals (Sweden)

    J. Mühle

    2010-06-01

    Full Text Available We present atmospheric baseline growth rates from the 1970s to the present for the long-lived, strongly infrared-absorbing perfluorocarbons (PFCs tetrafluoromethane (CF4, hexafluoroethane (C2F6, and octafluoropropane (C3F8 in both hemispheres, measured with improved accuracies (~1–2% and precisions (<0.3%, or <0.2 ppt (parts per trillion dry air mole fraction, for CF4; <1.5%, or <0.06 ppt, for C2F6; <4.5%, or <0.02 ppt, for C3F8 within the Advanced Global Atmospheric Gases Experiment (AGAGE. Pre-industrial background values of 34.7±0.2 ppt CF4 and 0.1±0.02 ppt C2F6 were measured in air extracted from Greenland ice and Antarctic firn. Anthropogenic sources are thought to be primary aluminum production (CF4, C2F6, C3F8, semiconductor production (C2F6, CF4, C3F8 and refrigeration use (C3F8. Global emissions calculated with the AGAGE 2-D 12-box model are significantly higher than most previous emission estimates. The sum of CF4 and C2F6 emissions estimated from aluminum production and non-metal production are lower than observed global top-down emissions, with gaps of ~6 Gg/yr CF4 in recent years. The significant discrepancies between previous CF4, C2F6, and C3F8 emission estimates and observed global top-down emissions estimated from AGAGE measurements emphasize the need for more accurate, transparent, and complete emission reporting, and for verification with atmospheric measurements to assess the emission sources of these long-lived and potent greenhouse gases, which alter the radiative budget of the atmosphere, essentially permanently, once emitted.

  15. A numerical study for global atmospheric transport-chemistry problems

    NARCIS (Netherlands)

    E.J. Spee (Edwin); J.G. Verwer (Jan); P.M. de Zeeuw (Paul); J.G. Blom (Joke); W. Hundsdorfer (Willem)

    1998-01-01

    htmlabstractAtmospheric air quality modeling relies in part on numerical simulation. Required numerical simulations are often hampered by lack of computer capacity and computational speed. This problem is most severe in the field of global modeling where transport and exchange of trace constituents

  16. A numerical study for global atmospheric transport-chemistry problems

    NARCIS (Netherlands)

    E.J. Spee (Edwin); J.G. Verwer (Jan); P.M. de Zeeuw (Paul); J.G. Blom (Joke); W. Hundsdorfer (Willem)

    1997-01-01

    textabstractAtmospheric air quality modeling relies in part on numerical simulation. Required numerical simulations are often hampered by lack of computer capacity and computational speed. This problem is most severe in the field of global modeling where transport and exchange of trace constituents

  17. A contribution to the study of the physical properties of natural and radioactive aerosols in controlled atmospheres

    International Nuclear Information System (INIS)

    Mouden, A.

    1986-01-01

    The major objective of this work was to study the properties of normal and radioactive particles produced by attachment of radon 222 daughters on environmental aerosol particles, in various and controlled atmospheres. In the first part, devoted to the radioactivity of radon 222, the influence of the number of nuclei on the radioactive equilibrium state and the size distribution of alpha radioactivity was demonstrated. In the second part, an experimental study of the C.E.A. α dosimeter was developed. We investigated the counting and the collection efficiency of the dosimeter for inlet particles in the 0.001-0.1 μm size range. The last part concerns aerosol-filtration behaviour. The comparison between experimental and theoretical procedures revealed a good agreement only in some circumstances for membrane filters. In the case of fibrous filters the agreement is quite satisfactory. Particularly, if the fiber size distribution is taken into account in the theoretical model, it results in an improved estimation of the collection efficiency [fr

  18. Atmospheric ions and pollution

    International Nuclear Information System (INIS)

    Renoux, A.

    1977-01-01

    The various types of atmospheric ions are defined, the main sources of natural atmospheric radioactivity inducing the formation of radioactive ions in the air are then recalled. The basic equations governing the formation of these ions are indicated and the most current experimental methods used for detecting them are described (Zeleny tubes, Erikson tubes). The special properties of these ions are examined, they are particularly emphasized for the smaller ones. The existence of a discret spectrum of mobilities is shown and the presence of big negative radioactive ions is investigated. Indicative information are given on the granulometric distribution of the atmospheric radioactivity in the air, from small positive Ra A ion fixation on aerosols [fr

  19. Cyclo-octafluorobutane (PFC-318) in the global atmosphere

    Science.gov (United States)

    Muhle, J.; Vollmer, M. K.; Fraser, P. J.; Rhee, T. S.; Ivy, D. J.; Arnold, T.; Harth, C. M.; Salameh, P.; O'Doherty, S.; Young, D.; Steele, P.; Krummel, P. B.; Leist, M.; Schmidbauer, N.; Lunder, C.; Kim, J.; Kim, K.; Reimann, S.; Simmonds, P.; Prinn, R. G.; Weiss, R. F.

    2010-12-01

    PFC-318 (c-C4F8, cyclo-octafluorobutane) is a long-lived (3200 years) perfluorocarbon (PFC) greenhouse gas with a high 100-year Global Warming Potential (GWP100 = 10,300) and a wide range of industrial uses. We extend previous atmospheric measurements of PFC-318 in the Cape Grim Air Archive (Oram, 1999) with our new in situ measurements from remote and urban AGAGE (Advanced Global Atmospheric Gases Experiment) and affiliated stations. Our longest in situ record is from the Jungfraujoch observatory in the Swiss Alps, and our data set is augmented by measurements of flasks from the King Sejong and Troll coastal Antarctic stations and several locations in the Northern Hemisphere. In mid-2009 we find ˜1.25 ppt (parts-per-trillion, dry mol fraction) in the Northern Hemisphere and ˜1.20 ppt in the Southern Hemisphere, with rise rates of ˜0.03 ppt/yr and an interhemispheric ratio of ˜1.04. We obtain PFC-318 emissions for 2008-2010 of ˜1 Gg/yr using a simple box model, and preliminary measurements of older archived air at SIO indicate similar emissions since at the least the late 1990s. In contrast, the EDGAR v4 emissions database estimates much lower PFC-318 emissions of 0.02 Gg/yr for 2005. Using GWP100 we calculate ˜10 million tons of CO2-equivalent PFC-318 emissions/yr for 2008-2010, about double the CO2-equivalent PFC-218 annual emissions, or 0.4 times the CO2-equivalent PFC-116 annual emissions, reported for 2008-2009 by Mühle et al. (2010). Thus PFC-318 is the third most important PFC in terms of CO2-equivalent emissions. We find mostly baseline conditions at remote AGAGE stations and urban sites in the USA, Europe, and Australia, in contrast to frequent above baseline conditions at Gosan station, Jeju Island, South Korea, indicating significant emission sources in East Asia as found by Saito et al. (2010). Oram, D.E., Trends of long-lived anthropogenic halocarbons in the Southern Hemisphere and model calculation of global emissions, Ph.D. thesis, University

  20. Improving InSAR geodesy using Global Atmospheric Models

    Science.gov (United States)

    Jolivet, Romain; Agram, Piyush Shanker; Lin, Nina Y.; Simons, Mark; Doin, Marie-Pierre; Peltzer, Gilles; Li, Zhenghong

    2014-03-01

    Spatial and temporal variations of pressure, temperature, and water vapor content in the atmosphere introduce significant confounding delays in interferometric synthetic aperture radar (InSAR) observations of ground deformation and bias estimates of regional strain rates. Producing robust estimates of tropospheric delays remains one of the key challenges in increasing the accuracy of ground deformation measurements using InSAR. Recent studies revealed the efficiency of global atmospheric reanalysis to mitigate the impact of tropospheric delays, motivating further exploration of their potential. Here we explore the effectiveness of these models in several geographic and tectonic settings on both single interferograms and time series analysis products. Both hydrostatic and wet contributions to the phase delay are important to account for. We validate these path delay corrections by comparing with estimates of vertically integrated atmospheric water vapor content derived from the passive multispectral imager Medium-Resolution Imaging Spectrometer, onboard the Envisat satellite. Generally, the performance of the prediction depends on the vigor of atmospheric turbulence. We discuss (1) how separating atmospheric and orbital contributions allows one to better measure long-wavelength deformation and (2) how atmospheric delays affect measurements of surface deformation following earthquakes, and (3) how such a method allows us to reduce biases in multiyear strain rate estimates by reducing the influence of unevenly sampled seasonal oscillations of the tropospheric delay.

  1. Comparative discussion on some measurements of the atmospheric natural radioactivity and pollution with coal smoke particles

    International Nuclear Information System (INIS)

    Zoran, M.

    1977-01-01

    The results of measuring the natural radioactivity and coal smoke pollution are discussed for two sites in an industrial town, as well as for two heights at the same site, in connection with large scale and local atmospheric stability. The effects of the radiation fog upon the radon daughters acumulation near the ground are examined in some detail. By comparing the pollutant diurnal variations during two periods of similar atmospheric stability in autumn, respectively in winter, the contribution from the dwelling coal heating has been estimated to be about half of the total pollution in the town. (author)

  2. GFDL CM2.1 Global Coupled Ocean-Atmosphere Model Water ...

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. GFDL CM2.1 Global Coupled Ocean-Atmosphere Model Water Hosing Experiment with 1 Sv equivalent of Freshening Control Expt: 100 yrs After Hosing: 300 yrs.

  3. Emergence of global scaling behaviour in the coupled Earth-atmosphere interaction

    OpenAIRE

    Fallah, Bijan; Saberi, Abbas Ali; Sodoudi, Sahar

    2016-01-01

    Scale invariance property in the global geometry of Earth may lead to a coupled interactive behaviour between various components of the climate system. One of the most interesting correlations exists between spatial statistics of the global topography and the temperature on Earth. Here we show that the power-law behaviour observed in the Earth topography via different approaches, resembles a scaling law in the global spatial distribution of independent atmospheric parameters. We report on obs...

  4. Preliminary assessment of the performance of a global coupled atmosphere-ocean model

    International Nuclear Information System (INIS)

    Cubasch, U.

    1990-01-01

    A low-resolution version of the ECMWF global atmosphere model has been coupled to a global ocean model developed at the Max Planck Institute in Hamburg. The atmosphere model is driven by the sea surface temperature and the ice thickness calculated by the ocean model, which, in return, is driven by the wind stress, the heat flux and the freshwater flux diagnosed by the atmosphere model. Even though each model reaches stationarity when integrated on its own, the coupling of both creates problems, since the fields calculated by each model are not consistent with the ones the other model has to have in order to stay stationary, because some of the fluxes are not balanced. In the coupled experiment the combined ocean-atmosphere system drifts toward a colder state. To counteract this problem, a flux correction has been applied which balances the mean biases of each model. This method almost eliminates the climate drift of the coupled model. Problems still arise over ice covered regions

  5. Settlement process of radioactive dust to the ground inferred from the atmospheric electric field measurement

    Directory of Open Access Journals (Sweden)

    M. Yamauchi

    2012-01-01

    Full Text Available Radioactive materials from the accident at Fukushima Dai-ichi nuclear power plant (FNPP in March 2011 spread over a large area, increasing the atmospheric electric conductivity by their ionizing effect, and reducing the vertical (downward component of the DC electric field near the ground, or potential gradient (PG. PG data at Kakioka, 150 km away from the FNPP, showed independent changes compared to the radiation dose rate, and a comparison of these data revealed the local dynamics of the radioactive dust. (1 The initial drop of the PG to almost zero during 14–15 March is most likely due to radioactive dust suspended in the air near the ground during cloudy weather. (2 An episode of PG increase to more than 50 V m−1 on 16 March is most likely due to the re-suspension of the radioactive dust from the surface and subsequent removal from Kakioka by the strong wind from the non-contaminated area. (3 Low but finite values of the PG during 16–20 March most likely reflect a reduced amount of radioactive material near the ground after the above wind transported away the majority of the suspended radioactive dust. (4 Very low values of the PG after substantial rain on 20–22 March most likely reflect settlement of the radioactive material by rain-induced fallout. (5 Temporal recovery of daily variations from the end of March to the middle of April with low nighttime fair-weather baseline PG most likely reflects re-suspension of the radioactive dust into the air from the ground and trees, and subsequent transport to the other region or fallout to the ground until late April. (6 Weakening of the daily variation and gradual recovery of the nighttime fair-weather baseline after mid-April suggests a complete settlement of the radioactive material to the ground with partial migration to the subsurface.

  6. Observational constraints on the global atmospheric budget of ethanol

    Directory of Open Access Journals (Sweden)

    V. Naik

    2010-06-01

    Full Text Available Energy security and climate change concerns have led to the promotion of biomass-derived ethanol, an oxygenated volatile organic compound (OVOC, as a substitute for fossil fuels. Although ethanol is ubiquitous in the troposphere, our knowledge of its current atmospheric budget and distribution is limited. Here, for the first time we use a global chemical transport model in conjunction with atmospheric observations to place constraints on the ethanol budget, noting that additional measurements of ethanol (and its precursors are still needed to enhance confidence in our estimated budget. Global sources of ethanol in the model include 5.0 Tg yr−1 from industrial sources and biofuels, 9.2 Tg yr−1 from terrestrial plants, ~0.5 Tg yr−1 from biomass burning, and 0.05 Tg yr−1 from atmospheric reactions of the ethyl peroxy radical (C2H5O2 with itself and with the methyl peroxy radical (CH3O2. The resulting atmospheric lifetime of ethanol in the model is 2.8 days. Gas-phase oxidation by the hydroxyl radical (OH is the primary global sink of ethanol in the model (65%, followed by dry deposition (25%, and wet deposition (10%. Over continental areas, ethanol concentrations predominantly reflect direct anthropogenic and biogenic emission sources. Uncertainty in the biogenic ethanol emissions, estimated at a factor of three, may contribute to the 50% model underestimate of observations in the North American boundary layer. Current levels of ethanol measured in remote regions are an order of magnitude larger than those in the model, suggesting a major gap in understanding. Stronger constraints on the budget and distribution of ethanol and OVOCs are a critical step towards assessing the impacts of increasing the use of ethanol as a fuel.

  7. Combustion's impact on the global atmosphere

    International Nuclear Information System (INIS)

    Prather, M.J.; Logan, J.A.

    1994-01-01

    The combustion of a hydrocarbon fuel removes molecular oxygen (O 2 ) from the atmosphere and releases equivalent amounts of water (H 2 ) and carbon dioxide (CO 2 ), almost always with trace amounts of numerous other compounds including hydrocarbon (CH 4 , C 2 H 2 , C 2 H 4 , C 2 H 6 , C 3 H 8 , C 6 H 6 , CH 3 CHO, etc.), carbon monoxide (CO), nitrogen oxides (NO, N 2 O) and reduced nitrogen (NH 3 and HCN), sulfur gases (SO 2 , OCS, CS 2 ), halocarbons (CH 3 Al and CH 3 Br), and particles. A review of the atmospheric budgets of these gases shows that burning of fossil fuels and recent biomass has led to global alterations in the composition of the atmosphere. Combustion is clearly responsible for most of the enhanced greenhouse forcing to date (through CO 2 , tropospheric O 3 , soot) and also some counteracting effects (through SO 2 ). It has had minimal impact on stratospheric O 3 (through CH 3 Cl, CH 3 Br, CH 4 ), but has likely changed the tropospheric oxidant levels (through CO, NO x , NMHC), at least over the northern hemisphere. Most of the important greenhouse gases and tropospheric oxidant gases have significant natural sources, which are not well defined today and may be changing; and thus, quantifying the role of combustion is difficult. 113 refs

  8. Correlations Between Extreme Atmospheric Hazards and Global Teleconnections: Implications for Multihazard Resilience

    Science.gov (United States)

    Steptoe, H.; Jones, S. E. O.; Fox, H.

    2018-03-01

    Occurrences of concurrent extreme atmospheric hazards represent a significant area of uncertainty for organizations involved in disaster mitigation and risk management. Understanding risks posed by natural disasters and their relationship with global climate drivers is crucial in preparing for extreme events. In this review we quantify the strength of the physical mechanisms linking hazards and atmosphere-ocean processes. We demonstrate how research from the science community may be used to support disaster risk reduction and global sustainable development efforts. We examine peer-reviewed literature connecting 16 regions affected by extreme atmospheric hazards and eight key global drivers of weather and climate. We summarize current understanding of multihazard disaster risk in each of these regions and identify aspects of the global climate system that require further investigation to strengthen our resilience in these areas. We show that some drivers can increase the risk of concurrent hazards across different regions. Organizations that support disaster risk reduction, or underwrite exposure, in multiple regions may have a heightened risk of facing multihazard losses. We find that 15 regional hazards share connections via the El Niño-Southern Oscillation, with the Indian Ocean Dipole, North Atlantic Oscillation, and the Southern Annular Mode being secondary sources of significant regional interconnectivity. From a hazard perspective, rainfall over China shares the most connections with global drivers and has links to both Northern and Southern Hemisphere modes of variability. We use these connections to assess the global likelihood of concurrent hazard occurrence in support of multihazard resilience and disaster risk reduction goals.

  9. Divergent pheromone-mediated insect behaviour under global atmospheric change

    Science.gov (United States)

    Edward B. Mondor; Michelle N. Tremblay; Caroline S. Awmack; Richard L. Lindroth

    2004-01-01

    While the effects of global atmospheric changes on vegetation and resulting insect populations('bottom-up interactions') are being increasingly studied, how these gases modify interactions among insects and their natural enemies ('top-down interactions') is less clear. As natural enemy efficacy is governed largely by behavioural mechanisms, altered...

  10. PAVAN, Atmospheric Dispersion of Radioactive Releases from Nuclear Power Plants

    International Nuclear Information System (INIS)

    2001-01-01

    1 - Description of program or function: PAVAN estimates down-wind ground-level air concentrations for potential accidental releases of radioactive material from nuclear facilities. Options can account for variation in the location of release points, additional plume dispersion due to building wakes, plume meander under low wind speed conditions, and adjustments to consider non-straight trajectories. It computes an effective plume height using the physical release height which can be reduced by inputted terrain features. 2 - Method of solution: Using joint frequency distributions of wind direction and wind speed by atmospheric stability, the program provides relative air concentration (X/Q) values as functions of direction for various time periods at the exclusion area boundary (EAB) and the outer boundary of the low population zone (LPZ). Calculations of X/Q values can be made for assumed ground-level releases or evaluated releases from free-standing stacks. The X/Q calculations are based on the theory that material released to the atmosphere will be normally distributed (Gaussian) about the plume centerline. A straight-line trajectory is assumed between the point of release and all distances for which X/Q values are calculated. 3 - Restrictions on the complexity of the problem: - The code cannot handle multiple emission sources

  11. Comment on 'Current Budget of the Atmospheric Electric Global Circuit'

    Science.gov (United States)

    Driscoll, Kevin T.; Blakeslee, Richard J.

    1996-01-01

    In this paper, three major issues relevant to Kasemir's new model will be addressed. The first concerns Kasemir's assertion that there are significant differences between the potentials associated with the new model and the conventional model. A recalculation of these potentials reveals that both models provide equivalent results for the potential difference between the Earth and ionosphere. The second issue to be addressed is Kasemir's assertion that discrepancies in the electric potentials associated with both models can be attributed to modeling the Earth as a sphere, instead of as a planar surface. A simple analytical comparison will demonstrate that differences in the equations for the potentials of the atmosphere derived with a spherical and a planar Earth are negligible for applications to global current flow. Finally, the third issue to be discussed is Kasemir's claim that numerous aspects of the conventional model are incorrect, including the role of the ionosphere in global current flow as well as the significance of cloud-to-ground lightning in supplying charge to the global circuit. In order to refute these misconceptions, it will be shown that these aspects related to the flow of charge in the atmosphere are accurately described by the conventional model of the global circuit.

  12. INTRODUCTION: Anticipated changes in the global atmospheric water cycle

    Science.gov (United States)

    Allan, Richard P.; Liepert, Beate G.

    2010-06-01

    The atmospheric branch of the water cycle, although containing just a tiny fraction of the Earth's total water reserves, presents a crucial interface between the physical climate (such as large-scale rainfall patterns) and the ecosystems upon which human societies ultimately depend. Because of the central importance of water in the Earth system, the question of how the water cycle is changing, and how it may alter in future as a result of anthropogenic changes, present one of the greatest challenges of this century. The recent Intergovernmental Panel on Climate Change report on Climate Change and Water (Bates et al 2008) highlighted the increasingly strong evidence of change in the global water cycle and associated environmental consequences. It is of critical importance to climate prediction and adaptation strategies that key processes in the atmospheric water cycle are precisely understood and determined, from evaporation at the surface of the ocean, transport by the atmosphere, condensation as cloud and eventual precipitation, and run-off through rivers following interaction with the land surface, sub-surface, ice, snow and vegetation. The purpose of this special focus issue of Environmental Research Letters on anticipated changes in the global atmospheric water cycle is to consolidate the recent substantial advances in understanding past, present and future changes in the global water cycle through evidence built upon theoretical understanding, backed up by observations and borne out by climate model simulations. Thermodynamic rises in water vapour provide a central constraint, as discussed in a guest editorial by Bengtsson (2010). Theoretical implications of the Clausius-Clapeyron equation are presented by O'Gorman and Muller (2010) and with reference to a simple model (Sherwood 2010) while observed humidity changes confirm these anticipated responses at the land and ocean surface (Willett et al 2008). Rises in low-level moisture are thought to fuel an

  13. Nonlinear dynamics of global atmospheric and earth system processes

    Science.gov (United States)

    Zhang, Taiping; Verbitsky, Mikhail; Saltzman, Barry; Mann, Michael E.; Park, Jeffrey; Lall, Upmanu

    1995-01-01

    During the grant period, the authors continued ongoing studies aimed at enhancing their understanding of the operation of the atmosphere as a complex nonlinear system interacting with the hydrosphere, biosphere, and cryosphere in response to external radiative forcing. Five papers were completed with support from the grant, representing contributions in three main areas of study: (1) theoretical studies of the interactive atmospheric response to changed biospheric boundary conditions measurable from satellites; (2) statistical-observational studies of global-scale temperature variability on interannual to century time scales; and (3) dynamics of long-term earth system changes associated with ice sheet surges.

  14. Puff models for simulation of fugitive radioactive emissions in atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Camila P. da, E-mail: camila.costa@ufpel.edu.b [Universidade Federal de Pelotas (UFPel), RS (Brazil). Inst. de Fisica e Matematica. Dept. de Matematica e Estatistica; Pereira, Ledina L., E-mail: ledinalentz@yahoo.com.b [Universidade do Extremo Sul Catarinense (UNESC), Criciuma, SC (Brazil); Vilhena, Marco T., E-mail: vilhena@pq.cnpq.b [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Tirabassi, Tiziano, E-mail: t.tirabassi@isac.cnr.i [Institute of Atmospheric Sciences and Climate (CNR/ISAC), Bologna (Italy)

    2009-07-01

    A puff model for the dispersion of material from fugitive radioactive emissions is presented. For vertical diffusion the model is based on general techniques for solving time dependent advection-diffusion equation: the ADMM (Advection Diffusion Multilayer Method) and GILTT (Generalized Integral Laplace Transform Technique) techniques. The first one is an analytical solution based on a discretization of the Atmospheric Boundary Layer (ABL) in sub-layers where the advection-diffusion equation is solved by the Laplace transform technique. The solution is given in integral form. The second one is a well-known hybrid method that had solved a wide class of direct and inverse problems mainly in the area of Heat Transfer and Fluid Mechanics and the solution is given in series form. Comparisons between values predicted by the models against experimental ground-level concentrations are shown. (author)

  15. Puff models for simulation of fugitive radioactive emissions in atmosphere

    International Nuclear Information System (INIS)

    Costa, Camila P. da; Vilhena, Marco T.

    2009-01-01

    A puff model for the dispersion of material from fugitive radioactive emissions is presented. For vertical diffusion the model is based on general techniques for solving time dependent advection-diffusion equation: the ADMM (Advection Diffusion Multilayer Method) and GILTT (Generalized Integral Laplace Transform Technique) techniques. The first one is an analytical solution based on a discretization of the Atmospheric Boundary Layer (ABL) in sub-layers where the advection-diffusion equation is solved by the Laplace transform technique. The solution is given in integral form. The second one is a well-known hybrid method that had solved a wide class of direct and inverse problems mainly in the area of Heat Transfer and Fluid Mechanics and the solution is given in series form. Comparisons between values predicted by the models against experimental ground-level concentrations are shown. (author)

  16. Atmospheric beta radioactivity in Holguin and Its relation with meteorological factors

    International Nuclear Information System (INIS)

    Perez Tamayo, L.; Mendez Fernandez, G.

    1996-01-01

    Were processed 487 values of air beta activity measurements performed in the period of Sep. 91-Apr. 95 in Holguin, at the Cuban east. The averaged value of effective semidesintegration period results in the 30-45 minute interval, which confirms that beta emission of radon-222 daughters is predominant. The atmospheric beta activity resulst highest in the winter months and where continental air masses predominates. For the oceanic air masses are typical lower values. Was determined high dependence with the rose wind: very low values for east wind and associated turns (0.3 - 0.5 Bq/m 3 ) and higher values for the North, North East and South East winds (>0.6 Bq/m 3 ) The predominance of air masses of oceanic origin with low atmospheric beta activities determine the low average value obtained in the present work (0.5 Bq/m 3 ) which coincides with the lower value reported in the literature . It is apparent that influence of local radon exhalation rate is not important in the behaviour of the radioactivity gas in air, However any asseveration about this question requests subsequent investigation

  17. Fleet Numerical Meteorology and Oceanography Center (FNMOC) Navy Operational Global Atmospheric Prediction System (NOGAPS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Navy Operational Global Atmospheric Prediction System (NOGAPS) provides numerical guidance and products in support of a wide range of Navy oceanographic and...

  18. Systematic monitoring of atmosphere radioactivity on the main French nuclear sites in 1961; Surveillance systematique de la radioactivite de l'atmosphere sur les principaux sites nucleaires francais en 1961

    Energy Technology Data Exchange (ETDEWEB)

    Doury, A.

    1963-07-01

    After having indicated the different stations, departments and bodies involved in the monitoring of radioactivity for radiation protection purposes (notably CEA, EDF, National Navy for their establishments in Saclay, Le Bouchet, Grenoble, Marcoule, Cadarache, Cherbourg, Chinon, Antony) and briefly described how this network operates, this report presents the measurement program which comprises measurements of global instantaneous radioactivity at the vicinity of the ground, measurements of long life radioactivity, the identification and dosing of long life radio-elements, and additional measurements. It presents sampling and measurement methods for these different measurements performed on different forms of radioactive elements (airborne dusts, gas, gamma and cosmic ambient radiation, precipitations). Results are discussed and presented under tabular and graphical forms.

  19. A simple dynamic rising nuclear cloud based model of ground radioactive fallout for atmospheric nuclear explosion

    International Nuclear Information System (INIS)

    Zheng Yi

    2008-01-01

    A simple dynamic rising nuclear cloud based model for atmospheric nuclear explosion radioactive prediction was presented. The deposition of particles and initial cloud radius changing with time before the cloud stabilization was considered. Large-scale relative diffusion theory was used after cloud stabilization. The model was considered reasonable and dependable in comparison with four U.S. nuclear test cases and DELFIC model results. (authors)

  20. Investigation of methods for physical characteristics of atmospheric aerosols and ground dust fractions on radioactive contaminated areas

    International Nuclear Information System (INIS)

    Artem'ev, O.I.; Osintsev, A.Yu.; Gaziev, Ya.I.; Gordeev, S.K.

    2005-01-01

    The paper presents data about current situation and trends to develop investigation methods for physical characteristics of atmospheric aerosols and ground dust fractions that are observed on the former Semipalatinsk Test Site area and adjacent regions. It was considered one of the options for comprehensive collection of radioactive aerosols as fallout within control area of atmospheric contamination and underlying surface with aerosol products of the man-caused dusting on the former STS area to determine rates of 'dry' deposition and ground-based activity concentration contained in these products of radionuclides at different distances from place of dusting. (author)

  1. Effect of increased ionization on the atmospheric electric field

    International Nuclear Information System (INIS)

    Boeck, W.L.

    1980-01-01

    This study is a review of atmospheric electrical theory with the purpose of predicting the atmospheric electrical effects of increased ionization caused by radioactive inert gases. A time-independent perturbation model for the global atmospheric electric circuit precdicts that the electric field at the sea surface would be reduced to about 76% of its unperturbed value by a surface 85 Kr concentration of 3 nCi/m 3 . The electric field at a typical land station is predicted to be about 84% of its unperturbed value. Some scientists have suggested that the atmospheric electric field is part of a closed electrical feedback loop. The present model does not include such a closed feedback loop and may underestimate the total effects. This model is also useful for interpreting atmospheric electrical responses to natural fluctuations in the cosmic-ray component of background radiation

  2. The Copernicus Atmosphere Monitoring Service: facilitating the prediction of air quality from global to local scales

    Science.gov (United States)

    Engelen, R. J.; Peuch, V. H.

    2017-12-01

    The European Copernicus Atmosphere Monitoring Service (CAMS) operationally provides daily forecasts of global atmospheric composition and regional air quality. The global forecasting system is using ECMWF's Integrated Forecasting System (IFS), which is used for numerical weather prediction and which has been extended with modules for atmospheric chemistry, aerosols and greenhouse gases. The regional forecasts are produced by an ensemble of seven operational European air quality models that take their boundary conditions from the global system and provide an ensemble median with ensemble spread as their main output. Both the global and regional forecasting systems are feeding their output into air quality models on a variety of scales in various parts of the world. We will introduce the CAMS service chain and provide illustrations of its use in downstream applications. Both the usage of the daily forecasts and the usage of global and regional reanalyses will be addressed.

  3. SPERA 98: radioactivity and the environment, environmental radioactivity and its application in environmental studies: conference papers

    International Nuclear Information System (INIS)

    1998-01-01

    The 1998 workshop of the South Pacific Environmental Radioactivity Association (SPERA) was held in Christchurch, New Zealand. Presentations were grouped around the themes of soil erosion, waste disposal and treatment, atmospheric studies, radioactivity in water, human exposure pathways and foodchains, sediment studies and atmospheric radon. This volume contains extended abstracts. A list of participants is also included

  4. NASA/MSFC FY91 Global Scale Atmospheric Processes Research Program Review

    Science.gov (United States)

    Leslie, Fred W. (Editor)

    1991-01-01

    The reports presented at the annual Marshall Research Review of Earth Science and Applications are compiled. The following subject areas are covered: understanding of atmospheric processes in a variety of spatial and temporal scales; measurements of geophysical parameters; measurements on a global scale from space; the Mission to Planet Earth Program (comprised of and Earth Observation System and the scientific strategy to analyze these data); and satellite data analysis and fundamental studies of atmospheric dynamics.

  5. Emerging pattern of global change in the upper atmosphere and ionosphere

    Directory of Open Access Journals (Sweden)

    J. Laštovička

    2008-05-01

    Full Text Available In the upper atmosphere, greenhouse gases produce a cooling effect, instead of a warming effect. Increases in greenhouse gas concentrations are expected to induce substantial changes in the mesosphere, thermosphere, and ionosphere, including a thermal contraction of these layers. In this article we construct for the first time a pattern of the observed long-term global change in the upper atmosphere, based on trend studies of various parameters. The picture we obtain is qualitative, and contains several gaps and a few discrepancies, but the overall pattern of observed long-term changes throughout the upper atmosphere is consistent with model predictions of the effect of greenhouse gas increases. Together with the large body of lower atmospheric trend research, our synthesis indicates that anthropogenic emissions of greenhouse gases are affecting the atmosphere at nearly all altitudes between ground and space.

  6. GPU-based parallel computing in real-time modeling of atmospheric transport and diffusion of radioactive material

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Marcelo C. dos; Pereira, Claudio M.N.A.; Schirru, Roberto; Pinheiro, André, E-mail: jovitamarcelo@gmail.com, E-mail: cmnap@ien.gov.br, E-mail: schirru@lmp.ufrj.br, E-mail: apinheiro99@gmail.com [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2017-07-01

    Atmospheric radionuclide dispersion systems (ARDS) are essential mechanisms to predict the consequences of unexpected radioactive releases from nuclear power plants. Considering, that during an eventuality of an accident with a radioactive material release, an accurate forecast is vital to guide the evacuation plan of the possible affected areas. However, in order to predict the dispersion of the radioactive material and its impact on the environment, the model must process information about source term (radioactive materials released, activities and location), weather condition (wind, humidity and precipitation) and geographical characteristics (topography). Furthermore, ARDS is basically composed of 4 main modules: Source Term, Wind Field, Plume Dispersion and Doses Calculations. The Wind Field and Plume Dispersion modules are the ones that require a high computational performance to achieve accurate results within an acceptable time. Taking this into account, this work focuses on the development of a GPU-based parallel Plume Dispersion module, focusing on the radionuclide transport and diffusion calculations, which use a given wind field and a released source term as parameters. The program is being developed using the C ++ programming language, allied with CUDA libraries. In comparative case study between a parallel and sequential version of the slower function of the Plume Dispersion module, a speedup of 11.63 times could be observed. (author)

  7. GPU-based parallel computing in real-time modeling of atmospheric transport and diffusion of radioactive material

    International Nuclear Information System (INIS)

    Santos, Marcelo C. dos; Pereira, Claudio M.N.A.; Schirru, Roberto; Pinheiro, André; Coordenacao de Pos-Graduacao e Pesquisa de Engenharia

    2017-01-01

    Atmospheric radionuclide dispersion systems (ARDS) are essential mechanisms to predict the consequences of unexpected radioactive releases from nuclear power plants. Considering, that during an eventuality of an accident with a radioactive material release, an accurate forecast is vital to guide the evacuation plan of the possible affected areas. However, in order to predict the dispersion of the radioactive material and its impact on the environment, the model must process information about source term (radioactive materials released, activities and location), weather condition (wind, humidity and precipitation) and geographical characteristics (topography). Furthermore, ARDS is basically composed of 4 main modules: Source Term, Wind Field, Plume Dispersion and Doses Calculations. The Wind Field and Plume Dispersion modules are the ones that require a high computational performance to achieve accurate results within an acceptable time. Taking this into account, this work focuses on the development of a GPU-based parallel Plume Dispersion module, focusing on the radionuclide transport and diffusion calculations, which use a given wind field and a released source term as parameters. The program is being developed using the C ++ programming language, allied with CUDA libraries. In comparative case study between a parallel and sequential version of the slower function of the Plume Dispersion module, a speedup of 11.63 times could be observed. (author)

  8. Atmospheric deposition of radioactive cesium (137Cs) associated with dust events in East Asia

    International Nuclear Information System (INIS)

    Fujiwara, H.

    2010-01-01

    Since the cessation of atmospheric nuclear testing in 1980, there has been no known serious atmospheric contamination by radioactive cesium (sup(137)Cs) apart from the Chernobyl nuclear reactor accident in 1986. There now remain only small amounts of anthropogenic radionuclides in the atmosphere that can be directly related to past testing. However, sup(137)Cs is still regularly found in atmospheric deposition samples in Japan. In this study, we analyzed sup(137)Cs monitoring data, meteorological data, and field survey results to investigate the recent transport and deposition of sup(137)Cs associated with dust phenomena. Monthly records of nationwide sup(137)Cs deposition in Japan during the 1990s show a consistent seasonal variation, with higher levels of deposition occurring in spring. In March 2002, an unexpectedly high amount of sup(137)Cs was deposited in the northwestern coastal area of Japan at the same time as an Asian dust event was observed. Analysis of land-based weather data showed that sandstorms and other dust-raising phenomena also occurred in March 2002 over areas of Mongolia and northeastern China where grassland and shrubs predominated. Furthermore, radioactivity measurements showed sup(137)Cs enrichment in the surface layer of grassland soils in the areas affected by these sandstorms. These results suggest that grasslands are potential sources of sup(137)Cs-bearing dust. Continued desertification of the East Asian continent in response to recent climate change can be expected to result in an increase in sup(137)Cs-bearing soil particles in the atmosphere, and their subsequent re-deposition in Japan. However, soil dust is also raised around Japanese monitoring sites by the strong winds that are common in Japan in spring, and this local dust might also contribute to sup(137)Cs deposition in Japan. To estimate the relative contributions of local and distant dust events to the total sup(137)Cs deposition, we monitored deposition of mineral particles

  9. Atmosphere-Ionosphere Electrodynamic Coupling

    Science.gov (United States)

    Sorokin, V. M.; Chmyrev, V. M.

    Numerous phenomena that occur in the mesosphere, ionosphere, and the magnetosphere of the Earth are caused by the sources located in the lower atmosphere and on the ground. We describe the effects produced by lightning activity and by ground-based transmitters operated in high frequency (HF) and very low frequency (VLF) ranges. Among these phenomena are the ionosphere heating and the formation of plasma density inhomogeneities, the excitation of gamma ray bursts and atmospheric emissions in different spectral bands, the generation of ULF/ELF/VLF electromagnetic waves and plasma turbulence in the ionosphere, the stimulation of radiation belt electron precipitations and the acceleration of ions in the upper ionosphere. The most interesting results of experimental and theoretical studies of these phenomena are discussed below. The ionosphere is subject to the action of the conductive electric current flowing in the atmosphere-ionosphere circuit. We present a physical model of DC electric field and current formation in this circuit. The key element of this model is an external current, which is formed with the occurrence of convective upward transport of charged aerosols and their gravitational sedimentation in the atmosphere. An increase in the level of atmospheric radioactivity results in the appearance of additional ionization and change of electrical conductivity. Variation of conductivity and external current in the lower atmosphere leads to perturbation of the electric current flowing in the global atmosphere-ionosphere circuit and to the associated DC electric field perturbation both on the Earth's surface and in the ionosphere. Description of these processes and some results of the electric field and current calculations are presented below. The seismic-induced electric field perturbations produce noticeable effects in the ionosphere by generating the electromagnetic field and plasma disturbances. We describe the generation mechanisms of such experimentally

  10. Atmospheric and Geophysical Sciences Division, Physics Department program report, FY 1977

    International Nuclear Information System (INIS)

    Knox, J.B.; Orphan, R.C.

    1977-12-01

    Progress is reported on the development of a number of mathematical models for the simulation and computer analysis of a variety of environmental conditions. Regional, local, and global models for the environmental transport of chemical and radioactive effluents at surface and stratospheric levels are described. A list is included of publications in the atmospheric sciences during the time covered by this report

  11. Managing Radioactive Waste. Problems and Challenges in a Globalizing World

    International Nuclear Information System (INIS)

    2010-09-01

    Many countries are at a crossroads in terms of maintaining their energy supply. The existing resources of fossil fuels are dwindling, and global warming makes their use increasingly problematic. Nuclear power is now often regarded inevitable for future sustainability, energy security, and economic prosperity. There are, however, still unsolved problems regarding nuclear power. The fact that no country has established a final waste repository for spent nuclear fuel throws fundamental doubt on nuclear energy expansion. Also, the processes of globalization have transformed the nuclear industry towards increased privatization, concentration, and internationalization. This leads to uncertainties regarding the responsibility for nuclear waste management. In these circumstances is it of greatest importance that scholars from different disciplines, as well as policy makers and practitioners within the field, meet to share experiences. This conference had the general objective of producing knowledge about the challenges caused by global developmental trends, and what the management of nuclear waste implies for contemporary and future social development. Over 100 persons attended the conferences. Papers available at the conference site have been separately indexed. Several contributions were also made as PP-presentation, which are available at the site, among others the Keynote Speeches: Waiting for the Nuclear Renaissance: Exploring the Nexus of Expansion and Disposal in Europe (Jane Dawson); Applying the Risk Governance Framework: Institutional Requirements for Dealing with Nuclear Waste (Ortwin Renn); Learning to Listen: The Long Road to Legitimating Radioactive Waste Management Policies (Frans Berkhout); The Nuclear Waste Debate is Irrational but We Need Not Panic (Frank von Hippel). The conference was divided into the following sessions: Session A: Political characteristics matters; Session B: Radioactivity, geology, society. On a problem definition of HLW

  12. Managing Radioactive Waste. Problems and Challenges in a Globalizing World

    Energy Technology Data Exchange (ETDEWEB)

    2010-09-15

    Many countries are at a crossroads in terms of maintaining their energy supply. The existing resources of fossil fuels are dwindling, and global warming makes their use increasingly problematic. Nuclear power is now often regarded inevitable for future sustainability, energy security, and economic prosperity. There are, however, still unsolved problems regarding nuclear power. The fact that no country has established a final waste repository for spent nuclear fuel throws fundamental doubt on nuclear energy expansion. Also, the processes of globalization have transformed the nuclear industry towards increased privatization, concentration, and internationalization. This leads to uncertainties regarding the responsibility for nuclear waste management. In these circumstances is it of greatest importance that scholars from different disciplines, as well as policy makers and practitioners within the field, meet to share experiences. This conference had the general objective of producing knowledge about the challenges caused by global developmental trends, and what the management of nuclear waste implies for contemporary and future social development. Over 100 persons attended the conferences. Papers available at the conference site have been separately indexed. Several contributions were also made as PP-presentation, which are available at the site, among others the Keynote Speeches: Waiting for the Nuclear Renaissance: Exploring the Nexus of Expansion and Disposal in Europe (Jane Dawson); Applying the Risk Governance Framework: Institutional Requirements for Dealing with Nuclear Waste (Ortwin Renn); Learning to Listen: The Long Road to Legitimating Radioactive Waste Management Policies (Frans Berkhout); The Nuclear Waste Debate is Irrational but We Need Not Panic (Frank von Hippel). The conference was divided into the following sessions: Session A: Political characteristics matters; Session B: Radioactivity, geology, society. On a problem definition of HLW

  13. Sources and fate of environmental radioactivity at the earth's surface

    International Nuclear Information System (INIS)

    El-Daoushy, F.

    2010-01-01

    Sources and fate of environmental radioactivity at the earth surface This is to link environmental radioactivity to RP in Africa? To describe the benefits of Africa from this field in terms of RP, safety and security policies. To create a mission and a vision to fulfil the needs of ONE PEOPLE, ONE GOAL, ONE FAITH. Sources, processes and fate of environmental radioactivity Previous experience helps setting up an African agenda.(1) Factors influencing cosmogenic radionuclides(2) Factors influencing artificial radionuclides: (a) nuclear weapon-tests (b) nuclear accidents (c) Energy, mining and industrial waste (3) Factors influencing the global Rn-222 and its daughters. (4) Dynamics of cycles of natural radioactivity, e.g. Pb-210. (5) Environmental radiotracers act as DIAGNOSTIC TOOLS to assess air and water quality and impacts of the atmospheric and hydrospheric compartments on ecosystems.6) Definition of base-lines for rehabilitation and protection. Climate influences sources/behaviour/fate of environmental radioactivity. Impacts on life forms in Africa would be severe. Assessing environmental radioactivity resolves these issue

  14. The oceanic cycle and global atmospheric budget of carbonyl sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, P.S.

    1994-12-31

    A significant portion of stratospheric air chemistry is influenced by the existence of carbonyl sulfide (COS). This ubiquitous sulfur gas represents a major source of sulfur to the stratosphere where it is converted to sulfuric acid aerosol particles. Stratospheric aerosols are climatically important because they scatter incoming solar radiation back to space and are able to increase the catalytic destruction of ozone through gas phase reactions on particle surfaces. COS is primarily formed at the surface of the earth, in both marine and terrestrial environments, and is strongly linked to natural biological processes. However, many gaps in the understanding of the global COS cycle still exist, which has led to a global atmospheric budget that is out of balance by a factor of two or more, and a lack of understanding of how human activity has affected the cycling of this gas. The goal of this study was to focus on COS in the marine environment by investigating production/destruction mechanisms and recalculating the ocean-atmosphere flux.

  15. Current and future levels of mercury atmospheric pollution on a global scale

    Science.gov (United States)

    Pacyna, Jozef M.; Travnikov, Oleg; De Simone, Francesco; Hedgecock, Ian M.; Sundseth, Kyrre; Pacyna, Elisabeth G.; Steenhuisen, Frits; Pirrone, Nicola; Munthe, John; Kindbom, Karin

    2016-10-01

    An assessment of current and future emissions, air concentrations, and atmospheric deposition of mercury worldwide is presented on the basis of results obtained during the performance of the EU GMOS (Global Mercury Observation System) project. Emission estimates for mercury were prepared with the main goal of applying them in models to assess current (2013) and future (2035) air concentrations and atmospheric deposition of this contaminant. The combustion of fossil fuels (mainly coal) for energy and heat production in power plants and in industrial and residential boilers, as well as artisanal and small-scale gold mining, is one of the major anthropogenic sources of Hg emissions to the atmosphere at present. These sources account for about 37 and 25 % of the total anthropogenic Hg emissions globally, estimated to be about 2000 t. Emissions in Asian countries, particularly in China and India, dominate the total emissions of Hg. The current estimates of mercury emissions from natural processes (primary mercury emissions and re-emissions), including mercury depletion events, were estimated to be 5207 t year-1, which represents nearly 70 % of the global mercury emission budget. Oceans are the most important sources (36 %), followed by biomass burning (9 %). A comparison of the 2035 anthropogenic emissions estimated for three different scenarios with current anthropogenic emissions indicates a reduction of these emissions in 2035 up to 85 % for the best-case scenario. Two global chemical transport models (GLEMOS and ECHMERIT) have been used for the evaluation of future mercury pollution levels considering future emission scenarios. Projections of future changes in mercury deposition on a global scale simulated by these models for three anthropogenic emissions scenarios of 2035 indicate a decrease in up to 50 % deposition in the Northern Hemisphere and up to 35 % in Southern Hemisphere for the best-case scenario. The EU GMOS project has proved to be a very important

  16. Current and future levels of mercury atmospheric pollution on a global scale

    Directory of Open Access Journals (Sweden)

    J. M. Pacyna

    2016-10-01

    Full Text Available An assessment of current and future emissions, air concentrations, and atmospheric deposition of mercury worldwide is presented on the basis of results obtained during the performance of the EU GMOS (Global Mercury Observation System project. Emission estimates for mercury were prepared with the main goal of applying them in models to assess current (2013 and future (2035 air concentrations and atmospheric deposition of this contaminant. The combustion of fossil fuels (mainly coal for energy and heat production in power plants and in industrial and residential boilers, as well as artisanal and small-scale gold mining, is one of the major anthropogenic sources of Hg emissions to the atmosphere at present. These sources account for about 37 and 25 % of the total anthropogenic Hg emissions globally, estimated to be about 2000 t. Emissions in Asian countries, particularly in China and India, dominate the total emissions of Hg. The current estimates of mercury emissions from natural processes (primary mercury emissions and re-emissions, including mercury depletion events, were estimated to be 5207 t year−1, which represents nearly 70 % of the global mercury emission budget. Oceans are the most important sources (36 %, followed by biomass burning (9 %. A comparison of the 2035 anthropogenic emissions estimated for three different scenarios with current anthropogenic emissions indicates a reduction of these emissions in 2035 up to 85 % for the best-case scenario. Two global chemical transport models (GLEMOS and ECHMERIT have been used for the evaluation of future mercury pollution levels considering future emission scenarios. Projections of future changes in mercury deposition on a global scale simulated by these models for three anthropogenic emissions scenarios of 2035 indicate a decrease in up to 50 % deposition in the Northern Hemisphere and up to 35 % in Southern Hemisphere for the best-case scenario. The EU GMOS project has

  17. Atmospheric behavior, deposition, and budget of radioactive materials from the Fukushima Daiichi nuclear power plant in March 2011

    Science.gov (United States)

    Morino, Y.; Ohara, T.; Nishizawa, M.

    2011-12-01

    To understand the atmospheric behavior of radioactive materials emitted from the Fukushima Daiichi nuclear power plant after the nuclear accident that accompanied the great Tohoku earthquake and tsunami on 11 March 2011, we simulated the transport and deposition of iodine-131 and cesium-137 using a chemical transport model. The model roughly reproduced the observed temporal and spatial variations of deposition rates over 15 Japanese prefectures (60-400 km from the plant), including Tokyo, although there were some discrepancies between the simulated and observed rates. These discrepancies were likely due to uncertainties in the simulation of emission, transport, and deposition processes in the model. A budget analysis indicated that approximately 13% of iodine-131 and 22% of cesium-137 were deposited over land in Japan, and the rest was deposited over the ocean or transported out of the model domain (700 × 700 km2). Radioactivity budgets are sensitive to temporal emission patterns. Accurate estimation of emissions to the air is important for estimation of the atmospheric behavior of radionuclides and their subsequent behavior in land water, soil, vegetation, and the ocean.

  18. Subterranean karst environments as a global sink for atmospheric methane

    Science.gov (United States)

    Webster, Kevin D.; Drobniak, Agnieszka; Etiope, Giuseppe; Mastalerz, Maria; Sauer, Peter E.; Schimmelmann, Arndt

    2018-03-01

    The air in subterranean karst cavities is often depleted in methane (CH4) relative to the atmosphere. Karst is considered a potential sink for the atmospheric greenhouse gas CH4 because its subsurface drainage networks and solution-enlarged fractures facilitate atmospheric exchange. Karst landscapes cover about 14% of earth's continental surface, but observations of CH4 concentrations in cave air are limited to localized studies in Gibraltar, Spain, Indiana (USA), Vietnam, Australia, and by incomplete isotopic data. To test if karst is acting as a global CH4 sink, we measured the CH4 concentrations, δ13CCH4, and δ2HCH4 values of cave air from 33 caves in the USA and three caves in New Zealand. We also measured CO2 concentrations, δ13CCO2, and radon (Rn) concentrations to support CH4 data interpretation by assessing cave air residence times and mixing processes. Among these caves, 35 exhibited subatmospheric CH4 concentrations in at least one location compared to their local atmospheric backgrounds. CH4 concentrations, δ13CCH4, and δ2HCH4 values suggest that microbial methanotrophy within caves is the primary CH4 consumption mechanism. Only 5 locations from 3 caves showed elevated CH4 concentrations compared to the atmospheric background and could be ascribed to local CH4 sources from sewage and outgassing swamp water. Several associated δ13CCH4 and δ2HCH4 values point to carbonate reduction and acetate fermentation as biochemical pathways of limited methanogenesis in karst environments and suggest that these pathways occur in the environment over large spatial scales. Our data show that karst environments function as a global CH4 sink.

  19. A guide to TIRION 4 - a computer code for calculating the consequences of releasing radioactive material to the atmosphere

    International Nuclear Information System (INIS)

    Fryer, L.S.

    1978-12-01

    TIRION 4 is the most recent program in a series designed to calculate the consequences of releasing radioactive material to the atmosphere. A brief description of the models used in the program and full details of the various control cards necessary to run TIRION 4 are given. (author)

  20. Atmospheric methane: Sources, sinks, and role in global change

    International Nuclear Information System (INIS)

    Khalil, M.A.K.

    1993-01-01

    Atmospheric methane is thought to be the most important trace gas involved in man-made climate change. It may be second only to carbon dioxide in causing global warming. Methane affects also the oxidizing capacity of the atmosphere by controlling tropospheric OH radicals and creating O 3 , and it affects the ozone layer in the stratosphere by contributing water vapor and removing chlorine atoms. In the long term, methane is a natural product of life on earth, reaching high concentrations during warm and biologically productive epochs. Yet the scientific understanding of atmospheric methane has evolved mostly during the past decade after it was shown that concentrations were rapidly rising. Because of the environmental importance of methane, North Atlantic Treaty Organization's Scientific and Environmental Affairs Division commissioned an Advanced Research Workshop. This book is the result of such a conference held during the week of 6 October 1991 at Timberline Lodge on Mount Hood near Portland, Oregon. (orig./KW)

  1. Measurement of Kr-85 and Xe-133 as undisturbed tracers for the representing of atmospheric transport after disposal of radioactivity from nuclear facilities; Messungen von Kr-85 und Xe-133 als ungestoerte Tracer zur Darstellung atmosphaerischer Transportvorgaenge nach Freisetzung von Radioaktivitaet aus kerntechnischen Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Frank, G.; Steinkopff, T. [Deutscher Wetterdienst (Germany); Salvamoser, J. [Institut fuer Angewandte Isotopen-, Gas- und Umweltuntersuchungen (IGU), Woerthsee (Germany)

    2016-07-01

    The Deutscher Wetterdienst (DWD, German Meteorological Service) operates since 1996 a sampling and measurement device for the radioactive rare gases Kr-85 and Xe-133 in Offenbach. These measurements are embedded in the German Measurement and Information System for Monitoring Environmental Radioactivity (Integriertes Mess- und Informationssystem zur Ueberwachung der Radioaktivitaet in der Umwelt, IMIS) [1]. In addition to these measurements the DWD is sampling rare gases in Potsdam and since 2014 in Trier in cooperation with the Bundesamt fuer Strahlenschutz (Federal Office for Radiation Protection, BfS). In the frame of the Global Atmosphere Watch (GAW)-program of the WMO the DWD operated a sampling station at the Zugspitze (Schneefernerhaus) from 1999 to 2005. This location at the Zugspitze is well suited for the observation of long distance transport of Kr-85 in the higher atmosphere. The DWD in Offenbach operates a complex analytical system for the measurement of Kr-85 and Xe-133 since 1998. This system consists of sampling with first enrichment, second enrichment, gas chromatographic separation and preparation of Krypton and Xenon and measurement of Kr-85 and Xe-133. Using the example Fukushima, it is shown, that the radioactive rare gases Kr-85 and Xe-133 are well undisturbed tracers for atmospheric transport in case of a nuclear accident or routine nuclear reprocessing plants. Measurements of Xe-133, I-131, Cs-137 and Kr-85 are correlated with source and atmospheric transport to the sampling sites at Offenbach and Potsdam.

