WorldWideScience

Sample records for global air-sea co2

  1. Sea ice contribution to the air-sea CO{sub 2} exchange in the Arctic and Southern Oceans

    Energy Technology Data Exchange (ETDEWEB)

    Rysgaard, Soeren (Greenland Climate Research Centre, Greenland Inst. of Natural Resources, Nuuk, Greenland (Denmark); Centre for Earth Observation Science, CHR Faculty of Environment Earth and Resources, Univ. of Manitoba, Winnipeg (Canada)), e-mail: rysgaard@natur.gl; Bendtsen, Joergen (Greenland Climate Research Centre, Greenland Inst. of Natural Resources, Nuuk, Greenland (Denmark); Centre for Ice and Climate, Niels Bohr Inst., Univ. of Copenhagen, Copenhagen O (Denmark)); Delille, Bruno (Unit' e d' Oceanographie Chimique, Interfacultary Centre for Marine Research, Universite de Liege, Liege (Belgium)); Dieckmann, Gerhard S. (Alfred Wegener Inst. for Polar and Marine Research, Bremerhaven (Germany)); Glud, Ronnie N. (Greenland Climate Research Centre, Greenland Inst. of Natural Resources, Nuuk, Greenland (Denmark); Scottish Association of Marine Sciences, Scotland UK, Southern Danish Univ. and NordCee, Odense M (Denmark)); Kennedy, Hilary; Papadimitriou, Stathys (School of Ocean Sciences, Bangor Univ., Menai Bridge, Anglesey, Wales (United Kingdom)); Mortensen, John (Greenland Climate Research Centre, Greenland Inst. of Natural Resources, Nuuk, Greenland (Denmark)); Thomas, David N. (School of Ocean Sciences, Bangor Univ., Menai Bridge, Anglesey, Wales (United Kingdom); Finnish Environment Inst. (SYKE), Marine Research Centre, Helsinki (Finland)); Tison, Jean-Louis (Glaciology Unit, Dept. of Earth and Environmental Sciences, Universite Libre de Bruxelles, Bruxelles, (Belgium))

    2011-11-15

    Although salt rejection from sea ice is a key process in deep-water formation in ice-covered seas, the concurrent rejection of CO{sub 2} and the subsequent effect on air-sea CO{sub 2} exchange have received little attention. We review the mechanisms by which sea ice directly and indirectly controls the air-sea CO{sub 2} exchange and use recent measurements of inorganic carbon compounds in bulk sea ice to estimate that oceanic CO{sub 2} uptake during the seasonal cycle of sea-ice growth and decay in ice-covered oceanic regions equals almost half of the net atmospheric CO{sub 2} uptake in ice-free polar seas. This sea-ice driven CO{sub 2} uptake has not been considered so far in estimates of global oceanic CO{sub 2} uptake. Net CO{sub 2} uptake in sea-ice-covered oceans can be driven by; (1) rejection during sea-ice formation and sinking of CO{sub 2}-rich brine into intermediate and abyssal oceanic water masses, (2) blocking of air-sea CO{sub 2} exchange during winter, and (3) release of CO{sub 2}-depleted melt water with excess total alkalinity during sea-ice decay and (4) biological CO{sub 2} drawdown during primary production in sea ice and surface oceanic waters

  2. Temporal and spatial variations of oceanic pCO2 and air-sea CO2 flux in th Greenland Sea and the Barents Sea

    International Nuclear Information System (INIS)

    Nakaoka, Shin-Ichiro; Aoki, Shuji; Nakazawa, Takakiyo; Yoshikawa-Inoue, Hisayuki

    2006-01-01

    In order to elucidate the seasonal and inter annual variations of oceanic CO 2 uptake in the Greenland Sea and the Barents Sea, the partial pressure of CO 2 in the surface ocean (pCO 2 sea ) was measured in all seasons between 1992 and 2001. We derived monthly varying relationships between pCO 2 sea and sea surface temperature (SST) and combined them with the SST data from the NCEP/NCAR reanalysis to determine pCO 2 sea and air-sea CO 2 flux in these seas. The pCO 2 sea values were normalized to the year 1995 by assuming that pCO 2 sea increased at the same growth rate (1.5 μatm/yr) of the pCO 2 in the air (pCO 2 air ) between 1992 and 2001. In 1995, the annual net air-sea CO 2 fluxes were evaluated to be 52 ± 20 gC/m 2 /yr in the Greenland Sea and 46 ± 18 gC/m 2 /yr in the Barents Sea. The CO 2 flux into the ocean reached its maximum in winter and minimum in summer. The wind speed and (delta)pCO 2 (=pCO 2 air -pCO 2 sea ) exerted a greater influence on the seasonal variation than the sea ice coverage. The annual CO 2 uptake examined in this study (70-80 deg N, 20 deg W-40 deg E) was estimated to be 0.050 ± 0.020 GtC/yr in 1995. The inter annual variation in the annual CO 2 uptake was found to be positively correlated with the North Atlantic Oscillation Index (NAOI) via wind strength but negatively correlated with (delta)pCO 2 and the sea ice coverage. The present results indicate that the variability in wind speed and sea ice coverage play a major role, while that in (delta)pCO 2 plays a minor role, in determining the interannual variation of CO 2 uptake in this area

  3. Sea ice contribution to the air-sea CO(2) exchange in the Arctic and Southern Oceans

    DEFF Research Database (Denmark)

    Rysgaard...[], Søren; Bendtsen, Jørgen; Delille, B.

    2011-01-01

    Although salt rejection from sea ice is a key process in deep-water formation in ice-covered seas, the concurrent rejection of CO(2) and the subsequent effect on air-sea CO(2) exchange have received little attention. We review the mechanisms by which sea ice directly and indirectly controls the air......-sea CO(2) exchange and use recent measurements of inorganic carbon compounds in bulk sea ice to estimate that oceanic CO(2) uptake during the seasonal cycle of sea-ice growth and decay in ice-covered oceanic regions equals almost half of the net atmospheric CO(2) uptake in ice-free polar seas. This sea......-sea CO(2) exchange during winter, and (3) release of CO(2)-depleted melt water with excess total alkalinity during sea-ice decay and (4) biological CO(2) drawdown during primary production in sea ice and surface oceanic waters....

  4. Global changes and the air-sea exchange of chemicals

    International Nuclear Information System (INIS)

    1991-01-01

    Present and potential future changes to the global environment have important implications for marine pollution and for the air-sea exchange of both anthropogenic and natural substances. This report addresses three issues related to the potential impact of global change on the air-sea exchange of chemicals: Global change and the air-sea transfer of the nutrients nitrogen and iron. Global change and the air-sea exchange of gases. Oceanic responses to radiative and oxidative changes in the atmosphere. The deposition of atmospheric anthropogenic nitrogen has probably increased biological productivity in coastal regions along many continental margins. Atmospheric deposition of new nitrogen may also have increased productivity somewhat in mid-ocean regions. The projected future increases of nitrogen oxide emissions from Asia, Africa and South America will provide significant increases in the rate of deposition of oxidized nitrogen to the central North Pacific, the equatorial Atlantic, and the equatorial and central South Indian Oceans. Atmospheric iron may be an important nutrient in certain open regions. Future changes will likely occur if there are changing patterns of aridity and wind speed as a result of climate change. The most important future effects on surface ocean p CO2 will likely be caused by changes in ocean circulation. The pH of the ocean would decrease by ∼0.3 units for a doubling of p CO2 , reducing the capacity of the ocean to take up CO 2 . There is increasing evidence that dimethyl sulfide from the ocean is a source of cloud condensation nuclei and thus a factor controlling cloud albedo. By 2060 in the southern hemisphere reduction in total column stratospheric ozone from recent levels could reach 2 to 5% in the tropics, 10% at mid latitudes, and over 20% at 60 deg C. S. In this same time frame increases in ground-level effective UV-B radiation could reach 5%, 26% and 66%, at low, mid, and high latitudes in the southern hemisphere. Changes in

  5. APO observations in Southern Greenland: evaluation of modelled air-sea O2 and CO2 fluxes

    Science.gov (United States)

    Bonne, Jean-Louis; Bopp, Laurent; Delmotte, Marc; Cadule, Patricia; Resplandy, Laure; Nevison, Cynthia; Manizza, Manfredi; Valentin Lavric, Jost; Manning, Andrew C.; Masson-Delmotte, Valérie

    2014-05-01

    Since September 2007, the atmospheric CO2 mole fraction and O2/N2 ratio (a proxy for O2 concentration) have been monitored continuously at the coastal site of Ivittuut, southern Greenland (61.21° N, 48.17° W). From 2007 to 2013, our measurements show multi-annual trends of +2.0 ppm/year and -20 per meg/year respectively for CO2 and O2/N2, with annual average peak-to-peak seasonal amplitudes of 14+/-1 ppm and 130+/-15 per meg. We investigate the implications of our data set in terms of APO (Atmospheric Potential Oxygen). This tracer, obtained by a linear combination of CO2 and O2/N2 data, is invariant to CO2 and O2 exchanges in the land biota, but sensitive to the oceanic component of the O2 cycle. It is used as a bridge to evaluate air-sea CO2 and O2 fluxes from atmospheric variations of CO2 and O2/N2. Global ocean biogeochemical models produce estimates of CO2 and O2 air-sea fluxes. Atmospheric APO variations can be simulated through transportation of these fluxes in the atmosphere by Eulerian transport models. Thus, model values of atmospheric APO can be extracted at the station location. This study is based on air-sea flux outputs from CMIP5 simulations. After atmospheric transportation, they give access to atmospheric APO climatologies which can be compared, in terms of seasonal cycles and inter-annual variability, to the in situ observations. A preliminary study is based on the CCSM ocean model air-sea fluxes transported in the atmosphere with the MATCH transport model, over the period 1979-2004. The amplitude of the APO seasonal cycle is correctly captured, but year to year variations on this seasonal cycle appears to be underestimated compared to observations. The LMDZ atmospheric transport model is also used to transport the ocean fluxes from five CMIP5 models, over the period 1979-2005, showing different amplitudes and timings of APO seasonal cycles. This methodology is a first step to evaluate the origin of observed APO variations at our site and then

  6. Air sea ratio reduction initiative

    Energy Technology Data Exchange (ETDEWEB)

    Oberle, Jean

    2010-09-15

    Airfreight is the most expensive mode of transportation as well as the most impacting in terms of CO{sup 2} emissions. It is 7 times more expensive on average to ship by air than shipping by sea 1. Airfreight transportation mode emits 30 times more CO{sup 2} than sea freight mode 2. These elements provided a compelling platform to design a global logistics program to initiate a modal shift from air to sea freight without compromising service to customers.

  7. Global changes and the air-sea exchange of chemicals. Reports and studies. No. 48

    Energy Technology Data Exchange (ETDEWEB)

    GESAMP-IMO/FAO/UNESCO/WMO/WHO/IAEA/UN/UNEP Joint Group of Experts on the Scientific Aspects of Marine Pollution

    1992-12-31

    Present and future changes to global environment have implications for marine pollution and for air-sea exchange of both anthropogenic and natural substances. This report addresses 3 issues related to potential impact of global change on air-sea exchange of chemicals: Global change and air-sea transfer of nutrients nitrogen and iron. Global change and air-sea exchange of gases. Oceanic responses to radiative and oxidative changes in atmosphere. Deposition of atmospheric anthropogenic nitrogen has probably increased bio- productivity in coastal regions along continental margins. Atmospheric deposition of new nitrogen may also have increased productivity somewhat in mid-ocean regions. Projected future increases of N oxide emissions from Asia, Africa and South America will increase the rate of deposition of oxidized nitrogen to central North Pacific, equatorial Atlantic, and equatorial and central South Indian Oceans. Atmospheric iron may be an important nutrient in certain open regions. Future changes will likely occur from changed aridity and wind speed as a result of climate change. The most important future effects on surface ocean p{sub CO2} will likely be caused by changes in ocean circulation. The pH of ocean would decrease by {approx}0.3 units for a doubling of p{sub CO2}, reducing the capacity of the ocean to take up CO{sub 2}. There is evidence that dimethyl sulfide from ocean is a source of cloud condensation nuclei and thus a factor controlling cloud albedo. By 2060 in the southern hemisphere reduction in total column stratospheric ozone from recent levels could reach 2 to 5% in the tropics, 10% at mid latitudes, and over 20% at 60 deg C. S. Increases in ground-level effective UV-B radiation could also reach 5%, 26% and 66%, at low, mid, and high latitudes in southern hemisphere. Changes in photochemical processes in the surface waters of the ocean could also happen.

  8. The Arctic Ocean marine carbon cycle: evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks

    Directory of Open Access Journals (Sweden)

    N. R. Bates

    2009-11-01

    Full Text Available At present, although seasonal sea-ice cover mitigates atmosphere-ocean gas exchange, the Arctic Ocean takes up carbon dioxide (CO2 on the order of −66 to −199 Tg C year−1 (1012 g C, contributing 5–14% to the global balance of CO2 sinks and sources. Because of this, the Arctic Ocean has an important influence on the global carbon cycle, with the marine carbon cycle and atmosphere-ocean CO2 exchanges sensitive to Arctic Ocean and global climate change feedbacks. In the near-term, further sea-ice loss and increases in phytoplankton growth rates are expected to increase the uptake of CO2 by Arctic Ocean surface waters, although mitigated somewhat by surface warming in the Arctic. Thus, the capacity of the Arctic Ocean to uptake CO2 is expected to alter in response to environmental changes driven largely by climate. These changes are likely to continue to modify the physics, biogeochemistry, and ecology of the Arctic Ocean in ways that are not yet fully understood. In surface waters, sea-ice melt, river runoff, cooling and uptake of CO2 through air-sea gas exchange combine to decrease the calcium carbonate (CaCO3 mineral saturation states (Ω of seawater while seasonal phytoplankton primary production (PP mitigates this effect. Biological amplification of ocean acidification effects in subsurface waters, due to the remineralization of organic matter, is likely to reduce the ability of many species to produce CaCO3 shells or tests with profound implications for Arctic marine ecosystems

  9. Air-ice CO2 fluxes and pCO2 dynamics in the Arctic coastal area (Amundsen Gulf, Canada)

    Science.gov (United States)

    Geilfus, Nicolas-Xavier; Tison, Jean Louis; Carnat, Gauthier; Else, Brent; Borges, Alberto V.; Thomas, Helmuth; Shadwick, Elizabeth; Delille, Bruno

    2010-05-01

    Sea ice covers about 7% of the Earth surface at its maximum seasonal extent. For decades sea ice was assumed to be an impermeable and inert barrier for air - sea exchange of CO2 so that global climate models do not include CO2 exchange between the oceans and the atmosphere in the polar regions. However, uptake of atmospheric CO2 by sea ice cover was recently reported raising the need to further investigate pCO2 dynamics in the marine cryosphere realm and related air-ice CO2 fluxes. In addition, budget of CO2 fluxes are poorly constrained in high latitudes continental shelves [Borges et al., 2006]. We report measurements of air-ice CO2 fluxes above the Canadian continental shelf and compare them to previous measurements carried out in Antarctica. We carried out measurements of pCO2 within brines and bulk ice, and related air-ice CO2 fluxes (chamber method) in Antarctic first year pack ice ("Sea Ice Mass Balance in Antarctica -SIMBA" drifting station experiment September - October 2007) and in Arctic first year land fast ice ("Circumpolar Flaw Lead" - CFL, April - June 2008). These 2 experiments were carried out in contrasted sites. SIMBA was carried out on sea ice in early spring while CFL was carried out in from the middle of the winter to the late spring while sea ice was melting. Both in Arctic and Antarctic, no air-ice CO2 fluxes were detected when sea ice interface was below -10°C. Slightly above -10°C, fluxes toward the atmosphere were observed. In contrast, at -7°C fluxes from the atmosphere to the ice were significant. The pCO2 of the brine exhibits a same trend in both hemispheres with a strong decrease of the pCO2 anti-correlated with the increase of sea ice temperature. The pCO2 shifted from a large over-saturation at low temperature to a marked under-saturation at high temperature. These air-ice CO2 fluxes are partly controlled by the permeability of the air-ice interface, which depends of the temperature of this one. Moreover, air-ice CO2 fluxes are

  10. Effects of sea-ice and biogeochemical processes and storms on under-ice water fCO2 during the winter-spring transition in the high Arctic Ocean: Implications for sea-air CO2 fluxes

    Science.gov (United States)

    Fransson, Agneta; Chierici, Melissa; Skjelvan, Ingunn; Olsen, Are; Assmy, Philipp; Peterson, Algot K.; Spreen, Gunnar; Ward, Brian

    2017-07-01

    We performed measurements of carbon dioxide fugacity (fCO2) in the surface water under Arctic sea ice from January to June 2015 during the Norwegian young sea ICE (N-ICE2015) expedition. Over this period, the ship drifted with four different ice floes and covered the deep Nansen Basin, the slopes north of Svalbard, and the Yermak Plateau. This unique winter-to-spring data set includes the first winter-time under-ice water fCO2 observations in this region. The observed under-ice fCO2 ranged between 315 µatm in winter and 153 µatm in spring, hence was undersaturated relative to the atmospheric fCO2. Although the sea ice partly prevented direct CO2 exchange between ocean and atmosphere, frequently occurring leads and breakup of the ice sheet promoted sea-air CO2 fluxes. The CO2 sink varied between 0.3 and 86 mmol C m-2 d-1, depending strongly on the open-water fractions (OW) and storm events. The maximum sea-air CO2 fluxes occurred during storm events in February and June. In winter, the main drivers of the change in under-ice water fCO2 were dissolution of CaCO3 (ikaite) and vertical mixing. In June, in addition to these processes, primary production and sea-air CO2 fluxes were important. The cumulative loss due to CaCO3 dissolution of 0.7 mol C m-2 in the upper 10 m played a major role in sustaining the undersaturation of fCO2 during the entire study. The relative effects of the total fCO2 change due to CaCO3 dissolution was 38%, primary production 26%, vertical mixing 16%, sea-air CO2 fluxes 16%, and temperature and salinity insignificant.

  11. Arctic Ocean CO2 uptake: an improved multiyear estimate of the air-sea CO2 flux incorporating chlorophyll a concentrations

    Science.gov (United States)

    Yasunaka, Sayaka; Siswanto, Eko; Olsen, Are; Hoppema, Mario; Watanabe, Eiji; Fransson, Agneta; Chierici, Melissa; Murata, Akihiko; Lauvset, Siv K.; Wanninkhof, Rik; Takahashi, Taro; Kosugi, Naohiro; Omar, Abdirahman M.; van Heuven, Steven; Mathis, Jeremy T.

    2018-03-01

    We estimated monthly air-sea CO2 fluxes in the Arctic Ocean and its adjacent seas north of 60° N from 1997 to 2014. This was done by mapping partial pressure of CO2 in the surface water (pCO2w) using a self-organizing map (SOM) technique incorporating chlorophyll a concentration (Chl a), sea surface temperature, sea surface salinity, sea ice concentration, atmospheric CO2 mixing ratio, and geographical position. We applied new algorithms for extracting Chl a from satellite remote sensing reflectance with close examination of uncertainty of the obtained Chl a values. The overall relationship between pCO2w and Chl a was negative, whereas the relationship varied among seasons and regions. The addition of Chl a as a parameter in the SOM process enabled us to improve the estimate of pCO2w, particularly via better representation of its decline in spring, which resulted from biologically mediated pCO2w reduction. As a result of the inclusion of Chl a, the uncertainty in the CO2 flux estimate was reduced, with a net annual Arctic Ocean CO2 uptake of 180 ± 130 Tg C yr-1. Seasonal to interannual variation in the CO2 influx was also calculated.

  12. Coccolithophore surface distributions in the North Atlantic and their modulation of the air-sea flux of CO2 from 10 years of satellite Earth observation data

    Directory of Open Access Journals (Sweden)

    J. D. Shutler

    2013-04-01

    Full Text Available Coccolithophores are the primary oceanic phytoplankton responsible for the production of calcium carbonate (CaCO3. These climatically important plankton play a key role in the oceanic carbon cycle as a major contributor of carbon to the open ocean carbonate pump (~50% and their calcification can affect the atmosphere-to-ocean (air-sea uptake of carbon dioxide (CO2 through increasing the seawater partial pressure of CO2 (pCO2. Here we document variations in the areal extent of surface blooms of the globally important coccolithophore, Emiliania huxleyi, in the North Atlantic over a 10-year period (1998–2007, using Earth observation data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS. We calculate the annual mean sea surface areal coverage of E. huxleyi in the North Atlantic to be 474 000 ± 104 000 km2, which results in a net CaCO3 carbon (CaCO3-C production of 0.14–1.71 Tg CaCO3-C per year. However, this surface coverage (and, thus, net production can fluctuate inter-annually by −54/+8% about the mean value and is strongly correlated with the El Niño/Southern Oscillation (ENSO climate oscillation index (r=0.75, pE. huxleyi blooms in the North Atlantic can increase the pCO2 and, thus, decrease the localised air-sea flux of atmospheric CO2. In regions where the blooms are prevalent, the average reduction in the monthly air-sea CO2 flux can reach 55%. The maximum reduction of the monthly air-sea CO2 flux in the time series is 155%. This work suggests that the high variability, frequency and distribution of these calcifying plankton and their impact on pCO2 should be considered if we are to fully understand the variability of the North Atlantic air-to-sea flux of CO2. We estimate that these blooms can reduce the annual N. Atlantic net sink atmospheric CO2 by between 3–28%.

  13. Seasonal variation of air-sea CO2 fluxes in the Terra Nova Bay of the Ross Sea, Antarctica, based on year-round pCO2 observations

    Science.gov (United States)

    Zappa, C. J.; Rhee, T. S.; Kwon, Y. S.; Choi, T.; Yang, E. J.; Kim, J.

    2017-12-01

    The polar oceans are rapidly changing in response to climate variability. In particular, augmented inflow of glacial melt water and shrinking sea-ice extent impacts the polar coastal oceans, which may in turn shift the biogeochemistry into an unprecedented paradigm not experienced previously. Nonetheless, most research in the polar oceans is limited to the summer season. Here, we present the first direct observations of ocean and atmospheric pCO2 measured near the coast of Terra Nova Bay in the Ross Sea, Antarctica, ongoing since February, 2015 at Jang Bogo Station. The coastal area is covered by landfast sea-ice from spring to fall while continually exposed to the atmosphere during summer season only. The pCO2 in seawater swung from 120 matm in February to 425 matm in early October. Although sea-ice still covers the coastal area, pCO2 already started decreasing after reaching the peak in October. In November, the pCO2 suddenly dropped as much as 100 matm in a week. This decrease of pCO2 continued until late February when the sea-ice concentration was minimal. With growing sea ice, the pCO2 increased logarithmically reaching the atmospheric concentration in June/July, depending on the year, and continued to increase until October. Daily mean air-sea CO2 flux in the coastal area widely varied from -70 mmol m-2 d-1 to 20 mmol m-2 d-1. Based on these observations of pCO2 in Terra Nova Bay, the annual uptake of CO2 is 8 g C m-2, estimated using the fraction of sea-ice concentration estimated from AMSR2 microwave emission imagery. Extrapolating to all polynyas surrounding Antarctica, we expect the annual uptake of 8 Tg C in the atmosphere. This is comparable to the amount of CO2 degassed into the atmosphere south of the Antarctic Polar Front (62°S).

  14. High air-sea CO 2 uptake rates in nearshore and shelf areas of Southern Greenland: Temporal and spatial variability

    DEFF Research Database (Denmark)

    Rysgaard, Søren; Mortensen, J.; Juul-Pedersen, T.

    2012-01-01

    significant correlation between average annual gross primary production and annual air-sea flux during 2005-2010, which suggests that regulation of pCO 2 in the fjord is more complex. Despite three confined periods with supersaturated pCO 2 conditions in surface waters during 2005-2010, Godthåbsfjord can......The present study is based on hourly samplings of wind speed, monthly sampling sessions of temperature, salinity, dissolved inorganic carbon, alkalinity, nutrients, primary productivity and vertical export in the outer sill region (station GF3) of a sub-arctic SW Greenland fjord (Godthåbsfjord......) through 2005-2010. Air-sea CO 2 fluxes varied at GF3 from c. -20gCm -2month -1 (uptake from the atmosphere) to 25gCm -2month -1 (release to the atmosphere) during 2005-10. The average annual air-sea CO 2 flux of -83 to -108gCm -2yr -1 was within the range of the local gross annual primary productivity...

  15. The Effect of Breaking Waves on CO_2 Air-Sea Fluxes in the Coastal Zone

    Science.gov (United States)

    Gutiérrez-Loza, Lucía; Ocampo-Torres, Francisco J.; García-Nava, Héctor

    2018-03-01

    The influence of wave-associated parameters controlling turbulent CO_2 fluxes through the air-sea interface is investigated in a coastal region. A full year of high-quality data of direct estimates of air-sea CO_2 fluxes based on eddy-covariance measurements is presented. The study area located in Todos Santos Bay, Baja California, Mexico, is a net sink of CO_2 with a mean flux of -1.3 μmol m^{-2}s^{-1} (-41.6 mol m^{-2}yr^{-1} ). The results of a quantile-regression analysis computed between the CO_2 flux and, (1) wind speed, (2) significant wave height, (3) wave steepness, and (4) water temperature, suggest that the significant wave height is the most correlated parameter with the magnitude of the flux but the behaviour of the relation varies along the probability distribution function, with the slopes of the regression lines presenting both positive and negative values. These results imply that the presence of surface waves in coastal areas is the key factor that promotes the increase of the flux from and into the ocean. Further analysis suggests that the local characteristics of the aqueous and atmospheric layers might determine the direction of the flux.

  16. Global CO2 fluxes estimated from GOSAT retrievals of total column CO2

    Directory of Open Access Journals (Sweden)

    S. Basu

    2013-09-01

    Full Text Available We present one of the first estimates of the global distribution of CO2 surface fluxes using total column CO2 measurements retrieved by the SRON-KIT RemoTeC algorithm from the Greenhouse gases Observing SATellite (GOSAT. We derive optimized fluxes from June 2009 to December 2010. We estimate fluxes from surface CO2 measurements to use as baselines for comparing GOSAT data-derived fluxes. Assimilating only GOSAT data, we can reproduce the observed CO2 time series at surface and TCCON sites in the tropics and the northern extra-tropics. In contrast, in the southern extra-tropics GOSAT XCO2 leads to enhanced seasonal cycle amplitudes compared to independent measurements, and we identify it as the result of a land–sea bias in our GOSAT XCO2 retrievals. A bias correction in the form of a global offset between GOSAT land and sea pixels in a joint inversion of satellite and surface measurements of CO2 yields plausible global flux estimates which are more tightly constrained than in an inversion using surface CO2 data alone. We show that assimilating the bias-corrected GOSAT data on top of surface CO2 data (a reduces the estimated global land sink of CO2, and (b shifts the terrestrial net uptake of carbon from the tropics to the extra-tropics. It is concluded that while GOSAT total column CO2 provide useful constraints for source–sink inversions, small spatiotemporal biases – beyond what can be detected using current validation techniques – have serious consequences for optimized fluxes, even aggregated over continental scales.

  17. Community metabolism and air-sea CO[sub 2] fluxes in a coral reef ecosystem (Moorea, French Polynesia)

    Energy Technology Data Exchange (ETDEWEB)

    Gattuso, J P; Pichon, M; Delesalle, B; Frankignoulle, M [Observatory of European Oceanology (Monaco)

    1993-06-01

    Community metabolism (primary production, respiration and calcification) and air-sea CO[sub 2] fluxes of the 'Tiahura barrier reef' (Moorea, French Polynesia) were investigated in November and December 1991. Gross production and respiration were respectively 640.2 to 753 and 590.4 to 641.5 mmol (O[sub 2] or CO[sub 2]) m[sup 2] d[sup -1] (7.7 to 9.0 and 7.1 to 7.7 g C m)[sup 2] d[sup -1] and the reef displayed a slightly negative excess (net) production. The contribution of planktonic primary production to reef metabolism was negligible (0.15% of total gross production). Net calcification was positive both during the day and at night; its daily value was 243 mmol CaCO[sub 3] m[sup 2] d[sup -1] (24.3 g CaCO)[sub 3] m[sup -2] d[sup -1]. Reef metabolism decreased seawater total CO[sub 2] by 433.3 mmol m[sup 2] d[sup -1]. The air-sea CO[sub 2] fluxes were close to zero in the ocean but displayed a strong daily pattern at the reef front and the back reef. Fluxes were positive (CO[sub 2] evasion) at night, decreased as irradiance increased and were negative during the day (CO[sub 2] invasion). Integration of the fluxes measured during a 24 h experiment at the back reef showed that the reef was a source of CO[sub 2] to the atmosphere (1.5 mmol m[sup 2] d[sup -1]).

  18. Southern Ocean CO2 sink: the contribution of the sea ice

    DEFF Research Database (Denmark)

    Delille, B.; Vancoppenolle, Martin; Geilfus, Nicolas-Xavier

    2014-01-01

    at the air-sea ice interface. The sea ice changes from a transient source to a sink for atmospheric CO2. We upscale these observations to the whole Antarctic sea ice cover using the NEMO-LIM3 large-scale sea ice-ocean and provide first esti- mates of spring and summer CO2 uptake from the atmosphere...... by Antarctic sea ice. Over the spring- summer period, the Antarctic sea ice cover is a net sink of atmospheric CO2 of 0.029 Pg C, about 58% of the estimated annual uptake from the Southern Ocean. Sea ice then contributes significantly to the sink of CO2 of the Southern Ocean....... undersaturation while the underlying oceanic waters remains slightly oversaturated. The decrease from winter to summer of pCO2 in the brines is driven by dilution with melting ice, dissolution of carbonate crystals, and net primary production. As the ice warms, its permeability increases, allowing CO2 transfer...

  19. Air-sea exchange of CO2 in the Gulf of Kutch, northern Arabian Sea based on bomb-carbon in corals and tree rings

    International Nuclear Information System (INIS)

    Chakraborty, S.; Ramesh, R.; Krishnaswami, S.

    1994-01-01

    Radiocarbon analyses were carried out in the annual bands of a 40 year old coral collected from the Gulf of Kutch (22.6degN, 70degE) in the northern Arabian Sea and in the annual rings of a teak tree from Thane (19deg14'N, 73deg24'E) near Bombay. These measurements were made in order to obtain the rates of air-sea exchange of CO 2 and the advective mixing of water in the Gulf of Kutch. The Δ 14 C peak in the Thane tree occurs in the year 1964, with a value of ∼630 part per thousand, significantly lower than that of the mean atmospheric Δ 14 C of the northern hemisphere (∼1000 part per thousand). The radiocarbon time series of the coral was modelled considering the supply of carbon and radiocarbon to the gulf through air-sea exchange and advective water transport from the open Arabian Sea. A reasonable fit for the coral data was obtained with an air-sea CO 2 exchange rate of 11-12 mol m -2 yr -1 , and an advective velocity of 28 m yr -1 between the Arabian Sea and the Gulf of Kutch; this was based on a model generated time series for radiocarbon in the Arabian Sea. The deduced velocity (∼ 28 m yr -1 ) of the advective transport of water between the Gulf and the Arabian Sea is much lower than the surface tidal current velocity in this region, but can be understood in terms of net fluxes of carbon and radiocarbon to the gulf to match the observed coral Δ 14 C time series. (author). 30 refs., 7 figs., 2 tabs

  20. Evaluating Humidity and Sea Salt Disturbances on CO2 Flux Measurements

    DEFF Research Database (Denmark)

    Nilsson, Erik; Bergström, Hans; Rutgersson, Anna

    2018-01-01

    Global oceans are an important sink of atmospheric carbon dioxide (CO2). Therefore, understanding the air–sea flux of CO2 is a vital part in describing the global carbon balance. Eddy covariance (EC) measurements are often used to study CO2 fluxes from both land and ocean. Values of CO2 are usual...

  1. Air-sea flux of CO2 in arctic coastal waters influenced by glacial melt water and sea ice

    DEFF Research Database (Denmark)

    Sejr, Mikael Kristian; Krause-Jensen, Dorte; Rysgaard, Søren

    2011-01-01

    Annual air–sea exchange ofCO2 inYoung Sound,NEGreenlandwas estimated using pCO2 surface-water measurements during summer (2006–2009) and during an ice-covered winter 2008. All surface pCO2 values were below atmospheric levels indicating an uptake of atmospheric CO2. During sea ice formation...... and thereby efficiently blocked air–sea CO2 exchange. During sea ice melt, dissolution of CaCO3 combined with primary production and strong stratification of the water column acted to lower surface-water pCO2 levels in the fjord. Also, a large input of glacial melt water containing geochemically reactive...... year-to-year variation in annual gas exchange....

  2. Air-sea exchange of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Bakker, D C.E.; De Baar, H J.W.; De Jong, E; Koning, F A [Netherlands Institute for Sea Research NIOZ, Den Burg Texel (Netherlands)

    1996-12-31

    The greenhouse gas carbon dioxide is emitted by anthropogenic activities. The oceans presumably serve as a net sink for 17 to 39% of these emissions. The objective of this project is to quantify more accurately the locality, seasonality and magnitude of the net air-sea flux of CO2 with emphasis on the South Atlantic Ocean. In situ measurements of the fugacity of CO2 in surface water and marine air, of total dissolved inorganic carbon, alkalinity and of air-sea exchange of CO2 have been made at four Atlantic crossings, in the Southern Ocean, in a Norwegian fjord and in the Dutch coastal zone. Skin temperature was detected during several of the cruises. The data collected in the course of the project support and refine previous findings. Variability of dissolved CO2 in surface water is related in a complex way to biological and physical factors. The carbonate equilibria cause dissolved gaseous CO2 to react in an intricate manner to disturbances. Dissolved gaseous CO2 hardly ever attains equilibrium with the atmospheric CO2 content by means of air-sea exchange, before a new disturbance occurs. Surface water fCO2 changes could be separated in those caused by seasonal warming and those by biological uptake in a Southern Ocean spring. Incorporation of a thermal skin effect and a change of the wind speed interval strongly increased the small net oceanic uptake for the area. The Atlantic crossings point to a relationship between water mass history and surface water CO2 characteristics. In particular, current flow and related heat fluxes leave their imprint on the concentration dissolved gaseous CO2 and on air-sea exchange. In the Dutch coastal zone hydrography and inorganic carbon characteristics of the water were heterogeneous, which yielded variable air-sea exchange of CO2. figs., tabs., refs.

  3. Air-sea fluxes of CO2 and CH4 from the Penlee Point Atmospheric Observatory on the south-west coast of the UK

    Science.gov (United States)

    Yang, Mingxi; Bell, Thomas G.; Hopkins, Frances E.; Kitidis, Vassilis; Cazenave, Pierre W.; Nightingale, Philip D.; Yelland, Margaret J.; Pascal, Robin W.; Prytherch, John; Brooks, Ian M.; Smyth, Timothy J.

    2016-05-01

    We present air-sea fluxes of carbon dioxide (CO2), methane (CH4), momentum, and sensible heat measured by the eddy covariance method from the recently established Penlee Point Atmospheric Observatory (PPAO) on the south-west coast of the United Kingdom. Measurements from the south-westerly direction (open water sector) were made at three different sampling heights (approximately 15, 18, and 27 m above mean sea level, a.m.s.l.), each from a different period during 2014-2015. At sampling heights ≥ 18 m a.m.s.l., measured fluxes of momentum and sensible heat demonstrate reasonable ( ≤ ±20 % in the mean) agreement with transfer rates over the open ocean. This confirms the suitability of PPAO for air-sea exchange measurements in shelf regions. Covariance air-sea CO2 fluxes demonstrate high temporal variability. Air-to-sea transport of CO2 declined from spring to summer in both years, coinciding with the breakdown of the spring phytoplankton bloom. We report, to the best of our knowledge, the first successful eddy covariance measurements of CH4 emissions from a marine environment. Higher sea-to-air CH4 fluxes were observed during rising tides (20 ± 3; 38 ± 3; 29 ± 6 µmole m-2 d-1 at 15, 18, 27 m a.m.s.l.) than during falling tides (14 ± 2; 22 ± 2; 21 ± 5 µmole m-2 d-1), consistent with an elevated CH4 source from an estuarine outflow driven by local tidal circulation. These fluxes are a few times higher than the predicted CH4 emissions over the open ocean and are significantly lower than estimates from other aquatic CH4 hotspots (e.g. polar regions, freshwater). Finally, we found the detection limit of the air-sea CH4 flux by eddy covariance to be 20 µmole m-2 d-1 over hourly timescales (4 µmole m-2 d-1 over 24 h).

  4. Global sea-to-air flux climatology for bromoform, dibromomethane and methyl iodide

    Directory of Open Access Journals (Sweden)

    F. Ziska

    2013-09-01

    Full Text Available Volatile halogenated organic compounds containing bromine and iodine, which are naturally produced in the ocean, are involved in ozone depletion in both the troposphere and stratosphere. Three prominent compounds transporting large amounts of marine halogens into the atmosphere are bromoform (CHBr3, dibromomethane (CH2Br2 and methyl iodide (CH3I. The input of marine halogens to the stratosphere has been estimated from observations and modelling studies using low-resolution oceanic emission scenarios derived from top-down approaches. In order to improve emission inventory estimates, we calculate data-based high resolution global sea-to-air flux estimates of these compounds from surface observations within the HalOcAt (Halocarbons in the Ocean and Atmosphere database (https://halocat.geomar.de/. Global maps of marine and atmospheric surface concentrations are derived from the data which are divided into coastal, shelf and open ocean regions. Considering physical and biogeochemical characteristics of ocean and atmosphere, the open ocean water and atmosphere data are classified into 21 regions. The available data are interpolated onto a 1°×1° grid while missing grid values are interpolated with latitudinal and longitudinal dependent regression techniques reflecting the compounds' distributions. With the generated surface concentration climatologies for the ocean and atmosphere, global sea-to-air concentration gradients and sea-to-air fluxes are calculated. Based on these calculations we estimate a total global flux of 1.5/2.5 Gmol Br yr−1 for CHBr3, 0.78/0.98 Gmol Br yr−1 for CH2Br2 and 1.24/1.45 Gmol Br yr−1 for CH3I (robust fit/ordinary least squares regression techniques. Contrary to recent studies, negative fluxes occur in each sea-to-air flux climatology, mainly in the Arctic and Antarctic regions. "Hot spots" for global polybromomethane emissions are located in the equatorial region, whereas methyl iodide emissions are enhanced in the

  5. Air–sea exchanges of CO2 in the world's coastal seas

    Directory of Open Access Journals (Sweden)

    C.-T. A. Chen

    2013-10-01

    Full Text Available The air–sea exchanges of CO2 in the world's 165 estuaries and 87 continental shelves are evaluated. Generally and in all seasons, upper estuaries with salinities of less than two are strong sources of CO2 (39 ± 56 mol C m−2 yr−1, positive flux indicates that the water is losing CO2 to the atmosphere; mid-estuaries with salinities of between 2 and 25 are moderate sources (17.5 ± 34 mol C m−2 yr−1 and lower estuaries with salinities of more than 25 are weak sources (8.4 ± 14 mol C m−2 yr−1. With respect to latitude, estuaries between 23.5 and 50° N have the largest flux per unit area (63 ± 101 mmol C m−2 d−1; these are followed by lower-latitude estuaries (23.5–0° S: 44 ± 29 mmol C m−2 d−1; 0–23.5° N: 39 ± 55 mmol C m−2 d−1, and then regions north of 50° N (36 ± 91 mmol C m−2 d−1. Estuaries south of 50° S have the smallest flux per unit area (9.5 ± 12 mmol C m−2 d−1. Mixing with low-pCO2 shelf waters, water temperature, residence time and the complexity of the biogeochemistry are major factors that govern the pCO2 in estuaries, but wind speed, seldom discussed, is critical to controlling the air–water exchanges of CO2. The total annual release of CO2 from the world's estuaries is now estimated to be 0.10 Pg C yr−1, which is much lower than published values mainly because of the contribution of a considerable amount of heretofore unpublished or new data from Asia and the Arctic. The Asian data, although indicating high pCO2, are low in sea-to-air fluxes because of low wind speeds. Previously determined flux values rely heavily on data from Europe and North America, where pCO2 is lower but wind speeds are much higher, such that the CO2 fluxes are higher than in Asia. Newly emerged CO2 flux data in the Arctic reveal that estuaries there mostly absorb rather than release CO2. Most continental shelves, and especially those at high latitude, are undersaturated in terms of CO2 and absorb CO2 from the

  6. Using eddy covariance to measure the dependence of air-sea CO2 exchange rate on friction velocity

    Science.gov (United States)

    Landwehr, Sebastian; Miller, Scott D.; Smith, Murray J.; Bell, Thomas G.; Saltzman, Eric S.; Ward, Brian

    2018-03-01

    Parameterisation of the air-sea gas transfer velocity of CO2 and other trace gases under open-ocean conditions has been a focus of air-sea interaction research and is required for accurately determining ocean carbon uptake. Ships are the most widely used platform for air-sea flux measurements but the quality of the data can be compromised by airflow distortion and sensor cross-sensitivity effects. Recent improvements in the understanding of these effects have led to enhanced corrections to the shipboard eddy covariance (EC) measurements.Here, we present a revised analysis of eddy covariance measurements of air-sea CO2 and momentum fluxes from the Southern Ocean Surface Ocean Aerosol Production (SOAP) study. We show that it is possible to significantly reduce the scatter in the EC data and achieve consistency between measurements taken on station and with the ship underway. The gas transfer velocities from the EC measurements correlate better with the EC friction velocity (u*) than with mean wind speeds derived from shipboard measurements corrected with an airflow distortion model. For the observed range of wind speeds (u10 N = 3-23 m s-1), the transfer velocities can be parameterised with a linear fit to u*. The SOAP data are compared to previous gas transfer parameterisations using u10 N computed from the EC friction velocity with the drag coefficient from the Coupled Ocean-Atmosphere Response Experiment (COARE) model version 3.5. The SOAP results are consistent with previous gas transfer studies, but at high wind speeds they do not support the sharp increase in gas transfer associated with bubble-mediated transfer predicted by physically based models.

  7. Turbulence structure and CO2 transfer at the air-sea interface and turbulent diffusion in thermally-stratified flows

    International Nuclear Information System (INIS)

    Komori, S.

    1996-01-01

    in clarifying environmental flow phenomena. This report summarizes research on two turbulence structure and diffusion topics; turbulence structure and the gas transfer mechanism across the air-sea (air-water) interface and the heat and momentum transfer mechanism in thermally stratified flows. The first study shows the relationship between the carbon dioxide (CO 2 ) transfer mechanism across a sheared air-water interface and the turbulence structure near the interface. The results revealed that the conventional proportional relationship between CO 2 transfer velocity across the air-sea interface and mean wind speed over the sea surface is incorrect. The second study numerically clarified the significant effects of molecular diffusivity (the Prandtl number) of active heat on heat transfer in stable thermally-stratified Hows. The results obtained from the two studies are described in the next two chapters. Since the results are mainly quoted from a series of previously published and in press works by Komori et al.'s research group (see references), this report might be considered as a summary of those works

  8. Air-Sea CO2 fluxes in the Atlantic as measured during boreal spring and autumn

    Directory of Open Access Journals (Sweden)

    A. F. Ríos

    2010-05-01

    Full Text Available A total of fourteen hydrographic cruises from 2000 to 2008 were conducted during the spring and autumn seasons between Spain and the Southern Ocean under the framework of the Spanish research project FICARAM. The underway measurements were processed and analysed to describe the meridional air-sea CO2 fluxes (FCO2 in the covered sector of the Atlantic Ocean. The data has been grouped into different biogeochemical oceanographic provinces based on thermohaline characteristics. The spatial and temporal distributions of FCO2 followed expected distributions and annual trends reproducing the recent climatological ΔfCO2 estimations with a mean difference of −3 ± 18 μatm (Takahashi et al., 2009. The reduction in the CO2 saturation along the meridional FICARAM cruises represented an increase of 0.02 ± 0.14 mol m−2 yr−1 in the ocean uptake of atmospheric CO2. The subtropical waters in both Hemispheres acted as a sink of atmospheric CO2 during the successive spring seasons and as a source in autumn. The coarse reduction of the ocean uptake of atmospheric CO2 observed in the North Atlantic Ocean was linked to conditions of negative phase of the North Atlantic Oscillation that prevailed during the FICARAM period. Surface waters in the North Equatorial Counter Current revealed a significant long-term decrease of sea surface salinity of −0.16 ± 0.01 yr−1 coinciding with a declination of −3.5 ± 0.9 μatm yr−1 in the air–sea disequilibrium of CO2 fugacity and a rise of oceanic CO2 uptake of −0.09 ± 0.03 mol m−2 yr−1. The largest CO2 source was located in the equatorial upwelling system. These tropical waters that reached emissions of 0.7 ± 0.5 and 1.0 ± 0.7 mol m−2 y−1 in spring and autumn, respectively, showed an interannual warming of 0.11 ± 0.03 °C yr−1 and a wind speed decrease of −0.58 ± 0.14 m s−1 yr−1 in spring cruises which suggest the weakening of upwelling events associated with warm El Niño – Southern

  9. The Role of Sea Ice in 2 x CO2 Climate Model Sensitivity. Part 2; Hemispheric Dependencies

    Science.gov (United States)

    Rind, D.; Healy, R.; Parkinson, C.; Martinson, D.

    1997-01-01

    How sensitive are doubled CO2 simulations to GCM control-run sea ice thickness and extent? This issue is examined in a series of 10 control-run simulations with different sea ice and corresponding doubled CO2 simulations. Results show that with increased control-run sea ice coverage in the Southern Hemisphere, temperature sensitivity with climate change is enhanced, while there is little effect on temperature sensitivity of (reasonable) variations in control-run sea ice thickness. In the Northern Hemisphere the situation is reversed: sea ice thickness is the key parameter, while (reasonable) variations in control-run sea ice coverage are of less importance. In both cases, the quantity of sea ice that can be removed in the warmer climate is the determining factor. Overall, the Southern Hemisphere sea ice coverage change had a larger impact on global temperature, because Northern Hemisphere sea ice was sufficiently thick to limit its response to doubled CO2, and sea ice changes generally occurred at higher latitudes, reducing the sea ice-albedo feedback. In both these experiments and earlier ones in which sea ice was not allowed to change, the model displayed a sensitivity of -0.02 C global warming per percent change in Southern Hemisphere sea ice coverage.

  10. Co-benefits of global and regional greenhouse gas mitigation for US air quality in 2050

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuqiang; Bowden, Jared H.; Adelman, Zachariah; Naik, Vaishali; Horowitz, Larry W.; Smith, Steven J.; West, J. Jason

    2016-08-01

    Policies to mitigate greenhouse gas (GHG) emissions will not only slow climate change but can also have ancillary benefits of improved air quality. Here we examine the co-benefits of both global and regional GHG mitigation for US air quality in 2050 at fine resolution, using dynamical downscaling methods, building on a previous global co-benefits study (West et al., 2013). The co-benefits for US air quality are quantified via two mechanisms: through reductions in co-emitted air pollutants from the same sources and by slowing climate change and its influence on air quality, following West et al. (2013). Additionally, we separate the total co-benefits into contributions from domestic GHG mitigation vs. mitigation in foreign countries. We use the Weather Research and Forecasting (WRF) model to dynamically downscale future global climate to the regional scale and the Sparse Matrix Operator Kernel Emissions (SMOKE) program to directly process global anthropogenic emissions to the regional domain, and we provide dynamical boundary conditions from global simulations to the regional Community Multi-scale Air Quality (CMAQ) model. The total co-benefits of global GHG mitigation from the RCP4.5 scenario compared with its reference are estimated to be higher in the eastern US (ranging from 0.6 to 1.0 µg m-3) than the west (0–0.4 µg m-3) for fine particulate matter (PM2.5), with an average of 0.47 µg m-3 over the US; for O3, the total co-benefits are more uniform at 2–5 ppb, with a US average of 3.55 ppb. Comparing the two mechanisms of co-benefits, we find that reductions in co-emitted air pollutants have a much greater influence on both PM2.5 (96 % of the total co-benefits) and O3 (89 % of the total) than the second co-benefits mechanism via slowing climate change, consistent with West et al. (2013). GHG mitigation from foreign countries contributes more to the US O3 reduction

  11. Contribution of tropical cyclones to the air-sea CO2 flux: A global view

    Digital Repository Service at National Institute of Oceanography (India)

    Levy, M.; Lengaigne, M.; Bopp, L.; Vincent, E.M.; Madec, G.; Ethe, C.; DileepKumar, M.; Sarma, V.V.S.S.

    .ocemod.2006.11.003.501 D’Asaro, E. (2003), The ocean boundary layer below hurricane dennis, Journal of physical502 oceanography, 33(3), 561–579.503 D’Asaro,E.,andC.McNeil(2007),Air-seagasexchangeatextremewindspeedsmeasured504 by autonomous oceanographic floats... at high wind speed [Liss and Merlivat, 1986; Wanninkhof, 1992; D’Asaro and McNeil,55 2007; McNeil and D’Asaro, 2007]. TCs also impact F CO 2 because their intense surface56 winds increase vertical entrainment of subsurface waters (hereafter referred...

  12. ISLSCP II Air-Sea Carbon Dioxide Gas Exchange

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains the calculated net ocean-air carbon dioxide (CO2) flux and sea-air CO2 partial pressure (pCO2) difference. The estimates are based on...

  13. Relationship between sea level and climate forcing by CO2 on geological timescales.

    Science.gov (United States)

    Foster, Gavin L; Rohling, Eelco J

    2013-01-22

    On 10(3)- to 10(6)-year timescales, global sea level is determined largely by the volume of ice stored on land, which in turn largely reflects the thermal state of the Earth system. Here we use observations from five well-studied time slices covering the last 40 My to identify a well-defined and clearly sigmoidal relationship between atmospheric CO(2) and sea level on geological (near-equilibrium) timescales. This strongly supports the dominant role of CO(2) in determining Earth's climate on these timescales and suggests that other variables that influence long-term global climate (e.g., topography, ocean circulation) play a secondary role. The relationship between CO(2) and sea level we describe portrays the "likely" (68% probability) long-term sea-level response after Earth system adjustment over many centuries. Because it appears largely independent of other boundary condition changes, it also may provide useful long-range predictions of future sea level. For instance, with CO(2) stabilized at 400-450 ppm (as required for the frequently quoted "acceptable warming" of 2 °C), or even at AD 2011 levels of 392 ppm, we infer a likely (68% confidence) long-term sea-level rise of more than 9 m above the present. Therefore, our results imply that to avoid significantly elevated sea level in the long term, atmospheric CO(2) should be reduced to levels similar to those of preindustrial times.

  14. Carbon dynamics and CO2 air-sea exchanges in the eutrophied coastal waters of the Southern Bight of the North Sea: a modelling study

    Directory of Open Access Journals (Sweden)

    N. Gypens

    2004-01-01

    Full Text Available A description of the carbonate system has been incorporated in the MIRO biogeochemical model to investigate the contribution of diatom and Phaeocystis blooms to the seasonal dynamics of air-sea CO2 exchanges in the Eastern Channel and Southern Bight of the North Sea, with focus on the eutrophied Belgian coastal waters. For this application, the model was implemented in a simplified three-box representation of the hydrodynamics with the open ocean boundary box ‘Western English Channel’ (WCH and the ‘French Coastal Zone’ (FCZ and ‘Belgian Coastal Zone’ (BCZ boxes receiving carbon and nutrients from the rivers Seine and Scheldt, respectively. Results were obtained by running the model for the 1996–1999 period. The simulated partial pressures of CO2 (pCO2 were successfully compared with data recorded over the same period in the central BCZ at station 330 (51°26.05′ N; 002°48.50′ E. Budget calculations based on model simulations of carbon flow rates indicated for BCZ a low annual sink of atmospheric CO2 (−0.17 mol C m-2 y-1. On the opposite, surface water pCO2 in WCH was estimated to be at annual equilibrium with respect to atmospheric CO2. The relative contribution of biological, chemical and physical processes to the modelled seasonal variability of pCO2 in BCZ was further explored by running model scenarios with separate closures of biological activities and/or river inputs of carbon. The suppression of biological processes reversed direction of the CO2 flux in BCZ that became, on an annual scale, a significant source for atmospheric CO2 (+0.53 mol C m-2 y-1. Overall biological activity had a stronger influence on the modelled seasonal cycle of pCO2 than temperature. Especially Phaeocystis colonies which growth in spring were associated with an important sink of atmospheric CO2 that counteracted the temperature-driven increase of pCO2 at this period of the year. However, river inputs of organic and inorganic carbon were

  15. Air–Sea CO2 Gas Transfer Velocity in a Shallow Estuary

    DEFF Research Database (Denmark)

    Mørk, Eva Thorborg; Sørensen, Lise Lotte; Jensen, Bjarne

    2014-01-01

    The air–sea transfer velocity of CO2(kCO2) was investigated in a shallow estuary in March to July 2012, using eddy-covariance measurements of CO2 fluxes and measured air–sea CO2 partial-pressure differences. A data evaluation method that eliminates data by nine rejection criteria in order......, the transfer velocity in the shallow water estuary was lower than in other coastal waters, possibly a symptom of low tidal amplitude leading to low intensity water turbulence. High transfer velocities were recorded above wind speeds of 5 m s−1 , believed to be caused by early-breaking waves and the large fetch...... (6.5 km) of the estuary. These findings indicate that turbulence in both air and water influences the transfer velocity....

  16. Carbon isotope evidence for the latitudinal distribution and wind speed dependence of the air-sea gas transfer velocity

    International Nuclear Information System (INIS)

    Krakauer, Nir Y.

    2006-01-01

    The air-sea gas transfer velocity is an important determinant of the exchange of gases, including CO 2 , between the atmosphere and ocean, but the magnitude of the transfer velocity and what factors control it remains poorly known. Here, we use oceanic and atmospheric observations of 14 C and 13 C to constrain the global mean gas transfer velocity as well as the exponent of its wind speed dependence, utilizing the distinct signatures left by the air-sea exchange of 14 CO 2 and 13 CO 2 . While the atmosphere and ocean inventories of 14 CO 2 and 13 CO 2 constrain the mean gas transfer velocity, the latitudinal pattern in the atmospheric and oceanic 14 C and 13 C distributions contain information about the wind speed dependence. We computed the uptake of bomb 14 C by the ocean for different transfer velocity patterns using pulse response functions from an ocean general circulation model, and evaluated the match between the predicted bomb 14 C concentrations and observationally based estimates for the 1970s-1990s. Using a wind speed climatology based on satellite measurements, we solved either for the best-fit global relationship between gas exchange and mean wind speed or for the mean gas transfer velocity over each of 11 ocean regions. We also compared the predicted consequences of different gas exchange relationships on the rate of change and interhemisphere gradient of 14 C in atmospheric CO 2 with tree-ring and atmospheric measurements. Our results suggest that globally, the dependence of the air-sea gas transfer velocity on wind speed is close to linear, with an exponent of 0.5 ± 0.4, and that the global mean gas transfer velocity at a Schmidt number of 660 is 20 ± 3 cm/hr, similar to the results of previous analyses. We find that the air-sea flux of 13 C estimated from atmosphere and ocean observations also suggests a lower than quadratic dependence of gas exchange on wind speed

  17. On which timescales do gas transfer velocities control North Atlantic CO2 flux variability?

    OpenAIRE

    Couldrey, Matthew; Oliver, Kevin; Yool, Andrew; Halloran, Paul; Achterberg, Eric

    2016-01-01

    The North Atlantic is an important basin for the global ocean's uptake of anthropogenic and natural carbon dioxide (CO2), but the mechanisms controlling this carbon flux are not fully understood. The air-sea flux of CO2, F, is the product of a gas transfer velocity, k, the air-sea CO2 concentration gradient, ΔpCO2, and the temperature and salinity-dependent solubility coefficient, α. k is difficult to constrain, representing the dominant uncertainty in F on short (instantaneous to interannual...

  18. The idea of global CO2 trade

    International Nuclear Information System (INIS)

    Svendsen, G.T.

    1999-01-01

    The US has been criticized for wanting to earn a fortune on a global CO 2 market. However, compared to the situation without trade and provided that such a market is designed so that it does not pay to cheat, a global CO 2 market may provide the world with an epoch-making means of cost-effective control which can solve future global environmental problems. The economic gains from 'hot air' distributions of permits and CO 2 trade make the system politically attractive to potential participants. For example, vital financial subsidies from the EU to Eastern Europe are to be expected. It will probably not pay to cheat if quotas are renewed periodically by the UN. Cheating countries are then to be excluded from further profitable trade. Also, a periodical renewal of permits makes it possible to tighten target levels in the future

  19. Simulated anthropogenic CO2 storage and acidification of the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    J. Palmiéri

    2015-02-01

    Full Text Available Constraints on the Mediterranean Sea's storage of anthropogenic CO2 are limited, coming only from data-based approaches that disagree by more than a factor of two. Here we simulate this marginal sea's anthropogenic carbon storage by applying a perturbation approach in a high-resolution regional model. Our model simulates that, between 1800 and 2001, basin-wide CO2 storage by the Mediterranean Sea has increased by 1.0 Pg C, a lower limit based on the model's weak deep-water ventilation, as revealed by evaluation with CFC-12. Furthermore, by testing a data-based approach (transit time distribution in our model, comparing simulated anthropogenic CO2 to values computed from simulated CFC-12 and physical variables, we conclude that the associated basin-wide storage of 1.7 Pg, published previously, must be an upper bound. Out of the total simulated storage of 1.0 Pg C, 75% comes from the air–sea flux into the Mediterranean Sea and 25% comes from net transport from the Atlantic across the Strait of Gibraltar. Sensitivity tests indicate that the Mediterranean Sea's higher total alkalinity, relative to the global-ocean mean, enhances the Mediterranean's total inventory of anthropogenic carbon by 10%. Yet the corresponding average anthropogenic change in surface pH does not differ significantly from the global-ocean average, despite higher total alkalinity. In Mediterranean deep waters, the pH change is estimated to be between −0.005 and −0.06 pH units.

  20. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise.

    Science.gov (United States)

    Langley, J Adam; McKee, Karen L; Cahoon, Donald R; Cherry, Julia A; Megonigal, J Patrick

    2009-04-14

    Tidal wetlands experiencing increased rates of sea-level rise (SLR) must increase rates of soil elevation gain to avoid permanent conversion to open water. The maximal rate of SLR that these ecosystems can tolerate depends partly on mineral sediment deposition, but the accumulation of organic matter is equally important for many wetlands. Plant productivity drives organic matter dynamics and is sensitive to global change factors, such as rising atmospheric CO(2) concentration. It remains unknown how global change will influence organic mechanisms that determine future tidal wetland viability. Here, we present experimental evidence that plant response to elevated atmospheric [CO(2)] stimulates biogenic mechanisms of elevation gain in a brackish marsh. Elevated CO(2) (ambient + 340 ppm) accelerated soil elevation gain by 3.9 mm yr(-1) in this 2-year field study, an effect mediated by stimulation of below-ground plant productivity. Further, a companion greenhouse experiment revealed that the CO(2) effect was enhanced under salinity and flooding conditions likely to accompany future SLR. Our results indicate that by stimulating biogenic contributions to marsh elevation, increases in the greenhouse gas, CO(2), may paradoxically aid some coastal wetlands in counterbalancing rising seas.

  1. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise

    Science.gov (United States)

    Langley, J. Adam; McKee, Karen L.; Cahoon, Donald R.; Cherry, Julia A.; Megonigal, J. Patrick

    2009-01-01

    Tidal wetlands experiencing increased rates of sea-level rise (SLR) must increase rates of soil elevation gain to avoid permanent conversion to open water. The maximal rate of SLR that these ecosystems can tolerate depends partly on mineral sediment deposition, but the accumulation of organic matter is equally important for many wetlands. Plant productivity drives organic matter dynamics and is sensitive to global change factors, such as rising atmospheric CO2 concentration. It remains unknown how global change will influence organic mechanisms that determine future tidal wetland viability. Here, we present experimental evidence that plant response to elevated atmospheric [CO2] stimulates biogenic mechanisms of elevation gain in a brackish marsh. Elevated CO2 (ambient + 340 ppm) accelerated soil elevation gain by 3.9 mm yr−1 in this 2-year field study, an effect mediated by stimulation of below-ground plant productivity. Further, a companion greenhouse experiment revealed that the CO2 effect was enhanced under salinity and flooding conditions likely to accompany future SLR. Our results indicate that by stimulating biogenic contributions to marsh elevation, increases in the greenhouse gas, CO2, may paradoxically aid some coastal wetlands in counterbalancing rising seas. PMID:19325121

  2. Subsurface low pH and carbonate saturation state of aragonite on China side of the North Yellow Sea: combined effects of global atmospheric CO2 increase, regional environmental changes, and local biogeochemical processes

    Science.gov (United States)

    Zhai, W.-D.; Zheng, N.; Huo, C.; Xu, Y.; Zhao, H.-D.; Li, Y.-W.; Zang, K.-P.; Wang, J.-Y.; Xu, X.-M.

    2013-02-01

    Based upon seven field surveys conducted between May 2011 and January 2012, we investigated pH, carbonate saturation state of aragonite (Ωarag), and ancillary parameters on the Chinese side of the North Yellow Sea, a western North Pacific continental margin of major economic importance. Subsurface waters were nearly in equilibrium with air in May and June. From July to October, the fugacity of CO2 (fCO2) of bottom water gradually increased to 697 ± 103 μatm and pH decreased to 7.83 ± 0.07 due to respiration/remineralization processes of primary production induced biogenic particles. In November and January, bottom water fCO2 decreased and pH gradually returned to an air-equilibrated level due to cooling enhanced vertical mixing. The corresponding bottom water Ωarag was 1.74 ± 0.17 (May), 1.77 ± 0.26 (June), 1.70 ± 0.26 (July), 1.72 ± 0.33 (August), 1.32 ± 0.31 (October), 1.50 ± 0.28 (November), and 1.41 ± 0.12 (January). Critically low Ωarag values of 1.0 to 1.2 were mainly observed in subsurface waters in a salinity range of 31.5-32.5 psu in October and November, accounting for ~ 10% of the North Yellow Sea area. Water mass derived from the adjacent Bohai Sea had a typical water salinity of 30.5-31.5 psu, and bottom water Ωarag values ranged mostly between 1.6 and 2.4. This study showed that the carbonate system in the North Yellow Sea was substantially influenced by global atmospheric CO2 increase. The community respiration/remineralization rates in typical North Yellow Sea bottom water mass were estimated at 0.55-1.0 μmol O2 kg-1 d-1 in warm seasons, leading to seasonal drops in subsurface pH and Ωarag. Outflow of the Bohai Sea water mass counteracted the subsurface Ωarag reduction in the North Yellow Sea.

  3. Ikaite crystal distribution in Arctic winter sea ice and implications for CO2 system dynamics

    Science.gov (United States)

    Rysgaard, S.; Søgaard, D. H.; Cooper, M.; Pućko, M.; Lennert, K.; Papakyriakou, T. N.; Wang, F.; Geilfus, N. X.; Glud, R. N.; Ehn, J.; McGinnnis, D. F.; Attard, K.; Sievers, J.; Deming, J. W.; Barber, D.

    2012-12-01

    The precipitation of ikaite (CaCO3·6H2O) in polar sea ice is critical to the efficiency of the sea ice-driven carbon pump and potentially important to the global carbon cycle, yet the spatial and temporal occurrence of ikaite within the ice is poorly known. We report unique observations of ikaite in unmelted ice and vertical profiles of ikaite abundance and concentration in sea ice for the crucial season of winter. Ice was examined from two locations: a 1 m thick land-fast ice site and a 0.3 m thick polynya site, both in the Young Sound area (74° N, 20° W) of NE Greenland. Ikaite crystals, ranging in size from a few µm to 700 µm were observed to concentrate in the interstices between the ice platelets in both granular and columnar sea ice. In vertical sea-ice profiles from both locations, ikaite concentration determined from image analysis, decreased with depth from surfaceice values of 700-900 µmol kg-1 ice (~ 25 × 106 crystals kg-1) to bottom-layer values of 100-200 µmol kg-1 ice (1-7 × 106 kg-1), all of which are much higher (4-10 times) than those reported in the few previous studies. Direct measurements of total alkalinity (TA) in surface layers fell within the same range as ikaite concentration whereas TA concentrations in bottom layers were twice as high. This depth-related discrepancy suggests interior ice processes where ikaite crystals form in surface sea ice layers and partly dissolved in bottom layers. From these findings and model calculations we relate sea ice formation and melt to observed pCO2 conditions in polar surface waters, and hence, the air-sea CO2 flux.

  4. Statistical analysis of global surface air temperature and sea level using cointegration methods

    DEFF Research Database (Denmark)

    Schmith, Torben; Johansen, Søren; Thejll, Peter

    Global sea levels are rising which is widely understood as a consequence of thermal expansion and melting of glaciers and land-based ice caps. Due to physically-based models being unable to simulate observed sea level trends, semi-empirical models have been applied as an alternative for projecting...... of future sea levels. There is in this, however, potential pitfalls due to the trending nature of the time series. We apply a statistical method called cointegration analysis to observed global sea level and surface air temperature, capable of handling such peculiarities. We find a relationship between sea...... level and temperature and find that temperature causally depends on the sea level, which can be understood as a consequence of the large heat capacity of the ocean. We further find that the warming episode in the 1940s is exceptional in the sense that sea level and warming deviates from the expected...

  5. The Idea of Global CO2 Trade

    DEFF Research Database (Denmark)

    Svendsen, Gert Tinggaard

    1999-01-01

    -effective control which can solve future global environmental problems. The economic gains from 'hot air' distributions of permits and CO2 trade make the system politically attractive to potential participants. For example, vital financial subsidies from the EU to Eastern Europe are to be expected. It will probably...

  6. A generalized model for the air-sea transfer of dimethyl sulfide at high wind speeds

    Science.gov (United States)

    Vlahos, Penny; Monahan, Edward C.

    2009-11-01

    The air-sea exchange of dimethyl sulfide (DMS) is an important component of ocean biogeochemistry and global climate models. Both laboratory experiments and field measurements of DMS transfer rates have shown that the air-sea flux of DMS is analogous to that of other significant greenhouse gases such as CO2 at low wind speeds (10 m/s. The result is an attenuation of the dimensionless Henry's Law constant (H) where (Heff = H/(1 + (Cmix/Cw) ΦB) by a solubility enhancement Cmix/Cw, and the fraction of bubble surface area per m2 surface ocean.

  7. The global climatology of an interannually varying air-sea flux data set

    Energy Technology Data Exchange (ETDEWEB)

    Large, W.G.; Yeager, S.G. [National Center for Atmospheric Research, Boulder, CO (United States)

    2009-08-15

    The air-sea fluxes of momentum, heat, freshwater and their components have been computed globally from 1948 at frequencies ranging from 6-hourly to monthly. All fluxes are computed over the 23 years from 1984 to 2006, but radiation prior to 1984 and precipitation before 1979 are given only as climatological mean annual cycles. The input data are based on NCEP reanalysis only for the near surface vector wind, temperature, specific humidity and density, and on a variety of satellite based radiation, sea surface temperature, sea-ice concentration and precipitation products. Some of these data are adjusted to agree in the mean with a variety of more reliable satellite and in situ measurements, that themselves are either too short a duration, or too regional in coverage. The major adjustments are a general increase in wind speed, decrease in humidity and reduction in tropical solar radiation. The climatological global mean air-sea heat and freshwater fluxes (1984-2006) then become 2 W/m{sup 2} and -0.1 mg/m{sup 2} per second, respectively, down from 30 W/m{sup 2} and 3.4 mg/m{sup 2} per second for the unaltered data. However, decadal means vary from 7.3 W/m{sup 2} (1977-1986) to -0.3 W/m{sup 2} (1997-2006). The spatial distributions of climatological fluxes display all the expected features. A comparison of zonally averaged wind stress components across ocean sub-basins reveals large differences between available products due both to winds and to the stress calculation. Regional comparisons of the heat and freshwater fluxes reveal an alarming range among alternatives; typically 40 W/m{sup 2} and 10 mg/m{sup 2} per second, respectively. The implied ocean heat transports are within the uncertainty of estimates from ocean observations in both the Atlantic and Indo-Pacific basins. They show about 2.4 PW of tropical heating, of which 80% is transported to the north, mostly in the Atlantic. There is similar good agreement in freshwater transport at many latitudes in both

  8. A multi-model assessment of the co-benefits of climate mitigation for global air quality

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Shilpa; Klimont, Zbigniew; Leitao, Joana; Riahi, Keywan; van Dingenen, Rita; Reis, Lara Aleluia; Calvin, Katherine; Dentener, Frank; Drouet, Laurent; Fujimori, Shinichiro; Harmsen, Mathijs; Luderer, Gunnar; Heyes, Chris; Strefler, Jessica; Tavoni, Massimo; van Vuuren, Detlef P.

    2016-12-01

    The recent International Panel on Climate change (IPCC) report identifies significant co-benefits from climate policies on near-term ambient air pollution and related human health outcomes [1]. This is increasingly relevant for policy making as the health impacts of air pollution are a major global concern- the Global Burden of Disease (GBD) study identifies outdoor air pollution as the sixth major cause of death globally [2]. Integrated assessment models (IAMs) are an effective tool to evaluate future air pollution outcomes across a wide range of assumptions on socio-economic development and policy regimes. The Representative Concentration Pathways (RCPs) [3] were the first set of long-term global scenarios developed across multiple integrated assessment models that provided detailed estimates of a number of air pollutants until 2100. However these scenarios were primarily designed to cover a defined range of radiative forcing outcomes and thus did not specifically focus on the interactions of long-term climate goals on near-term air pollution impacts. More recently, [4] used the RCP4.5 scenario to evaluate the co-benefits of global GHG reductions on air quality and human health in 2030. [5-7] have further examined the interactions of more diverse pollution control regimes with climate policies. This paper extends the listed studies in a number of ways. Firstly it uses multiple IAMs to look into the co-benefits of a global climate policy for ambient air pollution under harmonized assumptions on near-term air pollution control. Multi-model frameworks have been extensively used in the analysis of climate change mitigation pathways, and the structural uncertainties regarding the underlying mechanisms (see for example [8-10]. This is to our knowledge the first time that a multi-model evaluation has been specifically designed and applied to analyze the co-benefits of climate change policy on ambient air quality, thus enabling a better understanding of at a detailed

  9. Global warming: Sea ice and snow cover

    International Nuclear Information System (INIS)

    Walsh, J.E.

    1993-01-01

    In spite of differences among global climate simulations under scenarios where atmospheric CO 2 is doubled, all models indicate at least some amplification of greenouse warming at the polar regions. Several decades of recent data on air temperature, sea ice, and snow cover of the high latitudes of the Northern Hemisphere are summarized to illustrate the general compatibility of recent variations in those parameters. Despite a data void over the Arctic Ocean, some noteworthy patterns emerge. Warming dominates in winter and spring, as projected by global climate models, with the warming strongest over subpolar land areas of Alaska, northwestern Canada, and northern Eurasia. A time-longitude summary of Arctic sea ice variations indicates that timescales of most anomalies range from several months to several years. Wintertime maxima of total sea ice extent contain no apparent secular trends. The statistical significance of trends in recent sea ice variations was evaluated by a Monte Carlo procedure, showing a statistically significant negative trend in the summer. Snow cover data over the 20-y period of record show a noticeable decrease of Arctic snow cover in the late 1980s. This is of potential climatic significance since the accompanying decrease of surface albedo leads to a rapid increase of solar heating. 21 refs., 3 figs., 1 tab

  10. Acceleration of modern acidification in the South China Sea driven by anthropogenic CO2

    Science.gov (United States)

    Liu, Yi; Peng, Zicheng; Zhou, Renjun; Song, Shaohua; Liu, Weiguo; You, Chen-Feng; Lin, Yen-Po; Yu, Kefu; Wu, Chung-Che; Wei, Gangjian; Xie, Luhua; Burr, George S.; Shen, Chuan-Chou

    2014-01-01

    Modern acidification by the uptake of anthropogenic CO2 can profoundly affect the physiology of marine organisms and the structure of ocean ecosystems. Centennial-scale global and regional influences of anthropogenic CO2 remain largely unknown due to limited instrumental pH records. Here we present coral boron isotope-inferred pH records for two periods from the South China Sea: AD 1048–1079 and AD 1838–2001. There are no significant pH differences between the first period at the Medieval Warm Period and AD 1830–1870. However, we find anomalous and unprecedented acidification during the 20th century, pacing the observed increase in atmospheric CO2. Moreover, pH value also varies in phase with inter-decadal changes in Asian Winter Monsoon intensity. As the level of atmospheric CO2 keeps rising, the coupling global warming via weakening the winter monsoon intensity could exacerbate acidification of the South China Sea and threaten this expansive shallow water marine ecosystem. PMID:24888785

  11. Sensitivity Analysis for Atmospheric Infrared Sounder (AIRS) CO2 Retrieval

    Science.gov (United States)

    Gat, Ilana

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS) is a thermal infrared sensor able to retrieve the daily atmospheric state globally for clear as well as partially cloudy field-of-views. The AIRS spectrometer has 2378 channels sensing from 15.4 micrometers to 3.7 micrometers, of which a small subset in the 15 micrometers region has been selected, to date, for CO2 retrieval. To improve upon the current retrieval method, we extended the retrieval calculations to include a prior estimate component and developed a channel ranking system to optimize the channels and number of channels used. The channel ranking system uses a mathematical formalism to rapidly process and assess the retrieval potential of large numbers of channels. Implementing this system, we identifed a larger optimized subset of AIRS channels that can decrease retrieval errors and minimize the overall sensitivity to other iridescent contributors, such as water vapor, ozone, and atmospheric temperature. This methodology selects channels globally by accounting for the latitudinal, longitudinal, and seasonal dependencies of the subset. The new methodology increases accuracy in AIRS CO2 as well as other retrievals and enables the extension of retrieved CO2 vertical profiles to altitudes ranging from the lower troposphere to upper stratosphere. The extended retrieval method for CO2 vertical profile estimation using a maximum-likelihood estimation method. We use model data to demonstrate the beneficial impact of the extended retrieval method using the new channel ranking system on CO2 retrieval.

  12. Evaluation of the alkalinity in sea water by means of gran calculation. A procedure for titration in order to quantify the acidification of the seas by CO{sub 2} absorption; Bestimmung der Alkalinitaet in Meerwasser durch Granberechnung. Ein Titrationsverfahren zur Quantifizierung der Versauerung der Meere durch CO{sub 2}-Aufnahme

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Juergen [SI Analytics GmbH, Mainz (Germany)

    2012-04-15

    In the last 200 years, the content of carbon dioxide in the air has risen from about 280 ppm to more than 380 ppm. Here, the increase of the concentration of CO{sub 2} is discussed as a reason for 'global warming'. While in the atmosphere about 800 billion tons of carbon dioxide (calculated as carbon) are located, 38,000 billion tons of carbon dioxide are dissolved in seawater, ie 50 times of the amount of CO{sub 2} in the atmosphere. The increase in the amount of CO{sub 2} in the atmosphere also results in an almost 50-fold increase in the total dissolved carbon dioxide in the sea. This results in a lowering of the pH value, and in an influencing of the equilibrium of aragonite and calcite. Many sea creatures are hampered in their growth.

  13. Interannual variations of net community production and air-sea CO2 flux from winter to spring in the western subarctic North Pacific

    International Nuclear Information System (INIS)

    Midorikawa, Takashi; Ogawa, Kan; Nemoto, Kazuhiro; Kamiya, Hitomi; Umeda, Takafumi; Hiraishi, Naotaka; Wada, Akira; Ishii, Masao

    2003-01-01

    The role of spring biological production for the air-sea CO 2 flux was quantified in the Western Subarctic Gyre (48 deg N, 165 deg E), where the vertical profile of temperature revealed the existence of a temperature minimum (Tmin) layer in the North Pacific. The vertical profiles of temperature, salinity, dissolved oxygen, nutrients and dissolved inorganic carbon, DIC, in the upper water column were significantly variable year by year in spring, 1996-2000. Correspondingly, surface seawater at this site in spring was supersaturated with CO 2 in 1997, 1999 and 2000, but was undersaturated in 1996 and 1998. The concentrations of DIC and nutrients in the winter mixed layer were estimated from those in the Tmin layer in spring with a correction for particle decomposition based on the apparent oxygen utilization. The net community production (NCP) and air-sea CO 2 flux from winter to spring were calculated from the vertically integrated deficits of DIC and nutrients in the upper water column between the two seasons. The calculation of the carbon budget indicated large interannual variations of NCP (0-13 mmol/m 2 /d) and CO 2 efflux (4-16 mmol/m 2 /d) for this period. The CO 2 efflux was generally low in the year when NCP was high. The close coupling between biological production and CO 2 efflux suggested the important role of the changes in the mixed-layer depth, as a key process controlling both processes, especially of the timing, so that a decrease in the mixed-layer depth could result in the activation of biological production. The early biological consumption of the surface DIC concentration could shorten the period for acting as a source for atmospheric CO 2 and depress the CO 2 efflux in the Western Subarctic Gyre from winter to spring in 1996 and 1998. On the contrary, in 1997, persistently deep vertical mixing until late spring could suppress the biological activity and give rise to long-lasting CO 2 efflux

  14. Energy and material balance of CO2 capture from ambient air.

    Science.gov (United States)

    Zeman, Frank

    2007-11-01

    Current Carbon Capture and Storage (CCS) technologies focus on large, stationary sources that produce approximately 50% of global CO2 emissions. We propose an industrial technology that captures CO2 directly from ambient air to target the remaining emissions. First, a wet scrubbing technique absorbs CO2 into a sodium hydroxide solution. The resultant carbonate is transferred from sodium ions to calcium ions via causticization. The captured CO2 is released from the calcium carbonate through thermal calcination in a modified kiln. The energy consumption is calculated as 350 kJ/mol of CO2 captured. It is dominated by the thermal energy demand of the kiln and the mechanical power required for air movement. The low concentration of CO2 in air requires a throughput of 3 million cubic meters of air per ton of CO2 removed, which could result in significant water losses. Electricity consumption in the process results in CO2 emissions and the use of coal power would significantly reduce to net amount captured. The thermodynamic efficiency of this process is low but comparable to other "end of pipe" capture technologies. As another carbon mitigation technology, air capture could allow for the continued use of liquid hydrocarbon fuels in the transportation sector.

  15. Evidence from the Baltic Sea for an enhanced CO{sub 2} air-sea transfer velocity

    Energy Technology Data Exchange (ETDEWEB)

    Kuss, Joachim; Nagel, Klaus; Schneider, Bernd [Baltic Sea Research Institute, Warnemuende (Germany). Dept. of Marine Chemistry

    2004-04-01

    Surface water total CO{sub 2} concentrations (CT) and the CO{sub 2} partial pressure of the surface water and in the atmosphere were measured in the eastern Gotland Sea at approximately monthly intervals during five cruises in the winter of 1999/2000. Taking into account vertical/lateral exchange processes and the decomposition of organic matter, the monthly changes in CT were used to determine CO{sub 2} evasion fluxes. In addition, the CO{sub 2} fluxes were calculated on the basis of the CO{sub 2} partial pressure differences using local wind speed (u) records and different currently applied parametrizations of the gas exchange transfer velocity (k). The latter resulted in substantially lower monthly fluxes that indicated a considerable underestimation of k from the k(u) functions used. To achieve an optimal agreement between the flux calculations and the balance-derived CO{sub 2} fluxes, the coefficients of both a simple quadratic and cubic function k(u) were iterated using a least-squares fitting procedure. The resulting equations, which refer to short-term wind data and to the CO{sub 2} exchange at 20 deg C, were k= (0.45 {+-} 0.10)u{sup 2} and k(0.037 {+-} 0.008)u{sup 3} (k, cm/h; u, m/s) . These yielded higher k values than most of the previously proposed parametrizations. Unfortunately, our data did not allow us to decide whether the quadratic or cubic function is more appropriate to describe the gas exchange dynamics.

  16. Air-Sea Interaction

    Science.gov (United States)

    Csanady, G. T.

    2001-03-01

    In recent years air-sea interaction has emerged as a subject in its own right, encompassing small-scale and large-scale processes in both air and sea. Air-Sea Interaction: Laws and Mechanisms is a comprehensive account of how the atmosphere and the ocean interact to control the global climate, what physical laws govern this interaction, and its prominent mechanisms. The topics covered range from evaporation in the oceans, to hurricanes, and on to poleward heat transport by the oceans. By developing the subject from basic physical (thermodynamic) principles, the book is accessible to graduate students and research scientists in meteorology, oceanography, and environmental engineering. It will also be of interest to the broader physics community involved in the treatment of transfer laws, and thermodynamics of the atmosphere and ocean.

  17. Ikaite crystals in melting sea ice - implications for pCO2 and pH levels in Arctic surface waters

    Science.gov (United States)

    Rysgaard, S.; Glud, R. N.; Lennert, K.; Cooper, M.; Halden, N.; Leakey, R. J. G.; Hawthorne, F. C.; Barber, D.

    2012-08-01

    A major issue of Arctic marine science is to understand whether the Arctic Ocean is, or will be, a source or sink for air-sea CO2 exchange. This has been complicated by the recent discoveries of ikaite (a polymorph of CaCO3·6H2O) in Arctic and Antarctic sea ice, which indicate that multiple chemical transformations occur in sea ice with a possible effect on CO2 and pH conditions in surface waters. Here, we report on biogeochemical conditions, microscopic examinations and x-ray diffraction analysis of single crystals from a melting 1.7 km2 (0.5-1 m thick) drifting ice floe in the Fram Strait during summer. Our findings show that ikaite crystals are present throughout the sea ice but with larger crystals appearing in the upper ice layers. Ikaite crystals placed at elevated temperatures disintegrated into smaller crystallites and dissolved. During our field campaign in late June, melt reduced the ice floe thickness by 0.2 m per week and resulted in an estimated 3.8 ppm decrease of pCO2 in the ocean surface mixed layer. This corresponds to an air-sea CO2 uptake of 10.6 mmol m-2 sea ice d-1 or to 3.3 ton km-2 ice floe week-1. This is markedly higher than the estimated primary production within the ice floe of 0.3-1.3 mmol m-2 sea ice d-1. Finally, the presence of ikaite in sea ice and the dissolution of the mineral during melting of the sea ice and mixing of the melt water into the surface oceanic mixed layer accounted for half of the estimated pCO2 uptake.

  18. Climatic significance of stable isotope characteristics of air-CO2 and rainfall in Delhi area water-plant-air system

    International Nuclear Information System (INIS)

    Datta, P.S.; Tyagi, S.K.

    2002-01-01

    In recent years, there is a global concern on the role of carbon dioxide in atmosphere in affecting the climate. The present models of global atmospheric circulation suggest that oceans sequester about one-third of the CO 2 released by anthropogenic activities, and biospheric productivity is the primary cause of the interannual fluctuations in the atmospheric CO 2 . However, most of the times, the excess of CO 2 in air is associated with the presence of anthropogenic pollutants from urbanised centres. Therefore, the studies on the pattern of local variations in the isotopic composition of air CO 2 and rainfall in urban areas are expected to provide important information on the atmospheric circulation processes which affect the climate on a regional scale. Internationally, aspects of climate change have been so far demonstrated using isotopic data mainly from temperate climates, and there is limited understanding of the factors controlling stable isotopic composition of air-CO 2 and rainfall in tropical regions. In this context, to assess the magnitude of the above mentioned effects, analysis of the data on the variations in the 13 C/ 12 C and 18 O/ 16 O signatures of air-CO 2 in Delhi area water-plant-air system is presented here

  19. Air pollution related to sea transport

    International Nuclear Information System (INIS)

    Massin, J.M.; Hertz, O.

