WorldWideScience

Sample records for global agriculture electronic

  1. Global Journal of Agricultural Sciences

    Journal Homepage Image. Global Journal of Agricultural Sciences is aimed at promoting research in all areas of Agricultural Sciences including Animal Production, Fisheries, Agronomy, Processing and Agricultural Mechanization. Related ...

  2. Adapting Indian Agriculture to Global Climate Change

    Adapting Indian Agriculture to Global Climate Change · Climate Change: Generic Implications for Agriculture · Controlled environment facilities at IARI used for evaluating model performance in future climate change scenarios · Slide 4 · Slide 5 · Global studies indicate considerable impact of climate change in tropics.

  3. Global Agricultural Trade and Developing Countries

    Aksoy, M. Ataman; Beghin, John C.

    2005-01-01

    Global Agricultural Trade and Developing Countries explores the outstanding issues in global agricultural trade policy and evolving world production and trade patterns. This book presents research findings based on a series of commodity studies of significant economic importance to developing countries. Setting the stage with background chapters and investigations of cross-cutting issues, the authors describe trade and domestic policy regimes affecting agricultural and food markets and analyz...

  4. Climate change and agricultural production | Offiong | Global ...

    From a policy viewpoint, however, it is also difficult to understand the level to which agriculturally related activities may contribute to global-scale environmental change and the extent to which policies to prevent, mitigate, or adapt to environmental change may affect agriculture and hunger. These issues are likely to become ...

  5. DIRECTIONS AND CHALLENGES IN GLOBAL AGRICULTURE

    Daniela POPA

    2013-01-01

    Full Text Available The development of global agricultural market has been at the forefront of professional studies. Expert opinions have quite differing views as to whether the world’s food production will be able to supply the huge demand of growing population. This scientific paper provides a general overview of global agricultural directions, including views on whether agricultural productivity increases will be able to keep with food demand increases and price trends. The scientific paper has focused on the present state of the agricultural market and on the analysis of the key factors defining the tasks of the agricultural sector in the near future, with a special attention to the case of Republic of Moldova.

  6. Agricultural Water Use under Global Change

    Zhu, T.; Ringler, C.; Rosegrant, M. W.

    2008-12-01

    Irrigation is by far the single largest user of water in the world and is projected to remain so in the foreseeable future. Globally, irrigated agricultural land comprises less than twenty percent of total cropland but produces about forty percent of the world's food. Increasing world population will require more food and this will lead to more irrigation in many areas. As demands increase and water becomes an increasingly scarce resource, agriculture's competition for water with other economic sectors will be intensified. This water picture is expected to become even more complex as climate change will impose substantial impacts on water availability and demand, in particular for agriculture. To better understand future water demand and supply under global change, including changes in demographic, economic and technological dimensions, the water simulation module of IMPACT, a global water and food projection model developed at the International Food Policy Research Institute, is used to analyze future water demand and supply in agricultural and several non-agricultural sectors using downscaled GCM scenarios, based on water availability simulation done with a recently developed semi-distributed global hydrological model. Risk analysis is conducted to identify countries and regions where future water supply reliability for irrigation is low, and food security may be threatened in the presence of climate change. Gridded shadow values of irrigation water are derived for global cropland based on an optimization framework, and they are used to illustrate potential irrigation development by incorporating gridded water availability and existing global map of irrigation areas.

  7. Global agriculture and carbon trade-offs.

    Johnson, Justin Andrew; Runge, Carlisle Ford; Senauer, Benjamin; Foley, Jonathan; Polasky, Stephen

    2014-08-26

    Feeding a growing and increasingly affluent world will require expanded agricultural production, which may require converting grasslands and forests into cropland. Such conversions can reduce carbon storage, habitat provision, and other ecosystem services, presenting difficult societal trade-offs. In this paper, we use spatially explicit data on agricultural productivity and carbon storage in a global analysis to find where agricultural extensification should occur to meet growing demand while minimizing carbon emissions from land use change. Selective extensification saves ∼ 6 billion metric tons of carbon compared with a business-as-usual approach, with a value of approximately $1 trillion (2012 US dollars) using recent estimates of the social cost of carbon. This type of spatially explicit geospatial analysis can be expanded to include other ecosystem services and other industries to analyze how to minimize conflicts between economic development and environmental sustainability.

  8. Agricultural trade and the global phosphorus cycle

    Schipanski, M.; Bennett, E.; Riskin, S.; Porder, S.

    2012-12-01

    Trends of increasing agricultural trade, increased concentration of livestock production systems, and increased human consumption of livestock products influence the distribution of nutrients across the global landscape. Phosphorus (P) represents a unique management challenge as we are rapidly depleting mineable reserves of this essential and non-renewable resource. At the same time, its overuse can lead to pollution of aquatic ecosystems. We analyzed the relative contributions of food crop, feed crop, and livestock product trade to P flows through agricultural soils for twelve countries from 1961 to 2007. We then used case studies of P fertilizer use in the world's three major soybean export regions: Iowa (USA), Mato Grosso (Brazil), and Buenos Aires (Argentina) to examine the influence of historical P management and soil types on agriculture's environmental consequences. Due to the intensification of agricultural production, average soil surface P balances more than tripled from 6 to 21 kg P per ha between 1961 and 2007 for the twelve study countries. Consequently, countries that are primarily agricultural exporters carried increased risks for water pollution or, for Argentina, reduced soil fertility due to soil P mining to support exports. In 2007, nations imported food and feed from regions with higher apparent P fertilizer use efficiencies than if those crops were produced domestically. However, this was largely because imports were sourced from regions depleting soil P resources to support export crop production. In addition, the pattern of regional specialization and intensification of production systems also reduced the potential to recycle P resources, with greater implications for livestock production than crop production. In a globalizing world, it will be increasingly important to integrate biophysical constraints of our natural resources and environmental impacts of agricultural systems into trade policy and agreements and to develop mechanisms that

  9. Stratospheric sulfate geoengineering impacts on global agriculture

    Xia, L.; Robock, A.; Lawrence, P.; Lombardozzi, D.

    2015-12-01

    Stratospheric sulfate geoengineering has been proposed to reduce the impacts of anthropogenic climate change. If it is ever used, it would change agricultural production, and so is one of the future climate scenarios for the third phase of the Global Gridded Crop Model Intercomparison. As an example of those impacts, we use the Community Land Model (CLM-crop 4.5) to simulate how climate changes from the G4 geoengineering scenario from the Geoengineering Modeling Intercomparison Project. The G4 geoengineering scenario specifies, in combination with RCP4.5 forcing, starting in 2020 daily injections of a constant amount of SO2 at a rate of 5 Tg SO2 per year at one point on the Equator into the lower stratosphere. Eight climate modeling groups have completed G4 simulations. We use the crop model to simulate the impacts of climate change (temperature, precipitation, and solar radiation) on the global agriculture system for five crops - rice, maize, soybeans, cotton, and sugarcane. In general, without irrigation, compared with the reference run (RCP4.5), global production of cotton, rice and sugarcane would increase significantly due to the cooling effect. Maize and soybeans show different regional responses. In tropical regions, maize and soybean have a higher yield in G4 compared with RCP4.5, while in the temperate regions they have a lower yield under a geoengineered climate. Impacts on specific countries in terms of different crop production depend on their locations. For example, the United States and Argentina show soybean production reduction of about 15% under G4 compared to RCP4.5, while Brazil increases soybean production by about 10%.

  10. Beliefs and Attitudes of Secondary Agriculture Teachers about Global Agriculture Issues

    Hurst, Sara D.; Roberts, T. Grady; Harder, Amy

    2015-01-01

    The purpose of this study was to explore the beliefs and attitudes of secondary agriculture teachers regarding global agricultural issues. A randomized national sample of 417 teachers were surveyed using a modified version of the International Agricultural Awareness and Understanding Survey (Wingenbach, Boyd, Lindner, Dick, Arispe, & Haba,…

  11. Global climate change and California agriculture

    Lewis, L.; Rains, W.; Kennedy, L.

    1991-01-01

    This paper has highlighted some of the impacts that a warmer climate may have on agriculture in California. Because of the state's diverse geomorphology it is difficult to predict what crops will grow in which locations under future climate regimes. However, the potential interactions between warmer temperatures, higher CO 2 concentrations, and the factors that affect plant and animal growth may have major consequences for the competitive position of the state's agriculture. Forward-thinking research and public policies are required to assure that responses to climate change will optimize production systems under future constraints

  12. Global warming: Climate scenarios and international agriculture

    Downing, T.E.; Parry, M.L.

    1991-01-01

    The potential impacts of climatic change on international agriculture are summarized, drawing on results from the Intergovernmental Panel on Climate Change impacts working group. The four different climate change scenarios used for investigating impacts: historical studies, artificial scenarios, analogues, and general circulation models, are briefly reviewed. Climate change will affect agriculture in three ways: direct effects of increased carbon dioxide concentration, effects of altered weather patterns, and secondary effects on social and economic situations. The effect of increased carbon dioxide concentration is uncertain, but potentially will enhance plant growth and water use efficiency. The sensitivity of grain maize to incremental changes in annual temperature is described, with the suitable zone expanding from the middle of Europe to southern Scandinavia. Potential damage from insect pests may increase under warmer climates, with northerly movement of insect breeding grounds. Temperature increases are likely to lengthen the growing season where temperature is a limiting factor, especially at higher lattitudes in the Northern Hemisphere. Higher temperatures, shorter periods of grain filling, and reduced winter chilling will reduce potential yields in current core grain-growing areas, and changing moisture regimes will shift agricultural patterns. The horn of Africa and parts of western Africa are likely to suffer enhanced food supply vulnerability. 16 refs., 4 figs

  13. Modeling global distribution of agricultural insecticides in surface waters.

    Ippolito, Alessio; Kattwinkel, Mira; Rasmussen, Jes J; Schäfer, Ralf B; Fornaroli, Riccardo; Liess, Matthias

    2015-03-01

    Agricultural insecticides constitute a major driver of animal biodiversity loss in freshwater ecosystems. However, the global extent of their effects and the spatial extent of exposure remain largely unknown. We applied a spatially explicit model to estimate the potential for agricultural insecticide runoff into streams. Water bodies within 40% of the global land surface were at risk of insecticide runoff. We separated the influence of natural factors and variables under human control determining insecticide runoff. In the northern hemisphere, insecticide runoff presented a latitudinal gradient mainly driven by insecticide application rate; in the southern hemisphere, a combination of daily rainfall intensity, terrain slope, agricultural intensity and insecticide application rate determined the process. The model predicted the upper limit of observed insecticide exposure measured in water bodies (n = 82) in five different countries reasonably well. The study provides a global map of hotspots for insecticide contamination guiding future freshwater management and conservation efforts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. TECHNOLOGICAL IMPERATIVE IMPACT OF GLOBALIZATION ON INTERNATIONAL AGRICULTURAL ECONOMY

    А. Кozlova

    2014-09-01

    Full Text Available The article highlights the factors influencing agricultural production towards global market. The study consists basic fundamental imperatives of globalization on the agricultural sector in international economic relations. The article analyzes the strategic priorities of the international agricultural sector, which includes financial and credit support, legal aspects, processes and integration of organizational structures. Technological imperatives require a large structural and institutional turn in the Ukrainian economy on the basis of current trends in the global economy, scientific and technical potential. There is a growing importance of organizing and conducting international level in the field of technological forecasting. This type of prediction is considered as backbone component in strategic forecasting and economic development programming.

  15. Will EU Biofuel Policies affect Global Agricultural Markets?

    Banse, M.; Vvan Meijl, H.; Tabeau, A.; Woltjer, G.

    2008-04-01

    This paper assesses the global and sectoral implications of the European Union Biofuels Directive (BFD) in a multi-region computable general equilibrium framework with endogenous determination of land supply. The results show that, without mandatory blending policies or subsidies to stimulate the use of biofuel crops in the petroleum sector, the targets of the BFD will not be met in 2010 and 2020. With a mandatory blending policy, the enhanced demand for biofuel crops has a strong impact on agriculture at the global and European levels. The additional demand from the energy sector leads to an increase in global land use and, ultimately, a decrease in biodiversity. The development, on the other hand, might slow or reverse the long-term process of declining real agricultural prices. Moreover, assuming a further liberalization of the European agricultural market imports of biofuels are expected to increase to more than 50% of the total biofuel demand in Europe

  16. Rapid, global demographic expansions after the origins of agriculture.

    Gignoux, Christopher R; Henn, Brenna M; Mountain, Joanna L

    2011-04-12

    The invention of agriculture is widely assumed to have driven recent human population growth. However, direct genetic evidence for population growth after independent agricultural origins has been elusive. We estimated population sizes through time from a set of globally distributed whole mitochondrial genomes, after separating lineages associated with agricultural populations from those associated with hunter-gatherers. The coalescent-based analysis revealed strong evidence for distinct demographic expansions in Europe, southeastern Asia, and sub-Saharan Africa within the past 10,000 y. Estimates of the timing of population growth based on genetic data correspond neatly to dates for the initial origins of agriculture derived from archaeological evidence. Comparisons of rates of population growth through time reveal that the invention of agriculture facilitated a fivefold increase in population growth relative to more ancient expansions of hunter-gatherers.

  17. Modeling global distribution of agricultural insecticides in surface waters

    Ippolito, Alessio; Kattwinkel, Mira; Rasmussen, Jes J.; Schäfer, Ralf B.; Fornaroli, Riccardo; Liess, Matthias

    2015-01-01

    Agricultural insecticides constitute a major driver of animal biodiversity loss in freshwater ecosystems. However, the global extent of their effects and the spatial extent of exposure remain largely unknown. We applied a spatially explicit model to estimate the potential for agricultural insecticide runoff into streams. Water bodies within 40% of the global land surface were at risk of insecticide runoff. We separated the influence of natural factors and variables under human control determining insecticide runoff. In the northern hemisphere, insecticide runoff presented a latitudinal gradient mainly driven by insecticide application rate; in the southern hemisphere, a combination of daily rainfall intensity, terrain slope, agricultural intensity and insecticide application rate determined the process. The model predicted the upper limit of observed insecticide exposure measured in water bodies (n = 82) in five different countries reasonably well. The study provides a global map of hotspots for insecticide contamination guiding future freshwater management and conservation efforts. - Highlights: • First global map on insecticide runoff through modelling. • Model predicts upper limit of insecticide exposure when compared to field data. • Water bodies in 40% of global land surface may be at risk of adverse effects. • Insecticide application rate, terrain slope and rainfall main drivers of exposure. - We provide the first global map on insecticide runoff to surface water predicting that water bodies in 40% of global land surface may be at risk of adverse effects

  18. Quality Evaluation of Agricultural Distillates Using an Electronic Nose

    Dymerski, Tomasz; Gębicki, Jacek; Wardencki, Waldemar; Namieśnik, Jacek

    2013-01-01

    The paper presents the application of an electronic nose instrument to fast evaluation of agricultural distillates differing in quality. The investigations were carried out using a prototype of electronic nose equipped with a set of six semiconductor sensors by FIGARO Co., an electronic circuit converting signal into digital form and a set of thermostats able to provide gradient temperature characteristics to a gas mixture. A volatile fraction of the agricultural distillate samples differing ...

  19. Safeguarding fruit crops in the age of agricultural globalization

    The expansion of fruit production and markets into new geographic areas provides novel opportunities and challenges for the agricultural and marketing industries. In today’s competitive global market environment, growers need access to the best material available in terms of genetics and plant heal...

  20. Embodied phosphorus and the global connections of United States agriculture

    MacDonald, Graham K.; Bennett, Elena M.; Carpenter, Stephen R.

    2012-12-01

    Agricultural phosphorus (P) use is intricately linked to food security and water quality. Globalization of agricultural systems and changing diets clearly alter these relationships, yet their specific influence on non-renewable P reserves is less certain. We assessed P fertilizer used for production of food crops, livestock and biofuels in the US agricultural system, explicitly comparing the domestic P use required for US food consumption to the P use embodied in the production of US food imports and exports. By far the largest demand for P fertilizer throughout the US agricultural system was for feed and livestock production (56% of total P fertilizer use, including that for traded commodities). As little as 8% of the total mineral P inputs to US domestic agriculture in 2007 (1905 Gg P) was consumed in US diets in the same year, while larger fractions may have been retained in agricultural soils (28%), associated with different post-harvest losses (40%) or with biofuel refining (10%). One quarter of all P fertilizer used in the US was linked to export production, primarily crops, driving a large net P flux out of the country (338 Gg P). However, US meat consumption relied considerably on P fertilizer use in other countries to produce red meat imports. Changes in domestic farm management and consumer waste could together reduce the P fertilizer required for US food consumption by half, which is comparable to the P fertilizer reduction attainable by cutting domestic meat consumption (44%). US export-oriented agriculture, domestic post-harvest P losses and global demand for meat may ultimately have an important influence on the lifespan of US phosphate rock reserves.

  1. The Development Model Electronic Commerce of Regional Agriculture

    Kang, Jun; Cai, Lecai; Li, Hongchan

    With the developing of the agricultural information, it is inevitable trend of the development of agricultural electronic commercial affairs. On the basis of existing study on the development application model of e-commerce, combined with the character of the agricultural information, compared with the developing model from the theory and reality, a new development model electronic commerce of regional agriculture base on the government is put up, and such key issues as problems of the security applications, payment mode, sharing mechanisms, and legal protection are analyzed, etc. The among coordination mechanism of the region is discussed on, it is significance for regulating the development of agricultural e-commerce and promoting the regional economical development.

  2. Decoupling of greenhouse gas emissions from global agricultural production

    Bennetzen, Eskild Hohlmann; Smith, Pete; Porter, John Roy

    2016-01-01

    Since 1970 global agricultural production has more than doubled; contributing ~1/4 of total anthropogenic greenhouse gas (GHG) burden in 2010. Food production must increase to feed our growing demands, but to address climate change, GHG emissions must decrease. Using an identity approach, we...... estimate and analyse past trends in GHG emission intensities from global agricultural production and land-use change and project potential future emissions. The novel Kaya-Porter identity framework deconstructs the entity of emissions from a mix of multiple sources of GHGs into attributable elements...... to increase food security whilst reducing emissions. The identity approach presented here could be used as a methodological framework for more holistic food systems analysis....

  3. A contemporary decennial global sample of changing agricultural field sizes

    White, E.; Roy, D. P.

    2011-12-01

    In the last several hundred years agriculture has caused significant human induced Land Cover Land Use Change (LCLUC) with dramatic cropland expansion and a marked increase in agricultural productivity. The size of agricultural fields is a fundamental description of rural landscapes and provides an insight into the drivers of rural LCLUC. Increasing field sizes cause a subsequent decrease in the number of fields and therefore decreased landscape spatial complexity with impacts on biodiversity, habitat, soil erosion, plant-pollinator interactions, diffusion of disease pathogens and pests, and loss or degradation in buffers to nutrient, herbicide and pesticide flows. In this study, globally distributed locations with significant contemporary field size change were selected guided by a global map of agricultural yield and literature review and were selected to be representative of different driving forces of field size change (associated with technological innovation, socio-economic conditions, government policy, historic patterns of land cover land use, and environmental setting). Seasonal Landsat data acquired on a decadal basis (for 1980, 1990, 2000 and 2010) were used to extract field boundaries and the temporal changes in field size quantified and their causes discussed.

  4. Mediterranean Agricultural Soil Conservation under global Change: The MASCC project.

    Raclot, Damien; Ciampalini, Rossano

    2017-04-01

    The MASCC project (2016-2019, http://mascc-project.org) aims to address mitigation and adaptation strategies to global change by assessing current and future development of Mediterranean agricultural soil vulnerability to erosion in relation to projected land use, agricultural practices and climate change. It targets to i) assess the similarities/dissimilarities in dominant factors affecting the current Mediterranean agricultural soil vulnerability by exploring a wide range of Mediterranean contexts; ii) improve the ability to evaluate the impact of extreme events on both the current and projected agricultural soil vulnerability and the sediment delivery at catchment outlet; iii) evaluate the vulnerability and resilience of agricultural production to a combination of potential changes in a wide range of Mediterranean contexts, iv) and provide guidelines on sustainable agricultural conservation strategies adapted to each specific agro-ecosystem and taking into consideration both on- and off-site erosion effects and socio-economics issues. To achieve these objectives, the MASCC project consortium gather researchers from six Mediterranean countries (France, Morocco, Tunisia, Italy, Spain and Portugal) which monitor mid- to long-term environmental catchments and benefit from mutual knowledge created from previous projects and network. The major assets for MASCC are: i) the availability of an unrivalled database on catchment soil erosion and innovative agricultural practices comprising a wide range of Mediterranean contexts, ii) the capacity to better evaluate the impact of extreme events on soil erosion, iii) the expert knowledge of the LANDSOIL model, a catchment-scale integrated approach of the soil-landscape system that enables to simulate both the sediment fluxes at the catchment outlet and the intra-catchment soil evolving properties and iv) the multi-disciplinarity of the involved researchers with an international reputation in the fields of soil science

  5. A Global Geospatial Ecosystem Services Estimate of Urban Agriculture

    Clinton, Nicholas; Stuhlmacher, Michelle; Miles, Albie; Uludere Aragon, Nazli; Wagner, Melissa; Georgescu, Matei; Herwig, Chris; Gong, Peng

    2018-01-01

    Though urban agriculture (UA), defined here as growing of crops in cities, is increasing in popularity and importance globally, little is known about the aggregate benefits of such natural capital in built-up areas. Here, we introduce a quantitative framework to assess global aggregate ecosystem services from existing vegetation in cities and an intensive UA adoption scenario based on data-driven estimates of urban morphology and vacant land. We analyzed global population, urban, meteorological, terrain, and Food and Agriculture Organization (FAO) datasets in Google Earth Engine to derive global scale estimates, aggregated by country, of services provided by UA. We estimate the value of four ecosystem services provided by existing vegetation in urban areas to be on the order of 33 billion annually. We project potential annual food production of 100-180 million tonnes, energy savings ranging from 14 to 15 billion kilowatt hours, nitrogen sequestration between 100,000 and 170,000 tonnes, and avoided storm water runoff between 45 and 57 billion cubic meters annually. In addition, we estimate that food production, nitrogen fixation, energy savings, pollination, climate regulation, soil formation and biological control of pests could be worth as much as 80-160 billion annually in a scenario of intense UA implementation. Our results demonstrate significant country-to-country variability in UA-derived ecosystem services and reduction of food insecurity. These estimates represent the first effort to consistently quantify these incentives globally, and highlight the relative spatial importance of built environments to act as change agents that alleviate mounting concerns associated with global environmental change and unsustainable development.

  6. Quality Evaluation of Agricultural Distillates Using an Electronic Nose

    Tomasz Dymerski

    2013-11-01

    Full Text Available The paper presents the application of an electronic nose instrument to fast evaluation of agricultural distillates differing in quality. The investigations were carried out using a prototype of electronic nose equipped with a set of six semiconductor sensors by FIGARO Co., an electronic circuit converting signal into digital form and a set of thermostats able to provide gradient temperature characteristics to a gas mixture. A volatile fraction of the agricultural distillate samples differing in quality was obtained by barbotage. Interpretation of the results involved three data analysis techniques: principal component analysis, single-linkage cluster analysis and cluster analysis with spheres method. The investigations prove the usefulness of the presented technique in the quality control of agricultural distillates. Optimum measurements conditions were also defined, including volumetric flow rate of carrier gas (15 L/h, thermostat temperature during the barbotage process (15 °C and time of sensor signal acquisition from the onset of the barbotage process (60 s.

  7. Quality evaluation of agricultural distillates using an electronic nose.

    Dymerski, Tomasz; Gębicki, Jacek; Wardencki, Waldemar; Namieśnik, Jacek

    2013-11-25

    The paper presents the application of an electronic nose instrument to fast evaluation of agricultural distillates differing in quality. The investigations were carried out using a prototype of electronic nose equipped with a set of six semiconductor sensors by FIGARO Co., an electronic circuit converting signal into digital form and a set of thermostats able to provide gradient temperature characteristics to a gas mixture. A volatile fraction of the agricultural distillate samples differing in quality was obtained by barbotage. Interpretation of the results involved three data analysis techniques: principal component analysis, single-linkage cluster analysis and cluster analysis with spheres method. The investigations prove the usefulness of the presented technique in the quality control of agricultural distillates. Optimum measurements conditions were also defined, including volumetric flow rate of carrier gas (15 L/h), thermostat temperature during the barbotage process (15 °C) and time of sensor signal acquisition from the onset of the barbotage process (60 s).

  8. Agricultural insecticides threaten surface waters at the global scale.

    Stehle, Sebastian; Schulz, Ralf

    2015-05-05

    Compared with nutrient levels and habitat degradation, the importance of agricultural pesticides in surface water may have been underestimated due to a lack of comprehensive quantitative analysis. Increasing pesticide contamination results in decreasing regional aquatic biodiversity, i.e., macroinvertebrate family richness is reduced by ∼30% at pesticide concentrations equaling the legally accepted regulatory threshold levels (RTLs). This study provides a comprehensive metaanalysis of 838 peer-reviewed studies (>2,500 sites in 73 countries) that evaluates, for the first time to our knowledge on a global scale, the exposure of surface waters to particularly toxic agricultural insecticides. We tested whether measured insecticide concentrations (MICs; i.e., quantified insecticide concentrations) exceed their RTLs and how risks depend on insecticide development over time and stringency of environmental regulation. Our analysis reveals that MICs occur rarely (i.e., an estimated 97.4% of analyses conducted found no MICs) and there is a complete lack of scientific monitoring data for ∼90% of global cropland. Most importantly, of the 11,300 MICs, 52.4% (5,915 cases; 68.5% of the sites) exceeded the RTL for either surface water (RTLSW) or sediments. Thus, the biological integrity of global water resources is at a substantial risk. RTLSW exceedances depend on the catchment size, sampling regime, and sampling date; are significantly higher for newer-generation insecticides (i.e., pyrethroids); and are high even in countries with stringent environmental regulations. These results suggest the need for worldwide improvements to current pesticide regulations and agricultural pesticide application practices and for intensified research efforts on the presence and effects of pesticides under real-world conditions.

  9. Awareness and use of the Essential Electronic Agricultural Library ...

    The study investigated the extent of awareness and use of The Essential Electronic Agricultural Library (TEEAL) resources by faculty members of Federal University, Kashere and Federal College of Education (Technical) Gombe. A survey design was adopted for the study. The questionnaire was used as data collection ...

  10. Global hunger: a challenge to agricultural, food, and nutritional sciences.

    Wu, Shiuan-Huei; Ho, Chi-Tang; Nah, Sui-Lin; Chau, Chi-Fai

    2014-01-01

    Hunger has been a concern for generations and has continued to plague hundreds of millions of people around the world. Although many efforts have been devoted to reduce hunger, challenges such as growing competitions for natural resources, emerging climate changes and natural disasters, poverty, illiteracy, and diseases are posing threats to food security and intensifying the hunger crisis. Concerted efforts of scientists to improve agricultural and food productivity, technology, nutrition, and education are imperative to facilitate appropriate strategies for defeating hunger and malnutrition. This paper provides some aspects of world hunger issues and summarizes the efforts and measures aimed to alleviate food problems from the food and nutritional sciences perspectives. The prospects and constraints of some implemented strategies for alleviating hunger and achieving sustainable food security are also discussed. This comprehensive information source could provide insights into the development of a complementary framework for dealing with the global hunger issue.

  11. Globalization's effects on world agricultural trade, 1960–2050

    Anderson, Kym

    2010-01-01

    Recent globalization has been characterized by a decline in the costs of cross-border trade in farm and other products. It has been driven primarily by the information and communication technology revolution and—in the case of farm products—by reductions in governmental distortions to agricultural production, consumption and trade. Both have boosted economic growth and reduced poverty globally, especially in Asia. The first but maybe not the second of these drivers will continue in coming decades. World food prices will depend also on whether (and if so by how much) farm productivity growth continues to outpace demand growth and to what extent diets in emerging economies move towards livestock and horticultural products at the expense of staples. Demand in turn will be driven not only by population and income growth, but also by crude oil prices if they remain at current historically high levels, since that will affect biofuel demand. Climate change mitigation policies and adaptation, water market developments and market access standards particularly for transgenic foods will add to future production, price and trade uncertainties. PMID:20713399

  12. Spatial modeling of agricultural land use change at global scale

    Meiyappan, P.; Dalton, M.; O'Neill, B. C.; Jain, A. K.

    2014-11-01

    Long-term modeling of agricultural land use is central in global scale assessments of climate change, food security, biodiversity, and climate adaptation and mitigation policies. We present a global-scale dynamic land use allocation model and show that it can reproduce the broad spatial features of the past 100 years of evolution of cropland and pastureland patterns. The modeling approach integrates economic theory, observed land use history, and data on both socioeconomic and biophysical determinants of land use change, and estimates relationships using long-term historical data, thereby making it suitable for long-term projections. The underlying economic motivation is maximization of expected profits by hypothesized landowners within each grid cell. The model predicts fractional land use for cropland and pastureland within each grid cell based on socioeconomic and biophysical driving factors that change with time. The model explicitly incorporates the following key features: (1) land use competition, (2) spatial heterogeneity in the nature of driving factors across geographic regions, (3) spatial heterogeneity in the relative importance of driving factors and previous land use patterns in determining land use allocation, and (4) spatial and temporal autocorrelation in land use patterns. We show that land use allocation approaches based solely on previous land use history (but disregarding the impact of driving factors), or those accounting for both land use history and driving factors by mechanistically fitting models for the spatial processes of land use change do not reproduce well long-term historical land use patterns. With an example application to the terrestrial carbon cycle, we show that such inaccuracies in land use allocation can translate into significant implications for global environmental assessments. The modeling approach and its evaluation provide an example that can be useful to the land use, Integrated Assessment, and the Earth system modeling

  13. Climate change impacts on global agricultural land availability

    Zhang Xiao; Cai Ximing

    2011-01-01

    Climate change can affect both crop yield and the land area suitable for agriculture. This study provides a spatially explicit estimate of the impact of climate change on worldwide agricultural land availability, considering uncertainty in climate change projections and ambiguity with regard to land classification. Uncertainty in general circulation model (GCM) projections is addressed using data assembled from thirteen GCMs and two representative emission scenarios (A1B and B1 employ CO 2 -equivalent greenhouse gas concentrations of 850 and 600 ppmv, respectively; B1 represents a greener economy). Erroneous data and the uncertain nature of land classifications based on multiple indices (i.e. soil properties, land slope, temperature, and humidity) are handled with fuzzy logic modeling. It is found that the total global arable land area is likely to decrease by 0.8-1.7% under scenario A1B and increase by 2.0-4.4% under scenario B1. Regions characterized by relatively high latitudes such as Russia, China and the US may expect an increase of total arable land by 37-67%, 22-36% and 4-17%, respectively, while tropical and sub-tropical regions may suffer different levels of lost arable land. For example, South America may lose 1-21% of its arable land area, Africa 1-18%, Europe 11-17%, and India 2-4%. When considering, in addition, land used for human settlements and natural conservation, the net potential arable land may decrease even further worldwide by the end of the 21st century under both scenarios due to population growth. Regionally, it is likely that both climate change and population growth will cause reductions in arable land in Africa, South America, India and Europe. However, in Russia, China and the US, significant arable land increases may still be possible. Although the magnitudes of the projected changes vary by scenario, the increasing or decreasing trends in arable land area are regionally consistent.

  14. Global effects of agriculture on fluvial dissolved organic matter

    Graeber, Daniel; Boëchat, Iola; Encina, Francisco

    2015-01-01

    Agricultural land covers approximately 40% of Earth’s land surface and affects hydromorphological, biogeochemical and ecological characteristics of fluvial networks. In the northern temperate region, agriculture also strongly affects the amount and molecular composition of dissolved organic matter...

  15. Global warming threatens agricultural productivity in Africa and South Asia

    Sultan, Benjamin

    2012-12-01

    The Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC; Christensen et al 2007) has, with greater confidence than previous reports, warned the international community that the increase in anthropogenic greenhouse gases emissions will result in global climate change. One of the most direct and threatening impacts it may have on human societies is the potential consequences on global crop production. Indeed agriculture is considered as the most weather-dependent of all human activities (Hansen 2002) since climate is a primary determinant for agricultural productivity. The potential impact of climate change on crop productivity is an additional strain on the global food system which is already facing the difficult challenge of increasing food production to feed a projected 9 billion people by 2050 with changing consumption patterns and growing scarcity of water and land (Beddington 2010). In some regions such as Sub-Saharan Africa or South Asia that are already food insecure and where most of the population increase and economic development will take place, climate change could be the additional stress that pushes systems over the edge. A striking example, if needed, is the work from Collomb (1999) which estimates that by 2050 food needs will more than quintuple in Africa and more than double in Asia. Better knowledge of climate change impacts on crop productivity in those vulnerable regions is crucial to inform policies and to support adaptation strategies that may counteract the adverse effects. Although there is a growing literature on the impact of climate change on crop productivity in tropical regions, it is difficult to provide a consistent assessment of future yield changes because of large uncertainties in regional climate change projections, in the response of crops to environmental change (rainfall, temperature, CO2 concentration), in the coupling between climate models and crop productivity functions, and in the adaptation of

  16. GLOBAL CHALLENGES FOR SUSTAINABLE AGRICULTURE AND RURAL DEVELOPMENT IN SLOVAKIA

    Magdalana Bartosova

    2013-09-01

    Full Text Available The paper is focused on the evaluation of economic, social and environmental challenges of sustainable agriculture. The selected indicators of the economic challenges of sustainable agriculture imply that agriculture in Slovakia is not in long term be able to ensure competitiveness in the European market, gross agricultural output is characterized by a faster decline in animal production than in crop production and the value of import of agri-food commodities is higher than the value of export. According to selected indicators of social challenges of sustainable agriculture the number of persons working in agriculture has decreasing tendency in last years. The evaluation of selected indicators of environmental challenges of sustainable agriculture implies that area of organic agriculture is the most widely applied sub-measure within the measure agri-environmental payments. For ensuring the balance of the three mentioned dimensions of sustainable agriculture is necessary to increase of local production and consumption of local products, to ensure the protection of nature and landscape, to ensure rural development and to increase the employment opportunities in countryside.

  17. Sustainable intensification of agriculture for human prosperity and global sustainability

    Rockstrom, J.; Williams, J.; Daily, G.; Noble, A.; Matthews, N.; Gordon, L.; Wetterstrand, H.; DeClerck, F.; Fraiture, de C.M.S.

    2017-01-01

    There is an ongoing debate on what constitutes sustainable intensification of agriculture (SIA). In this paper, we propose that a paradigm for sustainable intensification can be defined and translated into an operational framework for agricultural development. We argue that this paradigm must now be

  18. The global view: issues affecting US production agriculture.

    Goldsmith, Peter

    2010-07-01

    This paper discusses small events occurring among developing countries, particularly but not exclusively in Asia, and their subsequent large impacts on net food exporting countries in the world, particularly, but not exclusively, located in the Western hemisphere. A Green Revolution II is underway as a result where the world's agricultural system will produce more (output) with less (inputs). Agriculture will meet the rapidly growing demand for bio-based foods, fuels, feeds, and fiber while reducing input usage, preserving the natural environment, and maintaining native ecosystems. In turn agricultural workers will receive a health dividend as chemical usage falls, automation, metering, and sensing technologies rise, and exposure to harsh environmental, both natural and man-made, conditions is reduced. This paper was prepared for the Agricultural Safety and Health Council of America/National Institute for Occupational Safety and Health Conference, "Be Safe, Be Profitable: Protecting Workers in Agriculture," January 27-28, 2010, Dallas/Fort Worth, Texas.

  19. Agricultural biotechnology and its contribution to the global knowledge economy.

    Aerni, Philipp

    2007-01-01

    The theory of neoclassical welfare economics largely shaped international and national agricultural policies during the Cold War period. It treated technology as an exogenous factor that could boost agricultural productivity but not necessarily sustainable agriculture. New growth theory, the economic theory of the new knowledge economy, treats technological change as endogenous and argues that intangible assets such as human capital and knowledge are the drivers of sustainable economic development. In this context, the combined use of agricultural biotechnology and information technology has a great potential, not just to boost economic growth but also to empower people in developing countries and improve the sustainable management of natural resources. This article outlines the major ideas behind new growth theory and explains why agricultural economists and agricultural policy-makers still tend to stick to old welfare economics. Finally, the article uses the case of the Cassava Biotechnology Network (CBN) to illustrate an example of how new growth theory can be applied in the fight against poverty. CBN is a successful interdisciplinary crop research network that makes use of the new knowledge economy to produce new goods that empower the poor and improve the productivity and nutritional quality of cassava. It shows that the potential benefits of agricultural biotechnology go far beyond the already known productivity increases and pesticide use reductions of existing GM crops.

  20. GLOBAL JOURNAL OF AGRICULTURAL SCIENCES ISSN 1596-2903

    Ada Global

    It contributes to vegetation recovery after disturbances such as tree ... many regions particularly in the south eastern Nigeria. Presently, the .... temperate deciduous forest. Journal of ... Agriculture, Washington, D.C., Handbook No. 450. Steel ...

  1. Global Journal of Agricultural Sciences - Vol 10, No 1 (2011)

    Wild vertebrate pests activities on agricultural crops at Gashaka Gumti National Park, Nigeria · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. TF Ikpa, BI Dagba, JM Akusu, 33-37 ...

  2. Global Approaches to Extension Practice: A Journal of Agricultural ...

    Journal Homepage Image ... from all areas of Agricultural Extension: rural sociology, environmental extension, extension communication ... Adoption of improved oil palm processing technology in Umuahia north local government area of Abia ...

  3. OPENING GLOBAL MARKETS FOR AGRICULTURE: THE NEXT WTO ROUND

    Sumner, Daniel A.

    2000-01-01

    More open international markets benefit the economy as a whole, as well as most U.S. agricultural producers. The Uruguay Round Agreement laid out a useful framework. Specifically addressed here is why the key to further liberalizing agricultural trade is reduction of tariffs as comprehensively and rapidly as politics will allow. Other issues such as export subsidies, tariff-rate quota quantities, and developing-country relationships are also important, especially while tariffs are coming down...

  4. Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets.

    Zomer, Robert J; Neufeldt, Henry; Xu, Jianchu; Ahrends, Antje; Bossio, Deborah; Trabucco, Antonio; van Noordwijk, Meine; Wang, Mingcheng

    2016-07-20

    Agroforestry systems and tree cover on agricultural land make an important contribution to climate change mitigation, but are not systematically accounted for in either global carbon budgets or national carbon accounting. This paper assesses the role of trees on agricultural land and their significance for carbon sequestration at a global level, along with recent change trends. Remote sensing data show that in 2010, 43% of all agricultural land globally had at least 10% tree cover and that this has increased by 2% over the previous ten years. Combining geographically and bioclimatically stratified Intergovernmental Panel on Climate Change (IPCC) Tier 1 default estimates of carbon storage with this tree cover analysis, we estimated 45.3 PgC on agricultural land globally, with trees contributing >75%. Between 2000 and 2010 tree cover increased by 3.7%, resulting in an increase of >2 PgC (or 4.6%) of biomass carbon. On average, globally, biomass carbon increased from 20.4 to 21.4 tC ha(-1). Regional and country-level variation in stocks and trends were mapped and tabulated globally, and for all countries. Brazil, Indonesia, China and India had the largest increases in biomass carbon stored on agricultural land, while Argentina, Myanmar, and Sierra Leone had the largest decreases.

  5. Electron beam agrobionanotechnologies for agriculture and food industry enabled by electron accelerators

    Pavlov, Y. S.; Revina, A. A.; Souvorova, O. V.; Voropaeva, N. L.; Chekmar, D. V.; Abkhalimov, E. V.; Zavyalov, M. A.; Filippovich, V. P.

    2017-12-01

    Electron beam (EB) radiation technologies have been employed to increase efficiency of biologically active nanochips developed for agricultural plants seed pre-treatment with purpose of enhancing crop yield and productivity. Iron-containing nanoparticles (NPs), synthesized in reverse micelles following known radiation-chemical technique, have served as a multifunctional biologically active and phytosanitary substance of the chips. Porous chip carriers activation has been performed by EB ionization (doze 20kGy) of the active carbons (AC) prepared from agricultural waste and by-products: Jerusalem artichoke (Helianthus tuberosus) straw, rape (Brassica napus L. ssp. oleifera Metzg) straw, camelina (Camelina sativa (L.) Crantz) straw, wheat (Triticum aestivum) straw. Three methods, UV-VIS spectrophotometry, Electron Paramagnetic Resonance (EPR) spectroscopy, cyclic voltammetry (CV) have been used for process control and characterization of radiation-activated and NPs-modified ACs. The results show a notable effect of ACs activation by electron beam radiation, evidenced by FeNPs-adsorption capacity increase. Studies of the impact of Fe NPs-containing nanochip technology on enhancement of seeds germination rate and seedlings vigour suggest that reported electron beam radiation treatment techniques of the ACs from selected agricultural residues may be advantageous for industrial application.

  6. Globalization of food and agriculture and the poor:

    von Braun, Joachim; Díaz-Bonilla, Eugenio

    2008-01-01

    The economic impact of globalization, particularly on poverty, and the changes in agri-food markets have received much attention in recent years. However, the intersection of these two trends has been neglected. The present volume fills this gap by focusing on the way globalization of agri-food systems affects the world's poor and its impact on food and nutrition security in developing countries. Rather than offering a single policy prescription or simplistic messages about globalization bein...

  7. Review: Lorenzo Cotula, The Great African Land Grab?: Agricultural Investments and the Global Food System (2013

    Kerstin Nolte

    2013-01-01

    Full Text Available Review of the monograph:Lorenzo Cotula, The Great African Land Grab?: Agricultural Investments and the Global Food System, London, New York: Zed Books, 2013, ISBN 9781780324203, 248 pages

  8. The Role of Governance in Agricultural Expansion and Intensification: a Global Study of Arable Agriculture

    Menno Mandemaker

    2011-06-01

    Full Text Available In this research we studied empirical relationships between agricultural production dynamics and six quantitative World Bank governance indicators for 173 countries between 1975 and 2007. It is hypothesized that in countries with lower quality of governance, agricultural production increases are more likely to be achieved by area expansions than by increases in yields. We distinguished four groups of countries: those with both area and yield increases; those with increasing yields but decreasing area; those with decreasing yields but a growing area; and those with both declines in yields and area. We analyzed differences between these four groups, and also analyzed governance-production relationships within these groups. On average, quality of governance is low in countries with both area and yield increases and high in countries with increasing yields but decreasing area. Countries with declining yields were too few in number to allow for quantitative analyses. The analysis of governance-production relationships within the four groups suggests that countries with a lower quality of governance are more inclined to achieve production increases by expanding agricultural area rather than increasing yields. Additional explanatory value of governance indicators to agricultural production dynamics is generally small, but nevertheless significant in most cases. Our results suggest that, in order for agricultural production to increase without excessive expansions of agricultural area, governance issues should be resolved.

  9. Quantifying impacts of nitrogen use in European agriculture on global warming potential.

    Vries, de W.; Kros, J.; Reinds, G.J.; Butterbach-Bahl, K.

    2011-01-01

    This paper summarizes current knowledge on the impacts of changes of nitrogen (Nr) use in agriculture on the global warming potential (GWP) by its impact on carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) emissions from agricultural and terrestrial nonagricultural systems and from

  10. Global Approaches to Extension Practice: A Journal of Agricultural ...

    Credit Delivery Systems In Rural Nigeria: Issues And Implications For Rural Transformation · EMAIL FULL TEXT EMAIL FULL TEXT .... Influence Of Fund Availability On Adoption Of Improved Agricultural Technologies Among Farmers Involved In The Special Programme For Food Security In Rivers State, Nigeria · EMAIL ...

  11. Electronic Waste: A Growing Challenge In Nigeria | Ukem | Global ...

    Global Journal of Pure and Applied Sciences ... growing problem of electronic waste from the Nigerian perspective, and highlights factors that can militate ... equipment, electronic waste, recycling, environmental pollution, waste management.

  12. GLOBAL JOURNAL OF AGRICULTURAL SCIENCES ISSN 1596-2903

    Ada Global

    'Maputo, Declaration on Agriculture and food security in. Africa'. The Declaration ... last nine (9) years of military regime and the first nine (9) years of ... For Military. (1990-1998). 2.4. 1999. 2000. 2001. 2002. 2003. 2004. 2005. 2006. 2007. 2008. 947,690.0. 701,100.0. 1,018,000.0. 1,018,200.0. 1,226,000.0. 1,377,300.00.

  13. Water resources conservation and nitrogen pollution reduction under global food trade and agricultural intensification

    Liu, Wenfeng; Yang, Hong; Liu, Yu; Kummu, Matti; Hoekstra, Arjen Y.; Liu, Junguo; Schulin, Rainer

    2018-01-01

    Global food trade entails virtual flows of agricultural resources and pollution across countries. Here we performed a global-scale assessment of impacts of international food trade on blue water use, total water use, and nitrogen (N) inputs and on N losses in maize, rice, and wheat production. We

  14. To assess and control global change in agriculture through ecosystem models integrated into geographic information systems

    Ponti, L.; Iannetta, M.; Gutierrez, A.P.

    2015-01-01

    The transfer of ENEA PBDM (physiologically based demographic models) GIS technology, represents an opportunity to address global change in agriculture on an ecological basis in a local context, be able to provide European governmental agencies the necessary scientific basis for developing effective policies for adaptation to global change, including climate change [it

  15. Agriculture

    Goetz, B.; Riss, A.; Zethner, G.

    2001-01-01

    This chapter deals with fertilization techniques, bioenergy from agriculture, environmental aspects of a common agriculture policy in the European Union, bio-agriculture, fruit farming in Austria and with environmental indicators in agriculture. In particular renewable energy sources (bio-diesel, biogas) from agriculture are studied in comparison to fossil fuels and other energy sources. (a.n.)

  16. Assess and control global change in agriculture through ecosystem models integrated in geographic information systems

    Ponti, Luigi; Gutierrez, Andrew Paul; Iannetta, Massimo

    2015-01-01

    ENEA has created, in collaboration with the University of California at Berkeley, the Global Change Biology project that, for the first time, has made available in Europe a technology that can be It used to interpret and effectively manage change Global agriculture. The aim of the project was to provide tools to summarize, manage and analyze data Ecological on the effects of global change in agricultural systems, using traditional Mediterranean crops (Eg. Vineyards and olive) as model systems (http: // cordis.europa.eu/project/rcn/89728_en.html). [it

  17. The role of trees and plantation agriculture in mitigating global ...

    Climate change refers to a paradigm shift in the climatic pattern of a location, region or planet which is linked with average weather components, such as temperature, wind patterns and precipitations. Climate change results in erratic events such as rising global temperature, intensified drought, flooding, cyclones, low or ...

  18. Agriculture's portfolio for an uncertain future: Preparing for global warming

    Drabenstott, M.

    1992-01-01

    Farmers and foresters will adapt as the climate changes, but the attendant social costs call for policy steps now to encourage even more adaptation. The challenge to policymakers can be viewed as building a balanced portfolio of climate change assets and then managing it effectively. Put simply, investing in a diverse portfolio of agricultural assets must be viewed as prudent policy. The climate seems likely to change; how much and how soon, is not known. If the climate changes, there will be social costs to the nation, and the costs could be large. A prudent way to hedge the risk of those costs is to hold a diverse portfolio of assets and assure the flexibility to use them. Such a portfolio offers the best change for agriculture to adapt successfully to whatever climate unfolds. And even if the climate stays the same, investing in such a flexible portfolio will surely pay dividends in the stream of other changes bound to come. The present rich allocation of resources must be improved if they will be effective adapting agents in the future

  19. The dynamics of the global capital and its consequences on agriculture and in rural spaces

    Moreira, Manuel Belo

    2002-01-01

    In this paper globalization is conceptualised as a process that marks a new phase of capitalism (Moreira 1994). The aim of this paper is to propose a systematic approach to the economic and social consequences of the globalization process, with particular attention to agriculture and agri-food as well as the use of rural areas. Therefore, understanding the role of the main agents of globalization is a necessary condition to assess the impact of this process. My working hypothesis is that the ...

  20. Global and regional phosphorus budgets in agricultural systems and their implications for phosphorus-use efficiency

    F. Lun

    2018-01-01

    Full Text Available The application of phosphorus (P fertilizer to agricultural soils increased by 3.2 % annually from 2002 to 2010. We quantified in detail the P inputs and outputs of cropland and pasture and the P fluxes through human and livestock consumers of agricultural products on global, regional, and national scales from 2002 to 2010. Globally, half of the total P inputs into agricultural systems accumulated in agricultural soils during this period, with the rest lost to bodies of water through complex flows. Global P accumulation in agricultural soil increased from 2002 to 2010 despite decreases in 2008 and 2009, and the P accumulation occurred primarily in cropland. Despite the global increase in soil P, 32 % of the world's cropland and 43 % of the pasture had soil P deficits. Increasing soil P deficits were found for African cropland vs. increasing P accumulation in eastern Asia. European and North American pasture had a soil P deficit because the continuous removal of biomass P by grazing exceeded P inputs. International trade played a significant role in P redistribution among countries through the flows of P in fertilizer and food among countries. Based on country-scale budgets and trends we propose policy options to potentially mitigate regional P imbalances in agricultural soils, particularly by optimizing the use of phosphate fertilizer and the recycling of waste P. The trend of the increasing consumption of livestock products will require more P inputs to the agricultural system, implying a low P-use efficiency and aggravating P-stock scarcity in the future. The global and regional phosphorus budgets and their PUEs in agricultural systems are publicly available at https://doi.pangaea.de/10.1594/PANGAEA.875296.

  1. Global and regional phosphorus budgets in agricultural systems and their implications for phosphorus-use efficiency

    Lun, Fei; Liu, Junguo; Ciais, Philippe; Nesme, Thomas; Chang, Jinfeng; Wang, Rong; Goll, Daniel; Sardans, Jordi; Peñuelas, Josep; Obersteiner, Michael

    2018-01-01

    The application of phosphorus (P) fertilizer to agricultural soils increased by 3.2 % annually from 2002 to 2010. We quantified in detail the P inputs and outputs of cropland and pasture and the P fluxes through human and livestock consumers of agricultural products on global, regional, and national scales from 2002 to 2010. Globally, half of the total P inputs into agricultural systems accumulated in agricultural soils during this period, with the rest lost to bodies of water through complex flows. Global P accumulation in agricultural soil increased from 2002 to 2010 despite decreases in 2008 and 2009, and the P accumulation occurred primarily in cropland. Despite the global increase in soil P, 32 % of the world's cropland and 43 % of the pasture had soil P deficits. Increasing soil P deficits were found for African cropland vs. increasing P accumulation in eastern Asia. European and North American pasture had a soil P deficit because the continuous removal of biomass P by grazing exceeded P inputs. International trade played a significant role in P redistribution among countries through the flows of P in fertilizer and food among countries. Based on country-scale budgets and trends we propose policy options to potentially mitigate regional P imbalances in agricultural soils, particularly by optimizing the use of phosphate fertilizer and the recycling of waste P. The trend of the increasing consumption of livestock products will require more P inputs to the agricultural system, implying a low P-use efficiency and aggravating P-stock scarcity in the future. The global and regional phosphorus budgets and their PUEs in agricultural systems are publicly available at https://doi.pangaea.de/10.1594/PANGAEA.875296.

  2. Northern agriculture: constraints and responses to global climate change

    Timo J. N. Mela

    1996-05-01

    Full Text Available In the northern circumpolar zone, the area between the 600°Cd and 1200°Cd isopleths of effective temperature sum above 5°C, the annual receipt of solar energy is limited by the low angle of radiation arriving at the earth’s surface. This is the primary cause of the climatic constraints observed in the zone, such as low temperatures, a short growing season, frosts during the growing season, long and cold winters and thick snow cover. In Finland, the length of the growing season varies from 180 days in the south (60°N to 120 days in the north (70°N. Consequently, the growing time for crops from sowing to ripening is also short, which limits their ability to produce high yields. The most advanced forms of farming in the high-latitude zone are encountered towards the south in Northern Europe, central Siberia and the prairies of Canada, i.e. mainly in the phytogeographical hemiboreal zone where the effective temperature sum is higher than 1200°Cd. Conditions for agriculture then deteriorate gradually further north with the cooling of the climate, and this is reflected as an increase in cattle rearing at the expense of grain cultivation. In northern Europe farming is practised as far north as to the Arctic Circle, at about 66°N latitude. In North America, fields extend to about 55°N, In Asia, there are few fields north of 60°N. Finland is the most northern agricultural country in the world, with all its field area, about 2.5 million hectares, located north of latitude 60°N. Changes in the climate and atmospheric CO2 predicted for the future are likely to have a strong influence, either beneficial or disadvantageous, on the conditions for growth in northern areas where the annual mean temperature is 5°C or less.

  3. A reconstruction of global agricultural areas and land cover for the last millennium

    Pongratz, J.; Reick, C.; Raddatz, T.; Claussen, M.

    2008-09-01

    Humans have substantially modified the Earth's land cover, especially by transforming natural ecosystems to agricultural areas. In preindustrial times, the expansion of agriculture was probably the dominant process by which humankind altered the Earth system, but little is known about its extent, timing, and spatial pattern. This study presents an approach to reconstruct spatially explicit changes in global agricultural areas (cropland and pasture) and the resulting changes in land cover over the last millennium. The reconstruction is based on published maps of agricultural areas for the last three centuries. For earlier times, a country-based method is developed that uses population data as a proxy for agricultural activity. With this approach, the extent of cropland and pasture is consistently estimated since AD 800. The resulting reconstruction of agricultural areas is combined with a map of potential vegetation to estimate the resulting historical changes in land cover. Uncertainties associated with this approach, in particular owing to technological progress in agriculture and uncertainties in population estimates, are quantified. About 5 million km2 of natural vegetation are found to be transformed to agriculture between AD 800 and 1700, slightly more to cropland (mainly at the expense of forested area) than to pasture (mainly at the expense of natural grasslands). Historical events such as the Black Death in Europe led to considerable dynamics in land cover change on a regional scale. The reconstruction can be used with global climate and ecosystem models to assess the impact of human activities on the Earth system in preindustrial times.

  4. Fashioning a New Regime for Agricultural Trade: New Issues and the Global Food Crisis

    Thomas J. Schoenbaum

    2011-01-01

    This article examines the impact of issues such as the global food crisis, export controls on agricultural products, and food security on the agricultural trade negotiations currently underway in connection with the Doha Development Agenda convened by the World Trade Organization (WTO) in 2001. These important issues, which were not foreseen when the negotiations began, must now be squarely faced. Many international organizations, such as the United Nations, the International Monetary Fund, t...

  5. A contemporary decennial global Landsat sample of changing agricultural field sizes

    White, Emma; Roy, David

    2014-05-01

    Agriculture has caused significant human induced Land Cover Land Use (LCLU) change, with dramatic cropland expansion in the last century and significant increases in productivity over the past few decades. Satellite data have been used for agricultural applications including cropland distribution mapping, crop condition monitoring, crop production assessment and yield prediction. Satellite based agricultural applications are less reliable when the sensor spatial resolution is small relative to the field size. However, to date, studies of agricultural field size distributions and their change have been limited, even though this information is needed to inform the design of agricultural satellite monitoring systems. Moreover, the size of agricultural fields is a fundamental description of rural landscapes and provides an insight into the drivers of rural LCLU change. In many parts of the world field sizes may have increased. Increasing field sizes cause a subsequent decrease in the number of fields and therefore decreased landscape spatial complexity with impacts on biodiversity, habitat, soil erosion, plant-pollinator interactions, and impacts on the diffusion of herbicides, pesticides, disease pathogens, and pests. The Landsat series of satellites provide the longest record of global land observations, with 30m observations available since 1982. Landsat data are used to examine contemporary field size changes in a period (1980 to 2010) when significant global agricultural changes have occurred. A multi-scale sampling approach is used to locate global hotspots of field size change by examination of a recent global agricultural yield map and literature review. Nine hotspots are selected where significant field size change is apparent and where change has been driven by technological advancements (Argentina and U.S.), abrupt societal changes (Albania and Zimbabwe), government land use and agricultural policy changes (China, Malaysia, Brazil), and/or constrained by

  6. Global Challenges and New Approaches in the Common Agricultural Policy 2014 - 2020

    Bánhegyi Gabriella

    2015-02-01

    Full Text Available Unfavorable environmental issues raise attention globally toward the concept of sustainability. Agriculture is not only a sector influenced greatly by environmental conditions, but at the same time, as the most important utilizer of land, a major shaper of the environmental conditions. When forming agricultural policies special attention should be paid to issues such as climate change, scarcity of fresh water, food shortage and biodiversity loss — just to name some of them. The new European general strategy for the upcoming 7 years period has brought new measures for the agricultural policy as well, environment and sustainability being among the top issues.