  2. Parameterization of dust emissions in the global atmospheric chemistry-climate model EMAC: impact of nudging and soil properties

    OpenAIRE

    Astitha, M.; Lelieveld, J.; Kader, M. Abdel; Pozzer, A.; de Meij, A.

    2012-01-01

    Airborne desert dust influences radiative transfer, atmospheric chemistry and dynamics, as well as nutrient transport and deposition. It directly and indirectly affects climate on regional and global scales. Two versions of a parameterization scheme to compute desert dust emissions are incorporated into the atmospheric chemistry general circulation model EMAC (ECHAM5/MESSy2.41 Atmospheric Chemistry). One uses a global...

  3. Evaluation of atmospheric aerosol and tropospheric ozone effects on global terrestrial ecosystem carbon dynamics

    Science.gov (United States)

    Chen, Min

    The increasing human activities have produced large amounts of air pollutants ejected into the atmosphere, in which atmospheric aerosols and tropospheric ozone are considered to be especially important because of their negative impacts on human health and their impacts on global climate through either their direct radiative effect or indirect effect on land-atmosphere CO2 exchange. This dissertation dedicates to quantifying and evaluating the aerosol and tropospheric ozone effects on global terrestrial ecosystem dynamics using a modeling approach. An ecosystem model, the integrated Terrestrial Ecosystem Model (iTem), is developed to simulate biophysical and biogeochemical processes in terrestrial ecosystems. A two-broad-band atmospheric radiative transfer model together with the Moderate-Resolution Imaging Spectroradiometer (MODIS) measured atmospheric parameters are used to well estimate global downward solar radiation and the direct and diffuse components in comparison with observations. The atmospheric radiative transfer modeling framework were used to quantify the aerosol direct radiative effect, showing that aerosol loadings cause 18.7 and 12.8 W m -2 decrease of direct-beam Photosynthetic Active Radiation (PAR) and Near Infrared Radiation (NIR) respectively, and 5.2 and 4.4 W m -2 increase of diffuse PAR and NIR, respectively, leading to a total 21.9 W m-2 decrease of total downward solar radiation over the global land surface during the period of 2003-2010. The results also suggested that the aerosol effect may be overwhelmed by clouds because of the stronger extinction and scattering ability of clouds. Applications of the iTem with solar radiation data and with or without considering the aerosol loadings shows that aerosol loading enhances the terrestrial productions [Gross Primary Production (GPP), Net Primary Production (NPP) and Net Ecosystem Production (NEP)] and carbon emissions through plant respiration (RA) in global terrestrial ecosystems over the

  4. Clouds and the extratropical circulation response to global warming in a hierarchy of global atmosphere models

    Science.gov (United States)

    Voigt, A.

    2017-12-01

    Climate models project that global warming will lead to substantial changes in extratropical jet streams. Yet, many quantitative aspects of warming-induced jet stream changes remain uncertain, and recent work has indicated an important role of clouds and their radiative interactions. Here, I will investigate how cloud-radiative changes impact the zonal-mean extratropical circulation response under global warming using a hierarchy of global atmosphere models. I will first focus on aquaplanet setups with prescribed sea-surface temperatures (SSTs), which reproduce the model spread found in realistic simulations with interactive SSTs. Simulations with two CMIP5 models MPI-ESM and IPSL-CM5A and prescribed clouds show that half of the circulation response can be attributed to cloud changes. The rise of tropical high-level clouds and the upward and poleward movement of midlatitude high-level clouds lead to poleward jet shifts. High-latitude low-level cloud changes shift the jet poleward in one model but not in the other. The impact of clouds on the jet operates via the atmospheric radiative forcing that is created by the cloud changes and is qualitatively reproduced in a dry Held-Suarez model, although the latter is too sensitive because of its simplified treatment of diabatic processes. I will then show that the aquaplanet results also hold when the models are used in a realistic setup that includes continents and seasonality. I will further juxtapose these prescribed-SST simulations with interactive-SST simulations and show that atmospheric and surface cloud-radiative interactions impact the jet poleward jet shifts in about equal measure. Finally, I will discuss the cloud impact on regional and seasonal circulation changes.

  5. Atmospheric deposition of long-lived Beta radionuclides over the territory of Bulgaria during the last decades

    Energy Technology Data Exchange (ETDEWEB)

    Veleva, B. [National Institute of Meteorology and Hydrology, Bulgarian Academy of Sciences, Sofia (Bulgaria)

    2013-07-01

    The sources of atmospheric radioactivity are discussed and compared. Radon isotopes and their daughters' dominate the natural background of beta activity in the surface air. The man-made radionuclides, much of them beta emitters, started to contaminate regionally and globally the environment after 1940's due to the atmospheric nuclear bomb tests. Additional significant sources of technogenic radionuclides in the atmosphere were nuclear accidents with pronounced examples of Chernobyl and Fukushima. The Bulgarian network for atmospheric radioactivity monitoring has been developing since 1959 in the frame of the state Hydro-meteorological service, now National Institute of Meteorology and Hydrology. It includes daily measurements of aerosol beta activity and deposition immediately and 120h after the sampling. The time and space variations of deposited beta activity, based on long term data records are presented and impact assessment of the different sources is given. The role of precipitation in deposition of radionuclides is evaluated. (author)

  6. Radioactive wastes and discharges

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The guide sets out the radiation safety requirements and limits for the treatment of radioactive waste. They shall be observed when discharging radioactive substances into the atmosphere or sewer system, or when delivering solid, low-activity waste to a landfill site without a separate waste treatment plan. The guide does not apply to the radioactive waste resulting from the utilisation of nuclear energy or natural resources.

  7. Radioactive wastes and discharges

    International Nuclear Information System (INIS)

    2000-01-01

    The guide sets out the radiation safety requirements and limits for the treatment of radioactive waste. They shall be observed when discharging radioactive substances into the atmosphere or sewer system, or when delivering solid, low-activity waste to a landfill site without a separate waste treatment plan. The guide does not apply to the radioactive waste resulting from the utilisation of nuclear energy or natural resources

  8. Environmental radioactivity 1996

    International Nuclear Information System (INIS)

    1997-01-01

    Environmental Radioactivity in New Zealand and Rarotonga : annual report 1996 was published in May this year. The 1996 environmental radioactivity monitoring programme included, as usual, measurements in New Zealand and the Cook Islands of atmospheric, deposited and dairy product radioactivity. The environment in the New Zealand and Cook Island regions has now virtually returned to the situation in the 'pre-nuclear' era. The contination of monitoring, although at a reduced level of intensity, is basically to ensure that any change from the present state, due to any source of radioactivity does not go undetected or unquestioned. (author)

  9. The role of atmospheric nuclear explosions on the stagnation of global warming in the mid 20th century

    Science.gov (United States)

    Fujii, Yoshiaki

    2011-04-01

    This study suggests that the cause of the stagnation in global warming in the mid 20th century was the atmospheric nuclear explosions detonated between 1945 and 1980. The estimated GST drop due to fine dust from the actual atmospheric nuclear explosions based on the published simulation results by other researchers (a single column model and Atmosphere-Ocean General Circulation Model) has served to explain the stagnation in global warming. Atmospheric nuclear explosions can be regarded as full-scale in situ tests for nuclear winter. The non-negligible amount of GST drop from the actual atmospheric explosions suggests that nuclear winter is not just a theory but has actually occurred, albeit on a small scale. The accuracy of the simulations of GST by IPCC would also be improved significantly by introducing the influence of fine dust from the actual atmospheric nuclear explosions into their climate models; thus, global warming behavior could be more accurately predicted.

  10. Pollution of atmospheric air with toxic and radioactive particulate matter investigated by means of nuclear techniques

    International Nuclear Information System (INIS)

    Jagielak, J.

    1978-01-01

    The application of spectrometric methods of nuclear techniques to the investigations of atmospheric air pollution by toxic and radioactive elements and results of these investigations conducted in the highly industrialized and urbanized regions of Poland have been presented. The method of precipitation of the samples, the measurements and analysis of radiation spectra of alpha and gamma radiation emitted by isotopes present in the samples have been described. The concentrations of toxic metal dust in the air have been evaluated by neutron activation and X-ray fluorescence analysis. Appropriate methods of measurement, calibration of instrument and the discussion of results have been presented. The work presents the results of investigations performed in Siersza within the years 1973-1974 and in Warsaw in the period of 1975-1977, which have permitted to estimate the mean monthly values of concentration in the atmospheric air of the following radioisotopes: 7 Be, 54 Mn, 95 Zr, 103 Ru, 106 Ru, 125 Sb, 131 I, 137 Cs, 140 Ba, 141 Ce, 144 Ce, 226 Ra, Th-nat, U-nat and the following stable elements: Sc, Cr, Fe, Co, Zn, As, Se, Sb, W, Pb. The analysis of changes in concentration of each particular artificial radioisotope in the air for the region of Poland in connection with Chinese nuclear explosions have been given. On the basis of the performed environmental investigations the method of analysis of relations between the concentrations of particular elements present in the dust has been discussed. The applications of this method have been presented. The hazard to the population and the environment caused by the radioactive and toxic dust present in the atmospheric air has been estimated. (author)

  11. Biodiversity Meets the Atmosphere: A Global View of Forest Canopies

    Science.gov (United States)

    C. M. P. Ozanne; D. Anhuf; S. L. Boulter; M. Keller; R. L. Kitching; C. Korner; F. C. Meinzer; A. W. Mitchell; T. Nakashizuka; P. L. Silva Dias; N. E. Stork; S. J. Wright; M Yoshimura

    2003-01-01

    The forest canopy is the functional interface between 90% of Earth’s terrestrial biomass and the atmosphere. Multidisciplinary research in the canopy has expanded concepts of global species richness, physiological processes, and the provision of ecosystem services. Trees respond in a species-specific manner to elevated carbon dioxide levels, while climate change...

  12. Natural gas fugitive emissions rates constrained by global atmospheric methane and ethane.

    Science.gov (United States)

    Schwietzke, Stefan; Griffin, W Michael; Matthews, H Scott; Bruhwiler, Lori M P

    2014-07-15

    The amount of methane emissions released by the natural gas (NG) industry is a critical and uncertain value for various industry and policy decisions, such as for determining the climate implications of using NG over coal. Previous studies have estimated fugitive emissions rates (FER)--the fraction of produced NG (mainly methane and ethane) escaped to the atmosphere--between 1 and 9%. Most of these studies rely on few and outdated measurements, and some may represent only temporal/regional NG industry snapshots. This study estimates NG industry representative FER using global atmospheric methane and ethane measurements over three decades, and literature ranges of (i) tracer gas atmospheric lifetimes, (ii) non-NG source estimates, and (iii) fossil fuel fugitive gas hydrocarbon compositions. The modeling suggests an upper bound global average FER of 5% during 2006-2011, and a most likely FER of 2-4% since 2000, trending downward. These results do not account for highly uncertain natural hydrocarbon seepage, which could lower the FER. Further emissions reductions by the NG industry may be needed to ensure climate benefits over coal during the next few decades.

  13. Current and future levels of mercury atmospheric pollution on global scale

    NARCIS (Netherlands)

    Pacyna, Jozef M.; Travnikov, Oleg; De Simone, Francesco; Hedgecock, Ian M.; Sundseth, Kyrre; Pacyna, Elisabeth G.; Steenhuisen, Frits; Pirrone, Nicola; Munthe, John; Kindbom, Karin

    2016-01-01

    An assessment of current and future emissions, air concentrations and atmospheric deposition of mercury world-wide are presented on the basis of results obtained during the performance of the EU GMOS (Global Mercury Observation System) project. Emission estimates for mercury were prepared with the

  14. Description of Atmospheric Conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, P.; /Lisbon, IST; Aglietta, M.; /Turin U. /INFN, Turin; Ahlers, M.; /Wisconsin U., Madison; Ahn, E.J.; /Fermilab; Albuquerque, I.F.M.; /Sao Paulo U.; Allard, D.; /APC, Paris; Allekotte, I.; /Buenos Aires, CONICET; Allen, J.; /New York U.; Allison, P.; /Ohio State U.; Almela, A.; /Natl. Tech. U., San Nicolas /Buenos Aires, CONICET; Alvarez Castillo, J.; /Mexico U., ICN /Santiago de Compostela U.

    2012-01-01

    Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargue and averaged monthly models, the utility of the GDAS data is shown.

  15. Becquerel and natural origin radioactivity

    International Nuclear Information System (INIS)

    2011-01-01

    After a brief presentation of the Becquerel as radioactivity measurement unit, this document briefly explains the origin of natural radioactivity (Earth formation and cosmic rays), gives and comments the evolution of radioactivity of some radionuclides (U 238 and descendants, Th 232 and descendants, K 40 ) between 4.5 billions yeas ago and nowadays. It also gives assessments of natural radioactivity due to radon in the atmosphere and in the soil, of natural radioactivity in building materials, coals, ashes, seawater and food. Some remarkable figures are then given

  16. The FOCON model to assess doses due to the atmospheric radioactive discharges of nuclear facilities during normal operation

    International Nuclear Information System (INIS)

    Rommens, C.; Morin, A.; Merle-Szeremeta, A.

    1999-01-01

    The FOCON model to assess doses due to the atmospheric radioactive discharges of nuclear facilities during normal operation. To assess the dosimetric impact to the public due to atmospheric radioactive discharges of nuclear facilities during normal operation, the Institute for Protection and Nuclear Safety has developed the FOCON96 code. FOCON96 calculates the dispersion of gases and aerosols into the environment (atmosphere contamination and ground deposition), their transfer in the biosphere (soils, plants and animals) and their impact to a member of the public (individual effective and equivalent doses, external exposure to the plume and to the deposits, internal exposure by inhalation and ingestion). FOCON96 uses ergonomic windows and proposes many capabilities (modular architecture, default values, choice of libraries, access to all the parameters of the models, listing or results, management of result files, calculations made directly, etc.). In the European context, and intercomparison with the PC-CREAM code, developed by the National Radiological Protection Board, has shown the coherence of the results of the two codes. A comparison of the windows and capabilities has shown that FOCON96 was easier to use. FOCON96 is not adapted to calculate the doses received during one particular year that are due to the discharges of a facility in operation for a long period of time. An evolution of the software will be considered if this kind of assessment is generalized. (authors)

  17. Global simulation of aromatic volatile organic compounds in the atmosphere

    Science.gov (United States)

    Cabrera Perez, David; Taraborrelli, Domenico; Pozzer, Andrea

    2015-04-01

    Among the large number of chemical compounds in the atmosphere, the organic group plays a key role in the tropospheric chemistry. Specifically the subgroup called aromatics is of great interest. Aromatics are the predominant trace gases in urban areas due to high emissions, primarily by vehicle exhausts and fuel evaporation. They are also present in areas where biofuel is used (i.e residential wood burning). Emissions of aromatic compounds are a substantial fraction of the total emissions of the volatile organic compounds (VOC). Impact of aromatics on human health is very important, as they do not only contribute to the ozone formation in the urban environment, but they are also highly toxic themselves, especially in the case of benzene which is able to trigger a range of illness under long exposure, and of nitro-phenols which cause detrimental for humans and vegetation even at very low concentrations. The aim of this work is to assess the atmospheric impacts of aromatic compounds on the global scale. The main goals are: lifetime and budget estimation, mixing ratios distribution, net effect on ozone production and OH loss for the most emitted aromatic compounds (benzene, toluene, xylenes, ethylbenzene, styrene and trimethylbenzenes). For this purpose, we use the numerical chemistry and climate simulation ECHAM/MESSy Atmospheric Chemistry (EMAC) model to build the global atmospheric budget for the most emitted and predominant aromatic compounds in the atmosphere. A set of emissions was prepared in order to include biomass burning, vegetation and anthropogenic sources of aromatics into the model. A chemical mechanism based on the Master Chemical Mechanism (MCM) was developed to describe the chemical oxidation in the gas phase of these aromatic compounds. MCM have been reduced in terms of number of chemical equation and species in order to make it affordable in a 3D model. Additionally other features have been added, for instance the production of HONO via ortho

  18. Global atmospheric concentrations and source strength of ethane

    Science.gov (United States)

    Blake, D. R.; Rowland, F. S.

    1986-01-01

    A study of the variation in ethane (C2H6) concentration between northern and southern latitudes over three years is presented together with a new estimate of its source strength. Ethane concentrations vary from 0.07 to 2 p.p.b.v. (parts per billion by volume) in air samples collected in remote surface locations in the Pacific (latitude 71 N-47 S) in all four seasons between September 1984 and June 1985. The variations are consistent with southerly transport from sources located chiefly in the Northern Hemisphere, further modified by seasonal variations in the strength of the reaction of C2H6 with OH radicals. These global data can be combined with concurrent data for CH4 and the laboratory reaction rates of each with OH to provide an estimate of three months as the average atmospheric lifetime for C2H6 and 13 + or - 3 Mtons for its annual atmospheric release.

  19. Ventilation conditions and atmospheric characteristics of a laboratory uranium mine. Application to the distribution of radioactive particles in the respiratory tract

    International Nuclear Information System (INIS)

    Duport, Philippe.

    1978-09-01

    The CEA laboratory uranium mine and the characteristics of its ventilation are described. A method of measuring air flows based on the determination of a tracer gas was developed. Variations of radon concentrations and of its daughter products concentrations and radioactive equilibrium were observed as a function of the various ventilation rates. Particle size distribution of radioactive aerosols was studied in the laboratory mine when unoperated. Several methods of evaluation of the free fraction were compared, and the application of the laws of aerosol physics to the production of radioactive aerosols in a mine was investigated. A study of radioactive ions showed that the usual equations of atmospheric electricity could be applied to charged radioactive aerosols in a mine. Finally an experimental method was developed in order to directly examine the deposit of an aerosol labelled by radon daughter products in the respiratory tract of animals. The experimental results obtained with aerosols in the particle size range 5.10 -8 - 5.10 -6 were compared to the theoretical data derived from models published in the literature [fr

  20. Atmospheric ionisation in Snowdonia

    Energy Technology Data Exchange (ETDEWEB)

    Aplin, K L [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH UK (United Kingdom); Williams, J H, E-mail: k.aplin1@physics.ox.ac.uk [Envirodata-Eyri, Bryn Goleu, Penmaen Park, Llanfairfechan, Gwynedd LL33 0RL (United Kingdom)

    2011-06-23

    Atmospheric ionisation from natural radioactivity and cosmic rays has been measured at several sites in Snowdonia from 2005-present. The motivation for this project was a combination of public engagement with science, and research into the effects of ionisation on climate. A four-component atmospheric radiometer instrument is co-located with the ionisation detectors and the data is remotely logged and displayed on the Web. Atmospheric ionisation from natural radioactivity varies with local geology, and the cosmic ray ionisation component is modulated by solar activity and altitude. Variations due to all these effects have been identified and are described.

  1. Radioactive fallout reconstruction from contemporary measurements of reservoir sediments

    International Nuclear Information System (INIS)

    Krey, P.W.; Heit, M.; Miller, K.M.

    1990-01-01

    The temporal history of atmospheric deposition to a watershed area can be preserved in the sediment of a lake or reservoir that is supplied by the watershed. The 137 Cs and isotopic Pu concentrations with depth were determined in the sediments of two reservoirs, Enterprise and Deer Creek, which are located in widely separated regions of the state of Utah. Our data not only reconstruct the history of the total radioactive fallout in the area, but also permit estimating the contributions from global sources and from the Nevada Test Site detonations in the 1950s

  2. Glacial-interglacial water cycle, global monsoon and atmospheric methane changes

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Zhengtang; Wu, Haibin [Chinese Academy of Sciences, Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Beijing (China); Zhou, Xin [Chinese Academy of Sciences, Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Beijing (China); University of Science and Technology of China, School of Earth and Space Sciences and Institute of Polar Environment, Hefei (China)

    2012-09-15

    The causes of atmospheric methane (CH{sub 4}) changes are still a major contention, in particular with regards to the relative contributions of glacial-interglacial cycles, monsoons in both hemispheres and the late Holocene human intervention. Here, we explore the CH{sub 4} signals in the Antarctic EPICA Dome C and Vostok ice records using the methods of timeseries analyses and correlate them with insolation and geological records to address these issues. The results parse out three distinct groups of CH{sub 4} signals attributable to different drivers. The first group ({proportional_to}80% variance), well tracking the marine {delta}{sup 18}O record, is attributable to glacial-interglacial modulation on the global water cycle with the effects shared by wetlands at all latitudes, from monsoonal and non-monsoonal regions in both hemispheres. The second group ({proportional_to}15% variance), centered at the {proportional_to}10-kyr semi-precession frequency, is linkable with insolation-driven tropical monsoon changes in both hemispheres. The third group ({proportional_to}5% variance), marked by millennial frequencies, is seemingly related with the combined effect of ice-volume and bi-hemispheric insolation changes at the precession bands. These results indicate that bi-hemispheric monsoon changes have been a constant driver of atmospheric CH{sub 4}. This mechanism also partially explains the Holocene CH{sub 4} reversal since {proportional_to}5 kyr BP besides the human intervention. In the light of these results, we propose that global monsoon can be regarded as a system consisting of two main integrated components, one primarily driven by the oscillations of Inter-Tropical Convergence Zone (ITCZ) in response to the low-latitude summer insolation changes, anti-phase between the two hemispheres (i.e. the ITCZ monsoon component); and another modulated by the glacial-interglacial cycles, mostly synchronous at the global scale (i.e. the glacial-interglacial monsoon

  3. Radioactivity at the summit of Puy de Dome. [In French

    Energy Technology Data Exchange (ETDEWEB)

    Garrigue, H

    1951-01-01

    The radioactivity of the atmosphere was studied systematically by counting the disintegrations of the residue obtained by evaporating melted snow. Three separate radioactivity measurements in the atmosphere apparently reached a max. sometime in 1946.

  4. Modeling the atmospheric dispersion of radioactive effluents in a nuclear accident situation

    International Nuclear Information System (INIS)

    Margeanu, Sorin

    2002-01-01

    In case of a nuclear accident, which could lead to release of radioactive contaminants, fastest countermeasures are needed related to sheltering, iodine distribution, evacuation and interdiction of food and water consumption. All these decisions should be based either on estimation of inhaled dose and the dose due to external exposure for public, or on the estimation of radioactive concentration in food (which will depend on the radioactive concentration in air and ground deposition). The dispersion model used, was a Gaussian 'puff' model. The vertical dispersion was considered not dependent on the release high. The used meteorological data are specific for the SCN - Pitesti site, collected every hour for one year. The meteorological data file contains: the wind speed (in m/s), wind direction (degrees clockwise from north), atmospheric stability category, precipitation rate (in mm/h) and the high of the mixing layer (in m). A hypothetical major nuclear accident at TRIGA - SSR of INR - Pitesti, due to a serious damage of the reactor core leading, to a large release of radioactive contaminants was examined. The release was considered as a single phase with of one hour duration. The release factors for the considered isotopic mixture are 100% noble gases (of the reactor core inventory), 40% iodine (of the reactor core inventory) and 40% particulate, i.e., 40% of the fission products of core fission products inventory, released as particles. The accuracy of the model could be increased by implementation of the code on a real-time system, where the acquisition of the parameters done is on-line, namely, the data are introduced as soon as the modification of meteorological and dosimetric conditions are produced. In this case, the parameters used in formulas can be adjusted according with the field situation. Unfortunately the real-time systems need more powerful resources: monitoring stations which can measure and send on-line the data and which can cover a large area

  5. General Atomic's radioactive gas recovery system

    International Nuclear Information System (INIS)

    Mahn, J.A.; Perry, C.A.

    1975-01-01

    General Atomic Company has developed a Radioactive Gas Recovery System for the HTGR which separates, for purposes of retention, the radioactive components from the non-radioactive reactor plant waste gases. This provides the capability for reducing to an insignificant level the amount of radioactivity released from the gas waste system to the atmosphere--a most significant improvement in reducing total activity release to the environment. (U.S.)

  6. NKS-B NordRisk II: Nuclear risk from atmospheric dispersion in Northern Europe - Summary report

    International Nuclear Information System (INIS)

    Lauritzen, B.

    2011-05-01

    The objective of the NordRisk II project has been to derive practical means for assessing the risks from long-range atmospheric dispersion of radioactive materials. An atlas over different atmospheric dispersion and deposition scenarios has been developed using historical numerical weather prediction (NWP) model data. The NWP model data covers three years spanning the climate variability associated with the North Atlantic Oscillation, and the atlas considers radioactive releases from 16 release sites in and near the Nordic countries. A statistical analysis of the long-range dispersion and deposition patterns is undertaken to quantify the mean dispersion and deposition as well as the variability. Preliminary analyses show that the large-scale atmospheric dispersion and deposition is near-isotropic, irrespective of the release site and detailed climatology, and allows for a simple parameterization of the global dispersion and deposition patterns. The atlas and the underlying data are made available in a format compatible with the ARGOS decision support system, and have been implemented in ARGOS. (Author)

  7. NKS-B NordRisk II: Nuclear risk from atmospheric dispersion in Northern Europe - Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, B. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy. Radiation Research Div., Roskilde (Denmark))

    2011-05-15

    The objective of the NordRisk II project has been to derive practical means for assessing the risks from long-range atmospheric dispersion of radioactive materials. An atlas over different atmospheric dispersion and deposition scenarios has been developed using historical numerical weather prediction (NWP) model data. The NWP model data covers three years spanning the climate variability associated with the North Atlantic Oscillation, and the atlas considers radioactive releases from 16 release sites in and near the Nordic countries. A statistical analysis of the long-range dispersion and deposition patterns is undertaken to quantify the mean dispersion and deposition as well as the variability. Preliminary analyses show that the large-scale atmospheric dispersion and deposition is near-isotropic, irrespective of the release site and detailed climatology, and allows for a simple parameterization of the global dispersion and deposition patterns. The atlas and the underlying data are made available in a format compatible with the ARGOS decision support system, and have been implemented in ARGOS. (Author)

  8. Solidification method of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Tsutomu; Chino, Koichi; Sasahira, Akira; Ikeda, Takashi

    1992-07-24

    Metal solidification material can completely seal radioactive wastes and it has high sealing effect even if a trace amount of evaporation should be caused. In addition, the solidification operation can be conducted safely by using a metal having a melting point of lower than that of the decomposition temperature of the radioactive wastes. Further, the radioactive wastes having a possibility of evaporation and scattering along with oxidation can be solidified in a stable form by putting the solidification system under an inert gas atmosphere. Then in the present invention, a metal is selected as a solidification material for radioactive wastes, and a metal, for example, lead or tin having a melting point of lower than that of the decomposition temperature of the wastes is used in order to prevent the release of the wastes during the solidification operation. Radioactive wastes which are unstable in air and scatter easily, for example, Ru or the like can be converted into a stable solidification product by conducting the solidification processing under an inert gas atmosphere. (T.M.).

  9. Atmospheric redistribution of reactive nitrogen and phosphorus by wildfires and implications for global carbon cycling

    Science.gov (United States)

    Randerson, J. T.; Xu, L.; Wiggins, E. B.; Chen, Y.; Riley, W. J.; Mekonnen, Z. A.; Pellegrini, A.; Mahowald, N. M.

    2017-12-01

    Fires are an important process regulating the redistribution of nutrients within terrestrial ecosystems. Frequently burning ecosystems such as savannas are a net source of N and P to the atmosphere each year, with atmospheric transport and dry and wet deposition increasing nutrient availability in downwind ecosystems and over the open ocean. Transport of N and P aerosols from savanna fires within the Hadley circulation contributes to nutrient deposition over tropical forests, yielding an important cross-biome nutrient transfer. Pyrodenitrification of reactive N increases with fire temperature and modified combustion efficiency, generating a global net biospheric loss of approximately 14 Tg N per year. Here we analyze atmospheric N and P redistribution using the Global Fire Emissions Database version 4s and the Accelerated Climate Modeling for Energy earth system model. We synthesize literature estimates of N and P concentrations in fire-emitted aerosols and ecosystem mass balance measurements to help constrain model estimates of these biosphere-atmosphere fluxes. In our analysis, we estimate the fraction of terrestrial net primary production (NPP) that is sustained by fire-emitted P and reactive N from upwind ecosystems. We then evaluate how recent global declines in burned area in savanna and grassland ecosystems may be changing nutrient availability in downwind ecosystems.

  10. A specific and correlative study of natural atmospheric radioactivity, condensation nuclei and some electrical parameters in marine or urban sites

    International Nuclear Information System (INIS)

    Le Gac, Jacqueline.

    1980-02-01

    In order to determine the correlations between the following atmospheric parameters: radon and condensation nuclei concentrations, total conductivity and space charge, we analysed their behavior over a long period, in connection with meteorological data. We simulaneously studied the equilibrium state between 222 Rn and its short-lived daughters pointing out a radioactive desequilibrium as a function of the meteorological conditions. Simultaneously, we established average experimental curves of cumulated particle size distributions of natural radioactivity in the air, differentiating urban and marine influences. Finally, a comparison between the various parameters showed that the total conductivity greatly depends on condensation nuclei and radon concentrations in the air [fr

  11. Analysis of cows' milk in the content of radioactive cs137 gamma-spectrometric method

    International Nuclear Information System (INIS)

    Zagidulin, Z.Z.; Isayev, R.Sh.; Guseynova, I.A.

    2010-01-01

    Full text : The most intense pollution of the environment Cs137 (after the ban of atmospheric nuclear weapons tests), was the result of the Chernobyl accident in 1986. The consequence of this accident was the accumulation of large amounts of Cs-137 in the atmosphere, which was the source of the global fallout of this isotope in the Earth's surface, including the territory of Azerbaijan. When considering livestock as one of the links of contamination by radioactive substances in food chains should be recognized that the main risk associated with the accumulation of radioactive Cs137 in the soil, plants and animal products originating ultimately in the human diet. The aim of this study was to determine the radioactive Cs137 in cow's milk. Subsequent samples of milk were purchased in stores and have been measured in the native form. Pal Sud milk produced in Azerbaijan. On Health - Russia. Savushkin product - Belarus. As a radiometric measurement setup Cs137 in cow's milk was used semiconductor gamma-ray spectrometer with a detection unit based on the detection of high-purity germanium (manufactured by Canberra) in the lead shielding.

  12. A survey of radioactive levels of agricultural products in Saitama prefecture

    Energy Technology Data Exchange (ETDEWEB)

    Motegi, Misako; Miyake, Sadaaki; Oosawa, Takashi; Nakazawa, Kiyoaki [Saitama Inst. of Public health, Saitama (Japan)

    1997-09-01

    Past atmospheric nuclear testing which have been conducted frequently, have caused environmental pollution due to the diffusion of radioactive substances into the atmosphere and from the radioactive fallout. The environmental pollution from nuclear testing into the atmosphere has resulted in the radioactive contamination in agricultural products and has continued for a long time. The radioactive contamination of agricultural products occurs through air, water and soil which were contaminated by radioactive fallout. In this paper, for the purpose of analyzing the extent of the radioactive contamination levels in the agricultural products of Saitama Prefecture, spinach, green soybeans, dried shiitake and welsh onion, were selected among products, as the amount of the harvest is abundant in all of Japan. Radioactivity concentration was investigated by gamma-ray spectrometry and radiochemical analysis. The radioactivity concentrations of artificial radioactive nuclides, cesium-137 ({sup 137}Cs) and strontium-90 ({sup 90}Sr), were detected in the range which is considered to be the result of radioactive fallout. Moreover, in order to examine the effect on radioactivity concentrations in agricultural products by culinary processing, the raw agricultural products were boiled, and their radioactivity concentrations were compared with the raw produce. The radioactivity concentrations in the boiled were lower than those in the raw produce. (author)

  13. A survey of radioactive levels of agricultural products in Saitama prefecture

    International Nuclear Information System (INIS)

    Motegi, Misako; Miyake, Sadaaki; Oosawa, Takashi; Nakazawa, Kiyoaki

    1997-01-01

    Past atmospheric nuclear testing which have been conducted frequently, have caused environmental pollution due to the diffusion of radioactive substances into the atmosphere and from the radioactive fallout. The environmental pollution from nuclear testing into the atmosphere has resulted in the radioactive contamination in agricultural products and has continued for a long time. The radioactive contamination of agricultural products occurs through air, water and soil which were contaminated by radioactive fallout. In this paper, for the purpose of analyzing the extent of the radioactive contamination levels in the agricultural products of Saitama Prefecture, spinach, green soybeans, dried shiitake and welsh onion, were selected among products, as the amount of the harvest is abundant in all of Japan. Radioactivity concentration was investigated by gamma-ray spectrometry and radiochemical analysis. The radioactivity concentrations of artificial radioactive nuclides, cesium-137 ( 137 Cs) and strontium-90 ( 90 Sr), were detected in the range which is considered to be the result of radioactive fallout. Moreover, in order to examine the effect on radioactivity concentrations in agricultural products by culinary processing, the raw agricultural products were boiled, and their radioactivity concentrations were compared with the raw produce. The radioactivity concentrations in the boiled were lower than those in the raw produce. (author)

  14. Study of the behaviour of artificial radioactive aerosols. Applications to some problems of atmospheric circulation (1963); Etude du comportement dcs aerosols radioactifs artificiels. Applications a quelques problemes de circulation atmospherique (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-11-15

    The aim of this work, consists in the examination of the behaviour of radioactive aerosols produced in the atmosphere by nuclear explosions, in order to deduce the most general laws governing atmospheric circulation and diffusion. After having given a general table of the radioactive aerosols present the authors consider the validity and the precision of the measurement methods and the concentration of the aerosols at ground level and in the upper atmosphere, as well as their deposition on the ground. The existence is thus demonstrated of a tropospheric equatorial barrier and of discontinuous and seasonal aspects of stratosphere-troposphere transfers. The role is shown of precipitations and dry auto-filtration in the lower atmosphere cleaning processes. This work makes it possible to describe the general behaviour of dust from the stratosphere, and to improve the total radioactive contamination of the globe. (author) [French] L'objectif de ce travail consiste a examiner le comportement des aerosols radioactifs introduits dans l'atmosphere par les explosions nucleaires, pour en deduire les lois les plus generals de la circulation et diffusion atmospheriques. Apres avoir dresse un tableau d'ensemble des aerosols radioactifs presents, on examine la validite et la precision des methodes de mesure de leur concentration, au niveau du sol et en haute atmosphere, ainsi que de leur depot a la surface du sol. On met ainsi en evidence l'existence d'une barriere equatoriale tropospherique; l'aspect discontinu et saisonnier des transferts stratosphere-troposphere; le role des precipitations et de l'auto-filtration seche, dans les processus de nettoyage de la basse atmosphere. Ces etudes permettent de decrire le comportement general des poussieres d'origine stratospherique et d'ameliorer le bilan de la contamination radioactive du globe. (auteur)

  15. Study of the behaviour of artificial radioactive aerosols. Applications to some problems of atmospheric circulation (1963); Etude du comportement dcs aerosols radioactifs artificiels. Applications a quelques problemes de circulation atmospherique (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, G. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-11-15

    The aim of this work, consists in the examination of the behaviour of radioactive aerosols produced in the atmosphere by nuclear explosions, in order to deduce the most general laws governing atmospheric circulation and diffusion. After having given a general table of the radioactive aerosols present the authors consider the validity and the precision of the measurement methods and the concentration of the aerosols at ground level and in the upper atmosphere, as well as their deposition on the ground. The existence is thus demonstrated of a tropospheric equatorial barrier and of discontinuous and seasonal aspects of stratosphere-troposphere transfers. The role is shown of precipitations and dry auto-filtration in the lower atmosphere cleaning processes. This work makes it possible to describe the general behaviour of dust from the stratosphere, and to improve the total radioactive contamination of the globe. (author) [French] L'objectif de ce travail consiste a examiner le comportement des aerosols radioactifs introduits dans l'atmosphere par les explosions nucleaires, pour en deduire les lois les plus generals de la circulation et diffusion atmospheriques. Apres avoir dresse un tableau d'ensemble des aerosols radioactifs presents, on examine la validite et la precision des methodes de mesure de leur concentration, au niveau du sol et en haute atmosphere, ainsi que de leur depot a la surface du sol. On met ainsi en evidence l'existence d'une barriere equatoriale tropospherique; l'aspect discontinu et saisonnier des transferts stratosphere-troposphere; le role des precipitations et de l'auto-filtration seche, dans les processus de nettoyage de la basse atmosphere. Ces etudes permettent de decrire le comportement general des poussieres d'origine stratospherique et d'ameliorer le bilan de la contamination radioactive du globe. (auteur)

  16. Current and future levels of mercury atmospheric pollution on a global scale

    NARCIS (Netherlands)

    Pacyna, J. M.; Travnikov, O.; De Simone, F.; Hedgecock, I. M.; Sundseth, K.; Pacyna, E. G.; Steenhuisen, F.; Pirrone, N.; Munthe, J.; Kindbom, K.

    2016-01-01

    An assessment of current and future emissions, air concentrations, and atmospheric deposition of mercury worldwide is presented on the basis of results obtained during the performance of the EU GMOS (Global Mercury Observation System) project. Emission estimates for mercury were prepared with the

  17. Radioactive waste gas processing systems

    International Nuclear Information System (INIS)

    Kita, Kaoru; Minemoto, Masaki; Takezawa, Kazuaki.

    1981-01-01

    Purpose: To effectively separate and remove only hydrogen from hydrogen gas-containing radioactive waste gases produced from nuclear power plants without using large scaled facilities. Constitution: From hydrogen gas-enriched waste gases which contain radioactive rare gases (Kr, Xe) sent from the volume control tank of a chemical volume control system, only the hydrogen is separated in a hydrogen separator using palladium alloy membrane and rare gases are concentrated, volume-decreased and then stored. In this case, an activated carbon adsorption device is connected at its inlet to the radioactive gas outlet of the hydrogen separator and opened at its outlet to external atmosphere. In this system, while only the hydrogen gas permeates through the palladium alloy membrane, other gases are introduced, without permeation, into the activated carbon adsorption device. Then, the radioactive rare gases are decayed by the adsorption on the activated carbon and then released to the external atmosphere. (Furukawa, Y.)

  18. The global atmospheric electric circuit and its effects on cloud microphysics

    International Nuclear Information System (INIS)

    Tinsley, B A

    2008-01-01

    This review is an overview of progress in understanding the theory and observation of the global atmospheric electric circuit, with the focus on its dc aspects, and its short and long term variability. The effects of the downward ionosphere-earth current density, J z , on cloud microphysics, with its variability as an explanation for small observed changes in weather and climate, will also be reviewed. The global circuit shows responses to external as well as internal forcing. External forcing arises from changes in the distribution of conductivity due to changes in the cosmic ray flux and other energetic space particle fluxes, and at high magnetic latitudes from solar wind electric fields. Internal forcing arises from changes in the generators and changes in volcanic and anthropogenic aerosols in the troposphere and stratosphere. All these result in spatial and temporal variation in J z . Variations in J z affect the production of space charge in layer clouds, with the charges being transferred to droplets and aerosol particles. New observations and new analyses are consistent with non-negligible effects of the charges on the microphysics of such clouds. Observed effects are small, but of high statistical significance for cloud cover and precipitation changes, with resulting atmospheric temperature, pressure and dynamics changes. These effects are detectable on the day-to-day timescale for repeated J z changes of order 10%, and are thus second order electrical effects. The implicit first order effects have not, as yet, been incorporated into basic cloud and aerosol physics. Long term (multidecadal through millennial) global circuit changes, due to solar activity modulating the galactic cosmic ray flux, are an order of magnitude greater at high latitudes and in the stratosphere, as can be inferred from geological cosmogenic isotope records. Proxies for climate change in the same stratified depositories show strong correlations of climate with the inferred global

  19. The global atmospheric electric circuit and its effects on cloud microphysics

    Energy Technology Data Exchange (ETDEWEB)

    Tinsley, B A [Physics Department and Center for Space Sciences, WT15, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX, 75080-3021 (United States)], E-mail: Tinsley@UTDallas.edu

    2008-06-15

    This review is an overview of progress in understanding the theory and observation of the global atmospheric electric circuit, with the focus on its dc aspects, and its short and long term variability. The effects of the downward ionosphere-earth current density, J{sub z}, on cloud microphysics, with its variability as an explanation for small observed changes in weather and climate, will also be reviewed. The global circuit shows responses to external as well as internal forcing. External forcing arises from changes in the distribution of conductivity due to changes in the cosmic ray flux and other energetic space particle fluxes, and at high magnetic latitudes from solar wind electric fields. Internal forcing arises from changes in the generators and changes in volcanic and anthropogenic aerosols in the troposphere and stratosphere. All these result in spatial and temporal variation in J{sub z}. Variations in J{sub z} affect the production of space charge in layer clouds, with the charges being transferred to droplets and aerosol particles. New observations and new analyses are consistent with non-negligible effects of the charges on the microphysics of such clouds. Observed effects are small, but of high statistical significance for cloud cover and precipitation changes, with resulting atmospheric temperature, pressure and dynamics changes. These effects are detectable on the day-to-day timescale for repeated J{sub z} changes of order 10%, and are thus second order electrical effects. The implicit first order effects have not, as yet, been incorporated into basic cloud and aerosol physics. Long term (multidecadal through millennial) global circuit changes, due to solar activity modulating the galactic cosmic ray flux, are an order of magnitude greater at high latitudes and in the stratosphere, as can be inferred from geological cosmogenic isotope records. Proxies for climate change in the same stratified depositories show strong correlations of climate with the

  20. Global emission inventory and atmospheric transport of black carbon. Evaluation of the associated exposure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Rong

    2015-06-01

    This thesis presents research focusing on the improvement of high-resolution global black carbon (BC) emission inventory and application in assessing the population exposure to ambient BC. A particular focus of the thesis is on the construction of a high-resolution (both spatial and sectorial) fuel consumption database, which is used to develop the emission inventory of black carbon. Above all, the author updates the global emission inventory of black carbon, a resource subsequently used to study the atmospheric transport of black carbon over Asia with the help of a high-resolution nested model. The thesis demonstrates that spatial bias in fuel consumption and BC emissions can be reduced by means of the sub-national disaggregation approach. Using the inventory and nested model, ambient BC concentrations can be better validated against observations. Lastly, it provides a complete uncertainty analysis of global black carbon emissions, and this uncertainty is taken into account in the atmospheric modeling, helping to better understand the role of black carbon in regional and global air pollution.

  1. The Risoe model for calculating the consequences of the release of radioactive material to the atmosphere

    International Nuclear Information System (INIS)

    Thykier-Nielsen, S.

    1980-07-01

    A brief description is given of the model used at Risoe for calculating the consequences of releases of radioactive material to the atmosphere. The model is based on the Gaussian plume model, and it provides possibilities for calculation of: doses to individuals, collective doses, contamination of the ground, probability distribution of doses, and the consequences of doses for give dose-risk relationships. The model is implemented as a computer program PLUCON2, written in ALGOL for the Burroughs B6700 computer at Risoe. A short description of PLUCON2 is given. (author)

  2. Remote sensing for global change, climate change and atmosphere and ocean forecasting. Volume 1

    International Nuclear Information System (INIS)

    1992-01-01

    This volume is separated in three sessions. First part is on remote sensing for global change (with global modelling, land cover change on global scale, ocean colour studies of marine biosphere, biological and hydrological interactions and large scale experiments). Second part is on remote sensing for climate change (with earth radiation and clouds, sea ice, global climate research programme). Third part is on remote sensing for atmosphere and ocean forecasting (with temperatures and humidity, winds, data assimilation, cloud imagery, sea surface temperature, ocean waves and topography). (A.B.). refs., figs., tabs

  3. Storage depot for radioactive material

    International Nuclear Information System (INIS)

    Szulinski, M.J.

    1983-01-01

    Vertical drilling of cylindrical holes in the soil, and the lining of such holes, provides storage vaults called caissons. A guarded depot is provided with a plurality of such caissons covered by shielded closures preventing radiation from penetrating through any linear gap to the atmosphere. The heat generated by the radioactive material is dissipated through the vertical liner of the well into the adjacent soil and thus to the ground surface so that most of the heat from the radioactive material is dissipated into the atmosphere in a manner involving no significant amount of biologically harmful radiation. The passive cooling of the radioactive material without reliance upon pumps, personnel, or other factor which might fail, constitutes one of the most advantageous features of this system. Moreover this system is resistant to damage from tornadoes or earthquakes. Hermetically sealed containers of radioactive material may be positioned in the caissons. Loading vehicles can travel throughout the depot to permit great flexibility of loading and unloading radioactive materials. Radioactive material can be shifted to a more closely spaced caisson after ageing sufficiently to generate much less heat. The quantity of material stored in a caisson is restricted by the average capacity for heat dissipation of the soil adjacent such caisson

  4. Mapping the spatial distribution of global anthropogenic mercury atmospheric emission inventories

    Science.gov (United States)

    Wilson, Simon J.; Steenhuisen, Frits; Pacyna, Jozef M.; Pacyna, Elisabeth G.

    This paper describes the procedures employed to spatially distribute global inventories of anthropogenic emissions of mercury to the atmosphere, prepared by Pacyna, E.G., Pacyna, J.M., Steenhuisen, F., Wilson, S. [2006. Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment, this issue, doi:10.1016/j.atmosenv.2006.03.041], and briefly discusses the results of this work. A new spatially distributed global emission inventory for the (nominal) year 2000, and a revised version of the 1995 inventory are presented. Emissions estimates for total mercury and major species groups are distributed within latitude/longitude-based grids with a resolution of 1×1 and 0.5×0.5°. A key component in the spatial distribution procedure is the use of population distribution as a surrogate parameter to distribute emissions from sources that cannot be accurately geographically located. In this connection, new gridded population datasets were prepared, based on the CEISIN GPW3 datasets (CIESIN, 2004. Gridded Population of the World (GPW), Version 3. Center for International Earth Science Information Network (CIESIN), Columbia University and Centro Internacional de Agricultura Tropical (CIAT). GPW3 data are available at http://beta.sedac.ciesin.columbia.edu/gpw/index.jsp). The spatially distributed emissions inventories and population datasets prepared in the course of this work are available on the Internet at www.amap.no/Resources/HgEmissions/

  5. A variable resolution nonhydrostatic global atmospheric semi-implicit semi-Lagrangian model

    Science.gov (United States)

    Pouliot, George Antoine

    2000-10-01

    The objective of this project is to develop a variable-resolution finite difference adiabatic global nonhydrostatic semi-implicit semi-Lagrangian (SISL) model based on the fully compressible nonhydrostatic atmospheric equations. To achieve this goal, a three-dimensional variable resolution dynamical core was developed and tested. The main characteristics of the dynamical core can be summarized as follows: Spherical coordinates were used in a global domain. A hydrostatic/nonhydrostatic switch was incorporated into the dynamical equations to use the fully compressible atmospheric equations. A generalized horizontal variable resolution grid was developed and incorporated into the model. For a variable resolution grid, in contrast to a uniform resolution grid, the order of accuracy of finite difference approximations is formally lost but remains close to the order of accuracy associated with the uniform resolution grid provided the grid stretching is not too significant. The SISL numerical scheme was implemented for the fully compressible set of equations. In addition, the generalized minimum residual (GMRES) method with restart and preconditioner was used to solve the three-dimensional elliptic equation derived from the discretized system of equations. The three-dimensional momentum equation was integrated in vector-form to incorporate the metric terms in the calculations of the trajectories. Using global re-analysis data for a specific test case, the model was compared to similar SISL models previously developed. Reasonable agreement between the model and the other independently developed models was obtained. The Held-Suarez test for dynamical cores was used for a long integration and the model was successfully integrated for up to 1200 days. Idealized topography was used to test the variable resolution component of the model. Nonhydrostatic effects were simulated at grid spacings of 400 meters with idealized topography and uniform flow. Using a high

  6. An optimisation technology for more precise determination of a source for modelling radioactive releases to the atmosphere

    International Nuclear Information System (INIS)

    Golubenkov, A.V.; Borodin, R.V.

    1993-01-01

    This paper deals with refining meteorological parameters and source term characteristics required for models of atmospheric dispersion and deposition of radioactivity in the area adjacent to facilities affected by a nuclear accident. The proposed methodology involves the minimisation of an objective function that is the sum of weighted norms of deviations between measured and model values. The measured values are spatially interpolated and the weights determined by the type of measurement and the precision of interpolation. Consideration is given to a technique of initial approximation based on calculating regression functions for the parameters to be refined using measured radioactivity. Coefficients for these functions are calculated by analysis of a multitude of simulated situations. Also discussed is a heuristic method, using multiple random perturbations on the data, for assessing the validity of the solution. Based on these calculations confidence intervals are determined for the refined model parameters. (author)

  7. A Global Atmospheric Model of Meteoric Iron

    Science.gov (United States)

    Feng, Wuhu; Marsh, Daniel R.; Chipperfield, Martyn P.; Janches, Diego; Hoffner, Josef; Yi, Fan; Plane, John M. C.

    2013-01-01

    The first global model of meteoric iron in the atmosphere (WACCM-Fe) has been developed by combining three components: the Whole Atmosphere Community Climate Model (WACCM), a description of the neutral and ion-molecule chemistry of iron in the mesosphere and lower thermosphere (MLT), and a treatment of the injection of meteoric constituents into the atmosphere. The iron chemistry treats seven neutral and four ionized iron containing species with 30 neutral and ion-molecule reactions. The meteoric input function (MIF), which describes the injection of Fe as a function of height, latitude, and day, is precalculated from an astronomical model coupled to a chemical meteoric ablation model (CABMOD). This newly developed WACCM-Fe model has been evaluated against a number of available ground-based lidar observations and performs well in simulating the mesospheric atomic Fe layer. The model reproduces the strong positive correlation of temperature and Fe density around the Fe layer peak and the large anticorrelation around 100 km. The diurnal tide has a significant effect in the middle of the layer, and the model also captures well the observed seasonal variations. However, the model overestimates the peak Fe+ concentration compared with the limited rocket-borne mass spectrometer data available, although good agreement on the ion layer underside can be obtained by adjusting the rate coefficients for dissociative recombination of Fe-molecular ions with electrons. Sensitivity experiments with the same chemistry in a 1-D model are used to highlight significant remaining uncertainties in reaction rate coefficients, and to explore the dependence of the total Fe abundance on the MIF and rate of vertical transport.

  8. Towards a Global Unified Model of Europa's Tenuous Atmosphere

    Science.gov (United States)

    Plainaki, Christina; Cassidy, Tim A.; Shematovich, Valery I.; Milillo, Anna; Wurz, Peter; Vorburger, Audrey; Roth, Lorenz; Galli, André; Rubin, Martin; Blöcker, Aljona; Brandt, Pontus C.; Crary, Frank; Dandouras, Iannis; Jia, Xianzhe; Grassi, Davide; Hartogh, Paul; Lucchetti, Alice; McGrath, Melissa; Mangano, Valeria; Mura, Alessandro; Orsini, Stefano; Paranicas, Chris; Radioti, Aikaterini; Retherford, Kurt D.; Saur, Joachim; Teolis, Ben

    2018-02-01

    Despite the numerous modeling efforts of the past, our knowledge on the radiation-induced physical and chemical processes in Europa's tenuous atmosphere and on the exchange of material between the moon's surface and Jupiter's magnetosphere remains limited. In lack of an adequate number of in situ observations, the existence of a wide variety of models based on different scenarios and considerations has resulted in a fragmentary understanding of the interactions of the magnetospheric ion population with both the moon's icy surface and neutral gas envelope. Models show large discrepancy in the source and loss rates of the different constituents as well as in the determination of the spatial distribution of the atmosphere and its variation with time. The existence of several models based on very different approaches highlights the need of a detailed comparison among them with the final goal of developing a unified model of Europa's tenuous atmosphere. The availability to the science community of such a model could be of particular interest in view of the planning of the future mission observations (e.g., ESA's JUpiter ICy moons Explorer (JUICE) mission, and NASA's Europa Clipper mission). We review the existing models of Europa's tenuous atmosphere and discuss each of their derived characteristics of the neutral environment. We also discuss discrepancies among different models and the assumptions of the plasma environment in the vicinity of Europa. A summary of the existing observations of both the neutral and the plasma environments at Europa is also presented. The characteristics of a global unified model of the tenuous atmosphere are, then, discussed. Finally, we identify needed future experimental work in laboratories and propose some suitable observation strategies for upcoming missions.

  9. The real performance of radioactive lightning arrester

    International Nuclear Information System (INIS)

    Leite, D.M.