    1993-01-01

    Sea transportation contributes only 1-2% of world CO 2 emissions. Owing to the sulphur concentration in the bunker fuels, this transportation mode represents over 4% of the world SO 2 emissions. In addition, NO x emissions are likely to exceed 7% of the world emissions. SO 2 emissions in the North Sea and the Channel account for 15% of the whole French emissions, NO x emissions for about 10% and CO 2 emissions for about 3%. There are several potential measures to reduce the emissions of ship engines - propelling engines or generator driving engines - improvement of fuel quality, by desulphurizing and prohibiting the use of noxious additives such as PCB; use of alternative fuels; engine optimizing; exhaust gas processing; use of new propelling systems. A new organisation of world marketing of fuels with low or high sulphur levels could also be set up. The Sea Protection Committee of the International Maritime Organisation (IMO) discussed this problem during its meeting in 1990. The 73/78 MARPOL convention provides the IMO with an international juridical tool, especially designed for the preclusion of pollution due to sea transportation. It can address the issue of air pollution which requires a concerted approach between seaside countries and the drawing up of international regulations relating to the protection of the sea world. Fuel quality is already controlled by international standards drawn up by ISO. These standards should be improved to reduce air pollution due to sea transportation

  20. Recent Global Warming As Depicted by AIRS, GISSTEMP, and MERRA-2

    Science.gov (United States)

    Susskind, J.; Iredell, L. F.; Lee, J. N.

    2017-12-01

    We observed anomalously warm global mean surface temperatures since 2015. The year 2016 represents the warmest annual mean surface skin and surface air temperatures in the AIRS observational period, September 2002 through August 2017. Additionally, AIRS monthly mean surface skin temperature, from January 2016 through September 2016, and November 2016, were the warmest observed for each month of the year. Continuing this trend, the AIRS global surface temperatures of 2017 February and April show the second greatest positive anomalies from average. This recent warming is particularly significant over the Arctic where the snow and sea ice melt is closely tied to the spring and summer surface temperatures. In this paper, we show the global distribution of surface temperature anomalies as observed by AIRS over the period September 2002 through August 2017 and compare them with those from the GISSTEMP and MERRA-2 surface temperatures. The spatial patterns of warm and cold anomalies for a given month show reasonably good agreement in all three data set. AIRS anomalies, which do not have the benefit of in-situ measurements, are in almost perfect agreement with those of MERRA-2, which does use in-situ surface measurements. GISSTEMP anomaly patterns for the most part look similar to those of AIRS and MERRA-2, but are more spread out spatially, and consequently are also weaker.

  1. Carbon dioxide in northern high latitude oceans: Anthropogenic increase and air-sea flux variability

    Energy Technology Data Exchange (ETDEWEB)

    Omar, Abdirahman M.

    2003-07-01

    The aim of this thesis is to further our knowledge of carbon dioxide in the northern high latitude oceans (northern North Atlantic, Barents Sea, and Arctic Ocean) by studying the anthropogenic change in the oceanic CO2, the inter-annual variability of the air-sea CO2 flux, and the relationship between this variability and changes in other oceanic processes. An introductory chapter and four papers are presented. Descriptions of the seawater carbonate system parameters, air-sea exchange of CO2, and related processes are given in the introduction chapter. The anthropogenic increase in partial pressure of CO2 (pCO2) in the surface water of the Barents Sea is evaluated in paper I. The effect of alternations of the Barents Sea climate between cold and warm modes on the annual cycles of seawater fugacity and air-sea flux of CO2 is investigated in paper II. Oceanic uptake of atmospheric CO2 associated with the seasonal formation of sea ice in Storfjorden and the implication for the entire Arctic Ocean is studied in paper III. An assessment of the variations of the air-sea flux of CO2 in the northern North Atlantic for 20 winters (1981-2001) is carried out in paper IV. PCO2 in the surface water of the Barents Sea is shown to have increased parallel with the atmospheric pCO2 between 1967 and 2000-2001 (paper I). This was determined by comparing seawater pCO2 from 1967 with that from 2000-2001. The former was estimated from surface seawater temperature (SST) while the latter was computed from data of total dissolved inorganic carbon and alkalinity. A procedure which accounts for the natural variability was applied and the difference between seawater pC02 of 1967 and that of 2000-2001 is attributed to the uptake of excess CO2. In the Atlantic sector of the Barents Sea, the surface seawater fugacity of CO2 (fCO s''w) is shown to be lower than the atmospheric fCO2 throughout the year, implying that the area is an annual sink of atmospheric CO2 (paper II). Additionally

  2. Carbon dioxide in northern high latitude oceans: Anthropogenic increase and air-sea flux variability

    International Nuclear Information System (INIS)

    Omar, Abdirahman M.

    2003-01-01

    The aim of this thesis is to further our knowledge of carbon dioxide in the northern high latitude oceans (northern North Atlantic, Barents Sea, and Arctic Ocean) by studying the anthropogenic change in the oceanic CO2, the inter-annual variability of the air-sea CO2 flux, and the relationship between this variability and changes in other oceanic processes. An introductory chapter and four papers are presented. Descriptions of the seawater carbonate system parameters, air-sea exchange of CO2, and related processes are given in the introduction chapter. The anthropogenic increase in partial pressure of CO2 (pCO2) in the surface water of the Barents Sea is evaluated in paper I. The effect of alternations of the Barents Sea climate between cold and warm modes on the annual cycles of seawater fugacity and air-sea flux of CO2 is investigated in paper II. Oceanic uptake of atmospheric CO2 associated with the seasonal formation of sea ice in Storfjorden and the implication for the entire Arctic Ocean is studied in paper III. An assessment of the variations of the air-sea flux of CO2 in the northern North Atlantic for 20 winters (1981-2001) is carried out in paper IV. PCO2 in the surface water of the Barents Sea is shown to have increased parallel with the atmospheric pCO2 between 1967 and 2000-2001 (paper I). This was determined by comparing seawater pCO2 from 1967 with that from 2000-2001. The former was estimated from surface seawater temperature (SST) while the latter was computed from data of total dissolved inorganic carbon and alkalinity. A procedure which accounts for the natural variability was applied and the difference between seawater pC02 of 1967 and that of 2000-2001 is attributed to the uptake of excess CO2. In the Atlantic sector of the Barents Sea, the surface seawater fugacity of CO2 (fCO s''w) is shown to be lower than the atmospheric fCO2 throughout the year, implying that the area is an annual sink of atmospheric CO2 (paper II). Additionally, changes

  3. Ikaite crystal distribution in winter sea ice and implications for CO2 system dynamics

    DEFF Research Database (Denmark)

    Rysgaard, Søren; Søgaard, D.H.; Cooper, M.

    2013-01-01

    The precipitation of ikaite (CaCO3 ⋅ 6H2O) in polar sea ice is critical to the efficiency of the sea ice-driven carbon pump and potentially important to the global carbon cycle, yet the spatial and temporal occurrence of ikaite within the ice is poorly known. We report unique observations of ikai...

  4. Cleaner shipping. Trade off between air pollution, costs and refinery CO2 emissions

    International Nuclear Information System (INIS)

    De Wilde, H.P.J.; Kroon, P.

    2008-05-01

    Still subject to final approval in October 2008, the International Maritime Organisation (IMO) agreed on a maximum sulphur content of 0.5% for shipping fuels in 2020. This target will induce major changes in the global refinery industry. We have estimated the impact on the Dutch refinery industry, which annually produces about 8 million tons of heavy fuel oil for sea shipping, with refinery residues as main component. It is technically possible to convert all residues, although this process will cause an additional energy use of about one million tons of crude oil and a related CO2 emission of about 4 million tons. The investment costs for these major changes in the Dutch refinery industry are estimated at about 1.5 tot 2 billion euros. The recent IMO agreement enables a gradual introduction of cleaner shipping fuels, which will reduce market disruptions and peak prices. Nevertheless, Rotterdam may not necessarily be able to develop a similar position in import, export and bunkering of future low sulphur fuels, compared to its present strong position in the market of heavy marine bunkers. Extrapolation of our national study to the global scale suggests that the deep conversion of 350 million tons of heavy fuel oil for shipping would require refinery investments in the order of 70-100 billion euros. The associated CO2 emissions would amount up to 175 Mton. The net additional CO2 emission, however, would be smaller since lighter shipping fuels result in less CO2 emissions at sea. On balance, we expect that the improvements in fuel economy, driven by the expensive low-carbon shipping fuels, will decrease CO2 emissions more than the increase in CO2 emissions from additional desulphurization in the refineries. Nevertheless CO2 emissions from sea shipping will continue to increase since marine transport is rapidly growing

  5. Ikaite crystal distribution in Arctic winter sea ice and implications for CO2 system dynamics

    DEFF Research Database (Denmark)

    Rysgaard, Søren; Søgaard, D. H.; Cooper, M.

    2012-01-01

    The precipitation of ikaite (CaCO3·6H2O) in polar sea ice is critical to the efficiency of the sea ice-driven carbon pump and potentially important to the global carbon cycle, yet the spatial and temporal occurrence of ikaite within the ice is poorly known. We report unique observations of ikaite...

  6. Assessment of the sea-ice carbon pump

    DEFF Research Database (Denmark)

    Grimm, R.; Notz, D.; Glud, Ronnie N.

    2016-01-01

    -induced oceanic CO2 uptake ranges from 2 to 14 Tg C yr−1, which is up to 7% of the simulated net CO2 uptake in polar regions, but far less than 1% of the cur-rent global oceanic CO2 uptake. Hence, while we find that the SICP plays a minor role in the modern global carbon cycle, it is of importance......It has been suggested that geochemical processes related to sea-ice growth and melt might be important for the polar carbon cycle via the so called sea-ice carbon pump (SICP). The SICP affects the air-sea CO2 exchange by influencing the composition of dissolved inorganic carbon (DIC) and total...... for the regional carbon cycle at high latitudes....

  7. Sea Ice as a Sink for CO2 and Biogeochemical Material: a Novel Sampling Method and Astrobiological Applications

    Science.gov (United States)

    Wilner, J.; Hofmann, A.; Hand, K. P.

    2017-12-01

    Accurately modelling the intensification of greenhouse gas effects in the polar regions ("polar amplification") necessitates a thorough understanding of the geochemical balance between atmospheric, sea ice, and oceanic layers. Sea ice is highly permeable to CO2 and therefore represents a major sink of oceanic CO2 in winter and of atmospheric CO2 in summer, sinks that are typically either poorly constrained in or fully absent from global climate models. We present a novel method for sampling both trapped and dissolved gases (CO2, CH4 and δ13CH4) in sea ice with a Picarro 2132-i Methane Analyzer, taking the following sampling considerations into account: minimization of water and air contamination, full headspace sampling, prevention of inadvertent sample bag double-puncturing, and ease of use. This method involves melting of vacuum-sealed ice cores to evacuate trapped gases to the headspace and sampling the headspace gas with a blunt needle sheathed by a beveled puncturing needle. A gravity catchment tube prevents input of dangerous levels of liquid water to the Picarro cavity. Subsequent ultrasonic degassing allows for dissolved gas measurement. We are in the process of using this method to sample gases trapped and dissolved in Arctic autumn sea ice cores and atmospheric samples collected during the 2016 Polarstern Expedition and during a May 2017 field campaign north of Barrow, Alaska. We additionally employ this method, together with inductively coupled plasma mass spectrometry (ICP-MS), to analyze the transfer of potential biogeochemical signatures of underlying hydrothermal plumes to sea ice. This has particular relevance to Europa and Enceladus, where hypothetical hydrothermal plumes may deliver seafloor chemicals to the overlying ice shell. Hence, we are presently investigating the entrainment of methane and other hydrothermal material in sea ice cores collected along the Gakkel Ridge that may serve as biosignatures of methanogenic organisms in seafloor

  8. Role of mesoscale eddies in the global ocean uptake of anthropogenic CO{sub 2}; Role des tourbillons de meso-echelle oceaniques dans la distribution et les flux air-mer de CO{sub 2} anthropique a l'echelle globale

    Energy Technology Data Exchange (ETDEWEB)

    Zouhair, Lachkar

    2007-02-15

    Mesoscale eddies play a fundamental role in ocean dynamics particularly in the Southern Ocean. Global-scale tracer simulations are typically made at coarse resolution without explicitly modeling eddies. Here we ask what role do eddies play in ocean uptake, storage, and meridional transport of anthropogenic CO{sub 2}, CFC-11 and bomb {delta}{sup 14}C. We made global anthropogenic transient tracer simulations in coarse-resolution, ORCA2, and eddy-permitting, ORCA05 and ORCA025, versions of the ocean modelling system NEMO. We focus on the Southern Ocean where tracer air-sea fluxes are largest. Eddies have little effect on bomb {delta}{sup 14}C uptake and storage. Yet for CFC-11 and anthropogenic CO{sub 2}, increased eddy activity reduces southern extra-tropical uptake by 28% and 25% respectively, thereby providing better agreement with observations. It is shown that the discrepancies in the equilibration times between the three tracers determine their respective sensitivities to the model horizontal resolution. Applying Gent and McWilliams (1990) (GM) parameterization of eddies in the non-eddying version of the model does improve results, but not enough. An in-depth investigation of the mechanisms by which eddies affect the uptake of the transient tracers shows that including mesoscale eddies leads to an overall reduction in the Antarctic Intermediate Water (AAIW) ventilation, and modifies substantially the spatial distribution of their source regions. This investigation reveals also that the GM parameterization still overestimates the ventilation and the subduction of AAIW in the Indian Ocean where the simulated mixed layer is particularly deep during the winter. This work suggests that most current coarse-resolution models may overestimate the ventilation of AAIW in the Indian sector of the Southern Ocean. This study shows also that the use of the GM parameterization may be of limited utility where mixed layer is relatively deep and confirms the general need for a

  9. Tidal marsh plant responses to elevated CO2 , nitrogen fertilization, and sea level rise.

    Science.gov (United States)

    Adam Langley, J; Mozdzer, Thomas J; Shepard, Katherine A; Hagerty, Shannon B; Patrick Megonigal, J

    2013-05-01

    Elevated CO2 and nitrogen (N) addition directly affect plant productivity and the mechanisms that allow tidal marshes to maintain a constant elevation relative to sea level, but it remains unknown how these global change drivers modify marsh plant response to sea level rise. Here we manipulated factorial combinations of CO2 concentration (two levels), N availability (two levels) and relative sea level (six levels) using in situ mesocosms containing a tidal marsh community composed of a sedge, Schoenoplectus americanus, and a grass, Spartina patens. Our objective is to determine, if elevated CO2 and N alter the growth and persistence of these plants in coastal ecosystems facing rising sea levels. After two growing seasons, we found that N addition enhanced plant growth particularly at sea levels where plants were most stressed by flooding (114% stimulation in the + 10 cm treatment), and N effects were generally larger in combination with elevated CO2 (288% stimulation). N fertilization shifted the optimal productivity of S. patens to a higher sea level, but did not confer S. patens an enhanced ability to tolerate sea level rise. S. americanus responded strongly to N only in the higher sea level treatments that excluded S. patens. Interestingly, addition of N, which has been suggested to accelerate marsh loss, may afford some marsh plants, such as the widespread sedge, S. americanus, the enhanced ability to tolerate inundation. However, if chronic N pollution reduces the availability of propagules of S. americanus or other flood-tolerant species on the landscape scale, this shift in species dominance could render tidal marshes more susceptible to marsh collapse. © 2013 Blackwell Publishing Ltd.

  10. Uncertainty in the global oceanic CO2 uptake induced by wind forcing: quantification and spatial analysis

    Science.gov (United States)

    Roobaert, Alizée; Laruelle, Goulven G.; Landschützer, Peter; Regnier, Pierre

    2018-03-01

    The calculation of the air-water CO2 exchange (FCO2) in the ocean not only depends on the gradient in CO2 partial pressure at the air-water interface but also on the parameterization of the gas exchange transfer velocity (k) and the choice of wind product. Here, we present regional and global-scale quantifications of the uncertainty in FCO2 induced by several widely used k formulations and four wind speed data products (CCMP, ERA, NCEP1 and NCEP2). The analysis is performed at a 1° × 1° resolution using the sea surface pCO2 climatology generated by Landschützer et al. (2015a) for the 1991-2011 period, while the regional assessment relies on the segmentation proposed by the Regional Carbon Cycle Assessment and Processes (RECCAP) project. First, we use k formulations derived from the global 14C inventory relying on a quadratic relationship between k and wind speed (k = c ṡ U102; Sweeney et al., 2007; Takahashi et al., 2009; Wanninkhof, 2014), where c is a calibration coefficient and U10 is the wind speed measured 10 m above the surface. Our results show that the range of global FCO2, calculated with these k relationships, diverge by 12 % when using CCMP, ERA or NCEP1. Due to differences in the regional wind patterns, regional discrepancies in FCO2 are more pronounced than global. These global and regional differences significantly increase when using NCEP2 or other k formulations which include earlier relationships (i.e., Wanninkhof, 1992; Wanninkhof et al., 2009) as well as numerous local and regional parameterizations derived experimentally. To minimize uncertainties associated with the choice of wind product, it is possible to recalculate the coefficient c globally (hereafter called c∗) for a given wind product and its spatio-temporal resolution, in order to match the last evaluation of the global k value. We thus performed these recalculations for each wind product at the resolution and time period of our study but the resulting global FCO2 estimates

  11. Remote sensing algorithm for sea surface CO2 in the Baltic Sea

    Science.gov (United States)

    Parard, G.; Charantonis, A. A.; Rutgerson, A.

    2014-08-01

    Studies of coastal seas in Europe have brought forth the high variability in the CO2 system. This high variability, generated by the complex mechanisms driving the CO2 fluxes makes their accurate estimation an arduous task. This is more pronounced in the Baltic Sea, where the mechanisms driving the fluxes have not been as highly detailed as in the open oceans. In adition, the joint availability of in-situ measurements of CO2 and of sea-surface satellite data is limited in the area. In this paper, a combination of two existing methods (Self-Organizing-Maps and Multiple Linear regression) is used to estimate ocean surface pCO2 in the Baltic Sea from remotely sensed surface temperature, chlorophyll, coloured dissolved organic matter, net primary production and mixed layer depth. The outputs of this research have an horizontal resolution of 4 km, and cover the period from 1998 to 2011. The reconstructed pCO2 values over the validation data set have a correlation of 0.93 with the in-situ measurements, and a root mean square error is of 38 μatm. The removal of any of the satellite parameters degraded this reconstruction of the CO2 flux, and we chose therefore to complete any missing data through statistical imputation. The CO2 maps produced by this method also provide a confidence level of the reconstruction at each grid point. The results obtained are encouraging given the sparsity of available data and we expect to be able to produce even more accurate reconstructions in the coming years, in view of the predicted acquisitions of new data.

  12. A CO{sub 2} air conditioning system to fight against greenhouse effect; Une climatisation a CO{sub 2} pour lutter contre l'effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2005-10-05

    Automotive air-conditioning systems, with the induced additional fuel consumption and with the type of refrigerants used, contribute to the global warming. Several car fitters, like Delphi, have developed prototypes of CO{sub 2} air conditioners. CO{sub 2} is a greenhouse gas but is less harmful for the environment than other classical refrigerants. The use of CO{sub 2} needs a complete re-design of air-conditioning systems which have to stand pressures of 130 bars and temperatures of 165 deg. C. Short paper. (J.S.)

  13. Global Ocean Surface Water Partial Pressure of CO2 Database: Measurements Performed During 1968-2007 (Version 2007)

    Energy Technology Data Exchange (ETDEWEB)

    Kozyr, Alex [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Carbon Dioxide Information Analysis Center

    2008-09-30

    More than 4.1 million measurements of surface water partial pressure of CO2 obtained over the global oceans during 1968-2007 are listed in the Lamont-Doherty Earth Observatory (LDEO) database, which includes open ocean and coastal water measurements. The data assembled include only those measured by equilibrator-CO2 analyzer systems and have been quality-controlled based on the stability of the system performance, the reliability of calibrations for CO2 analysis, and the internal consistency of data. To allow re-examination of the data in the future, a number of measured parameters relevant to pCO2 measurements are listed. The overall uncertainty for the pCO2 values listed is estimated to be ± 2.5 µatm on the average. For simplicity and for ease of reference, this version is referred to as 2007, meaning that data collected through 31 December 2007 has been included. It is our intention to update this database annually. There are 37 new cruise/ship files in this update. In addition, some editing has been performed on existing files so this should be considered a V2007 file. Also we have added a column reporting the partial pressure of CO2 in seawater in units of Pascals. The data presented in this database include the analyses of partial pressure of CO2 (pCO2), sea surface temperature (SST), sea surface salinity (SSS), pressure of the equilibration, and barometric pressure in the outside air from the ship’s observation system. The global pCO2 data set is available free of charge as a numeric data package (NDP) from the Carbon Dioxide Information Analysis Center (CDIAC). The NDP consists of the oceanographic data files and this printed documentation, which describes the procedures and methods used to obtain the data.

  14. CO2 Sink/Source in the Indonesian Seas

    KAUST Repository

    Kartadikaria, Aditya R.

    2015-04-01

    Two distinct CO2 sink/source characteristics appeared from the compiled observed data 1984-2013 in the tropical Indonesian seas. The western part persistently emits CO2 to the atmosphere, while the eastern is rather dynamic which emits and absorbs smaller amount of CO2 to and from atmosphere, respectively. The segregation is proximal to the virtual Wallace line, where in the continental shelf is located. Lower salinity and higher silicate condition in the western part influenced the higher pCO2 condition in Java Sea. Temperature is found to have a limited influence to control different characteristic in the west and east, but SST change of 2.0 0C during La Ninã condition effectively reduced the source amount of CO2 by 50% compared to Normal year condition. Yet, during La Ninã, higher wind speed increases CO2 flux twice compared to Normal year. In the continental shelf area where CO2 sink area is found, 29 years data showed that pCO2 trend is increasing ±0.6-3.8 μatm/year. From this study, the overall areas have a significant source of CO2 of approximately 10 - 24 μatm.

  15. A multi-model assessment of the co-benefits of climate mitigation for global air quality

    NARCIS (Netherlands)

    Rao, Shilpa; Klimont, Zbigniew; Leitao, Joana; Riahi, Keywan; van Dingenen, Rita; Aleluia Reis, Lara; Calvin, Katherine; Dentener, Frank; Drouet, Laurent; Fujimori, Shinichiro; Harmsen, Mathijs; Luderer, Gunnar; Heyes, Chris; Strefler, Jessica; Tavoni, Massimo; van Vuuren, Detlef P.

    2016-01-01

    We present a model comparison study that combines multiple integrated assessment models with a reduced-form global air quality model to assess the potential co-benefits of global climate mitigation policies in relation to the World Health Organization (WHO) goals on air quality and health. We

  16. CO{sub 2} emissions due to the air transportation in Brazil; Emissoes de CO{sub 2} devido ao transporte aereo no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Simoes, Andre Felipe; Schaeffer, Roberto [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Planejamento Energetico]. E-mail: afsimoes@antares.com.br; roberto@ppe.ufrj.br

    2002-07-01

    This work intends to to insert and understand the participation of the brazilian air transportation in the ambit of the global climate changes. Firstly an introduction is presented for positioning the Brazil, in the proposed subject; an approach of the tenuous relationship between the air transportation sector and atmospheric environment medium; the energy consumption associated to the growing demand; and the inventory of the CO{sub 2} emissions (Calculated by using the top-down methodology) due to the Brazilian air transportation activities. The work is globally discussed and analysed.

  17. Dynamic ikaite production and dissolution in sea ice – control by temperature, salinity and pCO2 conditions

    OpenAIRE

    S. Rysgaard; F. Wang; R. J. Galley; R. Grimm; M. Lemes; N.-X. Geilfus; A. Chaulk; A. A. Hare; O. Crabeck; B. G. T. Else; K. Campbell; T. Papakyriakou; L. L. Sørensen; J. Sievers; D. Notz

    2013-01-01

    Ikaite is a hydrous calcium carbonate mineral (CaCO3 · 6H2O). It is only found in a metastable state, and decomposes rapidly once removed from near-freezing water. Recently, ikaite crystals have been found in sea ice and it has been suggested that their precipitation may play an important role in air-sea CO2 exchange in ice-covered seas. Little is known, however, of the spatial and temporal dynamics of ikaite in sea ice. Here we present evidence for highly dynamic ik...

  18. Global ozone–CO correlations from OMI and AIRS: constraints on tropospheric ozone sources

    Directory of Open Access Journals (Sweden)

    P. S. Kim

    2013-09-01

    Full Text Available We present a global data set of free tropospheric ozone–CO correlations with 2° × 2.5° spatial resolution from the Ozone Monitoring Instrument (OMI and Atmospheric Infrared Sounder (AIRS satellite instruments for each season of 2008. OMI and AIRS have near-daily global coverage of ozone and CO respectively and observe coincident scenes with similar vertical sensitivities. The resulting ozone–CO correlations are highly statistically significant (positive or negative in most regions of the world, and are less noisy than previous satellite-based studies that used sparser data. Comparison with ozone–CO correlations and regression slopes (dO3/dCO from MOZAIC (Measurements of OZone, water vapour, carbon monoxide and nitrogen oxides by in-service AIrbus airCraft aircraft profiles shows good general agreement. We interpret the observed ozone–CO correlations with the GEOS (Goddard Earth Observing System-Chem chemical transport model to infer constraints on ozone sources. Driving GEOS-Chem with different meteorological fields generally shows consistent ozone–CO correlation patterns, except in some tropical regions where the correlations are strongly sensitive to model transport error associated with deep convection. GEOS-Chem reproduces the general structure of the observed ozone–CO correlations and regression slopes, although there are some large regional discrepancies. We examine the model sensitivity of dO3/dCO to different ozone sources (combustion, biosphere, stratosphere, and lightning NOx by correlating the ozone change from that source to CO from the standard simulation. The model reproduces the observed positive dO3/dCO in the extratropical Northern Hemisphere in spring–summer, driven by combustion sources. Stratospheric influence there is also associated with a positive dO3/dCO because of the interweaving of stratospheric downwelling with continental outflow. The well-known ozone maximum over the tropical South Atlantic is

  19. Remote sensing the sea surface CO2 of the Baltic Sea using the SOMLO methodology

    Science.gov (United States)

    Parard, G.; Charantonis, A. A.; Rutgerson, A.

    2015-06-01

    Studies of coastal seas in Europe have noted the high variability of the CO2 system. This high variability, generated by the complex mechanisms driving the CO2 fluxes, complicates the accurate estimation of these mechanisms. This is particularly pronounced in the Baltic Sea, where the mechanisms driving the fluxes have not been characterized in as much detail as in the open oceans. In addition, the joint availability of in situ measurements of CO2 and of sea-surface satellite data is limited in the area. In this paper, we used the SOMLO (self-organizing multiple linear output; Sasse et al., 2013) methodology, which combines two existing methods (i.e. self-organizing maps and multiple linear regression) to estimate the ocean surface partial pressure of CO2 (pCO2) in the Baltic Sea from the remotely sensed sea surface temperature, chlorophyll, coloured dissolved organic matter, net primary production, and mixed-layer depth. The outputs of this research have a horizontal resolution of 4 km and cover the 1998-2011 period. These outputs give a monthly map of the Baltic Sea at a very fine spatial resolution. The reconstructed pCO2 values over the validation data set have a correlation of 0.93 with the in situ measurements and a root mean square error of 36 μatm. Removing any of the satellite parameters degraded this reconstructed CO2 flux, so we chose to supply any missing data using statistical imputation. The pCO2 maps produced using this method also provide a confidence level of the reconstruction at each grid point. The results obtained are encouraging given the sparsity of available data, and we expect to be able to produce even more accurate reconstructions in coming years, given the predicted acquisition of new data.

  20. CO 2 Capture from Dilute Gases as a Component of Modern Global Carbon Management

    KAUST Repository

    Jones, Christopher W.

    2011-01-01

    The growing atmospheric CO2 concentration and its impact on climate have motivated widespread research and development aimed at slowing or stemming anthropogenic carbon emissions. Technologies for carbon capture and sequestration (CCS) employing mass separating agents that extract and purify CO2 from flue gas emanating from large point sources such as fossil fuel-fired electricity-generating power plants are under development. Recent advances in solvents, adsorbents, and membranes for postcombust- ion CO 2 capture are described here. Specifically, room-temperature ionic liquids, supported amine materials, mixed matrix and facilitated transport membranes, and metal-organic framework materials are highlighted. In addition, the concept of extracting CO2 directly from ambient air (air capture) as a means of reducing the global atmospheric CO2 concentration is reviewed. For both conventional CCS from large point sources and air capture, critical research needs are identified and discussed. © Copyright 2011 by Annual Reviews. All rights reserved.

  1. CO 2 Capture from Dilute Gases as a Component of Modern Global Carbon Management

    KAUST Repository

    Jones, Christopher W.

    2011-07-15

    The growing atmospheric CO2 concentration and its impact on climate have motivated widespread research and development aimed at slowing or stemming anthropogenic carbon emissions. Technologies for carbon capture and sequestration (CCS) employing mass separating agents that extract and purify CO2 from flue gas emanating from large point sources such as fossil fuel-fired electricity-generating power plants are under development. Recent advances in solvents, adsorbents, and membranes for postcombust- ion CO 2 capture are described here. Specifically, room-temperature ionic liquids, supported amine materials, mixed matrix and facilitated transport membranes, and metal-organic framework materials are highlighted. In addition, the concept of extracting CO2 directly from ambient air (air capture) as a means of reducing the global atmospheric CO2 concentration is reviewed. For both conventional CCS from large point sources and air capture, critical research needs are identified and discussed. © Copyright 2011 by Annual Reviews. All rights reserved.

  2. Role of mesoscale eddies in the global ocean uptake of anthropogenic CO{sub 2}; Role des tourbillons de meso-echelle oceaniques dans la distribution et les flux air-mer de CO{sub 2} anthropique a l'echelle globale

    Energy Technology Data Exchange (ETDEWEB)

    Zouhair, Lachkar

    2007-02-15

    Mesoscale eddies play a fundamental role in ocean dynamics particularly in the Southern Ocean. Global-scale tracer simulations are typically made at coarse resolution without explicitly modeling eddies. Here we ask what role do eddies play in ocean uptake, storage, and meridional transport of anthropogenic CO{sub 2}, CFC-11 and bomb {delta}{sup 14}C. We made global anthropogenic transient tracer simulations in coarse-resolution, ORCA2, and eddy-permitting, ORCA05 and ORCA025, versions of the ocean modelling system NEMO. We focus on the Southern Ocean where tracer air-sea fluxes are largest. Eddies have little effect on bomb {delta}{sup 14}C uptake and storage. Yet for CFC-11 and anthropogenic CO{sub 2}, increased eddy activity reduces southern extra-tropical uptake by 28% and 25% respectively, thereby providing better agreement with observations. It is shown that the discrepancies in the equilibration times between the three tracers determine their respective sensitivities to the model horizontal resolution. Applying Gent and McWilliams (1990) (GM) parameterization of eddies in the non-eddying version of the model does improve results, but not enough. An in-depth investigation of the mechanisms by which eddies affect the uptake of the transient tracers shows that including mesoscale eddies leads to an overall reduction in the Antarctic Intermediate Water (AAIW) ventilation, and modifies substantially the spatial distribution of their source regions. This investigation reveals also that the GM parameterization still overestimates the ventilation and the subduction of AAIW in the Indian Ocean where the simulated mixed layer is particularly deep during the winter. This work suggests that most current coarse-resolution models may overestimate the ventilation of AAIW in the Indian sector of the Southern Ocean. This study shows also that the use of the GM parameterization may be of limited utility where mixed layer is relatively deep and confirms the general need for a

  3. Dynamic ikaite production and dissolution in sea ice - control by temperature, salinity and pCO2 conditions

    Science.gov (United States)

    Rysgaard, S.; Wang, F.; Galley, R. J.; Grimm, R.; Lemes, M.; Geilfus, N.-X.; Chaulk, A.; Hare, A. A.; Crabeck, O.; Else, B. G. T.; Campbell, K.; Papakyriakou, T.; Sørensen, L. L.; Sievers, J.; Notz, D.

    2013-12-01

    Ikaite is a hydrous calcium carbonate mineral (CaCO3 · 6H2O). It is only found in a metastable state, and decomposes rapidly once removed from near-freezing water. Recently, ikaite crystals have been found in sea ice and it has been suggested that their precipitation may play an important role in air-sea CO2 exchange in ice-covered seas. Little is known, however, of the spatial and temporal dynamics of ikaite in sea ice. Here we present evidence for highly dynamic ikaite precipitation and dissolution in sea ice grown at an out-door pool of the Sea-ice Environmental Research Facility (SERF). During the experiment, ikaite precipitated in sea ice with temperatures below -3 °C, creating three distinct zones of ikaite concentrations: (1) a mm to cm thin surface layer containing frost flowers and brine skim with bulk concentrations of > 2000 μmol kg-1, (2) an internal layer with concentrations of 200-400 μmol kg-1 and (3) a~bottom layer with concentrations of ikaite crystals under acidic conditions. Manual removal of the snow cover allowed the sea ice to cool and brine salinities to increase, resulting in rapid ikaite precipitation. The modeled (FREZCHEM) ikaite concentrations were in the same order of magnitude as observations and suggest that ikaite concentration in sea ice increase with decreasing temperatures. Thus, varying snow conditions may play a key role in ikaite precipitation and dissolution in sea ice. This will have implications for CO2 exchange with the atmosphere and ocean.

  4. Potential for reducing air-pollutants while achieving 2 °C global temperature change limit target.

    Science.gov (United States)

    Hanaoka, Tatsuya; Akashi, Osamu; Fujiwara, Kazuya; Motoki, Yuko; Hibino, Go

    2014-12-01

    This study analyzes the potential to reduce air pollutants while achieving the 2 °C global temperature change limit target above pre-industrial levels, by using the bottom-up optimization model, AIM/Enduse[Global]. This study focuses on; 1) estimating mitigation potentials and costs for achieving 2 °C, 2.5 °C, and 3 °C target scenarios, 2) assessing co-benefits of reducing air pollutants such as NOx, SO2, BC, PM, and 3) analyzing features of sectoral attributions in Annex I and Non-Annex I groups of countries. The carbon tax scenario at 50 US$/tCO2-eq in 2050 can reduce GHG emissions more than the 3 °C target scenario, but a higher carbon price around 400 US$/tCO2-eq in 2050 is required to achieve the 2 °C target scenario. However, there is also a co-benefit of large reduction potential of air pollutants, in the range of 60-80% reductions in 2050 from the reference scenario while achieving the 2 °C target. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. High Precision Stable Isotope Measurements of Caribic Aircraft CO{sub 2} Samples: Global Distribution and Exchange with the Biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Assonov, S. S. [Max Planck Institute for Chemistry, Mainz (Germany); Joint Research Centre, Institute for Reference Materials and Measurements (JRC-IRMM), European Commission, Geel (Belgium); Brenninkmeijer, C. A.M.; Schuck, T. J. [Max Planck Institute for Chemistry, Mainz (Germany); Taylor, P. [Joint Research Centre, Institute for Reference Materials and Measurements (JRC-IRMM), European Commission, Geel (Belgium)

    2013-07-15

    In 2007-2009 JRC-IRMM, in collaboration with the project CARIBIC (Civil Aircraft for Regular Investigation of the atmosphere Based on an Instrument Container, www.caribicatmospheric. com), conducted systematic measurements aimed to study the global distribution of CO{sub 2} isotopic composition. A large data set for the upper troposphere-lowermost stratosphere and free troposphere was obtained. For the first time it is demonstrated how CO{sub 2} isotope signals reflect global scale variability in air mass origin. Tight correlations observed arise either from stratosphere/troposphere mixing or from mixing of background air and air masses affected by CO{sub 2} sources and sinks, over long distances and throughout the seasons. The high quality {delta}{sup 18}O(CO{sub 2}) data prove to be a useful tracer reflecting long range CO{sub 2} transport and also CO{sub 2} exchange with land biosphere and soils. The data provide a benchmark for future comparisons and are available for modelling studies. (author)

  6. Mechanisms controlling the air–sea CO2 flux in the North Sea

    NARCIS (Netherlands)

    Prowe, A.E.F.; Thomas, Helmuth; Pätsch, Johannes; Kühn, Wilfried; Bozec, Yann; Schiettecatte, Laure-Sophie; Borges, Alberto V.; Baar, Hein J.W. de; Paetsch, J; Kuehn, W

    2009-01-01

    The mechanisms driving the air–sea exchange of carbon dioxide (CO2) in the North Sea are investigated using the three-dimensional coupled physical–biogeochemical model ECOHAM (ECOlogical-model, HAMburg). We validate our simulations using field data for the years 2001–2002 and identify the controls

  7. Climate warrior : David Keith and his team are engineering the world to manage global climate change : scrubbing CO{sub 2} out of the air we breathe

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, S.

    2009-01-15

    A team of scientists from the University of Calgary's Institute for Sustainable Energy, Environment and Economy have developed an innovative way to capture atmospheric carbon. The process involves reducing carbon dioxide (CO{sub 2}) using a simple machine that can capture the trace amount of CO{sub 2} present in ambient air anywhere in the world. The research offers a way to capture CO{sub 2} emissions from transportation sources such as vehicles and airplanes, which represent about 50 per cent of global annual greenhouse gas emissions. This article described how the custom-built prototype air capture tower, called a contractor, works. It measures 6 metres tall by 1.2 metres wide and runs on a gasoline-powered generator. The energy efficient and cost effective air capture technology complements other approaches for reducing emissions from the transportation sector, such as biofuels and electric vehicles. The air capture tower can capture the CO{sub 2} that is present in ambient air and store it wherever it is cheapest. The custom-built tower can capture the equivalent of 20 tonnes per year of CO{sub 2} on a single square meter of scrubbing material. The team devised a way to use a chemical process from the pulp and paper industry to cut the energy cost of air capture in half. The simple, reliable and scalable technology offers an opportunity to build a commercial-scale plant. 1 ref., 6 figs.

  8. CO2 Capture from the Air: Technology Assessment and Implications for Climate Policy

    Science.gov (United States)

    Keith, D. W.

    2002-05-01

    for global climate policy are examined using DIAM [2], a stylized integrated assessment model. We find that air capture can fundamentally alter the temporal dynamics of global warming mitigation. The reason for this is that air capture differs from conventional mitigation in three key aspects. First, it removes emissions from any part of the economy with equal ease or difficulty, so its cost provides an absolute cap on the cost of mitigation. Second, it permits reduction in concentrations faster than the natural carbon cycle: the effects of irreversibility are thus partly alleviated. Third, because it is less coupled with the energy system, air capture may offer stronger economies of scale and smaller adjustment costs than the more conventional mitigation technologies. Air capture limits the total cost of a worst-case climate scenario. In an optimal sequential decision framework with uncertainty, existence of air capture decreases the need for near-term precautionary abatement. Like geoengineering, air capture thus poses a moral hazard. 1. S. Elliott, et al. Compensation of atmospheric CO2 buildup through engineered chemical sinkage. Geophys. Res. Let., 28:1235-1238, 2001. 2. Minh Ha-Duong, Michael J. Grubb, and Jean-Charles Hourcade. Influence of socioeconomic inertia and uncertainty on optimal CO2-emission abatement. Nature, 390: 270-274, 1997.

  9. First estimates of the contribution of CaCO3 precipitation to the release of CO2 to the atmosphere during young sea ice growth

    Science.gov (United States)

    Geilfus, N.-X.; Carnat, G.; Dieckmann, G. S.; Halden, N.; Nehrke, G.; Papakyriakou, T.; Tison, J.-L.; Delille, B.

    2013-01-01

    report measurements of pH, total alkalinity, air-ice CO2 fluxes (chamber method), and CaCO3 content of frost flowers (FF) and thin landfast sea ice. As the temperature decreases, concentration of solutes in the brine skim increases. Along this gradual concentration process, some salts reach their solubility threshold and start precipitating. The precipitation of ikaite (CaCO3.6H2O) was confirmed in the FF and throughout the ice by Raman spectroscopy and X-ray analysis. The amount of ikaite precipitated was estimated to be 25 µmol kg-1 melted FF, in the FF and is shown to decrease from 19 to 15 µmol kg-1 melted ice in the upper part and at the bottom of the ice, respectively. CO2 release due to precipitation of CaCO3 is estimated to be 50 µmol kg-1 melted samples. The dissolved inorganic carbon (DIC) normalized to a salinity of 10 exhibits significant depletion in the upper layer of the ice and in the FF. This DIC loss is estimated to be 2069 µmol kg-1 melted sample and corresponds to a CO2 release from the ice to the atmosphere ranging from 20 to 40 mmol m-2 d-1. This estimate is consistent with flux measurements of air-ice CO2 exchange. Our measurements confirm previous laboratory findings that growing young sea ice acts as a source of CO2 to the atmosphere. CaCO3 precipitation during early ice growth appears to promote the release of CO2 to the atmosphere; however, its contribution to the overall release by newly formed ice is most likely minor.

  10. Ikaite crystals in melting sea ice – implications for pCO2 and pH levels in Arctic surface waters

    DEFF Research Database (Denmark)

    Rysgaard, Søren; Glud, R.N.; Lennert, K.

    2012-01-01

    A major issue of Arctic marine science is to understand whether the Arctic Ocean is, or will be, a source or sink for air-sea CO 2 exchange. This has been complicated by the recent discoveries of ikaite (a polymorph of CaCO 3•6H 2O) in Arctic and Antarctic sea ice, which indicate that multiple...... chemical transformations occur in sea ice with a possible effect on CO 2 and pH conditions in surface waters. Here, we report on biogeochemical conditions, microscopic examinations and x-ray diffraction analysis of single crystals from a melting 1.7 km 2 (0.5-1 m thick) drifting ice floe in the Fram Strait...... during summer. Our findings show that ikaite crystals are present throughout the sea ice but with larger crystals appearing in the upper ice layers. Ikaite crystals placed at elevated temperatures disintegrated into smaller crystallites and dissolved. During our field campaign in late June, melt reduced...

  11. Co-benefits of global, domestic, and sectoral greenhouse gas mitigation for US air quality and human health in 2050

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuqiang; Smith, Steven J.; Bowden, Jared H.; Adelman, Zachariah; West, J. Jason

    2017-11-01

    Policies to reduce greenhouse gas (GHG) emissions can bring ancillary benefits of improved air quality and reduced premature mortality, in addition to slowing climate change. Here we study the co-benefits of global and domestic GHG mitigation on US air quality and human health in 2050 at fine resolution using dynamical downscaling, and quantify for the first time the co-benefits from foreign GHG mitigation. Relative to a reference scenario, global GHG reductions in RCP4.5 avoid 16000 PM2.5-related all-cause deaths yr-1 (90% confidence interval, 11700-20300), and 8000 (3600-12400) O3-related respiratory deaths yr-1 in the US in 2050. Foreign GHG mitigation avoids 15% and 62% of PM2.5- and O3-related total avoided deaths, highlighting the importance of foreign GHG mitigation on US human health benefits. GHG mitigation in the US residential sector brings the largest co-benefits for PM2.5-related deaths (21% of total domestic co-benefits), and industry for O3 (17%). Monetized benefits, for avoided deaths from ozone, PM2.5, and heat stress from a related study, are $148 ($96-201) per ton CO2 at high valuation and $49 ($32-67) at low valuation, of which 36% are from foreign GHG reductions. These benefits likely exceed the marginal cost of GHG reductions in 2050. The US gains significantly greater co-benefits when coordinating GHG reductions with foreign countries. Similarly, previous studies estimating co-benefits locally or regionally may greatly underestimate the full co-benefits of coordinated global actions.

  12. Changes in ocean circulation and carbon storage are decoupled from air-sea CO2 fluxes

    Science.gov (United States)

    Marinov, I.; Gnanadesikan, A.

    2011-02-01

    The spatial distribution of the air-sea flux of carbon dioxide is a poor indicator of the underlying ocean circulation and of ocean carbon storage. The weak dependence on circulation arises because mixing-driven changes in solubility-driven and biologically-driven air-sea fluxes largely cancel out. This cancellation occurs because mixing driven increases in the poleward residual mean circulation result in more transport of both remineralized nutrients and heat from low to high latitudes. By contrast, increasing vertical mixing decreases the storage associated with both the biological and solubility pumps, as it decreases remineralized carbon storage in the deep ocean and warms the ocean as a whole.

  13. Changes in ocean circulation and carbon storage are decoupled from air-sea CO2 fluxes

    Directory of Open Access Journals (Sweden)

    A. Gnanadesikan

    2011-02-01

    Full Text Available The spatial distribution of the air-sea flux of carbon dioxide is a poor indicator of the underlying ocean circulation and of ocean carbon storage. The weak dependence on circulation arises because mixing-driven changes in solubility-driven and biologically-driven air-sea fluxes largely cancel out. This cancellation occurs because mixing driven increases in the poleward residual mean circulation result in more transport of both remineralized nutrients and heat from low to high latitudes. By contrast, increasing vertical mixing decreases the storage associated with both the biological and solubility pumps, as it decreases remineralized carbon storage in the deep ocean and warms the ocean as a whole.

  14. Trends in global CO2 emissions. 2012 Report

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, J.G.J.; Peters, J.A.H.W. [PBL Netherlands Environmental Assessment Agency, Den Haag (Netherlands); Janssens-Maenhout, G. [Institute for Environment and Sustainability IES, European Commission' s Joint Research Centre JRC, Ispra (Italy)

    2012-07-15

    This report discusses the results of a trend assessment of global CO2 emissions up to 2011 and updates last year's assessment. This assessment focusses on the changes in annual CO2 emissions from 2010 to 2011, and includes not only fossil fuel combustion on which the BP reports are based, but also incorporates all other relevant CO2 emissions sources including flaring of waste gas during oil production, cement clinker production and other limestone uses, feedstock and other non-energy uses of fuels, and several other small sources. After a short description of the methods used (Chapter 2), we first present a summary of recent CO2 emission trends, by region and by country, and of the underlying trend of fossil fuel use, non-fossil energy and of other CO2 sources (Chapter 3). To provide a broader context of the global trends we also assess the cumulative global CO2 emissions of the last decade, i.e. since 2000, and compare it with scientific literature that analyse global emissions in relation to the target of 2C maximum global warming in the 21st century, which was adopted in the UN climate negotiations (Chapter 4). Compared to last year's report, Annex 1 includes a more detailed and updated discussion of the uncertainty in national and global CO2 emission estimates.

  15. Trends in global CO2 emissions. 2012 Report

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, J. G.J.; Peters, J. A.H.W. [PBL Netherlands Environmental Assessment Agency, Den Haag (Netherlands); Janssens-Maenhout, G. [Institute for Environment and Sustainability IES, European Commission' s Joint Research Centre JRC, Ispra (Italy)

    2012-07-15

    This report discusses the results of a trend assessment of global CO2 emissions up to 2011 and updates last year's assessment. This assessment focusses on the changes in annual CO2 emissions from 2010 to 2011, and includes not only fossil fuel combustion on which the BP reports are based, but also incorporates all other relevant CO2 emissions sources including flaring of waste gas during oil production, cement clinker production and other limestone uses, feedstock and other non-energy uses of fuels, and several other small sources. After a short description of the methods used (Chapter 2), we first present a summary of recent CO2 emission trends, by region and by country, and of the underlying trend of fossil fuel use, non-fossil energy and of other CO2 sources (Chapter 3). To provide a broader context of the global trends we also assess the cumulative global CO2 emissions of the last decade, i.e. since 2000, and compare it with scientific literature that analyse global emissions in relation to the target of 2C maximum global warming in the 21st century, which was adopted in the UN climate negotiations (Chapter 4). Compared to last year's report, Annex 1 includes a more detailed and updated discussion of the uncertainty in national and global CO2 emission estimates.

  16. Effects of Northern Hemisphere Sea Surface Temperature Changes on the Global Air Quality

    Science.gov (United States)

    Yi, K.; Liu, J.

    2017-12-01

    The roles of regional sea surface temperature (SST) variability on modulating the climate system and consequently the air quality are investigated using the Community Earth System Model (CESM). Idealized, spatially uniform SST anomalies of +/- 1 °C are superimposed onto the North Pacific, North Atlantic, and North Indian Oceans individually. Ignoring the response of natural emissions, our simulations suggest large seasonal and regional variability of surface O3 and PM2.5 concentrations in response to SST anomalies, especially during boreal summers. Increasing the SST by 1 °C in one of the oceans generally decreases the surface O3 concentrations from 1 to 5 ppbv while increases the anthropogenic PM2.5 concentrations from 0.5 to 3 µg m-3. We implement the integrated process rate (IPR) analysis in CESM and find that meteorological transport in response to SST changes is the key process causing air pollutant perturbations in most cases. During boreal summers, the increase in tropical SST over different ocean basins enhances deep convection, which significantly increases the air temperature over the upper troposphere and trigger large-scale subsidence over nearby and remote regions. These processes tend to increase tropospheric stability and suppress rainfall at lower mid-latitudes. Consequently, it reduces the vertical transport of O3 to the surface while facilitating the accumulation of PM2.5 concentrations over most regions. In addition, this regional SST warming may also considerably suppress intercontinental transport of air pollution as confirmed with idealized CO-like tracers. Our findings indicate a robust linkage between basin-scale SST variability and regional air quality, which can help local air quality management.

  17. Quantifying the drivers of ocean-atmosphere CO2 fluxes

    Science.gov (United States)

    Lauderdale, Jonathan M.; Dutkiewicz, Stephanie; Williams, Richard G.; Follows, Michael J.

    2016-07-01

    A mechanistic framework for quantitatively mapping the regional drivers of air-sea CO2 fluxes at a global scale is developed. The framework evaluates the interplay between (1) surface heat and freshwater fluxes that influence the potential saturated carbon concentration, which depends on changes in sea surface temperature, salinity and alkalinity, (2) a residual, disequilibrium flux influenced by upwelling and entrainment of remineralized carbon- and nutrient-rich waters from the ocean interior, as well as rapid subduction of surface waters, (3) carbon uptake and export by biological activity as both soft tissue and carbonate, and (4) the effect on surface carbon concentrations due to freshwater precipitation or evaporation. In a steady state simulation of a coarse-resolution ocean circulation and biogeochemistry model, the sum of the individually determined components is close to the known total flux of the simulation. The leading order balance, identified in different dynamical regimes, is between the CO2 fluxes driven by surface heat fluxes and a combination of biologically driven carbon uptake and disequilibrium-driven carbon outgassing. The framework is still able to reconstruct simulated fluxes when evaluated using monthly averaged data and takes a form that can be applied consistently in models of different complexity and observations of the ocean. In this way, the framework may reveal differences in the balance of drivers acting across an ensemble of climate model simulations or be applied to an analysis and interpretation of the observed, real-world air-sea flux of CO2.

  18. Ikaite crystal distribution in winter sea ice and implications for CO2 system dynamics

    Science.gov (United States)

    Rysgaard, S.; Søgaard, D. H.; Cooper, M.; Pućko, M.; Lennert, K.; Papakyriakou, T. N.; Wang, F.; Geilfus, N. X.; Glud, R. N.; Ehn, J.; McGinnis, D. F.; Attard, K.; Sievers, J.; Deming, J. W.; Barber, D.

    2013-04-01

    The precipitation of ikaite (CaCO3 ⋅ 6H2O) in polar sea ice is critical to the efficiency of the sea ice-driven carbon pump and potentially important to the global carbon cycle, yet the spatial and temporal occurrence of ikaite within the ice is poorly known. We report unique observations of ikaite in unmelted ice and vertical profiles of ikaite abundance and concentration in sea ice for the crucial season of winter. Ice was examined from two locations: a 1 m thick land-fast ice site and a 0.3 m thick polynya site, both in the Young Sound area (74° N, 20° W) of NE Greenland. Ikaite crystals, ranging in size from a few μm to 700 μm, were observed to concentrate in the interstices between the ice platelets in both granular and columnar sea ice. In vertical sea ice profiles from both locations, ikaite concentration determined from image analysis, decreased with depth from surface-ice values of 700-900 μmol kg-1 ice (~25 × 106 crystals kg-1) to values of 100-200 μmol kg-1 ice (1-7 × 106 crystals kg-1) near the sea ice-water interface, all of which are much higher (4-10 times) than those reported in the few previous studies. Direct measurements of total alkalinity (TA) in surface layers fell within the same range as ikaite concentration, whereas TA concentrations in the lower half of the sea ice were twice as high. This depth-related discrepancy suggests interior ice processes where ikaite crystals form in surface sea ice layers and partly dissolve in layers below. Melting of sea ice and dissolution of observed concentrations of ikaite would result in meltwater with a pCO2 of <15 μatm. This value is far below atmospheric values of 390 μatm and surface water concentrations of 315 μatm. Hence, the meltwater increases the potential for seawater uptake of CO2.

  19. Coastal upwelling fluxes of O2, N2O, and CO2 assessed from continuous atmospheric observations at Trinidad, California

    Directory of Open Access Journals (Sweden)

    T. J. Lueker

    2004-01-01

    Full Text Available Continuous atmospheric records of O2/N2, CO2 and N2O obtained at Trinidad, California document the effects of air-sea exchange during coastal upwelling and plankton bloom events. The atmospheric records provide continuous observations of air-sea fluxes related to synoptic scale upwelling events over several upwelling seasons. Combined with satellite, buoy and local meteorology data, calculated anomalies in O2/N2 and N2O were utilized in a simple atmospheric transport model to compute air-sea fluxes during coastal upwelling. CO2 fluxes were linked to the oceanic component of the O2 fluxes through local hydrographic data and estimated as a function of upwelling intensity (surface ocean temperature and wind speed. Regional air-sea fluxes of O2/N2, N2O, and CO2 during coastal upwelling were estimated with the aid of satellite wind and SST data. Upwelling CO2 fluxes were found to represent ~10% of export production along the northwest coast of North America. Synoptic scale upwelling events impact the net exchange of atmospheric CO2 along the coastal margin, and will vary in response to the frequency and duration of alongshore winds that are subject to climate change.

  20. Rolling stones. Fast weathering of olivine in shallow seas for cost-effective CO2 capture and mitigation of global warming and ocean acidification

    Energy Technology Data Exchange (ETDEWEB)

    Schuiling, R.D.; De Boer, P.L. [Department of Earth Sciences, Utrecht University, P.O. Box 80.021, 3508TA Utrecht (Netherlands)

    2011-07-01

    Human CO2 emissions may drive the Earth into a next greenhouse state. They can be mitigated by accelerating weathering of natural rock under the uptake of CO2. We disprove the paradigm that olivine weathering in nature would be a slow process, and show that it is not needed to mill olivine to very fine, 10 {mu}m-size grains in order to arrive at a complete dissolution within 1-2 year. In high-energy shallow marine environments olivine grains and reaction products on the grain surfaces, that otherwise would greatly retard the reaction, are abraded so that the chemical reaction is much accelerated. When kept in motion even large olivine grains rubbing and bumping against each other quickly produce fine clay- and silt-sized olivine particles that show a fast chemical reaction. Spreading of olivine in the world's 2% most energetic shelf seas can compensate a year's global CO2 emissions and counteract ocean acidification against a price well below that of carbon credits.

  1. Changes in ocean circulation and carbon storage are decoupled from air-sea CO2 fluxes

    OpenAIRE

    A. Gnanadesikan; I. Marinov

    2010-01-01

    The spatial distribution of the air-sea flux of carbon dioxide is a poor indicator of the underlying ocean circulation and of ocean carbon storage. The weak dependence on circulation arises because mixing-driven changes in solubility-driven and biologically-driven air-sea fluxes largely cancel out. This cancellation occurs because mixing driven increases in the poleward residual mean circulation results in more transport of both remineralized nutrients and heat from low to high latitudes. By ...

  2. Diurnal variability of CO2 flux at coastal zone of Taiwan based on eddy covariance observation

    Science.gov (United States)

    Chien, Hwa; Zhong, Yao-Zhao; Yang, Kang-Hung; Cheng, Hao-Yuan

    2018-06-01

    In this study, we employed shore-based eddy covariance systems for a continuous measurement of the coastal CO2 flux near the northwestern coast of Taiwan from 2011 to 2015. To ensure the validity of the analysis, the data was selected and filtered with a footprint model and an empirical mode decomposition method. The results indicate that the nearshore air-sea and air-land CO2 fluxes exhibited a significant diurnal variability and a substantial day-night difference. The net air-sea CO2 flux was -1.75 ± 0.98 μmol-C m-2 s-1, whereas the net air-land CO2 flux was 0.54 ± 7.35 μmol-C m-2 s-1, which indicated that in northwestern Taiwan, the coastal water acts as a sink of atmospheric CO2 but the coastal land acts as a source. The Random Forest Method was applied to hierarchize the influence of Chl-a, SST, DO, pH and U10 on air-sea CO2 fluxes. The result suggests that the strength of the diurnal air-sea CO2 flux is strongly influenced by the local wind speed.

  3. Is there a decrease in the sink of atmospheric CO2 in the Nordic seas?

    International Nuclear Information System (INIS)

    Olsen, Are; Anderson, Leif G.

    2002-01-01

    It is well known that the seas off Norway sink a lot of carbon dioxide from the atmosphere, mainly because of the large heat loss from the sea in the area, which makes CO 2 more soluble in the water. Whether this sink has increased after the industrial revolution and thereby contributes to slowing down the increase of atmospheric CO 2 is uncertain. That is, it is uncertain whether there is a sink of anthropogenic CO 2 . There are indications that the opposite is true, that the sink of CO 2 in this area has slowed down along with the rise in the concentration of atmospheric CO 2 . Storing of anthropogenic CO 2 , however, takes place at higher latitudes where deep-water formation occurs, such as in the Nordic seas, where water that is saturated with anthropogenic CO 2 is transported down in the deep sea and becomes shielded from the atmosphere. Model calculations show that increased CO 2 in the atmosphere will reduce the sink of this gas in the Nordic seas. This conclusion is supported by observations from the Barents Sea

  4. Will technological progress be sufficient to stabilize CO2 emissions from air transport in the mid-term?

    International Nuclear Information System (INIS)

    Cheze, Benoit; Chevallier, Julien; Gastineau, Pascal

    2012-01-01

    This article investigates whether anticipated technological progress can be expected to be strong enough to offset carbon dioxide (CO 2 ) emissions resulting from the rapid growth of air transport. Aviation CO 2 emissions projections are provided at the worldwide level and for eight geographical zones until 2025. Total air traffic flows are first forecast using a dynamic panel-data econometric model, and then converted into corresponding quantities of air traffic CO 2 emissions using specific hypotheses and energy factors. None of our nine scenarios appears compatible with the objective of 450 ppm CO 2 -eq. (a.k.a. 'scenario of type I') recommended by the Intergovernmental Panel on Climate Change (IPCC). None is either compatible with the IPCC scenario of type III, which aims at limiting global warming to 3.2 deg. C

  5. Summer Distribution of Co2 Partial Pressure In The Ross Sea, Antarctica, and Relations With Biological Activity

    Science.gov (United States)

    Sandrini, S.; Tositti, L.; Tubertini, O.; Ceradini, S.; Palucci, A.; Barbini, R.; Fantoni, R.; Colao, F.; Ferrari, G. M.

    The oceans play a key role in the processes responsible for global climate changes, in fact the oceanic uptake of anthropogenic atmospheric carbon dioxide is estimated to be 17-39The Southern Ocean and Antarctic marginal seas are considered to absorb up to half of this fraction. The Ross Sea, during the summer pack-ice melting, expe- riences rapid seasonal outgrowths, giving rise to phytoplankton blooms, especially in polynya areas near the coast line. This has a direct influence on pCO2 concentration in surface water, and hence on CO2 fluxes between ocean and atmosphere. Both the Ross Sea and the Southern Ocean transect between New Zealand and Antarctica are sys- tematically investigated during Italian Antarctic oceanographic campaigns onboard of the R/V Italica. During the XVI expedition, which took place in January and Febru- ary 2001, simultaneous measurements of surface pCO2 and Chlorophyll-a by laser remote-sensing apparatus were collected. Chlorophyll-a and pCO2 showed a general anticorrelation along the cruise. The survey has revealed the presence of high produc- tive regions in the polynya and close to the ice edge. The linear regression analysis of the chl-a vs pCO2 values improved our knowledge of the time evolution of the phyto- planktonic growth, independently measured by means of the laser yield, thus allowing for discrimination between different initial and final blooms in the Antarctic Ross Sea. The results obtained are here presented and discussed. They confirm the importance of biological production in the net absorption of atmospheric CO2 in continental shelf zones.

  6. Assessing the effectiveness of global air-pollution treaties on CO2 emissions

    OpenAIRE

    Aurelie Slechten; Vincenzo Verardi

    2014-01-01

    This paper considers the effect of international air-pollution agreements ratified since 1970 on carbon dioxide emissions (CO2), the main cause of anthropogenic climate change. The analysis is based on a panel dataset of 150 countries over the period 1970-2008. While the literature generally focuses on one particular agreement, we analyze the effect of the accumulation of agreements using a two-way (country, year) fixed effects regression model. We find that the relationship between the numbe...

  7. Global energy / CO2 projections

    International Nuclear Information System (INIS)

    Sinyak, Y.

    1990-09-01

    Section headings are: (1) Social and economic problems of the 21 st century and the role of energy supply systems (2) Energy-environment interactions as a central point of energy research activities (3) New ways of technological progress and its impacts on energy demand and supply (4) Long-term global energy projections (5) Comparative analysis of global long-term energy / CO 2 studies (6) Conclusions. The author shows that, in order to alleviate the negative impacts of energy systems on the climate, it will be necessary to undertake tremendous efforts to improve the energy use efficiency, to drastically change the primary energy mix, and, at the same time, to take action to reduce greenhouse emissions from other sources and increase the CO 2 sink through enhanced reforestation. (Quittner)

  8. Role of mesoscale eddies in the global ocean uptake of anthropogenic CO2

    International Nuclear Information System (INIS)

    Zouhair, Lachkar

    2007-02-01

    Mesoscale eddies play a fundamental role in ocean dynamics particularly in the Southern Ocean. Global-scale tracer simulations are typically made at coarse resolution without explicitly modeling eddies. Here we ask what role do eddies play in ocean uptake, storage, and meridional transport of anthropogenic CO 2 , CFC-11 and bomb Δ 14 C. We made global anthropogenic transient tracer simulations in coarse-resolution, ORCA2, and eddy-permitting, ORCA05 and ORCA025, versions of the ocean modelling system NEMO. We focus on the Southern Ocean where tracer air-sea fluxes are largest. Eddies have little effect on bomb Δ 14 C uptake and storage. Yet for CFC-11 and anthropogenic CO 2 , increased eddy activity reduces southern extra-tropical uptake by 28% and 25% respectively, thereby providing better agreement with observations. It is shown that the discrepancies in the equilibration times between the three tracers determine their respective sensitivities to the model horizontal resolution. Applying Gent and McWilliams (1990) (GM) parameterization of eddies in the non-eddying version of the model does improve results, but not enough. An in-depth investigation of the mechanisms by which eddies affect the uptake of the transient tracers shows that including mesoscale eddies leads to an overall reduction in the Antarctic Intermediate Water (AAIW) ventilation, and modifies substantially the spatial distribution of their source regions. This investigation reveals also that the GM parameterization still overestimates the ventilation and the subduction of AAIW in the Indian Ocean where the simulated mixed layer is particularly deep during the winter. This work suggests that most current coarse-resolution models may overestimate the ventilation of AAIW in the Indian sector of the Southern Ocean. This study shows also that the use of the GM parameterization may be of limited utility where mixed layer is relatively deep and confirms the general need for a more adequate

  9. TG-FTIR measurement of CO2-H2O co-adsorption for CO2 air capture sorbent screening

    NARCIS (Netherlands)

    Smal, I.M.; Yu, Qian; Veneman, Rens; Fränzel-Luiten, B.; Brilman, Derk Willem Frederik

    2014-01-01

    Capturing atmospheric CO2 using solid sorbents is gaining interest. As ambient air normally contains much more (up to 100 times) water than CO2, a selective sorbent is desirable as co-adsorption will most likely occur. In this study, a convenient method based on an TG-FTIR analysis system is

  10. Trends in global CO2 emissions. 2013 Report

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, J.G.J.; Peters, J.A.H.W. [PBL Netherlands Environmental Assessment Agency, Den Haag (Netherlands); Janssens-Maenhout, G. [Institute for Environment and Sustainability IES, European Commission' s Joint Research Centre JRC, Ispra (Italy); Muntean, M. [Institute for Environment and Sustainability IES, Joint Research Centre JRC, Ispra (Italy)

    2013-10-15

    This report discusses the results of a trend assessment of global CO2 emissions up to 2012 and updates last year's assessment. This assessment focuses on the changes in annual CO2 emissions from 2011 to 2012, and includes not only fossil-fuel combustion on which the BP reports are based, but also incorporates other relevant CO2 emissions sources including flaring of waste gas during gas and oil production, cement clinker production and other limestone uses, feedstock and other non-energy uses of fuels, and several other small sources. The report clarifies the CO2 emission sources covered, and describes the methodology and data sources. More details are provided in Annex 1 over the 2010-2012 period, including a discussion of the degree of uncertainty in national and global CO2 emission estimates. Chapter 2 presents a summary of recent CO2 emission trends, per main country or region, including a comparison between emissions per capita and per unit of Gross Domestic Product (GDP), and of the underlying trend in fossil-fuel production and use, non-fossil energy and other CO2 sources. Specific attention is given to developments in shale gas and oil production and oil sands production and their impact on CO2 emissions. To provide a broader context of global emissions trends, international greenhouse gas mitigation targets and agreements are also presented, including different perspectives of emission accounting per country. In particular, annual trends with respect to the Kyoto Protocol target and Cancun agreements and cumulative global CO2 emissions of the last decade are compared with scientific literature that analyses global emissions in relation to the target of 2{sup 0}C maximum global warming in the 21st century, which was adopted in the UN climate negotiations. In addition, we briefly discuss the rapid development and implementation of various emission trading schemes, because of their increasing importance as a cross-cutting policy instrument for mitigating

  11. Acidification at the Surface in the East Sea: A Coupled Climate-carbon Cycle Model Study

    Science.gov (United States)

    Park, Young-Gyu; Seol, Kyung-Hee; Boo, Kyung-On; Lee, Johan; Cho, Chunho; Byun, Young-Hwa; Seo, Seongbong

    2018-05-01

    This modeling study investigates the impacts of increasing atmospheric CO2 concentration on acidification in the East Sea. A historical simulation for the past three decades (1980 to 2010) was performed using the Hadley Centre Global Environmental Model (version 2), a coupled climate model with atmospheric, terrestrial and ocean cycles. As the atmospheric CO2 concentration increased, acidification progressed in the surface waters of the marginal sea. The acidification was similar in magnitude to observations and models of acidification in the global ocean. However, in the global ocean, the acidification appears to be due to increased in-situ oceanic CO2 uptake, whereas local processes had stronger effects in the East Sea. pH was lowered by surface warming and by the influx of water with higher dissolved inorganic carbon (DIC) from the northwestern Pacific. Due to the enhanced advection of DIC, the partial pressure of CO2 increased faster than in the overlying air; consequently, the in-situ oceanic uptake of CO2 decreased.

  12. Measurements of CO2 Mole Fractionand δ13C in Archived Air Samples from Cape Meares, Oregon (USA) 1977 - 1998

    Science.gov (United States)

    Clark, O.; Rice, A. L.

    2017-12-01

    Carbon dioxide (CO2) is the most abundant, anthropogenically forced greenhouse gas (GHG) in the global atmosphere. Emissions of CO2 account for approximately 75% of the world's total GHG emissions. Atmospheric concentrations of CO2 are higher now than they've been at any other time in the past 800,000 years. Currently, the global mean concentration exceeds 400 ppm. Today, global networks regularly monitor CO2 concentrations and isotopic composition (δ13C and δ18O). However, past data is sparse. Over 200 ambient air samples from Cape Meares, Oregon (45.5°N, 124.0°W), a coastal site in Western United States, were obtained by researchers at Oregon Institute of Science and Technology (OGI, now Oregon Health & Science University), between the years of 1977 and 1998 as part of a global monitoring program of six different sites in the polar, middle, and tropical latitudes of the Northern and Southern Hemispheres. Air liquefaction was used to compress approximately 1000L of air (STP) to 30bar, into 33L electropolished (SUMMA) stainless steel canisters. Select archived air samples from the original network are maintained at Portland State University (PSU) Department of Physics. These archived samples are a valuable look at changing atmospheric concentrations of CO2 and δ13C, which can contribute to a better understanding of changes in sources during this time. CO2 concentrations and δ13C of CO2 were measured at PSU, with a Picarro Cavity Ringdown Spectrometer, model G1101-i analytical system. This study presents the analytical methods used, calibration techniques, precision, and reproducibility. Measurements of select samples from the archive show rising CO2 concentrations and falling δ13C over the 1977 to 1998 period, compatible with previous observations and rising anthropogenic sources of CO2. The resulting data set was statistically analyzed in MATLAB. Results of preliminary seasonal and secular trends from the archive samples are presented.

  13. Monthly dynamics of carbon dioxide exchange across the sea surface of the Arctic Ocean in response to changes in gas transfer velocity and partial pressure of CO2 in 2010

    Directory of Open Access Journals (Sweden)

    Iwona Wrobel

    2017-10-01

    Full Text Available The Arctic Ocean (AO is an important basin for global oceanic carbon dioxide (CO2 uptake, but the mechanisms controlling air–sea gas fluxes are not fully understood, especially over short and long timescales. The oceanic sink of CO2 is an important part of the global carbon budget. Previous studies have shown that in the AO differences in the partial pressure of CO2 (ΔpCO2 and gas transfer velocity (k both contribute significantly to interannual air–sea CO2 flux variability, but that k is unimportant for multidecadal variability. This study combined Earth Observation (EO data collected in 2010 with the in situ pCO2 dataset from Takahashi et al. (2009 (T09 using a recently developed software toolbox called FluxEngine to determine the importance of k and ΔpCO2 on CO2 budgets in two regions of the AO – the Greenland Sea (GS and the Barents Sea (BS with their continental margins. Results from the study indicate that the variability in wind speed and, hence, the gas transfer velocity, generally play a major role in determining the temporal variability of CO2 uptake, while variability in monthly ΔpCO2 plays a major role spatially, with some exceptions.

  14. Air-Sea Interactions in the Marginal Ice Zone

    Science.gov (United States)

    2016-03-31

    elementascience.org Air-sea interactions in the marginal ice zoneAir-Sea interactions in the Marginal Ice Zone Seth Zippel1* • Jim Thomson1 1Applied...Bidlot, 2013; Collins -III et al., 2015). Spectral wave directions and spread are given in Figure 5, where the difference in wave and wind direction...359219a0. Chalikov DV, Belevich MY. 1993. One-dimensional theory of the wave boundary layer. Bound-Lay Meteor 63: 65–96. Collins -III CO, Rogers WE

  15. NEOTEC: Negative-CO2-Emissions Marine Energy With Direct Mitigation of Global Warming, Sea-Level Rise and Ocean Acidification

    Science.gov (United States)

    Rau, G. H.; Baird, J.; Noland, G.

    2016-12-01

    The vertical thermal energy potential in the ocean is a massive renewable energy resource that is growing due to anthropogenic warming of the surface and near-surface ocean. The conversion of this thermal energy to useful forms via Ocean Thermal Energy Conversion (OTEC) has been demonstrated over the past century, albeit at small scales. Because OTEC removes heat from the surface ocean, this could help directly counter ongoing, deleterious ocean/atmosphere warming. The only other climate intervention that could do this is solar radiation "geoengineering". Conventional OTEC requires energy intensive, vertical movement of seawater resulting in ocean and atmospheric chemistry alteration, but this can be avoided via more energy efficient, vertical closed-cycle heating and cooling of working fluid like CO2 or NH3. An energy carrier such as H2 is required to transport energy optimally extracted far offshore, and methods of electrochemically generating H2 while also consuming CO2 and converting it to ocean alkalinity have been demonstrated. The addition of such alkalinity to the ocean would provide vast, stable, carbon storage, while also helping chemically counter the effects of ocean acidification. The process might currently be profitable given the >$100/tonne CO2 credit offered by California's Low Carbon Fuel Standard for transportation fuels like H2. Negative-Emissions OTEC, NEOTEC, thus can potentially provide constant, cost effective, high capacity, negative-emissions energy while: a) reducing surface ocean heat load, b) reducing thermal ocean expansion and sea-level rise, c) utilizing a very large, natural marine carbon storage reservoir, and d) helping mitigate ocean acidification. The technology also avoids the biophysical and land use limitations posed by negative emissions methods that rely on terrestrial biology, such as afforestation and BECCS. NEOTEC and other marine-based, renewable energy and CO2 removal approaches could therefore greatly increase the

  16. Carbon Dioxide Transfer Through Sea Ice: Modelling Flux in Brine Channels

    Science.gov (United States)

    Edwards, L.; Mitchelson-Jacob, G.; Hardman-Mountford, N.

    2010-12-01

    For many years sea ice was thought to act as a barrier to the flux of CO2 between the ocean and atmosphere. However, laboratory-based and in-situ observations suggest that while sea ice may in some circumstances reduce or prevent transfer (e.g. in regions of thick, superimposed multi-year ice), it may also be highly permeable (e.g. thin, first year ice) with some studies observing significant fluxes of CO2. Sea ice covered regions have been observed to act both as a sink and a source of atmospheric CO2 with the permeability of sea ice and direction of flux related to sea ice temperature and the presence of brine channels in the ice, as well as seasonal processes such as whether the ice is freezing or thawing. Brine channels concentrate dissolved inorganic carbon (DIC) as well as salinity and as these dense waters descend through both the sea ice and the surface ocean waters, they create a sink for CO2. Calcium carbonate (ikaite) precipitation in the sea ice is thought to enhance this process. Micro-organisms present within the sea ice will also contribute to the CO2 flux dynamics. Recent evidence of decreasing sea ice extent and the associated change from a multi-year ice to first-year ice dominated system suggest the potential for increased CO2 flux through regions of thinner, more porous sea ice. A full understanding of the processes and feedbacks controlling the flux in these regions is needed to determine their possible contribution to global CO2 levels in a future warming climate scenario. Despite the significance of these regions, the air-sea CO2 flux in sea ice covered regions is not currently included in global climate models. Incorporating this carbon flux system into Earth System models requires the development of a well-parameterised sea ice-air flux model. In our work we use the Los Alamos sea ice model, CICE, with a modification to incorporate the movement of CO2 through brine channels including the addition of DIC processes and ice algae production to

  17. Accumulation of fossil CO/sub 2/ in the atmosphere and the sea

    Energy Technology Data Exchange (ETDEWEB)

    Fairhall, A W

    1973-09-07

    A model is presented which accounts quantitatively for the buildup of fossil CO/sub 2/ in the atmosphere. The model also predicts something not previously recognized: a significant uptake of fossil CO/sub 2/ by the sea. The sea is presently supersaturated with respect to aragonite and calcite, which calcareous organisms form in building their shells. Should the sea become unsaturated in CaCO/sub 3/ the shells of these organisms would tend to dissolve, as would the ocean's coral reefs. One test of the model would be afforded by careful monitoring of total CO/sub 2/ levels in the mixed layer over the next few years. The model predicts an increase in the mixed layer of about 1.4 per cent in the next decade. Because this is about double the accuracy of the present methods for measuring total CO/sub 2/ in seawater, this trend, if present, should be detectable within 3 to 5 years. (MFB)

  18. Air quality co-benefits of carbon pricing in China

    Science.gov (United States)

    Li, Mingwei; Zhang, Da; Li, Chiao-Ting; Mulvaney, Kathleen M.; Selin, Noelle E.; Karplus, Valerie J.

    2018-05-01

    Climate policies targeting energy-related CO2 emissions, which act on a global scale over long time horizons, can result in localized, near-term reductions in both air pollution and adverse human health impacts. Focusing on China, the largest energy-using and CO2-emitting nation, we develop a cross-scale modelling approach to quantify these air quality co-benefits, and compare them to the economic costs of climate policy. We simulate the effects of an illustrative climate policy, a price on CO2 emissions. In a policy scenario consistent with China's recent pledge to reach a peak in CO2 emissions by 2030, we project that national health co-benefits from improved air quality would partially or fully offset policy costs depending on chosen health valuation. Net health co-benefits are found to rise with increasing policy stringency.

  19. Air toxic emissions from burning of biomass globally-preliminary results

    International Nuclear Information System (INIS)

    Ward, D.E.; Hao, W.M.

    1992-01-01

    Emissions of trace gases, particles, and air toxic substances in the smoke plumes from biomass fires are of importance to global climate change. The potential impact of the air toxic emissions on the human population of specific regions globally is another major concern. The toxic materials are produced in high concentrations in areas of heavy biomass burning, e.g., Amazon Basin and Central/southern Africa. We provide new estimates of air toxics based on the combustion efficiency (percent of total carbon released as CO 2 ) for fires burning in different ecosystems on a global basis. Estimates of total biomass consumed on a global basis range from 2 to 10 Pg (1 petagram = 10 15 g) per year. We apply emission factors for various air toxics (g of emission released per kg of fuel consumed) to the estimate of global biomass consumption of 6.4 Pg per year. The principal air toxics analyzed in this paper include: Total particulate matter, CO, formaldehyde, acetaldehyde, acrolein, benzene, toluene, o-xylene, m, p-xylene, benzo[a]pyrene, and polycyclic organic material. The total emissions calculated for these materials on a yearly global basis are: 75, 362, 4.9, 1.5, 1.5, 2.1, 2.1, 0.3, 0.6, 0.001, 0.026, Tg (1 teragram = 10 12 g) per year, respectively. Biomass burning in the United States contributes less than 3% to the total global emissions

  20. CO2 Sink/Source in the Indonesian Seas

    KAUST Repository

    Kartadikaria, Aditya R.; Watanabe, Atsushi; Nadaoka, Kazuo; Prayitno, Hanif; Adi, Novi; Suharsono, Suharsono; Muchtar, Muswerry; Triyulianti, Iis; Setiawan, Agus; Suratno, Suratno; Khasanah, Elly

    2015-01-01

    condition in Java Sea. Temperature is found to have a limited influence to control different characteristic in the west and east, but SST change of 2.0 0C during La Ninã condition effectively reduced the source amount of CO2 by 50% compared to Normal year

  1. TropFlux: air-sea fluxes for the global tropical oceans-description and evaluation

    Digital Repository Service at National Institute of Oceanography (India)

    PraveenKumar, B.; Vialard, J.; Lengaigne, M.; Murty, V.S.N.; McPhaden, M.J.

    This paper evaluates several timely, daily air-sea heat flux products (NCEP, NCEP2, ERA-Interim and OAFlux/ISCCP) against observations and present the newly developed TropFlux product. This new product uses bias-corrected ERA-interim and ISCCP data...

  2. Pursuing air pollutant co-benefits of CO2 mitigation in China: A provincial leveled analysis

    International Nuclear Information System (INIS)

    Dong, Huijuan; Dai, Hancheng; Dong, Liang; Fujita, Tsuyoshi; Geng, Yong; Klimont, Zbigniew; Inoue, Tsuyoshi; Bunya, Shintaro; Fujii, Minoru; Masui, Toshihiko

    2015-01-01

    Highlights: • China’s future CO 2 reduction and its co-benefits on air pollutants were projected. • GAINS-China and AIM/CGE models were combined for emission and cost estimation. • High GDP regions tended to have higher emission, reduction potential and co-benefit. • Coal ratio and coal quality were also key factors to affect reduction and co-benefit. • Mitigation investment to less developed western regions was more effective. - Abstract: With fast economic development, industrialization and urbanization, China faces increasing pressures on carbon emission reduction, and especially on air pollutants (SO 2 , NOx, PM) reduction, particularly the notorious haze issue caused by air pollution in recent years. Pursuing co-benefits is an effective approach to simultaneously respond to both carbon and air pollutant problems. In this paper, the AIM/CGE (Asia–Pacific Integrated Assessment Model/Computational General Equilibrium) model and GAINS (Greenhouse Gas and Air Pollution Interactions and Synergies)-China model are combined together to project future CO 2 and air pollutants emissions in China, as well as reduction costs and co-benefit effects. Considering implementation of carbon mitigation policy and air pollutant mitigation technologies, four scenarios (S1, S2, S3 and S4) are analyzed. Results indicate that by implementing both carbon and air pollutant mitigation (S4), CO 2 emission per GDP can be reduced by 41% by 2020, compared with the 2005 level, and SO 2 , NOx and PM2.5 emissions would change by a factor 0.8, 1.26 and 1.0 of the 2005 level, respectively in 2030. The real co-benefits of emission reductions (S2 minus S4) for SO 2 , NOx and PM2.5 are 2.4 Mt, 2.1 Mt and 0.3 Mt in 2020, and the corresponding cost reduction co-benefits are 4, 0.11, and 0.8 billion €, respectively. Provincial disparity analysis reveals that regions with higher co-benefits are those with higher GDP such as Guangdong, Shandong and Jiangsu, energy production bases such as

  3. Seasonal variation of CO{sub 2} flux between air and temperate forest

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Susumo; Murayama, Shohei; Kondo, Hiroaki [National Inst. for Resources and Environment, Ibaraki (Japan)

    1995-12-31

    Carbon dioxide, which is a very important greenhouse gas, contributes approximately 55 % to the problem of global warming. The knowledge to the sources and sinks of carbon on a global basis is very poor. IPCC (1994) suggested that unknown 1.5-2.0 GtC/year may be sunk in terrestrial ecosystem, in particular, in the Northern Hemisphere. As can be seen from a recent estimation of the carbon fluxes in the terrestrial biosphere, there is a high degree of uncertainty in the magnitude. The clear evidence for it has not been shown yet by IPCC (1994). However, based on the gradient of CO{sub 2}, as a function of latitude, main CO{sub 2} sink can be thought to be in the terrestrial biosphere, in the middle to high latitude of the Northern Hemisphere. As can be seen from a recent estimation of the carbon fluxes in the terrestrial biosphere, there is a high degree of uncertainty in the magnitude. From this view, more investigation of the role of the temperate forest on the CO{sub 2} balance is inevitable. In this presentation, the seasonal variation of CO{sub 2} flux between air and biosphere in temperate deciduous forest in Japan is intended to be elucidated. (author)

  4. Seasonal variation of CO{sub 2} flux between air and temperate forest

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Susumo; Murayama, Shohei; Kondo, Hiroaki [National Inst. for Resources and Environment, Ibaraki (Japan)

    1996-12-31

    Carbon dioxide, which is a very important greenhouse gas, contributes approximately 55 % to the problem of global warming. The knowledge to the sources and sinks of carbon on a global basis is very poor. IPCC (1994) suggested that unknown 1.5-2.0 GtC/year may be sunk in terrestrial ecosystem, in particular, in the Northern Hemisphere. As can be seen from a recent estimation of the carbon fluxes in the terrestrial biosphere, there is a high degree of uncertainty in the magnitude. The clear evidence for it has not been shown yet by IPCC (1994). However, based on the gradient of CO{sub 2}, as a function of latitude, main CO{sub 2} sink can be thought to be in the terrestrial biosphere, in the middle to high latitude of the Northern Hemisphere. As can be seen from a recent estimation of the carbon fluxes in the terrestrial biosphere, there is a high degree of uncertainty in the magnitude. From this view, more investigation of the role of the temperate forest on the CO{sub 2} balance is inevitable. In this presentation, the seasonal variation of CO{sub 2} flux between air and biosphere in temperate deciduous forest in Japan is intended to be elucidated. (author)

  5. Impacts of South East Biomass Burning on local air quality in South China Sea

    Science.gov (United States)

    Wai-man Yeung, Irene; Fat Lam, Yun; Eniolu Morakinyo, Tobi

    2016-04-01

    Biomass burning is a significant source of carbon monoxide and particulate matter, which is not only contribute to the local air pollution, but also regional air pollution. This study investigated the impacts of biomass burning emissions from Southeast Asia (SEA) as well as its contribution to the local air pollution in East and South China Sea, including Hong Kong and Taiwan. Three years (2012 - 2014) of the Hybrid Single Particle Lagrangian-Integrated Trajectory (HYSPLIT) with particles dispersion analyses using NCEP (Final) Operational Global Analysis data (FNL) data (2012 - 2014) were analyzed to track down all possible long-range transport from SEA with a sinking motion that worsened the surface air quality (tropospheric downwash from the free troposphere). The major sources of SEA biomass burning emissions were first identified using high fire emissions from the Global Fire Emission Database (GFED), followed by the HYSPLIT backward trajectory dispersion modeling analysis. The analyses were compared with the local observation data from Tai Mo Shan (1,000 msl) and Tap Mun (60 msl) in Hong Kong, as well as the data from Lulin mountain (2,600 msl) in Taiwan, to assess the possible impacts of SEA biomass burning on local air quality. The correlation between long-range transport events from the particles dispersion results and locally observed air quality data indicated that the background concentrations of ozone, PM2.5 and PM10 at the surface stations were enhanced by 12 μg/m3, 4 μg/m3 and 7 μg/m3, respectively, while the long-range transport contributed to enhancements of 4 μg/m3, 4 μg/m3 and 8 μg/m3 for O3, PM2.5 and PM10, respectively at the lower free atmosphere.