  7. Integrating NASA Earth Science Enterprise (ESE) Data Into Global Agricultural Decision Support Systems

    Teng, W.; Kempler, S.; Chiu, L.; Doraiswamy, P.; Liu, Z.; Milich, L.; Tetrault, R.

    2003-12-01

    Monitoring global agricultural crop conditions during the growing season and estimating potential seasonal production are critically important for market development of U.S. agricultural products and for global food security. Two major operational users of satellite remote sensing for global crop monitoring are the USDA Foreign Agricultural Service (FAS) and the U.N. World Food Programme (WFP). The primary goal of FAS is to improve foreign market access for U.S. agricultural products. The WFP uses food to meet emergency needs and to support economic and social development. Both use global agricultural decision support systems that can integrate and synthesize a variety of data sources to provide accurate and timely information on global crop conditions. The Goddard Space Flight Center Earth Sciences Distributed Active Archive Center (GES DAAC) has begun a project to provide operational solutions to FAS and WFP, by fully leveraging results from previous work, as well as from existing capabilities of the users. The GES DAAC has effectively used its recently developed prototype TRMM Online Visualization and Analysis System (TOVAS) to provide ESE data and information to the WFP for its agricultural drought monitoring efforts. This prototype system will be evolved into an Agricultural Information System (AIS), which will operationally provide ESE and other data products (e.g., rainfall, land productivity) and services, to be integrated into and thus enhance the existing GIS-based, decision support systems of FAS and WFP. Agriculture-oriented, ESE data products (e.g., MODIS-based, crop condition assessment product; TRMM derived, drought index product) will be input to a crop growth model in collaboration with the USDA Agricultural Research Service, to generate crop condition and yield prediction maps. The AIS will have the capability for remotely accessing distributed data, by being compliant with community-based interoperability standards, enabling easy access to

  8. Winners and losers of national and global efforts to reconcile agricultural intensification and biodiversity conservation.

    Egli, Lukas; Meyer, Carsten; Scherber, Christoph; Kreft, Holger; Tscharntke, Teja

    2018-05-01

    Closing yield gaps within existing croplands, and thereby avoiding further habitat conversions, is a prominently and controversially discussed strategy to meet the rising demand for agricultural products, while minimizing biodiversity impacts. The agricultural intensification associated with such a strategy poses additional threats to biodiversity within agricultural landscapes. The uneven spatial distribution of both yield gaps and biodiversity provides opportunities for reconciling agricultural intensification and biodiversity conservation through spatially optimized intensification. Here, we integrate distribution and habitat information for almost 20,000 vertebrate species with land-cover and land-use datasets. We estimate that projected agricultural intensification between 2000 and 2040 would reduce the global biodiversity value of agricultural lands by 11%, relative to 2000. Contrasting these projections with spatial land-use optimization scenarios reveals that 88% of projected biodiversity loss could be avoided through globally coordinated land-use planning, implying huge efficiency gains through international cooperation. However, global-scale optimization also implies a highly uneven distribution of costs and benefits, resulting in distinct "winners and losers" in terms of national economic development, food security, food sovereignty or conservation. Given conflicting national interests and lacking effective governance mechanisms to guarantee equitable compensation of losers, multinational land-use optimization seems politically unlikely. In turn, 61% of projected biodiversity loss could be avoided through nationally focused optimization, and 33% through optimization within just 10 countries. Targeted efforts to improve the capacity for integrated land-use planning for sustainable intensification especially in these countries, including the strengthening of institutions that can arbitrate subnational land-use conflicts, may offer an effective, yet

  9. Developing and implementing a data acquisition strategy for global agricultural monitoring: an inter-agency initiative

    Justice, C. O.; Whitcraft, A. K.; Becker-Reshef, I.; Killough, B.

    2013-12-01

    In 2011, in response to global food crises, the G20 Agricultural Ministers launched a satellite-based global agricultural monitoring initiative to develop the Group on Earth Observations Global Agriculture Monitoring (GEOGLAM) system. The GEO is aimed at enhancing the availability and use of both satellite and in situ data for societal benefit. This initiative builds on the observation requirements developed by the GEO Agricultural Community of Practice, the understanding that no one satellite system can currently provide all the data needed for agricultural monitoring and the resulting recommendation for improved acquisition and availability of data by the World's space agencies. Implicit in this recommendation is the fact that certain regions of the Earth are imagery rich while others are imagery poor, leaving knowledge gaps about agricultural processes and food supply for certain areas of the World. In order to respond to these knowledge gaps and to strengthen national, regional, and global agricultural monitoring networks, GEOGLAM is working with the Committee on Earth Observations (CEOS), the space arm of GEO, to develop a coordinated global acquisition strategy. A key component of GEOGLAM is an effort to articulate the temporal and spatial Earth Observation (EO) requirements for monitoring; second, the identification of current and planned missions which are capable of fulfilling these EO requirements; and third, the development of a multi-agency, multi-mission image acquisition strategy for agricultural monitoring. CEOS engineers and GEOGLAM scientists have been collaborating on the EO requirements since 2012, and are now beginning the first implementation phase of the acquisition strategy. The goal is to put in place an operational system of systems using a virtual constellation of satellite-based sensors acquiring data to meet the needs for monitoring and early warning of shortfalls in agricultural production, a goal that was articulated in the 1970's

  10. Development of a global Agricultural Stress Index System (ASIS) based on remote sensing data

    Van Hoolst, R.

    2016-12-01

    According to the 2012 IPCC SREX report, extreme drought events are projected to become more frequent and intense in several regions of the world. Wide and timely monitoring systems are required to mitigate the impact of agricultural drought. Therefore, FAO's Global Information and Early Warning System (GIEWS) and the Climate, Energy and Tenure Division (NRC) have established the `Agricultural Stress Index System' (ASIS). The ASIS is a remote sensing application that provides early warnings of agricultural drought at a global scale. The ASIS has first been designed and described by Rojas et al. (2011). This study focused on the African continent and was based on the back processing of low resolution data of the NOAA-satellites. In the current setup, developed by VITO (Flemish Institute for Technological Research), the system operates in Near Real Time using data from the METOP-AVHRR sensor. The Agricultural Stress Index (ASI) is the percentage of agricultural area affected by drought in the course of the growing season within a given administrative unit. The start and end of the growing season are derived per pixel from the long term NDVI average of SPOT-VEGETATION. The Global Administrative Unit Layer (GAUL) defines the administrative boundaries at level 0, 1 and 2. A global cropland and grassland map eliminates non-agricultural areas. Temperature and NDVI anomalies are used as drought indicators and calculated at a per pixel base. The ASIS aggregates this information and produces every dekad global maps to highlight hotspots of drought stress. New developments are ongoing to strengthen the ASIS to produce country specific outputs, improve existing drought indicators and estimate production deficits using a probabilistic approach.

  11. Agriculture

    The EPA Agriculture Resource Directory offers comprehensive, easy-to-understand information about environmental stewardship on farms and ranches; commonsense, flexible approaches that are both environmentally protective and agriculturally sound.

  12. Political Economy of Global Rush for Agricultural Land: a Tract on India’s Overseas Acquisitions

    Verma, Santosh Kumar

    2015-01-01

    This paper is an attempt to map the global land acquisitions with a focus on Indian MNCs in acquiring overseas land for agricultural purposes. It tries to outline the contemporary political economy of capital accumulation at the global level, especially, in the emerging developing economies like India and China, where the emergence of a new capitalist class has engaged itself into acquisition of land and control of other natural resources in Africa, Latin America, Eastern Europe and South Eas...

  13. Global assessment of urban and peri-urban agriculture: irrigated and rainfed croplands

    Thebo, A. L.; Drechsel, P.; Lambin, E. F.

    2014-11-01

    The role of urban agriculture in global food security is a topic of increasing discussion. Existing research on urban and peri-urban agriculture consists largely of case studies that frequently use disparate definitions of urban and peri-urban agriculture depending on the local context and study objectives. This lack of consistency makes quantification of the extent of this practice at the global scale difficult. This study instead integrates global data on croplands and urban extents using spatial overlay analysis to estimate the global area of urban and peri-urban irrigated and rainfed croplands. The global area of urban irrigated croplands was estimated at about 24 Mha (11.0 percent of all irrigated croplands) with a cropping intensity of 1.48. The global area of urban rainfed croplands found was approximately 44 Mha (4.7 percent of all rainfed croplands) with a cropping intensity of 1.03. These values were derived from the MIRCA2000 Maximum Monthly Cropped Area Grids for irrigated and rainfed crops and therefore their sum does not necessarily represent the total urban cropland area when the maximum extent of irrigated and rainfed croplands occurs in different months. Further analysis of croplands within 20 km of urban extents show that 60 and 35 percent of, respectively, all irrigated and rainfed croplands fall within this distance range.

  14. Global assessment of urban and peri-urban agriculture: irrigated and rainfed croplands

    Thebo, A L; Drechsel, P; Lambin, E F

    2014-01-01

    The role of urban agriculture in global food security is a topic of increasing discussion. Existing research on urban and peri-urban agriculture consists largely of case studies that frequently use disparate definitions of urban and peri-urban agriculture depending on the local context and study objectives. This lack of consistency makes quantification of the extent of this practice at the global scale difficult. This study instead integrates global data on croplands and urban extents using spatial overlay analysis to estimate the global area of urban and peri-urban irrigated and rainfed croplands. The global area of urban irrigated croplands was estimated at about 24 Mha (11.0 percent of all irrigated croplands) with a cropping intensity of 1.48. The global area of urban rainfed croplands found was approximately 44 Mha (4.7 percent of all rainfed croplands) with a cropping intensity of 1.03. These values were derived from the MIRCA2000 Maximum Monthly Cropped Area Grids for irrigated and rainfed crops and therefore their sum does not necessarily represent the total urban cropland area when the maximum extent of irrigated and rainfed croplands occurs in different months. Further analysis of croplands within 20 km of urban extents show that 60 and 35 percent of, respectively, all irrigated and rainfed croplands fall within this distance range. (letter)

  15. Global trends and priorities for agriculture development in the beginning of the xxi century

    Pavel Vasil’evich Smekalov

    2011-12-01

    Full Text Available This paper pays attention to global issues related to the growth of population and food production: reduced growth rate of agricultural production, reduction of resource potential of agriculture and others. Critical factors and trends of structural changes in agriculture are identified. Results of comparative analysis of the development of farms in European countries and Russia are presented. Studies have shown that at the end of the last century there have been the following trends in the global agriculture: there has been a trend of farm consolidation in size, new controls and control of production are were introduced as well as more stringent quality standards of ecology were launched, which, in turn, require introduction of new technics and technologies; the processes of plants and animals development become more controllable and manageable. Conseptual foresights of pricing in the food market are given. Priority areas of agricultural policy aimed at creating conditions for sustainable rural development and accelerated growth in agricultural production by improving its competitiveness are identified

  16. Comparing supply-side specifications in models of global agriculture and the food system

    Robinson, S.; Meijl, van J.C.M.; Willenbockel, D.; Valin, H.; Fujimori, S.; Masui, T.; Sands, R.; Wise, M.; Calvin, K.V.; Mason d'Croz, D.; Tabeau, A.A.; Kavallari, A.; Schmitz, C.; Dietrich, J.P.; Lampe, von M.

    2014-01-01

    This article compares the theoretical and functional specification of production in partial equilibrium (PE) and computable general equilibrium (CGE) models of the global agricultural and food system included in the AgMIP model comparison study. The two model families differ in their scope—partial

  17. Increasing the Value of Agricultural Products in the Face of Global ...

    The Paper examined the increasing value of agricultural products in the face of global economic recession in Anambra State. The paper revealed that Anambra State is endowed with human and natural resources and if properly harnessed, can go a long way in arresting the food insecurity in the State and alleviate the ...

  18. Trends in Global Agricultural Land Use: Implications for Environmental Health and Food Security.

    Ramankutty, Navin; Mehrabi, Zia; Waha, Katharina; Jarvis, Larissa; Kremen, Claire; Herrero, Mario; Rieseberg, Loren H

    2018-04-29

    The eighteenth-century Malthusian prediction of population growth outstripping food production has not yet come to bear. Unprecedented agricultural land expansions since 1700, and technological innovations that began in the 1930s, have enabled more calorie production per capita than was ever available before in history. This remarkable success, however, has come at a great cost. Agriculture is a major cause of global environmental degradation. Malnutrition persists among large sections of the population, and a new epidemic of obesity is on the rise. We review both the successes and failures of the global food system, addressing ongoing debates on pathways to environmental health and food security. To deal with these challenges, a new coordinated research program blending modern breeding with agro-ecological methods is needed. We call on plant biologists to lead this effort and help steer humanity toward a safe operating space for agriculture.

  19. Modeling the Heterogeneous Effects of GHG Mitigation Policies on Global Agriculture and Forestry

    Golub, A.; Henderson, B.; Hertel, T. W.; Rose, S. K.; Sohngen, B.

    2010-12-01

    Agriculture and forestry are envisioned as potentially key sectors for climate change mitigation policy, yet the depth of analysis of mitigation options and their economic consequences remains remarkably shallow in comparison to that for industrial mitigation. Farming and land use change - much of it induced by agriculture -account for one-third of global greenhouse gas (GHG) emissions. Any serious attempt to curtail these emissions will involve changes in the way farming is conducted, as well as placing limits on agricultural expansion into areas currently under more carbon-intensive land cover. However, agriculture and forestry are extremely heterogeneous, both in the technology and intensity of production, as well as in the GHG emissions intensity of these activities. And these differences, in turn, give rise to significant changes in the distribution of agricultural production, trade and consumption in the wake of mitigation policies. This paper assesses such distributional impacts via a global economic analysis undertaken with a modified version of the GTAP model. The paper builds on a global general equilibrium GTAP-AEZ-GHG model (Golub et al., 2009). This is a unified modeling framework that links the agricultural, forestry, food processing and other sectors through land, and other factor markets and international trade, and incorporates different land-types, land uses and related CO2 and non-CO2 GHG emissions and sequestration. The economic data underlying this work is the global GTAP data base aggregated up to 19 regions and 29 sectors. The model incorporates mitigation cost curves for different regions and sectors based on information from the US-EPA. The forestry component of the model is calibrated to the results of the state of the art partial equilibrium global forestry model of Sohngen and Mendelson (2007). Forest carbon sequestration at both the extensive and intensive margins are modeled separately to better isolate land competition between

  20. Determinants of prices increase of agricultural commodities in a global context1

    Borychowski Michał

    2015-12-01

    Full Text Available The main objective of this article is to present the determinants of increase in agricultural commodity prices after 2006. The other specific aim is to show the factors affecting agricultural raw materials and food prices in the global context. This article is a review paper of the determinants of recent commodity and food prices spikes. However, it provides an outlook on these determinants that were the most important for the increases in the last decade. The last part of the article (conclusions to some extent is a synthesis of considerations and includes the authors’ opinions concerning determinants and an attempt to identify which ones were the most important in the growth of agricultural commodity prices. These increases in agricultural commodity prices resulted from many factors and it is very difficult to separate the individual impact of each of them, because they occurred in parallel. However, it is possible to indicate several main reasons for these price increases, which are: adverse changes in supply-demand relations in agricultural markets, increases in oil prices (and increases of the volatility of those prices, development of biofuel production from agricultural commodities (the first generation biofuels, dollar depreciation, an increase in operations of a speculative nature on commodity markets and improper economic policy that created an environment for the growth of prices of agricultural products.

  1. Climate change induced transformations of agricultural systems: insights from a global model

    Leclère, D.; Havlík, P.; Fuss, S.; Schmid, E.; Mosnier, A.; Walsh, B.; Valin, H.; Herrero, M.; Khabarov, N.; Obersteiner, M.

    2014-12-01

    Climate change might impact crop yields considerably and anticipated transformations of agricultural systems are needed in the coming decades to sustain affordable food provision. However, decision-making on transformational shifts in agricultural systems is plagued by uncertainties concerning the nature and geography of climate change, its impacts, and adequate responses. Locking agricultural systems into inadequate transformations costly to adjust is a significant risk and this acts as an incentive to delay action. It is crucial to gain insight into how much transformation is required from agricultural systems, how robust such strategies are, and how we can defuse the associated challenge for decision-making. While implementing a definition related to large changes in resource use into a global impact assessment modelling framework, we find transformational adaptations to be required of agricultural systems in most regions by 2050s in order to cope with climate change. However, these transformations widely differ across climate change scenarios: uncertainties in large-scale development of irrigation span in all continents from 2030s on, and affect two-thirds of regions by 2050s. Meanwhile, significant but uncertain reduction of major agricultural areas affects the Northern Hemisphere’s temperate latitudes, while increases to non-agricultural zones could be large but uncertain in one-third of regions. To help reducing the associated challenge for decision-making, we propose a methodology exploring which, when, where and why transformations could be required and uncertain, by means of scenario analysis.

  2. Climate change induced transformations of agricultural systems: insights from a global model

    Leclère, D; Havlík, P; Mosnier, A; Walsh, B; Valin, H; Khabarov, N; Obersteiner, M; Fuss, S; Schmid, E; Herrero, M

    2014-01-01

    Climate change might impact crop yields considerably and anticipated transformations of agricultural systems are needed in the coming decades to sustain affordable food provision. However, decision-making on transformational shifts in agricultural systems is plagued by uncertainties concerning the nature and geography of climate change, its impacts, and adequate responses. Locking agricultural systems into inadequate transformations costly to adjust is a significant risk and this acts as an incentive to delay action. It is crucial to gain insight into how much transformation is required from agricultural systems, how robust such strategies are, and how we can defuse the associated challenge for decision-making. While implementing a definition related to large changes in resource use into a global impact assessment modelling framework, we find transformational adaptations to be required of agricultural systems in most regions by 2050s in order to cope with climate change. However, these transformations widely differ across climate change scenarios: uncertainties in large-scale development of irrigation span in all continents from 2030s on, and affect two-thirds of regions by 2050s. Meanwhile, significant but uncertain reduction of major agricultural areas affects the Northern Hemisphere’s temperate latitudes, while increases to non-agricultural zones could be large but uncertain in one-third of regions. To help reducing the associated challenge for decision-making, we propose a methodology exploring which, when, where and why transformations could be required and uncertain, by means of scenario analysis. (letter)

  3. Closing the gap: global potential for increasing biofuel production through agricultural intensification

    Johnston, Matt; Foley, J; Mueller, N D; Licker, R; Holloway, T; Barford, C; Kucharik, C

    2011-01-01

    Since the end of World War II, global agriculture has undergone a period of rapid intensification achieved through a combination of increased applications of chemical fertilizers, pesticides, and herbicides, the implementation of best management practice techniques, mechanization, irrigation, and more recently, through the use of optimized seed varieties and genetic engineering. However, not all crops and not all regions of the world have realized the same improvements in agricultural intensity. In this study we examine both the magnitude and spatial variation of new agricultural production potential from closing of 'yield gaps' for 20 ethanol and biodiesel feedstock crops. With biofuels coming under increasing pressure to slow or eliminate indirect land-use conversion, the use of targeted intensification via established agricultural practices might offer an alternative for continued growth. We find that by closing the 50th percentile production gap-essentially improving global yields to median levels-the 20 crops in this study could provide approximately 112.5 billion liters of new ethanol and 8.5 billion liters of new biodiesel production. This study is intended to be an important new resource for scientists and policymakers alike-helping to more accurately understand spatial variation of yield and agricultural intensification potential, as well as employing these data to better utilize existing infrastructure and optimize the distribution of development and aid capital.

  4. Closing the gap: global potential for increasing biofuel production through agricultural intensification

    Johnston, Matt; Foley, J; Mueller, N D [Institute on the Environment (IonE), University of Minnesota, Saint Paul, MN 55108 (United States); Licker, R; Holloway, T; Barford, C; Kucharik, C [Center for Sustainability and the Global Environment, University of Wisconsin, Madison, WI 53726 (United States)

    2011-07-15

    Since the end of World War II, global agriculture has undergone a period of rapid intensification achieved through a combination of increased applications of chemical fertilizers, pesticides, and herbicides, the implementation of best management practice techniques, mechanization, irrigation, and more recently, through the use of optimized seed varieties and genetic engineering. However, not all crops and not all regions of the world have realized the same improvements in agricultural intensity. In this study we examine both the magnitude and spatial variation of new agricultural production potential from closing of 'yield gaps' for 20 ethanol and biodiesel feedstock crops. With biofuels coming under increasing pressure to slow or eliminate indirect land-use conversion, the use of targeted intensification via established agricultural practices might offer an alternative for continued growth. We find that by closing the 50th percentile production gap-essentially improving global yields to median levels-the 20 crops in this study could provide approximately 112.5 billion liters of new ethanol and 8.5 billion liters of new biodiesel production. This study is intended to be an important new resource for scientists and policymakers alike-helping to more accurately understand spatial variation of yield and agricultural intensification potential, as well as employing these data to better utilize existing infrastructure and optimize the distribution of development and aid capital.

  5. Closing the gap: global potential for increasing biofuel production through agricultural intensification

    Johnston, Matt; Licker, R.; Foley, J.; Holloway, T.; Mueller, N. D.; Barford, C.; Kucharik, C.

    2011-07-01

    Since the end of World War II, global agriculture has undergone a period of rapid intensification achieved through a combination of increased applications of chemical fertilizers, pesticides, and herbicides, the implementation of best management practice techniques, mechanization, irrigation, and more recently, through the use of optimized seed varieties and genetic engineering. However, not all crops and not all regions of the world have realized the same improvements in agricultural intensity. In this study we examine both the magnitude and spatial variation of new agricultural production potential from closing of 'yield gaps' for 20 ethanol and biodiesel feedstock crops. With biofuels coming under increasing pressure to slow or eliminate indirect land-use conversion, the use of targeted intensification via established agricultural practices might offer an alternative for continued growth. We find that by closing the 50th percentile production gap—essentially improving global yields to median levels—the 20 crops in this study could provide approximately 112.5 billion liters of new ethanol and 8.5 billion liters of new biodiesel production. This study is intended to be an important new resource for scientists and policymakers alike—helping to more accurately understand spatial variation of yield and agricultural intensification potential, as well as employing these data to better utilize existing infrastructure and optimize the distribution of development and aid capital.

  6. Global approaches to regulating electronic cigarettes

    Kennedy, Ryan David; Awopegba, Ayodeji; De León, Elaine; Cohen, Joanna E

    2017-01-01

    Objectives Classify and describe the policy approaches used by countries to regulate e-cigarettes. Methods National policies regulating e-cigarettes were identified by (1) conducting web searches on Ministry of Health websites, and (2) broad web searches. The mechanisms used to regulate e-cigarettes were classified as new/amended laws, or existing laws. The policy domains identified include restrictions or prohibitions on product: sale, manufacturing, importation, distribution, use, product design including e-liquid ingredients, advertising/promotion/sponsorship, trademarks, and regulation requiring: taxation, health warning labels and child-safety standards. The classification of the policy was reviewed by a country expert. Results The search identified 68 countries that regulate e-cigarettes: 22 countries regulate e-cigarettes using existing regulations; 25 countries enacted new policies to regulate e-cigarettes; 7 countries made amendments to existing legislation; 14 countries use a combination of new/amended and existing regulation. Common policies include a minimum-age-of-purchase, indoor-use (vape-free public places) bans and marketing restrictions. Few countries are applying a tax to e-cigarettes. Conclusions A range of regulatory approaches are being applied to e-cigarettes globally; many countries regulate e-cigarettes using legislation not written for e-cigarettes. PMID:27903958

  7. Northward shift of the agricultural climate zone under 21st-century global climate change.

    King, Myron; Altdorff, Daniel; Li, Pengfei; Galagedara, Lakshman; Holden, Joseph; Unc, Adrian

    2018-05-21

    As agricultural regions are threatened by climate change, warming of high latitude regions and increasing food demands may lead to northward expansion of global agriculture. While socio-economic demands and edaphic conditions may govern the expansion, climate is a key limiting factor. Extant literature on future crop projections considers established agricultural regions and is mainly temperature based. We employed growing degree days (GDD), as the physiological link between temperature and crop growth, to assess the global northward shift of agricultural climate zones under 21 st -century climate change. Using ClimGen scenarios for seven global climate models (GCMs), based on greenhouse gas (GHG) emissions and transient GHGs, we delineated the future extent of GDD areas, feasible for small cereals, and assessed the projected changes in rainfall and potential evapotranspiration. By 2099, roughly 76% (55% to 89%) of the boreal region might reach crop feasible GDD conditions, compared to the current 32%. The leading edge of the feasible GDD will shift northwards up to 1200 km by 2099 while the altitudinal shift remains marginal. However, most of the newly gained areas are associated with highly seasonal and monthly variations in climatic water balances, a critical component of any future land-use and management decisions.

  8. Adaptation to climate change in rainfed agriculture in the global south

    Sidibé, Yoro; Foudi, Sébastien; Pascual, Unai

    2018-01-01

    Increased drought frequency in many parts of the world, especially in the global South, is expected due to accelerating climate change. We present a bioeconomic model that unpacks the role of soil biodiversity as contributing to both increasing and stabilizing agricultural productivity in low......-based adaptation strategy. However, this is only likely to be the case up to a given drought probability threshold. The natural insurance value of soil biodiversity for climate change adaptation in drought prone rainfed agricultural systems depends on a combination of key hydrological, agronomic and economic...

  9. Agriculture

    2002-01-01

    The report entitled Climate Change Impacts and Adaptation : A Canadian Perspective, presents a summary of research regarding the impacts of climate change on key sectors over the past five years as it relates to Canada. This chapter on agriculture describes how climate change will affect primary agriculture production in Canada with particular focus on potential adaptation options, and vulnerability of agriculture at the farm level. Agriculture is a vital part of the Canadian economy, although only 7 per cent of Canada's land mass is used for agricultural purposes due to the limitations of climate and soils. Most parts of Canada are expected to experience warmer conditions, longer frost-free seasons and increased evapotranspiration. The impacts of these changes on agriculture will vary depending on precipitation changes, soil conditions, and land use. Northern regions may benefit from longer farming seasons, but poor soil conditions will limit the northward expansion of agricultural crops. Some of the negative impacts associated with climate change on agriculture include increased droughts, changes in pest and pathogen outbreaks, and moisture stress. In general, it is expected that the positive and negative impacts of climate change would offset each other. 74 refs., 2 tabs., 1 fig

  10. Global land-water nexus: Agricultural land and freshwater use embodied in worldwide supply chains.

    Chen, B; Han, M Y; Peng, K; Zhou, S L; Shao, L; Wu, X F; Wei, W D; Liu, S Y; Li, Z; Li, J S; Chen, G Q

    2018-02-01

    As agricultural land and freshwater inextricably interrelate and interact with each other, the conventional water and land policy in "silos" should give way to nexus thinking when formulating the land and water management strategies. This study constructs a systems multi-regional input-output (MRIO) model to expound global land-water nexus by simultaneously tracking agricultural land and freshwater use flows along the global supply chains. Furthermore, land productivity and irrigation water requirements of 160 crops in different regions are investigated to reflect the land-water linkage. Results show that developed economies (e.g., USA and Japan) and major large developing economies (e.g., mainland China and India) are the overriding drivers of agricultural land and freshwater use globally. In general, significant net transfers of these two resources are identified from resource-rich and less-developed economies to resource-poor and more-developed economies. For some crops, blue water productivity is inversely related to land productivity, indicating that irrigation water consumption is sometimes at odds with land use. The results could stimulus international cooperation for sustainable land and freshwater management targeting on original suppliers and final consumers along the global supply chains. Moreover, crop-specific land-water linkage could provide insights for trade-off decisions on minimizing the environmental impacts on local land and water resources. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Phosphorus in agricultural soils: drivers of its distribution at the global scale

    Ringeval, Bruno [ISPA, Villenave d' Ornon (France); Augusto, Laurent [ISPA, Villenave d' Ornon (France); Monod, Herve [Univ. Paris-Saclay, Jouy-en-Josas (France); van Apeldoorn, Dirk [Utrecht Univ., Utrecht (The Netherlands); Bouwman, Lex [Utrecht Univ., Utrecht (The Netherlands); Yang, Xiaojuan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Achat, David L. [ISPA, Villenave d' Ornon (France); Chini, Louise P. [Univ. of Maryland, College Park, MD (United States); Van Oost, Kristof [Univ. Catholique de Louvain, Louvain-la-Neuve (Belgium); Guenet, Bertrand [Univ. Paris-Saclay, Gif-sur-Yvette (France); Wang, Rong [Univ. Paris-Saclay, Gif-sur-Yvette (France); Peking Univ., Beijing (China); Decharme, Bertrand [CNRS/Meteo-France, Toulouse (France); Nesme, Thomas [ISPA, Villenave d' Ornon (France); Pellerin, Sylvain [ISPA, Villenave d' Ornon (France)

    2017-01-09

    Phosphorus (P) availability in soils limits crop yields in many regions of the world, while excess of soil P triggers aquatic eutrophication in other regions. Numerous processes drive the global spatial distribution of P in agricultural soils, but their relative roles remain unclear. Here, we combined several global datasets describing these drivers with a soil P dynamics model to simulate the distribution of P in agricultural soils and to assess the contributions of the different drivers at the global scale. We analyzed both the labile inorganic P (PILAB), a proxy of the pool involved in plant nutrition and the total soil P (PTOT). We found that the soil biogeochemical background (BIOG) and farming practices (FARM) were the main drivers of the spatial variability in cropland soil P content but that their contribution varied between PTOT vs PILAB. Indeed, 97% of the PTOT spatial variability could be explained by BIOG, while BIOG and FARM explained 41% and 58% of PILAB spatial variability, respectively. Other drivers such as climate, soil erosion, atmospheric P deposition and soil buffering capacity made only very small contribution. Lastly, our study is a promising approach to investigate the potential effect of P as a limiting factor for agricultural ecosystems and for global food production. Additionally, we quantified the anthropogenic perturbation of P cycle and demonstrated how the different drivers are combined to explain the global distribution of agricultural soil P.

  12. Threats from urban expansion, agricultural transformation and forest loss on global conservation priority areas

    Moilanen, Atte; Di Minin, Enrico

    2017-01-01

    Including threats in spatial conservation prioritization helps identify areas for conservation actions where biodiversity is at imminent risk of extinction. At the global level, an important limitation when identifying spatial priorities for conservation actions is the lack of information on the spatial distribution of threats. Here, we identify spatial conservation priorities under three prominent threats to biodiversity (residential and commercial development, agricultural expansion, and forest loss), which are primary drivers of habitat loss and threaten the persistence of the highest number of species in the International Union for the Conservation of Nature (IUCN) Red List, and for which spatial data is available. We first explore how global priority areas for the conservation of vertebrate (mammals, birds, and amphibians) species coded in the Red List as vulnerable to each threat differ spatially. We then identify spatial conservation priorities for all species vulnerable to all threats. Finally, we identify the potentially most threatened areas by overlapping the identified priority areas for conservation with maps for each threat. We repeat the same with four other well-known global conservation priority area schemes, namely Key Biodiversity Areas, Biodiversity Hotspots, the global Protected Area Network, and Wilderness Areas. We find that residential and commercial development directly threatens only about 4% of the global top 17% priority areas for species vulnerable under this threat. However, 50% of the high priority areas for species vulnerable to forest loss overlap with areas that have already experienced some forest loss. Agricultural expansion overlapped with ~20% of high priority areas. Biodiversity Hotspots had the greatest proportion of their total area under direct threat from all threats, while expansion of low intensity agriculture was found to pose an imminent threat to Wilderness Areas under future agricultural expansion. Our results

  13. Linked Data for Fighting Global Hunger:Experiences in setting standards for Agricultural Information Management

    Baker, Thomas; Keizer, Johannes

    FAO, the Food and Agriculture Organization of the UN, has the global goal to defeat hunger and eliminate poverty. One of its core functions is the generation, dissemination and application of information and knowledge. Since 2000, the Agricultural InformationManagement Standards (AIMS) activity in FAO's Knowledge Exchange and Capacity Building Division has promoted the use of Semantic Web standards to improve information sharing within a global network of research institutes and related partner organizations. The strategy emphasizes the use of simple descriptive metadata, thesauri, and ontologies for integrating access to information from a wide range of sources for both scientific and non-expert audiences. An early adopter of Semantic Web technology, the AIMS strategy is evolving to help information providers in nineteen language areas use modern Linked Data methods to improve the quality of life in developing rural areas, home to seventy percent of the world's poor and hungry people.

  14. Global economic trade-offs between wild nature and tropical agriculture.

    Carrasco, Luis R; Webb, Edward L; Symes, William S; Koh, Lian P; Sodhi, Navjot S

    2017-07-01

    Global demands for agricultural and forestry products provide economic incentives for deforestation across the tropics. Much of this deforestation occurs with a lack of information on the spatial distribution of benefits and costs of deforestation. To inform global sustainable land-use policies, we combine geographic information systems (GIS) with a meta-analysis of ecosystem services (ES) studies to perform a spatially explicit analysis of the trade-offs between agricultural benefits, carbon emissions, and losses of multiple ecosystem services because of tropical deforestation from 2000 to 2012. Even though the value of ecosystem services presents large inherent uncertainties, we find a pattern supporting the argument that the externalities of destroying tropical forests are greater than the current direct economic benefits derived from agriculture in all cases bar one: when yield and rent potentials of high-value crops could be realized in the future. Our analysis identifies the Atlantic Forest, areas around the Gulf of Guinea, and Thailand as areas where agricultural conversion appears economically efficient, indicating a major impediment to the long-term financial sustainability of Reducing Emissions from Deforestation and forest Degradation (REDD+) schemes in those countries. By contrast, Latin America, insular Southeast Asia, and Madagascar present areas with low agricultural rents (ARs) and high values in carbon stocks and ES, suggesting that they are economically viable conservation targets. Our study helps identify optimal areas for conservation and agriculture together with their associated uncertainties, which could enhance the efficiency and sustainability of pantropical land-use policies and help direct future research efforts.

  15. Agricultural production and water use scenarios in Cyprus under global change

    Bruggeman, Adriana; Zoumides, Christos; Camera, Corrado; Pashiardis, Stelios; Zomeni, Zomenia

    2014-05-01

    In many countries of the world, food demand exceeds the total agricultural production. In semi-arid countries, agricultural water demand often also exceeds the sustainable supply of water resources. These water-stressed countries are expected to become even drier, as a result of global climate change. This will have a significant impact on the future of the agricultural sector and on food security. The aim of the AGWATER project consortium is to provide recommendations for climate change adaptation for the agricultural sector in Cyprus and the wider Mediterranean region. Gridded climate data sets, with 1-km horizontal resolution were prepared for Cyprus for 1980-2010. Regional Climate Model results were statistically downscaled, with the help of spatial weather generators. A new soil map was prepared using a predictive modelling and mapping technique and a large spatial database with soil and environmental parameters. Stakeholder meetings with agriculture and water stakeholders were held to develop future water prices, based on energy scenarios and to identify climate resilient production systems. Green houses, including also hydroponic systems, grapes, potatoes, cactus pears and carob trees were the more frequently identified production systems. The green-blue-water model, based on the FAO-56 dual crop coefficient approach, has been set up to compute agricultural water demand and yields for all crop fields in Cyprus under selected future scenarios. A set of agricultural production and water use performance indicators are computed by the model, including green and blue water use, crop yield, crop water productivity, net value of crop production and economic water productivity. This work is part of the AGWATER project - AEIFORIA/GEOGRO/0311(BIE)/06 - co-financed by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation.

  16. Electronic Signatures in Global and National Commerce Act. Public Law.

    Congress of the U.S., Washington, DC.

    This document presents the text of Public Law 106-229, the "Electronic Signatures in Global and National Commerce Act." The act states that, with respect to any transaction in or affecting interstate or foreign commerce: a signature, contract, or other record relating to such transaction may not be denied legal effect, validity, or…

  17. Declining global per capita agricultural production and warming oceans threaten food security

    Funk, Christopher C.; Brown, Molly E.

    2009-01-01

    Despite accelerating globalization, most people still eat food that is grown locally. Developing countries with weak purchasing power tend to import as little food as possible from global markets, suffering consumption deficits during times of high prices or production declines. Local agricultural production, therefore, is critical to both food security and economic development among the rural poor. The level of local agricultural production, in turn, will be determined by the amount and quality of arable land, the amount and quality of agricultural inputs (fertilizer, seeds, pesticides, etc.), as well as farm-related technology, practices and policies. This paper discusses several emerging threats to global and regional food security, including declining yield gains that are failing to keep up with population increases, and warming in the tropical Indian Ocean and its impact on rainfall. If yields continue to grow more slowly than per capita harvested area, parts of Africa, Asia and Central and Southern America will experience substantial declines in per capita cereal production. Global per capita cereal production will potentially decline by 14% between 2008 and 2030. Climate change is likely to further affect food production, particularly in regions that have very low yields due to lack of technology. Drought, caused by anthropogenic warming in the Indian and Pacific Oceans, may also reduce 21st century food availability in some countries by disrupting moisture transports and bringing down dry air over crop growing areas. The impacts of these circulation changes over Asia remain uncertain. For Africa, however, Indian Ocean warming appears to have already reduced rainfall during the main growing season along the eastern edge of tropical Africa, from southern Somalia to northern parts of the Republic of South Africa. Through a combination of quantitative modeling of food balances and an examination of climate change, this study presents an analysis of emerging

  18. Declining Global Per Capita Agricultural Production and Warming Oceans Threaten Food Security

    Funk, Chris C.; Brown, Molly E.

    2009-01-01

    Despite accelerating globalization, most people still eat food that was grown locally. Developing countries with weak purchasing power tend to import as little food as possible from global markets, suffering consumption deficits during times of high prices or production declines. Local agricultural production, therefore, is critical to both food security and economic development among the rural poor. The level of local agricultural production, in turn, will be controlled by the amount and quality of arable land, the amount and quality of agricultural inputs (fertilizer, seeds, pesticides, etc.), as well as farm-related technology, practices, and policies. In this paper we discuss several emerging threats to global and regional food security, including declining yield gains that are failing to keep up with population increases, and warming in the tropical Indian Ocean and its impact on rainfall. If yields continue to grow more slowly than per capita harvested area, parts of Africa, Asia, and Central and Southern America will experience substantial declines in per capita cereal production. Global per capita cereal production will potentially decline by 14 percent between 2008 and 2030. Climate change is likely to further affect food production, particularly in regions that have very low yields due to lack of technology. Drought, caused by anthropogenic warming in the Indian and Pacific Oceans, may also reduce 21 st century food availability by disrupting Indian Ocean moisture transports and tilting the 21 st century climate toward a more El Nino-like state. The impacts of these circulation changes over Asia remain uncertain. For Africa, however, Indian Ocean warming appears to have already reduced main growing season rainfall along the eastern edge of tropical Africa, from southern Somalia to northern parts of the Republic of South Africa. Through a combination of quantitative modeling of food balances and an examination of climate change, we present an analysis of

  19. Quality evaluation of agricultural distillates using different types of electronic noses

    Dymerski, Tomasz; Gebicki, Jacek; Namieśnik, Jacek

    2014-08-01

    The paper presents the results of investigation on quality evaluation of agricultural distillates using a prototype of electronic nose instrument and a commercial electronic nose of Fast/Flash GC type- HERACLES II. The prototype was equipped with TGS type semiconductor sensors. HERACLES II included two chromatographic columns with different polarity of stationary phase and two FID detectors. In case of the prototype volatile fraction of the agricultural distillate was prepared via barbotage process, whereas HERACLES II analysed the headspace fraction. Classification of the samples into three quality classes was performed using: quadratic discriminant function (QDA), supported with cross-validation method. Over 95% correct classification of the agricultural distillates into particular quality classes was observed for the analyses with HERACLES II. The prototype of electronic nose provided correct classification at the level of 70%.

  20. The global impact of ozone on agricultural crop yields under current and future air quality legislation

    Van Dingenen, Rita; Dentener, Frank J.; Raes, Frank; Krol, Maarten C.; Emberson, Lisa; Cofala, Janusz

    In this paper we evaluate the global impact of surface ozone on four types of agricultural crop. The study is based on modelled global hourly ozone fields for the year 2000 and 2030, using the global 1°×1° 2-way nested atmospheric chemical transport model (TM5). Projections for the year 2030 are based on the relatively optimistic "current legislation (CLE) scenario", i.e. assuming that currently approved air quality legislation will be fully implemented by the year 2030, without a further development of new abatement policies. For both runs, the relative yield loss due to ozone damage is evaluated based on two different indices (accumulated concentration above a 40 ppbV threshold and seasonal mean daytime ozone concentration respectively) on a global, regional and national scale. The cumulative metric appears to be far less robust than the seasonal mean, while the seasonal mean shows satisfactory agreement with measurements in Europe, the US, China and Southern India and South-East Asia. Present day global relative yield losses are estimated to range between 7% and 12% for wheat, between 6% and 16% for soybean, between 3% and 4% for rice, and between 3% and 5% for maize (range resulting from different metrics used). Taking into account possible biases in our assessment, introduced through the global application of "western" crop exposure-response functions, and through model performance in reproducing ozone-exposure metrics, our estimates may be considered as being conservative. Under the 2030 CLE scenario, the global situation is expected to deteriorate mainly for wheat (additional 2-6% loss globally) and rice (additional 1-2% loss globally). India, for which no mitigation measures have been assumed by 2030, accounts for 50% of these global increase in crop yield loss. On a regional-scale, significant reductions in crop losses by CLE-2030 are only predicted in Europe (soybean) and China (wheat). Translating these assumed yield losses into total global economic

  1. Biodiversity Hotspots, Climate Change, and Agricultural Development: Global Limits of Adaptation

    Schneider, U. A.; Rasche, L.; Schmid, E.; Habel, J. C.

    2017-12-01

    Terrestrial ecosystems are threatened by climate and land management change. These changes result from complex and heterogeneous interactions of human activities and natural processes. Here, we study the potential change in pristine area in 33 global biodiversity hotspots within this century under four climate projections (representative concentration pathways) and associated population and income developments (shared socio-economic pathways). A coupled modelling framework computes the regional net expansion of crop and pasture lands as result of changes in food production and consumption. We use a biophysical crop simulation model to quantify climate change impacts on agricultural productivity, water, and nutrient emissions for alternative crop management systems in more than 100 thousand agricultural land polygons (homogeneous response units) and for each climate projection. The crop simulation model depicts detailed soil, weather, and management information and operates with a daily time step. We use time series of livestock statistics to link livestock production to feed and pasture requirements. On the food consumption side, we estimate national demand shifts in all countries by processing population and income growth projections through econometrically estimated Engel curves. Finally, we use a global agricultural sector optimization model to quantify the net change in pristine area in all biodiversity hotspots under different adaptation options. These options include full-scale global implementation of i) crop yield maximizing management without additional irrigation, ii) crop yield maximizing management with additional irrigation, iii) food yield maximizing crop mix adjustments, iv) food supply maximizing trade flow adjustments, v) healthy diets, and vi) combinations of the individual options above. Results quantify the regional potentials and limits of major agricultural producer and consumer adaptation options for the preservation of pristine areas in

  2. AGCM hindcasts with SST and other forcings: Responses from global to agricultural scales

    Shah, Kathryn Pierce; Rind, David; Druyan, Leonard; Lonergan, Patrick; Chandler, Mark

    2000-08-01

    Multiple realizations of the 1969-1998 time period have been simulated by the GISS AGCM to explore its responsiveness to accumulated forcings, particularly over sensitive agricultural regions. A microwave radiative transfer postprocessor has produced the AGCM lower tropospheric, tropospheric, and lower stratospheric brightness temperature (Tb) time series for correlations with microwave sounding unit (MSU) time series. AGCM regional surface air temperature and precipitation were also correlated with GISTEMP temperature data and with rain gage data. Seven realizations by the AGCM were forced solely by observed sea surface temperatures. Subsequent runs hindcast January 1969 through April 1998 with an accumulation of forcings: observed sea surface temperatures (SSTs), greenhouse gases, stratospheric volcanic aerosols, stratospheric and tropospheric ozone, and tropospheric sulfate and black carbon aerosols. Lower stratospheric Tb correlations between the AGCM and the MSU for 1979-1998 reached as high as 0.93 globally given SST, greenhouse gases, volcanic aerosol, and stratospheric ozone forcings. Midtropospheric Tb correlations reached as high as 0.66 globally and 0.84 across the equatorial, 20°S-20°N band. Oceanic lower tropospheric Tb correlations were less high at 0.59 globally and 0.79 across the equatorial band. Of the sensitive agricultural areas considered, Nordeste in northeastern Brazil was simulated best with midtropospheric Tb correlations up to 0.80. The two other agricultural regions, in Africa and in the northern midlatitudes, suffered from higher levels of non-SST-induced variability. Zimbabwe had a maximum midtropospheric correlation of 0.54, while the U.S. Corn Belt reached only 0.25. Hindcast surface temperatures and precipitation were also correlated with observations, up to 0.46 and 0.63, respectively, for Nordeste. Correlations between AGCM and observed time series improved with addition of certain atmospheric forcings in zonal bands but not in

  3. Trade Liberalization and Climate Change: A Computable General Equilibrium Analysis of the Impacts on Global Agriculture

    Katrin Rehdanz

    2011-05-01

    Full Text Available Based on predicted changes in the magnitude and distribution of global precipitation, temperature and river flow under the A1B and A2 scenarios of the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES, this study assesses the potential impacts of climate change and CO2 fertilization on global agriculture, and its interactions with trade liberalization, as proposed for the Doha Development Round. The analysis uses the new version of the GTAP-W model, which distinguishes between rainfed and irrigated agriculture and implements water as an explicit factor of production for irrigated agriculture. Significant reductions in agricultural tariffs lead to modest changes in regional water use. Patterns are non-linear. On the regional level, water use may go up for partial liberalization, and down for more complete liberalization. This is because different crops respond differently to tariff reductions, and because trade and competition matter too. Moreover, trade liberalization tends to reduce water use in water scarce regions, and increase water use in water abundant regions, even though water markets do not exist in most countries. Considering impacts of climate change, the results show that global food production, welfare and GDP fall over time while food prices increase. Larger changes are observed under the SRES A2 scenario for the medium term (2020 and under the SRES A1B scenario for the long term (2050. Combining scenarios of future climate change with trade liberalization, countries are affected differently. However, the overall effect on welfare does not change much.

  4. Calibration of an agricultural-hydrological model (RZWQM2) using surrogate global optimization

    Xi, Maolong; Lu, Dan; Gui, Dongwei; Qi, Zhiming; Zhang, Guannan

    2017-01-01

    Robust calibration of an agricultural-hydrological model is critical for simulating crop yield and water quality and making reasonable agricultural management. However, calibration of the agricultural-hydrological system models is challenging because of model complexity, the existence of strong parameter correlation, and significant computational requirements. Therefore, only a limited number of simulations can be allowed in any attempt to find a near-optimal solution within an affordable time, which greatly restricts the successful application of the model. The goal of this study is to locate the optimal solution of the Root Zone Water Quality Model (RZWQM2) given a limited simulation time, so as to improve the model simulation and help make rational and effective agricultural-hydrological decisions. To this end, we propose a computationally efficient global optimization procedure using sparse-grid based surrogates. We first used advanced sparse grid (SG) interpolation to construct a surrogate system of the actual RZWQM2, and then we calibrate the surrogate model using the global optimization algorithm, Quantum-behaved Particle Swarm Optimization (QPSO). As the surrogate model is a polynomial with fast evaluation, it can be efficiently evaluated with a sufficiently large number of times during the optimization, which facilitates the global search. We calibrate seven model parameters against five years of yield, drain flow, and NO3-N loss data from a subsurface-drained corn-soybean field in Iowa. Results indicate that an accurate surrogate model can be created for the RZWQM2 with a relatively small number of SG points (i.e., RZWQM2 runs). Compared to the conventional QPSO algorithm, our surrogate-based optimization method can achieve a smaller objective function value and better calibration performance using a fewer number of expensive RZWQM2 executions, which greatly improves computational efficiency.

  5. Global Distribution of Net Electron Acceptance in Subseafloor Sediment

    Fulfer, V. M.; Pockalny, R. A.; D'Hondt, S.

    2017-12-01

    We quantified the global distribution of net electron acceptance rates (e-/m2/year) in subseafloor sediment (>1.5 meters below seafloor [mbsf]) using (i) a modified version of the chemical-reaction-rate algorithm by Wang et al. (2008), (ii) physical properties and dissolved oxygen and sulfate data from interstitial waters of sediment cores collected by the Ocean Drilling Program, Integrated Ocean Drilling Program, International Ocean Discovery Program, and U.S. coring expeditions, and (iii) correlation of net electron acceptance rates to global oceanographic properties. Calculated net rates vary from 4.8 x 1019 e-/m2/year for slowly accumulating abyssal clay to 1.2 x 1023 e-/m2/year for regions of high sedimentation rate. Net electron acceptance rate correlates strongly with mean sedimentation rate. Where sedimentation rate is very low (e.g., 1 m/Myr), dissolved oxygen penetrates more than 70 mbsf and is the primary terminal electron acceptor. Where sedimentation rate is moderate (e.g., 3 to 60 m/Myr), dissolved sulfate penetrates as far as 700 mbsf and is the principal terminal electron acceptor. Where sedimentation rate is high (e.g., > 60 m/Myr), dissolved sulfate penetrates only meters, but is the principal terminal electron acceptor in subseafloor sediment to the depth of sulfate penetration. Because microbial metabolism continues at greater depths than the depth of sulfate penetration in fast-accumulating sediment, complete quantification of subseafloor metabolic rates will require consideration of other chemical species.

  6. Urban agriculture: a global analysis of the space constraint to meet urban vegetable demand

    Martellozzo, F; Landry, J-S; Plouffe, D; Seufert, V; Ramankutty, N; Rowhani, P

    2014-01-01

    Urban agriculture (UA) has been drawing a lot of attention recently for several reasons: the majority of the world population has shifted from living in rural to urban areas; the environmental impact of agriculture is a matter of rising concern; and food insecurity, especially the accessibility of food, remains a major challenge. UA has often been proposed as a solution to some of these issues, for example by producing food in places where population density is highest, reducing transportation costs, connecting people directly to food systems and using urban areas efficiently. However, to date no study has examined how much food could actually be produced in urban areas at the global scale. Here we use a simple approach, based on different global-scale datasets, to assess to what extent UA is constrained by the existing amount of urban space. Our results suggest that UA would require roughly one third of the total global urban area to meet the global vegetable consumption of urban dwellers. This estimate does not consider how much urban area may actually be suitable and available for UA, which likely varies substantially around the world and according to the type of UA performed. Further, this global average value masks variations of more than two orders of magnitude among individual countries. The variations in the space required across countries derive mostly from variations in urban population density, and much less from variations in yields or per capita consumption. Overall, the space required is regrettably the highest where UA is most needed, i.e., in more food insecure countries. We also show that smaller urban clusters (i.e., <100 km 2 each) together represent about two thirds of the global urban extent; thus UA discourse and policies should not focus on large cities exclusively, but should also target smaller urban areas that offer the greatest potential in terms of physical space. (letters)

  7. The use of PROBA-V data for Global Agricultural Monitoring

    Bydekerke, Lieven; Gilliams, Sven; Kempeneers, Pieter; Piccard, Isabelle; Deronde, Bart; Eerens, Herman; Gobin, Anne

    2015-04-01

    Land conversion, forest cutting, urban growth, agricultural expansion, take place at an unprecedented rate and scale such that they have a strong economic and environmental impact. Understanding and measuring dynamics becomes a prerequisite for companies, governments, agencies, NGO's, research institutes and society in general. In many cases the temporal frequency of the information is a requirement to detect phenomena that can occur within a few days and at a certain geographic scale. For example frequent updates on crop condition and projected production are needed to stabilise agricultural markets. Large initiatives such as the GEOGLAM AMIS (Group on Earth Observations Global Agricultural Monitoring - Agricultural Market Information System) respond to this increased need. Observations over large areas are available through satellites, however, the following challenges remain: • obtaining frequent and consistent observations at sufficient level of detail to identify spatial phenomena. At present, no single mission is capable of providing near daily information of any place in the world at scales appropriate to detect land cover/use changes in a consistent manner. • the need for a historical reference. For agricultural monitoring and early warning purposes the comparison of the actual data with a historical reference is of the utmost importance. The PROBA-V mission is an important attempt to overcome these challenges. From its design and within the GIO-Global Land component a lot of work has been done to ensure the consistency between the PROBA-V data and the 15 years historical archive of SPOT-VEGETATION. In this respect PROBA-V observations are comparable with the SPOT-VEGETATION historical baseline and will therefore ensure the continuation of the standard agricultural monitoring products. Next to this integration with the historical archive, PROBA -V also provides an increase in spatial resolution from 1km to 300m and even 100m. The latter ensures a global

  8. Development of a Global Agricultural Hotspot Detection and Early Warning System

    Lemoine, G.; Rembold, F.; Urbano, F.; Csak, G.

    2015-12-01

    The number of web based platforms for crop monitoring has grown rapidly over the last years and anomaly maps and time profiles of remote sensing derived indicators can be accessed online thanks to a number of web based portals. However, while these systems make available a large amount of crop monitoring data to the agriculture and food security analysts, there is no global platform which provides agricultural production hotspot warning in a highly automatic and timely manner. Therefore a web based system providing timely warning evidence as maps and short narratives is currently under development by the Joint Research Centre. The system (called "HotSpot Detection System of Agriculture Production Anomalies", HSDS) will focus on water limited agricultural systems worldwide. The automatic analysis of relevant meteorological and vegetation indicators at selected administrative units (Gaul 1 level) will trigger warning messages for the areas where anomalous conditions are observed. The level of warning (ranging from "watch" to "alert") will depend on the nature and number of indicators for which an anomaly is detected. Information regarding the extent of the agricultural areas concerned by the anomaly and the progress of the agricultural season will complement the warning label. In addition, we are testing supplementary detailed information from other sources for the areas triggering a warning. These regard the automatic web-based and food security-tailored analysis of media (using the JRC Media Monitor semantic search engine) and the automatic detection of active crop area using Sentinel 1, upcoming Sentinel-2 and Landsat 8 imagery processed in Google Earth Engine. The basic processing will be fully automated and updated every 10 days exploiting low resolution rainfall estimates and satellite vegetation indices. Maps, trend graphs and statistics accompanied by short narratives edited by a team of crop monitoring experts, will be made available on the website on a

  9. Climate change impacts on US agriculture and forestry: benefits of global climate stabilization

    Beach, Robert H.; Cai, Yongxia; Thomson, Allison; Zhang, Xuesong; Jones, Russell; McCarl, Bruce A.; Crimmins, Allison; Martinich, Jeremy; Cole, Jefferson; Ohrel, Sara; DeAngelo, Benjamin; McFarland, James; Strzepek, Kenneth; Boehlert, Brent

    2015-09-01

    Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. There have been numerous studies of climate change impacts on agriculture or forestry, but relatively little research examining the long-term net impacts of a stabilization scenario relative to a case with unabated climate change. We provide an analysis of the potential benefits of global climate change mitigation for US agriculture and forestry through 2100, accounting for landowner decisions regarding land use, crop mix, and management practices. The analytic approach involves a combination of climate models, a crop process model (EPIC), a dynamic vegetation model used for forests (MC1), and an economic model of the US forestry and agricultural sector (FASOM-GHG). We find substantial impacts on productivity, commodity markets, and consumer and producer welfare for the stabilization scenario relative to unabated climate change, though the magnitude and direction of impacts vary across regions and commodities. Although there is variability in welfare impacts across climate simulations, we find positive net benefits from stabilization in all cases, with cumulative impacts ranging from $32.7 billion to $54.5 billion over the period 2015-2100. Our estimates contribute to the literature on potential benefits of GHG mitigation and can help inform policy decisions weighing alternative mitigation and adaptation actions.

  10. Climate change impacts on US agriculture and forestry: benefits of global climate stabilization

    Beach, Robert H.; Cai, Yongxia; Thomson, Allison; Zhang, Xuesong; Jones, Russell; McCarl, Bruce A.; Crimmins, Allison; Martinich, Jeremy; Cole, Jefferson; Ohrel, Sara; DeAngelo, Benjamin; McFarland, James; Strzepek, Kenneth; Boehlert, Brent

    2015-09-01

    Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. There have been numerous studies of climate change impacts on agriculture or forestry, but relatively little research examining the long-term net impacts of a stabilization scenario relative to a case with unabated climate change. We provide an analysis of the potential benefits of global climate change mitigation for US agriculture and forestry through 2100, accounting for landowner decisions regarding land use, crop mix, and management practices. The analytic approach involves a combination of climate models, a crop process model (EPIC), a dynamic vegetation model used for forests (MC1), and an economic model of the US forestry and agricultural sector (FASOM-GHG). We find substantial impacts on productivity, commodity markets, and consumer and producer welfare for the stabilization scenario relative to unabated climate change, though the magnitude and direction of impacts vary across regions and commodities. Although there is variability in welfare impacts across climate simulations, we find positive net benefits from stabilization in all cases, with cumulative impacts ranging from 32.7 billion to 54.5 billion over the period 2015-2100. Our estimates contribute to the literature on potential benefits of GHG mitigation and can help inform policy decisions weighing alternative mitigation and adaptation actions.