    1985-01-01

    The study of the performance of radioactive lightning arrester comparing to the performance of conventional one are presented. Measurements of currents between lightning arrester and an energyzed plate with wind simulation were done for radioactive and conventional lightning arresters, separately. The attraction range of radioactive and conventional lightning arresters using atmospheric pulses produced by a generator of 3MV were verified, separately and simultaneously. The influence of ionization produced by radioactive lightning arrester on critical disruptive tension of a spark plate, testing two lightning arresters for differents nominal attraction distances with applications of atmospheric pulses (positive and negative polarity) and tensions of 60 Hz was verified. The radiation emitted by a radioactive lightning had used in a building was retired and handled without special carefullness by a personnel without worthy of credence to evaluate the hazard in handling radioactive lightning arrester was measured. Critical disruptive tensions of radioactive and conventional lightning arrester using a suspensed electrode and external pulse generator of 6MV was measured. The effect of attraction of a radioactive and conventional lightning arresters disposed symmetrically regarding the same suspensed electrode was verified simultaneously. Seven cases on faults of radioactive lightning arrester in external areas are present. (M.C.K.) [pt

  10. Atmospheric diffusion study and its application to nuclear energy

    International Nuclear Information System (INIS)

    Chino, Masamichi

    1990-01-01

    The report reviews studies on atmospheric diffusion of radioactive substances released from a smokestack. Smoke containing radioactive substances, or radioactive plume, diffuses into air while being affected by atmospheric turbulent flows in various ways depending on the scale of the plume. The diffusion of a radioactive plume released from a smokestack is discussed first, focusing on the diffusion process in the vicinity of the smokestack, in the atmospheric boundary layer and in the troposphere. Many theoretical studies have been conducted by using the Gaussian plume model, though it is too simple to take into account the topographic effects and unstationary atmospheric conditions. Various numerical calculation models (designed for numerical calculation by a computer) have recently been developed, particularly for the implementation of environmental impact evaluation. Diagnostic and forecast type models are available for atmospheric air flow calculation. Other models available for diffusion analysis include the puff model, segment model, PIC (particle in cell)model, and random walk model. (N.K.)

  11. Modeling the global atmospheric transport and deposition of mercury to the Great Lakes

    Directory of Open Access Journals (Sweden)

    Mark D. Cohen

    2016-07-01

    Full Text Available Abstract Mercury contamination in the Great Lakes continues to have important public health and wildlife ecotoxicology impacts, and atmospheric deposition is a significant ongoing loading pathway. The objective of this study was to estimate the amount and source-attribution for atmospheric mercury deposition to each lake, information needed to prioritize amelioration efforts. A new global, Eulerian version of the HYSPLIT-Hg model was used to simulate the 2005 global atmospheric transport and deposition of mercury to the Great Lakes. In addition to the base case, 10 alternative model configurations were used to examine sensitivity to uncertainties in atmospheric mercury chemistry and surface exchange. A novel atmospheric lifetime analysis was used to characterize fate and transport processes within the model. Model-estimated wet deposition and atmospheric concentrations of gaseous elemental mercury (Hg(0 were generally within ∼10% of measurements in the Great Lakes region. The model overestimated non-Hg(0 concentrations by a factor of 2–3, similar to other modeling studies. Potential reasons for this disagreement include model inaccuracies, differences in atmospheric Hg fractions being compared, and the measurements being biased low. Lake Erie, downwind of significant local/regional emissions sources, was estimated by the model to be the most impacted by direct anthropogenic emissions (58% of the base case total deposition, while Lake Superior, with the fewest upwind local/regional sources, was the least impacted (27%. The U.S. was the largest national contributor, followed by China, contributing 25% and 6%, respectively, on average, for the Great Lakes. The contribution of U.S. direct anthropogenic emissions to total mercury deposition varied between 46% for the base case (with a range of 24–51% over all model configurations for Lake Erie and 11% (range 6–13% for Lake Superior. These results illustrate the importance of atmospheric

  12. Atmospheric plume progression as a function of time and distance from the release point for radioactive isotopes.

    Science.gov (United States)

    Eslinger, Paul W; Bowyer, Ted W; Cameron, Ian M; Hayes, James C; Miley, Harry S

    2015-10-01

    The radionuclide network of the International Monitoring System comprises up to 80 stations around the world that have aerosol and xenon monitoring systems designed to detect releases of radioactive materials to the atmosphere from nuclear explosions. A rule of thumb description of plume concentration and duration versus time and distance from the release point is useful when designing and deploying new sample collection systems. This paper uses plume development from atmospheric transport modeling to provide a power-law rule describing atmospheric dilution factors as a function of distance from the release point. Consider the plume center-line concentration seen by a ground-level sampler as a function of time based on a short-duration ground-level release of a nondepositing radioactive tracer. The concentration C (Bq m(-3)) near the ground varies with distance from the source with the relationship C=R×A(D,C) ×e (-λ(-1.552+0.0405×D)) × 5.37×10(-8) × D(-2.35) where R is the release magnitude (Bq), D is the separation distance (km) from the ground level release to the measurement location, λ is the decay constant (h(-1)) for the radionuclide of interest and AD,C is an attenuation factor that depends on the length of the sample collection period. This relationship is based on the median concentration for 10 release locations with different geographic characteristics and 365 days of releases at each location, and it has an R(2) of 0.99 for 32 distances from 100 to 3000 km. In addition, 90 percent of the modeled plumes fall within approximately one order of magnitude of this curve for all distances. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. ANSTO radon monitoring within the WMO global atmosphere watch programme

    International Nuclear Information System (INIS)

    Zahorowski, W.; Chambers, S.; Sisoutham, O.; Werczynski, S.

    2003-01-01

    A brief overview of results from the ANSTO radon programmes at the Cape Grim (Tasmania) and Mauna Loa Observatory (Hawaii), World Meteorological Organisation Global Atmosphere Watch stations it presented. At Cape Grim, a 100 mBq m 3 threshold on radon concentration observations has proven to be a suitable criterion for Baseline monitoring. Furthermore, analysis of the Cape Grim Baseline radon data has enabled the characterisation of the oceanic radon flux over the Southern Ocean Cape Grim fetch region. Radon observations at the Mauna Loa Observatory, in conjunction with back trajectory analysis, have helped to identify the source regions of the most pervasive pollution events in the atmosphere of the Pacific Basin. The seasonal variability in the strength of terrestrial influence on Pacific air masses has also been characterised

  14. Impact of bulk atmospheric motion on local and global containment heat transfer

    International Nuclear Information System (INIS)

    Green, J.A.; Almenas, K.

    1995-01-01

    Local and global correlations for condensing energy transfer in the presence of noncondensable gases in a containment facility have been evaluated. The database employed stems from the E11.2 and E11.4 tests conducted at the German HDR facility. The HDR containment is a 11060-ml, 60-m-high decommissioned light water reactor. The tests simulated long-term (up to 56 h) accident conditions. Numerous instrumented structural blocks (concrete and lead) were located throughout the containment to provide detailed local heat transfer measurements. These data represent what is probably the most extensive database of integral energy transfer measurements available. It is well established that the major resistance to condensation heat transfer in the presence of noncondensable gases is a gaseous boundary layer that builds up in front of the condensing surface. Correlations that seek to model heat transfer for these conditions should depend on parameters that most strongly determine the buildup and thickness of this boundary layer. Two of the most important parameters are the vapor/noncondensable concentration ratio and the local atmospheric motion. Secondary parameters include the atmosphere-to-surface temperature difference, the pressure, and condensing surface properties. The HDR tests are unique in terms of the quantity and variety of instrumentation employed. However, one of the most important parameters, the local bulk atmospheric velocity, is inherently difficult to measure, and only fragmentary measurements are available even in the HDR data-base. A detailed analysis of these data is presented by Green. This study uses statistical methods to evaluate local and global empirical correlations that do not include the atmospheric velocity. The magnitude of the differences between the correlations emphasizes the importance of the local atmospheric velocity and serves to illustrate the accuracy limits of correlations that neglect this essential parameter

  15. Evaluation of the Atmospheric Boundary-Layer Electrical Variability

    Science.gov (United States)

    Anisimov, Sergey V.; Galichenko, Sergey V.; Aphinogenov, Konstantin V.; Prokhorchuk, Aleksandr A.

    2017-12-01

    Due to the chaotic motion of charged particles carried by turbulent eddies, electrical quantities in the atmospheric boundary layer (ABL) have short-term variability superimposed on long-term variability caused by sources from regional to global scales. In this study the influence of radon exhalation rate, aerosol distribution and turbulent transport efficiency on the variability of fair-weather atmospheric electricity is investigated via Lagrangian stochastic modelling. For the mid-latitude lower atmosphere undisturbed by precipitation, electrified clouds, or thunderstorms, the model is capable of reproducing the diurnal variation in atmospheric electrical parameters detected by ground-based measurements. Based on the analysis of field observations and numerical simulation it is found that the development of the convective boundary layer, accompanied by an increase in turbulent kinetic energy, forms the vertical distribution of radon and its decaying short-lived daughters to be approximately coincident with the barometric law for several eddy turnover times. In the daytime ABL the vertical distribution of atmospheric electrical conductivity tends to be uniform except within the surface layer, due to convective mixing of radon and its radioactive decay products. At the same time, a decrease in the conductivity near the ground is usually observed. This effect leads to an enhanced ground-level atmospheric electric field compared to that normally observed in the nocturnal stably-stratified boundary layer. The simulation showed that the variability of atmospheric electric field in the ABL associated with internal origins is significant in comparison to the variability related to changes in global parameters. It is suggested that vertical profiles of electrical quantities can serve as informative parameters on ABL turbulent dynamics and can even more broadly characterize the state of the environment.

  16. Global atmospheric budget of simple monocyclic aromatic compounds

    Directory of Open Access Journals (Sweden)

    D. Cabrera-Perez

    2016-06-01

    Full Text Available The global atmospheric budget and distribution of monocyclic aromatic compounds is estimated, using an atmospheric chemistry general circulation model. Simulation results are evaluated with an ensemble of surface and aircraft observations with the goal of understanding emission, production and removal of these compounds.Anthropogenic emissions provided by the RCP database represent the largest source of aromatics in the model (≃ 23 TgC year−1 and biomass burning from the GFAS inventory the second largest (≃ 5 TgC year−1. The simulated chemical production of aromatics accounts for  ≃ 5 TgC year−1. The atmospheric burden of aromatics sums up to 0.3 TgC. The main removal process of aromatics is photochemical decomposition (≃ 27 TgC  year−1, while wet and dry deposition are responsible for a removal of  ≃ 4 TgC year−1.Simulated mixing ratios at the surface and elsewhere in the troposphere show good spatial and temporal agreement with the observations for benzene, although the model generally underestimates mixing ratios. Toluene is generally well reproduced by the model at the surface, but mixing ratios in the free troposphere are underestimated. Finally, larger discrepancies are found for xylenes: surface mixing ratios are not only overestimated but also a low temporal correlation is found with respect to in situ observations.

  17. Global Effects of Superparameterization on Hydrothermal Land-Atmosphere Coupling on Multiple Timescales

    Science.gov (United States)

    Qin, Hongchen; Pritchard, Michael S.; Kooperman, Gabriel J.; Parishani, Hossein

    2018-02-01

    Many conventional General Circulation Models (GCMs) in the Global Land-Atmosphere Coupling Experiment (GLACE) tend to produce what is now recognized as overly strong land-atmosphere (L-A) coupling. We investigate the effects of cloud Superparameterization (SP) on L-A coupling on timescales beyond diurnal where it has been recently shown to have a favorable muting effect hydrologically. Using the Community Atmosphere Model v3.5 (CAM3.5) and its Superparameterized counterpart SPCAM3.5, we conducted soil moisture interference experiments following the GLACE and Atmospheric Model Intercomparison Project (AMIP) protocols. The results show that, on weekly-to-subseasonal timescales, SP also mutes hydrologic L-A coupling. This is detectable globally, and happens through the evapotranspiration-precipitation segment. But on seasonal timescales, SP does not exhibit detectable effects on hydrologic L-A coupling. Two robust regional effects of SP on thermal L-A coupling have also been explored. Over the Arabian Peninsula, SP reduces thermal L-A coupling through a straightforward control by mean rainfall reduction. More counterintuitively, over the Southwestern US and Northern Mexico, SP enhances the thermal L-A coupling in a way that is independent of rainfall and soil moisture. This signal is associated with a systematic and previously unrecognized effect of SP that produces an amplified Bowen ratio, and is detectable in multiple SP model versions and experiment designs. In addition to amplifying the present-day Bowen ratio, SP is found to amplify the climate sensitivity of Bowen ratio as well, which likely plays a role in influencing climate change predictions at the L-A interface.

  18. Radioactive aerosols. [In Russian

    Energy Technology Data Exchange (ETDEWEB)

    Natanson, G L

    1956-01-01

    Tabulations are given presenting various published data on safe atmospheric concentrations of various radioactive and non-radioactive aerosols. Methods of determination of active aerosol concentrations and dispersion as well as the technical applications of labeled aerosols are discussed. The effect of atomic explosions are analyzed considering the nominal atomic bomb based on /sup 235/U and /sup 232/Pu equivalent to 20,000 tons of TNT.

  19. Chapter 2. Peculiarities of radioactive particle formation and isotope fractionation resulted from underground nuclear explosions

    International Nuclear Information System (INIS)

    1996-01-01

    Radioactive particles, forming terrain fallouts from underground nuclear explosion differ sufficiently from radioactive particles, produced by atmospheric nuclear explosions. Patterns of underground nuclear explosion development, release of radioactivity to the atmosphere, formation of a cloud and base surge, peculiarities of formed radioactive particles, data on isotope fractionation in radioactive particles are presented. Scheme of particle activation, resulted from underground explosions is given

  20. Observation of environmental radioactivity at definite time and definite point

    International Nuclear Information System (INIS)

    Inokoshi, Yukio; Fukuchi, Ryoichi; Irie, Takayuki; Hosoda, Nagako; Okano, Yasuhiro; Shindo, Koutaro

    1990-01-01

    The measurement of environmental radioactivity in Tokyo Metropolis was carried out. The objects of measurement were rainwater, atmospheric floating dusts, spatial dose and the activated sludge in sewage treatment plants. Rainwater, atmospheric floating dusts and spatial dose were analyzed mainly considering radioactive fallout, and activated sludge was analyzed mainly considering radioactive medical matters. For the analysis of nuclides, a Ge(Li) semiconductor detector was used, and spatial dose rate was measured with a DBM type dose rate meter. In activated sludge, the nuclides used for radioactive medicines were found, but in rainwater, atmospheric floating dusts and spatial dose, particular abnormality was not found. The objective of this investigation is to collect over long period at definite time and definite points the data on environmental radioactivity in Tokyo, thus to grasp the level of normal values, and in abnormal case, to clarify the cause and to evaluate the exposure dose. The instruments used, the method of measuring each object and the results are reported. (K.I.)

  1. Global atmospheric carbon budget: results from an ensemble of atmospheric CO2 inversions

    Directory of Open Access Journals (Sweden)

    P. Peylin

    2013-10-01

    Full Text Available Atmospheric CO2 inversions estimate surface carbon fluxes from an optimal fit to atmospheric CO2 measurements, usually including prior constraints on the flux estimates. Eleven sets of carbon flux estimates are compared, generated by different inversions systems that vary in their inversions methods, choice of atmospheric data, transport model and prior information. The inversions were run for at least 5 yr in the period between 1990 and 2010. Mean fluxes for 2001–2004, seasonal cycles, interannual variability and trends are compared for the tropics and northern and southern extra-tropics, and separately for land and ocean. Some continental/basin-scale subdivisions are also considered where the atmospheric network is denser. Four-year mean fluxes are reasonably consistent across inversions at global/latitudinal scale, with a large total (land plus ocean carbon uptake in the north (−3.4 Pg C yr−1 (±0.5 Pg C yr−1 standard deviation, with slightly more uptake over land than over ocean, a significant although more variable source over the tropics (1.6 ± 0.9 Pg C yr−1 and a compensatory sink of similar magnitude in the south (−1.4 ± 0.5 Pg C yr−1 corresponding mainly to an ocean sink. Largest differences across inversions occur in the balance between tropical land sources and southern land sinks. Interannual variability (IAV in carbon fluxes is larger for land than ocean regions (standard deviation around 1.06 versus 0.33 Pg C yr−1 for the 1996–2007 period, with much higher consistency among the inversions for the land. While the tropical land explains most of the IAV (standard deviation ~ 0.65 Pg C yr−1, the northern and southern land also contribute (standard deviation ~ 0.39 Pg C yr−1. Most inversions tend to indicate an increase of the northern land carbon uptake from late 1990s to 2008 (around 0.1 Pg C yr−1, predominantly in North Asia. The mean seasonal cycle appears to be well constrained by the atmospheric data over

  2. Inter-annual variability of the atmospheric carbon dioxide concentrations as simulated with global terrestrial biosphere models and an atmospheric transport model

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Daisuke; Saeki, Tazu; Nakazawa, Takakiyo [Tohoku Univ., Sendai (Japan). Center for Atmospheric and Oceanic Studies; Ishizawa, Misa; Maksyutov, Shamil [Inst. for Global Change Research, Yokohama (Japan). Frontier Research System for Global Change; Thornton, Peter E. [National Center for Atmospheric Research, Boulder, CO (United States). Climate and Global Dynamics Div.

    2003-04-01

    Seasonal and inter-annual variations of atmospheric CO{sub 2} for the period from 1961 to 1997 have been simulated using a global tracer transport model driven by a new version of the Biome BioGeochemical Cycle model (Biome-BGC). Biome-BGC was forced by daily temperature and precipitation from the NCEP reanalysis dataset, and the calculated monthly-averaged CO{sub 2} fluxes were used as input to the global transport model. Results from an inter-comparison with the Carnegie-Ames-Stanford Approach model (CASA) and the Simulation model of Carbon CYCLE in Land Ecosystems (Sim-CYCLE) model are also reported. The phase of the seasonal cycle in the Northern Hemisphere was reproduced generally well by Biome-BGC, although the amplitude was smaller compared to the observations and to the other biosphere models. The CO{sub 2} time series simulated by Biome-BGC were compared to the global CO{sub 2} concentration anomalies from the observations at Mauna Loa and the South Pole. The modeled concentration anomalies matched the phase of the inter-annual variations in the atmospheric CO{sub 2} observations; however, the modeled amplitude was lower than the observed value in several cases. The result suggests that a significant part of the inter-annual variability in the global carbon cycle can be accounted for by the terrestrial biosphere models. Simulations performed with another climate-based model, Sim-CYCLE, produced a larger amplitude of inter-annual variability in atmospheric CO{sub 2}, making the amplitude closer to the observed range, but with a more visible phase mismatch in a number of time periods. This may indicate the need to increase the Biome-BGC model sensitivity to seasonal and inter-annual changes in temperature and precipitation.

  3. Inter-annual variability of the atmospheric carbon dioxide concentrations as simulated with global terrestrial biosphere models and an atmospheric transport model

    International Nuclear Information System (INIS)

    Fujita, Daisuke; Saeki, Tazu; Nakazawa, Takakiyo; Ishizawa, Misa; Maksyutov, Shamil; Thornton, Peter E.

    2003-01-01

    Seasonal and inter-annual variations of atmospheric CO 2 for the period from 1961 to 1997 have been simulated using a global tracer transport model driven by a new version of the Biome BioGeochemical Cycle model (Biome-BGC). Biome-BGC was forced by daily temperature and precipitation from the NCEP reanalysis dataset, and the calculated monthly-averaged CO 2 fluxes were used as input to the global transport model. Results from an inter-comparison with the Carnegie-Ames-Stanford Approach model (CASA) and the Simulation model of Carbon CYCLE in Land Ecosystems (Sim-CYCLE) model are also reported. The phase of the seasonal cycle in the Northern Hemisphere was reproduced generally well by Biome-BGC, although the amplitude was smaller compared to the observations and to the other biosphere models. The CO 2 time series simulated by Biome-BGC were compared to the global CO 2 concentration anomalies from the observations at Mauna Loa and the South Pole. The modeled concentration anomalies matched the phase of the inter-annual variations in the atmospheric CO 2 observations; however, the modeled amplitude was lower than the observed value in several cases. The result suggests that a significant part of the inter-annual variability in the global carbon cycle can be accounted for by the terrestrial biosphere models. Simulations performed with another climate-based model, Sim-CYCLE, produced a larger amplitude of inter-annual variability in atmospheric CO 2 , making the amplitude closer to the observed range, but with a more visible phase mismatch in a number of time periods. This may indicate the need to increase the Biome-BGC model sensitivity to seasonal and inter-annual changes in temperature and precipitation

  4. Radioactive wastes and discharges

    International Nuclear Information System (INIS)

    1993-01-01

    According to the Section 24 of the Finnish Radiation Decree (1512/91), the Finnish Centre for Radiation and Nuclear Safety shall specify the concentration and activity limits and principles for the determination whether a waste can be defined as a radioactive waste or not. The radiation safety requirements and limits for the disposal of radioactive waste are given in the guide. They must be observed when discharging radioactive waste into the atmosphere or sewer system, or when delivering solid low-activity waste to a landfill site without a separate waste disposal plan. The guide does not apply to the radioactive waste resulting from the utilization of nuclear energy of natural resources. (4 refs., 1 tab.)

  5. GLODEP2: a computer model for estimating gamma dose due to worldwide fallout of radioactive debris

    International Nuclear Information System (INIS)

    Edwards, L.L.; Harvey, T.F.; Peterson, K.R.

    1984-03-01

    The GLODEP2 computer code provides estimates of the surface deposition of worldwide radioactivity and the gamma-ray dose to man from intermediate and long-term fallout. The code is based on empirical models derived primarily from injection-deposition experience gained from the US and USSR nuclear tests in 1958. Under the assumption that a nuclear power facility is destroyed and that its debris behaves in the same manner as the radioactive cloud produced by the nuclear weapon that attached the facility, predictions are made for the gamma does from this source of radioactivity. As a comparison study the gamma dose due to the atmospheric nuclear tests from the period of 1951 to 1962 has been computed. The computed and measured values from Grove, UK and Chiba, Japan agree to within a few percent. The global deposition of radioactivity and resultant gamma dose from a hypothetical strategic nuclear exchange between the US and the USSR is reported. Of the assumed 5300 Mton in the exchange, 2031 Mton of radioactive debris is injected in the atmosphere. The highest estimated average whole body total integrated dose over 50 years (assuming no reduction by sheltering or weathering) is 23 rem in the 30 to 50 degree latitude band. If the attack included a 100 GW(e) nuclear power industry as targets in the US, this dose is increased to 84.6 rem. Hotspots due to rainfall could increase these values by factors of 10 to 50

  6. Exhaust gas cleaning system for handling radioactive fission and activation gases

    International Nuclear Information System (INIS)

    Queiser, H.; Schwarz, H.

    1975-01-01

    An exhaust gas cleaning system utilizing the principle of delaying radioactive gases to permit their radioactive decay to a level acceptable for release to the atmosphere, comprising an adsorbent for adsorbing radioactive gas and a container for containing the adsorbent and for constraining gas to flow through the adsorbent, the adsorbent and the container forming simultaneously an adsorptive delay section and a mechanical delay section, by means of a predetermined ratio of volume of voids in the adsorbent to total volume of the container containing the adsorbent, for delaying radioactive gas to permit its radioactive decay to a level acceptable for release to the atmosphere is described. A method of using an adsorbent for cleaning a radioactive gas containing an isotope which is adsorbed by the adsorbent and containing an isotope whose adsorption by the adsorbent is low as compared to the isotope which is adsorbed and which is short-lived as compared to the isotope which is adsorbed, comprising constraining the gas to flow through the adsorbent with the retention time for the isotope which is adsorbed being at least the minimum for permitting radioactive decay to a level acceptable for release to the atmosphere and with the retention time for the isotope of relatively low adsorption and relatively short life being at least the minimum for permitting radioactive decay to a level acceptable for release to the atmosphere is also described. (U.S.)

  7. Anthropogenic radioactivity in aerosol. A review focusing on studies during the 2000s

    International Nuclear Information System (INIS)

    Igarashi, Yasuhito

    2009-01-01

    Large-scale injection of huge amounts of any pollutant into the atmosphere has health and environmental impacts, but also provides an opportunity for understanding associated bio-geochemical cycles. Radiologically important, long-lived radionuclides emitted by atmospheric nuclear tests, such as 90 Sr, 137 Cs, and plutonium isotopes, are good examples. These radionuclides remain in the biosphere, although dilution and radioactive decay have mitigated their radiation impact, which is at present negligible compared with natural radiation. Nevertheless, the study of their redistribution over the Earth's surface can enhance understanding of various environmental processes. In this review, available up-to-date information on the source, transport, and deposition of these radionuclides in the atmosphere is collected and these aspects of radionuclides in various global regions are reviewed. In regions adjacent to arid or semi-arid lands, aeolian dust is likely the dominant source of these radionuclides, whereas in northern regions adjacent to contaminated boreal forests, forest fires are a more important source, especially of 137 Cs in air. Understanding of the atmospheric processes responsible for the redistribution of these radionuclides can improve forecast models in various environmental research fields. Future tasks include continued long-term monitoring and data integration with global data consistency and data analysis with modern chemical transport models. (author)

  8. Global and exponential attractors of the three dimensional viscous primitive equations of large-scale moist atmosphere

    OpenAIRE

    You, Bo; Li, Fang

    2016-01-01

    This paper is concerned with the long-time behavior of solutions for the three dimensional viscous primitive equations of large-scale moist atmosphere. We prove the existence of a global attractor for the three dimensional viscous primitive equations of large-scale moist atmosphere by asymptotic a priori estimate and construct an exponential attractor by using the smoothing property of the semigroup generated by the three dimensional viscous primitive equations of large-scale moist atmosphere...

  9. Radioactivity and wildlife

    International Nuclear Information System (INIS)

    Kennedy, V.H.; Horrill, A.D.; Livens, F.R.

    1990-01-01

    The official assumption is that if levels of radioactivity are safe for humans, they are safe for wildlife too. NCC sponsored a research project by the Institute of Terrestrial Ecology to find out what was known in this field. It appears that the assumption is justified to a certain extent in that mammals are identified as the organisms most vulnerable to the damaging effects of radioactivity. Other general principles are put forward: where there are radioactive discharges to the marine environment, coastal muds and saltmarshes can be particularly contaminated; upland habitats, with low nutrient status and subject to high rainfall, are likely to accumulate radioactivity from atmospheric discharges (e.g. Chernobyl, the wildlife effects of which are reported here). The document concludes that no deleterious effects of radioactivity on wild plants and animals have been detected in the UK, but acknowledges that there are still many gaps in our knowledge of the behaviour of radioisotopes in the natural environment. (UK)

  10. Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions

    Science.gov (United States)

    Yanxu Zhang,; Daniel J. Jacob,; Hannah M. Horowitz,; Long Chen,; Helen M. Amos,; Krabbenhoft, David P.; Franz Slemr,; Vincent L. St. Louis,; Elsie M. Sunderland,

    2015-01-01

    Observations of elemental mercury (Hg0) at sites in North America and Europe show large decreases (∼1–2% y−1) from 1990 to present. Observations in background northern hemisphere air, including Mauna Loa Observatory (Hawaii) and CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) aircraft flights, show weaker decreases (Asia. Implementation of our inventory in a global 3D atmospheric Hg simulation [GEOS-Chem (Goddard Earth Observing System-Chemistry)] coupled to land and ocean reservoirs reproduces the observed large-scale trends in atmospheric Hg0 concentrations and in HgII wet deposition. The large trends observed in North America and Europe reflect the phase-out of Hg from commercial products as well as the cobenefit from SO2 and NOx emission controls on coal-fired utilities.

  11. Enhancing atmospheric mercury research in China to improve the current understanding of the global mercury cycle: the need for urgent and closely coordinated efforts.

    Science.gov (United States)

    Ci, Zhijia; Zhang, Xiaoshan; Wang, Zhangwei

    2012-06-05

    The current understanding of the global mercury (Hg) cycle remains uncertain because Hg behavior in the environment is very complicated. The special property of Hg causes the atmosphere to be the most important medium for worldwide dispersion and transformation. The source and fate of atmospheric Hg and its interaction with the surface environment are the essential topics in the global Hg cycle. Recent declining measurement trends of Hg in the atmosphere are in apparent conflict with the increasing trends in global anthropogenic Hg emissions. As the single largest country contributor of anthropogenic Hg emission, China's role in the global Hg cycle will become more and more important in the context of the decreasing man-made Hg emission from developed regions. However, much less Hg information in China is available. As a global pollutant which undergoes long-range transport and is persistence in the environment, increasing Hg knowledge in China could not only promote the Hg regulation in this country but also improve the understanding of the fundamental of the global Hg cycle and further push the abatement of this toxin on a global scale. Then the atmospheric Hg research in China may be a breakthrough for improving the current understanding of the global Hg cycle. However, due to the complex behavior of Hg in the atmosphere, a deeper understanding of the atmospheric Hg cycle in China needs greater cooperation across fields.

  12. The signature of atmospheric tides in sub-daily variations of Earth rotation as unveiled by globally-gridded atmospheric angular momentum functions

    Science.gov (United States)

    Schindelegger, M.; Böhm, J.; Salstein, D. A.; Schuh, H.

    2012-12-01

    Thermally-driven atmospheric tides provide a small but distinct contribution to shortperiod variations of Earth rotation parameters (ERP). The effect of diurnal and semi-diurnal tides, commonly denoted as S1 and S2, respectively, is in the range of 2 - 10 uas for polar motion and 2 - 10 uas for changes in length-of-day (LOD). Even though ocean tides represent a much more dominant driving agent for ERP fluctuations at short time scales, high-frequency atmospheric effects are non-negligible, particularly given the prospective measurement accuracy of space geodetic techniques. However, previous studies, such as Brzezinski et al. (2002), de Viron et al. (2005) or Schindelegger et al. (2011), have been noticeably inconclusive on the exact amplitude and phase values of S1 and S2 atmospheric excitation signals. This study aims at shedding light on the origin of these uncertainties with respect to the axial component of Earth's rotation vector by investigating times series of atmospheric angular momentum (AAM) functions that are given on global grids and computed from three-hourly meteorological data of the European Centre for Medium-Range Weather Forecasts (ECMWF). The signature of diurnal and semi-diurnal atmospheric tides is clearly visible in the gridded axial AAM functions, revealing a distinct spatial and temporal phase difference between pressure and wind tidal constituents of about ± π. It is shown that due to this counterbalance and the explicit axisymmetric spatial structure of S1 and S2, the net effect in sub-diurnal AAM (which is calculated from the global sum of gridded AAM functions) is always a small quantity, particularly sensitive to minor differences between the analysis fields of numerical weather models.

  13. Atmospheric Carbon Dioxide and the Global Carbon Cycle: The Key Uncertainties

    Science.gov (United States)

    Peng, T. H.; Post, W. M.; DeAngelis, D. L.; Dale, V. H.; Farrell, M. P.

    1987-12-01

    The biogeochemical cycling of carbon between its sources and sinks determines the rate of increase in atmospheric CO{sub 2} concentrations. The observed increase in atmospheric CO{sub 2} content is less than the estimated release from fossil fuel consumption and deforestation. This discrepancy can be explained by interactions between the atmosphere and other global carbon reservoirs such as the oceans, and the terrestrial biosphere including soils. Undoubtedly, the oceans have been the most important sinks for CO{sub 2} produced by man. But, the physical, chemical, and biological processes of oceans are complex and, therefore, credible estimates of CO{sub 2} uptake can probably only come from mathematical models. Unfortunately, one- and two-dimensional ocean models do not allow for enough CO{sub 2} uptake to accurately account for known releases. Thus, they produce higher concentrations of atmospheric CO{sub 2} than was historically the case. More complex three-dimensional models, while currently being developed, may make better use of existing tracer data than do one- and two-dimensional models and will also incorporate climate feedback effects to provide a more realistic view of ocean dynamics and CO{sub 2} fluxes. The instability of current models to estimate accurately oceanic uptake of CO{sub 2} creates one of the key uncertainties in predictions of atmospheric CO{sub 2} increases and climate responses over the next 100 to 200 years.

  14. Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions

    Science.gov (United States)

    Yanxu Zhang,; Daniel J. Jacob,; Hannah M. Horowitz,; Long Chen,; Helen M. Amos,; Krabbenhoft, David P.; Franz Slemr,; Vincent L. St. Louis,; Elsie M. Sunderland,

    2015-01-01

    Observations of elemental mercury (Hg0) at sites in North America and Europe show large decreases (∼1–2% y−1) from 1990 to present. Observations in background northern hemisphere air, including Mauna Loa Observatory (Hawaii) and CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) aircraft flights, show weaker decreases (inventories indicating flat or increasing emissions over that period. However, the inventories have three major flaws: (i) they do not account for the decline in atmospheric release of Hg from commercial products; (ii) they are biased in their estimate of artisanal and small-scale gold mining emissions; and (iii) they do not properly account for the change in Hg0/HgII speciation of emissions from coal-fired utilities after implementation of emission controls targeted at SO2 and NOx. We construct an improved global emission inventory for the period 1990 to 2010 accounting for the above factors and find a 20% decrease in total Hg emissions and a 30% decrease in anthropogenic Hg0 emissions, with much larger decreases in North America and Europe offsetting the effect of increasing emissions in Asia. Implementation of our inventory in a global 3D atmospheric Hg simulation [GEOS-Chem (Goddard Earth Observing System-Chemistry)] coupled to land and ocean reservoirs reproduces the observed large-scale trends in atmospheric Hg0 concentrations and in HgII wet deposition. The large trends observed in North America and Europe reflect the phase-out of Hg from commercial products as well as the cobenefit from SO2 and NOx emission controls on coal-fired utilities.

  15. Flexible global ocean-atmosphere-land system model. A modeling tool for the climate change research community

    International Nuclear Information System (INIS)

    Zhou, Tianjun; Yu, Yongqiang; Liu, Yimin; Wang, Bin

    2014-01-01

    First book available on systematic evaluations of the performance of the global climate model FGOALS. Covers the whole field, ranging from the development to the applications of this climate system model. Provide an outlook for the future development of the FGOALS model system. Offers brief introduction about how to run FGOALS. Coupled climate system models are of central importance for climate studies. A new model known as FGOALS (the Flexible Global Ocean-Atmosphere-Land System model), has been developed by the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP, CAS), a first-tier national geophysical laboratory. It serves as a powerful tool, both for deepening our understanding of fundamental mechanisms of the climate system and for making decadal prediction and scenario projections of future climate change. ''Flexible Global Ocean-Atmosphere-Land System Model: A Modeling Tool for the Climate Change Research Community'' is the first book to offer systematic evaluations of this model's performance. It is comprehensive in scope, covering both developmental and application-oriented aspects of this climate system model. It also provides an outlook of future development of FGOALS and offers an overview of how to employ the model. It represents a valuable reference work for researchers and professionals working within the related areas of climate variability and change.

  16. SiB3 Modeled Global 1-degree Hourly Biosphere-Atmosphere Carbon Flux, 1998-2006

    Data.gov (United States)

    National Aeronautics and Space Administration — The Simple Biosphere Model, Version 3 (SiB3) was used to produce a global data set of hourly carbon fluxes between the atmosphere and the terrestrial biosphere for...

  17. Software Test Description (STD) for the Globally Relocatable Navy Tide/Atmospheric Modeling System (PCTides)

    National Research Council Canada - National Science Library

    Posey, Pamela

    2002-01-01

    The purpose of this Software Test Description (STD) is to establish formal test cases to be used by personnel tasked with the installation and verification of the Globally Relocatable Navy Tide/Atmospheric Modeling System (PCTides...

  18. For how long can we predict the weather? - Insights into atmospheric predictability from global convection-allowing simulations

    Science.gov (United States)

    Judt, Falko

    2017-04-01

    A tremendous increase in computing power has facilitated the advent of global convection-resolving numerical weather prediction (NWP) models. Although this technological breakthrough allows for the seamless prediction of weather from local to global scales, the predictability of multiscale weather phenomena in these models is not very well known. To address this issue, we conducted a global high-resolution (4-km) predictability experiment using the Model for Prediction Across Scales (MPAS), a state-of-the-art global NWP model developed at the National Center for Atmospheric Research. The goals of this experiment are to investigate error growth from convective to planetary scales and to quantify the intrinsic, scale-dependent predictability limits of atmospheric motions. The globally uniform resolution of 4 km allows for the explicit treatment of organized deep moist convection, alleviating grave limitations of previous predictability studies that either used high-resolution limited-area models or global simulations with coarser grids and cumulus parameterization. Error growth is analyzed within the context of an "identical twin" experiment setup: the error is defined as the difference between a 20-day long "nature run" and a simulation that was perturbed with small-amplitude noise, but is otherwise identical. It is found that in convectively active regions, errors grow by several orders of magnitude within the first 24 h ("super-exponential growth"). The errors then spread to larger scales and begin a phase of exponential growth after 2-3 days when contaminating the baroclinic zones. After 16 days, the globally averaged error saturates—suggesting that the intrinsic limit of atmospheric predictability (in a general sense) is about two weeks, which is in line with earlier estimates. However, error growth rates differ between the tropics and mid-latitudes as well as between the troposphere and stratosphere, highlighting that atmospheric predictability is a complex

  19. Using an atmospheric boundary layer model to force global ocean models

    Science.gov (United States)

    Abel, Rafael; Böning, Claus

    2014-05-01

    Current practices in the atmospheric forcing of ocean model simulations can lead to unphysical behaviours. The problem lies in the bulk formulation of the turbulent air-sea fluxes in the conjunction with a prescribed, and unresponsive, atmospheric state (as given by reanalysis products). This can have impacts both on mesoscale processes as well as on the dynamics of the large-scale circulation. First, a possible local mismatch between the given atmospheric state and evolving sea surface temperature (SST) signatures can occur, especially for mesoscale features such as frontal areas, eddies, or near the sea ice edge. Any ocean front shift or evolution of mesoscale anomalies results in excessive, unrealistic surface fluxes due to the lack of atmospheric adaptation. Second, a subtle distortion in the sensitive balance of feedback processes being critical for the thermohaline circulation. Since the bulk formulations assume an infinite atmospheric heat capacity, resulting SST anomalies are strongly damped even on basin-scales (e.g. from trends in the Atlantic meridional overturning circulation). In consequence, an important negative feedback is eliminated, rendering the system excessively susceptible to small anomalies (or errors) in the freshwater fluxes. Previous studies (Seager et al., 1995, J. Clim.) have suggested a partial forcing issue remedy that aimed for a physically more realistic determination of air-sea fluxes by allowing some (thermodynamic) adaptation of the atmospheric boundary layer to SST changes. In this study a modernized formulation of this approach (Deremble et al., 2013, Mon. Weather Rev.; 'CheapAML') is implemented in a global ocean-ice model with moderate resolution (0.5°; ORCA05). In a set of experiments we explore the solution behaviour of this forcing approach (where only the winds are prescribed, while atmospheric temperature and humidity are computed), contrasting it with the solution obtained from the classical bulk formulation with a non

  20. Evaluation of radon and radioactivity level in phosphorite area in Guizhou

    International Nuclear Information System (INIS)

    Li Zhou; Yang Zhong; Wei Tao; Zhang Xiaole; Yu Lixin; Tian Zhujuan

    2006-01-01

    Objective: To study and assess atmospheric radon and radioactive levels in one of phosphorite area in Guizhou province. Methods: To monitor and analyze the external irradiation level, atmospheric radon, nuclide levels, and water total radioactivity on the spot and in the laboratory. Results: External irradiation level is 7-18 x 10 -8 Gy/h, the mean value is 12 x 10 -8 Gy/h, atmospheric radon concentration is 105-246 Bq/m 3 , ore 226 Ra nuclide levels are between 156.7-372.3 Bq/kg, the mean value is 222.6 Bq/kg, the maximum total radioactivity levels of mine water are total α=0.175 Bq/L and total β=0.374 Bq/L, the total radioactivity levels of drinking water is not more than total α=0.0327 Bq/L, total β=0.174 Bq/L. Conclusion: Radioactivity levels accord with the relevant national standards. There were remarkable correlation in the total radioactivity levels of mine water and drinking water. The radon concentration in well air is not up to the point of reach intervention level. (authors)

  1. Atmospheric residence times of continental aerosols

    International Nuclear Information System (INIS)

    Balkanski, Y.J.

    1991-01-01

    The global atmospheric distributions of Rn-222 are simulated with a three-dimensional model of atmospheric transport based on the meteorology of the NASA Goddard Institute for Space Studies (GISS) general circulation model. The short-lived radioactive gas Rn-222 (half-life = 3.8d) is emitted almost exclusively from land, at a relatively uniform rate; hence it is an excellent tracer of continental influences. Lead-210 is produced by decay of Rn-222 and immediately condenses to preexisting aerosol surfaces. It provides an excellent measure of aerosol residence times in the atmosphere because its source is accurately defined by the Rn-222 distribution. Results from the three-dimensional model are compared to measurements of Rn-222 and Pb-210 atmospheric concentrations to evaluate model's long-range transport over oceanic regions and to study the deposition mechanisms of atmospheric aerosols. Model results for Rn-222 are used to examine the long-range transport of continental air over two selected oceanic regions, the subantarctic Indian Ocean and the North Pacific. It is shown that the fast transport of air from southern Africa causes substantial continental pollution at southern mid-latitudes, a region usually regarded as pristine. Air over the North Pacific is heavily impacted by continental influences year round, but the altitude at which the transport occurs varies seasonally. Observations of aerosols at island sites, which are commonly used as diagnostics of continental influences, may be misleading because they do not account for influences at high altitude and because aerosols are efficiently scavenged by deposition during transport. The study of Pb-210 focuses on defining the residence times of submicron aerosols in the troposphere. Scavenging in wet convective updrafts is found to provide the dominant sink on a global scale

  2. ORNL radioactive waste operations

    International Nuclear Information System (INIS)

    Sease, J.D.; King, E.M.; Coobs, J.H.; Row, T.H.

    1982-01-01

    Since its beginning in 1943, ORNL has generated large amounts of solid, liquid, and gaseous radioactive waste material as a by-product of the basic research and development work carried out at the laboratory. The waste system at ORNL has been continually modified and updated to keep pace with the changing release requirements for radioactive wastes. Major upgrading projects are currently in progress. The operating record of ORNL waste operation has been excellent over many years. Recent surveillance of radioactivity in the Oak Ridge environs indicates that atmospheric concentrations of radioactivity were not significantly different from other areas in East Tennesseee. Concentrations of radioactivity in the Clinch River and in fish collected from the river were less than 4% of the permissible concentration and intake guides for individuals in the offsite environment. While some radioactivity was released to the environment from plant operations, the concentrations in all of the media sampled were well below established standards

  3. A method for prevention of radioactive material release

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Sato, Chikara; Kitamura, Masao.

    1975-01-01

    Object: To provide a method for preventing an underwater radioactive material from being released in a simple and highly reliable manner, which can decrease an amount of radioactive materials discharged into open air from reactor water containing a large amount of radioactive materials such as a reactor core pool. Structure: Pure warm water higher in temperature than that of reactor water is poured from the top of a water surface of a water tank which stores reactor water containing radioactive materials such as radioactive iodine, and water is drawn through an outlet located downwardly of the pure warm water inlet to form a layer of pure warm water at the upper part of the water tank while preventing diffusion of the reactor water into the pure warm water by the difference in density between the reactor water and the pure warm water and downward movement of the pure warm water, thereby preventing contact of the reactor water with the atmosphere and diffusion of the radioactive material into the atmosphere. (Kamimura, M.)

  4. Response of the global climate to changes in atmospheric chemical composition due to fossil fuel burning

    Science.gov (United States)

    Hameed, S.; Cess, R. D.; Hogan, J. S.

    1980-01-01

    Recent modeling of atmospheric chemical processes (Logan et al, 1978; Hameed et al, 1979) suggests that tropospheric ozone and methane might significantly increase in the future as the result of increasing anthropogenic emissions of CO, NO(x), and CH4 due to fossil fuel burning. Since O3 and CH4 are both greenhouse gases, increases in their concentrations could augment global warming due to larger future amounts of atmospheric CO2. To test the possible climatic impact of changes in tropospheric chemical composition, a zonal energy-balance climate model has been combined with a vertically averaged tropospheric chemical model. The latter model includes all relevant chemical reactions which affect species derived from H2O, O2, CH4, and NO(x). The climate model correspondingly incorporates changes in the infrared heating of the surface-troposphere system resulting from chemically induced changes in tropospheric ozone and methane. This coupled climate-chemical model indicates that global climate is sensitive to changes in emissions of CO, NO(x) and CH4, and that future increases in these emissions could augment global warming due to increasing atmospheric CO2.

  5. Three-pattern decomposition of global atmospheric circulation: part II—dynamical equations of horizontal, meridional and zonal circulations

    Science.gov (United States)

    Hu, Shujuan; Cheng, Jianbo; Xu, Ming; Chou, Jifan

    2018-04-01

    The three-pattern decomposition of global atmospheric circulation (TPDGAC) partitions three-dimensional (3D) atmospheric circulation into horizontal, meridional and zonal components to study the 3D structures of global atmospheric circulation. This paper incorporates the three-pattern decomposition model (TPDM) into primitive equations of atmospheric dynamics and establishes a new set of dynamical equations of the horizontal, meridional and zonal circulations in which the operator properties are studied and energy conservation laws are preserved, as in the primitive equations. The physical significance of the newly established equations is demonstrated. Our findings reveal that the new equations are essentially the 3D vorticity equations of atmosphere and that the time evolution rules of the horizontal, meridional and zonal circulations can be described from the perspective of 3D vorticity evolution. The new set of dynamical equations includes decomposed expressions that can be used to explore the source terms of large-scale atmospheric circulation variations. A simplified model is presented to demonstrate the potential applications of the new equations for studying the dynamics of the Rossby, Hadley and Walker circulations. The model shows that the horizontal air temperature anomaly gradient (ATAG) induces changes in meridional and zonal circulations and promotes the baroclinic evolution of the horizontal circulation. The simplified model also indicates that the absolute vorticity of the horizontal circulation is not conserved, and its changes can be described by changes in the vertical vorticities of the meridional and zonal circulations. Moreover, the thermodynamic equation shows that the induced meridional and zonal circulations and advection transport by the horizontal circulation in turn cause a redistribution of the air temperature. The simplified model reveals the fundamental rules between the evolution of the air temperature and the horizontal, meridional

  6. Evolution of atmospheric radioactivity in Paris region. [In French

    Energy Technology Data Exchange (ETDEWEB)

    Abribat, M; Pouradier, J; Venet, A M

    1953-01-01

    Daily measurements of radioactivity have shown the passage of many atomic clouds, and particularly the series of explosions in the US and Russia, while those in the Pacific and Australia have been identified in Milan. For the Australian explosion in October 1953, there was no radioactive increase in the air in the Paris region, while for the Pacific explosion there were measurable fluctuations but very feeble. For the Russian explosions in August 1954, the fluctuations were much greater than for the Pacific ones.

  7. Problems in global atmospheric chemistry

    Science.gov (United States)

    Crutzen, Paul J.

    1993-02-01

    The chemistry of the atmosphere is substantially influenced by a wide range of chemical processes which are primarily driven by the action of ultraviolet radiation of wavelengths shorter than 320 nm (UV-B) on ozone and water vapor. This leads to the formation of hydroxyl (OH) radicals which, despite very low tropospheric concentrations, remove most gases that are emitted into the atmosphere by natural and anthropogenic processes. Therefore, although only about 10% of all atmospheric ozone is located in the troposphere, through the formation of OH, it determines the oxidation efficiency of the atmosphere and is, therefore, of the utmost importance for maintaining its chemical composition. Due to a variety of human activities, especially through increasing emissions of CH4, CO, and NOx, the concentrations of tropospheric ozone and hydroxyl are expected to be increasing in polluted and decreasing in clean tropospheric environments. Altogether, this may be leading to an overall decrease in the oxidation efficiency of the atmosphere, contributing to a gradual buildup of several longlived trace gases that are primarily removed by reaction with OH. In the stratosphere, especially due to catalytic reactions of chlorine-containing gases of industrial origin, ozone is being depleted, most drastically noted during the early spring months over Antarctica. Because ozone is the only atmospheric constituent that can significantly absorb solar radiation in the wavelength region 240 - 320 nm, this loss of ozone enhances the penetration of biologically harmful UV-B radiation to the earth's surface with ensuing negative consequences for the biosphere. Several of the aforementioned chemically active trace gases with growing trends in the atmosphere are also efficient greenhouse gases. Together they can exert a warming effect on the earth's climate about equal to that of carbon dioxide.

  8. Fire simulation in radioactive waste disposal and the radiation risk associated

    International Nuclear Information System (INIS)

    Domingos, Érica Nascimento

    2018-01-01

    An atmospheric dispersion of radioactive material is one of the possible consequences of an accident scenario in nuclear installations, radiative and radioactive waste deposit. Taking into account a possibility of this release of radioactive material into the atmosphere this work proposes a modeling of the atmospheric dispersion from a fire scenario in a deposit of radioactive waste of low and middle level of radiation varying the amount of inventory released in the fire. For this simulation was adopted the software of physical codes of medical health, the HotSpot Health Physics Codes which uses the Gaussian model to calculate an atmospheric dispersion based on the Pasquill atmospheric stability classes. This software calculates a total effective dose in relation to distance, such as a compromised dose in a list of specific organs, among them the lung, object of work study for calculating the risk of cancer associated with a low dose of radiation. The radiological risk calculation is held by the BEIR V model, Biological Effects of Ionizing Radiations, one of the models to estimate the relative risk of cancer induced by ionizing radiation. (author)

  9. Atmospheric characteristics essential for health effects modeling

    International Nuclear Information System (INIS)

    Nelson, N.S.

    1977-01-01

    Factors to be considered in evaluating the possible consequences of exposure of human populations to radioactive aerosols are reviewed. Mathematical models of the mechanisms of radioinduced carcinogenesis, tissue deposition and lung clearance of radioactive aerosols, and meteorological parameters affecting the diffusion of radioactive aerosols in the atmosphere are discussed

  10. Climate forcings and climate sensitivities diagnosed from atmospheric global circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Bruce T. [Boston University, Department of Geography and Environment, Boston, MA (United States); Knight, Jeff R.; Ringer, Mark A. [Met Office Hadley Centre, Exeter (United Kingdom); Deser, Clara; Phillips, Adam S. [National Center for Atmospheric Research, Boulder, CO (United States); Yoon, Jin-Ho [University of Maryland, Cooperative Institute for Climate and Satellites, Earth System Science Interdisciplinary Center, College Park, MD (United States); Cherchi, Annalisa [Centro Euro-Mediterraneo per i Cambiamenti Climatici, and Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy)

    2010-12-15

    Understanding the historical and future response of the global climate system to anthropogenic emissions of radiatively active atmospheric constituents has become a timely and compelling concern. At present, however, there are uncertainties in: the total radiative forcing associated with changes in the chemical composition of the atmosphere; the effective forcing applied to the climate system resulting from a (temporary) reduction via ocean-heat uptake; and the strength of the climate feedbacks that subsequently modify this forcing. Here a set of analyses derived from atmospheric general circulation model simulations are used to estimate the effective and total radiative forcing of the observed climate system due to anthropogenic emissions over the last 50 years of the twentieth century. They are also used to estimate the sensitivity of the observed climate system to these emissions, as well as the expected change in global surface temperatures once the climate system returns to radiative equilibrium. Results indicate that estimates of the effective radiative forcing and total radiative forcing associated with historical anthropogenic emissions differ across models. In addition estimates of the historical sensitivity of the climate to these emissions differ across models. However, results suggest that the variations in climate sensitivity and total climate forcing are not independent, and that the two vary inversely with respect to one another. As such, expected equilibrium temperature changes, which are given by the product of the total radiative forcing and the climate sensitivity, are relatively constant between models, particularly in comparison to results in which the total radiative forcing is assumed constant. Implications of these results for projected future climate forcings and subsequent responses are also discussed. (orig.)

  11. A vegetation control on seasonal variations in global atmospheric mercury concentrations

    Science.gov (United States)

    Jiskra, Martin; Sonke, Jeroen E.; Obrist, Daniel; Bieser, Johannes; Ebinghaus, Ralf; Myhre, Cathrine Lund; Pfaffhuber, Katrine Aspmo; Wängberg, Ingvar; Kyllönen, Katriina; Worthy, Doug; Martin, Lynwill G.; Labuschagne, Casper; Mkololo, Thumeka; Ramonet, Michel; Magand, Olivier; Dommergue, Aurélien

    2018-04-01

    Anthropogenic mercury emissions are transported through the atmosphere as gaseous elemental mercury (Hg(0)) before they are deposited to Earth's surface. Strong seasonality in atmospheric Hg(0) concentrations in the Northern Hemisphere has been explained by two factors: anthropogenic Hg(0) emissions are thought to peak in winter due to higher energy consumption, and atmospheric oxidation rates of Hg(0) are faster in summer. Oxidation-driven Hg(0) seasonality should be equally pronounced in the Southern Hemisphere, which is inconsistent with observations of constant year-round Hg(0) levels. Here, we assess the role of Hg(0) uptake by vegetation as an alternative mechanism for driving Hg(0) seasonality. We find that at terrestrial sites in the Northern Hemisphere, Hg(0) co-varies with CO2, which is known to exhibit a minimum in summer when CO2 is assimilated by vegetation. The amplitude of seasonal oscillations in the atmospheric Hg(0) concentration increases with latitude and is larger at inland terrestrial sites than coastal sites. Using satellite data, we find that the photosynthetic activity of vegetation correlates with Hg(0) levels at individual sites and across continents. We suggest that terrestrial vegetation acts as a global Hg(0) pump, which can contribute to seasonal variations of atmospheric Hg(0), and that decreasing Hg(0) levels in the Northern Hemisphere over the past 20 years can be partly attributed to increased terrestrial net primary production.