  6. Variability of 14C reservoir age and air-sea flux of CO2 in the Peru-Chile upwelling region during the past 12,000 years

    Science.gov (United States)

    Carré, Matthieu; Jackson, Donald; Maldonado, Antonio; Chase, Brian M.; Sachs, Julian P.

    2016-01-01

    The variability of radiocarbon marine reservoir age through time and space limits the accuracy of chronologies in marine paleo-environmental archives. We report here new radiocarbon reservoir ages (ΔR) from the central coast of Chile ( 32°S) for the Holocene period and compare these values to existing reservoir age reconstructions from southern Peru and northern Chile. Late Holocene ΔR values show little variability from central Chile to Peru. Prior to 6000 cal yr BP, however, ΔR values were markedly increased in southern Peru and northern Chile, while similar or slightly lower-than-modern ΔR values were observed in central Chile. This extended dataset suggests that the early Holocene was characterized by a substantial increase in the latitudinal gradient of marine reservoir age between central and northern Chile. This change in the marine reservoir ages indicates that the early Holocene air-sea flux of CO2 could have been up to five times more intense than in the late Holocene in the Peruvian upwelling, while slightly reduced in central Chile. Our results show that oceanic circulation changes in the Humboldt system during the Holocene have substantially modified the air-sea carbon flux in this region.

  7. Global estimates of CO sources with high resolution by adjoint inversion of multiple satellite datasets (MOPITT, AIRS, SCIAMACHY, TES

    Directory of Open Access Journals (Sweden)

    M. Kopacz

    2010-02-01

    Full Text Available We combine CO column measurements from the MOPITT, AIRS, SCIAMACHY, and TES satellite instruments in a full-year (May 2004–April 2005 global inversion of CO sources at 4°×5° spatial resolution and monthly temporal resolution. The inversion uses the GEOS-Chem chemical transport model (CTM and its adjoint applied to MOPITT, AIRS, and SCIAMACHY. Observations from TES, surface sites (NOAA/GMD, and aircraft (MOZAIC are used for evaluation of the a posteriori solution. Using GEOS-Chem as a common intercomparison platform shows global consistency between the different satellite datasets and with the in situ data. Differences can be largely explained by different averaging kernels and a priori information. The global CO emission from combustion as constrained in the inversion is 1350 Tg a−1. This is much higher than current bottom-up emission inventories. A large fraction of the correction results from a seasonal underestimate of CO sources at northern mid-latitudes in winter and suggests a larger-than-expected CO source from vehicle cold starts and residential heating. Implementing this seasonal variation of emissions solves the long-standing problem of models underestimating CO in the northern extratropics in winter-spring. A posteriori emissions also indicate a general underestimation of biomass burning in the GFED2 inventory. However, the tropical biomass burning constraints are not quantitatively consistent across the different datasets.

  8. Global CO2 emissions from cement production

    Science.gov (United States)

    Andrew, Robbie M.

    2018-01-01

    The global production of cement has grown very rapidly in recent years, and after fossil fuels and land-use change, it is the third-largest source of anthropogenic emissions of carbon dioxide. The required data for estimating emissions from global cement production are poor, and it has been recognised that some global estimates are significantly inflated. Here we assemble a large variety of available datasets and prioritise official data and emission factors, including estimates submitted to the UNFCCC plus new estimates for China and India, to present a new analysis of global process emissions from cement production. We show that global process emissions in 2016 were 1.45±0.20 Gt CO2, equivalent to about 4 % of emissions from fossil fuels. Cumulative emissions from 1928 to 2016 were 39.3±2.4 Gt CO2, 66 % of which have occurred since 1990. Emissions in 2015 were 30 % lower than those recently reported by the Global Carbon Project. The data associated with this article can be found at https://doi.org/10.5281/zenodo.831455.

  9. Forecasting global atmospheric CO2

    International Nuclear Information System (INIS)

    Agusti-Panareda, A.; Massart, S.; Boussetta, S.; Balsamo, G.; Beljaars, A.; Engelen, R.; Jones, L.; Peuch, V.H.; Chevallier, F.; Ciais, P.; Paris, J.D.; Sherlock, V.

    2014-01-01

    A new global atmospheric carbon dioxide (CO 2 ) real-time forecast is now available as part of the preoperational Monitoring of Atmospheric Composition and Climate - Interim Implementation (MACC-II) service using the infrastructure of the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). One of the strengths of the CO 2 forecasting system is that the land surface, including vegetation CO 2 fluxes, is modelled online within the IFS. Other CO 2 fluxes are prescribed from inventories and from off-line statistical and physical models. The CO 2 forecast also benefits from the transport modelling from a state-of-the-art numerical weather prediction (NWP) system initialized daily with a wealth of meteorological observations. This paper describes the capability of the forecast in modelling the variability of CO 2 on different temporal and spatial scales compared to observations. The modulation of the amplitude of the CO 2 diurnal cycle by near-surface winds and boundary layer height is generally well represented in the forecast. The CO 2 forecast also has high skill in simulating day-to-day synoptic variability. In the atmospheric boundary layer, this skill is significantly enhanced by modelling the day-to-day variability of the CO 2 fluxes from vegetation compared to using equivalent monthly mean fluxes with a diurnal cycle. However, biases in the modelled CO 2 fluxes also lead to accumulating errors in the CO 2 forecast. These biases vary with season with an underestimation of the amplitude of the seasonal cycle both for the CO 2 fluxes compared to total optimized fluxes and the atmospheric CO 2 compared to observations. The largest biases in the atmospheric CO 2 forecast are found in spring, corresponding to the onset of the growing season in the Northern Hemisphere. In the future, the forecast will be re-initialized regularly with atmospheric CO 2 analyses based on the assimilation of CO 2 products retrieved from satellite

  10. Low pCO2 under sea-ice melt in the Canada Basin of the western Arctic Ocean

    Science.gov (United States)

    Kosugi, Naohiro; Sasano, Daisuke; Ishii, Masao; Nishino, Shigeto; Uchida, Hiroshi; Yoshikawa-Inoue, Hisayuki

    2017-12-01

    In September 2013, we observed an expanse of surface water with low CO2 partial pressure (pCO2sea) (Ocean. The large undersaturation of CO2 in this region was the result of massive primary production after the sea-ice retreat in June and July. In the surface of the Canada Basin, salinity was low ( 20 µmol kg-1) in the subsurface low pCO2sea layer in the Canada Basin indicated significant net primary production undersea and/or in preformed condition. If these low pCO2sea layers surface by wind mixing, they will act as additional CO2 sinks; however, this is unlikely because intensification of stratification by sea-ice melt inhibits mixing across the halocline.

  11. CO2 Sink/Source Characteristics in the Tropical Indonesian Seas

    KAUST Repository

    Kartadikaria, Aditya R.; Watanabe, A.; Nadaoka, K.; Adi, N. S.; Prayitno, H. B.; Suharsono, S.; Muchtar, M.; Triyulianti, I.; Setiawan, A.; Suratno, S.; Khasanah, E. N.

    2015-01-01

    Two distinct CO2 sink/source characteristics are found in the tropical Indonesian seas from the compilation of observed data for the period 1984-2013. The western region persistently emits CO2 to the atmosphere, whereas the eastern region is dynamic and acts either as a small source or sink of CO2 to the atmosphere, depending on sites. The segregation is proximal to the Makassar Strait, which is located over the continental shelf and is one of the main routes of the Indonesian Throughflow (ITF). Lower salinity and higher silicate were found in the western region, suggesting a terrestrial influence in this area. Temperature has a limited influence in controlling different CO2 sink/source characteristics in the west and east. However, an SST change of -2.0°C during La Niña events effectively reduces the pCO2 difference between the atmosphere and surface seawater by 50% compared to normal year conditions. During La Niña events, higher wind speeds double the CO2 flux from the ocean to the atmosphere compared to that of a normal year. In the continental shelf area where the CO2 sink area was found, data of over 29 years show that the seawater pCO2 increased by 0.6-3.8 μatm yr−1. Overall, the seawater pCO2 of the Indonesian Seas is supersaturated relative to the atmosphere by 15.9 ± 8.6 μatm and thus acts as a source of CO2 to the atmosphere. This article is protected by copyright. All rights reserved.

  12. CO2 Sink/Source Characteristics in the Tropical Indonesian Seas

    KAUST Repository

    Kartadikaria, Aditya R.

    2015-11-05

    Two distinct CO2 sink/source characteristics are found in the tropical Indonesian seas from the compilation of observed data for the period 1984-2013. The western region persistently emits CO2 to the atmosphere, whereas the eastern region is dynamic and acts either as a small source or sink of CO2 to the atmosphere, depending on sites. The segregation is proximal to the Makassar Strait, which is located over the continental shelf and is one of the main routes of the Indonesian Throughflow (ITF). Lower salinity and higher silicate were found in the western region, suggesting a terrestrial influence in this area. Temperature has a limited influence in controlling different CO2 sink/source characteristics in the west and east. However, an SST change of -2.0°C during La Niña events effectively reduces the pCO2 difference between the atmosphere and surface seawater by 50% compared to normal year conditions. During La Niña events, higher wind speeds double the CO2 flux from the ocean to the atmosphere compared to that of a normal year. In the continental shelf area where the CO2 sink area was found, data of over 29 years show that the seawater pCO2 increased by 0.6-3.8 μatm yr−1. Overall, the seawater pCO2 of the Indonesian Seas is supersaturated relative to the atmosphere by 15.9 ± 8.6 μatm and thus acts as a source of CO2 to the atmosphere. This article is protected by copyright. All rights reserved.

  13. An analysis of the global spatial variability of column-averaged CO2 from SCIAMACHY and its implications for CO2 sources and sinks

    Science.gov (United States)

    Zhang, Zhen; Jiang, Hong; Liu, Jinxun; Zhang, Xiuying; Huang, Chunlin; Lu, Xuehe; Jin, Jiaxin; Zhou, Guomo

    2014-01-01

    Satellite observations of carbon dioxide (CO2) are important because of their potential for improving the scientific understanding of global carbon cycle processes and budgets. We present an analysis of the column-averaged dry air mole fractions of CO2 (denoted XCO2) of the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) retrievals, which were derived from a satellite instrument with relatively long-term records (2003–2009) and with measurements sensitive to the near surface. The spatial-temporal distributions of remotely sensed XCO2 have significant spatial heterogeneity with about 6–8% variations (367–397 ppm) during 2003–2009, challenging the traditional view that the spatial heterogeneity of atmospheric CO2 is not significant enough (2 and surface CO2 were found for major ecosystems, with the exception of tropical forest. In addition, when compared with a simulated terrestrial carbon uptake from the Integrated Biosphere Simulator (IBIS) and the Emissions Database for Global Atmospheric Research (EDGAR) carbon emission inventory, the latitudinal gradient of XCO2 seasonal amplitude was influenced by the combined effect of terrestrial carbon uptake, carbon emission, and atmospheric transport, suggesting no direct implications for terrestrial carbon sinks. From the investigation of the growth rate of XCO2 we found that the increase of CO2 concentration was dominated by temperature in the northern hemisphere (20–90°N) and by precipitation in the southern hemisphere (20–90°S), with the major contribution to global average occurring in the northern hemisphere. These findings indicated that the satellite measurements of atmospheric CO2 improve not only the estimations of atmospheric inversion, but also the understanding of the terrestrial ecosystem carbon dynamics and its feedback to atmospheric CO2.

  14. Air-sea exchange of gaseous mercury in the East China Sea.

    Science.gov (United States)

    Wang, Chunjie; Ci, Zhijia; Wang, Zhangwei; Zhang, Xiaoshan

    2016-05-01

    Two oceanographic cruises were carried out in the East China Sea (ECS) during the summer and fall of 2013. The main objectives of this study are to identify the spatial-temporal distributions of gaseous elemental mercury (GEM) in air and dissolved gaseous mercury (DGM) in surface seawater, and then to estimate the Hg(0) flux. The GEM concentration was lower in summer (1.61 ± 0.32 ng m(-3)) than in fall (2.20 ± 0.58 ng m(-3)). The back-trajectory analysis revealed that the air masses with high GEM levels during fall largely originated from the land, while the air masses with low GEM levels during summer primarily originated from ocean. The spatial distribution patterns of total Hg (THg), fluorescence, and turbidity were consistent with the pattern of DGM with high levels in the nearshore area and low levels in the open sea. Additionally, the levels of percentage of DGM to THg (%DGM) were higher in the open sea than in the nearshore area, which was consistent with the previous studies. The THg concentration in fall was higher (1.47 ± 0.51 ng l(-1)) than those of other open oceans. The DGM concentration (60.1 ± 17.6 pg l(-1)) and Hg(0) flux (4.6 ± 3.6 ng m(-2) h(-1)) in summer were higher than those in fall (DGM: 49.6 ± 12.5 pg l(-1) and Hg(0) flux: 3.6 ± 2.8 ng m(-2) h(-1)). The emission flux of Hg(0) from the ECS was estimated to be 27.6 tons yr(-1), accounting for ∼0.98% of the global Hg oceanic evasion though the ECS only accounts for ∼0.21% of global ocean area, indicating that the ECS plays an important role in the oceanic Hg cycle. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Impact of short-lived non-CO2 mitigation on carbon budgets for stabilizing global warming

    International Nuclear Information System (INIS)

    Rogelj, Joeri; Riahi, Keywan; Meinshausen, Malte; Schaeffer, Michiel; Knutti, Reto

    2015-01-01

    Limiting global warming to any level requires limiting the total amount of CO 2 emissions, or staying within a CO 2 budget. Here we assess how emissions from short-lived non-CO 2 species like methane, hydrofluorocarbons (HFCs), black-carbon, and sulphates influence these CO 2 budgets. Our default case, which assumes mitigation in all sectors and of all gases, results in a CO 2 budget between 2011–2100 of 340 PgC for a >66% chance of staying below 2°C, consistent with the assessment of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Extreme variations of air-pollutant emissions from black-carbon and sulphates influence this budget by about ±5%. In the hypothetical case of no methane or HFCs mitigation—which is unlikely when CO 2 is stringently reduced—the budgets would be much smaller (40% or up to 60%, respectively). However, assuming very stringent CH 4 mitigation as a sensitivity case, CO 2 budgets could be 25% higher. A limit on cumulative CO 2 emissions remains critical for temperature targets. Even a 25% higher CO 2 budget still means peaking global emissions in the next two decades, and achieving net zero CO 2 emissions during the third quarter of the 21st century. The leverage we have to affect the CO 2 budget by targeting non-CO 2 diminishes strongly along with CO 2 mitigation, because these are partly linked through economic and technological factors. (letter)

  16. Global high-resolution monthly pCO2 climatology for the coastal ocean derived from neural network interpolation

    Directory of Open Access Journals (Sweden)

    G. G. Laruelle

    2017-10-01

    Full Text Available In spite of the recent strong increase in the number of measurements of the partial pressure of CO2 in the surface ocean (pCO2, the air–sea CO2 balance of the continental shelf seas remains poorly quantified. This is a consequence of these regions remaining strongly under-sampled in both time and space and of surface pCO2 exhibiting much higher temporal and spatial variability in these regions compared to the open ocean. Here, we use a modified version of a two-step artificial neural network method (SOM-FFN; Landschützer et al., 2013 to interpolate the pCO2 data along the continental margins with a spatial resolution of 0.25° and with monthly resolution from 1998 to 2015. The most important modifications compared to the original SOM-FFN method are (i the much higher spatial resolution and (ii the inclusion of sea ice and wind speed as predictors of pCO2. The SOM-FFN is first trained with pCO2 measurements extracted from the SOCATv4 database. Then, the validity of our interpolation, in both space and time, is assessed by comparing the generated pCO2 field with independent data extracted from the LDVEO2015 database. The new coastal pCO2 product confirms a previously suggested general meridional trend of the annual mean pCO2 in all the continental shelves with high values in the tropics and dropping to values beneath those of the atmosphere at higher latitudes. The monthly resolution of our data product permits us to reveal significant differences in the seasonality of pCO2 across the ocean basins. The shelves of the western and northern Pacific, as well as the shelves in the temperate northern Atlantic, display particularly pronounced seasonal variations in pCO2,  while the shelves in the southeastern Atlantic and in the southern Pacific reveal a much smaller seasonality. The calculation of temperature normalized pCO2 for several latitudes in different oceanic basins confirms that the seasonality in shelf pCO2 cannot solely be explained by

  17. Air-sea exchanges of materials in the Indian Ocean: Concerns and strategies

    Digital Repository Service at National Institute of Oceanography (India)

    DileepKumar, M.

    biological production is entirely due to leakage of agricultural effluents into coastal waters, as the present knowledge on the seasonal variability of nutrients and biological production in waters along the Indian coast is still limited. If this theory... to gaseous CO2 with minor reduction in pH. The gaseous CO2 in seawater determines the extent of air-sea exchange. But small changes in temperature or pH can modify gaseous CO2 content in seawater. Thus shifts in physico- chemical and biological regimes...

  18. Carbon Dioxide Variability in the Gulf of Trieste (GOT) in the Northern Adriatic Sea

    Science.gov (United States)

    Turk, D.; McGillis, W. R.; Malacic, V.; Degrandpre, M.

    2008-12-01

    Coastal marine regions such as the Gulf of Trieste GOT in the Northern Adriatic Sea serve as the link between carbon cycling on land and the ocean interior and potentially contribute large uncertainties in the estimate of anthropogenic CO2 uptake. This system may be either a sink or a source for atmospheric CO2. Understanding the sources and sinks as a result of biological and physical controls for air-sea carbon dioxide fluxes in coastal waters may substantially alter the current view of the global carbon budget for unique terrestrial and ocean regions such as the GOT. GOT is a semi-enclosed Mediterranean basin situated in the northern part of Adriatic Sea. It is one of the most productive regions in the Mediterranean and is affected by extreme fresh river input, phytoplankton blooms, and large changes of air-sea exchange during Bora high wind events. The unique combination of these environmental processes and relatively small size of the area makes the region an excellent study site for investigations of air-sea interaction, and changes in biology and carbon chemistry. However, there is a dearth of current data or information from the region. Here we present the first measurements of air and water CO2 flux in the GOT. The aqueous CO2 was measured at the Coastal Oceanographic buoy Piran, Slovenia using the SAMI CO2 sensor during spring and late summer and fall 2007. CO2 measurements were combined with hydrological and biological observations to evaluate the processes that control carbon cycling in the region.

  19. Influence of travel behavior on global CO2 emissions

    NARCIS (Netherlands)

    Girod, B.; Vuuren, D.P. van; Vries, B. de

    2013-01-01

    Travel demand is rising steeply and its contribution to global CO2 emissions is increasing. Different studies have shown possible mitigation through technological options, but so far few studies have evaluated the implications of changing travel behavior on global travel demand, energy use and CO2

  20. Autumn CO2 chemistry in the Japan Sea and the impact of discharges from the Changjiang River

    Science.gov (United States)

    Kosugi, Naohiro; Sasano, Daisuke; Ishii, Masao; Enyo, Kazutaka; Saito, Shu

    2016-08-01

    We made comprehensive surface water CO2 chemistry observations in the Japan Sea during each autumn from 2010 to 2014. The partial pressure of CO2 (pCO2) in surface water, 312-329 μatm, was 10-30 μatm lower in the Japan Sea than in the same latitude range of the western North Pacific adjacent to Japan. According to the sensitivity analysis of pCO2, the lower pCO2 in the Japan Sea was primarily attributable to a large seasonal decrease of pCO2 associated with strong cooling in autumn, particularly in the northern Japan Sea. In contrast, the lower pCO2 in relatively warm, freshwater in the southern Japan Sea was attributable to not only the thermodynamic effect of the temperature changes but also high total alkalinity. This alkalinity had its origin in Changjiang River and was transported by Changjiang diluted water (CDW) which seasonally runs into the Japan Sea from the East China Sea. The input of total alkalinity through CDW also elevated the saturation state of calcium carbonate minerals and mitigated the effects of anthropogenic ocean acidification, at least during autumn. These biogeochemical impacts of CDW in the Japan Sea last until November, although the inflow from the East China Sea to the Japan Sea almost ceases by the end of September. The long duration of the high saturation state of calcium carbonate benefits calcareous marine organisms.

  1. Net uptake of atmospheric CO2 by coastal submerged aquatic vegetation

    Science.gov (United States)

    Tokoro, Tatsuki; Hosokawa, Shinya; Miyoshi, Eiichi; Tada, Kazufumi; Watanabe, Kenta; Montani, Shigeru; Kayanne, Hajime; Kuwae, Tomohiro

    2014-01-01

    ‘Blue Carbon’, which is carbon captured by marine living organisms, has recently been highlighted as a new option for climate change mitigation initiatives. In particular, coastal ecosystems have been recognized as significant carbon stocks because of their high burial rates and long-term sequestration of carbon. However, the direct contribution of Blue Carbon to the uptake of atmospheric CO2 through air-sea gas exchange remains unclear. We performed in situ measurements of carbon flows, including air-sea CO2 fluxes, dissolved inorganic carbon changes, net ecosystem production, and carbon burial rates in the boreal (Furen), temperate (Kurihama), and subtropical (Fukido) seagrass meadows of Japan from 2010 to 2013. In particular, the air-sea CO2 flux was measured using three methods: the bulk formula method, the floating chamber method, and the eddy covariance method. Our empirical results show that submerged autotrophic vegetation in shallow coastal waters can be functionally a sink for atmospheric CO2. This finding is contrary to the conventional perception that most near-shore ecosystems are sources of atmospheric CO2. The key factor determining whether or not coastal ecosystems directly decrease the concentration of atmospheric CO2 may be net ecosystem production. This study thus identifies a new ecosystem function of coastal vegetated systems; they are direct sinks of atmospheric CO2. PMID:24623530

  2. An analysis of warm pool and cold tongue El Ninos: air-sea coupling processes, global influences, and recent trends

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Zeng-Zhen; Kumar, Arun; Wang, Wanqiu [NCEP/NWS/NOAA, Climate Prediction Center, Camp Springs, MD (United States); Jha, Bhaskar; Huang, Boyin [NCEP/NWS/NOAA, Climate Prediction Center, Camp Springs, MD (United States); Wyle Information Systems, Camp Springs, MD (United States); Huang, Bohua [George Mason University, Department of Atmospheric, Oceanic, and Earth Sciences, College of Science, Fairfax, VA (United States); Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States)

    2012-05-15

    The differences in tropical air-sea interactions and global climate connection as well as the hindcast skills for the warm pool (WP) and cold tongue (CT) El Ninos are investigated based on observed, (re)analyzed, and model hindcast data. The robustness of observed global climate connection is established from the model simulations. Lastly, variations of atmosphere and ocean conditions in the recent decades, and their possible connection with the frequency increase of the WP El Nino are discussed. Consistent with previous results, our individual case study and composite results suggest that stronger (weaker) and more eastward extended (westward confined) westerly wind along the equatorial Pacific in early months of a year is associated with active (suppressed) air-sea interaction over the cold tongue/the Intertropical Convergence Zone complex, as well as more (less) intensive oceanic thermocline feedback, favoring the CT (WP) El Nino development. The preceding westerly wind signal and air-sea interaction differences may be responsible for the predication skill difference with higher (lower) overall hindcast skill for the CT (WP) El Nino in the Climate Forecast System of National Centers for Environmental Prediction. Our model experiments show that, in addition to the tropics, the eastern Pacific, North America and North Atlantic are the major regions having robust climate differences between the CT and WP El Ninos. Nevertheless, the climate contrasts seem not robust over the Eurasian continent. Also, the frequency increase of the WP El Nino in the recent decades may not be directly connected with the linear trend of the tropical climate. (orig.)

  3. China's transportation energy consumption and CO2 emissions from a global perspective

    International Nuclear Information System (INIS)

    Yin, Xiang; Chen, Wenying; Eom, Jiyong; Clarke, Leon E.; Kim, Son H.; Patel, Pralit L.; Yu, Sha; Kyle, G. Page

    2015-01-01

    Rapidly growing energy demand from China's transportation sector in the last two decades have raised concerns over national energy security, local air pollution, and carbon dioxide (CO 2 ) emissions, and there is broad consensus that China's transportation sector will continue to grow in the coming decades. This paper explores the future development of China's transportation sector in terms of service demands, final energy consumption, and CO 2 emissions, and their interactions with global climate policy. This study develops a detailed China transportation energy model that is nested in an integrated assessment model—Global Change Assessment Model (GCAM)—to evaluate the long-term energy consumption and CO 2 emissions of China's transportation sector from a global perspective. The analysis suggests that, without major policy intervention, future transportation energy consumption and CO 2 emissions will continue to rapidly increase and the transportation sector will remain heavily reliant on fossil fuels. Although carbon price policies may significantly reduce the sector's energy consumption and CO 2 emissions, the associated changes in service demands and modal split will be modest, particularly in the passenger transport sector. The analysis also suggests that it is more difficult to decarbonize the transportation sector than other sectors of the economy, primarily owing to its heavy reliance on petroleum products. -- Highlights: •Transport sector in China are analyzed from a global perspective. •Passenger transport turnover reduction and modal shifts is less sensitive to carbon price. •Bio-fuel, electricity and H 2 will play an important role for carbon mitigation in transport sector. •The transport sector is more difficult to decarbonize than other sectors

  4. The impact of elevated CO2 and temperature on grain quality of rice grown under open-air field conditions.

    Science.gov (United States)

    Jing, Liquan; Wang, Juan; Shen, Shibo; Wang, Yunxia; Zhu, Jianguo; Wang, Yulong; Yang, Lianxin

    2016-08-01

    Rising atmospheric CO2 is accompanied by global warming. However, interactive effects of elevated CO2 and temperature have not been well studied on grain quality of rice. A japonica cultivar was grown in the field using a free-air CO2 enrichment facility in combination with a canopy air temperature increase system in 2014. The gas fumigation (200 µmol mol(-1) above ambient CO2 ) and temperature increase (1 °C above ambient air temperature) were performed from tillering until maturity. Compared with the control (ambient CO2 and air temperature), elevated CO2 increased grain length and width as well as grain chalkiness but decreased protein concentrations. In contrast, the increase in canopy air temperature had less effect on these parameters except for grain chalkiness. The starch pasting properties of rice flour and taste analysis of cooked rice indicated that the palatability of rice was improved by CO2 and/or temperature elevation, with the combination of the two treatments showing the most significant changes compared with ambient rice. It is concluded that projected CO2 in 2050 may have larger effects on rice grain quality than the projected temperature increase. Although deterioration in milling suitability, grain appearance and nutritional quality can be expected, the taste of cooked rice might be better in the future environment. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  5. CO2 and CH4 in sea ice from a subarctic fjord under influence of riverine input

    DEFF Research Database (Denmark)

    Crabeck, O.; Delille, B.; Thomas, D. N.

    2014-01-01

    We present CH4 concentration [CH4] and the partial pressure of CO2 (pCO2) in bulk sea ice from subarctic, land-fast sea ice in the Kapisillit fjord, Greenland. The bulk ice [CH4] ranged from 1.8 to 12.1 nmol L−1, which corresponds to a partial pressure range of 3 to 28 ppmv. This is markedly higher......-saturated compared to the atmosphere (390 ppmv). Our study adds to the few existing studies of CH4 and CO2 in sea ice and concludes that sub-arctic sea can be a sink for atmospheric CO2, while being a net source of CH4. Processes related to the freezing and melting of sea ice represents large unknowns...... to the exchange of CO2 but also CH4. It is therefore imperative to assess the consequences of these unknowns through further field campaigns and targeted research under other sea ice conditions at both hemispheres....

  6. Storing CO2 under the North Sea Basin - A key solution for combating climate change

    International Nuclear Information System (INIS)

    Skogen, T; Morris, B; Agerup, M; Svenningsen, S Oe; Kropelien, K F; Solheim, M; Northmore, B; Dixon, T; O'Carroll, K; Greaves, A; Golder, J; Selmer-Olsen, S; Sjoeveit, A; Kaarstad, O; Riley, N; Wright, I; Mansfield, C

    2007-06-01

    This report represents the first deliverable of the North Sea Basin Task Force, which Norway and the UK established in November 2005 to work together on issues surrounding the transport and storage of CO 2 beneath the North Sea. The North Sea represents the best geological opportunity for storing our CO 2 emissions away from the atmosphere for both the UK and Norway

  7. Do Continental Shelves Act as an Atmospheric CO2 Sink?

    Science.gov (United States)

    Cai, W.

    2003-12-01

    Recent air-to-sea CO2 flux measurements at several major continental shelves (European Atlantic Shelves, East China Sea and U.S. Middle Atlantic Bight) suggest that shelves may act as a one-way pump and absorb atmospheric CO2 into the ocean. These observations also favor the argument that continental shelves are autotrophic (i.e., net production of organic carbon, OC). The U.S. South Atlantic Bight (SAB) contrasts these findings in that it acts as a strong source of CO2 to the atmosphere while simultaneously exporting dissolved inorganic carbon (DIC) to the open ocean. We report pCO2, DIC, and alkalinity data from the SAB collected in 8 cruises along a transect from the shore to the shelf break in the central SAB. The shelf-wide net heterotrophy and carbon exports in the SAB are subsidized by the export of OC from the abundant intertidal marshes, which are a sink for atmospheric CO2. It is proposed here that the SAB represents a marsh-dominated heterotrophic ocean margin as opposed to river-dominated autotrophic margins. To further investigate why margins may behave differently in term of CO2 sink/source, the physical and biological conditions of several western boundary current margins are compared. Based on this and other studies, DIC export flux from margins to the open ocean must be significant in the overall global ocean carbon budget.

  8. Gas exchange at the air-sea interface: a technique for radon measurements in seawater

    International Nuclear Information System (INIS)

    Queirazza, G.; Roveri, M.

    1991-01-01

    The rate of exchange of various gas species, such as O 2 , CO 2 etc. across the air-water interface can be evaluated from the 222 Rn vertical profiles in the water column. Radon profiles were measured in 4 stations in the NW Adriatic Sea, in September 1990, using solvent extraction and liquid scintillation counting techniques, directly on board the ship. The radiochemical procedure is described in detail. The lower limit of detection is approximately 0.4 mBq 1 -1 . The radon deficiency in the profiles gives estimates of the gas transfer rate across the air-sea interface ranging from 0.9 to 7.0 m d -1 . The suitability of the radon deficiency method in shallow water, enclosed seas is briefly discussed. (Author)

  9. On which timescales do gas transfer velocities control North Atlantic CO2 flux variability?

    Science.gov (United States)

    Couldrey, Matthew P.; Oliver, Kevin I. C.; Yool, Andrew; Halloran, Paul R.; Achterberg, Eric P.

    2016-05-01

    The North Atlantic is an important basin for the global ocean's uptake of anthropogenic and natural carbon dioxide (CO2), but the mechanisms controlling this carbon flux are not fully understood. The air-sea flux of CO2, F, is the product of a gas transfer velocity, k, the air-sea CO2 concentration gradient, ΔpCO2, and the temperature- and salinity-dependent solubility coefficient, α. k is difficult to constrain, representing the dominant uncertainty in F on short (instantaneous to interannual) timescales. Previous work shows that in the North Atlantic, ΔpCO2 and k both contribute significantly to interannual F variability but that k is unimportant for multidecadal variability. On some timescale between interannual and multidecadal, gas transfer velocity variability and its associated uncertainty become negligible. Here we quantify this critical timescale for the first time. Using an ocean model, we determine the importance of k, ΔpCO2, and α on a range of timescales. On interannual and shorter timescales, both ΔpCO2 and k are important controls on F. In contrast, pentadal to multidecadal North Atlantic flux variability is driven almost entirely by ΔpCO2; k contributes less than 25%. Finally, we explore how accurately one can estimate North Atlantic F without a knowledge of nonseasonal k variability, finding it possible for interannual and longer timescales. These findings suggest that continued efforts to better constrain gas transfer velocities are necessary to quantify interannual variability in the North Atlantic carbon sink. However, uncertainty in k variability is unlikely to limit the accuracy of estimates of longer-term flux variability.

  10. Removal of CO2 from the terrestrial atmosphere to curtail global warming: From methodology to laboratory prototype

    Science.gov (United States)

    Orton, Andrea E.

    This research has focused on the initial phase of required investigations in pursuit of a global scale methodology for reduction of CO 2 in terrestrial air for the purpose of curtailment of global warming. This methodology was initially presented by Agee, Orton, and Rogers (2013), and has provided the basis for pursuing this thesis research. The first objective of the research project was to design and build a laboratory prototype system, capable of depleting CO2 from terrestrial air at 1 bar of pressure through LN2 refrigeration. Design considerations included a 26.5L cylindrical Pyrex glass sequestration chamber, a container to hold a reservoir of LN2 and an interface between the two to allow for cooling and instrumentation ports for measurements inside the sequestration chamber. Further, consideration was given to the need for appropriate insulating material to enclose the assembled apparatus to help achieve efficient cooling and the threshold depositional temperature of 135 K. The Amy Facility in the Department of Chemistry provided critical expertise to machine the apparatus to specifications, especially the stainless steel interface plate. Research into available insulating materials resulted in the adaption of TRYMER RTM 2500 Polyisocyanurate, effective down to 90 K. The above described DAC prototype designed for CO2 sequestration accomplished two of the initial research objectives investigated: 1) conduct refrigeration experiments to achieve CO2 terrestrial deposition temperature of 135 K (uniformly) and 2) deplete CO2 from the chamber air at 1 bar of pressure, documented by appropriate measurements. It took approximately 5.5 hours for the chamber to be completely uniform in temperature of 135 K (and below) through the use of LN2 poured into the container sitting on an aluminum interface on top of the sequestration Pyrex chamber. As expected, Rayleigh-Taylor instability (more dense fluid over less dense fluid) was observed through the duration of the

  11. Application of free-air CO2 enrichment (FACE) technology to a forest canopy: A simulation study

    International Nuclear Information System (INIS)

    Lipfert, F.W.; Hendrey, G.R.; Lewin, K.L.; Alexander, Y.

    1992-03-01

    Forest ecosystems constitute an important part of the planet's land cover. Understanding their exchanges of carbon with the atmosphere is crucial in projecting future net atmospheric CO 2 increases. It is also important that experimental studies of these processes be performed under conditions which are as realistic as possible, particularly with respect to photosynthesis and evapotranspiration. New technology and experimental protocols now exist which can facilitate studying an undisturbed forest canopy under long-term enriched CO 2 conditions. The International Geosphere Biosphere Program of the International Council of Scientific Unions has established a subprogram on Global Change and Terrestrial Ecosystems (GCTE). This program is driven by two major concerns: to be able to predict the effects of global change on the structure and function of ecosystems, and to predict how these changes will control both atmospheric CO 2 and climate, through various feedback pathways. Brookhaven National Laboratory (BNL) has developed a system for exposing field-grown plants to controlled elevated concentrations of atmospheric gases, without use of confining chambers that alter important atmospheric exchange processes. This system, called FACE for Free Air CO 2 Enrichment. This paper focuses on the fluid mechanics of free-air fumigation and uses a numerical simulation model based on superposed gaussian plumes to project how the present ground-based system could be used to fumigate an elevated forest canopy

  12. CO2 emissions driven by wind are produced at global scale

    Science.gov (United States)

    Rosario Moya, M.; Sánchez-Cañete, Enrique P.; Kowalski, Andrew S.; Serrano-Ortiz, Penélope; López-Ballesteros, Ana; Oyonarte, Cecilio; Domingo, Francisco

    2017-04-01

    As an important tool for understanding and monitoring ecosystem dynamics at ecosystem level, the eddy covariance (EC) technique allows the assessment of the diurnal and seasonal variation of the net ecosystem exchange (NEE). Despite the high temporal resolution data, there are still many processes (in addition to photosynthesis and respiration) that, although they are being monitored, have been neglected. Only a few authors have studied anomalous CO2 emissions (non biological), and have related them to soil ventilation, photodegradation or geochemical processes. The aims of this study are: 1) to identify anomalous daytime CO2 emissions in different ecosystems distributed around the world, 2) to determine the meteorological variables that influence these emissions, and 3) to explore the potential processes which can be involved. We have studied EC data together with other meteorological ancillary variables obtained from the FLUXNET database and have found more than 50 sites with anomalous CO2 emissions in different ecosystem types such as grasslands, croplands or savannas. Data were filtered according to the FLUXNET quality control flags (only data with maximum quality were used, i.e. control flag equal to 0) and daytime (shortwave radiation incoming > 50 W m-2). Partial Spearman correlation analyses were performed between NEE and ancillary data: air temperature, vapour pressure deficit, soil temperature, precipitation, atmospheric pressure, soil water content, incoming photosynthetic photon flux density, friction velocity and net radiation. When necessary, ancillary variables were gap-filled using the MDS method (Reichstein et al. 2005). Preliminary results showed strong and highly significant correlations between friction velocity and anomalous CO2 emissions, suggesting that these emissions were mainly produced by ventilation events. Anomalous CO2 emissions were found mainly in arid ecosystems and sites with hot and dry summers. We suggest that anomalous CO2

  13. Growth strategy of Norway spruce under air elevated [CO2

    Science.gov (United States)

    Pokorny, R.; Urban, O.; Holisova, P.; Sprtova, M.; Sigut, L.; Slipkova, R.

    2012-04-01

    Plants will respond to globally increasing atmospheric CO2 concentration ([CO2]) by acclimation or adaptation at physiological and morphological levels. Considering the temporal onset, physiological responses may be categorized as short-term and morphological ones as long-term responses. The degree of plant growth responses, including cell division and cell expansion, is highly variable. It depends mainly on the specie's genetic predisposition, environment, mineral nutrition status, duration of CO2 enrichment, and/or synergetic effects of other stresses. Elevated [CO2] causes changes in tissue anatomy, quantity, size, shape and spatial orientation and can result in altered sink strength. Since, there are many experimental facilities for the investigation of elevated [CO2] effects on trees: i) closed systems or open top chambers (OTCs), ii) semi-open systems (for example glass domes with adjustable lamella windows - DAWs), and iii) free-air [CO2] enrichments (FACE); the results are still unsatisfactory due to: i) relatively short-term duration of experiments, ii) cultivation of young plants with different growth strategy comparing to old ones, iii) plant cultivation under artificial soil and weather conditions, and iv) in non-representative stand structure. In this contribution we are discussing the physiological and morphological responses of Norway spruce trees cultivated in DAWs during eight consecutive growing seasons in the context with other results from Norway spruce cultivation under air-elevated [CO2] conditions. On the level of physiological responses, we discuss the changes in the rate of CO2 assimilation, assimilation capacity, photorespiration, dark respiration, stomatal conductance, water potential and transpiration, and the sensitivity of these physiological processes to temperature. On the level of morphological responses, we discuss the changes in bud and growth phenology, needle and shoot morphology, architecture of crown and root system, wood

  14. Panorama 2013 - Air transport and the problem of CO2: ETS mechanisms and bio-jet fuels

    International Nuclear Information System (INIS)

    Jean-Francois Gruson

    2013-01-01

    Air transport currently accounts for only 2% (∼600 Mt/year) of global CO 2 emissions from human activity. Despite this 2% level, this industry is targeted by governments - especially European Union - and initiatives targeting zero growth in carbon from 2020 onwards, and a 50% reduction by 2050. Over and above aircraft technical innovations and the way in which air traffic is organised, the introduction of ETS (Emissions Trading System) mechanisms and the development of bio-jet fuels are the options most commonly cited in discussions on how to achieve that target. (author)

  15. Air–sea fluxes of CO2 and CH4 from the Penlee Point Atmospheric Observatory on the south-west coast of the UK

    Directory of Open Access Journals (Sweden)

    M. Yang

    2016-05-01

    Full Text Available We present air–sea fluxes of carbon dioxide (CO2, methane (CH4, momentum, and sensible heat measured by the eddy covariance method from the recently established Penlee Point Atmospheric Observatory (PPAO on the south-west coast of the United Kingdom. Measurements from the south-westerly direction (open water sector were made at three different sampling heights (approximately 15, 18, and 27 m above mean sea level, a.m.s.l., each from a different period during 2014–2015. At sampling heights  ≥  18 m a.m.s.l., measured fluxes of momentum and sensible heat demonstrate reasonable ( ≤  ±20 % in the mean agreement with transfer rates over the open ocean. This confirms the suitability of PPAO for air–sea exchange measurements in shelf regions. Covariance air–sea CO2 fluxes demonstrate high temporal variability. Air-to-sea transport of CO2 declined from spring to summer in both years, coinciding with the breakdown of the spring phytoplankton bloom. We report, to the best of our knowledge, the first successful eddy covariance measurements of CH4 emissions from a marine environment. Higher sea-to-air CH4 fluxes were observed during rising tides (20 ± 3; 38 ± 3; 29 ± 6 µmole m−2 d−1 at 15, 18, 27 m a.m.s.l. than during falling tides (14 ± 2; 22 ± 2; 21 ± 5 µmole m−2 d−1, consistent with an elevated CH4 source from an estuarine outflow driven by local tidal circulation. These fluxes are a few times higher than the predicted CH4 emissions over the open ocean and are significantly lower than estimates from other aquatic CH4 hotspots (e.g. polar regions, freshwater. Finally, we found the detection limit of the air–sea CH4 flux by eddy covariance to be 20 µmole m−2 d−1 over hourly timescales (4 µmole m−2 d−1 over 24 h.

  16. Precession and atmospheric CO2 modulated variability of sea ice in the central Okhotsk Sea since 130,000 years ago

    Science.gov (United States)

    Lo, Li; Belt, Simon T.; Lattaud, Julie; Friedrich, Tobias; Zeeden, Christian; Schouten, Stefan; Smik, Lukas; Timmermann, Axel; Cabedo-Sanz, Patricia; Huang, Jyh-Jaan; Zhou, Liping; Ou, Tsong-Hua; Chang, Yuan-Pin; Wang, Liang-Chi; Chou, Yu-Min; Shen, Chuan-Chou; Chen, Min-Te; Wei, Kuo-Yen; Song, Sheng-Rong; Fang, Tien-Hsi; Gorbarenko, Sergey A.; Wang, Wei-Lung; Lee, Teh-Quei; Elderfield, Henry; Hodell, David A.

    2018-04-01

    Recent reduction in high-latitude sea ice extent demonstrates that sea ice is highly sensitive to external and internal radiative forcings. In order to better understand sea ice system responses to external orbital forcing and internal oscillations on orbital timescales, here we reconstruct changes in sea ice extent and summer sea surface temperature (SSST) over the past 130,000 yrs in the central Okhotsk Sea. We applied novel organic geochemical proxies of sea ice (IP25), SSST (TEX86L) and open water marine productivity (a tri-unsaturated highly branched isoprenoid and biogenic opal) to marine sediment core MD01-2414 (53°11.77‧N, 149°34.80‧E, water depth 1123 m). To complement the proxy data, we also carried out transient Earth system model simulations and sensitivity tests to identify contributions of different climatic forcing factors. Our results show that the central Okhotsk Sea was ice-free during Marine Isotope Stage (MIS) 5e and the early-mid Holocene, but experienced variable sea ice cover during MIS 2-4, consistent with intervals of relatively high and low SSST, respectively. Our data also show that the sea ice extent was governed by precession-dominated insolation changes during intervals of atmospheric CO2 concentrations ranging from 190 to 260 ppm. However, the proxy record and the model simulation data show that the central Okhotsk Sea was near ice-free regardless of insolation forcing throughout the penultimate interglacial, and during the Holocene, when atmospheric CO2 was above ∼260 ppm. Past sea ice conditions in the central Okhotsk Sea were therefore strongly modulated by both orbital-driven insolation and CO2-induced radiative forcing during the past glacial/interglacial cycle.

  17. CO{sub 2} threshold for millennial-scale oscillations in the climate system: implications for global warming scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Meissner, Katrin J.; Eby, Michael; Weaver, Andrew J. [University of Victoria, School of Earth and Ocean Sciences, Victoria, BC (Canada); Saenko, Oleg A. [Canadian Centre for Climate Modelling and Analysis, Victoria (Canada)

    2008-02-15

    We present several equilibrium runs under varying atmospheric CO{sub 2} concentrations using the University of Victoria Earth System Climate Model (UVic ESCM). The model shows two very different responses: for CO{sub 2} concentrations of 400 ppm or lower, the system evolves into an equilibrium state. For CO{sub 2} concentrations of 440 ppm or higher, the system starts oscillating between a state with vigorous deep water formation in the Southern Ocean and a state with no deep water formation in the Southern Ocean. The flushing events result in a rapid increase in atmospheric temperatures, degassing of CO{sub 2} and therefore an increase in atmospheric CO{sub 2} concentrations, and a reduction of sea ice cover in the Southern Ocean. They also cool the deep ocean worldwide. After the flush, the deep ocean warms slowly again and CO{sub 2} is taken up by the ocean until the stratification becomes unstable again at high latitudes thousands of years later. The existence of a threshold in CO{sub 2} concentration which places the UVic ESCM in either an oscillating or non-oscillating state makes our results intriguing. If the UVic ESCM captures a mechanism that is present and important in the real climate system, the consequences would comprise a rapid increase in atmospheric carbon dioxide concentrations of several tens of ppm, an increase in global surface temperature of the order of 1-2 C, local temperature changes of the order of 6 C and a profound change in ocean stratification, deep water temperature and sea ice cover. (orig.)

  18. Regulation of CO2 Air Sea Fluxes by Sediments in the North Sea

    Science.gov (United States)

    Burt, William; Thomas, Helmuth; Hagens, Mathilde; Brenner, Heiko; Pätsch, Johannes; Clargo, Nicola; Salt, Lesley

    2016-04-01

    A multi-tracer approach is applied to assess the impact of boundary fluxes (e.g. benthic input from sediments or lateral inputs from the coastline) on the acid-base buffering capacity, and overall biogeochemistry, of the North Sea. Analyses of both basin-wide observations in the North Sea and transects through tidal basins at the North-Frisian coastline, reveal that surface distributions of the δ13C signature of dissolved inorganic carbon (DIC) are predominantly controlled by a balance between biological production and respiration. In particular, variability in metabolic DIC throughout stations in the well-mixed southern North Sea indicates the presence of an external carbon source, which is traced to the European continental coastline using naturally-occurring radium isotopes (224Ra and 228Ra). 228Ra is also shown to be a highly effective tracer of North Sea total alkalinity (AT) compared to the more conventional use of salinity. Coastal inputs of metabolic DIC and AT are calculated on a basin-wide scale, and ratios of these inputs suggest denitrification as a primary metabolic pathway for their formation. The AT input paralleling the metabolic DIC release prevents a significant decline in pH as compared to aerobic (i.e. unbuffered) release of metabolic DIC. Finally, long-term pH trends mimic those of riverine nitrate loading, highlighting the importance of coastal AT production via denitrification in regulating pH in the southern North Sea.

  19. Global temperature definition affects achievement of long-term climate goals

    Science.gov (United States)

    Richardson, Mark; Cowtan, Kevin; Millar, Richard J.

    2018-05-01

    The Paris Agreement on climate change aims to limit ‘global average temperature’ rise to ‘well below 2 °C’ but reported temperature depends on choices about how to blend air and water temperature data, handle changes in sea ice and account for regions with missing data. Here we use CMIP5 climate model simulations to estimate how these choices affect reported warming and carbon budgets consistent with the Paris Agreement. By the 2090s, under a low-emissions scenario, modelled global near-surface air temperature rise is 15% higher (5%–95% range 6%–21%) than that estimated by an approach similar to the HadCRUT4 observational record. The difference reduces to 8% with global data coverage, or 4% with additional removal of a bias associated with changing sea-ice cover. Comparison of observational datasets with different data sources or infilling techniques supports our model results regarding incomplete coverage. From high-emission simulations, we find that a HadCRUT4 like definition means higher carbon budgets and later exceedance of temperature thresholds, relative to global near-surface air temperature. 2 °C warming is delayed by seven years on average, to 2048 (2035–2060), and CO2 emissions budget for a >50% chance of <2 °C warming increases by 67 GtC (246 GtCO2).

  20. A rapid transition from ice covered CO2–rich waters to a biologically mediated CO2 sink in the eastern Weddell Gyre

    Directory of Open Access Journals (Sweden)

    W. Geibert

    2008-09-01

    Full Text Available Circumpolar Deep Water (CDW, locally called Warm Deep Water (WDW, enters the Weddell Gyre in the southeast, roughly at 25° E to 30° E. In December 2002 and January 2003 we studied the effect of entrainment of WDW on the fugacity of carbon dioxide (fCO2 and dissolved inorganic carbon (DIC in Weddell Sea surface waters. Ultimately the fCO2 difference across the sea surface drives air-sea fluxes of CO2. Deep CTD sections and surface transects of fCO2 were made along the Prime Meridian, a northwest-southeast section, and along 17° E to 23° E during cruise ANT XX/2 on FS Polarstern. Upward movement and entrainment of WDW into the winter mixed layer had significantly increased DIC and fCO2 below the sea ice along 0° W and 17° E to 23° E, notably in the southern Weddell Gyre. Nonetheless, the ice cover largely prevented outgassing of CO2 to the atmosphere. During and upon melting of the ice, biological activity rapidly reduced surface water fCO2 by up to 100 μatm, thus creating a sink for atmospheric CO2. Despite the tendency of the surfacing WDW to cause CO2 supersaturation, the Weddell Gyre may well be a CO2 sink on an annual basis due to this effective mechanism involving ice cover and ensuing biological fCO2 reduction. Dissolution of calcium carbonate (CaCO3 in melting sea ice may play a minor role in this rapid reduction of surface water fCO2.

  1. Crop responses to CO2 enrichment

    International Nuclear Information System (INIS)

    Rogers, H.H.; Dahlman, R.C.

    1993-01-01

    Carbon dioxide is rising in the global atmosphere, and this increase can be expected to continue into the foreseeable future. This compound is an essential input to plant life. Crop function is affected across all scales from biochemical to agroecosystem. An array of methods (leaf cuvettes, field chambers, free-air release systems) are available for experimental studies of CO 2 effects. Carbon dioxide enrichment of the air in which crops grow usually stimulates their growth and yield. Plant structure and physiology are markedly altered. Interactions between CO 2 and environmental factors that influence plants are known to occur. Implications for crop growth and yield are enormous. Strategies designed to assure future global food security must include a consideration of crop responses to elevated atmospheric CO 2 . 137 refs., 4 figs., 4 tabs

  2. Enhanced CO2 uptake at a shallow Arctic Ocean seep field overwhelms the positive warming potential of emitted methane.

    Science.gov (United States)

    Pohlman, John W; Greinert, Jens; Ruppel, Carolyn; Silyakova, Anna; Vielstädte, Lisa; Casso, Michael; Mienert, Jürgen; Bünz, Stefan

    2017-05-23

    Continued warming of the Arctic Ocean in coming decades is projected to trigger the release of teragrams (1 Tg = 10 6 tons) of methane from thawing subsea permafrost on shallow continental shelves and dissociation of methane hydrate on upper continental slopes. On the shallow shelves (shallow ebullitive methane seep field on the Svalbard margin reveal atmospheric CO 2 uptake rates (-33,300 ± 7,900 μmol m -2 ⋅d -1 ) twice that of surrounding waters and ∼1,900 times greater than the diffusive sea-air methane efflux (17.3 ± 4.8 μmol m -2 ⋅d -1 ). The negative radiative forcing expected from this CO 2 uptake is up to 231 times greater than the positive radiative forcing from the methane emissions. Surface water characteristics (e.g., high dissolved oxygen, high pH, and enrichment of 13 C in CO 2 ) indicate that upwelling of cold, nutrient-rich water from near the seafloor accompanies methane emissions and stimulates CO 2 consumption by photosynthesizing phytoplankton. These findings challenge the widely held perception that areas characterized by shallow-water methane seeps and/or strongly elevated sea-air methane flux always increase the global atmospheric greenhouse gas burden.

  3. CO2 is in the air. Five myths about the role of air transport in climate changes

    International Nuclear Information System (INIS)

    2015-12-01

    This publication discusses and criticises some general opinions on air transport. Thus, it is often said that air transport is a minor contributor to greenhouse effect (whereas air transport emits as much CO 2 as Germany who is the sixth World emitter, and has various impacts on health), that air transport is doing a lot for the climate (whereas it in fact manages not to be affected by policies against climate change), that more air passengers result in less CO 2 (whereas traffic predictions would result in an increased oil consumption, and increased CO 2 emissions despite promised technological improvements), that technical progress is at the service of climate (whereas the sector is notably late to reach its defined objectives in terms of energy efficiency), and that air transport is the only way to travel (whereas other means emit much less CO 2 ). Some recommendations are made for measures to be adopted at the international, European and French levels for a better protection of the environment

  4. Net radiative forcing and air quality responses to regional CO emission reductions

    Directory of Open Access Journals (Sweden)

    M. M. Fry

    2013-05-01

    Full Text Available Carbon monoxide (CO emissions influence global and regional air quality and global climate change by affecting atmospheric oxidants and secondary species. We simulate the influence of halving anthropogenic CO emissions globally and individually from 10 regions on surface and tropospheric ozone, methane, and aerosol concentrations using a global chemical transport model (MOZART-4 for the year 2005. Net radiative forcing (RF is then estimated using the GFDL (Geophysical Fluid Dynamics Laboratory standalone radiative transfer model. We estimate that halving global CO emissions decreases global annual average concentrations of surface ozone by 0.45 ppbv, tropospheric methane by 73 ppbv, and global annual net RF by 36.1 mW m−2, nearly equal to the sum of changes from the 10 regional reductions. Global annual net RF per unit change in emissions and the 100 yr global warming potential (GWP100 are estimated as −0.124 mW m−2 (Tg CO−1 and 1.34, respectively, for the global CO reduction, and ranging from −0.115 to −0.131 mW m−2 (Tg CO−1 and 1.26 to 1.44 across 10 regions, with the greatest sensitivities for regions in the tropics. The net RF distributions show widespread cooling corresponding to the O3 and CH4 decreases, and localized positive and negative net RFs due to changes in aerosols. The strongest annual net RF impacts occur within the tropics (28° S–28° N followed by the northern midlatitudes (28° N–60° N, independent of reduction region, while the greatest changes in surface CO and ozone concentrations occur within the reduction region. Some regional reductions strongly influence the air quality in other regions, such as East Asia, which has an impact on US surface ozone that is 93% of that from North America. Changes in the transport of CO and downwind ozone production clearly exceed the direct export of ozone from each reduction region. The small variation in CO GWPs among world regions suggests that future international

  5. Storing CO{sub 2} under the North Sea Basin - A key solution for combating climate change

    Energy Technology Data Exchange (ETDEWEB)

    Skogen, T; Morris, B; Agerup, M; Svenningsen, S Oe; Kropelien, K F; Solheim, M; Northmore, B; Dixon, T; O' Carroll, K; Greaves, A; Golder, J; Selmer-Olsen, S; Sjoeveit, A; Kaarstad, O; Riley, N; Wright, I; Mansfield, C

    2007-06-15

    This report represents the first deliverable of the North Sea Basin Task Force, which Norway and the UK established in November 2005 to work together on issues surrounding the transport and storage of CO{sub 2} beneath the North Sea. The North Sea represents the best geological opportunity for storing our CO{sub 2} emissions away from the atmosphere for both the UK and Norway

  6. Aircraft measurements of SO2, NOx, CO, and O3 over the coastal and offshore area of Yellow Sea of China.

    Science.gov (United States)

    Yang, Xiaoyang; Wang, Xinhua; Yang, Wen; Xu, Jun; Ren, Lihong; He, Youjiang; Liu, Bing; Bai, Zhipeng; Meng, Fan; Hu, Min

    2016-09-01

    In order to investigate long-range transport of the air pollution in the East Asia, air pollutants, including SO2, NOx, CO, and O3, were observed by aircraft measurement over the coastal and offshore area of Yellow Sea of China in April 2011. NOx and SO2 seemed to become moderate in recent years, and the concentrations during the whole observations ranged from 0.49 to 9.57 ppb and from 0.10 to 16.02 ppb, respectively. The high concentrations of CO were measured with an average value of 0.98 ppm. The measured O3 average concentration was 76.25 ppb, which showed a higher level comparing with the results from some previous studies. Most of the results for the concentration values generally followed the typical characteristic of vertical and spatial distribution, which were "low altitude > high altitude" and "land/coastal > sea," respectively. Transport of polluted air mass from the continent to the aircraft measurement area was confirmed in some days during the observation by the meteorological analysis, while the measurement results supposed to represent the background level of the pollutants in rest days. Additionally, some small-scale air pollution plumes were observed. Significant positive correlations between NOx and SO2 indicated that these two species originated from the same region. On the other hand, good positive correlations between NOx and O3 found during 2-day flight suggested that the O3 formation was probably under "NOx-limited" regime in these days.

  7. Observational analysis of air-sea fluxes and sea water temperature offshore South China Sea

    Science.gov (United States)

    Bi, X.; Huang, J.; Gao, Z.; Liu, Y.

    2017-12-01

    This paper investigates the air-sea fluxes (momentum flux, sensible heat flux and latent heat flux) from eddy covariance method based on data collected at an offshore observation tower in the South China Sea from January 2009 to December 2016 and sea water temperature (SWT) on six different levels based on data collected from November 2011 to June 2013. The depth of water at the tower over the sea averages about 15 m. This study presents the in-situ measurements of continuous air-sea fluxes and SWT at different depths. Seasonal and diurnal variations in air-sea fluxes and SWT on different depths are examined. Results show that air-sea fluxes and all SWT changed seasonally; sea-land breeze circulation appears all the year round. Unlike winters where SWT on different depths are fairly consistent, the difference between sea surface temperature (SST) and sea temperature at 10 m water depth fluctuates dramatically and the maximum value reaches 7 °C during summer.

  8. Tidal influence on the sea-to-air transfer of CH4 in the coastal ocean

    International Nuclear Information System (INIS)

    Hahm, Doshik; Kim, Guebuem; Lee, Yong-Woo; Nam, Sungh-Yun; Kim, Kyung-Ryul; Kim, Kuh

    2006-01-01

    We obtained real-time monitoring data of water temperature, salinity, wind, current, CH 4 and other oceanographic parameters in a coastal bay in the southern sea of Korea from July 8 to August 15, 2003, using an environmental monitoring buoy. In general, the transfer velocity of environmental gases across the air-sea interface is obtained exclusively from empirical relationships with wind speeds. However, our monitoring data demonstrate that the agitation of the aqueous boundary layer is controlled significantly by tidal turbulence, similar to the control exercised by wind stress in the coastal ocean. The sea-to-air transfer of CH 4 is enhanced significantly during spring tide due to an increase in the gas transfer velocity and vertical CH 4 transport from bottom water to the surface layer. Thus, our unique time-series results imply that the sea-to-air transfer of gases, such as CH 4 , DMS, DMHg, N 2 O, CO 2 and 222 Rn, from highly enriched coastal bottom waters, is controlled not only by episodic wind events but also by regular tidal turbulence in the coastal ocean

  9. Variability of North Sea pH and CO2 in response to North Atlantic Oscillation forcing

    DEFF Research Database (Denmark)

    Salt, Lesley A.; Thomas, Helmuth; Prowe, Friederike

    2013-01-01

    [1] High biological activity causes a distinct seasonality of surface water pH in the North Sea, which is a strong sink for atmospheric CO2 via an effective shelf pump. The intimate connection between the North Sea and the North Atlantic Ocean suggests that the variability of the CO2 system...... of the North Atlantic Ocean may, in part, be responsible for the observed variability of pH and CO2 in the North Sea. In this work, we demonstrate the role of the North Atlantic Oscillation (NAO), the dominant climate mode for the North Atlantic, in governing this variability. Based on three extensive...... observational records covering the relevant levels of the NAO index, we provide evidence that the North Sea pH and CO2 system strongly responds to external and internal expressions of the NAO. Under positive NAO, the higher rates of inflow of water from the North Atlantic Ocean and the Baltic outflow lead...

  10. Distributions and sea-to-air fluxes of chloroform, trichloroethylene, tetrachloroethylene, chlorodibromomethane and bromoform in the Yellow Sea and the East China Sea during spring

    International Nuclear Information System (INIS)

    He, Zhen; Yang, Gui-Peng; Lu, Xiao-Lan; Zhang, Hong-Hai

    2013-01-01

    Halocarbons including chloroform (CHCl 3 ), trichloroethylene (C 2 HCl 3 ), tetrachloroethylene (C 2 Cl 4 ), chlorodibromomethane (CHBr 2 Cl) and bromoform (CHBr 3 ) were measured in the Yellow Sea (YS) and the East China Sea (ECS) during spring 2011. The influences of chlorophyll a, salinity and nutrients on the distributions of these gases were examined. Elevated levels of these gases in the coastal waters were attributed to anthropogenic inputs and biological release by phytoplankton. The vertical distributions of these gases in the water column were controlled by different source strengths and water masses. Using atmospheric concentrations measured in spring 2012 and seawater concentrations obtained from this study, the sea-to-air fluxes of these gases were estimated. Our results showed that the emissions of C 2 HCl 3 , C 2 Cl 4, CHBr 2 Cl, and CHBr 3 from the study area could account for 16.5%, 10.5%, 14.6%, and 3.5% of global oceanic emissions, respectively, indicating that the coastal shelf may contribute significantly to the global oceanic emissions of these gases. -- Highlights: ► Distributions of the VHCs were studied in the YS and the ECS. ► Elevated levels of VHCs were related to terrestrial input from the Yangtze River. ► Biogenic production from diatoms was an important source of the VHCs. ► Shelf seas could significantly contribute to the global oceanic VHCs emission. -- The elevated levels of the volatile halocarbons in the coastal waters were attributed to anthropogenic inputs and biological release by phytoplankton (e.g., diatoms)

  11. How reversible is sea ice loss?

    Directory of Open Access Journals (Sweden)

    J. K. Ridley

    2012-02-01

    Full Text Available It is well accepted that increasing atmospheric CO2 results in global warming, leading to a decline in polar sea ice area. Here, the specific question of whether there is a tipping point in the sea ice cover is investigated. The global climate model HadCM3 is used to map the trajectory of sea ice area under idealised scenarios. The atmospheric CO2 is first ramped up to four times pre-industrial levels (4 × CO2, then ramped down to pre-industrial levels. We also examine the impact of stabilising climate at 4 × CO2 prior to ramping CO2 down to pre-industrial levels. Against global mean temperature, Arctic sea ice area is reversible, while the Antarctic sea ice shows some asymmetric behaviour – its rate of change slower, with falling temperatures, than its rate of change with rising temperatures. However, we show that the asymmetric behaviour is driven by hemispherical differences in temperature change between transient and stabilisation periods. We find no irreversible behaviour in the sea ice cover.

  12. Understanding the Role of Air-Sea Interaction on Extreme Rainfall in Aquaplanet and Earth-like CESM2

    Science.gov (United States)

    Benedict, J. J.; Clement, A. C.; Medeiros, B.

    2017-12-01

    Extreme precipitation events are associated with anomalous, latitudinally dependent dynamical and convective weather systems. For example, plumes of excessive poleward water vapor transport and topographical effects drive extreme precipitation events in the midlatitudes, while intense tropical precipitation is associated with organized convective systems. In both cases, air-sea fluxes have the potential to contribute significantly to the moisture budget of these storms, but the roles of surface fluxes and upper-ocean processes and their impact on precipitation extremes have yet to be explored in sufficient detail. To examine such mechanisms, we implement a climate model hierarchy that encompasses a spectrum of ocean models, from prescribed-SST to fully dynamic, as well as both aquaplanet and Earth-like lower boundary types within version 2 of the Community Earth System Model (CESM2). Using the CESM2 hierarchy and comparing to observations, we identify key moisture processes and related air-sea interactions that drive extreme precipitation events across different latitudes in Earth-like models and then generalize the analyses in aquaplanet configurations to highlight the most salient features. The analyses are applied to both present-day and global warming conditions to investigate how these fundamental mechanisms might change extreme precipitation events in the future climate.

  13. The relative contributions of biological and abiotic processes to carbon dynamics in subarctic sea ice

    DEFF Research Database (Denmark)

    Søgaard, Dorte Haubjerg; Thomas, David; Rysgaard, Søren

    2013-01-01

    Knowledge on the relative effects of biological activity and precipitation/dissolution of calcium carbonate (CaCO3) in influencing the air-ice CO2 exchange in sea-ice-covered season is currently lacking. Furthermore, the spatial and temporal occurrence of CaCO3 and other biogeochemical parameters...... in sea ice are still not well described. Here we investigated autotrophic and heterotrophic activity as well as the precipitation/dissolution of CaCO3 in subarctic sea ice in South West Greenland. Integrated over the entire ice season (71 days), the sea ice was net autotrophic with a net carbon fixation...... and CaCO3 precipitation. The net biological production could only explain 4 % of this sea-ice-driven CO2 uptake. Abiotic processes contributed to an air-sea CO2 uptake of 1.5 mmol m(-2) sea ice day(-1), and dissolution of CaCO3 increased the air-sea CO2 uptake by 36 % compared to a theoretical estimate...

  14. The multimillennial sea-level commitment of global warming.

    Science.gov (United States)

    Levermann, Anders; Clark, Peter U; Marzeion, Ben; Milne, Glenn A; Pollard, David; Radic, Valentina; Robinson, Alexander

    2013-08-20

    Global mean sea level has been steadily rising over the last century, is projected to increase by the end of this century, and will continue to rise beyond the year 2100 unless the current global mean temperature trend is reversed. Inertia in the climate and global carbon system, however, causes the global mean temperature to decline slowly even after greenhouse gas emissions have ceased, raising the question of how much sea-level commitment is expected for different levels of global mean temperature increase above preindustrial levels. Although sea-level rise over the last century has been dominated by ocean warming and loss of glaciers, the sensitivity suggested from records of past sea levels indicates important contributions should also be expected from the Greenland and Antarctic Ice Sheets. Uncertainties in the paleo-reconstructions, however, necessitate additional strategies to better constrain the sea-level commitment. Here we combine paleo-evidence with simulations from physical models to estimate the future sea-level commitment on a multimillennial time scale and compute associated regional sea-level patterns. Oceanic thermal expansion and the Antarctic Ice Sheet contribute quasi-linearly, with 0.4 m °C(-1) and 1.2 m °C(-1) of warming, respectively. The saturation of the contribution from glaciers is overcompensated by the nonlinear response of the Greenland Ice Sheet. As a consequence we are committed to a sea-level rise of approximately 2.3 m °C(-1) within the next 2,000 y. Considering the lifetime of anthropogenic greenhouse gases, this imposes the need for fundamental adaptation strategies on multicentennial time scales.

  15. Simultaneously reducing CO2 and particulate exposures via fractional recirculation of vehicle cabin air.

    Science.gov (United States)

    Jung, Heejung S; Grady, Michael L; Victoroff, Tristan; Miller, Arthur L

    2017-07-01

    Prior studies demonstrate that air recirculation can reduce exposure to nanoparticles in vehicle cabins. However when people occupy confined spaces, air recirculation can lead to carbon dioxide (CO 2 ) accumulation which can potentially lead to deleterious effects on cognitive function. This study proposes a fractional air recirculation system for reducing nanoparticle concentration while simultaneously suppressing CO 2 levels in the cabin. Several recirculation scenarios were tested using a custom-programmed HVAC (heat, ventilation, air conditioning) unit that varied the recirculation door angle in the test vehicle. Operating the recirculation system with a standard cabin filter reduced particle concentrations to 1000 particles/cm 3 , although CO 2 levels rose to 3000 ppm. When as little as 25% fresh air was introduced (75% recirculation), CO 2 levels dropped to 1000 ppm, while particle concentrations remained below 5000 particles/cm 3 . We found that nanoparticles were removed selectively during recirculation and demonstrated the trade-off between cabin CO 2 concentration and cabin particle concentration using fractional air recirculation. Data showed significant increases in CO 2 levels during 100% recirculation. For various fan speeds, recirculation fractions of 50-75% maintained lower CO 2 levels in the cabin, while still reducing particulate levels. We recommend fractional recirculation as a simple method to reduce occupants' exposures to particulate matter and CO 2 in vehicles. A design with several fractional recirculation settings could allow air exchange adequate for reducing both particulate and CO 2 exposures. Developing this technology could lead to reductions in airborne nanoparticle exposure, while also mitigating safety risks from CO 2 accumulation.

  16. Nitrogen fertilization raises CO2 efflux from inorganic carbon: A global assessment.

    Science.gov (United States)

    Zamanian, Kazem; Zarebanadkouki, Mohsen; Kuzyakov, Yakov

    2018-03-25

    Nitrogen (N) fertilization is an indispensable agricultural practice worldwide, serving the survival of half of the global population. Nitrogen transformation (e.g., nitrification) in soil as well as plant N uptake releases protons and increases soil acidification. Neutralizing this acidity in carbonate-containing soils (7.49 × 10 9  ha; ca. 54% of the global land surface area) leads to a CO 2 release corresponding to 0.21 kg C per kg of applied N. We here for the first time raise this problem of acidification of carbonate-containing soils and assess the global CO 2 release from pedogenic and geogenic carbonates in the upper 1 m soil depth. Based on a global N-fertilization map and the distribution of soils containing CaCO 3 , we calculated the CO 2 amount released annually from the acidification of such soils to be 7.48 × 10 12  g C/year. This level of continuous CO 2 release will remain constant at least until soils are fertilized by N. Moreover, we estimated that about 273 × 10 12  g CO 2 -C are released annually in the same process of CaCO 3 neutralization but involving liming of acid soils. These two CO 2 sources correspond to 3% of global CO 2 emissions by fossil fuel combustion or 30% of CO 2 by land-use changes. Importantly, the duration of CO 2 release after land-use changes usually lasts only 1-3 decades before a new C equilibrium is reached in soil. In contrast, the CO 2 released by CaCO 3 acidification cannot reach equilibrium, as long as N fertilizer is applied until it becomes completely neutralized. As the CaCO 3 amounts in soils, if present, are nearly unlimited, their complete dissolution and CO 2 release will take centuries or even millennia. This emphasizes the necessity of preventing soil acidification in N-fertilized soils as an effective strategy to inhibit millennia of CO 2 efflux to the atmosphere. Hence, N fertilization should be strictly calculated based on plant-demand, and overfertilization should be avoided not only

  17. Isotopic versus micrometeorologic ocean CO2 fluxes: A serious conflict

    International Nuclear Information System (INIS)

    Broecker, W.S.; Ledwell, J.R.; Takahashi, T.; Weiss, R.; Merlivat, L.; Memery, L.; Tsung-Hung Peng; Jahne, B.; Otto Munnich, K.

    1986-01-01

    Eddy correlation measurements over the ocean give CO 2 fluxes an order of magnitude or more larger than expected from mass balance or more larger than expected from mass balance measurements using radiocarbon and radon 222. In particular, Smith and Jones (1985) reported large upward and downward fluxes in a surf zone at supersaturations of 15% and attributed them to the equilibration of bubbles at elevated pressures. They argue that even on the open ocean such bubble injection may create steady state CO 2 supersaturations and that inferences of fluxes based on air-sea pCO 2 differences and radon exchange velocities must be made with caution. We defend the global average CO 2 exchange rate determined by three independent radioisotopic means: prebomb radiocarbon inventories; global surveys of mixed layer radon deficits; and oceanic uptake of bomb-produced radiocarbon. We argue that laboratory and lake data do not lead one to expect fluxes as large as reported from the eddy correlation technique; that the radon method of determining exchange velocities is indeed useful for estimating CO 2 fluxes; that supersaturations of CO 2 due to bubble injection on the open ocean are negligible; that the hypothesis that Smith and Jones advance cannot account for the fluxes that they report; and that the pCO 2 values reported by Smith and Jones are likely to be systematically much too high. The CO 2 fluxes for the ocean measured to data by the micrometeorological method can be reconciled with neither the observed concentrations of radioisotopes of radon and carbon in the oceans nor the tracer experiments carried out in lakes and in wind/wave tunnels

  18. Elevated CO2 effects on canopy and soil water flux parameters measured using a large chamber in crops grown with free-air CO2 enrichment.

    Science.gov (United States)

    Burkart, S; Manderscheid, R; Wittich, K-P; Löpmeier, F J; Weigel, H-J

    2011-03-01

    An arable crop rotation (winter barley-sugar beet-winter wheat) was exposed to elevated atmospheric CO(2) concentrations ([CO(2) ]) using a FACE facility (Free-Air CO(2) Enrichment) during two rotation periods. The atmospheric [CO(2) ] of the treatment plots was elevated to 550 ppm during daylight hours (T>5°C). Canopy transpiration (E(C) ) and conductance (G(C) ) were measured at selected intervals (>10% of total growing season) using a dynamic CO(2) /H(2) O chamber measuring system. Plant available soil water content (gravimetry and TDR probes) and canopy microclimate conditions were recorded in parallel. Averaged across both growing seasons, elevated [CO(2) ] reduced E(C) by 9%, 18% and 12%, and G(C) by 9%, 17% and 12% in barley, sugar beet and wheat, respectively. Both global radiation (Rg) and vapour pressure deficit (VPD) were the main driving forces of E(C) , whereas G(C) was mostly related to Rg. The responses of E(C) and especially G(C) to [CO(2) ] enrichment were insensitive to weather conditions and leaf area index. However, differences in LAI between plots counteracted the [CO(2) ] impact on E(C) and thus, at least in part, explained the variability of seasonal [CO(2) ] responses between crops and years. As a consequence of lower transpirational canopy water loss, [CO(2) ] enrichment increased plant available soil water content in the course of the season by ca. 15 mm. This was true for all crops and years. Lower transpirational cooling due to a [CO(2) ]-induced reduction of E(C) increased canopy surface and air temperature by up to 2 °C and 0.5 °C, respectively. This is the first study to address effects of FACE on both water fluxes at canopy scale and water status of a European crop rotation. © 2010 German Botanical Society and The Royal Botanical Society of the Netherlands.

  19. An updated observation-based global monthly gridded sea surface pCO2 and air-sea CO2 flux product from 1982 through 2015 and its monthly climatology (NCEI Accession 0160558)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The observation-based pCO2 fields were created using a 2-step neural network method extensively described and validated in Landschützer et al. 2013, 2014, 2016. The...

  20. Statistical analysis of global surface temperature and sea level using cointegration methods

    DEFF Research Database (Denmark)

    Schmidt, Torben; Johansen, Søren; Thejll, Peter

    2012-01-01

    Global sea levels are rising which is widely understood as a consequence of thermal expansion and melting of glaciers and land-based ice caps. Due to the lack of representation of ice-sheet dynamics in present-day physically-based climate models being unable to simulate observed sea level trends......, semi-empirical models have been applied as an alternative for projecting of future sea levels. There is in this, however, potential pitfalls due to the trending nature of the time series. We apply a statistical method called cointegration analysis to observed global sea level and land-ocean surface air...... temperature, capable of handling such peculiarities. We find a relationship between sea level and temperature and find that temperature causally depends on the sea level, which can be understood as a consequence of the large heat capacity of the ocean. We further find that the warming episode in the 1940s...

  1. Can Elevated Air [CO2] Conditions Mitigate the Predicted Warming Impact on the Quality of Coffee Bean?

    Directory of Open Access Journals (Sweden)

    José C. Ramalho

    2018-03-01

    Full Text Available Climate changes, mostly related to high temperature, are predicted to have major negative impacts on coffee crop yield and bean quality. Recent studies revealed that elevated air [CO2] mitigates the impact of heat on leaf physiology. However, the extent of the interaction between elevated air [CO2] and heat on coffee bean quality was never addressed. In this study, the single and combined impacts of enhanced [CO2] and temperature in beans of Coffea arabica cv. Icatu were evaluated. Plants were grown at 380 or 700 μL CO2 L-1 air, and then submitted to a gradual temperature rise from 25°C up to 40°C during ca. 4 months. Fruits were harvested at 25°C, and in the ranges of 30–35 or 36–40°C, and bean physical and chemical attributes with potential implications on quality were then examined. These included: color, phenolic content, soluble solids, chlorogenic, caffeic and p-coumaric acids, caffeine, trigonelline, lipids, and minerals. Most of these parameters were mainly affected by temperature (although without a strong negative impact on bean quality, and only marginally, if at all, by elevated [CO2]. However, the [CO2] vs. temperature interaction strongly attenuated some of the negative impacts promoted by heat (e.g., total chlorogenic acids, thus maintaining the bean characteristics closer to those obtained under adequate temperature conditions (e.g., soluble solids, caffeic and p-coumaric acids, trigonelline, chroma, Hue angle, and color index, and increasing desirable features (acidity. Fatty acid and mineral pools remained quite stable, with only few modifications due to elevated air [CO2] (e.g., phosphorous and/or heat. In conclusion, exposure to high temperature in the last stages of fruit maturation did not strongly depreciate bean quality, under the conditions of unrestricted water supply and moderate irradiance. Furthermore, the superimposition of elevated air [CO2] contributed to preserve bean quality by modifying and mitigating

  2. Can Elevated Air [CO2] Conditions Mitigate the Predicted Warming Impact on the Quality of Coffee Bean?

    Science.gov (United States)

    Ramalho, José C.; Pais, Isabel P.; Leitão, António E.; Guerra, Mauro; Reboredo, Fernando H.; Máguas, Cristina M.; Carvalho, Maria L.; Scotti-Campos, Paula; Ribeiro-Barros, Ana I.; Lidon, Fernando J. C.; DaMatta, Fábio M.

    2018-01-01

    Climate changes, mostly related to high temperature, are predicted to have major negative impacts on coffee crop yield and bean quality. Recent studies revealed that elevated air [CO2] mitigates the impact of heat on leaf physiology. However, the extent of the interaction between elevated air [CO2] and heat on coffee bean quality was never addressed. In this study, the single and combined impacts of enhanced [CO2] and temperature in beans of Coffea arabica cv. Icatu were evaluated. Plants were grown at 380 or 700 μL CO2 L-1 air, and then submitted to a gradual temperature rise from 25°C up to 40°C during ca. 4 months. Fruits were harvested at 25°C, and in the ranges of 30–35 or 36–40°C, and bean physical and chemical attributes with potential implications on quality were then examined. These included: color, phenolic content, soluble solids, chlorogenic, caffeic and p-coumaric acids, caffeine, trigonelline, lipids, and minerals. Most of these parameters were mainly affected by temperature (although without a strong negative impact on bean quality), and only marginally, if at all, by elevated [CO2]. However, the [CO2] vs. temperature interaction strongly attenuated some of the negative impacts promoted by heat (e.g., total chlorogenic acids), thus maintaining the bean characteristics closer to those obtained under adequate temperature conditions (e.g., soluble solids, caffeic and p-coumaric acids, trigonelline, chroma, Hue angle, and color index), and increasing desirable features (acidity). Fatty acid and mineral pools remained quite stable, with only few modifications due to elevated air [CO2] (e.g., phosphorous) and/or heat. In conclusion, exposure to high temperature in the last stages of fruit maturation did not strongly depreciate bean quality, under the conditions of unrestricted water supply and moderate irradiance. Furthermore, the superimposition of elevated air [CO2] contributed to preserve bean quality by modifying and mitigating the heat impact

  3. Can Elevated Air [CO2] Conditions Mitigate the Predicted Warming Impact on the Quality of Coffee Bean?

    Science.gov (United States)

    Ramalho, José C; Pais, Isabel P; Leitão, António E; Guerra, Mauro; Reboredo, Fernando H; Máguas, Cristina M; Carvalho, Maria L; Scotti-Campos, Paula; Ribeiro-Barros, Ana I; Lidon, Fernando J C; DaMatta, Fábio M

    2018-01-01

    Climate changes, mostly related to high temperature, are predicted to have major negative impacts on coffee crop yield and bean quality. Recent studies revealed that elevated air [CO 2 ] mitigates the impact of heat on leaf physiology. However, the extent of the interaction between elevated air [CO 2 ] and heat on coffee bean quality was never addressed. In this study, the single and combined impacts of enhanced [CO 2 ] and temperature in beans of Coffea arabica cv. Icatu were evaluated. Plants were grown at 380 or 700 μL CO 2 L -1 air, and then submitted to a gradual temperature rise from 25°C up to 40°C during ca. 4 months. Fruits were harvested at 25°C, and in the ranges of 30-35 or 36-40°C, and bean physical and chemical attributes with potential implications on quality were then examined. These included: color, phenolic content, soluble solids, chlorogenic, caffeic and p -coumaric acids, caffeine, trigonelline, lipids, and minerals. Most of these parameters were mainly affected by temperature (although without a strong negative impact on bean quality), and only marginally, if at all, by elevated [CO 2 ]. However, the [CO 2 ] vs. temperature interaction strongly attenuated some of the negative impacts promoted by heat (e.g., total chlorogenic acids), thus maintaining the bean characteristics closer to those obtained under adequate temperature conditions (e.g., soluble solids, caffeic and p -coumaric acids, trigonelline, chroma, Hue angle, and color index), and increasing desirable features (acidity). Fatty acid and mineral pools remained quite stable, with only few modifications due to elevated air [CO 2 ] (e.g., phosphorous) and/or heat. In conclusion, exposure to high temperature in the last stages of fruit maturation did not strongly depreciate bean quality, under the conditions of unrestricted water supply and moderate irradiance. Furthermore, the superimposition of elevated air [CO 2 ] contributed to preserve bean quality by modifying and mitigating

  4. Calculations from the Hadley Centre: The ocean is rising even with stable CO2

    International Nuclear Information System (INIS)

    Groenaas, Sigbjoern

    2000-01-01

    The article presents calculations and forecasts for the atmospheric CO 2 level changes in the period of 2000 to 2350. Correlations between the levels and the average global temperature and the sea level are studied for the period of 1850 to 2200. The main conclusion is that the sea level will continue to rise for several hundred years even with a stable atmospheric CO 2 concentration in the next century due to the slow response of oceans to global warming

  5. How We Got to the Northern Hemisphere Ice Ages: Late Miocene Global Cooling and Plate Tectonic CO2 Forcing

    Science.gov (United States)

    Herbert, T.; Dalton, C. A.; Carchedi, C.

    2017-12-01

    The evolution of Earth's climate between "refrigeration" of East Antarctica and the onset of cyclic Northern Hemisphere glaciation spanned more than 11 Myr. In the latest Miocene (Messinian) time, approximately half way on this journey, changes on land, ranging from the expansion of arid zones to major floral and faunal ecosystem shifts, accelerated. Recent compilations of marine surface temperatures reveal that global cooling from the Miocene Optimum (14-16Ma) also accelerated in late Miocene (7-5.35 Ma) time to reach temperatures not much above Holocene conditions. Both hemispheres cooled in parallel, with the changes amplified at higher latitudes in comparison to the tropics. Despite the strong circumstantial case for CO2 decline as the dominant cause of late Miocene climatic and evolutionary change, proxy indicators of CO2concentrations paint an equivocal picture of greenhouse forcing. Here we provide evidence that global sea floor spreading (SFS) rates decelerated at exactly the times of major climatic cooling, linking a decline in tectonic degassing (at both subduction zones and mid-ocean ridges) to fundamental shifts in the global carbon cycle. Our work utilizes newly available global compilations of seafloor fabric and marine magnetic anomalies provided by the NSF-funded Global Seafloor Fabric and Magnetic Lineation Data Base Project. Previous global compilations of SFS typically binned estimates over 10 Myr increments, losing critical resolution on the timescale of late Neogene climate changes. We further improve the signal:noise of SFS estimates by incorporating recent advances in the astronomical calibration of the Miocene geomagnetic polarity timescale. We use two approaches to compile spreading rate estimates over the past 20 Myr at each spreading system: optimized finite rotation calculations, and averages of sea floor-spreading derived from the distances of magnetic lineations along flow lines on the sea floor. Weighted by ridge length, we find an 25

  6. Global High Resolution Sea Surface Flux Parameters From Multiple Satellites

    Science.gov (United States)

    Zhang, H.; Reynolds, R. W.; Shi, L.; Bates, J. J.