  11. Diverse Applications of Electronic-Nose Technologies in Agriculture and Forestry

    Wilson, Alphus D.

    2013-01-01

    Electronic-nose (e-nose) instruments, derived from numerous types of aroma-sensor technologies, have been developed for a diversity of applications in the broad fields of agriculture and forestry. Recent advances in e-nose technologies within the plant sciences, including improvements in gas-sensor designs, innovations in data analysis and pattern-recognition algorithms, and progress in material science and systems integration methods, have led to significant benefits to both industries. Electronic noses have been used in a variety of commercial agricultural-related industries, including the agricultural sectors of agronomy, biochemical processing, botany, cell culture, plant cultivar selections, environmental monitoring, horticulture, pesticide detection, plant physiology and pathology. Applications in forestry include uses in chemotaxonomy, log tracking, wood and paper processing, forest management, forest health protection, and waste management. These aroma-detection applications have improved plant-based product attributes, quality, uniformity, and consistency in ways that have increased the efficiency and effectiveness of production and manufacturing processes. This paper provides a comprehensive review and summary of a broad range of electronic-nose technologies and applications, developed specifically for the agriculture and forestry industries over the past thirty years, which have offered solutions that have greatly improved worldwide agricultural and agroforestry production systems. PMID:23396191

  12. Diverse applications of electronic-nose technologies in agriculture and forestry.

    Wilson, Alphus D

    2013-02-08

    Electronic-nose (e-nose) instruments, derived from numerous types of aroma-sensor technologies, have been developed for a diversity of applications in the broad fields of agriculture and forestry. Recent advances in e-nose technologies within the plant sciences, including improvements in gas-sensor designs, innovations in data analysis and pattern-recognition algorithms, and progress in material science and systems integration methods, have led to significant benefits to both industries. Electronic noses have been used in a variety of commercial agricultural-related industries, including the agricultural sectors of agronomy, biochemical processing, botany, cell culture, plant cultivar selections, environmental monitoring, horticulture, pesticide detection, plant physiology and pathology. Applications in forestry include uses in chemotaxonomy, log tracking, wood and paper processing, forest management, forest health protection, and waste management. These aroma-detection applications have improved plant-based product attributes, quality, uniformity, and consistency in ways that have increased the efficiency and effectiveness of production and manufacturing processes. This paper provides a comprehensive review and summary of a broad range of electronic-nose technologies and applications, developed specifically for the agriculture and forestry industries over the past thirty years, which have offered solutions that have greatly improved worldwide agricultural and agroforestry production systems.

  13. Estimating the Global Agricultural Impact of Solar Radiation Management using Volcanic Eruptions as Natural Experiments

    Proctor, J.; Hsiang, S. M.; Burney, J. A.; Burke, M.; Schlenker, W.

    2017-12-01

    Solar radiation management (SRM) is increasingly considered an option for managing global temperatures, yet the economic impacts of ameliorating climatic changes by scattering sunlight back to space remain largely unknown. Though SRM may increase crop yields by reducing heat stress, its impacts from concomitant changes in available sunlight have never been empirically estimated. Here we use the volcanic eruptions that inspired modern SRM proposals as natural experiments to provide the first estimates of how the stratospheric sulfate aerosols (SS) created by the eruptions of El Chichon and Pinatubo altered the quantity and quality of global sunlight, how those changes in sunlight impacted global crop yields, and the total effect that SS may have on yields in an SRM scenario when the climatic and sunlight effects are jointly considered. We find that the sunlight-mediated impact of SS on yields is negative for both C4 (maize) and C3 (soy, rice, wheat) crops. Applying our yield model to a geoengineering scenario using SS-based SRM from 2050-2069, we find that SRM damages due to scattering sunlight are roughly equal in magnitude to SRM benefits from cooling. This suggests that SRM - if deployed using SS similar to those emitted by the volcanic eruptions it seeks to mimic - would attenuate little of the damages from climate change to global agriculture on net. Our approach could be extended to study SRM impacts on other global systems, such as human health or ecosystem function.

  14. Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality

    Scanlon, Bridget R.; Jolly, Ian; Sophocleous, Marios; Zhang, Lu

    2007-03-01

    Past land use changes have greatly impacted global water resources, with often opposing effects on water quantity and quality. Increases in rain-fed cropland (460%) and pastureland (560%) during the past 300 years from forest and grasslands decreased evapotranspiration and increased recharge (two orders of magnitude) and streamflow (one order of magnitude). However, increased water quantity degraded water quality by mobilization of salts, salinization caused by shallow water tables, and fertilizer leaching into underlying aquifers that discharge to streams. Since the 1950s, irrigated agriculture has expanded globally by 174%, accounting for ˜90% of global freshwater consumption. Irrigation based on surface water reduced streamflow and raised water tables resulting in waterlogging in many areas (China, India, and United States). Marked increases in groundwater-fed irrigation in the last few decades in these areas has lowered water tables (≤1 m/yr) and reduced streamflow. Degradation of water quality in irrigated areas has resulted from processes similar to those in rain-fed agriculture: salt mobilization, salinization in waterlogged areas, and fertilizer leaching. Strategies for remediating water resource problems related to agriculture often have opposing effects on water quantity and quality. Long time lags (decades to centuries) between land use changes and system response (e.g., recharge, streamflow, and water quality), particularly in semiarid regions, mean that the full impact of land use changes has not been realized in many areas and remediation to reverse impacts will also take a long time. Future land use changes should consider potential impacts on water resources, particularly trade-offs between water, salt, and nutrient balances, to develop sustainable water resources to meet human and ecosystem needs.

  15. Greenhouse gas emissions from Swiss agriculture since 1990: implications for environmental policies to mitigate global warming

    Leifeld, Jens [AGROSCOPE, Swiss Federal Research Station for Agroecology and Agriculture, Air Pollution/Climate Group, Reckenholzstrasse 191, 8046 Zurich (Switzerland)]. E-mail: jens.leifeld@fal.admin.ch; Fuhrer, Juerg [AGROSCOPE, Swiss Federal Research Station for Agroecology and Agriculture, Air Pollution/Climate Group, Reckenholzstrasse 191, 8046 Zurich (Switzerland)

    2005-08-01

    Agricultural greenhouse gas (GHG) emissions contribute significantly to global warming, and environmental protection strategies have thus to integrate emission reduction measures from this source. In Switzerland, legislation together with monetary incentives has forced primarily integrated, and to a lesser extend organic farming, both covering nowadays more than 95% of the agriculturally useful area. Though reducing greenhouse gas emissions was not a primary intention of this reorganisation, the measures were successful in reducing the overall emissions of nitrous oxide and methane by 10% relative to 1990. A reduction of the animal herd, namely of dairy cattle, non-dairy cattle and swine, and decreasing inputs of mineral N are the main contributors to the achieved emission reduction. Crop productivity was not negatively affected and milk productivity even increased, referring to the ecological potential of agricultural reorganisation that has been tapped. Total meat production declined proportional to the animal herd. Stabilised animal numbers and fertiliser use during the last 4 years refer to an exhaustion of future reduction potentials without further legislative action because this stabilisation is most likely due to the adaptation to the production guidelines. A comparison of emission trends and carbon sequestration potentials in the broader context of the EU15 reveals that nitrous oxide (N{sub 2}O) and methane (CH{sub 4}) have been reduced more efficiently most probably due to the measures taken, but that sequestration potentials are smaller than in the EU15 mainly because of differences in the agricultural structure. The change from an intensified towards a more environmental sound integrated production has a significant reduction potential, but in any case, agriculture will remain a net GHG source in spite of emission mitigation and carbon sequestration.

  16. Global achievements in soil and water conservation: The case of Conservation Agriculture

    A. Kassam

    2014-03-01

    In 2011, CA had spread over 125 million hectares (9% of the global cropped land across all continents and most agro-ecologies, including small and large farms. In addition, there is a significant area of CA orchards in the Mediterranean countries. CA is now considered to be a practical agro-ecological approach to achieving sustainable agriculture intensification. It offers environmental, economic and social advantages that are not fully possible with tillage-based production systems, as well as improved productivity and resilience, and improved ecosystem services while minimizing the excessive use of agrochemicals, energy and heavy machinery. While there are challenges to the adoption of CA, there is also increasing interest from producers, the civil society, donors and private sector institutions to further promote and service the uptake and spread of CA globally.

  17. How Could Agricultural Land Systems Contribute to Raise Food Production Under Global Change?

    WU Wen-bin; YU Qiang-yi; Verburg H Peter; YOU Liang-zhi; YANG Peng; TANG Hua-jun

    2014-01-01

    To feed the increasing world population, more food needs to be produced from agricultural land systems. Solutions to produce more food with fewer resources while minimizing adverse environmental and ecological consequences require sustainable agricultural land use practices as supplementary to advanced biotechnology and agronomy. This review paper, from a land system perspective, systematically proposed and analyzed three interactive strategies that could possibly raise future food production under global change. By reviewing the current literatures, we suggest that cropland expansion is less possible amid iferce land competition, and it is likely to do less in increasing food production. Moreover, properly allocating crops in space and time is a practical way to ensure food production. Climate change, dietary shifts, and other socio-economic drivers, which would shape the demand and supply side of food systems, should be taken into consideration during the decision-making on rational land management in respect of sustainable crop choice and allocation. And ifnally, crop-speciifc agricultural intensiifcation would play a bigger role in raising future food production either by increasing the yield per unit area of individual crops or by increasing the number of crops sown on a particular area of land. Yet, only when it is done sustainably is this a much more effective strategy to maximize food production by closing yield and harvest gaps.

  18. Temporal dynamics influenced by global change: bee community phenology in urban, agricultural, and natural landscapes.

    Leong, Misha; Ponisio, Lauren C; Kremen, Claire; Thorp, Robbin W; Roderick, George K

    2016-03-01

    Urbanization and agricultural intensification of landscapes are important drivers of global change, which in turn have direct impacts on local ecological communities leading to shifts in species distributions and interactions. Here, we illustrate how human-altered landscapes, with novel ornamental and crop plant communities, result not only in changes to local community diversity of floral-dependent species, but also in shifts in seasonal abundance of bee pollinators. Three years of data on the spatio-temporal distributions of 91 bee species show that seasonal patterns of abundance and species richness in human-altered landscapes varied significantly less compared to natural habitats in which floral resources are relatively scarce in the dry summer months. These findings demonstrate that anthropogenic environmental changes in urban and agricultural systems, here mediated through changes in plant resources and water inputs, can alter the temporal dynamics of pollinators that depend on them. Changes in phenology of interactions can be an important, though frequently overlooked, mechanism of global change. © 2015 John Wiley & Sons Ltd.

  19. The Value of Native Plants and Local Production in an Era of Global Agriculture.

    Shelef, Oren; Weisberg, Peter J; Provenza, Frederick D

    2017-01-01

    For addressing potential food shortages, a fundamental tradeoff exists between investing more resources to increasing productivity of existing crops, as opposed to increasing crop diversity by incorporating more species. We explore ways to use local plants as food resources and the potential to promote food diversity and agricultural resilience. We discuss how use of local plants and the practice of local agriculture can contribute to ongoing adaptability in times of global change. Most food crops are now produced, transported, and consumed long distances from their homelands of origin. At the same time, research and practices are directed primarily at improving the productivity of a small number of existing crops that form the cornerstone of a global food economy, rather than to increasing crop diversity. The result is a loss of agro-biodiversity, leading to a food industry that is more susceptible to abiotic and biotic stressors, and more at risk of catastrophic losses. Humans cultivate only about 150 of an estimated 30,000 edible plant species worldwide, with only 30 plant species comprising the vast majority of our diets. To some extent, these practices explain the food disparity among human populations, where nearly 1 billion people suffer insufficient nutrition and 2 billion people are obese or overweight. Commercial uses of new crops and wild plants of local origin have the potential to diversify global food production and better enable local adaptation to the diverse environments humans inhabit. We discuss the advantages, obstacles, and risks of using local plants. We also describe a case study-the missed opportunity to produce pine nuts commercially in the Western United States. We discuss the potential consequences of using local pine nuts rather than importing them overseas. Finally, we provide a list of edible native plants, and synthesize the state of research concerning the potential and challenges in using them for food production. The goal of our

  20. Diversification and intensification of agricultural adaptation from global to local scales

    Chen, Minjie; Wichmann, Bruno; Luckert, Marty; Winowiecki, Leigh; Förch, Wiebke

    2018-01-01

    Smallholder farming systems are vulnerable to a number of challenges, including continued population growth, urbanization, income disparities, land degradation, decreasing farm size and productivity, all of which are compounded by uncertainty of climatic patterns. Understanding determinants of smallholder farming practices is critical for designing and implementing successful interventions, including climate change adaptation programs. We examine two dimensions wherein smallholder farmers may adapt agricultural practices; through intensification (i.e., adopt more practices) or diversification (i.e. adopt different practices). We use data on 5314 randomly sampled households located in 38 sites in 15 countries across four regions (East and West Africa, South Asia, and Central America). We estimate empirical models designed to assess determinants of both intensification and diversification of adaptation activities at global scales. Aspects of adaptive capacity that are found to increase intensification of adaptation globally include variables associated with access to information and human capital, financial considerations, assets, household infrastructure and experience. In contrast, there are few global drivers of adaptive diversification, with a notable exception being access to weather information, which also increases adaptive intensification. Investigating reasons for adaptation indicate that conditions present in underdeveloped markets provide the primary impetus for adaptation, even in the context of climate change. We also compare determinants across spatial scales, which reveals a variety of local avenues through which policy interventions can relax economic constraints and boost agricultural adaptation for both intensification and diversification. For example, access to weather information does not affect intensification adaptation in Africa, but is significant at several sites in Bangladesh and India. Moreover, this information leads to diversification of

  1. Diversification and intensification of agricultural adaptation from global to local scales.

    Minjie Chen

    Full Text Available Smallholder farming systems are vulnerable to a number of challenges, including continued population growth, urbanization, income disparities, land degradation, decreasing farm size and productivity, all of which are compounded by uncertainty of climatic patterns. Understanding determinants of smallholder farming practices is critical for designing and implementing successful interventions, including climate change adaptation programs. We examine two dimensions wherein smallholder farmers may adapt agricultural practices; through intensification (i.e., adopt more practices or diversification (i.e. adopt different practices. We use data on 5314 randomly sampled households located in 38 sites in 15 countries across four regions (East and West Africa, South Asia, and Central America. We estimate empirical models designed to assess determinants of both intensification and diversification of adaptation activities at global scales. Aspects of adaptive capacity that are found to increase intensification of adaptation globally include variables associated with access to information and human capital, financial considerations, assets, household infrastructure and experience. In contrast, there are few global drivers of adaptive diversification, with a notable exception being access to weather information, which also increases adaptive intensification. Investigating reasons for adaptation indicate that conditions present in underdeveloped markets provide the primary impetus for adaptation, even in the context of climate change. We also compare determinants across spatial scales, which reveals a variety of local avenues through which policy interventions can relax economic constraints and boost agricultural adaptation for both intensification and diversification. For example, access to weather information does not affect intensification adaptation in Africa, but is significant at several sites in Bangladesh and India. Moreover, this information leads to

  2. Partnering for change in chains : on the capacity of partnerships to promote sustainable change in global agricultural commodity chains

    Bitzer, V.C.

    2011-01-01

    Partnerships mirror the changing nature of the relationships among state, business and civil society organizations, and are often considered as innovative mechanisms to overcome single actor failure in the context of globalization. This thesis analyzes the capacity of partnerships to promote sustainable change in global agricultural commodity chains, using the global coffee, cotton and cocoa chains as main fields of application for the empirical analyses. All three chains are characterized by...

  3. Prospects of Russian Agriculture development under global climate and technological changes

    Valentini, Riccardo; Vasenev, Ivan

    2015-04-01

    Despite the great progresses of the last century in the agricultural sector and food supply, still about 820 million of people in developing countries are facing food scarcity and malnutrition. More than 180 million children are underweight. Except in Africa, 80 percent of the production gains came from increased yields in major cereal crops. The area cultivated has actually begun to decline in some regions. From now on, however, even Africa, which has always relied on cultivation of new land for production increases, will have to count on yield gains or pay high financial and ecological costs for expansion into areas not yet cultivated. The global scenario is changing fast. The technological, climatic and human-induced factors are creating long-lasting effects on the lives of people and on economic activities around the globe. In particular, climate change and/or variability is exacerbating rural increasing heat stress to natural habitats and human settlements, increasing climatic extremes, including drought and impacting food production. Agriculture of any kind is strongly influenced by the availability of water. Climate change will modify rainfall, evaporation, runoff, and soil moisture storage. Changes in total seasonal precipitation or in its pattern of variability are both important. The occurrence of moisture stress during flowering, pollination, and grain-filling is harmful to most crops and particularly so to corn, soybeans, and wheat. Increased evaporation from the soil and accelerated transpiration in the plants themselves will cause moisture stress; as a result there will be a need to develop crop varieties with greater drought tolerance. These climate change effects are particularly harmful in tropical regions of South America, Africa and South East Asia where food production is feeding a large part of world countries and poses serious risks to global food security in the future. Despite global projected climate change will affect a general decline of

  4. The impact of German biogas production on European and global agricultural markets, land use and the environment

    Britz, Wolfgang; Delzeit, Ruth

    2013-01-01

    As part of its climate policy, Germany promotes the production of biogas via its so-called Renewable-Energy-Act (EEG). The resulting boost in biogas output went along with a significant increase in production of green maize, the dominant feedstock. Existing studies of the EEG have analysed its impacts on German agriculture without considering market feedback. We thus expand existing quantitative analysis by also considering impacts on European and global agricultural markets, land use and the environment by combining a detailed location model for biogas plants, the Regionalised Location Information System-Maize (ReSi-M2012), with a global Partial Equilibrium model for agriculture, the Common Agricultural Policy Regional Impact (CAPRI) model. Our results indicate that the German biogas production is large enough to have sizeable impacts on global agricultural markets in prices and quantities, causing significant land use change outside of Germany. While profits in the agricultural sector increase, food consumer face higher prices, and subsidies for biogas production are passed on to electricity consumers. The German biogas program, as long as it is almost entirely based on non-waste feedstocks, is probably not a promising avenue towards a GHG-saving renewable energy production, but a rather expensive one. - Highlights: • Recent changes to that program decrease green maize use but increase land demands. • The program could raise EU prices for cereals by 3%. • Agricultural land use expansion outside of the EU estimated at 1 Mio ha

  5. Defining the `negative emission' capacity of global agriculture deployed for enhanced rock weathering

    Beerling, D. J.; Taylor, L.; Banwart, S. A.; Kantzas, E. P.; Lomas, M.; Mueller, C.; Ridgwell, A.; Quegan, S.

    2016-12-01

    Enhanced rock weathering involves application of crushed silicates (e.g. basalt) to the landscape to accelerate their chemical breakdown to release base cations and form bicarbonate that ultimate sequester CO2 in the oceans. Global croplands cover an area of 12 million km2 and might be deployed for long-term removal of anthropogenic CO2 through enhanced rock weathering with a number of co-benefits for food security. This presentation assesses the potential of this strategy to contribute to `negative emissions' as defined by a suite of simulations coupling a detailed model of rock grain weathering by crop root-microbial processes with a managed land dynamic global vegetation model driven by the `business as usual' future climate change scenarios. We calculate potential atmospheric CO2 drawdown over the next century by introducing a strengthened C-sink term into the global carbon cycle model within an intermediate complexity Earth system model. Our simulations indicate agricultural lands deployed in this way constitute a `low tech' biological negative emissions strategy. As part of a wider portfolio of options, this strategy might contribute to limiting future warming to 2oC, subject to economic costs and energy requirements.

  6. The Use of Proba-V data for Global Agricultural Monitoring

    Gilliams, S. J. B.; Bydekerke, L.; Smets, B.; De Ronde, B.

    2014-12-01

    Land conversion, forest cutting, urban growth, agricultural expansion, take place at scales which are unprecedented in history and at such a pace that they are not only subject of scientific studies but also have a strong economic impact. Understanding and measuring dynamics becomes a prerequisite for companies, governments, agencies, NGO's, research institutes and society in general. In many of these cases the temporal frequency of the information is a clear requirement to detect phenomena that can occur within a few days (related to crops, forests and other ecosystems) and at a certain geographic scale. For example frequent updates on crop condition and production is needed to stabilize agricultural markets. This is already being picked up by large initiatives like the GEOGLAM AMIS system. Observations over large areas are available through satellites, however challenges remain; on the one hand side obtaining frequent and consistent observations at sufficient level of detail to identify spatial phenomena. At present, no single mission is capable of providing near daily information of any place in the world at scales in which changes in land cover/use can be identified in a consistent manner. On the other hand side the need for a historical reference. For agricultural monitoring and early warning purposes the comparison of the actual data with the historical reference is of the utmost importance. The Proba-V mission is a first attempt to overcome these challenges. From its design and within the GIO-Global Land component a lot of work has been done to ensure the integration of the Proba-V data with the 15 years historical archive of SPOT-VEGETATION. In this respect Proba-V observation will be intercomparable with the SPOT-VGT historical baseline which will ensure the continuation of the standard agricultural monitoring products. Next to this integration with the historical archive, Proba-V also ensures an increase in spatial resolution of the data sets, from 1km to

  7. Gamma and electron radiation effects on agricultural by-products with high fibre content

    Leonhardt, J.W.; Baer, M.; Nehring, K.

    1983-01-01

    Gamma and electron radiation effects on wheat straw, oat straw, barley straw, rye straw and dried green fodder are reported. In vitro and in vivo studies show that the digestibility of these agricultural by-products with high fibre content can be increased up to 80% and more at high doses. The increase of the digestibility is connected with a depolymerization of the cellulose and hemicellulose. (author)

  8. Climate, Agriculture, Energy and the Optimal Allocation of Global Land Use

    Steinbuks, J.; Hertel, T. W.

    2011-12-01

    The allocation of the world's land resources over the course of the next century has become a pressing research question. Continuing population increases, improving, land-intensive diets amongst the poorest populations in the world, increasing production of biofuels and rapid urbanization in developing countries are all competing for land even as the world looks to land resources to supply more environmental services. The latter include biodiversity and natural lands, as well as forests and grasslands devoted to carbon sequestration. And all of this is taking place in the context of faster than expected climate change which is altering the biophysical environment for land-related activities. The goal of the paper is to determine the optimal profile for global land use in the context of growing commercial demands for food and forest products, increasing non-market demands for ecosystem services, and more stringent GHG mitigation targets. We then seek to assess how the uncertainty associated with the underlying biophysical and economic processes influences this optimal profile of land use, in light of potential irreversibility in these decisions. We develop a dynamic long-run, forward-looking partial equilibrium framework in which the societal objective function being maximized places value on food production, liquid fuels (including biofuels), timber production, forest carbon and biodiversity. Given the importance of land-based emissions to any GHG mitigation strategy, as well as the potential impacts of climate change itself on the productivity of land in agriculture, forestry and ecosystem services, we aim to identify the optimal allocation of the world's land resources, over the course of the next century, in the face of alternative GHG constraints. The forestry sector is characterized by multiple forest vintages which add considerable computational complexity in the context of this dynamic analysis. In order to solve this model efficiently, we have employed the

  9. Thermal oxidative degradation kinetics of agricultural residues using distributed activation energy model and global kinetic model.

    Ren, Xiu'e; Chen, Jianbiao; Li, Gang; Wang, Yanhong; Lang, Xuemei; Fan, Shuanshi

    2018-08-01

    The study concerned the thermal oxidative degradation kinetics of agricultural residues, peanut shell (PS) and sunflower shell (SS). The thermal behaviors were evaluated via thermogravimetric analysis and the kinetic parameters were determined by using distributed activation energy model (DAEM) and global kinetic model (GKM). Results showed that thermal oxidative decomposition of two samples processed in three zones; the ignition, burnout, and comprehensive combustibility between two agricultural residues were of great difference; and the combustion performance could be improved by boosting heating rate. The activation energy ranges calculated by the DAEM for the thermal oxidative degradation of PS and SS were 88.94-145.30 kJ mol -1 and 94.86-169.18 kJ mol -1 , respectively. The activation energy obtained by the GKM for the oxidative decomposition of hemicellulose and cellulose was obviously lower than that for the lignin oxidation at identical heating rate. To some degree, the determined kinetic parameters could acceptably simulate experimental data. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Electrical and electronic waste: a global environmental problem.

    Ramesh Babu, Balakrishnan; Parande, Anand Kuber; Ahmed Basha, Chiya

    2007-08-01

    The production of electrical and electronic equipment (EEE) is one of the fastest growing global manufacturing activities. This development has resulted in an increase of waste electric and electronic equipment (WEEE). Rapid economic growth, coupled with urbanization and growing demand for consumer goods, has increased both the consumption of EEE and the production of WEEE, which can be a source of hazardous wastes that pose a risk to the environment and to sustainable economic growth. To address potential environmental problems that could stem from improper management of WEEE, many countries and organizations have drafted national legislation to improve the reuse, recycling and other forms of material recovery from WEEE to reduce the amount and types of materials disposed in landfills. Recycling of waste electric and electronic equipment is important not only to reduce the amount of waste requiring treatment, but also to promote the recovery of valuable materials. EEE is diverse and complex with respect to the materials and components used and waste streams from the manufacturing processes. Characterization of these wastes is of paramount importance for developing a cost-effective and environmentally sound recycling system. This paper offers an overview of electrical and e-waste recycling, including a description of how it is generated and classified, strategies and technologies for recovering materials, and new scientific developments related to these activities. Finally, the e-waste recycling industry in India is also discussed.

  11. Grassland production under global change scenarios for New Zealand pastoral agriculture

    Keller, E. D.; Baisden, W. T.; Timar, L.; Mullan, B.; Clark, A.

    2014-10-01

    We adapt and integrate the Biome-BGC and Land Use in Rural New Zealand models to simulate pastoral agriculture and to make land-use change, intensification of agricultural activity and climate change scenario projections of New Zealand's pasture production at time slices centred on 2020, 2050 and 2100, with comparison to a present-day baseline. Biome-BGC model parameters are optimised for pasture production in both dairy and sheep/beef farm systems, representing a new application of the Biome-BGC model. Results show up to a 10% increase in New Zealand's national pasture production in 2020 under intensification and a 1-2% increase by 2050 from economic factors driving land-use change. Climate change scenarios using statistically downscaled global climate models (GCMs) from the IPCC Fourth Assessment Report also show national increases of 1-2% in 2050, with significant regional variations. Projected out to 2100, however, these scenarios are more sensitive to the type of pasture system and the severity of warming: dairy systems show an increase in production of 4% under mild change but a decline of 1% under a more extreme case, whereas sheep/beef production declines in both cases by 3 and 13%, respectively. Our results suggest that high-fertility systems such as dairying could be more resilient under future change, with dairy production increasing or only slightly declining in all of our scenarios. These are the first national-scale estimates using a model to evaluate the joint effects of climate change, CO2 fertilisation and N-cycle feedbacks on New Zealand's unique pastoral production systems that dominate the nation's agriculture and economy. Model results emphasise that CO2 fertilisation and N-cycle feedback effects are responsible for meaningful differences in agricultural systems. More broadly, we demonstrate that our model output enables analysis of decoupled land-use change scenarios: the Biome-BGC data products at a national or regional level can be re

  12. Shifted hot spots and nutrient imbalance in global fertilizer use for agriculture production in the past half century

    Tian, H.; Lu, C.

    2016-12-01

    In addition to enhance agricultural productivity, synthetic nitrogen (N) and phosphorous (P) fertilizer application in croplands dramatically altered global nutrient budget, water quality, greenhouse gas balance, and their feedbacks to the climate system. However, due to the lack of geospatial fertilizer input data, current Earth system/land surface modeling studies have to ignore or use over-simplified data (e.g., static, spatially uniform fertilizer use) to characterize agricultural N and P input over decadal or century-long period. In this study, we therefore develop a global time-series gridded data of annual synthetic N and P fertilizer use rate in croplands, matched with HYDE 3,2 historical land use maps, at a resolution of 0.5º latitude by longitude during 1900-2013. Our data indicate N and P fertilizer use rates increased by approximately 8 times and 3 times, respectively, since the year 1961, when IFA (International Fertilizer Industry Association) and FAO (Food and Agricultural Organization) survey of country-level fertilizer input were available. Considering cropland expansion, increase of total fertilizer consumption amount is even larger. Hotspots of agricultural N fertilizer use shifted from the U.S. and Western Europe in the 1960s to East Asia in the early 21st century. P fertilizer input show the similar pattern with additional hotspot in Brazil. We find a global increase of fertilizer N/P ratio by 0.8 g N/g P per decade (phuman impacts on agroecosystem functions in the long run. Our data can serve as one of critical input drivers for regional and global assessment on agricultural productivity, crop yield, agriculture-derived greenhouse gas balance, global nutrient budget, land-to-aquatic nutrient loss, and ecosystem feedback to the climate system.

  13. Concerns and Opportunities around Cultural Heritage in East Asian Globally Important Agricultural Heritage Systems (GIAHS

    Hiroyuki Kajihara

    2018-04-01

    Full Text Available Fifteen years have passed since Food and Agriculture Organization (FAO launched the Globally Important Agricultural Heritage Systems (GIAHS project in 2002. In this time, participation from East Asian countries has been increasing rapidly with interest flowing over into several related subjects and disciplines. Culture is one of the selection criteria that has to be satisfied to become a GIAHS site, and equally culture plays an important role in the development of tourism to a destination. However, few scientists or GIAHS members have discussed directly how to apply cultural features in GIAHS. Therefore, the purposes of this paper are firstly to recognize the importance and contribution of culture in GIAHS. Then, through detailing the current forms of cultural management in the GIAHS located in Japan, Korea, and China, we identify some of the key cultural problems and prospects in those sites. Two social surveys conducted in Japan show that culture is a prime motivation for tourist visitation, as well as being a core GIAHS selection criteria. These surveys further highlight that GIAHS needs to incorporate culture more effectively into their management strategies. Detailed descriptions of the three countries analyzed in this paper outline each has to engage with particular cultural management challenges: Japan has a well-arranged list of cultural assets, but is unclear how to move forward with that information and data. Korea has just begun to generate a strategy on how to manage cultural heritage features in GIAHS with the use of approaches such as Agrostories or Gil tourism, in recognition of the gradual changes that are occurring in local identity. China has the longest history of engagement with GIAHS in the East Asia region. However, the utilization of the model here has recognized further issues of change in cultural identity not least through commercialization. This paper therefore identifies, discusses and arranges eight problems and

  14. Implications of regional improvement in global climate models for agricultural impact research

    Ramirez-Villegas, Julian; Thornton, Philip K; Jarvis, Andy; Challinor, Andrew J

    2013-01-01

    Global climate models (GCMs) have become increasingly important for climate change science and provide the basis for most impact studies. Since impact models are highly sensitive to input climate data, GCM skill is crucial for getting better short-, medium- and long-term outlooks for agricultural production and food security. The Coupled Model Intercomparison Project (CMIP) phase 5 ensemble is likely to underpin the majority of climate impact assessments over the next few years. We assess 24 CMIP3 and 26 CMIP5 simulations of present climate against climate observations for five tropical regions, as well as regional improvements in model skill and, through literature review, the sensitivities of impact estimates to model error. Climatological means of seasonal mean temperatures depict mean errors between 1 and 18 ° C (2–130% with respect to mean), whereas seasonal precipitation and wet-day frequency depict larger errors, often offsetting observed means and variability beyond 100%. Simulated interannual climate variability in GCMs warrants particular attention, given that no single GCM matches observations in more than 30% of the areas for monthly precipitation and wet-day frequency, 50% for diurnal range and 70% for mean temperatures. We report improvements in mean climate skill of 5–15% for climatological mean temperatures, 3–5% for diurnal range and 1–2% in precipitation. At these improvement rates, we estimate that at least 5–30 years of CMIP work is required to improve regional temperature simulations and at least 30–50 years for precipitation simulations, for these to be directly input into impact models. We conclude with some recommendations for the use of CMIP5 in agricultural impact studies. (letter)

  15. GEOGLAM Crop Assessment Tool: Adapting from global agricultural monitoring to food security monitoring

    Humber, M. L.; Becker-Reshef, I.; Nordling, J.; Barker, B.; McGaughey, K.

    2014-12-01

    The GEOGLAM Crop Monitor's Crop Assessment Tool was released in August 2013 in support of the GEOGLAM Crop Monitor's objective to develop transparent, timely crop condition assessments in primary agricultural production areas, highlighting potential hotspots of stress/bumper crops. The Crop Assessment Tool allows users to view satellite derived products, best available crop masks, and crop calendars (created in collaboration with GEOGLAM Crop Monitor partners), then in turn submit crop assessment entries detailing the crop's condition, drivers, impacts, trends, and other information. Although the Crop Assessment Tool was originally intended to collect data on major crop production at the global scale, the types of data collected are also relevant to the food security and rangelands monitoring communities. In line with the GEOGLAM Countries at Risk philosophy of "foster[ing] the coordination of product delivery and capacity building efforts for national and regional organizations, and the development of harmonized methods and tools", a modified version of the Crop Assessment Tool is being developed for the USAID Famine Early Warning Systems Network (FEWS NET). As a member of the Countries at Risk component of GEOGLAM, FEWS NET provides agricultural monitoring, timely food security assessments, and early warnings of potential significant food shortages focusing specifically on countries at risk of food security emergencies. While the FEWS NET adaptation of the Crop Assessment Tool focuses on crop production in the context of food security rather than large scale production, the data collected is nearly identical to the data collected by the Crop Monitor. If combined, the countries monitored by FEWS NET and GEOGLAM Crop Monitor would encompass over 90 countries representing the most important regions for crop production and food security.

  16. CropWatch agroclimatic indicators (CWAIs) for weather impact assessment on global agriculture

    Gommes, René; Wu, Bingfang; Zhang, Ning; Feng, Xueliang; Zeng, Hongwei; Li, Zhongyuan; Chen, Bo

    2017-02-01

    CropWatch agroclimatic indicators (CWAIs) are a monitoring tool developed by the CropWatch global crop monitoring system in the Chinese Academy of Sciences (CAS; http://www.cropwatch.com.cn, Wu et al Int J Digital Earth 7(2):113-137, 2014, Wu et al Remote Sens 7:3907-3933, 2015). Contrary to most other environmental and agroclimatic indicators, they are "agronomic value-added", i.e. they are spatial values averaged over agricultural areas only and they include a weighting that enhances the contribution of the areas with the largest production potential. CWAIs can be computed for any time interval (starting from dekads) and yield one synthetic value per variable over a specific area and time interval, for instance a national annual value. Therefore, they are very compatible with socio-economic and other variables that are usually reported at regular time intervals over administrative units, such as national environmental or agricultural statistics. Two of the CWAIs are satellite-based (RAIN and Photosynthetically Active radiation, PAR) while the third is ground based (TEMP, air temperature); capitals are used when specifically referring to CWAIs rather than the climate variables in general. The paper first provides an overview of some common agroclimatic indicators, describing their procedural, systemic and normative features in subsequent sections, following the terminology of Binder et al Environ Impact Assess Rev 30:71-81 (2010). The discussion focuses on the systemic and normative aspects: the CWAIs are assessed in terms of their coherent description of the agroclimatic crop environment, at different spatial scales (systemic). The final section shows that the CWAIs retain key statistical properties of the underlying climate variables and that they can be compared to a reference value and used as monitoring and early warning variables (normative).

  17. CropWatch agroclimatic indicators (CWAIs) for weather impact assessment on global agriculture.

    Gommes, René; Wu, Bingfang; Zhang, Ning; Feng, Xueliang; Zeng, Hongwei; Li, Zhongyuan; Chen, Bo

    2017-02-01

    CropWatch agroclimatic indicators (CWAIs) are a monitoring tool developed by the CropWatch global crop monitoring system in the Chinese Academy of Sciences (CAS; www.cropwatch.com.cn , Wu et al Int J Digital Earth 7(2):113-137, 2014, Wu et al Remote Sens 7:3907-3933, 2015). Contrary to most other environmental and agroclimatic indicators, they are "agronomic value-added", i.e. they are spatial values averaged over agricultural areas only and they include a weighting that enhances the contribution of the areas with the largest production potential. CWAIs can be computed for any time interval (starting from dekads) and yield one synthetic value per variable over a specific area and time interval, for instance a national annual value. Therefore, they are very compatible with socio-economic and other variables that are usually reported at regular time intervals over administrative units, such as national environmental or agricultural statistics. Two of the CWAIs are satellite-based (RAIN and Photosynthetically Active radiation, PAR) while the third is ground based (TEMP, air temperature); capitals are used when specifically referring to CWAIs rather than the climate variables in general. The paper first provides an overview of some common agroclimatic indicators, describing their procedural, systemic and normative features in subsequent sections, following the terminology of Binder et al Environ Impact Assess Rev 30:71-81 (2010). The discussion focuses on the systemic and normative aspects: the CWAIs are assessed in terms of their coherent description of the agroclimatic crop environment, at different spatial scales (systemic). The final section shows that the CWAIs retain key statistical properties of the underlying climate variables and that they can be compared to a reference value and used as monitoring and early warning variables (normative).

  18. Global agricultural land resources--a high resolution suitability evaluation and its perspectives until 2100 under climate change conditions.

    Florian Zabel

    Full Text Available Changing natural conditions determine the land's suitability for agriculture. The growing demand for food, feed, fiber and bioenergy increases pressure on land and causes trade-offs between different uses of land and ecosystem services. Accordingly, an inventory is required on the changing potentially suitable areas for agriculture under changing climate conditions. We applied a fuzzy logic approach to compute global agricultural suitability to grow the 16 most important food and energy crops according to the climatic, soil and topographic conditions at a spatial resolution of 30 arc seconds. We present our results for current climate conditions (1981-2010, considering today's irrigated areas and separately investigate the suitability of densely forested as well as protected areas, in order to investigate their potentials for agriculture. The impact of climate change under SRES A1B conditions, as simulated by the global climate model ECHAM5, on agricultural suitability is shown by comparing the time-period 2071-2100 with 1981-2010. Our results show that climate change will expand suitable cropland by additionally 5.6 million km2, particularly in the Northern high latitudes (mainly in Canada, China and Russia. Most sensitive regions with decreasing suitability are found in the Global South, mainly in tropical regions, where also the suitability for multiple cropping decreases.

  19. The water footprints of Morocco and the Netherlands: Global water use as a result of domestic consumption of agricultural commodities

    Hoekstra, Arjen Ysbert; Chapagain, Ashok

    2007-01-01

    The volume of international trade in agricultural commodities is increasing faster than the global volume of production, which is an indicator of growing international dependencies in the area of food supply. Although less obvious, it also implies growing international dependencies in the field of

  20. GlobWat – a global water balance model to assess water use in irrigated agriculture (discussion paper)

    Hoogeveen, J.; Faures, J.M.; Peiser, L.; Burke, J.; Van de Giesen, N.C.

    2015-01-01

    GlobWat is a freely distributed, global soil water balance model that is used by FAO to assess water use in irrigated agriculture; the main factor behind scarcity of freshwater in an increasing number of regions. The model is based on spatially distributed high resolution datasets that are

  1. Assessing Agricultural Risks of Climate Change in the 21st Century in a Global Gridded Crop Model Intercomparison

    Rosenzweig, Cynthia E.; Elliott, Joshua; Deryng, Delphine; Ruane, Alex C.; Mueller, Christoph; Arneth, Almut; Boote, Kenneth J.; Folberth, Christian; Glotter, Michael; Khabarov, Nikolay

    2014-01-01

    Here we present the results from an intercomparison of multiple global gridded crop models (GGCMs) within the framework of the Agricultural Model Intercomparison and Improvement Project and the Inter-Sectoral Impacts Model Intercomparison Project. Results indicate strong negative effects of climate change, especially at higher levels of warming and at low latitudes; models that include explicit nitrogen stress project more severe impacts. Across seven GGCMs, five global climate models, and four representative concentration pathways, model agreement on direction of yield changes is found in many major agricultural regions at both low and high latitudes; however, reducing uncertainty in sign of response in mid-latitude regions remains a challenge. Uncertainties related to the representation of carbon dioxide, nitrogen, and high temperature effects demonstrated here show that further research is urgently needed to better understand effects of climate change on agricultural production and to devise targeted adaptation strategies.

  2. A Global-Scale Estimate of Ecosystem Services from Urban Agriculture: Understanding Incentives for Natural Capital in Cities

    Clinton, N.; Stuhlmacher, M.; Miles, A.; Uludere, N.; Wagner, M.; Georgescu, M.; Herwig, C.; Gong, P.

    2017-12-01

    Despite substantial interest in urban agriculture, little is known about the aggregate benefits conferred by natural capital for growing food in cities. Here we perform a scenario-based analysis to quantify ecosystem services from adoption of urban agriculture at varying intensity. To drive the scenarios, we created global-scale estimates of vacant land, rooftop and building surface area, at one kilometer resolution, from remotely sensed and modeled geospatial data. We used national scale agricultural reports, climate and other geospatial data at global scale to estimate agricultural production and economic returns, storm-water avoidance, energy savings from avoided heating and cooling costs, and ecosystem services provided by nitrogen sequestration, pollination and biocontrol of pests. The results indicate that vacant lands, followed by rooftops, represent the largest opportunities for natural capital put to agricultural use in urban areas. Ecosystem services from putting such spaces to productive use are dominated by agricultural returns, but energy savings conferred by insulative characteristics of growth substrate also provide economic incentives. Storm water avoidance was estimated to be substantial, but no economic value was estimated. Relatively low economic returns were estimated from the other ecosystem services examined. In aggregate, approximately $10-100 billion in economic incentives, before costs, were estimated. The results showed that relatively developed, high-income countries stand the most to gain from urban agricultural adoption due to the unique combination of climate, crop mixture and crop prices. While the results indicate that urban agriculture is not a panacea for urban food security issues, there is potential to simultaneously ameliorate multiple issues around food, energy and water in urbanized areas.

  3. The AgMIP Coordinated Global and Regional Assessments (CGRA) of Climate Change Impacts on Agriculture and Food Security

    Ruane, Alex; Rosenzweig, Cynthia; Elliott, Joshua; Antle, John

    2015-01-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) has been working since 2010 to construct a protocol-based framework enabling regional assessments (led by regional experts and modelers) that can provide consistent inputs to global economic and integrated assessment models. These global models can then relay important global-level information that drive regional decision-making and outcomes throughout an interconnected agricultural system. AgMIPs community of nearly 800 climate, crop, livestock, economics, and IT experts has improved the state-of-the-art through model intercomparisons, validation exercises, regional integrated assessments, and the launch of AgMIP programs on all six arable continents. AgMIP is now launching Coordinated Global and Regional Assessments (CGRA) of climate change impacts on agriculture and food security to link global and regional crop and economic models using a protocol-based framework. The CGRA protocols are being developed to utilize historical observations, climate projections, and RCPsSSPs from CMIP5 (and potentially CMIP6), and will examine stakeholder-driven agricultural development and adaptation scenarios to provide cutting-edge assessments of climate changes impact on agriculture and food security. These protocols will build on the foundation of established protocols from AgMIPs 30+ activities, and will emphasize the use of multiple models, scenarios, and scales to enable an accurate assessment of related uncertainties. The CGRA is also designed to provide the outputs necessary to feed into integrated assessment models (IAMs), nutrition and food security assessments, nitrogen and carbon cycle models, and additional impact-sector assessments (e.g., water resources, land-use, biomes, urban areas). This presentation will describe the current status of CGRA planning and initial prototype experiments to demonstrate key aspects of the protocols before wider implementation ahead of the IPCC Sixth Assessment

  4. The AgMIP Coordinated Global and Regional Assessments (CGRA) of Climate Change Impacts on Agriculture and Food Security

    Ruane, A. C.; Rosenzweig, C.; Antle, J. M.; Elliott, J. W.

    2015-12-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) has been working since 2010 to construct a protocol-based framework enabling regional assessments (led by regional experts and modelers) that can provide consistent inputs to global economic and integrated assessment models. These global models can then relay important global-level information that drive regional decision-making and outcomes throughout an interconnected agricultural system. AgMIP's community of nearly 800 climate, crop, livestock, economics, and IT experts has improved the state-of-the-art through model intercomparisons, validation exercises, regional integrated assessments, and the launch of AgMIP programs on all six arable continents. AgMIP is now launching Coordinated Global and Regional Assessments (CGRA) of climate change impacts on agriculture and food security to link global and regional crop and economic models using a protocol-based framework. The CGRA protocols are being developed to utilize historical observations, climate projections, and RCPs/SSPs from CMIP5 (and potentially CMIP6), and will examine stakeholder-driven agricultural development and adaptation scenarios to provide cutting-edge assessments of climate change's impact on agriculture and food security. These protocols will build on the foundation of established protocols from AgMIP's 30+ activities, and will emphasize the use of multiple models, scenarios, and scales to enable an accurate assessment of related uncertainties. The CGRA is also designed to provide the outputs necessary to feed into integrated assessment models (IAMs), nutrition and food security assessments, nitrogen and carbon cycle models, and additional impact-sector assessments (e.g., water resources, land-use, biomes, urban areas). This presentation will describe the current status of CGRA planning and initial prototype experiments to demonstrate key aspects of the protocols before wider implementation ahead of the IPCC Sixth Assessment

  5. Stimulating innovation for global monitoring of agriculture and its impact on the environment in support of GEOGLAM

    Bydekerke, Lieven; Gilliams, Sven; Gobin, Anne

    2015-04-01

    There is an urgent need to ensure food supply for a growing global population. To enable a sustainable growth of agricultural production, effective and timely information is required to support decision making and to improve management of agricultural resources. This requires innovative ways and monitoring methods that will not only improve short-term crop production forecasts, but also allow to assess changes in cultivation practices, agricultural areas, agriculture in general and, its impact on the environment. The G20 launched in June 2011 the "GEO Global Agricultural Monitoring initiative (GEOGLAM), requesting the GEO (Group on Earth Observations) Agricultural Community of Practice to implement GEOGLAM with the main objective to improve crop yield forecasts as an input to the Agricultural Market Information System (AMIS), in order to foster stabilisation of markets and increase transparency on agricultural production. In response to this need, the European Commission decided in 2013 to fund an international partnership to contribute to GEOGLAM and its research agenda. The resulting SIGMA project (Stimulating Innovation for Global Monitoring of Agriculture), a partnership of 23 globally distributed expert organisations, focusses on developing datasets and innovative techniques in support of agricultural monitoring and its impact on the environment in support of GEOGLAM. SIGMA has 3 generic objectives which are: (i) develop and test methods to characterise cropland and assess its changes at various scales; (ii) develop and test methods to assess changes in agricultural production levels; and; (iii) study environmental impacts of agriculture. Firstly, multi-scale remote sensing data sets, in combination with field and other ancillary data, will be used to generate an improved (global) agro-ecological zoning map and crop mask. Secondly, a combination of agro-meteorological models, satellite-based information and long-term time series will be explored to assess crop

  6. N2O emissions from the global agricultural nitrogen cycle – current state and future scenarios

    H. Lotze-Campen

    2012-10-01

    Full Text Available Reactive nitrogen (Nr is not only an important nutrient for plant growth, thereby safeguarding human alimentation, but it also heavily disturbs natural systems. To mitigate air, land, aquatic, and atmospheric pollution caused by the excessive availability of Nr, it is crucial to understand the long-term development of the global agricultural Nr cycle. For our analysis, we combine a material flow model with a land-use optimization model. In a first step we estimate the state of the Nr cycle in 1995. In a second step we create four scenarios for the 21st century in line with the SRES storylines. Our results indicate that in 1995 only half of the Nr applied to croplands was incorporated into plant biomass. Moreover, less than 10 per cent of all Nr in cropland plant biomass and grazed pasture was consumed by humans. In our scenarios a strong surge of the Nr cycle occurs in the first half of the 21st century, even in the environmentally oriented scenarios. Nitrous oxide (N2O emissions rise from 3 Tg N2O-N in 1995 to 7–9 in 2045 and 5–12 Tg in 2095. Reinforced Nr pollution mitigation efforts are therefore required.

  7. Looking back to move forward on model validation: insights from a global model of agricultural land use

    Baldos, Uris Lantz C; Hertel, Thomas W

    2013-01-01

    Global agricultural models are becoming indispensable in the debate over climate change impacts and mitigation policies. Therefore, it is becoming increasingly important to validate these models and identify critical areas for improvement. In this letter, we illustrate both the opportunities and the challenges in undertaking such model validation, using the SIMPLE model of global agriculture. We look back at the long run historical period 1961–2006 and, using a few key historical drivers—population, incomes and total factor productivity—we find that SIMPLE is able to accurately reproduce historical changes in cropland use, crop price, crop production and average crop yields at the global scale. Equally important is our investigation into how the specific assumptions embedded in many agricultural models will likely influence these results. We find that those global models which are largely biophysical—thereby ignoring the price responsiveness of demand and supply—are likely to understate changes in crop production, while failing to capture the changes in cropland use and crop price. Likewise, global models which incorporate economic responses, but do so based on limited time series estimates of these responses, are likely to understate land use change and overstate price changes. (letter)

  8. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance

    Lu, Chaoqun; Tian, Hanqin

    2017-03-01

    In addition to enhancing agricultural productivity, synthetic nitrogen (N) and phosphorous (P) fertilizer application in croplands dramatically alters global nutrient budget, water quality, greenhouse gas balance, and their feedback to the climate system. However, due to the lack of geospatial fertilizer input data, current Earth system and land surface modeling studies have to ignore or use oversimplified data (e.g., static, spatially uniform fertilizer use) to characterize agricultural N and P input over decadal or century-long periods. In this study, we therefore develop global time series gridded data of annual synthetic N and P fertilizer use rate in agricultural lands, matched with HYDE 3.2 historical land use maps, at a resolution of 0.5° × 0.5° latitude-longitude during 1961-2013. Our data indicate N and P fertilizer use rates on per unit cropland area increased by approximately 8 times and 3 times, respectively, since the year 1961 when IFA (International Fertilizer Industry Association) and FAO (Food and Agricultural Organization) surveys of country-level fertilizer input became available. Considering cropland expansion, the increase in total fertilizer consumption is even larger. Hotspots of agricultural N fertilizer application shifted from the US and western Europe in the 1960s to eastern Asia in the early 21st century. P fertilizer input shows a similar pattern with an additional current hotspot in Brazil. We found a global increase in fertilizer N / P ratio by 0.8 g N g-1 P per decade (p human impacts on agroecosystem functions in the long run. Our data can serve as one of critical input drivers for regional and global models to assess the impacts of nutrient enrichment on climate system, water resources, food security, etc. Datasets available at doi:10.1594/PANGAEA.863323.

  9. Global plasma oscillations in electron internal transport barriers in TCV

    Udintsev, V S; Sauter, O; Asp, E; Fable, E; Goodman, T P; Turri, G; Graves, J P; Zucca, C [Association Euratom-Confederation Suisse, EPFL/SB/CRPP, Station 13, CH-1015, Lausanne (Switzerland); Scarabosio, A [Max-Planck Institut fuer Plasmaphysik, IPP-EURATOM Association, Garching (Germany); Zhuang, G [Huazhong University of Science and Technology, Wuhan, Hubei (China)

    2008-12-15

    In the Tokamak a Configuration Variable (TCV) (Hofmann F et al1994 Plasma Phys. Control. Fusion 36 B277), global plasma oscillations have been discovered in fully non-inductively driven plasmas featuring electron internal transport barriers (ITB) with strong ECRH/ECCD. These oscillations are linked to the destabilization and stabilization of MHD modes near the foot of the ITB and can lead to large oscillations of the total plasma current and line-averaged density, among others. They are intrinsically related to the fact that ITBs have large pressure gradients in a region of low magnetic shear. Therefore, the ideal MHD limit is relatively low and infernal modes can be unstable. Depending on the proximity to the ideal limit, small crashes or resistive modes can appear which affect the time evolution of the discharge. Being near marginal stability, the modes can self-stabilize due to the modification of the pressure gradient and local q-profile. The plasma recovers good confinement, reverses shear and the ITB builds up, until a new MHD mode is destabilized. TCV results show that this cycling behaviour can be controlled by modifying the current density or the pressure profiles, either with Ohmic current density perturbation or by modifying the ECH/ECCD power. It is demonstrated that many observations such as q {>=} 2 sawteeth, beta collapses, minor disruptions and oscillation regimes in ITBs can be assigned to the same physics origin: the proximity to the infernal mode stability limit.

  10. Global plasma oscillations in electron internal transport barriers in TCV

    Udintsev, V. S.; Sauter, O.; Asp, E.; Fable, E.; Goodman, T. P.; Turri, G.; Graves, J. P.; Scarabosio, A.; Zhuang, G.; Zucca, C.; TCV Team

    2008-12-01

    In the Tokamak à Configuration Variable (TCV) (Hofmann F et al1994 Plasma Phys. Control. Fusion 36 B277), global plasma oscillations have been discovered in fully non-inductively driven plasmas featuring electron internal transport barriers (ITB) with strong ECRH/ECCD. These oscillations are linked to the destabilization and stabilization of MHD modes near the foot of the ITB and can lead to large oscillations of the total plasma current and line-averaged density, among others. They are intrinsically related to the fact that ITBs have large pressure gradients in a region of low magnetic shear. Therefore, the ideal MHD limit is relatively low and infernal modes can be unstable. Depending on the proximity to the ideal limit, small crashes or resistive modes can appear which affect the time evolution of the discharge. Being near marginal stability, the modes can self-stabilize due to the modification of the pressure gradient and local q-profile. The plasma recovers good confinement, reverses shear and the ITB builds up, until a new MHD mode is destabilized. TCV results show that this cycling behaviour can be controlled by modifying the current density or the pressure profiles, either with Ohmic current density perturbation or by modifying the ECH/ECCD power. It is demonstrated that many observations such as q >= 2 sawteeth, beta collapses, minor disruptions and oscillation regimes in ITBs can be assigned to the same physics origin: the proximity to the infernal mode stability limit.

  11. Current subsidies in the agricultural sector of the global trade system

    Ganna Voronina

    2006-03-01

    Full Text Available This article focuses on the provisions of the WTO agreements regulating the use of subsidies in the agricultural sector by the member-states. It analyzes current practices of the WTO member-states’ in subsidizing their agricultural production. It also outlines the main trends in improving the practices of subsidizing agricultural producers in the leading countries of the world. The article also describes the major coalitions within the WTO that actively participate in the development and improvement of international trade rules in agricultural produce. In the current context whereby Ukraine seeks WTO accession, the structure of domestic measures in support of agriculture pursuant to the requirements of this international organization is given special attention. The article also considers the prospects for further liberalization of international trade in agricultural produce.

  12. Climate-smart agriculture global research agenda: scientific basis for action

    Steenwerth, K.L.; Hodson, A.K.; Bloom, A.J.; Carter, M.R.; Cattaneo, A.; Chartres, C.; Leemans, R.

    2014-01-01

    Background: Climate-smart agriculture (CSA) addresses the challenge of meeting the growing demand for food, fibre and fuel, despite the changing climate and fewer opportunities for agricultural expansion on additional lands. CSA focuses on contributing to economic development, poverty reduction and

  13. Closing the Global Energy and Nutrient Cycles through Application of Biogas Residue to Agricultural Land – Potential Benefits and Drawback

    Veronica Arthurson

    2009-04-01

    Full Text Available Anaerobic digestion is an optimal way to treat organic waste matter, resulting in biogas and residue. Utilization of the residue as a crop fertilizer should enhance crop yield and soil fertility, promoting closure of the global energy and nutrient cycles. Consequently, the requirement for production of inorganic fertilizers will decrease, in turn saving significant amounts of energy, reducing greenhouse gas emissions to the atmosphere, and indirectly leading to global economic benefits. However, application of this residue to agricultural land requires careful monitoring to detect amendments in soil quality at the early stages.