  12. Flexible global ocean-atmosphere-land system model. A modeling tool for the climate change research community

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Tianjun; Yu, Yongqiang; Liu, Yimin; Wang, Bin (eds.) [Chinese Academy of Sciences, Beijing, (China). Inst. of Atmospheric Physics

    2014-04-01

    First book available on systematic evaluations of the performance of the global climate model FGOALS. Covers the whole field, ranging from the development to the applications of this climate system model. Provide an outlook for the future development of the FGOALS model system. Offers brief introduction about how to run FGOALS. Coupled climate system models are of central importance for climate studies. A new model known as FGOALS (the Flexible Global Ocean-Atmosphere-Land System model), has been developed by the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP, CAS), a first-tier national geophysical laboratory. It serves as a powerful tool, both for deepening our understanding of fundamental mechanisms of the climate system and for making decadal prediction and scenario projections of future climate change. ''Flexible Global Ocean-Atmosphere-Land System Model: A Modeling Tool for the Climate Change Research Community'' is the first book to offer systematic evaluations of this model's performance. It is comprehensive in scope, covering both developmental and application-oriented aspects of this climate system model. It also provides an outlook of future development of FGOALS and offers an overview of how to employ the model. It represents a valuable reference work for researchers and professionals working within the related areas of climate variability and change.

  13. Environmental radioactivity surveillance programme 1994-1996

    International Nuclear Information System (INIS)

    Pollard, D.; Smith, V.; Howett, D.; Hayden, E.; Fegan, M.; O'Colmain, M.; Cunningham, J.D.

    1997-12-01

    This report presents the results of the terrestrial monitoring programme implemented by the Radiological Protection Institute of Ireland during the period 1994 to 1996. This monitoring programme includes the routine sampling and testing for radioactivity of samples of air, rainwater, drinking water and milk. Atmospheric concentrations of krypton-85 continued to rise over the period. No abnormal readings were observed for gamma dose rate, radioactivity in airborne particulates or radioactivity in rainwater. Significant variation in the concentrations of natural radioactivity was observed between drinking water supplies.The levels of anthropogenic radioactivity recorded during this reporting period in air, rainwater, drinking water and milk continue to be insignificant from a radiological safety point of view

  14. Global observations and modeling of atmosphere-surface exchange of elemental mercury: a critical review

    Science.gov (United States)

    Zhu, Wei; Lin, Che-Jen; Wang, Xun; Sommar, Jonas; Fu, Xuewu; Feng, Xinbin

    2016-04-01

    Reliable quantification of air-surface fluxes of elemental Hg vapor (Hg0) is crucial for understanding mercury (Hg) global biogeochemical cycles. There have been extensive measurements and modeling efforts devoted to estimating the exchange fluxes between the atmosphere and various surfaces (e.g., soil, canopies, water, snow, etc.) in the past three decades. However, large uncertainties remain due to the complexity of Hg0 bidirectional exchange, limitations of flux quantification techniques and challenges in model parameterization. In this study, we provide a critical review on the state of science in the atmosphere-surface exchange of Hg0. Specifically, the advancement of flux quantification techniques, mechanisms in driving the air-surface Hg exchange and modeling efforts are presented. Due to the semi-volatile nature of Hg0 and redox transformation of Hg in environmental media, Hg deposition and evasion are influenced by multiple environmental variables including seasonality, vegetative coverage and its life cycle, temperature, light, moisture, atmospheric turbulence and the presence of reactants (e.g., O3, radicals, etc.). However, the effects of these processes on flux have not been fundamentally and quantitatively determined, which limits the accuracy of flux modeling. We compile an up-to-date global observational flux database and discuss the implication of flux data on the global Hg budget. Mean Hg0 fluxes obtained by micrometeorological measurements do not appear to be significantly greater than the fluxes measured by dynamic flux chamber methods over unpolluted surfaces (p = 0.16, one-tailed, Mann-Whitney U test). The spatiotemporal coverage of existing Hg0 flux measurements is highly heterogeneous with large data gaps existing in multiple continents (Africa, South Asia, Middle East, South America and Australia). The magnitude of the evasion flux is strongly enhanced by human activities, particularly at contaminated sites. Hg0 flux observations in East

  15. Radioactive pollution, ch. 6

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Disposal of radioactive wastes from nuclear power plants into surface waters as well as the atmosphere is discussed. Man-rem data are compared and expected quantities for disposal by power plants in the Netherlands are tabulated

  16. Assessing the natural and anthropogenic charges of radioactivity in complex ecosystems

    International Nuclear Information System (INIS)

    El-Daoushy, F.

    2010-01-01

    Large-scale and long-term assessment of nuclear disasters depends on transport and chemistry processes. Chernobyl dominated by tropospheric and local surface water processes. Assessment strategies for the Nile Basin , and other African rivers, would be different. European surface water are primarily forced by atmospheric and local catchment interactions. Surface water are multi-scale systems with local, regional & global interactions. Natural and artificial radioactivity were assessed in European inland waters. Scales and interactions were detailed using Lake-catchment systems. Surface water interactions in the Nile Basin has much more large scale dynamics as compared by the European ones. The spatio-temporal scales of this complex river system are much more comprehensive due to its complex boundaries and intensive coupling with climate and environment. Lakes and rivers are space-time indicators of atmospheric and land-based human activities

  17. Atmospheric Residence Times of Continental Aerosols.

    Science.gov (United States)

    Balkanski, Yves Jacques

    The global atmospheric distributions of ^{222}Rn and ^{210 }Pb are simulated with a three-dimensional model of atmospheric transport based on the meteorology of the NASA GISS^1>=neral circulation model. The short-lived radioactive gas ^ {222}Rn (half-life = 3.8d) is emitted almost exclusively from land, at a relatively uniform rate; hence it is an excellent tracer of continental influences. Lead -210 is produced by decay of ^{222} Rn and immediately condenses to preexisting aerosol surfaces. It provides an excellent measure of aerosol residence times in the atmosphere because its source is accurately defined by the ^{222} Rn distribution. Results from the three-dimensional model are compared to measurements of ^ {222}Rn and ^{210 }Pb atmospheric concentrations to evaluate model's long-range transport over oceanic regions and to study the deposition mechanisms of atmospheric aerosols. Model results for ^{222} Rn are used to examine the long-range transport of continental air over two selected oceanic regions, the subantartic Indian Ocean and the North Pacific. It is shown that fast transport of air from southern Africa causes substantial continental pollution at southern mid-latitudes, a region usually regarded as pristine. Air over the North Pacific is heavily impacted by continental influences year round, but the altitude at which the transport occurs varies seasonally. Observations of aerosols at island sites, which are commonly used as diagnostics of continental influences, may be misleading because they do not account for influences at high altitude and because aerosols are efficiently scavenged by deposition during transport. The study of ^{210}Pb focuses on defining the residence times of submicron aerosols in the troposphere. Scavenging in wet convective updrafts is found to provide the dominant sink on a global scale. The globally averaged residence time for ^{210 }Pb-containing aerosols in the troposphere is 7 days. The average increase in residence time

  18. January and July global distributions of atmospheric heating for 1986, 1987, and 1988

    Science.gov (United States)

    Schaack, Todd K.; Johnson, Donald R.

    1994-01-01

    Three-dimensional global distributions of atmospheric heating are estimated for January and July of the 3-year period 1986-88 from the European Center for Medium Weather Forecasts (ECMWF) Tropical Ocean Global Atmosphere (TOGA) assimilated datasets. Emphasis is placed on the interseasonal and interannual variability of heating both locally and regionally. Large fluctuations in the magnitude of heating and the disposition of maxima/minima in the Tropics occur over the 3-year period. This variability, which is largely in accord with anomalous precipitation expected during the El Nino-Southern Oscillation (ENSO) cycle, appears realistic. In both January and July, interannual differences of 1.0-1.5 K/day in the vertically averaged heating occur over the tropical Pacific. These interannual regional differences are substantial in comparison with maximum monthly averaged heating rates of 2.0-2.5 K/day. In the extratropics, the most prominent interannual variability occurs along the wintertime North Atlantic cyclone track. Vertical profiles of heating from selected regions also reveal large interannual variability. Clearly evident is the modulation of the heating within tropical regions of deep moist convection associated with the evolution of the ENSO cycle. The heating integrated over continental and oceanic basins emphasizes the impact of land and ocean surfaces on atmospheric energy balance and depicts marked interseasonal and interannual large-scale variability.

  19. A guide to the use of TIRION. A computer programme for the calculation of the consequences of releasing radioactive material to the atmosphere

    International Nuclear Information System (INIS)

    Kaiser, G.D.

    1976-11-01

    A brief description is given of the contents of TIRION, which is a computer program that has been written for use in calculations of the consequences of releasing radioactive material to the atmosphere. This is followed by a section devoted to an account of the control and data cards that make up the input to TIRION. (author)

  20. Environmental radioactivity of the Danube basin in the vicinity of the Kozloduy NPP (July 1994)

    Energy Technology Data Exchange (ETDEWEB)

    Badulin, V; Zlatanova, R; Botsova, L; Mireva, Z [National Centre of Radiobiology and Radiation Protection, Sofia (Bulgaria)

    1996-12-31

    Analytical results from radiation monitoring carried out at the Kozloduy NPP area are reported. Sampling of water, sediment, soil and grass for beta and gamma activity has been done in 13 points at distances ranging from 6 to 90 km from the plant. The comparison of data with the values for the previous year does not show any significant variations in radioactivity. The values of {sup 90}Sr activity in river water are less than 10 mBq/l, in river bottom sediment - less than 2 Bq/kg, in soil - less than 4 Bq/kg and in grass -below 8 Bq/kg. Activity of Cs-137 is highest in river bottom sediment - 6-43 Bq/kg which is attributed to the Chernobyl accident. It is concluded that the radioactive effluents and atmospheric releases from the Kozloduy NPP do not produce any noticeable changes in environmental radioactivity caused by the global fallout and the Chernobyl accident. 9 figs., 1 tab.

  1. Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions

    OpenAIRE

    Shen, Huizhong; Huang, Ye; Wang, Rong; Zhu, Dan; Li, Wei; Shen, Guofeng; Wang, Bin; Zhang, Yanyan; Chen, Yuanchen; Lu, Yan; Chen, Han; Li, Tongchao; Sun, Kang; Li, Bengang; Liu, Wenxin

    2013-01-01

    Global atmospheric emissions of 16 polycyclic aromatic hydrocarbons (PAHs) from 69 major sources were estimated for a period from 1960 to 2030. Regression models and a technology split method were used to estimate country and time specific emission factors, resulting in a new estimate of PAH emission factor variation among different countries and over time. PAH emissions in 2007 were spatially resolved to 0.1°× 0.1° grids based on a newly developed global high-resolution fuel combustion inven...

  2. PABLM, Doses from Radioactive Releases to Atmosphere and Food Chain

    International Nuclear Information System (INIS)

    Napier, B.A.; Kennedy, W.E. Jr.; Soldat, J.K.

    1983-01-01

    1 - Description of problem or function: PABLM calculates internal radiation doses to man from radionuclides in food products and external radiation doses from radionuclides in the environment. Radiation doses from radionuclides in the environment may be calculated from deposition on the soil or plants during an atmospheric or liquid release, or from exposure to residual radionuclides after the releases have ended. Radioactive decay is considered during the release, after deposition, and during holdup of food after harvest. The radiation dose models consider exposure to radionuclides deposited on the ground or crops from contaminated air or irrigation water, radionuclides in contaminated drinking water, aquatic foods raised in contaminated water, and radionuclides in bodies of water and sediments where people might fish, boat, or swim. For vegetation, the radiation dose model considers both direct deposition and uptake through roots. Doses may be calculated for either a maximum-exposed individual or for a population group. The program is designed to calculate accumulated radiation doses from the chronic ingestion of food products that contain radionuclides and doses from the external exposure to radionuclides in the environment. A first-year committed dose is calculated as well as an integrated dose for a selected number of years. 2 - Method of solution: A chain decay scheme including branching for transitions to and from isomeric states is used for radioactive decay. The equations for calculating internal radiation doses are derived from those given by the International Commission on Radio- logical Protection (ICRP) for body burdens and the maximum possible concentration (MPC) for each radionuclide. These doses are calculated as a function of radionuclide concentration in food products, ingestion rates, and a radionuclide-specific dose- commitment factor. Radiation doses from external exposure to contaminated water and soil are calculated using the basic assumption

  3. Global Warming, New Climate, New Atmospheric Circulation and New Water Cycle in North Africa

    Science.gov (United States)

    Karrouk, M. S.

    2017-12-01

    Global warming has now reached the energetic phase of H2O's return to the ground after the saturation of the atmosphere in evaporation since the 80s and 90s of the last century, which were characterized by severe droughts, mainly in Africa.This phase is the result of the accumulation of thermal energy exchanges in the Earth-Ocean-Atmosphere system that resulted in the thrust reversal of the energy balance toward the poles. This situation is characterized by a new thermal distribution: above the ocean, the situation is more in surplus compared to the mainland, or even opposite when the balance is negative on the land, and in the atmosphere, warm thermal advection easily reach the North Pole (planetary crests), as well as cold advection push deep into North Africa and the Gulf of Mexico (planetary valleys: Polar Vortex).This "New Ground Energy Balance" establishes a "New Meridian Atmospheric Circulation (MAC)" with an undulating character throughout the year, including the winter characterized by intense latitudinal very active energy exchanges between the surplus areas (tropical) and the deficit (polar) on the one hand, and the atmosphere, the ocean and the continent on the other.The excess radiation balance increases the potential evaporation of the atmosphere and provides a new geographical distribution of Moisture and Water worldwide: the excess water vapor is easily converted by cold advection (Polar Vortex) to heavy rains that cause floods or snow storms that paralyze the normal functioning of human activities, which creates many difficulties for users and leaves damage and casualties, but ensures water availability missing since a long time in many parts of the world, in Africa, Europe and America.The new thermal distribution reorganizes the geography of atmospheric pressure: the ocean energy concentration is transmitted directly to the atmosphere, and the excess torque is pushed northward. The Azores anticyclone is strengthened and is a global lock by the

  4. Physical model of the dispersion of a radioactive contaminant in the atmosphere above a heat island

    International Nuclear Information System (INIS)

    Toly, J.A.; Tenchine, D.

    1984-01-01

    The project deals with the impact of surface heating in urban areas on the dispersion of contaminants in the atmosphere. - The atmospheric boundary layer is simulated in a water flume. Ground heating is applied locally reproducing the heat flux of an urban region. Fission products for which internal heat source is neglected are simulated by horizontal plumes at pHs different from the original pH of the flume. - The main results of the study concern: the characterization of the internal boundary layer downstream of the leading edge of the heated ground; the comparison of the concentration distributions of pollutants with and without surface heating. - A transposition of the results, expressed in terms of global parameters, enables information on the heat island effect due to urban regions on the dispersion of contaminants in the atmosphere to be obtained

  5. Bulletin of the radioactivity. No. 83. January-December, 1999

    International Nuclear Information System (INIS)

    2001-01-01

    This report contains the result of observations by the Japan Meteorological Agency (JMA) of atmospheric and seawater radioactivity for the year 1999. The sampling, measurement methods and results of gross beta-radioactivity in precipitation, radioactivity in airborne dust, monthly mean 90 Sr concentration in airborne dust, gross beta-radioactivity in seawater, deposition of 89 Sr, 90 Sr and 137 Cs, natural background radioactivity and vertical distribution of atmospheric radioactivity are described. The results of special observations on the criticality accident at an uranium processing plant, Tokai-mura, Japan showed that gamma-ray spectrum analysis in airborne dust indicated Cs-137 ND (lower than detection limit) and I-131 ND in Sendai and Tokyo at sampling at 99/10/1. 09h-99/10/1,14h and in Tsukuba at sampling 99/09/30, 09h-99/10/01, 09h. Gross beta-radioactivity in precipitation showed 40 MBq/km 2 deposition in Hachijo-jima at sampling 99/09/30,09h-99/10/01, 09h, but no precipitation in Sendai, Akita, Tokyo and Wajima. Mean gamma-radiation dose rate in Wajima indicated 9.8 cps at monitoring 99/09/30-99/10/01,15h. (S.Y.)

  6. The atmosphere as a global commons : responsible caring and equitable sharing

    Energy Technology Data Exchange (ETDEWEB)

    Hallman, D.G. [World Council of Churches, Toronto, ON (Canada)

    2000-06-01

    The World Council of Churches (WCC) views climate change issues from a theological and ethical perspective. This justice statement regarding climate change was prepared by the WCC in anticipation of the sixth session of the Conference of Parties (COP6) held in the Hague, Netherlands in November 2000. The statement presents the atmosphere as a global commons which envelops the Earth, nurturing and protecting life. Their statement urges that economic and political powers cannot be allowed to hinder the health of the atmosphere nor claim possession of it. The WCC pairs human responsibility with climate change and recognizes that the problem is caused largely by rich industrialized countries, the consequences of which will be suffered mostly by developing nations and by future generations. The statement emphasized that we must be held responsible for the destructive impact of our actions which are leading to climate change. The WCC argued that emissions trading under the Kyoto Protocol would violate the criterion of ecological effectiveness because it would not ensure a reduction in actual emissions. Trading mechanisms such as proposed under the Clean Development Mechanism would raise issues of equity and justice and would risk exacerbating inequities between rich and poor countries. The WCC made several recommendations for COP6. One of them was to refocus climate change negotiations on to options that meet the criteria of environmental effectiveness, equity, responsibility and economic efficiency with priority given to emissions reduction strategies in high per capita polluting countries. This statement also made reference to the use of a Global Atmospheric Commons Fund which would help impoverished countries to move towards a non-carbon economy focusing on renewable energy sources such as solar, biomass, wind and small scale hydroelectric.

  7. Simulation of preindustrial atmospheric methane to constrain the global source strength of natural wetlands

    NARCIS (Netherlands)

    Houweling, S; Dentener, F; Lelieveld, J

    2000-01-01

    Previous attempts to quantify the global source strength of CH4 from natural wetlands have resulted in a range of 90-260 TE(CH4) yr(-1). This relatively uncertain estimate significantly limits our understanding of atmospheric methane. In this study we reduce this uncertainty by simulating

  8. Atmospheric bulk deposition of polycyclic aromatic hydrocarbons in Shanghai: Temporal and spatial variation, and global comparison

    International Nuclear Information System (INIS)

    Feng, Daolun; Liu, Ying; Gao, Yi; Zhou, Jinxing; Zheng, Lirong; Qiao, Gang; Ma, Liming; Lin, Zhifen; Grathwohl, Peter

    2017-01-01

    Atmospheric deposition leads to accumulation of atmospheric polycyclic aromatic hydrocarbons (PAHs) on urban surfaces and topsoils. To capture the inherent variability of atmospheric deposition of PAHs in Shanghai's urban agglomeration, 85 atmospheric bulk deposition samples and 7 surface soil samples were collected from seven sampling locations during 2012–2014. Total fluxes of 17 PAHs were 587-32,300 ng m −2 day −1 , with a geometric mean of 2600 ng m −2 day −1 . The deposition fluxes were categorized as moderate to high on a global scale. Phenanthrene, fluoranthene and pyrene were major contributors. The spatial distribution of deposition fluxes revealed the influence of urbanization/industrialization and the relevance of local emissions. Meteorological conditions and more heating demand in cold season lead to a significant increase of deposition rates. Atmospheric deposition is the principal pathway of PAHs input to topsoils and the annual deposition load in Shanghai amounts to ∼4.5 tons (0.7 kg km −2 ) with a range of 2.5–10 tons (0.4–1.6 kg km −2 ). - Highlights: • PAH deposition flux in Shanghai is categorized as moderate to high on global scale. • Their spatial distribution reveals the influence of urbanization/industrialization. • Atmospheric deposition is the principal pathway of PAHs input to local topsoils. • Other pathways have to be considered for PAH input in urban soil. - Atmospheric deposition of PAHs revealed the influence of urbanization and industrialization and the relevance of local emissions on Shanghai topsoils.

  9. New instruments and methods for measuring the concentration of radioactive products in the atmosphere; Appareils recents et methodes nouvelles pour la mesure de la concentration des produits radioactifs dans l'atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Jehanno, C; Blanc, A; Lallemant, C; Roux, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-07-01

    Different recorders for radioactive aerosols have been developed for measuring the pollution of the atmosphere in laboratories or the external atmosphere. EAR 600. - Allows continuous measurement, instantaneously and 3 to 10 hours after sampling, of concentrations of {alpha} or {beta} emitting aerosols varying between some 10{sup -11} and some 10{sup -8} curie per cubic metre of air. EAR 800. - Allows continuous measurement of concentration of {alpha} emitting aerosols varying between 10{sup -11} and 10{sup -5} curie per cubic metre of air and concentration of {beta} emitting aerosols from 10{sup -11} to 10{sup -1} curie per cubic metre of air. EAR Plutonium. - Allows detection after several minutes of 1000 MPD (2 x 10{sup -9} curie par cubic metre), and after 8 hours 1 MPD (2 x 10{sup -12} curie per cubic metre). Two methods are used to separate the activity due to plutonium from that due to the descendants of radon and thoron: a) by amplitude discrimination, b) by RaC-RaC' and ThC-ThC' ({alpha} {beta} ) coincidences. SP4. This system, mounted on a jeep, allows the measurement of irradiation produced on the ground by the smoke from the piles. The sensitivity is 5{mu}R/h. A.D.I.R. - This autonomous and portable instrument is designed for the instantaneous measurement of the radon content of the atmosphere in mines. It allows the measurement of contents in air varying between 0.4 and 400 x 10{sup -10} curie per litre of air (0.4 and 400 MPD). The measurement of radioactive fall-out is carried out after collection of this activity by a special rain gauge which comprises an adhesive surface and a tube containing ion exchange resins. The radioactivity of the fall-out varies between some 10{sup -9} and some 10{sup -7} curie per square metre per month. Concentrations in fission products of the atmosphere are measured after collecting on filter paper. Concentrations measured in air at ground level vary between 10{sup -13} and 10{sup -12} curie per cubic metre. (author

  10. Surveillance of the environmental radioactivity

    International Nuclear Information System (INIS)

    Schneider, Th.; Gitzinger, C.; Jaunet, P.; Eberbach, F.; Clavel, B.; Hemidy, P.Y.; Perrier, G.; Kiper, Ch.; Peres, J.M.; Josset, M.; Calvez, M.; Leclerc, M.; Leclerc, E.; Aubert, C.; Levelut, M.N.; Debayle, Ch.; Mayer, St.; Renaud, Ph.; Leprieur, F.; Petitfrere, M.; Catelinois, O.; Monfort, M.; Baron, Y.; Target, A.

    2008-01-01

    The objective of these days was to present the organisation of the surveillance of the environmental radioactivity and to allow an experience sharing and a dialog on this subject between the different actors of the radiation protection in france. The different presentations were as follow: evolution and stakes of the surveillance of radioactivity in environment; the part of the European commission, regulatory aspects; the implementation of the surveillance: the case of Germany; Strategy and logic of environmental surveillance around the EDF national centers of energy production; environmental surveillance: F.B.F.C. site of Romans on Isere; steps of the implementation 'analysis for release decree at the F.B.F.C./C.E.R.C.A. laboratory of Romans; I.R.S.N. and the environmental surveillance: situation and perspectives; the part of a non institutional actor, the citizenship surveillance done by A.C.R.O.; harmonization of sampling methods: the results of inter operators G.T. sampling; sustainable observatory of environment: data traceability and samples conservation; inter laboratories tests of radioactivity measurements; national network of environmental radioactivity measurement: laboratories agreements; the networks of environmental radioactivity telemetry: modernization positioning; programme of observation and surveillance of surface environment and installations of the H.A.-M.A.V.L. project (high activity and long life medium activity); Evolution of radionuclides concentration in environment and adaptation of measurements techniques to the surveillance needs; the national network of radioactivity measurement in environment; modes of data restoration of surveillance: the results of the Loire environment pilot action; method of sanitary impacts estimation in the area of ionizing radiations; the radiological impact of atmospheric nuclear tests in French Polynesia; validation of models by the measure; network of measurement and alert management of the atmospheric

  11. Global Analysis of Climate Change Projection Effects on Atmospheric Rivers

    Science.gov (United States)

    Espinoza, Vicky; Waliser, Duane E.; Guan, Bin; Lavers, David A.; Ralph, F. Martin

    2018-05-01

    A uniform, global approach is used to quantify how atmospheric rivers (ARs) change between Coupled Model Intercomparison Project Phase 5 historical simulations and future projections under the Representative Concentration Pathway (RCP) 4.5 and RCP8.5 warming scenarios. The projections indicate that while there will be 10% fewer ARs in the future, the ARs will be 25% longer, 25% wider, and exhibit stronger integrated water vapor transports (IVTs) under RCP8.5. These changes result in pronounced increases in the frequency (IVT strength) of AR conditions under RCP8.5: 50% (25%) globally, 50% (20%) in the northern midlatitudes, and 60% (20%) in the southern midlatitudes. The models exhibit systematic low biases across the midlatitudes in replicating historical AR frequency ( 10%), zonal IVT ( 15%), and meridional IVT ( 25%), with sizable intermodel differences. A more detailed examination of six regions strongly impacted by ARs suggests that the western United States, northwestern Europe, and southwestern South America exhibit considerable intermodel differences in projected changes in ARs.

  12. B33C-0612: Evaluation of Simulated Biospheric Carbon Dioxide Fluxes and Atmospheric Concentrations Using Global in Situ Observations

    Science.gov (United States)

    Philip, Sajeev; Johnson, Matthew S.; Potter, Christopher S.; Genovese, Vanessa

    2016-01-01

    Atmospheric mixing ratios of carbon dioxide (CO2) are largely controlled by anthropogenic emission sources and biospheric sources/sinks. Global biospheric fluxes of CO2 are controlled by complex processes facilitating the exchange of carbon between terrestrial ecosystems and the atmosphere. These processes which play a key role in these terrestrial ecosystem-atmosphere carbon exchanges are currently not fully understood, resulting in large uncertainties in the quantification of biospheric CO2 fluxes. Current models with these inherent deficiencies have difficulties simulating the global carbon cycle with high accuracy. We are developing a new modeling platform, GEOS-Chem-CASA by integrating the year-specific NASA-CASA (National Aeronautics and Space Administration - Carnegie Ames Stanford Approach) biosphere model with the GEOS-Chem (Goddard Earth Observation System-Chemistry) chemical transport model to improve the simulation of atmosphere-terrestrial ecosystem carbon exchange. We use NASA-CASA to explicitly represent the exchange of CO2 between terrestrial ecosystem and atmosphere by replacing the baseline GEOS-Chem land net CO2 flux and forest biomass burning CO2 emissions. We will present the estimation and evaluation of these "bottom-up" land CO2 fluxes, simulated atmospheric mixing ratios, and forest disturbance changes over the last decade. In addition, we will present our initial comparison of atmospheric column-mean dry air mole fraction of CO2 predicted by the model and those retrieved from NASA's OCO-2 (Orbiting Carbon Observatory-2) satellite instrument and model-predicted surface CO2 mixing ratios with global in situ observations. This evaluation is the first step necessary for our future work planned to constrain the estimates of biospheric carbon fluxes through "top-down" inverse modeling, which will improve our understanding of the processes controlling atmosphere-terrestrial ecosystem greenhouse gas exchanges, especially over regions which lack in

  13. Tracer chemistry in the laboratory and the atmosphere

    International Nuclear Information System (INIS)

    Rowland, F.S.

    1994-01-01

    The steady bombardment of the Earth's atmosphere by cosmic radiation induces numerous radioactive species in the atmosphere of which the best known are 14 C and T. Others of interest include 7 Be, 10 Be, and several isotopes of chlorine. The eventual formation of 14 CO 2 and its subsequent significance for archaeological dating were brilliantly established by Willard Libby in the 1940s. However, the initial reactions of nascent 14 C in a mixture of N 2 and O 2 produce 14 CO, as shown first in the lab. and then in the atmosphere. Because cosmic ray production rates are essentially constant in a given location, the observed concentration of 14 CO provides an excellent tool for studying the removal process, oxidation by HO to form 14 CO 2 . Because 14 CO 2 becomes incorporated into all living biological species, other molecules become labeled with 14 C as well, including 14 CH 4 . Measurement of the 14 C radioactivity of such molecules in the atmosphere allows apportionment of sources between biological and fossil fuel origins. Tritium atoms are also formed by cosmic radiation, and can subsequently be incorporated into the chemical forms HT and HTO. Although most T atoms from cosmic radiation are found as HTO, the much higher specific radioactivity of HT provides interesting insights into atmospheric processes. Lab. studies furnish important clues for understanding the atmospheric routes. The differences in radioactive half-lives cause the terrestrial locations of cosmic ray induced 7 Be and 10 Be to be primarily the atmosphere and the oceans, respectively. In a comparable manner, the chemistry of atmospheric radiochlorine divides between the very long-lived 36 Cl and three isotopes with half-lives less than an hour, 34m Cl, 38 Cl and 39 Cl

  14. Fighting global warming by greenhouse gas removal: destroying atmospheric nitrous oxide thanks to synergies between two breakthrough technologies.

    Science.gov (United States)

    Ming, Tingzhen; de Richter, Renaud; Shen, Sheng; Caillol, Sylvain

    2016-04-01

    Even if humans stop discharging CO2 into the atmosphere, the average global temperature will still increase during this century. A lot of research has been devoted to prevent and reduce the amount of carbon dioxide (CO2) emissions in the atmosphere, in order to mitigate the effects of climate change. Carbon capture and sequestration (CCS) is one of the technologies that might help to limit emissions. In complement, direct CO2 removal from the atmosphere has been proposed after the emissions have occurred. But, the removal of all the excess anthropogenic atmospheric CO2 will not be enough, due to the fact that CO2 outgases from the ocean as its solubility is dependent of its atmospheric partial pressure. Bringing back the Earth average surface temperature to pre-industrial levels would require the removal of all previously emitted CO2. Thus, the atmospheric removal of other greenhouse gases is necessary. This article proposes a combination of disrupting techniques to transform nitrous oxide (N2O), the third most important greenhouse gas (GHG) in terms of current radiative forcing, which is harmful for the ozone layer and possesses quite high global warming potential. Although several scientific publications cite "greenhouse gas removal," to our knowledge, it is the first time innovative solutions are proposed to effectively remove N2O or other GHGs from the atmosphere other than CO2.

  15. Monitoring of radioactive wastes

    International Nuclear Information System (INIS)

    Houriet, J.Ph.

    1982-08-01

    The estimation of risks presented by final disposal of radioactive wastes depends, among other things, on what is known of their radioisotope content. The first aim of this report is to present the current state of possibilities for measuring (monitoring) radionuclides in wastes. The definition of a global monitoring system in the framework of radioactive waste disposal has to be realized, based on the information presented here, in accordance with the results of work to come and on the inventory of wastes to be stored. Designed for direct measurement of unpackaged wastes and for control of wastes ready to be stored, the system would ultimately make it possible to obtain all adaquate information about their radioisotope content with regard to the required disposal safety. The second aim of this report is to outline the definition of such a global system of monitoring. Designed as a workbase and reference source for future work by the National Cooperative for the Storage of Radioactive Waste on the topic of radioactive waste monitoring, this report describes the current situation in this field. It also makes it possible to draw some preliminary conclusions and to make several recommendations. Centered on the possibilities of current and developing techniques, it makes evident that a global monitoring system should be developed. However, it shows that the monitoring of packaged wastes will be difficult, and should be avoided as far as possible, except for control measurements

  16. Emissions of the corrosion radionuclides in an atmosphere

    International Nuclear Information System (INIS)

    Vardanyan, M.

    2010-01-01

    In area of Armenian nuclear power plant location, in atmospheric air in majority of cases log two technogenic radionuclides: l 37 C s and 9 0 S r. Presence of these radionuclides basically is caused by global fall out (consequences of tests of the nuclear weapon and Chernobyl NPP accident), whose contribution to the contents of these radionuclides in atmosphere is incomparably greater, than emissions from the NPP. However there are some cases when in an atmosphere are registered the technogenic radionuclides, caused by emissions from NPP. In the present work such case is considered. Gas-aerosol releases of NPP in the atmosphere are carefully purified by means of various high-efficiency filters and gas-cleaning systems. Nevertheless, one should forecast and measure, the possible impact of these releases on the environment in the regions surrounding the NPP. Radioactive releases of the Armenian NPP (ANPP) contain the set of radionuclides characteristic for NPPs of this type. They may be divided into three groups: 1 31 I , 1 37 C s, 1 34 C s, 9 0 S r and 8 9 S r fission fragments, isotopes of noble gases krypton and xenon and other radionuclides; corrosion originated radionuclides: 6 0 C o, 1 10m A g, 5 4 M n, 5 l C r and others; activation products of the heat-transfer agent itself. It should be noted that the amount of radioactive materials released in the environment by the ANPP during the whole period of its operation was much lower than the admissible quantities specified in the corresponding legal documents (RSN, NPPSP) acting in Armenia, which are practically identical to the internationally accepted norms. The amounts of releases and their radionuclides composition for the ANPP are given

  17. Global transport and localized layering of metallic ions in the upper atmospherer

    Directory of Open Access Journals (Sweden)

    L. N. Carter

    1999-02-01

    Full Text Available A numerical model has been developed which is capable of simulating all phases of the life cycle of metallic ions, and results are described and interpreted herein for the typical case of Fe+ ions. This cycle begins with the initial deposition of metallics through meteor ablation and sputtering, followed by conversion of neutral Fe atoms to ions through photoionization and charge exchange with ambient ions. Global transport arising from daytime electric fields and poleward/ downward di.usion along geomagnetic field lines, localized transport and layer formation through de- scending convergent nulls in the thermospheric wind field, and finally annihilation by chemical neutralization and compound formation are treated. The model thus sheds new light on the interdependencies of the physical and chemical processes a.ecting atmospheric metallics. Model output analysis confirms the dominant role of both global and local transport to the ion's life cycle, showing that upward forcing from the equatorial electric field is critical to global movement, and that diurnal and semidiurnal tidal winds are responsible for the forma- tion of dense ion layers in the 90±250 km height region. It is demonstrated that the assumed combination of sources, chemical sinks, and transport mechanisms actually produces F-region densities and E-region layer densities similar to those observed. The model also shows that zonal and meridional winds and electric fields each play distinct roles in local transport, whereas the ion distribution is relatively insensitive to reasonable variations in meteoric deposition and chemical reaction rates.Key words. Ionosphere (ion chemistry and composition; ionosphere-atmosphere interactions.

  18. First measurements of the radioactivity in atmospheric precipitations

    Energy Technology Data Exchange (ETDEWEB)

    Santomauro, L; Cigna, A

    1953-01-01

    Measurements conducted between February 1951 and November 1952 showed that nuclear-weapon tests at Las Vegas, Eniwetok, and Montebello were followed, 1, 2, and 3 weeks later, respectively, by an increase in the radioactive content of rain and snow falling in Italy.

  19. Atmospheric dispersion of radioactive releases: Computer code DIASPORA

    International Nuclear Information System (INIS)

    Synodinou, B.M.; Bartzis, J.M.

    1982-05-01

    The computer code DIASPORA is presented. Air and ground concentrations of an airborne radioactive material released from an elevated continuous point source are calculated using Gaussian plume models. Dry and wet deposition as well as plume rise effects are taken into consideration. (author)

  20. ENSO events are induced by the Global Atmosphere Oscillation

    Science.gov (United States)

    Serykh, Ilya; Byshev, Vladimir; Neiman, Victor; Romanov, Juri

    2014-05-01

    The large-scale anomalies in the planetary fields of the principal hydro-meteorological characteristics were found to appear prior the beginning and during the main phase of the El Niño - Southern Oscillation (ENSO) phenomenon in the Pacific Ocean. The anomalies were interpreted as manifestation of the interannual Global Atmosphere Oscillation (GAO) in dynamics of the modern climatic system. The key feature of the GAO baric structure is a large-scale positive anomaly in tropical area (30N-30S, 50W-170E) surrounded by negative anomaly bending its outer boundaries. Eventually, such reconstruction of the atmospheric pressure field over tropical zone as a consequence of the GAO leads to Walker circulation cell reversal which is immediately followed by the next El Niño process starting. Spatio-temporal structure of the anomalous hydro-meteorological fields developing under impact of the GAO was analyzed using the monthly-mean atmospheric pressure data at sea level (HadSLP2) and near-surface temperature (CRUTEM4) prepared by GB Met Office Hadley Centre for period of 1948-2012, also we used wind data from US NCEP/NCAR reanalysis for the same period. Due to the presence of feed-forwards and feedbacks in the climate dynamics, the large-scale anomalies of characteristics appearing after the GAO cause their back effect on the system of interaction of the ocean-atmosphere-land. This is the secondary impact which can be implemented either by direct exchange of properties between the adjacent areas (this is seen most explicitly in the Indo-Pacific Region), or owing to teleconnections between the concrete climatic subsystems in different parts of the Earth. It is apparently that the secondary, or indirect, GAO impact spreading through the system of general atmospheric circulation has a certain phase shift in different areas, which depends first on the distance from the respective climatic anomalies, in particular, from the most intensive of them, appearing in the equatorial

  1. Development of a computer model for calculation of radioactive materials into the atmosphere after an accident

    Energy Technology Data Exchange (ETDEWEB)

    Schershakov, V. [Federal Information Analytical Centre, Obinski (Russia)

    1997-11-01

    Secondary atmospheric contamination with radioactive dust and chemical species deposited on the ground and resuspended by wind occur very widely. This process is particularly pronounced in case of extensive contamination of soil and under extreme weather conditions, for example, during dust storms. The mechanism of wind dust generation consists in the following. At low wind speed U=2-3 m/s, which is most common in midlatitude, small radioactive dust particles (diameter of hundredth of a micron to 10-20 microns) are lifted from soil surface due to turbulent vortexes. Under the gravitational force the particles of 1-2 micron diameter practically do not settle. Larger dust particles cannot remain in the air for a long time: they are lifted by turbulent vortexes and settle, their motion in the wind flow is jump-wise and the interaction of particles with the flow is called saltation /I/. Saltation is the main mechanism of dust generation up to the wind velocity at which wind erosion starts. The size of dust particles can be as large as 100 pm. When dropping they can be ricocheting from ground or pass the impulse to other particles which begin rolling over and jumping up. The process of dust transport by wind can be compared to a chain reaction. At the velocity of 10 m/s large particles of about 500 pm stop skipping and roll over only, while particles of more than 1 mm remain stationary. Thus, the fine fraction is blown out from the polydispersed soil particles. The intensity of wind resuspension of radioactive dust from the ground is characterized either by a resuspension factor or a resuspension rate.

  2. Final safety analysis report for the atmospheric protection system

    International Nuclear Information System (INIS)

    1976-06-01

    An Atmospheric Protection System (APS) has been constructed at the Idaho Chemical Processing Plant to minimize the release of radioactive particulate material to the atmosphere from nonroutine occurrences. Existing off-gas cleanup systems remove radioactive particulates to well below allowable limits for controlled areas before release to the plant stack. Previously all ventilation air from process cells was discharged to the stack without treatment. The APS provides continuous filtration of all ventilation air from process cells and backup filtration of all process off gases before they are released to the atmosphere. A safety analysis of the potential hazards associated with the APS has been completed. The review indicates that the system is capable of withstanding design basis natural phenomena including a flood, tornado, and earthquake without releasing unacceptable amounts of radioactive particulate from the filters to the environment. An in-cell explosion, fire, mechanical damage, and other postulated accident situations were investigated. From these, the design basis accident postulated for the facility is complete release of the maximum amount of radioactive particulate collected on the 104 ventilation air HEPA filters to the atmosphere via the 250-foot high stack. Even though the release of all the radioactive particulate contained on the filters is hardly credible, it would not present an unacceptable hazard to personnel on or offsite

  3. Atmospheric histories and global emissions of the anthropogenic hydrofluorocarbons HFC-365mfc, HFC-245fa, HFC-227ea, and HFC-236fa

    Science.gov (United States)

    Vollmer, Martin K.; Miller, Benjamin R.; Rigby, Matthew; Reimann, Stefan; Mühle, Jens; Krummel, Paul B.; O'Doherty, Simon; Kim, Jooil; Rhee, Tae Siek; Weiss, Ray F.; Fraser, Paul J.; Simmonds, Peter G.; Salameh, Peter K.; Harth, Christina M.; Wang, Ray H. J.; Steele, L. Paul; Young, Dickon; Lunder, Chris R.; Hermansen, Ove; Ivy, Diane; Arnold, Tim; Schmidbauer, Norbert; Kim, Kyung-Ryul; Greally, Brian R.; Hill, Matthias; Leist, Michael; Wenger, Angelina; Prinn, Ronald G.

    2011-04-01

    We report on ground-based atmospheric measurements and emission estimates of the four anthropogenic hydrofluorocarbons (HFCs) HFC-365mfc (CH3CF2CH2CF3, 1,1,1,3,3-pentafluorobutane), HFC-245fa (CHF2CH2CF3, 1,1,1,3,3-pentafluoropropane), HFC-227ea (CF3CHFCF3, 1,1,1,2,3,3,3-heptafluoropropane), and HFC-236fa (CF3CH2CF3, 1,1,1,3,3,3-hexafluoropropane). In situ measurements are from the global monitoring sites of the Advanced Global Atmospheric Gases Experiment (AGAGE), the System for Observations of Halogenated Greenhouse Gases in Europe (SOGE), and Gosan (South Korea). We include the first halocarbon flask sample measurements from the Antarctic research stations King Sejong and Troll. We also present measurements of archived air samples from both hemispheres back to the 1970s. We use a two-dimensional atmospheric transport model to simulate global atmospheric abundances and to estimate global emissions. HFC-365mfc and HFC-245fa first appeared in the atmosphere only ˜1 decade ago; they have grown rapidly to globally averaged dry air mole fractions of 0.53 ppt (in parts per trillion, 10-12) and 1.1 ppt, respectively, by the end of 2010. In contrast, HFC-227ea first appeared in the global atmosphere in the 1980s and has since grown to ˜0.58 ppt. We report the first measurements of HFC-236fa in the atmosphere. This long-lived compound was present in the atmosphere at only 0.074 ppt in 2010. All four substances exhibit yearly growth rates of >8% yr-1 at the end of 2010. We find rapidly increasing emissions for the foam-blowing compounds HFC-365mfc and HFC-245fa starting in ˜2002. After peaking in 2006 (HFC-365mfc: 3.2 kt yr-1, HFC-245fa: 6.5 kt yr-1), emissions began to decline. Our results for these two compounds suggest that recent estimates from long-term projections (to the late 21st century) have strongly overestimated emissions for the early years of the projections (˜2005-2010). Global HFC-227ea and HFC-236fa emissions have grown to average values of 2.4 kt yr-1

  4. Radioactive particles after different nuclear events in the USSR (overview and modern data)

    Energy Technology Data Exchange (ETDEWEB)

    Gordeev, S.K.; Stukin, E.D.; Kvasnikova, E.V. [Institute of Global Climate and Ecology, Moscow (Russian Federation)

    2004-07-01

    Institute of Global Climate and Ecology participated in all stages of investigations concerning spreading of the radioactive particles formed after nuclear explosions. Since 1963 the radioactive particles from the surface nuclear explosions on the Semipalatinsk Test Site were investigated. Since 1964 the study of the environmental contamination from the underground nuclear explosions (including the cratering nuclear explosions) was carried out. Simultaneously the secondary radioactive aerosols released into the atmosphere from ventilated underground explosions were investigated. Since 1986 the forming and spreading of the radioactive aerosols from Chernobyl accident was studied. An overview of retrospective data will be presented. For example, the fragmentation radionuclides {sup 90}Sr, {sup 137}Cs and {sup 155}Eu, radionuclides induced by neutrons {sup 60}Co, {sup 152}Eu, {sup 154}Eu and transuranium radionuclides {sup 238}Pu, {sup 239+240}Pu and {sup 241}Am were estimated in 15 particles of August, 29, 1949 explosion using the semiconductor spectrometry and radiochemical analysis. Data collection include the samples taken on local traces of ground and underground excavation nuclear explosions, this information will be added by the modern data from soil samples near '1004' explosion (lake Chagan), October 2003. The results of comparison of radionuclide fractionation in the radioactive particles in slag from cratering nuclear explosions and in melt samples will be presented. Main results obtained under the IAEA Research Contract no. 11468. (author)

  5. Scenario and parameter studies on global deposition of radioactivity using the computer model GLODEP2

    International Nuclear Information System (INIS)

    Shapiro, C.S.

    1984-08-01

    The GLODEP2 computer code was utilized to determine biological impact to humans on a global scale using up-to-date estimates of biological risk. These risk factors use varied biological damage models for assessing effects. All the doses reported are the unsheltered, unweathered, smooth terrain, external gamma dose. We assume the unperturbed atmosphere in determining injection and deposition. Effects due to ''nuclear winter'' may invalidate this assumption. The calculations also include scenarios that attempt to assess the impact of the changing nature of the nuclear stockpile. In particular, the shift from larger to smaller yield nuclear devices significantly changes the injection pattern into the atmosphere, and hence significantly affects the radiation doses that ensue. We have also looked at injections into the equatorial atmosphere. In total, we report here the results for 8 scenarios. 10 refs., 6 figs., 11 tabs

  6. Vectorization and parallelization of a numerical scheme for 3D global atmospheric transport-chemistry problems

    NARCIS (Netherlands)

    E.J. Spee (Edwin); P.M. de Zeeuw (Paul); J.G. Verwer (Jan); J.G. Blom (Joke); W. Hundsdorfer (Willem)

    1996-01-01

    textabstractAtmospheric air quality modeling relies in part on numerical simulation. Required numerical simulations are often hampered by lack of computer capacity and computational speed. This problem is most severe in the field of global modeling where transport and exchange of trace constituents

  7. Multi-model global assessment of subseasonal prediction skill of atmospheric rivers

    Science.gov (United States)

    Deflorio, M. J.

    2017-12-01

    Atmospheric rivers (ARs) are global phenomena that are characterized by long, narrow plumes of water vapor transport. They are most often observed in the midlatitudes near climatologically active storm track regions. Because of their frequent association with floods, landslides, and other hydrological impacts on society, there is significant incentive at the intersection of academic research, water management, and policymaking to understand the skill with which state-of-the-art operational weather models can predict ARs weeks-to-months in advance. We use the newly assembled Subseasonal-to-Seasonal (S2S) database, which includes extensive hindcast records of eleven operational weather models, to assess global prediction skill of atmospheric rivers on S2S timescales. We develop a metric to assess AR skill that is suitable for S2S timescales by counting the total number of AR days which occur over each model and observational grid cell during a 2-week time window. This "2-week AR occurrence" metric is suitable for S2S prediction skill assessment because it does not consider discrete hourly or daily AR objects, but rather a smoothed representation of AR occurrence over a longer period of time. Our results indicate that several of the S2S models, especially the ECMWF model, show useful prediction skill in the 2-week forecast window, with significant interannual variation in some regions. We also present results from an experimental forecast of S2S AR prediction skill using the ECMWF and NCEP models.

  8. Jovian atmospheres

    International Nuclear Information System (INIS)

    Allison, M.; Travis, L.D.

    1986-10-01

    A conference on the atmosphere of Jupiter produced papers in the areas of thermal and ortho-para hydrogen structure, clouds and chemistry, atmospheric structure, global dynamics, synoptic features and processes, atmospheric dynamics, and future spaceflight opportunities. A session on the atmospheres of Uranus and Neptune was included, and the atmosphere of Saturn was discussed in several papers

  9. Method of processing radioactive wastes

    International Nuclear Information System (INIS)

    Matagi, Yoshihiko; Takahara, Akira; Ootsuka, Katsuyuki.

    1984-01-01

    Purpose: To avoid the reduction in the atmospheric insulation by preventing the generation of CO 2 , H 2 O, etc. upon irradiation of microwave heat. Method: Radioactive wastes are charged into a hopper, supplied on a conveyor, fed each by a predetermined amount to a microwave furnace and heated by microwaves applied from a microwave guide. Simultaneously, inert gases are supplied from a supply line. The Radioactive wastes to be treated are shielded by the inert gases to prevent the combustion of decomposed gases produced from the wastes upon irradiation of microwave heat to thereby prevent the generation of CO 2 , H 2 , etc., as well as the generated decomposed gases are diluted with the inert gases to decrease the dissociation of the decomposed gases to prevent the reduction in the atmospheric insulation. Since the spent inert gases can be recovered for reuse, the amount of gaseous wastes released to the atmosphere can be decreased and the working life of the high performance air filters can be extended. (Sekiya, K.)

  10. Global radioxenon emission inventory based on nuclear power reactor reports.

    Science.gov (United States)

    Kalinowski, Martin B; Tuma, Matthias P

    2009-01-01

    Atmospheric radioactivity is monitored for the verification of the Comprehensive Nuclear-Test-Ban Treaty, with xenon isotopes 131mXe, 133Xe, 133mXe and 135Xe serving as important indicators of nuclear explosions. The treaty-relevant interpretation of atmospheric concentrations of radioxenon is enhanced by quantifying radioxenon emissions released from civilian facilities. This paper presents the first global radioxenon emission inventory for nuclear power plants, based on North American and European emission reports for the years 1995-2005. Estimations were made for all power plant sites for which emission data were unavailable. According to this inventory, a total of 1.3PBq of radioxenon isotopes are released by nuclear power plants as continuous or pulsed emissions in a generic year.

  11. Cesium-137 global fallout into the Ob river basin and its influence on the Kara sea contamination - Weapons fallout cesium-137 in the Ob' catchment landscapes and its influence on radioactive contamination of the Kara sea: Western Siberia, Russia

    Energy Technology Data Exchange (ETDEWEB)

    Semenkov, Ivan N.; Miroshnikov, Alexey Yu. [The Organization of Russian Academy of Sciences Institute of geology of ore deposits, petrography, mineralogy and geochemistry Russian Academy of Sciences (Russian Federation)

    2014-07-01

    There are several high level {sup 137}Cs anomaly zones detected in the deposits of the SW part of the Kara Sea. These anomaly zones were formed in the Ob' and the Enisey river estuaries due to the geochemical 'river-sea' boarder barrier. Level of radiocaesium specific activity reaches 120 Bq*kg{sup -1} in the deposits from these zones. Radiochemical enterprises occur in the both river basins. Their activity results in caesium-137 transfer into the river net. Vast area is contaminated by {sup 137}Cs after nuclear weapons in Semipalatinsk test-site and Kyshtym disaster in the Ob' river basin. Moreover, caesium comes to the Ob' and the Enisey river basins with global atmospheric fallout. The inflow of global fallout caesium-137 to the catchments is 660 kCi (320 kCi including radioactive decay) that is 4 times higher than {sup 137}Cs emission due to Fukushima disaster. Therefore, these river basins as any other huge catchment are an important sources of radioactive contamination of the Arctic Ocean. The aim of our research is to study behavior of global fallout caesium-137 in the landscapes of the Ob and the Enisey river basins. We studied caesium-137 behavior on the example of first order catchments in taiga, wetland, forest-steppe, steppe, and semi-arid landscapes. Geographic information system (GIS) was made. The tenth-order catchments (n=154, Horton coding system) shape 20-groups due to topsoil properties controlling cesium mobility. Eleven first-order basins, characterized 7 groups of tenth order catchments, were studied. And 700 bulk-core soil samples were collected in 2011-2013. Cesium runoff is calculated for 3 first-order river basins in taiga and forest-steppe landscapes. Storage of global fallout caesium-137 declines from undisturbing taiga first-order river basin (90% of cumulative fallout including radioactive decay)> arable steppe and fores-steppe (70 - 75%)> undisturbing wetland (60%). Caesium-137 transfer is high in arable lands

  12. Atmospheric transport of radioactive debris to Norway in case of a hypothetical accident related to the recovery of the Russian submarine K-27

    International Nuclear Information System (INIS)

    Bartnicki, Jerzy; Amundsen, Ingar; Brown, Justin; Hosseini, Ali; Hov, Øystein; Haakenstad, Hilde; Klein, Heiko; Lind, Ole Christian; Salbu, Brit; Szacinski Wendel, Cato C.; Ytre-Eide, Martin Album

    2016-01-01

    The Russian nuclear submarine K-27 suffered a loss of coolant accident in 1968 and with nuclear fuel in both reactors it was scuttled in 1981 in the outer part of Stepovogo Bay located on the eastern coast of Novaya Zemlya. The inventory of spent nuclear fuel on board the submarine is of concern because it represents a potential source of radioactive contamination of the Kara Sea and a criticality accident with potential for long-range atmospheric transport of radioactive particles cannot be ruled out. To address these concerns and to provide a better basis for evaluating possible radiological impacts of potential releases in case a salvage operation is initiated, we assessed the atmospheric transport of radionuclides and deposition in Norway from a hypothetical criticality accident on board the K-27. To achieve this, a long term (33 years) meteorological database has been prepared and used for selection of the worst case meteorological scenarios for each of three selected locations of the potential accident. Next, the dispersion model SNAP was run with the source term for the worst-case accident scenario and selected meteorological scenarios. The results showed predictions to be very sensitive to the estimation of the source term for the worst-case accident and especially to the sizes and densities of released radioactive particles. The results indicated that a large area of Norway could be affected, but that the deposition in Northern Norway would be considerably higher than in other areas of the country. The simulations showed that deposition from the worst-case scenario of a hypothetical K-27 accident would be at least two orders of magnitude lower than the deposition observed in Norway following the Chernobyl accident. - Highlights: • Long-term meteorological database has been developed for atmospheric dispersion. • Using this database, the worst case meteorological scenarios have been selected. • Mainly northern parts of Norwegian territory will be

  13. Global transport and localized layering of metallic ions in the upper atmospherer

    Directory of Open Access Journals (Sweden)

    L. N. Carter

    Full Text Available A numerical model has been developed which is capable of simulating all phases of the life cycle of metallic ions, and results are described and interpreted herein for the typical case of Fe+ ions. This cycle begins with the initial deposition of metallics through meteor ablation and sputtering, followed by conversion of neutral Fe atoms to ions through photoionization and charge exchange with ambient ions. Global transport arising from daytime electric fields and poleward/ downward di.usion along geomagnetic field lines, localized transport and layer formation through de- scending convergent nulls in the thermospheric wind field, and finally annihilation by chemical neutralization and compound formation are treated. The model thus sheds new light on the interdependencies of the physical and chemical processes a.ecting atmospheric metallics. Model output analysis confirms the dominant role of both global and local transport to the ion's life cycle, showing that upward forcing from the equatorial electric field is critical to global movement, and that diurnal and semidiurnal tidal winds are responsible for the forma- tion of dense ion layers in the 90±250 km height region. It is demonstrated that the assumed combination of sources, chemical sinks, and transport mechanisms actually produces F-region densities and E-region layer densities similar to those observed. The model also shows that zonal and meridional winds and electric fields each play distinct roles in local transport, whereas the ion distribution is relatively insensitive to reasonable variations in meteoric deposition and chemical reaction rates.