    2007-05-01

    Advances in understanding the coupled air-sea system and modeling of the ocean and atmosphere demand increasingly higher resolution data, such as air-sea fluxes of up to 3 hourly and every 50 km. These observational requirements can only be met by utilizing multiple satellite observations. Generation of such high resolution products from multiple-satellite and in-situ observations on an operational basis has been started at the U.S. National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center. Here we describe a few products that are directly related to the computation of turbulent air-sea fluxes. Sea surface wind speed has been observed from in-situ instruments and multiple satellites, with long-term observations ranging from one satellite in the mid 1987 to six or more satellites since mid 2002. A blended product with a global 0.25° grid and four snapshots per day has been produced for July 1987 to present, using a near Gaussian 3-D (x, y, t) interpolation to minimize aliases. Wind direction has been observed from fewer satellites, thus for the blended high resolution vector winds and wind stresses, the directions are taken from the NCEP Re-analysis 2 (operationally run near real time) for climate consistency. The widely used Reynolds Optimum Interpolation SST analysis has been improved with higher resolutions (daily and 0.25°). The improvements use both infrared and microwave satellite data that are bias-corrected by in- situ observations for the period 1985 to present. The new versions provide very significant improvements in terms of resolving ocean features such as the meandering of the Gulf Stream, the Aghulas Current, the equatorial jets and other fronts. The Ta and Qa retrievals are based on measurements from the AMSU sounder onboard the NOAA satellites. Ta retrieval uses AMSU-A data, while Qa retrieval uses both AMSU-A and AMSU-B observations. The retrieval algorithms are developed using the neural network approach. Training

  7. Air pollution, greenhouse gases and climate change: Global and regional perspectives

    Science.gov (United States)

    Ramanathan, V.; Feng, Y.

    Greenhouse gases (GHGs) warm the surface and the atmosphere with significant implications for rainfall, retreat of glaciers and sea ice, sea level, among other factors. About 30 years ago, it was recognized that the increase in tropospheric ozone from air pollution (NO x, CO and others) is an important greenhouse forcing term. In addition, the recognition of chlorofluorocarbons (CFCs) on stratospheric ozone and its climate effects linked chemistry and climate strongly. What is less recognized, however, is a comparably major global problem dealing with air pollution. Until about ten years ago, air pollution was thought to be just an urban or a local problem. But new data have revealed that air pollution is transported across continents and ocean basins due to fast long-range transport, resulting in trans-oceanic and trans-continental plumes of atmospheric brown clouds (ABCs) containing sub micron size particles, i.e., aerosols. ABCs intercept sunlight by absorbing as well as reflecting it, both of which lead to a large surface dimming. The dimming effect is enhanced further because aerosols may nucleate more cloud droplets, which makes the clouds reflect more solar radiation. The dimming has a surface cooling effect and decreases evaporation of moisture from the surface, thus slows down the hydrological cycle. On the other hand, absorption of solar radiation by black carbon and some organics increase atmospheric heating and tend to amplify greenhouse warming of the atmosphere. ABCs are concentrated in regional and mega-city hot spots. Long-range transport from these hot spots causes widespread plumes over the adjacent oceans. Such a pattern of regionally concentrated surface dimming and atmospheric solar heating, accompanied by widespread dimming over the oceans, gives rise to large regional effects. Only during the last decade, we have begun to comprehend the surprisingly large regional impacts. In S. Asia and N. Africa, the large north-south gradient in the ABC

  8. Fixation of CO2 in air: Synthesis and crystal structure of a µ3-CO3 ...

    Indian Academy of Sciences (India)

    Unknown

    Fixation of CO2 in air: Synthesis and crystal structure of a ... from the reaction between copper(I) complexes and dioxygen.2,6,7 ... and co-workers from the reaction of [(L2) ..... followed by water dissociation.13h,24 While fixation of CO2 by ...

  9. Rapid establishment of the CO2 sink associated with Kerguelen's bloom observed during the KEOPS2/OISO20 cruise

    Science.gov (United States)

    Lo Monaco, C.; Metzl, N.; D'Ovidio, F.; Llort, J.; Ridame, C.

    2014-12-01

    Iron and light are the main factors limiting the biological pump of CO2 in the Southern Ocean. Iron fertilization experiments have demonstrated the potential for increased uptake of atmospheric CO2, but little is known about the evolution of fertilized environnements. This paper presents observations collected in one of the largest phytoplankton bloom of the Southern Ocean sustained by iron originating from the Kerguelen Plateau. We first complement previous studies by investigating the mechanisms that control air-sea CO2 fluxes over and downstream of the Kerguelen Plateau at the onset of the bloom based on measurements obtained in October-November 2011. These new observations show the rapid establishment of a strong CO2 sink in waters fertilized with iron as soon as vertical mixing is reduced. The magnitude of the CO2 sink was closely related to chlorophyll a and iron concentrations. Because iron concentration strongly depends on the distance from the iron source and the mode of delivery, we identified lateral advection as the main mechanism controlling air-sea CO2 fluxes downtream the Kerguelen Plateau during the growing season. In the southern part of the bloom, situated over the Plateau (iron source), the CO2 sink was stronger and spatially more homogeneous than in the plume offshore. However, we also witnessed a substantial reduction in the uptake of atmospheric CO2 over the Plateau following a strong winds event. Next, we used all the data available in this region in order to draw the seasonal evolution of air-sea CO2 fluxes. The CO2 sink is rapidly reduced during the course of the growing season, which we attribute to iron and silicic acid depletion. South of the Polar Front, where nutrients depletion is delayed, we suggest that the amplitude and duration of the CO2 sink is mainly controlled by vertical mixing. The impact of iron fertilization on air-sea CO2 fluxes is revealed by comparing the uptake of CO2 integrated over the productive season in the bloom

  10. Application of vertical advection-diffusion model for studying CO2 and O2 profiles in central Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    AnilKumar, N.; Singbal, S.Y.S.

    The vertical advection-diffusion model proposed by Craig has been applied to the study of CO sub(2) and O sub(2) profiles in Central Arabian Sea. Distributions of total CO Sub(2) and O sub(2) are explained better by expressions involving exponential...

  11. Using Argo-O2 data to examine the impact of deep-water formation events on oxygen uptake in the Labrador Sea

    Science.gov (United States)

    Wolf, M. K.; Hamme, R. C.; Gilbert, D.; Yashayaev, I.

    2016-02-01

    Deep-water formation allows the deep ocean to communicate with the atmosphere, facilitating exchanges of heat as well as important gases such as CO2 and oxygen. The Labrador Sea is the most studied location of deep convection in the North Atlantic Ocean and a strong contributor to the global thermohaline circulation. Since there are no internal sources of oxygen below the euphotic zone, deep-water formation is vital for oxygen transport to the deep ocean. Recent studies document large interannual variability in the strength and depth of convection in the Labrador Sea, from mixed layers of 100m to greater than 1000m. A weakening of this deep convection starves the deep ocean of oxygen, disrupting crucial deep sea biological processes, as well as reducing oceanic CO2 uptake and ocean circulation. We used data from the extensive Argo float network to examine these deep-water formation events in the Labrador Sea. The oxygen optodes onboard many Argo floats suffer from biases whose amplitude must be determined; therefore we investigated and applied various optode calibration methods. Using calibrated vertical profiles of oxygen, temperature, and salinity, we observed the timing, magnitude, and location of deep convection, restratification, and spring phytoplankton blooms. In addition, we used surface oxygen values along with NCEP wind speeds to calculate the air-sea oxygen flux using a range of air-sea gas exchange parameterizations. We then compared this oxygen flux to the rate of change of the measured oxygen inventory. Where the inventory and flux did not agree, we identified other oceanic processes such as biological activity or lateral advection of water masses occurring, or advection of the float itself into a new area. The large role that horizontal advection of water or the float has on oxygen uptake and cycling leads us to conclude that this data cannot be easily interpreted as a 1-D system. Oxygen exchanges with the atmosphere at a faster rate than CO2, is

  12. A global CO2 tax for sustainable development?

    DEFF Research Database (Denmark)

    Brandt, Urs Steiner; Svendsen, Gert Tinggaard

    2014-01-01

    The Rio+20 conference in 2012 called for goals of promoting green industries and improving the quality of institutions worldwide. Is a global CO2 tax the best global solution for achieving this twin goal? As most countries in the world are highly corrupt, an adequate regulatory instrument should...... and sustainability conferences substantially since the focus is on one issue rather than many....

  13. The economics of CO2-EOR cluster developments in the UK Central North Sea

    International Nuclear Information System (INIS)

    Kemp, Alexander G.; Kasim, Sola

    2013-01-01

    Studies to date have generally shown that individual CO 2 -EOR offshore projects are uneconomic except under questionable assumptions. The present study is based on an interconnected cluster of nine oilfields in the Central North Sea linked to an onshore CO 2 collection hub by a set of existing and new pipelines. Monte Carlo simulation modelling was undertaken of the prospective returns to investments in CO 2 -EOR in the fields. Relatively high oil prices were employed for the study period (2020–2050) and two contrasting CO 2 transfer price scenarios, the first being the Carbon Price Floor (CPF) introduced by the UK Government and the second being relatively low negotiated prices reflecting recent and prospective levels under the EU-ETS. At CPF prices the investment returns were all found to be negative, but at prices averaging £10 per tonne positive returns were generally achieved. The study emphasises the importance of CO 2 prices and the taxation system in determining the viability of the investments. - Highlights: • Detailed modelling of CO 2 EOR in nine North Sea oil fields. • Overall investment risks are demonstrated to be very high. • Sharing of pipelines in network and cluster of CO 2 -EOR fields significantly reduces investment costs. • Range of plausible CO 2 prices paid by investor results in very wide range of returns from CO 2 -EOR. • CO 2 pricing and tax arrangements for EOR need further attention by policy makers

  14. Assessing the influence of regional transport from Mainland China over the Korean Peninsula during the 2016 KORUS-AQ Field Campaign with CO/CO2 ratios

    Science.gov (United States)

    Halliday, H. S.; DiGangi, J. P.; Diskin, G. S.; Choi, Y.; Pusede, S.; Rana, M.; Nowak, J. B.

    2017-12-01

    The industrial growth in East Asia has resulted in widespread growth and prosperity, but has been accompanied by degraded air quality. These poor air quality events have both local and regional effects, and long range transportation of pollution can greatly increase the affected populations. South Korea has a technologically oriented economy with vibrant urban regions, but suffers from poor air quality arising from both local emissions on the Korean peninsula and from the transport of pollution from Mainland China. The KORUS-AQ field campaign was an international collaboration to characterize and understand the air quality over the Korean peninsula in the spring of 2016. We use the aircraft in situ data from the DC-8 aircraft to examine trace gas ratios over three major analysis regions: the Seoul Metropolitan region, the South Korean peninsula, and the West Sea (Yellow Sea). We look specifically at the correlations between CO and CO2 as an indicator of emissions type, with low ratios generally indicative of more efficient combustion and high emission ratios indicating low efficiency combustion. At low altitudes, higher incidences of low CO/CO2 ratios were observed in the Seoul and Peninsula regions, compared to higher ratios of CO/CO2 over the West Sea. We examine the meteorological dependence of these carbon species ratios, their relationships to VOC tracers, and their vertical behavior to evaluate the air mass contributions from Mainland China and assess the percentage contributions of these regional emissions to the measurements over the Korean Peninsula.

  15. A system for high-quality CO2 isotope analyses of air samples collected by the CARIBIC Airbus A340-600.

    Science.gov (United States)

    Assonov, S; Taylor, P; Brenninkmeijer, C A M

    2009-05-01

    delta18O(CO2) on the VPDB-CO2 scale, estimated on runs of CO2-air mixtures, is +/-0.040 per thousand and 0.060 per thousand (2-sigma values). Inter-comparison with MPI-BGC resulted in a scale discrepancy of a similar magnitude. Although the reason(s) for this discrepancy still need to be understood, this basically confirms the approach of using specifically prepared CO2-air mixtures as a calibration carrier, in order to achieve scale unification among laboratories. As important practical application and as a critical test, JRC-IRMM took part in the passenger aircraft-based global monitoring project CARIBIC (http://www.caribic-atmospheric.com). In this way, reliable CO2 isotope data for the tropopause region and the free troposphere were obtained. From June 2007 to January 2009, approximately 500 CARIBIC air samples have been analysed. Some flights demonstrated a compact correlation of both delta13C(CO2) and delta18O(CO2) with respect to CO2 concentration, demonstrating mixing of tropospheric and stratospheric air masses. These excellent correlations provide an independent, realistic data quality check. Copyright (c) 2009 John Wiley & Sons, Ltd.

  16. Dynamics of sea-ice biogeochemistry in the coastal Antarctica during transition from summer to winter

    Directory of Open Access Journals (Sweden)

    Suhas Shetye

    2017-05-01

    Full Text Available The seasonality of carbon dioxide partial pressure (pCO2, air-sea CO2 fluxes and associated environmental parameters were investigated in the Antarctic coastal waters. The in-situ survey was carried out from the austral summer till the onset of winter (January 2012, February 2010 and March 2009 in the Enderby Basin. Rapid decrease in pCO2 was evident under the sea-ice cover in January, when both water column and sea-ice algal activity resulted in the removal of nutrients and dissolved inorganic carbon (DIC and increase in pH. The major highlight of this study is the shift in the dominant biogeochemical factors from summer to early winter. Nutrient limitation (low Si/N, sea-ice cover, low photosynthetically active radiation (PAR, deep mixed layer and high upwelling velocity contributed towards higher pCO2 during March (early winter. CO2 fluxes suggest that the Enderby Basin acts as a strong CO2 sink during January (−81 mmol m−2 d−1, however it acts as a weak sink of CO2 with −2.4 and −1.7 mmol m−2 d−1 during February and March, respectively. The present work, concludes that sea ice plays a dual role towards climate change, by decreasing sea surface pCO2 in summer and enhancing in early winter. Our observations emphasize the need to address seasonal sea-ice driven CO2 flux dynamics in assessing Antarctic contributions to the global oceanic CO2 budget.

  17. AIRS/Aqua Level 3 Monthly CO2 in the free troposphere (AIRS-only) V005

    Data.gov (United States)

    National Aeronautics and Space Administration — This is the AIRS mid-tropospheric Carbon Dioxide (CO2) Level 3 Monthly Gridded Retrieval, from the AIRS instrument on board of Aqua satellite. It is a monthly...

  18. Wintertime Air-Sea Gas Transfer Rates and Air Injection Fluxes at Station Papa in the NE Pacific

    Science.gov (United States)

    McNeil, C.; Steiner, N.; Vagle, S.

    2008-12-01

    In recent studies of air-sea fluxes of N2 and O2 in hurricanes, McNeil and D'Asaro (2007) used a simplified model formulation of air-sea gas flux to estimate simultaneous values of gas transfer rate, KT, and air injection flux, VT. The model assumes air-sea gas fluxes at high to extreme wind speeds can be explained by a combination of two processes: 1) air injection, by complete dissolution of small bubbles drawn down into the ocean boundary layer by turbulent currents, and 2) near-surface equilibration processes, such as occurs within whitecaps. This analysis technique relies on air-sea gas flux estimates for two gases, N2 and O2, to solve for the two model parameters, KT and VT. We present preliminary results of similar analysis of time series data collected during winter storms at Station Papa in the NE Pacific during 2003/2004. The data show a clear increase in KT and VT with increasing NCEP derived wind speeds and acoustically measured bubble penetration depth.

  19. First assessment on the air CO2 dynamic in the show caves of tropical karst, Vietnam

    Directory of Open Access Journals (Sweden)

    Duc A. Trinh

    2018-01-01

    Full Text Available In this study, air, water, and host rock in show caves in a Vietnam’s karst region was monitored and analyzed to identify the ventilation regime and track the cave air CO2 sources. In general, the studied caves are well ventilated. In dynamic – multiple entrance caves, air ventilation is described with the use of U shape model. In static – single entrance cave, air circulation is explained by cold air trap model. Both ventilation models suggest that air is more circulated in winter than in summer. Seasonally, the cave air CO2 increases from early spring to summer. Value in the deepest part of the single-entrance cave is approximately 1,000 ppmv and 8,000 ppmv in early spring and summer, respectively. In multiple-entrance and wet caves, CO2 level is fairly constant all over the show section, increasing from 500 ppmv in early spring to 2,000 ppmv in summer. Data of microclimate, CO2 content, and particularly δ13C show that cave air, particularly in single entrance cave, has higher CO2 concentration during summer due to a stagnation of cave air circulation and an elevated CO2 input from soil and epikarst. The cave air CO2 increase is also observed after intense rainfalls. A factor that increase cave air CO2 in show caves during the festive days could probably be huma n exhaling but the extent of human factor in these studied cave systems should be further investigated. Cave waters including cave pools and streams mediate CO2 level in wet caves. Above all, the atmospheric fraction of CO2 is always dominant (>60% in all cave sections.

  20. Implications of overestimated anthropogenic CO2 emissions on East Asian and global land CO2 flux inversion

    Science.gov (United States)

    Saeki, Tazu; Patra, Prabir K.

    2017-12-01

    Measurement and modelling of regional or country-level carbon dioxide (CO2) fluxes are becoming critical for verification of the greenhouse gases emission control. One of the commonly adopted approaches is inverse modelling, where CO2 fluxes (emission: positive flux, sink: negative flux) from the terrestrial ecosystems are estimated by combining atmospheric CO2 measurements with atmospheric transport models. The inverse models assume anthropogenic emissions are known, and thus the uncertainties in the emissions introduce systematic bias in estimation of the terrestrial (residual) fluxes by inverse modelling. Here we show that the CO2 sink increase, estimated by the inverse model, over East Asia (China, Japan, Korea and Mongolia), by about 0.26 PgC year-1 (1 Pg = 1012 g) during 2001-2010, is likely to be an artifact of the anthropogenic CO2 emissions increasing too quickly in China by 1.41 PgC year-1. Independent results from methane (CH4) inversion suggested about 41% lower rate of East Asian CH4 emission increase during 2002-2012. We apply a scaling factor of 0.59, based on CH4 inversion, to the rate of anthropogenic CO2 emission increase since the anthropogenic emissions of both CO2 and CH4 increase linearly in the emission inventory. We find no systematic increase in land CO2 uptake over East Asia during 1993-2010 or 2000-2009 when scaled anthropogenic CO2 emissions are used, and that there is a need of higher emission increase rate for 2010-2012 compared to those calculated by the inventory methods. High bias in anthropogenic CO2 emissions leads to stronger land sinks in global land-ocean flux partitioning in our inverse model. The corrected anthropogenic CO2 emissions also produce measurable reductions in the rate of global land CO2 sink increase post-2002, leading to a better agreement with the terrestrial biospheric model simulations that include CO2-fertilization and climate effects.

  1. Response of air-sea carbon fluxes and climate to orbital forcing changes in the Community Climate System Model

    Science.gov (United States)

    Jochum, M.; Peacock, S.; Moore, K.; Lindsay, K.

    2010-07-01

    A global general circulation model coupled to an ocean ecosystem model is used to quantify the response of carbon fluxes and climate to changes in orbital forcing. Compared to the present-day simulation, the simulation with the Earth's orbital parameters from 115,000 years ago features significantly cooler northern high latitudes but only moderately cooler southern high latitudes. This asymmetry is explained by a 30% reduction of the strength of the Atlantic Meridional Overturning Circulation that is caused by an increased Arctic sea ice export and a resulting freshening of the North Atlantic. The strong northern high-latitude cooling and the direct insolation induced tropical warming lead to global shifts in precipitation and winds to the order of 10%-20%. These climate shifts lead to regional differences in air-sea carbon fluxes of the same order. However, the differences in global net air-sea carbon fluxes are small, which is due to several effects, two of which stand out: first, colder sea surface temperature leads to a more effective solubility pump but also to increased sea ice concentration which blocks air-sea exchange, and second, the weakening of Southern Ocean winds that is predicted by some idealized studies occurs only in part of the basin, and is compensated by stronger winds in other parts.

  2. On the relations between the oceanic uptake of CO2 and its carbon isotopes

    International Nuclear Information System (INIS)

    Heimann, M.; Maier-Reimer, E.

    1994-01-01

    The recent proposals to estimate the oceanic uptake of CO 2 by monitoring the oceanic change in 13 C/ 12 C isotope ratio or the air-sea 13 C/ 12 C isotopic disequilibrium is reviewed. Because the history of atmospheric CO 2 and 13 CO 2 since preindustrial times is almost the same, the oceanic penetration depth of both tracers must be the same. This dynamic constraint permits the establishment of yet a third method to estimate the global ocean uptake of CO 2 from 13 C measurements. Using available observations in conjunction with canonical values for the global carbon cycle parameters the three methods yield inconsistent oceanic CO 2 uptake rates for the time period 1970-1990, ranging from 0 to over 3 GtC year -1 . However, uncertainties in the available carbon cycle data must be taken into account. Using a non-linear estimation procedure, a consistent scenario with an oceanic CO 2 uptake rate of 2.2±0.8 GtC year -1 can be established. The method also permits an investigation of the sensitivities of the different approaches. An analysis of the results of two three-dimensional simulations with the Hamburg Model of the Oceanic Carbon Cycle shows that the 13 C isotope indeed tracks the oceanic penetration of anthropogenic CO 2 . Because of its different time history, bomb produced radiocarbon, as measured at the time of GEOSECS, correlates much less well to excess carbon. (orig.)

  3. AIRS/Aqua Level 3 Monthly CO2 in the free troposphere (AIRS+AMSU) V005

    Data.gov (United States)

    National Aeronautics and Space Administration — This is the AIRS mid-tropospheric Carbon Dioxide (CO2) Level 3 Monthly Gridded Retrieval, from the AIRS and AMSU instruments on board of Aqua satellite. It is a...

  4. Uncertainty in the global oceanic CO2 uptake induced by wind forcing: quantification and spatial analysis

    Directory of Open Access Journals (Sweden)

    A. Roobaert

    2018-03-01

    Full Text Available The calculation of the air–water CO2 exchange (FCO2 in the ocean not only depends on the gradient in CO2 partial pressure at the air–water interface but also on the parameterization of the gas exchange transfer velocity (k and the choice of wind product. Here, we present regional and global-scale quantifications of the uncertainty in FCO2 induced by several widely used k formulations and four wind speed data products (CCMP, ERA, NCEP1 and NCEP2. The analysis is performed at a 1°  ×  1° resolution using the sea surface pCO2 climatology generated by Landschützer et al. (2015a for the 1991–2011 period, while the regional assessment relies on the segmentation proposed by the Regional Carbon Cycle Assessment and Processes (RECCAP project. First, we use k formulations derived from the global 14C inventory relying on a quadratic relationship between k and wind speed (k = c ⋅ U102; Sweeney et al., 2007; Takahashi et al., 2009; Wanninkhof, 2014, where c is a calibration coefficient and U10 is the wind speed measured 10 m above the surface. Our results show that the range of global FCO2, calculated with these k relationships, diverge by 12 % when using CCMP, ERA or NCEP1. Due to differences in the regional wind patterns, regional discrepancies in FCO2 are more pronounced than global. These global and regional differences significantly increase when using NCEP2 or other k formulations which include earlier relationships (i.e., Wanninkhof, 1992; Wanninkhof et al., 2009 as well as numerous local and regional parameterizations derived experimentally. To minimize uncertainties associated with the choice of wind product, it is possible to recalculate the coefficient c globally (hereafter called c∗ for a given wind product and its spatio-temporal resolution, in order to match the last evaluation of the global k value. We thus performed these recalculations for each wind product at the resolution and time period of our study

  5. Processes regulating pCO2 in the surface waters of the central eastern Gotland Sea: a model study

    Directory of Open Access Journals (Sweden)

    Bernd Schneider

    2011-09-01

    Full Text Available This work presents a one-dimensional simulation of the seasonal changes in CO2 partial pressure (pCO2. The results of the model were constrained using data from observations, which improved the model's ability to estimate nitrogen fixation in the central Baltic Sea and allowed the impact of nitrogen fixation on the ecological state of the Baltic Sea to be studied. The model used here is the public domain water-column model GOTM (General Ocean Turbulence Model, which in this study was coupled with a modifed Baltic Sea ecosystem model, ERGOM (The Baltic Sea Research Institute's ecosystem model. To estimate nitrogen fixation rates in the Gotland Sea, the ERGOM model was modified by including an additional cyanobacteria group able to fix nitrogen from March to June. Furthermore, the model was extended by a simple CO2 cycle. Variable C:P and N:P ratios, controlled by phosphate concentrations in ambient water, were used to represent cyanobacteria, detritus and sediment detritus. This approach improved the model's ability to reproduce sea-surface phosphate and pCO2 dynamics. The resulting nitrogen fixation rates in 2005 for the two simulations, with and without the additional cyanobacteria group, were 259 and 278 mmol N m-2 year-1respectively.

  6. Air-sea exchange of gaseous mercury in the tropical coast (Luhuitou fringing reef) of the South China Sea, the Hainan Island, China.

    Science.gov (United States)

    Ci, Zhijia; Zhang, Xiaoshan; Wang, Zhangwei

    2016-06-01

    The air-sea exchange of gaseous mercury (mainly Hg(0)) in the tropical ocean is an important part of the global Hg biogeochemical cycle, but the related investigations are limited. In this study, we simultaneously measured Hg(0) concentrations in surface waters and overlaying air in the tropical coast (Luhuitou fringing reef) of the South China Sea (SCS), Hainan Island, China, for 13 days on January-February 2015. The purpose of this study was to explore the temporal variation of Hg(0) concentrations in air and surface waters, estimate the air-sea Hg(0) flux, and reveal their influencing factors in the tropical coastal environment. The mean concentrations (±SD) of Hg(0) in air and total Hg (THg) in waters were 2.34 ± 0.26 ng m(-3) and 1.40 ± 0.48 ng L(-1), respectively. Both Hg(0) concentrations in waters (53.7 ± 18.8 pg L(-1)) and Hg(0)/THg ratios (3.8 %) in this study were significantly higher than those of the open water of the SCS in winter. Hg(0) in waters usually exhibited a clear diurnal variation with increased concentrations in daytime and decreased concentrations in nighttime, especially in cloudless days with low wind speed. Linear regression analysis suggested that Hg(0) concentrations in waters were positively and significantly correlated to the photosynthetically active radiation (PAR) (R (2) = 0.42, p sea Hg(0) fluxes were estimated to be 1.73 ± 1.25 ng m(-2) h(-1) with a large range between 0.01 and 6.06 ng m(-2) h(-1). The high variation of Hg(0) fluxes was mainly attributed to the greatly temporal variation of wind speed.

  7. CO2 enhanced oil recovery and storage in the North Sea - a UK perspective

    International Nuclear Information System (INIS)

    Beckly, Andy; Hughes, David S.

    2006-01-01

    Considerable technical and economic challenges must be overcome if the potential for CO 2 injection and sequestration is to be fully realised. However, there is an opportunity to exploit the synergy between the need to reduce CO 2 emissions and the potential to use CO 2 to increase North Sea oil reserves and extend the life of the basin. This opportunity is available now, while the infrastructure remains in place

  8. The Idea of Global CO2 Trade

    DEFF Research Database (Denmark)

    Svendsen, Gert Tinggaard

    1998-01-01

    -effective control which can solve future global environmental problems. The gains from CO2 trade may give vital financial subsidies from the EU to Eastern Europe, for example, and it will probably not pay to cheat if quotas are renewed periodically by the UN. Cheating countries are then to be excluded from further...

  9. Global Cooling: Policies to Cool the World and Offset Global Warming from CO2 Using Reflective Roofs and Pavements

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hashem; Levinson, Ronnen; Rosenfeld, Arthur; Elliot, Matthew

    2009-08-28

    Increasing the solar reflectance of the urban surface reduce its solar heat gain, lowers its temperatures, and decreases its outflow of thermal infrared radiation into the atmosphere. This process of 'negative radiative forcing' can help counter the effects of global warming. In addition, cool roofs reduce cooling-energy use in air conditioned buildings and increase comfort in unconditioned buildings; and cool roofs and cool pavements mitigate summer urban heat islands, improving outdoor air quality and comfort. Installing cool roofs and cool pavements in cities worldwide is a compelling win-win-win activity that can be undertaken immediately, outside of international negotiations to cap CO{sub 2} emissions. We propose an international campaign to use solar reflective materials when roofs and pavements are built or resurfaced in temperate and tropical regions.

  10. Ikaite crystals in melting sea ice – implications for pCO2 and pH levels in Arctic surface waters

    Directory of Open Access Journals (Sweden)

    R. J. G. Leakey

    2012-08-01

    Full Text Available A major issue of Arctic marine science is to understand whether the Arctic Ocean is, or will be, a source or sink for air–sea CO2 exchange. This has been complicated by the recent discoveries of ikaite (a polymorph of CaCO3·6H2O in Arctic and Antarctic sea ice, which indicate that multiple chemical transformations occur in sea ice with a possible effect on CO2 and pH conditions in surface waters. Here, we report on biogeochemical conditions, microscopic examinations and x-ray diffraction analysis of single crystals from a melting 1.7 km2 (0.5–1 m thick drifting ice floe in the Fram Strait during summer. Our findings show that ikaite crystals are present throughout the sea ice but with larger crystals appearing in the upper ice layers. Ikaite crystals placed at elevated temperatures disintegrated into smaller crystallites and dissolved. During our field campaign in late June, melt reduced the ice floe thickness by 0.2 m per week and resulted in an estimated 3.8 ppm decrease of pCO2 in the ocean surface mixed layer. This corresponds to an air–sea CO2 uptake of 10.6 mmol m−2 sea ice d−1 or to 3.3 ton km−2 ice floe week−1. This is markedly higher than the estimated primary production within the ice floe of 0.3–1.3 mmol m−2 sea ice d−1. Finally, the presence of ikaite in sea ice and the dissolution of the mineral during melting of the sea ice and mixing of the melt water into the surface oceanic mixed layer accounted for half of the estimated pCO2 uptake.

  11. Children's exposure to indoor air in urban nurseries-part I: CO2 and comfort assessment

    International Nuclear Information System (INIS)

    Branco, P.T.B.S.; Alvim-Ferraz, M.C.M.; Martins, F.G.; Sousa, S.I.V.

    2015-01-01

    Indoor air quality (IAQ) in nurseries is an emerging case-study. Thus, this study, as the Part I of the larger study “Children's exposure to indoor air in urban nurseries”, aimed to: i) evaluate nurseries’ indoor concentrations of carbon dioxide (CO 2 ), a global IAQ indicator, in class and lunch rooms; ii) assess indoor comfort parameters–temperature (T) and relative humidity (RH); and iii) analyse them according to guidelines and references for IAQ, comfort and children's health. Indoor continuous measurements were performed. Non-compliances with guidelines were found in comfort parameters, which could cause discomfort situations and also microbial proliferation. Exceedances in CO 2 concentrations were also found and they were caused by poor ventilation and high classroom occupation. More efficient ventilation and control of comfort parameters, as well as to reduce occupation by reviewing Portuguese legislation on that matter, would certainly improve IAQ and comfort in nurseries and consequently safeguard children's health. - Highlights: • High occupation and poor ventilation were main determinants of IAQ in nurseries. • T and RH indoor values found in nurseries are likely to cause thermal discomfort. • Building characteristics and an inadequate ventilation determined T and RH values. • High CO 2 concentrations found could indicate accumulation of other air pollutants

  12. Biological and physical controls in the Southern Ocean on past millennial-scale atmospheric CO2 changes.

    Science.gov (United States)

    Gottschalk, Julia; Skinner, Luke C; Lippold, Jörg; Vogel, Hendrik; Frank, Norbert; Jaccard, Samuel L; Waelbroeck, Claire

    2016-05-17

    Millennial-scale climate changes during the last glacial period and deglaciation were accompanied by rapid changes in atmospheric CO2 that remain unexplained. While the role of the Southern Ocean as a 'control valve' on ocean-atmosphere CO2 exchange has been emphasized, the exact nature of this role, in particular the relative contributions of physical (for example, ocean dynamics and air-sea gas exchange) versus biological processes (for example, export productivity), remains poorly constrained. Here we combine reconstructions of bottom-water [O2], export production and (14)C ventilation ages in the sub-Antarctic Atlantic, and show that atmospheric CO2 pulses during the last glacial- and deglacial periods were consistently accompanied by decreases in the biological export of carbon and increases in deep-ocean ventilation via southern-sourced water masses. These findings demonstrate how the Southern Ocean's 'organic carbon pump' has exerted a tight control on atmospheric CO2, and thus global climate, specifically via a synergy of both physical and biological processes.

  13. Air Pollution, Global Change and Forests in the New Millennium

    International Nuclear Information System (INIS)

    Karnosky, D.F.; Pikkarainen, J.; Percy, K.E.; Simpson, C.; Chappelka, A.H.

    2003-01-01

    The chapters in this book present a snapshot of the state of knowledge of air pollution effects at the beginning of the 21st century. From their different disciplines, a distinguished collection of authors document their understanding of how leaves, trees, and forests respond to air pollutants and climate change. Scenarios of global change and air pollution are described. The authors describe responses of forests to climate variability, tropospheric ozone, rising atmospheric CO2, the combination of CO2 and ozone, and deposition of acidic compounds and heavy metals. The responses to ozone receive particular attention because of increasing concern about its damaging effects and increasing concentrations in rural areas. Scaling issues are addressed - from leaves to trees, from juvenile trees to mature trees, from short-term responses to long-term responses, and from small-scale experiments and observations to large-scale forest ecosystems. This book is one major product of a conference sponsored by the International Union of Forestry Research Organizations, the USDA Forest Service Global Change Northern Stations Program, the Arthur Ross Foundation, NCASI, the Canadian Forest Service, and Michigan Technological University. The conference was held in May 2000 in Houghton, Michigan, USA

  14. Stem respiration of Populus species in the third year of free-air CO2 enrichment.

    Science.gov (United States)

    Gielen, Birgit; Scarascia-Mugnozza, Giuseppe; Ceulemans, Reinhart

    2003-04-01

    Carbon cycling in ecosystems, and especially in forests, is intensively studied to predict the effects of global climate change, and the role which forests may play in 'changing climate change'. One of the questions is whether the carbon balance of forests will be affected by increasing atmospheric CO2 concentrations. Regarding this question, effects of elevated [CO2] on woody-tissue respiration have frequently been neglected. Stem respiration of three Populus species (P. alba L. (Clone 2AS-11), P. nigra L. (Clone Jean Pourtet), and P. x euramericana (Clone I-214)) was measured in a managed, high-density forest plantation exposed to free-air CO2 enrichment (POPFACE). During the period of measurements, in May of the third year, stem respiration rates were not affected by the FACE treatment. Moreover, FACE did not influence the relationships between respiration rate and both stem temperature and relative growth rate. The results were supported by the reported absence of a FACE-effect on growth and stem wood density.

  15. Achieving Negative CO2 Emissions by Protecting Ocean Chemistry

    Science.gov (United States)

    Cannara, A.

    2016-12-01

    Industrial Age CO2 added 1.8 trillion tons to the atmosphere. About ¼ has dissolved in seas. The rest still dissolves, bolstered by present emissions of >30 gigatons/year. Airborne & oceanic CO2 have induced sea warming & ocean acidification*. This paper suggests a way to induce a negative CO2-emissions environment for climate & oceans - preserve the planet`s dominant CO2-sequestration system ( 1 gigaton/year via calcifying sea life**) by promptly protecting ocean chemistry via expansion of clean power for both lime production & replacement of CO2-emitting sources. Provide natural alkali (CaO, MgO…) to oceans to maintain average pH above 8.0, as indicated by marine biologists. That alkali (lime) is available from past calcifying life's limestone deposits, so can be returned safely to seas once its CO2 is removed & permanently sequestered (Carbfix, BSCP, etc.***). Limestone is a dense source of CO2 - efficient processing per mole sequestered. Distribution of enough lime is possible via cargo-ship transits - 10,000 tons lime/transit, 1 million transits/year. New Panamax ships carry 120,000 tons. Just 10,000/transit allows gradual reduction of present & past CO2 emissions effects, if coupled with combustion-power reductions. CO2 separation from limestone, as in cement plants, consumes 400kWHrs of thermal energy per ton of output lime (or CO2). To combat yearly CO2 dissolution in seas, we must produce & distribute about 10gigatons of lime/year. Only nuclear power produces the clean energy (thousands of terawatt hours) to meet this need - 1000 dedicated 1GWe reactors, processing 12 cubic miles of limestone/year & sequestering CO2 into a similar mass of basalt. Basalt is common in the world. Researchers*** report it provides good, mineralized CO2 sequestration. The numbers above allow gradual CO2 reduction in air and seas, if we return to President Kennedy's energy path: http://tinyurl.com/6xgpkfa We're on an environmental precipice due to failure to eliminate

  16. Estimating surface CO2 fluxes from space-borne CO2 dry air mole fraction observations using an ensemble Kalman Filter

    Directory of Open Access Journals (Sweden)

    S. Dance

    2009-04-01

    Full Text Available We have developed an ensemble Kalman Filter (EnKF to estimate 8-day regional surface fluxes of CO2 from space-borne CO2 dry-air mole fraction observations (XCO2 and evaluate the approach using a series of synthetic experiments, in preparation for data from the NASA Orbiting Carbon Observatory (OCO. The 32-day duty cycle of OCO alternates every 16 days between nadir and glint measurements of backscattered solar radiation at short-wave infrared wavelengths. The EnKF uses an ensemble of states to represent the error covariances to estimate 8-day CO2 surface fluxes over 144 geographical regions. We use a 12×8-day lag window, recognising that XCO2 measurements include surface flux information from prior time windows. The observation operator that relates surface CO2 fluxes to atmospheric distributions of XCO2 includes: a the GEOS-Chem transport model that relates surface fluxes to global 3-D distributions of CO2 concentrations, which are sampled at the time and location of OCO measurements that are cloud-free and have aerosol optical depths 2 profiles to XCO2, accounting for differences between nadir and glint measurements, and the associated scene-dependent observation errors. We show that OCO XCO2 measurements significantly reduce the uncertainties of surface CO2 flux estimates. Glint measurements are generally better at constraining ocean CO2 flux estimates. Nadir XCO2 measurements over the terrestrial tropics are sparse throughout the year because of either clouds or smoke. Glint measurements provide the most effective constraint for estimating tropical terrestrial CO2 fluxes by accurately sampling fresh continental outflow over neighbouring oceans. We also present results from sensitivity experiments that investigate how flux estimates change with 1 bias and unbiased errors, 2 alternative duty cycles, 3 measurement density and correlations, 4 the spatial resolution of estimated flux estimates, and 5 reducing the length of the lag window and the

  17. Deep oceans may acidify faster than anticipated due to global warming

    Science.gov (United States)

    Chen, Chen-Tung Arthur; Lui, Hon-Kit; Hsieh, Chia-Han; Yanagi, Tetsuo; Kosugi, Naohiro; Ishii, Masao; Gong, Gwo-Ching

    2017-12-01

    Oceans worldwide are undergoing acidification due to the penetration of anthropogenic CO2 from the atmosphere1-4. The rate of acidification generally diminishes with increasing depth. Yet, slowing down of the thermohaline circulation due to global warming could reduce the pH in the deep oceans, as more organic material would decompose with a longer residence time. To elucidate this process, a time-series study at a climatically sensitive region with sufficient duration and resolution is needed. Here we show that deep waters in the Sea of Japan are undergoing reduced ventilation, reducing the pH of seawater. As a result, the acidification rate near the bottom of the Sea of Japan is 27% higher than the rate at the surface, which is the same as that predicted assuming an air-sea CO2 equilibrium. This reduced ventilation may be due to global warming and, as an oceanic microcosm with its own deep- and bottom-water formations, the Sea of Japan provides an insight into how future warming might alter the deep-ocean acidification.

  18. Carbon Dioxide Impacts in the Deep-Sea: Is Maintaining a Metabolically Required CO2 Efflux Rate Challenging?

    Science.gov (United States)

    Peltzer, E. T.; Hofmann, A. F.; Brewer, P. G.

    2011-12-01

    Increasing ocean acidification from fossil fuel CO2 invasion, from temperature driven changes in respiration, and from possible leakage from sub-seabed geologic CO2 disposal has aroused concern over the impacts of elevated CO2 concentrations on marine life. Here we describe the rate problem for animals who must export CO2 at about the same rate at which O2 is consumed. We analyze the basic properties controlling CO2 export within the diffusive boundary of marine animals in a changing ocean in order to compare the challenges posed by O2 uptake under stress with the equivalent problem of CO2 expulsion. The problem is more complex than that for a non-reactive gas since, as with gas exchange of CO2 at the air-sea interface, the influence of the ensemble of reactions within the CO2 - HCO3- - CO3= acid-base system needs to be considered. These reactions appear as an enhancement factor which significantly facilitates CO2 efflux compared to O2 intake at equal temperature, pressure and flow rate under typical oceanic concentrations. Possibly as an adaptation to this chemical advantage marine animals typically can respond to external CO2 stress simply by metabolic adjustment. This is energetically more favorable than having to resort to mechanically increasing flow over their surface to thin the boundary layer as is required to alleviate O2 stress. Regionally as with O2 the combination of T, P, and pH/pCO2 creates a zone of maximum CO2 stress at around 1000 m depth. But the net result is that the combination of an increase in T combined with declining O2 poses a greater respiratory challenge to marine life than does increasing CO2. The relationships developed here allow a more accurate prediction of the impacts on marine life from the combined effects of changing T, O2, and CO2 than can be estimated from single variable studies.

  19. A joint global carbon inversion system using both CO2 and 13CO2 atmospheric concentration data

    Science.gov (United States)

    Chen, Jing M.; Mo, Gang; Deng, Feng

    2017-03-01

    Observations of 13CO2 at 73 sites compiled in the GLOBALVIEW database are used for an additional constraint in a global atmospheric inversion of the surface CO2 flux using CO2 observations at 210 sites (62 collocated with 13CO2 sites) for the 2002-2004 period for 39 land regions and 11 ocean regions. This constraint is implemented using prior CO2 fluxes estimated with a terrestrial ecosystem model and an ocean model. These models simulate 13CO2 discrimination rates of terrestrial photosynthesis and ocean-atmosphere diffusion processes. In both models, the 13CO2 disequilibrium between fluxes to and from the atmosphere is considered due to the historical change in atmospheric 13CO2 concentration. This joint inversion system using both13CO2 and CO2 observations is effectively a double deconvolution system with consideration of the spatial variations of isotopic discrimination and disequilibrium. Compared to the CO2-only inversion, this 13CO2 constraint on the inversion considerably reduces the total land carbon sink from 3.40 ± 0.84 to 2.53 ± 0.93 Pg C year-1 but increases the total oceanic carbon sink from 1.48 ± 0.40 to 2.36 ± 0.49 Pg C year-1. This constraint also changes the spatial distribution of the carbon sink. The largest sink increase occurs in the Amazon, while the largest source increases are in southern Africa, and Asia, where CO2 data are sparse. Through a case study, in which the spatial distribution of the annual 13CO2 discrimination rate over land is ignored by treating it as a constant at the global average of -14. 1 ‰, the spatial distribution of the inverted CO2 flux over land was found to be significantly modified (up to 15 % for some regions). The uncertainties in our disequilibrium flux estimation are 8.0 and 12.7 Pg C year-1 ‰ for land and ocean, respectively. These uncertainties induced the unpredictability of 0.47 and 0.54 Pg C year-1 in the inverted CO2 fluxes for land and ocean, respectively. Our joint inversion system is therefore

  20. Evaluation of co-benefits from combined climate change and air pollution reduction strategies

    Science.gov (United States)

    Leitao, Joana; Van Dingenen, Rita; Dentener, Frank; Rao, Shilpa

    2014-05-01

    The connection of climate change and air pollution is becoming more relevant in the process of policy making and implementation of emission control strategies because of resulting co-benefits and trade-offs. Some sectors, such as fossil fuel combustion, are sources of both pollutants (NOx and PM) as well as greenhouse gas (CO2). Additionally, the use of wood burning as biofuel to reduce climate impact may in fact deteriorate air quality. Furthermore, several air pollutants are important radiative forcers and regulating their emissions impacts on climate. It is evident that both problems need to be undertaken with a common strategy and the existence of cross-policy with co-benefits may encourage their implementation. The LIMITS FP7 project (http://www.feem-project.net/limits/index.html) was designed with the main goal of assessing strategies for reduction of GHG emissions so that the 2°C target can be achieved. The work developed focus on the evaluation of the implementation of strategies analysing several aspects of different scenarios, namely: the feasibility of low carbon scenarios in terms of available technologies and infrastructure, the required financial mechanisms, and also the co-benefits regarding energy security, economic development and air pollution. For the latter, five integrated assessment models (IAMs) provided greenhouse gases and pollutant emission values for several scenarios. These were based on air pollution scenarios defined according to stringency and implementation of future global legislation. They which were also combined with 2 climate policy scenarios (no climate policy and 2.8 W/m2 target). The former are mostly focused on non-climate policies and technical control measures for emissions of air pollutants, such as PM2.5, NOx and SO2, with their emission factors harmonized between the IAMs. With the global air quality source-receptor model TM5-FASST the impact of the resulting emissions was analysed and the co-benefits of combined

  1. Does air-sea coupling influence model projections of the effects of the Paris Agreement?

    Science.gov (United States)

    Klingaman, Nicholas; Suckling, Emma; Sutton, Rowan; Dong, Buwen

    2017-04-01

    state can be controlled by prescribed, seasonally varying corrections to temperature and salinity, which substantially reduce SST biases without damping variability. This allows the present-day MetUM-GOML experiment to have a ocean mean state very close to the observed climatology (global RMSE ≈ 0.25°C). We perform three 150-year experiments with MetUM-GOML for (a) present-day (1976-2005 climatology) and for future scenarios with global-mean temperatures (b) 1.5°C and (c) 2.0°C above pre-industrial levels. For (b) and (c), we achieve these warming levels by increasing the CO2 concentrations in MetUM-GOML, as well as by adjusting the prescribed sea ice using change factors derived from a transient simulation with the fully coupled Met Office model. We analyse projected global and regional changes in temperature, precipitation and atmospheric circulation in our MetUM-GOML simulations, focusing on seasonal means, multi-annual persistence of seasonal extremes (e.g., the probability of consecutive wet summers) and intra-seasonal extremes (e.g., heatwaves, droughts, floods). To identify the influence of air-sea coupling on these projections, we compare the MetUM-GOML simulations to 150-year atmosphere-only simulations with prescribed daily SSTs from the corresponding MetUM-GOML runs. This comparison demonstrates whether atmosphere-ocean feedbacks influence the projections of changes hydro-meteorological extremes in a warmer world, as well as whether these feedbacks affect the assessment of the impacts avoided by limiting global-mean temperature change to 1.5°C. Our results will inform the choice of model framework for, and hence the experiment design of, further efforts to characterise the response to a fixed global-mean temperature increase, as well as future climate-change attribution experiments.

  2. The potential role of sea spray droplets in facilitating air-sea gas transfer

    Science.gov (United States)

    Andreas, E. L.; Vlahos, P.; Monahan, E. C.

    2016-05-01

    For over 30 years, air-sea interaction specialists have been evaluating and parameterizing the role of whitecap bubbles in air-sea gas exchange. To our knowledge, no one, however, has studied the mirror image process of whether sea spray droplets can facilitate air-sea gas exchange. We are therefore using theory, data analysis, and numerical modeling to quantify the role of spray on air-sea gas transfer. In this, our first formal work on this subject, we seek the rate-limiting step in spray-mediated gas transfer by evaluating the three time scales that govern the exchange: τ air , which quantifies the rate of transfer between the atmospheric gas reservoir and the surface of the droplet; τ int , which quantifies the exchange rate across the air-droplet interface; and τ aq , which quantifies gas mixing within the aqueous solution droplet.

  3. Updating sea spray aerosol emissions in the Community Multiscale Air Quality (CMAQ) model version 5.0.2

    OpenAIRE

    Gantt, B.; Kelly, J. T.; Bash, J. O.

    2015-01-01

    Sea spray aerosols (SSAs) impact the particle mass concentration and gas-particle partitioning in coastal environments, with implications for human and ecosystem health. Model evaluations of SSA emissions have mainly focused on the global scale, but regional-scale evaluations are also important due to the localized impact of SSAs on atmospheric chemistry near the coast. In this study, SSA emissions in the Community Multiscale Air Quality (CMAQ) model were updated to enhance the...

  4. The Coral Reef Temperature Anomaly Database (CoRTAD) Version 5 - Global, 4 km Sea Surface Temperature and Related Thermal Stress Metrics for 1982-2012 (NCEI Accession 0126774)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Version 5 of the Coral Reef Temperature Anomaly Database (CoRTAD) is a global, 4 km, sea surface temperature (SST) and related thermal stress metrics dataset for...

  5. Sea anemones may thrive in a high CO2 world.

    Science.gov (United States)

    Suggett, David J; Hall-Spencer, Jason M; Rodolfo-Metalpa, Riccardo; Boatman, Toby G; Payton, Ross; Tye Pettay, D; Johnson, Vivienne R; Warner, Mark E; Lawson, Tracy

    2012-10-01

    Increased seawater pCO 2 , and in turn 'ocean acidification' (OA), is predicted to profoundly impact marine ecosystem diversity and function this century. Much research has already focussed on calcifying reef-forming corals (Class: Anthozoa) that appear particularly susceptible to OA via reduced net calcification. However, here we show that OA-like conditions can simultaneously enhance the ecological success of non-calcifying anthozoans, which not only play key ecological and biogeochemical roles in present day benthic ecosystems but also represent a model organism should calcifying anthozoans exist as less calcified (soft-bodied) forms in future oceans. Increased growth (abundance and size) of the sea anemone (Anemonia viridis) population was observed along a natural CO 2 gradient at Vulcano, Italy. Both gross photosynthesis (P G ) and respiration (R) increased with pCO 2 indicating that the increased growth was, at least in part, fuelled by bottom up (CO 2 stimulation) of metabolism. The increase of P G outweighed that of R and the genetic identity of the symbiotic microalgae (Symbiodinium spp.) remained unchanged (type A19) suggesting proximity to the vent site relieved CO 2 limitation of the anemones' symbiotic microalgal population. Our observations of enhanced productivity with pCO 2 , which are consistent with previous reports for some calcifying corals, convey an increase in fitness that may enable non-calcifying anthozoans to thrive in future environments, i.e. higher seawater pCO 2 . Understanding how CO 2 -enhanced productivity of non- (and less-) calcifying anthozoans applies more widely to tropical ecosystems is a priority where such organisms can dominate benthic ecosystems, in particular following localized anthropogenic stress. © 2012 Blackwell Publishing Ltd.

  6. Man -made greenhouse gases trigger unified force to start global warming impacts referred to as climate change

    International Nuclear Information System (INIS)

    Karishnan, K.J.; Kalam, A.

    2011-01-01

    Global warming problems due to man-made greenhouse gases (GHGs), appear to be a serious concern and threat to the globe. CO/sub 2/, O/sub 3, NOx and HFC's are the main greenhouse gases and CO/sub 2/ is one of the main cause of global warming. CO/sub 2/ is emitted from burning fossil fuels to produce electricity from power plants and burning of gasoline in vehicles and airplanes. Global greenhouse gases and its sources in regions are discussed in this paper. This paper initially discusses the CO/sub 2/ emissions and the recycle of CO/sub 2/ in biodiesel. This paper mainly focuses on 'Unified Force'. The increase of H/sub 2/O in the sea due to warming of the globe triggers the 'Unified Force' or 'Self-Compressive Surrounding Pressure Force' which is proportional to the H/sub 2/O level in the sea to start global warming impacts referred to as climate change. This paper also points out the climate change and the ten surprising results of global warming. Finally, this paper suggests switching from fossil fuel technology to green energy technologies like biodiesel which recycles CO/sub 2/ emissions and also Hydrogen Energy and Fuel Cell Technologies which eradicates global warming impacts. The benefits of switching from fossil fuel to biodiesel and Hydrogen Energy utilization includes reduction of greenhouse gas emissions and pollution, economic independence by having distributed production and burning of biodiesel does not add extra CO/sub 2/ to the air that contributes global warming impacts. (author)

  7. Experimental and modeling study on effects of N2 and CO2 on ignition characteristics of methane/air mixture

    Directory of Open Access Journals (Sweden)

    Wen Zeng

    2015-03-01

    Full Text Available The ignition delay times of methane/air mixture diluted by N2 and CO2 were experimentally measured in a chemical shock tube. The experiments were performed over the temperature range of 1300–2100 K, pressure range of 0.1–1.0 MPa, equivalence ratio range of 0.5–2.0 and for the dilution coefficients of 0%, 20% and 50%. The results suggest that a linear relationship exists between the reciprocal of temperature and the logarithm of the ignition delay times. Meanwhile, with ignition temperature and pressure increasing, the measured ignition delay times of methane/air mixture are decreasing. Furthermore, an increase in the dilution coefficient of N2 or CO2 results in increasing ignition delays and the inhibition effect of CO2 on methane/air mixture ignition is stronger than that of N2. Simulated ignition delays of methane/air mixture using three kinetic models were compared to the experimental data. Results show that GRI_3.0 mechanism gives the best prediction on ignition delays of methane/air mixture and it was selected to identify the effects of N2 and CO2 on ignition delays and the key elementary reactions in the ignition chemistry of methane/air mixture. Comparisons of the calculated ignition delays with the experimental data of methane/air mixture diluted by N2 and CO2 show excellent agreement, and sensitivity coefficients of chain branching reactions which promote mixture ignition decrease with increasing dilution coefficient of N2 or CO2.

  8. Different nature of glacial CaCO3 constituents between MIS 2 and MIS 12 in the East Sea/Japan Sea and its paleoceanographic implication

    Science.gov (United States)

    Khim, Boo-Keun; Tada, Ryuji; Itaki, Takuya

    2014-05-01

    Two piston cores (PC-05 and PC-08) were collected on the Yamato Rise in the East Sea/Japan Sea during the KR07-12 cruise. A composite core was achieved with the successful replacement of almost half of the upper part of core PC-05 by the entirety of core PC-08 based on the co-equivalence of L* values and the dark layers, because an interval (170 cm to 410 cm) of core PC-05 was considerably disturbed due to fluidization during the core execution. Chronostratigraphy of the composite core was constructed by the direct comparison of L* values to the well-dated core MD01-2407 that was obtained in the Oki Ridge. The lower-bottom of the composite core reached back to Marine Isotope Stage (MIS) 14, based on the age estimate by LR04 stacks. Downcore opal variation of the composite core exhibited the distinct orbital-scale cyclic changes; high during the interglacial and low during the glacial periods. However, downcore CaCO3 variation showed no corresponding orbital-scale cyclic change between glacial and interglacial periods. Some intervals of both periods were high in CaCO3 content. Frequent and large fluctuations in CaCO3 content seemed to be more related to the presence of dark layers containing thin lamination (TL) within the glacial and interglacial intervals. It is worthy to note that MIS 2 and MIS 12 are characterized by distinctly high CaCO3 content, showing up to 18% and 73%, respectively, among the glacial periods. Furthermore, in terms of lithology, MIS 2 was characterized by a thick dark layer (low L* values) with TL, whereas MIS 12 preserved the distinctly light layer (high L* values) with parallel laminations. Another remarkable dissimilarity between MIS 2 and MIS 12 was the nature of their CaCO3 constituent; the CaCO3 constituent of MIS 2 consisted of mostly planktonic foraminifera, whereas that of MIS 12 was mostly dump of coccolithophorids, regardless the presence of planktonic foraminifera. The distinctness of the CaCO3 constituents between MIS 2 and MIS

  9. Characteristics of coupled atmosphere-ocean CO2 sensitivity experiments with different ocean formulations

    International Nuclear Information System (INIS)

    Washington, W.M.; Meehl, G.A.

    1990-01-01

    The Community Climate Model at the National Center for Atmospheric Research has been coupled to a simple mixed-layer ocean model and to a coarse-grid ocean general circulation model (OGCM). This paper compares the responses of simulated climate to increases of atmospheric carbon dioxide (CO 2 ) in these two coupled models. Three types of simulations were run: (1) control runs with both ocean models, with CO 2 held constant at present-day concentrations, (2) instantaneous doubling of atmospheric CO 2 (from 330 to 660 ppm) with both ocean models, and (3) a gradually increasing (transient) CO 2 concentration starting at 330 ppm and increasing linearly at 1% per year, with the OGCM. The mixed-layer and OGCM cases exhibit increases of 3.5 C and 1.6 C, respectively, in globally averaged surface air temperature for the instantaneous doubling cases. The transient-forcing case warms 0.7 C by the end of 30 years. The mixed-layer ocean yields warmer-than-observed tropical temperatures and colder-than-observed temperatures in the higher latitudes. The coarse-grid OGCM simulates lower-than-observed sea surface temperatures (SSTs) in the tropics and higher-than-observed SSTs and reduced sea-ice extent at higher latitudes. Sensitivity in the OGCM after 30 years is much lower than in simulations with the same atmosphere coupled to a 50-m slab-ocean mixed layer. The OGCM simulates a weaker thermohaline circulation with doubled CO 2 as the high-latitude ocean-surface layer warms and freshens and the westerly wind stress decreases. Convective overturning in the OGCM decreases substantially with CO 2 warming

  10. Characteristics of coupled atmosphere-ocean CO2 sensitivity experiments with different ocean formulations

    International Nuclear Information System (INIS)

    Washington, W.M.; Meehl, G.A.

    1991-01-01

    The Community Climate Model at the National Center for Atmospheric Research has been coupled to a simple mixed-layer ocean model and to a coarse-grid ocean general circulation model (OGCM). This paper compares the responses of simulated climate to increases of atmospheric carbon dioxide (CO 2 ) in these two coupled models. Three types of simulations were run: (1) control runs with both ocean models, with CO 2 held constant at present-day concentrations, (2) instantaneous doubling of atmospheric CO 2 (from 330 to 660 ppm) with both ocean models, and (3) a gradually increasing (transient) CO 2 concentration starting at 330 ppm and increasing linearly at 1% per year, with the OGCM. The mixed-layer and OGCM cases exhibit increases of 3.5 C and 1.6 C, respectively, in globally averaged surface air temperature for the instantaneous doubling cases. The transient-forcing case warms 0.7 C by the end of 30 years. The mixed-layer ocean yields warmer-than-observed tropical temperatures and colder-than-observed temperatures in the higher latitudes. The coarse-grid OGCM simulates lower-than-observed sea surface temperatures (SSTs) in the tropics and higher-than-observed SSTs and reduced sea-ice extent at higher latitudes. Sensitivity in the OGCM after 30 years is much lower than in simulations with the same atmosphere coupled to a 50-m slab-ocean mixed layer. The OGCM simulates a weaker thermohaline circulation with doubled CO 2 as the high-latitude ocean-surface layer warms and freshens and the westerly wind stress decreases. Convective overturning in the OGCM decreases substantially with CO 2 warming. 46 refs.; 20 figs.; 1 tab

  11. Wind Speed and Sea State Dependencies of Air-Sea Gas Transfer: Results From the High Wind Speed Gas Exchange Study (HiWinGS)

    Science.gov (United States)

    Blomquist, B. W.; Brumer, S. E.; Fairall, C. W.; Huebert, B. J.; Zappa, C. J.; Brooks, I. M.; Yang, M.; Bariteau, L.; Prytherch, J.; Hare, J. E.; Czerski, H.; Matei, A.; Pascal, R. W.

    2017-10-01

    A variety of physical mechanisms are jointly responsible for facilitating air-sea gas transfer through turbulent processes at the atmosphere-ocean interface. The nature and relative importance of these mechanisms evolves with increasing wind speed. Theoretical and modeling approaches are advancing, but the limited quantity of observational data at high wind speeds hinders the assessment of these efforts. The HiWinGS project successfully measured gas transfer coefficients (k660) with coincident wave statistics under conditions with hourly mean wind speeds up to 24 m s-1 and significant wave heights to 8 m. Measurements of k660 for carbon dioxide (CO2) and dimethylsulfide (DMS) show an increasing trend with respect to 10 m neutral wind speed (U10N), following a power law relationship of the form: k660 CO2˜U10N1.68 and k660 dms˜U10N1.33. Among seven high wind speed events, CO2 transfer responded to the intensity of wave breaking, which depended on both wind speed and sea state in a complex manner, with k660 CO2 increasing as the wind sea approaches full development. A similar response is not observed for DMS. These results confirm the importance of breaking waves and bubble injection mechanisms in facilitating CO2 transfer. A modified version of the Coupled Ocean-Atmosphere Response Experiment Gas transfer algorithm (COAREG ver. 3.5), incorporating a sea state-dependent calculation of bubble-mediated transfer, successfully reproduces the mean trend in observed k660 with wind speed for both gases. Significant suppression of gas transfer by large waves was not observed during HiWinGS, in contrast to results from two prior field programs.

  12. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization

    Science.gov (United States)

    Smith, W. Kolby; Reed, Sasha C.; Cleveland, Cory C.; Ballantyne, Ashley P; Anderegg, William R. L.; Wieder, William R.; Liu, Yi Y; Running, Steven W.

    2015-01-01

    Atmospheric mass balance analyses suggest that terrestrial carbon (C) storage is increasing, partially abating the atmospheric [CO2] growth rate, although the continued strength of this important ecosystem service remains uncertain. Some evidence suggests that these increases will persist owing to positive responses of vegetation growth (net primary productivity; NPP) to rising atmospheric [CO2] (that is, ‘CO2 fertilization’). Here, we present a new satellite-derived global terrestrial NPP data set, which shows a significant increase in NPP from 1982 to 2011. However, comparison against Earth system model (ESM) NPP estimates reveals a significant divergence, with satellite-derived increases (2.8 ± 1.50%) less than half of ESM-derived increases (7.6  ±  1.67%) over the 30-year period. By isolating the CO2 fertilization effect in each NPP time series and comparing it against a synthesis of available free-air CO2 enrichment data, we provide evidence that much of the discrepancy may be due to an over-sensitivity of ESMs to atmospheric [CO2], potentially reflecting an under-representation of climatic feedbacks and/or a lack of representation of nutrient constraints. Our understanding of CO2 fertilization effects on NPP needs rapid improvement to enable more accurate projections of future C cycle–climate feedbacks; we contend that better integration of modelling, satellite and experimental approaches offers a promising way forward.

  13. Problems in the Relationship between CO2 Emissions and Global Warming

    Directory of Open Access Journals (Sweden)

    Ferenc Kovács

    2005-03-01

    Full Text Available In the analysis of environmental conditions and impacts, the viewpoint that greenhouse gases, primarily anthropogenic (industrial, human carbon dioxide, play a determining role in the change of global temperatures, ( the increase experienced in the last one and a half decade, has been given widespread publicity recently. Coal-fired power plants are the first to blame for the increase in atmospheric CO2 concentrations in the last two centuries. The study indicates possibilities to increase the efficiency of coal-fired power plants, which would involve a considerable reduction in CO2 emissions with an identical production volume of electrical energy. On the basis of the analysis of the amount of fossil fuels used, the amount of CO2 emissions and changes in the concentrations of atmospheric CO2, it is shown that no correlation can be proved between the factors investigated and changes in global temperatures.

  14. Global warming and sea level rise. Chikyu Ondanka to kaimen josho

    Energy Technology Data Exchange (ETDEWEB)

    Mimura, N [Ibaraki University, Ibaraki (Japan). Faculty of Engineering

    1993-10-15

    This paper describes the following matters on the problems of global warming and sea level rise. The first evaluation report published by the inter-government panel on climate change (IPCC) in 1990 estimates that, if emission of greenhouse effect gas keeps increasing at the present rate, the air temperature and the average sea level would rise by 3[degree]C and 65 centimeters, respectively by 2100. Global warming would not only result in rise of the sea level, but also accompany changes in strengths and routes of tropical low pressure areas, and precipitation patterns. Downstream areas of large rivers and island countries on coral reefs may have a risk of getting submerged. Countries having coasts developed to high densities (Japan, for example) would be subjected to a high potential effect. An 'East Hemisphere International Conference on Sea Level Rising Problem' was held in Japan in August 1993 as part of the works to prepare the second evaluation report of the IPCC (publication scheduled for 1995). The conference was attended by 24 countries, and 43 study results were reported. 4 figs.

  15. A cost effective CO2 strategy

    DEFF Research Database (Denmark)

    , a scenario-part and a cost-benefit part. Air and sea modes are not analyzed. The model adopts a bottom-up approach to allow a detailed assessment of transport policy measures. Four generic areas of intervention were identified and the likely effect on CO2 emissions, socioeconomic efficiency and other...... are evaluated according to CO2 reduction potential and according to the ‘shadow price’ on a reduction of one ton CO2. The shadow price reflects the costs (and benefits) of the different measures. Comparing the measures it is possible to identify cost effective measures, but these measures are not necessarily...... by the Ministry of Transport, with the Technical University of Denmark as one of the main contributors. The CO2-strategy was to be based on the principle of cost-effectiveness. A model was set up to assist in the assessment. The model consists of a projection of CO2-emissions from road and rail modes from 2020...

  16. Trading Off Global Fuel Supply, CO2 Emissions and Sustainable Development.

    Directory of Open Access Journals (Sweden)

    Liam Wagner

    Full Text Available The United Nations Conference on Climate Change (Paris 2015 reached an international agreement to keep the rise in global average temperature 'well below 2°C' and to 'aim to limit the increase to 1.5°C'. These reductions will have to be made in the face of rising global energy demand. Here a thoroughly validated dynamic econometric model (Eq 1 is used to forecast global energy demand growth (International Energy Agency and BP, which is driven by an increase of the global population (UN, energy use per person and real GDP (World Bank and Maddison. Even relatively conservative assumptions put a severe upward pressure on forecast global energy demand and highlight three areas of concern. First, is the potential for an exponential increase of fossil fuel consumption, if renewable energy systems are not rapidly scaled up. Second, implementation of internationally mandated CO2 emission controls are forecast to place serious constraints on fossil fuel use from ~2030 onward, raising energy security implications. Third is the challenge of maintaining the international 'pro-growth' strategy being used to meet poverty alleviation targets, while reducing CO2 emissions. Our findings place global economists and environmentalists on the same side as they indicate that the scale up of CO2 neutral renewable energy systems is not only important to protect against climate change, but to enhance global energy security by reducing our dependence of fossil fuels and to provide a sustainable basis for economic development and poverty alleviation. Very hard choices will have to be made to achieve 'sustainable development' goals.

  17. Trading Off Global Fuel Supply, CO2 Emissions and Sustainable Development.

    Science.gov (United States)

    Wagner, Liam; Ross, Ian; Foster, John; Hankamer, Ben

    2016-01-01

    The United Nations Conference on Climate Change (Paris 2015) reached an international agreement to keep the rise in global average temperature 'well below 2°C' and to 'aim to limit the increase to 1.5°C'. These reductions will have to be made in the face of rising global energy demand. Here a thoroughly validated dynamic econometric model (Eq 1) is used to forecast global energy demand growth (International Energy Agency and BP), which is driven by an increase of the global population (UN), energy use per person and real GDP (World Bank and Maddison). Even relatively conservative assumptions put a severe upward pressure on forecast global energy demand and highlight three areas of concern. First, is the potential for an exponential increase of fossil fuel consumption, if renewable energy systems are not rapidly scaled up. Second, implementation of internationally mandated CO2 emission controls are forecast to place serious constraints on fossil fuel use from ~2030 onward, raising energy security implications. Third is the challenge of maintaining the international 'pro-growth' strategy being used to meet poverty alleviation targets, while reducing CO2 emissions. Our findings place global economists and environmentalists on the same side as they indicate that the scale up of CO2 neutral renewable energy systems is not only important to protect against climate change, but to enhance global energy security by reducing our dependence of fossil fuels and to provide a sustainable basis for economic development and poverty alleviation. Very hard choices will have to be made to achieve 'sustainable development' goals.

  18. Air-sea exchange fluxes of synthetic polycyclic musks in the North Sea and the Arctic.

    Science.gov (United States)

    Xie, Zhiyong; Ebinghaus, Ralf; Temme, Christian; Heemken, Olaf; Ruck, Wolfgang

    2007-08-15

    Synthetic polycyclic musk fragrances Galaxolide (HHCB) and Tonalide (AHTN) were measured simultaneously in air and seawater in the Arctic and the North Sea and in the rural air of northern Germany. Median concentrations of gas-phase HHCB and AHTN were 4 and 18 pg m(-3) in the Arctic, 28 and 18 pg m(-3) in the North Sea, and 71 and 21 pg m(-3) in northern Germany, respectively. Various ratios of HHCB/AHTN implied that HHCB is quickly removed by atmospheric degradation, while AHTN is relatively persistent in the atmosphere. Dissolved concentrations ranged from 12 to 2030 pg L(-1) for HHCB and from below the method detection limit (3 pg L(-1)) to 965 pg L(-1) for AHTN with median values of 59 and 23 pg L(-1), respectively. The medians of volatilization fluxes for HHCB and AHTN were 27.2 and 14.2 ng m(-2) day(-1) and the depositional fluxes were 5.9 and 3.3 ng m(-2) day(-1), respectively, indicating water-to-air volatilization is a significant process to eliminate HHCB and AHTN from the North Sea. In the Arctic, deposition fluxes dominated the air-sea gas exchange of HHCB and AHTN, suggesting atmospheric input controls the levels of HHCB and AHTN in the polar region.

  19. Change of properties after oxidation of IG-11 graphite by air and CO2 gas

    International Nuclear Information System (INIS)

    Lim, Yun-Soo; Chi, Se-Hwan; Cho, Kwang-Yun

    2008-01-01

    Artificial graphite is typically manufactured by carbonization of a shaped body of a kneaded mixture using granular cokes as a filler and pitch as a binder. It undergoes a pitch impregnation process if necessary and finally applying graphitization heat treatment. The effect of thermal oxidation in air or a CO 2 atmosphere on IG-11 graphite samples is investigated in this study. The results show a localized oxidation process that progressively reveals the large coke particles with increasing level of overall weight loss in air. The surface of the graphite was peeled off and no change was found in the specific gravity after air oxidation. However, the specific gravity of graphite was continuously decreased by CO 2 oxidation. The decrease in the specific gravity by CO 2 oxidation was due to CO 2 gas that progressed from the surface to the interior. The pore shape after CO 2 oxidation differed from that under air oxidation

  20. Snowball Earth: Asynchronous coupling of sea-glacier flow with a global climate model

    Science.gov (United States)

    Pollard, D.; Kasting, J. F.; Zugger, M. E.

    2017-05-01

    During Snowball Earth episodes of the Neoproterozoic and Paleoproterozoic, limited amounts of tropical open ocean (Jormungand), or tropical ocean with thin ice cover, would help to explain (1) vigorous glacial activity in low latitudes, (2) survival of photosynthetic life, and (3) deglacial recovery without excessive buildup of atmospheric CO2. Some previous models have suggested that tropical open ocean or thin-ice cover is possible; however, its viability in the presence of kilometer-thick sea glaciers flowing from higher latitudes has not been demonstrated conclusively. Here we describe a new method of asynchronously coupling a zonal sea-glacier model with a 3-D global climate model and apply it to Snowball Earth. Equilibrium curves of ice line versus CO2 are mapped out, as well as their dependence on ocean heat transport efficiency, sea-glacier flow, and other model parameters. No climate states with limited tropical open ocean or thin ice are found in any of our model runs, including those with sea glaciers. If this result is correct, then other refugia such as cryoconite pans would have been required for life to survive. However, the reasons for the differences between our results and others should first be resolved. It is suggested that small-scale convective dynamics, affecting fractional snow cover in low latitudes, may be a critical factor accounting for these differences.

  1. A high precision mass spectrometry method for measuring O2/N2 ratios and CO2 concentrations in air

    International Nuclear Information System (INIS)

    Marca, A.D.; Dennis, P.F.; Etchells, A.

    2002-01-01

    A full, detailed understanding of the global carbon budget is needed for robust modelling of global climate and environmental change. Since the industrial revolution the carbon cycle has been shifted from a steady state in which removal of CO 2 from the atmosphere through photosynthesis is balanced by its addition through respiration. Currently increased respiration due to deforestation, modern agricultural practises and the burning of fossil fuels dominates photosynthesis resulting in modern atmospheric CO 2 concentrations some 32% higher than the year 1800 levels. However, the CO 2 concentration rises are lower than expected from known fossil fuel combustion inventories. A significant proportion of the excess CO 2 is taken up by the oceans, however a missing carbon sink must still be invoked to account for the difference between measured and expected CO 2 rises. A global greening as a result of increased photosynthesis is required to close the circle

  2. Estimation of air-sea CO2 flux in the coastal waters of Visakhapatnam

    Digital Repository Service at National Institute of Oceanography (India)

    Latha, T.P.; Rao, K.H.; Sarma, V.V.S.S.; Seetaram, P.; Choudhury, S.B.; Nagamani, P.V.; Dutt, B.S.; Dhadwal, V.K.; Manna, S.

    radiation, humidity, wind speed, direction and gust were measured using AWS (Watch Dog, 2000 series) instrument which was mounted on the top of the boat. The atmospheric CO2 was measured using Li-COR 840A. The partial pressure of carbon dioxide (pCO2...

  3. The contribution of ship emissions to air pollution in the North Sea regions

    Energy Technology Data Exchange (ETDEWEB)

    Matthias, Volker, E-mail: volker.matthias@gkss.d [GKSS Research Centre Geesthacht, Institute for Coastal Research, Max-Planck-Strasse 1, 21502 Geesthacht (Germany); Bewersdorff, Ines [GKSS Research Centre Geesthacht, Institute for Coastal Research, Max-Planck-Strasse 1, 21502 Geesthacht (Germany); Aulinger, Armin, E-mail: armin.aulinger@gkss.d [GKSS Research Centre Geesthacht, Institute for Coastal Research, Max-Planck-Strasse 1, 21502 Geesthacht (Germany); Quante, Markus, E-mail: markus.quante@gkss.d [GKSS Research Centre Geesthacht, Institute for Coastal Research, Max-Planck-Strasse 1, 21502 Geesthacht (Germany)

    2010-06-15

    As a consequence of the global distribution of manufacturing sites and the increasing international division of labour, ship traffic is steadily increasing and is becoming more and more important as an origin of air pollution. This study investigates the impact of ship emissions in coastal areas of the North Sea under conditions of the year 2000 by means of a regional chemistry transport model which runs on a sufficiently high resolution to study air pollution in coastal regions. It was found that northern Germany and Denmark in summer suffer from more than 50% higher sulphate, nitrate and ammonium aerosol concentrations due to contributions from ships. The implementation of a sulphur emission control area (SECA) in the North Sea, as it was implemented at the end of 2007, directly results in reduced sulphur dioxide and sulphate aerosol concentrations while nitrate aerosol concentrations are slightly increased. - Ship emissions lead to significantly enhanced air pollution by secondary inorganic aerosols in North Sea coastal areas.

  4. Effectiveness of carbon dioxide removal in lowering atmospheric CO2 and reversing global warming in the context of 1.5 degrees

    Science.gov (United States)

    Zickfeld, K.; Azevedo, D.

    2017-12-01

    The majority of emissions scenarios that limit warming to 2°C, and nearly all emission scenarios that do not exceed 1.5°C warming by the year 2100 require artificial removal of CO2 from the atmosphere. Carbon dioxide removal (CDR) technologies in these scenarios are required to offset emissions from sectors that are difficult or costly to decarbonize and to generate global `net negative' emissions, allowing to compensate for earlier emissions and to meet long-term climate stabilization targets after overshoot. Only a few studies have explored the Earth system response to CDR and large uncertainties exist regarding the effect of CDR on the carbon cycle and its effectiveness in reversing climate impacts after overshoot. Here we explore the effectiveness of CDR in lowering atmospheric CO2 ("carbon cycle effectiveness") and cool global climate ("cooling effectiveness"). We force the University of Victoria Earth System Climate Model, a model of intermediate complexity, with a set of negative CO2 emissions pulses of different magnitude and applied from different background atmospheric CO2 concentrations. We find the carbon cycle effectiveness of CDR - defined as the change in atmospheric CO2 per unit CO2 removed - decreases with the amount of CO2 removed from the atmosphere and increases at higher background CO2 concentrations from which CDR is applied due to nonlinear responses of carbon sinks to CO2 and climate. The cooling effectiveness - defined as the change in global mean surface air temperature per unit CO2 removed - on the other hand, is largely insensitive to the amount of CO2 removed, but decreases if CDR is applied at higher atmospheric CO2 concentrations, due to the logarithmic relationship between atmospheric CO2 and radiative forcing. Based on our results we conclude that CDR is more effective in restoring a lower atmospheric CO2 concentration and reversing impacts directly linked to CO2 at lower levels of overshoot. CDR's effectiveness in restoring a

  5. The Global Land-Ocean Temperature Index in Relation to Sunspot Number, the Atlantic Multidecadal Oscillation Index, the Mauna Loa Atmospheric Concentration of CO2, and Anthropogenic Carbon Emissions

    Science.gov (United States)

    Wilson, Robert M.

    2013-01-01

    Global warming/climate change has been a subject of scientific interest since the early 19th century. In particular, increases in the atmospheric concentration of carbon dioxide (CO2) have long been thought to account for Earth's increased warming, although the lack of a dependable set of observational data was apparent as late as the mid 1950s. However, beginning in the late 1950s, being associated with the International Geophysical Year, the opportunity arose to begin accurate continuous monitoring of the Earth's atmospheric concentration of CO2. Consequently, it is now well established that the atmospheric concentration of CO2, while varying seasonally within any particular year, has steadily increased over time. Associated with this rising trend in the atmospheric concentration of CO2 is a rising trend in the surface-air and sea-surface temperatures (SSTs). This Technical Publication (TP) examines the statistical relationships between 10-year moving averages (10-yma) of the Global Land-Ocean Temperature Index (GLOTI), sunspot number (SSN), the Atlantic Multidecadal Oscillation (AMO) index, and the Mauna Loa CO2 (MLCO2) index for the common interval 1964-2006, where the 10-yma values are used to indicate trends in the data. Scatter plots using the 10-yma values between GLOTI and each of the other parameters are determined, both as single-variate and multivariate fits. Scatter plots are also determined for MLCO2 using single-variate and bivariate (BV) fits, based on the GLOTI alone and the GLOTI in combination with the AMO index. On the basis of the inferred preferential fits for MLCO2, estimates for MLCO2 are determined for the interval 1885-1964, thereby yielding an estimate of the preindustrial level of atmospheric concentration of CO2. Lastly, 10-yma values of MLCO2 are compared against 10-yma estimates of the total carbon emissions (TCE) to determine the likelihood that manmade sources of carbon emissions are indeed responsible for the recent warming now

  6. Assessment of a new prototype hydrogel CO2 sensor; comparison with air tonometry

    NARCIS (Netherlands)

    ter Steege, W.F.; Herber, S.; Olthuis, Wouter; Bergveld, Piet; van den Berg, Albert; Kolkman, J.

    2007-01-01

    a>Abstract a>Objective Gastrointestinal ischemia is always accompanied by an increased luminal CO2. Currently, air tonometry is used to measure luminal CO2. To improve the response time a new sensor was developed, enabling continuous CO2 measurement. It consists of a pH-sensitive hydrogel which

  7. The effects of Norwegian gas export on the global CO2 emission

    International Nuclear Information System (INIS)

    1996-01-01

    This report analyses how a limitation of Norway's gas export might affect the global CO 2 emission. In principle, a reduction of this export can lead to decreased or increased CO 2 emission depending on changes in several conditions that individually have conflicting emission effects. What the total effect will be can only become clear after a thorough empirical analysis of the supply and demand structure. The model calculations presented in the report show that the global emission will probably increase if Norway reduces the gas export. A gas export reduction of 10 million tonne oil equivalents in 2015 will increase the global emission by 1.4 and 7.5 million tonne CO 2 depending on the assumption made for alternative gas supplies to the European market and for market conditions in the importing countries. 4 refs., 32 figs., 44 tabs

  8. Southern Adriatic sea as a potential area for CO2 geological storage

    International Nuclear Information System (INIS)

    Volpi, V.; Forlin, F.; Donda, F.; Civile, D.; Facchin, L.; Sauli, L.; Merson, B.; Sinza-Mendieta, K.; Shams, A.

    2015-01-01

    The Southern Adriatic Sea is one of the five prospective areas for CO 2 storage being evaluated under the three year (FP7) European SiteChar project dedicated to the characterization of European CO 2 storage sites. The potential reservoir for CO 2 storage is represented by a carbonate formation, the wackstones and packstones of the Scaglia Formation (Upper Cretaceous-Paleogene). In this paper, we present the geological characterization and the 3D modeling that led to the identification of three sites, named Grazia, Rovesti and Grifone, where the Scaglia Formation, with an average thickness of 50 m, reveals good petrophysical characteristics and is overlain by an up to 1 200 thick cap-rock. The vicinity of the selected sites to the Enel - Federico II power plant (one of the major Italian CO 2 emitter) where a pilot plant for CO 2 capture has been already started in April 2010, represents a good opportunity to launch the first Carbon Capture and Storage (CCS) pilot project in Italy and to apply this technology at industrial level, strongly contributing at the same time at reducing the national CO 2 emissions. (authors)

  9. Global Thermal Power Plants Database: Unit-Based CO2, SO2, NOX and PM2.5 Emissions in 2010

    Science.gov (United States)

    Tong, D.; Qiang, Z.; Davis, S. J.

    2016-12-01

    There are more than 30,000 thermal power plants now operating worldwide, reflecting a tremendously diverse infrastructure that includes units burning oil, natural gas, coal and biomass and ranging in capacity from 1GW. Although the electricity generated by this infrastructure is vital to economic activities across the world, it also produces more CO2 and air pollution emissions than any other industry sector. Here we present a new database of global thermal power-generating units and their emissions as of 2010, GPED (Global Power Emissions Database), including the detailed unit information of installed capacity, operation year, geographic location, fuel type and control measures for more than 70000 units. In this study, we have compiled, combined, and harmonized the available underlying data related to thermal power-generating units (e.g. eGRID of USA, CPED of China and published Indian power plants database), and then analyzed the generating capacity, capacity factor, fuel type, age, location, and installed pollution-control technology in order to determine those units with disproportionately high levels of emissions. In total, this work is of great importance for improving spatial distribution of global thermal power plants emissions and exploring their environmental impacts at global scale.

  10. Sea-to-air and diapycnal nitrous oxide fluxes in the eastern tropical North Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    A. Kock

    2012-03-01

    Full Text Available Sea-to-air and diapycnal fluxes of nitrous oxide (N2O into the mixed layer were determined during three cruises to the upwelling region off Mauritania. Sea-to-air fluxes as well as diapycnal fluxes were elevated close to the shelf break, but elevated sea-to-air fluxes reached further offshore as a result of the offshore transport of upwelled water masses. To calculate a mixed layer budget for N2O we compared the regionally averaged sea-to-air and diapycnal fluxes and estimated the potential contribution of other processes, such as vertical advection and biological N2O production in the mixed layer. Using common parameterizations for the gas transfer velocity, the comparison of the average sea-to-air and diapycnal N2O fluxes indicated that the mean sea-to-air flux is about three to four times larger than the diapycnal flux. Neither vertical and horizontal advection nor biological production were found sufficient to close the mixed layer budget. Instead, the sea-to-air flux, calculated using a parameterization that takes into account the attenuating effect of surfactants on gas exchange, is in the same range as the diapycnal flux. From our observations we conclude that common parameterizations for the gas transfer velocity likely overestimate the air-sea gas exchange within highly productive upwelling zones.

  11. Brief communication: ikaite (CaCO3*6H2O) discovered in Arctic sea ice

    Science.gov (United States)

    Dieckmann, G. S.; Nehrke, G.; Uhlig, C.; Göttlicher, J.; Gerland, S.; Granskog, M. A.; Thomas, D. N.

    2010-02-01

    We report for the first time on the discovery of calcium carbonate crystals as ikaite (CaCO3*6H2O) in sea ice from the Arctic (Kongsfjorden, Svalbard). This finding demonstrates that the precipitation of calcium carbonate during the freezing of sea ice is not restricted to the Antarctic, where it was observed for the first time in 2008. This finding is an important step in the quest to quantify its impact on the sea ice driven carbon cycle and should in the future enable improvement parametrization sea ice carbon models.