  14. Building a Data Set over 12 Globally Distributed Sites to Support the Development of Agriculture Monitoring Applications with Sentinel-2

    Sophie Bontemps

    2015-12-01

    Full Text Available Developing better agricultural monitoring capabilities based on Earth Observation data is critical for strengthening food production information and market transparency. The Sentinel-2 mission has the optimal capacity for regional to global agriculture monitoring in terms of resolution (10–20 meter, revisit frequency (five days and coverage (global. In this context, the European Space Agency launched in 2014 the “Sentinel­2 for Agriculture” project, which aims to prepare the exploitation of Sentinel-2 data for agriculture monitoring through the development of open source processing chains for relevant products. The project generated an unprecedented data set, made of “Sentinel-2 like” time series and in situ data acquired in 2013 over 12 globally distributed sites. Earth Observation time series were mostly built on the SPOT4 (Take 5 data set, which was specifically designed to simulate Sentinel-2. They also included Landsat 8 and RapidEye imagery as complementary data sources. Images were pre-processed to Level 2A and the quality of the resulting time series was assessed. In situ data about cropland, crop type and biophysical variables were shared by site managers, most of them belonging to the “Joint Experiment for Crop Assessment and Monitoring” network. This data set allowed testing and comparing across sites the methodologies that will be at the core of the future “Sentinel­2 for Agriculture” system.

  15. Study on application of the physical detection methods for electron beam-irradiated agricultural products

    Kim, Dong Yong; Park, Yong Dae; Jin, Chang Hyun; Choi, Dae Seong; Jeong, Il Yun [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Yook, Hong Sun [Chungnam National University, Daejeon (Korea, Republic of)

    2010-09-15

    Physical detection methods, photostimulated luminescence (PSL), thermoluminescence (TL) and electron spin resonance (ESR) were applied to detect electron beam-irradiated agricultural products, such as red pepper, black pepper, raisin, walnut, beef seasoning and pistachio. The absorbed irradiation doses for representative samples were controlled at 0, 1, 3, 5 and 10 kGy. PSL values for non-irradiated samples were <700 counts/60s (lower threshold, T{sub 1}) except beef seasoning, whereas those of irradiated samples were more than 5,000 photon counts, upper threshold (T{sub 2}) in black pepper, raisin, and beef seasoning and intermediates values of T{sub 1}-T{sub 2} in red pepper, walnut, and pistachio. Minerals separated from the samples for TL measurement showed that non-irradiated samples except pistachio (TL ratio, 0.12) were characterized by no glow curves situated at temperature range of 50 {approx} 400 .deg. C with TL ratio (0.01 {approx} 0.08), while irradiated samples except pistachio at only 1 kGy (TL ratio, 0.08) indicated glow curve at about 150 {approx} 250 .deg. C with TL ratio (0.28 {approx} 3.10). ESR measurements of irradiated samples any specific signals to irradiation. The samples of both red pepper ad pistachio were produced specific signals derived from cellulose radicals as well as single line signals for black pepper and walnut, and multiple signals derived from crystalline sugar radicals for raisin and beef seasoning. In conclusion, The ESR methods can apply for detection of pistachio exposed to electron beam but PSL and TL are not suitable methods. Furthermore, TL and ESR suggested that both techniques were more useful detection method than PSL to confirm whether red pepper, walnut and beef seasoning samples have been exposed to electron beam.

  16. Study on application of the physical detection methods for electron beam-irradiated agricultural products

    Kim, Dong Yong; Park, Yong Dae; Jin, Chang Hyun; Choi, Dae Seong; Jeong, Il Yun; Yook, Hong Sun

    2010-01-01

    Physical detection methods, photostimulated luminescence (PSL), thermoluminescence (TL) and electron spin resonance (ESR) were applied to detect electron beam-irradiated agricultural products, such as red pepper, black pepper, raisin, walnut, beef seasoning and pistachio. The absorbed irradiation doses for representative samples were controlled at 0, 1, 3, 5 and 10 kGy. PSL values for non-irradiated samples were 1 ) except beef seasoning, whereas those of irradiated samples were more than 5,000 photon counts, upper threshold (T 2 ) in black pepper, raisin, and beef seasoning and intermediates values of T 1 -T 2 in red pepper, walnut, and pistachio. Minerals separated from the samples for TL measurement showed that non-irradiated samples except pistachio (TL ratio, 0.12) were characterized by no glow curves situated at temperature range of 50 ∼ 400 .deg. C with TL ratio (0.01 ∼ 0.08), while irradiated samples except pistachio at only 1 kGy (TL ratio, 0.08) indicated glow curve at about 150 ∼ 250 .deg. C with TL ratio (0.28 ∼ 3.10). ESR measurements of irradiated samples any specific signals to irradiation. The samples of both red pepper ad pistachio were produced specific signals derived from cellulose radicals as well as single line signals for black pepper and walnut, and multiple signals derived from crystalline sugar radicals for raisin and beef seasoning. In conclusion, The ESR methods can apply for detection of pistachio exposed to electron beam but PSL and TL are not suitable methods. Furthermore, TL and ESR suggested that both techniques were more useful detection method than PSL to confirm whether red pepper, walnut and beef seasoning samples have been exposed to electron beam

  17. A Framework for Global Electronic Commerce: An Executive Summary.

    Office of the Press Secretary of the White House

    1997-01-01

    An abbreviated version of a longer policy document on electronic commerce released by the Clinton Administration, this article examines principles and recommendations on tariffs, taxes, electronic payment systems, uniform commercial code for electronic commerce, intellectual property protection, privacy, security, telecommunications infrastructure…

  18. Bienvenidos a Canadá? Globalization and the Migration Industry Surrounding Temporary Agricultural Migration in Canada

    Jenna L. Hennebry

    2008-12-01

    participant observation in Ontario, and interviews with migrant workers and their families, farmers, government representatives and other intermediaries, this paper examines the extent to which a migration industry has formed around the Mexican-Canadian Seasonal Agricultural Worker Program.

  19. Monitoring the impacts of weather and climate extremes on global agricultural production

    Robert Johansson

    2015-12-01

    Full Text Available The World Agricultural Outlook Board (WAOB, under the direction of the Department of Agriculture's Office of the Chief Economist, employs a staff of agricultural meteorologists whose mission is to monitor and assess the impacts of weather and climate on crops in key growing areas throughout the world. The results of those analyses contribute to the deliberations conducted by the Interagency Commodity Estimates Committees (ICEC led by analysts at the World Agricultural Outlook Board. The results of those deliberations can be found in the World Agricultural Supply and Demand Estimates (WASDE report, one of the designated Principle Federal Economic Indicators issued monthly by the Federal Government (White House (Office of Management and Budget, 2015. The process used to develop those estimates each month requires the integration of an assessment of the current climatic conditions with knowledge of the agricultural practices and market conditions of a particular country. Weather and climate data are used in conjunction with information on when and where crops are planted, production practices including irrigation, which varieties are best suited for that particular climate, and what naturally occurring hazards can be expected in any given year. Being able to closely compare current conditions to historic observations of weather and realized output on a fine scale, temporally and geographically, is a key component of the international estimates in the WASDE process.

  20. Development of a Global Evaporative Stress Index Based on Thermal and Microwave LST towards Improved Monitoring of Agricultural Drought

    Hain, C.; Anderson, M. C.; Otkin, J.; Holmes, T. R.; Gao, F.

    2017-12-01

    This presentation will describe the development of a global agricultural monitoring tool, with a focus on providing early warning of developing vegetation stress for agricultural decision-makers and stakeholders at relatively high spatial resolution (5-km). The tool is based on remotely sensed estimates of evapotranspiration, retrieved via energy balance principals using observations of land surface temperature. The Evaporative Stress Index (ESI) represents anomalies in the ratio of actual-to-potential ET generated with the ALEXI surface energy balance model. The LST inputs to ESI have been shown to provide early warning information about the development of vegetation stress with stress-elevated canopy temperatures observed well before a decrease in greenness is detected in remotely sensed vegetation indices. As a diagnostic indicator of actual ET, the ESI requires no information regarding antecedent precipitation or soil moisture storage capacity - the current available moisture to vegetation is deduced directly from the remotely sensed LST signal. This signal also inherently accounts for both precipitation and non-precipitation related inputs/sinks to the plant-available soil moisture pool (e.g., irrigation) which can modify crop response to rainfall anomalies. Independence from precipitation data is a benefit for global agricultural monitoring applications due to sparseness in existing ground-based precipitation networks, and time delays in public reporting. Several enhancements to the current ESI framework will be addressed as requested from project stakeholders: (a) integration of "all-sky" MW Ka-band LST retrievals to augment "clear-sky" thermal-only ESI in persistently cloudy regions; (b) operational production of ESI Rapid Change Indices which provide important early warning information related to onset of actual vegetation stress; and (c) assessment of ESI as a predictor of global yield anomalies; initial studies have shown the ability of intra

  1. Exploring the impact of agriculture on nitrogen and phosphorus biogeochemistry in global rivers during the twentieth century (Invited)

    Bouwman, L.; Beusen, A.; Van Beek, L. P.

    2013-12-01

    Nutrients are transported from land to sea through the continuum formed by soils, groundwater, riparian zones, floodplains, streams, rivers, lakes, and reservoirs. The hydrology, ecology and biogeochemical processing in each of these components are strongly coupled and result in retention of a significant fraction of the nutrients transported. This paper analyzes the global changes in nutrient biogeochemical processes and retention in rivers during the past century (1900-2000); this period encompasses dramatic increases in human population and economic human activities including agriculture that have resulted in major changes in land use, nutrient use in agriculture, wastewater flows and human interventions in the hydrology (1). We use the hydrological PCR-GLOBWB model (2) for the period 1900-2000, including climate variability and the history of dam construction and land use conversion. Global agricultural and natural N and P soil budgets for the period 1900-2000 are the starting point to simulate nutrient flows from the soil via surface runoff and leaching through the groundwater system and riparian zones. In-stream processes are described with the nutrient spiraling concept. In the period 1900-2000, the global soil N budget surplus (inputs minus withdrawal in harvested crops) for agricultural and natural ecosystems increased from 118 to 202 Tg yr-1, and the global P budget increased from nutrient delivery to streams and river nutrient export has increased rapidly in the 20th century. Model results are sensitive to factors determining the N and P delivery, as well as in-stream processes. The most uncertain factors are N delivery to streams by groundwater (denitrification as a function of thickness and reactivity of aquifers), and in-stream N and P retention parameters (net uptake velocity, retention as function of concentration). References 1. Bouwman AF, Beusen AHW, Griffioen J, Van Groenigen JW, Hefting MM, Oenema O, et al. Global trends and uncertainties in

  2. Securing a better future for all: Nuclear techniques for global development and environmental protection. NA factsheet on food and agriculture: Building better agriculture one atom at a time

    2012-01-01

    In a world facing the dilemmas posed by exponential population growth and changing climates, nuclear technology offers possible avenues to solve production problems, protect soil and water resources and conserve biodiversity, which, in turn, means increased hope for global food security. Application of nuclear technology has a proven record in increasing agricultural production. Higher and more reliable yields not only improve farmers' livelihoods, they mean better quality and safer food for consumers. The methods used vary: isotope measurements identify and trace the efficiency of crop inputs such as water and fertilizer and of animal feeds; gamma rays sterillize male insects so that when they are returned to the wild they are unable to produce progeny; irradiation stops the growth of pests and expands the shelf life of grains, spices and processed foods; radiation induced mutation speeds up natural genetic changes in crops to support plant breeders; and genetic markers expedite the identification of animal diseases thereby allowing treatment to begin sooner. All of these methods, plus a host of others that come under the heading of nuclear technology, are invaluable tools for agriculture and food production. For almost five decades, the IAEA, together with its partner the FAO, guided development of new nuclear based methodologies, requested by its Member States and facilitated their adaptation, adoption and application. A harbinger of the United Nation's Delivering as One, the Joint FAO/IAEA Division stands as the United Nations' system's only joint venture. It also operates its own agriculture and biotechnology laboratories in Seibersdorf where technical services, R and D and laboratory training activities are conducted in support of the development and transfer of new technologies and their adaptation to local needs and environments.

  3. Global Rice Watch: Spatial-temporal dynamics, driving factors, and impacts of paddy rice agriculture in the world

    Xiao, X.; Dong, J.; Zhang, G.; Xin, F.; Li, X.

    2017-12-01

    Paddy rice croplands account for more than 12% of the global cropland areas, and provide food to feed more than 50% of the world population. Spatial patterns and temporal dynamics of paddy rice croplands have changed remarkably in the past decades, driven by growing human population and their changing diet structure, land use (e.g., urbanization, industrialization), climate, markets, and technologies. In this presentation, we will provide a comprehensive review of our current knowledge on (1) the spatial patterns and temporal dynamics of paddy rice croplands from agricultural statistics data and remote sensing approaches; (2) major driving factors for the observed changes in paddy rice areas, including social, economic, climate, land use, markets, crop breeding technology, and farming technology; and (3) major impacts on atmospheric methane concentration, land surface temperature, water resources and use, and so on. We will highlight the results from a few case studies in China and monsoon Asia. We will also call for a global synthesis analysis of paddy rice agriculture, and invite researchers to join the effort to write and edit a book that provides comprehensive and updated knowledge on paddy rice agriculture.

  4. Platinum replica electron microscopy: Imaging the cytoskeleton globally and locally.

    Svitkina, Tatyana M

    2017-05-01

    Structural studies reveal how smaller components of a system work together as a whole. However, combining high resolution of details with full coverage of the whole is challenging. In cell biology, light microscopy can image many cells in their entirety, but at a lower resolution, whereas electron microscopy affords very high resolution, but usually at the expense of the sample size and coverage. Structural analyses of the cytoskeleton are especially demanding, because cytoskeletal networks are unresolvable by light microscopy due to their density and intricacy, whereas their proper preservation is a challenge for electron microscopy. Platinum replica electron microscopy can uniquely bridge the gap between the "comfort zones" of light and electron microscopy by allowing high resolution imaging of the cytoskeleton throughout the entire cell and in many cells in the population. This review describes the principles and applications of platinum replica electron microscopy for studies of the cytoskeleton. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The Agricultural Model Intercomparison and Improvement Project: Phase I Activities by a Global Community of Science. Chapter 1

    Rosenzweig, Cynthia E.; Jones, James W.; Hatfield, Jerry L.; Antle, John M.; Ruane, Alexander C.; Mutter, Carolyn Z.

    2015-01-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) was founded in 2010. Its mission is to improve substantially the characterization of world food security as affected by climate variability and change, and to enhance adaptation capacity in both developing and developed countries. The objectives of AgMIP are to: Incorporate state-of-the-art climate, crop/livestock, and agricultural economic model improvements into coordinated multi-model regional and global assessments of future climate impacts and adaptation and other key aspects of the food system. Utilize multiple models, scenarios, locations, crops/livestock, and participants to explore uncertainty and the impact of data and methodological choices. Collaborate with regional experts in agronomy, animal sciences, economics, and climate to build a strong basis for model applications, addressing key climate related questions and sustainable intensification farming systems. Improve scientific and adaptive capacity in modeling for major agricultural regions in the developing and developed world, with a focus on vulnerable regions. Improve agricultural data and enhance data-sharing based on their intercomparison and evaluation using best scientific practices. Develop modeling frameworks to identify and evaluate promising adaptation technologies and policies and to prioritize strategies.

  6. Aquatic microphylla Azolla: a perspective paradigm for sustainable agriculture, environment and global climate change.

    Kollah, Bharati; Patra, Ashok Kumar; Mohanty, Santosh Ranjan

    2016-03-01

    This review addresses the perspectives of Azolla as a multifaceted aquatic resource to ensure ecosystem sustainability. Nitrogen fixing potential of cyanobacterial symbiont varies between 30 and 60 kg N ha(-1) which designates Azolla as an important biological N source for agriculture and animal industry. Azolla exhibits high bioremediation potential for Cd, Cr, Cu, and Zn. Azolla mitigates greenhouse gas emission from agriculture. In flooded rice ecosystem, Azolla dual cropping decreased CH4 emission by 40 % than did urea alone and also stimulated CH4 oxidation. This review highlighted integrated approach using Azolla that offers enormous public health, environmental, and cost benefits.

  7. total electron content derived from global positioning system during ...

    SULUNGU

    POSITIONING SYSTEM DURING SOLAR MAXIMUM OF 2012-2013. OVER THE ..... diffusion of the transported electrons from the equator (Panda et al. 2015). As the sun rises, the ..... Wang M and Christensen AB 2008 Features of annual and ...

  8. Practical Implementation of Global Citizenship Education at the Slovak University of Agriculture

    Mravcová, Anna

    2016-01-01

    Global citizenship is still a relatively new concept concerned mainly with the growing prominence of global and development education issues. The importance of this phenomenon is increasing in the area of education, which must be able to respond to the interconnection and interdependency of the current world. There is an effort to support…

  9. RoHS Compliance - Is the Global Electronics Industry Ready?

    Head, Marieke; Hróarsson, Hallur

    2006-01-01

    RoHS is an EU directive that was proposed along with the WEEE Directive in 2002 as a part of a plan to promote extended producer responsibility within the electronics industry. Together, these two directives seek to make electrical and electronic equipment easier to manage both in terms of environmental impacts and recycling. The RoHS Directive seeks to remove lead, cadmium, mercury, hexavalent chromium and two brominated flame retardants from all consumer electrical equipment. This paper dea...

  10. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-01-01

    to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics...

  11. The Effect of Tariff Reduction in Agricultural Sector on Macroeconomic Variables: Using Global Trade Analysis Project (GTAP

    H. Heidari

    2016-03-01

    Full Text Available Introduction: Economic effects of membership in the WTO in recent years, has been one of the most important issues for Iranian economy. If Iran joins the WTO, in this process, tariff reduction in agricultural sector will be one of the policies which has to be employed. Therefore, investigating economic effects of tariff reduction or even its elimination in this sector will be necessary in running effective policies to minimize the probabilistic losses of accession. Tariffs on agricultural products in Iran are determined merely on the basis of annual country economy, and have no long term strategy. Government is just obliged to impose effective tariffs on agricultural products imports, in order to protect local productions. On the other hand, according to the census of population and housing, the share of agricultural sector in employment has reduced during the past decade. Moreover, Iran central bank information indicated the reduction in the share of agricultural sector in GDP for the past decade. Declining the share of agriculture in production and employment, considering the high number of university graduates in the field of agriculture along with rising unemployment rate of this group, motivated this study to investigate the effect of tariff reduction in this sector on macroeconomic variables. Materials and Methods: This study analyzed the welfare effects of import tariffs reduction in agricultural sector from Iran most important commercial partners and vice versa, using the Global Trade Analysis Project (GTAP, based on computable general equilibrium (CGE model. Moreover, the effects of tariffs reduction, is investigated on output, price level and transfer of production factors between different economic sectors. In order to simulate the above model, we used GTAP version 8 which covers 57 commodities and 113 regions with economic information of these regions. This model uses Social Accounting Matrix of countries as data information. Our

  12. Electronic Markets Ontology: ideal architecture for global capital market

    Davide Khalil

    1998-11-01

    Full Text Available When approaching electronic capital market design and microstructure with the focus of analysing and improving existing markets with end-state analysis, it is necessary to name an ideal objective. This serves the purposes of technology evaluation and the development of a standard framework for structural measurement in modeling and language paradigm design. An ideal capital market architecture is presented in this paper that is feasible with current technology based on the end-to-end functionality of existing capital markets including internal requirements of participants. Various architectural and ethical issues are introduced and discussed sketching a framework for further work in quantifying electronic markets.

  13. Simulating the effects of climate and agricultural management practices on global crop yield

    Deryng, D.; Sacks, W. J.; Barford, C. C.; Ramankutty, N.

    2011-06-01

    Climate change is expected to significantly impact global food production, and it is important to understand the potential geographic distribution of yield losses and the means to alleviate them. This study presents a new global crop model, PEGASUS 1.0 (Predicting Ecosystem Goods And Services Using Scenarios) that integrates, in addition to climate, the effect of planting dates and cultivar choices, irrigation, and fertilizer application on crop yield for maize, soybean, and spring wheat. PEGASUS combines carbon dynamics for crops with a surface energy and soil water balance model. It also benefits from the recent development of a suite of global data sets and analyses that serve as model inputs or as calibration data. These include data on crop planting and harvesting dates, crop-specific irrigated areas, a global analysis of yield gaps, and harvested area and yield of major crops. Model results for present-day climate and farm management compare reasonably well with global data. Simulated planting and harvesting dates are within the range of crop calendar observations in more than 75% of the total crop-harvested areas. Correlation of simulated and observed crop yields indicates a weighted coefficient of determination, with the weighting based on crop-harvested area, of 0.81 for maize, 0.66 for soybean, and 0.45 for spring wheat. We found that changes in temperature and precipitation as predicted by global climate models for the 2050s lead to a global yield reduction if planting and harvesting dates remain unchanged. However, adapting planting dates and cultivar choices increases yield in temperate regions and avoids 7-18% of global losses.

  14. U.S. Government Electronic Data Sources for Global Marketing Decisions: An Evaluation and Classroom Application.

    Judd, Vaughan C.; Tims, Betty J.

    2000-01-01

    The U.S. government publishes considerable information applicable to business people interested in global marketing opportunities, much of which is available via the Internet and CD-ROMs. Evaluates the usefulness of four of the government's electronic sources of global marketing information (e.g., the World Fact Book), describing workshops using…

  15. Disinfestation of agricultural products with electron beams and their radiation tolerance

    Hayashi, Toru

    1996-01-01

    Some agricultural products contaminated with insect pests are fumigated with methyl bromide for quarantine purposes. However, the use of methyl bromide is preferably restricted because of its ozone depleting effect. Therefore, establishing alternative quarantine techniques is highly desirable; one such technique is exposure to ionizing radiation. Few data are available on the effects of radiation on insect pests other than fruit flies and stored-product insects and on the radiation tolerance of host commodities. Radiation technology as an alternative to methyl bromide fumigation will be used to inactivate not only insects but also mites, spider mites, thrips, nematodes, scales, mealybugs and thrips contaminating fruits, grains, cut flowers, vegetables, timbers, seedlings and seeds. In order to collect data on the effects of irradiation on pests and host commodities, IAEA and FAO have conducted an international project, 'FAO/IAEA Coordinated Research Programme on Irradiation as a Quarantine Treatment of Mites, Nematodes and Insects other than Fruit Fly' since 1992. The project determines the minimum doses necessary to inactivate pests and the maximum doses host commodities tolerate. All pests except nematodes can be inactivated at doses 400Gy or lower. Various varieties of cut flowers and herbs are tolerant to 400Gy of radiation, although some flowers and herbs such as chrysanthemum, rose, lily, calla, anthurium, sweet pea, iris, dill, basil and arugula are intolerant to 200Gy of radiation. Japanese research project on treatment of cut flowers with electron beams carried out mainly by Yokohama Plant Protection Station greatly contributes to these conclusions. Aqueous solution (2%) of sucrose, glucose, fructose or maltose prevents radiation-induced detrimental effects of radiation on chrysanthemums. Sugars reduce radiation-induced physiological deterioration of chrysanthemums. (author)

  16. Phthalate esters contamination in soil and plants on agricultural land near an electronic waste recycling site.

    Ma, Ting Ting; Christie, Peter; Luo, Yong Ming; Teng, Ying

    2013-08-01

    The accumulation of phthalic acid esters (PAEs) in soil and plants in agricultural land near an electronic waste recycling site in east China has become a great threat to the neighboring environmental quality and human health. Soil and plant samples collected from land under different utilization, including fallow plots, vegetable plots, plots with alfalfa (Medicago sativa L.) as green manure, fallow plots under long-term flooding and fallow plots under alternating wet and dry periods, together with plant samples from relative plots were analyzed for six PAE compounds nominated as prior pollutants by USEPA. In the determined samples, the concentrations of six target PAE pollutants ranged from 0.31-2.39 mg/kg in soil to 1.81-5.77 mg/kg in various plants (dry weight/DW), and their bioconcentration factors (BCFs) ranged from 5.8 to 17.9. Health risk assessments were conducted on target PAEs, known as typical environmental estrogen analogs, based on their accumulation in the edible parts of vegetables. Preliminary risk assessment to human health from soil and daily vegetable intake indicated that DEHP may present a high-exposure risk on all ages of the population in the area by soil ingestion or vegetable consumption. The potential damage that the target PAE compounds may pose to human health should be taken into account in further comprehensive risk assessments in e-waste recycling sites areas. Moreover, alfalfa removed substantial amounts of PAEs from the soil, and its use can be considered a good strategy for in situ remediation of PAEs.

  17. Reliability and considerations of electronic voting, a global vision

    Jussibeth Tatiana Places Chungata

    2017-03-01

    Full Text Available This article is intended to perform an analysis of all the aspects that comprise and revolve around the use or implementation of new technologies in election processes such as automation of democracy; this is done through the collection of bibliographic information from articles, books, and other sources on concepts, differences, comparisons, methodology of citizen participation, experiences, among others. With the purpose of establishing the utility or inconveniences that may present this electronic voting system to use it in real elections. There are realized general descriptions of every topic, where little by little possible factors of adoption are explored or I reject to this new technology, clarifying in the functionality, used elements and factors to comply. As a result, it reflects on the positive and negative impact that have these systems in society, giving points to consider about this Automation at different stages which comprise the electoral processes, from the construction, configuration, storage up to the transmission and consolidation of results. Is leaves clear them criteria that is should evaluate a system of vote electronic that van from reliability to effectiveness in their processes, to determine the need and relationship of costs - benefits. Without leaving of side our country, there is described the current condition that has the system of electronic vote in our electoral processes, which until now has not been implemented, only has performed testing of printing in our community.

  18. Evaluating adaptation and the production development of Finnish agriculture in climate and global change

    Heikki Sakari Lehtonen

    2015-10-01

    on production, land use and farm income in Finland. The results suggest that falling crop yields, if realized due to low prices and restrictive policies, will result in decreasing crop and livestock production and increasing nutrient surplus. Slowly increasing crop yields could stabilise production and increase farm income. Significantly higher crop prices and yields are required, however, for any marked increase in production in Finland. Cereals production would increase relatively more than livestock production, if there were high prices for agricultural products. This is explained by abundant land resources, a high opportunity cost of labour and policies maintaining current dairy and beef production.

  19. The Global Positioning System--Direction for the Future [and] GPS Technology and Agriculture.

    Edmondson, Paul R.; Ginsburg, Alan

    1996-01-01

    Edmondson introduces a satellite-based radio navigation, positioning, and timing system that can be integrated into a variety of curriculum areas. Ginsburg describes how the global positioning system brings far-reaching benefits for crop growers and the environment. (Author)

  20. Global health issues of aflatoxins in food and agriculture: challenges and opportunities

    This special research topic eBOOK contains six review articles, three mini reviews and four original research articles. It opens up exciting perspectives on global health issues related to aflatoxins in the food chain and on the development of suitable strategies for preventing toxigenic fungal grow...

  1. How Does the Electron Dynamics Affect the Global Reconnection Rate

    Hesse, Michael

    2012-01-01

    The question of whether the microscale controls the macroscale or vice-versa remains one of the most challenging problems in plasmas. A particular topic of interest within this context is collisionless magnetic reconnection, where both points of views are espoused by different groups of researchers. This presentation will focus on this topic. We will begin by analyzing the properties of electron diffusion region dynamics both for guide field and anti-parallel reconnection, and how they can be scaled to different inflow conditions. As a next step, we will study typical temporal variations of the microscopic dynamics with the objective of understanding the potential for secular changes to the macroscopic system. The research will be based on a combination of analytical theory and numerical modeling.

  2. The effects of global climate variability on water resources and agriculture

    Adibe, E.C.

    1990-06-01

    Widespread improvements in agricultural productivity have been achieved over the last century using a wide range of technological advances. Future improvements, however, are likely to be constrained by the decreasing quality of new lands brought into production, growing limitations on capital for crop expansion and mechanization, and increasing population pressures. On top of these constraints are new uncertainties about future climatic conditions and the effects of anthropogenic climatic changes on water availability. In order to better understand some of the impacts of climatic changes on food security, plausible changes in water supply are explored and the possible effects on food production investigated. The cases discussed here include increases and decreases in both the average and the variability of water resource availability. (author). 30 refs, 5 figs, 3 tabs

  3. Growing water scarcity in agriculture: future challenge to global water security.

    Falkenmark, Malin

    2013-11-13

    As water is an essential component of the planetary life support system, water deficiency constitutes an insecurity that has to be overcome in the process of socio-economic development. The paper analyses the origin and appearance of blue as well as green water scarcity on different scales and with particular focus on risks to food production and water supply for municipalities and industry. It analyses water scarcity originating from both climatic phenomena and water partitioning disturbances on different scales: crop field, country level and the global circulation system. The implications by 2050 of water scarcity in terms of potential country-level water deficits for food self-reliance are analysed, and the compensating dependence on trade in virtual water for almost half the world population is noted. Planetary-scale conditions for sustainability of the global water circulation system are discussed in terms of a recently proposed Planetary Freshwater Boundary, and the consumptive water use reserve left to be shared between water requirements for global food production, fuelwood production and carbon sequestration is discussed. Finally, the importance of a paradigm shift in the further conceptual development of water security is stressed, so that adequate attention is paid to water's fundamental role in both natural and socio-economic systems.

  4. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-02-01

    Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa). We also examined whether the proposed activities or expected outcomes allowed for potential contributions to the two goals. Despite the separation between the two goals in international and national institutions, 37 % of the PDDs explicitly mentioned a contribution to the other objective, although only half of those substantiated it. In addition, most adaptation (90 %) and all mitigation PDDs could potentially report a contribution to at least partially to the other goal. Some adaptation project developers were interested in mitigation for the prospect of carbon funding, whereas mitigation project developers integrated adaptation to achieve greater long-term sustainability or to attain CCB certification. International and national institutions can provide incentives for projects to harness synergies and avoid trade-offs between adaptation and mitigation.

  5. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects.

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-02-01

    Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa). We also examined whether the proposed activities or expected outcomes allowed for potential contributions to the two goals. Despite the separation between the two goals in international and national institutions, 37% of the PDDs explicitly mentioned a contribution to the other objective, although only half of those substantiated it. In addition, most adaptation (90%) and all mitigation PDDs could potentially report a contribution to at least partially to the other goal. Some adaptation project developers were interested in mitigation for the prospect of carbon funding, whereas mitigation project developers integrated adaptation to achieve greater long-term sustainability or to attain CCB certification. International and national institutions can provide incentives for projects to harness synergies and avoid trade-offs between adaptation and mitigation.

  6. The Future of Evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources

    Fisher, Joshua B.; Melton, Forrest; Middleton, Elizabeth; Hain, Christopher; Anderson, Martha; Allen, Richard; McCabe, Matthew; Hook, Simon; Baldocchi, Dennis; Townsend, Philip A.; Kilic, Ayse; Tu, Kevin; Miralles, Diego G.; Perret, Johan; Lagouarde, Jean-Pierre; Waliser, Duane; Purdy, Adam J.; French, Andrew; Schimel, David; Famiglietti, James S.; Stephens, Graeme; Wood, Eric F.

    2017-01-01

    The fate of the terrestrial biosphere is highly uncertain given recent and projected changes in climate. This is especially acute for impacts associated with changes in drought frequency and intensity on the distribution and timing of water availability. The development of effective adaptation strategies for these emerging threats to food and water security are compromised by limitations in our understanding of how natural and managed ecosystems are responding to changing hydrological and climatological regimes. This information gap is exacerbated by insufficient monitoring capabilities from local to global scales. Here, we describe how evapotranspiration (ET) represents the key variable in linking ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources, and highlight both the outstanding science and applications questions and the actions, especially from a space-based perspective, necessary to advance them. This article is protected by copyright. All rights reserved.

  7. The Future of Evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources

    Fisher, Joshua B.

    2017-03-11

    The fate of the terrestrial biosphere is highly uncertain given recent and projected changes in climate. This is especially acute for impacts associated with changes in drought frequency and intensity on the distribution and timing of water availability. The development of effective adaptation strategies for these emerging threats to food and water security are compromised by limitations in our understanding of how natural and managed ecosystems are responding to changing hydrological and climatological regimes. This information gap is exacerbated by insufficient monitoring capabilities from local to global scales. Here, we describe how evapotranspiration (ET) represents the key variable in linking ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources, and highlight both the outstanding science and applications questions and the actions, especially from a space-based perspective, necessary to advance them. This article is protected by copyright. All rights reserved.

  8. The Future of Evapotranspiration: Global Requirements for Ecosystem Functioning, Carbon and Climate Feedbacks, Agricultural Management, and Water Resources

    Fisher, Joshua B.; Melton, Forrest; Middleton, Elizabeth; Hain, Christopher; Anderson, Martha; Allen, Richard; McCabe, Matthew F.; Hook, Simon; Baldocchi, Dennis; Townsend, Philip A.; hide

    2017-01-01

    The fate of the terrestrial biosphere is highly uncertain given recent and projected changes in climate. This is especially acute for impacts associated with changes in drought frequency and intensity on the distribution and timing of water availability. The development of effective adaptation strategies for these emerging threats to food and water security are compromised by limitations in our understanding of how natural and managed ecosystems are responding to changing hydrological and climatological regimes. This information gap is exacerbated by insufficient monitoring capabilities from local to global scales. Here, we describe how evapotranspiration (ET) represents the key variable in linking ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources, and highlight both the outstanding science and applications questions and the actions, especially from a space-based perspective, necessary to advance them.

  9. Sustainable Sourcing of Global Agricultural Raw Materials: Assessing Gaps in Key Impact and Vulnerability Issues and Indicators.

    Nathaniel P Springer

    Full Text Available Understanding how to source agricultural raw materials sustainably is challenging in today's globalized food system given the variety of issues to be considered and the multitude of suggested indicators for representing these issues. Furthermore, stakeholders in the global food system both impact these issues and are themselves vulnerable to these issues, an important duality that is often implied but not explicitly described. The attention given to these issues and conceptual frameworks varies greatly--depending largely on the stakeholder perspective--as does the set of indicators developed to measure them. To better structure these complex relationships and assess any gaps, we collate a comprehensive list of sustainability issues and a database of sustainability indicators to represent them. To assure a breadth of inclusion, the issues are pulled from the following three perspectives: major global sustainability assessments, sustainability communications from global food companies, and conceptual frameworks of sustainable livelihoods from academic publications. These terms are integrated across perspectives using a common vocabulary, classified by their relevance to impacts and vulnerabilities, and categorized into groups by economic, environmental, physical, human, social, and political characteristics. These issues are then associated with over 2,000 sustainability indicators gathered from existing sources. A gap analysis is then performed to determine if particular issues and issue groups are over or underrepresented. This process results in 44 "integrated" issues--24 impact issues and 36 vulnerability issues--that are composed of 318 "component" issues. The gap analysis shows that although every integrated issue is mentioned at least 40% of the time across perspectives, no issue is mentioned more than 70% of the time. A few issues infrequently mentioned across perspectives also have relatively few indicators available to fully represent

  10. Sustainable Sourcing of Global Agricultural Raw Materials: Assessing Gaps in Key Impact and Vulnerability Issues and Indicators.

    Springer, Nathaniel P; Garbach, Kelly; Guillozet, Kathleen; Haden, Van R; Hedao, Prashant; Hollander, Allan D; Huber, Patrick R; Ingersoll, Christina; Langner, Megan; Lipari, Genevieve; Mohammadi, Yaser; Musker, Ruthie; Piatto, Marina; Riggle, Courtney; Schweisguth, Melissa; Sin, Emily; Snider, Sara; Vidic, Nataša; White, Aubrey; Brodt, Sonja; Quinn, James F; Tomich, Thomas P

    2015-01-01

    Understanding how to source agricultural raw materials sustainably is challenging in today's globalized food system given the variety of issues to be considered and the multitude of suggested indicators for representing these issues. Furthermore, stakeholders in the global food system both impact these issues and are themselves vulnerable to these issues, an important duality that is often implied but not explicitly described. The attention given to these issues and conceptual frameworks varies greatly--depending largely on the stakeholder perspective--as does the set of indicators developed to measure them. To better structure these complex relationships and assess any gaps, we collate a comprehensive list of sustainability issues and a database of sustainability indicators to represent them. To assure a breadth of inclusion, the issues are pulled from the following three perspectives: major global sustainability assessments, sustainability communications from global food companies, and conceptual frameworks of sustainable livelihoods from academic publications. These terms are integrated across perspectives using a common vocabulary, classified by their relevance to impacts and vulnerabilities, and categorized into groups by economic, environmental, physical, human, social, and political characteristics. These issues are then associated with over 2,000 sustainability indicators gathered from existing sources. A gap analysis is then performed to determine if particular issues and issue groups are over or underrepresented. This process results in 44 "integrated" issues--24 impact issues and 36 vulnerability issues--that are composed of 318 "component" issues. The gap analysis shows that although every integrated issue is mentioned at least 40% of the time across perspectives, no issue is mentioned more than 70% of the time. A few issues infrequently mentioned across perspectives also have relatively few indicators available to fully represent them. Issues in the

  11. Global economic-biophysical assessment of midterm scenarios for agricultural markets—biofuel policies, dietary patterns, cropland expansion, and productivity growth

    Delzeit, Ruth; Klepper, Gernot; Zabel, Florian; Mauser, Wolfram

    2018-02-01

    Land-use decisions are made at the local level. They are influenced both by local factors and by global drivers and trends. These will most likely change over time e.g. due to political shocks, market developments or climate change. Hence, their influence should be taken into account when analysing and projecting local land-use decisions. We provide a set of mid-term scenarios of global drivers (until 2030) for use in regional and local studies on agriculture and land-use. In a participatory process, four important drivers are identified by experts from globally distributed regional studies: biofuel policies, increase in preferences for meat and dairy products in Asia, cropland expansion into uncultivated areas, and changes in agricultural productivity growth. Their impact on possible future developments of global and regional agricultural markets are analysed with a modelling framework consisting of a global computable general equilibrium model and a crop growth model. The business as usual (BAU) scenario causes production and prices of crops to rise over time. It also leads to a conversion of pasture land to cropland. Under different scenarios, global price changes range between -42 and +4% in 2030 compared to the BAU. An abolishment of biofuel targets does not significantly improve food security while an increased agricultural productivity and cropland expansion have a stronger impact on changes in food production and prices.

  12. Informing policy to protect coastal coral reefs: insight from a global review of reducing agricultural pollution to coastal ecosystems.

    Kroon, Frederieke J; Schaffelke, Britta; Bartley, Rebecca

    2014-08-15

    The continuing degradation of coral reefs has serious consequences for the provision of ecosystem goods and services to local and regional communities. While climate change is considered the most serious risk to coral reefs, agricultural pollution threatens approximately 25% of the total global reef area with further increases in sediment and nutrient fluxes projected over the next 50 years. Here, we aim to inform coral reef management using insights learned from management examples that were successful in reducing agricultural pollution to coastal ecosystems. We identify multiple examples reporting reduced fluxes of sediment and nutrients at end-of-river, and associated declines in nutrient concentrations and algal biomass in receiving coastal waters. Based on the insights obtained, we recommend that future protection of coral reef ecosystems demands policy focused on desired ecosystem outcomes, targeted regulatory approaches, up-scaling of watershed management, and long-term maintenance of scientifically robust monitoring programs linked with adaptive management. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  13. Gaining Rights to Citizenship: The Presence of Social Sciences in Agricultural Research and the Global Progress of

    AMIR KASSAM

    2012-04-01

    Full Text Available This article first presents reflections on the joint work carried out by Michael Cernea and this paper's author over 8-9 years for gaining "room, recognition and resources" within the CGIAR for sociological and socio-anthropological research on farmers, their practices and needs. The status of social research inside the CGIAR has gone through ups and downs in the uphill battle for expanding social research within this organization. Social scientists have constantly worked to feed their findings into the Centers' biophysical research. The paper documents the contribution of Michael Cernea, the first sociologist who acceded to CGIAR's top science and policy bodies, to strengthening the presence and influence of sociological and anthropological knowledge within CGIAR's institutional architecture and scientific products.The second part of this study presents the high promise of Conservation Agriculture (CA - a new paradigm for non-tillage agricultural production that offers improved productivity and environmental protection. CA principles are universally applicable. The author offers global data on the impressive advances and distribution of CA, which covers already some 125 million ha distributed across all continents and agro-ecologies. CA is a farmer-driven socio-cultural phenomenon which has expanded at a yearly rate of 7 mil. ha during the past decade.

  14. Rapid emergence of pathogens in agro-ecosystems: global threats to agricultural sustainability and food security.

    McDonald, Bruce A; Stukenbrock, Eva H

    2016-12-05

    Agricultural ecosystems are composed of genetically depauperate populations of crop plants grown at a high density and over large spatial scales, with the regional composition of crop species changing little from year to year. These environments are highly conducive for the emergence and dissemination of pathogens. The uniform host populations facilitate the specialization of pathogens to particular crop cultivars and allow the build-up of large population sizes. Population genetic and genomic studies have shed light on the evolutionary mechanisms underlying speciation processes, adaptive evolution and long-distance dispersal of highly damaging pathogens in agro-ecosystems. These studies document the speed with which pathogens evolve to overcome crop resistance genes and pesticides. They also show that crop pathogens can be disseminated very quickly across and among continents through human activities. In this review, we discuss how the peculiar architecture of agro-ecosystems facilitates pathogen emergence, evolution and dispersal. We present four example pathosystems that illustrate both pathogen specialization and pathogen speciation, including different time frames for emergence and different mechanisms underlying the emergence process. Lastly, we argue for a re-design of agro-ecosystems that embraces the concept of dynamic diversity to improve their resilience to pathogens. This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'. © 2016 The Author(s).

  15. Product development strategy in the Danish agricultural complex: Global interaction with clusters of marketing excellence

    Kristensen, Preben Sander

    1992-01-01

    A study of the Danish foods industry shows that producers of food products have built up and maintain development of end-user products in interaction with customers in distant sophisticated markets. Concurrently, the Danish agro-industrial complex been singled out in other studies as a paradigmatic...... produce and utilize sticky and fastchanging information about production and markets respectively. It is precisely by not interacting wi market business-to-business demand from changing end-user market that the Danish agro-industrial complex has avoided being insulated. The managerial implication...... is that a company in search of partners for joint development in global agro-industra networks can realize a competitive advantage by applying a market view that is euclidean upstream and equidstant downstream....

  16. TILLAGE OPERATIONS IN AGRICULTURAL LANDSCAPES IN THE CONTEXT OF GLOBAL WARMING

    G. N. Gasanov

    2016-01-01

    Full Text Available Aim. The aim was to identify the possibility of recycling the carbon in the atmosphere and the efficient use of photosynthetically active radiation (PAR coming to the soil surface by means of the formation of highly natural phytocenosis in the back half of the summer and to minimize soil preparation period for the next crop in the rotation.Methods. We studied two systems of soil management in the stubble period, they cause: Firstly, CO2 emissions from the soil under the existing soil cultivation methods for crop rotation in the region. Secondly, the accumulation of CO2 in the organic mass of natural phytocenosis followed by plowing the green mass in the stage of milk-wax ripeness of the seeds – the dominants, and minimizing the period of preparing the ground for the next crop rotation.Result. According to the obtained data, it shows that a nutritious regime of soil under the winter wheat during plowing of green mass of natural phytocenosis is substantially improved compared to the tillage system. Similar findings were obtained by other researchers that justify the fact that the green manure crops, in this case natural phytocoenosis, throughout its life involves hard compound subarable soil layers in the biological cycle which is used to create organic matter.Conclusion. We provide a scientific rationale for the inexpediency of the use of existing tillage systems in agricultural landscapes, which are causing systematic destruction of weed - field vegetation during the periods free from agrocenoses.

  17. Re-envisioning global agricultural trade: time for a paradigm shift to ensure food security and population health in low-income countries.

    Pirkle, Catherine M; Poliquin, Hélène; Sia, Drissa; Kouakou, Kouassi Joseph; Sagna, Tani

    2015-03-01

    In this commentary, we use examples from West Africa to highlight how the liberalization of global agricultural trade exacerbates population health inequalities by threatening the livelihoods and food security of communities in low-income settings. We highlight the exploitative nature of trade agreements with West African countries demonstrating how these agreements disincentivize local agricultural investment and take jobs away from small-scale farmers. Further, we link agricultural trade liberalization to increased food insecurity, malnutrition, and exposure to environmental contaminants. Finally, we propose a paradigm shift that advocates for food sovereignty and the right to food. © The Author(s) 2014.

  18. The Philippines in the Electronics Global Value Chain: Upgrading Opportunities and Challenges

    Rafaelita M. ALDABA

    2015-01-01

    This paper examines the extent and depth of participation of the Philippines in the electronics global value chains (GVC) using Trade in Value Added (TiVA) and extensive margin indicators. While the Philippines remains strong in semiconductors, it is lagging behind other ASEAN countries. According to the TiVA database, the level of participation of the Philippines in the electronics GVC increased substantially between 1995 and 2009. The extensive margins show that the Philippines has been reg...

  19. Trans-Pacific ENSO teleconnections pose a correlated risk to global agriculture

    Anderson, W. B.; Seager, R.; Cane, M. A.; Baethgen, W.

    2017-12-01

    The El Niño Southern Oscillation (ENSO) is a major source of interannual climate variability, particularly in the Pacific Basin. ENSO life-cycles tend to evolve over multiple years, as do the associated trans-Pacific ENSO teleconnections. This analysis, however, represents the first attempt to characterize the structure of the risk posed by ENSO to wheat, maize and soybean production across the Pacific Basin. Our results indicate that most ENSO teleconnections relevant for crop flowering seasons are the result of a single trans-Pacific circulation anomaly that develops in boreal summer and persists through the spring. During the late summer and early fall of a developing ENSO event, the tropical Pacific forces an atmospheric anomaly in the midlatitudes that spans the Pacific Basin. This teleconnection directly links the soybean and maize growing seasons of the US, Mexico and China. It also connects the wheat growing seasons of Argentina, southern Brazil and Australia. The ENSO event peaks in boreal winter, when the atmospheric circulation anomalies intensify and affect maize and soybeans in southeast South America. As the event decays, the ENSO-induced circulation anomalies persist through the wheat flowering seasons in China and the US. While the prospect of ENSO forcing simultaneous droughts in major food producing regions seems disastrous, there may be a silver lining from the perspective of global food security: trans-Pacific ENSO teleconnections to yields are often offsetting between major producing regions in the eastern and western portions of the Pacific Basin. El Niños tend to create good maize and soybean growing conditions in the US and southeast South America, but poor growing conditions in China, Mexico and northeast Brazil. The opposite is true during La Niña. Wheat growing conditions in southeast South America generally have the opposite sign of those in Australia. Finally, we investigate how trade networks interact with this structure of ENSO

  20. Trading carbon for food: global comparison of carbon stocks vs. crop yields on agricultural land.

    West, Paul C; Gibbs, Holly K; Monfreda, Chad; Wagner, John; Barford, Carol C; Carpenter, Stephen R; Foley, Jonathan A

    2010-11-16

    Expanding croplands to meet the needs of a growing population, changing diets, and biofuel production comes at the cost of reduced carbon stocks in natural vegetation and soils. Here, we present a spatially explicit global analysis of tradeoffs between carbon stocks and current crop yields. The difference among regions is striking. For example, for each unit of land cleared, the tropics lose nearly two times as much carbon (∼120 tons·ha(-1) vs. ∼63 tons·ha(-1)) and produce less than one-half the annual crop yield compared with temperate regions (1.71 tons·ha(-1)·y(-1) vs. 3.84 tons·ha(-1)·y(-1)). Therefore, newly cleared land in the tropics releases nearly 3 tons of carbon for every 1 ton of annual crop yield compared with a similar area cleared in the temperate zone. By factoring crop yield into the analysis, we specify the tradeoff between carbon stocks and crops for all areas where crops are currently grown and thereby, substantially enhance the spatial resolution relative to previous regional estimates. Particularly in the tropics, emphasis should be placed on increasing yields on existing croplands rather than clearing new lands. Our high-resolution approach can be used to determine the net effect of local land use decisions.

  1. Review and analysis of global agricultural N₂O emissions relevant to the UK.

    Buckingham, S; Anthony, S; Bellamy, P H; Cardenas, L M; Higgins, S; McGeough, K; Topp, C F E

    2014-07-15

    As part of a UK government funded research project to update the UK N2O inventory methodology, a systematic review of published nitrous oxide (N2O) emission factors was carried out of non-UK research, for future comparison and synthesis with the UK measurement based evidence base. The aim of the study is to assess how the UK IPCC default emission factor for N2O emissions derived from synthetic or organic fertiliser inputs (EF1) compares to international values reported in published literature. The availability of data for comparing and/or refining the UK IPCC default value and the possibility of analysing sufficient auxiliary data to propose a Tier 2 EF1 reporting strategy is evaluated. The review demonstrated a lack of consistency in reporting error bounds for fertiliser-derived EFs and N2O flux data with 8% and 44% of publications reporting EF and N2O flux error bounds respectively. There was also poor description of environmental (climate and soil) and experimental design auxiliary data. This is likely to be due to differences in study objectives, however potential improvements to soil parameter reporting are proposed. The review demonstrates that emission factors for agricultural-derived N2O emissions ranged -0.34% to 37% showing high variation compared to the UK Tier 1 IPCC EF1 default values of 1.25% (IPCC 1996) and 1% (IPPC 2006). However, the majority (83%) of EFs reported for UK-relevant soils fell within the UK IPCC EF1 uncertainty range of 0.03% to 3%. Residual maximum likelihood (REML) analysis of the data collated in the review showed that the type and rate of fertiliser N applied and soil type were significant factors influencing EFs reported. Country of emission, the length of the measurement period, the number of splits, the crop type, pH and SOC did not have a significant impact on N2O emissions. A subset of publications where sufficient data was reported for meta-analysis to be conducted was identified. Meta-analysis of effect sizes of 41

  2. Global warming potential and greenhouse gas intensity in rice agriculture driven by high yields and nitrogen use efficiency

    Zhang, Xiaoxu; Xu, Xin; Liu, Yinglie; Wang, Jinyang; Xiong, Zhengqin

    2016-05-01

    Our understanding of how global warming potential (GWP) and greenhouse gas intensity (GHGI) is affected by management practices aimed at food security with respect to rice agriculture remains limited. In the present study, a field experiment was conducted in China to evaluate the effects of integrated soil-crop system management (ISSM) on GWP and GHGI after accounting for carbon dioxide (CO2) equivalent emissions from all sources, including methane (CH4) and nitrous oxide (N2O) emissions, agrochemical inputs and farm operations and sinks (i.e., soil organic carbon sequestration). The ISSM mainly consisted of different nitrogen (N) fertilization rates and split, manure, Zn and Na2SiO3 fertilization and planting density for the improvement of rice yield and agronomic nitrogen use efficiency (NUE). Four ISSM scenarios consisting of different chemical N rates relative to the local farmers' practice (FP) rate were carried out, namely, ISSM-N1 (25 % reduction), ISSM-N2 (10 % reduction), ISSM-N3 (FP rate) and ISSM-N4 (25 % increase). The results showed that compared with the FP, the four ISSM scenarios significantly increased the rice yields by 10, 16, 28 and 41 % and the agronomic NUE by 75, 67, 35 and 40 %, respectively. In addition, compared with the FP, the ISSM-N1 and ISSM-N2 scenarios significantly reduced the GHGI by 14 and 18 %, respectively, despite similar GWPs. The ISSM-N3 and ISSM-N4 scenarios remarkably increased the GWP and GHGI by an average of 69 and 39 %, respectively. In conclusion, the ISSM strategies are promising for both food security and environmental protection, and the ISSM scenario of ISSM-N2 is the optimal strategy to realize high yields and high NUE together with low environmental impacts for this agricultural rice field.

  3. Toxicity of a metal(loid)-polluted agricultural soil to Enchytraeus crypticus changes under a global warming perspective: Variations in air temperature and soil moisture content

    Gonzalez Alcaraz, M.N.; van Gestel, C.A.M.

    2016-01-01

    This study aimed to assess how the current global warming perspective, with increasing air temperature (20 °C vs. 25 °C) and decreasing soil moisture content (50% vs. 30% of the soil water holding capacity, WHC), affected the toxicity of a metal(loid)-polluted agricultural soil to Enchytraeus

  4. Electron transport in radiotherapy using local-to-global Monte Carlo

    Svatos, M.M.; Chandler, W.P.; Siantar, C.L.H.; Rathkopf, J.A.; Ballinger, C.T.

    1994-09-01

    Local-to-Global (L-G) Monte Carlo methods are a way to make three-dimensional electron transport both fast and accurate relative to other Monte Carlo methods. This is achieved by breaking the simulation into two stages: a local calculation done over small geometries having the size and shape of the ''steps'' to be taken through the mesh; and a global calculation which relies on a stepping code that samples the stored results of the local calculation. The increase in speed results from taking fewer steps in the global calculation than required by ordinary Monte Carlo codes and by speeding up the calculation per step. The potential for accuracy comes from the ability to use long runs of detailed codes to compile probability distribution functions (PDFs) in the local calculation. Specific examples of successful Local-to-Global algorithms are given

  5. Combining global land cover datasets to quantify agricultural expansion into forests in Latin America: Limitations and challenges

    Persson, U. Martin

    2017-01-01

    While we know that deforestation in the tropics is increasingly driven by commercial agriculture, most tropical countries still lack recent and spatially-explicit assessments of the relative importance of pasture and cropland expansion in causing forest loss. Here we present a spatially explicit quantification of the extent to which cultivated land and grassland expanded at the expense of forests across Latin America in 2001–2011, by combining two “state-of-the-art” global datasets (Global Forest Change forest loss and GlobeLand30-2010 land cover). We further evaluate some of the limitations and challenges in doing this. We find that this approach does capture some of the major patterns of land cover following deforestation, with GlobeLand30-2010’s Grassland class (which we interpret as pasture) being the most common land cover replacing forests across Latin America. However, our analysis also reveals some major limitations to combining these land cover datasets for quantifying pasture and cropland expansion into forest. First, a simple one-to-one translation between GlobeLand30-2010’s Cultivated land and Grassland classes into cropland and pasture respectively, should not be made without caution, as GlobeLand30-2010 defines its Cultivated land to include some pastures. Comparisons with the TerraClass dataset over the Brazilian Amazon and with previous literature indicates that Cultivated land in GlobeLand30-2010 includes notable amounts of pasture and other vegetation (e.g. in Paraguay and the Brazilian Amazon). This further suggests that the approach taken here generally leads to an underestimation (of up to ~60%) of the role of pasture in replacing forest. Second, a large share (~33%) of the Global Forest Change forest loss is found to still be forest according to GlobeLand30-2010 and our analysis suggests that the accuracy of the combined datasets, especially for areas with heterogeneous land cover and/or small-scale forest loss, is still too poor for

  6. Combining global land cover datasets to quantify agricultural expansion into forests in Latin America: Limitations and challenges.

    Florence Pendrill

    Full Text Available While we know that deforestation in the tropics is increasingly driven by commercial agriculture, most tropical countries still lack recent and spatially-explicit assessments of the relative importance of pasture and cropland expansion in causing forest loss. Here we present a spatially explicit quantification of the extent to which cultivated land and grassland expanded at the expense of forests across Latin America in 2001-2011, by combining two "state-of-the-art" global datasets (Global Forest Change forest loss and GlobeLand30-2010 land cover. We further evaluate some of the limitations and challenges in doing this. We find that this approach does capture some of the major patterns of land cover following deforestation, with GlobeLand30-2010's Grassland class (which we interpret as pasture being the most common land cover replacing forests across Latin America. However, our analysis also reveals some major limitations to combining these land cover datasets for quantifying pasture and cropland expansion into forest. First, a simple one-to-one translation between GlobeLand30-2010's Cultivated land and Grassland classes into cropland and pasture respectively, should not be made without caution, as GlobeLand30-2010 defines its Cultivated land to include some pastures. Comparisons with the TerraClass dataset over the Brazilian Amazon and with previous literature indicates that Cultivated land in GlobeLand30-2010 includes notable amounts of pasture and other vegetation (e.g. in Paraguay and the Brazilian Amazon. This further suggests that the approach taken here generally leads to an underestimation (of up to ~60% of the role of pasture in replacing forest. Second, a large share (~33% of the Global Forest Change forest loss is found to still be forest according to GlobeLand30-2010 and our analysis suggests that the accuracy of the combined datasets, especially for areas with heterogeneous land cover and/or small-scale forest loss, is still too

  7. Processing of food and agricultural commodities with electron beam from microtron

    Sharma, Arun; Behere, Arun; Jadhav, S.S.; Bongirwar, D.R.; Kaul, Ahinsa; Soni, H.C.; Ganesh, S.