    Key words. Ionosphere (ion chemistry and composition; ionosphere-atmosphere interactions.

  14. Radioactivity of the JINR site environment

    International Nuclear Information System (INIS)

    Alenitskaya, S.I.; Bamblevskij, V.P.; Kargin, A.N.; Komochkov, M.M.

    1977-01-01

    The results of the study of the existing levels of enviromental radioactivity in the JINR region for 1971-1975; content of radioactive products in the grass and surface soil layer, levels of the total alpha - and beta-radioactivity of water of open reservoirs as well as the background of the gamma-radiation and charged particles are presented. The study testifies, that the operation of the JINR nuclear-physical installations does not significantly affect the radioactivity of the environment which is mainly conditioned by the products of the natural origin and the global fallouts

  15. Recent advances in nuclear techniques for environmental radioactivity monitoring

    International Nuclear Information System (INIS)

    Kumar, Ajay; Tripathi, R.M.

    2016-01-01

    The environmental radioactivity monitoring was first started in the late 1950s following the global fallout from testing of nuclear weapons in the atmosphere. Nuclear analytical techniques are generally classified into two categories: destructive and non-destructive. Destructive techniques are carried out through several analytical methods such as α-spectrometry, liquid Scintillation counting system, solid state nuclear track detector, spectrophotometry, fluorimetry, atomic absorption spectrometry (AAS), inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma optical emission spectrometry (ICP-OES), chromatography techniques, electro-analytical techniques etc. However, nondestructive methods include gamma spectrometry, X-Ray fluorescence (XRF) spectrometry, neutron activation analysis (NAA) etc. The development of radiochemical methods and measurement techniques using alpha and gamma spectrometry have been described in brief

  16. Changes on Mid-Latitude Cyclones due to Global Warming Simulated by a Global 20-km-mesh Atmospheric Model

    Science.gov (United States)

    Miyamoto, K.

    2005-12-01

    I investigate how the intensity and the activity of mid-latitude cyclones change as a result of global warming, based on a time-slice experiment with a super-high resolution Atmospheric General Circulation Model (20-km mesh TL959L60 MRI/JMA AGCM). The model was developed by the RR2002 project "Development of Super High Resolution Global and Regional Climate Models" funded by the Japanese Ministry of Education, Culture, Sports, Science and Technology. In this context, I use a 10-year control simulation with the climatological SST and a 10-year time-slice global warming simulation using the SST anomalies derived from the SRES A1B scenario run with the MRI-CGCM2.3 (T42L30 atmosphere, 0.5-2.0 x 2.5 L23 ocean) corresponding to the end of the 21st century. I have analyzed the sea-level pressure field and the kinetic energy field of the wind at the 500 hPa pressure level associated with mid-latitude transients from October through April. According to a comparison of 10-day average fields between present and future in the North Pacific, some statistically significant changes are found in a warmer climate for the both of sea-level pressure and the kinetic energy fields. In particular, from late winter through early spring, the sea-level pressure decreases on many parts of the whole Pacific. The kinetic energy of the wind becomes higher on center of the basin. Therefore, I suppose the Aleutian Low is likely to settle in longer by about one month than the present. Hereafter, I plan to investigate what kind of phenomena may accompany the changes on mid-latitude transients.

  17. Predicted net efflux of radiocarbon from the ocean and increase in atmospheric radiocarbon content

    Science.gov (United States)

    Caldeira, Ken; Rau, Greg H.; Duffy, Philip B.

    Prior to changes introduced by man, production of radiocarbon (14C) in the stratosphere nearly balanced the flux of 14C from the atmosphere to the ocean and land biosphere, which in turn nearly balanced radioactive decay in these 14C reservoirs. This balance has been altered by land-use changes, fossil-fuel burning, and atmospheric nuclear detonations. Here, we use a model of the global carbon cycle to quantify these radiocarbon fluxes and make predictions about their magnitude in the future. Atmospheric nuclear detonations increased atmospheric 14C content by about 80% by the mid-1960's. Since that time, the 14C content of the atmosphere has been diminishing as this bomb radiocarbon has been entering the oceans and terrestrial biosphere. However, we predict that atmospheric 14C content will reach a minimum and start to increase within the next few years if fossil-fuel burning continues according to a “business-as-usual” scenario, even though fossil fuels are devoid of 14C. This will happen because fossil-fuel carbon diminishes the net flux of 14C from the atmosphere to the oceans and land biosphere, forcing 14C to accumulate in the atmosphere. Furthermore, the net flux of both bomb and natural 14C into the ocean are predicted to continue to slow and then, in the middle of the next century, to reverse, so that there will be a net flux of 14C from the ocean to the atmosphere. The predicted reversal of net 14C fluxes into the ocean is a further example of human impacts on the global carbon cycle.

  18. Radioactive survey of the environment of the nuclear sites of French Nuclear Board: an overview

    International Nuclear Information System (INIS)

    Robeau, D.; Montjoie, M.; Sauve, A.M.; Laporte, J.; Rahaplen, A.; Alphonse, L.; Huc, C.; Bensimon, C.; Cissoko, G.

    1992-01-01

    C.E.A. has set up a network of radioactive survey around its nuclear sites. This network involves terrestrial, atmospheric and marine results of radioactive measurements. This survey is structured in four levels. The level 0 homogenizes stations of measurements, level 1 centralizes real-time measurements of gross α and β measurements of atmospheric radioactivity, level 2 and 3 centralizes postponed α-β spectrometric measurements of radioactivity on water, deposition, grass, vegetables. People can have a squint at these results of measurements using popular MINITEL telephonic network. (author)

  19. Geophysical excitation of LOD/UT1 estimated from the output of the global circulation models of the atmosphere - ERA-40 reanalysis and of the ocean - OMCT

    Science.gov (United States)

    Korbacz, A.; Brzeziński, A.; Thomas, M.

    2008-04-01

    We use new estimates of the global atmospheric and oceanic angular momenta (AAM, OAM) to study the influence on LOD/UT1. The AAM series was calculated from the output fields of the atmospheric general circulation model ERA-40 reanalysis. The OAM series is an outcome of global ocean model OMCT simulation driven by global fields of the atmospheric parameters from the ERA- 40 reanalysis. The excitation data cover the period between 1963 and 2001. Our calculations concern atmospheric and oceanic effects in LOD/UT1 over the periods between 20 days and decades. Results are compared to those derived from the alternative AAM/OAM data sets.

  20. Quantifying atmospheric transport, chemistry, and mixing using a new trajectory-box model and a global atmospheric-chemistry GCM

    Directory of Open Access Journals (Sweden)

    H. Riede

    2009-12-01

    Full Text Available We present a novel method for the quantification of transport, chemistry, and mixing along atmospheric trajectories based on a consistent model hierarchy. The hierarchy consists of the new atmospheric-chemistry trajectory-box model CAABA/MJT and the three-dimensional (3-D global ECHAM/MESSy atmospheric-chemistry (EMAC general circulation model. CAABA/MJT employs the atmospheric box model CAABA in a configuration using the atmospheric-chemistry submodel MECCA (M, the photochemistry submodel JVAL (J, and the new trajectory submodel TRAJECT (T, to simulate chemistry along atmospheric trajectories, which are provided offline. With the same chemistry submodels coupled to the 3-D EMAC model and consistent initial conditions and physical parameters, a unique consistency between the two models is achieved. Since only mixing processes within the 3-D model are excluded from the model consistency, comparisons of results from the two models allow to separate and quantify contributions of transport, chemistry, and mixing along the trajectory pathways. Consistency of transport between the trajectory-box model CAABA/MJT and the 3-D EMAC model is achieved via calculation of kinematic trajectories based on 3-D wind fields from EMAC using the trajectory model LAGRANTO. The combination of the trajectory-box model CAABA/MJT and the trajectory model LAGRANTO can be considered as a Lagrangian chemistry-transport model (CTM moving isolated air parcels. The procedure for obtaining the necessary statistical basis for the quantification method is described as well as the comprehensive diagnostics with respect to chemistry.

    The quantification method presented here allows to investigate the characteristics of transport, chemistry, and mixing in a grid-based 3-D model. The analysis of chemical processes within the trajectory-box model CAABA/MJT is easily extendable to include, for example, the impact of different transport pathways or of mixing processes onto

  1. Detection of traveling ionospheric disturbances induced by atmospheric gravity waves using the global positioning system

    Science.gov (United States)

    Bassiri, Sassan; Hajj, George A.

    1993-01-01

    Natural and man-made events like earthquakes and nuclear explosions launch atmospheric gravity waves (AGW) into the atmosphere. Since the particle density decreases exponentially with height, the gravity waves increase exponentially in amplitude as they propagate toward the upper atmosphere and ionosphere. As atmospheric gravity waves approach the ionospheric heights, the neutral particles carried by gravity waves collide with electrons and ions, setting these particles in motion. This motion of charged particles manifests itself by wave-like fluctuations and disturbances that are known as traveling ionospheric disturbances (TID). The perturbation in the total electron content due to TID's is derived analytically from first principles. Using the tilted dipole magnetic field approximation and a Chapman layer distribution for the electron density, the variations of the total electron content versus the line-of-sight direction are numerically analyzed. The temporal variation associated with the total electron content measurements due to AGW's can be used as a means of detecting characteristics of the gravity waves. As an example, detection of tsunami generated earthquakes from their associated atmospheric gravity waves using the Global Positioning System is simulated.

  2. The 5th conference of the South Pacific Environmental Radioactivity Association (SPERA). Environmental radioactivity and its application in environmental studies. Conference papers

    International Nuclear Information System (INIS)

    1998-01-01

    SPERA98 focused primarily on applications of environmental radionuclides in environmental studies and problem solving. The conference program included 7 sessions covering topics such as: soil erosion, waste disposal and treatment, atmospheric studies, radioactivity in water, human exposure pathways, sediment and atmospheric studies

  3. The 5th conference of the South Pacific Environmental Radioactivity Association (SPERA). Environmental radioactivity and its application in environmental studies. Conference papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    SPERA98 focused primarily on applications of environmental radionuclides in environmental studies and problem solving. The conference program included 7 sessions covering topics such as: soil erosion, waste disposal and treatment, atmospheric studies, radioactivity in water, human exposure pathways, sediment and atmospheric studies.

  4. Convective transport in ATM simulations and its relation to the atmospheric stability conditions

    Science.gov (United States)

    Kusmierczyk-Michulec, Jolanta

    2017-04-01

    The International Monitoring System (IMS) developed by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) is a global system of monitoring stations, using four complementary technologies: seismic, hydroacoustic, infrasound and radionuclide. Data from all stations, belonging to IMS, are collected and transmitted to the International Data Centre (IDC) in Vienna, Austria. The radionuclide network comprises 80 stations, of which more than 60 are certified. The aim of radionuclide stations is a global monitoring of radioactive aerosols and radioactive noble gases, in particular xenon isotopes, supported by the atmospheric transport modeling (ATM). One of the important noble gases, monitored on a daily basis, is radioxenon. It can be produced either during a nuclear explosion with a high fission yield, and thus be considered as an important tracer to prove the nuclear character of an explosion, or be emitted from nuclear power plants (NPPs) or from isotope production facilities (IPFs). To investigate the transport of xenon emissions, the Provisional Technical Secretariat (PTS) operates an Atmospheric Transport Modelling (ATM) system based on the Lagrangian Particle Dispersion Model FLEXPART. To address the question whether including the convective transport in ATM simulations will change the results significantly, the differences between the outputs with the convective transport turned off and turned on, were computed and further investigated taking into account the atmospheric stability conditions. For that purpose series of 14 days forward simulations, with convective transport and without it, released daily in the period January 2011 to February 2012, were analysed. The release point was at the ANSTO facility in Australia. The unique opportunity of having access to both daily emission values for ANSTO as well as measured Xe-133 activity concentration (AC) values at the IMS stations, gave a chance to validate the simulations.

  5. Static and mobile networks design for atmospheric accidental releases monitoring

    International Nuclear Information System (INIS)

    Abida, R.

    2010-01-01

    The global context of my PhD thesis work is the optimization of air pollution monitoring networks, but more specifically it concerns the monitoring of accidental releases of radionuclides in air. The optimization problem of air quality measuring networks has been addresses in the literature. However, it has not been addresses in the context of surveillance of accidental atmospheric releases. The first part of my thesis addresses the optimization of a permanent network of monitoring of radioactive aerosols in the air, covering France. The second part concerns the problem of targeting of observations in case of an accidental release of radionuclides from a nuclear plant. (author)

  6. International conference on the safety and security of radioactive sources: Towards a global system for the continuous control of sources throughout their life cycle. Contributed papers

    International Nuclear Information System (INIS)

    2005-01-01

    The objective of the conference is to promote a wide exchange of information on key issues relating to the safety and security of radioactive sources, including: drawing up an inventory; finding a solution without delay to situations resulting from past activities; preparing for the future by defining a global cooperative approach to the continuous control of radioactive sources during their life cycle. It is expected that the conference will foster a better understanding of the risks posed by these sources from the point of view of radiation safety and the threat associated with some of them in the event of malevolent use, and will help in finding ways of reducing the likelihood of the occurrence of a radiological incident or accident, or of a malevolent act. It is also expected to identify the preparedness and response measures that are necessary and to facilitate a common understanding on the feasibility of creating a sustainable global system for ensuring the safety and security of radioactive sources

  7. International conference on the safety and security of radioactive sources: Towards a global system for the continuous control of sources throughout their life cycle. Contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The objective of the conference is to promote a wide exchange of information on key issues relating to the safety and security of radioactive sources, including: drawing up an inventory; finding a solution without delay to situations resulting from past activities; preparing for the future by defining a global cooperative approach to the continuous control of radioactive sources during their life cycle. It is expected that the conference will foster a better understanding of the risks posed by these sources from the point of view of radiation safety and the threat associated with some of them in the event of malevolent use, and will help in finding ways of reducing the likelihood of the occurrence of a radiological incident or accident, or of a malevolent act. It is also expected to identify the preparedness and response measures that are necessary and to facilitate a common understanding on the feasibility of creating a sustainable global system for ensuring the safety and security of radioactive sources.

  8. Evaluating the Effect of Nuclear Power Plant Buildings on the Atmospheric Dispersion Behavior of Released Radioactive Materials

    International Nuclear Information System (INIS)

    Nassar, N.N.; Tawfik, F.S.; Agamy, S.A.; Nagla, T.F.

    2017-01-01

    One of the most important principles in air pollution is to minimize the release of pollutants to the atmosphere, deposition on the ground and promote sufficient dilution of released pollutants within the atmosphere. Building down wash describes the effect that wind flowing over or around buildings create a cavity of reticulating winds in the are a near the buildings. These cavities cause increased vertical dispersion of plumes emitted from stacks on or near the buildings . Often it leads to elevated concentrations downwind of affected stacks. The aim of this work is to evaluate the effect of the building down wash phenomena on the atmospheric dispersion behavior of released radioactive materials from NPP. In this study, a hypothetical scenario is presented involving a point source with varying stack parameters and rectangular shaped buildings (Mille stone Nuclear Power Plant) using meteorological parameters of a chosen day. The concentrations of assumed released radionuclides, taking into consideration the building down wash effect and without are calculated using the AERMOD Model taking into consideration the effect of the type of atmospheric stability class. Also the analysis includes the model predictions for the highest 1-hour cavity concentration. The results show that the size of the cavity zone is not affected by the type of stability class, but is affected by the stack location and buildings shape. On other hand, the distance at which the plume touches the ground is affected by the type of stability class, the stack location and buildings shape. So, strategies for locating buildings need to be considered to maximize dispersion when planning for constructing several reactors and accessory buildings at a nuclear site

  9. Development of Data Base on Radioactive Discharges and Environmental Activity Levels in Slovenia

    International Nuclear Information System (INIS)

    Vokal, B.; Krizman, M.

    2003-01-01

    Radioactivity monitoring in the environment in Slovenia has been currently performed on a regular basis as a monitoring of global radioactive contamination and as operational monitoring in the surroundings of facilities with radioactive discharges. Environmental radioactivity monitoring due to atmospheric nuclear bomb tests in Slovenia started in 1961, while monitoring of radioactive discharges from nuclear facilities in Slovenia started in early 1980s with the extent programmes: in the Krsko nuclear power plant in 1981, in the uranium mining and milling facility at Zirovski vrh (1985) and in the research reactor at Brinje near Ljubljana (1986). Both categories of the results are documented in written reports and sent to the competent authorities, mostly on annual basis. According to the requirements of the European Commission (Commission Recommendation of 8. June 2000 on the application of Article 36 of the Euratom Treaty concerning the monitoring of the levels of the radioactivity in the environment for the purpose of assessing the exposure of the population as a whole (2000/473/Euratom) and Commission Recommendation of 6. December 1999 on the application of Article 37 of the Euratom Treaty (1999/829/Euratom)) and on initiative of the IAEA (IAEA Document International Atomic Energy Agency (IAEA). Project International Data base on Discharges of Radioactive Material to the Environment, 2000) the Slovenian Nuclear Safety Administration (SNSA) started in 2002 with development of the computerised data base on environmental data and radioactive discharges data for the most facilities, specially for the nuclear fuel cycle. At present the environmental database contains the data on global contamination of air, surface waters, tap water sources and food chain (1 37C s, 9 0S r) and also on levels of major natural radionuclides (7 B e, 2 10P b, 2 26R a, 4 0K ). Data base on radioactive discharges for the recent years comprises the activities of fission and activation

  10. New Constraints on Terrestrial Surface-Atmosphere Fluxes of Gaseous Elemental Mercury Using a Global Database.

    Science.gov (United States)

    Agnan, Yannick; Le Dantec, Théo; Moore, Christopher W; Edwards, Grant C; Obrist, Daniel

    2016-01-19

    Despite 30 years of study, gaseous elemental mercury (Hg(0)) exchange magnitude and controls between terrestrial surfaces and the atmosphere still remain uncertain. We compiled data from 132 studies, including 1290 reported fluxes from more than 200,000 individual measurements, into a database to statistically examine flux magnitudes and controls. We found that fluxes were unevenly distributed, both spatially and temporally, with strong biases toward Hg-enriched sites, daytime and summertime measurements. Fluxes at Hg-enriched sites were positively correlated with substrate concentrations, but this was absent at background sites. Median fluxes over litter- and snow-covered soils were lower than over bare soils, and chamber measurements showed higher emission compared to micrometeorological measurements. Due to low spatial extent, estimated emissions from Hg-enriched areas (217 Mg·a(-1)) were lower than previous estimates. Globally, areas with enhanced atmospheric Hg(0) levels (particularly East Asia) showed an emerging importance of Hg(0) emissions accounting for half of the total global emissions estimated at 607 Mg·a(-1), although with a large uncertainty range (-513 to 1353 Mg·a(-1) [range of 37.5th and 62.5th percentiles]). The largest uncertainties in Hg(0) fluxes stem from forests (-513 to 1353 Mg·a(-1) [range of 37.5th and 62.5th percentiles]), largely driven by a shortage of whole-ecosystem fluxes and uncertain contributions of leaf-atmosphere exchanges, questioning to what degree ecosystems are net sinks or sources of atmospheric Hg(0).

  11. Application of data assimilation to improve the forecasting capability of an atmospheric dispersion model for a radioactive plume

    International Nuclear Information System (INIS)

    Jeong, H.J.; Han, M.H.; Hwang, W.T.; Kim, E.H.

    2008-01-01

    Modeling an atmospheric dispersion of a radioactive plume plays an influential role in assessing the environmental impacts caused by nuclear accidents. The performance of data assimilation techniques combined with Gaussian model outputs and measurements to improve forecasting abilities are investigated in this study. Tracer dispersion experiments are performed to produce field data by assuming a radiological emergency. Adaptive neuro-fuzzy inference system (ANFIS) and linear regression filter are considered to assimilate the Gaussian model outputs with measurements. ANFIS is trained so that the model outputs are likely to be more accurate for the experimental data. Linear regression filter is designed to assimilate measurements similar to the ANFIS. It is confirmed that ANFIS could be an appropriate method for an improvement of the forecasting capability of an atmospheric dispersion model in the case of a radiological emergency, judging from the higher correlation coefficients between the measured and the assimilated ones rather than a linear regression filter. This kind of data assimilation method could support a decision-making system when deciding on the best available countermeasures for public health from among emergency preparedness alternatives

  12. Atmospheric pressure loading effects on Global Positioning System coordinate determinations

    Science.gov (United States)

    Vandam, Tonie M.; Blewitt, Geoffrey; Heflin, Michael B.

    1994-01-01

    Earth deformation signals caused by atmospheric pressure loading are detected in vertical position estimates at Global Positioning System (GPS) stations. Surface displacements due to changes in atmospheric pressure account for up to 24% of the total variance in the GPS height estimates. The detected loading signals are larger at higher latitudes where pressure variations are greatest; the largest effect is observed at Fairbanks, Alaska (latitude 65 deg), with a signal root mean square (RMS) of 5 mm. Out of 19 continuously operating GPS sites (with a mean of 281 daily solutions per site), 18 show a positive correlation between the GPS vertical estimates and the modeled loading displacements. Accounting for loading reduces the variance of the vertical station positions on 12 of the 19 sites investigated. Removing the modeled pressure loading from GPS determinations of baseline length for baselines longer than 6000 km reduces the variance on 73 of the 117 baselines investigated. The slight increase in variance for some of the sites and baselines is consistent with expected statistical fluctuations. The results from most stations are consistent with approximately 65% of the modeled pressure load being found in the GPS vertical position measurements. Removing an annual signal from both the measured heights and the modeled load time series leaves this value unchanged. The source of the remaining discrepancy between the modeled and observed loading signal may be the result of (1) anisotropic effects in the Earth's loading response, (2) errors in GPS estimates of tropospheric delay, (3) errors in the surface pressure data, or (4) annual signals in the time series of loading and station heights. In addition, we find that using site dependent coefficients, determined by fitting local pressure to the modeled radial displacements, reduces the variance of the measured station heights as well as or better than using the global convolution sum.

  13. Spectroradiometric inspection of nuclear pollution in the atmosphere based on photochemical effects

    Science.gov (United States)

    Chistyakova, Liliya K.; Kopytin, Yurii D.

    2005-07-01

    Results of theoretical and experimental investigations of remote monitoring methods based on secondary radioactivity effects including anomalous gaseous fields and their emissions in optical and microwave ranges are discussed. The feasibility of remote registration of secondary emission and absorption spectra from weakly ionized regions in the atmosphere above nuclear power engineering objects, dumps, and tailings dumps of nuclear wastes are examined. Based on the literature data on the excess concentrations of aerosol and gaseous components produced in radiation fields above their background levels, the diffusion parameters of radioactive emissions in the atmosphere are evaluated. The methods under consideration are shown to be promising for ecological monitoring of atmospheric radioactive pollution. High sensitivities of these methods enable pollutants to be detected at long distances. Simultaneous use of passive and active methods gives additional information on the parameters of radioactive pollution.

  14. Lunar evolution: is there a global radioactive crust on the moon

    International Nuclear Information System (INIS)

    Murthy, V.R.

    1977-01-01

    Chemical and isotopic analyses of various grainsize fractions of lunar soils show the presence of an 'exotic component' in practically all lunar soils. The patterns of enrichments in the grain-size fractions and the Sr-isotopic data show that the regolith evolution displays the combined effects of comminution of local rock types and addition of the exotic component. The chemical characteristics of this exotic component as deduced from the chemical and isotopic data in soils from Apollo 11, 12, 15 and 16 uniformly point to compositions similar to the material from Fra Mauro region collected in the Apollo 14 mission. There is a strong correlation between the amount of exotic component in a soil and its distance from the Fra Mauro region. It is suggested that the exotic component represents trace element enriched material from the Imbrium-Procellarum region, which was surficially deposited during Imbrium excavation and re-exposed from under the mare-lavas in subsequent cratering events. Surficial transport processes have distributed these materials widely over the lunar surface. There appears no need to invoke a global radioactive crust on the Moon nor of 'hot spots' distributed over the entire surface of the Moon to explain the ubiquitous presence of this component in lunar regolith, nor is there a compelling reason at present to postulate a global melting process for the generation of highly differentiated materials such as 'kreep' and the exotic component. (author)

  15. Wind uplift of radioactive dust from the ground

    International Nuclear Information System (INIS)

    Makhon'ko, K.P.

    1992-01-01

    Near nuclear power plants the recontamination of the atmosphere near the ground becomes dangerous, if a radioactive zone has formed at the site. Wind can easily carry toxic dust from the polluted territory of neighboring industrial enterprises. Moreover, wind erosion of the soil during the summer or transport of radioactive snow by a snowstorm during the winter can displace the boundaries of the contaminated radioactive zone. In Russia the investigation of wind pickup of radioactive dust from the ground began after a radiation accident occurred at a storage facility in the Southern Urals in 1957, as a result of which a contaminated zone formed in the area. Since the direct mechanism of detachment of dust particles from the ground is not important in studying the results of the raising of radioactive dust into the atmosphere by wind, the authors do not distinguish between wind pickup and wind erosion, and the entire process wind pickup of radioactivity from the ground. After the radiation accident at the Chernobyl nuclear power plant a new generation of investigators began to study wind pickup of radioactive dust from the ground, and the process under consideration was sometimes referred to as wind uplift. The intensity of the process of wind pickup of radioactive dust from the ground is characterized by the wind pickup coefficient α, which is the coefficient of proportionality between the upward flux Q of radioactivity from the ground and the density A of radioactive contamination of the ground: α = Q/A. Physically, the coefficient α is the upward flux of the impurity from the ground with unit contamination density, i.e., the intensity of dust contamination or the fraction of radioactivity picked up by the wind from the ground per unit time. The greatest difficulty in determining α experimentally under dusty conditions is measuring correctly the upward radioactivity flux Q. The author discusses three methods for determining this quantity

  16. Generation and release of radioactive gases in LLW disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Yim, M.S. [Harvard School Public Health, Boston, MA (United States); Simonson, S.A. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1995-02-01

    The atmospheric release of radioactive gases from a generic engineered LLW disposal facility and its radiological impacts were examined. To quantify the generation of radioactive gases, detailed characterization of source inventory for carbon-14, tritium, iodine-129, krypton-85, and radon-222, was performed in terms of their activity concentrations; their distribution within different waste classes, waste forms and containers; and their subsequent availability for release in volatile or gaseous form. The generation of gases was investigated for the processes of microbial activity, radiolysis, and corrosion of waste containers and metallic components in wastes. The release of radionuclides within these gases to the atmosphere was analyzed under the influence of atmospheric pressure changes.

  17. Radioactive wastes: sources, treatment, and disposal

    International Nuclear Information System (INIS)

    Wymer, R.G.; Blomeke, J.O.

    1975-01-01

    Sources, treatment, and disposal of radioactive wastes are analyzed in an attempt to place a consideration of the problem of permanent disposal at the level of established or easily attainable technology. In addition to citing the natural radioactivity present in the biosphere, the radioactive waste generated at each phase of the fuel cycle (mills, fabrication plants, reactors, reprocessing plants) is evaluated. The three treatment processes discussed are preliminary storage to permit decay of the short-lived radioisotopes, solidification of aqueous wastes, and partitioning the long-lived α emitters for separate and long-term storage. Dispersion of radioactive gases to the atmosphere is already being done, and storage in geologically stable structures such as salt mines is under active study. The transmutation of high-level wastes appears feasible in principle, but exceedingly difficult to develop

  18. Biogenic and pyrogenic emissions from Africa and their impact on the global atmosphere

    International Nuclear Information System (INIS)

    Scholes, Mary; Andreae, M.O.

    2000-01-01

    Tropical regions, with their high biological activity, have the potential to emit large amounts of trace gases and aerosols to the atmosphere. This can take the form of trace gas fluxes from soils and vegetation, where gaseous species are produced and consumed by living organisms, or of smoke emissions from vegetation fires. In the last decade, considerable scientific effort has gone into quantifying these fluxes from the African continent. We find that both biogenic and pyrogenic emissions have a powerful impact on regional and global atmospheric chemistry, particularly on photooxidation processes and tropospheric ozone. The emissions of radiatively active gases and aerosols from the African continent are likely to have a significant climatic effect, but presently available data are not sufficient for reliable quantitative estimates of this effect

  19. Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network

    Directory of Open Access Journals (Sweden)

    F. Sprovieri

    2016-09-01

    Full Text Available Long-term monitoring of data of ambient mercury (Hg on a global scale to assess its emission, transport, atmospheric chemistry, and deposition processes is vital to understanding the impact of Hg pollution on the environment. The Global Mercury Observation System (GMOS project was funded by the European Commission (http://www.gmos.eu and started in November 2010 with the overall goal to develop a coordinated global observing system to monitor Hg on a global scale, including a large network of ground-based monitoring stations, ad hoc periodic oceanographic cruises and measurement flights in the lower and upper troposphere as well as in the lower stratosphere. To date, more than 40 ground-based monitoring sites constitute the global network covering many regions where little to no observational data were available before GMOS. This work presents atmospheric Hg concentrations recorded worldwide in the framework of the GMOS project (2010–2015, analyzing Hg measurement results in terms of temporal trends, seasonality and comparability within the network. Major findings highlighted in this paper include a clear gradient of Hg concentrations between the Northern and Southern hemispheres, confirming that the gradient observed is mostly driven by local and regional sources, which can be anthropogenic, natural or a combination of both.

  20. Radioactive rare gases emission at underground nuclear explosions

    International Nuclear Information System (INIS)

    Dubasov, Yu.V.

    2016-01-01

    The examples of radioactive rare gases emission at underground nuclear explosions conducted in the USSR on the Novaya Zemlya and Semipalatinsk test sites are considered. It is pointed out that in the case of evasive explosion in vertical wells without apparent radioactive gases emission the samples of subsurface gas must contain the traces of radioactive rare gases. Under the inspection of evasive explosion in horizontal workings of rock massif, one should guided by the analysis of atmospheric air samples in the inspected area [ru

  1. Assessment of people exposure to contamination with radioactive substances removed to the atmosphere from nuclear objects of Swierk Centre, Poland, in the period of 1987-1992

    International Nuclear Information System (INIS)

    Filipiak, B.; Nowicki, K.

    1995-01-01

    The exposure of particular persons, living in the near surroundings of Nuclear Centre - Swierk near Warsaw, Poland, to radioactive substances removed to the atmosphere during the period 1987-1992 has been assessed. The effective dose equivalent for statistically critical groups of persons has been estimated. The results have been compared with maximum permitted dose limits. 17 refs, 12 tabs

  2. Terrain and building effects on the transport of radioactive material at a nuclear site

    International Nuclear Information System (INIS)

    Jeong, Hyojoon; Park, Misun; Jeong, Haesun; Hwang, Wontae; Kim, Eunhan; Han, Moonhee

    2014-01-01

    Highlights: • This study is to quantify the building and terrain effects on the atmospheric dispersion. • Statistical methods with AERMOD-PRIME and CFD were used. • To assess the risk in nuclear power plants, terrain and building effects have to be considered. - Abstract: This study identified the terrain and building effects on the atmospheric dispersion of radioactive materials at the Wolsong Nuclear Site. To analyze the atmospheric dispersion of radioactive materials, the AERMOD-PRIME model, CFD model and meteorological data from 2010 were used. The terrain and building effects on the atmospheric dispersion of radioactive materials within a 1 km radius of the site were statistically significant. The maximum concentration of the radioactive material increased by 7 times compared to the concentration when the terrain and building effects were not considered. It was found that the terrain and building influenced the decrease in the concentration of radioactive material in a concentric circle with a 914 m radius from the center of the site. The concentration of radioactive material in a concentric circle with a 350 m radius was two-times higher than the concentration estimated at the backside of the building, which is the downwind side, without any consideration of the terrain and building effects. In consideration of the Korean situation, in which multiple nuclear reactors are built on the same nuclear site, it is necessary to evaluate the risk that may affect workers and nearby residents by reflecting the terrain and building effects

  3. Evolution and challenges of dynamic global vegetation models for some aspects of plant physiology and elevated atmospheric CO2.

    Science.gov (United States)

    Rezende, L F C; Arenque, B C; Aidar, S T; Moura, M S B; Von Randow, C; Tourigny, E; Menezes, R S C; Ometto, J P H B

    2016-07-01

    Dynamic global vegetation models (DGVMs) simulate surface processes such as the transfer of energy, water, CO2, and momentum between the terrestrial surface and the atmosphere, biogeochemical cycles, carbon assimilation by vegetation, phenology, and land use change in scenarios of varying atmospheric CO2 concentrations. DGVMs increase the complexity and the Earth system representation when they are coupled with atmospheric global circulation models (AGCMs) or climate models. However, plant physiological processes are still a major source of uncertainty in DGVMs. The maximum velocity of carboxylation (Vcmax), for example, has a direct impact over productivity in the models. This parameter is often underestimated or imprecisely defined for the various plant functional types (PFTs) and ecosystems. Vcmax is directly related to photosynthesis acclimation (loss of response to elevated CO2), a widely known phenomenon that usually occurs when plants are subjected to elevated atmospheric CO2 and might affect productivity estimation in DGVMs. Despite this, current models have improved substantially, compared to earlier models which had a rudimentary and very simple representation of vegetation-atmosphere interactions. In this paper, we describe this evolution through generations of models and the main events that contributed to their improvements until the current state-of-the-art class of models. Also, we describe some main challenges for further improvements to DGVMs.

  4. radioactive waste disposal standards abroad

    International Nuclear Information System (INIS)

    Lu Yan; Xin Pingping; Wu Jian; Zhang Xue

    2012-01-01

    With the world focus on human health and environmental protection, the problem of radioactive waste disposal has gradually become a global issue, and the focus of attention of public. The safety of radioactive waste disposal, is not only related to human health and environmental safety, but also an important factor of affecting the sustainable development of nuclear energy. In recent years the formulation of the radioactive waste disposal standards has been generally paid attention to at home and abroad, and it has made great progress. In China, radioactive waste management standards are being improved, and there are many new standards need to be developed. The revised task of implement standards is very arduous, and there are many areas for improvement about methods and procedures of the preparation of standards. This paper studies the current situation of radioactive waste disposal standards of the International Atomic Energy Agency, USA, France, Britain, Russia, Japan, and give some corresponding recommendations of our radioactive waste disposal standards. (authors)

  5. A global perspective on atmospheric blocking using GPS radio occultation – one decade of observations

    Directory of Open Access Journals (Sweden)

    L. Brunner

    2017-12-01

    Full Text Available Atmospheric blocking represents a weather pattern where a stationary high-pressure system weakens or reverses the climatological westerly flow at mid-latitudes for up to several weeks. It is closely connected to strong anomalies in key atmospheric variables such as geopotential height, temperature, and humidity. Here we provide, for the first time, a comprehensive, global perspective on atmospheric blocking and related impacts by using an observation-based data set from Global Positioning System (GPS radio occultation (RO from 2006 to 2016. The main blocking regions in both hemispheres and seasonal variations are found to be represented well in RO data. The effect of blocking on vertically resolved temperature and humidity anomalies in the troposphere and lower stratosphere is investigated for blocking regions in the Northern and Southern hemispheres, respectively. We find a statistically significant correlation of blocking with positive temperature anomalies, exceeding 3 K in the troposphere, and a reversal above the tropopause with negative temperature anomalies below −3 K in the lower stratosphere. Specific humidity is positively correlated with temperature throughout the troposphere with larger anomalies revealed in the Southern Hemisphere. At the eastern and equatorward side of the investigated blocking regions, a band of tropospheric cold anomalies reveals advection of cold air by anticyclonic motion around blocking highs, which is less distinct in the Southern Hemisphere due to stronger zonal flow. We find GPS RO to be a promising new data set for blocking research that gives insight into the vertical atmospheric structure, especially in light of the expected increase in data coverage that future missions will provide.

  6. Global Validation of MODIS Atmospheric Profile-Derived Near-Surface Air Temperature and Dew Point Estimates

    Science.gov (United States)

    Famiglietti, C.; Fisher, J.; Halverson, G. H.

    2017-12-01

    This study validates a method of remote sensing near-surface meteorology that vertically interpolates MODIS atmospheric profiles to surface pressure level. The extraction of air temperature and dew point observations at a two-meter reference height from 2001 to 2014 yields global moderate- to fine-resolution near-surface temperature distributions that are compared to geographically and temporally corresponding measurements from 114 ground meteorological stations distributed worldwide. This analysis is the first robust, large-scale validation of the MODIS-derived near-surface air temperature and dew point estimates, both of which serve as key inputs in models of energy, water, and carbon exchange between the land surface and the atmosphere. Results show strong linear correlations between remotely sensed and in-situ near-surface air temperature measurements (R2 = 0.89), as well as between dew point observations (R2 = 0.77). Performance is relatively uniform across climate zones. The extension of mean climate-wise percent errors to the entire remote sensing dataset allows for the determination of MODIS air temperature and dew point uncertainties on a global scale.

  7. Studies of global warming and global energy

    International Nuclear Information System (INIS)

    Inaba, Atsushi

    1993-01-01

    Global warming caused by increase in atmospheric CO 2 concentration has been the focus of many recent global energy studies. CO 2 is emitted to the atmosphere mainly from the combustion of fossil fuels. This means that global warming is fundamentally a problem of the global energy system. An analysis of the findings of recent global energy studies is made in this report. The results are categorized from the viewpoint of concern about global warming. The analysis includes energy use and CO 2 emissions, measures taken to restrain CO 2 emissions and the cost of such measure, and suggestions for long term global energy generation. Following this comparative analysis, each of the studies is reviewed in detail. (author) 63 refs

  8. Radioactive Emissions from Fission-Based Medical Isotope Production and Their Effect on Global Nuclear Explosion Detection

    International Nuclear Information System (INIS)

    Bowyer, T.; Saey, P.

    2015-01-01

    The use of medical isotopes, such as Tc-99m, is widespread with over 30 million procedures being performed every year, but the fission-based production of isotopes used for medical procedures causes emissions into the environment. This paper will show that gaseous radioactive isotopes of xenon, such as Xe-133, are released in high quantities, because they have a high fission cross section and they are difficult to scrub from the processes used to produce the medical isotopes due to their largely unreactive nature. Unfortunately, the reasons that large amounts of radioactive xenon isotopes are emitted from isotope production are the same as those that make these isotopes the most useful isotopes for the detection of underground nuclear explosions. Relatively recently, the nuclear explosion monitoring community has established a provisional monitoring network for the Comprehensive Nuclear-Test-Ban Treaty (CTBT) that includes radioactive xenon monitoring as a major component. This community has discovered that emissions from medical isotope production present a more serious problem to nuclear explosion monitoring than thought when the network was first conceived. To address the growing problem, a group of scientists in both the monitoring and the isotope production communities have come together to attempt to find scientific and pragmatic ways to address the emissions problems, recognizing that medical isotope production should not be adversely affected, while monitoring for nuclear explosions should remain effective as isotope production grows, changes, and spreads globally. (author)

  9. Methods for removing radioactive isotopes from contaminated streams

    International Nuclear Information System (INIS)

    Hoy, D.R.; Hickey, T.N.; Spulgis, I.S.; Parish, H.C.

    1979-01-01

    Methods for removing radioactive isotopes from contaminated gas streams for use in atmospheric containment and cleanup systems in nuclear power plants are provided. The methods provide for removal of radioactive isotopes from a first portion of the contaminated stream, separated from the remaining portion of the stream, so that adsorbent used to purify the first portion of the contaminated stream by adsorption of the radioactive isotopes therefrom can be tested to determine the adsorbing efficacy of the generally larger portion of adsorbent used to purify the remaining portion of the stream

  10. The environmental impact of radioactive releases from accidents in nuclear power reactors

    International Nuclear Information System (INIS)

    Beattie, J.R.; Griffiths, R.F.; Kaiser, G.D.; Kinchin, G.H.

    1978-01-01

    A survey of accidental releases of radioactivity from thermal and fast reactors is presented. Following a general discussion on the hazards involved, the nature of the environmental impact of radioactive releases is examined. This includes a brief review of the natural radiation background, the effect on human health of various levels of radiation and radioactivity, permissible and reference levels, and the type of hazards from both passing clouds of airbourne radioactive material and from ground deposited material. The problem of atmospheric dispersion and methods of calculations of radioactive materials in the atmosphere are examined in order for the consequences of accidental release to be analysed. National accidents and their environmental consequences are then examined. Finally there is a review of the risks to which man is always exposed because of his environment. Common and collective risks are also considered. Conclusions are reached as to the acceptibility or otherwise of the environmental impact of reactor accidents. (U.K.)

  11. Radioactive source security: the cultural challenges

    International Nuclear Information System (INIS)

    Englefield, Chris

    2015-01-01

    Radioactive source security is an essential part of radiation protection. Sources can be abandoned, lost or stolen. If they are stolen, they could be used to cause deliberate harm and the risks are varied and significant. There is a need for a global security protection system and enhanced capability to achieve this. The establishment of radioactive source security requires 'cultural exchanges'. These exchanges include collaboration between: radiation protection specialists and security specialists; the nuclear industry and users of radioactive sources; training providers and regulators/users. This collaboration will facilitate knowledge and experience exchange for the various stakeholder groups, beyond those already provided. This will promote best practice in both physical and information security and heighten security awareness generally. Only if all groups involved are prepared to open their minds to listen to and learn from, each other will a suitable global level of control be achieved. (authors)

  12. Invasion of the atmosphere by radioactivity of atomic explosive origin and its influence on atmospheric precipitation. [In French

    Energy Technology Data Exchange (ETDEWEB)

    Garrigue, H

    1951-01-01

    Aerial observations on the rapid increase of the 20- to 30-h radioactive substance (labelled A) on February 3, 1951 leave no doubt as to its origin in atomic explosions. A large part of the radioactive cloud must enter the stratosphere and fall back to earth very slowly. The portion of the cloud diffusing into the troposphere supplies abundant condensation nuclei which profoundly affect the processes of precipitation.

  13. Atmospheric-Pressure Plasma Cleaning of Contaminated Surfaces

    International Nuclear Information System (INIS)

    Hicks, Robert F.; Herrmann, Hans W.

    2003-01-01

    The objective of this work is to demonstrate a practical, atmospheric pressure plasma tool for the surface decontamination of radioactive waste. Decontamination of radioactive materials that have accumulated on the surfaces of equipment and structures is a challenging and costly undertaking for the US Department of Energy. Our technology shows great potential for accelerating this clean up effort

  14. Monte Carlo climate change forecasts with a global coupled ocean-atmosphere model

    International Nuclear Information System (INIS)

    Cubasch, U.; Santer, B.D.; Hegerl, G.; Hoeck, H.; Maier-Reimer, E.; Mikolajwicz, U.; Stoessel, A.; Voss, R.

    1992-01-01

    The Monte Carlo approach, which has increasingly been used during the last decade in the field of extended range weather forecasting, has been applied for climate change experiments. Four integrations with a global coupled ocean-atmosphere model have been started from different initial conditions, but with the same greenhouse gas forcing according to the IPCC scenario A. All experiments have been run for a period of 50 years. The results indicate that the time evolution of the global mean warming depends strongly on the initial state of the climate system. It can vary between 6 and 31 years. The Monte Carlo approach delivers information about both the mean response and the statistical significance of the response. While the individual members of the ensemble show a considerable variation in the climate change pattern of temperature after 50 years, the ensemble mean climate change pattern closely resembles the pattern obtained in a 100 year integration and is, at least over most of the land areas, statistically significant. The ensemble averaged sea-level change due to thermal expansion is significant in the global mean and locally over wide regions of the Pacific. The hydrological cycle is also significantly enhanced in the global mean, but locally the changes in precipitation and soil moisture are masked by the variability of the experiments. (orig.)

  15. Soil Methanotrophy Model (MeMo v1.0): a process-based model to quantify global uptake of atmospheric methane by soil

    Science.gov (United States)

    Murguia-Flores, Fabiola; Arndt, Sandra; Ganesan, Anita L.; Murray-Tortarolo, Guillermo; Hornibrook, Edward R. C.

    2018-06-01

    Soil bacteria known as methanotrophs are the sole biological sink for atmospheric methane (CH4), a potent greenhouse gas that is responsible for ˜ 20 % of the human-driven increase in radiative forcing since pre-industrial times. Soil methanotrophy is controlled by a plethora of factors, including temperature, soil texture, moisture and nitrogen content, resulting in spatially and temporally heterogeneous rates of soil methanotrophy. As a consequence, the exact magnitude of the global soil sink, as well as its temporal and spatial variability, remains poorly constrained. We developed a process-based model (Methanotrophy Model; MeMo v1.0) to simulate and quantify the uptake of atmospheric CH4 by soils at the global scale. MeMo builds on previous models by Ridgwell et al. (1999) and Curry (2007) by introducing several advances, including (1) a general analytical solution of the one-dimensional diffusion-reaction equation in porous media, (2) a refined representation of nitrogen inhibition on soil methanotrophy, (3) updated factors governing the influence of soil moisture and temperature on CH4 oxidation rates and (4) the ability to evaluate the impact of autochthonous soil CH4 sources on uptake of atmospheric CH4. We show that the improved structural and parametric representation of key drivers of soil methanotrophy in MeMo results in a better fit to observational data. A global simulation of soil methanotrophy for the period 1990-2009 using MeMo yielded an average annual sink of 33.5 ± 0.6 Tg CH4 yr-1. Warm and semi-arid regions (tropical deciduous forest and open shrubland) had the highest CH4 uptake rates of 602 and 518 mg CH4 m-2 yr-1, respectively. In these regions, favourable annual soil moisture content ( ˜ 20 % saturation) and low seasonal temperature variations (variations < ˜ 6 °C) provided optimal conditions for soil methanotrophy and soil-atmosphere gas exchange. In contrast to previous model analyses, but in agreement with recent observational data

  16. Krypton-85 and other airborne radioactivity measurements throughout Ireland

    International Nuclear Information System (INIS)

    Smith, K.J.; Murray, M.; Wong, J.; Sequeira, S.; Long, S.C.; Rafferty, B.

    2004-01-01

    In compliance with articles 35 and 36 of the EURATOM Treaty, the Radiological Protection Institute of Ireland (RPII) undertakes a comprehensive programme of radioactivity monitoring in the Irish terrestrial environment. Radioactivity is present in the terrestrial environment due to natural processes, the testing of nuclear weapons in the atmosphere, accidents such as the Chernobyl accident and the routine discharge of radionuclides from nuclear installations. The RPII monitors airborne radioactivity concentrations at ten stations throughout Ireland, of which, nine are equipped with low volume particulate samplers and one, in Dublin, with a high volume particulate sampler. The low volume particulate samples are assessed for total beta activity and high volume samples for gamma emitting radionuclides such as caesium-137 and beryllium-7. In addition, air sampled at the RPII laboratory in Dublin, is monitored for krypton-85, a radioactive noble gas, released into the environment primarily as a result of the reprocessing of nuclear fuel at installations such as Sellafield in the UK and La Hague in France. Since the inception of the krypton measurements in 1993 a trend of increasing atmospheric concentrations has been observed. The results of the krypton-85 monitoring, as well as the airborne radioactivity concentration measurements, will be presented and discussed in this paper. (author)

  17. Regional pattern and interannual variations in global terrestrial carbon uptake in response to changes in climate and atmospheric CO2

    International Nuclear Information System (INIS)

    Cao, Mingkui; Tao, B.; Li, Kerang; Prince, Stephen D.; Small, J.

    2005-01-01

    Atmospheric measurements indicate that the terrestrial carbon sink increased substantially from the 1980s to the 1990s, but which factors and regions were responsible for the increase are not well identified yet. Using process- and remote sensing-based ecosystem models, we show that changes in climate and atmospheric CO 2 in the period 1981-2000 enhanced net ecosystem production (NEP) and caused major geographical changes in the global distribution of NEP. In the 1980s the Americas accounted for almost all of the global NEP, but in the 1990s NEP in Eurasia and Africa became higher than that of the Americas. The year-to-year variation in global NEP was up to 2.5 Pg C (1 Pg = 10 15 g), in which 1.4 Pg C was attributable to the El Nino Southern Oscillation cycle (ENSO). NEP clearly decreased in El Nino and increased in La Nina in South America and Africa, but the response in North America and Eurasia was mixed. The estimated NEP increases accounted for only 30% of the global terrestrial carbon sink but can explain almost all of the increase from the 1980s to the 1990s. Because a large part of the increase in NEP was driven by the long-term trend of climate and atmospheric CO 2 , the increase in the global terrestrial carbon sink from the 1980s to the 1990s was a continuation of the trend since the middle of the twentieth century, rather than merely a consequence of short-time climate variability

  18. Modelling of radioactive fallout in the vicinity of Chernobyl nuclear power plant accident

    International Nuclear Information System (INIS)

    Israel, Y.A.; Petrov, V.N.; Severov, D.A.

    1988-03-01

    Deposition of radioactive products escaping into the atmosphere for a long time from the Chernobylsk-4 reactor resulting in residual radioactive contamination of the region at a distance of up to 100 km from the nuclear power plant is considered. The suggested model may be used for estimation of the possible scope of nuclear danger in the regions of nuclear power plants and creation of conditions ensuring safety of the population at possible accidents. The following topics are developed: height of elevation and conditions of radionuclide transfer in the atmosphere; dynamics of release and dispersive composition of radioactive products; calculations of radiation levels at a close trace [fr

  19. HURRICANE AND SEVERE STORM SENTINEL (HS3) GLOBAL HAWK ADVANCED VERTICAL ATMOSPHERIC PROFILING SYSTEM (AVAPS) DROPSONDE SYSTEM V2

    Data.gov (United States)

    National Aeronautics and Space Administration — The Hurricane and Severe Storm Sentinel (HS3) Global Hawk Advanced Vertical Atmospheric Profiling System (AVAPS) Dropsonde System dataset was collected by the...

  20. Enviromental radioactivity of 1987 in Romania

    International Nuclear Information System (INIS)

    Galeriu, D.; Oncescu, M.

    1988-02-01

    The radioactivity of atmosphere. hydrosphere, lithosphere and biosphere from 1987 is compared with that one from preceeding years, after 1963. Estimations of the effective dose equivalent (EDE) for the natural, additional (due to man-made releases), medical and occupational exposure are given. (authors)

  1. Effectiveness of carbon dioxide removal in lowering atmospheric CO2 and reversing global warming in the context of 1.5 degrees

    Science.gov (United States)

    Zickfeld, K.; Azevedo, D.

    2017-12-01

    The majority of emissions scenarios that limit warming to 2°C, and nearly all emission scenarios that do not exceed 1.5°C warming by the year 2100 require artificial removal of CO2 from the atmosphere. Carbon dioxide removal (CDR) technologies in these scenarios are required to offset emissions from sectors that are difficult or costly to decarbonize and to generate global `net negative' emissions, allowing to compensate for earlier emissions and to meet long-term climate stabilization targets after overshoot. Only a few studies have explored the Earth system response to CDR and large uncertainties exist regarding the effect of CDR on the carbon cycle and its effectiveness in reversing climate impacts after overshoot. Here we explore the effectiveness of CDR in lowering atmospheric CO2 ("carbon cycle effectiveness") and cool global climate ("cooling effectiveness"). We force the University of Victoria Earth System Climate Model, a model of intermediate complexity, with a set of negative CO2 emissions pulses of different magnitude and applied from different background atmospheric CO2 concentrations. We find the carbon cycle effectiveness of CDR - defined as the change in atmospheric CO2 per unit CO2 removed - decreases with the amount of CO2 removed from the atmosphere and increases at higher background CO2 concentrations from which CDR is applied due to nonlinear responses of carbon sinks to CO2 and climate. The cooling effectiveness - defined as the change in global mean surface air temperature per unit CO2 removed - on the other hand, is largely insensitive to the amount of CO2 removed, but decreases if CDR is applied at higher atmospheric CO2 concentrations, due to the logarithmic relationship between atmospheric CO2 and radiative forcing. Based on our results we conclude that CDR is more effective in restoring a lower atmospheric CO2 concentration and reversing impacts directly linked to CO2 at lower levels of overshoot. CDR's effectiveness in restoring a

  2. A global high-resolution model experiment on the predictability of the atmosphere

    Science.gov (United States)

    Judt, F.