  12. Global change and the measurement of absolute sea-level

    Science.gov (United States)

    Diamante, John M.; Pyle, Thomas E.; Carter, William E.; Scherer, Wolfgang

    To quantify properly the long-term response of sea-level to climate change, land motions must be separated from the apparent or relative sea-level change recorded by conventional tide/sea-level gauges. Here we present a concept for global measurement of the true or “absolute” sea-level change, which combines recent advances in space-based geodetic techniques with plans for a global sea-level network under the World Climate Research Programme (WCRP). Data from initial feasibility tests show that land motion, due to global (plate tectonic), regional (glacial rebound), or local (fluid withdrawal) effects, can probably be measured to ±1cm (on a single measurement basis) by an innovative combination of Very Long Baseline Interferometry (VLBI) and Global Positioning System (GPS) tevhniques. By making repeated observations of position at a number of tide gauges using portable, economical GPS receivers in a differential mode relative to the fewer, more stable, but more expensive VLBI observatories, it will be possible to subtract land motion from the relative sea-level signal. Decadal to century scale trends at the 1-2mm y -1 level will be resolvable in the sea-level and vertical land motion time series within about a decade. Detection of subsidence or uplift at specific gauges will allow correction for land motion or deletion of bad data when computing regional or global, i.e. eustatic, sea-level changes. In addition to their applications in oceanography and climate studies, such data will test models by Peltier and other that relate mantle viscosity and deglaciation history to present rates of crustal subsidence or uplift. If the predicted crustal motions are confirmed, we can also have more confidence in the use of historical tide/sea-level gauge records in retrospective studies of sea-level change related to climate variability on decadal or longer time scales. It is concluded that as few as one-third (about 100) of the total number of tide/sea-level gauges (250

  13. Influence of the dissolution of increasing quantities of CO2 in the sea water

    International Nuclear Information System (INIS)

    Poitou, J.

    2007-03-01

    By the increase of carbon dioxide quantity in the atmosphere, the acidity of the ocean, which absorbs a part of this CO 2 , will increase. This acidity level is going to modify the shells and calcareous bases formation of many sea species. The author details the principle of the acidity evolution by the CO 2 increase, the consequences on the ocean fauna and the impacts for the humans. (A.L.B.)

  14. The microbial fate of carbon in high-latitude seas: Impact of the microbial loop on oceanic uptake of CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Yager, P.L.

    1996-12-31

    This dissertation examines pelagic microbial processes in high-latitude seas, how they affect regional and global carbon cycling, and how they might respond to hypothesized changes in climate. Critical to these interests is the effect of cold temperature on bacterial activity. Also important is the extent to which marine biological processes in general impact the inorganic carbon cycle. The study area is the Northeast Water (NEW) Polynya, a seasonally-recurrent opening in the permanent ice situated over the northeastern Greenland continental shelf. This work was part of an international, multi-disciplinary research project studying carbon cycling in the coastal Arctic. The first chapter describes a simple model which links a complex marine food web to a simplified ocean and atmosphere. The second chapter investigates the inorganic carbon inventory of the summertime NEW Polynya surface waters to establish the effect of biological processes on the air-sea pCO{sub 2} gradient. The third and fourth chapters use a kinetic approach to examine microbial activities in the NEW Polynya as a function of temperature and dissolved organic substrate concentration, testing the so-called Pomeroy hypothesis that microbial activity is disproportionately reduced at low environmental temperatures owing to increased organic substrate requirements. Together, the suite of data collected on microbial activities, cell size, and grazing pressure suggest how unique survival strategies adopted by an active population of high-latitude bacteria may contribute to, rather than detract from, an efficient biological carbon pump.

  15. Synergistic effects of pCO2 and iron availability on nutrient consumption ratio of the Bering Sea phytoplankton community

    Directory of Open Access Journals (Sweden)

    K. Sugie

    2013-10-01

    Full Text Available Little is known concerning the effect of CO2 on phytoplankton ecophysiological processes under nutrient and trace element-limited conditions, because most CO2 manipulation experiments have been conducted under elements-replete conditions. To investigate the effects of CO2 and iron availability on phytoplankton ecophysiology, we conducted an experiment in September 2009 using a phytoplankton community in the iron limited, high-nutrient, low-chlorophyll (HNLC region of the Bering Sea basin . Carbonate chemistry was controlled by the bubbling of the several levels of CO2 concentration (180, 380, 600, and 1000 ppm controlled air, and two iron conditions were established, one with and one without the addition of inorganic iron. We demonstrated that in the iron-limited control conditions, the specific growth rate and the maximum photochemical quantum efficiency (Fv/Fm of photosystem (PS II decreased with increasing CO2 levels, suggesting a further decrease in iron bioavailability under the high-CO2 conditions. In addition, biogenic silica to particulate nitrogen and biogenic silica to particulate organic carbon ratios increased from 2.65 to 3.75 and 0.39 to 0.50, respectively, with an increase in the CO2 level in the iron-limited controls. By contrast, the specific growth rate, Fv/Fm values and elemental compositions in the iron-added treatments did not change in response to the CO2 variations, indicating that the addition of iron canceled out the effect of the modulation of iron bioavailability due to the change in carbonate chemistry. Our results suggest that high-CO2 conditions can alter the biogeochemical cycling of nutrients through decreasing iron bioavailability in the iron-limited HNLC regions in the future.

  16. Children's exposure to indoor air in urban nurseries-part I: CO{sub 2} and comfort assessment

    Energy Technology Data Exchange (ETDEWEB)

    Branco, P.T.B.S.; Alvim-Ferraz, M.C.M.; Martins, F.G.; Sousa, S.I.V., E-mail: sofia.sousa@fe.up.pt

    2015-07-15

    Indoor air quality (IAQ) in nurseries is an emerging case-study. Thus, this study, as the Part I of the larger study “Children's exposure to indoor air in urban nurseries”, aimed to: i) evaluate nurseries’ indoor concentrations of carbon dioxide (CO{sub 2}), a global IAQ indicator, in class and lunch rooms; ii) assess indoor comfort parameters–temperature (T) and relative humidity (RH); and iii) analyse them according to guidelines and references for IAQ, comfort and children's health. Indoor continuous measurements were performed. Non-compliances with guidelines were found in comfort parameters, which could cause discomfort situations and also microbial proliferation. Exceedances in CO{sub 2} concentrations were also found and they were caused by poor ventilation and high classroom occupation. More efficient ventilation and control of comfort parameters, as well as to reduce occupation by reviewing Portuguese legislation on that matter, would certainly improve IAQ and comfort in nurseries and consequently safeguard children's health. - Highlights: • High occupation and poor ventilation were main determinants of IAQ in nurseries. • T and RH indoor values found in nurseries are likely to cause thermal discomfort. • Building characteristics and an inadequate ventilation determined T and RH values. • High CO{sub 2} concentrations found could indicate accumulation of other air pollutants.

  17. Cultivation of Chlorella Vulgaris Using Airlift Photobioreactor Sparged with 5%CO 2 -Air as a Biofixing Process

    Directory of Open Access Journals (Sweden)

    Mahmood Khazzal Hummadi AL-Mashhadani

    2017-04-01

    Full Text Available The present paper addresses cultivation of Chlorella vulgaris microalgae using airlift photobioreactor that sparged with 5% CO 2 /air. The experimental data were compared with that obtained from bioreactor aerated with air and unsparged bioreactor. The results showed that the concentration of biomass is 0.36 g l -1 in sparged bioreactor with CO2/air, while, the concentration of biomass reached to 0.069 g l -1 in the unsparged bioreactor. They showed also that aerated ioreactor.with CO2/air gives more biomass production even the bioreactor was aerated with air. This study proved that application of sparging system for ultivation of Chlorella vulgaris microalgae using either CO2/air mixture or air has a significant growth rate, since the bioreactors become more thermodynamically favorable and provide impetus for a higher level of production. biofixing process

  18. Co-control of urban air pollutants and greenhouse gases in Mexico City.

    Science.gov (United States)

    West, J Jason; Osnaya, Patricia; Laguna, Israel; Martínez, Julia; Fernández, Adrián

    2004-07-01

    This study addresses the synergies of mitigation measures to control urban air pollutant and greenhouse gas (GHG) emissions, in developing integrated "co-control" strategies for Mexico City. First, existing studies of emissions reduction measures--PROAIRE (the air quality plan for Mexico City) and separate GHG studies--are used to construct a harmonized database of options. Second, linear programming (LP) is developed and applied as a decision-support tool to analyze least-cost strategies for meeting co-control targets for multiple pollutants. We estimate that implementing PROAIRE measures as planned will reduce 3.1% of the 2010 metropolitan CO2 emissions, in addition to substantial local air pollutant reductions. Applying the LP, PROAIRE emissions reductions can be met at a 20% lower cost, using only the PROAIRE measures, by adjusting investments toward the more cost-effective measures; lower net costs are possible by including cost-saving GHG mitigation measures, but with increased investment. When CO2 emission reduction targets are added to PROAIRE targets, the most cost-effective solutions use PROAIRE measures for the majority of local pollutant reductions, and GHG measures for additional CO2 control. Because of synergies, the integrated planning of urban-global co-control can be beneficial, but we estimate that for Mexico City these benefits are often small.

  19. Air-sea interactions during strong winter extratropical storms

    Science.gov (United States)

    Nelson, Jill; He, Ruoying; Warner, John C.; Bane, John

    2014-01-01

    A high-resolution, regional coupled atmosphere–ocean model is used to investigate strong air–sea interactions during a rapidly developing extratropical cyclone (ETC) off the east coast of the USA. In this two-way coupled system, surface momentum and heat fluxes derived from the Weather Research and Forecasting model and sea surface temperature (SST) from the Regional Ocean Modeling System are exchanged via the Model Coupling Toolkit. Comparisons are made between the modeled and observed wind velocity, sea level pressure, 10 m air temperature, and sea surface temperature time series, as well as a comparison between the model and one glider transect. Vertical profiles of modeled air temperature and winds in the marine atmospheric boundary layer and temperature variations in the upper ocean during a 3-day storm period are examined at various cross-shelf transects along the eastern seaboard. It is found that the air–sea interactions near the Gulf Stream are important for generating and sustaining the ETC. In particular, locally enhanced winds over a warm sea (relative to the land temperature) induce large surface heat fluxes which cool the upper ocean by up to 2 °C, mainly during the cold air outbreak period after the storm passage. Detailed heat budget analyses show the ocean-to-atmosphere heat flux dominates the upper ocean heat content variations. Results clearly show that dynamic air–sea interactions affecting momentum and buoyancy flux exchanges in ETCs need to be resolved accurately in a coupled atmosphere–ocean modeling framework.

  20. Global Sensitivity Analysis to Assess Salt Precipitation for CO2 Geological Storage in Deep Saline Aquifers

    Directory of Open Access Journals (Sweden)

    Yuan Wang

    2017-01-01

    Full Text Available Salt precipitation is generated near the injection well when dry supercritical carbon dioxide (scCO2 is injected into saline aquifers, and it can seriously impair the CO2 injectivity of the well. We used solid saturation (Ss to map CO2 injectivity. Ss was used as the response variable for the sensitivity analysis, and the input variables included the CO2 injection rate (QCO2, salinity of the aquifer (XNaCl, empirical parameter m, air entry pressure (P0, maximum capillary pressure (Pmax, and liquid residual saturation (Splr and Sclr. Global sensitivity analysis methods, namely, the Morris method and Sobol method, were used. A significant increase in Ss was observed near the injection well, and the results of the two methods were similar: XNaCl had the greatest effect on Ss; the effect of P0 and Pmax on Ss was negligible. On the other hand, with these two methods, QCO2 had various effects on Ss: QCO2 had a large effect on Ss in the Morris method, but it had little effect on Ss in the Sobol method. We also found that a low QCO2 had a profound effect on Ss but that a high QCO2 had almost no effect on the Ss value.

  1. Physiological effects of environmental acidification in the deep-sea urchin Strongylocentrotus fragilis

    Science.gov (United States)

    Taylor, J. R.; Lovera, C.; Whaling, P. J.; Buck, K. R.; Pane, E. F.; Barry, J. P.

    2014-03-01

    Anthropogenic CO2 is now reaching depths over 1000 m in the Eastern Pacific, overlapping the Oxygen Minimum Zone (OMZ). Deep-sea animals are suspected to be especially sensitive to environmental acidification associated with global climate change. We have investigated the effects of elevated pCO2 and variable O2 on the deep-sea urchin Strongylocentrotus fragilis, a species whose range of 200-1200 m depth includes the OMZ and spans a pCO2 range of approx. 600-1200 μatm (approx. pH 7.6 to 7.8). Individuals were evaluated during two exposure experiments (1-month and 4 month) at control and three levels of elevated pCO2 at in situ O2 levels of approx. 10% air saturation. A treatment of control pCO2 at 100% air saturation was also included in experiment two. During the first experiment, perivisceral coelomic fluid (PCF) acid-base balance was investigated during a one-month exposure; results show S. fragilis has limited ability to compensate for the respiratory acidosis brought on by elevated pCO2, due in part to low non-bicarbonate PCF buffering capacity. During the second experiment, individuals were separated into fed and fasted experimental groups, and longer-term effects of elevated pCO2 and variable O2 on righting time, feeding, growth, and gonadosomatic index (GSI) were investigated for both groups. Results suggest that the acidosis found during experiment one does not directly correlate with adverse effects during exposure to realistic future pCO2 levels.

  2. A multivariate analysis of Antarctic sea ice since 1979

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes Neto, Newton de; Evangelista, Heitor [Universidade do Estado do Rio de Janeiro (Uerj), LARAMG - Laboratorio de Radioecologia e Mudancas Globais, Maracana, Rio de Janeiro, RJ (Brazil); Tanizaki-Fonseca, Kenny [Universidade do Estado do Rio de Janeiro (Uerj), LARAMG - Laboratorio de Radioecologia e Mudancas Globais, Maracana, Rio de Janeiro, RJ (Brazil); Universidade Federal Fluminense (UFF), Dept. Analise Geoambiental, Inst. de Geociencias, Niteroi, RJ (Brazil); Penello Meirelles, Margareth Simoes [Universidade do Estado do Rio de Janeiro (UERJ)/Geomatica, Maracana, Rio de Janeiro, RJ (Brazil); Garcia, Carlos Eiras [Universidade Federal do Rio Grande (FURG), Laboratorio de Oceanografia Fisica, Rio Grande, RS (Brazil)

    2012-03-15

    Recent satellite observations have shown an increase in the total extent of Antarctic sea ice, during periods when the atmosphere and oceans tend to be warmer surrounding a significant part of the continent. Despite an increase in total sea ice, regional analyses depict negative trends in the Bellingshausen-Amundsen Sea and positive trends in the Ross Sea. Although several climate parameters are believed to drive the formation of Antarctic sea ice and the local atmosphere, a descriptive mechanism that could trigger such differences in trends are still unknown. In this study we employed a multivariate analysis in order to identify the response of the Antarctic sea ice with respect to commonly utilized climate forcings/parameters, as follows: (1) The global air surface temperature, (2) The global sea surface temperature, (3) The atmospheric CO{sub 2} concentration, (4) The South Annular Mode, (5) The Nino 3, (6) The Nino (3 + 4, 7) The Nino 4, (8) The Southern Oscillation Index, (9) The Multivariate ENSO Index, (10) the Total Solar Irradiance, (11) The maximum O{sub 3} depletion area, and (12) The minimum O{sub 3} concentration over Antarctica. Our results indicate that western Antarctic sea ice is simultaneously impacted by several parameters; and that the minimum, mean, and maximum sea ice extent may respond to a separate set of climatic/geochemical parameters. (orig.)

  3. Return of the coral reef hypothesis: basin to shelf partitioning of CaCO3 and its effect on atmospheric CO2.

    Science.gov (United States)

    Opdyke, B N; Walker, J C

    1992-08-01

    Differences in the rate of coral reef carbonate deposition from the Pleistocene to the Holocene may account for the Quaternary variation of atmospheric CO2. Volumes of carbonate associated with Holocene reefs require an average deposition rate of 2.0 x 10(13) mol/yr for the past 5 ka. In light of combined riverine, midocean ridge, and ground-water fluxes of calcium to the oceans of 2.3 x 10(13) mol/yr, the current flux of calcium carbonate to pelagic sediments must be far below the Pleistocene average of 1.2 x 10(13) mol/yr. We suggest that sea-level change shifts the locus of carbonate deposition from the deep sea to the shelves as the normal glacial-interglacial pattern of deposition for Quaternary global carbonates. To assess the impact of these changes on atmospheric CO2, a simple numerical simulation of the global carbon cycle was developed. Atmospheric CO2 as well as calcite saturation depth and sediment responses to these carbonate deposition changes are examined. Atmospheric CO2 changes close to those observed in the Vostok ice core, approximately 80 ppm CO2, for the Quaternary are observed as well as the approximate depth changes in percent carbonate of sediments measured in the Pacific Ocean over the same time interval.

  4. CO2-induced climate change in northern Europe: comparison of 12 CMIP2 experiments

    International Nuclear Information System (INIS)

    Raeisaenen, Jouni

    2000-01-01

    The results of 12 coupled atmosphere-ocean general circulation model experiments participating in the second phase of the Coupled Model Intercomparison Project (CMIP2) are studied with focus on the area of northern Europe. The variables considered are surface air temperature, precipitation and sea level pressure. The 80-year control simulations are first compared with observational estimates of the present climate. Several aspects of the simulated CO 2 -induced climate changes, defined by subtracting the control run seasonal or annual means from 20-year perturbation run means around the transient doubling of CO 2 , are then studied. The common features and individual variations in the simulated climate change are documented. Particular attention is put on expressing the inter experiment agreement in quantitative terms and on estimating the relative contribution of model-simulated internal variability to the inter experiment variance. For that purpose, a new statistical framework is developed. Finally, an attempt is made to statistically relate the inter experiment differences in the simulated climate change in northern Europe to aspects of the control climates, global climate change and some of the basic model characteristics. A summary of the main findings is given in the last section of the report

  5. Field Observations of Coastal Air-Sea Interaction

    Science.gov (United States)

    Ortiz-Suslow, D. G.; Haus, B. K.; Williams, N. J.; Graber, H. C.

    2016-12-01

    In the nearshore zone wind, waves, and currents generated from different forcing mechanisms converge in shallow water. This can profoundly affect the physical nature of the ocean surface, which can significantly modulate the exchange of momentum, heat, and mass across the air-sea interface. For decades, the focus of air-sea interaction research has been on the open ocean while the shallow water regime has been relatively under-explored. This bears implications for efforts to understand and model various coastal processes, such as mixing, surface transport, and air-sea gas flux. The results from a recent study conducted at the New River Inlet in North Carolina showed that directly measured air-sea flux parameters, such as the atmospheric drag coefficient, are strong functions of space as well as the ambient conditions (i.e. wind speed and direction). The drag is typically used to parameterize the wind stress magnitude. It is generally assumed that the wind direction is the direction of the atmospheric forcing (i.e. wind stress), however significant wind stress steering off of the azimuthal wind direction was observed and was found to be related to the horizontal surface current shear. The authors have just returned from a field campaign carried out within Monterey Bay in California. Surface observations made from two research vessels were complimented by an array of beach and inland flux stations, high-resolution wind forecasts, and satellite image acquisitions. This is a rich data set and several case studies will be analyzed to highlight the importance of various processes for understanding the air-sea fluxes. Preliminary findings show that interactions between the local wind-sea and the shoaling, incident swell can have a profound effect on the wind stress magnitude. The Monterey Bay coastline contains a variety of topographical features and the importance of land-air-sea interactions will also be investigated.

  6. Geological characterization of CO{sub 2} storage sites: lessons from Sleipner, Northern North Sea

    Energy Technology Data Exchange (ETDEWEB)

    R.A. Chadwick; P. Zweigel; U. Gregersen; G.A. Kirby; S. Holloway; P.N. Johannessen [British Geological Survey, Keyworth (United Kingdom). Kingsley Dunham Centre

    2003-07-01

    The paper aims to draw some generic conclusions on reservoir characterization based on the Sleipner operation in the North Sea where CO{sub 2} is being injected into the Utsira Sand, a saline aquifer. Regional mapping and petrophysical characterization of the reservoir, based on 2D seismic and well data, enable gross storage potential to be evaluated. Site specific injection studies, however, require precision depth mapping based on 3D seismic data and detailed knowledge of reservoir stratigraphy. Stratigraphical and structural permeability barriers, difficult to detect prior to CO{sub 2} injection, can radically affect CO{sub 2} migration within the aquifer. 5 refs., 5 figs.

  7. Global sea turtle conservation successes.

    Science.gov (United States)

    Mazaris, Antonios D; Schofield, Gail; Gkazinou, Chrysoula; Almpanidou, Vasiliki; Hays, Graeme C

    2017-09-01

    We document a tendency for published estimates of population size in sea turtles to be increasing rather than decreasing across the globe. To examine the population status of the seven species of sea turtle globally, we obtained 299 time series of annual nesting abundance with a total of 4417 annual estimates. The time series ranged in length from 6 to 47 years (mean, 16.2 years). When levels of abundance were summed within regional management units (RMUs) for each species, there were upward trends in 12 RMUs versus downward trends in 5 RMUs. This prevalence of more upward than downward trends was also evident in the individual time series, where we found 95 significant increases in abundance and 35 significant decreases. Adding to this encouraging news for sea turtle conservation, we show that even small sea turtle populations have the capacity to recover, that is, Allee effects appear unimportant. Positive trends in abundance are likely linked to the effective protection of eggs and nesting females, as well as reduced bycatch. However, conservation concerns remain, such as the decline in leatherback turtles in the Eastern and Western Pacific. Furthermore, we also show that, often, time series are too short to identify trends in abundance. Our findings highlight the importance of continued conservation and monitoring efforts that underpin this global conservation success story.

  8. Stem respiration of Populus species in the third year of free-air CO{sub 2} enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Bielen, B.; Geulemans, R. [Univ. of Antwerp, Dept. of Biology, Research Group of Plant and Vegetation Ecology, Wilrijk (Belgium); Scarascia-Mugnozza, G. [Univ. degli Studi della Tuscia, Dept. of Forest Environment and Resources, Viterbo (Italy)

    2003-04-01

    Carbon cycling in ecosystems, and especially in forests, is intensively studied to predict the effects of global climate change, and the role which forests may play in 'changing climate change'. One of the questions is whether the carbon balance of forests will be affected by increasing atmospheric CO{sub 2} concentrations. Regarding this question, effects of elevated [CO{sub 2}] on woody-tissue respiration have frequently been neglected. Stem respiration of three Populus species (P. alba L. (Clone 2AS-11), P. nigra L. (Clone Jean Pourtet), and P. x euramericana (Clone I-214)) was measured in a managed, high-density forest plantation exposed to free-air CO{sub 2} enrichment (POPFACE). During the period of measurements, in May of the third year, stem respiration rates were not affected by the FACE treatment. Moreover, FACE did not influence the relationships between respiration rate and both stem temperature and relative growth rate. The results were supported by the reported absence of a FACE-effect on growth and stem wood density. (au)

  9. Global Mitigation of Non-CO2 Greenhouse Gases - Data Annexes

    Data.gov (United States)

    U.S. Environmental Protection Agency — Marginal abatement curves (MAC) can be downloaded as data annexes to the Global Mitigation of Non-CO2 Greenhouse Gases report. This data allows for improved...

  10. Using global warming potential to compare methane and CO2 emissions

    International Nuclear Information System (INIS)

    Dufresne, J.L.

    2009-01-01

    Greenhouse gases affect the planetary heat budget. Any change of their concentration affects this budget and therefore the global mean surface temperature of the Earth. These gases have different radiative properties and different lifetimes in the atmosphere, which prevents any direct comparison of the consequences of their emissions on global warming. Almost twenty years ago, the Intergovernmental Panel on Climate Change (IPCC) proposed the global warming potential (GWP) as an index to compare the emissions of the various greenhouse gases. In a recent paper, it has been stated that the use of GWP leads to strongly underestimating the global warming due to constant methane emissions compared to that of constant CO 2 emissions. Here we show that it is not really the case. The GWP enables comparisons of global warming due to constant emissions for any prescribed period, 100 years being often used. But this comparison is not universal. For instance, the impact of methane is underestimated at the beginning of the chosen period while the impact of CO 2 is underestimated after this period

  11. Oxygen in the Southern Ocean From Argo Floats: Determination of Processes Driving Air-Sea Fluxes

    Science.gov (United States)

    Bushinsky, Seth M.; Gray, Alison R.; Johnson, Kenneth S.; Sarmiento, Jorge L.

    2017-11-01

    The Southern Ocean is of outsized significance to the global oxygen and carbon cycles with relatively poor measurement coverage due to harsh winters and seasonal ice cover. In this study, we use recent advances in the parameterization of air-sea oxygen fluxes to analyze 9 years of oxygen data from a recalibrated Argo oxygen data set and from air-calibrated oxygen floats deployed as part of the Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project. From this combined data set of 150 floats, we find a total Southern Ocean oxygen sink of -183 ± 80 Tmol yr-1 (positive to the atmosphere), greater than prior estimates. The uptake occurs primarily in the Polar-Frontal Antarctic Zone (PAZ, -94 ± 30 Tmol O2 yr-1) and Seasonal Ice Zone (SIZ, -111 ± 9.3 Tmol O2 yr-1). This flux is driven by wintertime ventilation, with a large portion of the flux in the SIZ passing through regions with fractional sea ice. The Subtropical Zone (STZ) is seasonally driven by thermal fluxes and exhibits a net outgassing of 47 ± 29 Tmol O2 yr-1 that is likely driven by biological production. The Subantarctic Zone (SAZ) uptake is -25 ± 12 Tmol O2 yr-1. Total oxygen fluxes were separated into a thermal and nonthermal component. The nonthermal flux is correlated with net primary production and mixed layer depth in the STZ, SAZ, and PAZ, but not in the SIZ where seasonal sea ice slows the air-sea gas flux response to the entrainment of deep, low-oxygen waters.

  12. How much CO2 can we still emit while limiting global warming to well below 2 °C?

    Science.gov (United States)

    Rahmstorf, S.

    2017-12-01

    In December 2015, the Paris Agreement signed by 195 nations agreed to limit global warming "to well below 2 °C above preindustrial levels and to pursue efforts to limit the temperature increase to 1.5 °C." Since the amount of global warming is approximately proportional to cumulative CO2 emissions, such a warming limit corresponds to a remaining "CO2 budget" - a total amount of CO2 that can still be emitted world-wide. I will discuss current estimates of the size of this CO2 budget and what this means for the emissions trajectories compatible with the Paris Agreement.

  13. Technical Report Series on Global Modeling and Data Assimilation. Volume 31; Global Surface Ocean Carbon Estimates in a Model Forced by MERRA

    Science.gov (United States)

    Gregg, Watson W.; Casey, Nancy W.; Rousseaux, Cecile S.

    2013-01-01

    MERRA products were used to force an established ocean biogeochemical model to estimate surface carbon inventories and fluxes in the global oceans. The results were compared to public archives of in situ carbon data and estimates. The model exhibited skill for ocean dissolved inorganic carbon (DIC), partial pressure of ocean CO2 (pCO2) and air-sea fluxes (FCO2). The MERRA-forced model produced global mean differences of 0.02% (approximately 0.3 microns) for DIC, -0.3% (about -1.2 (micro) atm; model lower) for pCO2, and -2.3% (-0.003 mol C/sq m/y) for FCO2 compared to in situ estimates. Basin-scale distributions were significantly correlated with observations for all three variables (r=0.97, 0.76, and 0.73, P<0.05, respectively for DIC, pCO2, and FCO2). All major oceanographic basins were represented as sources to the atmosphere or sinks in agreement with in situ estimates. However, there were substantial basin-scale and local departures.

  14. Determination of microbial versus root-produced CO2 in an agricultural ecosystem by means of δ13CO2 measurements in soil air

    NARCIS (Netherlands)

    Schüßler, Wolfram; Neubert, Rolf; Levin, Ingeborg; Fischer, Natalie; Sonntag, Christian

    2000-01-01

    The amounts of microbial and root-respired CO2 in a maize/winter wheat agricultural system in south western Germany were investigated by measurements of the CO2 mixing ratio and the 13C/12C ratio in soil air. CO2 fluxes at the soil surface for the period of investigation (1993–1995) were also

  15. Contribution of Bicarbonate Assimilation to Carbon Pool Dynamics in the Deep Mediterranean Sea and Cultivation of Actively Nitrifying and CO2-Fixing Bathypelagic Prokaryotic Consortia.

    Science.gov (United States)

    La Cono, Violetta; Ruggeri, Gioachino; Azzaro, Maurizio; Crisafi, Francesca; Decembrini, Franco; Denaro, Renata; La Spada, Gina; Maimone, Giovanna; Monticelli, Luis S; Smedile, Francesco; Giuliano, Laura; Yakimov, Michail M

    2018-01-01

    Covering two-thirds of our planet, the global deep ocean plays a central role in supporting life on Earth. Among other processes, this biggest ecosystem buffers the rise of atmospheric CO 2 . Despite carbon sequestration in the deep ocean has been known for a long time, microbial activity in the meso- and bathypelagic realm via the " assimilation of bicarbonate in the dark " (ABD) has only recently been described in more details. Based on recent findings, this process seems primarily the result of chemosynthetic and anaplerotic reactions driven by different groups of deep-sea prokaryoplankton. We quantified bicarbonate assimilation in relation to total prokaryotic abundance, prokaryotic heterotrophic production and respiration in the meso- and bathypelagic Mediterranean Sea. The measured ABD values, ranging from 133 to 370 μg C m -3 d -1 , were among the highest ones reported worldwide for similar depths, likely due to the elevated temperature of the deep Mediterranean Sea (13-14°C also at abyssal depths). Integrated over the dark water column (≥200 m depth), bicarbonate assimilation in the deep-sea ranged from 396 to 873 mg C m -2 d -1 . This quantity of produced de novo organic carbon amounts to about 85-424% of the phytoplankton primary production and covers up to 62% of deep-sea prokaryotic total carbon demand. Hence, the ABD process in the meso- and bathypelagic Mediterranean Sea might substantially contribute to the inorganic and organic pool and significantly sustain the deep-sea microbial food web. To elucidate the ABD key-players, we established three actively nitrifying and CO 2 -fixing prokaryotic enrichments. Consortia were characterized by the co-occurrence of chemolithoautotrophic Thaumarchaeota and chemoheterotrophic proteobacteria. One of the enrichments, originated from Ionian bathypelagic waters (3,000 m depth) and supplemented with low concentrations of ammonia, was dominated by the Thaumarchaeota "low-ammonia-concentration" deep-sea ecotype

  16. Contribution of Bicarbonate Assimilation to Carbon Pool Dynamics in the Deep Mediterranean Sea and Cultivation of Actively Nitrifying and CO2-Fixing Bathypelagic Prokaryotic Consortia

    Science.gov (United States)

    La Cono, Violetta; Ruggeri, Gioachino; Azzaro, Maurizio; Crisafi, Francesca; Decembrini, Franco; Denaro, Renata; La Spada, Gina; Maimone, Giovanna; Monticelli, Luis S.; Smedile, Francesco; Giuliano, Laura; Yakimov, Michail M.

    2018-01-01

    Covering two-thirds of our planet, the global deep ocean plays a central role in supporting life on Earth. Among other processes, this biggest ecosystem buffers the rise of atmospheric CO2. Despite carbon sequestration in the deep ocean has been known for a long time, microbial activity in the meso- and bathypelagic realm via the “assimilation of bicarbonate in the dark” (ABD) has only recently been described in more details. Based on recent findings, this process seems primarily the result of chemosynthetic and anaplerotic reactions driven by different groups of deep-sea prokaryoplankton. We quantified bicarbonate assimilation in relation to total prokaryotic abundance, prokaryotic heterotrophic production and respiration in the meso- and bathypelagic Mediterranean Sea. The measured ABD values, ranging from 133 to 370 μg C m−3 d−1, were among the highest ones reported worldwide for similar depths, likely due to the elevated temperature of the deep Mediterranean Sea (13–14°C also at abyssal depths). Integrated over the dark water column (≥200 m depth), bicarbonate assimilation in the deep-sea ranged from 396 to 873 mg C m−2 d−1. This quantity of produced de novo organic carbon amounts to about 85–424% of the phytoplankton primary production and covers up to 62% of deep-sea prokaryotic total carbon demand. Hence, the ABD process in the meso- and bathypelagic Mediterranean Sea might substantially contribute to the inorganic and organic pool and significantly sustain the deep-sea microbial food web. To elucidate the ABD key-players, we established three actively nitrifying and CO2-fixing prokaryotic enrichments. Consortia were characterized by the co-occurrence of chemolithoautotrophic Thaumarchaeota and chemoheterotrophic proteobacteria. One of the enrichments, originated from Ionian bathypelagic waters (3,000 m depth) and supplemented with low concentrations of ammonia, was dominated by the Thaumarchaeota “low-ammonia-concentration” deep-sea

  17. Effects of increased pCO2 and geographic origin on purple sea urchin (Strongylocentrotus purpuratus) calcite elemental composition

    Science.gov (United States)

    LaVigne, M.; Hill, T. M.; Sanford, E.; Gaylord, B.; Russell, A. D.; Lenz, E. A.; Hosfelt, J. D.; Young, M. K.

    2012-12-01

    Ocean acidification will likely have negative impacts on invertebrates producing skeletons composed of calcium carbonate. Skeletal solubility is partly controlled by the incorporation of "foreign" ions (such as Mg and Sr) into the crystal lattice of these skeletal structures, a process that is sensitive to a variety of biological and environmental factors. Here we explore the effects of life stage, oceanographic region of origin, and changes in the partial pressure of carbon dioxide in seawater (pCO2) on trace elemental composition in the purple sea urchin (Strongylocentrotus purpuratus). We show that, similar to other urchin taxa, adult purple sea urchins have the ability to precipitate skeleton composed of a range of biominerals spanning low to high magnesium calcites. Mg/Ca and Sr/Ca ratios were substantially lower in adult spines compared to adult tests. On the other hand, trace elemental composition was invariant among adults collected from four oceanographically distinct regions along the US west coast (Oregon, Northern California, Central California, and Southern California). Skeletons of newly settled juvenile urchins that originated from adults from the four regions exhibited intermediate Mg/Ca and Sr/Ca between adult spine and test endmembers, indicating that skeleton precipitated during early life stages is more soluble than adult spines and less soluble than adult tests. Mean skeletal Mg/Ca or Sr/Ca of juvenile skeleton did not vary with source region when larvae were reared under present-day, global-average seawater carbonate conditions (400 ppm; pH = 8.02 ± 0.03 1 SD; Ωcalcite = 3.3 ± 0.2 1 SD). However, when reared under elevated CO2 (900 ppm; pH = 7.72 ± 0.03; Ωcalcite = 1.8 ± 0.1), skeletal Sr/Ca in juveniles exhibited increased variance across the four regions. Although larvae from the northern populations (Oregon, Northern California, Central California) did not exhibit differences in Mg or Sr incorporation under elevated CO2 (Sr/Ca = 2

  18. CO2 and solar radiation: cause of global warming?

    International Nuclear Information System (INIS)

    Bayona Gabriel; Garcia, Yuri C.; Sarmiento Heiner R

    2010-01-01

    A cause-effect relationship between global temperature as a climatic change indicator and some of the main forcing mechanisms (Atmospheric CO 2 concentration, solar radiation and volcanic activity) are analyzed in this paper through time series analysis for the 1610-1990 AD period comparing trends and variability for the frequency spectrums. Temperature seems to fit the CO 2 trend for the last century, but we found no cause-effect relationship for this interval. The frequency analysis shows a correlation between radiation and temperature for a period of 22 years. Volcanism presents an inverse relationship with temperature better seen at a decadal scale.

  19. Decadal changes in CH4 and CO2 emissions on the Alaskan North Slope

    Science.gov (United States)

    Sweeney, C.; Commane, R.; Wofsy, S.; Dlugokencky, E. J.; Karion, A.; Stone, R. S.; Chang, R.; Tans, P. P.; Wolter, S.

    2016-12-01

    Large changes in surface air temperature, sea ice cover and permafrost in the Arctic Boreal Ecosystems (ABE) are significantly impacting the critical ecosystem services and human societies that are dependent on the ABE. In order to predict the outcome of continued change in the climate system of the ABE, it is necessary to look at how past changes in climate have affected the ABE. We look at 30 years of CH4 and 42 years of CO2 observations from the NOAA Global Greenhouse Gas Reference Network site in Barrow, Alaska. By eliminating background trends and only looking at data collected when winds are blowing off the North Slope we find very little change in CH4 enhancements, but significant changes in the CO2 enhancements coming off the tundra. The bulk of both CO2 and CH4 emissions appear to be emitted well after the first snow fall on the North Slope. CO2 emissions are a strongly correlation with summer surface temperatures, while CH4 emissions appear insensitive to the large temperature changes that occurred over the measurement period. These results suggest that CO2, and not CH4 emissions, are a likely pathway for the degradation of permafrost carbon.

  20. Characterization of surface layers on individual marine CaCO3 particles, using "variable energy" electron probe microanalysis (poster)

    OpenAIRE

    Aerts, K.; Godoi, R.; Van Grieken, R.

    2002-01-01

    The ocean constitutes a large sink for anthropogenic CO2, and thus plays a significant role in the global biogeochemical cycle of carbon and its perturbations. There remain, however, large uncertainties concerning the uptake of anthropogenic carbon by the ocean, mainly due to insufficient knowledge of processes controlling the pCO2 in surface waters. Most of the previous research efforts have been concentrated on the study of CO2 exchange at the air-sea interface due to temperature effects re...

  1. Potential air contamination during CO2 angiography using a hand-held syringe: theoretical considerations and gas chromatography.

    Science.gov (United States)

    Cho, David R; Cho, Kyung J; Hawkins, Irvin F

    2006-01-01

    To assess air contamination in the hand-held syringes currently used for CO2 delivery and to determine whether there is an association between their position and the rate of air contamination. Assessment of air contamination in the syringe (20 ml) included theoretical modeling, mathematical calculation, and gas chromatography (GC). The model was used with Fick's first law to calculate the diffusion of CO2 and the amount of air contamination. For GC studies, the syringes were placed in the upright, horizontal, and inverted positions and gas samples were obtained after 5, 10, 20, 30, and 60 min. All trials with each position for each sampling time were performed five times. The amounts of air contamination with time calculated mathematically were 5-10% less than those of GC. With the diffusivity of air-CO2 at 0.1599 cm2/sec (9.594 cm2/min), air contamination was calculated to be 60% at 60 min. With GC air contamination was 13% at 5 min, 31% at 20 min, 43% at 30 min, and 68% at 60 min. There was no difference in air contamination between the different syringe positions. Air contamination occurs in hand-held syringes filled with CO2 when they are open to the ambient air. The amounts of air contamination over time are similar among syringes placed in the upright, horizontal, and inverted positions.

  2. Submesoscale CO2 variability across an upwelling front off Peru

    Science.gov (United States)

    Köhn, Eike E.; Thomsen, Sören; Arévalo-Martínez, Damian L.; Kanzow, Torsten

    2017-12-01

    As a major source for atmospheric CO2, the Peruvian upwelling region exhibits strong variability in surface fCO2 on short spatial and temporal scales. Understanding the physical processes driving the strong variability is of fundamental importance for constraining the effect of marine emissions from upwelling regions on the global CO2 budget. In this study, a frontal decay on length scales of 𝒪(10 km) was observed off the Peruvian coast following a pronounced decrease in down-frontal (equatorward) wind speed with a time lag of 9 h. Simultaneously, the sea-to-air flux of CO2 on the inshore (cold) side of the front dropped from up to 80 to 10 mmol m-2 day-1, while the offshore (warm) side of the front was constantly outgassing at a rate of 10-20 mmol m-2 day-1. Based on repeated ship transects the decay of the front was observed to occur in two phases. The first phase was characterized by a development of coherent surface temperature anomalies which gained in amplitude over 6-9 h. The second phase was characterized by a disappearance of the surface temperature front within 6 h. Submesoscale mixed-layer instabilities were present but seem too slow to completely remove the temperature gradient in this short time period. Dynamics such as a pressure-driven gravity current appear to be a likely mechanism behind the evolution of the front.

  3. The future for the Global Sea Level Observing System (GLOSS) Sea Level Data Rescue

    Science.gov (United States)

    Bradshaw, Elizabeth; Matthews, Andrew; Rickards, Lesley; Aarup, Thorkild

    2016-04-01

    Historical sea level data are rare and unrepeatable measurements with a number of applications in climate studies (sea level rise), oceanography (ocean currents, tides, surges), geodesy (national datum), geophysics and geology (coastal land movements) and other disciplines. However, long-term time series are concentrated in the northern hemisphere and there are no records at the Permanent Service for Mean Sea Level (PSMSL) global data bank longer than 100 years in the Arctic, Africa, South America or Antarctica. Data archaeology activities will help fill in the gaps in the global dataset and improve global sea level reconstruction. The Global Sea Level Observing System (GLOSS) is an international programme conducted under the auspices of the WMO-IOC Joint Technical Commission for Oceanography and Marine Meteorology. It was set up in 1985 to collect long-term tide gauge observations and to develop systems and standards "for ocean monitoring and flood warning purposes". At the GLOSS-GE-XIV Meeting in 2015, GLOSS agreed on a number of action items to be developed in the next two years. These were: 1. To explore mareogram digitisation applications, including NUNIEAU (more information available at: http://www.mediterranee.cerema.fr/logiciel-de-numerisation-des-enregistrements-r57.html) and other recent developments in scanning/digitisation software, such as IEDRO's Weather Wizards program, to see if they could be used via a browser. 2. To publicise sea level data archaeology and rescue by: • maintaining and regularly updating the Sea Level Data Archaeology page on the GLOSS website • strengthening links to the GLOSS data centres and data rescue organisations e.g. linking to IEDRO, ACRE, RDA • restarting the sea level data rescue blog with monthly posts. 3. Investigate sources of funding for data archaeology and rescue projects. 4. Propose "Guidelines" for rescuing sea level data. These action items will aid the discovery, scanning, digitising and quality control

  4. Origin of path independence between cumulative CO2 emissions and global warming

    Science.gov (United States)

    Seshadri, Ashwin K.

    2017-11-01

    Observations and GCMs exhibit approximate proportionality between cumulative carbon dioxide (CO2) emissions and global warming. Here we identify sufficient conditions for the relationship between cumulative CO2 emissions and global warming to be independent of the path of CO2 emissions; referred to as "path independence". Our starting point is a closed form expression for global warming in a two-box energy balance model (EBM), which depends explicitly on cumulative emissions, airborne fraction and time. Path independence requires that this function can be approximated as depending on cumulative emissions alone. We show that path independence arises from weak constraints, occurring if the timescale for changes in cumulative emissions (equal to ratio between cumulative emissions and emissions rate) is small compared to the timescale for changes in airborne fraction (which depends on CO2 uptake), and also small relative to a derived climate model parameter called the damping-timescale, which is related to the rate at which deep-ocean warming affects global warming. Effects of uncertainties in the climate model and carbon cycle are examined. Large deep-ocean heat capacity in the Earth system is not necessary for path independence, which appears resilient to climate modeling uncertainties. However long time-constants in the Earth system carbon cycle are essential, ensuring that airborne fraction changes slowly with timescale much longer than the timescale for changes in cumulative emissions. Therefore path independence between cumulative emissions and warming cannot arise for short-lived greenhouse gases.

  5. Why must a solar forcing be larger than a CO2 forcing to cause the same global mean surface temperature change?

    International Nuclear Information System (INIS)

    Modak, Angshuman; Bala, Govindasamy; Cao, Long; Caldeira, Ken

    2016-01-01

    Many previous studies have shown that a solar forcing must be greater than a CO 2 forcing to cause the same global mean surface temperature change but a process-based mechanistic explanation is lacking in the literature. In this study, we investigate the physical mechanisms responsible for the lower efficacy of solar forcing compared to an equivalent CO 2 forcing. Radiative forcing is estimated using the Gregory method that regresses top-of-atmosphere (TOA) radiative flux against the change in global mean surface temperature. For a 2.25% increase in solar irradiance that produces the same long term global mean warming as a doubling of CO 2 concentration, we estimate that the efficacy of solar forcing is ∼80% relative to CO 2 forcing in the NCAR CAM5 climate model. We find that the fast tropospheric cloud adjustments especially over land and stratospheric warming in the first four months cause the slope of the regression between the TOA net radiative fluxes and surface temperature to be steeper in the solar forcing case. This steeper slope indicates a stronger net negative feedback and hence correspondingly a larger solar forcing than CO 2 forcing for the same equilibrium surface warming. Evidence is provided that rapid land surface warming in the first four months sets up a land-sea contrast that markedly affects radiative forcing and the climate feedback parameter over this period. We also confirm the robustness of our results using simulations from the Hadley Centre climate model. Our study has important implications for estimating the magnitude of climate change caused by volcanic eruptions, solar geoengineering and past climate changes caused by change in solar irradiance such as Maunder minimum. (letter)

  6. Three dimensional global modeling of atmospheric CO2. Final technical report

    International Nuclear Information System (INIS)

    Fung, I.; Hansen, J.; Rind, D.

    1983-01-01

    A modeling effort has been initiated to study the prospects of extracting information on carbon dioxide sources and sinks from observed CO 2 variations. The approach uses a three-dimensional global transport model, based on winds from a 3-D general circulation model (GCM), to advect CO 2 noninteractively, i.e., as a tracer, with specified sources and sinks of CO 2 at the surface. This report identifies the 3-D model employed in this study and discusses biosphere, ocean and fossil fuel sources and sinks. Some preliminary model results are presented. 14 figures

  7. Co-control of local air pollutants and CO2 in the Chinese iron and steel industry.

    Science.gov (United States)

    Mao, Xianqiang; Zeng, An; Hu, Tao; Zhou, Ji; Xing, Youkai; Liu, Shengqiang

    2013-01-01

    The present study proposes an integrated multipollutant cocontrol strategy framework in the context of the Chinese iron and steel industry. The unit cost of pollutant reduction (UCPR) was used to examine the cost-effectiveness of each emission reduction measure. The marginal abatement cost (MAC) curves for SO2, NOx, PM2.5, and CO2 were drawn based on the UCPR and the abatement potential. Air pollutant equivalence (APeq) captures the nature of the damage value-weights of various air pollutants and acts as uniformization multiple air pollutants index. Single pollutant abatement routes designed in accordance with the corresponding reduction targets revealed that the cocontrol strategy has promising potential. Moreover, with the same reduction cost limitations as the single pollutant abatement routes, the multipollutant cocontrol routes are able to obtain more desirable pollution reduction and health benefits. Co-control strategy generally shows cost-effective advantage over single-pollutant abatement strategy. The results are robust to changing parameters according to sensitivity analysis. Co-control strategy would be an important step to achieve energy/carbon intensity targets and pollution control targets in China. Though cocontrol strategy has got some traction in policy debates, there are barriers to integrate it into policy making in the near future in China.

  8. Global spatially explicit CO2 emission metrics at 0.25° horizontal resolution for forest bioenergy

    Science.gov (United States)

    Cherubini, F.

    2015-12-01

    Bioenergy is the most important renewable energy option in studies designed to align with future RCP projections, reaching approximately 250 EJ/yr in RCP2.6, 145 EJ/yr in RCP4.5 and 180 EJ/yr in RCP8.5 by the end of the 21st century. However, many questions enveloping the direct carbon cycle and climate response to bioenergy remain partially unexplored. Bioenergy systems are largely assessed under the default climate neutrality assumption and the time lag between CO2 emissions from biomass combustion and CO2 uptake by vegetation is usually ignored. Emission metrics of CO2 from forest bioenergy are only available on a case-specific basis and their quantification requires processing of a wide spectrum of modelled or observed local climate and forest conditions. On the other hand, emission metrics are widely used to aggregate climate impacts of greenhouse gases to common units such as CO2-equivalents (CO2-eq.), but a spatially explicit analysis of emission metrics with global forest coverage is today lacking. Examples of emission metrics include the global warming potential (GWP), the global temperature change potential (GTP) and the absolute sustained emission temperature (aSET). Here, we couple a global forest model, a heterotrophic respiration model, and a global climate model to produce global spatially explicit emission metrics for CO2 emissions from forest bioenergy. We show their applications to global emissions in 2015 and until 2100 under the different RCP scenarios. We obtain global average values of 0.49 ± 0.03 kgCO2-eq. kgCO2-1 (mean ± standard deviation), 0.05 ± 0.05 kgCO2-eq. kgCO2-1, and 2.14·10-14 ± 0.11·10-14 °C (kg yr-1)-1, and 2.14·10-14 ± 0.11·10-14 °C (kg yr-1)-1 for GWP, GTP and aSET, respectively. We also present results aggregated at a grid, national and continental level. The metrics are found to correlate with the site-specific turnover times and local climate variables like annual mean temperature and precipitation. Simplified

  9. [Effect of air temperature and rainfall on wetland ecosystem CO2 exchange in China].

    Science.gov (United States)

    Chu, Xiao-jing; Han, Guang-xuan

    2015-10-01

    Wetland can be a potential efficient sink to reduce global warming due to its higher primary productivity and lower carbon decomposition rate. While there has been a series progress on the influence mechanism of ecosystem CO2 exchange over China' s wetlands, a systematic metaanalysis of data still needs to be improved. We compiled data of ecosystem CO2 exchange of 21 typical wetland vegetation types in China from 29 papers and carried out an integrated analysis of air temperature and precipitation effects on net ecosystem CO2 exchange (NEE), ecosystem respiration (Reco), gross primary productivity (GPP), the response of NEE to PAR, and the response of Reco to temperature. The results showed that there were significant responses (P0.05). Across different Chinese wetlands, both precipitation and temperature had no significant effect on apparent quantum yield (α) or ecosystem respiration in the daytime (Reco,day, P>0.05). The maximum photosynthesis rate (Amax) was remarkably correlated with precipitation (P 0.05). Precipitation was negatively correlated with temperature sensitivity of Reco (Q10, P<0.05). Furthermore, temperature accounted for 35% and 46% of the variations in temperature sensitivity of Reco (Q10) and basal respiration (Rref P<0.05), respectively.

  10. Future ocean hypercapnia driven by anthropogenic amplification of the natural CO2 cycle

    Science.gov (United States)

    McNeil, Ben I.; Sasse, Tristan P.

    2016-01-01

    High carbon dioxide (CO2) concentrations in sea-water (ocean hypercapnia) can induce neurological, physiological and behavioural deficiencies in marine animals. Prediction of the onset and evolution of hypercapnia in the ocean requires a good understanding of annual variations in oceanic CO2 concentration, but there is a lack of relevant global observational data. Here we identify global ocean patterns of monthly variability in carbon concentration using observations that allow us to examine the evolution of surface-ocean CO2 levels over the entire annual cycle under increasing atmospheric CO2 concentrations. We predict that the present-day amplitude of the natural oscillations in oceanic CO2 concentration will be amplified by up to tenfold in some regions by 2100, if atmospheric CO2 concentrations continue to rise throughout this century (according to the RCP8.5 scenario of the Intergovernmental Panel on Climate Change). The findings from our data are broadly consistent with projections from Earth system climate models. Our predicted amplification of the annual CO2 cycle displays distinct global patterns that may expose major fisheries in the Southern, Pacific and North Atlantic oceans to hypercapnia many decades earlier than is expected from average atmospheric CO2 concentrations. We suggest that these ocean ‘CO2 hotspots’ evolve as a combination of the strong seasonal dynamics of CO2 concentration and the long-term effective storage of anthropogenic CO2 in the oceans that lowers the buffer capacity in these regions, causing a nonlinear amplification of CO2 concentration over the annual cycle. The onset of ocean hypercapnia (when the partial pressure of CO2 in sea-water exceeds 1,000 micro-atmospheres) is forecast for atmospheric CO2 concentrations that exceed 650 parts per million, with hypercapnia expected in up to half the surface ocean by 2100, assuming a high-emissions scenario (RCP8.5). Such extensive ocean hypercapnia has detrimental implications for

  11. Toward a lithium-"air" battery: the effect of CO2 on the chemistry of a lithium-oxygen cell.

    Science.gov (United States)

    Lim, Hyung-Kyu; Lim, Hee-Dae; Park, Kyu-Young; Seo, Dong-Hwa; Gwon, Hyeokjo; Hong, Jihyun; Goddard, William A; Kim, Hyungjun; Kang, Kisuk

    2013-07-03

    Lithium-oxygen chemistry offers the highest energy density for a rechargeable system as a "lithium-air battery". Most studies of lithium-air batteries have focused on demonstrating battery operations in pure oxygen conditions; such a battery should technically be described as a "lithium-dioxygen battery". Consequently, the next step for the lithium-"air" battery is to understand how the reaction chemistry is affected by the constituents of ambient air. Among the components of air, CO2 is of particular interest because of its high solubility in organic solvents and it can react actively with O2(-•), which is the key intermediate species in Li-O2 battery reactions. In this work, we investigated the reaction mechanisms in the Li-O2/CO2 cell under various electrolyte conditions using quantum mechanical simulations combined with experimental verification. Our most important finding is that the subtle balance among various reaction pathways influencing the potential energy surfaces can be modified by the electrolyte solvation effect. Thus, a low dielectric electrolyte tends to primarily form Li2O2, while a high dielectric electrolyte is effective in electrochemically activating CO2, yielding only Li2CO3. Most surprisingly, we further discovered that a high dielectric medium such as DMSO can result in the reversible reaction of Li2CO3 over multiple cycles. We believe that the current mechanistic understanding of the chemistry of CO2 in a Li-air cell and the interplay of CO2 with electrolyte solvation will provide an important guideline for developing Li-air batteries. Furthermore, the possibility for a rechargeable Li-O2/CO2 battery based on Li2CO3 may have merits in enhancing cyclability by minimizing side reactions.

  12. Global Scenarios of Air Pollution until 2030: Combining Air Quality, Climate Change and Energy Access Policies

    Science.gov (United States)

    Rao, S.; Dentener, F. J.; Klimont, Z.; Riahi, K.

    2011-12-01

    Outdoor air pollution is increasingly recognized as a significant contributor to global health outcomes. This has led to the implementation of a number of air quality policies worldwide, with total air pollution control costs in 2005 estimated at US$195 billion. More than 80% of the world's population is still found to be exposed to PM2.5 concentrations exceeding WHO air quality guidelines and health impacts resulting from these exposures estimated at around 2-5% of the global disease burden. Key questions to answer are 1) How will pollutant emissions evolve in the future given developments in the energy system and how will energy and environmental policies influence such emission trends. 2) What implications will this have for resulting exposures and related health outcomes. In order to answer these questions, varying levels of stringency of air quality legislation are analyzed in combination with policies on universal access to clean cooking fuels and limiting global temperature change to 2°C in 2100. Bottom-up methodologies using energy emissions modeling are used to derive sector-based pollutant emission trajectories until 2030. Emissions are spatially downscaled and used in combination with a global transport chemistry model to derive ambient concentrations of PM2.5. Health impacts of these exposures are further estimated consistent with WHO data and methodology. The results indicate that currently planned air quality legislation combined with rising energy demand will be insufficient in controlling future emissions growth in developing countries. In order to achieve significant reductions in pollutant emissions of the order of more than 50% from 2005 levels and reduce exposures to levels consistent with WHO standards, it will be necessary to increase the stringency of such legislations and combine them with policies on energy access and climate change. Combined policies also result in reductions in air pollution control costs as compared to those associated

  13. Time series pCO2 at a coastal mooring: Internal consistency, seasonal cycles, and interannual variability

    Science.gov (United States)

    Reimer, Janet J.; Cai, Wei-Jun; Xue, Liang; Vargas, Rodrigo; Noakes, Scott; Hu, Xinping; Signorini, Sergio R.; Mathis, Jeremy T.; Feely, Richard A.; Sutton, Adrienne J.; Sabine, Christopher; Musielewicz, Sylvia; Chen, Baoshan; Wanninkhof, Rik

    2017-08-01

    Marine carbonate system monitoring programs often consist of multiple observational methods that include underway cruise data, moored autonomous time series, and discrete water bottle samples. Monitored parameters include all, or some of the following: partial pressure of CO2 of the water (pCO2w) and air, dissolved inorganic carbon (DIC), total alkalinity (TA), and pH. Any combination of at least two of the aforementioned parameters can be used to calculate the others. In this study at the Gray's Reef (GR) mooring in the South Atlantic Bight (SAB) we: examine the internal consistency of pCO2w from underway cruise, moored autonomous time series, and calculated from bottle samples (DIC-TA pairing); describe the seasonal to interannual pCO2w time series variability and air-sea flux (FCO2), as well as describe the potential sources of pCO2w variability; and determine the source/sink for atmospheric pCO2. Over the 8.5 years of GR mooring time series, mooring-underway and mooring-bottle calculated-pCO2w strongly correlate with r-values > 0.90. pCO2w and FCO2 time series follow seasonal thermal patterns; however, seasonal non-thermal processes, such as terrestrial export, net biological production, and air-sea exchange also influence variability. The linear slope of time series pCO2w increases by 5.2 ± 1.4 μatm y-1 with FCO2 increasing 51-70 mmol m-2 y-1. The net FCO2 sign can switch interannually with the magnitude varying greatly. Non-thermal pCO2w is also increasing over the time series, likely indicating that terrestrial export and net biological processes drive the long term pCO2w increase.

  14. Potential Air Contamination During CO2 Angiography Using a Hand-Held Syringe: Theoretical Considerations and Gas Chromatography

    International Nuclear Information System (INIS)

    Cho, David R.; Cho, Kyung J.; Hawkins, Irvin F.

    2006-01-01

    Purpose. To assess air contamination in the hand-held syringes currently used for CO 2 delivery and to determine whether there is an association between their position and the rate of air contamination. Methods. Assessment of air contamination in the syringe (20 ml) included theoretical modeling, mathematical calculation, and gas chromatography (GC). The model was used with Fick's first law to calculate the diffusion of CO 2 and the amount of air contamination. For GC studies, the syringes were placed in the upright, horizontal, and inverted positions and gas samples were obtained after 5, 10, 20, 30, and 60 min. All trials with each position for each sampling time were performed five times. Results. The amounts of air contamination with time calculated mathematically were 5-10% less than those of GC. With the diffusivity of air-CO 2 at 0.1599 cm 2 /sec (9.594 cm 2 /min), air contamination was calculated to be 60% at 60 min. With GC air contamination was 13% at 5 min, 31% at 20 min, 43% at 30 min, and 68% at 60 min. There was no difference in air contamination between the different syringe positions. Conclusion. Air contamination occurs in hand-held syringes filled with CO 2 when they are open to the ambient air. The amounts of air contamination over time are similar among syringes placed in the upright, horizontal, and inverted positions

  15. Global warming impacts of CFC alternative technologies: Combining fluorocarbon and CO2 effects

    International Nuclear Information System (INIS)

    Fairchild, P.D.; Fischer, S.K.; Hughes, P.J.

    1992-01-01

    Chlorofluorocarbons (CFCs) are on their way out, due to their role in stratospheric ozone depletion and the related international Montreal Protocol agreement and various national phaseout timetables. As the research, engineering development, and manufacturing investment decisions have ensued to prepare for this transition away from CFCs, the climate change issue has emerged and there has recently been increased attention on the direct global warming potential (GWP) of the fluorocarbon alternatives as greenhouse gases. However, there has been less focus on the indirect global warming effect arising from end-use energy changes and associated CO 2 emissions. A study was undertaken to address these combined global warming effects. A concept of Total Equivalent Warming Impact (TEWI) was developed for combining the direct and indirect effects and was used for evaluating CFC-replacement options available in the required CFC transition time frame. Analyses of industry technology surveys indicate that CFC-user industries have made substantial progress toward near-equal energy efficiency with many HCFC/HFC alternatives. The findings also bring into question the relative importance of the direct effect in many applications and stress energy efficiency when searching for suitable CFC alternatives. For chillers, household refrigerators, and unitary air-conditioning or heat pump equipment, changes in efficiency of only 2--5% would have a greater effect on future TEWI than completely eliminating the direct effect

  16. A heuristic evaluation of long-term global sea level acceleration

    Science.gov (United States)

    Spada, Giorgio; Olivieri, Marco; Galassi, Gaia

    2015-05-01

    In view of the scientific and social implications, the global mean sea level rise (GMSLR) and its possible causes and future trend have been a challenge for so long. For the twentieth century, reconstructions generally indicate a rate of GMSLR in the range of 1.5 to 2.0 mm yr-1. However, the existence of nonlinear trends is still debated, and current estimates of the secular acceleration are subject to ample uncertainties. Here we use various GMSLR estimates published on scholarly journals since the 1940s for a heuristic assessment of global sea level acceleration. The approach, alternative to sea level reconstructions, is based on simple statistical methods and exploits the principles of meta-analysis. Our results point to a global sea level acceleration of 0.54 ± 0.27 mm/yr/century (1σ) between 1898 and 1975. This supports independent estimates and suggests that a sea level acceleration since the early 1900s is more likely than currently believed.

  17. Concentration and stable carbon isotopic composition of CO2 in cave air of Postojnska jama, Slovenia

    Directory of Open Access Journals (Sweden)

    Magda Mandic

    2013-09-01

    Full Text Available Partial pressure of CO2 (pCO2 and its isotopic composition (δ13CairCO2 were measured in Postojnska jama, Slovenia, at 10 locations inside the cave and outside the cave during a one-year period. At all interior locations the pCO2 was higher and δ13CairCO2 lower than in the outside atmosphere. Strong seasonal fluctuations in both parameters were observed at locations deeper in the cave, which are isolated from the cave air circulation. By using a binary mixing model of two sources of CO2, one of them being the atmospheric CO2, we show that the excess of CO2 in the cave air has a δ13C value of -23.3 ± 0.7 ‰, in reasonable agreement with the previously measured soil-CO2 δ13C values. The stable isotope data suggest that soil CO2 is brought to the cave by drip water.

  18. Free-air CO2 enrichment (FACE) enhances biomass production in a short-rotation poplar plantation

    NARCIS (Netherlands)

    Calfapietra, C.; Gielen, B.; Galema, A.N.J.; Lukac, M.; Angelis, de P.; Moscatelli, M.C.; Ceulemans, R.; Scarascia-Mugnozza, G.

    2003-01-01

    This paper investigates the possible contribution of Short Rotation Cultures (SRC) to carbon sequestration in both current and elevated atmospheric CO2 concentrations ([CO2]). A dense poplar plantation (1 x 1 m) was exposed to a [CO2] of 550 ppm in Central Italy using the free-air CO2 enrichment

  19. A new set-up for simultaneous high-precision measurements of CO2, δ13C-CO2 and δ18O-CO2 on small ice core samples

    Science.gov (United States)

    Jenk, Theo Manuel; Rubino, Mauro; Etheridge, David; Ciobanu, Viorela Gabriela; Blunier, Thomas

    2016-08-01

    Palaeoatmospheric records of carbon dioxide and its stable carbon isotope composition (δ13C) obtained from polar ice cores provide important constraints on the natural variability of the carbon cycle. However, the measurements are both analytically challenging and time-consuming; thus only data exist from a limited number of sampling sites and time periods. Additional analytical resources with high analytical precision and throughput are thus desirable to extend the existing datasets. Moreover, consistent measurements derived by independent laboratories and a variety of analytical systems help to further increase confidence in the global CO2 palaeo-reconstructions. Here, we describe our new set-up for simultaneous measurements of atmospheric CO2 mixing ratios and atmospheric δ13C and δ18O-CO2 in air extracted from ice core samples. The centrepiece of the system is a newly designed needle cracker for the mechanical release of air entrapped in ice core samples of 8-13 g operated at -45 °C. The small sample size allows for high resolution and replicate sampling schemes. In our method, CO2 is cryogenically and chromatographically separated from the bulk air and its isotopic composition subsequently determined by continuous flow isotope ratio mass spectrometry (IRMS). In combination with thermal conductivity measurement of the bulk air, the CO2 mixing ratio is calculated. The analytical precision determined from standard air sample measurements over ice is ±1.9 ppm for CO2 and ±0.09 ‰ for δ13C. In a laboratory intercomparison study with CSIRO (Aspendale, Australia), good agreement between CO2 and δ13C results is found for Law Dome ice core samples. Replicate analysis of these samples resulted in a pooled standard deviation of 2.0 ppm for CO2 and 0.11 ‰ for δ13C. These numbers are good, though they are rather conservative estimates of the overall analytical precision achieved for single ice sample measurements. Facilitated by the small sample requirement

  20. Coral reefs - sources or sinks of atmospheric CO[sub 2

    Energy Technology Data Exchange (ETDEWEB)

    Ware, J R; Smith, S V; Reakakudla, M L [Hawaii University, Honolulu, HI (USA). Dept. of Oceanography

    1992-09-01

    Because the precipitation of calcium carbonate results in the sequestering of carbon, it frequently has been thought that coral reefs function as sinks of global atmospheric CO[sub 2]. However, the precipitation of calcium carbonate is accompanied by a shift of pH that results in the release of CO[sub 2]. This release of CO[sub 2] is less in buffered sea water than fresh water systems; nevertheless, coral reefs are sources, not sinks, of atmospheric carbon. Using estimated rates of coral reef carbonate production, we compute that coral reefs release 0.02 to 0.08 Gt C as CO[sub 2] annually. This is approximately 0.4% to 1.4% of the current anthropogenic CO[sub 2] production due to fossil fuel combustion.

  1. TransCom model simulations of hourly atmospheric CO2: Experimental overview and diurnal cycle results for 2002

    NARCIS (Netherlands)

    Law, R. M.; Peters, W.; RöDenbeck, C.; Aulagnier, C.; Baker, I.; Bergmann, D. J.; Bousquet, P.; Brandt, J.; Bruhwiler, L.; Cameron-Smith, P. J.; Christensen, J. H.; Delage, F.; Denning, A. S.; Fan, S.; Geels, C.; Houweling, S.; Imasu, R.; Karstens, U.; Kawa, S. R.; Kleist, J.; Krol, M. C.; Lin, S.-J.; Lokupitiya, R.; Maki, T.; Maksyutov, S.; Niwa, Y.; Onishi, R.; Parazoo, N.; Patra, P. K.; Pieterse, G.; Rivier, L.; Satoh, M.; Serrar, S.; Taguchi, S.; Takigawa, M.; Vautard, R.; Vermeulen, A. T.; Zhu, Z.

    2008-01-01

    A forward atmospheric transport modeling experiment has been coordinated by the TransCom group to investigate synoptic and diurnal variations in CO2. Model simulations were run for biospheric, fossil, and air-sea exchange of CO2 and for SF6 and radon for 2000-2003. Twenty-five models or model

  2. Quantifying global fossil-fuel CO2 emissions: from OCO-2 to optimal observing designs

    Science.gov (United States)

    Ye, X.; Lauvaux, T.; Kort, E. A.; Oda, T.; Feng, S.; Lin, J. C.; Yang, E. G.; Wu, D.; Kuze, A.; Suto, H.; Eldering, A.

    2017-12-01

    Cities house more than half of the world's population and are responsible for more than 70% of the world anthropogenic CO2 emissions. Therefore, quantifications of emissions from major cities, which are only less than a hundred intense emitting spots across the globe, should allow us to monitor changes in global fossil-fuel CO2 emissions, in an independent, objective way. Satellite platforms provide favorable temporal and spatial coverage to collect urban CO2 data to quantify the anthropogenic contributions to the global carbon budget. We present here the optimal observation design for future NASA's OCO-2 and Japanese GOSAT missions, based on real-data (i.e. OCO-2) experiments and Observing System Simulation Experiments (OSSE's) to address different error components in the urban CO2 budget calculation. We identify the major sources of emission uncertainties for various types of cities with different ecosystems and geographical features, such as urban plumes over flat terrains, accumulated enhancements within basins, and complex weather regimes in coastal areas. Atmospheric transport errors were characterized under various meteorological conditions using the Weather Research and Forecasting (WRF) model at 1-km spatial resolution, coupled to the Open-source Data Inventory for Anthropogenic CO2 (ODIAC) emissions. We propose and discuss the optimized urban sampling strategies to address some difficulties from the seasonality in cloud cover and emissions, vegetation density in and around cities, and address the daytime sampling bias using prescribed diurnal cycles. These factors are combined in pseudo data experiments in which we evaluate the relative impact of uncertainties on inverse estimates of CO2 emissions for cities across latitudinal and climatological zones. We propose here several sampling strategies to minimize the uncertainties in target mode for tracking urban fossil-fuel CO2 emissions over the globe for future satellite missions, such as OCO-3 and future

  3. CO2 embodied in international trade with implications for global climate policy.

    Science.gov (United States)

    Peters, Glen P; Hertwich, Edgar G

    2008-03-01

    The flow of pollution through international trade flows has the ability to undermine environmental policies, particularly for global pollutants. In this article we determine the CO2 emissions embodied in international trade among 87 countries for the year 2001. We find that globally there are over 5.3 Gt of CO2 embodied in trade and that Annex B countries are net importers of CO2 emissions. Depending on country characteristics--such as size variables and geographic location--there are considerable variations in the embodied emissions. We argue that emissions embodied in trade may have a significant impact on participation in and effectiveness of global climate policies such as the Kyoto Protocol. We discuss several policy options to reduce the impact of trade in global climate policy. If countries take binding commitments as a part of a coalition, instead of as individual countries, then the impacts of trade can be substantially reduced. Adjusting emission inventories for trade gives a more consistent description of a country's environmental pressures and circumvents many trade related issues. It also gives opportunities to exploit trade as a means of mitigating emissions. Not least, a better understanding of the role that trade plays in a country's economic and environmental development will help design more effective and participatory climate policy post-Kyoto.

  4. Capture and geological sequestration of CO2: fighting against global warming

    International Nuclear Information System (INIS)

    Czernichowski-Lauriol, I.

    2006-01-01

    In order to take up the global warming challenge, a set of emergency measures is to be implemented: energy saving, clean transportation systems, development of renewable energy sources.. CO 2 sequestration of massive industrial emission sources inside deep geologic formations is another promising solution, which can contribute to the division by two of the world CO 2 emissions between today and 2050. The CO 2 capture and sequestration industry is developing. Research projects and pilot facilities are on the increase over the world. Their aim is to warrant the efficiency and security of this technology over the centuries to come. (J.S.)

  5. Binding CO2 from Air by a Bulky Organometallic Cation Containing Primary Amines.

    Science.gov (United States)

    Luo, Yang-Hui; Chen, Chen; Hong, Dan-Li; He, Xiao-Tong; Wang, Jing-Wen; Ding, Ting; Wang, Bo-Jun; Sun, Bai-Wang

    2018-03-21

    The organometallic cation 1 (Fe(bipy-NH 2 ) 3 2+ , bipy-NH 2 = 4,4'-diamino-2,2'-bipyridine), which was constructed in situ in solution, can bind CO 2 from air effectively with a stoichiometric ratio of 1:4 (1/CO 2 ), through the formation of "H-bonded CO 2 " species: [CO 2 -OH-CO 2 ] - and [CO 2 -CO 2 -OH] - . These two species, along with the captured individual CO 2 molecules, connected 1 into a novel 3D (three-dimensional) architecture, that was crystal 1·2(OH - )·4(CO 2 ). The adsorption isotherms, recycling investigations, and the heat capacity of 1 have been investigated; the results revealed that the organometallic cation 1 can be recycled at least 10 times for the real-world CO 2 capture applications. The strategies presented here may provide new hints for the development of new alkanolamine-related absorbents or technologies for CO 2 capture and sequestration.

  6. Air (CO2) double-contrast barium enteroclysis.

    Science.gov (United States)

    Maglinte, Dean D T; Kohli, Marc D; Romano, Stefania; Lappas, John C

    2009-09-01

    In the 1980s and 1990s in North America and Europe, air (CO(2)) double-contrast barium enteroclysis took a back seat to biphasic methylcellulose double-contrast enteroclysis in the investigation of small-bowel diseases. The widespread application of capsule endoscopy in the 21st century has identified a number of limitations of radiologic examinations in the investigation of mucosal diseases of the small intestine. Evidence-based studies comparing barium, computed tomographic (CT), and magnetic resonance (MR) enteroclysis have shown that in spite of improvements in small-bowel examination methods using CT and MR, barium examinations remain superior in the depiction of mucosal abnormalities, particularly the apthoid lesions of early Crohn disease. Barium small-bowel examinations have been recommended in the patient with a negative CT or MR enteroclysis study where the pretest probability of Crohn disease is high. A recent prospective comparison of methylcellulose double-contrast barium enteroclysis to capsule endoscopy with review of the literature has shown that air enteroclysis depicts mucosal details better than does methylcellulose double-contrast enteroclysis because of the "washout" effect of methylcellulose on superficial mucosal features. Recent articles have shown that air enteroclysis compares favorably with wireless capsule endoscopy and double-balloon endoscopy in the diagnosis of mucosal abnormalities of the small bowel. This article describes the authors' technique of performing air double-contrast enteroclysis, its clinical indications, and its pitfalls.

  7. Updating sea spray aerosol emissions in the Community Multiscale Air Quality (CMAQ) model version 5.0.2

    Science.gov (United States)

    Gantt, B.; Kelly, J. T.; Bash, J. O.

    2015-11-01

    Sea spray aerosols (SSAs) impact the particle mass concentration and gas-particle partitioning in coastal environments, with implications for human and ecosystem health. Model evaluations of SSA emissions have mainly focused on the global scale, but regional-scale evaluations are also important due to the localized impact of SSAs on atmospheric chemistry near the coast. In this study, SSA emissions in the Community Multiscale Air Quality (CMAQ) model were updated to enhance the fine-mode size distribution, include sea surface temperature (SST) dependency, and reduce surf-enhanced emissions. Predictions from the updated CMAQ model and those of the previous release version, CMAQv5.0.2, were evaluated using several coastal and national observational data sets in the continental US. The updated emissions generally reduced model underestimates of sodium, chloride, and nitrate surface concentrations for coastal sites in the Bay Regional Atmospheric Chemistry Experiment (BRACE) near Tampa, Florida. Including SST dependency to the SSA emission parameterization led to increased sodium concentrations in the southeastern US and decreased concentrations along parts of the Pacific coast and northeastern US. The influence of sodium on the gas-particle partitioning of nitrate resulted in higher nitrate particle concentrations in many coastal urban areas due to increased condensation of nitric acid in the updated simulations, potentially affecting the predicted nitrogen deposition in sensitive ecosystems. Application of the updated SSA emissions to the California Research at the Nexus of Air Quality and Climate Change (CalNex) study period resulted in a modest improvement in the predicted surface concentration of sodium and nitrate at several central and southern California coastal sites. This update of SSA emissions enabled a more realistic simulation of the atmospheric chemistry in coastal environments where marine air mixes with urban pollution.

  8. AIRS retrieved CO2 and its association with climatic parameters over India during 2004–2011

    International Nuclear Information System (INIS)

    Kumar, K. Ravi; Revadekar, J.V.; Tiwari, Yogesh K.

    2014-01-01

    Atmospheric Infrared Sounder (AIRS) retrieved mid-tropospheric Carbon Dioxide (CO 2 ) have been used to study the variability and its association with the climatic parameters over India during 2004 to 2011. The study also aims in understanding transport of CO 2 from surface to mid-troposphere over India. The annual cycle of mid-tropospheric CO 2 shows gradual increase in concentration from January till the month of May at the rate ∼ 0.6 ppm/month. It decreases continuously in summer monsoon (JJAS) at the same rate during which strong westerlies persists over the region. A slight increase is seen during winter monsoon (DJF). Being a greenhouse gas, annual cycle of CO 2 show good resemblance with annual cycle of surface air temperature with correlation coefficient (CC) of + 0.8. Annual cycle of vertical velocity indicate inverse pattern compared to annual cycle of CO 2 . High values of mid-tropospheric CO 2 correspond to upward wind, while low values of mid-tropospheric CO 2 correspond to downward wind. In addition to vertical motion, zonal winds are also contributing towards the transport of CO 2 from surface to mid-troposphere. Vegetation as it absorbs CO 2 at surface level, show inverse annual cycle to that of annual cycle of CO 2 (CC-0.64). Seasonal variation of rainfall-CO 2 shows similarities with seasonal variation of NDVI-CO 2 . However, the use of long period data sets for CO 2 at the surface and at the mid-troposphere will be an advantage to confirm these results. - Highlights: • Association of AIRS CO 2 with climate parameters over India • CO 2 show positive correlation with surface temperature • Vertical/horizontal winds contribute towards CO 2 transport • Vegetation and monsoonal rainfall show inverse relationship with CO 2

  9. Mesoscale modelling of atmospheric CO2 across Denmark

    DEFF Research Database (Denmark)

    Lansø, Anne Sofie

    2016-01-01

    of the simulated atmospheric CO2 across Denmark was, in particular, affected by the Danish terrestrial surface exchanges and its temporal variability. This study urges all future modelling studies of air–sea CO2 to include short-term variability in pCO2. To capture the full heterogeneity of the surface exchanges......It is scientifically well-established that the increase of atmospheric CO2 affects the entire globe and will lead to higher surface temperatures. Although anthropogenic CO2is emitted straight into the atmosphere, it does not all contribute to the existing atmospheric CO2 reservoir. Approximately 29......% is taken up by the global oceans, due to under-saturation of CO2 in the surface waters, while another 33 % is taken up by the terrestrial biosphere, via photosynthesis. In order to estimate the effects of increasing anthropogenic emissions of CO2 more accurately in the future, it is essential to understand...

  10. GHRSST Level 4 MW_OI Global Foundation Sea Surface Temperature analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) global Level 4 sea surface temperature analysis produced daily on a 0.25 degree grid at Remote Sensing...

  11. Air/sea DMS gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed

    Science.gov (United States)

    Bell, T. G.; De Bruyn, W.; Miller, S. D.; Ward, B.; Christensen, K.; Saltzman, E. S.

    2013-05-01

    Shipboard measurements of eddy covariance DMS air/sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s-1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of air/sea gas flux at higher wind speeds appears to be related to sea state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near surface water side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the air/sea exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.

  12. Automated CO2 extraction from air for clumped isotope analysis in the atmo- and biosphere

    Science.gov (United States)

    Hofmann, Magdalena; Ziegler, Martin; Pons, Thijs; Lourens, Lucas; Röckmann, Thomas

    2015-04-01

    The conventional stable isotope ratios 13C/12C and 18O/16O in atmospheric CO2 are a powerful tool for unraveling the global carbon cycle. In recent years, it has been suggested that the abundance of the very rare isotopologue 13C18O16O on m/z 47 might be a promising tracer to complement conventional stable isotope analysis of atmospheric CO2 [Affek and Eiler, 2006; Affek et al. 2007; Eiler and Schauble, 2004; Yeung et al., 2009]. Here we present an automated analytical system that is designed for clumped isotope analysis of atmo- and biospheric CO2. The carbon dioxide gas is quantitatively extracted from about 1.5L of air (ATP). The automated stainless steel extraction and purification line consists of three main components: (i) a drying unit (a magnesium perchlorate unit and a cryogenic water trap), (ii) two CO2 traps cooled with liquid nitrogen [Werner et al., 2001] and (iii) a GC column packed with Porapak Q that can be cooled with liquid nitrogen to -30°C during purification and heated up to 230°C in-between two extraction runs. After CO2 extraction and purification, the CO2 is automatically transferred to the mass spectrometer. Mass spectrometric analysis of the 13C18O16O abundance is carried out in dual inlet mode on a MAT 253 mass spectrometer. Each analysis generally consists of 80 change-over-cycles. Three additional Faraday cups were added to the mass spectrometer for simultaneous analysis of the mass-to-charge ratios 44, 45, 46, 47, 48 and 49. The reproducibility for δ13C, δ18O and Δ47 for repeated CO2 extractions from air is in the range of 0.11o (SD), 0.18o (SD) and 0.02 (SD)o respectively. This automated CO2 extraction and purification system will be used to analyse the clumped isotopic signature in atmospheric CO2 (tall tower, Cabauw, Netherlands) and to study the clumped isotopic fractionation during photosynthesis (leaf chamber experiments) and soil respiration. References Affek, H. P., Xu, X. & Eiler, J. M., Geochim. Cosmochim. Acta 71, 5033

  13. Vehicle emissions of greenhouse gases and related tracers from a tunnel study: : CO: CO2, N2O: CO2, CH4: CO2, O2: CO2 ratios, and the stable isotopes 13C and 18O in CO2 and CO

    NARCIS (Netherlands)

    Popa, Maria Elena; Vollmer, M. K.; Jordan, A.; Brand, W. A.; Pathirana, S. L.; Rothe, M.; Röckmann, T.

    2014-01-01

    Measurements of CO2, CO, N2O and CH4 mole fractions, O2/N2 ratios and the stable isotopes 13C and 18O in CO2 and CO have been performed in air samples from the Islisberg highway tunnel (Switzerland). The molar CO : CO2 ratios, with an average of (4.15 ± 0.34) ppb:ppm, are lower than reported in

  14. CO2 como refrigerante: del pasado al futuro CO2 as refrigerant: from the past to future

    Directory of Open Access Journals (Sweden)

    Juan Manuel Belman Flores

    2013-05-01

    Full Text Available En años recientes y debido a la problemática que ha originado el calentamiento mundial, en el campo de la refrigeración y climatización se ha incrementado el interés por utilizar refrigerantes naturales e hidrocarburos con bajo potencial de calentamiento mundial, este es el caso de la utilización del CO2 como fluido frigorígeno que ha sido visto como una alter­nativa adecuada a los actuales refrigerantes en la comunidad científica. Hoy en día, el CO2 cada vez está retomando presencia en el campo de la refrigeración y climatización a nivel internacional, así pues, el presente trabajo tiene la finalidad de dar a conocer su potencial como refrigerante natural, las causas por las cuales este fluido fue relevado momentánea­mente por refrigerantes clorofluorocarbonados y su renacer en pleno siglo XXI. Además, se plantea su aplicación en la generación de frío en nuestro país mediante la tecnología de compresión de vapor basado en ciclo transcrítico.  In recent years, and due to problems resulting from global warming, interest has grown in the fields of refrigeration and air conditioning, specifically regarding the use of natural refrigerants and hydrocarbons with low potential for global warming. Such is the case of the use of CO2 as a cold fluid, which has been considered in the scientific community as an adequate alternative to common refrigerants. Nowadays, the use of CO2 in the areas of refrigeration and air conditioning has been recognized at international levels. Therefore, this work aims to show its potential as a natural refrigerant, the causes why this fluid was temporarily replaced by chlorofluorocarbon refrigerants, and its reappearance in the XXI century. It also proposes the use of CO2 in air conditioning in our country by using vapor compression technology, based on the transcritical cycle.

  15. Ice Melt, Sea Level Rise and Superstorms: Evidence from Paleoclimate Data, Climate Modeling, and Modern Observations that 2C Global Warming Could Be Dangerous

    Science.gov (United States)

    Hansen, J.; Sato, Makiko; Hearty, Paul; Ruedy, Reto; Kelley, Maxwell; Masson-Delmotte, Valerie; Russell, Gary; Tselioudis, George; Cao, Junji; Rignot, Eric; hide

    2016-01-01

    We use numerical climate simulations, paleoclimate data, and modern observations to study the effect of growing ice melt from Antarctica and Greenland. Meltwater tends to stabilize the ocean column, inducing amplifying feedbacks that increase subsurface ocean warming and ice shelf melting. Cold meltwater and induced dynamical effects cause ocean surface cooling in the Southern Ocean and North Atlantic, thus increasing Earth's energy imbalance and heat flux into most of the global ocean's surface. Southern Ocean surface cooling, while lower latitudes are warming, increases precipitation on the Southern Ocean, increasing ocean stratification, slowing deepwater formation, and increasing ice sheet mass loss. These feedbacks make ice sheets in contact with the ocean vulnerable to accelerating disintegration. We hypothesize that ice mass loss from the most vulnerable ice, sufficient to raise sea level several meters, is better approximated as exponential than by a more linear response. Doubling times of 10, 20 or 40 years yield multi-meter sea level rise in about 50, 100 or 200 years. Recent ice melt doubling times are near the lower end of the 10-40-year range, but the record is too short to confirm the nature of the response. The feedbacks, including subsurface ocean warming, help explain paleoclimate data and point to a dominant Southern Ocean role in controlling atmospheric CO2, which in turn exercised tight control on global temperature and sea level. The millennial (500-2000-year) timescale of deep-ocean ventilation affects the timescale for natural CO2 change and thus the timescale for paleo-global climate, ice sheet, and sea level changes, but this paleo-millennial timescale should not be misinterpreted as the timescale for ice sheet response to a rapid, large, human-made climate forcing. These climate feedbacks aid interpretation of events late in the prior interglacial, when sea level rose to C6-9m with evidence of extreme storms while Earth was less than 1 C

  16. The Impact of Prior Biosphere Models in the Inversion of Global Terrestrial CO2 Fluxes by Assimilating OCO-2 Retrievals

    Science.gov (United States)

    Philip, Sajeev; Johnson, Matthew S.