    2001-01-01

    A microtron machine source installed by the Centre for Advanced Technology (CAT), Indore, at Mangalore University, was used to study effects of irradiation on onion, potato, rava, and spices. The microbial load in spice samples was determined immediately after the experiment, as well as after six months of storage at the ambient temperature (26±2 deg C). Onion and potato samples were stored for a six months period both at ambient temperature and 15 deg C for observing the effect of electron beam irradiation on sprouting in these commodities. Rawa samples were stored at ambient temperature for observing the effect of electron beam irradiation on insect disinfestation. The results are discussed in detail in this paper. These lab-scale studies showed that electron beam could in principle be used for processing of various food products after standardizing the machine parameters and ensuring uniform dose distribution in the product. (author)

  8. How Sustainable are Benefits from Global Production Networks? Malaysia's Upgrading Prospects in the Electronics Industry

    Dieter Ernst

    2003-01-01

    The paper introduces an operational definition of industrial upgrading (IU and documents the emergence of complex, multi-tier "networks of networks" which provide new opportunities for IU, but which also raise threshold requirements for participating in these networks. I highlight structural weaknesses of the Malaysian electronics industry that constrain its upgrading prospects; assess current policies that try to link cluster development and global network integration; discuss adjustments in...

  9. Processing of food and agricultural commodities with electron beam from microtron

    Sharma, Arun; Behere, Arun; Jadhav, S.S.; Bongirwar, D.R.; Kaul, Ahinsa; Soni, H.C.; Ganesh, S.

    2001-01-01

    A microtron machine source installed by the Centre for Advanced Technology (CAT), Indore, at Mangalore University, was used in the study. The machine was operated at a beam power of 1.8 W, beam energy of 8.6 MeV, and a beam current of 20 mA. After initial standardization, the irradiation of commodities was carried out. The doses employed were 0.06 kGy for onion, 0.10 kGy for potato, 0.25 kGy for rawa, and 8 kGy for spices. The desired dose was delivered by exposing the samples from the two opposite sides of the box. The microbial load in spice samples was determined immediately after the experiment, as well as after six months of storage at the ambient temperature (26±2 degC). Onion and potato samples were stored for a six months period both at ambient temperature and 15 degC for observing the effect of electron beam irradiation on sprouting in these commodities. Rawa samples were stored at ambient temperature for observing the effect of electron beam irradiation on insect disinfestation. The electron beam irradiation at the recommended doses was found to be as effective as gamma radiation in bringing down the microbial load of the tested spices to the desired level, disinfestations of rawa, and inhibition of sprouting in onion. In the case of potato even four-side irradiation of the product box did not inhibit the sprouting completely. This indicated the necessity of standardization of machine parameters for uniform dose distribution in the product box for each commodity. These lab-scale studies showed that electron beam could in principle be used for processing of various food products after standardizing the machine parameters and ensuring uniform dose distribution in the product. Use of this technology on commercial scale would need standardization on larger machines

  10. Agricultural drought in a future climate: results from 15 global climate models participating in the IPCC 4th assessment

    Wang, Guiling

    2005-12-01

    This study examines the impact of greenhouse gas warming on soil moisture based on predictions of 15 global climate models by comparing the after-stabilization climate in the SRESA1b experiment with the pre-industrial control climate. The models are consistent in predicting summer dryness and winter wetness in only part of the northern middle and high latitudes. Slightly over half of the models predict year-round wetness in central Eurasia and/or year-round dryness in Siberia and mid-latitude Northeast Asia. One explanation is offered that relates such lack of seasonality to the carryover effect of soil moisture storage from season to season. In the tropics and subtropics, a decrease of soil moisture is the dominant response. The models are especially consistent in predicting drier soil over the southwest North America, Central America, the Mediterranean, Australia, and the South Africa in all seasons, and over much of the Amazon and West Africa in the June July August (JJA) season and the Asian monsoon region in the December January February (DJF) season. Since the only major areas of future wetness predicted with a high level of model consistency are part of the northern middle and high latitudes during the non-growing season, it is suggested that greenhouse gas warming will cause a worldwide agricultural drought. Over regions where there is considerable consistency among the analyzed models in predicting the sign of soil moisture changes, there is a wide range of magnitudes of the soil moisture response, indicating a high degree of model dependency in terrestrial hydrological sensitivity. A major part of the inter-model differences in the sensitivity of soil moisture response are attributable to differences in land surface parameterization.

  11. Global view of F-region electron density and temperature at solar maximum

    Brace, L.H.; Theis, R.F.; Hoegy, W.R.

    1982-01-01

    Dynamics Explorer-2 is permitting the first measurements of the global structure of the F-regions at very high levels of solar activity (S>200). Selected full orbits of Langmuir probe measurements of electron temperature, T/sub e/, and density, N/sub e/, are shown to illustrate this global structure and some of the ionospheric features that are the topic of other papers in this issue. The ionospheric thermal structure is of particular interest because T/sub e/ is a sensitive indicator of the coupling of magnetospheric energy into the upper atmosphere. A comparison of these heating effects with those observed at solar minimum shows that the magnetospheric sources are more important at solar maximum, as might have been expected. Heating at the cusp, the auroral oval and the plasma-pause is generally both greater and more variable. Electron cooling rate calculations employing low latitude measurements indicate that solar extreme ultraviolet heating of the F region at solar maximum is enhanced by a factor that is greater than the increase in solar flux. Some of this enhanced electron heating arises from the increase in electron heating efficiency at the higher N/sub e/ of solar maximum, but this appears insufficient to completely resolve the discrepancy

  12. Supplier Partnership Strategy and Global Competitiveness: A Case of Samsung Electronics

    Jangwoo Lee

    2015-11-01

    Full Text Available Samsung Group has accelerated its management innovation process, following the announcement of ‘New Management’ by the CEO Lee Kun-Hee. Particular attention must be paid to the smart-phone business of Samsung Electronics, which is the core company of the Samsung Group. In 2009, as Apple entered into the Korean market, the domestic smart-phone market faced the so called ‘Apple Shock’ due to its choice of a monopolistic and closed operating system. In response, Samsung Electronics introduced the innovative Galaxy series, replacing the old model of Omnia series. This move reaped dramatic success by dominating the world smart-phone market. Samsung Electronics ranked first in the 2012 world smart-phone market, and in 2013 it sold over 300 million devices for the first time in history, thereby solidifying the number one spot with a market share of 32.3%. Samsung Electronics’ achievement in its management innovation process was successful, due to its internal innovation and its partnership with sub-suppliers. Samsung Electronics strengthened its supplier partnership strategy, which in turn, led to an internalization of subparts assembly and process technology. By conducting the final assembly process on its own, it established the global supply chain that accompanies a high level of efficiency and operational elasticity. Samsung Electronics successfully systemized several hundred suppliers into an effective partnership and created an eco system where cooperation and competition can co-exist in its supply chain network. In sum, Samsung Electronics has successfully created the Samsung Production System that brings an economy of scale and allows prompt response. On the other hand, Apple did not get involved with subparts production, besides design and product design. This research identifies the effectiveness of Samsung Electronics’ supplier partnerships in its global competitiveness by examining characteristics of supplier partnership

  13. Energetic particles detected by the Electron Reflectometer instrument on the Mars Global Surveyor, 1999-2006

    Delory, Gregory T.; Luhmann, Janet G.; Brain, David

    2012-01-01

    events at Mars associated with solar flares and coronal mass ejections, which includes the identification of interplanetary shocks. MGS observations of energetic particles at varying geometries between the Earth and Mars that include shocks produced by halo, limb, and backsided events provide a unique......We report the observation of galactic cosmic rays and solar energetic particles by the Electron Reflectometer instrument aboard the Mars Global Surveyor (MGS) spacecraft from May of 1999 to the mission conclusion in November 2006. Originally designed to detect low-energy electrons, the Electron...... recorded high energy galactic cosmic rays with similar to 45% efficiency. Comparisons of this data to galactic cosmic ray proton fluxes obtained from the Advanced Composition Explorer yield agreement to within 10% and reveal the expected solar cycle modulation as well as shorter timescale variations. Solar...

  14. Meeting Earth Observation Requirements for Global Agricultural Monitoring: An Evaluation of the Revisit Capabilities of Current and Planned Moderate Resolution Optical Earth Observing Missions

    Alyssa K. Whitcraft

    2015-01-01

    Full Text Available Agriculture is a highly dynamic process in space and time, with many applications requiring data with both a relatively high temporal resolution (at least every 8 days and fine-to-moderate (FTM < 100 m spatial resolution. The relatively infrequent revisit of FTM optical satellite observatories coupled with the impacts of cloud occultation have translated into a barrier for the derivation of agricultural information at the regional-to-global scale. Drawing upon the Group on Earth Observations Global Agricultural Monitoring (GEOGLAM Initiative’s general satellite Earth observation (EO requirements for monitoring of major production areas, Whitcraft et al. (this issue have described where, when, and how frequently satellite data acquisitions are required throughout the agricultural growing season at 0.05°, globally. The majority of areas and times of year require multiple revisits to probabilistically yield a view at least 70%, 80%, 90%, or 95% clear within eight days, something that no present single FTM optical observatory is capable of delivering. As such, there is a great potential to meet these moderate spatial resolution optical data requirements through a multi-space agency/multi-mission constellation approach. This research models the combined revisit capabilities of seven hypothetical constellations made from five satellite sensors—Landsat 7 Enhanced Thematic Mapper (Landsat 7 ETM+, Landsat 8 Operational Land Imager and Thermal Infrared Sensor (Landsat 8 OLI/TIRS, Resourcesat-2 Advanced Wide Field Sensor (Resourcesat-2 AWiFS, Sentinel-2A Multi-Spectral Instrument (MSI, and Sentinel-2B MSI—and compares these capabilities with the revisit frequency requirements for a reasonably cloud-free clear view within eight days throughout the agricultural growing season. Supplementing Landsat 7 and 8 with missions from different space agencies leads to an improved capacity to meet requirements, with Resourcesat-2 providing the largest

  15. Electronic Referrals and Digital Imaging Systems in Ophthalmology: A Global Perspective.

    Jeganathan, V Swetha E; Hall, H Nikki; Sanders, Roshini

    2017-01-01

    Ophthalmology departments face intensifying pressure to expedite sight-saving treatments and reduce the global burden of disease. The use of electronic communication systems, digital imaging, and redesigned service care models is imperative for addressing such demands. The recently developed Scottish Eyecare Integration Project involves an electronic referral system from community optometry to the hospital ophthalmology department using National Health Service (NHS) email with digital ophthalmic images attached, via a virtual private network connection. The benefits over the previous system include reduced waiting times, improved triage, e-diagnosis in 20% without the need for hospital attendance, and rapid electronic feedback to referrers. We draw on the experience of the Scottish Eyecare Integration Project and discuss the global applications of this and other advances in teleophthalmology. We focus particularly on the implications for management and screening of chronic disease, such as glaucoma and diabetic eye disease, and ophthalmic disease, such as retinopathy of prematurity where diagnosis is almost entirely and critically dependent on fundus appearance. Currently in Scotland, approximately 75% of all referrals are electronic from community to hospital. The Scottish Eyecare Integration Project is globally the first of its kind and unique in a national health service. Such speedy, safe, and efficient models of communication are geographically sensitive to service provision, especially in remote and rural regions. Along with advances in teleophthalmology, such systems promote the earlier detection of sight-threatening disease and safe follow-up of non-sight-threatening disease in the community. Copyright© 2017 Asia-Pacific Academy of Ophthalmology.

  16. Water availability and agricultural demand: An assessment framework using global datasets in a data scarce catchment, Rokel-Seli River, Sierra Leone

    Christopher K. Masafu

    2016-12-01

    New hydrological insights: We find that the hydrological model capably simulates both low and high flows satisfactorily, and that all the input datasets consistently produce similar results for water withdrawal scenarios. The proposed framework is successfully applied to assess the variability of flows available for abstraction against agricultural demand. The assessment framework conclusions are robust despite the different input datasets and calibration scenarios tested, and can be extended to include other global input datasets.

  17. Mars Global Surveyor Radio Science Electron Density Profiles: Interannual Variability and Implications for the Neutral Atmosphere

    Bougher, S. W.; Engel, S.; Hinson, D. P.; Murphy, J. R.

    2003-01-01

    The Mars Global Surveyor (MGS) Radio Science (RS) experiment employs an ultrastable oscillator aboard the spacecraft. The signal from the oscillator to Earth is refracted by the Martian ionosphere, allowing retrieval of electron density profiles versus radius and geopotential. The present analysis is carried out on five sets of occultation measurements: (1) four obtained near northern summer solstice (Ls = 74-116, near aphelion) at high northern latitudes (64.7-77.6N), and (2) one set of profiles approaching equinox conditions (Ls = 135- 146) at high southern latitudes (64.7-69.1S). Electron density profiles (95 to 200 km) are examined over a narrow range of solar zenith angles (76.5-86.9 degrees) for local true solar times of (1) 3-4 hours and (2) 12.1 hours. Variations spanning 1-Martian year are specifically examined in the Northern hemisphere.

  18. Global auroral conductance distribution due to electron and proton precipitation from IMAGE-FUV observations

    V. Coumans

    2004-04-01

    Full Text Available The Far Ultraviolet (FUV imaging system on board the IMAGE satellite provides a global view of the north auroral region in three spectral channels, including the SI12 camera sensitive to Doppler shifted Lyman-α emission. FUV images are used to produce instantaneous maps of electron mean energy and energy fluxes for precipitated protons and electrons. We describe a method to calculate ionospheric Hall and Pedersen conductivities induced by auroral proton and electron ionization based on a model of interaction of auroral particles with the atmosphere. Different assumptions on the energy spectral distribution for electrons and protons are compared. Global maps of ionospheric conductances due to instantaneous observation of precipitating protons are calculated. The contribution of auroral protons in the total conductance induced by both types of auroral particles is also evaluated and the importance of proton precipitation is evaluated. This method is well adapted to analyze the time evolution of ionospheric conductances due to precipitating particles over the auroral region or in particular sectors. Results are illustrated with conductance maps of the north polar region obtained during four periods with different activity levels. It is found that the proton contribution to conductance is relatively higher during quiet periods than during substorms. The proton contribution is higher in the period before the onset and strongly decreases during the expansion phase of substorms. During a substorm which occurred on 28 April 2001, a region of strong proton precipitation is observed with SI12 around 14:00MLT at ~75° MLAT. Calculation of conductances in this sector shows that neglecting the protons contribution would produce a large error. We discuss possible effects of the proton precipitation on electron precipitation in auroral arcs. The increase in the ionospheric conductivity, induced by a former proton precipitation can reduce the potential drop

  19. Global auroral conductance distribution due to electron and proton precipitation from IMAGE-FUV observations

    V. Coumans

    2004-04-01

    Full Text Available The Far Ultraviolet (FUV imaging system on board the IMAGE satellite provides a global view of the north auroral region in three spectral channels, including the SI12 camera sensitive to Doppler shifted Lyman-α emission. FUV images are used to produce instantaneous maps of electron mean energy and energy fluxes for precipitated protons and electrons. We describe a method to calculate ionospheric Hall and Pedersen conductivities induced by auroral proton and electron ionization based on a model of interaction of auroral particles with the atmosphere. Different assumptions on the energy spectral distribution for electrons and protons are compared. Global maps of ionospheric conductances due to instantaneous observation of precipitating protons are calculated. The contribution of auroral protons in the total conductance induced by both types of auroral particles is also evaluated and the importance of proton precipitation is evaluated. This method is well adapted to analyze the time evolution of ionospheric conductances due to precipitating particles over the auroral region or in particular sectors. Results are illustrated with conductance maps of the north polar region obtained during four periods with different activity levels. It is found that the proton contribution to conductance is relatively higher during quiet periods than during substorms. The proton contribution is higher in the period before the onset and strongly decreases during the expansion phase of substorms. During a substorm which occurred on 28 April 2001, a region of strong proton precipitation is observed with SI12 around 14:00MLT at ~75° MLAT. Calculation of conductances in this sector shows that neglecting the protons contribution would produce a large error. We discuss possible effects of the proton precipitation on electron precipitation in auroral arcs. The increase in the ionospheric conductivity, induced by a former proton precipitation can reduce the potential drop

  20. Globalization

    Tulio Rosembuj

    2006-12-01

    Full Text Available There is no singular globalization, nor is the result of an individual agent. We could start by saying that global action has different angles and subjects who perform it are different, as well as its objectives. The global is an invisible invasion of materials and immediate effects.

  1. Globalization

    Tulio Rosembuj

    2006-01-01

    There is no singular globalization, nor is the result of an individual agent. We could start by saying that global action has different angles and subjects who perform it are different, as well as its objectives. The global is an invisible invasion of materials and immediate effects.

  2. Mechanism and rate of denitrification in an agricultural watershed: Electron and mass balance along groundwater flow paths

    Tesoriero, Anthony J.; Liebscher, Hugh; Cox, Stephen E.

    2000-01-01

    The rate and mechanism of nitrate removal along and between groundwater flow paths were investigated using a series of well nests screened in an unconfined sand and gravel aquifer. Intensive agricultural activity in this area has resulted in nitrate concentrations in groundwater often exceeding drinking water standards. Both the extent and rate of denitrification varied depending on the groundwater flow path. While little or no denitrification occurred in much of the upland portions of the aquifer, a gradual redox gradient is observed as aerobic upland groundwater moves deeper in the aquifer. In contrast, a sharp shallow redox gradient is observed adjacent to a third‐order stream as aerobic groundwater enters reduced sediments. An essentially complete loss of nitrate concurrent with increases in excess N2 provide evidence that denitrification occurs as groundwater enters this zone. Electron and mass balance calculations suggest that iron sulfide (e.g., pyrite) oxidation is the primary source of electrons for denitrification. Denitrification rate estimates were based on mass balance calculations using nitrate and excess N2 coupled with groundwater travel times. Travel times were determined using a groundwater flow model and were constrained by chlorofluorocarbon‐based age dates. Denitrification rates were found to vary considerably between the two areas where denitrification occurs. Denitrification rates in the deep, upland portions of the aquifer were found to range from from 1.0 to 2.7 mM of N per year. Potential denitrification rates in groundwater adjacent to the stream may be much faster, with rates up to 140 mM per year based on an in situ experiment conducted in this zone.

  3. Implementation of Global Development Education into the Curriculum at the Faculty of Economics and Management, Slovak University of Agriculture

    Svitacová, Eva; Mravcová, Anna

    2014-01-01

    The new phenomenon of global development education (GDE) has gradually penetrated the curricula in Slovakia. For the purpose of more comprehensively preparing future economic actors, who will operate in the new global economic and social environment, we have decided to incorporate this topic into the curriculum at the Faculty of Economics and…

  4. Globalization, the rise of biotechnology and catching up in agricultural innovation: The case of Bt technology in India

    Iizuka, M.; Thutupalli, A.

    2014-01-01

    The agricultural sector has played an important role in the provision of food, foreign exchange and sustainable energy to many developing countries. This sector, however, has not been considered as a driving force of innovation as compared to other productive sectors. However, recent economics and

  5. SACRA - global data sets of satellite-derived crop calendars for agricultural simulations: an estimation of a high-resolution crop calendar using satellite-sensed NDVI

    Kotsuki, S.; Tanaka, K.

    2015-01-01

    To date, many studies have performed numerical estimations of food production and agricultural water demand to understand the present and future supply-demand relationship. A crop calendar (CC) is an essential input datum to estimate food production and agricultural water demand accurately with the numerical estimations. CC defines the date or month when farmers plant and harvest in cropland. This study aims to develop a new global data set of a satellite-derived crop calendar for agricultural simulations (SACRA) and reveal advantages and disadvantages of the satellite-derived CC compared to other global products. We estimate global CC at a spatial resolution of 5 min (≈10 km) using the satellite-sensed NDVI data, which corresponds well to vegetation growth and death on the land surface. We first demonstrate that SACRA shows similar spatial pattern in planting date compared to a census-based product. Moreover, SACRA reflects a variety of CC in the same administrative unit, since it uses high-resolution satellite data. However, a disadvantage is that the mixture of several crops in a grid is not considered in SACRA. We also address that the cultivation period of SACRA clearly corresponds to the time series of NDVI. Therefore, accuracy of SACRA depends on the accuracy of NDVI used for the CC estimation. Although SACRA shows different CC from a census-based product in some regions, multiple usages of the two products are useful to take into consideration the uncertainty of the CC. An advantage of SACRA compared to the census-based products is that SACRA provides not only planting/harvesting dates but also a peak date from the time series of NDVI data.

  6. Future trends in agricultural engineering.

    Jongebreur, A.A.; Speelman, L.

    1997-01-01

    Beside traditional mechanical engineering, other engineering branches such as electronics, control engineering and physics play their specific role within the agricultural engineering field. Agricultural engineering has affected and stimulated major changes in agriculture. In the last decades

  7. How are WEEE doing? A global review of the management of electrical and electronic wastes.

    Ongondo, F O; Williams, I D; Cherrett, T J

    2011-04-01

    This paper presents and critically analyses the current waste electrical and electronic equipment (WEEE) management practices in various countries and regions. Global trends in (i) the quantities and composition of WEEE; and (ii) the various strategies and practices adopted by selected countries to handle, regulate and prevent WEEE are comprehensively examined. The findings indicate that for (i), the quantities of WEEE generated are high and/or on the increase. IT and telecommunications equipment seem to be the dominant WEEE being generated, at least in terms of numbers, in Africa, in the poorer regions of Asia and in Latin/South America. However, the paper contends that the reported figures on quantities of WEEE generated may be grossly underestimated. For (ii), with the notable exception of Europe, many countries seem to be lacking or are slow in initiating, drafting and adopting WEEE regulations. Handling of WEEE in developing countries is typified by high rate of repair and reuse within a largely informal recycling sector. In both developed and developing nations, the landfilling of WEEE is still a concern. It has been established that stockpiling of unwanted electrical and electronic products is common in both the USA and less developed economies. The paper also identifies and discusses four common priority areas for WEEE across the globe, namely: (i) resource depletion; (ii) ethical concerns; (iii) health and environmental issues; and (iv) WEEE takeback strategies. Further, the paper discusses the future perspectives on WEEE generation, treatment, prevention and regulation. Four key conclusions are drawn from this review: global amounts of WEEE will continue unabated for some time due to emergence of new technologies and affordable electronics; informal recycling in developing nations has the potential of making a valuable contribution if their operations can be changed with strict safety standards as a priority; the pace of initiating and enacting WEEE

  8. How are WEEE doing? A global review of the management of electrical and electronic wastes

    Ongondo, F.O.; Williams, I.D.; Cherrett, T.J.

    2011-01-01

    This paper presents and critically analyses the current waste electrical and electronic equipment (WEEE) management practices in various countries and regions. Global trends in (i) the quantities and composition of WEEE; and (ii) the various strategies and practices adopted by selected countries to handle, regulate and prevent WEEE are comprehensively examined. The findings indicate that for (i), the quantities of WEEE generated are high and/or on the increase. IT and telecommunications equipment seem to be the dominant WEEE being generated, at least in terms of numbers, in Africa, in the poorer regions of Asia and in Latin/South America. However, the paper contends that the reported figures on quantities of WEEE generated may be grossly underestimated. For (ii), with the notable exception of Europe, many countries seem to be lacking or are slow in initiating, drafting and adopting WEEE regulations. Handling of WEEE in developing countries is typified by high rate of repair and reuse within a largely informal recycling sector. In both developed and developing nations, the landfilling of WEEE is still a concern. It has been established that stockpiling of unwanted electrical and electronic products is common in both the USA and less developed economies. The paper also identifies and discusses four common priority areas for WEEE across the globe, namely: (i) resource depletion; (ii) ethical concerns; (iii) health and environmental issues; and (iv) WEEE takeback strategies. Further, the paper discusses the future perspectives on WEEE generation, treatment, prevention and regulation. Four key conclusions are drawn from this review: global amounts of WEEE will continue unabated for some time due to emergence of new technologies and affordable electronics; informal recycling in developing nations has the potential of making a valuable contribution if their operations can be changed with strict safety standards as a priority; the pace of initiating and enacting WEEE

  9. Globalization

    Andru?cã Maria Carmen

    2013-01-01

    The field of globalization has highlighted an interdependence implied by a more harmonious understanding determined by the daily interaction between nations through the inducement of peace and the management of streamlining and the effectiveness of the global economy. For the functioning of the globalization, the developing countries that can be helped by the developed ones must be involved. The international community can contribute to the institution of the development environment of the gl...

  10. Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry

    Molina, Henrik; Horn, David M; Tang, Ning

    2007-01-01

    Electron transfer dissociation (ETD) is a recently introduced mass spectrometric technique that provides a more comprehensive coverage of peptide sequences and posttranslational modifications. Here, we evaluated the use of ETD for a global phosphoproteome analysis. In all, we identified a total...... of 1,435 phosphorylation sites from human embryonic kidney 293T cells, of which 1,141 ( approximately 80%) were not previously described. A detailed comparison of ETD and collision-induced dissociation (CID) modes showed that ETD identified 60% more phosphopeptides than CID, with an average of 40% more...... fragment ions that facilitated localization of phosphorylation sites. Although our data indicate that ETD is superior to CID for phosphorylation analysis, the two methods can be effectively combined in alternating ETD and CID modes for a more comprehensive analysis. Combining ETD and CID, from this single...

  11. Global Model of Time-Modulated Electronegative Discharges for Neutral Radical and Electron Temperature Control

    Kim, Sungjin; Lieberman, M. A.; Lichtenberg, A. J.

    2003-10-01

    Control and reduction of neutral radical flux/ion flux ratio and electron temperature Te is required for next generation etching in the microelectronics industry. We investigate time-modulated power for these purposes using a volume-averaged (global) oxygen discharge model, We consider pressures of 10-50 mTorr and plasma densities of 10^10-10^11 cm-3. In this regime, the discharge is found to be weakly electronegative. The modulation period and the duty ratio (on-time/period) are varied to determine the optimum conditions for reduction of FR= O-atom flux/ion flux and T_e. Two chambers with different height/diameter ratios (SMART Contract SM99-10051.

  12. The Environmental Effects of Global Changes on Northeast Central Europe in the Case of Non-Modified Agricultural Management

    H. Wiggering

    2008-06-01

    Full Text Available Climate impact scenarios for agriculture usually consider yield development, landscape water balance, nutrient dynamics or the endangerment of habitats separately. Scenario results are further limited by roughly discriminated land use types at low spatial resolution or they are restricted to single sites and isolated crops. Here, we exemplify a well data based comprehensive sensitivity analysis of a drought endangered agrarian region in Northeast Germany using a 2050 climate scenario. Coherently modelled results on water balance and yields indicate that agricultural production may persist, whereas wetlands and groundwater production will be negatively affected. The average percolation rate decreases from 143 mm a-1 to 12 mm a-1, and the average yield decline broken down by crops ranges from 4% for summer wheat to 14% for potatoes (main cereals: 5%.

  13. The nitrogen cascade from agricultural soils to the sea: modelling nitrogen transfers at regional watershed and global scales

    Billen, Gilles; Garnier, Josette; Lassaletta, Luis

    2013-01-01

    The nitrogen cycle of pre-industrial ecosystems has long been remarkably closed, in spite of the high mobility of this element in the atmosphere and hydrosphere. Inter-regional and international commercial exchanges of agricultural goods, which considerably increased after the generalization of the use of synthetic nitrogen fertilizers, introduced an additional type of nitrogen mobility, which nowadays rivals the atmospheric and hydrological fluxes in intensity, and causes their enhancement a...

  14. Humusica 2, article 19: Techno humus systems and global change – Conservation agriculture and 4/1000 proposal

    Zanella , Augusto; Bolzonella , Cristian; Lowenfels , Jeff; Ponge , Jean-François; Bouché , Marcel; Saha , Debasish; Singh Kukal , Surinder; Fritz , Ines; Savory , Allan; BLOUIN , Manuel; Sartori , Luigi; Tatti , Dylan; Kellermann , Anna Liv; Trachsel , Peter; Burgos , Stéphane

    2018-01-01

    International audience; Philosophy can overlap pedology. It is not casual that life begins and finishes in the soil. We separated the concepts of Humipedon, Copedon and Lithopedon. Some sections were dedicated to the founders of the movement for a new type of agriculture (agroecology). They simply proclaim to accompany the process of natural evolution instead of spending a lot of energy in hunting competitor organisms with pesticides or boosting the soil with mineral fertilisation and tillage...

  15. MIRCA2000—Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling

    Portmann, Felix T.; Siebert, Stefan; DöLl, Petra

    2010-03-01

    To support global-scale assessments that are sensitive to agricultural land use, we developed the global data set of monthly irrigated and rainfed crop areas around the year 2000 (MIRCA2000). With a spatial resolution of 5 arc min (about 9.2 km at the equator), MIRCA2000 provides both irrigated and rainfed crop areas of 26 crop classes for each month of the year. The data set covers all major food crops as well as cotton. Other crops are grouped into categories (perennial, annual, and fodder grasses). It represents multicropping systems and maximizes consistency with census-based national and subnational statistics. According to MIRCA2000, 25% of the global harvested areas are irrigated, with a cropping intensity (including fallow land) of 1.12, as compared to 0.84 for the sum of rainfed and irrigated harvested crops. For the dominant crops (rice (1.7 million km2 harvested area), wheat (2.1 million km2), and maize (1.5 million km2)), roughly 60%, 30%, and 20% of the harvested areas are irrigated, respectively, and half of the citrus, sugar cane, and cotton areas. While wheat and maize are the crops with the largest rainfed harvested areas (1.5 million km2 and 1.2 million km2, respectively), rice is clearly the crop with the largest irrigated harvested area (1.0 million km2), followed by wheat (0.7 million km2) and maize (0.3 million km2). Using MIRCA2000, 33% of global crop production and 44% of total cereal production were determined to come from irrigated agriculture.

  16. Evaluation of Electronic Commerce (E-Commerce with SWOT Analysis as an Alternative Network Marketing at Agricultural Marketing

    Nuray Kızılaslan

    2015-07-01

    Full Text Available Compulsory competition occurring in the world trade has led the enterprises to different marketing system. Marketing problems seems to be a problem in Turkey rather than agricultural production problems. In this aspect, marketing alternatives are sought. E-commerce is a system with more opportunities in agricultural marketing. Increasing the applicability of this system in Turkey will eliminate many problems associated with marketing in agriculture. With an active use of E-commerce in agricultural marketing, it provides convenience at marketing products of agro-related industries agencies and producers and all country will have a potential market position. In this study, possibilities offered by e-commerce to the agricultural sector, opportunities, threats, deficiencies and contributions to agricultural sector have been addressed. Without the limitations of place and time via the internet and computers, establishing national and international supply and demand balance of e-commerce seems to play important roles in maintaining an active and alive marketing. Furthermore, it is an important tool in reducing agricultural marketing problems.

  17. Flora, life form characteristics, and plan for the promotion of biodiversity in South Korea's Globally Important Agricultural Heritage System, the traditional Gudeuljang irrigated rice terraces in Cheongsando

    Hong Chul PARK; Choong Hyeon OH

    2017-01-01

    The objectives of this study were to analyze the biodiversity of the Traditional Gudeuljang Irrigated Rice Terraces in Cheongsando,South Korea's representative GIAHS (Globally Important Agricultural Heritage System) site,with reference to position and land-use features,and to develop a plan to promote agricultural biodiversity in the region.We confirmed approximately 54,000 m2 of Gudeuljang paddy fields by an on-site survey.Of the Traditional Gudeuljang Irrigated Rice Terraces confirmed by onsite inspection,our survey showed that approximately 24,000 m2 are currently being used as paddy fields,approximately 15,000 m2 are being used as dry fields,and approximately 14,000 m2 are fallow.In terms of other non-agricultural land use,there was grassland,including graveyards;artificial arboreal land,such as orchards,rivers and wetlands,and man-made facilities,such as roads and residences.We also confirmed that the Traditional Gudeuljang Irrigated Rice Terraces had higher plant species diversity than conventional terraced rice paddies,and there was a difference in life form characteristics between the two types.Although the superficial topsoil structure is the same for the Traditional Gudeuljang Irrigated Rice Terraces (TGIRTs) and conventional terraced rice paddies,it is thought that the differences in the subsurface structure of the TGIRTs contribute greatly to species and habitat diversity.However,the TGIRTs in Cheongsando are facing degeneration,due to damage and reduction in agricultural activity.The main cause is the reduction in the number of farming households due to an aging population in Cheongsando.In order to address this problem,we proposed a management plan,related to fallow paddy fields in South Korea,to initiate voluntary activities in the TGIRTs.

  18. Global bioethics and governance : views from FAO and India on the ethics of biotechnology in agriculture and medicine

    Bhardwaj, Minakshi

    2003-01-01

    The overall objective of this research was to analyse the role of ethics in the global governance of biotechnology. How do people apply biological knowledge in the service of humankind and the environment? The present thesis contains two major case studies related to governance of biotechnology and ethics. ...

  19. Partnering for change in chains : on the capacity of partnerships to promote sustainable change in global agricultural commodity chains

    Bitzer, V.C.

    2011-01-01

    Partnerships mirror the changing nature of the relationships among state, business and civil society organizations, and are often considered as innovative mechanisms to overcome single actor failure in the context of globalization. This thesis analyzes the capacity of partnerships to promote

  20. Impacts of Climate Change under the Threat of Global Warming for an Agricultural Watershed of the Kangsabati River

    Sujana Dhar; Asis Mazumdar

    2009-01-01

    The effects of global warming on India vary from the submergence of low-lying islands and coastal lands to the melting of glaciers in the Indian Himalayas, threatening the volumetric flow rate of many of the most important rivers of India and South Asia. In India, such effects are projected to impact millions of lives. As a result of ongoing climate change, the climate of India has become increasingly volatile over the past several decades; this trend is expected to conti...

  1. Engineers’ Responsibilities for Global Electronic Waste: Exploring Engineering Student Writing Through a Care Ethics Lens

    Campbell, Ryan C.; Wilson, Denise

    2016-01-01

    This paper provides an empirically informed perspective on the notion of responsibility using an ethical framework that has received little attention in the engineering-related literature to date: ethics of care. In this work, we ground conceptual explorations of engineering responsibility in empirical findings from engineering student’s writing on the human health and environmental impacts of “backyard” electronic waste recycling/disposal. Our findings, from a purposefully diverse sample of engineering students in an introductory electrical engineering course, indicate that most of these engineers of tomorrow associated engineers with responsibility for the electronic waste (e-waste) problem in some way. However, a number of responses suggested attempts to deflect responsibility away from engineers towards, for example, the government or the companies for whom engineers work. Still other students associated both engineers and non-engineers with responsibility, demonstrating the distributed/collective nature of responsibility that will be required to achieve a solution to the global problem of excessive e-waste. Building upon one element of a framework for care ethics adopted from the wider literature, these empirical findings are used to facilitate a preliminary, conceptual exploration of care-ethical responsibility within the context of engineering and e-waste recycling/disposal. The objective of this exploration is to provide a first step toward understanding how care-ethical responsibility applies to engineering. We also hope to seed dialogue within the engineering community about its ethical responsibilities on the issue. We conclude the paper with a discussion of its implications for engineering education and engineering ethics that suggests changes for educational policy and the practice of engineering. PMID:27368195

  2. Engineers' Responsibilities for Global Electronic Waste: Exploring Engineering Student Writing Through a Care Ethics Lens.

    Campbell, Ryan C; Wilson, Denise

    2017-04-01

    This paper provides an empirically informed perspective on the notion of responsibility using an ethical framework that has received little attention in the engineering-related literature to date: ethics of care. In this work, we ground conceptual explorations of engineering responsibility in empirical findings from engineering student's writing on the human health and environmental impacts of "backyard" electronic waste recycling/disposal. Our findings, from a purposefully diverse sample of engineering students in an introductory electrical engineering course, indicate that most of these engineers of tomorrow associated engineers with responsibility for the electronic waste (e-waste) problem in some way. However, a number of responses suggested attempts to deflect responsibility away from engineers towards, for example, the government or the companies for whom engineers work. Still other students associated both engineers and non-engineers with responsibility, demonstrating the distributed/collective nature of responsibility that will be required to achieve a solution to the global problem of excessive e-waste. Building upon one element of a framework for care ethics adopted from the wider literature, these empirical findings are used to facilitate a preliminary, conceptual exploration of care-ethical responsibility within the context of engineering and e-waste recycling/disposal. The objective of this exploration is to provide a first step toward understanding how care-ethical responsibility applies to engineering. We also hope to seed dialogue within the engineering community about its ethical responsibilities on the issue. We conclude the paper with a discussion of its implications for engineering education and engineering ethics that suggests changes for educational policy and the practice of engineering.

  3. Globalization

    Plum, Maja

    Globalization is often referred to as external to education - a state of affair facing the modern curriculum with numerous challenges. In this paper it is examined as internal to curriculum; analysed as a problematization in a Foucaultian sense. That is, as a complex of attentions, worries, ways...... of reasoning, producing curricular variables. The analysis is made through an example of early childhood curriculum in Danish Pre-school, and the way the curricular variable of the pre-school child comes into being through globalization as a problematization, carried forth by the comparative practices of PISA...

  4. Globalization

    F. Gerard Adams

    2008-01-01

    The rapid globalization of the world economy is causing fundamental changes in patterns of trade and finance. Some economists have argued that globalization has arrived and that the world is “flat†. While the geographic scope of markets has increased, the author argues that new patterns of trade and finance are a result of the discrepancies between “old†countries and “new†. As the differences are gradually wiped out, particularly if knowledge and technology spread worldwide, the t...

  5. 7. Food and agriculture

    Livernash, R.

    1992-01-01

    Global food production has increased substantially over the past two decades, but factors such as population pressures and environmental degradation are undermining agriculture's current condition and future prospects. This chapter discusses the following: global trends; production trends (livestock and fisheries); per capita production trends (population density and agriculture); environmental trends (soil degradation, inputs of fertilizers, pesticides, and freshwater); economic trends (agricultural commodity prices, declining investment in irrigation, World Bank lending); trade liberalization and the Gatt negotiations; conventional agriculture and alternative agriculture; problems with the conventional model (on-farm impacts, off-farm impacts); agricultural policies - creating a new environment; policy impacts - distorted price structures; new policy options (reducing input subsidies, land conservation programs, management agreements, taxes, fees, and tax incentives, strengthening regulations, subsidizing conversion); the economics of alternative agriculture

  6. Toxicity of a metal(loid)-polluted agricultural soil to Enchytraeus crypticus changes under a global warming perspective: Variations in air temperature and soil moisture content.

    González-Alcaraz, M Nazaret; van Gestel, Cornelis A M

    2016-12-15

    This study aimed to assess how the current global warming perspective, with increasing air temperature (20°C vs. 25°C) and decreasing soil moisture content (50% vs. 30% of the soil water holding capacity, WHC), affected the toxicity of a metal(loid)-polluted agricultural soil to Enchytraeus crypticus. Enchytraeids were exposed for 21d to a dilution series of the agricultural soil with Lufa 2.2 control soil under four climate situations: 20°C+50% WHC (standard conditions), 20°C+30% WHC, 25°C+50% WHC, and 25°C+30% WHC. Survival, reproduction and bioaccumulation of As, Cd, Co, Cu, Fe, Mn, Ni, Pb and Zn were obtained as endpoints. Reproduction was more sensitive to both climate factors and metal(loid) pollution. High soil salinity (electrical conductivity~3dSm -1 ) and clay texture, even without the presence of high metal(loid) concentrations, affected enchytraeid performance especially at drier conditions (≥80% reduction in reproduction). The toxicity of the agricultural soil increased at drier conditions (10% reduction in EC10 and EC50 values for the effect on enchytraeid reproduction). Changes in enchytraeid performance were accompanied by changes in As, Fe, Mn, Pb and Zn bioaccumulation, with lower body concentrations at drier conditions probably due to greater competition with soluble salts in the case of Fe, Mn, Pb and Zn. This study shows that apart from high metal(loid) concentrations other soil properties (e.g. salinity and texture) may be partially responsible for the toxicity of metal(loid)-polluted soils to soil invertebrates, especially under changing climate conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Estimating soil water-holding capacities by linking the Food and Agriculture Organization Soil map of the world with global pedon databases and continuous pedotransfer functions

    Reynolds, C. A.; Jackson, T. J.; Rawls, W. J.

    2000-12-01

    Spatial soil water-holding capacities were estimated for the Food and Agriculture Organization (FAO) digital Soil Map of the World (SMW) by employing continuous pedotransfer functions (PTF) within global pedon databases and linking these results to the SMW. The procedure first estimated representative soil properties for the FAO soil units by statistical analyses and taxotransfer depth algorithms [Food and Agriculture Organization (FAO), 1996]. The representative soil properties estimated for two layers of depths (0-30 and 30-100 cm) included particle-size distribution, dominant soil texture, organic carbon content, coarse fragments, bulk density, and porosity. After representative soil properties for the FAO soil units were estimated, these values were substituted into three different pedotransfer functions (PTF) models by Rawls et al. [1982], Saxton et al. [1986], and Batjes [1996a]. The Saxton PTF model was finally selected to calculate available water content because it only required particle-size distribution data and results closely agreed with the Rawls and Batjes PTF models that used both particle-size distribution and organic matter data. Soil water-holding capacities were then estimated by multiplying the available water content by the soil layer thickness and integrating over an effective crop root depth of 1 m or less (i.e., encountered shallow impermeable layers) and another soil depth data layer of 2.5 m or less.

  8. Analysis of Maize versus Ethanol Production in Nebraska, United States and International Agricultural Droughts: Lessons for Global Food Security

    Boken, V.; Tenkorang, F.

    2012-04-01

    Nebraska is one of the eight main corn (maize) belt states of the United States. Maize is the major crop of Nebraska with an average annual production of about 38 million tons (about 12% of U.S. production), which contributes billions of dollars to the state's economy. The yield of maize has increased significantly over the past century - from 1.6 t/ha in 1900 to 10.4 t/ha in 2010. While the majority of maize (about 40%) is currently used for animal feed and ethanol production, only about six percent is exported. It is estimated that about one billion people accounting for about 15% population of the world live in chronic hunger because of low agricultural productivity and drought. Most of these people depend on the U.S. for grains including maize. If a greater quantity of maize is diverted to ethanol production, considerably less quantity of maize would be available for export to developing countries where it could be used for human consumption and to mitigate hunger and improve food security. This paper presents analysis of maize production in Nebraska for the past three decades and examines how its commercialization for ethanol production has affected its exports in the face of drought at an international level.

  9. Enhancing continental-scale understanding of agriculture: Integrating the National Ecological Observatory Network (NEON) with existing research networks to address global change.

    Kelly, G.

    2015-12-01

    Over the past decade, there has been a resurgence of interest in the sustainability of the world's food system and its contributions to feeding the world's population as well as to ensuring environmental sustainability of the planet. The elements of this grand challenge are by now well known. Analysis of agricultural sustainability is made more challenging by the fact that the local responses to these global drivers of change are extremely variable in space and time due to the biophysical and geopolitical heterogeneity across the United States, and the world. Utilizing research networks allows the scientific community to leverage existing knowledge, models and data to develop a framework for understanding the interplay between global change drivers, regional, and continental sustainability of US agriculture. For example, well-established instrumented and calibrated research networks will allow for the examination of the potential tradeoffs between: 1) crop production, 2) land use and carbon emissions and sequestration, 3) groundwater depletion, and 4) nitrogen dynamics. NEON represents a major investment in scientific infrastructure in support of ecological research at a continental scale and is intended to address multiple ecological grand challenges. NEON will collect data from automated sensors and sample organisms and ecological variables in 20 eco-climatic domains. We will provide examples of how NEON's full potential can be realized when these data are combined with long term experimental results and other sensor networks [e.g., Ameriflux, Fluxnet, the Long-term Ecological Research Program (LTER), the Long-term Agroecosystem Research Network (LTAR)], Critical Zone Observatory (CZO).

  10. GLOBAL WARMING AND POSSIBLE EFFECTS ON FUTURE THE BRAZILIAN GRAIN PRODUCTION Hilton S. Pinto.State University of Campinas (UNICAMP). CNPq. Eduardo D. Assad. Embrapa Agriculture Informatics (CNPTIA). CNPq. Eduardo Pavao. Embrapa Agriculture Informatics (CNPTIA). Ricardo Luna. Embrapa Agriculture Informatics (CNPTIA)

    Pinto, H. S.; Assad, E. D.; Pavao, E.; Luna, R.

    2012-12-01

    According to the Brazilian Government (CONAB, July 2012) the actual area of grain production in the country is close to 50.8 million ha and the perspective of production is 162.6 million of tons. Maize and Soybean are responsible for more than 83% of the total harvest. The area available for agriculture in Brazil is 282.2 million ha or close to 33% of the total land of the country. From 1991 until 2010 the agricultural technology was responsible for an increase of production close to 154% while the planted area raised only 25%. Considering this rate of production in the last 20 years the Ministry of Agriculture made an extrapolation for 2020, when the country can produce close to 176 million of grains being 65 million tons of maize, 86 million tons of soybean and 70 million bags of coffee. In this case, it was not considered any variation in the climate conditions. In 2002, in partnership with the British Embassy in Brazil, Unicamp and Embrapa published the study "Global Warming and the New Geography of Agricultural Production in Brazil" (Pinto and Assad, 2002) based on a Regional Climate Model PRECIS from Hadley Centre, where the grain production was estimated to decrease due to temperature rise. Without considering any mitigation or adaptation action, in the worst scenario (A2-IPCC) the principal crops to be affected will be coffee with 6.7% estimated production decrease until 2020, soybean 22% and corn 12%. On the other hand, sugar cane, as a C4 plant, will have an increase of production in the order of 170%. As suggested by the Word Bank, a new project was developed for a more detailed analysis of the influence of the global warming in the Brazilian agriculture, affecting temperature and water deficit in the years 2020 and 2030. It was considered initially 23 Global Climatic Models (GCM) defined by IPCC, that were separated in blocks of similar comportment using cluster multivariate analysis. Other 3 Regional Climatic Models (RCM) were also used to give more

  11. Features of annual and semiannual variations derived from the global ionospheric maps of total electron content

    B. Zhao

    2008-01-01

    Full Text Available In the present work we use the NASA-JPL global ionospheric maps of total electron content (TEC, firstly to construct TEC maps (TEC vs. magnetic local time MLT, and magnetic latitude MLAT in the interval from 1999 to 2005. These TEC maps were, in turn, used to estimate the annual-to-mean amplitude ratio, A1, and the semiannual-to-mean amplitude ratio, A2, as well as the latitudinal symmetrical and asymmetrical parts, A' and A" of A1. Thus, we investigated in detail the TEC climatology from maps of these indices, with an emphasis on the quantitative presentation for local time and latitudinal changes in the seasonal, annual and semiannual anomalies of the ionospheric TEC. Then we took the TEC value at 14:00 LT to examine various anomalies at a global scale following the same procedure. Results reveal similar features appearing in NmF2, such as that the seasonal anomaly is more significant in the near-pole regions than in the far-pole regions and the reverse is true for the semiannual anomaly; the winter anomaly has least a chance to be observed at the South America and South Pacific areas. The most impressive feature is that the equinoctial asymmetry is most prominent at the East Asian and South Australian areas. Through the analysis of the TIMED GUVI columnar [O/N2] data, we have investigated to what extent the seasonal, annual and semiannual variations can be explained by their counterparts in [O/N2]. Results revealed that the [O/N2] variation is a major contributor to the daytime winter anomaly of TEC, and it also contributes to some of the semiannual and annual anomalies. The contribution to the anomalies unexplained by the [O/N2] data could possibly be due to the dynamics associated with thermospheric winds and electric fields.

  12. The DarkSide-50 Experiment: Electron Recoil Calibrations and A Global Energy Variable

    Hackett, Brianne Rae [Hawaii U.

    2017-01-01

    Over the course of decades, there has been mounting astronomical evidence for non-baryonic dark matter, yet its precise nature remains elusive. A favored candidate for dark matter is the Weakly Interacting Massive Particle (WIMP) which arises naturally out of extensions to the Standard Model. WIMPs are expected to occasionally interact with particles of normal matter through nuclear recoils. DarkSide-50 aims to detect this type of particle through the use of a two-phase liquid argon time projection chamber. To make a claim of discovery, an accurate understanding of the background and WIMP search region is imperative. Knowledge of the backgrounds is done through extensive studies of DarkSide-50's response to electron and nuclear recoils. The CALibration Insertion System (CALIS) was designed and built for the purpose of introduc- ing radioactive sources into or near the detector in a joint eort between Fermi National Laboratory (FNAL) and the University of Hawai'i at Manoa. This work describes the testing, installation, and commissioning of CALIS at the Laboratori Nazionali del Gran Sasso. CALIS has been used in mul- tiple calibration campaigns with both neutron and sources. In this work, DarkSide-50's response to electron recoils, which are important for background estimations, was studied through the use of calibration sources by constructing a global energy variable which takes into account the anti- correlation between scintillation and ionization signals produced by interactions in the liquid argon. Accurately reconstructing the event energy correlates directly with quantitatively understanding the WIMP sensitivity in DarkSide-50. This work also validates the theoretically predicted decay spectrum of 39Ar against 39Ar decay data collected in the early days of DarkSide-50 while it was lled with atmospheric argon; a validation of this type is not readily found in the literature. Finally, we show how well the constructed energy variable can predict

  13. Spatially Explicit Analysis of Biodiversity Loss Due to Global Agriculture, Pasture and Forest Land Use from a Producer and Consumer Perspective.

    Chaudhary, Abhishek; Pfister, Stephan; Hellweg, Stefanie

    2016-04-05

    Anthropogenic land use to produce commodities for human consumption is the major driver of global biodiversity loss. Synergistic collaboration between producers and consumers in needed to halt this trend. In this study, we calculate species loss on 5 min × 5 min grid level and per country due to global agriculture, pasture and forestry by combining high-resolution land use data with countryside species area relationship for mammals, birds, amphibians, and reptiles. Results show that pasture was the primary driver of biodiversity loss in Madagascar, China and Brazil, while forest land use contributed the most to species loss in DR Congo and Indonesia. Combined with the yield data, we quantified the biodiversity impacts of 1 m(3) of roundwood produced in 139 countries, concluding that tropical countries with low timber yield and a large presence of vulnerable species suffer the highest impact. We also calculated impacts per kg for 160 crops grown in different countries and linked it with FAO food trade data to assess the biodiversity impacts embodied in Swiss food imports. We found that more than 95% of Swiss consumption impacts rest abroad with cocoa, coffee and palm oil imports being responsible for majority of damage.

  14. Impact of agronomy practices on the effects of reduced tillage systems on CH4 and N2O emissions from agricultural fields: A global meta-analysis.

    Feng, Jinfei; Li, Fengbo; Zhou, Xiyue; Xu, Chunchun; Ji, Long; Chen, Zhongdu; Fang, Fuping

    2018-01-01

    The effect of no- and reduced tillage (NT/RT) on greenhouse gas (GHG) emission was highly variable and may depend on other agronomy practices. However, how the other practices affect the effect of NT/RT on GHG emission remains elusive. Therefore, we conducted a global meta-analysis (including 49 papers with 196 comparisons) to assess the effect of five options (i.e. cropping system, crop residue management, split application of N fertilizer, irrigation, and tillage duration) on the effect of NT/RT on CH4 and N2O emissions from agricultural fields. The results showed that NT/RT significantly mitigated the overall global warming potential (GWP) of CH4 and N2O emissions by 6.6% as compared with conventional tillage (CT). Rotation cropping systems and crop straw remove facilitated no-tillage (NT) to reduce the CH4, N2O, or overall GWP both in upland and paddy field. NT significantly mitigated the overall GWP when the percentage of basal N fertilizer (PBN) >50%, when tillage duration > 10 years or rainfed in upland, while when PBN agronomy practices and land use type.

  15. Potential impacts of wintertime soil moisture anomalies from agricultural irrigation at low latitudes on regional and global climates

    Wey, Hao-Wei; Lo, Min-Hui; Lee, Shih-Yu; Yu, Jin-Yi; Hsu, Huang-Hsiung

    2015-10-01

    Anthropogenic water management can change surface energy budgets and the water cycle. In this study, we focused on impacts of Asian low-latitude irrigation on regional and global climates during boreal wintertime. A state-of-the-art Earth system model is used to simulate the land-air interaction processes affected by irrigation and the consequent responses in atmospheric circulation. Perturbed experiments show that wet soil moisture anomalies at low latitudes can reduce the surface temperature on a continental scale through atmospheric feedback. The intensity of prevailing monsoon circulation becomes stronger because of larger land-sea thermal contrast. Furthermore, anomalous upper level convergence over South Asia and midlatitude climatic changes indicate tropical-extratropical teleconnections. The wintertime Aleutian low is deepened and an anomalous warm surface temperature is found in North America. Previous studies have noted this warming but left it unexplained, and we provide plausible mechanisms for these remote impacts coming from the irrigation over Asian low-latitude regions.

  16. First Extraction of Transversity from a Global Analysis of Electron-Proton and Proton-Proton Data

    Radici, Marco; Bacchetta, Alessandro

    2018-05-01

    We present the first extraction of the transversity distribution in the framework of collinear factorization based on the global analysis of pion-pair production in deep-inelastic scattering and in proton-proton collisions with a transversely polarized proton. The extraction relies on the knowledge of dihadron fragmentation functions, which are taken from the analysis of electron-positron annihilation data. For the first time, the transversity is extracted from a global analysis similar to what is usually done for the spin-averaged and helicity distributions. The knowledge of transversity is important for, among other things, detecting possible signals of new physics in high-precision low-energy experiments.

  17. The effectiveness of the microbiological radiation decontamination process of agricultural products with the use of low energy electron beam

    Gryczka, Urszula; Migdał, Wojciech; Bułka, Sylwester

    2018-02-01

    The effectiveness of the radiation decontamination process was tested for electron beam of energy 200 keV and 300 keV. The energy of electrons was controlled by the measurements of its penetration ability in stack of B3 dosimetric film. In the presented work, the reduction of total aerobic bacteria count was observed, depending on time of irradiation for samples of dried black pepper, onion flakes and bay leaves. The results were compared with the effect observed for the process where high energy electron beam was used.

  18. Assessment of land use change in the coterminous United States and Alaska for global assessment of forest loss conducted by the food and agricultural organization of the United Nations

    Tanushree Biswas; Mike Walterman; Paul Maus; Kevin A. Megown; Sean P. Healey; Kenneth Brewer

    2012-01-01

    The Food and Agricultural Organization (FAO) of the United Nations conducted a global assessment for forest change in 2010 using satellite imagery from 1990, 2000, and 2005. The U.S. Forest Service was responsible for assessing forest change in the United States. A polygon-based, stratified sampling design developed by FAO was used to assess change in forest area...

  19. Electron Flux Dropouts at L ˜ 4.2 From Global Positioning System Satellites: Occurrences, Magnitudes, and Main Driving Factors

    Boynton, R. J.; Mourenas, D.; Balikhin, M. A.

    2017-11-01

    Dropouts in electron fluxes at L ˜ 4.2 were investigated for a broad range of energies from 120 keV to 10 MeV, using 16 years of electron flux data from Combined X-ray Dosimeter on board Global Positioning System (GPS) satellites. Dropouts were defined as flux decreases by at least a factor 4 in 12 h, or 24 h during which a decrease by at least a factor of 1.5 must occur during each 12 h time bin. Such fast and strong dropouts were automatically identified from the GPS electron flux data and statistics of dropout magnitudes, and occurrences were compiled as a function of electron energy. Moreover, the Error Reduction Ratio analysis was employed to search for nonlinear relationships between electron flux dropouts and various solar wind and geomagnetic activity indices, in order to identify potential external causes of dropouts. At L ˜ 4.2, the main driving factor for the more numerous and stronger 1-10 MeV electron dropouts turns out to be the southward interplanetary magnetic field Bs, suggesting an important effect from precipitation loss due to combined electromagnetic ion cyclotron and whistler mode waves in a significant fraction of these events, supplementing magnetopause shadowing and outward radial diffusion which are also effective at lower energies.

  20. ANALYSIS OF THEORETICAL AND METHODOLOGICAL APPROACHES TO DESIGN OF ELECTRONIC TEXTBOOKS FOR STUDENTS OF HIGHER AGRICULTURAL EDUCATIONAL INSTITUTIONS

    Olena Yu. Balalaieva

    2017-06-01

    Full Text Available The article deals with theoretical and methodological approaches to the design of electronic textbook, in particular systems, competence, activity, personality oriented, technological one, that in complex reflect the general trends in the formation of a new educational paradigm, distinctive features of which lie in constructing the heuristic searching model of the learning process, focusing on developmental teaching, knowledge integration, skills development for the independent information search and processing, technification of the learning process. The approach in this study is used in a broad sense as a synthesis of the basic ideas, views, principles that determine the overall research strategy. The main provisions of modern approaches to design are not antagonistic, they should be applied in a complex, taking into account the advantages of each of them and leveling shortcomings for the development of optimal concept of electronic textbook. The model of electronic textbook designing and components of methodology for its using based on these approaches are described.