    2016-12-01

    Forecasting high-impact weather phenomena is one of the most important aspects of numerical weather prediction (NWP). Over the last couple of years, a tremendous increase in computing power has facilitated the advent of global convection-resolving NWP models, which allow for the seamless prediction of weather from local to planetary scales. Unfortunately, the predictability of specific meteorological phenomena in these models is not very well known. This raises questions about which forecast problems are potentially tractable, and what is the value of global convection-resolving model predictions for the end user. To address this issue, we use the Yellowstone supercomputer to conduct a global high-resolution predictability experiment with the recently developed Model for Prediction Across Scales (MPAS). The computing power of Yellowstone enables the model to run at a globally uniform resolution of 4 km with 55 vertical levels (>2 billion grid cells). These simulations, which require 3 million core-hours for the entire experiment, allow for the explicit treatment of organized deep moist convection (i.e., thunderstorm systems). Resolving organized deep moist convection alleviates grave limitations of previous predictability studies, which either used high-resolution limited-area models or global simulations with coarser grids and cumulus parameterization. By computing the error growth characteristics in a set of "identical twin" model runs, the experiment will clarify the intrinsic predictability limits of atmospheric phenomena on a wide range of scales, from severe thunderstorms to global-scale wind patterns that affect the distribution of tropical rainfall. Although a major task by itself, this study is intended to be exploratory work for a future predictability experiment going beyond of what has so far been feasible. We hope to use CISL's new Cheyenne supercomputer to conduct a similar predictability experiments on a global mesh with 1-2 km resolution. This

  3. Radioactive source security: the cultural challenges.

    Science.gov (United States)

    Englefield, Chris

    2015-04-01

    Radioactive source security is an essential part of radiation protection. Sources can be abandoned, lost or stolen. If they are stolen, they could be used to cause deliberate harm and the risks are varied and significant. There is a need for a global security protection system and enhanced capability to achieve this. The establishment of radioactive source security requires 'cultural exchanges'. These exchanges include collaboration between: radiation protection specialists and security specialists; the nuclear industry and users of radioactive sources; training providers and regulators/users. This collaboration will facilitate knowledge and experience exchange for the various stakeholder groups, beyond those already provided. This will promote best practice in both physical and information security and heighten security awareness generally. Only if all groups involved are prepared to open their minds to listen to and learn from, each other will a suitable global level of control be achieved. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Isotopic composition of terrestrial atmospheric xenon and the chain reactions of fission

    International Nuclear Information System (INIS)

    Shukolyukov, Yu.A.; Meshick, A.P.

    1990-01-01

    From the comparison of terrestrial atmospheric Xe with the primordial Xe (solar, AVCC), a strange component with a fine structure at 132 Xe and 131 Xe have been found. It was shown that the isotopic composition of this component can be explained neither by mass fractionation of primordial Xe, nor by an admixture of fission products of known nuclei. An analogous Xe was extracted at a low temperature from substances of the natural nuclear reactor, fine-grain samples from Colorado type deposits, ordinary pitchblendes and samples from the epicenter of a A-bomb explosion. It was proved that the strange Xe is a result of different migration rates of β-radioactive Xe precursors which are fission fragments. It is quite possible that the strange component of atmospheric Xe originated as a result of global neutron-induced fission processes during early stages of geological history of the Earth. (orig.) [de

  5. Radioactivity of people in Finland in 1987

    International Nuclear Information System (INIS)

    Rahola, T.; Suomela, M.; Illukka, E.; Pusa, S.

    1989-08-01

    The atmospheric nuclear bomb tests in the 1950s, '60s and '70s caused global radioactive fallout. After the reactor accident at Chernobyl on April 26, 1986, radioactive fallout was carried by by air streams to most parts of Europe. In 1987 radionuclides causing internal contamination were transported to man only via different foodchains and no longer via inhalation, as had happened immediately after the Chernobyl accident. To determine the level of radionuclides in the body and to estimate the internal radiation doses caused by the Chernobyl accident, whole-body counting measurements were performed. Ten different groups of people were measured during 1987. Three were local reference groups, two groups of radiation workers, one a population group representing the whole country and four groups representing those with special dietary habits. The weighted mean 137 Cs body burden in the population group was 2000 Bq at the end of 1987, the minimum body burden being 200 Bq and the maximum 10000 Bq. The measurement results showed that the maximum body burdens were reached in the summer 1987. The groups with special diets did not necessarily follow this pattern. The mean effective dose equivalents delivered in 1987 to people in Finland, estimated by using the measurement results of the population group, was 0.08 mSv, the corresponding dose equivalent in 1986 bein 0.06 mSv

  6. Safety apparatus for serious radioactive accidents (1962)

    International Nuclear Information System (INIS)

    Estournel, R.; Rodier, J.

    1962-01-01

    In the case of a serious radioactive accident, radioactive dust and gases may be released into the atmosphere. It is therefore necessary to be able to evaluate rapidly the importance of the risk to the surrounding population, and to be able to ensure, even in the event of an evacuation of the Centre, the continuation of the radioactivity analyses and the decontamination of the personnel. For this, the Anti-radiation Protection Service at Marcoule has organised mobile detection teams and designed a mobile laboratory and a mobile shower-unit. After describing the duty of the mobile teams, the report gives a description of the apparatus which would be used at the Marcoule Centre in the case of a serious radioactive accident. The method of using this apparatus is given. (authors) [fr

  7. Explicit calculation of indirect global warming potentials for halons using atmospheric models

    Directory of Open Access Journals (Sweden)

    D. J. Wuebbles

    2009-11-01

    Full Text Available The concept of Global Warming Potentials (GWPs has been extensively used in policy consideration as a relative index for comparing the climate impact of an emitted greenhouse gas (GHG, relative to carbon dioxide with equal mass emissions. Ozone depletion due to emission of chlorinated or brominated halocarbons leads to cooling of the climate system in the opposite direction to the direct warming contribution by halocarbons as GHGs. This cooling is a key indirect effect of the halocarbons on climatic radiative forcing, which is accounted for by indirect GWPs. With respect to climate, it is critical to understand net influences considering direct warming and indirect cooling effects especially for Halons due to the greater ozone-depleting efficiency of bromine over chlorine. Until now, the indirect GWPs have been calculated using a parameterized approach based on the concept of Equivalent Effective Stratospheric Chlorine (EESC and the observed ozone depletion over the last few decades. As a step towards obtaining indirect GWPs through a more robust approach, we use atmospheric models to explicitly calculate the indirect GWPs of Halon-1211 and Halon-1301 for a 100-year time horizon. State-of-the-art global chemistry-transport models (CTMs were used as the computational tools to derive more realistic ozone depletion changes caused by an added pulse emission of the two major Halons at the surface. The radiative forcings on climate from the ozone changes have been calculated for indirect GWPs using an atmospheric radiative transfer model (RTM. The simulated temporal variations of global average total column Halons after a pulse perturbation follow an exponential decay with an e-folding time which is consistent with the expected chemical lifetimes of the Halons. Our calculated indirect GWPs for the two Halons are much smaller than those from past studies but are within a single standard deviation of WMO (2007 values and the direct GWP values derived

  8. A comparison of alternative methods of calculating complementary cumulative distribution functions of health effects following an atmospheric radioactive release

    International Nuclear Information System (INIS)

    Ponting, A.C.; Nair, S.

    1984-04-01

    A concept extensively used in studying the consequences of accidental atmospheric radioactive releases is that of the Complementary Cumulative Distribution Function, CCDF. Various methods of calculating CCDFs have been developed with particular applications in putting degraded core accidents in perspective and in identifying release sequences leading to high risks. This note compares three methods with specific reference to their accuracy and computational efficiency. For two of the methods (that used in the US Reactor Safety Study code CRAC2 and extended version of that method), the effects of varying the sector width and considering site-specific population distributions have been determined. For the third method it is only necessary to consider the effects of site-specific population distributions. (author)

  9. Method of burning flammable radioactive wastes

    International Nuclear Information System (INIS)

    Yahata, Taneaki.

    1980-01-01

    Purpose: To completely oxidize flammable radioactive wastes such as organic compounds, ion exchange materials or oils. Method: Contaminated flammable radioactive wastes are heated and pyrolytically decomposed in the range 400 0 to 500 0 C in the presence of oxygen under lower pressure than atmospheric pressure. Volatile organic substance, hydrogen and soot subsequently produced are passed over oxidation catalyst. The catalysts such as copper oxide, iron oxide, cobalt oxide, nickel oxide, chromium oxide are heated in the range 600 0 to 700 0 C to produce stable oxides. (J.P.N.)

  10. Ventilation of radioactive enclosures; Ventilation des enceintes radioactives

    Energy Technology Data Exchange (ETDEWEB)

    Caminade, F; Laurent, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    Mechanical, physical and chemical manipulations on radioactive products must be carried out in properly ventilated enclosed places. The air extracted can only be discharged into the atmosphere after a correct filtration. The power of the ventilation systems is a function of the dimensions and purpose of the enclosure? The choice of types of filter is determined by the physical state and chemical nature of the radioactive materials to be manipulated. This study deals with the individual equipment of small installations: glove boxes, manipulation boxes with outside control and, if necessary, production chambers (maximum useful volume: 5 m{sup 3}). The performances of three types of 'ventilators', and the modifications provided by the addition of filters, are measured and compared. (author) [French] Les manipulations oceaniques, physiques et chimiques sur des produits radioactifs doivent s'effectuer dans des enceintes convenablement ventilees. L'air extrait ne peut etre rejete dans l'atmosphere qu'apres une filtration correcte. La puissance des installations de ventilation est fonction des dimensions de l'enceinte et de son utilisation. Le choix des types de filtres est determine par l'etat physique et la nature ehimique des corps radioactifs manipules. Notre etude porte sur l'equipement individuel d'installations de petites dimensions: boites a gants, boites a pinces et, a la rigueur, enceintes de production (volume maximum utilisable 5 m{sup 3}). Nous mesurons et comparons les performances de trois types de 'ventilateurs' et les modifications apportees par l'adjonction de filtres. (auteur)

  11. Radiation protection instrumentation. Monitoring equipment. Atmospheric radioactive iodine in the environment

    International Nuclear Information System (INIS)

    1995-01-01

    This international standard applies to portable or installed equipment for the monitoring of radioactive iodine (such as I-131 or I-125) in air in the environment of nuclear installations during normal operation, during design basis events, and in emergency situations. The monitoring involves continuous sample trapping and, where adequate, automatic start of sampling. The document deals with radioactive iodine monitor design, testing procedures, and documentation. Appended tables refer to the reference and normal testing conditions, tests in normal testing conditions, tests during changes of the affecting quantities, and tests of changes in the air circuit. (P.A.)

  12. Evaluation of the impact of atmospheric ozone and aerosols on the horizontal global/diffuse UV Index at Livorno (Italy)

    Science.gov (United States)

    Scaglione, Daniele; Giulietti, Danilo; Morelli, Marco

    2016-08-01

    A study was conducted at Livorno (Italy) to evaluate the impact of atmospheric aerosols and ozone on the solar UV radiation and its diffuse component at ground in clear sky conditions. Solar UV radiation has been quantified in terms of UV Index (UVI), following the ISO 17166:1999/CIE S007/E-1998 international standard. UVI has been calculated by exploiting the libRadtran radiative transfer modelling software as a function of both the Aerosols Optical Depth (AOD) and the Total Ozone Column (TOC). In particular AOD and TOC values have been remotely sensed by the Ozone Monitoring Instrument (OMI) on board the NASA's EOS (Earth Observing System) satellites constellation. An experimental confirmation was also obtained by exploiting global UVI ground-based measurements from the 26/9/14 to 12/8/15 and diffuse UVI ground-based measurements from the 17/5/15 to 12/8/15. For every considered value of Solar Zenith Angle (SZA) and atmospheric condition, estimates and measurements confirm that the diffuse component contributes for more than 50% on the global UV radiation. Therefore an exposure of human skin also to diffuse solar UV radiation can be potentially harmful for health and need to be accurately monitored, e.g. by exploiting innovative applications such as a mobile app with a satellite-based UV dosimeter that has been developed. Global and diffuse UVI variations due to the atmosphere are primarily caused by the TOC variations (typically cyclic): the maximum TOC variation detected by OMI in the area under study leads to a corresponding variation in global and diffuse UVI of about 50%. Aerosols in the area concerned, mainly of maritime nature, have instead weaker effects causing a maximum variation of the global and diffuse UVI respectively of 9% and 35% with an SZA of 20° and respectively of 13% and 10% with an SZA of 60°.

  13. Atmospheric bulk deposition of polycyclic aromatic hydrocarbons in Shanghai: Temporal and spatial variation, and global comparison.

    Science.gov (United States)

    Feng, Daolun; Liu, Ying; Gao, Yi; Zhou, Jinxing; Zheng, Lirong; Qiao, Gang; Ma, Liming; Lin, Zhifen; Grathwohl, Peter

    2017-11-01

    Atmospheric deposition leads to accumulation of atmospheric polycyclic aromatic hydrocarbons (PAHs) on urban surfaces and topsoils. To capture the inherent variability of atmospheric deposition of PAHs in Shanghai's urban agglomeration, 85 atmospheric bulk deposition samples and 7 surface soil samples were collected from seven sampling locations during 2012-2014. Total fluxes of 17 PAHs were 587-32,300 ng m -2 day -1 , with a geometric mean of 2600 ng m -2 day -1 . The deposition fluxes were categorized as moderate to high on a global scale. Phenanthrene, fluoranthene and pyrene were major contributors. The spatial distribution of deposition fluxes revealed the influence of urbanization/industrialization and the relevance of local emissions. Meteorological conditions and more heating demand in cold season lead to a significant increase of deposition rates. Atmospheric deposition is the principal pathway of PAHs input to topsoils and the annual deposition load in Shanghai amounts to ∼4.5 tons (0.7 kg km -2 ) with a range of 2.5-10 tons (0.4-1.6 kg km -2 ). Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Released radioactivity reducing facility

    International Nuclear Information System (INIS)

    Tanaka, Takeaki.

    1992-01-01

    Upon occurrence of a reactor accident, penetration portions of a reactor container, as a main leakage source from a reactor container, are surrounded by a plurality of gas-tight chambers, the outside of which is surrounded by highly gas-tightly buildings. Branched pipelines of an emergency gas processing system are introduced to each of the gas-tight chambers and they are joined and in communication with an emergency gas processing device. With such a constitution, radioactive materials are prevented from leaking directly from the buildings. Further, pipeline openings of the emergency gas processing facility are disposed in the plurality highly gas-tight penetration chambers. If the radioactive materials are leaked from the reactor to elevate the pressure in the penetration chambers, the radioactive materials are introduced to a filter device in the emergency gas processing facility by way of the branched pipelines, filtered and then released to the atmosphere. Accordingly, the reliability and safety of the system can be improved. (T.M.)

  15. Parameterization of dust emissions in the global atmospheric chemistry-climate model EMAC: impact of nudging and soil properties

    Science.gov (United States)

    Astitha, M.; Lelieveld, J.; Abdel Kader, M.; Pozzer, A.; de Meij, A.

    2012-11-01

    Airborne desert dust influences radiative transfer, atmospheric chemistry and dynamics, as well as nutrient transport and deposition. It directly and indirectly affects climate on regional and global scales. Two versions of a parameterization scheme to compute desert dust emissions are incorporated into the atmospheric chemistry general circulation model EMAC (ECHAM5/MESSy2.41 Atmospheric Chemistry). One uses a globally uniform soil particle size distribution, whereas the other explicitly accounts for different soil textures worldwide. We have tested these two versions and investigated the sensitivity to input parameters, using remote sensing data from the Aerosol Robotic Network (AERONET) and dust concentrations and deposition measurements from the AeroCom dust benchmark database (and others). The two versions are shown to produce similar atmospheric dust loads in the N-African region, while they deviate in the Asian, Middle Eastern and S-American regions. The dust outflow from Africa over the Atlantic Ocean is accurately simulated by both schemes, in magnitude, location and seasonality. Approximately 70% of the modelled annual deposition data and 70-75% of the modelled monthly aerosol optical depth (AOD) in the Atlantic Ocean stations lay in the range 0.5 to 2 times the observations for all simulations. The two versions have similar performance, even though the total annual source differs by ~50%, which underscores the importance of transport and deposition processes (being the same for both versions). Even though the explicit soil particle size distribution is considered more realistic, the simpler scheme appears to perform better in several locations. This paper discusses the differences between the two versions of the dust emission scheme, focusing on their limitations and strengths in describing the global dust cycle and suggests possible future improvements.

  16. Parameterization of dust emissions in the global atmospheric chemistry-climate model EMAC: impact of nudging and soil properties

    Directory of Open Access Journals (Sweden)

    M. Astitha

    2012-11-01

    Full Text Available Airborne desert dust influences radiative transfer, atmospheric chemistry and dynamics, as well as nutrient transport and deposition. It directly and indirectly affects climate on regional and global scales. Two versions of a parameterization scheme to compute desert dust emissions are incorporated into the atmospheric chemistry general circulation model EMAC (ECHAM5/MESSy2.41 Atmospheric Chemistry. One uses a globally uniform soil particle size distribution, whereas the other explicitly accounts for different soil textures worldwide. We have tested these two versions and investigated the sensitivity to input parameters, using remote sensing data from the Aerosol Robotic Network (AERONET and dust concentrations and deposition measurements from the AeroCom dust benchmark database (and others. The two versions are shown to produce similar atmospheric dust loads in the N-African region, while they deviate in the Asian, Middle Eastern and S-American regions. The dust outflow from Africa over the Atlantic Ocean is accurately simulated by both schemes, in magnitude, location and seasonality. Approximately 70% of the modelled annual deposition data and 70–75% of the modelled monthly aerosol optical depth (AOD in the Atlantic Ocean stations lay in the range 0.5 to 2 times the observations for all simulations. The two versions have similar performance, even though the total annual source differs by ~50%, which underscores the importance of transport and deposition processes (being the same for both versions. Even though the explicit soil particle size distribution is considered more realistic, the simpler scheme appears to perform better in several locations. This paper discusses the differences between the two versions of the dust emission scheme, focusing on their limitations and strengths in describing the global dust cycle and suggests possible future improvements.

  17. Soil Methanotrophy Model (MeMo v1.0: a process-based model to quantify global uptake of atmospheric methane by soil

    Directory of Open Access Journals (Sweden)

    F. Murguia-Flores

    2018-06-01

    Full Text Available Soil bacteria known as methanotrophs are the sole biological sink for atmospheric methane (CH4, a potent greenhouse gas that is responsible for  ∼  20 % of the human-driven increase in radiative forcing since pre-industrial times. Soil methanotrophy is controlled by a plethora of factors, including temperature, soil texture, moisture and nitrogen content, resulting in spatially and temporally heterogeneous rates of soil methanotrophy. As a consequence, the exact magnitude of the global soil sink, as well as its temporal and spatial variability, remains poorly constrained. We developed a process-based model (Methanotrophy Model; MeMo v1.0 to simulate and quantify the uptake of atmospheric CH4 by soils at the global scale. MeMo builds on previous models by Ridgwell et al. (1999 and Curry (2007 by introducing several advances, including (1 a general analytical solution of the one-dimensional diffusion–reaction equation in porous media, (2 a refined representation of nitrogen inhibition on soil methanotrophy, (3 updated factors governing the influence of soil moisture and temperature on CH4 oxidation rates and (4 the ability to evaluate the impact of autochthonous soil CH4 sources on uptake of atmospheric CH4. We show that the improved structural and parametric representation of key drivers of soil methanotrophy in MeMo results in a better fit to observational data. A global simulation of soil methanotrophy for the period 1990–2009 using MeMo yielded an average annual sink of 33.5 ± 0.6 Tg CH4 yr−1. Warm and semi-arid regions (tropical deciduous forest and open shrubland had the highest CH4 uptake rates of 602 and 518 mg CH4 m−2 yr−1, respectively. In these regions, favourable annual soil moisture content ( ∼  20 % saturation and low seasonal temperature variations (variations  <   ∼  6 °C provided optimal conditions for soil methanotrophy and soil–atmosphere gas exchange

  18. Method of solidifying radioactive solid wastes

    International Nuclear Information System (INIS)

    Fukazawa, Tetsuo; Kawamura, Fumio; Kikuchi, Makoto.

    1984-01-01

    Purpose: To obtain solidification products of radioactive wastes satisfactorily and safely with no destruction even under a high pressure atmosphere by preventing the stress concentration by considering the relationships of the elastic module between the solidifying material and radioactive solid wastes. Method: Solidification products of radioactive wastes with safety and securing an aimed safety ratio are produced by conditioning the modules of elasticity of the solidifying material equal to or less than that of the radioactive wastes in a case where the elastic module of radioactive solid wastes to be solidified is smaller than that of the solidifying material (the elastic module of wastes having the minimum elastic module among various wastes). The method of decreasing the elastic module of the solidifying material usable herein includes the use of such a resin having a long distance between cross-linking points of a polymer in the case of plastic solidifying materials, and addition of rubber-like binders in the case of cement or like other inorganic solidifying materials. (Yoshihara, H.)

  19. Intermediate range atmospheric transport and technology assessments: nuclear pollutants

    International Nuclear Information System (INIS)

    Rohwer, P.S.; Hoffman, F.O.; Miller, C.W.

    1981-01-01

    Mathematical models have been used to assess potential impacts of radioactivity releases during all phases of our country's development of nuclear power. Experience to date has shown that in terms of potential dose to man, the most significant releases of radioactivity from nuclear fuel cycle facilities are those to the atmosphere. Our ability to predict atmospheric dispersion will, therefore, ultimately affect our capability to understand and assess the significance of both routine and accidental discharges of radionuclides. Assessment of potential radiological exposures from postulated routine and accidental releases of radionuclides from the fast-breeder reactor will require the use of atmospheric dispersion models, and the design, siting, and licensing of breeder reactor fuel cycle facilities will be influenced by the predictions made by these models

  20. Investigations of the unsaturated zone at two radioactive waste disposal sites in Lithuania.

    Science.gov (United States)

    Skuratovič, Žana; Mažeika, Jonas; Petrošius, Rimantas; Martma, Tõnu

    2016-01-01

    The unsaturated zone is an important part of the water cycle, governed by many hydrological and hydrogeological factors and processes and provide water and nutrients to the terrestrial ecosystem. Besides, the soils of the unsaturated zone are regarded as the first natural barrier to a large extent and are able to limit the spread of contaminants depending on their properties. The unsaturated zone provides a linkage between atmospheric moisture, groundwater, and seepage of groundwater to streams, lakes, or other surface water bodies. The major difference between water flow in saturated and unsaturated soils is that the hydraulic conductivity, which is conventionally assumed to be a constant in saturated soils, is a function of the degree of saturation or matrix suction in the unsaturated soils. In Lithuania, low and intermediate level radioactive wastes generated from medicine, industry and research were accumulated at the Maisiagala radioactive waste repository. Short-lived low and intermediate levels radioactive waste, generated during the operation of the Ignalina Nuclear Power Plant (INPP) and arising after the INPP decommissioning will be disposed of in the near surface repository close to the INPP (Stabatiske site). Extensive data sets of the hydraulic properties and water content attributed to unsaturated zone soil profiles of the two radioactive waste disposal sites have been collected and summarized. Globally widespread radionuclide tritium ((3)H) and stable isotope ratio ((18)O/(16)O and (2)H/(1)H) distribution features were determined in precipitation, unsaturated zone soil moisture profiles and groundwater.

  1. The electrical charging of inactive aerosols in high ionised atmosphere, the electrical charging of artificial beta radioactive aerosols; Le processus de charge electrique: des aerosols non radioactifs en milieu fortement ionise, des aerosols radioactifs artificiels emetteurs beta

    Energy Technology Data Exchange (ETDEWEB)

    Gensdarmes, F

    2000-07-01

    The electrical properties of aerosols greatly influence their transport and deposition in a containment. In a bipolar ionic atmosphere, a neutral electric charge on aerosols is commonly assumed. However, many studies report a different charge distribution in some situations, like highly ionised atmosphere or in the case of radioactive aerosols. Such situations could arise from a hypothetical accident in a nuclear power plant. Within the framework of safety studies which are carried out at IPSN, our aims were the study of electrical properties of aerosols in highly ionised atmosphere, and the study of artificial radioactive aerosols, in order to suggest experimental validation of available theories. For this purpose, we designed an experimental device that allows us to measure non-radioactive aerosol charge distribution under high gamma irradiation, up to 10{sup 4} Gy/h. With our experimental device we also studied the properties of small ions in the medium. Our results show a variation of the charge distribution in highly ionised atmosphere. The charge increases with the dose of gamma ray. We have related this variation with the one of the small ions in the gases, according to theoretical prediction. However, the model overestimates slightly our experimental results. In the case of the radioactive aerosols, we have designed an original experimental device, which allows us to study the charge distribution of a {sup 137}Cs aerosol. Our results show that the electric charging of such aerosols is strongly dependent on evolution parameters in a containment. So, our results underline a great enhancement of self-charging of particles which are sampled in a confined medium. Our results are qualitatively in agreement with the theoretical model; nevertheless the latter underestimates appreciably the self-charging, owing to the fact that wall effects are not taken into account. (author)

  2. Exploring atmospheric radon with airborne gamma-ray spectroscopy

    Science.gov (United States)

    Baldoncini, Marica; Albéri, Matteo; Bottardi, Carlo; Minty, Brian; Raptis, Kassandra G. C.; Strati, Virginia; Mantovani, Fabio

    2017-12-01

    222Rn is a noble radioactive gas produced along the 238U decay chain, which is present in the majority of soils and rocks. As 222Rn is the most relevant source of natural background radiation, understanding its distribution in the environment is of great concern for investigating the health impacts of low-level radioactivity and for supporting regulation of human exposure to ionizing radiation in modern society. At the same time, 222Rn is a widespread atmospheric tracer whose spatial distribution is generally used as a proxy for climate and pollution studies. Airborne gamma-ray spectroscopy (AGRS) always treated 222Rn as a source of background since it affects the indirect estimate of equivalent 238U concentration. In this work the AGRS method is used for the first time for quantifying the presence of 222Rn in the atmosphere and assessing its vertical profile. High statistics radiometric data acquired during an offshore survey are fitted as a superposition of a constant component due to the experimental setup background radioactivity plus a height dependent contribution due to cosmic radiation and atmospheric 222Rn. The refined statistical analysis provides not only a conclusive evidence of AGRS 222Rn detection but also a (0.96 ± 0.07) Bq/m3 222Rn concentration and a (1318 ± 22) m atmospheric layer depth fully compatible with literature data.

  3. Long-term global distribution of earth's shortwave radiation budget at the top of atmosphere

    Directory of Open Access Journals (Sweden)

    N. Hatzianastassiou

    2004-01-01

    Full Text Available The mean monthly shortwave (SW radiation budget at the top of atmosphere (TOA was computed on 2.5° longitude-latitude resolution for the 14-year period from 1984 to 1997, using a radiative transfer model with long-term climatological data from the International Satellite Cloud Climatology Project (ISCCP-D2 supplemented by data from the National Centers for Environmental Prediction – National Center for Atmospheric Research (NCEP-NCAR Global Reanalysis project, and other global data bases such as TIROS Operational Vertical Sounder (TOVS and Global Aerosol Data Set (GADS. The model radiative fluxes at TOA were validated against Earth Radiation Budget Experiment (ERBE S4 scanner satellite data (1985–1989. The model is able to predict the seasonal and geographical variation of SW TOA fluxes. On a mean annual and global basis, the model is in very good agreement with ERBE, overestimating the outgoing SW radiation at TOA (OSR by 0.93 Wm-2 (or by 0.92%, within the ERBE uncertainties. At pixel level, the OSR differences between model and ERBE are mostly within ±10 Wm-2, with ±5 Wm-2 over extended regions, while there exist some geographic areas with differences of up to 40 Wm-2, associated with uncertainties in cloud properties and surface albedo. The 14-year average model results give a planetary albedo equal to 29.6% and a TOA OSR flux of 101.2 Wm-2. A significant linearly decreasing trend in OSR and planetary albedo was found, equal to 2.3 Wm-2 and 0.6% (in absolute values, respectively, over the 14-year period (from January 1984 to December 1997, indicating an increasing solar planetary warming. This planetary SW radiative heating occurs in the tropical and sub-tropical areas (20° S–20° N, with clouds being the most likely cause. The computed global mean OSR anomaly ranges within ±4 Wm-2, with signals from El Niño and La Niña events or Pinatubo eruption, whereas significant negative OSR anomalies, starting from year 1992, are also

  4. Determination of atmospheric parameters to estimate global radiation in areas of complex topography: Generation of global irradiation map

    Energy Technology Data Exchange (ETDEWEB)

    Batlles, F.J.; Bosch, J.L. [Dpto. Fisica Aplicada, Universidad de Almeria, 04120 Almeria (Spain); Tovar-Pescador, J. [Dpto. Fisica, Universidad de Jaen, 23071 Jaen (Spain); Martinez-Durban, M. [Dpto. Ingenieria Lenguajes y Computacion, Universidad de Almeria, 04120 Almeria (Spain); Ortega, R. [Dpto. Edafologia y Quimica Agricola, Universidad de Almeria, 04120 Almeria (Spain); Miralles, I. [Dpto. Edafologia y Quimica Agricola, Universidad de Granada, 28071 Granada (Spain)

    2008-02-15

    Incoming shortwave solar radiation is an important parameter in environmental applications. A detailed spatial and temporal analysis of global solar radiation on the earth surface is needed in many applications, ranging from solar energy uses to the study of agricultural, forest and biological processes. At local scales, the topography is the most important factor in the distribution of solar radiation on the surface. The variability of the elevation, the surface orientation and the obstructions due to elevations are a source of great local differences in insolation and, consequently, in other variables as ground temperature. For this reason, several models based on GIS techniques have been recently developed, integrating topography to obtain the solar radiation on the surface. In this work, global radiation is analyzed with the Solar Analyst, a model implemented on ArcView, that computes the topographic parameters: altitude, latitude, slope and orientation (azimuth) and shadow effects. Solar Analyst uses as input parameters the diffuse fraction and the transmittance. These parameters are not usually available in radiometric networks in mountainous areas. In this work, a method to obtain both parameters from global radiation is proposed. Global radiation data obtained in two networks of radiometric stations is used: one located in Sierra Magina Natural Park (Spain) with 11 stations and another one located on the surroundings of Sierra Nevada Natural Park (Spain) with 14 stations. Daily solar irradiation is calculated from a digital terrain model (DTM), the daily diffuse fraction, K, and daily atmospheric transmittivity, {tau}. Results provided by the model have been compared with measured values. An overestimation for high elevations is observed, whereas low altitudes present underestimation. The best performance was also reported during summer months, and the worst results were obtained during winter. Finally, a yearly global solar irradiation map has been

  5. Fair weather atmospheric electricity

    International Nuclear Information System (INIS)

    Harrison, R G

    2011-01-01

    Not long after Franklin's iconic studies, an atmospheric electric field was discovered in 'fair weather' regions, well away from thunderstorms. The origin of the fair weather field was sought by Lord Kelvin, through development of electrostatic instrumentation and early data logging techniques, but was ultimately explained through the global circuit model of C.T.R. Wilson. In Wilson's model, charge exchanged by disturbed weather electrifies the ionosphere, and returns via a small vertical current density in fair weather regions. New insights into the relevance of fair weather atmospheric electricity to terrestrial and planetary atmospheres are now emerging. For example, there is a possible role of the global circuit current density in atmospheric processes, such as cloud formation. Beyond natural atmospheric processes, a novel practical application is the use of early atmospheric electrostatic investigations to provide quantitative information on past urban air pollution.

  6. 30 years of the Goiania Accident: a comparative study with other radioactivity dispersion events

    International Nuclear Information System (INIS)

    Smith, Ricardo Bastos; Vicente, Roberto

    2017-01-01

    The year 2017 marks 30 years since the radioactive accident that occurred in the city of Goiania, capital of the state of Goias. It was the largest radiological accident in Brazil, and one of the largest in the world occurring outside nuclear facilities. Regarding the accidents at nuclear power plants, two of the biggest were Chernobyl in Ukraine, a year and a half before Goiania, and the Fukushima accident in Japan, in 2011. Different amounts of radioactive material were dispersed in the environment in each of these events. However, each one’s main pathway of dispersion was different: the accident of Goiania was terrestrial, Chernobyl was at the atmosphere, and Fukushima was mainly in the ocean. This work aims to study these different amounts, comparing such activities. In addition, it proposes to compare the sea dispersion of Fukushima with the amount of radioactive waste dumped in the oceans, when the release of radioactive waste at sea was permitted. It also proposes to compare the Chernobyl aerial dispersion with the radioactive material dissipated in the atmosphere, resulting from the more than 500 atmospheric nuclear tests conducted between 1945 and 1962 by the United States, the former Soviet Union, England, France and China. (author)

  7. 30 years of the Goiania Accident: a comparative study with other radioactivity dispersion events

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Ricardo Bastos; Vicente, Roberto, E-mail: rbsmith@ipen.br, E-mail: rvicente@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    The year 2017 marks 30 years since the radioactive accident that occurred in the city of Goiania, capital of the state of Goias. It was the largest radiological accident in Brazil, and one of the largest in the world occurring outside nuclear facilities. Regarding the accidents at nuclear power plants, two of the biggest were Chernobyl in Ukraine, a year and a half before Goiania, and the Fukushima accident in Japan, in 2011. Different amounts of radioactive material were dispersed in the environment in each of these events. However, each one’s main pathway of dispersion was different: the accident of Goiania was terrestrial, Chernobyl was at the atmosphere, and Fukushima was mainly in the ocean. This work aims to study these different amounts, comparing such activities. In addition, it proposes to compare the sea dispersion of Fukushima with the amount of radioactive waste dumped in the oceans, when the release of radioactive waste at sea was permitted. It also proposes to compare the Chernobyl aerial dispersion with the radioactive material dissipated in the atmosphere, resulting from the more than 500 atmospheric nuclear tests conducted between 1945 and 1962 by the United States, the former Soviet Union, England, France and China. (author)

  8. Environmental monitoring for radioactivity in Scotland: 1981 to 1985

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1987-01-01

    A bulletin, prepared by Her Majesty's Industrial Pollution Inspectorate (HMIPI) of the Scottish Development Department (SDD), contains a summary of the environmental monitoring for radioactivity carried out in Scotland as part of the statutory procedure for ensuring the safety of radioactive waste disposals from nuclear facilities. The monitoring results for discharges to both the atmosphere and the sea over the period 1981 to 1985 are presented for BNFL's Chapelcross and Sellafield Works, UKAEA Dounreay Nuclear Power Development Establishment, SSEB Hunterston Power Station and MOD Naval Installations. It is concluded that public radiation exposure in Scotland from environmental radioactivity arising from radioactive waste disposal has been well within the internationally recommended limits.

  9. Radioactive situation in Kyrgyzstan: problems and perspectives

    International Nuclear Information System (INIS)

    Karimov, K.A.

    2000-01-01

    One of the major problems of the environment contamination in Kyrgyzstan is the development of radioactive and toxic pollution caused by nuclear tests, technogene accidents which took place in neighboring countries, and breach of safe storage and destruction of uranium and hazardous waste tailings. Long-term nuclear tests in various areas of the world and the accident at the NPP have caused the origin of stratospheric deposit of artificial radionuclides, the fallout of which have led to radioactive pollution of the biosphere. Maximum fallout have been observed in the latitudinal zone of 40-60 degrees and in the mountainous regions. As a result of many years of research the main sources of radioactive contamination have been established. It is shown that stratospheric or tropospheric and local fallout have permanently exposed the territory of Kyrgyzstan to the pollution by radionuclides. A brief description of radioactive contamination of the environment in Kyrgyzstan from remote external sources and atmospheric mechanisms of its transfer delineated on the basis of long-term observation of geophysical and atmospheric parameters and regular radiation monitoring have been presented. The investigated mechanisms can be used to interpret the sharp increase of the radioactive background and to estimate the risk to the environment and human health. Some methodological questions about the influence of geophysical conditions on the territorial distribution of contamination have bee considered. The tropospheric mechanism of contamination transfer for different seasons of year has been suggested. The uranium tailings located in mountain regions near densely populated areas and and groundwater basins are the internal sources of radioactive contamination in Kyrgyzstan. Waste products of uranium production present a real treat for the environment and public health. The problem of environment security in connection with destruction of uranium tailings has been discussed. Till now

  10. Experimental and numerical study of the degradation of radioactive measurements in the filters of airborne radioactive surveillance systems

    International Nuclear Information System (INIS)

    Geryes, Tony

    2009-01-01

    The measurement of radioactivity in the filters of airborne radioactive surveillance systems is a major metrology difficulty due to the fact that the absorption of a radiation in the filter media and the mass of aerosols accumulated distort the nuclear counting response. This thesis focuses on the determination of correction factors for the radioactivity loss in the survey filters. In a first step, radioactive filters representing the atmospheric samples have been prepared using the nuclear test bench ICARE. The experimental study on reference filters provided a database to determine correction factors for various filtration conditions. The second part proposes a new numerical method developed to determine the correction factors. It consists of coupling GeoDict for particles filtration simulations and MCNPX simulations for a transport in matter. The good agreement obtained by comparing the numerical and experimental correction factors has permitted to validate the numerical model

  11. On the radioactivity of the atmosphere. [In French

    Energy Technology Data Exchange (ETDEWEB)

    Garrigue, H

    1949-01-01

    An unknown radioactive substance, of a 25- hr half life period, was recorded in July-August, 1946, by an ionization chamber at 6000 m altitude (from an airplane), the content measured being about 2 x 10/sup -18/ curie. In July to August, 1948, at altitudes 7300 to 8700 m, the content found was much lower (0.005 to 0.02 curie). It is surmised that the phenomenon might be traced to the atomic bomb explosion at Bikini on July 1, 1946. Other hypotheses are meteoric origin or a nuclear reaction due to cosmic rays.

  12. Application of PIXE technique to studies on global warming/cooling effect of atmospheric aerosols

    International Nuclear Information System (INIS)

    Kasahara, M.; Hoeller, R.; Tohno, S.; Onishi, Y.; Ma, C.-J.

    2002-01-01

    During the last decade, the importance of global warming has been recognized worldwide. Atmospheric aerosols play an important role in the global warming/cooling effects. The physicochemical properties of aerosol particles are fundamental to understanding such effects. In this study, the PIXE technique was applied to measure the average chemical properties of aerosols. Micro-PIXE was also applied to investigate the mixing state of the individual aerosol particle. The chemical composition data were used to estimate the optical properties of aerosols. The average values of aerosol radiative forcing were -1.53 w/m 2 in Kyoto and +3.3 w/m 2 in Nagoya, indicating cooling and warming effects respectively. The difference of radiative forcing in the two cities may be caused by the large difference in chemical composition of aerosols

  13. The global pyrogenic carbon cycle and its impact on the level of atmospheric CO2 over past and future centuries.

    Science.gov (United States)

    Landry, Jean-Sébastien; Matthews, H Damon

    2017-08-01

    The incomplete combustion of vegetation and dead organic matter by landscape fires creates recalcitrant pyrogenic carbon (PyC), which could be consequential for the global carbon budget if changes in fire regime, climate, and atmospheric CO 2 were to substantially affect gains and losses of PyC on land and in oceans. Here, we included global PyC cycling in a coupled climate-carbon model to assess the role of PyC in historical and future simulations, accounting for uncertainties through five sets of parameter estimates. We obtained year-2000 global stocks of (Central estimate, likely uncertainty range in parentheses) 86 (11-154), 47 (2-64), and 1129 (90-5892) Pg C for terrestrial residual PyC (RPyC), marine dissolved PyC, and marine particulate PyC, respectively. PyC cycling decreased atmospheric CO 2 only slightly between 1751 and 2000 (by 0.8 Pg C for the Central estimate) as PyC-related fluxes changed little over the period. For 2000 to 2300, we combined Representative Concentration Pathways (RCPs) 4.5 and 8.5 with stable or continuously increasing future fire frequencies. For the increasing future fire regime, the production of new RPyC generally outpaced the warming-induced accelerated loss of existing RPyC, so that PyC cycling decreased atmospheric CO 2 between 2000 and 2300 for most estimates (by 4-8 Pg C for Central). For the stable fire regime, however, PyC cycling usually increased atmospheric CO 2 (by 1-9 Pg C for Central), and only the most extreme choice of parameters maximizing PyC production and minimizing PyC decomposition led to atmospheric CO 2 decreases under RCPs 4.5 and 8.5 (by 5-8 Pg C). Our results suggest that PyC cycling will likely reduce the future increase in atmospheric CO 2 if landscape fires become much more frequent; however, in the absence of a substantial increase in fire frequency, PyC cycling might contribute to, rather than mitigate, the future increase in atmospheric CO 2 . © 2016 John Wiley & Sons Ltd.

  14. Natural occurring radioactive substances. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    Emara, A E [National Center for radiation Research and Technology Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    Naturally occurring radioactive substances produced by cosmic rays of those of terrestrial origin are surveyed. The different radioactive decay series are discussed. Special emphasis is given to the element radium as regards its properties and distribution in different environmental samples. The properties of naturally occurring k-40 and its distribution in different natural media are also outlined. Induced radionuclides which are formed as a result of the interaction of cosmic rays with the constituents of the atmosphere are mentioned. In this respect the intensity of natural background radiation and the dose at different locations and levels is surveyed. Some regions of exceptionally high radioactivity which result in high exposure rates are mentioned. Monazite deposits and water springs are mentioned in some detail. The Oklo phenomenon as a natural reactor is also discussed. 8 tabs.

  15. Natural occurring radioactive substances. Vol. 1

    International Nuclear Information System (INIS)

    Emara, A.E.

    1996-01-01

    Naturally occurring radioactive substances produced by cosmic rays of those of terrestrial origin are surveyed. The different radioactive decay series are discussed. Special emphasis is given to the element radium as regards its properties and distribution in different environmental samples. The properties of naturally occurring k-40 and its distribution in different natural media are also outlined. Induced radionuclides which are formed as a result of the interaction of cosmic rays with the constituents of the atmosphere are mentioned. In this respect the intensity of natural background radiation and the dose at different locations and levels is surveyed. Some regions of exceptionally high radioactivity which result in high exposure rates are mentioned. Monazite deposits and water springs are mentioned in some detail. The Oklo phenomenon as a natural reactor is also discussed. 8 tabs

  16. Methods for calculating population dose from atmospheric dispersion of radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, B L; Jow, H N; Lee, I S [Pittsburgh Univ., PA (USA)

    1978-06-01

    Curves are computed from which population dose (man-rem) due to dispersal of radioactivity from a point source can be calculated in the gaussian plume model by simple multiplication, and methods of using them and their limitations are considered. Illustrative examples are presented.

  17. Artificial radioactive products in the atmosphere at Paris. [In French

    Energy Technology Data Exchange (ETDEWEB)

    Abribat, M; Pouradier, J; Venet, A M

    1952-01-01

    The radioactivity of solid matter in rain water and air collected near Paris in November 1951, and in April and May 1952, follows the same decay law as that observed for fission products after a nuclear detonation in Nevada in November 1951.

  18. Ventilation of radioactive enclosures

    International Nuclear Information System (INIS)

    Caminade, F.; Laurent, H.

    1957-01-01

    Mechanical, physical and chemical manipulations on radioactive products must be carried out in properly ventilated enclosed places. The air extracted can only be discharged into the atmosphere after a correct filtration. The power of the ventilation systems is a function of the dimensions and purpose of the enclosure? The choice of types of filter is determined by the physical state and chemical nature of the radioactive materials to be manipulated. This study deals with the individual equipment of small installations: glove boxes, manipulation boxes with outside control and, if necessary, production chambers (maximum useful volume: 5 m 3 ). The performances of three types of 'ventilators', and the modifications provided by the addition of filters, are measured and compared. (author) [fr

  19. Monitoring of environmental radioactivity

    International Nuclear Information System (INIS)

    1986-01-01

    The results are described of monitoring radioactivity of atmospheric fallout, surface waters, soils, plant feeds, cereals, and other agricultural produce. The results were obtained over a long time period. Radioactivity was also measured of milk, milk products, vegetables and fruits, meat and hen eggs, flour and bakery products with a view to radionuclide migration in the food chain. The daily intake of 90 Sr and 137 Cs from food was determined from the values obtained and the consumption of the individual types of food. Strontium-90 distribution was studied in the bones and the teeth of the population in Slovakia. With the commissioning of nuclear power plants, emissions and liquid wastes were monitored and their environmental impact assessed. (E.S.)

  20. Estimation of the time-dependent radioactive source-term from the Fukushima nuclear power plant accident using atmospheric transport modelling

    Science.gov (United States)

    Schoeppner, M.; Plastino, W.; Budano, A.; De Vincenzi, M.; Ruggieri, F.

    2012-04-01

    Several nuclear reactors at the Fukushima Dai-ichi power plant have been severely damaged from the Tōhoku earthquake and the subsequent tsunami in March 2011. Due to the extremely difficult on-site situation it has been not been possible to directly determine the emissions of radioactive material. However, during the following days and weeks radionuclides of 137-Caesium and 131-Iodine (amongst others) were detected at monitoring stations throughout the world. Atmospheric transport models are able to simulate the worldwide dispersion of particles accordant to location, time and meteorological conditions following the release. The Lagrangian atmospheric transport model Flexpart is used by many authorities and has been proven to make valid predictions in this regard. The Flexpart software has first has been ported to a local cluster computer at the Grid Lab of INFN and Department of Physics of University of Roma Tre (Rome, Italy) and subsequently also to the European Mediterranean Grid (EUMEDGRID). Due to this computing power being available it has been possible to simulate the transport of particles originating from the Fukushima Dai-ichi plant site. Using the time series of the sampled concentration data and the assumption that the Fukushima accident was the only source of these radionuclides, it has been possible to estimate the time-dependent source-term for fourteen days following the accident using the atmospheric transport model. A reasonable agreement has been obtained between the modelling results and the estimated radionuclide release rates from the Fukushima accident.

  1. African land degradation in a world of global atmospheric change: fertilization conceals degradation?

    Science.gov (United States)

    Le, Lulseged Tamene, Paul L. G. Vlek, Quang Bao

    2009-04-01

    Land degradation is one of the most widespread environmental problems worldwide. The sub-Saharan Africa (SSA) is one of the most seriously affected regions with huge implications on food security and economic development. To plan plausible management measures, understanding the magnitude of the problem and identification of hotspot areas are necessary. Analysis of remote sensing and climate data observed from space for the period 1982 - 2003 showed significant improvement in vegetation productivity across 30% of SSA with decline on 5% of the subcontinent. Global change in atmospheric chemistry is likely responsible for the observed increasing trend in vegetation productivity. Such widespread greening observed from space could mask anthropogenic land degradation processes such as land conversion, selective logging, and soil nutrient mining. To assess this possible masking effect, a re-analysis of the vegetation productivity dynamics, taking into account atmospheric fertilization, was conducted. This was performed by analyzing the long-term trend in vegetation productivity of pristine lands (areas with minimum human- and climate- related impacts) identified across different biomes in SSA. The baseline slope values of biomass accrual calculated for those pristine lands were estimated and used to re-calculate the long-term trend of green biomass with and without the impact of atmospheric fertilization. This ultimately enabled to delineate the areas that would have experienced significant loss in vegetation productivity had the atmospheric chemistry not changed. The result suggests that seven times more than the area of actual productivity decline in SSA is affected by land degradation processes that are concealed by atmospheric fertilization. With this rate of surreptitious loss of vital land attributes and with the current rate of population growth (3%), the SSA subcontinent may soon lack the land resources necessary to foster economic development. Spatially

  2. Background radioactivity in sediments near Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    McLin, Stephen G.

    2004-01-01

    remained relatively constant since the early 1980s. These results suggest that clay contents in terrestrial sediments are often more important at concentrating background radionuclides than many other environmental factors, including geology, climate and vegetation. Hence, reservoirs and floodplains represent ideal radionuclide sampling locations because fine-grained materials are more easily trapped here. Ultimately, most of these differences still reflect spatial and temporal variability originating from global atmospheric nuclear weapons testing and disintegration of nuclear-powered satellites upon atmospheric reentry

  3. On the environmental pollution and radioactivity within the territory of Russia in October, 1992

    International Nuclear Information System (INIS)

    Ovanesyants, A.M.; Belova, N.A.; Ivanov, M.N.

    1993-01-01

    Points of Russia were indicated where the maximum permissible concentration limits of pollutants were found to be exceeded. Causes of the observed incidents were described. Pollution of the atmospheric air, soils and surface waters was presented for the october, 1992. Daily concentrations of the radioactive aerosols in the atmospheric air were equal to the background values as well as their fallout. High radioactivity in Chita and Rostov cities were explaned by natural origin factors (meteorological conditions)

  4. Some discussions on micrometeorology and atmospheric diffusion of classic and radioactive industrial pollutions. 6

    International Nuclear Information System (INIS)

    Veverka, O.; Valenta, V.; Vlachovsky, K.

    1976-01-01

    Plume depletion and deposition is discussed for the cases of stack disposal of conventional and radioactive wastes. Dry and wet deposition processes and general radioactive decay chains including isomeric transitions are taken into account. (author)

  5. Outcomes and challenges of global high-resolution non-hydrostatic atmospheric simulations using the K computer

    Science.gov (United States)

    Satoh, Masaki; Tomita, Hirofumi; Yashiro, Hisashi; Kajikawa, Yoshiyuki; Miyamoto, Yoshiaki; Yamaura, Tsuyoshi; Miyakawa, Tomoki; Nakano, Masuo; Kodama, Chihiro; Noda, Akira T.; Nasuno, Tomoe; Yamada, Yohei; Fukutomi, Yoshiki

    2017-12-01

    This article reviews the major outcomes of a 5-year (2011-2016) project using the K computer to perform global numerical atmospheric simulations based on the non-hydrostatic icosahedral atmospheric model (NICAM). The K computer was made available to the public in September 2012 and was used as a primary resource for Japan's Strategic Programs for Innovative Research (SPIRE), an initiative to investigate five strategic research areas; the NICAM project fell under the research area of climate and weather simulation sciences. Combining NICAM with high-performance computing has created new opportunities in three areas of research: (1) higher resolution global simulations that produce more realistic representations of convective systems, (2) multi-member ensemble simulations that are able to perform extended-range forecasts 10-30 days in advance, and (3) multi-decadal simulations for climatology and variability. Before the K computer era, NICAM was used to demonstrate realistic simulations of intra-seasonal oscillations including the Madden-Julian oscillation (MJO), merely as a case study approach. Thanks to the big leap in computational performance of the K computer, we could greatly increase the number of cases of MJO events for numerical simulations, in addition to integrating time and horizontal resolution. We conclude that the high-resolution global non-hydrostatic model, as used in this five-year project, improves the ability to forecast intra-seasonal oscillations and associated tropical cyclogenesis compared with that of the relatively coarser operational models currently in use. The impacts of the sub-kilometer resolution simulation and the multi-decadal simulations using NICAM are also reviewed.

  6. Radioactive iodine releases from nuclear power plant, (2)

    International Nuclear Information System (INIS)

    Naritomi, Mitsuo

    1974-01-01

    Internal radiation dose through the respiratory intake of fission products is predominantly due to radioactive iodine not only at the time of reactor accidents but also in normal operation of nuclear facilities. Technological studies in this field have thus been quite active to this day. With the rapid advance of nuclear power generation in recent years, the efforts to reduce environmental release of radioactive iodine and to enhance environmental safety are all the more emphasized. Experiences in the Japan Atomic Energy Research Institute during past about six years are described concerning the radioactive iodine release to the atmosphere in 131 I production and the measures taken to reduce the release. Then, problems are expounded regarding the radioactive iodine release at the time of reactor accidents and in spent fuel reprocessing. (Mori, K.)

  7. The effect of radioactive aerosols on fog formation

    International Nuclear Information System (INIS)

    Ali, G.; Khan, E.U.; Ali, N.; Khan, H.A.; Waheed, A.

    2011-01-01

    This research study has been carried out to explore the dependence of fog formation on radioactive aerosols. The aerosols containing radioactive nuclides are called radioactive aerosols. A large number of radioactive nuclides are present in the atmosphere among which the two most important nuclides, 7Be and 210Pb are considered here in this study. Results for Activity Concentrations of these radio-nuclides in air samples in clear and foggy conditions were comparatively analyzed. About 19% increase in Activity concentration for 210Pb and about 23% increase in Activity Concentration for 7Be was recorded during fog as compared to clear conditions. This increase in Activity Concentration during fog indicates that the presence of aerosols laden with these radio-nuclides is also one of the so many factors responsible for fog formation

  8. Global emissions of the hydrofluorocarbons (HFCs) HFC-365mfc, HFC-245fa, HFC-227ea, and HFC-236fa based on atmospheric observations

    Science.gov (United States)

    Vollmer, M. K.; Miller, B. R.; Rigby, M. L.; Reimann, S.; Muhle, J.; Agage, Soge, Snu Members, Kopri Members

    2010-12-01

    We report on the atmospheric measurements and global emissions of the hydrofluorocarbons (HFCs) HFC-365mfc (CH3CH2CF2CF3, 1,1,1,3,3-pentafluorobutane), HFC-245fa (CHF2CH2CF3, 1,1,1,3,3-pentafluoropropane), HFC-227ea (CF3CHFCF3, 1,1,1,2,3,3,3-heptafluoropropane), and HFC-236fa (CF3CH2CF3, 1,1,1,3,3,3-hexafluoropropane). These measurements are from in-situ observations at stations of AGAGE (Advanced Global Atmospheric Gases Experiment) and SOGE (System for Observations of Halogenated Greenhouse Gases in Europe), and from the Korean station Gosan. We also report on flask sample measurements from the Antarctic stations King Sejong and Troll, and extend our records back to the 1970s using archived air samples of both hemispheres. All data are used in a global 12-box 2-dimensional atmospheric transport model to derive global abundances and emission estimates. All four HFCs have strongly increased in the atmosphere in recent years with growth rates at nearly 10 %, resulting in dry air mole fractions at the end of 2009 of 0.49 ppt for HFC-365mfc, 1.00 ppt for HFC-245fa, and 0.51 ppt for HFC-227ea. HFC-236fa, for which we report the first atmospheric measurements, is less abundant and has grown to 0.069 ppt at the end of 2009. Our model results show rapidly growing emissions of HFC-365mfc and HFC-245fa after 2002 but surprisingly these have now started to decline to globally 2.7 kt/yr (HFC-365mfc) and 6.1 kt/yr (HFC-245fa). On the other hand HFC-227ea and HFC-236fa show uninterrupted growth in their emissions of 2.5 kt/yr and 0.2 kt/yr at the end of 2009.