    2018-01-01

    Atmospheric mixing ratios of carbon dioxide (CO2) are largely controlled by anthropogenic emissions and biospheric fluxes. The processes controlling terrestrial biosphere-atmosphere carbon exchange are currently not fully understood, resulting in terrestrial biospheric models having significant differences in the quantification of biospheric CO2 fluxes. Atmospheric transport models assimilating measured (in situ or space-borne) CO2 concentrations to estimate "top-down" fluxes, generally use these biospheric CO2 fluxes as a priori information. Most of the flux inversion estimates result in substantially different spatio-temporal posteriori estimates of regional and global biospheric CO2 fluxes. The Orbiting Carbon Observatory 2 (OCO-2) satellite mission dedicated to accurately measure column CO2 (XCO2) allows for an improved understanding of global biospheric CO2 fluxes. OCO-2 provides much-needed CO2 observations in data-limited regions facilitating better global and regional estimates of "top-down" CO2 fluxes through inversion model simulations. The specific objectives of our research are to: 1) conduct GEOS-Chem 4D-Var assimilation of OCO-2 observations, using several state-of-the-science biospheric CO2 flux models as a priori information, to better constrain terrestrial CO2 fluxes, and 2) quantify the impact of different biospheric model prior fluxes on OCO-2-assimilated a posteriori CO2 flux estimates. Here we present our assessment of the importance of these a priori fluxes by conducting Observing System Simulation Experiments (OSSE) using simulated OCO-2 observations with known "true" fluxes.

  17. TransCom model simulations of hourly atmospheric CO2: Experimental overview and diurnal cycle results for 2002

    NARCIS (Netherlands)

    Law, R. M.; Peters, W.; Roedenbeck, C.; Aulagnier, C.; Baker, I.; Bergmann, D. J.; Bousquet, P.; Brandt, J.; Bruhwiler, L.; Cameron-Smith, P. J.; Christensen, J. H.; Delage, F.; Denning, A. S.; Fan, S.; Geels, C.; Houweling, S.; Imasu, R.; Karstens, U.; Kawa, S. R.; Kleist, J.; Krol, M. C.; Lin, S. -J.; Lokupitiya, R.; Maki, T.; Maksyutov, S.; Niwa, Y.; Onishi, R.; Parazoo, N.; Patra, P. K.; Pieterse, G.; Rivier, L.; Satoh, M.; Serrar, S.; Taguchi, S.; Takigawa, M.; Vautard, R.; Vermeulen, A. T.; Zhu, Z.

    2008-01-01

    [1] A forward atmospheric transport modeling experiment has been coordinated by the TransCom group to investigate synoptic and diurnal variations in CO2. Model simulations were run for biospheric, fossil, and air-sea exchange of CO2 and for SF6 and radon for 2000-2003. Twenty-five models or model

  18. Westerly Winds and the Southern Ocean CO2 Sink Since the Last Glacial-Interglacial Transition

    Science.gov (United States)

    Hodgson, D. A.; Saunders, K. M.; Roberts, S. J.; Perren, B.; Butz, C.; Sime, L. C.; Davies, S. J.; Grosjean, M.

    2017-12-01

    The capacity of the Southern Ocean carbon sink is partly controlled by the Southern Hemisphere westerly winds (SHW) and sea ice. These regulate the upwelling of dissolved carbon-rich deep water to Antarctic surface waters, determine the surface area for air-sea gas exchange and therefore modulate the net uptake of atmospheric CO2. Some models have proposed that strengthened SHW will result in a weakening of the Southern Ocean CO2 sink. If these models are correct, then one would expect that reconstructions of changes in SHW intensity on centennial to millennial timescales would show clear links with Antarctic ice core and Southern Ocean marine geological records of atmospheric CO2, temperature and sea ice. Here, we present a 12,300 year reconstruction of past wind strength based on three independent proxies that track the changing inputs of sea salt aerosols and minerogenic particles into lake sediments on sub-Antarctic Macquarie Island. The proxies are consistent in showing that periods of high wind intensity corresponded with the increase in CO2 across the late Last Glacial-Interglacial Transition and in the last 7,000 years, suggesting that the winds have contributed to the long term outgassing of CO2 from the ocean during these periods.

  19. On the causal structure between CO2 and global temperature

    Science.gov (United States)

    Stips, Adolf; Macias, Diego; Coughlan, Clare; Garcia-Gorriz, Elisa; Liang, X. San

    2016-01-01

    We use a newly developed technique that is based on the information flow concept to investigate the causal structure between the global radiative forcing and the annual global mean surface temperature anomalies (GMTA) since 1850. Our study unambiguously shows one-way causality between the total Greenhouse Gases and GMTA. Specifically, it is confirmed that the former, especially CO2, are the main causal drivers of the recent warming. A significant but smaller information flow comes from aerosol direct and indirect forcing, and on short time periods, volcanic forcings. In contrast the causality contribution from natural forcings (solar irradiance and volcanic forcing) to the long term trend is not significant. The spatial explicit analysis reveals that the anthropogenic forcing fingerprint is significantly regionally varying in both hemispheres. On paleoclimate time scales, however, the cause-effect direction is reversed: temperature changes cause subsequent CO2/CH4 changes. PMID:26900086

  20. Deep Sea Memory of High Atmospheric CO2 Concentration

    Science.gov (United States)

    Mathesius, Sabine; Hofmann, Matthias; Caldeira, Ken; Schellnhuber, Hans Joachim

    2015-04-01

    Carbon dioxide removal (CDR) from the atmosphere has been proposed as a powerful measure to mitigate global warming and ocean acidification. Planetary-scale interventions of that kind are often portrayed as "last-resort strategies", which need to weigh in if humankind keeps on enhancing the climate-system stock of CO2. Yet even if CDR could restore atmospheric CO2 to substantially lower concentrations, would it really qualify to undo the critical impacts of past emissions? In the study presented here, we employed an Earth System Model of Intermediate Complexity (EMIC) to investigate how CDR might erase the emissions legacy in the marine environment, focusing on pH, temperature and dissolved oxygen. Against a background of a world following the RCP8.5 emissions path ("business-as-usual") for centuries, we simulated the effects of two massive CDR interventions with CO2 extraction rates of 5 GtC yr-1 and 25 GtC yr-1, respectively, starting in 2250. We found that the 5 GtC yr-1 scheme would have only minor ameliorative influence on the oceans, even after several centuries of application. By way of contrast, the extreme 25 GtC yr-1 scheme eventually leads to tangible improvements. However, even with such an aggressive measure, past CO2 emissions leave a substantial legacy in the marine environment within the simulated period (i.e., until 2700). In summary, our study demonstrates that anthropogenic alterations of the oceans, caused by continued business-as-usual emissions, may not be reversed on a multi-centennial time scale by the most aspirational geoengineering measures. We also found that a transition from the RCP8.5 state to the state of a strong mitigation scenario (RCP2.6) is not possible, even under the assumption of extreme extraction rates (25 GtC yr-1). This is explicitly demonstrated by simulating additional scenarios, starting CDR already in 2150 and operating until the atmospheric CO2 concentration reaches 280 ppm and 180 ppm, respectively. The simulated

  1. Elevated CO2 as a driver of global dryland greening

    KAUST Repository

    Lu, Xuefei

    2016-02-12

    While recent findings based on satellite records indicate a positive trend in vegetation greenness over global drylands, the reasons remain elusive. We hypothesize that enhanced levels of atmospheric CO2 play an important role in the observed greening through the CO2 effect on plant water savings and consequent available soil water increases. Meta-analytic techniques were used to compare soil water content under ambient and elevated CO2 treatments across a range of climate regimes, vegetation types, soil textures and land management practices. Based on 1705 field measurements from 21 distinct sites, a consistent and statistically significant increase in the availability of soil water (11%) was observed under elevated CO2 treatments in both drylands and non-drylands, with a statistically stronger response over drylands (17% vs. 9%). Given the inherent water limitation in drylands, it is suggested that the additional soil water availability is a likely driver of observed increases in vegetation greenness.

  2. Elevated CO2 as a driver of global dryland greening

    KAUST Repository

    Lu, Xuefei; Wang, Lixin; McCabe, Matthew

    2016-01-01

    While recent findings based on satellite records indicate a positive trend in vegetation greenness over global drylands, the reasons remain elusive. We hypothesize that enhanced levels of atmospheric CO2 play an important role in the observed greening through the CO2 effect on plant water savings and consequent available soil water increases. Meta-analytic techniques were used to compare soil water content under ambient and elevated CO2 treatments across a range of climate regimes, vegetation types, soil textures and land management practices. Based on 1705 field measurements from 21 distinct sites, a consistent and statistically significant increase in the availability of soil water (11%) was observed under elevated CO2 treatments in both drylands and non-drylands, with a statistically stronger response over drylands (17% vs. 9%). Given the inherent water limitation in drylands, it is suggested that the additional soil water availability is a likely driver of observed increases in vegetation greenness.

  3. Impact of CO_2-enriched combustion air on micro-gas turbine performance for carbon capture

    International Nuclear Information System (INIS)

    Best, Thom; Finney, Karen N.; Ingham, Derek B.; Pourkashanian, Mohamed

    2016-01-01

    Power generation is one of the largest anthropogenic greenhouse gas emission sources; although it is now reducing in carbon intensity due to switching from coal to gas, this is only part of a bridging solution that will require the utilization of carbon capture technologies. Gas turbines, such as those at the UK Carbon Capture Storage Research Centre's Pilot-scale Advanced CO_2 Capture Technology (UKCCSRC PACT) National Core Facility, have high exhaust gas mass flow rates with relatively low CO_2 concentrations; therefore solvent-based post-combustion capture is energy intensive. Exhaust gas recirculation (EGR) can increase CO_2 levels, reducing the capture energy penalty. The aim of this paper is to simulate EGR through enrichment of the combustion air with CO_2 to assess changes to turbine performance and potential impacts on complete generation and capture systems. The oxidising air was enhanced with CO_2, up to 6.29%vol dry, impacting mechanical performance, reducing both engine speed by over 400 revolutions per minute and compression temperatures. Furthermore, it affected complete combustion, seen in changes to CO and unburned hydrocarbon emissions. This impacted on turbine efficiency, which increased specific fuel consumption (by 2.9%). CO_2 enhancement could therefore result in significant efficiency gains for the capture plant. - Highlights: • Experimental investigation of the impact of exhaust gas recirculation (EGR) on GT performance. • Combustion air was enhanced with CO_2 to simulate EGR. • EGR impact was ascertained by CO and unburned hydrocarbon changes. • Primary factor influencing performance was found to be oxidiser temperature. • Impact of CO_2 enhancement on post-combustion capture efficiency.

  4. Global Anthropogenic Emissions of Non-CO2 Greenhouse Gases 1990-2020

    Data.gov (United States)

    U.S. Environmental Protection Agency — The data in these Appendices to the Global Anthropogenic Emissions of Non-CO2 Greenhouse Gases (1990-2020) report provide historical and projected estimates of...

  5. Potential decadal predictability and its sensitivity to sea ice albedo parameterization in a global coupled model

    Energy Technology Data Exchange (ETDEWEB)

    Koenigk, Torben; Caian, Mihaela; Doescher, Ralf; Wyser, Klaus [Swedish Meteorological and Hydrological Institute, Rossby Centre, Norrkoeping (Sweden); Koenig Beatty, Christof [Universite Catholique de Louvain, Louvain-la-Neuve (Belgium)

    2012-06-15

    Decadal prediction is one focus of the upcoming 5th IPCC Assessment report. To be able to interpret the results and to further improve the decadal predictions it is important to investigate the potential predictability in the participating climate models. This study analyzes the upper limit of climate predictability on decadal time scales and its dependency on sea ice albedo parameterization by performing two perfect ensemble experiments with the global coupled climate model EC-Earth. In the first experiment, the standard albedo formulation of EC-Earth is used, in the second experiment sea ice albedo is reduced. The potential prognostic predictability is analyzed for a set of oceanic and atmospheric parameters. The decadal predictability of the atmospheric circulation is small. The highest potential predictability was found in air temperature at 2 m height over the northern North Atlantic and the southern South Atlantic. Over land, only a few areas are significantly predictable. The predictability for continental size averages of air temperature is relatively good in all northern hemisphere regions. Sea ice thickness is highly predictable along the ice edges in the North Atlantic Arctic Sector. The meridional overturning circulation is highly predictable in both experiments and governs most of the decadal climate predictability in the northern hemisphere. The experiments using reduced sea ice albedo show some important differences like a generally higher predictability of atmospheric variables in the Arctic or higher predictability of air temperature in Europe. Furthermore, decadal variations are substantially smaller in the simulations with reduced ice albedo, which can be explained by reduced sea ice thickness in these simulations. (orig.)

  6. CO2-capture and air quality. Synergy or conflict? A study of possible impacts

    International Nuclear Information System (INIS)

    Koornneef, J.M.; Ramirez Ramirez, C.A.; Van Harmelen, A.K.; Van Horssen, A.; Van Gijlswijk, R.N.

    2008-01-01

    Does CO2 capture and storage conflict with the objectives for air quality in the Netherlands? Or are win-win situations conceivable? These are important questions for policy makers today. It is expected that both conflicts and synergies will occur in the large scale implementation of CO2 capture in the Dutch electricity sector. This article provides a brief summary of part of the research program that was set up to unravel synergies and conflicts in policy for climate and air quality: the Dutch Policy Research Program on Air and Climate (BOLK) of the ministry of Housing, Spatial Planning and the Environment. [mk] [nl

  7. Climatological Distributions of pH, pCO2, Total CO2, Alkalinity, and CaCO3 Saturation in the Global Surface Ocean (NCEI accession 01645680) (NCEI Accession 0164568)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Climatological mean monthly distributions of pH in the total H+ scale, total CO2 concentration (TCO2), and the degree of CaCO3 saturation for the global surface...

  8. Surfactant control of air-sea gas exchange from North Sea coastal waters and the Atlantic Meridional Transect

    Science.gov (United States)

    Pereira, R.

    2016-02-01

    Suppression of gas transfer velocity (kw) by surfactants are well established, both in laboratory wind flumes and purposeful oceanic releases. However, the effects on kw of time and space varying concentrations of natural surfactant are inadequately studied. We have developed an automated gas exchange tank for simultaneous high precision measurement of kw in unmodified seawater samples. Here we present data from two studies along a coastal North Sea transect during 2012-2013 and the Atlantic Meridional Transect (AMT) 24 from September to November 2014. Measurements of surfactant activity (SA), CDOM absorbance and chlorophyll-a have enabled us to characterize the effects of variable amounts of natural surfactant on kw. North Sea coastal waters range in k660 (kw normalized to the value for CO2 in freshwater at 20oC) was 6.8-24.5 cm hr-1 (n=20), with the ranges of SA, total CDOM absorbance (200-450 nm) and chlorophyll-a measured in the surface microlayer (SML) of our seawater samples were 0.08-0.38 mg l-1 T-X-100, 0.13-4.7 and 0.09-1.54 µg l-1, respectively. The AMT k660 ranged from 7.0-23.9 cm hr-1 (n=22), with SA measured in the SML and subsurface water (SSW) of our seawater samples ranging from 0.15-1.08 mg l-1 T-X-100 and 0.07-0.43 mg l-1 T-X-100, respectively. Importantly, we found 12-45% (North Sea) and 1-43% (AMT) k660 suppression relative to Milli-Q water that relate to seasonal and spatial differences in SA. The North Sea demonstrated notable seasonal influences on k660 suppression that were related to CDOM absorbance and chlorophyll-a. The degree of k660 suppression was highest in summer consistent with k660 control by natural surfactant. The degree of k660 suppression decreased with distance offshore in the North Sea and displayed a strong relationship with SA (r2 = 0.51-0.64, p = 0.02, n = 20). The AMT demonstrated notable differences in k660 suppression between hemispheres and across the Longhurst Provinces but the overall relationship between k660

  9. Climate Strategy with CO2 Capture from the Air

    Energy Technology Data Exchange (ETDEWEB)

    Keith, D.W. [Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB (Canada); Ha-Duong, M. [CNRS-CIRED, Campus du Jardin Tropical, 45 bis, av. de la Belle Gabrielle, 94736 Nogent sur Marne CEDEX (France); Stolaroff, J.K. [Department of Engineering and Public Policy, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213 (United States)

    2006-01-15

    It is physically possible to capture CO2 directly from the air and immobilize it in geological structures. Air capture differs from conventional mitigation in three key aspects. First, it removes emissions from any part of the economy with equal ease or difficulty, so its cost provides an absolute cap on the cost of mitigation. Second, it permits reduction in concentrations faster than the natural carbon cycle: the effects of irreversibility are thus partly alleviated. Third, because it is weakly coupled to existing energy infrastructure, air capture may offer stronger economies of scale and smaller adjustment costs than the more conventional mitigation technologies. We assess the ultimate physical limits on the amount of energy and land required for air capture and describe two systems that might achieve air capture at prices under 200 and 500 $/tC using current technology. Like geoengineering, air capture limits the cost of a worst-case climate scenario. In an optimal sequential decision framework with uncertainty, existence of air capture decreases the need for near-term precautionary abatement. The long-term effect is the opposite; assuming that marginal costs of mitigation decrease with time while marginal climate change damages increase, then air capture increases long-run abatement. Air capture produces an environmental Kuznets curve, in which concentrations are returned to preindustrial levels.

  10. SKF Freight Transports and CO{sub 2} emissions. A Study in Environmental Management Accounting

    Energy Technology Data Exchange (ETDEWEB)

    Lindblom, Helen; Stenqvist, Christian

    2007-11-15

    In this study of CO{sub 2} emissions accounting, freight transports of the SKF company are examined. The identification of emission sources, the handling of transport activity data, the application of proper calculation methodologies, organizational aspects and questions of liability are all integrated parts of the study. Emission calculations are carried out for two specific logistics systems managed by SKF Logistics Services; the Daily Transport System (DTS) and the Global Air Freight Program. The DTS, which is based on road freight transports, operates the European distribution of finished products. It is estimated to contribute with 9 700 tonnes CO{sub 2} during 2007. Since the system is optimized to a reasonable degree, the CO{sub 2} impact per tonne-km is relatively low. Over the same period the air freight's estimated emissions are 40 000 tonnes. Together these transport activities contributes to about ten percent of the SKF total CO{sub 2} equivalents based on the reporting of 2006. Adding the emissions from the remaining transport activities that SKF utilizes will make this share increase considerably, particularly if also inbound transports are accounted for. The potential for CO{sub 2} reductions is covered by two change-oriented case studies. It can be concluded that short-sea transportation seldom is an alternative to road transports. Intermodal transports combining road and rail can, depending on the circumstances, reduce the CO{sub 2} impact considerably compared to only using road transports. Reducing transportation work by optimizing a transport activity is seen as the best option for CO{sub 2} reductions. Efforts should be put into reducing the need for air freight transports, considering the high emission levels per tonne-km. Monitoring emissions for all transport activities that falls under SKF responsibility will reduce the risk of sub optimization. Introducing system changes in order to decrease CO{sub 2} emissions will have a range of

  11. [Steam and air co-injection in removing TCE in 2D-sand box].

    Science.gov (United States)

    Wang, Ning; Peng, Sheng; Chen, Jia-Jun

    2014-07-01

    Steam and air co-injection is a newly developed and promising soil remediation technique for non-aqueous phase liquids (NAPLs) in vadose zone. In this study, in order to investigate the mechanism of the remediation process, trichloroethylene (TCE) removal using steam and air co-injection was carried out in a 2-dimensional sandbox with different layered sand structures. The results showed that co-injection perfectly improved the "tailing" effect compared to soil vapor extraction (SVE), and the remediation process of steam and air co-injection could be divided into SVE stage, steam strengthening stage and heat penetration stage. Removal ratio of the experiment with scattered contaminant area was higher and removal speed was faster. The removal ratios from the two experiments were 93.5% and 88.2%, and the removal periods were 83.9 min and 90.6 min, respectively. Steam strengthened the heat penetration stage. The temperature transition region was wider in the scattered NAPLs distribution experiment, which reduced the accumulation of TCE. Slight downward movement of TCE was observed in the experiment with TCE initially distributed in a fine sand zone. And such downward movement of TCE reduced the TCE removal ratio.

  12. Exploring the MIS M2 glaciation occurring during a warm and high atmospheric CO2 Pliocene background climate

    Science.gov (United States)

    Tan, Ning; Ramstein, Gilles; Dumas, Christophe; Contoux, Camille; Ladant, Jean-Baptiste; Sepulchre, Pierre; Zhang, Zhongshi; De Schepper, Stijn

    2017-08-01

    Prior to the Northern Hemisphere glaciation around ∼2.7 Ma, a large global glaciation corresponding to a 20 to 60 m sea-level drop occurred during Marine Isotope Stage (MIS) M2 (3.312-3.264 Ma), interrupted the period of global warmth and high CO2 concentration (350-450 ppmv) of the mid Piacenzian. Unlike the late Quaternary glaciations, the M2 glaciation only lasted 50 kyrs and occurred under uncertain CO2 concentration (220-390 ppmv). The mechanisms causing the onset and termination of the M2 glaciation remain enigmatic, but a recent geological hypothesis suggests that the re-opening and closing of the shallow Central American Seaway (CAS) might have played a key role. In this article, thanks to a series of climate simulations carried out using a fully coupled Atmosphere Ocean General Circulation Model (GCM) and a dynamic ice sheet model, we show that re-opening of the shallow CAS helps precondition the low-latitude oceanic circulation and affects the related northward energy transport, but cannot alone explain the onset of the M2 glaciation. The presence of a shallow open CAS, together with favourable orbital parameters, 220 ppmv of CO2 concentration, and the related vegetation and ice sheet feedback, led to a global ice sheet build-up producing a global sea-level drop in the lowest range of proxy-derived estimates. More importantly, our results show that the simulated closure of the CAS has a negligible impact on the NH ice sheet melt and cannot explain the MIS M2 termination.

  13. Air-sea interactions of semi-volatile organic compounds in the tropical environment of Southeast Asia

    Directory of Open Access Journals (Sweden)

    Balasubramanian R.

    2010-12-01

    Full Text Available Major urban and industrial centers increase loadings of semi-volatile organic compounds (SVOCs to proximate sea waters through riverine transport, atmospheric deposition via dry particle deposition, wet deposition, and air-sea gas exchange. In addition to acting as sinks for SVOCs, oceans can act as sources of SVOCs to coastal atmospheres and play important roles in the global biogeochemistry of SVOCs. Particle-sorbed SVOCs can settle to the ocean surface by dry particle deposition, a uni-directional advective transport process from the atmosphere to the water, the removal rate by which is a function of the physical and chemical properties of the aerosols and bound pollutants, meteorological conditions and surface characteristics. In addition, SVOCs are removed from the atmosphere and transported to the waters by precipitation scavenging of atmospheric vapors and particles, which are incorporated into the rain within or below the clouds. After SVOCs are deposited into the bulk seawater, water-column partitioning can affect the distribution of pollutants between the dissolved aqueous and the solid phases and eventually impact the fate of these compounds in oceans. Other than the abovementioned processes, air-sea exchange can make SVOCs diffuse across the air-sea interface; however, the sea surface microlayer (SML, a unique compartment at the air-sea boundary defined operationally as the upper millimeter (1 ∼ 1000 μm of the sea surface, has large storage capacity to delay the transport of SVOCs across the interface. This article reports the dry particle deposition and wet deposition of selected SVOCs based on an extensive set of yearly data collected in Singapore. Singapore, a representative country of Southeast Asia (SEA, is a small but highly developed island with dense industrial parks in the Southwestern part, where the terrestrial sources affect the surrounding coasts. In this study, Singapore’s Southern coastline was chosen during

  14. Effect of wind waves on air-sea gas exchange: proposal of an overall CO2 transfer velocity formula as a function of breaking-wave parameter

    International Nuclear Information System (INIS)

    Zhao, D.; Suzuki, Y.; Komori, S.

    2003-01-01

    A new formula for gas transfer velocity as a function of the breaking-wave parameter is proposed based on correlating gas transfer with whitecap coverage. The new formula for gas transfer across an air-sea interface depends not only on wind speed but also on wind-wave state. At the same wind speed, a higher gas transfer velocity will be obtained for a more developed wind-sea, which is represented by a smaller spectral peak frequency of wind waves. We suggest that the large uncertainties in the traditional relationship of gas transfer velocity with wind speed be ascribed to the neglect of the effect of wind waves. The breaking-wave parameter can be regarded as a Reynolds number that characterizes the intensity of turbulence associated with wind waves in the downward-bursting boundary layer (DBBL). DBBL provides an effective way to exchange gas across the air-sea interface, which might be related to the surface renewal

  15. The Abundance of Atmospheric CO{sub 2} in Ocean Exoplanets: a Novel CO{sub 2} Deposition Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Levi, A.; Sasselov, D. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Podolak, M., E-mail: amitlevi.planetphys@gmail.com [Dept. of Geosciences, Tel Aviv University, Tel Aviv, 69978 (Israel)

    2017-03-20

    We consider super-Earth sized planets which have a water mass fraction large enough to form an external mantle composed of high-pressure water-ice polymorphs and also lack a substantial H/He atmosphere. We consider such planets in their habitable zone, so that their outermost condensed mantle is a global, deep, liquid ocean. For these ocean planets, we investigate potential internal reservoirs of CO{sub 2}, the amount of CO{sub 2} dissolved in the ocean for the various saturation conditions encountered, and the ocean-atmosphere exchange flux of CO{sub 2}. We find that, in a steady state, the abundance of CO{sub 2} in the atmosphere has two possible states. When wind-driven circulation is the dominant CO{sub 2} exchange mechanism, an atmosphere of tens of bars of CO{sub 2} results, where the exact value depends on the subtropical ocean surface temperature and the deep ocean temperature. When sea-ice formation, acting on these planets as a CO{sub 2} deposition mechanism, is the dominant exchange mechanism, an atmosphere of a few bars of CO{sub 2} is established. The exact value depends on the subpolar surface temperature. Our results suggest the possibility of a negative feedback mechanism, unique to water planets, where a reduction in the subpolar temperature drives more CO{sub 2} into the atmosphere to increase the greenhouse effect.

  16. Real Time Control of CO2 Enrichment Experiments on the Sea Floor Enabled by the MARS Cabled Observatory

    Science.gov (United States)

    Brewer, P. G.; Mbari Foce Team

    2010-12-01

    We report on progress on FOCE (Free Ocean CO2 Enrichment) techniques designed to accomplish realistic (that is not contained within land-based aquaria) experiments on the response of deep-sea animals and biogeochemical cycles to ocean acidification. Such experiments have long been carried out on ecosystems on land, and the outcome has differed significantly from CO2 enrichment in enclosed greenhouse systems, thereby undoing much of the hope for an increase in the large-scale biosphere draw down of atmospheric CO2. It is a far bigger step if deep-sea animals and systems are removed from their cold, dark, high pressure and low oxygen native habitat. The equivalent problem in the ocean is far more difficult because of (1) the very different physical forcing; (2) the complex reaction rates between CO2 and water require delay times between addition and entry to the experimental space; (3) the lack of supporting infrastructure and of adequate sensors; and (4) the need for sophisticated and robust control techniques in both hardware and software. We have overcome almost all of these challenges, and related working systems have already been successfully deployed on the Great Barrier Reef coralline flats with Australian colleagues. We have used the MBARI MARS (Monterey Accelerated Research System) cabled observatory to carry out deep-ocean (880m depth) experiments. The basic experimental unit is a 1m x 1m x 50cm chamber with side arms of ~ 3m length to provide the required chemical delay times for the reaction between admixed CO2 enriched sea water and emergence of the flow into the main chamber. Controllable thrusters, operated by user commands, help maintain a steady flow of seawater through the experiment. The site is slightly below the depth of the O2 minimum where small changes in either O2 from ocean warming, or CO2 from ocean acidification can lead to the formation of dead zones. Shallow (near shore) experiments are now also in the late planning stages. We have

  17. Global atmospheric changes.

    Science.gov (United States)

    Piver, W T

    1991-12-01

    Increasing concentrations of CO2 and other greenhouse gases in the atmosphere can be directly related to global warming. In terms of human health, because a major cause of increasing atmospheric concentrations of CO2 is the increased combustion of fossil fuels, global warming also may result in increases in air pollutants, acid deposition, and exposure to ultraviolet (UV) radiation. To understand better the impacts of global warming phenomena on human health, this review emphasizes the processes that are responsible for the greenhouse effect, air pollution, acid deposition, and increased exposure to UV radiation.

  18. Insight into the Global Carbon Cycle from Assimilation of Satellite CO2 measurements

    Science.gov (United States)

    Baker, D. F.

    2017-12-01

    A key goal of satellite CO2 measurements is to provide sufficient spatio-temporal coverage to constrain portions of the globe poorly observed by the in situ network, especially the tropical land regions. While systematic errors in both measurements and modeling remain a challenge, these satellite data are providing new insight into the functioning of the global carbon cycle, most notably across the recent 2015-16 En Niño. Here we interpret CO2 measurements from the GOSAT and OCO-2 satellites, as well as from the global in situ network (both surface sites and routine aircraft profiles), using a 4DVar-based global CO2 flux inversion across 2009-2017. The GOSAT data indicate that the tropical land regions are responsible for most of the observed global variability in CO2 across the last 8+ years. For the most recent couple of years where they overlap, the OCO-2 data give the same result, an +2 PgC/yr shift towards CO2 release in the ENSO warm phase, while disagreeing somewhat on the absolute value of the flux. The variability given by both these satellites disagrees with that given by an in situ-only inversion across the recent 2015-16 El Niño: the +2 PgC/yr shift from the satellites is double that given by the in situ data alone, suggesting that the more complete coverage is providing a more accurate view. For the current release of OCO-2 data (version 7), however, the flux results given by the OCO-2 land data (from both nadir- and glint-viewing modes) disagree significantly with those given by the ocean glint data; we examine the soon-to-be-released v8 data to assess whether these systematic retrieval errors have been reduced, and whether the corrected OCO-2 ocean data support the result from the land data. We discuss finer-scale features flux results given by the satellite data, and examine the importance of the flux prior, as well.

  19. Tracers of air-sea gas exchange

    International Nuclear Information System (INIS)

    Liss, P.S.

    1988-01-01

    The flux of gas across the air-sea interface is determined by the product of the interfacial concentration difference driving the exchange and a rate constant, often termed the transfer velocity. The concentration-difference term is generally obtained by direct measurement, whereas more indirect approaches are required to estimate the transfer velocity and its variation as a function of controlling parameters such as wind and sea state. Radioactive tracers have proved particularly useful in the estimation of air-sea transfer velocities and, recently, stable purposeful tracers have also started to be used. In this paper the use of the following tracers to determine transfer velocities at the sea surface is discussed: natural and bomb-produced 14 C, dissolved oxygen, 222 Rn and sulphur hexafluoride. Other topics covered include the relation between transfer velocity and wind speed as deduced from tracer and wind-tunnel studies, and the discrepancy between transfer velocities determined by using tracers and from eddy correlation measurements in the atmosphere. (author)

  20. CLOUDS, AEROSOLS, RADIATION AND THE AIR-SEA INTERFACE OF THE SOUTHERN OCEAN: ESTABLISHING DIRECTIONS FOR FUTURE RESEARCH

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Robert [University of Washington; Bretherton, Chris [University of Washington; McFarquhar, Greg [University of Illinois - Urbana; Protat, Alain [Bureau of Meteorology - Melbourne; Quinn, Patricia [NOAA PMEL; Siems, Steven [Monash Univ., Melbourne, VIC (Australia); Jakob, Christian [Monash Univ., Melbourne, VIC (Australia); Alexander, Simon [Australian Antarctic Division; Weller, Bob [Woods Hole Oceanographic Institute

    2014-09-29

    A workshop sponsored by the Department of Energy was convened at the University of Washington to discuss the state of knowledge of clouds, aerosols and air-sea interaction over the Southern Ocean and to identify strategies for reducing uncertainties in their representation in global and regional models. The Southern Ocean plays a critical role in the global climate system and is a unique pristine environment, yet other than from satellite, there have been sparse observations of clouds, aerosols, radiation and the air-sea interface in this region. Consequently, much is unknown about atmospheric and oceanographic processes and their linkage in this region. Approximately 60 scientists, including graduate students, postdoctoral fellows and senior researchers working in atmospheric and oceanic sciences at U.S. and foreign universities and government laboratories, attended the Southern Ocean Workshop. It began with a day of scientific talks, partly in plenary and partly in two parallel sessions, discussing the current state of the science for clouds, aerosols and air-sea interaction in the Southern Ocean. After the talks, attendees broke into two working groups; one focused on clouds and meteorology, and one focused on aerosols and their interactions with clouds. This was followed by more plenary discussion to synthesize the two working group discussions and to consider possible plans for organized activities to study clouds, aerosols and the air-sea interface in the Southern Ocean. The agenda and talk slides, including short summaries of the highlights of the parallel session talks developed by the session chars, are available at http://www.atmos.washington.edu/socrates/presentations/SouthernOceanPresentations/.

  1. Evidence that an internal carbonic anhydrase is present in 5% CO2-grown and air-grown Chlamydomonas

    International Nuclear Information System (INIS)

    Moroney, J.V.; Togasaki, R.K.; Husic, H.D.; Tolbert, N.E.

    1987-01-01

    Inorganic carbon (C/sub i/) uptake was measured in wild-type cells of Chlamydomonas reinhardtii, and in cia-3, a mutant strain of C. reinhardtii that cannot grow with air levels of CO 2 . Both air-grown cells, that have a CO 2 concentrating system, and 5% CO 2 -grown cells that do not have this system, were used. When the external pH was 5.1 or 7.3, air-grown, wild-type cells accumulated inorganic carbon (C/sub i/) and this accumulation was enhanced when the permeant carbonic anhydrase inhibitor, ethoxyzolamide, was added. When the external pH was 5.1, 5% CO 2 -grown cells also accumulated some C/sub i/, although not as much as air-grown cells and this accumulation was stimulated by the addition of ethoxyzolamide. At the same time, ethoxyzolamide inhibited CO 2 fixation by high CO 2 -grown, wild-type cells at both pH 5.1 and 7.3. These observations imply that 5% CO 2 -grown, wild-type cells, have a physiologically important internal carbonic anhydrase, although the major carbonic anhydrase located in the periplasmic space is only present in air-grown cells. Inorganic carbon uptake by cia-3 cells supported this conclusion. This mutant strain, which is thought to lack an internal carbonic anhydrase, was unaffected by ethoxyzolamide at pH 5.1. Other physiological characteristics of cia-3 resemble those of wild-type cells that have been treated with ethoxyzolamide. It is concluded that an internal carbonic anhydrase is under different regulatory control than the periplasmic carbonic anhydrase

  2. Using Green's Functions to initialize and adjust a global, eddying ocean biogeochemistry general circulation model

    Science.gov (United States)

    Brix, H.; Menemenlis, D.; Hill, C.; Dutkiewicz, S.; Jahn, O.; Wang, D.; Bowman, K.; Zhang, H.

    2015-11-01

    The NASA Carbon Monitoring System (CMS) Flux Project aims to attribute changes in the atmospheric accumulation of carbon dioxide to spatially resolved fluxes by utilizing the full suite of NASA data, models, and assimilation capabilities. For the oceanic part of this project, we introduce ECCO2-Darwin, a new ocean biogeochemistry general circulation model based on combining the following pre-existing components: (i) a full-depth, eddying, global-ocean configuration of the Massachusetts Institute of Technology general circulation model (MITgcm), (ii) an adjoint-method-based estimate of ocean circulation from the Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2) project, (iii) the MIT ecosystem model "Darwin", and (iv) a marine carbon chemistry model. Air-sea gas exchange coefficients and initial conditions of dissolved inorganic carbon, alkalinity, and oxygen are adjusted using a Green's Functions approach in order to optimize modeled air-sea CO2 fluxes. Data constraints include observations of carbon dioxide partial pressure (pCO2) for 2009-2010, global air-sea CO2 flux estimates, and the seasonal cycle of the Takahashi et al. (2009) Atlas. The model sensitivity experiments (or Green's Functions) include simulations that start from different initial conditions as well as experiments that perturb air-sea gas exchange parameters and the ratio of particulate inorganic to organic carbon. The Green's Functions approach yields a linear combination of these sensitivity experiments that minimizes model-data differences. The resulting initial conditions and gas exchange coefficients are then used to integrate the ECCO2-Darwin model forward. Despite the small number (six) of control parameters, the adjusted simulation is significantly closer to the data constraints (37% cost function reduction, i.e., reduction in the model-data difference, relative to the baseline simulation) and to independent observations (e.g., alkalinity). The adjusted air-sea gas

  3. Air-sea dimethylsulfide (DMS) gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed

    Science.gov (United States)

    Bell, T. G.; De Bruyn, W.; Miller, S. D.; Ward, B.; Christensen, K.; Saltzman, E. S.

    2013-11-01

    Shipboard measurements of eddy covariance dimethylsulfide (DMS) air-sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s-1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of air-sea gas flux at higher wind speeds appears to be related to sea state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near-surface water-side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the air-sea exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.

  4. AVHRR Pathfinder Version 5.2 Level 3 Collated (L3C) Global 4km Sea Surface Temperature for 1981-2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The AVHRR Pathfinder Version 5.2 Sea Surface Temperature data set (PFV52) is a collection of global, twice-daily 4km sea surface temperature data produced in a...

  5. Air gun near the sea floor as shear-wave source?

    NARCIS (Netherlands)

    Drijkoningen, G.G.; Dieulangard, D.; Holicki, M.E.

    2015-01-01

    The feasibility of using an air gun near the sea floor as shear-wave source has been investigated. With an air gun near the sea floor, an evanescent P-wave in the water becomes a propagating S-wave in the sea floor, such that it seems that a pure shear-wave source has been used at the sea floor.

  6. Short Term CO2 Enrichment Increases Carbon Sequestration of Air-Exposed Intertidal Communities of a Coastal Lagoon

    Directory of Open Access Journals (Sweden)

    Amrit K. Mishra

    2018-01-01

    Full Text Available In situ production responses of air-exposed intertidal communities under CO2 enrichment are reported here for the first time. We assessed the short-term effects of CO2 on the light responses of the net community production (NCP and community respiration (CR of intertidal Z. noltei and unvegetated sediment communities of Ria Formosa lagoon, when exposed to air. NCP and CR were measured in situ in summer and winter, under present and CO2 enriched conditions using benthic chambers. Within chamber CO2 evolution measurements were carried out by a series of short-term incubations (30 min using an infra-red gas analyser. Liner regression models fitted to the NCP-irradiance responses were used to estimate the seasonal budgets of air-exposed, intertidal production as determined by the daily and seasonal variation of incident photosynthetic active radiation. High CO2 resulted in higher CO2 sequestration by both communities in both summer and winter seasons. Lower respiration rates of both communities under high CO2 further contributed to a potential negative climate feedback, except in winter when the CR of sediment community was higher. The light compensation points (LCP (light intensity where production equals respiration of Z. noltei and sediment communities also decreased under CO2 enriched conditions in both seasons. The seasonal community production of Z. noltei was 115.54 ± 7.58 g C m−2 season−1 in summer and 29.45 ± 4.04 g C m−2 season−1 in winter and of unvegetated sediment was 91.28 ± 6.32 g C m−2 season−1 in summer and 25.83 ± 4.01 g C m−2 season−1 in winter under CO2 enriched conditions. Future CO2 conditions may increase air-exposed seagrass production by about 1.5-fold and unvegetated sediments by about 1.2-fold.

  7. Poly(ethylenimine)-Functionalized Monolithic Alumina Honeycomb Adsorbents for CO2 Capture from Air.

    Science.gov (United States)

    Sakwa-Novak, Miles A; Yoo, Chun-Jae; Tan, Shuai; Rashidi, Fereshteh; Jones, Christopher W

    2016-07-21

    The development of practical and effective gas-solid contactors is an important area in the development of CO2 capture technologies. Target CO2 capture applications, such as postcombustion carbon capture and sequestration (CCS) from power plant flue gases or CO2 extraction directly from ambient air (DAC), require high flow rates of gas to be processed at low cost. Extruded monolithic honeycomb structures, such as those employed in the catalytic converters of automobiles, have excellent potential as structured contactors for CO2 adsorption applications because of the low pressure drop imposed on fluid moving through the straight channels of such structures. Here, we report the impregnation of poly(ethylenimine) (PEI), an effective aminopolymer reported commonly for CO2 separation, into extruded monolithic alumina to form structured CO2 sorbents. These structured sorbents are first prepared on a small scale, characterized thoroughly, and compared with powder sorbents with a similar composition. Despite consistent differences observed in the filling of mesopores with PEI between the monolithic and powder sorbents, their performance in CO2 adsorption is similar across a range of PEI contents. A larger monolithic cylinder (1 inch diameter, 4 inch length) is evaluated under conditions closer to those that might be used in large-scale applications and shows a similar performance to the smaller monoliths and powders tested initially. This larger structure is evaluated over five cycles of CO2 adsorption and steam desorption and demonstrates a volumetric capacity of 350 molCO2  m-3monolith and an equilibration time of 350 min under a 0.4 m s(-1) linear flow velocity through the monolith channels using 400 ppm CO2 in N2 as the adsorption gas at 30 °C. This volumetric capacity surpasses that of a similar technology considered previously, which suggested that CO2 could be removed from air at an operating cost as low as $100 per ton. © 2016 WILEY-VCH Verlag

  8. History of CO/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Degens, E T

    1979-01-01

    Upon arrival on earth, the reduced carbon pool split into a series of compartments: core, mantle, crust, hydrosphere, atmosphere, and biosphere. This distribution pattern is caused by the ability of carbon to adjust structurally to a wide range of pressure and temperature, and to form simple and complex molecules with oxygen, hydrogen and nitrogen. Transformation also involved oxidation of carbon to CO/sub 2/ which is mediated at depth by minerals, such as magnetite, and by water vapor above critical temperature. Guided by mineral-organic interactions, simple carbon compounds evolved in near surface environments towards physiologically interesting biochemicals. Life, as an autocatalytic system, is considered an outgrowth of such a development. This article discusses environmental parameters that control the CO/sub 2/ system, past and present. Mantle and crustal evolution is the dynamo recharging the CO/sub 2/ in sea and air; the present rate of CO/sub 2/ release from the magma is 0.05 x 10/sup 15/ g C per year. Due to the enormous buffer capacity of the chemical system ocean, such rates are too small to seriously effect the level of CO/sub 2/ in our atmosphere. In the light of geological field data and stable isotope work, it is concluded that the CO/sub 2/ content in the atmosphere has remained fairly uniform since early Precambrian time; CO/sub 2/ should thus have had little impact on paleoclimate. In contrast, the massive discharge of man-made CO/sub 2/ into our atmosphere may have serious consequences for climate, environment and society in the years to come.

  9. Seasonal and temporal CO2 dynamics in three tropical mangrove creeks - A revision of global mangrove CO2 emissions

    Science.gov (United States)

    Rosentreter, Judith A.; Maher, D. T.; Erler, D. V.; Murray, R.; Eyre, B. D.

    2018-02-01

    Continuous high-resolution surface water pCO2 and δ13C-CO2 and 222Rn (dry season only) were measured over two tidal cycles in the wet and dry season in three tropical tidal mangrove creeks on the north-eastern coast of Queensland, Australia. Mangrove surface water pCO2 followed a clear tidal pattern (ranging from 387 to 13,031 μatm) with higher pCO2-values in the wet season than in the dry season. The δ13C-CO2 in the mangrove waters ranged from -21.7 to -8.8‰ and was rather indicative of a mixed source than a distinct mangrove signature. Surface water CO2 was likely driven by a combination of mangrove and external carbon sources, e.g. exchange with groundwater/pore water enriched in 13C, or terrestrial carbon inputs with a significant contribution of C4-vegetation (sugar cane) source. The kinetic and equilibrium fractionation during the gas exchange at the water-atmosphere interface may have further caused a 13C-enrichment of the CO2 pool in the mangrove surface waters. Average CO2 evasion rates (58.7-277.6 mmol m-2 d-1) were calculated using different empirical gas transfer velocity models. Using our high-resolution time series data and previously published data, the average CO2 flux rate in mangrove ecosystems was estimated to be 56.5 ± 8.9 mmol m-2 d-1, which corresponds to a revised global mangrove CO2 emission of 34.1 ± 5.4 Tg C per year.

  10. Modeling Root Exudation, Priming and Protection in Soil Carbon Responses to Elevated CO2 from Ecosystem to Global Scales

    Science.gov (United States)

    Sulman, B. N.; Phillips, R.; Shevliakova, E.; Oishi, A. C.; Pacala, S. W.

    2014-12-01

    The sensitivity of soil organic carbon (SOC) to changing environmental conditions represents a critical uncertainty in coupled carbon cycle-climate models. Much of this uncertainty arises from our limited understanding of the extent to which plants induce SOC losses (through accelerated decomposition or "priming") or promote SOC gains (via stabilization through physico-chemical protection). We developed a new SOC model, "Carbon, Organisms, Rhizosphere and Protection in the Soil Environment" (CORPSE), to examine the net effect of priming and protection in response to rising atmospheric CO2, and conducted simulations of rhizosphere priming effects at both ecosystem and global scales. At the ecosystem scale, the model successfully captured and explained disparate SOC responses at the Duke and Oak Ridge free-air CO2 enrichment (FACE) experiments. We show that stabilization of "new" carbon in protected SOC pools may equal or exceed microbial priming of "old" SOC in ecosystems with readily decomposable litter (e.g. Oak Ridge). In contrast, carbon losses owing to priming dominate the net SOC response in ecosystems with more resistant litters (e.g. Duke). For global simulations, the model was fully integrated into the Geophysical Fluid Dynamics Laboratory (GFDL) land model LM3. Globally, priming effects driven by enhanced root exudation and expansion of the rhizosphere reduced SOC storage in the majority of terrestrial areas, partially counterbalancing SOC gains from the enhanced ecosystem productivity driven by CO2 fertilization. Collectively, our results suggest that SOC stocks globally depend not only on temperature and moisture, but also on vegetation responses to environmental changes, and that protected C may provide an important constraint on priming effects.

  11. Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2 °C global warming could be dangerous

    Directory of Open Access Journals (Sweden)

    J. Hansen

    2016-03-01

    Full Text Available We use numerical climate simulations, paleoclimate data, and modern observations to study the effect of growing ice melt from Antarctica and Greenland. Meltwater tends to stabilize the ocean column, inducing amplifying feedbacks that increase subsurface ocean warming and ice shelf melting. Cold meltwater and induced dynamical effects cause ocean surface cooling in the Southern Ocean and North Atlantic, thus increasing Earth's energy imbalance and heat flux into most of the global ocean's surface. Southern Ocean surface cooling, while lower latitudes are warming, increases precipitation on the Southern Ocean, increasing ocean stratification, slowing deepwater formation, and increasing ice sheet mass loss. These feedbacks make ice sheets in contact with the ocean vulnerable to accelerating disintegration. We hypothesize that ice mass loss from the most vulnerable ice, sufficient to raise sea level several meters, is better approximated as exponential than by a more linear response. Doubling times of 10, 20 or 40 years yield multi-meter sea level rise in about 50, 100 or 200 years. Recent ice melt doubling times are near the lower end of the 10–40-year range, but the record is too short to confirm the nature of the response. The feedbacks, including subsurface ocean warming, help explain paleoclimate data and point to a dominant Southern Ocean role in controlling atmospheric CO2, which in turn exercised tight control on global temperature and sea level. The millennial (500–2000-year timescale of deep-ocean ventilation affects the timescale for natural CO2 change and thus the timescale for paleo-global climate, ice sheet, and sea level changes, but this paleo-millennial timescale should not be misinterpreted as the timescale for ice sheet response to a rapid, large, human-made climate forcing. These climate feedbacks aid interpretation of events late in the prior interglacial, when sea level rose to +6–9 m with evidence of extreme storms

  12. Constraining the subsoil carbon source to cave-air CO2 and speleothem calcite in central Texas

    Science.gov (United States)

    Bergel, Shelly J.; Carlson, Peter E.; Larson, Toti E.; Wood, Chris T.; Johnson, Kathleen R.; Banner, Jay L.; Breecker, Daniel O.

    2017-11-01

    Canonical models for speleothem formation and the subsurface carbon cycle invoke soil respiration as the dominant carbon source. However, evidence from some karst regions suggests that belowground CO2 originates from a deeper, older source. We therefore investigated the carbon sources to central Texas caves. Drip-water chemistry of two caves in central Texas implies equilibration with calcite at CO2 concentrations (PCO2_sat) higher than the maximum CO2 concentrations observed in overlying soils. This observation suggests that CO2 is added to waters after they percolate through the soils, which requires a subsoil carbon source. We directly evaluate the carbon isotope composition of the subsoil carbon source using δ13C measurements on cave-air CO2, which we independently demonstrate has little to no contribution from host rock carbon. We do so using the oxidative ratio, OR, defined as the number of moles of O2 consumed per mole of CO2 produced during respiration. However, additional belowground processes that affect O2 and CO2 concentrations, such as gas-water exchange and/or diffusion, may also influence the measured oxidative ratio, yielding an apparent OR (ORapparent). Cave air in Natural Bridge South Cavern has ORapparent values (1.09 ± 0.06) indistinguishable from those expected for respiration alone (1.08 ± 0.06). Pore space gases from soils above the cave have lower values (ORapparent = 0.67 ± 0.05) consistent with respiration and gas transport by diffusion. The simplest explanation for these observations is that cave air in NB South is influenced by respiration in open-system bedrock fractures such that neither diffusion nor exchange with water influence the composition of the cave air. The radiocarbon activities of NB South cave-air CO2 suggest the subsoil carbon source is hundreds of years old. The calculated δ13C values of the subsoil carbon source are consistent with tree-sourced carbon (perhaps decomposing root matter), the δ13C values of which

  13. Estimates of global biomass burning emissions for reactive greenhouse gases (CO, NMHCs, and NOx) and CO2

    Science.gov (United States)

    Jain, Atul K.; Tao, Zhining; Yang, Xiaojuan; Gillespie, Conor

    2006-03-01

    Open fire biomass burning and domestic biofuel burning (e.g., cooking, heating, and charcoal making) algorithms have been incorporated into a terrestrial ecosystem model to estimate CO2 and key reactive GHGs (CO, NOx, and NMHCs) emissions for the year 2000. The emissions are calculated over the globe at a 0.5° × 0.5° spatial resolution using tree density imagery, and two separate sets of data each for global area burned and land clearing for croplands, along with biofuel consumption rate data. The estimated global and annual total dry matter (DM) burned due to open fire biomass burning ranges between 5221 and 7346 Tg DM/yr, whereas the resultant emissions ranges are 6564-9093 Tg CO2/yr, 438-568 Tg CO/yr, 11-16 Tg NOx/yr (as NO), and 29-40 Tg NMHCs/yr. The results indicate that land use changes for cropland is one of the major sources of biomass burning, which amounts to 25-27% (CO2), 25 -28% (CO), 20-23% (NO), and 28-30% (NMHCs) of the total open fire biomass burning emissions of these gases. Estimated DM burned associated with domestic biofuel burning is 3,114 Tg DM/yr, and resultant emissions are 4825 Tg CO2/yr, 243 Tg CO/yr, 3 Tg NOx/yr, and 23 Tg NMHCs/yr. Total emissions from biomass burning are highest in tropical regions (Asia, America, and Africa), where we identify important contributions from primary forest cutting for croplands and domestic biofuel burning.

  14. Controlling mechanisms of surface partial pressure of CO2 in Jiaozhou Bay during summer and the influence of heavy rain

    Science.gov (United States)

    Li, Yunxiao; Yang, Xufeng; Han, Ping; Xue, Liang; Zhang, Longjun

    2017-09-01

    Due to the combined effects of natural processes and human activities, carbon source/sink processes and mechanisms in the coastal ocean are becoming more and more important in current ocean carbon cycle research. Based on differences in the ratio of total alkalinity (TA) to dissolved inorganic carbon (DIC) associated with terrestrial input, biological process (production and respiration), calcium carbonate (CaCO3) process (precipitation and dissolution) and CO2 evasion/invasion, we discuss the mechanisms controlling the surface partial pressure of CO2 (pCO2) in Jiaozhou Bay (JZB) during summer and the influence of heavy rain, via three cruises performed in mid-June, early July and late July of 2014. In mid-June and in early July, without heavy rain or obvious river input, sea surface pCO2 ranged from 521 to 1080 μatm and from 547 to 998 μatm, respectively. The direct input of DIC from sewage and the intense respiration produced large DIC additions and the highest pCO2 values in the northeast of the bay near the downtown of Qingdao. However, in the west of the bay, significant CaCO3 precipitation led to DIC removal but no obvious increase in pCO2, which was just close to that in the central area. Due to the shallow depth and longer water residence time in this region, this pattern may be related to the sustained release of CO2 into the atmosphere. In late July, heavy rain promoted river input in the western and eastern portions of JZB. Strong primary production led to a significant decrease in pCO2 in the western area, with the lowest pCO2 value of 252 μatm. However, in the northeastern area, the intense respiration remained, and the highest pCO2 value was 1149 μatm. The average air-sea CO2 flux in mid-June and early July was 20.23 mmol m- 2 d- 1 and 23.56 mmol m- 2 d- 1, respectively. In contrast, in late July, sources became sinks for atmospheric CO2 in the western and central areas of the bay, halving the average air-sea CO2 flux to a value of 10.58 mmol m- 2

  15. Impact of CO{sub 2} hydrates on ocean carbon dioxide deposition options

    Energy Technology Data Exchange (ETDEWEB)

    Lund, P C

    1995-04-01

    The objective of the research project described in this report was to contribute to the research on greenhouse gases and the global environment. The focus is on the concept of storing large amounts of CO{sub 2} in the ocean. The project was divided into three subtasks: (1) a comprehensive study of the thermodynamic, physical and chemical properties of the seawater/CO{sub 2}/hydrate system, (2) establishment of a micro-scale kinetic model for CO{sub 2} hydrate formation and stability, based on (1), and (3) establishment of macro-scale models for various ocean deposition options based on (2). A database of selected thermodynamic functions has been set up. A large database of oceanic data has also been made; for any given coordinates at sea a computer program provides the temperature, salinity and oxygen profiles from the sea surface to the sea floor. The kinetic model predicts the formation and pseudo-stability of a very thin hydrate film which acts as an inhibitor for diffusion of CO{sub 2} into the sea water. The model predicts that the hydrate film reduces the overall flux from a liquid CO{sub 2} source with about 90%. Thermodynamically, pure CO{sub 2} in contact with water might form hydrates at depths below about 400 m, which would indicate that hydrate formation could play a role for all ocean CO{sub 2} deposition options. However, this study shows that other mechanisms significantly reduce the role of hydrate formation. It is finally concluded that although more modelling and experimental work is required within this field of research, the hydrate film may play an important role for all options except from shallow water injection. 86 refs., 32 figs., 16 tabs.

  16. Elevated CO2 enhances biological contributions to elevation change in coastal wetlands by offsetting stressors associated with sea-level rise

    Science.gov (United States)

    Cherry, J.A.; McKee, K.L.; Grace, J.B.

    2009-01-01

    1. Sea-level rise, one indirect consequence of increasing atmospheric CO2, poses a major challenge to long-term stability of coastal wetlands. An important question is whether direct effects of elevated CO 2 on the capacity of marsh plants to accrete organic material and to maintain surface elevations outweigh indirect negative effects of stressors associated with sea-level rise (salinity and flooding). 2. In this study, we used a mesocosm approach to examine potential direct and indirect effects of atmospheric CO2 concentration, salinity and flooding on elevation change in a brackish marsh community dominated by a C3 species, Schoenoplectus americanus, and a C4 grass, Spartina patens. This experimental design permitted identification of mechanisms and their role in controlling elevation change, and the development of models that can be tested in the field. 3. To test hypotheses related to CO2 and sea-level rise, we used conventional anova procedures in conjunction with structural equation modelling (SEM). SEM explained 78% of the variability in elevation change and showed the direct, positive effect of S. americanus production on elevation. The SEM indicated that C3 plant response was influenced by interactive effects between CO2 and salinity on plant growth, not a direct CO2 fertilization effect. Elevated CO2 ameliorated negative effects of salinity on S. americanus and enhanced biomass contribution to elevation. 4. The positive relationship between S. americanus production and elevation change can be explained by shoot-base expansion under elevated CO 2 conditions, which led to vertical soil displacement. While the response of this species may differ under other environmental conditions, shoot-base expansion and the general contribution of C3 plant production to elevation change may be an important mechanism contributing to soil expansion and elevation gain in other coastal wetlands. 5. Synthesis. Our results revealed previously unrecognized interactions and

  17. Implicit CO_2 prices of fossil fuel use in Switzerland

    International Nuclear Information System (INIS)

    Schleiniger, Reto

    2016-01-01

    This study aims to assess the efficiency of the fossil fuel taxation scheme currently in effect in Switzerland. To this end, the concept of implicit CO_2 prices is introduced, based on which prices for different fossil fuel uses are derived. Implicit CO_2 prices are defined as the difference between actual prices paid by consumers and efficient domestic fuel prices. Efficient domestic fuel prices, in turn, consist of private production costs, a uniform value added tax and only local external costs, not including external costs due to CO_2 emissions and global climate change. The resulting prices differ substantially, which suggests that there is considerable cost-saving potential in reducing CO_2 emissions in Switzerland. For passenger cars and air traffic, the implicit prices are negative. For these uses, higher fuel charges would therefore be beneficial from a purely domestic perspective, i.e., without considering the negative repercussions of global warming. - Highlights: •Efficient fossil fuel policy must take into account local and global externalities. •Implicit CO_2 prices are applied as efficiency indicator of fossil energy policy. •Implicit CO_2 prices vary strongly for different fossil fuel uses in Switzerland. •There is a large cost-saving potential in terms of reducing CO_2 emissions.

  18. CO{sub 2}-induced climate change in northern Europe: comparison of 12 CMIP2 experiments

    Energy Technology Data Exchange (ETDEWEB)

    Raeisaenen, Jouni

    2000-01-01

    The results of 12 coupled atmosphere-ocean general circulation model experiments participating in the second phase of the Coupled Model Intercomparison Project (CMIP2) are studied with focus on the area of northern Europe. The variables considered are surface air temperature, precipitation and sea level pressure. The 80-year control simulations are first compared with observational estimates of the present climate. Several aspects of the simulated CO{sub 2}-induced climate changes, defined by subtracting the control run seasonal or annual means from 20-year perturbation run means around the transient doubling of CO{sub 2}, are then studied. The common features and individual variations in the simulated climate change are documented. Particular attention is put on expressing the inter experiment agreement in quantitative terms and on estimating the relative contribution of model-simulated internal variability to the inter experiment variance. For that purpose, a new statistical framework is developed. Finally, an attempt is made to statistically relate the inter experiment differences in the simulated climate change in northern Europe to aspects of the control climates, global climate change and some of the basic model characteristics. A summary of the main findings is given in the last section of the report.

  19. Historical effects of CO2 and climate trends on global crop water demand

    Science.gov (United States)

    Urban, Daniel W.; Sheffield, Justin; Lobell, David B.

    2017-12-01

    A critical question for agricultural production and food security is how water demand for staple crops will respond to climate and carbon dioxide (CO2) changes1, especially in light of the expected increases in extreme heat exposure2. To quantify the trade-offs between the effects of climate and CO2 on water demand, we use a `sink-strength' model of demand3,4 which relies on the vapour-pressure deficit (VPD), incident radiation and the efficiencies of canopy-radiation use and canopy transpiration; the latter two are both dependent on CO2. This model is applied to a global data set of gridded monthly weather data over the cropping regions of maize, soybean, wheat and rice during the years 1948-2013. We find that this approach agrees well with Penman-Monteith potential evapotranspiration (PM) for the C3 crops of soybean, wheat and rice, where the competing CO2 effects largely cancel each other out, but that water demand in maize is significantly overstated by a demand measure that does not include CO2, such as the PM. We find the largest changes in wheat, for which water demand has increased since 1981 over 86% of the global cropping area and by 2.3-3.6 percentage points per decade in different regions.

  20. Air--sea gaseous exchange of PCB at the Venice lagoon (Italy).

    Science.gov (United States)

    Manodori, L; Gambaro, A; Moret, I; Capodaglio, G; Cescon, P

    2007-10-01

    Water bodies are important storage media for persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) and this function is increased in coastal regions because their inputs are higher than those to the open sea. The air-water interface is extensively involved with the global cycling of PCBs because it is the place where they accumulate due to depositional processes and where they may be emitted by gaseous exchange. In this work the parallel collection of air, microlayer and sub-superficial water samples was performed in July 2005 at a site in the Venice lagoon to evaluate the summer gaseous flux of PCBs. The total concentration of PCBs (sum of 118 congeners) in air varies from 87 to 273 pg m(-3), whereas in the operationally defined dissolved phase of microlayer and sub-superficial water samples it varies from 159 to 391 pg L(-1). No significant enrichment of dissolved PCB into the microlayer has been observed, although a preferential accumulation of most hydrophobic congeners occurs. Due to this behaviour, we believe that the modified two-layer model was the most suitable approach for the evaluation of the flux at the air-sea interface, because it takes into account the influence of the microlayer. From its application it appears that PCB volatilize from the lagoon waters with a net flux varying from 58 to 195 ng m(-2)d(-1) (uncertainty: +/-50-64%) due to the strong influence of wind speed. This flux is greater than those reported in the literature for the atmospheric deposition and rivers input and reveals that PCB are actively emitted from the Venice lagoon in summer months.

  1. Model calculations of the effects of present and future emissions of air pollutants from shipping in the Baltic Sea and the North Sea

    Directory of Open Access Journals (Sweden)

    J. E. Jonson

    2015-01-01

    Full Text Available Land-based emissions of air pollutants in Europe have steadily decreased over the past two decades, and this decrease is expected to continue. Within the same time span emissions from shipping have increased in EU ports and in the Baltic Sea and the North Sea, defined as SECAs (sulfur emission control areas, although recently sulfur emissions, and subsequently particle emissions, have decreased. The maximum allowed sulfur content in marine fuels in EU ports is now 0.1%, as required by the European Union sulfur directive. In the SECAs the maximum fuel content of sulfur is currently 1% (the global average is about 2.4%. This will be reduced to 0.1% from 2015, following the new International Maritime Organization (IMO rules. In order to assess the effects of ship emissions in and around the Baltic Sea and the North Sea, regional model calculations with the EMEP air pollution model have been made on a 1/4° longitude × 1/8° latitude resolution, using ship emissions in the Baltic Sea and the North Sea that are based on accurate ship positioning data. The effects on depositions and air pollution and the resulting number of years of life lost (YOLLs have been calculated by comparing model calculations with and without ship emissions in the two sea areas. In 2010 stricter regulations for sulfur emissions were implemented in the two sea areas, reducing the maximum sulfur content allowed in marine fuels from 1.5 to 1%. In addition ships were required to use fuels with 0.1 % sulfur in EU harbours. The calculations have been made with emissions representative of 2009 and 2011, i.e. before and after the implementation of the stricter controls on sulfur emissions from 2010. The calculations with present emissions show that per person, an additional 0.1–0.2 years of life lost is estimated in areas close to the major ship tracks with current emission levels. Comparisons of model calculations with emissions before and after the implementation of stricter

  2. Brief Communication: Ikaite (CaCO3·6H2O) discovered in Arctic sea ice

    Science.gov (United States)

    Dieckmann, G. S.; Nehrke, G.; Uhlig, C.; Göttlicher, J.; Gerland, S.; Granskog, M. A.; Thomas, D. N.

    2010-05-01

    We report for the first time on the discovery of calcium carbonate crystals as ikaite (CaCO3·6H2O) in sea ice from the Arctic (Kongsfjorden, Svalbard) as confirmed by morphology and indirectly by X-ray diffraction as well as XANES spectroscopy of its amorophous decomposition product. This finding demonstrates that the precipitation of calcium carbonate during the freezing of sea ice is not restricted to the Antarctic, where it was observed for the first time in 2008. This observation is an important step in the quest to quantify its impact on the sea ice driven carbon cycle.

  3. Productive and morphogenetic responses of buffel grass at different air temperatures and CO2 concentrations

    Directory of Open Access Journals (Sweden)

    Roberta Machado Santos

    2014-08-01

    Full Text Available The objective of the present trial was to evaluate the productive and morphogenetic characteristics of buffel grass subjected to different air temperatures and CO2 concentrations. Three cultivars of buffel grass (Biloela, Aridus and West Australian were compared. Cultivars were grown in growth chambers at three temperatures (day/night: 26/20, 29/23, and 32/26 °C, combined with two concentrations of CO2: 370 and 550 µmol mol-1. The experimental design was completely randomized, in a 3 × 3 × 2 factorial arrangement with three replications. There were interactions between buffel grass cultivars and air temperatures on leaf elongation rate (LER, leaf appearance rate (LAR, leaf lifespan (LL and senescence rate (SR, whereas cultivars vs. carbon dioxide concentration affected forage mass (FM, root mass (RM, shoot/root ratio, LL and SR. Leaf elongation rate and SR were higher as the air temperature was raised. Increasing air temperature also promoted an increase in LAR, except for West Australian. High CO2 concentration provided greater SR of plants, except for Biloela. Cultivar West Australian had higher FM in relation to Biloela and Aridus when the CO2 concentration was increased to 550 µmol mol-1. West Australian was the only cultivar that responded with more forage mass when it was exposed to higher carbon dioxide concentrations, whereas Aridus had depression in forage mass. The increase in air temperatures affects morphogenetic responses of buffel grass, accelerating its vegetative development without increasing forage mass. Elevated carbon dioxide concentration changes productive responses of buffel grass.

  4. Electrochemical CO2 Reduction by Ni-containing Iron Sulfides: How Is CO2 Electrochemically Reduced at Bisulfide-Bearing Deep-sea Hydrothermal Precipitates?

    International Nuclear Information System (INIS)

    Yamaguchi, Akira; Yamamoto, Masahiro; Takai, Ken; Ishii, Takumi; Hashimoto, Kazuhito; Nakamura, Ryuhei

    2014-01-01

    The discovery of deep-sea hydrothermal vents on the late 1970's has led to many hypotheses concerning chemical evolution in the prebiotic ocean and the early evolution of energy metabolism in ancient Earth. Such studies stand on the quest for the bioenergetic evolution to utilize reducing chemicals such as H 2 for CO 2 reduction and carbon assimilation. In addition to the direct reaction of H 2 and CO 2 , the electrical current passing across a bisulfide-bearing chimney structure has pointed to the possible electrocatalytic CO 2 reduction at the cold ocean-vent interface (R. Nakamura, et al. Angew. Chem. Int. Ed. 2010, 49, 7692 − 7694). To confirm the validity of this hypothesis, here, we examined the energetics of electrocatalytic CO 2 reduction by iron sulfide (FeS) deposits at slightly acidic pH. Although FeS deposits inefficiently reduced CO 2 , the efficiency of the reaction was substantially improved by the substitution of Fe with Ni to form FeNi 2 S 4 (violarite), of which surface was further modified with amine compounds. The potential-dependent activity of CO 2 reduction demonstrated that CO 2 reduction by H 2 in hydrothermal fluids was involved in a strong endergonic electron transfer reaction, suggesting that a naturally occurring proton-motive force (PMF) as high as 200 mV would be established across the hydrothermal vent chimney wall. However, in the chimney structures, H 2 generation competes with CO 2 reduction for electrical current, resulting in rapid consumption of the PMF. Therefore, to maintain the PMF and the electrosynthesis of organic compounds in hydrothermal vent mineral deposits, we propose a homeostatic pH regulation mechanism of FeS deposits, in which elemental hydrogen stored in the hydrothermal mineral deposits is used to balance the consumption of the electrochemical gradient by H 2 generation

  5. Distribution and sea-to-air flux of isoprene in the East China Sea and the South Yellow Sea during summer.

    Science.gov (United States)

    Li, Jian-Long; Zhang, Hong-Hai; Yang, Gui-Peng

    2017-07-01

    Spatial distribution and sea-to-air flux of isoprene in the East China Sea and the South Yellow Sea in July 2013 were investigated. This study is the first to report the concentrations of isoprene in the China marginal seas. Isoprene concentrations in the surface seawater during summer ranged from 32.46 to 173.5 pM, with an average of 83.62 ± 29.22 pM. Distribution of isoprene in the study area was influenced by the diluted water from the Yangtze River, which stimulated higher in-situ phytoplankton production of isoprene rather than direct freshwater input. Variations in isoprene concentrations were found to be diurnal, with high values observed during daytime. A significant correlation was observed between isoprene and chlorophyll a in the study area. Relatively higher isoprene concentrations were recorded at stations where the phytoplankton biomass was dominated by Chaetoceros, Skeletonema, Pennate-nitzschia, and Thalassiosira. Positive correlation was observed between isoprene and methyl iodide. In addition, sea-to-air fluxes of isoprene approximately ranged from 22.17 nmol m -2  d -1 -537.2 nmol m -2  d -1 , with an average of 161.5 ± 133.3 nmol m -2  d -1 . These results indicate that the coastal and shelf areas may be important sources of atmospheric isoprene. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Effects of air pollutants on the carbon dioxide (CO2) emission rate of human subjects

    DEFF Research Database (Denmark)

    Bako-Biro, Zsolt; Wargocki, Pawel; Wyon, David

    2004-01-01

    Several laboratory studies have shown the negative effects of emissions from typical indoor pollution sources on perceived air quality, SBS symptoms and the performance of office work. The subjects performed typical office tasks at their own pace while they were exposed for several hours to diffe...... to different air quality conditions. A re-analysis of the CO2 measurements obtained in two independent studies showed that human CO2 emission rates were affected by air quality (P......Several laboratory studies have shown the negative effects of emissions from typical indoor pollution sources on perceived air quality, SBS symptoms and the performance of office work. The subjects performed typical office tasks at their own pace while they were exposed for several hours...

  7. Oxy combustion with CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-01-15

    An update for oxyfuel-combustion carbon capture in the power industry is provided. The report was developed by the Electric Power Research Institute (EPRI) on behalf of the Global CCS Institute. In the oxyfuel-combustion processes, the bulk nitrogen is removed from the air before combustion. The resulting combustion products will have CO2 content up to about 90 per cent (dry basis). The flue gas impurities (predominantly O2, N2, and Ar) may be removed by reducing the flue gas (at moderate pressure) to a temperature at which the CO2 condenses and the impurities do not. Oxyfuel-combustion may be employed with solid fuels such as coal, petroleum coke, and biomass, as well as liquid and gaseous fuels. Some key points raised in the oxyfuel-combustion carbon capture report are: The oxyfuel-combustion/CO2 capture power plant designs being developed and deployed for service in the next four or five years are based on individual component technologies and arrangements which have demonstrated sufficient maturity, with the greatest remaining technical challenge being integrating the systems into a complete steam-electric power plant; By its nature, an oxyfuel-coal power plant is likely to be a 'near zero' emitter of all criteria pollutants; Existing air-fired power plants might be retrofitted with an air separation unit, oxyfuel-fired burners, flue gas recycle, and a CO2 processing unit, with the large fleet of air-fired power plants in service calling for more study of this option; and, Future efficiency improvements to the oxyfuel-combustion process for power generation point toward an oxyfuel-combustion plant with near zero emissions of conventional pollutants, up to 98 per cent CO2 capture, and efficiency comparable to the best power plants currently being built.

  8. On the causes of trends in the seasonal amplitude of atmospheric CO2.

    Science.gov (United States)

    Piao, Shilong; Liu, Zhuo; Wang, Yilong; Ciais, Philippe; Yao, Yitong; Peng, Shushi; Chevallier, Frédéric; Friedlingstein, Pierre; Janssens, Ivan A; Peñuelas, Josep; Sitch, Stephen; Wang, Tao

    2018-02-01

    No consensus has yet been reached on the major factors driving the observed increase in the seasonal amplitude of atmospheric CO 2 in the northern latitudes. In this study, we used atmospheric CO 2 records from 26 northern hemisphere stations with a temporal coverage longer than 15 years, and an atmospheric transport model prescribed with net biome productivity (NBP) from an ensemble of nine terrestrial ecosystem models, to attribute change in the seasonal amplitude of atmospheric CO 2 . We found significant (p 50°N), consistent with previous observations that the amplitude increased faster at Barrow (Arctic) than at Mauna Loa (subtropics). The multi-model ensemble mean (MMEM) shows that the response of ecosystem carbon cycling to rising CO 2 concentration (eCO 2 ) and climate change are dominant drivers of the increase in AMP P -T and AMP T -P in the high latitudes. At the Barrow station, the observed increase of AMP P -T and AMP T -P over the last 33 years is explained by eCO 2 (39% and 42%) almost equally than by climate change (32% and 35%). The increased carbon losses during the months with a net carbon release in response to eCO 2 are associated with higher ecosystem respiration due to the increase in carbon storage caused by eCO 2 during carbon uptake period. Air-sea CO 2 fluxes (10% for AMP P -T and 11% for AMP T -P ) and the impacts of land-use change (marginally significant 3% for AMP P -T and 4% for AMP T -P ) also contributed to the CO 2 measured at Barrow, highlighting the role of these factors in regulating seasonal changes in the global carbon cycle. © 2017 John Wiley & Sons Ltd.

  9. Concurrent separation of CO2 and H2O from air by a temperature-vacuum swing adsorption/desorption cycle.

    Science.gov (United States)

    Wurzbacher, Jan Andre; Gebald, Christoph; Piatkowski, Nicolas; Steinfeld, Aldo

    2012-08-21

    A temperature-vacuum swing (TVS) cyclic process is applied to an amine-functionalized nanofibrilated cellulose sorbent to concurrently extract CO(2) and water vapor from ambient air. The promoting effect of the relative humidity on the CO(2) capture capacity and on the amount of coadsorbed water is quantified. The measured specific CO(2) capacities range from 0.32 to 0.65 mmol/g, and the corresponding specific H(2)O capacities range from 0.87 to 4.76 mmol/g for adsorption temperatures varying between 10 and 30 °C and relative humidities varying between 20 and 80%. Desorption of CO(2) is achieved at 95 °C and 50 mbar(abs) without dilution by a purge gas, yielding a purity exceeding 94.4%. Sorbent stability and a closed mass balance for both H(2)O and CO(2) are demonstrated for ten consecutive adsorption-desorption cycles. The specific energy requirements of the TVS process based on the measured H(2)O and CO(2) capacities are estimated to be 12.5 kJ/mol(CO2) of mechanical (pumping) work and between 493 and 640 kJ/mol(CO2) of heat at below 100 °C, depending on the air relative humidity. For a targeted CO(2) capacity of 2 mmol/g, the heat requirement would be reduced to between 272 and 530 kJ/mol(CO2), depending strongly on the amount of coadsorbed water.

  10. Synergism between elevated pCO2 and temperature on the Antarctic sea ice diatom Nitzschia lecointei

    Directory of Open Access Journals (Sweden)

    A. Torstensson

    2013-10-01

    Full Text Available Polar oceans are particularly susceptible to ocean acidification and warming. Diatoms play a significant role in sea ice biogeochemistry and provide an important food source to grazers in ice-covered oceans, especially during early spring. However, the ecophysiology of ice-living organisms has received little attention in terms of ocean acidification. In this study, the synergism between temperature and partial pressure of CO2 (pCO2 was investigated in relationship to the optimal growth temperature of the Antarctic sea ice diatom Nitzschia lecointei. Diatoms were kept in cultures at controlled levels of pCO2 (∼390 and ∼960 μatm and temperature (−1.8 and 2.5 °C for 14 days. Synergism between temperature and pCO2 was detected in growth rate and acyl lipid fatty acid (FA content. Optimal growth rate was observed around 5 °C in a separate experiment. Carbon enrichment only promoted (6% growth rate closer to the optimal growth, but not at the control temperature (−1.8 °C. At −1.8 °C and at ∼960 μatm pCO2, the total FA content was reduced relative to the ∼390 μatm treatment, although no difference between pCO2 treatments was observed at 2.5 °C. A large proportion (97% of the total FAs comprised on average of polyunsaturated fatty acids (PUFA at −1.8 °C. Cellular PUFA content was reduced at ∼960 relative to ∼390 μatm pCO2. Effects of carbon enrichment may be different depending on ocean warming scenario or season, e.g. reduced cellular FA content in response to elevated CO2 at low temperatures only, reflected as reduced food quality for higher trophic levels. Synergy between warming and acidification may be particularly important in polar areas since a narrow thermal window generally limits cold-water organisms.

  11. Modeling global residential sector energy demand for heating and air conditioning in the context of climate change

    International Nuclear Information System (INIS)

    Isaac, Morna; Vuuren, Detlef P. van

    2009-01-01

    In this article, we assess the potential development of energy use for future residential heating and air conditioning in the context of climate change. In a reference scenario, global energy demand for heating is projected to increase until 2030 and then stabilize. In contrast, energy demand for air conditioning is projected to increase rapidly over the whole 2000-2100 period, mostly driven by income growth. The associated CO 2 emissions for both heating and cooling increase from 0.8 Gt C in 2000 to 2.2 Gt C in 2100, i.e. about 12% of total CO 2 emissions from energy use (the strongest increase occurs in Asia). The net effect of climate change on global energy use and emissions is relatively small as decreases in heating are compensated for by increases in cooling. However, impacts on heating and cooling individually are considerable in this scenario, with heating energy demand decreased by 34% worldwide by 2100 as a result of climate change, and air-conditioning energy demand increased by 72%. At the regional scale considerable impacts can be seen, particularly in South Asia, where energy demand for residential air conditioning could increase by around 50% due to climate change, compared with the situation without climate change

  12. Modeling of Single and Dual Reservoir Porous Media Compressed Gas (Air and CO2) Storage Systems

    Science.gov (United States)

    Oldenburg, C. M.; Liu, H.; Borgia, A.; Pan, L.

    2017-12-01

    Intermittent renewable energy sources are causing increasing demand for energy storage. The deep subsurface offers promising opportunities for energy storage because it can safely contain high-pressure gases. Porous media compressed air energy storage (PM-CAES) is one approach, although the only facilities in operation are in caverns (C-CAES) rather than porous media. Just like in C-CAES, PM-CAES operates generally by injecting working gas (air) through well(s) into the reservoir compressing the cushion gas (existing air in the reservoir). During energy recovery, high-pressure air from the reservoir is mixed with fuel in a combustion turbine to produce electricity, thereby reducing compression costs. Unlike in C-CAES, the storage of energy in PM-CAES occurs variably across pressure gradients in the formation, while the solid grains of the matrix can release/store heat. Because air is the working gas, PM-CAES has fairly low thermal efficiency and low energy storage density. To improve the energy storage density, we have conceived and modeled a closed-loop two-reservoir compressed CO2 energy storage system. One reservoir is the low-pressure reservoir, and the other is the high-pressure reservoir. CO2 is cycled back and forth between reservoirs depending on whether energy needs to be stored or recovered. We have carried out thermodynamic and parametric analyses of the performance of an idealized two-reservoir CO2 energy storage system under supercritical and transcritical conditions for CO2 using a steady-state model. Results show that the transcritical compressed CO2 energy storage system has higher round-trip efficiency and exergy efficiency, and larger energy storage density than the supercritical compressed CO2 energy storage. However, the configuration of supercritical compressed CO2 energy storage is simpler, and the energy storage densities of the two systems are both higher than that of PM-CAES, which is advantageous in terms of storage volume for a given

  13. Global Warming Can Negate the Expected CO2 Stimulation in Photosynthesis and Productivity for Soybean Grown in the Midwestern United States1[W][OA

    Science.gov (United States)

    Ruiz-Vera, Ursula M.; Siebers, Matthew; Gray, Sharon B.; Drag, David W.; Rosenthal, David M.; Kimball, Bruce A.; Ort, Donald R.; Bernacchi, Carl J.

    2013-01-01

    Extensive evidence shows that increasing carbon dioxide concentration ([CO2]) stimulates, and increasing temperature decreases, both net photosynthetic carbon assimilation (A) and biomass production for C3 plants. However the [CO2]-induced stimulation in A is projected to increase further with warmer temperature. While the influence of increasing temperature and [CO2], independent of each other, on A and biomass production have been widely investigated, the interaction between these two major global changes has not been tested on field-grown crops. Here, the interactive effect of both elevated [CO2] (approximately 585 μmol mol−1) and temperature (+3.5°C) on soybean (Glycine max) A, biomass, and yield were tested over two growing seasons in the Temperature by Free-Air CO2 Enrichment experiment at the Soybean Free Air CO2 Enrichment facility. Measurements of A, stomatal conductance, and intercellular [CO2] were collected along with meteorological, water potential, and growth data. Elevated temperatures caused lower A, which was largely attributed to declines in stomatal conductance and intercellular [CO2] and led in turn to lower yields. Increasing both [CO2] and temperature stimulated A relative to elevated [CO2] alone on only two sampling days during 2009 and on no days in 2011. In 2011, the warmer of the two years, there were no observed increases in yield in the elevated temperature plots regardless of whether [CO2] was elevated. All treatments lowered the harvest index for soybean, although the effect of elevated [CO2] in 2011 was not statistically significant. These results provide a better understanding of the physiological responses of soybean to future climate change conditions and suggest that the potential is limited for elevated [CO2] to mitigate the influence of rising temperatures on photosynthesis, growth, and yields of C3 crops. PMID:23512883

  14. Shifting terrestrial feedbacks from CO2 fertilization to global warming

    Science.gov (United States)

    Peñuelas, Josep; Ciais, Philippe; Janssens, Ivan; Canadell, Josep; Obersteiner, Michael; Piao, Shilong; Vautard, Robert; Sardans Jordi Sardans, Jordi

    2016-04-01

    Humans are increasingly fertilizing the planet. Our activities are increasing atmospheric concentrations of carbon dioxide, nitrogen inputs to ecosystems and global temperatures. Individually and combined, they lead to biospheric availability of carbon and nitrogen, enhanced metabolic activity, and longer growing seasons. Plants can consequently grow more and take up more carbon that can be stored in ecosystem carbon pools, thus enhancing carbon sinks for atmospheric CO2. Data on the increased strength of carbon sinks are, however, inconclusive: Some data (eddy covariance, short-term experiments on elevated CO2 and nutrient fertilization) suggest that biospheric carbon uptake is already effectively increasing but some other data suggest it is not, or are not general and conclusive (tree-ring, forest inventory). The combined land-ocean CO2 sink flux per unit of excess atmospheric CO2 above preindustrial levels declined over 1959-2012 by a factor of about 1/3, implying that CO2 sinks increased more slowly than excess CO2. We will discuss the available data, and the discussion will drive us to revisit our projections for enhanced carbon sinks. We will reconsider the performance of the modulators of increased carbon uptake in a CO2 fertilized and warmed world: nutrients, climate, land use and pollution. Nutrient availability in particular plays a crucial role. A simple mass-balance approach indicates that limited phosphorus availability and the corresponding N:P imbalances can jointly reduce the projected future carbon storage by natural ecosystems during this century. We then present a new paradigm: we are shifting from a fertilization to a warming era. Compared to the historical period, future impacts of warming will be larger than the benefits of CO2 fertilization given nutrient limitations, management and disturbance (which reduces C stocks and thus sequestration potential) and because CO2 will decrease by 2050 in RCP2.6, meaning loss of CO2 fertilization, and CO2

  15. Changes in Air CO2 Concentration Differentially Alter Transcript Levels of NtAQP1 and NtPIP2;1 Aquaporin Genes in Tobacco Leaves

    Directory of Open Access Journals (Sweden)

    Francesca Secchi

    2016-04-01

    Full Text Available The aquaporin specific control on water versus carbon pathways in leaves is pivotal in controlling gas exchange and leaf hydraulics. We investigated whether Nicotiana tabacum aquaporin 1 (NtAQP1 and Nicotiana tabacum plasma membrane intrinsic protein 2;1 (NtPIP2;1 gene expression varies in tobacco leaves subjected to treatments with different CO2 concentrations (ranging from 0 to 800 ppm, inducing changes in photosynthesis, stomatal regulation and water evaporation from the leaf. Changes in air CO2 concentration ([CO2] affected net photosynthesis (Pn and leaf substomatal [CO2] (Ci. Pn was slightly negative at 0 ppm air CO2; it was one-third that of ambient controls at 200 ppm, and not different from controls at 800 ppm. Leaves fed with 800 ppm [CO2] showed one-third reduced stomatal conductance (gs and transpiration (E, and their gs was in turn slightly lower than in 200 ppm– and in 0 ppm–treated leaves. The 800 ppm air [CO2] strongly impaired both NtAQP1 and NtPIP2;1 gene expression, whereas 0 ppm air [CO2], a concentration below any in vivo possible conditions and specifically chosen to maximize the gene expression alteration, increased only the NtAQP1 transcript level. We propose that NtAQP1 expression, an aquaporin devoted to CO2 transport, positively responds to CO2 scarcity in the air in the whole range 0–800 ppm. On the contrary, expression of NtPIP2;1, an aquaporin not devoted to CO2 transport, is related to water balance in the leaf, and changes in parallel with gs. These observations fit in a model where upregulation of leaf aquaporins is activated at low Ci, while downregulation occurs when high Ci saturates photosynthesis and causes stomatal closure.