  1. Agriculture. Pt. 2

    1994-01-01

    The climatic effects of agriculture and nutritional habits of the West German population are investigated. Changes in solar UV-B radiation and methods of measuring them are described. The climatic relevance of ecological and conventional agricultural techniques are compared. The agricultural policy of the European Communities is presented and discussed. The climatic effects of the totality of agricultural production techniques and processing stages of the food industry, as well as of transport and trade, are analyzed. Sociological investigations are made of the nutritional habits of the population, and the consequences for the global climate are compared. (SR) [de

  2. A theory of local and global processes which affect solar wind electrons. 2. Experimental support

    Scudder, J.D.; Olbert, S.

    1979-05-01

    The microscopic characteristics of the Coulomb cross section show that there are three natural subpopulations for plasma electrons: the subthermals; the transthermals; and the extrathermals. Data from three experimental groups on three different spacecraft in the interplanetary medium over a radial range are presented to support the five interrelations projected between solar wind electron properties and changes in the interplanetary medium: (1) subthermals respond primarily to local changes (compression and rarefactions) in stream dynamics; (2) the extrathermal fraction of the ambient electron density should be anti-correlated with the asymptotic bulk speed; (3) the extrathermal 'temperature' should be anti-correlated with the local wind speed at 1 AU; (4) the heat flux carried by electrons should be anti-correlated with the local bulk speed; and (5) the extrathermal differential 'temperature' should be nearly independent of radius within 1 AU

  3. Agriculture: Agriculture and Air Quality

    Information on air emissions from agricultural practices, types of agricultural burning, air programs that may apply to agriculture, reporting requirements, and links to state and other federal air-quality information.

  4. Supplier Partnership Strategy and Global Competitiveness: A Case of Samsung Electronics

    Jangwoo Lee; Kapsoo Lee; Junseok Heo

    2015-01-01

    Samsung Group has accelerated its management innovation process, following the announcement of ‘New Management’ by the CEO Lee Kun-Hee. Particular attention must be paid to the smart-phone business of Samsung Electronics, which is the core company of the Samsung Group. In 2009, as Apple entered into the Korean market, the domestic smart-phone market faced the so called ‘Apple Shock’ due to its choice of a monopolistic and closed operating system. In response, Samsung Electronics introduced th...

  5. 12 CFR 609.910 - Compliance with the Electronic Signatures in Global and National Commerce Act (Public Law 106-229...

    2010-01-01

    ... Global and National Commerce Act (Public Law 106-229) (E-SIGN). 609.910 Section 609.910 Banks and Banking... with the Electronic Signatures in Global and National Commerce Act (Public Law 106-229) (E-SIGN). (a) General. E-SIGN makes it easier to conduct E-commerce. With some exceptions, E-SIGN permits the use and...

  6. Integration with the Global Economy: The Case of Turkish Automobile and Consumer Electronics Industries

    Erol Taymaz; Kamil Yılmaz

    2008-01-01

    This paper provides an extensive case study of the Turkish automotive and the consumer electronics industries. Despite a macroeconomic environment that inhibits investment and growth, both industries have achieved remarkable output and productivity growth since the early 1990s. Although there are similarities between the performances of the two industries, there are significant differences...

  7. The Development and Implementation of a Global Network for Eurasia Educational Service Using Electronic Mail.

    Algee, Alan

    The purpose of this study was to choose an appropriate network provider for educational consultants and to develop and implement the network at Eurasia Educational Services (EES) using electronic mail (e-mail). The following eight steps were undertaken: literature review, scanning and selecting of provider criteria, decision-making, participant…

  8. Theory of local and global processes which affect solar wind electrons. 2. Experimental support

    Scudder, J.D.; Olbert, S.

    1979-01-01

    We have extended the theoretical considerations of Scudder and Olbert (1979) (hereafter called paper 1) to show from the microscopic characteristics of the Coulomb cross section that there are three natural subpopulations for plasma electrons: the subthermals with local kinetic energy E 7kT/sub c/. We present experimental support from three experimental groups on three different spacecraft over a radial range in the interplanetary medium for the five interrelations projected in paper 1 between solar wind electron properties and changes in the interplanetary medium: (1) subthermals respond primarily to local changes (compressions and rarefactions) in stream dynamics: (2) the extrathermal fraction of the ambient electron density should be anticorrelated with the asymptotic bulk speed; (3) the extrathermal 'temperature' should be anticorrelated with the local wind speed at 1 AU; (4) the heat flux carried by electrons should be anticorrelated with the local bulk speed; and (5) the extrathermal differential 'temperature' should be nearly independent of radius within 1 Au. From first principles and the spatial inhomogeneity of the plasma we show that the velocity dependence of Coulomb collisions in the solar wind plasmaproduces a bifurcation in the solar wind electron distribution function at a transition energy E*. This energy is theoretically shown to scale with the local thermal temperature as E*(r) approx. =GAMMAkT/sub c/(r). This scaling is observationally supported over the radial range from 0.45 to 0.9 AU and at 1 AU. The extrathermals, defined on the basis of Coulomb collisions, are synonymous with the subpopulation previously labeled in the literature as the 'halo' or 'hot' component

  9. Global model analysis of negative ion generation in low-pressure inductively coupled hydrogen plasmas with bi-Maxwellian electron energy distributions

    Huh, Sung-Ryul; Kim, Nam-Kyun; Jung, Bong-Ki; Chung, Kyoung-Jae; Hwang, Yong-Seok; Kim, Gon-Ho

    2015-01-01

    A global model was developed to investigate the densities of negative ions and the other species in a low-pressure inductively coupled hydrogen plasma with a bi-Maxwellian electron energy distribution. Compared to a Maxwellian plasma, bi-Maxwellian plasmas have higher populations of low-energy electrons and highly vibrationally excited hydrogen molecules that are generated efficiently by high-energy electrons. This leads to a higher reaction rate of the dissociative electron attachment responsible for negative ion production. The model indicated that the bi-Maxwellian electron energy distribution at low pressures is favorable for the creation of negative ions. In addition, the electron temperature, electron density, and negative ion density calculated using the model were compared with the experimental data. In the low-pressure regime, the model results of the bi-Maxwellian electron energy distributions agreed well quantitatively with the experimental measurements, unlike those of the assumed Maxwellian electron energy distributions that had discrepancies

  10. Open system LANs and their global interconnection electronics and communications reference series

    Houldsworth, Jack; Caves, Keith; Mazda, FF

    2014-01-01

    Open System LANs and Their Global Interconnection focuses on the OSI layer 1 to 4 standards (the OSI bearer service) and also introduces TCP/IP and some of the proprietary PC Local Area Network (LAN) standards.The publication first provides an introduction to Local Area Networks (LANs) and Wide Area Networks (WANs), Open Systems Interconnection (OSI), and LAN standards. Discussions focus on MAC bridging, token bus, slotted ring, MAC constraints and design considerations, OSI functional standards, OSI model, value of the transport model, benefits and origins of OSI, and significance of the tran

  11. Morphology in the total electron content under geomagnetic disturbed conditions: results from global ionosphere maps

    Zhao Biqiang

    2007-07-01

    Full Text Available Using 8-year global ionosphere maps (GIMs of TEC products from the Jet Propulsion Laboratory (JPL, we make a statistical study on the morphology of the global ionospheric behaviors with respect to the geomagnetic disturbances. Results show that the behaviors of TEC during geomagnetic storm present clear seasonal and local time variations under geomagnetic control in a similar way as those of NmF2 (Field and Rishbeth, 1997. A negative phase of TEC occurs with high probability in the summer hemisphere and most prominent near the geomagnetic poles, while a positive phase is obvious in the winter hemisphere and in the far pole region. A negative storm effect toward lower latitudes tends to occur from post-midnight to the morning sector and recedes to high latitude in the afternoon. A positive storm effect is separated by geomagnetic latitudes and magnetic local time. Furthermore, ionospheric responses at different local time sectors with respect to the storm commencement shows very different developing processes corresponding to the evolution of the geomagnetic storm. A daytime positive storm effect is shown to be more prominent in the American region than those in the Asian and European regions, which may suggest a longitudinal effect of the ionospheric storm.

  12. Morphology in the total electron content under geomagnetic disturbed conditions: results from global ionosphere maps

    Z. Biqiang

    2007-07-01

    Full Text Available Using 8-year global ionosphere maps (GIMs of TEC products from the Jet Propulsion Laboratory (JPL, we make a statistical study on the morphology of the global ionospheric behaviors with respect to the geomagnetic disturbances. Results show that the behaviors of TEC during geomagnetic storm present clear seasonal and local time variations under geomagnetic control in a similar way as those of NmF2 (Field and Rishbeth, 1997. A negative phase of TEC occurs with high probability in the summer hemisphere and most prominent near the geomagnetic poles, while a positive phase is obvious in the winter hemisphere and in the far pole region. A negative storm effect toward lower latitudes tends to occur from post-midnight to the morning sector and recedes to high latitude in the afternoon. A positive storm effect is separated by geomagnetic latitudes and magnetic local time. Furthermore, ionospheric responses at different local time sectors with respect to the storm commencement shows very different developing processes corresponding to the evolution of the geomagnetic storm. A daytime positive storm effect is shown to be more prominent in the American region than those in the Asian and European regions, which may suggest a longitudinal effect of the ionospheric storm.

  13. Global Three-Dimensional Ionospheric Data Assimilation Model Using Ground-based GPS and Radio Occultation Total Electron Content

    Jann-Yenq Liu, Tiger; Lin, Chi-Yen; Matsuo, Tomoko; Lin, Charles C. H.; Tsai, Ho-Fang; Chen, Chao-Yen

    2017-04-01

    An ionospheric data assimilation approach presented here is based on the Gauss-Markov Kalman filter with International Reference Ionosphere (IRI) as the background model and designed to assimilate the total electron content (TEC) observed from ground-based GPS receivers and space-based radio occultation (RO) of FORMOSAT-3/COSMIC (F3/C) or FORMOSAT-7/COSMIC-2 (F7/C2). The Kalman filter consists of the forecast step according to Gauss-Markov process and measurement update step. Observing System Simulation Experiments (OSSEs) show that the Gauss-Markov Kalman filter procedure can increase the accuracy of the data assimilation analysis over the procedure consisting of the measurement update step alone. Moreover, in comparing to F3/C, the dense F7/C2 RO observation can further increase the model accuracy significantly. Validating the data assimilation results with the vertical TEC in Global Ionosphere Maps and that derived from ground-based GPS measurements, as well as the ionospheric F2-peak height and electron density sounded by ionosondes is also carried out. Both the OSSE results and the observation validations confirm that the developed data assimilation model can be used to reconstruct the three-dimensional electron density in the ionosphere satisfactorily.

  14. Electronic processing of informed consents in a global pharmaceutical company environment.

    Vishnyakova, Dina; Gobeill, Julien; Oezdemir-Zaech, Fatma; Kreim, Olivier; Vachon, Therese; Clade, Thierry; Haenning, Xavier; Mikhailov, Dmitri; Ruch, Patrick

    2014-01-01

    We present an electronic capture tool to process informed consents, which are mandatory recorded when running a clinical trial. This tool aims at the extraction of information expressing the duration of the consent given by the patient to authorize the exploitation of biomarker-related information collected during clinical trials. The system integrates a language detection module (LDM) to route a document into the appropriate information extraction module (IEM). The IEM is based on language-specific sets of linguistic rules for the identification of relevant textual facts. The achieved accuracy of both the LDM and IEM is 99%. The architecture of the system is described in detail.

  15. Agriculture: Climate

    Climate change affects agricultural producers because agriculture and fisheries depend on specific climate conditions. Temperature changes can cause crop planting dates to shift. Droughts and floods due to climate change may hinder farming practices.

  16. Agricultural Overpopulation

    Bičanić, Rudolf

    2003-01-01

    The author discusses three different approaches to agricultural overpopulation: from the consumption side, from the production side and from the aspect of immobility of agricultural population. In the first approach agrarian overpopulation is defined from the consumption point of viewas the number of people living from agriculture that can live from aggregate agricultural income at a certain standard of consumption. In this connection the problem of measuring total agricultu...

  17. Global sale of tobacco products and electronic nicotine delivery systems in community pharmacies.

    Hudmon, Karen Suchanek; Elkhadragy, Nervana; Kusynová, Zuzana; Besançon, Luc; Brock, Tina Penick; Corelli, Robin L

    2017-12-01

    To estimate the proportion of countries/territories that allow sales of tobacco products and electronic nicotine delivery systems (ENDS) in community pharmacies. International Pharmaceutical Federation (FIP) member organisations were contacted by email and asked to respond to a two-item survey assessing whether their country/territory allowed sales of (a) tobacco products and (b) ENDS in community pharmacies. Of 95 countries/territories contacted, responses were received from 60 (63.2%). Seven countries (11.7%) reported that tobacco products were sold in community pharmacies, and 11 countries (18.3%) reported that ENDS were sold in community pharmacies. Among the FIP member organisations, there are few countries that allow the sale of tobacco products and ENDS in community pharmacies, with ENDS being more likely than tobacco products to be sold. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  18. African Journals Online: Agriculture & Food Sciences

    Items 1 - 50 of 53 ... Global Approaches to Extension Practice (GAEP), A publication of the Department of ... resources, Soil Science, Agricultural Engineering and Food Processing. ... Journal of Applied Chemistry and Agricultural Research.

  19. Emerging Agricultural Biotechnologies for Sustainable Agriculture and Food Security.

    Anderson, Jennifer A; Gipmans, Martijn; Hurst, Susan; Layton, Raymond; Nehra, Narender; Pickett, John; Shah, Dilip M; Souza, Thiago Lívio P O; Tripathi, Leena

    2016-01-20

    As global populations continue to increase, agricultural productivity will be challenged to keep pace without overtaxing important environmental resources. A dynamic and integrated approach will be required to solve global food insecurity and position agriculture on a trajectory toward sustainability. Genetically modified (GM) crops enhanced through modern biotechnology represent an important set of tools that can promote sustainable agriculture and improve food security. Several emerging biotechnology approaches were discussed in a recent symposium organized at the 13th IUPAC International Congress of Pesticide Chemistry meeting in San Francisco, CA, USA. This paper summarizes the innovative research and several of the new and emerging technologies within the field of agricultural biotechnology that were presented during the symposium. This discussion highlights how agricultural biotechnology fits within the context of sustainable agriculture and improved food security and can be used in support of further development and adoption of beneficial GM crops.

  20. Phosphorus in agricultural soils:

    Ringeval, Bruno; Augusto, Laurent; Monod, Hervé; Apeldoorn, van D.F.; Bouwman, A.F.; Yang, X.; Achat, D.L.; Chini, L.P.; Oost, van K.; Guenet, Bertrand; Wang, R.; Decharme, B.; Nesme, T.; Pellerin, S.

    2017-01-01

    Phosphorus (P) availability in soils limits crop yields in many regions of the World, while excess of soil P triggers aquatic eutrophication in other regions. Numerous processes drive the global spatial distribution of P in agricultural soils, but their relative roles remain unclear. Here, we

  1. Lack of global population genetic differentiation in thearbuscular mycorrhizal fungus Glomus mosseae suggestsa recent range expansion which may have coincided withthe spread of agriculture

    Rosendahl, Søren; McGee, Peter; Morton, Joseph B

    2009-01-01

    ; second, the distribution is a result of human-mediated dispersal related to agriculture and finally, the morphologically defined species may encompass several local endemic species. To test these hypotheses, three genes were sequenced from 82 isolates of G. mosseae originating from six continents......The arbuscular mycorrhizal fungus Glomus mosseae is commonly found in agricultural fields. The cosmopolitan species is found in Africa, Europe, America, Asia and Australia. Three hypotheses may explain this worldwide distribution: First, speciation occurred before the continents separated 120 Ma...

  2. Study on Network Marketing Strategies of Agricultural Products under Electronic Commerce Environment%电子商务环境下农产品网络营销策略研究

    王凤旭; 贾保先

    2012-01-01

    从网络营销的内涵入手,分析了我国农产品网络营销面临的问题,并从移动电子商务、物联网、客户关系管理等方面提出了 农产品网络营销的创新策略.%Starting from the connotation of network marketing, problems in network marketing of agricultural products were analyzed, finally, innovation strategies on network marketing of agricultural products from the aspects of mobile electronic commerce, the Internet of Things, customer relationship management, etc. Were put forward.

  3. Assessing effects of mitigation strategies for global climate change with an intertemporal model of the U.S. forest and agriculture sectors.

    Ralph J. Alig; Darius M. Adams; Bruce McCarl; J.M. Callaway; Steven. Winnett

    1997-01-01

    A model of product and land markets in U.S. forest and agricultural sectors is used to examine the private forest management, land use, and market implications of carbon sequestration policies implemented in a "least social cost" fashion. Results suggest: policy-induced land use changes may generate compensating land use shifts through markets: land use...

  4. Surface N balances and reactive N loss to the environment from global intensive agricultural production systems for the period 1970-2030

    Bouwman, A F; Drecht, G van; Hoek, K W van der

    2005-01-01

    Data for the historical years 1970 and 1995 and the FAO-Agriculture Towards 2030 projection are used to calculate N inputs (N fertilizer, animal manure, biological N fixation and atmospheric deposition) and the N export from the field in harvested crops and grass and grass consumption by grazing

  5. Comment 5 - agricultural response to climate change

    Ruttan, V.W.

    1992-01-01

    The complex interrelationship between global climate change and agricultural production will become one of the most significant policy issues, in both developed and developing countries, in the first decades of the 21st century. Global and regional climate change will modify both agricultural production capacity and its location. And the intensity of agricultural production will contribute to environmental change at both the regional and global levels

  6. The Influence of Information Technology Access on Agricultural Research in Nigeria.

    Jimba, Samuel Wodi; Atinmo, Morayo Ibironke

    2000-01-01

    Examines the relationship between accessibility to information technology and research publications among users of agricultural libraries in Nigeria. Discusses results of a questionnaire that investigated the use of electronic information resources and considers the effects of information technology and globalization on the economies of developing…

  7. Global and local characteristics of an autogenous single pass electron beam weld in thick gage UNS S41500 steel

    Sarafan, S., E-mail: Sheida.Sarafan.1@ens.etsmtl.ca [École de Technologie Supérieure, Montréal, Québec, Canada H3C 1K3 (Canada); National Research Council Canada, Aerospace, Montréal, Québec, Canada H3T 2B2 (Canada); Wanjara, P., E-mail: priti.wanjara@nrc-cnrc.gc.ca [National Research Council Canada, Aerospace, Montréal, Québec, Canada H3T 2B2 (Canada); Gholipour, J., E-mail: Javad.gholipour@nrc-cnrc.gc.ca [National Research Council Canada, Aerospace, Montréal, Québec, Canada H3T 2B2 (Canada); Champliaud, H., E-mail: henri.champliaud@etsmtl.ca [École de Technologie Supérieure, Montréal, Québec, Canada H3C 1K3 (Canada)

    2016-06-01

    Electron beam welding of UNS S41500, a low carbon martensitic stainless steel utilized in hydroelectric turbine manufacturing, was investigated by applying a single pass autogenous process to penetrate a section thickness of 72 mm without preheating. In the as-welded and post-weld heat treated conditions, the evolution in microhardness and microstructure across the weldments, as well as the global and local tensile properties, were evaluated. In the as-welded condition, assessment of the microhardness and the associated microstructure across the welds led to the identification of six regions, including the fusion zone, four heat affected zones and the base metal; each of these regions consisted of different phase constituents, such as tempered martensite, untempered martensite, delta ferrite and retained austenite. Post-weld heat treatment, undertaken to temper the untempered martensite in the as-welded microstructure, was effective in homogenizing the hardness across the weldment. The mechanical response of the welds, determined through tensile testing at room temperature with an automated non-contact three-dimensional deformation measurement system, indicated that the global tensile properties in the as-welded and post-weld heat treated conditions met the acceptance criteria in the ASME Section IX standard. Also, evaluation of the local tensile properties in the fusion and heat affected zones of the as-welded samples allowed a more comprehensive understanding of the strength and ductility associated with the different microstructures in the “composite” nature of the weldment. Fractographic analysis demonstrated dimpled features on the tensile fracture surfaces and failure was associated with debonding between the martensitic matrix and the secondary phases (such as delta ferrite and retained austenite) that resulted in the formation, growth and coalescence of voids into a macroscale crack.

  8. Research Frontiers of Agricultural Economics and Management

    Yang L.X.

    2004-01-01

    @@ Introduction The focus of research on Agricultural Economics and Management (AEM) has been switching from developed countries to developing countries. In important international journals on AEM such as "American Journal of Agricultural Economics" and "Agricultural Economics", the research objectives mainly focus on AEM problems in developing countries, e.g. the effects of globalization and liberalization on agricultural production in developing countries, and problems in agricultural resources and environmental protections in developing countries.

  9. Urban agriculture: Rosario, Argentina reaps the benefits | IDRC ...

    2010-10-06

    Oct 6, 2010 ... Urban agriculture: Rosario, Argentina reaps the benefits ... Urban agriculture has become a permanent part of the city's fabric, ... The Global Roundtable of Chief Economists highlights global trends and best practices to help ...

  10. Genetically Modified Crops: Towards Agricultural Growth, Agricultural Development, or Agricultural Sustainability?

    Azadi, Hossein; Ghanian, Mansour; Ghuchani, Omid M.; Rafiaani, Parisa; Taning, Clauvis N. T.; Hajivand, Roghaye Y.; Dogot, Thomas

    2015-01-01

    The present debate on how to increase global food production in a sustainable way has focused on arguments over the pros and cons of genetically modified (GM) crops. Scientists in both public and private sectors clearly regard GM technology as a major new set of tools, whereas industry sees it as an opportunity for increased profits. However, it remains questionable whether GM crops can contribute to agricultural growth, agricultural development, and agricultural sustainability. This review p...

  11. Assessing effects of mitigation strategies for global climate change with an intertemporal model of the U.S. forest and agriculture sectors

    Alig, R.; Adams, D.; McCarl, B.; Callaway, J.M.; Winnett, S.

    1997-01-01

    A model of product and land markets in US forest and agricultural sectors is used to examine the private forest management, land use, and market implications of carbon sequestration policies implemented in a 'least social cost' fashion. Results suggest: policy-induced land use changes may generate compensating land use shifts through markets; land use shifts to meet policy targets need not be permanent; implementation of land use and management changes in a smooth or regular fashion over time may not be optimal; and primary forms of adjustment to meet carbon policy targets involve shifting of land from agriculture to forest and more intensive forest management in combinations varying with the policy target. 3 figs., 3 tabs., 22 refs

  12. Comparison of mapped and measured total ionospheric electron content using global positioning system and beacon satellite observations

    Lanyi, G.E.; Roth, T.

    1988-01-01

    Total ionospheric electron contents (TEC) were measured by global positioning system (GPS) dual-frequency receivers developed by the Jet Propulsion Laboratory. The measurements included P-code (precise ranging code) and carrier phase data for six GPS satellites during multiple five-hour observing sessions. A set of these GPS TEC measurements were mapped from the GPS lines of sight to the line of sight of a Faraday beacon satellite by statistically fitting the TEC data to a simple model of the ionosphere. The mapped GPS TEC values were compared with the Faraday rotation measurements. Because GPS transmitter offsets are different for each satellite and because some GPS receiver offsets were uncalibrated, the sums of the satellite and receiver offsets were estimated simultaneously with the TEC in a least squares procedure. The accuracy of this estimation procedure is evaluated indicating that the error of the GPS-determined line of sight TEC can be at or below 1 x 10 to the 16th el/sq cm. Consequently, the current level of accuracy is comparable to the Faraday rotation technique; however, GPS provides superior sky coverage. 15 references

  13. Soil physics and agriculture

    Dourado Neto, Durval; Reichardt, K.; Sparovek, G.

    2004-01-01

    The approach that integrates knowledge is very important in Agriculture, including farmers, extensionists, researchers and professors. The specialists, including the soil physicists, must have a global view of the crop production system. Therefore, their expertise can be useful for the society. The Essence of scientific knowledge is its practical application. The soil physics is a sub area of Agronomy. There are many examples of this specific subject related to Agriculture. This paper will focus, in general, the following cases: (i) erosion, environmental pollution and human health, (ii) plant population and distribution, soil fertility, evapo-transpiration and soil water flux density, and (iii) productivity, effective root depth, water deficit and yield

  14. Electronics

    2001-01-01

    International Acer Incorporated, Hsin Chu, Taiwan Aerospace Industrial Development Corporation, Taichung, Taiwan American Institute of Taiwan, Taipei, Taiwan...Singapore and Malaysia .5 - 4 - The largest market for semiconductor products is the high technology consumer electronics industry that consumes up...Singapore, and Malaysia . A new semiconductor facility costs around $3 billion to build and takes about two years to become operational

  15. Agriculture Sectors

    The Agriculture sectors comprise establishments primarily engaged in growing crops, raising animals, and harvesting fish and other animals. Find information on compliance, enforcement and guidance on EPA laws and regulations on the NAICS 111 & 112 sectors.

  16. Agriculture: About EPA's National Agriculture Center

    EPA's National Agriculture Center (Ag Center), with the support of the United States Department of Agriculture, serves growers, livestock producers, other agribusinesses, and agricultural information/education providers.

  17. Sensor Architecture and Task Classification for Agricultural Vehicles and Environments

    Francisco Rovira-Más

    2010-12-01

    Full Text Available The long time wish of endowing agricultural vehicles with an increasing degree of autonomy is becoming a reality thanks to two crucial facts: the broad diffusion of global positioning satellite systems and the inexorable progress of computers and electronics. Agricultural vehicles are currently the only self-propelled ground machines commonly integrating commercial automatic navigation systems. Farm equipment manufacturers and satellite-based navigation system providers, in a joint effort, have pushed this technology to unprecedented heights; yet there are many unresolved issues and an unlimited potential still to uncover. The complexity inherent to intelligent vehicles is rooted in the selection and coordination of the optimum sensors, the computer reasoning techniques to process the acquired data, and the resulting control strategies for automatic actuators. The advantageous design of the network of onboard sensors is necessary for the future deployment of advanced agricultural vehicles. This article analyzes a variety of typical environments and situations encountered in agricultural fields, and proposes a sensor architecture especially adapted to cope with them. The strategy proposed groups sensors into four specific subsystems: global localization, feedback control and vehicle pose, non-visual monitoring, and local perception. The designed architecture responds to vital vehicle tasks classified within three layers devoted to safety, operative information, and automatic actuation. The success of this architecture, implemented and tested in various agricultural vehicles over the last decade, rests on its capacity to integrate redundancy and incorporate new technologies in a practical way.

  18. Agriculture applications

    Bastidas O, G.; Obando D, R.; Alvarez F, A.

    1989-01-01

    Since its beginnings, the Agricultural Area had a selected research team involved in the development of different agricultural techniques. Currently, there are two main branches engaged in the solution of agricultural problems: Soil fertility and induced mutations. Soil fertility: Within this branch, studies on soil nutrients and availability of water and light resources, have been made by using isotope methods. In the near future studies on nitrogen and potassium content in potato, rice and wheat plantations will be held. Induced mutations: The main objective of this team is to obtain through radioinduced mutations, as well as in vitro growth, improved rice and other cereal seeds to be used under hostile environmental conditions. The further goal will be to develop new genotypes straight from the mutants or by utilization of this material as breeding materials in interchange programs

  19. Agricultural sector

    Ainul Hayati Daud; Hazmimi Kasim

    2010-01-01

    The applications of nuclear technology in agriculture sector cover the use of the technology at every aspects of agricultural activity, starting from the seed to harvesting as well as the management of plantations itself. In this sector, a total of 55 entities comprising 17 public agencies and 38 private companies were selected for the study. Almost all, 91 % of them are located in Peninsular Malaysia; the rest operates in Sabah and Sarawak. The findings of the study in the public agencies and private companies are presented in the next sections. (author)

  20. Agricultural methanization

    2011-01-01

    After having briefly outlined the interest of the development of methanization of agricultural by-products in the context of struggle against climate change, and noticed that France is only now developing this sector as some other countries already did, this publication describes the methanization process also called anaerobic digestion, which produces a digestate and biogas. Advantages for the agriculture sector are outlined, as well as drawbacks and recommendations (required specific technical abilities, an attention to the use of energetic crops, an improved economic balance which still depends on public subsidies, competition in the field of waste processing). Actions undertaken by the ADEME are briefly evoked

  1. Local and global properties of eigenfunctions and one-electron densities of Coulombic Schrödinger operators

    Fournais, Søren; Hoffmann-Ostenhof, Maria; Hoffmann-Ostenhof, Thomas

    2008-01-01

    We review recent results by the authors on the regularity of molecular eigenfunctions ψ and their corresponding one-electron densities ρ, as well as of the spherically averaged one-electron atomic density ρ. Furthermore, we prove an exponentially decreasing lower bound for ρ in the case when...

  2. Environmental assessment of Swedish agriculture

    Engstroem, Rebecka; Finnveden, Goeran; Wadeskog, Anders

    2007-01-01

    This article describes an environmental assessment of Swedish agriculture, including upstream and downstream effects. The analysis is based on environmentally extended input-output analysis, but it is also supplemented with data from other sources. The analysis shows that direct effects by the Swedish agriculture are the most important, while indirect effects from other sources including mobile and impacts abroad are also considerable. The most important impacts from Swedish agriculture according to the analysis are eutrophication, global warming and resource use. The agricultural sector produces a large share of the Swedish emissions causing both global warming and eutrophication. In addition, current agricultural practice causes problems with loss of biodiversity. The most important actors in the sector are agriculture itself, but also all actors using fossil fuels: primarily the transport sector and the energy sector. In addition, consumers are important since they can influence the composition of agricultural production. The analysis shows the importance of including upstream and downstream effects when analysing the environmental impacts from a sector. (author)

  3. Biofuels and their global influence on land availability for agriculture and nature. A first evaluation and a proposal for further fact finding

    Bergsma, G.; Kampman, B.; Croezen, H.; Sevenster, M.

    2007-02-15

    Unilever asked CE to make a script for a strategic study to provide insight in the effects of the various competing sectors, and in the limitations of land availability with respect to the production of biomass for biofuels. Furthermore, this strategic study should provide recommendations on how to proceed on these issues, aimed at governments and other stakeholders in the EU and the USA. This report is the result of this preliminary study, and provides the necessary background information and the script for further work. This report is build up along the following lines: Chapter 2: An overview of the main biofuel market developments, including biofuel policies and drivers, with a focus on the EU and the USA. Chapter 3: A discussion of the main issues and developments regarding the competition between biofuels, the food industry and biodiversity. Chapter 4: Overview of the relevant literature regarding the potential availability of biomass, the competition with the food sector and potential effects of increased use of biofuels on biodiversity. Chapter 5: Conclusions and recommendations for further studies, the script for further work. Chapter 6: Draft policy suggestions. A more extensive literature overview can be found in Annex A, the main actors in the biofuels land availability discussions are listed in Annex B. Annex C provides an overview of the global vegetable oil and oilseed markets.

  4. The World of Organic Agriculture (Session at the BIOFACH 2017)

    Willer, Helga; Lernoud, Julia; Huber, Beate; Sahota, Amarjit

    2017-01-01

    The World of Organic Agriculture 2017 www.organic-world.net Presentations at the Session "The World of Organic Agriculture" - Organic Agriculture Worldwide 2017: Current Statistics (Dr. Helga Willer, Julia Lernoud) - Global survey on Voluntary Sustainability Standards (VSS) (Julia Lernoud, Dr. Helga Willer) - Regulations and Certification Emerging Trends 2017 (Beate Huber) - Global Organic Food & Drink: Market Update & Challenges (Amarjit Sahota)

  5. Agriculture and environmental pollution

    Hafiz, A.

    1999-01-01

    Agriculture came into existence about 15,000 years ago and passed through different stages of food gathering, hunting, hoe culture and sedentary agriculture followed by modem agriculture. It began simultaneously in five world centers concentrating on different crops, most suited to those areas. It was also effected by changes in climate influenced by temperature, drought and magnitude of precipitation, which determined the distribution of populations and occupation of the people. With the increase in population the need for food also progressively increased, necessitating introduction of modern agriculture to enhance production. The indiscriminate and faulty use of advanced technology has added its share in the, destruction of environment. The two approaches that contributed to this were horizontal wand vertical expansion. The former results in deforestation, desertification, soil erosion, land salting and water logging as well as the frequent occurrence of droughts and famines, the latter destroyed soil structure and fertility through decreased microbial populations, fish culture, wildlife and bird sanctuaries, in addition to hazards in human beings and fauna. The real culprit of this global devastation is the high population growth rate, which needs to be contained at safer levels, coupled with sensible use of inputs to produce needed quantities of food and fiber. (author)

  6. Agricultural problems

    Bickerton, George E.

    1997-01-01

    Although there were not reasons to deplore against major activity release from any of the 110 industrial reactors authorized to operate in US, the nuclear incident that occurred at the Three Mile Island Plant in 1979 urged the public conscience toward the necessity of readiness to cope with events of this type. The personnel of the Emergency Planning Office functioning in the frame of US Department of Agriculture has already participated in around 600 intervention drillings on a federal, local or state scale to plan, test or asses radiological emergency plans or to intervene locally. These exercises allowed acquiring a significant experience in elaborating emergency plans, planning the drillings, working out scenarios and evaluation of the potential impact of accidents from the agricultural point of view. We have also taken part in different international drillings among which the most recent are INEX 1 and RADEX 94. We have found on these occasions that the agricultural problems are essential preoccupations in most of the cases no matter if the context is international, national, local or of state level. The paper poses problems specifically related to milk, fruits and vegetables, soils, meat and meat products. Finally the paper discusses issues like drilling planning, alarm and notification, sampling strategy, access authorizations for farmers, removing of contamination wastes. A number of social, political and economical relating problems are also mentioned

  7. Global Coupled Model Studies of The Jovian Upper Atmosphere In Response To Electron Precipitation and Ionospheric Convection Within The Auroral Region.

    Millward, G. H.; Miller, S.; Aylward, A. D.

    The Jovian Ionospheric Model (JIM) is a global three-dimensional model of Jupiter's coupled ionosphere and thermosphere, developed at University College London. Re- cently, the model has been used to investigate the atmospheric response to electron precipitation within the high-latitude auroral region. A series of simulations have been performed in which the model atmosphere is subjected to monochromatic precipitat- ing electrons of varying number flux and initial energy and, in addition, to various degrees of ionospheric convection. The auroral ionospheric conductivity which re- sults is shown to be strongly non-linear with respect to the incoming electron energy, with a maximum observed for incident particles of initial energy 60 KeV. Electrons with higher energies penetrate the thermospheric region completely, whilst electrons of lower energy (say 10 keV) produce ionisation at higher levels in the atmosphere which are less less condusive to the creation of ionospheric conductivity. Studies of the thermospheric winds with the auroral region show that zonal winds (around the auroral oval) can attain values of around 70% of the driving zonal ion velocity. Also the results show that these large neutral winds are limited in vertical extent to the region of large ionospheric conductivity, tailing off markedly at altitudes above this. The latest results from this work will be presented, and the implications for Jovian magnetospheric-ionospheric coupling will be discussed.

  8. Agroecology and Sustainable Agriculture

    Fabio Caporali

    Full Text Available In the framework of the 16th National Meeting of the Italian Ecological Society (“Global Change, Ecological Diversity and Sustainability”, University of Tuscia, Viterbo, 19-22 September 2006, a symposium was devoted to “Agroecology and Sustainable Development”. A major goal of this symposium was to contribute to keeping the dialogue among the experts of the various disciplines alive. Sustainability of agriculture is a challenge for society world wide. Universities and society as a whole have a responsibility in re-examining current perception of nature, of the world and of human society in the light of natural resources depletion, increasing pollution and social inequalities. The urgency to address sustainability issues is increasingly being reflected in the manner in which institutions of higher education around the world are giving priority to the teaching, research and practice of sustainability. The University of Tuscia is involved in international initiatives concerning teaching and research in Agroecology and Sustainable Agriculture.

  9. 7 CFR 2.68 - Administrator, National Agricultural Statistics Service.

    2010-01-01

    ....S.C. 3318). (6) Enter cost-reimbursable agreements relating to agricultural research and statistical... promote and support the development of a viable and sustainable global agricultural system. Such work may... 7 Agriculture 1 2010-01-01 2010-01-01 false Administrator, National Agricultural Statistics...

  10. Soil Erosion and Agricultural Sustainability

    Montgomery, D. R.

    2009-04-01

    Data drawn from a global compilation of studies support the long articulated contention that erosion rates from conventionally plowed agricultural fields greatly exceed rates of soil production, erosion under native vegetation, and long-term geological erosion. Whereas data compiled from around the world show that soil erosion under conventional agriculture exceeds both rates of soil production and geological erosion rates by up to several orders of magnitude, similar global distributions of soil production and geological erosion rates suggest an approximate balance. Net soil erosion rates in conventionally plowed fields on the order of 1 mm/yr can erode typical hillslope soil profiles over centuries to millennia, time-scales comparable to the longevity of major civilizations. Well-documented episodes of soil loss associated with agricultural activities date back to the introduction of erosive agricultural methods in regions around the world, and stratigraphic records of accelerated anthropogenic soil erosion have been recovered from lake, fluvial, and colluvial stratigraphy, as well as truncation of soil stratigraphy (such as truncated A horizons). A broad convergence in the results from studies based on various approaches employed to study ancient soil loss and rates of downstream sedimentation implies that widespread soil loss has accompanied human agricultural intensification in examples drawn from around the world. While a broad range of factors, including climate variability and society-specific social and economic contexts — such as wars or colonial relationships — all naturally influence the longevity of human societies, the ongoing loss of topsoil inferred from studies of soil erosion rates in conventional agricultural systems has obvious long-term implications for agricultural sustainability. Consequently, modern agriculture — and therefore global society — faces a fundamental question over the upcoming centuries. Can an agricultural system

  11. Coal lumps vs. electrons: How do Chinese bulk energy transport decisions affect the global steam coal market?

    Paulus, Moritz; Trüby, Johannes

    2011-01-01

    This paper demonstrates the ways in which different Chinese bulk energy transport strategies affect the future steam coal market in China and in the rest of the world. An increase in Chinese demand for steam coal will lead to a growing need for additional domestic infrastructure as production hubs and demand centers are spatially separated, and domestic transport costs could influence the future Chinese steam coal supply mix. If domestic transport capacity is available only at elevated costs, Chinese power generators could turn to the global trade markets and further increase steam coal imports. Increased Chinese imports could then yield significant changes in steam coal market economics on a global scale. This effect is analyzed in China, where coal is mainly transported by railway, and in another setting where coal energy is transported as electricity. For this purpose, a spatial equilibrium model for the global steam coal market has been developed. One major finding is that if coal is converted into electricity early in the supply chain, worldwide marginal costs of supply are lower than if coal is transported via railway. Furthermore, China's dependence on international imports is significantly reduced in this context. Allocation of welfare changes particularly in favor of Chinese consumers while rents of international producers decrease.

  12. Resolving Conflicts between Agriculture and the Natural Environment.

    Andrew J Tanentzap

    Full Text Available Agriculture dominates the planet. Yet it has many environmental costs that are unsustainable, especially as global food demand rises. Here, we evaluate ways in which different parts of the world are succeeding in their attempts to resolve conflict between agriculture and wild nature. We envision that coordinated global action in conserving land most sensitive to agricultural activities and policies that internalise the environmental costs of agriculture are needed to deliver a more sustainable future.

  13. Simulation and characterization of the RF system and global stability analysis at the REGAE linear electron accelerator

    Mayet, Frank

    2012-12-01

    LAOLA (LAboratory for Laser- and beam-driven plasma Acceleration), is a collaboration between groups from DESY and the University of Hamburg. Its mission is to complement basic research in the relatively new field of plasma wakefield acceleration (PWA) by an explicit combination with DESY's conventional, modern accelerators. The linear electron accelerator REGAE is designed to produce sub 10 fs low charge electron bunches with ultra-low emittance at a repetition rate of 50 Hz. The planned experiments include femtosecond electron diffraction (R.J. Dwayne Miller), as well as the probing of laser induced plasma wakefields with well characterized bunches (LAOLA). They all require high bunch time of flight stability down to 10 fs. The REGAE machine consists of two RF cavities, both fed by a single klystron. While the first one - the gun cavity - is used for acceleration of the electrons, the second one - the buncher cavity - can be used to reduce the electron bunch length. This scheme only works for a specific RF phase relation between the two cavities. This thesis is split into two parts. In the first one the implications of the unique two cavity design on day-to-day machine operation are analyzed. To this end an analytical model of the RF system is developed, which is necessary for understanding how to individually adjust the cavity phases. In the second part the influence of the setup on time of flight stability is discussed with an emphasis on phase jitter compensation. RF phase stability measurements reveal that the current machine setup allows for a time of flight stability down to 50 fs right after the gun.

  14. Simulation and characterization of the RF system and global stability analysis at the REGAE linear electron accelerator

    Mayet, Frank

    2012-12-15

    LAOLA (LAboratory for Laser- and beam-driven plasma Acceleration), is a collaboration between groups from DESY and the University of Hamburg. Its mission is to complement basic research in the relatively new field of plasma wakefield acceleration (PWA) by an explicit combination with DESY's conventional, modern accelerators. The linear electron accelerator REGAE is designed to produce sub 10 fs low charge electron bunches with ultra-low emittance at a repetition rate of 50 Hz. The planned experiments include femtosecond electron diffraction (R.J. Dwayne Miller), as well as the probing of laser induced plasma wakefields with well characterized bunches (LAOLA). They all require high bunch time of flight stability down to 10 fs. The REGAE machine consists of two RF cavities, both fed by a single klystron. While the first one - the gun cavity - is used for acceleration of the electrons, the second one - the buncher cavity - can be used to reduce the electron bunch length. This scheme only works for a specific RF phase relation between the two cavities. This thesis is split into two parts. In the first one the implications of the unique two cavity design on day-to-day machine operation are analyzed. To this end an analytical model of the RF system is developed, which is necessary for understanding how to individually adjust the cavity phases. In the second part the influence of the setup on time of flight stability is discussed with an emphasis on phase jitter compensation. RF phase stability measurements reveal that the current machine setup allows for a time of flight stability down to 50 fs right after the gun.

  15. Local versus global electronic properties of chalcopyrite alloys: X-ray absorption spectroscopy and ab initio calculations

    Sarmiento-Pérez, Rafael; Botti, Silvana, E-mail: silvana.botti@univ-lyon1.fr [Institut Lumière Matière and ETSF, UMR5306 Université Lyon 1-CNRS, Université de Lyon, F-69622 Villeurbanne Cedex (France); Schnohr, Claudia S., E-mail: c.schnohr@uni-jena.de [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Lauermann, Iver [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Rubio, Angel [Nano-Bio Spectroscopy Group and ETSF Scientific Development Centre, Departamento de Física de Materiales, Centro de Física de Materiales CSIC-MPC and DIPC, Universidad del País Vasco UPV/EHU, Avenida de Tolosa 72, E-20018 San Sebastián (Spain); Fritz Haber Institute, Max Planck Society, Faradayweg 4-6, 14195 Berlin (Germany); Johnson, Benjamin, E-mail: benjamin.johnson@alumni.tu-berlin.de [Fritz Haber Institute, Max Planck Society, Faradayweg 4-6, 14195 Berlin (Germany)

    2014-09-07

    Element-specific unoccupied electronic states of Cu(In, Ga)S{sub 2} were studied as a function of the In/Ga ratio by combining X-ray absorption spectroscopy with density functional theory calculations. The S absorption edge shifts with changing In/Ga ratio as expected from the variation of the band gap. In contrast, the cation edge positions are largely independent of composition despite the changing band gap. This unexpected behavior is well reproduced by our calculations and originates from the dependence of the electronic states on the local atomic environment. The changing band gap arises from a changing spatial average of these localized states with changing alloy composition.

  16. Innovation Dynamics and Agricultural Biotechnology in Kenya

    H.S. Odame (Hannington)

    2014-01-01

    markdownabstract__Abstract__ Modern agricultural biotechnology is being flaunted in global policy de-bates as a powerful technology for improving agricultural productivity and food security in Africa. These debates often conveniently lump to-gether the controversial GMOs and the less contentious

  17. Agriculture and climate change

    Abelson, P.H.

    1992-01-01

    How will increases in levels of CO 2 and changes in temperature affect food production? A recently issued report analyzes prospects for US agriculture 1990 to 2030. The report, prepared by a distinguished Task Force, first projects the evolution of agriculture assuming increased levels of CO 2 but no climate change. Then it deals with effects of climate change, followed by a discussion of how greenhouse emissions might be diminished by agriculture. Economic and policy matters are also covered. How the climate would respond to more greenhouse gases is uncertain. If temperatures were higher, there would be more evaporation and more precipitation. Where would the rain fall? That is a good question. Weather in a particular locality is not determined by global averages. The Dust Bowl of the 1930s could be repeated at its former site or located in another region such as the present Corn Belt. But depending on the realities at a given place, farmers have demonstrated great flexibility in choosing what they may grow. Their flexibility has been increased by the numerous varieties of seeds of major crops that are now available, each having different characteristics such as drought resistance and temperature tolerance. In past, agriculture has contributed about 5% of US greenhouse gases. Two large components have involved emissions of CO 2 from farm machinery and from oxidation of organic matter in soil due to tillage. Use of diesel fuel and more efficient machinery has reduced emissions from that source by 40%. In some areas changed tillage practices are now responsible for returning carbon to the soil. The report identifies an important potential for diminishing net US emissions of CO 2 by growth and utilization of biomass. Large areas are already available that could be devoted to energy crops

  18. Global Journal of Agricultural Sciences: Advanced Search

    Search tips: Search terms are case-insensitive; Common words are ignored; By default only articles containing all terms in the query are returned (i.e., AND is implied); Combine multiple words with OR to find articles containing either term; e.g., education OR research; Use parentheses to create more complex queries; e.g., ...

  19. A new global empirical model of the electron temperature with the inclusion of the solar activity variations for IRI

    Truhlík, Vladimír; Bilitza, D.; Třísková, Ludmila

    2012-01-01

    Roč. 64, č. 6 (2012), s. 531-543 ISSN 1343-8832 R&D Projects: GA AV ČR IAA300420603; GA ČR GAP209/10/2086 Grant - others: NASA (US) NNH06CD17C. Institutional support: RVO:68378289 Keywords : Electron temperature * ionosphere * plasmasphere * empirical models * International Reference Ionosphere Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.921, year: 2012 http://www.terrapub.co.jp/journals/EPS/abstract/6406/64060531.html

  20. THE INCREASE THE FERTILITY OF AGRICULTURAL LAND AND MONITORING OF THIS LAND ARE THE NECESSARY CONDITIONS FOR ENSURING FOOD SECURITY

    Stanislav Lipski

    2014-01-01

    Full Text Available The availability of suitable land for agricultural activities and the quality of this land are the main factors determining the maximum number of the population of the planet. In the Russian Federation is 8.9 % of the world's arable land. But the natural-climatic conditions of Russia are rather complicated from the point of view of agricultural production. Therefore, the special significance is having the land reclamation and the measures of enhance soil fertility. Meanwhile, the share of reclaimed land in Russia is much lower than by our competitors in the global food market. From 2014 the state is starting the realization of the Federal target program of land reclamation agricultural purposes. The information systems about the land in the period of the agrarian and land transformation and development of a market turnover of land (including agricultural were attending more of legal aspects and of technical side (technology, electronic information exchange rather than on the characteristics of the land as the main means of production. Currently agricultural producers are demanding the land information. But the modern systems, containing information on agricultural lands, are not enough characterizing this land as a productive resource. It is negatively affects the development of agriculture. Now the Ministry of agriculture of Russia develops the proposals on establishment of a special system of monitoring agricultural lands. However, this system is created very slowly.

  1. A practical approach to implementing CSR in the electronics industry: global supply chain management focusing on corporate social responsibility

    Jamieson, S.; Rice, G. [Panasonic Mobile Communication Development of Europe (PMCDE) (United Kingdom); Hilbron, R. [Vodafone Group Plc (United Kingdom); Clift, R.; Wehrmeyer, W. [Centre for Environmental Strategy, Univ. of Surrey (United Kingdom)

    2004-07-01

    This paper covers a co-operative investigation undertaken by Vodafone Plc and Panasonic Mobile Communications (PMC); applying Corporate Social Responsibility (CSR) principles in an actual assessment of the supply chain. Together, we carried out an informal CSR assessment on a Panasonic mobile phone handset manufacturing facility in the Philippines. CSR issues vary with geographical and cultural region. By researching CSR concerns typically encountered in the region, focal points of business performance for the Philippines investigation were identified. These are detailed in the paper. A key benefit from this assessment was the increased understanding of the management of the indirect CSR issues within the supply chain. This understanding is essential when developing a system for CSR supply-chain management. This paper will describe this exercise and its findings and will suggest future steps necessary to successfully integrate CSR principles though the global supply chain. (orig.)

  2. Recent Advances In Agricultural Information Dissemination ...

    ... agricultural scientists and practitioners have unlimited access to over 500 journals on agriculture and related disciplines. Against this background, the article examines the concept of AGORA/TEEAL, the merits of electronic referencing, the limitations imposed on users in low income countries and recommended measures ...

  3. BIODYNAMIC AGRICULTURE - ECO-FRIENDLY AGRICULTURAL PRACTICE

    Veselka Vlahova

    2015-06-01

    Full Text Available Biodynamic agriculture is undoubtedly the oldest organized agricultural movement in the world. It is considered as an organic agricultural farming approach and determined as the oldest organized alternative agricultural movement in the world. In 1924 Rudolf Steiner – an Austrian natural scientist and philosopher, carried out a series of eight lectures in Koberwitz, currently Kobierzyce- Poland, where he formulated his visions on changes in agriculture and revealed his spiritual and scientific concepts about the connection between nature and agriculture by determining the important role of agriculture for the future of humanity and thus he became known as “the father of anthroposophy”. The great ecological effect of the application of the biodynamic agriculture is expressed in soil preservation and preservation of the living organisms in the soil, as well as maintenance of the natural balance in the vegetable and animal kingdom.

  4. Performance of a Bounce-Averaged Global Model of Super-Thermal Electron Transport in the Earth's Magnetic Field

    McGuire, Tim

    1998-01-01

    In this paper, we report the results of our recent research on the application of a multiprocessor Cray T916 supercomputer in modeling super-thermal electron transport in the earth's magnetic field. In general, this mathematical model requires numerical solution of a system of partial differential equations. The code we use for this model is moderately vectorized. By using Amdahl's Law for vector processors, it can be verified that the code is about 60% vectorized on a Cray computer. Speedup factors on the order of 2.5 were obtained compared to the unvectorized code. In the following sections, we discuss the methodology of improving the code. In addition to our goal of optimizing the code for solution on the Cray computer, we had the goal of scalability in mind. Scalability combines the concepts of portabilty with near-linear speedup. Specifically, a scalable program is one whose performance is portable across many different architectures with differing numbers of processors for many different problem sizes. Though we have access to a Cray at this time, the goal was to also have code which would run well on a variety of architectures.

  5. A global assessment of market accessibility and market influence for global environmental change studies

    Verburg, P.H.; Ellis, E.C.; Letourneau, A.

    2011-01-01

    Markets influence the global patterns of urbanization, deforestation, agriculture and other land use systems. Yet market influence is rarely incorporated into spatially explicit global studies of environmental change, largely because consistent global data are lacking below the national level. Here

  6. Urban Agriculture Guide

    Visser, A.J.; Jansma, J.E.; Dekking, A.J.G.; Klieverik, M.J.M.

    2007-01-01

    The Urban Agriculture Guide describes the experiences, learning moments, tips and tricks of those involved in the initiatives of urban agriculture and an indication is provided of what is required to develop urban agriculture further in the Netherlands

  7. New global electron density observations from GPS-RO in the D- and E-Region ionosphere

    Wu, Dong L.

    2018-06-01

    A novel retrieval technique is developed for electron density (Ne) in the D- and E-region (80-120 km) using the high-quality 50-Hz GPS radio occultation (GPS-RO) phase measurements. The new algorithm assumes a slow, linear variation in the F-region background when the GPS-RO passes through the D- and E-region, and extracts the Ne profiles at 80-130 km from the phase advance signal caused by Ne. Unlike the conventional Abel function, the new approach produces a sharp Ne weighting function in the lower ionosphere, and the Ne retrievals are in good agreement with the IRI (International Reference Ionosphere) model in terms of monthly maps, zonal means and diurnal variations. The daytime GPS-RO Ne profiles can be well characterized by the α-Chapman function of three parameters (NmE, hmE and H), showing that the bottom of E-region is deepening and sharpening towards the summer pole. At high latitudes the monthly GPS-RO Ne maps at 80-120 km reveal clear enhancement in the auroral zones, more prominent at night, as a result of energetic electron precipitation (EEP) from the outer radiation belt. The D-/E-region auroral Ne is strongly correlated with Kp on a daily basis. The new Ne data allow further comprehensive analyses of the sporadic E (Es) phenomena in connection with the background Ne in the E-region. The layered (2-10 km) and fluctuated (Layer than Ne_Pert, are extracted with respect to the background Ne_Region on a profile-by-profile basis. The Ne_Layer component has a strong but highly-refined peak at ∼105 km, with an amplitude smaller than Ne_Region approximately by an order of magnitude. The Ne_Pert component, which was studied extensively in the past, is ∼2 orders of magnitude weaker than Ne_Layer. Both Ne_Layer and Ne_Pert are subject to significant diurnal and semidiurnal variations, showing downward progression with local time in amplitude. The 11-year solar cycle dominates the Ne interannual variations, showing larger Ne_Region and Ne_Layer but smaller

  8. Design and implementation of an electronic architecture for an agricultural mobile robot Projeto e implementação de uma arquitetura eletrônica para um robô agrícola móvel

    Eduardo P. Godoy

    2010-11-01

    Full Text Available A current trend in the agricultural area is the development of mobile robots and autonomous vehicles for remote sensing. One of the major challenges in the design of these robots is the development of the electronic architecture for the integration and control of the devices. Recent applications of mobile robots have used distributed architectures based on communication networks. A technology that has been widely used as an embedded network is the CAN protocol. The implementation of the ISO11783 standard represents the standardization of the CAN for application in agricultural machinery. This work describes the design and implementation of an electronic architecture for a mobile agricultural robot. The discussions are focused on the developed architecture, the wireless communication system for teleoperation and the distributed control based on CAN protocol and ISO11783. The evaluation of the developed system was based on the analysis of performance parameters such as motor response and architectural time delay obtained with the robot operation. The results show that the developed architecture can be applied for teleoperation and distributed control of agricultural robots meeting the requirements for accurate robot movement and an acceptable response time for robot control commands and supervision.Uma tendência atual na área agrícola é o desenvolvimento de robôs móveis e veículos autônomos para sensoriamento remoto. Um dos grandes desafios no projeto desses robôs é o desenvolvimento da arquitetura eletrônica para integração e controle dos dispositivos. Em aplicações recentes desses robôs tem-se utilizado arquiteturas distribuídas baseadas em redes de comunicação. Uma tecnologia amplamente usada como rede embarcada é o protocolo CAN. A implementação da norma ISO11783 representa a padronização do protocolo CAN para aplicações agrícolas. Este artigo apresenta o projeto e a implementação de uma arquitetura eletr

  9. Teaching international animal agriculture.

    Lukefahr, S D

    1999-11-01

    Students who major in animal science at U.S. institutions are generally exposed to a curriculum that emphasizes commercial, large-scale production of the few traditional food animals: cattle, poultry, sheep, and swine. Globally, most farmers live in lesser-developed countries under limited-resource conditions of land, feed supplies, equipment, and capital. The promotion of commercial animal production enterprises may not be appropriate for such farms because it can subject farmers to considerable economic risk. Rather, use of limited numbers of large livestock, locally adapted breeds, or smaller livestock (e.g., ducks, goats, guinea pigs, and rabbits) may be more appropriate under subsistence, integrated farming systems. In this global context, a course in international animal agriculture has been taught for 15 yr to undergraduate and graduate students. The course consists of a review of traditional and potential livestock species well suited for impoverished families on small farms and methods to implement sustainable livestock projects, including feasibility, design, implementation, monitoring, and evaluation stages. To enhance student understanding, global food issues and challenges are illustrated with case studies. A term paper is also assigned for which students choose three suitable livestock species or local breeds that would be complementary on a small crop farm (< 5 ha). Daily dietary requirements of protein and energy per family member are calculated. Itemized enterprise budgets and production tables are prepared. Early in the course, the general consensus of students was that people who are malnourished and live in poverty have low personal ambition and motivation, and that their problems should be amenable to solution by application of American technology and expertise. The course modifies such attitudes and enhances a student's critical thinking and problem-solving abilities and communication skills. Course evaluations indicated that students believed

  10. Agricultural SWOT analysis and wisdom agriculture design of chengdu

    Zhang, Qian; Chen, Xiangyu; Du, Shaoming; Yin, Guowei; Yu, Feng; Liu, Guicai; Gong, Jin; Han, Fujun

    2017-08-01

    According to the status of agricultural information, this paper analyzed the advantages, opportunities and challenges of developing wisdom agriculture in Chengdu. By analyzed the local characteristics of Chengdu agriculture, the construction program of Chengdu wisdom agriculture was designed, which was based on the existing agricultural informatization. The positioning and development theme of Chengdu agriculture is leisure agriculture, urban agriculture and quality agriculture.