  9. Radioactivity and Nuclear Issues in Science Fiction

    International Nuclear Information System (INIS)

    Franic, Z.

    2008-01-01

    In this work are presented and reviewed science fiction narratives, films and comics that exploit radioactivity and nuclear issues. These topics to some science fiction authors serve as metaphor of evil and holocaust as well as nice instrument for elaborating various manipulations and conspiracy theories. In that context are of special interest science fiction works depicting apocalyptic post-nuclear worlds and societies, such works being closely connected with cyberpunk genre. However, other more technologically optimistic authors nuclear energy and research regarding nuclear technology and radioactivity consider as eligible and inevitable solution for world peace and prosperity Nowadays, public interest and global fears are shifted from radioactivity and nuclear issues to other catastrophic scenarios threatening future of the mankind, these for example being climate changes and global warming, asteroid impact, collapse of information infrastructure, nanotechnology, robotics and artificial intelligence etc. Consequently, these issues are as well increasingly reflected in contemporary science fiction stories.(author)

  10. Determination of the potential radiation exposure of the population close to the Asse II mine caused by deduction of radioactive substances with the discharge air in the normal operation using the ''Atmospheric Radionuclide-Transport-Model'' (ARTM)

    International Nuclear Information System (INIS)

    Esch, D.; Wittwer, C.

    2014-01-01

    Between 1967 and 1978 125.787 packages filled with low-level and intermediate-level radioactive waste were emplaced in the mining plant Asse II. Volatile radioactive substances like H-3, C-14 and Rn-222 are released from the emplaced waste. These substances reach the ventilated parts of the mine and are released with the discharge air. The potential radiation exposure of the population caused by deduction of radioactive substances with the discharge air in the normal operation is determined by the ''Atmospheric Radionuclide-Transport-Model'' (ARTM). As result the maximal deductions of volatile radioactive substances with the discharge air in the normal operation of the Asse II mine lead to radiation exposure of the population, which is considerably lower than the permissible values of application rate.

  11. Atmospheric dispersion of radionuclides released by a nuclear plant

    International Nuclear Information System (INIS)

    Barboza, A.A.

    1989-01-01

    A numerical model has been developed to simulate the atmospheric dispersion of radionuclides released by a nuclear plant operating under normal conditions. The model, based on gaussian plume representation, accouts for and evaluates several factors which affect the concentraction of effluents in the atmosphere, such as: ressuspension, deposition, radioactive decay, energy and type of the radiation emitted, among others. The concentraction of effluents in the atmosphere is calculated for a uniform mesh of points around the plant, allowing the equivalent doses to be then evaluated. Simulations of the atmosphere dispersion of radioactive plumes of Cs 137 and Ar 41 have been performed assuming a constant rate of release, as expected from the normal operation of a nuclear plant. Finally, this work analyzes the equivalent doses at ground level due to the dispersion of Cs 137 and Ar 41 , accumulated over one year and determines the isodose curves for a hypothetical site. (author) [pt

  12. The atmospheric and climatic consequences of nuclear war

    International Nuclear Information System (INIS)

    Sagan, C.

    1985-01-01

    Four effects-obscuring smoke in the troposphere, obscuring dust in the stratosphere, the fallout of radioactive debris, and the partial destruction of the ozone layer - constitute the four known principal adverse environmental consequences that would occur after a nuclear war is ''over''. There may well be others about which we are still ignorant. The dust, and especially, the dark soot absorb ordinary visible light from the sun, heating the atmosphere and cooling the Earth's surface. All four of these effects have been treated in the authors; recent study, known form the initials of its authors as TTAPS. For the first time it is demonstrated that severe and prolonged low temperatures, the ''nuclear winter'', would follow a nuclear war. The new results have been subjected to detailed scrutiny, and many corroboratory calculations have not been made, including at least two in the Soviet Union. Unlike many previous studies, the effects do not seem to be restricted to northern midlatitudes, where the nuclear exchange would mainly take place. There is now substantial evidence that the heating by sunlight of atmospheric dust and soot over northern midlatitude targets would profoundly change the global circulation. In our studies, several dozen different scenarios where chosen, covering a wide range of possible wars, and the range of uncertainty in each key parameter was considered (e.g., to describe how many fine particles are injected into the atmosphere)

  13. Behavior of radioactive metal surrogates under various waste combustion conditions

    International Nuclear Information System (INIS)

    Yang, Hee Chul; Lee, Jae Hee; Kim, Jung Guk; Yoo, Jae Hyung; Kim, Joon Hyung

    2002-01-01

    A laboratory investigation of the behavior of radioactive metals under the various waste combustion atmospheres was conducted to predict the parameters that influence their partitioning behavior during waste incineration. Neodymium, samarium, cerium, gadolinium, cesium and cobalt were used as non-radioactive surrogate metals that are representative of uranium, plutonium, americium, curium, radioactive cesium, and radioactive cobalt, respectively. Except for cesium, all of the investigated surrogate metal compounds converted into each of their stable oxides at medium temperatures from 400 to 900 .deg. C, under oxygen-deficient and oxygen-sufficient atmospheres (0.001-atm and 0.21-atm O 2 ). At high temperatures above 1,400 .deg. C, cerium, neodymium and samarium in the form of their oxides started to vaporize but the vaporization rates were very slow up to 1500 .deg. C. Inorganic chlorine (NaCl) as well as organic chlorine (PVC) did not impact the volatility of investigated Nd 2 O 3 , CoO and Cs 2 O. The results of laboratory investigations suggested that the combustion chamber operating parameters affecting the entrainment of particulate and filtration equipment operating parameters affecting particle collection efficiency be the governing parameters of alpha radionuclides partitioning during waste incineration

  14. Estimation of radioactive effluents dispersion from the nuclear power plants in Yugoslavia surrounding

    International Nuclear Information System (INIS)

    Vehauc, A.

    1997-01-01

    The computational method for atmospheric dispersion of radioactive effluents is applied to the nuclear power plants in Yugoslavia surrounding. On the basis of computation results, ground level concentrations and washout of radioactive nuclides on exposed Yugoslav territories during unfavourable meteorological conditions are estimated. (author)

  15. Forage: a sensitive indicator of airborne radioactivity

    International Nuclear Information System (INIS)

    Jackson, W.M.; Noakes, J.E.; Spaulding, J.D.

    1981-01-01

    This paper presents the results of using Ge(Li) γ-ray spectroscopy to measure radioactivity concentration of forage in the vicinity of the Joseph M. Farley Nuclear Plant, Houston County, AL., over a 31/2 yr period. The report period includes 2 yr of pre-operational and 11/2 yr of operational sampling. Although the objective of forage sampling was the measurement of manmade airborne fallout radioactivity, several natural radioisotopes were also found to be present. A summary of natural radioactivity data for all samples measured during the period from August 1975 to December 1978 is given. Approximately 10 days after each of four Chinese atmospheric nuclear tests conducted during the sampling period fresh fission product fallout was measured on the forage. The information from these nuclear tests shows forage sampling to be a convenient and sensitive monitoring tool for airborne fallout radioactivity. (author)

  16. Retrieval Assimilation and Modeling of Atmospheric Water Vapor from Ground- and Space-Based GPS Networks: Investigation of the Global and Regional Hydrological Cycles

    Science.gov (United States)

    Dickey, Jean O.

    1999-01-01

    Uncertainty over the response of the atmospheric hydrological cycle (particularly the distribution of water vapor and cloudiness) to anthropogenic forcing is a primary source of doubt in current estimates of global climate sensitivity, which raises severe difficulties in evaluating its likely societal impact. Fortunately, a variety of advanced techniques and sensors are beginning to shed new light on the atmospheric hydrological cycle. One of the most promising makes use of the sensitivity of the Global Positioning System (GPS) to the thermodynamic state, and in particular the water vapor content, of the atmosphere through which the radio signals propagate. Our strategy to derive the maximum benefit for hydrological studies from the rapidly increasing GPS data stream will proceed in three stages: (1) systematically analyze and archive quality-controlled retrievals using state-of-the-art techniques; (2) employ both currently available and innovative assimilation procedures to incorporate these determinations into advanced regional and global atmospheric models and assess their effects; and (3) apply the results to investigate selected scientific issues of relevance to regional and global hydrological studies. An archive of GPS-based estimation of total zenith delay (TZD) data and water vapor where applicable has been established with expanded automated quality control. The accuracy of the GPS estimates is being monitored; the investigation of systematic errors is ongoing using comparisons with water vapor radiometers. Meteorological packages have been implemented. The accuracy and utilization of the TZD estimates has been improved by implementing a troposphere gradient model. GPS-based gradients have been validated as real atmospheric moisture gradients, establishing a link between the estimated gradients and the passage of weather fronts. We have developed a generalized ray tracing inversion scheme that can be used to analyze occultation data acquired from space

  17. Development of an atmospheric 214Bi measuring instrument

    International Nuclear Information System (INIS)

    1975-01-01

    Part of the radiation environment encountered during airborne gamma ray surveys is produced by 214 Bi existing in the atmosphere. The 214 Bi atmospheric concentration changes with time and location, and should be measured to process the acquired data correctly. Three methods of atmospheric 214 Bi measurement are evaluated in this work. These are: (1) an 11 1 / 2 '' dia. x 4'' thick NaI(Tl) crystal shielded from ground radiation, (2) a negatively charged wire to collect radioactive ions, and (3) a high volume air sampler collecting particulate matter on filter paper. The shielded detector and filter paper methods yield good results with the shielded detector producing a factor of about 10 times higher counting rate. The charged wire method gave very low counting rates where the shielded detector counting rates were about a factor of 100 times higher, and the results did not correlate with the 214 Bi atmospheric concentration as determined by the other two methods. The theory necessary to understand the collection and decay of the airborne radioactivity using the charged wire and filter paper methods is developed

  18. Procurement and use of radioactive sources

    International Nuclear Information System (INIS)

    Prasad, S.S.; Sumathi, E.

    2017-01-01

    Radioactive sources are used throughout the world for a wide variety of peaceful purposes in industry, medicine, agriculture, research and education. It has been recognized that unsecured radioactive sources can cause serious radiological accidents involving radiation injuries and fatalities. Radioactive source after its useful life, although considered waste, can still pose a security threat if not managed properly. Today, there is a growing concern that terrorist or criminal groups could gain access to disused high activity radioactive sources and use it with harmful intent. Consequently, there has been a global trend towards increased control, accounting, and security measures to prevent such incidents. Particular concern is expressed regarding radioactive sources that have become orphaned (not under regulatory control) or vulnerable (under weak regulatory control and about to be orphaned). The International Basic Safety Standards published by International Atomic Energy Agency (IAEA) provide an internationally harmonized basis for ensuring the safe and secure use of sources of ionizing radiation

  19. The ventilation and the atmospheric characteristics in a laboratory uranium mine

    International Nuclear Information System (INIS)

    Duport, P.; Madelaine, G.; Zettwoog, P.

    1977-01-01

    The influence of the ventilation flow rate and relative pressure on the radioactive parameters in the mine is carried out. Using a continual recording of the radon concentration, it is established that the overpressured ventilation reduces appreciably the radon concentration in the mine, with possibility of quantitative evaluations. An experimental and theoretical study based on brownian diffusion let to a best knowledge of the underground aerosol in radioactive atmosphere. The unattached fractions of RaA, RaB, RaC were measured, and it was established that these values can be computed from the radon concentration in the air mine, the transfert time and the condensation nuclei concentration. The most efficient method for these measurement is then determined. The radioactive aerosol spectrum can be infered from the condensation nuclei one. The experimental study on radioactive ions confirmed the diffusion study. It is settle that the classical theories of the mechanics of aerosols can be applied in uranium mine atmosphere; it is then possible to deduce the radioactive aerosols characteristics from some simple measurements [fr

  20. Problem of the influence of an atomic explosion on the state of the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, N S

    1956-01-01

    The author reviews briefly various American, Western European, and Japanese studies dealing with the effect of atomic explosions upon the state of atmosphere. He then considers the possible changes in the radiation radioactive properties of the atmosphere that can be caused by the explosion of one atomic bomb, how the increase in radioactivity can influence the radiation balance of the earth, the effect of atomic explosions upon the dust, ion and aerosol content of the atmosphere and the meteorological effects of atomic explosions such as the occurrence of fogs, etc.

  1. Sensitivity of the assessment of public exposure originating from radioactive discharges as a subject of the methodology

    International Nuclear Information System (INIS)

    Krizman, M.J.; Peteh, D.; Vokal Nemec, B.; Cindro, M.

    2007-01-01

    Operational control of nuclear and radiation facilities is partly carried out by continuous monitoring of radioactive discharges into the environment and by direct radioactivity measurements of the environmental samples. The impact of a nuclear or radiation facility is then evaluated in terms of exposure to the public living nearby and in terms of levels of environmental contamination. The dose assessment for the public depends very much on the propositions and scenarios selected by the expert(s), who perform(s) the exposure calculation and on the methodology used. Essential changes of population doses occur when the methodology is changed. The aim of this paper is to present some cases of public exposure based on the data from the environmental radioactivity monitoring programmes, currently performed in Slovenia: for control of global radioactive contamination (atmospheric nuclear tests and Chernobyl) and for control of the Slovenian nuclear and radiation facilities such as the Krsko NPP, the research reactor TRIGA and the radioactive waste storage at Brinje, and the Zirovski vrh uranium mine. There have been significant changes in a dose assessment methodology in the recent years and the resulting dose levels have been changed for one order of magnitude lower or higher values. Public exposure values for five particular sources of contamination versus time of operation are presented as well as the reasons for methodology changes. These changes had to be made due to several reasons, described in the paper. (author)

  2. Data quality through a web-based QA/QC system: implementation for atmospheric mercury data from the global mercury observation system.

    Science.gov (United States)

    D'Amore, Francesco; Bencardino, Mariantonia; Cinnirella, Sergio; Sprovieri, Francesca; Pirrone, Nicola

    2015-08-01

    The overall goal of the on-going Global Mercury Observation System (GMOS) project is to develop a coordinated global monitoring network for mercury, including ground-based, high altitude and sea level stations. In order to ensure data reliability and comparability, a significant effort has been made to implement a centralized system, which is designed to quality assure and quality control atmospheric mercury datasets. This system, GMOS-Data Quality Management (G-DQM), uses a web-based approach with real-time adaptive monitoring procedures aimed at preventing the production of poor-quality data. G-DQM is plugged on a cyberinfrastructure and deployed as a service. Atmospheric mercury datasets, produced during the first-three years of the GMOS project, are used as the input to demonstrate the application of the G-DQM and how it identifies a number of key issues concerning data quality. The major issues influencing data quality are presented and discussed for the GMOS stations under study. Atmospheric mercury data collected at the Longobucco (Italy) station is used as a detailed case study.

  3. Air conditioning systems to clean radioactive air

    International Nuclear Information System (INIS)

    Ganz, G.

    1987-01-01

    The author reports a study by the Institutes fuer Klimatechnik and Umweltschutz Giessen that shows that air conditioning systems not only make the atmosphere more comfortable, they also extract dust particles. This cleaning action is also valid for radioactively contaminated air. (G.T.H./Auth.)

  4. Global atmospheric model for mercury including oxidation by bromine atoms

    Directory of Open Access Journals (Sweden)

    C. D. Holmes

    2010-12-01

    Full Text Available Global models of atmospheric mercury generally assume that gas-phase OH and ozone are the main oxidants converting Hg0 to HgII and thus driving mercury deposition to ecosystems. However, thermodynamic considerations argue against the importance of these reactions. We demonstrate here the viability of atomic bromine (Br as an alternative Hg0 oxidant. We conduct a global 3-D simulation with the GEOS-Chem model assuming gas-phase Br to be the sole Hg0 oxidant (Hg + Br model and compare to the previous version of the model with OH and ozone as the sole oxidants (Hg + OH/O3 model. We specify global 3-D Br concentration fields based on our best understanding of tropospheric and stratospheric Br chemistry. In both the Hg + Br and Hg + OH/O3 models, we add an aqueous photochemical reduction of HgII in cloud to impose a tropospheric lifetime for mercury of 6.5 months against deposition, as needed to reconcile observed total gaseous mercury (TGM concentrations with current estimates of anthropogenic emissions. This added reduction would not be necessary in the Hg + Br model if we adjusted the Br oxidation kinetics downward within their range of uncertainty. We find that the Hg + Br and Hg + OH/O3 models are equally capable of reproducing the spatial distribution of TGM and its seasonal cycle at northern mid-latitudes. The Hg + Br model shows a steeper decline of TGM concentrations from the tropics to southern mid-latitudes. Only the Hg + Br model can reproduce the springtime depletion and summer rebound of TGM observed at polar sites; the snowpack component of GEOS-Chem suggests that 40% of HgII deposited to snow in the Arctic is transferred to the ocean and land reservoirs, amounting to a net deposition flux to the Arctic of 60 Mg a−1. Summertime events of depleted Hg0 at Antarctic sites due to subsidence are much better simulated by

  5. Global Peak in Atmospheric Radiocarbon Provides a Potential Definition for the Onset of the Anthropocene Epoch in 1965.

    Science.gov (United States)

    Turney, Chris S M; Palmer, Jonathan; Maslin, Mark A; Hogg, Alan; Fogwill, Christopher J; Southon, John; Fenwick, Pavla; Helle, Gerhard; Wilmshurst, Janet M; McGlone, Matt; Bronk Ramsey, Christopher; Thomas, Zoë; Lipson, Mathew; Beaven, Brent; Jones, Richard T; Andrews, Oliver; Hua, Quan

    2018-02-19

    Anthropogenic activity is now recognised as having profoundly and permanently altered the Earth system, suggesting we have entered a human-dominated geological epoch, the 'Anthropocene'. To formally define the onset of the Anthropocene, a synchronous global signature within geological-forming materials is required. Here we report a series of precisely-dated tree-ring records from Campbell Island (Southern Ocean) that capture peak atmospheric radiocarbon ( 14 C) resulting from Northern Hemisphere-dominated thermonuclear bomb tests during the 1950s and 1960s. The only alien tree on the island, a Sitka spruce (Picea sitchensis), allows us to seasonally-resolve Southern Hemisphere atmospheric 14 C, demonstrating the 'bomb peak' in this remote and pristine location occurred in the last-quarter of 1965 (October-December), coincident with the broader changes associated with the post-World War II 'Great Acceleration' in industrial capacity and consumption. Our findings provide a precisely-resolved potential Global Stratotype Section and Point (GSSP) or 'golden spike', marking the onset of the Anthropocene Epoch.

  6. Measurement of radioactive nuclides in the `Mayak` region

    Energy Technology Data Exchange (ETDEWEB)

    Myasoedov, B F [V.I. Vernadsky Inst. of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow (Russian Federation); Novikov, A P [V.I. Vernadsky Inst. of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow (Russian Federation)

    1997-03-01

    The study of environmental contamination caused by anthropogenic impact and, primarily, by radioactive nuclides is one of the main scientific problems facing contemporary science. Radioecological monitoring, decision making on remediation of polluted areas need detailed information about distribution of radioactive nuclides in the terrestrial and aquatic ecosystems, knowledge about radioactive nuclide occurrence forms and migration patterns. Experimental tests of nuclear and thermonuclear weapon in atmosphere and underground, nuclear power engineering and numerous accidents that took place at the nuclear power plants (NPP), unauthorized dump of radioactive materials in various places of the ocean and pouring off the strongly dump of radioactive wastes from ships and submarine equipped with nuclear power engines made artificial radionuclides a constant and unretrievable component of the modern biosphere, becoming an additional unfavorable ecological factor. As regards Former Sovient Union (FSU) the most unfavorable regions are Southern Ural, zones suffered from Chernobyl Accident, Altay, Novaya Zemlya, some part of West Siberia near Seversk (Tomsk-7) and Zheleznogorsk (Krasnoyarsk-26). (orig.)

  7. Measurement of radioactive nuclides in the 'Mayak' region

    International Nuclear Information System (INIS)

    Myasoedov, B.F.; Novikov, A.P.

    1997-01-01

    The study of environmental contamination caused by anthropogenic impact and, primarily, by radioactive nuclides is one of the main scientific problems facing contemporary science. Radioecological monitoring, decision making on remediation of polluted areas need detailed information about distribution of radioactive nuclides in the terrestrial and aquatic ecosystems, knowledge about radioactive nuclide occurrence forms and migration patterns. Experimental tests of nuclear and thermonuclear weapon in atmosphere and underground, nuclear power engineering and numerous accidents that took place at the nuclear power plants (NPP), unauthorized dump of radioactive materials in various places of the ocean and pouring off the strongly dump of radioactive wastes from ships and submarine equipped with nuclear power engines made artificial radionuclides a constant and unretrievable component of the modern biosphere, becoming an additional unfavorable ecological factor. As regards Former Sovient Union (FSU) the most unfavorable regions are Southern Ural, zones suffered from Chernobyl Accident, Altay, Novaya Zemlya, some part of West Siberia near Seversk (Tomsk-7) and Zheleznogorsk (Krasnoyarsk-26). (orig.)

  8. Numerical methods of estimating the dispersion of radionuclides in atmosphere

    International Nuclear Information System (INIS)

    Vladu, Mihaela; Ghitulescu, Alina; Popescu, Gheorghe; Piciorea, Iuliana

    2007-01-01

    Full text: The paper presents the method of dispersion calculation, witch can be applied for the DLE calculation. This is necessary to ensure a secure performance of the Experimental Pilot Plant for Tritium and Deuterium Separation (using the technology for detritiation based upon isotope catalytic exchange between tritiated heavy water and deuterium followed by cryogenic distillation of the hydrogen isotopes). For the calculation of the dispersion of radioactivity effluents in the atmosphere, at a given distance between source and receiver, the Gaussian mathematical model was used. This model is currently applied for estimating the long-term results of dispersion in case of continuous or intermittent emissions as basic information for long-term radioprotection measures for areas of the order of kilometres from the source. We have considered intermittent or continuous emissions of intensity lower than 1% per day relative to the annual emission. It is supposed that the radioactive material released into environment presents a gaussian dispersion both in horizontal and vertical plan. The local dispersion parameters could be determined directly with turbulence measurements or indirectly by determination of atmospheric stability. Weather parameters for characterizing the atmospheric dispersion include: - direction of wind relative to the source; - the speed of the wind at the height of emission; - parameters of dispersion to different distances, depending on the atmospheric turbulence which characterizes the mixing of radioactive materials in the atmosphere; - atmospheric stability range; - the height of mixture stratum; - the type and intensity of precipitations. The choice of the most adequate version of Gaussian model depends on the relation among the height where effluent emission is in progress, H (m), and the height at which the buildings influence the air motion, HB (m). There were defined three zones of distinct dispersion. This zones can have variable lengths

  9. Characterizing the Upper Atmosphere of Titan using the Titan Global Ionosphere- Thermosphere Model: Nitrogen and Methane.

    Science.gov (United States)

    Bell, J. M.; Waite, J. H.; Bar-Nun, A.; Bougher, S. W.; Ridley, A. J.; Magee, B.

    2008-12-01

    Recently, a great deal of effort has been put forth to explain the Cassini Ion-Neutral Mass Spectrometer (Waite et al [2004]) in-situ measurements of Titan's upper atmosphere (e.g. Muller-Wodarg [2008], Strobel [2008], Yelle et al [2008]). Currently, the community seems to agree that large amounts of CH4 are escaping from Titan's upper atmosphere at a rate of roughly 2.0 x 1027 molecules of CH4/s (3.33 x 1028 amu/s), representing a significant mass source to the Kronian Magnetosphere. However, such large escape fluxes from Titan are currently not corroborated by measurements onboard the Cassini Spacecraft. Thus, we posit another potential scenario: Aerosol depletion of atmospheric methane. Using the three-dimensional Titan Global Ionosphere-Thermosphere Model (T-GITM) (Bell et al [2008]), we explore the possible removal mechanisms of atmospheric gaseous constituents by these aerosols. Titan simulations are directly compared against Cassini Ion-Neutral Mass Spectrometer in-situ densities of N2 and CH4. From this work, we can then compare and contrast this aerosol depletion scenario against the currently posited hydrodynamic escape scenario, illustrating the merits and shortcomings of both.

  10. A global climatology of stratospheric gravity waves from Atmospheric Infrared Sounder observations

    Science.gov (United States)

    Hoffmann, Lars; Xue, Xianghui; Alexander, M. Joan

    2014-05-01

    We present the results of a new study that aims on the detection and classification of `hotspots' of stratospheric gravity waves on a global scale. The analysis is based on a nine-year record (2003 to 2011) of radiance measurements by the Atmospheric Infrared Sounder (AIRS) aboard NASA's Aqua satellite. We detect the presence of stratospheric gravity waves based on 4.3 micron brightness temperature variances. Our method is optimized for peak events, i.e., strong gravity wave events for which the local variance considerably exceeds background levels. We estimated the occurrence frequencies of these peak events for different seasons and time of day and used the results to find local maxima of gravity wave activity. In addition, we use AIRS radiances at 8.1 micron to simultaneously detect convective events, including deep convection in the tropics and mesoscale convective systems at mid latitudes. We classified the gravity waves according to their sources, based on seasonal occurrence frequencies for convection and by means of topographic data. Our study reproduces well-known hotspots of gravity waves, e.g., the mountain wave hotspots at the Andes and the Antarctic Peninsula or the convective hotspot during the thunderstorm season over the North American Great Plains. However, the high horizontal resolution of the AIRS observations also helped us to locate several smaller hotspots, which were partly unknown or poorly studied so far. Most of these smaller hotspots are found near orographic features like small mountain ranges, in coastal regions, in desert areas, or near isolated islands. This new study will help to select the most promising regions and seasons for future observational studies of gravity waves. Reference: Hoffmann, L., X. Xue, and M. J. Alexander, A global view of stratospheric gravity wave hotspots located with Atmospheric Infrared Sounder observations, J. Geophys. Res., 118, 416-434, doi:10.1029/2012JD018658, 2013.

  11. Radioactive tracers in the sea

    International Nuclear Information System (INIS)

    Jenkins, W.J.; Livingston, H.D.

    1980-01-01

    Artificial radionuclides introduced to the oceans during the last four decades have proved invaluable tools for study of many processes in marine water columns and sediments. Both global and close-in fallout of radioactivity from atmospheric nuclear weapons testing have distributed these radionuclides widely, and in amounts sufficient to be useful as tracers. An additional source of considerable significance and tracer potential comes from coastal discharges of European nuclear fuel reprocessing wastes. The nature of these sources, types and amounts of radionuclides introduced and the time histories of their introduction generate a variety of tracer distributions which illuminate a broad spectrum of physical and chemical processes active over a wide range of timescales. Depending on their respective chemistries, artificial radionuclides have been demonstrated to exhibit both conservative and non-conservative properties in the oceans. Some examples are given of the uses made of soluble, conservative tracers for the study of oceanic transport processes and of non-conservative tracers for studies of processes which move them to, and mix them within, marine sediments. Sampling and measurement techniques which have been used in these studies are described

  12. Mesoscale modelling of radioactive contamination formation in Ukraine caused by the Chernobyl accident

    International Nuclear Information System (INIS)

    Talerko, Nikolai

    2005-01-01

    This work is devoted to the reconstruction of time-dependent radioactive contamination fields in the territory of Ukraine in the initial period of the Chernobyl accident using the model of atmospheric transport LEDI (Lagrangian-Eulerian DIffusion model). The modelling results were compared with available 137 Cs air and ground contamination measurement data. The 137 Cs atmospheric transport over the territory of Ukraine was simulated during the first 12 days after the accident (from 26 April to 7 May 1986) using real aerological information and rain measurement network data. The detailed scenario of the release from the accidental unit of the Chernobyl nuclear plant has been built (including time-dependent radioactivity release intensity and time-varied height of the release). The calculations have enabled to explain the main features of spatial and temporal variations of radioactive contamination fields over the territory of Ukraine on the regional scale, including the formation of the major large-scale spots of radioactive contamination caused by dry and wet deposition

  13. Method of processing radioactive gas

    International Nuclear Information System (INIS)

    Saito, Masayuki.

    1978-01-01

    Purpose: To reduce the quantity of radioactive gas discharged at the time of starting a nuclear power plant. Method: After the stoppage of a nuclear power plant air containing a radioactive gas is extracted from a main condenser by operating an air extractor. The air is sent into a gaseous waste disposal device, and then introduced into the activated carbon adsorptive tower of a rare gas holdup device where xenon and krypton are trapped. Thereafter, the air passes through pipelines and returned to the main condenser. In this manner, the radioactive gas contained in air within the main condenser is removed during the stoppage of the operation of the nuclear power plant. After the plant has been started, when it enters the normal operation, a flow control valve is closed and another valve is opened, and a purified gas exhausted from the rare gas holdup device is discharged into the atmosphere through an exhaust cylinder. (Aizawa, K.)

  14. Atmospheric evidence for a global secular increase in carbon isotopic discrimination of land photosynthesis

    Science.gov (United States)

    Keeling, Ralph F.; Graven, Heather D.; Welp, Lisa R.; Resplandy, Laure; Bi, Jian; Piper, Stephen C.; Sun, Ying; Bollenbacher, Alane; Meijer, Harro A. J.

    2017-09-01

    A decrease in the 13C/12C ratio of atmospheric CO2 has been documented by direct observations since 1978 and from ice core measurements since the industrial revolution. This decrease, known as the 13C-Suess effect, is driven primarily by the input of fossil fuel-derived CO2 but is also sensitive to land and ocean carbon cycling and uptake. Using updated records, we show that no plausible combination of sources and sinks of CO2 from fossil fuel, land, and oceans can explain the observed 13C-Suess effect unless an increase has occurred in the 13C/12C isotopic discrimination of land photosynthesis. A trend toward greater discrimination under higher CO2 levels is broadly consistent with tree ring studies over the past century, with field and chamber experiments, and with geological records of C3 plants at times of altered atmospheric CO2, but increasing discrimination has not previously been included in studies of long-term atmospheric 13C/12C measurements. We further show that the inferred discrimination increase of 0.014 ± 0.007‰ ppm-1 is largely explained by photorespiratory and mesophyll effects. This result implies that, at the global scale, land plants have regulated their stomatal conductance so as to allow the CO2 partial pressure within stomatal cavities and their intrinsic water use efficiency to increase in nearly constant proportion to the rise in atmospheric CO2 concentration.

  15. Relating Nimbus-7 37 GHz data to global land-surface evaporation, primary productivity and the atmospheric CO2 concentration

    Science.gov (United States)

    Choudhury, B. J.

    1988-01-01

    Global observations at 37 GHz by the Nimbus-7 SMMR are related to zonal variations of land surface evaporation and primary productivity, as well as to temporal variations of atmospheric CO2 concentration. The temporal variation of CO2 concentration and the zonal variations of evaporation and primary productivity are shown to be highly correlated with the satellite sensor data. The potential usefulness of the 37-GHz data for global biospheric and climate studies is noted.

  16. Contribution to the study of natural radioactivity in the north region of Haute-Vienne department

    International Nuclear Information System (INIS)

    Fikri, A.

    1981-01-01

    In this study concerning a region with abundant uranium ore deposits, the following topics are emphasized: low level radioactivity of surface waters with measured values lower than the safety standards of international organizations; the radioactivity of plants growing on this areas due to potassium 40; the meteorological variations of the atmospheric radioactivity, daily variations, monthly variations [fr

  17. Forest decline through radioactivity

    International Nuclear Information System (INIS)

    Reichelt, G.; Kollert, R.

    1985-01-01

    Is more serious damage of forest observed in the vicinity of nuclear reactors. How are those decline patterns to be explained. Does the combined effect of radioactivity and different air pollutants (such as nitrogen oxides, sulfur dioxide, oxidants etc.) have an influence in the decline of the forest. In what way do synergisms, i.e. mutually enhanced effects, participate. How does natural and artificial radioactivity affect the chemistry of air in the polluted atmosphere. What does this mean for the extension of nuclear energy, especially for the reprocessing plant planned. Damage in the forests near nuclear and industrial plants was mapped and the resulting hypotheses on possible emittors were statistically verified. Quantitative calculations as to the connection between nuclear energy and forest decline were carried through: they demand action. (orig./HP) [de

  18. Atmospheric Chemistry in a Changing World

    Science.gov (United States)

    Brune, William H.

    The world is changing,and the atmosphere's composition is changing with it. Human activity is responsible for much of this. Global population growth and migration to urban centers, extensive biomass burning, the spread of fertilizer-intensive agribusiness, globalization of business and industry, rising standards of living in the developing world, and increased energy use fuels atmospheric change. If current practices continue, atmospheric increases are likely for the greenhouse gases carbon dioxide, methane, nitrous oxide; and for the chemically active gases nitric oxide, sulfur dioxide,and ammonia. Increases in global tropospheric ozone and aerosols are a distinct possibility.

  19. A preliminary assessment of selected atmospheric dispersion, food-chain transport, and dose-to-man computer codes for use by the DOE Office of Civilian Radioactive Waste Management

    International Nuclear Information System (INIS)

    Riggle, K.J.; Roddy, J.W.

    1989-02-01

    This work is part of the ongoing Systems Modeling Program at Oak Ridge National Laboratory, which is assisting the DOE Office of Civilian Radioactive Waste Management in selecting appropriate computer codes for the process of licensing a high-level radioactive waste repository or a monitored retrievable storage facility. A preliminary study of codes for predicting dose to man following airborne releases of radionuclides is described. These codes use models for estimating atmospheric dispersion of activity and deposition onto the ground surface, exposures via external irradiation, inhalation of airborne activity, and ingestion following transport through terrestrial food chains, and the dose per unit exposure for each exposure mode. A set of criteria is given for use in choosing codes for further examination. From a list of over 150 computer codes, five were selected for review

  20. Preliminary information on studies of radioactive rain

    Energy Technology Data Exchange (ETDEWEB)

    Fernando, A A; Beltran, V; Brody, T A; Lezama, H; Moreno, A; Tejera, M A; Vazquer, B

    1956-01-01

    Data on radioactive rain, which were obtained by the gummed leaf method and by collection in a free surface of water are presented. The experimental methods are described. Some conclusions are obtained on the relative efficiency of the two methods and their relations to atmospheric precipitation.

  1. Evaluation of effects to the health by liberations to the atmosphere of radioactive material of nucleo electric plants

    International Nuclear Information System (INIS)

    Martinez F, C.; Araiza M, E.

    2003-01-01

    The objective of this work is to evaluate the effects on the population health border to a nuclear power station and to estimate the consequences caused by the liberation of radioactive material using the MACCS code (MELCOR Accident Consequence Code System), developed to evaluate the risks for have a severe accident in nuclear plants and to calculate the consequences outside of the one place. The code presents the radiological consequences in form of a complementary accumulative distribution function (CCDF). Graphics of the one total fatal cancerous and immediate damages against the occurrence probability, for a known term source and with the meteorological data of the Laguna Verde power station in one period from 1989 to 1998 and without considering measures of protection to the population. When analyzing these results an it is observed similar behavior in every year for the specific cases of radius of 0 to 16 Km and of 0 to 70 Km. The main parameters required by the one code in the enter file is the Inventory of radioactive products present to the beginning of the accident, the atmospheric source term, the one number of liberated feathers, its heights and temperatures, the meteorological data of the site, the distribution of the border population to the same one and the soil type. It is concluded that it is necessary an additional estimation that consider population's census and current characteristics of the area for to be able to observe the consequences variation. (Author)

  2. Fifty years of studies on environmental radioactivity in Peru

    International Nuclear Information System (INIS)

    Osores, Jose M.; Gonzales, Susana; Martinez, Jorge; Lopez, Edith; Jara, Raul; Anaya, Aurelio

    2008-01-01

    In May of 1962, due to the explosions carried out by the Commission of Atomic Energy of the United States in the Christmas Island, a group of professionals of the 'Junta de Control de Energia Atomica' of Peru, created in 1957, carried out experimental evaluations of atmospheric radioactivity, obtaining acceptable results regarding those of Naval US Research Laboratory, this was the beginning of the Laboratory of Atmospheric Radioactivity that begins to operate permanently in February of 1964. In 1966, France began a program of nuclear tests in the French Polynesian, generating concern due to the meteorological conditions that could affect the peruvian population. With the support of experts and equipments on the part of the government from France, the Laboratory of Environmental Radioactivity began their activities in August of 1966. At the present time, the Laboratory of Environmental Radioactivity is located in the Nuclear Center RACSO of the 'Instituto Peruano de Energia Nuclear' and it carries out the following programs: Radiological Environmental Surveillance in the Influence Area of the Nuclear Center, Nationwide Radiological Environmental Surveillance, Marine Radiological Environmental Surveillance, Radiological Environmental Surveillance in the Peruvian Antarctic Region and Surveillance of the Radioactive Contamination of Foods. The results of the evaluations of the programs of radiological environmental surveillance, developed nationwide from 1962, show one gradual decrease of the levels of environmental radioactivity. Significant concentrations of Cs-137 and Be-7 were found in the Antarctic region, and, in the area of influence of the nuclear center RACSO, environmental discharges of I-131, Cs-137, Co-60, Cs- 134 and Te-123m were detected, however, the concentrations did not present radiological risk for the population. (author)

  3. Atmospheric concentration of 210Pb in East Asia and its contribution to Japanese islands by long-range transport

    International Nuclear Information System (INIS)

    Doi, Taeko; Sato, Shin; Sato, Jun

    2007-01-01

    Atmospheric 210 Pb is a long-lived progeny of 222 Rn generated from the earth's crust and exists as adsorbed onto the surface of aerosol particles. The distribution of atmospheric 210 Pb in East Asia reflects (1) the concentration levels in continental and maritime air masses and (2) the spatial extent of the continental air mass. This paper reviews the previously observed results on seasonal variation of 210 Pb concentration at several sites of Japan, Korea and China to evaluate the contribution of continental to Japanese atmosphere, and the specific activity of 210 Pb in the main components of aerosol samples and discusses from the view point of the Japanese islands. The authors conclude that aerosols from continental East Asia in winter contain more soil particles with low specific radioactivity of 210 Pb than the aerosols in Japan and that the natural radionuclide is extremely useful tracer for researches on meteorological phenomena and global transfer of environmental pollution. (S. Ohno)

  4. Development of computer-based function to estimate radioactive source term by coupling atmospheric model with monitoring data

    International Nuclear Information System (INIS)

    Akiko, Furuno; Hideyuki, Kitabata

    2003-01-01

    Full text: The importance of computer-based decision support systems for local and regional scale accidents has been recognized by many countries with the experiences of accidental atmospheric releases of radionuclides at Chernobyl in 1986 in the former Soviet Union. The recent increase of nuclear power plants in the Asian region also necessitates an emergency response system for Japan to predict the long-range atmospheric dispersion of radionuclides due to overseas accident. On the basis of these backgrounds, WSPEEDI (Worldwide version of System for Prediction of Environmental Emergency Dose Information) at Japan Atomic Energy Research Institute is developed to forecast long-range atmospheric dispersions of radionuclides during nuclear emergency. Although the source condition is critical parameter for accurate prediction, it is rarely that the condition can be acquired in the early stage of overseas accident. Thus, we have been developing a computer-based function to estimate radioactive source term, e.g. the release point, time and amount, as a part of WSPEEDI. This function consists of atmospheric transport simulations and statistical analysis for the prediction and monitoring of air dose rates. Atmospheric transport simulations are carried out for the matrix of possible release points in Eastern Asia and possible release times. The simulation results of air dose rates are compared with monitoring data and the best fitted release condition is defined as source term. This paper describes the source term estimation method and the application to Eastern Asia. The latest version of WSPEEDI accommodates following two models: an atmospheric meteorological model MM5 and a particle random walk model GEARN. MM5 is a non-hydrostatic meteorological model developed by the Pennsylvania State University and the National Center for Atmospheric Research (NCAR). MM5 physically calculates more than 40 meteorological parameters with high resolution in time and space based an

  5. Artificial radionuclides in the atmosphere over Lithuania

    Energy Technology Data Exchange (ETDEWEB)

    Lujaniene, G. [Institute of Physics, Nuclear and Environmental Radioactivity Research Laboratory, Savanoriu 231, LT-02300 Vilnius (Lithuania)], E-mail: lujaniene@ar.fi.lt; Aninkevicius, V. [Semiconductor Physics Institute, A. Gostauto 11, LT-01108 Vilnius (Lithuania); Lujanas, V. [Institute of Physics, Nuclear and Environmental Radioactivity Research Laboratory, Savanoriu 231, LT-02300 Vilnius (Lithuania)

    2009-02-15

    Measurements of airborne radioactive aerosol concentration were carried out on the basis of 1-3 days samples after the Chernobyl disaster and during the period of 1992-2003. Transport of 'hot' particles of different composition resulted in the high activity concentrations of {sup 137}Cs, {sup 238}Pu, {sup 239,240}Pu and {sup 241}Am in the atmosphere in Vilnius at the end of April 1986. The {sup 240}Pu/{sup 239}Pu atom ratio showed clear evidence of non-global plutonium originating from the Chernobyl accident in the atmosphere over Lithuania. The {sup 240}Pu/{sup 239}Pu atom ratio ranged from 0.14 to 0.40 in monthly samples in Vilnius in 1995-2003. An increase in activity concentration of {sup 137}Cs by a factor of 100 (up to 300 {mu}Bq/m{sup 3}) was found following forest fires in the Ukraine and Belarus. However, no transport of the Chernobyl plutonium was observed and the {sup 240}Pu/{sup 239}Pu atom ratio in samples collected during the forest fires was found to be 0.229 and 0.185, respectively. The exponential decrease in the {sup 240}Pu/{sup 239}Pu atom ratio from 0.30 to 0.19 (mean values) was observed in 1995-2003.

  6. Radioactivity. Death prinicple in nature

    International Nuclear Information System (INIS)

    Russell, W.; Russell, L.

    2006-01-01

    Walter Russell's knowledge of the two basic Principles of the material universe, concentration and radiation, strongly suggests that the radioactivity is the ''death principle'' of creation. In its natural environment, radioactive radiation is vital for the overall balance, however, when spread out across the entire world, it causes massive global warming and turns planet earth into a hot desert. Part I: What is Atomic Energy?; How Radioactivity Kills; The World Voice. Part II: The True Nature of This Mind and Motion Universe; Prelude - The Transformation of Man; We Define God; The True Nature of Electricity and Gravitation; Our Eternal Universe; The Oneness of Gravity and Magnetism; The Mind Nucleus of the Atom; The Material Nucleus of the Atom. Part III: The Bridge Between Man and God. (orig./GL)

  7. The national scheme for monitoring radioactive fallout in milk

    International Nuclear Information System (INIS)

    Green, B.M.R.

    1979-01-01

    The National Radiological Protection Board, Harwell, assumed responsibility for the national milk monitoring scheme on Jan. 1, 1979. Milk contamination provides a good guide to radioactivity in the British diet. Brief reference is made to U.K. surveys of radioactive fallout in human food prior to January 1979, and current arrangements for the sampling of milk in the U.K. are explained. The milk is analysed for 90 Sr, 137 Cs and stable calcium. Additional samples are collected to check for 131 I or other short-lived isotopes in the event of atmospheric nuclear tests or accidents involving possible releases of radioactivity. (U.K.)

  8. COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Prusa, Joseph

    2012-05-08

    This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAG's advanced dynamics core with the physics of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer- reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited.

  9. Reviews and syntheses: An empirical spatiotemporal description of the global surface–atmosphere carbon fluxes: opportunities and data limitations

    Directory of Open Access Journals (Sweden)

    J. Zscheischler

    2017-08-01

    Full Text Available Understanding the global carbon (C cycle is of crucial importance to map current and future climate dynamics relative to global environmental change. A full characterization of C cycling requires detailed information on spatiotemporal patterns of surface–atmosphere fluxes. However, relevant C cycle observations are highly variable in their coverage and reporting standards. Especially problematic is the lack of integration of the carbon dioxide (CO2 exchange of the ocean, inland freshwaters and the land surface with the atmosphere. Here we adopt a data-driven approach to synthesize a wide range of observation-based spatially explicit surface–atmosphere CO2 fluxes from 2001 to 2010, to identify the state of today's observational opportunities and data limitations. The considered fluxes include net exchange of open oceans, continental shelves, estuaries, rivers, and lakes, as well as CO2 fluxes related to net ecosystem productivity, fire emissions, loss of tropical aboveground C, harvested wood and crops, as well as fossil fuel and cement emissions. Spatially explicit CO2 fluxes are obtained through geostatistical and/or remote-sensing-based upscaling, thereby minimizing biophysical or biogeochemical assumptions encoded in process-based models. We estimate a bottom-up net C exchange (NCE between the surface (land, ocean, and coastal areas and the atmosphere. Though we provide also global estimates, the primary goal of this study is to identify key uncertainties and observational shortcomings that need to be prioritized in the expansion of in situ observatories. Uncertainties for NCE and its components are derived using resampling. In many regions, our NCE estimates agree well with independent estimates from other sources such as process-based models and atmospheric inversions. This holds for Europe (mean ± 1 SD: 0.8 ± 0.1 PgC yr−1, positive numbers are sources to the atmosphere, Russia (0.1 ± 0.4 PgC yr−1, East Asia

  10. Reviews and syntheses: An empirical spatiotemporal description of the global surface-atmosphere carbon fluxes: opportunities and data limitations

    Science.gov (United States)

    Zscheischler, Jakob; Mahecha, Miguel D.; Avitabile, Valerio; Calle, Leonardo; Carvalhais, Nuno; Ciais, Philippe; Gans, Fabian; Gruber, Nicolas; Hartmann, Jens; Herold, Martin; Ichii, Kazuhito; Jung, Martin; Landschützer, Peter; Laruelle, Goulven G.; Lauerwald, Ronny; Papale, Dario; Peylin, Philippe; Poulter, Benjamin; Ray, Deepak; Regnier, Pierre; Rödenbeck, Christian; Roman-Cuesta, Rosa M.; Schwalm, Christopher; Tramontana, Gianluca; Tyukavina, Alexandra; Valentini, Riccardo; van der Werf, Guido; West, Tristram O.; Wolf, Julie E.; Reichstein, Markus

    2017-08-01

    Understanding the global carbon (C) cycle is of crucial importance to map current and future climate dynamics relative to global environmental change. A full characterization of C cycling requires detailed information on spatiotemporal patterns of surface-atmosphere fluxes. However, relevant C cycle observations are highly variable in their coverage and reporting standards. Especially problematic is the lack of integration of the carbon dioxide (CO2) exchange of the ocean, inland freshwaters and the land surface with the atmosphere. Here we adopt a data-driven approach to synthesize a wide range of observation-based spatially explicit surface-atmosphere CO2 fluxes from 2001 to 2010, to identify the state of today's observational opportunities and data limitations. The considered fluxes include net exchange of open oceans, continental shelves, estuaries, rivers, and lakes, as well as CO2 fluxes related to net ecosystem productivity, fire emissions, loss of tropical aboveground C, harvested wood and crops, as well as fossil fuel and cement emissions. Spatially explicit CO2 fluxes are obtained through geostatistical and/or remote-sensing-based upscaling, thereby minimizing biophysical or biogeochemical assumptions encoded in process-based models. We estimate a bottom-up net C exchange (NCE) between the surface (land, ocean, and coastal areas) and the atmosphere. Though we provide also global estimates, the primary goal of this study is to identify key uncertainties and observational shortcomings that need to be prioritized in the expansion of in situ observatories. Uncertainties for NCE and its components are derived using resampling. In many regions, our NCE estimates agree well with independent estimates from other sources such as process-based models and atmospheric inversions. This holds for Europe (mean ± 1 SD: 0.8 ± 0.1 PgC yr-1, positive numbers are sources to the atmosphere), Russia (0.1 ± 0.4 PgC yr-1), East Asia (1.6 ± 0.3 PgC yr-1), South Asia (0.3 ± 0

  11. ATMOSPHERIC DYNAMICS OF TERRESTRIAL EXOPLANETS OVER A WIDE RANGE OF ORBITAL AND ATMOSPHERIC PARAMETERS

    Energy Technology Data Exchange (ETDEWEB)

    Kaspi, Yohai [Department of Earth and Planetary Sciences, Weizmann Institute of Science, 234 Herzl st., 76100, Rehovot (Israel); Showman, Adam P., E-mail: yohai.kaspi@weizmann.ac.il [Department of Planetary Sciences and Lunar and Planetary Laboratory, The University of Arizona, 1629 University Blvd., Tucson, AZ 85721 (United States)

    2015-05-01

    The recent discoveries of terrestrial exoplanets and super-Earths extending over a broad range of orbital and physical parameters suggest that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super-Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone—including transitions to Snowball-like states and runaway-greenhouse feedbacks—depend on the equator-to-pole temperature differences, patterns of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, stellar flux, atmospheric mass, surface gravity, optical thickness, and planetary radius affect the atmospheric circulation and temperature distribution on such planets. Our simulations demonstrate that equator-to-pole temperature differences, meridional heat transport rates, structure and strength of the winds, and the hydrological cycle vary strongly with these parameters, implying that the sensitivity of the planet to global climate feedbacks will depend significantly on the atmospheric circulation. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley and Ferrel cells, and latitudinal temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global climate.

  12. ATMOSPHERIC DYNAMICS OF TERRESTRIAL EXOPLANETS OVER A WIDE RANGE OF ORBITAL AND ATMOSPHERIC PARAMETERS

    International Nuclear Information System (INIS)

    Kaspi, Yohai; Showman, Adam P.

    2015-01-01

    The recent discoveries of terrestrial exoplanets and super-Earths extending over a broad range of orbital and physical parameters suggest that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super-Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone—including transitions to Snowball-like states and runaway-greenhouse feedbacks—depend on the equator-to-pole temperature differences, patterns of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, stellar flux, atmospheric mass, surface gravity, optical thickness, and planetary radius affect the atmospheric circulation and temperature distribution on such planets. Our simulations demonstrate that equator-to-pole temperature differences, meridional heat transport rates, structure and strength of the winds, and the hydrological cycle vary strongly with these parameters, implying that the sensitivity of the planet to global climate feedbacks will depend significantly on the atmospheric circulation. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley and Ferrel cells, and latitudinal temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global climate

  13. Studies on the radioactive contamination due to nuclear detonations II. Preliminary findings on the radioactive fallout due to nuclear detonations

    Energy Technology Data Exchange (ETDEWEB)

    Nishiwaki, Yasushi [Nuclear Reactor Laboratory, Tokyo Institute of Technology, Tokyo (Japan); Nuclear Reactor Laboratoroy, Kinki University, Fuse City, Osaka Precture (Japan)

    1961-11-25

    Since we have detected a considerable amount of artificial radioactivity in the rain in spring 1954, it has become one of the most important items, from the health physics point of view, to continue measurements of radioactivity in the rain and in the atmosphere. To watch out the radioactive contamination of our environment due to repeated nuclear weapons testings in other countries was also considered to be important from the nuclear engineering point of view, in the sense that the permissible allowances of the radioactivity for the peaceful uses of atomic energy might be lowered if the degree of radioactive contamination due to nuclear testings should continue to increase gradually and indefinitely. If the permissible level were lowered, the cost for radiation protection may be expected to increase at the peaceful uses of atomic energy and should the radioactive contamination increase seriously in the future, it was anticipated that we may have to face a very difficult situation in designing the atomic energy facilities for peaceful purposes in our country. From these points of views, we have been continuing measurements of the radioactivity in the rain in Osaka, Japan since the spring of 1954. Some of the preliminary findings are introduced in this paper.

  14. Studies on the radioactive contamination due to nuclear detonations II. Preliminary findings on the radioactive fallout due to nuclear detonations

    International Nuclear Information System (INIS)

    Nishiwaki, Yasushi

    1961-01-01

    Since we have detected a considerable amount of artificial radioactivity in the rain in spring 1954, it has become one of the most important items, from the health physics point of view, to continue measurements of radioactivity in the rain and in the atmosphere. To watch out the radioactive contamination of our environment due to repeated nuclear weapons testings in other countries was also considered to be important from the nuclear engineering point of view, in the sense that the permissible allowances of the radioactivity for the peaceful uses of atomic energy might be lowered if the degree of radioactive contamination due to nuclear testings should continue to increase gradually and indefinitely. If the permissible level were lowered, the cost for radiation protection may be expected to increase at the peaceful uses of atomic energy and should the radioactive contamination increase seriously in the future, it was anticipated that we may have to face a very difficult situation in designing the atomic energy facilities for peaceful purposes in our country. From these points of views, we have been continuing measurements of the radioactivity in the rain in Osaka, Japan since the spring of 1954. Some of the preliminary findings are introduced in this paper

  15. Implementation of meso-scale radioactive dispersion model for GPU

    Energy Technology Data Exchange (ETDEWEB)

    Sunarko [National Nuclear Energy Agency of Indonesia (BATAN), Jakarta (Indonesia). Nuclear Energy Assessment Center; Suud, Zaki [Bandung Institute of Technology (ITB), Bandung (Indonesia). Physics Dept.