  16. Air-water CO2 evasion from US East Coast estuaries

    Science.gov (United States)

    Gildas Laruelle, Goulven; Goossens, Nicolas; Arndt, Sandra; Cai, Wei-Jun; Regnier, Pierre

    2017-05-01

    This study presents the first regional-scale assessment of estuarine CO2 evasion along the US East Coast (25-45° N). The focus is on 42 tidal estuaries, which together drain a catchment of 697 000 km2 or 76 % of the total area within this latitudinal band. The approach is based on the Carbon-Generic Estuary Model (C-GEM) that allows the simulation of hydrodynamics, transport, and biogeochemistry for a wide range of estuarine systems using readily available geometric parameters and global databases of seasonal climatic, hydraulic, and riverine biogeochemical information. Our simulations, performed using conditions representative of the year 2000, suggest that, together, US East Coast estuaries emit 1.9 Tg C yr-1 in the form of CO2, which corresponds to about 40 % of the carbon inputs from rivers, marshes, and mangroves. Carbon removal within estuaries results from a combination of physical (outgassing of supersaturated riverine waters) and biogeochemical processes (net heterotrophy and nitrification). The CO2 evasion and its underlying drivers show important variations across individual systems, but reveal a clear latitudinal pattern characterized by a decrease in the relative importance of physical over biogeochemical processes along a north-south gradient. Finally, the results reveal that the ratio of estuarine surface area to the river discharge, S/Q (which has a scale of per meter discharged water per year), could be used as a predictor of the estuarine carbon processing in future regional- and global-scale assessments.

  17. H2O and CO2 devolatilization in subduction zones: implications for the global water and carbon cycles (Invited)

    Science.gov (United States)

    van Keken, P. E.; Hacker, B. R.; Syracuse, E. M.; Abers, G. A.

    2010-12-01

    Subduction of sediments and altered oceanic crust functions as a major carbon sink. Upon subduction the carbon may be released by progressive metamorphic reactions, which can be strongly enhanced by free fluids. Quantification of the CO2 release from subducting slabs is important to determine the provenance of CO2 that is released by the volcanic arc and to constrain the flux of carbon to the deeper mantle. In recent work we used a global set of high resolution thermal models of subduction zones to predict the flux of H2O from the subducting slab (van Keken, Hacker, Syracuse, Abers, Subduction factory 4: Depth-dependent flux of H2O from subducting slabs worldwide, J. Geophys. Res., under review) which provides a new estimate of the dehydration efficiency of the global subducting system. It was found that mineralogically bound water can pass efficiently through old and fast subduction zones (such as in the western Pacific) but that warm subduction zones (such as Cascadia) see nearly complete dehydration of the subducting slab. The top of the slab is sufficiently hot in all subduction zones that the upper crust dehydrates significantly. The degree and depth of dehydration is highly diverse and strongly depends on (p,T) and bulk rock composition. On average about one third of subducted H2O reaches 240 km depth, carried principally and roughly equally in the gabbro and peridotite sections. The present-day global flux of H2O to the deep mantle translates to an addition of about one ocean mass over the age of the Earth. We extend the slab devolatilization work to carbon by providing an update to Gorman et al. (Geochem. Geophys. Geosyst, 2006), who quantified the effects of free fluids on CO2 release. The thermal conditions were based on three end-member subduction zones with linear interpolation to provide a global CO2 flux. We use the new high resolution and global set of models to provide higher resolution predictions for the provenance and pathways of CO2 release to

  18. Inorganic carbon dynamics of melt pond-covered first year sea ice in the Canadian Arctic

    DEFF Research Database (Denmark)

    Geilfus, Nicolas-Xavier; Galley, R.J.; Crabeck, O.

    2014-01-01

    Melt pond formation is a common feature of the spring and summer Arctic sea ice. However, the role of the melt ponds formation and the impact of the sea ice melt on both the direction and size of CO2 flux between air and sea is still unknown. Here we describe the CO2-carbonate chemistry of melting...... a strong decrease of the total alkalinity (TA), total dissolved inorganic carbon (TCO2) and partial pressure of CO2 (pCO2) within the bulk sea ice and the brine. Later on, melt pond formation affects both the bulk sea ice and the brine system. As melt ponds are formed from melted snow the in situ melt pond...

  19. Comparison of CO2 in air versus carbogen for the measurement of cerebrovascular reactivity with magnetic resonance imaging.

    Science.gov (United States)

    Hare, Hannah V; Germuska, Michael; Kelly, Michael E; Bulte, Daniel P

    2013-11-01

    Measurement of cerebrovascular reactivity (CVR) can give valuable information about existing pathology and the risk of adverse events, such as stroke. A common method of obtaining regional CVR values is by measuring the blood flow response to carbon dioxide (CO2)-enriched air using arterial spin labeling (ASL) or blood oxygen level-dependent (BOLD) imaging. Recently, several studies have used carbogen gas (containing only CO2 and oxygen) as an alternative stimulus. A direct comparison was performed between CVR values acquired by ASL and BOLD imaging using stimuli of (1) 5% CO2 in air and (2) 5% CO2 in oxygen (carbogen-5). Although BOLD and ASL CVR values are shown to be correlated for CO2 in air (mean response 0.11±0.03% BOLD, 4.46±1.80% ASL, n=16 hemispheres), this correlation disappears during a carbogen stimulus (0.36±0.06% BOLD, 4.97±1.30% ASL). It is concluded that BOLD imaging should generally not be used in conjunction with a carbogen stimulus when measuring CVR, and that care must be taken when interpreting CVR as measured by ASL, as values obtained from different stimuli (CO2 in air versus carbogen) are not directly comparable.

  20. Bomb radiocarbon in the Red Sea: A medium-scale gas exchange experiment

    International Nuclear Information System (INIS)

    Cember, R.

    1989-01-01

    The history of bomb-produced radiocarbon in the surface waters of the Red Sea and the western Gulf of Aden was reconstructed from annual growth bands of corals. Gulf of Aden surface water entering the Red Sea and flowing to the north at the surface of the Red Sea becomes progressively enriched in bomb 14 C by air-sea exchange of carbon dioxide. With physical oceanographic observations and analysis as the basis of a simple model, this progressive northward enrichment can be used to calculate a mean invasionn flux for CO 2 across the Red Sea surface. The CO 2 invasion flux so calculated is 8 mol/m 2 /yr with an uncertainty of approximately 2 mol/m 2 /yr. When combined with the extensive historical observations of wind speeds in the Red Sea, the calculated CO 2 invasion flux supports the empirical relationship between CO 2 invasion and wind speed proposed by other workers. Sea surface pCO 2 was measured at seven stations along the length of the Red Sea in January 1985. These pCO 2 data show that in midwinter the net flux of CO 2 across the Red Sea surface (i.e. the difference between the invasion and evasion fluxes) is approximately zero for the Red Sea as a whole. copyright American Geophysical Union 1989

  1. Trace element profiles of the sea anemone Anemonia viridis living nearby a natural CO2 vent

    Directory of Open Access Journals (Sweden)

    Rael Horwitz

    2014-09-01

    Full Text Available Ocean acidification (OA is not an isolated threat, but acts in concert with other impacts on ecosystems and species. Coastal marine invertebrates will have to face the synergistic interactions of OA with other global and local stressors. One local factor, common in coastal environments, is trace element contamination. CO2 vent sites are extensively studied in the context of OA and are often considered analogous to the oceans in the next few decades. The CO2 vent found at Levante Bay (Vulcano, NE Sicily, Italy also releases high concentrations of trace elements to its surrounding seawater, and is therefore a unique site to examine the effects of long-term exposure of nearby organisms to high pCO2 and trace element enrichment in situ. The sea anemone Anemonia viridis is prevalent next to the Vulcano vent and does not show signs of trace element poisoning/stress. The aim of our study was to compare A. viridis trace element profiles and compartmentalization between high pCO2 and control environments. Rather than examining whole anemone tissue, we analyzed two different body compartments—the pedal disc and the tentacles, and also examined the distribution of trace elements in the tentacles between the animal and the symbiotic algae. We found dramatic changes in trace element tissue concentrations between the high pCO2/high trace element and control sites, with strong accumulation of iron, lead, copper and cobalt, but decreased concentrations of cadmium, zinc and arsenic proximate to the vent. The pedal disc contained substantially more trace elements than the anemone’s tentacles, suggesting the pedal disc may serve as a detoxification/storage site for excess trace elements. Within the tentacles, the various trace elements displayed different partitioning patterns between animal tissue and algal symbionts. At both sites iron was found primarily in the algae, whereas cadmium, zinc and arsenic were primarily found in the animal tissue. Our data

  2. Trace element profiles of the sea anemone Anemonia viridis living nearby a natural CO2 vent.

    Science.gov (United States)

    Horwitz, Rael; Borell, Esther M; Fine, Maoz; Shaked, Yeala

    2014-01-01

    Ocean acidification (OA) is not an isolated threat, but acts in concert with other impacts on ecosystems and species. Coastal marine invertebrates will have to face the synergistic interactions of OA with other global and local stressors. One local factor, common in coastal environments, is trace element contamination. CO2 vent sites are extensively studied in the context of OA and are often considered analogous to the oceans in the next few decades. The CO2 vent found at Levante Bay (Vulcano, NE Sicily, Italy) also releases high concentrations of trace elements to its surrounding seawater, and is therefore a unique site to examine the effects of long-term exposure of nearby organisms to high pCO2 and trace element enrichment in situ. The sea anemone Anemonia viridis is prevalent next to the Vulcano vent and does not show signs of trace element poisoning/stress. The aim of our study was to compare A. viridis trace element profiles and compartmentalization between high pCO2 and control environments. Rather than examining whole anemone tissue, we analyzed two different body compartments-the pedal disc and the tentacles, and also examined the distribution of trace elements in the tentacles between the animal and the symbiotic algae. We found dramatic changes in trace element tissue concentrations between the high pCO2/high trace element and control sites, with strong accumulation of iron, lead, copper and cobalt, but decreased concentrations of cadmium, zinc and arsenic proximate to the vent. The pedal disc contained substantially more trace elements than the anemone's tentacles, suggesting the pedal disc may serve as a detoxification/storage site for excess trace elements. Within the tentacles, the various trace elements displayed different partitioning patterns between animal tissue and algal symbionts. At both sites iron was found primarily in the algae, whereas cadmium, zinc and arsenic were primarily found in the animal tissue. Our data suggests that A. viridis

  3. AIRS retrieved CO{sub 2} and its association with climatic parameters over India during 2004–2011

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, K. Ravi; Revadekar, J.V.; Tiwari, Yogesh K., E-mail: yktiwari@gmail.com

    2014-04-01

    Atmospheric Infrared Sounder (AIRS) retrieved mid-tropospheric Carbon Dioxide (CO{sub 2}) have been used to study the variability and its association with the climatic parameters over India during 2004 to 2011. The study also aims in understanding transport of CO{sub 2} from surface to mid-troposphere over India. The annual cycle of mid-tropospheric CO{sub 2} shows gradual increase in concentration from January till the month of May at the rate ∼ 0.6 ppm/month. It decreases continuously in summer monsoon (JJAS) at the same rate during which strong westerlies persists over the region. A slight increase is seen during winter monsoon (DJF). Being a greenhouse gas, annual cycle of CO{sub 2} show good resemblance with annual cycle of surface air temperature with correlation coefficient (CC) of + 0.8. Annual cycle of vertical velocity indicate inverse pattern compared to annual cycle of CO{sub 2}. High values of mid-tropospheric CO{sub 2} correspond to upward wind, while low values of mid-tropospheric CO{sub 2} correspond to downward wind. In addition to vertical motion, zonal winds are also contributing towards the transport of CO{sub 2} from surface to mid-troposphere. Vegetation as it absorbs CO{sub 2} at surface level, show inverse annual cycle to that of annual cycle of CO{sub 2} (CC-0.64). Seasonal variation of rainfall-CO{sub 2} shows similarities with seasonal variation of NDVI-CO{sub 2}. However, the use of long period data sets for CO{sub 2} at the surface and at the mid-troposphere will be an advantage to confirm these results. - Highlights: • Association of AIRS CO{sub 2} with climate parameters over India • CO{sub 2} show positive correlation with surface temperature • Vertical/horizontal winds contribute towards CO{sub 2} transport • Vegetation and monsoonal rainfall show inverse relationship with CO{sub 2}.

  4. Drivers of inorganic carbon dynamics in first-year sea ice: A model study

    Science.gov (United States)

    Moreau, Sébastien; Vancoppenolle, Martin; Delille, Bruno; Tison, Jean-Louis; Zhou, Jiayun; Kotovich, Marie; Thomas, David; Geilfus, Nicolas-Xavier; Goosse, Hugues

    2015-04-01

    Sea ice is an active source or a sink for carbon dioxide (CO2), although to what extent is not clear. Here, we analyze CO2 dynamics within sea ice using a one-dimensional halo-thermodynamic sea ice model including gas physics and carbon biogeochemistry. The ice-ocean fluxes, and vertical transport, of total dissolved inorganic carbon (DIC) and total alkalinity (TA) are represented using fluid transport equations. Carbonate chemistry, the consumption and release of CO2 by primary production and respiration, the precipitation and dissolution of ikaite (CaCO3•6H2O) and ice-air CO2 fluxes, are also included. The model is evaluated using observations from a 6-month field study at Point Barrow, Alaska and an ice-tank experiment. At Barrow, results show that the DIC budget is mainly driven by physical processes, wheras brine-air CO2 fluxes, ikaite formation, and net primary production, are secondary factors. In terms of ice-atmosphere CO2 exchanges, sea ice is a net CO2 source and sink in winter and summer, respectively. The formulation of the ice-atmosphere CO2 flux impacts the simulated near-surface CO2 partial pressure (pCO2), but not the DIC budget. Because the simulated ice-atmosphere CO2 fluxes are limited by DIC stocks, and therefore < 2 mmol m-2 day-1, we argue that the observed much larger CO2 fluxes from eddy covariance retrievals cannot be explained by a sea ice direct source and must involve other processes or other sources of CO2. Finally, the simulations suggest that near surface TA/DIC ratios of ~2, sometimes used as an indicator of calcification, would rather suggest outgassing.

  5. Air-water gas exchange and CO2 flux in a mangrove-dominated estuary

    Science.gov (United States)

    Ho, David T.; Ferrón, Sara; Engel, Victor C.; Larsen, Laurel G.; Barr, Jordan G.

    2014-01-01

    Mangrove forests are highly productive ecosystems, but the fate of mangrove-derived carbon remains uncertain. Part of that uncertainty stems from the fact that gas transfer velocities in mangrove-surrounded waters are not well determined, leading to uncertainty in air-water CO2 fluxes. Two SF6 tracer release experiments were conducted to determine gas transfer velocities (k(600) = 8.3 ± 0.4 and 8.1 ± 0.6 cm h−1), along with simultaneous measurements of pCO2 to determine the air-water CO2 fluxes from Shark River, Florida (232.11 ± 23.69 and 171.13 ± 20.28 mmol C m−2 d−1), an estuary within the largest contiguous mangrove forest in North America. The gas transfer velocity results are consistent with turbulent kinetic energy dissipation measurements, indicating a higher rate of turbulence and gas exchange than predicted by commonly used wind speed/gas exchange parameterizations. The results have important implications for carbon fluxes in mangrove ecosystems.

  6. Air-sea heat exchange, an element of the water cycle

    Science.gov (United States)

    Chahine, M. T.

    1984-01-01

    The distribution and variation of water vapor, clouds and precipitation are examined. Principal driving forces for these distributions are energy exchange and evaporation at the air-sea interface, which are also important elements of air-sea interaction studies. The overall aim of air-sea interaction studies is to quantitatively determine mass, momentum and energy fluxes, with the goal of understanding the mechanisms controlling them. The results of general circulation simulations indicate that the atmosphere in mid-latitudes responds to changes in the oceanic surface conditions in the tropics. This correlation reflects the strong interaction between tropical and mid-latitude conditions caused by the transport of heat and momentum from the tropics. Studies of air-sea exchanges involve a large number of physica, chemical and dynamical processes including heat flux, radiation, sea-surface temperature, precipitation, winds and ocean currents. The fluxes of latent heat are studied and the potential use of satellite data in determining them evaluated. Alternative ways of inferring heat fluxes will be considered.

  7. Brief Communication: Ikaite (CaCO3·6H2O discovered in Arctic sea ice

    Directory of Open Access Journals (Sweden)

    M. A. Granskog

    2010-05-01

    Full Text Available We report for the first time on the discovery of calcium carbonate crystals as ikaite (CaCO3·6H2O in sea ice from the Arctic (Kongsfjorden, Svalbard as confirmed by morphology and indirectly by X-ray diffraction as well as XANES spectroscopy of its amorophous decomposition product. This finding demonstrates that the precipitation of calcium carbonate during the freezing of sea ice is not restricted to the Antarctic, where it was observed for the first time in 2008. This observation is an important step in the quest to quantify its impact on the sea ice driven carbon cycle.

  8. Orthogonal stack of global tide gauge sea level data

    Science.gov (United States)

    Trupin, A.; Wahr, J.

    1990-01-01

    Yearly and monthly tide gauge sea level data from around the globe are fitted to numerically generated equilibrium tidal data to search for the 18.6 year lunar tide and 14 month pole tide. Both tides are clearly evident in the results, and their amplitudes and phases are found to be consistent with a global equilibrium response. Global, monthly sea level data from outside the Baltic sea and Gulf of Bothnia are fitted to global atmospheric pressure data to study the response of the ocean to pressure fluctuations. The response is found to be inverted barometer at periods greater than two months. Global averages of tide gauge data, after correcting for the effects of post glacial rebound on individual station records, reveal an increase in sea level over the last 80 years of between 1.1 mm/yr and 1.9 mm/yr.

  9. Global CO2 flux inversions from remote-sensing data with systematic errors using hierarchical statistical models

    Science.gov (United States)

    Zammit-Mangion, Andrew; Stavert, Ann; Rigby, Matthew; Ganesan, Anita; Rayner, Peter; Cressie, Noel

    2017-04-01

    The Orbiting Carbon Observatory-2 (OCO-2) satellite was launched on 2 July 2014, and it has been a source of atmospheric CO2 data since September 2014. The OCO-2 dataset contains a number of variables, but the one of most interest for flux inversion has been the column-averaged dry-air mole fraction (in units of ppm). These global level-2 data offer the possibility of inferring CO2 fluxes at Earth's surface and tracking those fluxes over time. However, as well as having a component of random error, the OCO-2 data have a component of systematic error that is dependent on the instrument's mode, namely land nadir, land glint, and ocean glint. Our statistical approach to CO2-flux inversion starts with constructing a statistical model for the random and systematic errors with parameters that can be estimated from the OCO-2 data and possibly in situ sources from flasks, towers, and the Total Column Carbon Observing Network (TCCON). Dimension reduction of the flux field is achieved through the use of physical basis functions, while temporal evolution of the flux is captured by modelling the basis-function coefficients as a vector autoregressive process. For computational efficiency, flux inversion uses only three months of sensitivities of mole fraction to changes in flux, computed using MOZART; any residual variation is captured through the modelling of a stochastic process that varies smoothly as a function of latitude. The second stage of our statistical approach is to simulate from the posterior distribution of the basis-function coefficients and all unknown parameters given the data using a fully Bayesian Markov chain Monte Carlo (MCMC) algorithm. Estimates and posterior variances of the flux field can then be obtained straightforwardly from this distribution. Our statistical approach is different than others, as it simultaneously makes inference (and quantifies uncertainty) on both the error components' parameters and the CO2 fluxes. We compare it to more classical

  10. Characteristics of Atmosphere-Ocean CO2 Exchange due to Typhoon Activities over the East Asian Region

    Science.gov (United States)

    Lee, G.; Cho, C. H.; Lim, D. H.; Sun, M.; Lee, J.; Byun, Y. H.; Lee, J.

    2014-12-01

    Although the oceans are generally known as a net carbon sink in global sense, it is expected that CO₂release from oceans can occur locally depending on specific weather. This study addresses investigation of change in CO2 exchange between atmosphere and ocean due to typhoon activities, using "Carbon Tracker-Asia (CTA)". The CTA has constructed and managed at National Institute of Meteorological Research(NIMR) based on Carbon Tracker developed by NOAA. In order to examine effect of typhoon on change in air-sea CO2 exchange, we selected several cases which typhoon approached to Korean peninsula in the summertime and their tracks are similar to each other. Also, we analyzed difference between CO2 flux along typhoon tracks and other adjacent region not to be directly affected by typhoon in these cases. There is a difference in ocean fluxes around 15 gC/m²yr over strong typhoon areas compared to other areas. This difference varied with the wind speeds, the correlation coefficient between the ocean and the wind flux was found 0.7. Changes in carbon flux to affect the concentration of CO₂ in the atmosphere near surface instantly.

  11. Impact of global warming and rising CO2 levels on coral reef fishes: what hope for the future?

    Science.gov (United States)

    Munday, Philip L; McCormick, Mark I; Nilsson, Göran E

    2012-11-15

    Average sea-surface temperature and the amount of CO(2) dissolved in the ocean are rising as a result of increasing concentrations of atmospheric CO(2). Many coral reef fishes appear to be living close to their thermal optimum, and for some of them, even relatively moderate increases in temperature (2-4°C) lead to significant reductions in aerobic scope. Reduced aerobic capacity could affect population sustainability because less energy can be devoted to feeding and reproduction. Coral reef fishes seem to have limited capacity to acclimate to elevated temperature as adults, but recent research shows that developmental and transgenerational plasticity occur, which might enable some species to adjust to rising ocean temperatures. Predicted increases in P(CO(2)), and associated ocean acidification, can also influence the aerobic scope of coral reef fishes, although there is considerable interspecific variation, with some species exhibiting a decline and others an increase in aerobic scope at near-future CO(2) levels. As with thermal effects, there are transgenerational changes in response to elevated CO(2) that could mitigate impacts of high CO(2) on the growth and survival of reef fishes. An unexpected discovery is that elevated CO(2) has a dramatic effect on a wide range of behaviours and sensory responses of reef fishes, with consequences for the timing of settlement, habitat selection, predator avoidance and individual fitness. The underlying physiological mechanism appears to be the interference of acid-base regulatory processes with brain neurotransmitter function. Differences in the sensitivity of species and populations to global warming and rising CO(2) have been identified that will lead to changes in fish community structure as the oceans warm and becomes more acidic; however, the prospect for acclimation and adaptation of populations to these threats also needs to be considered. Ultimately, it will be the capacity for species to adjust to environmental

  12. Ocean-Atmosphere CO2 Fluxes in the North Atlantic Subtropical Gyre: Association with Biochemical and Physical Factors during Spring

    Directory of Open Access Journals (Sweden)

    Macarena Burgos

    2015-08-01

    Full Text Available Sea surface partial pressure of CO2 (pCO2 was measured continuously in a transect of the North Atlantic subtropical gyre between Santo Domingo, Dominican Republic (18.1° N, 68.5° W and Vigo, Spain (41.9° N, 11.8° W during spring 2011. Additional biogeochemical and physical variables measured to identify factors controlling the surface pCO2 were analyzed in discrete samples collected at 16 sites along the transect at the surface and to a depth of 200 m. Sea surface pCO2 varied between 309 and 662 μatm, and showed differences between the western and eastern subtropical gyre. The subtropical gyre acted as a net CO2 sink, with a mean flux of −5.5 ± 2.2 mmol m−2 day−1. The eastern part of the transect, close to the North Atlantic Iberian upwelling off the Galician coast, was a CO2 source with an average flux of 33.5 ± 9.0 mmol m−2 day−1. Our results highlight the importance of making more surface pCO2 observations in the area located east of the Azores Islands since air-sea CO2 fluxes there are poorly studied.

  13. Global mapping of nonseismic sea level oscillations at tsunami timescales.

    Science.gov (United States)

    Vilibić, Ivica; Šepić, Jadranka

    2017-01-18

    Present investigations of sea level extremes are based on hourly data measured at coastal tide gauges. The use of hourly data restricts existing global and regional analyses to periods larger than 2 h. However, a number of processes occur at minute timescales, of which the most ruinous are tsunamis. Meteotsunamis, hazardous nonseismic waves that occur at tsunami timescales over limited regions, may also locally dominate sea level extremes. Here, we show that nonseismic sea level oscillations at tsunami timescales (sea level extremes, up to 50% in low-tidal basins. The intensity of these oscillations is zonally correlated with mid-tropospheric winds at the 99% significance level, with the variance doubling from the tropics and subtropics to the mid-latitudes. Specific atmospheric patterns are found during strong events at selected locations in the World Ocean, indicating a globally predominant generation mechanism. Our analysis suggests that these oscillations should be considered in sea level hazard assessment studies. Establishing a strong correlation between nonseismic sea level oscillations at tsunami timescales and atmospheric synoptic patterns would allow for forecasting of nonseismic sea level oscillations for operational use, as well as hindcasting and projection of their effects under past, present and future climates.

  14. Interrelations of UV-global/global/diffuse solar irradiance components and UV-global attenuation on air pollution episode days in Athens, Greece

    International Nuclear Information System (INIS)

    Koronakis, P.S.; Sfantos, G.K.

    2002-01-01

    An investigation of global ultraviolet (G UV ), global (G) and diffuse (G d ) solar intensities, continuously recorded over a period of five years at a station in Athens, Greece, and stored on the basis of hourly time intervals since 1996, has revealed the following: (a) UV-global irradiation, associated with the 290-395 nm wavelength region, constitutes 4.1% of global solar. (b) UV-global irradiance ranges from an average minimum of 2.4 W m -2 and 3.1% of global solar in January to an average maximum of 45 W m -2 and 7.8%, respectively, in June, both considered at 13:00, solar time. (c) There exists a good correlation among the two dimensionless irradiance ratios G UV /G d and G d /G in the form of an exponential relationship. (d) UV-global monthly irradiation data show evidence of temporal variability in Athens, from 1996 to 2000. (e) Anthropogenic and photochemical atmospheric pollutant agents (O 3 , CO, SO 2 , NO x , smoke) causing air pollution episodes seem to affect differently solar irradiance components. The main results of analysis (measurements within ± 2 h from solar noon) indicate that a buildup of O 3 and NO x inside the urban Athens plume during cloudless and windless warm days could cause: (i) UV-global irradiance depletion between 5.4% and 14.4%. (ii) Diffuse solar irradiance enhancement up to 38.1%. (iii) Global solar irradiance attenuation ranging up to 6.3%. (author)

  15. An econometric time-series analysis of global CO2 concentrations and emissions

    International Nuclear Information System (INIS)

    Cohen, B.C.; Labys, W.C.; Eliste, P.

    2001-01-01

    This paper extends previous work on the econometric modelling of CO 2 concentrations and emissions. The importance of such work rests in the fact that models of the Cohen-Labys variety represent the only alternative to scientific or physical models of CO 2 accumulations whose parameters are inferred rather than estimated. The stimulation for this study derives from the recent discovery of oscillations and cycles in the net biospheric flux of CO 2 . A variety of time series tests is thus used to search for the presence of normality, stationarity, cyclicality and stochastic processes in global CO 2 emissions and concentrations series. Given the evidence for cyclicality of a short-run nature in the spectra of these series, both structural time series and error correction model are applied to confirm the frequency and amplitude of these cycles. Our results suggest new possibilities for determining equilibrium levels of CO 2 concentrations and subsequently revising stabilization policies. (Author)

  16. Impact of inter-sectoral trade on national and global CO2 emissions: An empirical analysis of China and US

    International Nuclear Information System (INIS)

    Guo Jie; Zou Lele; Wei Yiming

    2010-01-01

    This paper attempts to discuss the CO 2 emissions embodied in Sino-US international trade using a sector approach. Based on an input-output model established in this study, we quantify the impact of Sino-US international trade on national and global CO 2 emissions. Our initial findings reveal that: In 2005, the US reduced 190.13 Mt CO 2 emissions through the consumption of imported goods from China, while increasing global CO 2 emissions by about 515.25 Mt. Similarly, China reduced 178.62 Mt CO 2 emissions through the consumption of US goods, while reducing global CO 2 emissions by 129.93 Mt. Sino-US international trade increased global CO 2 emissions by 385.32 Mt as a whole, of which the Chemical, Fabricated Metal Products, Non-metallic Mineral Products and Transportation Equipment sectors contributed an 86.71% share. Therefore, we suggest that accelerating the adjustment of China's trade structure and export of US advanced technologies and experience related to clean production and energy efficiency to China as the way to reduce the negative impact of Sino-US trade on national and global CO 2 emissions. This behavior should take into account the processing and manufacturing industries as a priority, especially the Chemical, Fabricated Metal Products, Non-metallic Mineral Products and Transportation Equipment sectors.

  17. The pH and pCO2 dependence of sulfate reduction in shallow-sea hydrothermal CO2 - venting sediments (Milos Island, Greece).

    Science.gov (United States)

    Bayraktarov, Elisa; Price, Roy E; Ferdelman, Timothy G; Finster, Kai

    2013-01-01

    Microbial sulfate reduction (SR) is a dominant process of organic matter mineralization in sulfate-rich anoxic environments at neutral pH. Recent studies have demonstrated SR in low pH environments, but investigations on the microbial activity at variable pH and CO2 partial pressure are still lacking. In this study, the effect of pH and pCO2 on microbial activity was investigated by incubation experiments with radioactive (35)S targeting SR in sediments from the shallow-sea hydrothermal vent system of Milos, Greece, where pH is naturally decreased by CO2 release. Sediments differed in their physicochemical characteristics with distance from the main site of fluid discharge. Adjacent to the vent site (T ~40-75°C, pH ~5), maximal sulfate reduction rates (SRR) were observed between pH 5 and 6. SR in hydrothermally influenced sediments decreased at neutral pH. Sediments unaffected by hydrothermal venting (T ~26°C, pH ~8) expressed the highest SRR between pH 6 and 7. Further experiments investigating the effect of pCO2 on SR revealed a steep decrease in activity when the partial pressure increased from 2 to 3 bar. Findings suggest that sulfate reducing microbial communities associated with hydrothermal vent system are adapted to low pH and high CO2, while communities at control sites required a higher pH for optimal activity.

  18. Recent global CO2 flux inferred from atmospheric CO2 observations and its regional analyses

    Directory of Open Access Journals (Sweden)

    J. M. Chen

    2011-11-01

    Full Text Available The net surface exchange of CO2 for the years 2002–2007 is inferred from 12 181 atmospheric CO2 concentration data with a time-dependent Bayesian synthesis inversion scheme. Monthly CO2 fluxes are optimized for 30 regions of the North America and 20 regions for the rest of the globe. Although there have been many previous multiyear inversion studies, the reliability of atmospheric inversion techniques has not yet been systematically evaluated for quantifying regional interannual variability in the carbon cycle. In this study, the global interannual variability of the CO2 flux is found to be dominated by terrestrial ecosystems, particularly by tropical land, and the variations of regional terrestrial carbon fluxes are closely related to climate variations. These interannual variations are mostly caused by abnormal meteorological conditions in a few months in the year or part of a growing season and cannot be well represented using annual means, suggesting that we should pay attention to finer temporal climate variations in ecosystem modeling. We find that, excluding fossil fuel and biomass burning emissions, terrestrial ecosystems and oceans absorb an average of 3.63 ± 0.49 and 1.94 ± 0.41 Pg C yr−1, respectively. The terrestrial uptake is mainly in northern land while the tropical and southern lands contribute 0.62 ± 0.47, and 0.67 ± 0.34 Pg C yr−1 to the sink, respectively. In North America, terrestrial ecosystems absorb 0.89 ± 0.18 Pg C yr−1 on average with a strong flux density found in the south-east of the continent.

  19. Carbon coated CoS_2 thermal battery electrode material with enhanced discharge performances and air stability

    International Nuclear Information System (INIS)

    Xie, Song; Deng, Yafeng; Mei, Jun; Yang, Zhaotang; Lau, Woon-Ming; Liu, Hao

    2017-01-01

    Graphical abstract: A novel carbon coated CoS_2 composite is prepared and investigated as a cathode material for thermal batteries. - Highlights: • A novel C@CoS_2 composite is successfully prepared by hydrothermal method. • The growth of CoS_2 in the glucose solution results in a smaller grain size. • The coating of carbon favors electron transfer and buffers polysulfides formation. • The in situ coated carbon layer effectively prevents the oxidation of CoS_2. • The C@CoS_2 composite shows competitive thermal stability and discharge property. - Abstract: Cobalt disulfide (CoS_2) is a promising thermal battery electrode material for its superior thermal stability and discharge performance. However, the low natural resource and poor air stability restrict its application in thermal battery fabrication. In this work, carbon coated CoS_2 composite was prepared by a facile one-pot hydrothermal method with glucose as carbon source. During the growth of CoS_2, the glucose molecules were in situ adsorbed and carbonized on the surface of the as-synthesized CoS_2, and the resultant carbon coating provided improved electrical conductivity and discharge performances to the composite. The thermal battery cell, which was fabricated with such a composite cathode and with a Li-Si anode, can output a capacity of 235.8 mAh g"−"1 and an energy density of 416.9 Wh kg"−"1 at a cut-off voltage of 1.7 V. This carbon coated CoS_2 composite also presented enhanced air stability. After being stored in dry air for 3 months, the composite can still provide a capacity of 232.4 mAh g"−"1 to 1.7 V, whereas the capacity of bare CoS_2 stored with the same condition dropped from 202.4 mAh g"−"1 to 189.7 mAh g"−"1.

  20. The BErkeley Atmospheric CO2 Observation Network: field calibration and evaluation of low-cost air quality sensors

    Science.gov (United States)

    Kim, Jinsol; Shusterman, Alexis A.; Lieschke, Kaitlyn J.; Newman, Catherine; Cohen, Ronald C.

    2018-04-01

    The newest generation of air quality sensors is small, low cost, and easy to deploy. These sensors are an attractive option for developing dense observation networks in support of regulatory activities and scientific research. They are also of interest for use by individuals to characterize their home environment and for citizen science. However, these sensors are difficult to interpret. Although some have an approximately linear response to the target analyte, that response may vary with time, temperature, and/or humidity, and the cross-sensitivity to non-target analytes can be large enough to be confounding. Standard approaches to calibration that are sufficient to account for these variations require a quantity of equipment and labor that negates the attractiveness of the sensors' low cost. Here we describe a novel calibration strategy for a set of sensors, including CO, NO, NO2, and O3, that makes use of (1) multiple co-located sensors, (2) a priori knowledge about the chemistry of NO, NO2, and O3, (3) an estimate of mean emission factors for CO, and (4) the global background of CO. The strategy requires one or more well calibrated anchor points within the network domain, but it does not require direct calibration of any of the individual low-cost sensors. The procedure nonetheless accounts for temperature and drift, in both the sensitivity and zero offset. We demonstrate this calibration on a subset of the sensors comprising BEACO2N, a distributed network of approximately 50 sensor nodes, each measuring CO2, CO, NO, NO2, O3 and particulate matter at 10 s time resolution and approximately 2 km spacing within the San Francisco Bay Area.

  1. Thermodynamic properties of sea air

    Directory of Open Access Journals (Sweden)

    R. Feistel

    2010-02-01

    Full Text Available Very accurate thermodynamic potential functions are available for fluid water, ice, seawater and humid air covering wide ranges of temperature and pressure conditions. They permit the consistent computation of all equilibrium properties as, for example, required for coupled atmosphere-ocean models or the analysis of observational or experimental data. With the exception of humid air, these potential functions are already formulated as international standards released by the International Association for the Properties of Water and Steam (IAPWS, and have been adopted in 2009 for oceanography by IOC/UNESCO.

    In this paper, we derive a collection of formulas for important quantities expressed in terms of the thermodynamic potentials, valid for typical phase transitions and composite systems of humid air and water/ice/seawater. Particular attention is given to equilibria between seawater and humid air, referred to as "sea air" here. In a related initiative, these formulas will soon be implemented in a source-code library for easy practical use. The library is primarily aimed at oceanographic applications but will be relevant to air-sea interaction and meteorology as well.

    The formulas provided are valid for any consistent set of suitable thermodynamic potential functions. Here we adopt potential functions from previous publications in which they are constructed from theoretical laws and empirical data; they are briefly summarized in the appendix. The formulas make use of the full accuracy of these thermodynamic potentials, without additional approximations or empirical coefficients. They are expressed in the temperature scale ITS-90 and the 2008 Reference-Composition Salinity Scale.

  2. The fate of the Greenland Ice Sheet in a geoengineered, high CO2 world

    International Nuclear Information System (INIS)

    Irvine, Peter J; Lunt, Daniel J; Stone, Emma J; Ridgwell, Andy

    2009-01-01

    Solar radiation management (SRM) geoengineering has been proposed as one means of helping avoid the occurrence of dangerous climate change and undesirable state transitions ('tipping points') in the Earth system. The irreversible melting of the Greenland Ice Sheet is a case in point-a state transition that could occur as a result of CO 2 -driven elevated global temperatures, and one leading to potentially catastrophic sea-level rise. SRM schemes such as the creation of a 'sunshade' or injection of sulfate aerosols into the stratosphere could reduce incoming solar radiation, and in theory balance, in a global mean, the greenhouse warming resulting from elevated concentrations of CO 2 in the atmosphere. Previous work has highlighted that a geoengineered world would have: warming towards the poles, cooling in the tropics, and a reduction in the global hydrological cycle, which may have important implications for the Greenland Ice Sheet. Using a fully coupled global climate model in conjunction with an ice sheet model, we assess the consequences for the mass balance of the Greenland Ice Sheet of the reorganization of climate patterns by the combination of high CO 2 and geoengineering. We find that Greenland surface temperature and precipitation anomalies, compared to the pre-industrial situation, decrease almost linearly with increasing levels of SRM geoengineering, but that these combine to create a highly non-linear response of the ice sheet. The substantial melting of the Greenland Ice Sheet predicted for four times pre-industrial CO 2 levels is prevented in our model with only a partial application of SRM, and hence without having to fully restore the global average temperature back to pre-industrial levels. This suggests that the degree of SRM geoengineering required to mitigate the worst impacts of greenhouse warming, such as sea-level rise, need not be as extensive as generally assumed.

  3. Screening of prospective sites for geological storage of CO{sub 2} in the Southern Baltic Sea

    Energy Technology Data Exchange (ETDEWEB)

    Vernon, R.; O' Neil, N.; Pasquali, R. [SLR Consulting, Dublin (Ireland); Nieminen, M.

    2013-05-15

    The BASTOR project focuses on identifying and characterising potential sites for CO{sub 2} storage in the southern Baltic Sea region. A compilation of available digital data from well logs, seismic line data interpretations, mapped structure outlines and published material from existing hydrocarbon fields and identified and mapped structures from Sweden, Poland, Latvia, Lithuania and Kaliningrad have been incorporated into a regional GIS for the Baltic Sea region. A detailed screening of regional sedimentary basins identified the Slupsk Border Zone as having suitable structures for storage of CO{sub 2} in depleted oil and gas fields or saline aquifers. Cambrian sandstone saline aquifers below 900 m have been identified as the principal regional potential storage target with the Dalders Monocline as the most promising area. Eight individual structures were identified as having greatest potential. Detailed 3D geological static models were developed for three of these structures located in offshore Latvia (E6 and E7) and one cross-border structure (Dalders Structure). A theoretical regional CO{sub 2} storage capacity calculation based on the GeoCapacity methodology was undertaken. A regional storage capacity for Cambrian sandstones below 900 m was estimated at a total of 16 Gt, with 2 Gt for the Dalders Monocline. Theoretical storage estimates for individual structures for the Baltic Sea regions includes 760 Mt for the Latvian structures and the Dalders Structure, 9.1 Mt for the structures located in Poland, 31 Mt in Lithuania and 170 Mt in Kaliningrad. These estimates are based on the best available data at the time of writing. However these estimates will be improved upon as new data becomes available from other sources. (orig.)

  4. Seasonal Variations of Isotope Ratios and CO2 Concentrations in Firn Air

    OpenAIRE

    Weiler, Karin; Schwander, Jakob; Leuenberger, Markus; Blunier, Thomas; Mulvaney, Robert; Anderson, Philip S.; Salmon, Rhian; Sturges, William T.

    2009-01-01

    A first year-round firn air sampling carried out at the British Antarctic station Halley in 2003 shows isotope and CO2 changes owing to diffusive mixing driven by seasonal variations of surface temperature, and gas composition of the atmosphere. Seasonal firn temperatures are well reproduced from the atmospheric temperature history. Based on these profiles thermal diffusion is forced with thermal diffusion factors αT with respect to air. Application of the available literature data for αT (15...

  5. GHRSST Level 2P Global skin Sea Surface Temperature from the Infrared Atmospheric Sounding Interferometer (IASI) on the Metop-A satellite (GDS V2) produced by OSI SAF (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global 1 km Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated...

  6. Trace gases and CO sub(2) isotope records from Cabo de Rama, India

    Digital Repository Service at National Institute of Oceanography (India)

    Bhattacharya, S.K.; Borole, D.V.; Francey, R.J.; Allison, C.E.; Steele, L.P.; Krummel, P.; Langenfelds, R.; Masarie, K.A.; Tiwari, Y.K.; Patra, P.K.

    to avoid dan- gerous climate change due to GHG forced warming. Con- centrations of CO 2 , CH 4 and N 2 O have increased at alarming rates, from preindustrial values of 280 ppm, 715 ppb and 270 ppb (circa. 1750) to 379 ppm, 1732 ppb and 319 ppb... an important effect on the con- centration and isotopic composition of atmospheric CO 2 , and the concentrations of other trace gases. Air sampling at CRI contributes to the global atmospheric composition study 10,11 . Given the potential for global impacts...

  7. Measurement of air exchange rates in different indoor environments using continuous CO2 sensors

    Institute of Scientific and Technical Information of China (English)

    Yan YOU; Can Niu; Jian Zhou; Yating Liu; Zhipeng Bai; Jiefeng Zhang; Fei He; Nan Zhang

    2012-01-01

    A new air exchange rate (AER) monitoring method using continuous CO2 sensors was developed and validated through both laboratory experiments and field studies.Controlled laboratory simulation tests were conducted in a 1-m3 environmental chamber at different AERs (0.1-10.0 hr-1).AERs were determined using the decay method based on box model assumptions.Field tests were conducted in classrooms,dormitories,meeting rooms and apartments during 2-5 weekdays using CO2 sensors coupled with data loggers.Indoor temperature,relative humidity (RH),and CO2 concentrations were continuously monitored while outdoor parameters combined with on-site climate conditions were recorded.Statistical results indicated that good laboratory performance was achieved:duplicate precision was within 10%,and the measured AERs were 90%-120% of the real AERs.Average AERs were 1.22,1.37,1.10,1.91 and 0.73 hr-1 in dormitories,air-conditioned classrooms,classrooms with an air circulation cooling system,reading rooms,and meeting rooms,respectively.In an elderly particulate matter exposure study,all the homes had AER values ranging from 0.29 to 3.46 hr-1 in fall,and 0.12 to 1.39 hr-1 in winter with a median AER of 1.15.

  8. Measurement of air exchange rates in different indoor environments using continuous CO2 sensors.

    Science.gov (United States)

    You, Yan; Niu, Can; Zhou, Jian; Liu, Yating; Bai, Zhipeng; Zhang, Jiefeng; He, Fei; Zhang, Nan

    2012-01-01

    A new air exchange rate (AER) monitoring method using continuous CO2 sensors was developed and validated through both laboratory experiments and field studies. Controlled laboratory simulation tests were conducted in a 1-m3 environmental chamber at different AERs (0.1-10.0 hr(-1)). AERs were determined using the decay method based on box model assumptions. Field tests were conducted in classrooms, dormitories, meeting rooms and apartments during 2-5 weekdays using CO2 sensors coupled with data loggers. Indoor temperature, relative humidity (RH), and CO2 concentrations were continuously monitored while outdoor parameters combined with on-site climate conditions were recorded. Statistical results indicated that good laboratory performance was achieved: duplicate precision was within 10%, and the measured AERs were 90%-120% of the real AERs. Average AERs were 1.22, 1.37, 1.10, 1.91 and 0.73 hr(-1) in dormitories, air-conditioned classrooms, classrooms with an air circulation cooling system, reading rooms, and meeting rooms, respectively. In an elderly particulate matter exposure study, all the homes had AER values ranging from 0.29 to 3.46 hr(-1) in fall, and 0.12 to 1.39 hr(-1) in winter with a median AER of 1.15.

  9. A review of the role of temperate forests in the global CO2 balance

    International Nuclear Information System (INIS)

    Musselman, R.C.; Fox, D.G.

    1991-01-01

    The role of temperate forests in the global carbon balance is difficult to determine because many uncertainties exist in the data, and many assumptions must be made in these determinations. Still, there is little doubt that increases in atmospheric CO 2 and global warming would have major effects on temperate forest ecosystems. Increases in atmospheric CO 2 may result in increases in photosynthesis, changes in water and nitrogen use efficiency, and changes in carbon allocation. Indirect effects of changes in global carbon balance on regional climate and on microenvironmental conditions, particularly temperature and moisture, may be more important then direct effects of increased CO 2 on vegetation. Increased incidence of forest perturbations might also be expected. The evidence suggests that conditions favorable to forest growth and development may exist in the northern latitudes, while southern latitude forests may undergo drought stress. Current harvest of temperate and world forests contributes substantial amounts of carbon to the atmosphere, possibly as much as 3 gigatons (Gt) per year. Return of this carbon to forest storage may require decades. Forest managers should be aware of the global as well as local impact their management decisions will have on the atmospheric carbon balance of the ecosystems they oversee

  10. The EUSTACE project: delivering global, daily information on surface air temperature

    Science.gov (United States)

    Ghent, D.; Rayner, N. A.

    2017-12-01

    Day-to-day variations in surface air temperature affect society in many ways; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, in the EUSTACE project (2015-2018, https://www.eustaceproject.eu) we have developed an understanding of the relationships between traditional (land and marine) surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. Here we discuss the science needed to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types. Information contained in the satellite retrievals is used to create globally-complete fields in the past, using statistical models of how surface air temperature varies in a connected way from place to place. This includes developing new "Big Data" analysis methods as the data volumes involved are considerable. We will present recent progress along this road in the EUSTACE project, i.e.: • identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; • estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; • using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras. Information will also be given on how interested users can become involved.

  11. Feedback attribution of the land-sea warming contrast in a global warming simulation of the NCAR CCSM4

    International Nuclear Information System (INIS)

    Sejas, Sergio A; Albert, Oriene S; Cai, Ming; Deng, Yi

    2014-01-01

    One of the salient features in both observations and climate simulations is a stronger land warming than sea. This paper provides a quantitative understanding of the main processes that contribute to the land-sea warming asymmetry in a global warming simulation of the NCAR CCSM4. The CO 2 forcing alone warms the surface nearly the same for both land and sea, suggesting that feedbacks are responsible for the warming contrast. Our analysis on one hand confirms that the principal contributor to the above-unity land-to-sea warming ratio is the evaporation feedback; on the other hand the results indicate that the sensible heat flux feedback has the largest land-sea warming difference that favors a greater ocean than land warming. Therefore, the results uniquely highlight the importance of other feedbacks in establishing the above-unity land-to-sea warming ratio. Particularly, the SW cloud feedback and the ocean heat storage in the transient response are key contributors to the greater warming over land than sea. (letter)

  12. Monthly CO2 at A4HDYD station in a productive shallow marginal sea (Yellow Sea) with a seasonal thermocline: Controlling processes

    Science.gov (United States)

    Xu, Xuemei; Zang, Kunpeng; Zhao, Huade; Zheng, Nan; Huo, Cheng; Wang, Juying

    2016-07-01

    Based upon 21 field surveys conducted from March 2011 to November 2013, monthly variation of carbon dioxide partial pressure (pCO2) and other carbon system parameters were investigated for the first time (to our knowledge) at A4HDYD station (38°40‧N, 122°10‧E) located in the North Yellow Sea, a region with a seasonal thermocline. Surface pCO2 was undersaturated from March to May and nearly in equilibrium with the atmosphere from June to August. During September and November, pCO2 declined to a lower level than that from June to August, but reached the highest level in December. In contrast, pCO2 declined to atmospheric CO2 levels in February. Overall, the study area was a net CO2 sink at a rate of 0.85 ± 0.59 mol C m- 2 yr- 1. The underlying processes governing the variation of pCO2 were also examined. In general, temperature had an important influence on the monthly variation of pCO2, but its effect was counterbalanced by biological production in spring and vertical mixing in early winter. Our study indicated that dynamic mechanism studies based on high temporal resolution observations are urgently needed to understand the complexity of the carbon cycle and detect biogeochemical changes or ecosystem responses to climate change on continental margins.

  13. Global CO2 efficiency: Country-wise estimates using a stochastic cost frontier

    International Nuclear Information System (INIS)

    Herrala, Risto; Goel, Rajeev K.

    2012-01-01

    This paper examines global carbon dioxide (CO 2 ) efficiency by employing a stochastic cost frontier analysis of about 170 countries in 1997 and 2007. The main contribution lies in providing a new approach to environmental efficiency estimation, in which the efficiency estimates quantify the distance from the policy objective of minimum emissions. We are able to examine a very large pool of nations and provide country-wise efficiency estimates. We estimate three econometric models, corresponding with alternative interpretations of the Cancun vision (Conference of the Parties 2011). The models reveal progress in global environmental efficiency during a preceding decade. The estimates indicate vast differences in efficiency levels, and efficiency changes across countries. The highest efficiency levels are observed in Africa and Europe, while the lowest are clustered around China. The largest efficiency gains were observed in central and eastern Europe. CO 2 efficiency also improved in the US and China, the two largest emitters, but their ranking in terms of CO 2 efficiency deteriorated. Policy implications are discussed. - Highlights: ► We estimate global environmental efficiency in line with the Cancun vision, using a stochastic cost frontier. ► The study covers 170 countries during a 10 year period, ending in 2007. ► The biggest improvements occurred in Europe, and efficiency falls in South America. ► The efficiency ranking of US and China, the largest emitters, deteriorated. ► In 2007, highest efficiency was observed in Africa and Europe, and the lowest around China.

  14. Spatial and temporal variability of seawater pCO2 within the Canadian Arctic Archipelago and Baffin Bay during the summer and autumn 2011

    Science.gov (United States)

    Geilfus, N.-X.; Pind, M. L.; Else, B. G. T.; Galley, R. J.; Miller, L. A.; Thomas, H.; Gosselin, M.; Rysgaard, S.; Wang, F.; Papakyriakou, T. N.

    2018-03-01

    The partial pressure of CO2 in surface water (pCO2sw) measured within the Canadian Arctic Archipelago (CAA) and Baffin Bay was highly variable with values ranging from strongly undersaturated (118 μatm) to slightly supersaturated (419 μatm) with respect to the atmospheric levels ( 386 μatm) during summer and autumn 2011. During summer, melting sea ice contributed to cold and fresh surface water and enhanced the ice-edge bloom, resulting in strong pCO2sw undersaturation. Coronation Gulf was the only area with supersaturated pCO2sw, likely due to warm CO2-enriched freshwater input from the Coppermine River. During autumn, the entire CAA (including Coronation Gulf) was undersaturated, despite generally increasing pCO2sw. Coronation Gulf was the one place where pCO2sw decreased, likely due to seasonal reduction in discharge from the Coppermine River and the decreasing sea surface temperature. The seasonal summer-to-autumn increase in pCO2sw across the archipelago is attributed in part to the continuous uptake of atmospheric CO2 through both summer and autumn and to the seasonal deepening of the surface mixed layer, bringing CO2-rich waters to the surface. These observations demonstrate how freshwater from sea ice melt and rivers affect pCO2sw differently. The general pCO2sw undersaturation during summer-autumn 2011 throughout the CAA and Baffin Bay give an estimated net oceanic sink for atmospheric CO2 over the study period of 11.4 mmol CO2 m-2 d-1, assuming no sea-air CO2 flux exchange across the sea-ice covered areas.

  15. SeaWiFS Third Anniversary Global Biosphere

    Science.gov (United States)

    2002-01-01

    September 18,2000 is the third anniversary of the start of regular SeaWiFS operations of this remarkable planet called Earth. This SeaWiFS image is of the Global Biosphere depicting the ocean's long-term average phytoplankton chlorophyll concentration acquired between September 1997 and August 2000 combined with the SeaWiFS-derived Normalized Difference Vegetation Index (NDVI) over land during July 2000.

  16. Separating decadal global water cycle variability from sea level rise.

    Science.gov (United States)

    Hamlington, B D; Reager, J T; Lo, M-H; Karnauskas, K B; Leben, R R

    2017-04-20

    Under a warming climate, amplification of the water cycle and changes in precipitation patterns over land are expected to occur, subsequently impacting the terrestrial water balance. On global scales, such changes in terrestrial water storage (TWS) will be reflected in the water contained in the ocean and can manifest as global sea level variations. Naturally occurring climate-driven TWS variability can temporarily obscure the long-term trend in sea level rise, in addition to modulating the impacts of sea level rise through natural periodic undulation in regional and global sea level. The internal variability of the global water cycle, therefore, confounds both the detection and attribution of sea level rise. Here, we use a suite of observations to quantify and map the contribution of TWS variability to sea level variability on decadal timescales. In particular, we find that decadal sea level variability centered in the Pacific Ocean is closely tied to low frequency variability of TWS in key areas across the globe. The unambiguous identification and clean separation of this component of variability is the missing step in uncovering the anthropogenic trend in sea level and understanding the potential for low-frequency modulation of future TWS impacts including flooding and drought.

  17. Economic efficiency of CO2 reduction programs

    International Nuclear Information System (INIS)

    Tahvonen, O.; Storch, H. von; Storch, J. von

    1993-01-01

    A highly simplified time-dependent low-dimensional system has been designed to describe conceptually the interaction of climate and economy. Enhanced emission of carbon dioxide (CO 2 ) is understood as the agent that not only favors instantaneous consumption but also causes unfavorable climate changes at a later time. The problem of balancing these two counterproductive effects of CO 2 emissions on a finite time horizon is considered. The climate system is represented by just two parameters, namely a globally averaged near-surface air-temperature and a globally averaged troposheric CO 2 concentration. The costs of abating CO 2 emissions are monitored by a function which depends quadratically on the percentage reduction of emission compared to an 'uncontrolled emission' scenario. Parameters are fitted to historical climate data and to estimates from studies of CO 2 abatement costs. Two optimization approaches, which differ from earlier attempts to describe the interaction of economy and climate, are discussed. In the 'cost oriented' strategy an optimal emission path is identified which balances the abatement costs and explicitly formulated damage costs. These damage costs, whose estimates are very uncertain, are hypothesized to be a linear function of the time-derivative of temperature. In the 'target oriented' strategy an emission path is chosen so that the abatement costs are minimal while certain restrictions on the terminal temperature and concentration change are met. (orig.)

  18. Air-sea Exchange of Polycyclic Aromatic Hydrocarbons (PAHs), Polychlorinated Biphenyls (PCBs), Organochlorine Pesticides (OCPs) and Polybrominated Diphenyl Ethers (PBDEs) in the Mediterranean Sea

    Science.gov (United States)

    Lammel, G. P.; Heil, A.; Kukucka, P.; Meixner, F. X.; Mulder, M. D.; Prybilova, P.; Prokes, R.; Rusina, T. S.; Song, G. Z.; Vrana, B.

    2015-12-01

    The marine atmospheric environment is a receptor for persistent organic pollutants (POPs) which are advected from sources on land, primary, such as biomass burning by-products (PAHs, dioxins), and secondary, such as volatilization from contaminated soils (PCBs, pesticides). Primary sources do not exist in the marine environment, except for PAHs (ship engines) but following previous atmospheric deposition, the sea surface may turn to a secondary source by reversal of diffusive air-sea mass exchange. No monitoring is in place. We studied the vertical fluxes of a wide range of primary and secondary emitted POPs based on measurements in air and surface seawater at a remote coastal site in the eastern Mediterranean (2012). To this end, silicon rubbers were used as passive water samplers, vertical concentration gradients were determined in air and fluxes were quantified based on Eddy covariance. Diffusive air-sea exchange fluxes of hexachlorocyclohexanes (HCHs) and semivolatile PAHs were found close to phase equilibrium, except one PAH, retene, a wood burning tracer, was found seasonally net-volatilisational. Some PCBs, p,p'-DDE, penta- and hexachlorobenzene (PeCB, HCB) were mostly net-depositional, while PBDEs were net-volatilizational. Fluxes determined at a a remote coastal site ranged -33 - +2.4 µg m-2 d-1 for PAHs and -4.0 - +0.3 µg m-2 d-1for halogenated compounds ( 0 means net-volatilization). It is concluded that nowadays in open seas more pollutants are undergoing reversal of the direction of air-sea exchange. Recgional fire activity records in combination with box model simulations suggest that deposition of retene during summer is followed by a reversal of air-sea exchange. The seawater surface as secondary source of pollution should be assessed based on flux measurements across seasons and over longer time periods.

  19. A framework for predicting global silicate weathering and CO2 drawdown rates over geologic time-scales.

    Science.gov (United States)

    Hilley, George E; Porder, Stephen

    2008-11-04

    Global silicate weathering drives long-time-scale fluctuations in atmospheric CO(2). While tectonics, climate, and rock-type influence silicate weathering, it is unclear how these factors combine to drive global rates. Here, we explore whether local erosion rates, GCM-derived dust fluxes, temperature, and water balance can capture global variation in silicate weathering. Our spatially explicit approach predicts 1.9-4.6 x 10(13) mols of Si weathered globally per year, within a factor of 4-10 of estimates of global silicate fluxes derived from riverine measurements. Similarly, our watershed-based estimates are within a factor of 4-18 (mean of 5.3) of the silica fluxes measured in the world's ten largest rivers. Eighty percent of total global silicate weathering product traveling as dissolved load occurs within a narrow range (0.01-0.5 mm/year) of erosion rates. Assuming each mol of Mg or Ca reacts with 1 mol of CO(2), 1.5-3.3 x 10(8) tons/year of CO(2) is consumed by silicate weathering, consistent with previously published estimates. Approximately 50% of this drawdown occurs in the world's active mountain belts, emphasizing the importance of tectonic regulation of global climate over geologic timescales.

  20. Effect of ocean acidification and elevated fCO2 on trace gas production by a Baltic Sea summer phytoplankton community

    NARCIS (Netherlands)

    Webb, A.L.; Leedham-Elvidge, E.; Hughes, C.; Hopkins, F.E.; Malin, G.; Bach, L.T.; Schulz, K.; Crawfurd, K.; Brussaard, C.P.D.; Stuhr, A.; Riebesell, U.; Liss, P.S.

    2016-01-01

    The Baltic Sea is a unique environment as the largest body of brackish water in the world. Acidification of the surface oceans due to absorption of anthropogenic CO2 emissions is an additional stressor facing the pelagic community of the already challenging Baltic Sea. To investigate its impact on

  1. CO2 point sources and subsurface storage capacities for CO2 in aquifers in Norway

    International Nuclear Information System (INIS)

    Boee, Reidulv; Magnus, Christian; Osmundsen, Per Terje; Rindstad, Bjoern Ivar

    2002-01-01

    The GESTCO project comprises a study of the distribution and coincidence of thermal CO 2 emission sources and location/quality of geological storage capacity in Europe. Four of the most promising types of geological storage are being studied. 1. Onshore/offshore saline aquifers with or without lateral seal. 2. Low entalpy geothermal reservoirs. 3. Deep methane-bearing coal beds and abandoned coal and salt mines. 4. Exhausted or near exhausted hydrocarbon structures. In this report we present an inventory of CO 2 point sources in Norway (1999) and the results of the work within Study Area C: Deep saline aquifers offshore/near shore Northern and Central Norway. Also offshore/near shore Southern Norway has been included while the Barents Sea is not described in any detail. The most detailed studies are on the Tilje and Aare Formations on the Troendelag Platform off Mid-Norway and on the Sognefjord, Fensfjord and Krossfjord Formations, southeast of the Troll Field off Western Norway. The Tilje Formation has been chosen as one of the cases to be studied in greater detail (numerical modelling) in the project. This report shows that offshore Norway, there are concentrations of large CO 2 point sources in the Haltenbanken, the Viking Graben/Tampen Spur area, the Southern Viking Graben and the central Trough, while onshore Norway there are concentrations of point sources in the Oslofjord/Porsgrund area, along the coast of western Norway and in the Troendelag. A number of aquifers with large theoretical CO 2 storage potential are pointed out in the North Sea, the Norwegian Sea and in the Southern Barents Sea. The storage capacity in the depth interval 0.8 - 4 km below sea level is estimated to be ca. 13 Gt (13000000000 tonnes) CO 2 in geological traps (outside hydrocarbon fields), while the storage capacity in aquifers not confined to traps is estimated to be at least 280 Gt CO 2 . (Author)

  2. The oxygen minimum zone (OMZ) off Chile as intense source of CO 2 and N 2O

    Science.gov (United States)

    Paulmier, A.; Ruiz-Pino, D.; Garcon, V.

    2008-12-01

    The oxygen minimum zones (OMZs) are recognized as intense sources of N 2O greenhouse gas (GHG) and could also be potential sources of CO 2, the most important GHG for the present climate change. This study evaluates, for one of the most intense and shallow OMZ, the Chilean East South Pacific OMZ, the simultaneous N 2O and CO 2 fluxes at the air-sea interface. Four cruises (2000-2002) and 1 year of monitoring (21°-30°-36°S) off Chile allowed the determination of the CO 2 and N 2O concentrations at the sea surface and the analysis of fluxes variations associated with different OMZ configurations. The Chilean OMZ area can be an intense GHG oceanic local source of both N 2O and CO 2. The mean N 2O fluxes are 5-10 times higher than the maximal previous historical source in an OMZ open area as in the Pacific and Indian Oceans. For CO 2, the mean fluxes are also positive and correspond to very high oceanic sources. Even if different coupling and decoupling between N 2O and CO 2 are observed along the Chilean OMZ, 65% of the situations represent high CO 2 and/or N 2O sources. The high GHG sources are associated with coastal upwelling transport of OMZ waters rich in N 2O and probably also in CO 2, located at a shallow depth. The integrated OMZ role on GHG should be better considered to improve our understanding of the past and future atmospheric CO 2 and N 2O evolutions.

  3. Potential impact of increased temperature and CO2 on particulate dimethylsulfoniopropionate in the Southeastern Bering Sea

    Directory of Open Access Journals (Sweden)

    Peter A. Lee

    2011-06-01

    Full Text Available The potential impact of elevated sea surface temperature (SST and pCO2 on algal community structure and particulate dimethylsulfoniopropionate (DMSPp concentrations in the southeastern Bering Sea was examined using a shipboard “Ecostat” continuous culture system. The ecostat system was used to mimic the conditions projected to exist in the world's oceans by the end of this century (i.e. elevated pCO2 (750 ppm and elevated SST (ambient + 4°C. Two experiments were conducted using natural phytoplankton assemblages from the high-nutrient low-chlorophyll (HNLC central basin and from the middle domain of the southeastern continental shelf. At the HNLC site, the relative abundances of haptophytes and pelagophytes were higher and the relative abundance of diatoms lower under “greenhouse” conditions (i.e. combined 750 ppm CO2 and elevated temperature than control conditions (380 ppm CO2 and ambient temperature. This shift in algal community structure was accompanied by increases in DMSPp (2–3 fold, DMSPp:Chl a (2–3 fold and DMSP:PON (2 fold. At the continental shelf site, the changes in the relative abundances of haptophytes, pelagophytes and diatoms under “greenhouse” conditions were similar to those observed at the HNLC site, with 2.5 fold increases in DMSPp, 50–100% increases in DMSPp:Chl a and 1.8 fold increases in DMSP:PON. At both locations, changes in community structure and the DMSPp parameters were largely driven by increasing temperature. The observed changes were also consistent with the phytoplankton-DMS-albedo climate feedback mechanism proposed in the Charlson-Lovelock-Andreae-Warren (CLAW hypothesis.

  4. Emissions of CO2, CO, NOx, HC, PM, HFC-134a, N2O and CH4 from the global light duty vehicle fleet

    Directory of Open Access Journals (Sweden)

    Timothy J. Wallington

    2008-04-01

    Full Text Available Vehicles emit carbon dioxide (CO2, carbon monoxide (CO, nitrogen oxides (NOx, hydrocarbons (HC, particulate matter (PM, hydrofluorocarbon 134a (HFC-134a, methane (CH4, and nitrous oxide (N2O. An understanding of these emissions is needed in discussions of climate change and local air pollution issues. To facilitate such discussions an overview of past, present, and likely future emissions from light duty vehicles is presented. Emission control technologies have reduced the emissions of CO, VOCs, PM, HFC-134a, CH4, and N2O from modern vehicles to very low levels.

  5. 13CO2/12CO2 ratio analysis in exhaled air by lead-salt tunable diode lasers for noninvasive diagnostics in gastroenterology

    Science.gov (United States)

    Stepanov, Eugene V.; Zyrianov, Pavel V.; Miliaev, Valerii A.; Selivanov, Yurii G.; Chizhevskii, Eugene G.; Os'kina, Svetlana; Ivashkin, Vladimir T.; Nikitina, Elena I.

    1999-07-01

    An analyzer of 13CO2/12CO2 ratio in exhaled air based on lead-salt tunable diode lasers is presented. High accuracy of the carbon isotope ratio detection in exhaled carbon dioxide was achieved with help of very simple optical schematics. It was based on the use of MBE laser diodes operating in pulse mode and on recording the resonance CO2 absorption at 4.2 micrometers . Special fast acquisition electronics and software were applied for spectral data collection and processing. Developed laser system was tested in a clinical train aimed to assessment eradication efficiency in therapy of gastritis associated with Helicobacter pylori infection. Data on the 13C-urea breath test used for P.pylori detection and obtained with tunable diode lasers in the course of the trail was compared with the results of Mass-Spectroscopy analysis and histology observations. The analyzer can be used also for 13CO2/12CO2 ratio detection in exhalation to perform gastroenterology breath test based on using other compounds labeled with stable isotopes.

  6. Lower responsiveness of canopy evapotranspiration rate than of leaf stomatal conductance to open-air CO2 elevation in rice.

    Science.gov (United States)

    Shimono, Hiroyuki; Nakamura, Hirofumi; Hasegawa, Toshihiro; Okada, Masumi

    2013-08-01

    An elevated atmospheric CO2 concentration ([CO2 ]) can reduce stomatal conductance of leaves for most plant species, including rice (Oryza sativa L.). However, few studies have quantified seasonal changes in the effects of elevated [CO2 ] on canopy evapotranspiration, which integrates the response of stomatal conductance of individual leaves with other responses, such as leaf area expansion, changes in leaf surface temperature, and changes in developmental stages, in field conditions. We conducted a field experiment to measure seasonal changes in stomatal conductance of the uppermost leaves and in the evapotranspiration, transpiration, and evaporation rates using a lysimeter method. The study was conducted for flooded rice under open-air CO2 elevation. Stomatal conductance decreased by 27% under elevated [CO2 ], averaged throughout the growing season, and evapotranspiration decreased by an average of 5% during the same period. The decrease in daily evapotranspiration caused by elevated [CO2 ] was more significantly correlated with air temperature and leaf area index (LAI) rather than with other parameters of solar radiation, days after transplanting, vapor-pressure deficit and FAO reference evapotranspiration. This indicates that higher air temperatures, within the range from 16 to 27 °C, and a larger LAI, within the range from 0 to 4 m(2)  m(-2) , can increase the magnitude of the decrease in evapotranspiration rate caused by elevated [CO2 ]. The crop coefficient (i.e. the evapotranspiration rate divided by the FAO reference evapotranspiration rate) was 1.24 at ambient [CO2 ] and 1.17 at elevated [CO2 ]. This study provides the first direct measurement of the effects of elevated [CO2 ] on rice canopy evapotranspiration under open-air conditions using the lysimeter method, and the results will improve future predictions of water use in rice fields. © 2013 John Wiley & Sons Ltd.

  7. The Design of The Monitoring Tools Of Clean Air Condition And Dangerous Gas CO, CO2 CH4 In Chemical Laboratory By Using Fuzzy Logic Based On Microcontroller

    Science.gov (United States)

    Widodo, Slamet; Miftakul, Amin M.; Sutrisman, Adi

    2018-02-01

    There are many phenomena that human are exposed to toxins from certain types such as of CO2, CO2 and CH4 gases. The device used to detect large amounts of CO, CO2, and CH4 gas in air in enclosed spaces using MQ 135 gas sensors of different types based on the three sensitivity of the Gas. The results of testing the use of sensors MQ 135 on the gas content of CO, CO2 and CH4 received by the sensor is still in the form of ppm based on the maximum ppm detection range of each sensor. Active sensor detects CO 120 ppm gas, CO2 1600 ppm and CH4 1ppm "standby 1" air condition with intermediate rotary fan. Active sensor detects CO 30 ppm gas, CO2 490 ppm and CH4 7 ppm "Standby 2" with low rotating fan output. Fuzzy rulebase logic for motor speed when gas detection sensor CO, CO2, and CH4 output controls the motion speed of the fan blower. Active sensors detect CO 15 ppm, CO2 320 ppm and CH4 45 ppm "Danger" air condition with high fan spin fan. At the gas level of CO 15 ppm, CO2 390 ppm and CH4 3 ppm detect "normal" AC sensor with fan output stop spinning.

  8. Amine-tethered solid adsorbents coupling high adsorption capacity and regenerability for CO2 capture from ambient air.

    Science.gov (United States)

    Choi, Sunho; Gray, McMahan L; Jones, Christopher W

    2011-05-23

    Silica supported poly(ethyleneimine) (PEI) materials are prepared via impregnation and demonstrated to be promising adsorbents for CO(2) capture from ultra-dilute gas streams such as ambient air. A prototypical class 1 adsorbent, containing 45 wt% PEI (PEI/silica), and two new modified PEI-based aminosilica adsorbents, derived from PEI modified with 3-aminopropyltrimethoxysilane (A-PEI/silica) or tetraethyl orthotitanate (T-PEI/silica), are prepared and characterized by using thermogravimetric analysis and FTIR spectroscopy. The modifiers are shown to enhance the thermal stability of the polymer-oxide composites, leading to higher PEI decomposition temperatures. The modified adsorbents present extremely high CO(2) adsorption capacities under conditions simulating ambient air (400 ppm CO(2) in inert gas), exceeding 2 mol(CO (2)) kg(sorbent)(-1), as well as enhanced adsorption kinetics compared to conventional class 1 sorbents. The new adsorbents show excellent stability in cyclic adsorption-desorption operations, even under dry conditions in which aminosilica adsorbents are known to lose capacity due to urea formation. Thus, the adsorbents of this type can be considered promising materials for the direct capture of CO(2) from ultra-dilute gas streams such as ambient air. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The elemental composition of purple sea urchin (Strongylocentrotus purpuratus) calcite and potential effects of pCO2 during early life stages

    Science.gov (United States)

    LaVigne, M.; Hill, T. M.; Sanford, E.; Gaylord, B.; Russell, A. D.; Lenz, E. A.; Hosfelt, J. D.; Young, M. K.

    2013-06-01

    Ocean acidification will likely have negative impacts on invertebrates producing skeletons composed of calcium carbonate. Skeletal solubility is partly controlled by the incorporation of "foreign" ions (e.g. magnesium) into the crystal lattice of these skeletal structures, a process that is sensitive to a variety of biological and environmental factors. Here we explore effects of life stage, oceanographic region of origin, and changes in the partial pressure of carbon dioxide in seawater (pCO2) on trace elemental composition in the purple sea urchin (Strongylocentrotus purpuratus). We show that, similar to other urchin taxa, adult purple sea urchins have the ability to precipitate skeleton composed of a range of biominerals spanning low- to high-Mg calcites. Mg / Ca and Sr / Ca ratios were substantially lower in adult spines compared to adult tests. On the other hand, trace elemental composition was invariant among adults collected from four oceanographically distinct regions spanning a range of carbonate chemistry conditions (Oregon, Northern California, Central California, and Southern California). Skeletons of newly settled juvenile urchins that originated from adults from the four regions exhibited intermediate Mg / Ca and Sr / Ca between adult spine and test endmembers, indicating that skeleton precipitated during early life stages is more soluble than adult spines and less soluble than adult tests. Mean skeletal Mg / Ca or Sr / Ca of juvenile skeleton did not vary with source region when larvae were reared under present-day, global-average seawater carbonate conditions (400 μatm; pHT = 8.02 ± 0.03 1 SD; Ωcalcite = 3.3 ± 0.2 1 SD). However, when reared under elevated pCO2 (900 μatm; pHT = 7.73 ± 0.03; Ωcalcite = 1.8 ± 0.1), skeletal Sr / Ca in juveniles exhibited increased variance across the four regions. Although larvae from the northern populations (Oregon, Northern California, Central California) did not exhibit differences in Mg or Sr

  10. The elemental composition of purple sea urchin (Strongylocentrotus purpuratus calcite and potential effects of pCO2 during early life stages

    Directory of Open Access Journals (Sweden)

    M. LaVigne

    2013-06-01

    Full Text Available Ocean acidification will likely have negative impacts on invertebrates producing skeletons composed of calcium carbonate. Skeletal solubility is partly controlled by the incorporation of "foreign" ions (e.g. magnesium into the crystal lattice of these skeletal structures, a process that is sensitive to a variety of biological and environmental factors. Here we explore effects of life stage, oceanographic region of origin, and changes in the partial pressure of carbon dioxide in seawater (pCO2 on trace elemental composition in the purple sea urchin (Strongylocentrotus purpuratus. We show that, similar to other urchin taxa, adult purple sea urchins have the ability to precipitate skeleton composed of a range of biominerals spanning low- to high-Mg calcites. Mg / Ca and Sr / Ca ratios were substantially lower in adult spines compared to adult tests. On the other hand, trace elemental composition was invariant among adults collected from four oceanographically distinct regions spanning a range of carbonate chemistry conditions (Oregon, Northern California, Central California, and Southern California. Skeletons of newly settled juvenile urchins that originated from adults from the four regions exhibited intermediate Mg / Ca and Sr / Ca between adult spine and test endmembers, indicating that skeleton precipitated during early life stages is more soluble than adult spines and less soluble than adult tests. Mean skeletal Mg / Ca or Sr / Ca of juvenile skeleton did not vary with source region when larvae were reared under present-day, global-average seawater carbonate conditions (400 μatm; pHT = 8.02 ± 0.03 1 SD; Ωcalcite = 3.3 ± 0.2 1 SD. However, when reared under elevated pCO2 (900 μatm; pHT = 7.73 ± 0.03; Ωcalcite = 1.8 ± 0.1, skeletal Sr / Ca in juveniles exhibited increased variance across the four regions. Although larvae from the northern populations (Oregon, Northern California, Central California did not exhibit differences in Mg or Sr

  11. Global atmospheric chemistry – which air matters

    Directory of Open Access Journals (Sweden)

    M. J. Prather

    2017-07-01

    Full Text Available An approach for analysis and modeling of global atmospheric chemistry is developed for application to measurements that provide a tropospheric climatology of those heterogeneously distributed, reactive species that control the loss of methane and the production and loss of ozone. We identify key species (e.g., O3, NOx, HNO3, HNO4, C2H3NO5, H2O, HOOH, CH3OOH, HCHO, CO, CH4, C2H6, acetaldehyde, acetone and presume that they can be measured simultaneously in air parcels on the scale of a few km horizontally and a few tenths of a km vertically. As a first step, six global models have prepared such climatologies sampled at the modeled resolution for August with emphasis on the vast central Pacific Ocean basin. Objectives of this paper are to identify and characterize differences in model-generated reactivities as well as species covariances that could readily be discriminated with an unbiased climatology. A primary tool is comparison of multidimensional probability densities of key species weighted by the mass of such parcels or frequency of occurrence as well as by the reactivity of the parcels with respect to methane and ozone. The reactivity-weighted probabilities tell us which parcels matter in this case, and this method shows skill in differentiating among the models' chemistry. Testing 100 km scale models with 2 km measurements using these tools also addresses a core question about model resolution and whether fine-scale atmospheric structures matter to the overall ozone and methane budget. A new method enabling these six global chemistry–climate models to ingest an externally sourced climatology and then compute air parcel reactivity is demonstrated. Such an objective climatology containing these key species is anticipated from the NASA Atmospheric Tomography (ATom aircraft mission (2015–2020, executing profiles over the Pacific and Atlantic Ocean basins. This modeling study addresses a core part of the design of ATom.

  12. The influence of using LPG device on the CO2 emissions from personal passenger cars

    Directory of Open Access Journals (Sweden)

    Viliam Carach

    2007-12-01

    Full Text Available Traffic, mostly the air and car traffic is the biggest producer of CO2 (51% at present. CO2 is one of the most important greenhouse gases with more than 50 % of emissions contributing to this major global ecological problem. A rising concetration of CO2 in the atmosphere leads to higher global temperatures. The main problem is the rise of CO2 emissions in most developed countries despite international undertakings accepted in 80´s. This is the main reason for finding solutions to reduce the amount of CO2 emissions in the traffic. One of many solutions is the use of LPG fuel. The purpose of this article is to quantify the efficiency of using LPG in personal passenger cars.

  13. The pH and pCO2 dependence of sulfate reduction in shallow-sea hydrothermal CO2 – venting sediments (Milos Island, Greece)

    Science.gov (United States)

    Bayraktarov, Elisa; Price, Roy E.; Ferdelman, Timothy G.; Finster, Kai

    2013-01-01

    Microbial sulfate reduction (SR) is a dominant process of organic matter mineralization in sulfate-rich anoxic environments at neutral pH. Recent studies have demonstrated SR in low pH environments, but investigations on the microbial activity at variable pH and CO2 partial pressure are still lacking. In this study, the effect of pH and pCO2 on microbial activity was investigated by incubation experiments with radioactive 35S targeting SR in sediments from the shallow-sea hydrothermal vent system of Milos, Greece, where pH is naturally decreased by CO2 release. Sediments differed in their physicochemical characteristics with distance from the main site of fluid discharge. Adjacent to the vent site (T ~40–75°C, pH ~5), maximal sulfate reduction rates (SRR) were observed between pH 5 and 6. SR in hydrothermally influenced sediments decreased at neutral pH. Sediments unaffected by hydrothermal venting (T ~26°C, pH ~8) expressed the highest SRR between pH 6 and 7. Further experiments investigating the effect of pCO2 on SR revealed a steep decrease in activity when the partial pressure increased from 2 to 3 bar. Findings suggest that sulfate reducing microbial communities associated with hydrothermal vent system are adapted to low pH and high CO2, while communities at control sites required a higher pH for optimal activity. PMID:23658555

  14. Review of CO2 Reduction Technologies using Mineral Carbonation of Iron and Steel Making Slag in Malaysia

    Science.gov (United States)

    Norhana Selamat, Siti; Nor, Nik Hisyamudin Muhd; Rashid, Muhammad Hanif Abdul; Fauzi Ahmad, Mohd; Mohamad, Fariza; Ismail, Al Emran; Fahrul Hassan, Mohd; Turan, Faiz Mohd; Zain, Mohd Zamzuri Mohd; Abu Bakar, Elmi; Seiji, Yokoyama

    2017-10-01

    Climate change, greenhouse gas effect, and global warming is envisioning to turn more awful and more terrible by year. Since the leading cause of global warming is uncontrolled CO2 in atmosphere. The amount of unused steel slag is expected to increment later on, steel industries is one of the mechanical industries that contribute the CO2 emission. That because this businesses deliver carbon in light of powers reductant and substantial volume of steel. The changes of atmosphere these day is truly developing concern and that make steel creator are confronted with test of discovering methods for bringing down CO2 emission. Malaysia is working decidedly in the diminishment of CO2 gas. There are a few techniques in decreasing the amount of CO2 in the air as underlined by the Intergovernmental Panel of Climate Change (IPCC), an organization under the United Country however CCS is an extremely encouraging innovation to moderate CO2 emission in air. Mineral carbonation is another technique to store carbon dioxide permanently, long term stability and vast capacity.

  15. Global Air Quality and Health Co-benefits of Mitigating Near-term Climate Change Through Methane and Black Carbon Emission Controls

    Science.gov (United States)

    Anenberg, Susan C.; Schwartz, Joel; Shindell, Drew Todd; Amann, Markus; Faluvegi, Gregory S.; Klimont, Zbigniew; Janssens-Maenhout, Greet; Pozzoli, Luca; Dingenen, Rita Van; Vignati, Elisabetta; hide

    2012-01-01

    Tropospheric ozone and black carbon (BC), a component of fine particulate matter (PM health benefits of 14 specific emission control measures targeting BC and methane, an ozone precursor, that were selected because of their potential to reduce the rate of climate change over the next 20-40 years. Methods: We simulated the impacts of mitigation measures on outdoor concentrations of PM2.5 and ozone using two composition-climate models, and calculated associated changes in premature PM2.5- and ozone-related deaths using epidemiologically derived concentration-response functions. Results: We estimated that, for PM2.5 and ozone, respectively, fully implementing these measures could reduce global population-weighted average surface concentrations by 23-34% and 7-17% and avoid 0.6-4.4 and 0.04-0.52 million annual premature deaths globally in 2030. More than 80% of the health benefits are estimated to occur in Asia. We estimated that BC mitigation measures would achieve approximately 98% of the deaths that would be avoided if all BC and methane mitigation measures were implemented, due to reduced BC and associated reductions of nonmethane ozone precursor and organic carbon emissions as well as stronger mortality relationships for PM2.5 relative to ozone. Although subject to large uncertainty, these estimates and conclusions are not strongly dependent on assumptions for the concentration-response function. Conclusions: In addition to climate benefits, our findings indicate that the methane and BC emission control measures would have substantial co-benefits for air quality and public health worldwide, potentially reversing trends of increasing air pollution concentrations and mortality in Africa and South, West, and Central Asia. These projected benefits are independent of carbon dioxide mitigation measures. Benefits of BC measures are underestimated because we did not account for benefits from reduced indoor exposures and because outdoor exposure estimates were limited by

  16. Air-sea gas exchange of HCHs and PCBs and enantiomers of α-HCH in the Kattegat Sea region

    International Nuclear Information System (INIS)

    Sundqvist, Kristina L.; Wingfors, Haakan; Brorstoem-Lunden, Eva; Wiberg, Karin

    2004-01-01

    Concentrations and air-water gas exchange of polychlorinated biphenyls (PCBs) and hexachlorocyclohexanes (HCHs) were determined in nine paired air and water samples. The samples were collected monthly in the Kattegat Sea between December 1998 and November 1999. Average fugacity and flux values indicated that PCBs were oversaturated in the water, while HCHs were net deposited. Variations were large over the year, especially during spring and summer. Air parcel back trajectories suggested that air concentrations over the Kattegat Sea are largely dependent of air mass origin. Seasonal trends were detected for airborne HCHs and for PCBs in water. The air and water enantiomeric compositions of α-HCH indicated that a larger portion of α-HCH in air originated from the underlying water during summer than during winter. - Air-water exchange of PCBs and HCHs is studied in the Kattegat Sea and shows to vary seasonally

  17. Global atmospheric changes.

    OpenAIRE

    Piver, W T

    1991-01-01

    Increasing concentrations of CO2 and other greenhouse gases in the atmosphere can be directly related to global warming. In terms of human health, because a major cause of increasing atmospheric concentrations of CO2 is the increased combustion of fossil fuels, global warming also may result in increases in air pollutants, acid deposition, and exposure to ultraviolet (UV) radiation. To understand better the impacts of global warming phenomena on human health, this review emphasizes the proces...