  11. Weather extremes could affect agriculture

    Balcerak, Ernie

    2012-05-01

    As Earth's climate warms, agricultural producers will need to adapt. Changes, especially increases in extreme events, are already having an impact on food production, according to speakers at a 1 May session on agriculture and food security at the AGU Science Policy Conference. Christopher Field, director of the Department of Global Ecology at the Carnegie Institution for Science of Washington, D. C., pointed out the complex factors that come into play in understanding food security, including spatially varying controls and stresses, incomplete models, and the potential for threshold responses. Factors that are likely to cause problems include increasing population; increasing preference for meat, which needs more land and energy inputs to produce; climate change; and increasing use of agricultural lands for biomass energy.

  12. Methylotrophic bacteria in sustainable agriculture.

    Kumar, Manish; Tomar, Rajesh Singh; Lade, Harshad; Paul, Diby

    2016-07-01

    Excessive use of chemical fertilizers to increase production from available land has resulted in deterioration of soil quality. To prevent further soil deterioration, the use of methylotrophic bacteria that have the ability to colonize different habitats, including soil, sediment, water, and both epiphytes and endophytes as host plants, has been suggested for sustainable agriculture. Methylotrophic bacteria are known to play a significant role in the biogeochemical cycle in soil ecosystems, ultimately fortifying plants and sustaining agriculture. Methylotrophs also improve air quality by using volatile organic compounds such as dichloromethane, formaldehyde, methanol, and formic acid. Additionally, methylotrophs are involved in phosphorous, nitrogen, and carbon cycling and can help reduce global warming. In this review, different aspects of the interaction between methylotrophs and host plants are discussed, including the role of methylotrophs in phosphorus acquisition, nitrogen fixation, phytohormone production, iron chelation, and plant growth promotion, and co-inoculation of these bacteria as biofertilizers for viable agriculture practices.

  13. Beyond conservation agriculture.

    Giller, Ken E; Andersson, Jens A; Corbeels, Marc; Kirkegaard, John; Mortensen, David; Erenstein, Olaf; Vanlauwe, Bernard

    2015-01-01

    Global support for Conservation Agriculture (CA) as a pathway to Sustainable Intensification is strong. CA revolves around three principles: no-till (or minimal soil disturbance), soil cover, and crop rotation. The benefits arising from the ease of crop management, energy/cost/time savings, and soil and water conservation led to widespread adoption of CA, particularly on large farms in the Americas and Australia, where farmers harness the tools of modern science: highly-sophisticated machines, potent agrochemicals, and biotechnology. Over the past 10 years CA has been promoted among smallholder farmers in the (sub-) tropics, often with disappointing results. Growing evidence challenges the claims that CA increases crop yields and builds-up soil carbon although increased stability of crop yields in dry climates is evident. Our analyses suggest pragmatic adoption on larger mechanized farms, and limited uptake of CA by smallholder farmers in developing countries. We propose a rigorous, context-sensitive approach based on Systems Agronomy to analyze and explore sustainable intensification options, including the potential of CA. There is an urgent need to move beyond dogma and prescriptive approaches to provide soil and crop management options for farmers to enable the Sustainable Intensification of agriculture.

  14. Beyond conservation agriculture

    Giller, Ken E.; Andersson, Jens A.; Corbeels, Marc; Kirkegaard, John; Mortensen, David; Erenstein, Olaf; Vanlauwe, Bernard

    2015-01-01

    Global support for Conservation Agriculture (CA) as a pathway to Sustainable Intensification is strong. CA revolves around three principles: no-till (or minimal soil disturbance), soil cover, and crop rotation. The benefits arising from the ease of crop management, energy/cost/time savings, and soil and water conservation led to widespread adoption of CA, particularly on large farms in the Americas and Australia, where farmers harness the tools of modern science: highly-sophisticated machines, potent agrochemicals, and biotechnology. Over the past 10 years CA has been promoted among smallholder farmers in the (sub-) tropics, often with disappointing results. Growing evidence challenges the claims that CA increases crop yields and builds-up soil carbon although increased stability of crop yields in dry climates is evident. Our analyses suggest pragmatic adoption on larger mechanized farms, and limited uptake of CA by smallholder farmers in developing countries. We propose a rigorous, context-sensitive approach based on Systems Agronomy to analyze and explore sustainable intensification options, including the potential of CA. There is an urgent need to move beyond dogma and prescriptive approaches to provide soil and crop management options for farmers to enable the Sustainable Intensification of agriculture. PMID:26579139

  15. Beyond Conservation Agriculture

    Ken E Giller

    2015-10-01

    Full Text Available Global support for Conservation Agriculture (CA as a pathway to Sustainable Intensification is strong. CA revolves around three principles: no-till (or minimal soil disturbance, soil cover, and crop rotation. The benefits arising from the ease of crop management, energy/cost/time savings and soil and water conservation led to widespread adoption of CA, particularly on large farms in the Americas and Australia, where farmers harness the tools of modern science: highly-sophisticated machines, potent agrochemicals and biotechnology. Over the past ten years CA has been promoted among smallholder farmers in the (sub- tropics, often with disappointing results. Growing evidence challenges the claims that CA increases crop yields and builds-up soil carbon although increased stability of crop yields in dry climates is evident. Our analyses suggest pragmatic adoption on larger mechanized farms, and limited uptake of CA by smallholder farmers in developing countries. We propose a rigorous, context-sensitive approach based on Systems Agronomy to analyze and explore sustainable intensification options, including the potential of CA. There is an urgent need to move beyond dogma and prescriptive approaches to provide soil and crop management options for farmers to enable the Sustainable Intensification of agriculture.

  16. Nitrogen, sustainable agriculture and food security. A review

    Spiertz, J.H.J.

    2010-01-01

    The impact of modern agriculture on natural resources has become a major global concern. Population growth and expanding demand for agricultural products constantly increase the pressure on land and water resources. A major point of concern for many intensively managed agricultural systems with high

  17. Climate Change and Agricultural Vulnerability

    Fischer, G.; Shah, M.; Van Velthuizen, H.

    2002-08-01

    After the introduction Chapter 2 presents details of the ecological-economic analysis based on the FAO/IIASA agro-ecological zones (AEZ) approach for evaluation of biophysical limitations and agricultural production potentials, and IIASA's Basic Linked System (BLS) for analyzing the world's food economy and trade system. The BLS is a global general equilibrium model system for analyzing agricultural policies and food system prospects in an international setting. BLS views national agricultural systems as embedded in national economies, which interact with each other through trade at the international level. The combination of AEZ and BLS provides an integrated ecological-economic framework for the assessment of the impact of climate change. We consider climate scenarios based on experiments with four General Circulation Models (GCM), and we assess the four basic socioeconomic development pathways and emission scenarios as formulated by the Intergovernmental Panel on Climate Change (IPCC) in its Third Assessment Report. Chapter 3 presents the main AEZ results of the impact of climate change on agriculture. Results comprise environmental constraints to crop agriculture; climate variability and the variability of rain-fed cereal production; changes in potential agricultural land; changes in crop-production patterns; and the impact of climate change on cereal-production potential. Chapter 4 discusses the AEZ-BLS integrated ecological-economic analysis of climate change on the world food system. This includes quantification of scale and location of hunger, international agricultural trade, prices, production, land use, etc. It assesses trends in food production, trade, and consumption, and the impact on poverty and hunger of alternative development pathways and varying levels of climate change. Chapter 5 presents the main conclusions and policy implications of this study

  18. A Modernized System for Agricultural Monitoring for Food Security in Tanzania

    Dempewolf, J.; Nakalembe, C. L.; Becker-Reshef, I.; Justice, C. J.; Tumbo, S.; Mbilinyi, B.; Maurice, S.; Mtalo, M.

    2016-12-01

    Accurate and timely information on agriculture, particularly in many countries dominated by complex smallholder, subsistence agricultural systems is often difficult to obtain or not available. This includes up-to-date information during the growing season on crop type, crop area and crop condition such as developmental stage, damage from pests and diseases, drought or flooding. These data are critical for government decision making on production forecasts, planning for commodity market transactions, food aid delivery, responding to disease outbreaks and for implementing agricultural extension and development efforts. In Tanzania we have been working closely with the National Food Security Division (NFSD) at the Ministry of Agriculture, Livestock and Fisheries (MALF) on designing and implementing an advanced agricultural monitoring system, utilizing satellite remote sensing, smart phone and internet technologies. Together with our local implementing partner, the Sokoine University of Agriculture we trained a large number of agricultural extension agents in different regions of Tanzania to deliver field data in near-realtime. Using our collaborative internet portal (Crop Monitor) the team of analysts compiles pertinent information on current crop and weather conditions from throughout the country in a standardized, consistent manner. Using the portal traditionally collected data are combined with electronically collected field data and MODIS satellite image time series from GLAM East-Africa (Global Agricultural Monitoring System, customized for stakeholders in East Africa). The main outcome of this work has been the compilation of the National Food Security Bulletin for Tanzania with plans for a public release and the intention for it to become the main avenue to dispense current updates and analysis on agriculture in the country. The same information is also a potential contribution to the international Early Warning Crop Monitor, which currently covers Tanzania

  19. Vocational Agriculture Computer Handbook.

    Kentucky State Dept. of Education, Frankfort.

    This document is a catalog of reviews of computer software suitable for use in vocational agriculture programs. The reviews were made by vocational agriculture teachers in Kentucky. The reviews cover software on the following topics: farm management, crop production, livestock production, horticulture, agricultural mechanics, general agriculture,…

  20. Prevalence of electronic nicotine delivery systems (ENDS) use among youth globally: a systematic review and meta-analysis of country level data.

    Yoong, Sze Lin; Stockings, Emily; Chai, Li Kheng; Tzelepis, Flora; Wiggers, John; Oldmeadow, Christopher; Paul, Christine; Peruga, Armando; Kingsland, Melanie; Attia, John; Wolfenden, Luke

    2018-03-12

    To describe the prevalence and change in prevalence of electronic nicotine delivery systems (ENDS) use in youth by country and combustible smoking status. Databases and the grey literature were systematically searched to December 2015. Studies describing the prevalence of ENDS use in the general population aged ≤20 years in a defined geographical region were included. Where multiple estimates were available within countries, prevalence estimates of ENDS use were pooled for each country separately. Data from 27 publications (36 surveys) from 13 countries were included. The prevalence of ENDS ever use in 2013-2015 among youth were highest in Poland (62.1%; 95%CI: 59.9-64.2%), and lowest in Italy (5.9%; 95%CI: 3.3-9.2%). Among non-smoking youth, the prevalence of ENDS ever use in 2013-2015 varied, ranging from 4.2% (95%CI: 3.8-4.6%) in the US to 14.0% in New Zealand (95%CI: 12.7-15.4%). The prevalence of ENDS ever use among current tobacco smoking youth was the highest in Canada (71.9%, 95%CI: 70.9-72.8%) and lowest in Italy (29.9%, 95%CI: 18.5-42.5%). Between 2008 and 2015, ENDS ever use among youth increased in Poland, Korea, New Zealand and the US; decreased in Italy and Canada; and remained stable in the UK. There is considerable heterogeneity in ENDS use among youth globally across countries and also between current smokers and non-smokers. Implications for public health: Population-level survey data on ENDS use is needed to inform public health policy and messaging globally. © 2018 The Authors.

  1. Evaluating strategies for sustainable intensification of U.S. agriculture through the Long-Term Agroecosystem Research network

    Sustainable intensification is an emerging model for agriculture designed to reconcile accelerating global demand for agricultural products with long-term environmental stewardship. Defined here as increasing agricultural production while maintaining or improving environmental quality, sustainable i...

  2. Gender in crop agriculture

    Food and Agriculture Organization; The World Bank; IFAD

    2008-01-01

    Metadata only record This is a module in the "Gender in Agriculture Sourcebook" published by the World Bank, UN Food and Agriculture Organization, and International Fund for Agricultural Development. This module examines the role of gender in crop agriculture as an essential component of development and poverty reduction. Gender is an integral aspect of crop agriculture because women's roles in crop production and household subsistence, as well as their knowledge of complex production syst...

  3. Towards Conservation Agriculture systems in Moldova

    Boris Boincean

    2016-10-01

    Full Text Available As the world population and food production demands rise, keeping agricultural soils and landscapes healthy and productive are of paramount importance to sustaining local and global food security and the flow of ecosystem services to society. The global population, expected to reach 9.7 billion people by 2050, will put additional pressure on the available land area and resources for agricultural production. Sustainable production intensification for food security is a major challenge to both industrialized and developing countries. The paper focuses on the results from long-term multi-factorial experiments involving tillage practices, crop rotations and fertilization to study the interactions amongst the treatments in the context of sustainable production intensification. The paper discusses the results in relation to reported performance of crops and soil quality in Conservation Agriculture systems that are based on no or minimum soil disturbance (no-till seeding and weeding, maintenance of soil mulch cover with crop biomass and cover crops, and diversified cropping s involving annuals and perennials. Conservation Agriculture also emphasizes the necessity of an agro-ecosystems approach to the management of agricultural land for sustainable production intensification, as well as to the site-specificity of agricultural production. Arguments in favor of avoiding the use of soil tillage are discussed together with agro-ecological principles for sustainable intensification of agriculture. More interdisciplinary systems research is required to support the transformation of agriculture from the conventional tillage agriculture to a more sustainable agriculture based on the principles and practices of Conservation Agriculture, along with other complementary practices of integrated crop, nutrient, water, pest, energy and farm power management.

  4. Integrating ICT in Agriculture for Knowledge-Based Economy | Balraj ...

    ... demands the integration of ICT knowledge with agriculture. Already projects such as Agriculture Management Information System (AMIS), and e-Soko (which means electronic marketing) – which provides farmers with the price decision making tools enlightens the path to socio-economic development through agriculture.

  5. Global Positioning System Total Electron Content Variation over King Sejong Station in Antarctic under the Solar Minimum Condition Between 2005 and 2009

    Chung, Jong-Kyun; Jee, Geonhwa; Lee, Chi-Na

    2011-12-01

    The total electron content (TEC) using global positioning system (GPS) is analyzed to see the characteristics of ionosphere over King Sejong station (KSJ, geographic latitude 62°13' S, longitude 58° 47' W, corrected geomagnetic latitude 48° S) in Antarctic. The GPS operational ratio during the observational period between 2005 and 2009 is 90.1%. The annual variation of the daily mean TEC decreases from January 2005 to February 2009, but increase from the June 2009. In summer (December-February), the seasonal mean TEC values have the maximum of 26.2 ± 2.4 TEC unit (TECU) in 2005 and the minimum of 16.5 ± 2.8 TECU in 2009, and the annual differences decrease from 3.0 TECU (2005-2006) to 1.4 TECU (2008-2009). However, on November 2010, it significantly increases to 22.3 ± 2.8 TECU which is up to 5.8 TECU compared with 2009 in summer. In winter (June-August), the seasonal mean TEC slightly decreases from 13.7 ± 4.5 TECU in 2005 to 8.9 ± 0.6 TECU in 2008, and the a! nnual difference is constantly about 1.6 TECU, and increases to 10.3 ± 1.8 TECU in 2009. The annual variations of diurnal amplitude show the seasonal features that are scattered in summer and the enhancements near equinoxes are apparent in the whole years. In contrast, the semidiurnal amplitudes show the disturbed annual peaks in winter and its enhancements near equinoxes are unapparent. The diurnal phases are not constant in winter and show near 12 local time (LT). The semidiurnal phases have a seasonal pattern between 00 LT and 06 LT. Consequently, the KSJ GPS TEC variations show the significant semidiurnal variation in summer from December to February under the solar minimum between 2005 and 2009. The feature is considered as the Weddell Sea anomaly of larger nighttime electron density than a daytime electron density that has been observed around the Antarctica peninsula.

  6. Global Positioning System Total Electron Content Variation over King Sejong Station in Antarctic under the Solar Minimum Condition Between 2005 and 2009

    Jong-Kyun Chung

    2011-12-01

    Full Text Available The total electron content (TEC using global positioning system (GPS is analyzed to see the characteristics of ionosphere over King Sejong station (KSJ, geographic latitude 62°13′ S, longitude 58° 47′ W, corrected geomagnetic latitude 48° S in Antarctic. The GPS operational ratio during the observational period between 2005 and 2009 is 90.1%. The annual variation of the daily mean TEC decreases from January 2005 to February 2009, but increase from the June 2009. In summer (December-February, the seasonal mean TEC values have the maximum of 26.2 ± 2.4 TEC unit (TECU in 2005 and the minimum of 16.5 ± 2.8 TECU in 2009, and the annual differences decrease from 3.0 TECU (2005-2006 to 1.4 TECU (2008-2009. However, on November 2010, it significantly increases to 22.3 ± 2.8 TECU which is up to 5.8 TECU compared with 2009 in summer. In winter (June-August, the seasonal mean TEC slightly decreases from 13.7 ± 4.5 TECU in 2005 to 8.9 ± 0.6 TECU in 2008, and the annual difference is constantly about 1.6 TECU, and increases to 10.3 ± 1.8 TECU in 2009. The annual variations of diurnal amplitude show the seasonal features that are scattered in summer and the enhancements near equinoxes are apparent in the whole years. In contrast, the semidiurnal amplitudes show the disturbed annual peaks in winter and its enhancements near equinoxes are unapparent. The diurnal phases are not constant in winter and show near 12 local time (LT. The semidiurnal phases have a seasonal pattern between 00 LT and 06 LT. Consequently, the KSJ GPS TEC variations show the significant semidiurnal variation in summer from December to February under the solar minimum between 2005 and 2009. The feature is considered as the Weddell Sea anomaly of larger nighttime electron density than a daytime electron density that has been observed around the Antarctica peninsula.

  7. AGRICULTURAL PRODUCTIVITY ASSESSMENT IN EUROPEAN COUNTRIES

    Serrao, Amilcar

    2001-01-01

    This research work examines levels and trends in global agricultural productivity in fifteen European Union countries and four Eastern European countries that have already applied for European Union membership. The study makes use of data collected from the Food and Agriculture Organization of the United Nations and covers the period 1980-1998. An approach based on Data Envelopment Analysis is used to provide information on the peers of the (inefficient) i-th country and to derive the Malmqui...

  8. Agricultural policy schemes

    Hansen, Henning Otte

    2016-01-01

    Agricultural support is a very important element in agricultural policy in many countries. Agricultural support is basically an instrument to meet the overall objectives of the agricultural policy – objectives set by society. There are a great number of instruments and ways of intervention...... in agricultural policy and they have different functions and impacts. Market price support and deficiency payments are two very important instruments in agricultural policy; however, they belong to two different support regimes or support systems. Market price support operates in the so-called high price system...

  9. Assessing Agricultural Intensification Strategies with a Sustainable Agriculture Matrix

    Zhang, X.; Davidson, E. A.

    2017-12-01

    To meet the growing global demand for food and bioenergy, agricultural production must nearly double by 2050, placing additional pressures on the environment and the society. Thus, how to efficiently use limited land, water, and nutrient resources to produce more food with low pollution (MoFoLoPo) is clearly one of the major challenges of this century. The increasingly interconnected global market provides a great opportunity for reallocating crop production to the countries and regions that use natural resources more efficiently. For example, it is estimated that optimizing the allocation of crop production around the world can mitigate 41% of nitrogen lost to the environment. However, higher efficiency in nutrients use does not necessarily lead to higher efficiency in land use or water use. In addition, the increasing share of international trade in food supply may introduce additional systemic risk and affect the resilience of global food system. Using the data/indicator from a Sustainable Agriculture Matrix and an international trade matrix, we developed a simple model to assess the trade-offs of international trade considering resource use efficiencies (including water, land, nitrogen, and phosphorus), economic costs and benefits, and the resilience of food system.

  10. The World of Organic Agriculture – Statistics and Emerging Trends (Session at the BIOFACH 2015)

    Arbenz, Markus; Willer, Helga; Lernoud, Julia; Huber, Beate; Amarjit, Sahota

    2015-01-01

    The World of Organic Agriculture – Statistics and Emerging Trends (Session at the BIOFACH 2015) Presentations - Introduction (Markus Arbenz) - Organic Agriculture Worldwide: Current Statistics (Helga Willer, Julia Lernoud) - The World of Organic Agriculture: Regulations and Certification Emerging Trends 2015 (Beate Huber, Christiane Mannigel) - Global survey on Voluntary Sustainability Standards (VSS) (Julia Lernoud, Helga Willer) - Global Organic Food & Drink: Market Update...

  11. Atoms for Food and Nutrition: Application of Nuclear Techniques in Food and Agriculture

    Esilaba, A.O.

    2017-01-01

    KALRO is a corporate body created under the Kenya Agricultural and Livestock Research Act of 2013 to establish suitable legal and institutional frameworks for coordination of agricultural research in Kenya. It promote, streamline, co-ordinate and regulate research in crops, livestock, genetic resources and biotechnology and animal diseases. To expedite equitable access to research information, resources and technologies and promote the application of research findings and developed technologies in the field of agriculture and livestock. FAO's report identifies 15 trends and 10 challenges affecting the world's food systems. There are 10 key challenges that need to be addressed if we are to succeed in eradicating hunger and poverty, while making agriculture and food systems sustainable (FAO, 2017). Empowering small-scale farmers and providing them better access to information, markets and technologies is key to ensuring future food security. The mission of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture is to support and promote the safe and appropriate use of nuclear and related technologies by the FAO/IAEA member states in food and agriculture, with the aim to contribute to peace, health and prosperity throughout the world, especially to global food security and sustainable agricultural development.Isotopic techniques are employed to monitor foods for contamination with agrochemicals -optimizing sample preparation by radioisotopes -detecting contaminant by electron capture detector. Both stable and radioactive isotopes can be used as tracers in soil and water management & crop nutrition. Through collaboration with IAEA, KALRO is now the center in Africa where new drip irrigation technologies are being evaluated. KALRO partners with IAEA to host fellowship training for scientists and technicians from African region on soil and water management, efficient irrigation technologies and nitrogen fertilizer use efficiency. There is need for

  12. Agriculture: Land Use

    Land Use and agriculture. Information about land use restrictions and incentive programs.Agricultural operations sometimes involve activities regulated by laws designed to protect water supplies, threatened or endangered plants and animals, or wetlands.

  13. Agricultural Health and Safety

    ... that occur while living, working, or visiting agricultural work environments (primarily farms) are considered agricultural injuries, whether or ... of Labor's Occupational Safety & Health Administration (OSHA) supports safe and healthful working conditions by setting and enforcing standards and by ...

  14. Innovations in urban agriculture

    Schans, van der J.W.; Renting, Henk; Veenhuizen, Van René

    2014-01-01

    This issuehighlights innovations in urban agriculture. Innovation and the various forms of innovations are of particular importance because urban agriculture is adapted to specific urban challenges and opportunities. Innovation is taking place continuously, exploring the multiple fundions of urban

  15. Agricultural Research Service

    ... Menu United States Department of Agriculture Agricultural Research Service Research Research Home National Programs Research Projects Scientific Manuscripts International Programs Scientific Software/Models Databases and Datasets Office of Scientific Quality ...

  16. Agricultural science policy

    Alston, Julian M.; Pardey, Philip G.; Taylor, Michael J.

    2001-01-01

    Technological advances developed through R&D have supplied the world with not only more food, but better food. This report looks at issues raised by this changing environment for agricultural productivity, agricultural R&D, and natural resource management.

  17. Gender and agricultural markets

    Food and Agriculture Organization; The World Bank; IFAD

    2008-01-01

    Metadata only record This is a module in the "Gender in Agriculture Sourcebook" published by the World Bank, UN Food and Agriculture Organization, and International Fund for Agricultural Development. This module examines the traditional division of labor within agricultural markets, where women farmers are primarily responsible for subsistence and household crop production while male farmers dominate the commercial sector. Challenging these gendered roles by increasing women farmers' acces...

  18. Savings and Debts in Agriculture

    Marina Luminita Sarbovan

    2012-05-01

    Full Text Available The savings and debts problematic bring us in front the Keynesian principles of supporting the global demand, so spectacular immortalized inside his “General Theory of Money. The architects of the European Union consider that production in agriculture and other economic branches is “ab initio” grounded on the credit mechanism administrated by banks: the present day approach of the agricultural process configured it as costly, owing a relatively medium to long term duration, and risky, making important the banking institution for mitigating such constrains. Romania fights for the ambitious goal of entering in the euro zone, and this target became even more challenging after the new EU Regulation No 1176/2011 on the prevention and correction of macroeconomic imbalances, which stipulates a safer surveillance for the member states. In fact, our country has to meet the exigencies of nominal and real convergence criteria, measured by the European scoreboard and relevant index.

  19. Awareness and Current Use of Electronic Cigarettes in Indonesia, Malaysia, Qatar, and Greece: Findings From 2011–2013 Global Adult Tobacco Surveys

    Palipudi, Krishna Mohan; Mbulo, Lazarous; Morton, Jeremy; Mbulo, Lazarous; Bunnell, Rebecca; Blutcher-Nelson, Glenda; Kosen, Soewarta; Tee, Guat Hiong; Abdalla, Amani Mohamed Elkhatim; Al Mutawa, Kholood Ateeq; Barbouni, Anastasia; Antoniadou, Eleni; Fouad, Heba; Khoury, Rula N.; Rarick, James; Sinha, Dhirendra N.; Asma, Samira

    2016-01-01

    Introduction Increases in electronic cigarette (e-cigarette) awareness and current use have been documented in high income countries but less is known about middle and low income countries. Methods Nationally representative household survey data from the first four Global Adult Tobacco Surveys to assess e-cigarettes were analyzed, including Indonesia (2011), Malaysia (2011), Qatar (2013), and Greece (2013). Correlates of e-cigarette awareness and current use were calculated. Sample sizes for Greece and Qatar allowed for further analysis of e-cigarette users. Results Awareness of e-cigarettes was 10.9% in Indonesia, 21.0% in Malaysia, 49.0% in Qatar, and 88.5% in Greece. In all four countries, awareness was higher among male, younger, more educated, and wealthier respondents. Current e-cigarette use among those aware of e-cigarettes was 3.9% in Malaysia, 2.5% in Indonesia, 2.2% in Greece and 1.8% in Qatar. Across these four countries, an estimated 818 500 people are currently using e-cigarettes. Among current e-cigarette users, 64.4% in Greece and 84.1% in Qatar also smoked cigarettes, and, 10.6% in Greece and 6.0% in Qatar were never-smokers. Conclusions E-cigarette awareness and use was evident in all four countries. Ongoing surveillance and monitoring of awareness and use of e-cigarettes in these and other countries could help inform tobacco control policies and public health interventions. Future surveillance should monitor use of e-cigarettes among current smokers and uptake among never-smokers and relapsing former smokers. PMID:25895951

  20. Awareness and Current Use of Electronic Cigarettes in Indonesia, Malaysia, Qatar, and Greece: Findings From 2011-2013 Global Adult Tobacco Surveys.

    Palipudi, Krishna Mohan; Mbulo, Lazarous; Morton, Jeremy; Mbulo, Lazarous; Bunnell, Rebecca; Blutcher-Nelson, Glenda; Kosen, Soewarta; Tee, Guat Hiong; Abdalla, Amani Mohamed Elkhatim; Mutawa, Kholood Ateeq Al; Barbouni, Anastasia; Antoniadou, Eleni; Fouad, Heba; Khoury, Rula N; Rarick, James; Sinha, Dhirendra N; Asma, Samira

    2016-04-01

    Increases in electronic cigarette (e-cigarette) awareness and current use have been documented in high income countries but less is known about middle and low income countries. Nationally representative household survey data from the first four Global Adult Tobacco Surveys to assess e-cigarettes were analyzed, including Indonesia (2011), Malaysia (2011), Qatar (2013), and Greece (2013). Correlates of e-cigarette awareness and current use were calculated. Sample sizes for Greece and Qatar allowed for further analysis of e-cigarette users. Awareness of e-cigarettes was 10.9% in Indonesia, 21.0% in Malaysia, 49.0% in Qatar, and 88.5% in Greece. In all four countries, awareness was higher among male, younger, more educated, and wealthier respondents. Current e-cigarette use among those aware of e-cigarettes was 3.9% in Malaysia, 2.5% in Indonesia, 2.2% in Greece and 1.8% in Qatar. Across these four countries, an estimated 818 500 people are currently using e-cigarettes. Among current e-cigarette users, 64.4% in Greece and 84.1% in Qatar also smoked cigarettes, and, 10.6% in Greece and 6.0% in Qatar were never-smokers. E-cigarette awareness and use was evident in all four countries. Ongoing surveillance and monitoring of awareness and use of e-cigarettes in these and other countries could help inform tobacco control policies and public health interventions. Future surveillance should monitor use of e-cigarettes among current smokers and uptake among never-smokers and relapsing former smokers. © The Author 2015. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Division of Agriculture

    Department of Natural Resources logo, color scheme Department of Natural Resources Division of Agriculture Search Search DNR's site DNR State of Alaska Toggle main menu visibility Agriculture Home Programs Asset Disposals Alaska Caps Progam Board of Agriculture & Conservation Farm To School Program Grants

  2. Gender in Agriculture Sourcebook

    World Bank; Food and Agriculture Organization; International Fund for Agricultural Development

    2009-01-01

    Three out of every four poor people in developing countries live in rural areas, and most of them depend directly or indirectly on agriculture for their livelihoods. In many parts of the world, women are the main farmers or producers, but their roles remain largely unrecognized. The 2008 World development report: agriculture for development highlights the vital role of agriculture in susta...

  3. Nigeria Agricultural Journal: Submissions

    Author Guidelines. NATURE OF PAPERS. Papers should be of agricultural interest and include: full reports of original research not previously elsewhere, research notes which consist of brief or new findings; techniques and equipment of importance to agricultural workers; evaluations of problems and trends in agricultural ...

  4. Biotechnology and Agriculture.

    Kenney, Martin

    Even at this early date in the application of biotechnology to agriculture, it is clear that agriculture may provide the largest market for new or less expensive biotechnologically manufactured products. The chemical and pharmaceutical industries that hold important positions in agricultural inputs are consolidating their positions by purchasing…

  5. Gyrokinetic particle-in-cell global simulations of ion-temperature-gradient and collisionless-trapped-electron-mode turbulence in tokamaks

    Jolliet, S.

    2009-02-01

    -Maxwell system is solved in the electrostatic and collisionless limit with the Particle-In-Cell (PIC) ORB5 code in global tokamak geometry. This Monte-Carlo approach suffers from statistical noise which unavoidably degrades the quality of the simulation. Consequently, the first part of this work has been devoted to the optimization of the code with a view to reduce the numerical noise. The code has been rewritten in a new coordinate system which takes advantage of the anisotropy of turbulence, which is mostly aligned with the magnetic field lines. The overall result of the optimization is that for a given accuracy, the CPU time has been decreased by a factor two thousand, the total memory has been decreased by a factor ten and the numerical noise has been reduced by a factor two hundred. In addition, the scaling of the code with respect to plasma size is presently optimal, suggesting that ORB5 could compute heat transport for future fusion devices such as ITER. The second part of this thesis presents the validation of the code with numerical convergence tests, linear (including dispersion relations) and nonlinear benchmarks. Furthermore, the code has been applied to important issues in gyrokinetic theory. It is shown for the first time that a 5D global delta-f PIC code can achieve a thermodynamic steady state on the condition that some dissipation is present. This is a fundamental result as the main criticism against delta-f PIC codes is their inability to deal with long time simulations. Next, the role of the parallel nonlinearity is studied and it is demonstrated in this work that this term has no real influence on turbulence, provided the numerical noise is sufficiently low. This result should put an end to the controversy that recently occurred, in which gyrokinetic simulations using different numerical approaches yielded contradictory results. Finally, thanks to the optimization of the code, the gyrokinetic model has been extended to include the kinetic response of trapped-electrons

  6. Sustainable agricultural water management across climates

    DeVincentis, A.

    2016-12-01

    Fresh water scarcity is a global problem with local solutions. Agriculture is one of many human systems threatened by water deficits, and faces unique supply, demand, quality, and management challenges as the global climate changes and population grows. Sustainable agricultural water management is paramount to protecting global economies and ecosystems, but requires different approaches based on environmental conditions, social structures, and resource availability. This research compares water used by conservation agriculture in temperate and tropical agroecosystems through data collected from operations growing strawberries, grapes, tomatoes, and pistachios in California and corn and soybeans in Colombia. The highly manipulated hydrologic regime in California has depleted water resources and incited various adaptive management strategies, varying based on crop type and location throughout the state. Operations have to use less water more efficiently, and sometimes that means fallowing land in select groundwater basins. At the opposite end of the spectrum, the largely untouched landscape in the eastern plains of Colombia are rapidly being converted into commercial agricultural operations, with a unique opportunity to manage and plan for agricultural development with sustainability in mind. Although influenced by entirely different climates and economies, there are some similarities in agricultural water management strategies that could be applicable worldwide. Cover crops are a successful management strategy for both agricultural regimes, and moving forward it appears that farmers who work in coordination with their neighbors to plan for optimal production will be most successful in both locations. This research points to the required coordination of agricultural extension services as a critical component to sustainable water use, successful economies, and protected environments.

  7. Comparison of Biodynamic and Organic Agriculture

    Özlem Çakır

    2018-04-01

    Full Text Available Modern agricultural applications contain various biologic physical and chemical process steps to maximize the durability and fertility of the products. Because of the apprehensions that come out as a result of increase in usage of chemical input in these processes, some alternative concepts have been come to exist for modern agricultural applications. Even these approaches match with traditional applications, they differ by their some outstanding features. By the help of industrial devolution in 18TH century, the increasing popularity and global warming caused the people to notice the ecologic deformation on the earth and accordingly saving the ecology and the earth became one of the main topics of current issues. The biodynamic agriculture system is founded in 1924 by Rudolf Steiner (philosopher and E. Pfeiffer (agronomist and built on an anthropologic theory that based on human-nature-universe concept. Biodynamic agriculture is familiar with organic agriculture. Mainly both of them are originated by oppositional perspective on using chemical input (manure, pesticide, herbicide, hormone e.g.. The main dissimilitude of biodynamic agriculture with organic apart from philosophical and historical aspects is, using the biodynamic preparations includes some minerals or specific herbs those are fermented with animal organs. In this review study, the differences between organic and biodynamic agriculture are analysed by emphasizing the main advantages of biodynamic agriculture.

  8. AGRICULTURAL POLICIES AND COMPETITION IN WORLD AGRICULTURE

    Raluca Duma

    2011-04-01

    Full Text Available Agricultural policies have had a guiding role inagriculture development and implicitly in their marketing. Usually they belongto each state and government and are issued in accordance with their specificclimate, social-economic and cultural background which includes food andgastronomic traditions. Agricultural policies have in view home and foreignmarket demand, as well as the socio-demographic, political and military contextat a certain point in the socio-economic development

  9. An ecologically sustainable approach to agricultural production intensification: Global perspectives and developments Une approche écologiquement durable de l’intensification de la production agricole : perspectives globales et développements Un enfoque ecológicamente sostenible de la intensificación de la producción agrícola: perspectivas globales y avances

    Theodor Friedrich

    2012-04-01

    Full Text Available The root cause of agricultural land degradation and decreasing productivity – as seen in terms of loss of soil health -- is our low soil-carbon farming paradigm of intensive tillage which disrupts and debilitates many important soil-mediated ecosystem functions. For the most part agricultural soils in tillage-based farming without organic surface residue protection are becoming de-structured and compacted, exposed to increased runoff and erosion, and soil life and biodiversity is deprived of habitat and starved of organic matter, leading to  decrease in soil’s biological recuperating capacity.Conservation Agriculture (CA is a cropping system based on no or minimum mechanical soil disturbance, permanent organic mulch soil cover, and crop diversification. It, is an effective solution to stopping agricultural land degradation, for rehabilitation, and for sustainable crop production intensification. CA is now adopted by large and small farmers on some 125 million hectares across all continents and is spreading at an annual rate of about 7 million hectares.Advantages offered by CA to farmers include better livelihood and income, decrease in financial risks, and climate change adaptability and mitigation. For the small manual farmer, CA offers ultimately up to 50% labour saving, less drudgery, stable yields, and improved food security. To the mechanised farmers CA offers lower fuel use and less machinery and maintenance costs, and reduced inputs and cost of production (including labour when CA involves the use of integrated weed management.  In pro-poor development programmes, every effort should be made to help producers adopt CA production systems. This is because CA produces more from less, can be adopted and practiced by smallholder poor farmers, builds on the farmer’s own natural resource base, does not entirely depend on purchased derived inputs, and is relatively less costly in the early stages of production intensification.La cause

  10. Global Journal of Engineering Research

    The Global Journal of Engineering Research is aimed at promoting research in all areas of Engineering Research including Mechanical, Civil, Electrical, Chemical, Electronics, Geological etc. Visit the Global Journal Series website here: http://www.globaljournalseries.com/ ...

  11. 7 CFR 6.32 - Globalization of licenses.

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Globalization of licenses. 6.32 Section 6.32 Agriculture Office of the Secretary of Agriculture IMPORT QUOTAS AND FEES Dairy Tariff-Rate Import Quota Licensing § 6.32 Globalization of licenses. If the Licensing Authority determines that entries of an article...

  12. Global safety

    Dorien J. DeTombe

    2010-08-01

    Full Text Available Global Safety is a container concept referring to various threats such as HIV/Aids, floods and terrorism; threats with different causes and different effects. These dangers threaten people, the global economy and the slity of states. Policy making for this kind of threats often lack an overview of the real causes and the interventions are based on a too shallow analysis of the problem, mono-disciplinary and focus mostly only on the effects. It would be more appropriate to develop policy related to these issues by utilizing the approaches, methods and tools that have been developed for complex societal problems. Handling these complex societal problems should be done multidisciplinary instead of mono-disciplinary. In order to give politicians the opportunity to handle complex problems multidisciplinary, multidisciplinary research institutes should be created. These multidisciplinary research institutes would provide politicians with better approaches to handle this type of problem. In these institutes the knowledge necessary for the change of these problems can be created through the use of the Compram methodology which has been developed specifically for handling complex societal problems. In a six step approach, experts, actors and policymakers discuss the content of the problem and the possible changes. The framework method uses interviewing, the Group Decision Room, simulation models and scenario's in a cooperative way. The methodology emphasizes the exchange of knowledge and understanding by communication among and between the experts, actors and politicians meanwhile keeping emotion in mind. The Compram methodology will be further explained in relation to global safety in regard to terrorism, economy, health care and agriculture.

  13. Radiation processing of food and agricultural commodities

    Sharma, Arun

    2014-01-01

    Reducing post-harvest food losses is becoming increasingly important for sustaining food supplies. Appropriate post-harvest processing, handling, storage and distribution practices are as important as the efforts to increase productivity for improving food security, food safety and international trade in agricultural commodities. Preservation of food by ionizing radiation involves controlled application of energy of ionizing radiation such as gamma rays, X-rays, and accelerated electrons to agricultural commodities, food products and ingredients, for improving their storage life, hygiene and safety. The process employs either gamma rays emitted by radioisotopes such as cobalt-60 or high-energy electrons or X-rays generated from machine sources

  14. [Engineering issues of microbial ecology in space agriculture].

    Yamashita, Masamichi; Ishikawa, Yoji; Oshima, Tairo

    2005-03-01

    Closure of the materials recycle loop for water-foods-oxygen is the primary purpose of space agriculture on Mars and Moon. A microbial ecological system takes a part of agriculture to process our metabolic excreta and inedible biomass and convert them to nutrients and soil substrate for cultivating plants. If we extend the purpose of space agriculture to the creation and control of a healthy and pleasant living environment, we should realize that our human body should not be sterilized but exposed to the appropriate microbial environment. We are proposing a use of hyper-thermophilic aerobic composting microbial ecology in space agriculture. Japan has a broad historical and cultural background on this subject. There had been agriculture that drove a closed loop of materials between consuming cities and farming villages in vicinity. Recent environmental problems regarding garbage collection and processing in towns have motivated home electronics companies to innovate "garbage composting" machines with bacterial technology. Based on those matured technology, together with new insights on microbiology and microbial ecology, we have been developing a conceptual design of space agriculture on Moon and Mars. There are several issues to be answered in order to prove effectiveness of the use of microbial systems in space. 1) Can the recycled nutrients, processed by the hyper-thermal aerobic composting microbial ecology, be formed in the physical and chemical state or configuration, with which plants can uptake those nutrients? A possibility of removing any major components of fertilizer from its recycle loop is another item to be evaluated. 2) What are the merits of forming soil microbial ecology around the root system of plants? This might be the most crucial question. Recent researches exhibit various mutually beneficial relationships among soil microbiota and plants, and symbiotic ecology in composting bacteria. It is essential to understand those features, and define

  15. AGRICULTURAL VULNERABILITY TO CLIMATE CHANGE IN ...

    victoria

    climate change in eight selected rural settlements in Sokoto State, Nigeria adopting the ... on the environmental and socio-economic determinants of agricultural vulnerability to .... global warming show increasing trends in Sokoto. .... One of the consequences of desertification is southward migration of nomads to the more.

  16. New areas in agricultural and food marketing

    Grunert, Klaus G.; Harmsen, Hanne; Larsen, Hanne Hartvig

    1997-01-01

    of the laws of economics that growth in markets for food products, if any, is not in terms of quantity, but in terms of value. - Most industrialised economies are characterised by an oversupply of agricultural products. - A global tendency towards deregulation, decrease of government subsidies to producers...

  17. Advancing agricultural greenhouse gas quantification*

    Olander, Lydia; Wollenberg, Eva; Tubiello, Francesco; Herold, Martin

    2013-03-01

    1. Introduction Better information on greenhouse gas (GHG) emissions and mitigation potential in the agricultural sector is necessary to manage these emissions and identify responses that are consistent with the food security and economic development priorities of countries. Critical activity data (what crops or livestock are managed in what way) are poor or lacking for many agricultural systems, especially in developing countries. In addition, the currently available methods for quantifying emissions and mitigation are often too expensive or complex or not sufficiently user friendly for widespread use. The purpose of this focus issue is to capture the state of the art in quantifying greenhouse gases from agricultural systems, with the goal of better understanding our current capabilities and near-term potential for improvement, with particular attention to quantification issues relevant to smallholders in developing countries. This work is timely in light of international discussions and negotiations around how agriculture should be included in efforts to reduce and adapt to climate change impacts, and considering that significant climate financing to developing countries in post-2012 agreements may be linked to their increased ability to identify and report GHG emissions (Murphy et al 2010, CCAFS 2011, FAO 2011). 2. Agriculture and climate change mitigation The main agricultural GHGs—methane and nitrous oxide—account for 10%-12% of anthropogenic emissions globally (Smith et al 2008), or around 50% and 60% of total anthropogenic methane and nitrous oxide emissions, respectively, in 2005. Net carbon dioxide fluxes between agricultural land and the atmosphere linked to food production are relatively small, although significant carbon emissions are associated with degradation of organic soils for plantations in tropical regions (Smith et al 2007, FAO 2012). Population growth and shifts in dietary patterns toward more meat and dairy consumption will lead to

  18. Integrating agricultural expansion into conservation biogeography: conflicts and priorities

    Ricardo Dobrovolski

    2014-06-01

    Full Text Available Increasing food production without compromising biodiversity is one of the great challenges for humanity. The aims of my thesis were to define spatial priorities for biodiversity conservation and to evaluate conservation conflicts considering agricultural expansion in the 21st century. I also tested the effect of globalizing conservation efforts on both food production and biodiversity conservation. I found spatial conflicts between biodiversity conservation and agricultural expansion. However, incorporating agricultural expansion data into the spatial prioritization process can significantly alleviate conservation conflicts, by reducing spatial correlation between the areas under high impact of agriculture and the priority areas for conservation. Moreover, developing conservation blueprints at the global scale, instead of the usual approach based on national boundaries, can benefit both food production and biodiversity. Based on these findings I conclude that the incorporation of agricultural expansion as a key component for defining global conservation strategies should be added to the list of solutions for our cultivated planet.

  19. Polymers and its applications in agriculture

    Priscila Milani

    2017-09-01

    Full Text Available Graphical Abstract Abstract Polymers are a class of soft materials with numerous and versatile mechanical and chemical properties that can be tuned specific to their application. Agriculture is an expanding area due to the requirement for indispensable food to meet the demands of a growing global population. Consequently, development of technology to improve the quality of the soil and agriculture manages is still under development. Intelligent agricultural supplies (controlled or slow release agrochemicals and superabsorbents and biosorbents contribute to an expanding niche using technology from polymers. This review elucidates the state-of-the-art and will discuss some important aspects of using polymers in intelligent fertilizers, as well as superabsorbent, biosorbent and biodegradation processes in agriculture that are environmentally, technically, socially, and economically sustainable.

  20. Brief history of agricultural systems modeling.

    Jones, James W; Antle, John M; Basso, Bruno; Boote, Kenneth J; Conant, Richard T; Foster, Ian; Godfray, H Charles J; Herrero, Mario; Howitt, Richard E; Janssen, Sander; Keating, Brian A; Munoz-Carpena, Rafael; Porter, Cheryl H; Rosenzweig, Cynthia; Wheeler, Tim R

    2017-07-01

    Agricultural systems science generates knowledge that allows researchers to consider complex problems or take informed agricultural decisions. The rich history of this science exemplifies the diversity of systems and scales over which they operate and have been studied. Modeling, an essential tool in agricultural systems science, has been accomplished by scientists from a wide range of disciplines, who have contributed concepts and tools over more than six decades. As agricultural scientists now consider the "next generation" models, data, and knowledge products needed to meet the increasingly complex systems problems faced by society, it is important to take stock of this history and its lessons to ensure that we avoid re-invention and strive to consider all dimensions of associated challenges. To this end, we summarize here the history of agricultural systems modeling and identify lessons learned that can help guide the design and development of next generation of agricultural system tools and methods. A number of past events combined with overall technological progress in other fields have strongly contributed to the evolution of agricultural system modeling, including development of process-based bio-physical models of crops and livestock, statistical models based on historical observations, and economic optimization and simulation models at household and regional to global scales. Characteristics of agricultural systems models have varied widely depending on the systems involved, their scales, and the wide range of purposes that motivated their development and use by researchers in different disciplines. Recent trends in broader collaboration across institutions, across disciplines, and between the public and private sectors suggest that the stage is set for the major advances in agricultural systems science that are needed for the next generation of models, databases, knowledge products and decision support systems. The lessons from history should be

  1. Global questions, local answers: soil management and sustainable intensification in diverse socioeconomic contexts of Cuba

    McCune, N.; Ruiz Gonzalez, Y.; Alcantara, E.A.; Fernandez Martinez, O.; Onelio Fundaro, C.; Castillo Arzola, N.; Cairo Cairo, P.; Haese, D' M.; Neve, De S.; Guevara Hernandez, F.

    2011-01-01

    In the complex context of global food and agricultural systems, research in agriculture must respond to multidisciplinary questions of economic development, ecological sustainability and food justice. With the objective of responding to several of the most important questions facing agriculture

  2. Cellphones are improving agriculture in Kenya | IDRC - International ...

    2010-10-27

    Oct 27, 2010 ... DrumNet offers an essential tool to farmers — information. ... Using GSM-enabled (Global System for Mobile Communications) cellphone ... set of services also include credit linked to agricultural extension and marketing.

  3. Journal of Agricultural Extension Vol.17 (2) December, 2013 ISSN ...

    ONIKOYI

    for farmers to use mobile phone effectively for extension communication, all the constraints ... Globally, traditional agricultural extension systems are in .... procurement and marketing of farm produce information were particularly perceived by.

  4. Monetary Policies And Credit Financing As Factors In Agricultural ...

    Global Journal of Agricultural Sciences ... cheap interest rate polices has negative effect on credit supply while policies associated with plough ... credit was influenced mainly by the availability of credit subsidies and availability of guarantees.

  5. Economic Dimensions of Urban Agriculture in the Context of Urban ...

    Economic Dimensions of Urban Agriculture in the Context of Urban Poverty ... price crisis and the threat of climate change to traditional sources of food security. ... its 2017 call for proposals to establish Cyber Policy Centres in the Global South.

  6. Climate Smart Agriculture (CSA) : Key messages - What is it about?

    Verhagen, A.; Neijenhuis, F.; Jarvis, T.; Jackson, L.; Caron, P.; Lipper, L.; Fernandes, E.; Entsuah-Mensa, R.; Vermeulen, S.

    2014-01-01

    Climate change fundamentally shifts the agricultural development agenda. Changing temperature and precipitation, sea level rise, and the rising frequency of extreme climate events will significantly reduce global food production in this century unless action is taken. Major investments, private and

  7. The imperative for regenerative agriculture.

    Rhodes, Christopher J

    2017-03-01

    A review is made of the current state of agriculture, emphasising issues of soil erosion and dependence on fossil fuels, in regard to achieving food security for a relentlessly enlarging global population. Soil has been described as "the fragile, living skin of the Earth", and yet both its aliveness and fragility have all too often been ignored in the expansion of agriculture across the face of the globe. Since it is a pivotal component in a global nexus of soil-water-air-energy, how we treat the soil can impact massively on climate change - with either beneficial or detrimental consequences, depending on whether the soil is preserved or degraded. Regenerative agriculture has at its core the intention to improve the health of soil or to restore highly degraded soil, which symbiotically enhances the quality of water, vegetation and land-productivity. By using methods of regenerative agriculture, it is possible not only to increase the amount of soil organic carbon (SOC) in existing soils, but to build new soil. This has the effect of drawing down carbon from the atmosphere, while simultaneously improving soil structure and soil health, soil fertility and crop yields, water retention and aquifer recharge - thus ameliorating both flooding and drought, and also the erosion of further soil, since runoff is reduced. Since food production on a more local scale is found to preserve the soil and its quality, urban food production should be seen as a significant potential contributor to regenerative agriculture in the future, so long as the methods employed are themselves 'regenerative'. If localisation is to become a dominant strategy for dealing with a vastly reduced use of fossil fuels, and preserving soil quality - with increased food production in towns and cities - it will be necessary to incorporate integrated ('systems') design approaches such as permaculture and the circular economy (which minimise and repurpose 'waste') within the existing urban infrastructure. In

  8. Agriculture and environmental pollution

    Iqbal, M.M.; Idris, M.; Shah, S.M.

    1997-01-01

    Agriculture is a profession which is open both to natural conditions and intense human activity. This has brought it in direct interface with the environment. The activities related to agriculture can have favorable as well as unfavorable influence on environment. Pressure of burgeoning population in demanding increased production from agriculture to feed and clothe the teeming millions. This has resulted in excessive use of soil, fertilizers and pesticides. The paper describes the effect of these productive resources on environment and human health. (author)

  9. Representing Water Scarcity in Future Agricultural Assessments

    Winter, Jonathan M.; Lopez, Jose R.; Ruane, Alexander C.; Young, Charles A.; Scanlon, Bridget R.; Rosenzweig, Cynthia

    2017-01-01

    Globally, irrigated agriculture is both essential for food production and the largest user of water. A major challenge for hydrologic and agricultural research communities is assessing the sustainability of irrigated croplands under climate variability and change. Simulations of irrigated croplands generally lack key interactions between water supply, water distribution, and agricultural water demand. In this article, we explore the critical interface between water resources and agriculture by motivating, developing, and illustrating the application of an integrated modeling framework to advance simulations of irrigated croplands. We motivate the framework by examining historical dynamics of irrigation water withdrawals in the United States and quantitatively reviewing previous modeling studies of irrigated croplands with a focus on representations of water supply, agricultural water demand, and impacts on crop yields when water demand exceeds water supply. We then describe the integrated modeling framework for simulating irrigated croplands, which links trends and scenarios with water supply, water allocation, and agricultural water demand. Finally, we provide examples of efforts that leverage the framework to improve simulations of irrigated croplands as well as identify opportunities for interventions that increase agricultural productivity, resiliency, and sustainability.

  10. Malawi - Conservation Agriculture

    Millennium Challenge Corporation — The randomized control trial impact evaluation tests different strategies for communicating information about agricultural technologies to smallholder maize farmers...

  11. Energy in agriculture

    Le Roux, E J

    1980-02-01

    Agriculture is an important component of Canadian energy policy. There are many opportunities for both the production of energy from agricultural processes and the conservation of energy in agricultural production. These opportunities, as well as current practices and research in progress, are outlined in this report. Energy sources in agriculture include biomass (straw and other residues), methane production from manure, and oil and alcohol from crops. Alternate energy sources such as solar and wind power conserve conventional resources, and additional conservation opportunities exist in the use of greenhouses, waste heat and energy-efficient farming processes. Research programs and possible trends are outlined. 10 figs., 3 tabs.

  12. Agriculture - reconciling ancient tensions

    David Atkinson

    2002-09-01

    Full Text Available Decision-making in agriculture has tended to be driven by factors other than environmental concerns. This may be changing, and perhaps the emphases of the two creation accounts in Genesis (responsible management or 'dominion', and active care may become more important. The paper examines a number of current developments in agriculture (synthetic fertilizers and pesticides, genetic manipulation, and organic versus industrial methodologies and discusses the issues they raise for agricultural productivity and the human communities dependent on farming. The questions raised are complex; we are faced with establishing a new paradigm for agricultural practice.

  13. Climate Change: A Threat to Agricultural Production in Nigeria ...

    In recent times, climate change has generated a global issue of discourse, because of its potential effects on the human interest, including agriculture. It is observed that absence of rapid response strategies to both short and long term climate change, including climate variability will have significant effect on the agricultural ...

  14. Agricultural vulnerability to climate change in Sokoto State, Nigeria ...

    Although climate change is global threat, developing countries have been identified as most vulnerable owing to their low adaptive capacities. In Nigeria, while the impacts of climate cut across diverse sectors, agriculture remains the most susceptible due to the predominance of rainfed agriculture. This paper examines ...

  15. Assessment Of Schools In Agricultural Program As A Strategy For ...

    It is suggested that there is a need for government to develop partnership with private and non-governmental organizations for financial support specifically for rural youth agricultural programs. Keywords: Agricultural program, technology transfer, Poverty alleviation. Global Approaches to Extension Practice Vol. 2 (2) 2006: ...

  16. Precision agriculture: the solution to control nutrient emissions?

    Stoorvogel, J.J.; Bouma, J.

    2005-01-01

    After almost two decades of precision agriculture (PA) research it is time to look at where we are. Significant progress has been made with different elements of research but at the same time we see that PA is not broadly being embraced in global agriculture. However, there is a clear need for

  17. An enquiry into the prospects of mobile telephone for agricultural ...

    LPhidza

    KEYWORDS: Mobile phones, agricultural information, global system for mobile ... rural services (i.e. agricultural extension) more efficient and cost-effective. 2. ... adoption of mobile telephones, evaluation research has however .... Distribution of respondents by religion. Religion. Frequencies Percentages. Christian. Islam.

  18. The agricultural policy of Serbia and common agricultural policy

    Stanković Milica

    2012-01-01

    Full Text Available The agricultural sector has a relatively high importance in the economic structure of Serbia. The Common Agricultural Policy (CAP, Common Agricultural Policy is one of the main policies of the European Union. It is very important to point out the fundamental principles and objectives of the Common Agricultural Policy. Harmonization of the national agricultural policy of Serbia with the Common Agricultural Policy and acceptance of its mechanisms is crucial for the development of the agricultural sector as a whole.