    2017-05-15

    Lagrangian Particle Dispersion Method (LPDM) is applied to model atmospheric dispersion of radioactive material in a meso-scale of a few tens of kilometers for site study purpose. Empirical relationships are used to determine the dispersion coefficient for various atmospheric stabilities. Diagnostic 3-D wind-field is solved based on data from one meteorological station using mass-conservation principle. Particles representing radioactive pollutant are dispersed in the wind-field as a point source. Time-integrated air concentration is calculated using kernel density estimator (KDE) in the lowest layer of the atmosphere. Parallel code is developed for GTX-660Ti GPU with a total of 1 344 scalar processors using CUDA. A test of 1-hour release discovers that linear speedup is achieved starting at 28 800 particles-per-hour (pph) up to about 20 x at 14 4000 pph. Another test simulating 6-hour release with 36 000 pph resulted in a speedup of about 60 x. Statistical analysis reveals that resulting grid doses are nearly identical in both CPU and GPU versions of the code.

  16. Security of highly radioactive sources in Nepal

    International Nuclear Information System (INIS)

    Shrestha, Kamal K.

    2010-01-01

    Subsequent to 9/11, concerned countries and UN agencies have taken especial interest in the security of highly radioactive sources throughout the world. The IAEA Nuclear Security Plan (2006-2009) consequently made as a result of UN Security Council Resolution 1540 is binding to all States. The Global Threat Reduction Initiative (GTRI) of the US and the Global Threat Reduction Programme (GTRP) of UK have assisted the four hospitals in Nepal having more than 1,000 Curies of radioactivity in their Cobalt-60 sources used for teletherapy. The physical upgrade of the security of the nuclear materials has also been launched in Nepal for prevention of theft with malicious intention or threats. In this presentation, the radioisotopes in Nepal that comes under different categories according to TECDOC-1355 of IAEA will be described. Problems and issues regarding the security and protection of radioactive sources at hospitals, academic and research institutions that could be prevalent in many developing counties too will be discussed by taking a case study of one of the cancer hospitals in Kathmandu valley. (author)

  17. A New Appraisal of Northern Peatlands and Global Atmospheric Methane Over the Holocene

    Science.gov (United States)

    MacDonald, G. M.; Holmquist, J. R.; Kremenetski, K.; Loisel, J.

    2015-12-01

    Use of large databases of peat cores to examine linkages between northern peatlands and atmospheric CH4 over the Holocene has been prone to uncertainties regarding 1. comparability of radiocarbon techniques and material dated, 2. appropriate summed probability distributions, 3. spatial representativeness of the sites, particularly in capturing sites south of the subarctic, 4. potential impacts of local lateral peatland expansion versus continental-scale peatland initiation, particularly in the late Holocene, and 5. impacts of changes in the proportion of high methane-producing fens vs Sphagnum bogs. We present a comparison of radiocarbon measurements from conventional counts, atomic mass spectrometry and differing peat materials to demonstrate a general compatibility of the various types of dates. We compare and apply several summed probability distribution methods to minimize any statistical bias in our analysis. We then present our analysis of a new data set of 7571 peatland cores from 4420 sites that extend into the temperate zone. Of these, 3732 cores inform on lateral expansion and 329 dates constrain the timing of fen-bog transition. Based on these data in original and gridded form we show that widespread peat initiation commenced at 16 kcal yr BP and reached a maximum rate at 11-8 kcal yr BP. Most sites began as fens, and peak transition to bogs occurred between 5 and 3 kcal yr BP, with a 1000 year lag between Eurasia and North America. There is no global late Holocene increase in lateral expansion. Based on modeled northern peatland area and ratio of fen/bog sites, CH4 production from northern peatlands increased rapidly from 11 to 9 cal yr BP, followed by slower increase until reaching a maximum at 5 kcal yr BP at 25 Tg per yr. From 4 kcal yr BP to Present, bogs become a dominant feature in the northern peatland landscape and CH4 production decreased to reach modern-day levels at about 20 Tg per yr. Northern peatlands have been a key infleunce on global

  18. Radioactive airborne effluents and the environmental impact assessment of CAP1400 nuclear power plant under normal operation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qiong; Guo, RuiPing; Zhang, ChunMing; Chen, XiaoQiu; Wang, Bo, E-mail: wangbo@chinansc.cn

    2014-12-15

    Highlights: • Typical radionuclides dispersion from CAP1400 under normal operation was simulated. • Modified Gaussian model considered radioactive decay, dry and wet deposition and so on. • The radioactive impact pathways on the public through atmosphere were compared. • The maximum individual effective dose was lower than the public irradiation limit. - Abstract: China Advanced Passive nuclear power plant with installed capacity reaching to 1400 MW (CAP1400) is independently designed as the China's state-of-the-art third generation nuclear power brand based on AP1000 technology digestion and absorption. The concentration of typical radionuclides dispersed from CAP1400 under normal operation was calculated with modified Gaussian model, considering mixed layer height, dry deposition, wet deposition, radioactive decay and so on. The atmospheric dispersion factors, ground deposition rate, individual dose and public dose were also investigated to estimate the radioactive effects of CAP1400 under normal operation on surrounding environment and human beings. The radioactive impact pathways on the public through atmosphere, such as immersion irradiation in the smoke plume, internal irradiation from ingestion and inhalation and external irradiation from surface deposition were briefly introduced with focus on the comparison of the maximum individual effective dose to different group from atmospheric dispersion. All computation results show that the maximum individual irradiation dose happened to children with total effective irradiation dose of 4.52E−03 mSv/y, which was lower than the public irradiation limit of 0.25 mSv/y.

  19. Radioactive airborne effluents and the environmental impact assessment of CAP1400 nuclear power plant under normal operation

    International Nuclear Information System (INIS)

    Zhang, Qiong; Guo, RuiPing; Zhang, ChunMing; Chen, XiaoQiu; Wang, Bo

    2014-01-01

    Highlights: • Typical radionuclides dispersion from CAP1400 under normal operation was simulated. • Modified Gaussian model considered radioactive decay, dry and wet deposition and so on. • The radioactive impact pathways on the public through atmosphere were compared. • The maximum individual effective dose was lower than the public irradiation limit. - Abstract: China Advanced Passive nuclear power plant with installed capacity reaching to 1400 MW (CAP1400) is independently designed as the China's state-of-the-art third generation nuclear power brand based on AP1000 technology digestion and absorption. The concentration of typical radionuclides dispersed from CAP1400 under normal operation was calculated with modified Gaussian model, considering mixed layer height, dry deposition, wet deposition, radioactive decay and so on. The atmospheric dispersion factors, ground deposition rate, individual dose and public dose were also investigated to estimate the radioactive effects of CAP1400 under normal operation on surrounding environment and human beings. The radioactive impact pathways on the public through atmosphere, such as immersion irradiation in the smoke plume, internal irradiation from ingestion and inhalation and external irradiation from surface deposition were briefly introduced with focus on the comparison of the maximum individual effective dose to different group from atmospheric dispersion. All computation results show that the maximum individual irradiation dose happened to children with total effective irradiation dose of 4.52E−03 mSv/y, which was lower than the public irradiation limit of 0.25 mSv/y

  20. The atmospheric electric global circuit. [thunderstorm activity

    Science.gov (United States)

    Kasemir, H. W.

    1979-01-01

    The hypothesis that world thunderstorm activity represents the generator for the atmospheric electric current flow in the earth atmosphere between ground and the ionosphere is based on a close correlation between the magnitude and the diurnal variation of the supply current (thunderstorm generator current) and the load current (fair weather air-earth current density integrated over the earth surface). The advantages of using lightning survey satellites to furnish a base for accepting or rejecting the thunderstorm generator hypothesis are discussed.

  1. The Global Monsoon as Seen through the Divergent Atmospheric Circulation.

    Science.gov (United States)

    Trenberth, Kevin E.; Stepaniak, David P.; Caron, Julie M.

    2000-11-01

    A comprehensive description is given of the global monsoon as seen through the large-scale overturning in the atmosphere that changes with the seasons, and it provides a basis for delimiting the monsoon regions of the world. The analysis focuses on the mean annual cycle of the divergent winds and associated vertical motions, as given by the monthly mean fields for 1979-93 reanalyses from the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) and European Centre for Medium-Range Weather Forecasts (ECMWF), which are able to reproduce the dominant modes. A complex empirical orthogonal function analysis of the divergent circulation brings out two dominant modes with essentially the same vertical structures in all months of the year. The first mode, which depicts the global monsoon, has a simple vertical structure with a maximum in vertical motion at about 400 mb, divergence in the upper troposphere that is strongest at 150 mb and decays to zero amplitude above 70 mb, and convergence in the lower troposphere with a maximum at 925 mb (ECMWF) or 850 mb (NCEP). However, this mode has a rich three-dimensional spatial structure that evolves with the seasons. It accounts for 60% of the annual cycle variance of the divergent mass circulation and dominates the Hadley circulation as well as three overturning transverse cells. These include the Pacific Walker circulation; an Americas-Atlantic Walker circulation, both of which comprise rising motion in the west and sinking in the east; and a transverse cell over Asia, the Middle East, North Africa, and the Indian Ocean that has rising motion in the east and sinking toward the west. These exist year-round but migrate and evolve considerably with the seasons and have about a third to half of the mass flux of the peak Hadley cell. The annual cycle of the two Hadley cells reveals peak strength in early February and early August in both reanalyses.A second monsoon mode, which accounts for

  2. Predicting Earth orientation changes from global forecasts of atmosphere-hydrosphere dynamics

    Science.gov (United States)

    Dobslaw, Henryk; Dill, Robert

    2018-02-01

    Effective Angular Momentum (EAM) functions obtained from global numerical simulations of atmosphere, ocean, and land surface dynamics are routinely processed by the Earth System Modelling group at Deutsches GeoForschungsZentrum. EAM functions are available since January 1976 with up to 3 h temporal resolution. Additionally, 6 days-long EAM forecasts are routinely published every day. Based on hindcast experiments with 305 individual predictions distributed over 15 months, we demonstrate that EAM forecasts improve the prediction accuracy of the Earth Orientation Parameters at all forecast horizons between 1 and 6 days. At day 6, prediction accuracy improves down to 1.76 mas for the terrestrial pole offset, and 2.6 mas for Δ UT1, which correspond to an accuracy increase of about 41% over predictions published in Bulletin A by the International Earth Rotation and Reference System Service.

  3. Survey monitoring of environmental radioactivity in Gangneung area

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hwa; An, Mi Jung [Gangnung Regional Radiation Monitoring Station, Gangneung (Korea, Republic of)

    2003-12-15

    The objectives of the project are to get a systematic data for the distribution of environmental radioactivity levels in Gangnung provinces, and use them as a baseline data for the health of the peoples. To monitor the environmental radiation/radioactivity, gross beta activities and gamma exposure rate in the airborne-dust, fallout, precipitation and tap water were measured in Gangnung province during the period of January 1 - December 31, 2003. Waters from drinking water reservoirs, agricultural and marine products were sampled and measured by the HPGe(High Purity Ge)detector for the analysis from some selected areas to make sure of the effect of the fallout due to the atmospheric weapons test. The radioactivity in Kangnung was all about the past data.

  4. Survey monitoring of environmental radioactivity in Gangneung area

    Energy Technology Data Exchange (ETDEWEB)

    An, Dong Wan; An, Mi Jeong [Gangnung Regional Radiation Monitoring Station, Gangneung (Korea, Republic of)

    2001-12-15

    The objectives of the project are to get a systematic data for the distribution of environmental radioactivity levels in Gangnung provinces, and use them as a baseline data for the health of the peoples. To monitor the environmental radiation/radioactivity, gross beta activities and gamma exposure rate in the airborne-dust, fallout, precipitation and tap water were measured in Kangnung province during the period of January 1- December 31, 2001. Waters from drinking water reservoirs, agricultural and marine products were sampled and measured by the HPGe(High Purity Ge)detector for the analysis from some selected areas to make sure of the effect of the fallout due to the atmospheric weapons test. The radioactivity in Kangnung was all about the past data.

  5. Survey monitoring of environmental radioactivity in Gangneung area

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hwa; An, Mi Jung [Gangnung Regional Radiation Monitoring Station, Gangneung (Korea, Republic of)

    2002-12-15

    The objectives of the project are to get a systematic data for the distribution of environmental radioactivity levels in Gangnung provinces, and use them as a baseline data for the health of the peoples. To monitor the environmental radiation/radioactivity, gross beta activities and gamma exposure rate in the airborne-dust, fallout, precipitation and tap water were measured in Kangnung province during the period of January 1- December 31, 2002. Waters from drinking water reservoirs, agricultural and marine products were sampled and measured by the HPGe(High Purity Ge)detector for the analysis from some selected areas to make sure of the effect of the fallout due to the atmospheric weapons test. The radioactivity in Kangnung was all about the past data.

  6. The state of greenhouse gases in the atmosphere using global observations through 2013

    Science.gov (United States)

    Tarasova, Oksana; Koide, Hiroshi; Dlugokencky, Ed; Montzka, Stephen A.; Keeling, Ralph; Tanhua, Toste; Lorenzoni, Laura

    2015-04-01

    We present results from the tenth annual Greenhouse Gas Bulletin (http://www.wmo.int/pages/prog/arep/gaw/ ghg/GHGbulletin.html) of the World Meteorological Organization (WMO). The results are based on research and observations performed by laboratories contributing to the WMO Global Atmosphere Watch (GAW) Programme (www.wmo.int/gaw). The Bulletin presents results of global analyses of observational data collected according to GAW recommended practices and submitted to the World Data Center for Greenhouse Gases (WDCGG), and for the first time, it includes a summary of ocean acidification. Bulletins are prepared by the WMO/GAW Scientific Advisory Group for Greenhouse Gases (http://www.wmo.int/pages/prog/arep/gaw/ScientificAdvisoryGroups.html) in collaboration with WDCGG. The summary of ocean acidification and trends in ocean pCO2 was jointly produced by the International Ocean Carbon Coordination Project (IOCCP) of the Intergovernmental Oceanographic Commission of UNESCO (IOC-UNESCO), the Scientific Committee on Oceanic Research (SCOR), and the Ocean Acidification International Coordination Centre (OA-ICC) of the International Atomic Energy Agency (IAEA). The tenth Bulletin included a special edition published prior to the United Nations Climate Summit in September 2014. The scope of this edition was to demonstrate the level of emission reduction necessary to stabilize radiative forcing by long-lived greenhouse gases. It shows in particular that a reduction in radiative forcing from its current level (2.92 W m-2 in 2013) requires significant reductions in anthropogenic emissions of all major greenhouse gases. Observations used for global analysis are collected at more than 100 marine and terrestrial sites worldwide for CO2 and CH4 and at a smaller number of sites for other greenhouse gases. Globally averaged dry-air mole fractions of carbon dioxide, methane and nitrous oxide derived from this network reached new highs in 2013, with CO2 at 396.0 ± 0.1 ppm, CH4 at

  7. gamma. -spectra of radioactive fallout from the atmosphere. [In German

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, W; Sommermeyer, K

    1957-01-01

    Foils used for collecting dust which were exposed to radioactive fallout for 8 days, and grass ashes exhibit the same ..gamma..-spectra. The peaks were characteristic of the following isotopes, half-lives in brackets: /sup 140/Ba (13 days) + /sup 140/La; /sup 95/Zr (65 days) + /sup 95/Nb; and /sup 103/Ru (40 days). Relative peak heights indicated age of fallout.

  8. Whole Atmosphere Simulation of Anthropogenic Climate Change

    Science.gov (United States)

    Solomon, Stanley C.; Liu, Han-Li; Marsh, Daniel R.; McInerney, Joseph M.; Qian, Liying; Vitt, Francis M.

    2018-02-01

    We simulated anthropogenic global change through the entire atmosphere, including the thermosphere and ionosphere, using the Whole Atmosphere Community Climate Model-eXtended. The basic result was that even as the lower atmosphere gradually warms, the upper atmosphere rapidly cools. The simulations employed constant low solar activity conditions, to remove the effects of variable solar and geomagnetic activity. Global mean annual mean temperature increased at a rate of +0.2 K/decade at the surface and +0.4 K/decade in the upper troposphere but decreased by about -1 K/decade in the stratosphere-mesosphere and -2.8 K/decade in the thermosphere. Near the mesopause, temperature decreases were small compared to the interannual variation, so trends in that region are uncertain. Results were similar to previous modeling confined to specific atmospheric levels and compared favorably with available measurements. These simulations demonstrate the ability of a single comprehensive numerical model to characterize global change throughout the atmosphere.

  9. Evaluation of the reactive nitrogen budget of the remote atmosphere in global models using airborne measurements

    Science.gov (United States)

    Murray, L. T.; Strode, S. A.; Fiore, A. M.; Lamarque, J. F.; Prather, M. J.; Thompson, C. R.; Peischl, J.; Ryerson, T. B.; Allen, H.; Blake, D. R.; Crounse, J. D.; Brune, W. H.; Elkins, J. W.; Hall, S. R.; Hintsa, E. J.; Huey, L. G.; Kim, M. J.; Moore, F. L.; Ullmann, K.; Wennberg, P. O.; Wofsy, S. C.

    2017-12-01

    Nitrogen oxides (NOx ≡ NO + NO2) in the background atmosphere are critical precursors for the formation of tropospheric ozone and OH, thereby exerting strong influence on surface air quality, reactive greenhouse gases, and ecosystem health. The impact of NOx on atmospheric composition and climate is sensitive to the relative partitioning of reactive nitrogen between NOx and longer-lived reservoir species of the total reactive nitrogen family (NOy) such as HNO3, HNO4, PAN and organic nitrates (RONO2). Unfortunately, global chemistry-climate models (CCMs) and chemistry-transport models (CTMs) have historically disagreed in their reactive nitrogen budgets outside of polluted continental regions, and we have lacked in situ observations with which to evaluate them. Here, we compare and evaluate the NOy budget of six global models (GEOS-Chem CTM, GFDL AM3 CCM, GISS E2.1 CCM, GMI CTM, NCAR CAM CCM, and UCI CTM) using new observations of total reactive nitrogen and its member species from the NASA Atmospheric Tomography (ATom) mission. ATom has now completed two of its four planned deployments sampling the remote Pacific and Atlantic basins of both hemispheres with a comprehensive suite of measurements for constraining reactive photochemistry. All six models have simulated conditions climatologically similar to the deployments. The GMI and GEOS-Chem CTMs have in addition performed hindcast simulations using the MERRA-2 reanalysis, and have been sampled along the flight tracks. We evaluate the performance of the models relative to the observations, and identify factors contributing to their disparate behavior using known differences in model oxidation mechanisms, heterogeneous loss pathways, lightning and surface emissions, and physical loss processes.

  10. Nuclear risk from atmospheric dispersion in Northern Europe - Summary Report

    DEFF Research Database (Denmark)

    Lauritzen, Bent

    The objective of the NordRisk II project has been to derive practical means for assessing the risks from long-range atmospheric dispersion of radioac-tive materials. An atlas over different atmospheric dispersion and deposi-tion scenarios has been developed using historical numerical weather pre......-diction (NWP) model data. The NWP model data covers three years span-ning the climate variability associated with the North Atlantic Oscillation, and the atlas considers radioactive releases from 16 release sites in and near the Nordic countries. A statistical analysis of the long-range disper......-sion and deposition patterns is undertaken to quantify the mean dispersion and deposition as well as the variability. Preliminary analyses show that the large-scale atmospheric dispersion and deposition is near-isotropic, irrespective of the release site and detailed climatology, and allows for a simple...

  11. Code of practice for the disposal of radioactive waste by the user

    International Nuclear Information System (INIS)

    1985-01-01

    The purpose of the Code is to recommend practices for the Safe disposal of small quantities of radioactive waste so that the exposure of persons to radiation is as low as reasonably achievable and below prescribed limits. The areas covered are: radiological hazard assessments; waste forms; responsibilities of statutory authorities, users and tip and incinerator operators; transport of radioactive waste; mechanisms of disposal, including municipal tips, incineration, sewerage, disposal to the atmosphere and interim storage. Guidelines are given for the packaging and transport of radioactive waste

  12. Development and evaluation of global radon transport model

    International Nuclear Information System (INIS)

    Kojima, H.; Nagano, K.

    2003-01-01

    The radioactive noble gas Radon-222 ( 222 Rn) is chemically inert and is removed only by radioactive decay (T1/2=3.8 d). Its primary source is uniformly distributed over the continents and the ocean represents a secondary source of atmospheric 222 Rn. The strong contrast in source strength between continents and the ocean makes 222 Rn an ideal marker of continental air masses. Because of its simple properties, the temporal and spatial distribution of 222 Rn in the troposphere is straightforward to simulate by means of atmospheric transport models. The simulation provides an intuitive visualization of the complex transport characteristics and more definite proof of phenomenon. In this paper, we present the results of an exploratory study, in which we investigated the performance of a three-dimensional transport model of the global troposphere in simulating the long range transport of 222 Rn. The transport equation has been solved by a numerical procedure based on some boundary conditions. The model structure which we have originally developed, has a horizontal resolution of 2.5deg in latitude and 2.5deg in longitude, and 10 layers in the vertical dimension. The basic computational time step used in the model runs was set to 5 min. The simulations described in this article were performed by means of a transport model driven by global objective analytical data of a time resolution of 6 h, supplied by the Japan Meteorological Agency. We focus on the west of North Pacific Ocean, were the influence of air pollution from an Asian Continent and the Japan Islands was received. For simulation experiments, radon data from some shipboard measurements on the North Pacific Ocean have been used in the present study. Figure shows time series of model prediction with different latitude distributions of radon exhalation rate and measured radon data. We find that our model consistently produce the observation. We will discuss the characteristics of the temporal and special

  13. Atmospheric dispersion characteristics of radioactive materials according to the local weather and emission conditions

    Energy Technology Data Exchange (ETDEWEB)

    An, Hye Yeon; Kang, Yoon Hee; Kim, Yoo Keun [Pusan National University, Busan (Korea, Republic of); Song, Sang Keun [Jeju National University, Jeju (Korea, Republic of)

    2016-12-15

    This study evaluated the atmospheric dispersion of radioactive material according to local weather conditions and emission conditions. Local weather conditions were defined as 8 patterns that frequently occur around the Kori Nuclear Power Plant and emission conditions were defined as 6 patterns from a combination of emission rates and the total number of particles of the {sup 137}Cs, using the WRF/HYSPLIT modeling system. The highest mean concentration of {sup 137}Cs occurred at 0900 LST under the ME4{sub 1} (main wind direction: SSW, daily average wind speed: 2.8 ms{sup -1}), with a wide region of its high concentration due to the continuous wind changes between 0000 and 0900 LST; under the ME3 (NE, 4.1 ms{sup -1}), the highest mean concentration of {sup 137}Cs occurred at 1500 and 2100 LST with a narrow dispersion along a strong northeasterly wind. In the case of ME4{sub 4} (S, 2.7 ms{sup -1}), the highest mean concentration of {sup 137}Cs occurred at 0300 LST because {sup 137}Cs stayed around the KNPP under low wind speed and low boundary layer height. As for the emission conditions, EM1{sub 3} and EM2{sub 3} that had the maximum total number of particles showed the widest dispersion of {sup 137}Cs, while its highest mean concentration was estimated under the EM1{sub 1} considering the relatively narrow dispersion and high emission rate. This study showed that even though an area may be located within the same radius around the Kori Nuclear Power Plant, the distribution and levels of {sup 137}Cs concentration vary according to the change in time and space of weather conditions (the altitude of the atmospheric boundary layer, the horizontal and vertical distribution of the local winds, and the precipitation levels), the topography of the regions where {sup 137}Cs is dispersed, the emission rate of {sup 137}Cs, and the number of emitted particles.

  14. Current and perspective on the radioactive waste management at territory of the Kola Peninsula

    International Nuclear Information System (INIS)

    Amazova, Ludmila

    1999-01-01

    According to this presentation, 25 thousand cubic metres of solid radioactive waste of one million Ci activity has accumulated in the Murmansk Region because of previous civilian and military activities and more will come as a result of the coming decommissioning of nuclear submarines and nuclear power plants. Only a part of the solid radioactive waste is reprocessed at the Kola nuclear power plant and at the repairing and technological enterprise Atomflot. Compaction and incineration are used to decrease the volume of waste. An incineration facility at Atomflot fails to satisfy new requirements and even releases more radioactivity to the atmosphere than what used to come from the Kola nuclear power plant operation. Solid radioactive waste is stored non-reprocessed Spetscombinat special plant Radon. This plant collects and stores radioactive waste produced by the civil industry and at the bases of the Northern Fleet. It is emphasised, however, that during the observation period there were no cases of dangerous increase in radioactivity in the atmosphere. Soil and vegetation contamination by long-lived radionuclides was at the background level. The establishment of a common reprocessing and regional storage facility for long-term storage has been proposed by the Ministry for Atomic Energy

  15. Lightning, atmospheric electricity and climate change

    International Nuclear Information System (INIS)

    Price, C.

    1993-10-01

    Temperature records indicate that a global warming of 0.5-0.7 degrees C has occurred over the past century (Hansen and Lebedeff, 1987). Whether this trend is a result of increased trace gas concentrations in the atmosphere, or simply a result of natural variability; is still not known. These temperature trends are derived from thousands of observations worldwide. However, these observations are concentrated largely over continental areas, and then mainly in the northern hemisphere's populated regions. This northern hemisphere continental bias results in large uncertainties in estimates of global temperature trends. Due to the increasing evidence that the present buildup of greenhouse gases in the atmosphere may result in an additional global warming of 1-5 degrees C by the year 2050 (IPCC, 1990), it is increasingly important to find afternative methods to monitor fluctuations in global surface temperatures. As shown by two recent studies (Williams, 1992; Price, 1993), the global atmospheric electric circuit may provide a promising afternative for monitoring future climate change

  16. Evaluation of the atmospheric stability and it influence in the radiological environmental impact of the treatment plant and radioactive waste storage (PTDR); Evaluacion de la estabilidad atmosferica y su influencia en el impacto radiologico ambiental de la planta de tratamiento y almacenamiento de desechos radiactivos (PTDR)

    Energy Technology Data Exchange (ETDEWEB)

    Ramos V, E.O.; Cornejo D, N. [CPHR, Calle 20 No. 4113 e/41 y 47 Playa C.P. 11300, Ciudad Habana (Cuba)]. e-mail: odalys@cphr.edu.cu

    2006-07-01

    It is well-known that the meteorological variables as the atmospheric stability, influence in the atmospheric dispersion of radioactive pollutants, for that as regards radiological safety, it constitutes a demand the evaluation of their impact in the process before mentioned. The present work exposes the results of the study of the radiological impact of our PTDR that it allowed to know the influence of this meteorological parameter in the atmospheric dispersion of radioactive pollutants in its location. To such effects they were processed by means of the methodology of Pasquill - Gifford, data of time zone observations of this meteorological variable obtained in the proximities of the installation, being modeled the worst conditions in atmospheric liberation of their radionuclides inventory, valuing stops the 2 critical considered population groups the doses received by inhalation of polluted air and ingestion of water and polluted products, as well as, for external irradiation from the radioactive cloud and the floor. The obtained annual effective doses due to the modeling situation reach until a mSv, except for the Ra-226 that are lightly superior, implying a risk radiological acceptable chord to the international standard. To the above-mentioned a reduced probability of occurrence of events initiators of the evaluated accidental sequence is added. (Author)

  17. Oxidation of elemental mercury in the atmosphere; Constraints imposed by global scale modelling

    Energy Technology Data Exchange (ETDEWEB)

    Bergan, Torbjoern; Rodhe, Henning [Stockholm Univ. (Sweden). Dept. of Meteorology

    2000-05-01

    Based on the global mercury model published by Bergan et al. (1999), we present here further results from simulations where the central theme has been to evaluate the role of ozone and the hydroxyl radical as possible gas phase oxidants for the oxidation of elemental mercury in the atmosphere. The magnitude of natural and man-made mercury emissions are taken from recent literature estimates and the flux from land areas is assumed to vary by season. We consider only two mercury reservoirs, elemental mercury, Hg{sup 0}, and the more soluble divalent form, Hgll. Wet and dry deposition of Hgll is explicitly treated. Applying monthly mean fields of ozone for the oxidation of gas phase Hg{sup 0} and using the reaction rate by Hall (1995) yields a global transformation of Hg{sup 0} to Hgll which is too slow to keep the simulated concentration of Hg{sup 0} near observed values. This shows that there are additional important removal processes for Hg{sup 0} or that the reaction rate proposed by Hall (1995) is too slow. A simulation in which the oxidation rate was artificially increased, so that the global turn-over time of Hg{sup 0} was one year and the simulated average concentration of Hg{sup 0} was realistic, produced latitudinal and seasonal variations in Hg{sup 0} that did not support the hypothesis that gas phase reaction with O{sub 3} is the major oxidation process for Hg{sup 0}. Recent studies indicate that OH may be an important gas phase oxidant for Hg{sup 0}. Using OH as the oxidant and applying the preliminary oxidation rate by Sommar et al. (1999) gave an unrealistically large removal of Hg{sup 0} from the atmosphere. From calculations using a slower reaction rate, corresponding to a turn-over time of Hg{sup 0} of one year, we calculated concentrations of both Hg{sup 0} in surface air and Hgll in precipitation which correspond, both in magnitude and temporal variation, to seasonal observations in Europe and North America. This result supports the suggestion that

  18. The natural radioactivity in 10 episodes

    International Nuclear Information System (INIS)

    Bottollier-Depois, J.F.; Charmasson, S.; Foulquier, L.; Germain, P.; Klein, D.; Levrard, J.; Livolsi, P.; Lochard, J.; Lombard, J.; Masson, M.; Maubert, H.; Metivier, H.; Rannou, A.; Tort, V.

    2011-01-01

    Illustrated by drawings, strip cartoons, and graphs, this publication presents, describes and gives assessments of the different environments where natural radioactivity is present: in soils where many radionuclides are present, in water (notably in river reappearances), in the air (radon, notably in buildings), in the food chain (mainly potassium 40), in sea water and therefore in fishes and shells (potassium 40 and rubidium 87), in the interstellar space (cosmic rays), in cosmic rays in relationship with the Earth magnetic field, in the atmosphere because of cosmic rays (notably at high altitudes), in all kind of things (radioactivity is then used for dating purposes, i.e. carbon dating), and in the human body

  19. Radon and its daughters in the maritime atmosphere near Japan islands

    International Nuclear Information System (INIS)

    Mochizuki, Sadamu

    1982-01-01

    In the maritime atmosphere near the land, natural radon and its daughters dispersed from land to over ocean are found gradually to attain their radioactive equilibrium with time lapse after they left land sources. Radioactive equilibrium is found to be established at the distance 100 - 150 km from the land, at least in winter season. Farther off from the distance about 150 km from the land, radioactive equilibrium will get deviation mode from their equilibrium state. (author)

  20. The ocean quasi-homogeneous layer model and global cycle of carbon dioxide in system of atmosphere-ocean

    Science.gov (United States)

    Glushkov, Alexander; Glushkov, Alexander; Loboda, Nataliya; Khokhlov, Valery; Serbov, Nikoly; Svinarenko, Andrey

    The purpose of this paper is carrying out the detailed model of the CO2 global turnover in system of "atmosphere-ocean" with using the ocean quasi-homogeneous layer model. Practically all carried out models are functioning in the average annual regime and accounting for the carbon distribution in bio-sphere in most general form (Glushkov et al, 2003). We construct a modified model for cycle of the carbon dioxide, which allows to reproduce a season dynamics of carbon turnover in ocean with account of zone ocean structure (up quasi-homogeneous layer, thermocline and deepest layer). It is taken into account dependence of the CO2 transfer through the bounder between atmosphere and ocean upon temperature of water and air, wind velocity, buffer mechanism of the CO2 dissolution. The same program is realized for atmosphere part of whole system. It is obtained a tempo-ral and space distribution for concentration of non-organic carbon in ocean, partial press of dissolute CO2 and value of exchange on the border between atmosphere and ocean. It is estimated a role of the wind intermixing of the up ocean layer. The increasing of this effect leads to increasing the plankton mass and further particles, which are transferred by wind, contribute to more quick immersion of microscopic shells and organic material. It is fulfilled investigation of sen-sibility of the master differential equations system solutions from the model parameters. The master differential equa-tions system, describing a dynamics of the CO2 cycle, is numerically integrated by the four order Runge-Cutt method under given initial values of valuables till output of solution on periodic regime. At first it is indicated on possible real-zation of the chaos scenario in system. On our data, the difference of the average annual values for the non-organic car-bon concentration in the up quasi-homogeneous layer between equator and extreme southern zone is 0.15 mol/m3, be-tween the equator and extreme northern zone is 0

  1. Estimation of Atmospheric Methane Surface Fluxes Using a Global 3-D Chemical Transport Model

    Science.gov (United States)

    Chen, Y.; Prinn, R.

    2003-12-01

    Accurate determination of atmospheric methane surface fluxes is an important and challenging problem in global biogeochemical cycles. We use inverse modeling to estimate annual, seasonal, and interannual CH4 fluxes between 1996 and 2001. The fluxes include 7 time-varying seasonal (3 wetland, rice, and 3 biomass burning) and 3 steady aseasonal (animals/waste, coal, and gas) global processes. To simulate atmospheric methane, we use the 3-D chemical transport model MATCH driven by NCEP reanalyzed observed winds at a resolution of T42 ( ˜2.8° x 2.8° ) in the horizontal and 28 levels (1000 - 3 mb) in the vertical. By combining existing datasets of individual processes, we construct a reference emissions field that represents our prior guess of the total CH4 surface flux. For the methane sink, we use a prescribed, annually-repeating OH field scaled to fit methyl chloroform observations. MATCH is used to produce both the reference run from the reference emissions, and the time-dependent sensitivities that relate individual emission processes to observations. The observational data include CH4 time-series from ˜15 high-frequency (in-situ) and ˜50 low-frequency (flask) observing sites. Most of the high-frequency data, at a time resolution of 40-60 minutes, have not previously been used in global scale inversions. In the inversion, the high-frequency data generally have greater weight than the weekly flask data because they better define the observational monthly means. The Kalman Filter is used as the optimal inversion technique to solve for emissions between 1996-2001. At each step in the inversion, new monthly observations are utilized and new emissions estimates are produced. The optimized emissions represent deviations from the reference emissions that lead to a better fit to the observations. The seasonal processes are optimized for each month, and contain the methane seasonality and interannual variability. The aseasonal processes, which are less variable, are

  2. Radioactive dumping in the Arctic Ocean

    International Nuclear Information System (INIS)

    Lamb, J.; Gizewski, P.

    1993-01-01

    Recent revelations concerning the possible environmental hazards posed by the sunken Soviet nuclear submarine Komsomolets and the disposal of radioactive materials in the Arctic and North Atlantic oceans have generated much controversy and debate. Too often, however, the key scientific and policy issues that the dumping raises are treated as two solitudes. In reality, decisions taken by national governments and international agencies in connection with remediation, regulation, and even research must be based on both science and policy. Indeed, a sound approach to the dumping issue must integrate scientific evidence and policy considerations relating to legal, political, social, and economic matters. Radioactive waste disposal is an exceedingly difficult problem. Information detailing the Soviet Navy's past dumping practices, and increasing awareness of the problems that Russia and other states may encounter in the future disposal of radioactive waste, indicate that the global inventory of radioactive wastes requiring storage and disposal is large and growing

  3. Atmospheric surveillance self-propelling device

    International Nuclear Information System (INIS)

    Cartoux, Gerard.

    1980-11-01

    The atmospheric surveillance self-propelling device of the Saclay Nuclear Research Center can, by its conception (autonomy, rapid put into service, multiplicity of sampling and measurements), be used for all kind of measuring campains: pollution radioactive or not, routine or accidental situation, technical and logistic support and as a coordination or investigation vehicle [fr

  4. Comparison of a hybrid model to a global model of atmospheric pressure radio-frequency capacitive discharges

    International Nuclear Information System (INIS)

    Lazzaroni, C; Lieberman, M A; Lichtenberg, A J; Chabert, P

    2012-01-01

    A one-dimensional hybrid analytical-numerical global model of atmospheric pressure radio-frequency (rf) driven capacitive discharges, previously developed, is compared with a basic global model. A helium feed gas with small admixtures of oxygen is studied. For the hybrid model, the electrical characteristics are calculated analytically as a current-driven homogeneous discharge. The electron power balance is solved analytically to determine a time-varying Maxwellian electron temperature, which oscillates on the rf timescale. Averaging over the rf period yields effective rate coefficients for gas phase activated processes. For the basic global model, the electron temperature is constant in time and the sheath physics is neglected. For both models, the particle balance relations for all species are integrated numerically to determine the equilibrium discharge parameters. Variations of discharge parameters with composition and rf power are determined and compared. The rate coefficients for electron-activated processes are strongly temperature dependent, leading to significantly larger neutral and charged particle densities for the hybrid model. For small devices, finite sheath widths limit the operating regimes to low O 2 fractions. This is captured by the hybrid model but cannot be predicted from the basic global model.

  5. Distributions and climate effects of atmospheric aerosols from the preindustrial era to 2100 along Representative Concentration Pathways (RCPs simulated using the global aerosol model SPRINTARS

    Directory of Open Access Journals (Sweden)

    T. Takemura

    2012-12-01

    Full Text Available Global distributions and associated climate effects of atmospheric aerosols were simulated using a global aerosol climate model, SPRINTARS, from 1850 to the present day and projected forward to 2100. Aerosol emission inventories used by the Coupled Model Intercomparison Project Phase 5 (CMIP5 were applied to this study. Scenarios based on the Representative Concentration Pathways (RCPs were used for the future projection. Aerosol loading in the atmosphere has already peaked and is now reducing in Europe and North America. However, in Asia where rapid economic growth is ongoing, aerosol loading is estimated to reach a maximum in the first half of this century. Atmospheric aerosols originating from the burning of biomass have maintained high loadings throughout the 21st century in Africa, according to the RCPs. Evolution of the adjusted forcing by direct and indirect aerosol effects over time generally correspond to the aerosol loading. The probable future pathways of global mean forcing differ based on the aerosol direct effect for different RCPs. Because aerosol forcing will be close to the preindustrial level by the end of the 21st century for all RCPs despite the continuous increases in greenhouse gases, global warming will be accelerated with reduced aerosol negative forcing.

  6. Radioactive contamination of honey and other bee-keeping products

    International Nuclear Information System (INIS)

    Frantsevich, L.I.; Komissar, A.D.; Levchenko, I.A.

    1990-01-01

    Great amount of dust is collected in propolis under emergency atmospheric fallouts. Specific coefficient of the product migration amounts to several m 2 per 1 kg. Propolis is a good biological indicator of radioactive fallouts. The propolis collection is inadmissible after radioactive fallouts. Cocoon residuals obtained during bees-wax separation contain many radionuclides and should be disposed in special places. Nuclides are absent in bees-wax. Nuclides accumulated absent in a bee organism migrate into honey and queen milk, the honey is contaminated mainly via biogenic path

  7. Models for the evaluation of ingestion doses from the consumption of terrestrial foods following an atmospheric radioactive release

    International Nuclear Information System (INIS)

    Nair, S.

    1984-04-01

    Various methods are described which have been incorporated in the FOODWEB module of the CEGB's NECTAR environmental code and are currently being used within CEGB to assess ingestion doses from consumption of terrestrial foods following an atmospheric radioactive release. Four foodchain models which have been developed within CEGB are fully described and results of typical calculations presented. Also given are the results of a validation of the dynamic model against measured 90 Sr and 137 Cs levels in milk in the U.K. resulting from weapons fallout. Methods are also described for calculating individual and population doses from ingestion using the results of the model calculations. The population dose calculations utilise a data base describing the spatial distribution of production of a wide range of agricultural products. The development of such a data base for Great Britain is described, based on the 1972 land use and livestock census, and maps are presented for each agricultural product. (U.K.)

  8. Feasibility study of cocos, condensation of containment atmosphere on structures

    International Nuclear Information System (INIS)

    Rij, H.M. van; Vonka, V.

    1989-12-01

    The aim of this report is to assess the state of the art of the knowledge of the thermo-hydraulic conditions within a LWR containment in order to determine both the radioactive and the non-radioactive aerosol deposition rates during a severe reactor accident. The radioactive aerosol in the containment atmosphere is, together with the noble gases, responsible for the radioactive source term into the biosphere when a containment failure occurs. The dominant aerosol removal mechanisms depend strongly upon the thermal-hydraulic state of the containment atmosphere. It is demonstrated that the thermohydraulic state, determined by heat sources and the sensible heat transport, is predominantly super-heated when fission products are released into the containment. Hence the thermohydraulic conditions are not favorable for an intensive bulk condensation onto aerosol particles during an essential period of time. A station black-out scenario, in which the primary system of the considered 500 MWe PWR with a dry cavity is depressurized prior to vessel failure, is used as an example to demonstrate this effect. The results, obtained with the CONTAIN code, show the relevance of the sensible heat transport in the period of time (c.a. 30 minutes) between the end of the injection of the steam and fission products into the containment, and the molten core concrete interaction. All considered variation of the station black-out scenario, in which the decay heat dissipated in the containment atmosphere has been 10% of the total decay heat, indicate that the atmosphere becomes super-heated within the 30 minutes. Reducing the fraction of the decay heat in the containment from the 10% to 5% increases the time period with saturated conditions. The amount of the decay heat released into the containment atmosphere forms the major factor determining the thermohydraulic state. It influences the duration of the bulk condensation period, which in turn has an influence on the aerosol deposition

  9. Radioactivity Monitoring of the Irish Environment 2003-2005

    International Nuclear Information System (INIS)

    Ryan, R.W.; Dowdall, A; Fegan, M.F.; Hayden, E.; Kelleher, K.; Long, S.; McEvoy, I.; McKittrick, L.; McMahon, C.A.; Murray, M.; Smith, K.; Sequeira, S.; Wong, J.; Pollard, D.

    2007-05-01

    This report presents the results of the environmental radioactivity monitoring programme carried out by the Radiological Protection Institute of Ireland (RPII) between 2003 and 2005. This programme aims to assess the exposure of the Irish population to anthropogenic radioactivity in the environment, to review the temporal and geographical distribution of contaminating radionuclides and to maintain systems and procedures which would allow a rapid assessment of environmental contamination to be made in the event of a radiological emergency. Radioactivity is present in the environment due to natural processes, the testing of nuclear weapons in the atmosphere, past nuclear accidents such as that at Chernobyl and the routine licensed discharge of radionuclides from nuclear installations. Liquid discharges from the British Nuclear Group reprocessing plant at Sellafield in Cumbria in the North-West of England continue to be the dominant source of anthropogenic radioactivity in the Irish marine environment. The key elements of the monitoring programme implemented by the RPII during the reporting period include; assessment of ambient radioactivity based on measurements of radioactivity in air and external gamma dose rate at permanent monitoring stations located throughout the country; assessment of levels of radioactivity in drinking water; assessment of levels of radioactivity in foodstuffs based on measurements of total diet, milk and miscellaneous ingredients; assessment of levels of radioactivity in the marine environment based on sampling and measurements of seawater, sediment, seaweed, fish and shellfish. The RPII monitored airborne radioactivity at eleven stations located throughout the country. One station is equipped with a high volume sampler, which allows global fallout concentrations to be measured, and one is equipped to detect the presence of the gas krypton-85. Krypton-85 is released into the environment primarily as a result of the reprocessing of nuclear

  10. Determination of equivalent mixing height and atmospheric stability assessment

    International Nuclear Information System (INIS)

    Simon, J.; Bulko, M.; Holy, K.

    2007-01-01

    Atmospheric stability is an indicator that reflects the intensity of boundary layer mixing processes. This feature of the atmosphere is especially important since it defines dispersive atmospheric conditions and provides information on how effectively the anthropogenic pollution will be transferred to the higher levels of the atmosphere. The assessment of atmospheric dispersiveness plays a crucial role in the protection of air quality and public health in big cities. The presented paper deals with determination of atmospheric stability via so called Equivalent Mixing Height (EMH) quantity using a radioactive noble gas 222 Rn. A method of deriving a link between 222 Rn activity concentration, eddy diffusion coefficient and EMH using fluid mechanics is also outlined in this work. (authors)

  11. Radioactive waste management: An international perspective

    International Nuclear Information System (INIS)

    Chan, C.Y.

    1992-01-01

    Scientists, governments, and the general public have devoted considerable attention to the subject of radioactive waste over the past 35 years. The subject has gained even more attention of late, owing to heightened awareness of environmental protection. Potential transboundary effects have further added to this interest, which today extends beyond local domains to regional and global levels. Almost all of the IAEA's Member States generate some radioactive wastes. The type of waste they produce varies, however, as do the quantities, which range from a few grams to several hundred tonnes of wastes per year. This article will summarize the status of waste management and disposal activities in IAEA Member States as well as providing a brief background on what radioactive waste is, where it comes from, and how it is managed

  12. Vorticity-divergence semi-Lagrangian global atmospheric model SL-AV20: dynamical core

    Science.gov (United States)

    Tolstykh, Mikhail; Shashkin, Vladimir; Fadeev, Rostislav; Goyman, Gordey

    2017-05-01

    SL-AV (semi-Lagrangian, based on the absolute vorticity equation) is a global hydrostatic atmospheric model. Its latest version, SL-AV20, provides global operational medium-range weather forecast with 20 km resolution over Russia. The lower-resolution configurations of SL-AV20 are being tested for seasonal prediction and climate modeling. The article presents the model dynamical core. Its main features are a vorticity-divergence formulation at the unstaggered grid, high-order finite-difference approximations, semi-Lagrangian semi-implicit discretization and the reduced latitude-longitude grid with variable resolution in latitude. The accuracy of SL-AV20 numerical solutions using a reduced lat-lon grid and the variable resolution in latitude is tested with two idealized test cases. Accuracy and stability of SL-AV20 in the presence of the orography forcing are tested using the mountain-induced Rossby wave test case. The results of all three tests are in good agreement with other published model solutions. It is shown that the use of the reduced grid does not significantly affect the accuracy up to the 25 % reduction in the number of grid points with respect to the regular grid. Variable resolution in latitude allows us to improve the accuracy of a solution in the region of interest.

  13. Estimate of the largest Lyapunov characteristic exponent of a high dimensional atmospheric global circulation model: a sensitivity analysis

    International Nuclear Information System (INIS)

    Guerrieri, A.

    2009-01-01

    In this report the largest Lyapunov characteristic exponent of a high dimensional atmospheric global circulation model of intermediate complexity has been estimated numerically. A sensitivity analysis has been carried out by varying the equator-to-pole temperature difference, the space resolution and the value of some parameters employed by the model. Chaotic and non-chaotic regimes of circulation have been found. [it

  14. Construction and test of a box system for operations with air-sensitive and radioactive compounds

    International Nuclear Information System (INIS)

    Kuenstler, K.; Betzl, K.; Grosser, H.J.; Furkert, W.; Novotny, D.

    1985-06-01

    A system of mechanical components has been develoed, which can be used to design inert atmosphere boxes as well as radioactive boxes. The advantage in comparison with known designs consists in the modular construction principle which permits variable dimensions. Standard parts (flanges, bushings, air locks and so on) possess a uniform size. The system for the maintenance of a high-purity atmosphere in the box has been improved, decreasing the level of oxygen and water vapour below 10 vpm. The low impurity level in the inert atmosphere is attained by means of continuous circulation of the gases through a purification system. The usefulness of the boxes for handling air-sensitive and radioactive compounds has been tested over a period of some years. (author)

  15. Radioactive fallout over South Africa during 1974-1983

    International Nuclear Information System (INIS)

    Brits, R.J.N.; Van der Bank, D.J.; Moolman, E.W.; Bain, C.A.R.; Van As, D.; Van derwesthuizen, G.S.H.

    1985-05-01

    NUCOR is routinely monitoring air and rainwater for radioactive fallout from atmospheric sources. Air humidity is continuously collected and analysed for tritium. Milk samples are obtained from a number of places throughout the country. These samples are analysed to detect timeously any build-up of radionuclides in soil and plants. Only a few atmosperic nuclear tests have been conducted (by China) since the previous report period of 1965 to 1973. The fallout from these sources over South Africa is extremely small and it is mainly cosmogenic radioactivity, viz 3 H and 7 Be, that is detected

  16. Method of processing solidification product of radioactive waste

    International Nuclear Information System (INIS)

    Daime, Fumiyoshi.

    1988-01-01

    Purpose: To improve the long-time stability of solidification products by providing solidification products with liquid tightness, gas tightness, abrasion resistance, etc., of the products in the course of the solidification for the treatment of radioactive wastes. Method: The surface of solidification products prepared by mixing solidifying agents with powder or pellets is entirely covered with high molecular polymer such as epoxy resin. The epoxy resin has excellent properties such as radiation-resistance, heat resistance, water proofness and chemical resistance, as well as have satisfactory mechanical properties. This can completely isolate the solidification products of radioactive wastes from the surrounding atmosphere. (Yoshino, Y.)

  17. The radiological exposure of man from radioactivity in the Baltic Sea.

    Science.gov (United States)

    Nielsen, S P; Bengtson, P; Bojanowsky, R; Hagel, P; Herrmann, J; Ilus, E; Jakobson, E; Motiejunas, S; Panteleev, Y; Skujina, A; Suplinska, M

    1999-09-30

    A radiological assessment has been carried out considering discharges of radioactivity to the Baltic Sea marine environment since 1950. The sources of radioactivity that have been evaluated are atmospheric nuclear-weapons fallout, fallout from the Chernobyl accident in 1986, discharges of radionuclides from Sellafield and La Hague transported into the Baltic Sea, and discharges of radionuclides from nuclear installations located in the Baltic Sea area. Dose rates from man-made radioactivity to individual members of the public (critical groups) have been calculated based on annual intake of seafood and beach occupancy time. The dose rates to individuals from the regions of the Bothnian Sea and Gulf of Finland are predicted to be larger than from any other area in the Baltic Sea due to the pattern of Chernobyl fallout. The dose rates are predicted to have peaked in 1986 at a value of 0.2 mSv year-1. Collective committed doses to members of the public have been calculated based on fishery statistics and predicted concentrations of radionuclides in biota and coastal sediments. The total collective dose from man-made radioactivity in the Baltic Sea is estimated at 2600 manSv, of which approximately two-thirds originate from Chernobyl fallout, approximately one-quarter from atmospheric nuclear-weapons fallout, approximately 8% from European reprocessing facilities, and approximately 0.04% from nuclear installations bordering the Baltic Sea area. An assessment of small-scale dumping of low-level radioactive waste in the Baltic Sea in the 1960s by Sweden and the Soviet Union has showed that doses to man from these activities are negligible. Dose rates and doses from natural radioactivity dominate except for the year 1986 where dose rates to individuals from Chernobyl fallout in some regions of the Baltic Sea approached those from natural radioactivity.

  18. Discharges of radioactive materials to the environment in Argentina

    CERN Document Server

    Curti, A R

    2003-01-01

    The International Atomic Energy Agency (IAEA) is creating a database of information on radioactive discharges to atmospheric and aquatic environments from nuclear and radioactive installations, and from facilities using radionuclides in medicine, industry and research. The database is expected to facilitate the analysis of worldwide trends in discharge levels and provide a basis for assessing the impact of the discharges on humans and on the environment. In November 2002 took place the first meeting of national contact points and the Nuclear Regulatory Authority (ARN in Spanish) was present as the counterpart for the provision of discharge data from Argentina. This paper, presented in the above mentioned meeting, is a general overview of the radioactive discharges control in Argentina including the legal infrastructure, the population dose assessment methodology and the main characteristics of the facilities in the country with radioactive discharges to the environment. It is mentioned their location, release...

  19. mathematical modelling of atmospheric dispersion of pollutants

    International Nuclear Information System (INIS)

    Mohamed, M.E.

    2002-01-01

    the main objectives of this thesis are dealing with environmental problems adopting mathematical techniques. in this respect, atmospheric dispersion processes have been investigated by improving the analytical models to realize the realistic physical phenomena. to achieve these aims, the skeleton of this work contained both mathematical and environmental topics,performed in six chapters. in chapter one we presented a comprehensive review study of most important informations related to our work such as thermal stability , plume rise, inversion, advection , dispersion of pollutants, gaussian plume models dealing with both radioactive and industrial contaminants. chapter two deals with estimating the decay distance as well as the decay time of either industrial or radioactive airborne pollutant. further, highly turbulent atmosphere has been investigated as a special case in the three main thermal stability classes namely, neutral, stable, and unstable atmosphere. chapter three is concerned with obtaining maximum ground level concentration of air pollutant. the variable effective height of pollutants has been considered throughout the mathematical treatment. as a special case the constancy of effective height has been derived mathematically and the maximum ground level concentration as well as its location have been established

  20. 30 years of monitoring environmental radioactivity in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    1985-01-01

    The individual sections of the report describe the development of monitoring functions and of the contamination of the atmosphere and the biosphere by radioactive substances. After environmental radioactivity due to the fallout of nuclear explosions reached a peak level in 1963, its contribution to radiation exposure today is insignificant in comparison with natural radioactivity. Moreover, monitoring by authorities of the emissions and the environmental impact of nuclear installations has been extended during the past 20 years in such a way that the existing network of measuring stations takes full account of the increased number of nuclear installations. The monitoring results show that nuclear installations do not make any considerable contribution to environmental radioactivity. (orig./PW) [de