  18. Distribution and air-sea exchange of current-use pesticides (CUPs) from East Asia to the high Arctic Ocean.

    Science.gov (United States)

    Zhong, Guangcai; Xie, Zhiyong; Cai, Minghong; Möller, Axel; Sturm, Renate; Tang, Jianhui; Zhang, Gan; He, Jianfeng; Ebinghaus, Ralf

    2012-01-03

    Surface seawater and marine boundary layer air samples were collected on the ice-breaker R/V Xuelong (Snow Dragon) from the East China Sea to the high Arctic (33.23-84.5° N) in July to September 2010 and have been analyzed for six current-use pesticides (CUPs): trifluralin, endosulfan, chlorothalonil, chlorpyrifos, dacthal, and dicofol. In all oceanic air samples, the six CUPs were detected, showing highest level (>100 pg/m(3)) in the Sea of Japan. Gaseous CUPs basically decreased from East Asia (between 36.6 and 45.1° N) toward Bering and Chukchi Seas. The dissolved CUPs in ocean water ranged widely from air. Trifluralin in seawater was relatively high in the Sea of Japan (35.2° N) and evenly distributed between 36.9 and 72.5° N, but it remained below the detection limit at the highest northern latitudes in Chukchi Sea. In contrast with other CUPs, concentrations of chlorothalonil and dacthal were more abundant in Chukchi Sea and in East Asia. The air-sea gas exchange of CUPs was generally dominated by net deposition. Latitudinal trends of fugacity ratios of α-endosulfan, chlorothalonil, and dacthal showed stronger deposition of these compounds in East Asia than in Chukchi Sea, while trifluralin showed stronger deposition in Chukchi Sea (-455 ± 245 pg/m(2)/day) than in the North Pacific (-241 ± 158 pg/m(2)/day). Air-sea gas exchange of chlorpyrifos varied from net volatilizaiton in East Asia (<40° N) to equilibrium or net deposition in the North Pacific and the Arctic.

  19. Radon-calibrated emissions of CO2 from South Africa

    International Nuclear Information System (INIS)

    Gaudry, A.; Polian, G.; Ardouin, B.; Lambert, G.

    1990-01-01

    Atmospheric CO 2 and 222 Rn have been monitored at Amsterdam Island since 1980. Data were selected in order to eliminate any local influence. Typical CO 2 concentrations of the subantarctic marine atmosphere can be determined by selecting those values for which 222 Rn radioactivity was particularly low: less than 1 pCi m -3 . 222 Rn concentrations higher than 2 pCi m -3 are mainly due to injections into the subantarctic atmosphere from the continental source of South Africa. The passage of air masses under continental influence also shows typical CO 2 variations, well correlated with 222 Rn variations. From the knowledge of the global continental fluxes of 222 Rn, it has been possible to estimate CO 2 fluxes into the atmosphere from South Africa. The mean CO 2 flux corresponding to a 6-month period from May to October is about 5 millimole m -2 h -1 . Continental CO 2 emissions reach a maximum in August. (orig.)

  20. Global warming and coral reefs. Chikyu ondanka to sangosho

    Energy Technology Data Exchange (ETDEWEB)

    Kayane, H [Geological Survey of Japan, Tokyo (Japan)

    1991-09-01

    A summary is described with respect to the relation of the global warming with coral reefs on the environmental estimation based on the sea level rise, and the development of counter-technologies utilizing the CO{sub 2} fixing capability of coral reefs. if no measures are taken to reduce discharge of greenhouse effective gases, the air temperature will rise by 1{degree}C by the year 2025, and 3{degree}C by 2100. The thermal expansion of sea water and partial melting of land ice caused from the said temperature rise will cause the annual sea level rising speed to climb to 6 mm in the next century. It is estimated that the sea level will be elevated higher by 25 cm by the year 2025, 65 cm by 2100, and the maximum of 1 m than the present level. The upward growth rate of reef ridges is between 1m and 4m in 1000 years, and the growth of reef rides as the frameworks of coral reefs and lime alga ridges can not catch up the sea level rise of 6 mm/year. This may cause a possibility of sea water erosion or inundation. As a possible contermeasure, an expectation is placed on structuring coral reef eco-factories which may be possible as a result of elucidating the CO{sub 2} fixing mechanism in coral reefs and utilizing the capability to its maximum. 23 refs., 7 figs., 1 tab.

  1. AIRS Views of Anthropogenic and Biomass Burning CO: INTEX-B/MILAGRO and TEXAQS/GoMACCS

    Science.gov (United States)

    McMillan, W. W.; Warner, J.; Wicks, D.; Barnet, C.; Sachse, G.; Chu, A.; Sparling, L.

    2006-12-01

    Utilizing the Atmospheric InfraRed Sounder's (AIRS) unique spatial and temporal coverage, we present observations of anthropogenic and biomass burning CO emissions as observed by AIRS during the 2006 field experiments INTEX-B/MILAGRO and TEXAQS/GoMACCS. AIRS daily CO maps covering more than 75% of the planet demonstrate the near global transport of these emissions. AIRS day/night coverage of significant portions of the Earth often show substantial changes in 12 hours or less. However, the coarse vertical resolution of AIRS retrieved CO complicates its interpretation. For example, extensive CO emissions are evident from Asia during April and May 2006, but it is difficult to determine the relative contributions of biomass burning in Thailand vs. domestic and industrial emissions from China. Similarly, sometimes AIRS sees enhanced CO over and downwind of Mexico City and other populated areas. AIRS low information content and decreasing sensitivity in the boundary layer can result in underestimates of CO total columns and free tropospheric abundances. Building on our analyses of INTEX-A/ICARTT data from 2004, we present comparisons with INTEX-B/MILAGRO and TEXAQS/GoMACCS in situ aircraft measurements and other satellite CO observations. The combined analysis of AIRS CO, water vapor and O3 retrievals; MODIS aerosol optical depths; and forward trajectory computations illuminate a variety of dynamical processes in the troposphere.

  2. An inorganic carbon transport system responsible for acclimation specific to air levels of CO2 in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Wang, Yingjun; Spalding, Martin H

    2006-06-27

    Many photosynthetic microorganisms acclimate to CO(2) limited environments by induction and operation of CO(2)-concentrating mechanisms (CCMs). Despite their central role in CCM function, inorganic carbon (Ci) transport systems never have been identified in eukaryotic photosynthetic organisms. In the green alga Chlamydomonas reinhardtii, a mutant, pmp1, was described in 1983 with deficiencies in Ci transport, and a Pmp1 protein-associated Ci uptake system has been proposed to be responsible for Ci uptake in low CO(2) (air level)-acclimated cells. However, even though pmp1 represents the only clear genetic link to Ci transport in microalgae and is one of only a very few mutants directly affecting the CCM itself, the identity of Pmp1 has remained unknown. Physiological analyses indicate that C. reinhardtii possesses multiple Ci transport systems responsible for acclimation to different levels of limiting CO(2) and that the Pmp1-associated transport system is required specifically for low (air level) CO(2) acclimation. In the current study, we identified and characterized a pmp1 allelic mutant, air dier 1 (ad1) that, like pmp1, cannot grow in low CO(2) (350 ppm) but can grow either in high CO(2) (5% CO(2)) or in very low CO(2) (<200 ppm). Molecular analyses revealed that the Ad1/Pmp1 protein is encoded by LciB, a gene previously identified as a CO(2)-responsive gene. LciB and three related genes in C. reinhardtii compose a unique gene family that encode four closely related, apparently soluble plastid proteins with no clearly identifiable conserved motifs.

  3. Sea urchin-likeNiCoO2@C nanocompositesforLi-ionbatteries and supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Jin; Xi, Kai; Tan, Guoqiang; Chen, Sheng; Zhao, Teng; Coxon, Paul R.; Kim, Hyun-Kyung; Ding, Shujiang; Yang, Yuan; Kumar, R. Vasant; Lu, Jun

    2016-09-01

    The rational construction of battery electrode architecture that offers both high energy and power densities on a gravimetric and volumetric basis is a critical concern but achieving this aim is beset by many fundamental and practical challenges. Here we report a new sea urchin-like NiCoO2@C composite electrode architecture composed of NiCoO2 nanosheets grown on hollow concave carbon disks. Such a unique structural design not only preserves all the advantages of hollow structures but also increases the packing density of the active materials. NiCoO2 nanosheets grown on carbon disks promote a high utilization of active materials in redox reactions by reducing the path length for Li+ ions and for electron transfer. Meanwhile, the hollow concave carbon not only reduces the volume change, but also improves the volumetric energy density of the entire composite electrode. As a result, the nanocomposites exhibit superior electrochemical performance measured in terms of high capacity/capacitance, stable cycling performance and good rate capability in both Li-ion battery and supercapacitor applications. Such nanostructured composite electrode may also have great potential for application in other electrochemical devices.

  4. KERENTANAN KAWASAN TEPI AIR TERHADAP KENAIKAN PERMUKAAN AIR LAUT Kasus Kawasan Tepi Air Kota Surabaya

    Directory of Open Access Journals (Sweden)

    Iwan Suprijanto

    2003-01-01

    Full Text Available Even though global warming are still debates whether it will or not be happened, the changes on climate will influence activities of human. Regarding global warming issue, one of the impact that is very interesting to be investigated is sea level rise. Sea level rise is predicted has very big impact since, in general, in coastal areas locate a lot of important activities for such city or country. On the context of Indonesian locality, most of big cities such as Jakarta, Surabaya, Semarang, Makasar, etc. are located on the coastal area. Since a lot of important activities located on those cities, in general, sea level rise will influence the development processes of those cities. On the basis of the observation gathering in Surabaya City, the impact of sea level rise will influence not only the development of coastal area but also development of Surabaya City in general. The influence is because the area accommodates activities which are very important in city development both for present and future. The activities are port, industrial estate and location for new housing. Abstract in Bahasa Indonesia : Terlepas dari ketidakpastian mengenai terjadi atau tidaknya pemanasan global, setiap perubahan iklim di bumi akan memberikan dampak terhadap kelangsungan hidup manusia. Salah satu kajian yang saat ini banyak dilakukan berkaitan dengan isu pemanasan global adalah mengenai kenaikan permukaan air laut. Pengkajian mengenai kenaikan permukaan air laut tersebut penting mengingat dampak yang akan ditimbulkannya dan dengan kenyataan secara umum kawasan tepi air memegang peranan penting dalam perkembangan suatu kota ataupun negara. Hal ditandai dengan banyaknya aktivitas yang berlokasi di kawasan tepi air. Kondisi geografis Indonesia dengan duapertiga bagian wilayahnya adalah perairan, menjadikan Indonesia memiliki garis pantai terpanjang di dunia. Hal tersebut menjadikan pula beberapa bagian wilayah di Indonesia merupakan kawasan pesisir atau tepi air

  5. A sublimation technique for high-precision measurements of δ13CO2 and mixing ratios of CO2 and N2O from air trapped in ice cores

    Directory of Open Access Journals (Sweden)

    H. Fischer

    2011-07-01

    Full Text Available In order to provide high precision stable carbon isotope ratios (δ13CO2 or δ13C of CO2 from small bubbly, partially and fully clathrated ice core samples we developed a new method based on sublimation coupled to gas chromatography-isotope ratio mass spectrometry (GC-IRMS. In a first step the trapped air is quantitatively released from ~30 g of ice and CO2 together with N2O are separated from the bulk air components and stored in a miniature glass tube. In an off-line step, the extracted sample is introduced into a helium carrier flow using a minimised tube cracker device. Prior to measurement, N2O and organic sample contaminants are gas chromatographically separated from CO2. Pulses of a CO2/N2O mixture are admitted to the tube cracker and follow the path of the sample through the system. This allows an identical treatment and comparison of sample and standard peaks. The ability of the method to reproduce δ13C from bubble and clathrate ice is verified on different ice cores. We achieve reproducibilities for bubble ice between 0.05 ‰ and 0.07 ‰ and for clathrate ice between 0.05 ‰ and 0.09 ‰ (dependent on the ice core used. A comparison of our data with measurements on bubble ice from the same ice core but using a mechanical extraction device shows no significant systematic offset. In addition to δ13C, the CO2 and N2O mixing ratios can be volumetrically derived with a precision of 2 ppmv and 8 ppbv, respectively.

  6. Near-IR laser-based spectrophotometer for comparative analysis of isotope content of CO2 in exhale air samples

    International Nuclear Information System (INIS)

    Stepanov, E V; Glushko, A N; Kasoev, S G; Koval', A V; Lapshin, D A

    2011-01-01

    We present a laser spectrophotometer aimed at high-accuracy comparative analysis of content of 12 CO 2 and 13 CO 2 isotope modifications in the exhale air samples and based on a tunable near-IR diode laser (2.05 μm). The two-channel optical scheme of the spectrophotometer and the special digital system for its control are described. An algorithm of spectral data processing aimed at determining the difference in the isotope composition of gas mixtures is proposed. A few spectral regions (near 4880 cm -1 ) are determined to be optimal for analysis of relative content of 12 CO 2 and 13 CO 2 in the exhale air. The use of the proposed spectrophotometer scheme and the developed algorithm makes the results of the analysis less susceptible to the influence of the interference in optical elements, to the absorption in the open atmosphere, to the slow drift of the laser pulse envelope, and to the offset of optical channels. The sensitivity of the comparative analysis of the isotope content of CO 2 in exhale air samples, achieved using the proposed scheme, is estimated to be nearly 0.1‰.

  7. Biopolymers form a gelatinous microlayer at the air-sea interface when Arctic sea ice melts.

    Science.gov (United States)

    Galgani, Luisa; Piontek, Judith; Engel, Anja

    2016-07-20

    The interface layer between ocean and atmosphere is only a couple of micrometers thick but plays a critical role in climate relevant processes, including the air-sea exchange of gas and heat and the emission of primary organic aerosols (POA). Recent findings suggest that low-level cloud formation above the Arctic Ocean may be linked to organic polymers produced by marine microorganisms. Sea ice harbors high amounts of polymeric substances that are produced by cells growing within the sea-ice brine. Here, we report from a research cruise to the central Arctic Ocean in 2012. Our study shows that microbial polymers accumulate at the air-sea interface when the sea ice melts. Proteinaceous compounds represented the major fraction of polymers supporting the formation of a gelatinous interface microlayer and providing a hitherto unrecognized potential source of marine POA. Our study indicates a novel link between sea ice-ocean and atmosphere that may be sensitive to climate change.

  8. Assessment of the sea-ice carbon pump: Insights from a three-dimensional ocean-sea-ice biogeochemical model (NEMO-LIM-PISCES

    Directory of Open Access Journals (Sweden)

    Sébastien Moreau

    2016-08-01

    Full Text Available Abstract The role of sea ice in the carbon cycle is minimally represented in current Earth System Models (ESMs. Among potentially important flaws, mentioned by several authors and generally overlooked during ESM design, is the link between sea-ice growth and melt and oceanic dissolved inorganic carbon (DIC and total alkalinity (TA. Here we investigate whether this link is indeed an important feature of the marine carbon cycle misrepresented in ESMs. We use an ocean general circulation model (NEMO-LIM-PISCES with sea-ice and marine carbon cycle components, forced by atmospheric reanalyses, adding a first-order representation of DIC and TA storage and release in/from sea ice. Our results suggest that DIC rejection during sea-ice growth releases several hundred Tg C yr−1 to the surface ocean, of which < 2% is exported to depth, leading to a notable but weak redistribution of DIC towards deep polar basins. Active carbon processes (mainly CaCO3 precipitation but also ice-atmosphere CO2 fluxes and net community production increasing the TA/DIC ratio in sea-ice modified ocean-atmosphere CO2 fluxes by a few Tg C yr−1 in the sea-ice zone, with specific hemispheric effects: DIC content of the Arctic basin decreased but DIC content of the Southern Ocean increased. For the global ocean, DIC content increased by 4 Tg C yr−1 or 2 Pg C after 500 years of model run. The simulated numbers are generally small compared to the present-day global ocean annual CO2 sink (2.6 ± 0.5 Pg C yr−1. However, sea-ice carbon processes seem important at regional scales as they act significantly on DIC redistribution within and outside polar basins. The efficiency of carbon export to depth depends on the representation of surface-subsurface exchanges and their relationship with sea ice, and could differ substantially if a higher resolution or different ocean model were used.

  9. Fast Atmosphere-Ocean Model Runs with Large Changes in CO2

    Science.gov (United States)

    Russell, Gary L.; Lacis, Andrew A.; Rind, David H.; Colose, Christopher; Opstbaum, Roger F.

    2013-01-01

    How does climate sensitivity vary with the magnitude of climate forcing? This question was investigated with the use of a modified coupled atmosphere-ocean model, whose stability was improved so that the model would accommodate large radiative forcings yet be fast enough to reach rapid equilibrium. Experiments were performed in which atmospheric CO2 was multiplied by powers of 2, from 1/64 to 256 times the 1950 value. From 8 to 32 times, the 1950 CO2, climate sensitivity for doubling CO2 reaches 8 C due to increases in water vapor absorption and cloud top height and to reductions in low level cloud cover. As CO2 amount increases further, sensitivity drops as cloud cover and planetary albedo stabilize. No water vapor-induced runaway greenhouse caused by increased CO2 was found for the range of CO2 examined. With CO2 at or below 1/8 of the 1950 value, runaway sea ice does occur as the planet cascades to a snowball Earth climate with fully ice covered oceans and global mean surface temperatures near 30 C.

  10. Models for Comparing Air-Only and Sea/Air Transportation of Wartime Deployment Cargo

    National Research Council Canada - National Science Library

    Theres, Michael

    1998-01-01

    ...) to an overseas Port of Debarkation (POD). This thesis evaluates a proposal to load air-transportable cargo aboard vessels at CONUS seaports and to ship that cargo to an appropriately located sea-air-interface (SAI...

  11. Benefits of Leapfrogging to Superefficiency and Low Global Warming Potential Refrigerants in Room Air Conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Nihar [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area; Wei, Max [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area; Letschert, Virginie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area; Phadke, Amol [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area

    2015-10-01

    Hydrofluorocarbons (HFCs) emitted from uses such as refrigerants and thermal insulating foam, are now the fastest growing greenhouse gases (GHGs), with global warming potentials (GWP) thousands of times higher than carbon dioxide (CO2). Because of the short lifetime of these molecules in the atmosphere, mitigating the amount of these short-lived climate pollutants (SLCPs) provides a faster path to climate change mitigation than control of CO2 alone. This has led to proposals from Africa, Europe, India, Island States, and North America to amend the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) to phase-down high-GWP HFCs. Simultaneously, energy efficiency market transformation programs such as standards, labeling and incentive programs are endeavoring to improve the energy efficiency for refrigeration and air conditioning equipment to provide life cycle cost, energy, GHG, and peak load savings. In this paper we provide an estimate of the magnitude of such GHG and peak electric load savings potential, for room air conditioning, if the refrigerant transition and energy efficiency improvement policies are implemented either separately or in parallel. We find that implementing HFC refrigerant transition and energy efficiency improvement policies in parallel for room air conditioning, roughly doubles the benefit of either policy implemented separately. We estimate that shifting the 2030 world stock of room air conditioners from the low efficiency technology using high-GWP refrigerants to higher efficiency technology and low-GWP refrigerants in parallel would save between 340-790 gigawatts (GW) of peak load globally, which is roughly equivalent to avoiding 680-1550 peak power plants of 500MW each. This would save 0.85 GT/year annually in China equivalent to over 8 Three Gorges dams and over 0.32 GT/year annually in India equivalent to roughly twice India’s 100GW solar mission target. While there is some uncertainty associated with

  12. Global change in marine ecosystems: implications for semi-enclosed Arabian seas

    KAUST Repository

    Duarte, Carlos M.

    2015-12-07

    Global Change has been defined as the impact of human activities on the key processes that determine the functioning of the Biosphere. Global Change is a major threat for marine ecosystems and includes climate change as well as other global impacts such as inputs of pollutants, overfishing and coastal sprawl. The Semi-enclosed Arabian Seas, including the Arabian Gulf and the Red Sea, have supported human livelihoods in the Arabian Peninsula over centuries and continue to do so, but are also threatened by Global Change. These threats are particularly severe as Semi-enclosed Arabian Seas already present rather extreme conditions, in terms of temperature, salinity and oxygen concentration. The vulnerability of the unique marine ecosystems of the Semi-enclosed Arabian Seas to Global Change vectors is largely unknown, but predictions based on first principles suggest that they may be at or near the tipping point for many pressures, such as warming and hypoxia. There is an urgent need to implement international collaborative research programs to accelerate our understanding of the vulnerability of Semi-enclosed Arabian Seas to Global Change vectors in order to inform conservation and management plans to ensure these Seas continue to support the livelihoods and well-being of the Arab nations.

  13. Development and modelling of a steel slag filter effluent neutralization process with CO2-enriched air from an upstream bioprocess.

    Science.gov (United States)

    Bove, Patricia; Claveau-Mallet, Dominique; Boutet, Étienne; Lida, Félix; Comeau, Yves

    2018-02-01

    The main objective of this project was to develop a steel slag filter effluent neutralization process by acidification with CO 2 -enriched air coming from a bioprocess. Sub-objectives were to evaluate the neutralization capacity of different configurations of neutralization units in lab-scale conditions and to propose a design model of steel slag effluent neutralization. Two lab-scale column neutralization units fed with two different types of influent were operated at hydraulic retention time of 10 h. Tested variables were mode of flow (saturated or percolating), type of media (none, gravel, Bionest and AnoxKaldnes K3), type of air (ambient or CO 2 -enriched) and airflow rate. One neutralization field test (saturated and no media, 2000-5000 ppm CO 2 , sequential feeding, hydraulic retention time of 7.8 h) was conducted for 7 days. Lab-scale and field-scale tests resulted in effluent pH of 7.5-9.5 when the aeration rate was sufficiently high. A model was implemented in the PHREEQC software and was based on the carbonate system, CO 2 transfer and calcite precipitation; and was calibrated on ambient air lab tests. The model was validated with CO 2 -enriched air lab and field tests, providing satisfactory validation results over a wide range of CO 2 concentrations. The flow mode had a major impact on CO 2 transfer and hydraulic efficiency, while the type of media had little influence. The flow mode also had a major impact on the calcite surface concentration in the reactor: it was constant in saturated mode and was increasing in percolating mode. Predictions could be made for different steel slag effluent pH and different operation conditions (hydraulic retention time, CO 2 concentration, media and mode of flow). The pH of the steel slag filter effluent and the CO 2 concentration of the enriched air were factors that influenced most the effluent pH of the neutralization process. An increased concentration in CO 2 in the enriched air reduced calcite precipitation

  14. Effect of air composition (N2, O2, Ar, and H2O on CO2 and CH4 measurement by wavelength-scanned cavity ring-down spectroscopy: calibration and measurement strategy

    Directory of Open Access Journals (Sweden)

    K. Katsumata

    2012-11-01

    Full Text Available We examined potential interferences from water vapor and atmospheric background gases (N2, O2, and Ar, and biases by isotopologues of target species, on accurate measurement of atmospheric CO2 and CH4 by means of wavelength-scanned cavity ring-down spectroscopy (WS-CRDS. Changes of the background gas mole fractions in the sample air substantially impacted the CO2 and CH4 measurements: variation of CO2 and CH4 due to relative increase of each background gas increased as Ar 2 2, suggesting similar relation for the pressure-broadening effects (PBEs among the background gas. The pressure-broadening coefficients due to variations in O2 and Ar for CO2 and CH4 are empirically determined from these experimental results. Calculated PBEs using the pressure-broadening coefficients are linearly correlated with the differences between the mole fractions of O2 and Ar and their ambient abundances. Although the PBEs calculation showed that impact of natural variation of O2 is negligible on the CO2 and CH4 measurements, significant bias was inferred for the measurement of synthetic standard gases. For gas standards balanced with purified air, the PBEs were estimated to be marginal (up to 0.05 ppm for CO2 and 0.01 ppb for CH4 although the PBEs were substantial (up to 0.87 ppm for CO2 and 1.4 ppb for CH4 for standards balanced with synthetic air. For isotopic biases on CO2 measurements, we compared experimental results and theoretical calculations, which showed excellent agreement within their uncertainty. We derived instrument-specific water correction functions empirically for three WS-CRDS instruments (Picarro EnviroSense 3000i, G-1301, and G-2301, and evaluated the transferability of the water correction function from G-1301 among these instruments. Although the transferability was not proven, no significant difference was found in the water vapor correction function for the investigated WS-CRDS instruments as well as the instruments reported in the past

  15. Hypercarbic cardiorespiratory reflexes in the facultative air-breathing fish jeju (Hoplerythrinus unitaeniatus): the role of branchial CO2 chemoreceptors.

    Science.gov (United States)

    de Lima Boijink, Cheila; Florindo, Luiz Henrique; Leite, Cleo A Costa; Kalinin, Ana Lúcia; Milsom, William K; Rantin, Francisco Tadeu

    2010-08-15

    The aim of the present study was to determine the roles that externally versus internally oriented CO(2)/H(+)-sensitive chemoreceptors might play in promoting cardiorespiratory responses to environmental hypercarbia in the air-breathing fish, Hoplerythrinus unitaeniatus (jeju). Fish were exposed to graded hypercarbia (1, 2.5, 5, 10 and 20% CO(2)) and also to graded levels of environmental acidosis (pH approximately 7.0, 6.0, 5.8, 5.6, 5.3 and 4.7) equal to the pH levels of the hypercarbic water to distinguish the relative roles of CO(2) versus H(+). We also injected boluses of CO(2)-equilibrated solutions (5, 10 and 20% CO(2)) and acid solutions equilibrated to the same pH as the CO(2) boluses into the caudal vein (internal) and buccal cavity (external) to distinguish between internal and external stimuli. The putative location of the chemoreceptors was determined by bilateral denervation of branches of cranial nerves IX (glossopharyngeal) and X (vagus) to the gills. The data indicate that the chemoreceptors eliciting bradycardia, hypertension and gill ventilatory responses (increased frequency and amplitude) to hypercarbia are exclusively branchial, externally oriented and respond specifically to changes in CO(2) and not H(+). Those involved in producing the cardiovascular responses appeared to be distributed across all gill arches while those involved in the gill ventilatory responses were located primarily on the first gill arch. Higher levels of aquatic CO(2) depressed gill ventilation and stimulated air breathing. The chemoreceptors involved in producing air breathing in response to hypercarbia also appeared to be branchial, distributed across all gill arches and responded specifically to changes in aquatic CO(2). This would suggest that chemoreceptor groups with different orientations (blood versus water) are involved in eliciting air-breathing responses to hypercarbia in jeju.

  16. Causes of variation among rice models in yield response to CO2 examined with Free-Air CO2 Enrichment and growth chamber experiments.

    Science.gov (United States)

    Hasegawa, Toshihiro; Li, Tao; Yin, Xinyou; Zhu, Yan; Boote, Kenneth; Baker, Jeffrey; Bregaglio, Simone; Buis, Samuel; Confalonieri, Roberto; Fugice, Job; Fumoto, Tamon; Gaydon, Donald; Kumar, Soora Naresh; Lafarge, Tanguy; Marcaida Iii, Manuel; Masutomi, Yuji; Nakagawa, Hiroshi; Oriol, Philippe; Ruget, Françoise; Singh, Upendra; Tang, Liang; Tao, Fulu; Wakatsuki, Hitomi; Wallach, Daniel; Wang, Yulong; Wilson, Lloyd Ted; Yang, Lianxin; Yang, Yubin; Yoshida, Hiroe; Zhang, Zhao; Zhu, Jianguo

    2017-11-01

    The CO 2 fertilization effect is a major source of uncertainty in crop models for future yield forecasts, but coordinated efforts to determine the mechanisms of this uncertainty have been lacking. Here, we studied causes of uncertainty among 16 crop models in predicting rice yield in response to elevated [CO 2 ] (E-[CO 2 ]) by comparison to free-air CO 2 enrichment (FACE) and chamber experiments. The model ensemble reproduced the experimental results well. However, yield prediction in response to E-[CO 2 ] varied significantly among the rice models. The variation was not random: models that overestimated at one experiment simulated greater yield enhancements at the others. The variation was not associated with model structure or magnitude of photosynthetic response to E-[CO 2 ] but was significantly associated with the predictions of leaf area. This suggests that modelled secondary effects of E-[CO 2 ] on morphological development, primarily leaf area, are the sources of model uncertainty. Rice morphological development is conservative to carbon acquisition. Uncertainty will be reduced by incorporating this conservative nature of the morphological response to E-[CO 2 ] into the models. Nitrogen levels, particularly under limited situations, make the prediction more uncertain. Improving models to account for [CO 2 ] × N interactions is necessary to better evaluate management practices under climate change.

  17. Global CO_2-energy emissions in 2007. China becomes the largest emitter along with the United States - June 2008

    International Nuclear Information System (INIS)

    2008-01-01

    China becomes the largest emitter along with the United States. Contents: 1990-2007 evolution (key figures of Yearly average evolutions); Global CO_2-energy emissions in 2007: 27,3 GtCO_2; Global CO_2-energy emissions have increased by 3,2% in 2007, largely driven by China. Since 1990, China has more than doubled its CO_2-energy emissions, to reach the same emission level as the USA in 2007. Two very contrasting tendencies appear since 1990: stabilization of emissions in Annex B countries, boom in China and India. Since 1990, more than half of CO_2-energy emissions growth is (logically) due to coal. (authors)

  18. The global carbon nation: Status of CO2 capture, storage and utilization

    Science.gov (United States)

    Kocs, Elizabeth A.

    2017-07-01

    As the world transitions toward cleaner and more sustainable energy generation, Carbon Capture and Sequestration/Storage (CCS) plays an essential role in the portfolio of technologies to help reduce global greenhouse gas (GHG) emissions. The projected increase in population size and its resulting increase in global energy consumption, for both transportation and the electricity grid —the largest emitters of greenhouse gases, will continue to add to current CO2 emissions levels during this transition. Since eighty percent of today's global energy continues to be generated by fossil fuels, a shift to low-carbon energy sources will take many decades. In recent years, shifting to renewables and increasing energy efficiencies have taken more importance than deploying CCS. Together, this triad —renewables, energy efficiency, and CCS— represent a strong paradigm for achieving a carbon-free world. Additionally, the need to accelerate CCS in developing economies like China and India are of increasing concern since migration to renewables is unlikely to occur quickly in those countries. CCS of stationary sources, accounting for only 20% reduction in emissions, as well as increasing efficiency in current systems are needed for major reductions in emissions. A rising urgency for fifty to eighty percent reduction of CO2 emissions by 2050 and one hundred percent reduction by 2100 makes CCS all that more critical in the transition to a cleaner-energy future globally.

  19. Co-benefits from CO{sub 2}-emission reduction measurements in Shanxi, China - a first assessment

    Energy Technology Data Exchange (ETDEWEB)

    Aunan, Kristin; Fang, Jinghua; Li, Guanghai; Seip, Hans Martin; Vennemo, Haakon

    2000-05-01

    The largest local and regional air pollution problems are usually found in countries without emission reduction obligations in the Kyoto protocol. Thus, in many Chinese cities the concentrations of SO{sub 2} and particulates in the air by far exceed the WHO air quality guidelines. This report analyses a set of CO{sub 2}-reducing abatement options related to coal consumption in Shanxi, China. The costs and potential for abatement are investigated for different economic sectors and the entailed emission reductions are estimated in terms of CO{sub 2}, SO{sub 2} and particles. The present population-weighted exposure level for particles and SO{sub 2} is estimated and the reduced population exposure resulting from the abatement measures is assessed. Exposure-response functions from Chinese and international epidemiology are used to indicate the health effects of applying the measures. An economic evaluation of the reduced health effect is made by applying unit prices of health impacts based on the damage cost approach. The present agricultural crop loss due to enhanced levels of surface ozone are estimated. It is found that the CO{sub 2}-reducing abatement options in Shanxi are profitable in a socioeconomic sense. But there is a certain lack of synergy between the options with respect to their effectiveness in meeting local, regional and global environmental concerns.

  20. The global mean sea surface model WHU2013

    Directory of Open Access Journals (Sweden)

    Taoyong Jin

    2016-05-01

    Full Text Available The mean sea surface (MSS model is an important reference for the study of charting datum and sea level change. A global MSS model named WHU2013, with 2′ × 2′ spatial resolution between 80°S and 84°N, is established in this paper by combining nearly 20 years of multi-satellite altimetric data that include Topex/Poseidon (T/P, Jason-1, Jason-2, ERS-2, ENVISAT and GFO Exact Repeat Mission (ERM data, ERS-1/168, Jason-1/C geodetic mission data and Cryosat-2 low resolution mode (LRM data. All the ERM data are adjusted by the collinear method to achieve the mean along-track sea surface height (SSH, and the combined dataset of T/P, Jason-1 and Jason-2 from 1993 to 2012 after collinear adjustment is used as the reference data. The sea level variations in the non-ERM data (geodetic mission data and LRM data are mainly investigated, and a combined method is proposed to correct the sea level variations between 66°S and 66°N by along-track sea level variation time series and beyond 66°S or 66°N by seasonal sea level variations. In the crossover adjustment between multi-altimetric data, a stepwise method is used to solve the problem of inconsistency in the reference data between the high and low latitude regions. The proposed model is compared with the CNES-CLS2011 and DTU13 MSS models, and the standard derivation (STD of the differences between the models is about 5 cm between 80°S and 84°N, less than 3 cm between 66°S and 66°N, and less than 4 cm in the China Sea and its adjacent sea. Furthermore, the three models exhibit a good agreement in the SSH differences and the along-track gradient of SSH following comparisons with satellite altimetry data.

  1. GHRSST Level 4 MW_IR_OI Global Foundation Sea Surface Temperature analysis (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) global Level 4 sea surface temperature analysis produced daily on a 0.81 degree grid at Remote Sensing...

  2. GHRSST Level 4 AVHRR_OI Global Blended Sea Surface Temperature Analysis (GDS version 2) from NCEI (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) global Level 4 sea surface temperature analysis produced daily on a 0.25 degree grid at the NOAA...

  3. The impacts of CO2 capture on transboundary air pollution in the Netherlands

    NARCIS (Netherlands)

    Koornneef, J.M.; van Harmelen, T.; van Horssen, A.; van Gijlswijk, R.; Ramirez-Ramirez, A.; Faaij, A.P.C.; Turkenburg, W.C.

    2009-01-01

    The focus of this research is to develop a first assessment of the impacts of the implementation of CO2 capture technologies in the Dutch power sector on the transboundary air pollution (SO2,NOX,NH3,NMV OC,PM10 and PM2.5) levels in 2020. Results show that for the power sector SO2 emissions will be

  4. Simulation of atmospheric CO2 over Europe and western Siberia using the regional scale model REMO

    International Nuclear Information System (INIS)

    Chevillard, A.; Ciais, P.; Lafont, S.

    2002-01-01

    The spatial distribution and the temporal variability of atmospheric CO 2 over Europe and western Siberia are investigated using the regional atmospheric model, REMO. The model, of typical horizontal resolution 50 km, is part of a nested modelling framework that has been established as a concerted action during the EUROSIBERIAN CARBONFLUX project. In REMO, the transport of CO 2 is simulated together with climate variables, which offers the possibility of calculating at each time step the land atmosphere CO 2 fluxes as driven by the modelled meteorology. The uptake of CO 2 by photosynthesis is calculated using a light use efficiency formulation, where the absorbed photosynthetically active solar radiation is inferred from satellite measurements. The release of CO 2 from plant and soil respiration is driven by the simulated climate and assumed to be in equilibrium with photosynthesis over the course of one year. Fossil CO 2 emissions and air-sea fluxes within the model domain are prescribed, whereas the influence of sources outside the model domain is computed from as a boundary condition CO 2 fields determined a global transport model. The modelling results are compared against pointwise eddy covariance fluxes, and against atmospheric CO 2 records. We show that a necessary condition to simulate realistically the variability of atmospheric CO 2 over continental Europe is to account for the diurnal cycle of biospheric exchange. Overall, for the study period of July 1998, REMO realistically simulates the short-term variability of fluxes and of atmospheric mixing ratios. However, the mean CO 2 gradients from western Europe to western Siberia are not correctly reproduced. This latter deficiency points out the key role of boundary conditions in a limited-area model, as well as the need for using more realistic geographic mean patterns of biospheric carbon fluxes

  5. Satellite Observations of Imprint of Oceanic Current on Wind Stress by Air-Sea Coupling.

    Science.gov (United States)

    Renault, Lionel; McWilliams, James C; Masson, Sebastien

    2017-12-18

    Mesoscale eddies are present everywhere in the ocean and partly determine the mean state of the circulation and ecosystem. The current feedback on the surface wind stress modulates the air-sea transfer of momentum by providing a sink of mesoscale eddy energy as an atmospheric source. Using nine years of satellite measurements of surface stress and geostrophic currents over the global ocean, we confirm that the current-induced surface stress curl is linearly related to the current vorticity. The resulting coupling coefficient between current and surface stress (s τ [N s m -3 ]) is heterogeneous and can be roughly expressed as a linear function of the mean surface wind. s τ expresses the sink of eddy energy induced by the current feedback. This has important implications for air-sea interaction and implies that oceanic mean and mesoscale circulations and their effects on surface-layer ventilation and carbon uptake are better represented in oceanic models that include this feedback.

  6. Effect of air composition (N2, O2, Ar, and H2O) on CO2 and CH4 measurement by wavelength-scanned cavity ring-down spectroscopy: calibration and measurement strategy

    Science.gov (United States)

    Nara, H.; Tanimoto, H.; Tohjima, Y.; Mukai, H.; Nojiri, Y.; Katsumata, K.; Rella, C. W.

    2012-11-01

    We examined potential interferences from water vapor and atmospheric background gases (N2, O2, and Ar), and biases by isotopologues of target species, on accurate measurement of atmospheric CO2 and CH4 by means of wavelength-scanned cavity ring-down spectroscopy (WS-CRDS). Changes of the background gas mole fractions in the sample air substantially impacted the CO2 and CH4 measurements: variation of CO2 and CH4 due to relative increase of each background gas increased as Ar < O2 < N2, suggesting similar relation for the pressure-broadening effects (PBEs) among the background gas. The pressure-broadening coefficients due to variations in O2 and Ar for CO2 and CH4 are empirically determined from these experimental results. Calculated PBEs using the pressure-broadening coefficients are linearly correlated with the differences between the mole fractions of O2 and Ar and their ambient abundances. Although the PBEs calculation showed that impact of natural variation of O2 is negligible on the CO2 and CH4 measurements, significant bias was inferred for the measurement of synthetic standard gases. For gas standards balanced with purified air, the PBEs were estimated to be marginal (up to 0.05 ppm for CO2 and 0.01 ppb for CH4) although the PBEs were substantial (up to 0.87 ppm for CO2 and 1.4 ppb for CH4) for standards balanced with synthetic air. For isotopic biases on CO2 measurements, we compared experimental results and theoretical calculations, which showed excellent agreement within their uncertainty. We derived instrument-specific water correction functions empirically for three WS-CRDS instruments (Picarro EnviroSense 3000i, G-1301, and G-2301), and evaluated the transferability of the water correction function from G-1301 among these instruments. Although the transferability was not proven, no significant difference was found in the water vapor correction function for the investigated WS-CRDS instruments as well as the instruments reported in the past studies

  7. Analysed foundation sea surface temperature, global

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The through-cloud capabilities of microwave radiometers provide a valuable picture of global sea surface temperature (SST). To utilize this, scientists at Remote...

  8. The effect of millennial-scale changes in Arabian Sea denitrification on atmospheric CO2

    International Nuclear Information System (INIS)

    Altabet, M.A.; Higginson, M.J.; Murray, D.W.

    2002-01-01

    Most global biogeochemical processes are known to respond to climate change, some of which have the capacity to produce feedbacks through the regulation of atmospheric greenhouse gases. Marine denitrification - the reduction of nitrate to gaseous nitrogen - is an important process in this regard, affecting greenhouse gas concentrations directly through the incidental production of nitrous oxide, and indirectly through modification of the marine nitrogen inventory and hence the biological pump for C0 2 . Although denitrification has been shown to vary with glacial-interglacial cycles, its response to more rapid climate change has not yet been well characterized. Here we present nitrogen isotope ratio, nitrogen content and chlorin abundance data from sediment cores with high accumulation rates on the Oman continental margin that reveal substantial millennial-scale variability in Arabian Sea denitrification and productivity during the last glacial period. The detailed correspondence of these changes with Dansgaard-Oeschger events recorded in Greenland ice cores indicates rapid, century-scale reorganization of the Arabian Sea ecosystem in response to climate excursions, mediated through the intensity of summer monsoonal upwelling. Considering the several-thousand-year residence time of fixed nitrogen in the ocean, the response of global marine productivity to changes in denitrification would have occurred at lower frequency and appears to be related to climatic and atmospheric C0 2 oscillations observed in Antarctic ice cores between 20 and A kyr ago. (author)

  9. Off-shore enhanced oil recovery in the north sea: matching CO_2 demand and supply given uncertain market conditions

    Science.gov (United States)

    Compernolle, Tine; Welkenhuysen, Kris; Huisman, Kuno; Piessens, Kris; Kort, Peter

    2015-04-01

    Introduction CO2 enhanced oil recovery (CO2-EOR) entails the injection of CO2 in mature oil fields in order to mobilize the oil. In particular, the injected CO2 reduces the oil's viscosity and acts as a propellant, resulting in an increased oil extraction rate (Leach et al., 2011). Given uncertainty in both oil price and CO2 price under the EU ETS system, aim of this study is to analyze under which economic conditions a CO2 exchange can be established between a CO2 supplier (an electricity producer for whom CO2 is a by-product) and a CO2 user (an offshore oil company that exploits oil fields in the North Sea and needs CO2 for enhanced oil recovery). Methodology A techno-economic simulation tool, PSS IV, was developed to provide investment decision support on integrated CO2-EOR projects (Welkenhuysen et al., 2014). Until now, a fixed onshore supply of CO2 was presumed. An economic optimization model is now developed for both the CO2 producer and the CO2 user. Because net present value and discounted cash flow methods are inadequate to deal with issues like uncertainty and the irreversibility of an investment decision, the real options theory is applied (Dixit and Pindyck, 1994). The way in which cooperation between the companies can take place, will be studied using game theoretical concepts (Lukas and Welling, 2014). Economic and technical data on CO2 capture are available from the PSS database (Piessens et al., 2012). Data on EOR performance, CO2 requirements and various costs are taken from literature (BERR, 2007; Klokk et al., 2010; Pershad et al., 2012). Results/Findings It will be shown what the impact of price uncertainty is on the investment decision of the electricity producer to capture and sell CO2, and on the decision of the oil producer to make the necessary investments to inject CO2 for enhanced oil recovery. Based on these results, it will be determined under which economic conditions a CO2 exchange and transport can take place. Furthermore, also the

  10. AirCore-HR: a high-resolution column sampling to enhance the vertical description of CH4 and CO2

    Directory of Open Access Journals (Sweden)

    O. Membrive

    2017-06-01

    Full Text Available An original and innovative sampling system called AirCore was presented by NOAA in 2010 (Karion et al., 2010. It consists of a long (>  100 m and narrow (<  1 cm stainless steel tube that can retain a profile of atmospheric air. The captured air sample has then to be analyzed with a gas analyzer for trace mole fraction. In this study, we introduce a new AirCore aiming to improve resolution along the vertical with the objectives to (i better capture the vertical distribution of CO2 and CH4, (ii provide a tool to compare AirCores and validate the estimated vertical resolution achieved by AirCores. This (high-resolution AirCore-HR consists of a 300 m tube, combining 200 m of 0.125 in. (3.175 mm tube and a 100 m of 0.25 in. (6.35 mm tube. This new configuration allows us to achieve a vertical resolution of 300 m up to 15 km and better than 500 m up to 22 km (if analysis of the retained sample is performed within 3 h. The AirCore-HR was flown for the first time during the annual StratoScience campaign from CNES in August 2014 from Timmins (Ontario, Canada. High-resolution vertical profiles of CO2 and CH4 up to 25 km were successfully retrieved. These profiles revealed well-defined transport structures in the troposphere (also seen in CAMS-ECMWF high-resolution forecasts of CO2 and CH4 profiles and captured the decrease of CO2 and CH4 in the stratosphere. The multi-instrument gondola also carried two other low-resolution AirCore-GUF that allowed us to perform direct comparisons and study the underlying processing method used to convert the sample of air to greenhouse gases vertical profiles. In particular, degrading the AirCore-HR derived profiles to the low resolution of AirCore-GUF yields an excellent match between both sets of CH4 profiles and shows a good consistency in terms of vertical structures. This fully validates the theoretical vertical resolution achievable by AirCores. Concerning CO2 although a

  11. Thermosteric contribution of warming oceans to the global sea level variations

    OpenAIRE

    Bâki Iz H.

    2016-01-01

    Thermosteric contribution of warming oceans to the global sea level variations during the last century was evaluated at globally distributed 27 tide gauge stations with records over 80 years. The assessment was made using a recently proposed lagged model inclusive of a sea level trend, long and decadal periodicities, and lagged sea surface temperature measurements. The new model solutions revealed that almost all the long period periodic sea level changes experienced a...

  12. Terrestrial soil pH and MAAT records based on the MBT/CBT in the southern South China Sea: implications for the atmospheric CO2 evolution in Southeast Asia

    Science.gov (United States)

    Dong, L.; Li, L.; Li, Q.; Zhang, C.

    2013-12-01

    Liang Dong1, Li Li1, Qianyu Li1,2, Chuanlun L. Zhang1,3 1State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China 2School of Earth and Environment Sciences, University of Adelaide, SA 5005, Australia 3Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA The methylation index of branched tetraethers (MBT) and/or the cyclization ratio of branched tetraethers (CBT) are derived from the branched glycerol dialkyl Glycerol tetraethers (GDGTs) of bacterial origin and are widely used to reconstruct the terrestrial soil pH and mean annual air temperature (MAAT); however, these proxies are less frequently used in the oceanic settings. Here we provide the first high resolution records of soil pH and MAAT since the last glacial maximum based on the sedimentary core of MD05-2896 in the southern South China Sea. The MAAT record exhibited typical glacial and interglacial cycles and was consistent with the winter insolation variation. The pH values were lower (6.4-7) in the glacial time and higher (7-8.4) in the interglacial time. Changes in soil pH allowed the evaluation of changes in soil CO2 based on the atmosphere-soil CO2 balance. The results imply that the lower winter MAAT variation with a lower winter atmospheric CO2 concentration might have resulted in a higher pH in the interglacial period. Our records provide a new insight into the evolution of atmospheric CO2 between glacial and interglacial cycles in East Asia. Key words: South China Sea, MBT/CBT, b-GDGTs, MAAT, pH

  13. Atmospheric pCO2 reconstructed across five early Eocene global warming events

    Science.gov (United States)

    Cui, Ying; Schubert, Brian A.

    2017-11-01

    Multiple short-lived global warming events, known as hyperthermals, occurred during the early Eocene (56-52 Ma). Five of these events - the Paleocene-Eocene Thermal Maximum (PETM or ETM1), H1 (or ETM2), H2, I1, and I2 - are marked by a carbon isotope excursion (CIE) within both marine and terrestrial sediments. The magnitude of CIE, which is a function of the amount and isotopic composition of carbon added to the ocean-atmosphere system, varies significantly between marine versus terrestrial substrates. Here we use the increase in carbon isotope fractionation by C3 land plants in response to increased pCO2 to reconcile this difference and reconstruct a range of background pCO2 and peak pCO2 for each CIE, provided two potential carbon sources: methane hydrate destabilization and permafrost-thawing/organic matter oxidation. Although the uncertainty on each pCO2 estimate using this approach is low (e.g., median uncertainty = + 23% / - 18%), this work highlights the potential for significant systematic bias in the pCO2 estimate resulting from sampling resolution, substrate type, diagenesis, and environmental change. Careful consideration of each of these factors is required especially when applying this approach to a single marine-terrestrial CIE pair. Given these limitations, we provide an upper estimate for background early Eocene pCO2 of 463 +248/-131 ppmv (methane hydrate scenario) to 806 +127/-104 ppmv (permafrost-thawing/organic matter oxidation scenario). These results, which represent the first pCO2 proxy estimates directly tied to the Eocene hyperthermals, demonstrate that early Eocene warmth was supported by background pCO2 less than ∼3.5× preindustrial levels and that pCO2 > 1000 ppmv may have occurred only briefly, during hyperthermal events.

  14. The carbonate-silicate cycle and CO2/climate feedbacks on tidally locked terrestrial planets.

    Science.gov (United States)

    Edson, Adam R; Kasting, James F; Pollard, David; Lee, Sukyoung; Bannon, Peter R

    2012-06-01

    Atmospheric gaseous constituents play an important role in determining the surface temperatures and habitability of a planet. Using a global climate model and a parameterization of the carbonate-silicate cycle, we explored the effect of the location of the substellar point on the atmospheric CO(2) concentration and temperatures of a tidally locked terrestrial planet, using the present Earth continental distribution as an example. We found that the substellar point's location relative to the continents is an important factor in determining weathering and the equilibrium atmospheric CO(2) level. Placing the substellar point over the Atlantic Ocean results in an atmospheric CO(2) concentration of 7 ppmv and a global mean surface air temperature of 247 K, making ∼30% of the planet's surface habitable, whereas placing it over the Pacific Ocean results in a CO(2) concentration of 60,311 ppmv and a global temperature of 282 K, making ∼55% of the surface habitable.

  15. Improvement of Global and Regional Mean Sea Level Trends Derived from all Altimetry Missions.

    Science.gov (United States)

    Ablain, Michael; Benveniste, Jérôme; Faugere, Yannice; Larnicol, Gilles; Cazenave, Anny; Johannessen, Johnny A.; Stammer, Detlef; Timms, Gary

    2012-07-01

    The global mean sea level (GMSL) has been calculated on a continual basis since January 1993 using data from satellite altimetry missions. The global mean sea level (MSL) deduced from TOPEX/Poseidon, Jason-1 and Jason-2 is increasing with a global trend of 3.2 mm from 1993 to 2010 applying the post glacial rebound (MSL Aviso website http://www.jason.oceanobs.com/msl). Besides, the regional sea level trends bring out an inhomogeneous repartition of the ocean elevation with local MSL slopes ranging from +/- 8 mm/year. A study published in 2009 [Ablain et al., 2009] has shown that the global MSL trend uncertainty was estimated at +/-0.6 mm/year with a confidence interval of 90%. The main sources of errors at global and regional scales are due to the orbit calculation and the wet troposphere correction. But others sea-level components have also a significant impact on the long-term stability of MSL as for instance the stability of instrumental parameters and the atmospheric corrections. Thanks to recent studies performed in Sea Level Essential Climate Variable Project in the frame of the Climate Change Initiative, an ESA Programme, in addition to activities performed within the SALP/CNES, strong improvements have been provided for the estimation of the global and regional MSL trends. In this paper, we propose to describe them; they concern the orbit calculation thanks to new gravity fields, the atmospheric corrections thanks to ERA-interim reanalyses, the wet troposphere corrections thanks to the stability improvement, and also empirical corrections allowing us to link regional time series together better. These improvements are described at global and regional scale for all the altimetry missions.

  16. GHRSST Level 2P Global 1m Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the MetOp-B satellite produced by NAVO (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in...

  17. Atmospheric pCO2 Reconstructed across the Early Eocene Hyperthermals

    Science.gov (United States)

    Cui, Y.; Schubert, B.

    2015-12-01

    Negative carbon isotope excursions (CIEs) are commonly associated with extreme global warming. The Early Eocene is punctuated by five such CIEs, the Paleocene-Eocene thermal maximum (PETM, ca. 55.8 Ma), H1 (ca. 53.6 Ma), H2 (ca. 53.5 Ma), I1 (ca. 53.3 Ma), and I2 (ca. 53.2 Ma), each characterized by global warming. The negative CIEs are recognized in both marine and terrestrial substrates, but the terrestrial substrates exhibit a larger absolute magnitude CIE than the marine substrates. Here we reconcile the difference in CIE magnitude between the terrestrial and marine substrates for each of these events by accounting for the additional carbon isotope fractionation by C3 land plants in response to increased atmospheric pCO2. Our analysis yields background and peak pCO2 values for each of the events. Assuming a common mechanism for each event, we calculate that background pCO2 was not static across the Early Eocene, with the highest background pCO2 immediately prior to I2, the last of the five CIEs. Background pCO2 is dependent on the source used in our analysis with values ranging from 300 to 720 ppmv provided an injection of 13C-depleted carbon with δ13C value of -60‰ (e.g. biogenic methane). The peak pCO2 during each event scales according to the magnitude of CIE, and is therefore greatest during the PETM and smallest during H2. Both background and peak pCO2 are higher if we assume a mechanism of permafrost thawing (δ13C = -25‰). Our reconstruction of pCO2 across these events is consistent with trends in the δ18O value of deep-sea benthic foraminifera, suggesting a strong link between pCO2 and temperature during the Early Eocene.

  18. Temporal comparison of global inventories of CO2 emissions from biomass burning during 2002-2011 derived from remotely sensed data.

    Science.gov (United States)

    Shi, Yusheng; Matsunaga, Tsuneo

    2017-07-01

    Biomass burning is a large important source of greenhouse gases and atmospheric aerosols, and can contribute greatly to the temporal variations of CO 2 emissions at regional and global scales. In this study, we compared four globally gridded CO 2 emission inventories from biomass burning during the period of 2002-2011, highlighting the similarities and differences in seasonality and interannual variability of the CO 2 emissions both at regional and global scales. The four datasets included Global Fire Emissions Database 4s with small fires (GFED4s), Global Fire Assimilation System 1.0 (GFAS1.0), Fire INventory from NCAR 1.0 (FINN1.0), and Global Inventory for Chemistry-Climate studies-GFED4s (G-G). The results showed that in general, the four inventories presented consistent temporal trend but with large differences as well. Globally, CO 2 emissions of GFED4s, GFAS1.0, and G-G all peaked in August with the exception in FINN1.0, which recorded another peak in annual March. The interannual trend of all datasets displayed an overall decrease in CO 2 emissions during 2002-2011, except for the inconsistent FINN1.0, which showed a tendency to increase during the considered period. Meanwhile, GFED4s and GFAS1.0 noted consistent agreement from 2002 to 2011 at both global (R 2  > 0.8) and continental levels (R 2  > 0.7). FINN1.0 was found to have the poorest temporal correlations with the other three inventories globally (R 2  80%) but showed small variations through the years (<40%).

  19. Nuclear power generation and global heating

    International Nuclear Information System (INIS)

    Taboada, Horacio

    1999-01-01

    The Professionals Association and Nuclear Activity of National Atomic Energy Commission (CNEA) are following with great interest the worldwide discussions on global heating and the role that nuclear power is going to play. The Association has an active presence, as part of the WONUC (recognized by the United Nations as a Non-Governmental Organization) in the COP4, which was held in Buenos Aires in November 1998. The environmental problems are closely related to human development, the way of power production, the techniques for industrial production and exploitation fields. CO 2 is the most important gas with hothouse effects, responsible of progressive climatic changes, as floods, desertification, increase of average global temperature, thermal expansion in seas and even polar casks melting and ice falls. The consequences that global heating will have on the life and economy of human society cannot be sufficiently emphasized, great economical impact, destruction of ecosystems, loss of great coast areas and complete disappearance of islands owing to water level rise. The increase of power retained in the atmosphere generates more violent hurricanes and storms. In this work, the topics presented in the former AATN Meeting is analyzed in detail and different technological options and perspectives to mitigate CO 2 emission, as well as economical-financial aspects, are explored. (author)

  20. Co-benefits of energy efficiency improvement and air pollution abatement in the Chinese iron and steel industry

    International Nuclear Information System (INIS)

    Zhang, Shaohui; Worrell, Ernst; Crijns-Graus, Wina; Wagner, Fabian; Cofala, Janusz

    2014-01-01

    In 2010, China was responsible for 45% of global steel production, while consuming 15.8 EJ of final energy and emitting 1344 Mt CO 2eq , 8.4 Mt of PM (particulate matter) emissions, and 5.3 Mt of SO 2 emissions. In this paper we analyse the co-benefits of implementing energy efficiency measures that jointly reduce greenhouse gas emissions and air pollutants, in comparison to applying only air pollution control (end-of-pipe technology). For this purpose we construct ECSC (energy conservation supply curves) that contain potentials and costs of energy efficiency measures and implement these in the GAINS (greenhouse gas and air pollution interactions and synergies) model. Findings show that the technical energy saving potential for the Chinese iron and steel industry for 2030 is around 5.7 EJ. This is equivalent to 28% of reference energy use in 2030. The emissions mitigation of GHGs (greenhouse gases) and air pollutants in BAEEM S 3 scenario would be reduce 27% CO 2 eq, 3% of PM, and 22% of SO 2 , compared to the BL scenario in 2030. Investments and cost savings were calculated for different scenarios, showing that energy efficiency investments will result in significant reductions in air pollution control costs. Hence, Energy efficiency measures should be integrated in air quality policy in China. - Highlights: • Implementation rates of 56 EEMs (energy efficiency measures) are quantified in China's Iron and steel industry. • Energy Supply Cost Curve was implemented in the GAINS (greenhouse gas and air pollution interactions and synergies) model. • The contribution of energy efficiency measure on the process level was estimated. • There are large co-benefits of improving energy efficiency and reducing emissions. • EEMs (energy efficiency measures) would lead to huge reductions in air pollution

  1. Regional air pollution over Malaysia

    Science.gov (United States)

    Krysztofiak, G.; Catoire, V.; Dorf, M.; Grossmann, K.; Hamer, P. D.; Marécal, V.; Reiter, A.; Schlager, H.; Eckhardt, S.; Jurkat, T.; Oram, D.; Quack, B.; Atlas, E.; Pfeilsticker, K.

    2012-12-01

    During the SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) campaign in Nov. and Dec. 2011 a number of polluted air masses were observed in the marine and terrestrial boundary layer (0 - 2 km) and in the free troposphere (2 - 12 km) over Borneo/Malaysia. The measurements include isoprene, CO, CO2, CH4, N2O, NO2, SO2 as primary pollutants, O3 and HCHO as secondary pollutants, and meteorological parameters. This set of trace gases can be used to fingerprint different sources of local and regional air pollution (e.g., biomass burning and fossil fuel burning, gas flaring on oil rigs, emission of ships and from urban areas, volcanic emissions, and biogenic emissions). Individual sources and location can be identified when the measurements are combined with a nested-grid regional scale chemical and meteorological model and lagrangian particle dispersion model (e.g., CCATT-BRAMS and FLEXPART). In the case of the former, emission inventories of the primary pollutants provide the basis for the trace gas simulations. In this region, the anthropogenic influence on air pollution seems to dominate over natural causes. For example, CO2 and CH4 often show strong correlations with CO, suggesting biomass burning or urban fossil fuel combustion dominates the combustion sources. The study of the CO/CO2 and CH4/CO ratios can help separate anthropogenic combustion from biomass burning pollution sources. In addition, these ratios can be used as a measure of combustion efficiency to help place the type of biomass burning particular to this region within the wider context of fire types found globally. On several occasions, CH4 enhancements are observed near the ocean surface, which are not directly correlated with CO enhancements thus indicating a non-combustion-related CH4 source. Positive correlations between SO2 and CO show the anthropogenic influence of oil rigs located in the South China Sea. Furthermore, SO2 enhancements are observed without any increase in CO

  2. Improvement of global and regional mean sea level derived from satellite altimetry multi missions

    Science.gov (United States)

    Ablain, M.; Faugere, Y.; Larnicol, G.; Picot, N.; Cazenave, A.; Benveniste, J.

    2012-04-01

    With the satellite altimetry missions, the global mean sea level (GMSL) has been calculated on a continual basis since January 1993. 'Verification' phases, during which the satellites follow each other in close succession (Topex/Poseidon--Jason-1, then Jason-1--Jason-2), help to link up these different missions by precisely determining any bias between them. Envisat, ERS-1 and ERS-2 are also used, after being adjusted on these reference missions, in order to compute Mean Sea Level at high latitudes (higher than 66°N and S), and also to improve spatial resolution by combining all these missions together. The global mean sea level (MSL) deduced from TOPEX/Poseidon, Jason-1 and Jason-2 provide a global rate of 3.2 mm from 1993 to 2010 applying the post glacial rebound (MSL aviso website http://www.jason.oceanobs.com/msl). Besides, the regional sea level trends bring out an inhomogeneous repartition of the ocean elevation with local MSL slopes ranging from + 8 mm/yr to - 8 mm/year. A study published in 2009 [Ablain et al., 2009] has shown that the global MSL trend unceratainty was estimated at +/-0.6 mm/year with a confidence interval of 90%. The main sources of errors at global and regional scales are due to the orbit calculation and the wet troposphere correction. But others sea-level components have also a significant impact on the long-term stability of MSL as for instance the stability of instrumental parameters and the atmospheric corrections. Thanks to recent studies performed in the frame of the SALP project (supported by CNES) and Sea-level Climate Change Initiative project (supported by ESA), strong improvements have been provided for the estimation of the global and regional MSL trends. In this paper, we propose to describe them; they concern the orbit calculation thanks to new gravity fields, the atmospheric corrections thanks to ERA-interim reanalyses, the wet troposphere corrections thanks to the stability improvement, and also empirical corrections

  3. Delay-induced rebounds in CO2 emissions and critical time-scales to meet global warming targets

    Science.gov (United States)

    Manoli, Gabriele; Katul, Gabriel G.; Marani, Marco

    2016-12-01

    While climate science debates are focused on the attainment of peak anthropogenic CO2 emissions and policy tools to reduce peak temperatures, the human-energy-climate system can hold "rebound" surprises beyond this peak. Following the second industrial revolution, global per capita CO2 emissions (cc) experienced a punctuated growth of about 100% every 60 years, mainly attributable to technological development and its global spread. A model of the human-energy-climate system capable of reproducing past punctuated dynamics shows that rebounds in global CO2 emissions emerge due to delays intrinsic to the diffusion of innovations. Such intrinsic delays in the adoption and spread of low-carbon emitting technologies, together with projected population growth, upset the warming target set by the Paris Agreement. To avoid rebounds and their negative climate effects, model calculations show that the diffusion of climate-friendly technologies must occur with lags one-order of magnitude shorter (i.e., ˜6 years) than the characteristic timescale of past punctuated growth in cc. Radically new strategies to globally implement the technological advances at unprecedented rates are needed if the current emission goals are to be achieved.

  4. Modeling Effects of Bicarbonate Release on Carbonate Chemistry and pH of the North Sea: A Pilot Study for Atmospheric CO2 Reduction

    Science.gov (United States)

    Lettmann, K.; Kirchner, J.; Schnetger, B.; Wolff, J. O.; Brumsack, H. J.

    2016-12-01

    Rising CO2-emissions accompanying the industrial revolution are the main drivers for climate change and ocean acidification. Several methods have been developed to capture CO2 from effluents and reduce emission. Here, we consider a promising approach that mimics natural limestone weathering: CO2 in effluent gas streams reacts with calcium carbonate in a limestone suspension. The resulting bicarbonate-rich solution can be released into natural systems. In comparison to classical carbon capture and storage (CCS) methods this artificial limestone weathering is cheaper and does not involve using toxic chemical compounds. Additionally there is no need for the controversially discussed storage of CO2 underground. The reduction of CO2-emissions becomes more important for European industries as the EU introduced a system that limits the amount of allowable CO2-emissions. Therefore, large CO2 emitters are forced to find cheap methods for emission reduction, as they often cannot circumvent CO2-production. The method mentioned above is especially of interest for power plants located close to the coast that are already using seawater for cooling purposes. Thus, it is important to estimate the environmental effects if several coastal power plants will release high amounts of bicarbonate-rich waters into coastal waters, e.g. the North Sea. In a first pilot study, the unstructured-grid finite-volume community ocean model (FVCOM) was combined with a chemical submodul (mocsy 2.0) to model the hydrodynamic circulation and mixing of bicarbonate-rich effluents from a gas power plant located at the German North Sea coast. Here, we present the first preliminary results of this project, which include modelled changes of the North Sea carbonate system and changes in pH value after the introduction of these bicarbonate-rich waters on short time scales up to one year.

  5. The impact of sedimentary alkalinity release on the water column CO2 system in the North Sea

    OpenAIRE

    Brenner, H.; Braeckman, U.; Le Guitton, M.; Meysman, F.J.R.

    2016-01-01

    It has been previously proposed that alkalinity release from sediments can play an important role in the carbonate dynamics on continental shelves, lowering the pCO2 of seawater and hence increasing the CO2 uptake from the atmosphere. To test this hypothesis, sedimentary alkalinity generation was quantified within cohesive and permeable sediments across the North Sea during two cruises in September 2011 (basin-wide) and June 2012 (Dutch coastal zone). Benthic fluxes of oxyge...

  6. Indoor and outdoor urban atmospheric CO2: Stable carbon isotope constraints on mixing and mass balance

    International Nuclear Information System (INIS)

    Yanes, Yurena; Yapp, Crayton J.

    2010-01-01

    suggests that the intercept of a mixing line defined by two data points (CO 2 input from the local ventilation system and CO 2 in the ambient air of the room) could be a reasonable estimate of the average δ 13 C value of the CO 2 exhaled by the human occupants. Thus, such indoor spaces appear to constitute effective 'sample vessels' for collection of CO 2 that can be used to determine the average proportions of C 3 and C 4 -derived C in the diets of the occupants. For the various groups occupying the rooms sampled in this study, C 4 -derived C appears to have constituted ∼40% of the average diet. The average concentration of outdoor Dallas atmospheric CO 2 was ∼17 ppm higher than the average of CO 2 concentrations measured on the same campus 10 a ago. In addition, Dallas outdoor CO 2 concentrations at both times were higher than the contemporaneous global atmospheric CO 2 concentrations. This observation, plus the fact that the increase of ∼17 ppm in the average concentration of Dallas outdoor CO 2 was comparable to the global increase of ∼18 ppm over the same 10-a interval, is consistent with a significant role for urban CO 2 'factories' in the global atmospheric CO 2 budget.

  7. The global carbon nation: Status of CO2 capture, storage and utilization

    Directory of Open Access Journals (Sweden)

    Kocs Elizabeth A.

    2017-01-01

    Full Text Available As the world transitions toward cleaner and more sustainable energy generation, Carbon Capture and Sequestration/Storage (CCS plays an essential role in the portfolio of technologies to help reduce global greenhouse gas (GHG emissions. The projected increase in population size and its resulting increase in global energy consumption, for both transportation and the electricity grid —the largest emitters of greenhouse gases, will continue to add to current CO2 emissions levels during this transition. Since eighty percent of today’s global energy continues to be generated by fossil fuels, a shift to low-carbon energy sources will take many decades. In recent years, shifting to renewables and increasing energy efficiencies have taken more importance than deploying CCS. Together, this triad —renewables, energy efficiency, and CCS— represent a strong paradigm for achieving a carbon-free world. Additionally, the need to accelerate CCS in developing economies like China and India are of increasing concern since migration to renewables is unlikely to occur quickly in those countries. CCS of stationary sources, accounting for only 20% reduction in emissions, as well as increasing efficiency in current systems are needed for major reductions in emissions. A rising urgency for fifty to eighty percent reduction of CO2 emissions by 2050 and one hundred percent reduction by 2100 makes CCS all that more critical in the transition to a cleaner-energy future globally.

  8. Air-sea exchange over Black Sea estimated from high resolution regional climate simulations

    Science.gov (United States)

    Velea, Liliana; Bojariu, Roxana; Cica, Roxana

    2013-04-01

    Black Sea is an important influencing factor for the climate of bordering countries, showing cyclogenetic activity (Trigo et al, 1999) and influencing Mediterranean cyclones passing over. As for other seas, standard observations of the atmosphere are limited in time and space and available observation-based estimations of air-sea exchange terms present quite large ranges of uncertainty. The reanalysis datasets (e.g. ERA produced by ECMWF) provide promising validation estimates of climatic characteristics against the ones in available climatic data (Schrum et al, 2001), while cannot reproduce some local features due to relatively coarse horizontal resolution. Detailed and realistic information on smaller-scale processes are foreseen to be provided by regional climate models, due to continuous improvements of physical parameterizations and numerical solutions and thus affording simulations at high spatial resolution. The aim of the study is to assess the potential of three regional climate models in reproducing known climatological characteristics of air-sea exchange over Black Sea, as well as to explore the added value of the model compared to the input (reanalysis) data. We employ results of long-term (1961-2000) simulations performed within ENSEMBLE project (http://ensemblesrt3.dmi.dk/) using models ETHZ-CLM, CNRM-ALADIN, METO-HadCM, for which the integration domain covers the whole area of interest. The analysis is performed for the entire basin for several variables entering the heat and water budget terms and available as direct output from the models, at seasonal and annual scale. A comparison with independent data (ERA-INTERIM) and findings from other studies (e.g. Schrum et al, 2001) is also presented. References: Schrum, C., Staneva, J., Stanev, E. and Ozsoy, E., 2001: Air-sea exchange in the Black Sea estimated from atmospheric analysis for the period 1979-1993, J. Marine Systems, 31, 3-19 Trigo, I. F., T. D. Davies, and G. R. Bigg (1999): Objective

  9. Comparison of global inventories of CO_2 emissions from biomass burning during 2002–2011 derived from multiple satellite products

    International Nuclear Information System (INIS)

    Shi, Yusheng; Matsunaga, Tsuneo; Saito, Makoto; Yamaguchi, Yasushi; Chen, Xuehong

    2015-01-01

    This study compared five widely used globally gridded biomass burning emissions inventories for the 2002–2011 period (Global Fire Emissions Database 3 (GFED3), Global Fire Emissions Database 4 (GFED4), Global Fire Assimilation System 1.0 (GFAS1.0), Fire INventory from NCAR 1.0 (FINN1.0) and Global Inventory for Chemistry-Climate studies-GFED4 (G-G)). Average annual CO_2 emissions range from 6521.3 to 9661.5 Tg year"−"1 for five inventories, with extensive amounts in Africa, South America and Southeast Asia. Coefficient of Variation for Southern America, Northern and Southern Africa are 30%, 39% and 48%. Globally, the majority of CO_2 emissions are released from savanna burnings, followed by forest and cropland burnings. The largest differences among the five inventories are mainly attributable to the overestimation of CO_2 emissions by FINN1.0 in Southeast Asia savanna and cropland burning, and underestimation in Southern Africa savanna and Amazon forest burning. The overestimation in Africa by G-G also contributes to the differences. - Highlights: • Five widely used global biomass burning emissions inventories were compared. • Global CO_2 emissions compared well while regional differences are large. • The largest differences were found in Southeast Asia and Southern Africa. • Savanna burning emission was the largest contributor to the global emissions. • Variations in savanna burning emission led to the differences among inventories. - Differences of the five biomass burning CO_2 emissions inventories were found in Southeast Asia and Southern Africa due to the variations in savanna burning emissions estimation.

  10. Spume Drops: Their Potential Role in Air-Sea Gas Exchange

    Science.gov (United States)

    Monahan, Edward C.; Staniec, Allison; Vlahos, Penny

    2017-12-01

    After summarizing the time scales defining the change of the physical properties of spume and other droplets cast up from the sea surface, the time scales governing drop-atmosphere gas exchange are compared. Following a broad review of the spume drop production functions described in the literature, a subset of these functions is selected via objective criteria, to represent typical, upper bound, and lower bound production functions. Three complementary mechanisms driving spume-atmosphere gas exchange are described, and one is then used to estimate the relative importance, over a broad range of wind speeds, of this spume drop mechanism compared to the conventional, diffusional, sea surface mechanism in air-sea gas exchange. While remaining uncertainties in the wind dependence of the spume drop production flux, and in the immediate sea surface gas flux, preclude a definitive conclusion, the findings of this study strongly suggest that, at high wind speeds (>20 m s-1 for dimethyl sulfide and >30 m s-1 for gases such a carbon dioxide), spume drops do make a significant contribution to air-sea gas exchange.Plain Language SummaryThis paper evaluates the existing spume drop generation functions available to date and selects a reasonable upper, lower and mid range function that are reasonable for use in air sea exchange models. Based on these the contribution of spume drops to overall air sea gas exchange at different wind speeds is then evaluated to determine the % contribution of spume. Generally below 20ms-1 spume drops contribute <1% of gas exchange but may account for a significant amount of gas exchange at higher wind speeds.

  11. DFT Study On Effects of CO2 Contamination in Non-Aqueous Li-Air Batteries

    DEFF Research Database (Denmark)

    Mekonnen, Yedilfana Setarge; Mýrdal, Jón Steinar Garðarsson; Vegge, Tejs

    2013-01-01

    Density Functional Theory (DFT) studies on the effects of carbon dioxide (CO2) contamination at the cathode of rechargeable non-aqueous Li-O2 batteries, where the insulating material Lithium peroxide (Li2O2) is the main discharge product. The Li2O2 growth mechanism and overpotentials are investig...... and result in an increased battery capacity. However, CO2 contamination on the Li2O2 surface confirms an asymmetric increase in the overpotentials; particularly the charging overvoltage exhibits sustantial increase, which would reduce the efficiency of the Li-air battery.......Density Functional Theory (DFT) studies on the effects of carbon dioxide (CO2) contamination at the cathode of rechargeable non-aqueous Li-O2 batteries, where the insulating material Lithium peroxide (Li2O2) is the main discharge product. The Li2O2 growth mechanism and overpotentials...

  12. Regional impacts of climate change and atmospheric CO2 on future ocean carbon uptake: a multi model linear feedback analysis

    International Nuclear Information System (INIS)

    Roy, Tilla; Bopp, Laurent; Gehlen, Marion; Cadule, Patricia; Schneider, Birgit; Frolicher, Thomas L.; Segschneider, Joachim; Tjiputra, Jerry; Heinze, Christoph; Joos, Fortunat

    2011-01-01

    The increase in atmospheric CO 2 over this century depends on the evolution of the oceanic air-sea CO 2 uptake, which will be driven by the combined response to rising atmospheric CO 2 itself and climate change. Here, the future oceanic CO 2 uptake is simulated using an ensemble of coupled climate-carbon cycle models. The models are driven by CO 2 emissions from historical data and the Special Report on Emissions Scenarios (SRES) A2 high-emission scenario. A linear feedback analysis successfully separates the regional future (2010-2100) oceanic CO 2 uptake into a CO 2 -induced component, due to rising atmospheric CO 2 concentrations, and a climate-induced component, due to global warming. The models capture the observation based magnitude and distribution of anthropogenic CO 2 uptake. The distributions of the climate-induced component are broadly consistent between the models, with reduced CO 2 uptake in the sub polar Southern Ocean and the equatorial regions, owing to decreased CO 2 solubility; and reduced CO 2 uptake in the mid-latitudes, owing to decreased CO 2 solubility and increased vertical stratification. The magnitude of the climate-induced component is sensitive to local warming in the southern extra-tropics, to large freshwater fluxes in the extra-tropical North Atlantic Ocean, and to small changes in the CO 2 solubility in the equatorial regions. In key anthropogenic CO 2 uptake regions, the climate-induced component offsets the CO 2 - induced component at a constant proportion up until the end of this century. This amounts to approximately 50% in the northern extra-tropics and 25% in the southern extra-tropics and equatorial regions. Consequently, the detection of climate change impacts on anthropogenic CO 2 uptake may be difficult without monitoring additional tracers, such as oxygen. (authors)

  13. Regional impacts of climate change and atmospheric CO2 on future ocean carbon uptake: a multi model linear feedback analysis

    International Nuclear Information System (INIS)

    Roy, Tilla; Bopp, Laurent; Gehlen, Marion; Cadule, Patricia

    2011-01-01

    The increase in atmospheric CO 2 over this century depends on the evolution of the oceanic air-sea CO 2 uptake, which will be driven by the combined response to rising atmospheric CO 2 itself and climate change. Here, the future oceanic CO 2 uptake is simulated using an ensemble of coupled climate-carbon cycle models. The models are driven by CO 2 emissions from historical data and the Special Report on Emissions Scenarios (SRES) A2 high-emission scenario. A linear feedback analysis successfully separates the regional future (2010-2100) oceanic CO 2 uptake into a CO 2 -induced component, due to rising atmospheric CO 2 concentrations, and a climate-induced component, due to global warming. The models capture the observation based magnitude and distribution of anthropogenic CO 2 uptake. The distributions of the climate-induced component are broadly consistent between the models, with reduced CO 2 uptake in the sub-polar Southern Ocean and the equatorial regions, owing to decreased CO 2 solubility; and reduced CO 2 uptake in the mid latitudes, owing to decreased CO 2 solubility and increased vertical stratification. The magnitude of the climate-induced component is sensitive to local warming in the southern extra tropics, to large freshwater fluxes in the extra tropical North Atlantic Ocean, and to small changes in the CO 2 solubility in the equatorial regions. In key anthropogenic CO 2 uptake regions, the climate-induced component offsets the CO 2 - induced component at a constant proportion up until the end of this century. This amounts to approximately 50% in the northern extra tropics and 25% in the southern extra tropics and equatorial regions. Consequently, the detection of climate change impacts on anthropogenic CO 2 uptake may be difficult without monitoring additional tracers, such as oxygen. (authors)

  14. Re-assessment of plant carbon dynamics at the Duke free-air CO2 enrichment site: interactions of atmospheric [CO2] with nitrogen and water availability over stand development

    Science.gov (United States)

    Heather R. McCarthy; Ram Oren; Kurt H Johnsen; Anne Gallet-Budynek; Seth G. Pritchard; Charles W Cook; Shannon L. LaDeau; Robert B. Jackson; Adrien C. Finzi

    2010-01-01

    The potential for elevated [CO2]-induced changes to plant carbon (C) storage, through modifications in plant production and allocation of C among plant pools, is an important source of uncertainty when predicting future forest function. Utilizing 10 yr of data from the Duke free-air CO2 enrichment site, we evaluated the...

  15. Seasonal atmospheric deposition and air-sea gas exchange of polycyclic aromatic hydrocarbons over the Yangtze River Estuary, East China Sea: Implications for source-sink processes

    Science.gov (United States)

    Jiang, Yuqing; Lin, Tian; Wu, Zilan; Li, Yuanyuan; Li, Zhongxia; Guo, Zhigang; Yao, Xiaohong

    2018-04-01

    In this work, air samples and surface seawater samples covering four seasons from March 2014 to January 2015 were collected from a background receptor site in the YRE to explore the seasonal fluxes of air-sea gas exchange and dry and wet deposition of 15 polycyclic aromatic hydrocarbons (PAHs) and their source-sink processes at the air-sea interface. The average dry and wet deposition fluxes of 15 PAHs were estimated as 879 ± 1393 ng m-2 d-1 and 755 ± 545 ng m-2 d-1, respectively. Gaseous PAH release from seawater to the atmosphere averaged 3114 ± 1999 ng m-2 d-1 in a year round. The air-sea gas exchange of PAHs was the dominant process at the air-sea interface in the YRE as the magnitude of volatilization flux of PAHs exceeded that of total dry and wet deposition. The gas PAH exchange flux was dominated by three-ring PAHs, with the highest value in summer and lowest in winter, indicating a marked seasonal variation owing to differences in Henry's law constants associated with temperature, as well as wind speed and gaseous-dissolved gradient among seasons. Based on the simplified mass balance estimation, a net 11 tons y-1 of PAHs (mainly three-ring PAHs) were volatilized from seawater to the atmosphere in a ∼20,000 km2 area in the YRE. Other than the year-round Yangtze River input and ocean ship emissions, the selective release of low-molecular-weight PAHs from bottom sediments in winter due to resuspension triggered by the East Asian winter monsoon is another potential source of PAHs. This work suggests that the source-sink processes of PAHs at the air-sea interface in the YRE play a crucial role in regional cycling of PAHs.

  16. Sensitivity of Pliocene Arctic climate to orbital forcing, atmospheric CO2 and sea ice albedo parameterisation

    Science.gov (United States)

    Howell, Fergus W.; Haywood, Alan M.; Dowsett, Harry J.; Pickering, Steven J.

    2016-01-01

    General circulation model (GCM) simulations of the mid-Pliocene Warm Period (mPWP, 3.264 to 3.025 Myr ago) do not reproduce the magnitude of Northern Hemisphere high latitude surface air and sea surface temperature (SAT and SST) warming that proxy data indicate. There is also large uncertainty regarding the state of sea ice cover in the mPWP. Evidence for both perennial and seasonal mPWP Arctic sea ice is found through analyses of marine sediments, whilst in a multi-model ensemble of mPWP climate simulations, half of the ensemble simulated ice-free summer Arctic conditions. Given the strong influence that sea ice exerts on high latitude temperatures, an understanding of the nature of mPWP Arctic sea ice would be highly beneficial.

  17. Influence of the dissolution of increasing quantities of CO{sub 2} in the sea water; Influence de la dissolution de quantites croissantes de CO{sub 2} dans l'eau de mer

    Energy Technology Data Exchange (ETDEWEB)

    Poitou, J

    2007-03-15

    By the increase of carbon dioxide quantity in the atmosphere, the acidity of the ocean, which absorbs a part of this CO{sub 2}, will increase. This acidity level is going to modify the shells and calcareous bases formation of many sea species. The author details the principle of the acidity evolution by the CO{sub 2} increase, the consequences on the ocean fauna and the impacts for the humans. (A.L.B.)

  18. GHRSST Level 2P Global Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-17 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Level 2P Group for High Resolution Sea Surface Temperature (GHRSST) dataset based on multi-channel sea surface temperature (SST) retrievals from the...

  19. GHRSST Level 2P Global Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-16 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Level 2P Group for High Resolution Sea Surface Temperature (GHRSST) dataset based on multi-channel sea surface temperature (SST) retrievals from the...

  20. The global warming game - simulations of a CO2 reduction agreement

    International Nuclear Information System (INIS)

    Fankhauser, S.; Kverndokk, S.

    1992-06-01

    The paper analyses incentives for and the benefits of a possible international cooperation to reduce CO-2-emissions. The negotiations are modeled as a (static) reciprocal-externality-game in CO 2 -emissions between five world regions. CO 2 -emissions affect the players in two ways: First, each country's income depends (via energy inputs) on the amount of CO 2 emitted. On the other hand, emissions may cause future damage due to climate change. Without cooperation, each player maximizes its net benefits in setting marginal income equal to its marginal damage cost (Nash equilibrium). Under full cooperation marginal income equals the sum of the marginal damages (social optimum). The paper presents simulations of these two equilibria. Compared to the situation where no attention is paid to the greenhouse effect (the business as usual scenario), emission reductions under the Nash equilibrium can be interpreted as incentives for unilateral actions. According to the simulation results, this can only be expected from OECD countries. The results also imply that a socially optimal treaty, while clearly beneficial for the world in its entirety, may only be achieved if side payments are offered to at least China and the former Soviet Union, and probably the USA. The optimal global emission reductions in this study are on average lower than the reductions recommended by international conferences. 34 refs., 2 figs., 9 tabs