  19. Clustering of agricultural enterprises

    Michaela Beranová

    2013-01-01

    Full Text Available Agricultural business is a very specific branch which is characterized by very low financial performance while this characteristic is given mainly by external factors as market pricing of agricultural commodities on one side, and production costs of agricultural commodities on the other side. This way, agricultural enterprises recognize negative values of gross margin in the Profit and Loss Statement but positive value of operating profit after even there are items of costs which are deducted. These results are derived from agricultural production subsidies which are recognized as income in the P/L Statement. In connection with this fact, the government subsidies are a substantial component of financial performance of agricultural enterprises.Primary research proceeded on the statistical sample of one hundred agricultural companies, has shown that also other specifics influencing financial performance of these businesses exist here. In order to determine the influences, the cluster analysis has been applied at using more than 10 variables. This approach has led to construction of clusters (groups of agricultural business entities with different characteristics of the group. The objective of this paper is to identify the main determinants of financial performance of agricultural enterprises and to determine their influences under different economic characteristics of these business entities. For this purpose, the regression analysis has been subsequently applied on the groups of companies coming out from the cluster analysis. Besides the operating profit which is the main driving force of financial performance measured with the economic value added (EVA in agricultural enterprises, also capital structure and cost of capital have been observed as very strong influences on financial performance but these factors have different directions of their influence on the economic value added under different financial characteristics of agricultural

  20. Vocational Agriculture Education: Agricultural Livestock Skills.

    Pierce, Greg

    Ten units of instruction are provided in this curriculum guide on agricultural livestock skills. Unit topics are as follow: (1) restraining, (2) vaccination, (3) livestock castration, (4) dehorning, (5) docking, (6) growth stimulants, (7) identification, (8) shearing, (9) hoof trimming, and (10) birth assistance. Each instructional unit generally…

  1. Journal of Agricultural Extension

    Scope of journal The Journal of Agricultural Extension" is devoted to the advancement of knowledge of agricultural extension services and practice through the publication of original and empirically based research, ... Vol 22, No 1 (2018) ... Symbol recognition and interpretation of HIV/AIDS pictorial messages among rural ...

  2. Sustainable Agriculture: Cover Cropping

    Webster, Megan

    2018-01-01

    Sustainable agriculture practices are increasingly being used by farmers to maintain soil quality, increase biodiversity, and promote production of food that is environmentally safe. There are several types of sustainable agriculture practices such as organic farming, crop rotation, and aquaculture. This lesson plan focuses on the sustainable…

  3. The Urban Agriculture Circle

    Jansma, J.E.; Chambers, Joe; Sabas, Eva; Veen, E.J.

    2015-01-01

    The lack of inclusion of urban agriculture in city planning directly affects the success of initiatives in this sector, which subsequently could impede fu-ture innovations. The poor representation of urban agriculture in planning can be attributed to a lack of understanding about its

  4. Theme: Urban Agriculture.

    Ellibee, Margaret; And Others

    1990-01-01

    On the theme of secondary agricultural education in urban areas, this issue includes articles on opportunities, future directions, and implications for the profession; creative supervised experiences for horticulture students; floral marketing, multicultural education; and cultural diversity in urban agricultural education. (JOW)

  5. AGRICULTURE IN THE CITY

    The target audience of this book, then, is not only researchers and high-level ...... given the current higher availability of food traded in agricultural markets and in ... recyclable materials as containers for the organic matter and agricultural soil ...

  6. Conservation Agriculture in Europe

    Á. Kertész

    2014-03-01

    Yield performance and stability, operating costs, environmental policies and programs of the Common Agricultural Policy (CAP, and climate change will likely be the major driving forces defining the direction and for the extension of CA in Europe. The role of agriculture in climate change mitigation in the EU is discussed in the paper.

  7. Agriculture. Pt. 1

    1994-01-01

    The study investigates the impact of agriculture on the earth's atmosphere. It describes the natural carbon cycle, the socioeconomic factors that influence it, and the climate effects. The climatic relevance of gaseous sulphur and nitrogen compounds, methane and other hydrocarbons, and ammonia emissions from biological and agricultural process is discussed. (SR) [de

  8. Glossary on agricultural landscapes.

    Kruse, A.; Centeri, C.; Renes, J.; Roth, M.; Printsman, A.; Palang, H.; Benito Jorda, M.-D.; Verlarde, M.D.; Kruckenberg, H.

    2010-01-01

    T he following glossary of terms related to the European agricultural landscape shall serve as a common basis for all parties, working in or on agricultural landscapes. Some of the terms are quite common and sometimes used in our every day language, but they often have different meanings in

  9. Agriculture and food processing

    Muhammad Lebai Juri

    2003-01-01

    This chapter discuss the application of nuclear technology in agriculture sector. Nuclear Technology has help agriculture and food processing to develop tremendously. Two techniques widely use in both clusters are ionization radiation and radioisotopes. Among techniques for ionizing radiation are plant mutation breeding, SIT and food preservation. Meanwhile radioisotopes use as a tracer for animal research, plant soil relations water sedimentology

  10. The Current Developments of Agricultural Biotechnologies Market

    Anna M. Shkolyarenko

    2016-01-01

    Full Text Available Population growth in the context of limited land resources makes the global scientific society research new ways to increase the agricultural yields. Over the past 20 years, biotechnology and GM crops have become widely spread and now are cultivated in 28 countries. The total area of crops has tripled, and it suggests the further vertical and horizontal integration in short term. In 2015, the US Department of Agriculture authorized the commercial use of GM farm animals. The development of agricultural biotechnology market is constrained by opponents of GM crops in more than 160 countries, which include Russia and the European Union, where the production of GM crops is banned due to economic, ethical, ideological and biological reasons. Currently, the EU is seeking to reduce the imports of GM crops and products; Russia's GM imports and exports are prohibited, and the deadline of designing a consolidated position on agricultural biotechnology has been moved to 2017. The author seeks to analyze the volume of production and international trade of agricultural products based on biotechnologies and to describe the main trends in the global market, which could be integrated into the food value chain in Russia. In the context of the worsening economic indicators, the article proposes the possibility of extending the use of GM crops in Russia non-food sector.

  11. Perceived Contribution of Agricultural Transformation Agenda to ...

    USER

    Abstracted by: EBSCOhost, Electronic Journals Service (EJS),. Vol. ... Transformation Agenda ATA to rice production of farm families in. Southwestern Nigeria. ... hunger-free Nigeria through an agricultural sector that drives income growth, .... expected that rice farming will be as efficient as expected due to the fact that.

  12. Radiation technology in agriculture

    D'Souza, S.F.

    2013-01-01

    The Department of Atomic Energy through its research, development and deployment activities in nuclear science and technology, has been contributing towards enhancing the production of agricultural commodities and their preservation. Radiations and radioisotopes are used in agricultural research to induce genetic variability in crop plants to develop improved varieties, to manage insect pests, monitor fate and persistence of pesticides, to study fertilizer use efficiency and plant micronutrient uptake and also to preserve agricultural produce. Use of radiation and radioisotopes in agriculture which is often referred to as nuclear agriculture is one of the important fields of peaceful applications of atomic energy for societal benefit and BARC has contributed significantly in this area. 41 new crop varieties developed at BARC have been released and Gazette notified by the MoA, GOI for commercial cultivation and are popular among the farming community and grown through out the country

  13. Sustainable Agricultural Marketing Initiatives

    Hakan Adanacıoğlu

    2015-07-01

    Full Text Available Sustainable marketing is a holistic approach that puts equal emphasis on environmental, social equity, and economic concerns in the development of marketing strategies. The purpose of the study is to examine and discuss the sustainable agricultural marketing initiatives practiced throughout the World and Turkey, and to put forth suggestions to further improve the performance of agricultural marketing initiatives in Turkey. Some of the sustainable agricultural marketing initiatives practiced around the world are carried out through civil organizations. Furthermore; some of these initiatives have also launched by farmers, consumers, food processors and retailers. The long-term strategies to increase these initiatives should be determined due to the fact that examples of successful sustainable agricultural marketing initiatives are inadequate and cannot be spread in Turkey. In this context, first of all, the supports provided by the government to improve agricultural marketing systems, such as EU funds for rural development should be compatible with the goals of sustainable marketing. For this purpose, it should be examined whether all proposed projects related to agricultural marketing meet the social, economic, and environmental principles of sustainable marketing. It is important that supporting organizations, especially civil society organisations, should take an active role for faster dissemination and adoption of sustainable agricultural marketing practices in Turkey. These organizations may provide technical assistance in preparing successful project proposals and training to farm groups. In addition, the other organizations, such as local administrations, producers' associations, cooperatives, can contribute to the success of sustainable agricultural marketing initiatives. The use of direct marketing strategies and vertical integration attempts in sustainable agricultural marketing initiatives that will likely be implemented in Turkey is

  14. HISTORICAL DEVELOPMENT OF AGRICULTURAL ACCOUNTING AND DIFFICULTIES ENCOUNTERED IN THE IMPLEMENTATION OF AGRICULTURAL ACCOUNTING*

    Zeki Doğan

    2013-10-01

    Full Text Available Agricultural sector, from past to present, had assumed very important duties on economic and social development of societies. It became a globally indispensable and strategic sector due to its various attributes such as: direct/indirect contributions to population nourishment, national income, employment, capital transfers, raw material supply for industry, exportation, biological diversity and ecological balance. Since the dawn of humankind, agricultural sector had gone through a variety of phases in terms of production activities and land proprietorship. Agricultural activities that emerged in the period of hunter-gatherer societies have been superseded by today’s specialized and planned agricultural enterprises utilizing information and technology. Agricultural accounting has also experienced a significant change in parallel with those improvements. This study aims to investigate historical development of agricultural accounting and difficulties encountered during its implementation. Research studies indicate that agricultural assets were initially recorded and inventory controls were performed by Sumerians. Until the Middle Ages, agricultural accounting did not experience any development, whereas it still encounters various difficulties eve

  15. Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice

    Clark, Michael; Tilman, David

    2017-06-01

    Global agricultural feeds over 7 billion people, but is also a leading cause of environmental degradation. Understanding how alternative agricultural production systems, agricultural input efficiency, and food choice drive environmental degradation is necessary for reducing agriculture’s environmental impacts. A meta-analysis of life cycle assessments that includes 742 agricultural systems and over 90 unique foods produced primarily in high-input systems shows that, per unit of food, organic systems require more land, cause more eutrophication, use less energy, but emit similar greenhouse gas emissions (GHGs) as conventional systems; that grass-fed beef requires more land and emits similar GHG emissions as grain-feed beef; and that low-input aquaculture and non-trawling fisheries have much lower GHG emissions than trawling fisheries. In addition, our analyses show that increasing agricultural input efficiency (the amount of food produced per input of fertilizer or feed) would have environmental benefits for both crop and livestock systems. Further, for all environmental indicators and nutritional units examined, plant-based foods have the lowest environmental impacts; eggs, dairy, pork, poultry, non-trawling fisheries, and non-recirculating aquaculture have intermediate impacts; and ruminant meat has impacts ∼100 times those of plant-based foods. Our analyses show that dietary shifts towards low-impact foods and increases in agricultural input use efficiency would offer larger environmental benefits than would switches from conventional agricultural systems to alternatives such as organic agriculture or grass-fed beef.

  16. Impacts of Stratospheric Black Carbon on Agriculture

    Xia, L.; Robock, A.; Elliott, J. W.

    2017-12-01

    A regional nuclear war between India and Pakistan could inject 5 Tg of soot into the stratosphere, which would absorb sunlight, decrease global surface temperature by about 1°C for 5-10 years and have major impacts on precipitation and the amount of solar radiation reaching Earth's surface. Using two global gridded crop models forced by one global climate model simulation, we investigate the impacts on agricultural productivity in various nations. The crop model in the Community Land Model 4.5 (CLM-crop4.5) and the parallel Decision Support System for Agricultural Technology (pDSSAT) in the parallel System for Integrating Impact Models and Sectors are participating in the Global Gridded Crop Model Intercomparison. We force these two crop models with output from the Whole Atmospheric Community Climate Model to characterize the global agricultural impact from climate changes due to a regional nuclear war. Crops in CLM-crop4.5 include maize, rice, soybean, cotton and sugarcane, and crops in pDSSAT include maize, rice, soybean and wheat. Although the two crop models require a different time frequency of weather input, we downscale the climate model output to provide consistent temperature, precipitation and solar radiation inputs. In general, CLM-crop4.5 simulates a larger global average reduction of maize and soybean production relative to pDSSAT. Global rice production shows negligible change with climate anomalies from a regional nuclear war. Cotton and sugarcane benefit from a regional nuclear war from CLM-crop4.5 simulation, and global wheat production would decrease significantly in the pDSSAT simulation. The regional crop yield responses to a regional nuclear conflict are different for each crop, and we present the changes in production on a national basis. These models do not include the crop responses to changes in ozone, ultraviolet radiation, or diffuse radiation, and we would like to encourage more modelers to improve crop models to account for those

  17. Climate change and agriculture in Denmark

    Olesen, J.E.

    2001-01-01

    This chapter reviews the current knowledge on effects of climate change on agriculture in Denmark, and the contribution of agriculture to greenhouse gas emissions in Denmark. The chapter also considers the possibilities of Danish agriculture to adapt to changing climate and to reduce greenhouse gas emissions. The relations to other aspects of global change are discussed, including liberalisation of world markets and changes in land use. Scenarios of climate change for Denmark suggest increases in annual mean temperature of 1 to 4 deg. C by the end of the 21st century depending on socioeconomic development. Winter rainfall may increase up to 20%. This implies a wide range of possible consequences. Agricultural productivity may be expected to increase under increasing temperature and increasing CO 2 concentration. Highter temperatures will increase the risk of pests and deseases. Warming in association with increased winter rainfall will also increase the risk of nitrate leaching. Climate change may thus be expected to reinforce the current trends in Danish agriculture of declining cattle population and increasing pig and cereal production. Apart from an anticipated continued decline in total agricultural area, land use will probably not be greatly affected. The current environmental regulation in Denmark aims at reducing pesticide use and nitrogen losses from agriculture. Some of the regulations are very detailed and directly regulate farming practices in a manner that may not provide the most cost-effective mechanism under a changed climate. Some of these existing rigid frameworks for environmental regulation should thus be substituted by more flexible goal-oriented environmental protection strategies, in order to ensure sustainability of farming under global climate change. (LN)

  18. Exploitation of endophytes for sustainable agricultural intensification.

    Le Cocq, Kate; Gurr, Sarah J; Hirsch, Penny R; Mauchline, Tim H

    2017-04-01

    Intensive agriculture, which depends on unsustainable levels of agrochemical inputs, is environmentally harmful, and the expansion of these practices to meet future needs is not economically feasible. Other options should be considered to meet the global food security challenge. The plant microbiome has been linked to improved plant productivity and, in this microreview, we consider the endosphere - a subdivision of the plant microbiome. We suggest a new definition of microbial endophyte status, the need for synergy between fungal and bacterial endophyte research efforts, as well as potential strategies for endophyte application to agricultural systems. © 2016 THE AUTHORS. MOLECULAR PLANT PATHOLOGY PUBLISHED BY BRITISH SOCIETY FOR PLANT PATHOLOGY AND JOHN WILEY & SONS LTD.

  19. China Report, Agriculture 1982 Agricultural Yearbook

    1984-08-09

    Bureau Notice on Launching a Patriotic Enlightenment Campaign in Cherishing Trees, Flowers , and Grass (10 March 1981) 395 Ministry of Forestry and...Agriculture (a) Place (h) Pineapple S (b) Total Frui .t (i) Red Dates (c) Including (j) Persimmon S...agreement systems are manifested in the following major ways: 1. Marked increase in outputs. Whenever they have acted strictly in accor- dance with

  20. Agro-Science Journal of Tropical Agriculture, Food, Environment ...

    PC USER

    1Department of Agricultural Economics and Extension Technology, School of Agriculture and ... farmers redeemed with agro-inputs under the electronic-wallet initiative of the Growth Enhancement Support ... allocative role of price following distortion created by ... the development of a private sector distribution channel.

  1. Agriculture. Sector 4

    1994-01-01

    In Lebanon, emissions of greenhouse gases from agricultural activities occur through the following processes: -enteric fermentation and manure management of the domestic livestock emits methane and nitrous oxide. -agricultural burning of crop residues is of minor importance since field burning of crop residue is not a common practice in Lebanon -agricultural soils are a source of nitrous oxide directly from the soils and from animal production, and indirectly from the nitrogen added to the soils. The following results were obtained for the inventory year 1994: 7.60955 Gg of methane, 3.01478 Gg of nitrous oxide, 0.00146 Gg of nitrogen oxides and 0.04306 Gg of carbon monoxide

  2. Synthesis and Review: Advancing agricultural greenhouse gas quantification

    Olander, Lydia P; Wollenberg, Eva; Tubiello, Francesco N; Herold, Martin

    2014-01-01

    Reducing emissions of agricultural greenhouse gases (GHGs), such as methane and nitrous oxide, and sequestering carbon in the soil or in living biomass can help reduce the impact of agriculture on climate change while improving productivity and reducing resource use. There is an increasing demand for improved, low cost quantification of GHGs in agriculture, whether for national reporting to the United Nations Framework Convention on Climate Change (UNFCCC), underpinning and stimulating improved practices, establishing crediting mechanisms, or supporting green products. This ERL focus issue highlights GHG quantification to call attention to our existing knowledge and opportunities for further progress. In this article we synthesize the findings of 21 papers on the current state of global capability for agricultural GHG quantification and visions for its improvement. We conclude that strategic investment in quantification can lead to significant global improvement in agricultural GHG estimation in the near term. (paper)

  3. Improving Nutrition through Agriculture : Viewing agriculture-nutrition linkages along the smallholder value chain

    Wiegers, E.S.; Dorp, van M.; Torgerson, S.

    2011-01-01

    This report is a synthesis of existing global knowledge on improving nutrition through agriculture using a smallholder value chain approach. The smallholder value chain model used by the desk review concentrates on both producers and consumers and is centred around three pathways: improved nutrition

  4. Nuclear electronics

    Lucero B, E.

    1989-01-01

    The rapid technical development of Colombia over the past years, resulted among others, a considerable increase in the number of measuring instrumentation and testing laboratories, scientific research and metrology centers, in industry, agriculture, public health, education on the nuclear field, etc. IAN is a well organized institution with qualified management, trained staff and reasonably equipped laboratories to carry out tasks as: Metrology, standardization, quality control and maintenance and repair of nuclear instruments. The government of Colombia has adopted a policy to establish and operate through the country maintenance and repair facilities for nuclear instrumentation. This policy is reflected in the organization of electronic laboratories in Bogota-IAN

  5. Advancing Technology: GPS and GIS Outreach Training for Agricultural Producers

    Flynn, Allison; Arnold, Shannon

    2010-01-01

    The use of the Global Positioning System (GPS) and Global Information Systems (GIS) has made significant impacts on agricultural production practices. However, constant changes in the technologies require continuing educational updates. The outreach program described here introduces the operation, use, and applications of GPS receivers and GIS…

  6. How to close the ever widening gap of Africa's agriculture

    Bindraban, P.S.; Löffler, H.J.M.; Rabbinge, R.

    2008-01-01

    While global food availability increased by 27% per person over the past four decades, it decreased by 12% in Sub-Saharan Africa (SSA). This paper explores the role of technology use on agricultural development to understand the ever widening gap of SSA with other global regions. It looks into land

  7. Agricultural Minerals Operations

    Department of Homeland Security — This map layer includes agricultural minerals operations in the United States. The data represent commodities covered by the Minerals Information Team (MIT) of the...

  8. Agricultural diversification into tourism

    Hjalager, Anne Mette

    1996-01-01

    Based on the empirical evidence provided by an evaluation study of the EU Objective 5b programme measures* for the expansion of rural tourism, this article discusses the impact of rural tourism on agricultural holdings. It is shown that the financial returns most often do not measure up either...... to the expectations of the politicians or to that of the farmers. In some respects rural tourism contributes positively to the innovation of the tourist product since its small scale, 'green' issues and special facilities differentiate the product from others. But the unleashing of real potential is hampered...... by the fact that farmers tend to give priority to traditional agriculture and by the fact that industrialized agriculture is not easily combined with the commodifying of agricultural traditions for tourism. The community level inter-organizational innovations which are designed to ensure the marketing...

  9. Agriculture: Nurseries and Greenhouses

    Nurseries and Greenhouses. Information about environmental requirements specifically relating to the production of many types of agricultural crops grown in nurseries and greenhouses, such as ornamental plants and specialty fruits and vegetables.

  10. Agricultural Education and OSHA

    Brown, Ronald A.

    1974-01-01

    Agriculture teachers should be interested in and become familiar with the implications of the Williams-Steiger Occupational Safety and Health Act of 1970 for their own benefit, for their students, and for their students' future employers. (AG)

  11. Radioactive contamination and agriculture

    1988-04-01

    Some guidelines are presented for the Belgian agriculture to realise three vital objectives in case of a nuclear accident : protection of food quality and public health, radiation protection for farmers and keeping the production apparatus intact. (H.E.)

  12. Agricultural Producer Certificates

    Montgomery County of Maryland — A Certified Agricultural Producer, or representative thereof, is an individual who wishes to sell regionally-grown products in the public right-of-way. A Certified...

  13. Agricultural science and ethics

    Gjerris, Mickey; Vaarst, Mette

    2014-01-01

    Humans live in constant interaction with nature. That is part and parcel of being a biological creature on this planet. On one hand, humans exploit the available resources to survive, and at the same time, humans are deeply dependent on the continued capacity of nature to sustain their lives......, about 20 % of the world's coral reefs and 35 % of the mangrove areas were lost (Millennium Ecosystem Assessment 2005). In the following, the development of agricultural science will be sketched out and the role of ethics in agricultural science will be discussed. Then different views of nature that have...... shaped agriculture and the role of science in agriculture will be discussed by analyzing some of the presumptions behind the concept of ecosystem services and the way animals are viewed. Finally, the concepts of animal welfare and sustainability will be explored to show how they make vivid the connection...

  14. Nigeria Agricultural Journal

    Nigerian Agricultural Journal. ... Influence of differently processed mango seed kernel meal on performance response of west African dwarf goats fed spear grass based ... Borrowing behaviour among oil palm processors in Idemili North Local ...

  15. Agricultural Drainage Well Intakes

    Iowa State University GIS Support and Research Facility — Locations of surface intakes for registered agriculture drainage wells according to the database maintained by IDALS. Surface intakes were located from their...

  16. Impact of greenhouse gases on agricultural productivity in Pakistan

    Valasai, G.D; Harijan, K.; Uqaili, M.S.; Memon, H.R

    2005-01-01

    Pakistan is an agricultural developing country. About 68% of the country's population resides in rural areas and is mostly linked with agriculture. Agricultural sector contributes more than 25% to GDP, employees about 45% of the labour force and contributes significantly to export earnings of the country. Energy sector is the major source (80%) of emissions of Greenhouse Gases (GHGs). Agriculture and livestock sectors are also responsible for GHGs emissions. The emissions of GHGs results in acid rain and earth's temperature rise (global warming). The destabilization of the global climate destroys natural ecosystem and increases natural disasters, such as violent storms, floods, droughts etc. The acid rain and these natural disasters affect the agricultural productivity. The study indicates that the agricultural productivity per capita in Pakistan decreased continuously during the last two decades. The paper concludes that due to emissions of GHGs, the agricultural productivity is significantly affected in the country. The government should take concrete measures to minimize the emissions of GHGs for increasing the agricultural productivity and reducing other harmful impacts in the country. This paper presents the review and analysis of the effects of GHGs emissions on the agricultural productivity in Pakistan. (author)

  17. World competitiveness and agriculture

    J. van Zyl

    1997-07-01

    Full Text Available Against the background of a changing environment in which market factors and greater world trade and competitiveness are increasingly becoming the only criteria for success, a framework for the analysis of world competitiveness is initially developed. This is followed by a discussion on the growth of productivity in agriculture, as well as an exposition of the role of agricultural research. Thirdly, price factors and the terms of trade are discussed, followed by a summary of policy implications.

  18. Agriculture and private sector

    Sahin, Sila; Prowse, Martin Philip; Weigh, Nadia

    and this looks set to remain for the next two decades at least. The agriculture and growth evidence paper series has been developed to cover a range of issues that are of most relevance to DFID staff. The paper is not intended to be a comprehensive overview of all issues relating to agriculture and the private...... sector. It concentrates on those areas that are of particular focus for DFID policy and strategy....

  19. Radiation and agriculture

    Yamashita, Atsushi

    1982-01-01

    Radiation utilization in agriculture, forestry and marine product industry was reviewed. Agricultural examples were breeding with gamma rays and resultant plant breeding, and improvement of productivity and acquisition of resistance to disease were also explained. In relation to disinfestation, male sterilization of the melon fly was described. An example of utilization for the marine product industry was survey of salmon migration by the radioactivate analysis of Europium. (Chiba, N.)

  20. Speeding up innovation in agricultural IT

    Hannu E.S. Haapala

    2013-09-01

    Full Text Available An OECD funded research was conducted where methods and processes for speeding up innovation in agriculture were assessed. A global web-based questionnaire was sent to experts in agricultural engineering, research, marketing, education and users of new technologies. Interviews of selected experts were done to deepen the analysis. The results show that considerable part of the relatively slow innovation comes from the fact that users do not trust in new technologies or that the usability of them is unacceptable. The experts suggest that education of the engineers and designers should include more elements from User-Centered Design (UCD and also User-Driven Innovation methods should be more used. As a conclusion a new ‘Dream Team’ of agricultural innovation was developed where user interaction and marketing professionals were given more roles.

  1. Deforestation and agriculture in the tropics: carbon emissions and options for mitigation

    Carter, Sarah

    2018-01-01

    Agriculture is the largest driver of deforestation globally, and this conversion of land from forests to agriculture, results in emissions which are contributing to climate change. This thesis focuses on exploring agriculture-driven deforestation at the country level, from the perspective of

  2. Greenhouse Gas Emissions from Agricultural Production

    Bennetzen, Eskild Hohlmann

    unit. This dissertation presents results and comprehensions from my PhD study on the basis of three papers. The overall aim has been to develop a new identity-based framework, the KPI, to estimate and analyse GHG emissions from agriculture and LUC and apply this on national, regional and global level....... The KPI enables combined analyses of changes in total emissions, emissions per area and emissions per product. Also, the KPI can be used to assess how a change in each GHG emission category affects the change in total emissions; thus pointing to where things are going well and where things are going less...... well in relation to what is actually produced. The KPI framework is scale independent and can be applied at any level from field and farm to global agricultural production. Paper I presents the first attempt to develop the KPI identity framework and, as a case study, GHG emissions from Danish crop...

  3. Patterns of land use, extensification, and intensification of Brazilian agriculture.

    Dias, Lívia C P; Pimenta, Fernando M; Santos, Ana B; Costa, Marcos H; Ladle, Richard J

    2016-08-01

    Sustainable intensification of agriculture is one of the main strategies to provide global food security. However, its implementation raises enormous political, technological, and social challenges. Meeting these challenges will require, among other things, accurate information on the spatial and temporal patterns of agricultural land use and yield. Here, we investigate historical patterns of agricultural land use (1940-2012) and productivity (1990-2012) in Brazil using a new high-resolution (approximately 1 km(2) ) spatially explicit reconstruction. Although Brazilian agriculture has been historically known for its extensification over natural vegetation (Amazon and Cerrado), data from recent years indicate that extensification has slowed down and was replaced by a strong trend of intensification. Our results provide the first comprehensive historical overview of agricultural land use and productivity in Brazil, providing clear insights to guide future territorial planning, sustainable agriculture, policy, and decision-making. © 2016 John Wiley & Sons Ltd.

  4. Sustainability Assessment and Reporting in Agriculture Sector

    Edward Kassem

    2017-01-01

    Full Text Available Sustainability assessment is a mainstream business activity that demonstrates the link between the organization’s strategy and commitment to a sustainable global economy. Sustainability indicators describe the environmental, social, economic and governance performance of Small and Medium‑sized Businesses/Enterprises (SMB/SME. Unfortunately, their implementations in the Czech Republic show a low level of engagement in sustainability assessment. The paper presents the results of the authors’ research in sustainability assessment of SMB/SMEs in the agriculture sector of the Czech Republic. An appropriate set of key performance indicators (KPIs in four dimensions (economy, environment, social and governance was developed to suit the SMB/SMEs sustainability assessment in the agriculture sector. A set of KPIs is proposed to help SMB/SMEs to avoid the barriers of sustainability assessment. These indicators are based mainly on Sustainability Assessment of Food and Agriculture, Global Reporting Initiatives Frameworks and on current research state‑of‑the‑art. They have been created following the analysis of a number of agricultural enterprises over the world, particularly within European countries.

  5. Exploitation of endophytes for sustainable agricultural intensification

    Le Cocq, Kate; Gurr, Sarah J.; Hirsch, Penny R.; Mauchline, Tim H.

    2016-01-01

    Summary Intensive agriculture, which depends on unsustainable levels of agrochemical inputs, is environmentally harmful, and the expansion of these practices to meet future needs is not economically feasible. Other options should be considered to meet the global food security challenge. The plant microbiome has been linked to improved plant productivity and, in this microreview, we consider the endosphere ? a subdivision of the plant microbiome. We suggest a new definition of microbial endoph...

  6. Biosurfactants in agriculture.

    Sachdev, Dhara P; Cameotra, Swaranjit S

    2013-02-01

    Agricultural productivity to meet growing demands of human population is a matter of great concern for all countries. Use of green compounds to achieve the sustainable agriculture is the present necessity. This review highlights the enormous use of harsh surfactants in agricultural soil and agrochemical industries. Biosurfactants which are reported to be produced by bacteria, yeasts, and fungi can serve as green surfactants. Biosurfactants are considered to be less toxic and eco-friendly and thus several types of biosurfactants have the potential to be commercially produced for extensive applications in pharmaceutical, cosmetics, and food industries. The biosurfactants synthesized by environmental isolates also has promising role in the agricultural industry. Many rhizosphere and plant associated microbes produce biosurfactant; these biomolecules play vital role in motility, signaling, and biofilm formation, indicating that biosurfactant governs plant-microbe interaction. In agriculture, biosurfactants can be used for plant pathogen elimination and for increasing the bioavailability of nutrient for beneficial plant associated microbes. Biosurfactants can widely be applied for improving the agricultural soil quality by soil remediation. These biomolecules can replace the harsh surfactant presently being used in million dollar pesticide industries. Thus, exploring biosurfactants from environmental isolates for investigating their potential role in plant growth promotion and other related agricultural applications warrants details research. Conventional methods are followed for screening the microbial population for production of biosurfactant. However, molecular methods are fewer in reaching biosurfactants from diverse microbial population and there is need to explore novel biosurfactant from uncultured microbes in soil biosphere by using advanced methodologies like functional metagenomics.

  7. Agricultural experts’ attitude towards precision agriculture: Evidence from Guilan Agricultural Organization, Northern Iran

    Mohammad Sadegh Allahyari; Masoumeh Mohammadzadeh; Stefanos A. Nastis

    2016-01-01

    Identifying factors that influence the attitudes of agricultural experts regarding precision agriculture plays an important role in developing, promoting and establishing precision agriculture. The aim of this study was to identify factors affecting the attitudes of agricultural experts regarding the implementation of precision agriculture. A descriptive research design was employed as the research method. A research-made questionnaire was used to examine the agricultural experts’ attitude to...

  8. Global Journal of Pure and Applied Sciences

    Global Journal of Pure and Applied Sciences is a multi-disciplinary specialist journal ... research in Biological Science, Agricultural Sciences, Chemical Sciences, ... Comparative study of the physicochemical and bacteriological qualities of ...

  9. The cultivated agricultural environment

    Eriksson, Aa.

    1997-01-01

    Local agricultural practices in the Nordic countries have resulted in a great diversity in agriculture in the Nordic countries. The diversities mean that in the event of contamination of agricultural land by radioactive fallout the consequences may differ greatly from region to region. For crops and soils contaminated directly by radioactive fallout there are five primary causes for concern, namely: 1. short-term internal contamination of man and animals through ingestion of surface-contaminated mature crops; 2. internal contamination of crops through foliar intake; 3. contamination of mature crops from resuspended soil; 4. direct irradiation of agricultural workers; 5. internal irradiation from inhalation of resuspended soil particulates. In the short-term, most of the radionuclides likely to be released to the atmosphere in the event of an accident have a potential to cause problems in agriculture and many have the potential for causing long-term problems. Generally, the magnitude of the problems created will depend on the: deposition mechanism (wet or dry); radionuclide composition of the fallout; type of farming system (i.e. arable or dairy); type of soil (for instance organic soils are more sensitive than mineral soils with respect to radiocaesium); state of development of the crop which in turn is determined by the season of the year. (EG)

  10. The cultivated agricultural environment

    Eriksson, Aa [Swedish Univ. of Agricultural Sciences, Dept. of Radioecology (Sweden)

    1997-10-01

    Local agricultural practices in the Nordic countries have resulted in a great diversity in agriculture in the Nordic countries. The diversities mean that in the event of contamination of agricultural land by radioactive fallout the consequences may differ greatly from region to region. For crops and soils contaminated directly by radioactive fallout there are five primary causes for concern, namely: 1. short-term internal contamination of man and animals through ingestion of surface-contaminated mature crops; 2. internal contamination of crops through foliar intake; 3. contamination of mature crops from resuspended soil; 4. direct irradiation of agricultural workers; 5. internal irradiation from inhalation of resuspended soil particulates. In the short-term, most of the radionuclides likely to be released to the atmosphere in the event of an accident have a potential to cause problems in agriculture and many have the potential for causing long-term problems. Generally, the magnitude of the problems created will depend on the: deposition mechanism (wet or dry); radionuclide composition of the fallout; type of farming system (i.e. arable or dairy); type of soil (for instance organic soils are more sensitive than mineral soils with respect to radiocaesium); state of development of the crop which in turn is determined by the season of the year. (EG). 56 refs.

  11. Research Investments and Market Structure in the Food Processing, Agricultural Input, and Biofuel Industries Worldwide

    Fuglie, Keith O.; Heisey, Paul W.; King, John L.; Day-Rubenstein, Kelly A.; Schimmelpfennig, David E.; Wang, Sun Ling

    2011-01-01

    Meeting growing global demand for food, fiber, and biofuel requires robust investment in agricultural research and development (R&D) from both public and private sectors. This study examines global R&D spending by private industry in seven agricultural input sectors, food manufacturing, and biofuel and describes the changing structure of these industries. In 2007 (the latest year for which comprehensive estimates are available), the private sector spent $19.7 billion on food and agricultural ...

  12. Development of the agricultural insurance market in the Czech Republic

    Eva Vávrová

    2010-01-01

    Full Text Available Proactive approach to risk management of agriculture companies is the way to ensure the efficiency of agricultural production even affected by natural disasters, to ensure the continuity of agricultural business and ultimately affect the level of development of rural regions. The instrument that solves the problem of reduction and elimination of risks associated with agricultural production is a systemic approach to the insurance of agricultural production, both crop insurance and livestock insurance, linked to a support program for SME in agriculture.This presented paper aims to identify and discuss the possibility of eliminating risks possibly threate­ning the agricultural production and to analyze forms of covering risks associated with agricultural production on the commercial insurance market in the Czech Republic. The paper analyzes the current situation and current development of the agricultural insurance on the insurance market in the Czech Republic.This paper was written as a part of the research project MSM 6215648904, carried out by the Faculty of Business and Economics, under the title „The Czech economics in the processes of integration and globalization, and the development of the agriculture and service sector in the new conditions of the integrated European market“, following the goals and methodology of the research project.

  13. Global warning, global warming

    Benarde, M.A.

    1992-01-01

    This book provides insights into the formidable array of issues which, in a warmer world, could impinge upon every facet of readers lives. It examines climatic change and long-term implications of global warming for the ecosystem. Topics include the ozone layer and how it works; the greenhouse effect; the dangers of imbalance and its effects on human and animal life; disruptions to the basic ecology of the planet; and the real scientific evidence for and against aberrant climatic shifts. The author also examines workable social and political programs and changes that must be instituted to avoid ecological disaster

  14. Contribution of Nuclear Science in Agriculture Sustainability

    Soliman, S.M.; Galal, Y.G.M.

    2017-01-01

    Sustainable agricultural systems employ natural processes to achieve acceptable levels of productivity and food quality while minimizing adverse environmental impacts. Sustainable agriculture must, by definition, be ecologically sound, economically viable, and socially responsible. Sustainable agriculture must nurture healthy co systems and support the sustainable management of land, water and natural resources, while ensuring world food security. To be sustainable, agriculture must meet the needs of present and future generations for its products and services, while ensuring profitability, environmental health and social and economic equity. The global transition to sustainable food and agriculture will require major improvements in the efficiency of resource use, in environmental protection and in systems resilience. In Mediterrane an environments, crops are grown mainly in the semiarid and sub-humid are as. In arid and semiarid are as dry land farming, techniques are of renewed interest in the view of sustain ability. They are aimed to increase water accumulation in the soil, reduce runoff and soil evaporation losses, choose species and varieties able to make better use of rainwater, and rationalize fertilization plans, sowing dates, and weed and pest control. Fertilization plans should be based on well-defined principles of plant nutrition, soil chemistry, and chemistry of the fertilizer elements. Starting from the calculation of nutrient crop uptake (based on the actually obtainable yield), dose calculation must be corrected by considering the relation ship between the availability of the trace elements in soil and the main physical and chemical parameters of the soil (ph, organic matter content, mineralization rate, C/N, ratio of solubilization of phosphorus, active lime content, presence of antagonist ions, etc.). In the Egyptian Atomic Energy Authority, Soil and Water Research Department, nuclear techniques including radio and stable isotopes in addition to

  15. Managing adaptively for multifunctionality in agricultural systems

    Hodbod, Jennifer; Barreteau, Olivier; Allen, Craig R.; Magda, Danièle

    2016-01-01

    The critical importance of agricultural systems for food security and as a dominant global landcover requires management that considers the full dimensions of system functions at appropriate scales, i.e. multifunctionality. We propose that adaptive management is the most suitable management approach for such goals, given its ability to reduce uncertainty over time and support multiple objectives within a system, for multiple actors. As such, adaptive management may be the most appropriate method for sustainably intensifying production whilst increasing the quantity and quality of ecosystem services. However, the current assessment of performance of agricultural systems doesn’t reward ecosystem service provision. Therefore, we present an overview of the ecosystem functions agricultural systems should and could provide, coupled with a revised definition for assessing the performance of agricultural systems from a multifunctional perspective that, when all satisfied, would create adaptive agricultural systems that can increase production whilst ensuring food security and the quantity and quality of ecosystem services. The outcome of this high level of performance is the capacity to respond to multiple shocks without collapse, equity and triple bottom line sustainability. Through the assessment of case studies, we find that alternatives to industrialized agricultural systems incorporate more functional goals, but that there are mixed findings as to whether these goals translate into positive measurable outcomes. We suggest that an adaptive management perspective would support the implementation of a systematic analysis of the social, ecological and economic trade-offs occurring within such systems, particularly between ecosystem services and functions, in order to provide suitable and comparable assessments. We also identify indicators to monitor performance at multiple scales in agricultural systems which can be used within an adaptive management framework to

  16. Managing adaptively for multifunctionality in agricultural systems.

    Hodbod, Jennifer; Barreteau, Olivier; Allen, Craig; Magda, Danièle

    2016-12-01

    The critical importance of agricultural systems for food security and as a dominant global landcover requires management that considers the full dimensions of system functions at appropriate scales, i.e. multifunctionality. We propose that adaptive management is the most suitable management approach for such goals, given its ability to reduce uncertainty over time and support multiple objectives within a system, for multiple actors. As such, adaptive management may be the most appropriate method for sustainably intensifying production whilst increasing the quantity and quality of ecosystem services. However, the current assessment of performance of agricultural systems doesn't reward ecosystem service provision. Therefore, we present an overview of the ecosystem functions agricultural systems should and could provide, coupled with a revised definition for assessing the performance of agricultural systems from a multifunctional perspective that, when all satisfied, would create adaptive agricultural systems that can increase production whilst ensuring food security and the quantity and quality of ecosystem services. The outcome of this high level of performance is the capacity to respond to multiple shocks without collapse, equity and triple bottom line sustainability. Through the assessment of case studies, we find that alternatives to industrialized agricultural systems incorporate more functional goals, but that there are mixed findings as to whether these goals translate into positive measurable outcomes. We suggest that an adaptive management perspective would support the implementation of a systematic analysis of the social, ecological and economic trade-offs occurring within such systems, particularly between ecosystem services and functions, in order to provide suitable and comparable assessments. We also identify indicators to monitor performance at multiple scales in agricultural systems which can be used within an adaptive management framework to increase

  17. Effects of climate change on US agriculture

    Guillet, L.

    2007-08-01

    The USA are a major producer of food and fiber products in the world. The US agriculture represents more than 25% of the world trades of wheat, corn, soy and cotton. The cultivated surfaces and the pasture lands represent 210 million Ha (17% of the US territory) and 300 million Ha (26% of the US territory), respectively. The agricultural production represents less than 2% of the US GDP, put the agriculture products make about 5% of the US exports. The climate change may have some impacts on the overall agriculture industry, from the plant growth to the conditions of competition on international markets. In 2001, the US global change research program, published an evaluation report about the potential consequences of the climate change on the US agriculture. The conclusions of the panel of experts, based on climate, cultivation and economical models, was that the CO 2 levels and climate changes of the 21. century would have no negative impact on the US agriculture. The average effects, on the contrary, would be rather positive, depending on the type of culture and on the region considered. Today, the experts have entertained lot of doubts about the 2001 forecasts: the fertilizing effect of CO 2 is more and more criticized and an efficient supply of water appears as seriously compromised for many regions. Experts stress also on the lack of consideration for extreme climatic events, and for crop vermin and diseases. This document reanalyzes the conclusions of the 2001 report in the light of the works carried out more recently at the Agriculture Research Service (ARS). The proceedings of expert's interviews are attached in appendixes. (J.S.)

  18. Data mining in agriculture

    Mucherino, Antonio; Pardalos, Panos M

    2009-01-01

    Data Mining in Agriculture represents a comprehensive effort to provide graduate students and researchers with an analytical text on data mining techniques applied to agriculture and environmental related fields. This book presents both theoretical and practical insights with a focus on presenting the context of each data mining technique rather intuitively with ample concrete examples represented graphically and with algorithms written in MATLAB®. Examples and exercises with solutions are provided at the end of each chapter to facilitate the comprehension of the material. For each data mining technique described in the book variants and improvements of the basic algorithm are also given. Also by P.J. Papajorgji and P.M. Pardalos: Advances in Modeling Agricultural Systems, 'Springer Optimization and its Applications' vol. 25, ©2009.

  19. Measuring Agricultural Bias

    Jensen, Henning Tarp; Robinson, Sherman; Tarp, Finn

    The measurement issue is the key issue in the literature on trade policy-induced agri-cultural price incentive bias. This paper introduces a general equilibrium effective rate of protection (GE-ERP) measure, which extends and generalizes earlier partial equilibrium nominal protection measures...... shares and intersectoral linkages - are crucial for determining the sign and magnitude of trade policy bias. The GE-ERP measure is therefore uniquely suited to capture the full impact of trade policies on agricultural price incentives. A Monte Carlo procedure confirms that the results are robust....... For the 15 sample countries, the results indicate that the agricultural price incentive bias, which was generally perceived to exist during the 1980s, was largely eliminated during the 1990s. The results also demonstrate that general equilibrium effects and country-specific characteristics - including trade...

  20. Planning and costing agriculture's adaptation to climate change

    Chambwera, Muyeye; Downing, Tom; Venton, Courtenay Cabot; Dyszynski, Jillian; Crawford, Victoria; Butterfield, Ruth; Kaur, Nanki; Birch, Tom; Loga, Denise

    2011-11-15

    Changing climate will have adverse effects on food production, food distribution, infrastructure, land availability for agriculture, and livelihood assets and opportunities in rural and urban areas. Adapting food systems to both enhance food security for the poor and to prevent the future negative impacts of climate change will require attention to more than just agricultural production. Food security can only be ensured and enhanced through a range of interventions across different agricultural systems and along the associated value chains, from production to distribution and allocation. The current efforts to get agriculture into the global climate policy framework after the expiry of the Kyoto Protocol emphasises mitigation. Adaptation is an equally important objective in a world that cannot avoid climate change any more because of already accumulated greenhouse gases. In developing countries, adaptation is the primary concern due to their vulnerability to climate change and high dependence on weather-dependent agricultural systems. A complete response to climate change that integrates agriculture should therefore pursue both agricultural mitigation and adaptation. In order to plan for adaptation effectively, policy makers need reliable information from developing countries on the nature of adaptation, its costs and how these are related to ongoing efforts to develop the agriculture sector and food systems of developing countries. This study set out to inform climate policy development by analysing agricultural adaptation in developing countries using a combination of desk studies and country case studies to provide a framework, areas to focus on when planning agricultural adaptation and the likely costs. It followed key steps for bringing together global and local perspectives for the benefit of both global stakeholders and developing countries.

  1. Land Grabbing and the Commodification of Agricultural Land in Africa

    D'Odorico, P.; Rulli, M. C.

    2014-12-01

    The increasing global demand for farmland products is placing unprecedented pressure on the global agricultural system. The increasing demand can be met through either the intensification or the expansion of agricultural production at the expenses of other ecosystems. The ongoing escalation of large scale land acquisitions in the developing world may contribute to both of these two processes. Investments in agriculture have become a priority for a number of governments and corporations that are trying to expand their agricultural production while securing good profits. It is unclear however to what extent these investments are driving the intensification or the expansion of agriculture. In the last decade large scale land acquisitions by external investors have increased at unprecedented rates. This global land rush was likely enhanced by recent food crises, when prices skyrocketed in response to crop failure, new bioenergy policies, and the increasing demand for agricultural products by a growing and increasingly affluent human population. Corporations recognized the potential for high return investments in agricultural land, while governments started to enhance their food security by purchasing large tracts of land in foreign countries. It has been estimated that, to date, about 35.6 million ha of cropland - more than twice the agricultural land of Germany - have been acquired by foreign investors worldwide. As an effect of these land deals the local communities lose legal access to the land and its products. Here we investigate the effect of large scale land acquisition on agricultural intensification or expansion in African countries. We discuss the extent to which these investments in agriculture may increase crop production and stress how this phenomenon can greatly affect the local communities, their food security, economic stability and the long term resilience of their livelihoods, regardless of whether the transfer of property rights is the result of an

  2. Urban Agriculture Program Planning Guide.

    Hemp, Paul E.; Ethridge, Jim

    Urban agriculture may be defined as those areas of agriculture that are practiced in metropolitan settings, plus knowledge and skills in agricultural subject areas which lead to vocational proficiency and improved quality of life or effective citizenship. Agriculture areas that are especially significant in urban settings include ornamental…

  3. Agricultural transportation fuels

    Anon.

    1993-01-01

    The recommendations on the title subject are focused on the question whether advantages and disadvantages of agricultural fuels compared to fossil fuels justify the Dutch policy promotion of the use of agricultural products as basic materials for agricultural fuels. Attention is paid to energetic, environmental and economical aspects of both fuel types. Four options to apply agricultural transportation fuels are discussed: (1) 10% bio-ethanol in euro-unleaded gasoline for engines of passenger cars, equipped with a three-way catalyst; (2) the substitution of 15% methyl tertiair butyl ether (MTBE) by ethyl tertiair butyl ether (ETBE) as a substituent for lead in unleaded super plus gasoline (Sp 98) for engines of passenger cars, equipped with a three-way catalyst; (3) 50% KME (rapeseed oil ester) in low-sulfur diesel (0.05%S D) for engines of vans without a catalyst; and (4) the substitution of 0.05% S D by bio-ethanol or KME for buses with fuel-adjusted engines, equipped with a catalyst. Also the substitution by liquefied petroleum gas (LPG), compressed natural gas (CNG) or E 95 was investigated in option four. Each of the options investigated can contribute to a reduction of the use of fossil energy and the environmental effects of the use of fossil fuels, although some environmental effects from agricultural fuels must be taken into consideration. It is recommended to seriously pay attention to the promotion of agricultural fuels, not only in the Netherlands, but also in an international context. Policy instruments to be used in the stimulation of the use of such fuels are the existing European Community subsidies on fallow lands, exemption of the European Community energy levy, and the use of tax differentiation. Large-scale demonstration projects must be started to quantify hazardous emissions and to solve still existing technical problems. 8 figs., 3 tabs., refs., 4 appendices

  4. Transgenesis, agriculture and environment

    Leon Sicard, Tomas

    2004-01-01

    Starting from the reference point of view given by the environmental theory, we discuses the green revolution agriculture model in their main cultural and ecosystem aspects and, starting from there, the transgenic pattern is analyzed. This paper emphasizes in the new relationships derived from the farmers' dependence in connection with the transnational companies, in the right of the consumers to choose their foods and in the possible environmental effects of these technologies. Finally this work shows the incompatibility between the ecological agriculture and the transgenic plants, and some routes of culture rupture that are propitiated by these technologies

  5. Agricultural futures as becoming

    Kristensen, Dan Kristian; Kjeldsen, Chris

    This paper explores how the unfolding of an alternative future for agriculture consists of struggles to assemble a heterogeneous network of natural relations and social relations and technological relations. The site of this exploration is a profiled project, where a zero emission and landless...... agricultural facility is envisioned to consist of a pig production facility with a greenhouse for growing tomatoes on top. The novelty of this projects and its claim for sustainability lies in combining these two productions and utilizing synergies between them as well as employing an innovative technological...

  6. Isotopes in tropical agriculture

    NONE

    1962-04-15

    Ways in which the use of radioisotopes and radiation can help to improve the agriculture of tropical Africa were discussed by a panel of experts. The panel included scientists from Africa, Europe, and the United States, most of whom had had actual experience dealing with agricultural problems in various parts of tropical Africa. The experts agreed that radioisotopes and radiation might now be employed to particular advantage in tropical Africa to improve crop nutrition and combat insect pests. Other applications discussed were in the fields of hydrology, plant breeding and food preservation

  7. Isotopes in tropical agriculture

    1962-01-01

    Ways in which the use of radioisotopes and radiation can help to improve the agriculture of tropical Africa were discussed by a panel of experts. The panel included scientists from Africa, Europe, and the United States, most of whom had had actual experience dealing with agricultural problems in various parts of tropical Africa. The experts agreed that radioisotopes and radiation might now be employed to particular advantage in tropical Africa to improve crop nutrition and combat insect pests. Other applications discussed were in the fields of hydrology, plant breeding and food preservation

  8. Agricultural risk management

    Lund, Mogens; Oksen, Arne; Larsen, Torben U.

    2005-01-01

    A new model for risk management in agriculture is described in the paper. The risk model is constructed as a context dependent process, which includes four main phases. The model is aimed at agricultural advisors, who wish to facilitate and disseminate risk management to farmers. It is developed...... and tested by an action research approach in an attempt to make risk management more applicable on family farms. Our obtained experiences indicate that farmers don’t apply probabilistic thinking and other concepts according to formal decision theory....

  9. Agricultural law and development of rural areas: food challenges, natural resources and climate change

    Hernández, Ángel Sánchez

    2017-01-01

    In order to eradicate hunger in the world agricultural decisions must be made that will design a new model of agricultural production that will be more productive and will fit better in the fight against global warming. These decisions will help to regulate agricultural activities so that they help in the above mentioned fight as well. This new model of agricultural production will come together with the adoption of rural development decisions which will then be suitable for every ecosystem, ...

  10. Global change of the climate

    Moharam-nejad, Naser.

    1995-01-01

    Greenhouse effect is defined. greenhouse gases which are capable to produce greenhouse effect is mentioned. The production of greenhouse effects depends on the following factors; The amount of discharge to the atmosphere, Concentration, Life span, stability, Absorption and Emission. The effect of global change of climate on agriculture and living organisms is discussed. Global actions related to climate change and national procedures are described. The aim of climate change convention is given and the important points of convention is also mentioned

  11. Against Globalization

    Philipsen, Lotte; Baggesgaard, Mads Anders

    2013-01-01

    In order to understand globalization, we need to consider what globalization is not. That is, in order to understand the mechanisms and elements that work toward globalization, we must, in a sense, read against globalization, highlighting the limitations of the concept and its inherent conflicts....... Only by employing this as a critical practice will we be analytically able to gain a dynamic understanding of the forces of globalization as they unfold today and as they have developed historically....

  12. Handbook on electronic commerce

    Shaw, M. [Illinois Univ., Urbana, IL (United States). Beckman Inst. for Advanced Science and Technology; Blanning, R. [Vanderbilt Univ., Nashville, TN (United States). Owen Graduate School of Management; Strader, T. [Iowa State Univ., Ames, IA (United States). Management Information Systems; Whinston, A. [eds.] [Texas Univ., Austin, TX (United States). Dept. of Management Science and Information Systems

    2000-07-01

    The world is undergoing a revolution to a digital economy, with pronounced implications for corporate strategy, marketing, operations, information systems, customer services, global supply-chain management, and product distribution. This handbook examines the aspects of electronic commerce, including electronic storefront, on-line business, consumer interface, business-to-business networking, digital payment, legal issues, information product development, and electronic business models. Indispensable for academics, students and professionals who are interested in Electronic Commerce and Internet Business. (orig.)

  13. Climate change - global warming

    Ciconkov, Risto

    2001-01-01

    An explanation about climate, weather, climate changes. What is a greenhouse effect, i.e. global warming and reasons which contribute to this effect. Greenhouse gases (GHG) and GWP (Global Warming Potential) as a factor for estimating their influence on the greenhouse effect. Indicators of the climate changes in the previous period by known international institutions, higher concentrations of global average temperature. Projecting of likely scenarios for the future climate changes and consequences of them on the environment and human activities: industry, energy, agriculture, water resources. The main points of the Kyoto Protocol and problems in its realization. The need of preparing a country strategy concerning the acts of the Kyoto Protocol, suggestions which could contribute in the preparation of the strategy. A special attention is pointed to the energy, its resources, the structure of energy consumption and the energy efficiency. (Author)

  14. Agricultural Technology, Risk, and Gender

    Arndt, Channing; Tarp, Finn

    2000-01-01

    Interactions between agricultural technology improvements, risk-reducing behavior, and gender roles in agricultural production in Mozambique are examined. The analysis employs a computable general equilibrium (CGE) model that explicitly incorporates key features of the economy. These include......: detailed accounting of marketing margins, home consumption, risk, and gender roles in agricultural production. Our results show that agricultural technology improvements benefit both male and female occupants of rural households. Due to economic interactions, agricultural technology improvements...

  15. Governing agricultural sustainability

    Macnaghten, Philip; Carro-Ripalda, Susana

    2015-01-01

    Although GM crops are seen by their advocates as a key component of the future of world agriculture and as part of the solution for world poverty and hunger, their uptake has not been smooth nor universal: they have been marred by controversy and all too commonly their regulation has been

  16. Agricultural Development in Zambia

    Jeppesen, Søren; Hampwaye, Godfrey; Phiri, Douglas

    Food processing is important to the Zambian economy and entails a set of options for local firms to grow and create employment given the growth potential the country possesses in agriculture. This policy brief summarizes the findings of a study of 38 Zambian owned firms in the food processing...

  17. Agricultural nitrate pollution

    Anker, Helle Tegner

    2015-01-01

    Despite the passing of almost 25 years since the adoption of the EU Nitrates Directive, agricultural nitrate pollution remains a major concern in most EU Member States. This is also the case in Denmark, although a fairly strict regulatory regime has resulted in almost a 50 per cent reduction...

  18. Control of agricultural pests

    1961-01-01

    The methods of using isotopes and radiation sources in agricultural entomology were discussed by experts from 11 countries at a scientific symposium held by the International Atomic Energy Agency in Bombay from 5-9 December 1960. The scientists reviewed the techniques which have already been introduced, exchanged information on the results obtained and discussed the possibilities of further research in new directions

  19. Agriculture. Poultry Livestock.

    Michigan State Univ., East Lansing. Coll. of Agriculture and Natural Resources Education Inst.

    This task-based curriculum guide for agricultural production, specifically for poultry, is intended to help the teacher develop a classroom management system where students learn by doing. Introductory materials include a Dictionary of Occupational Titles job code and title sheet, a task sheet for developing leadership skills, and a task list.…

  20. Food and agriculture

    Muhammad Lebai Juri

    2005-01-01

    This chapter discussed the basic principles and techniques of nuclear science and technology applied in food and agricultural study. The following subjects covered: 1) Utilization of radiation in plant breeding, pest control, food irradiation, moisture content, food contamination study; 2) Utilization of radioisotopes in soil and plant studies, animal research

  1. Nanotechnology in Agriculture

    An overview is given of the application of nanotechnology to agriculture. This is an active field of R&D, where a large number of findings and innovations have been reported. For example, in soil management, applications reported include nanofertilizers, soil binders, water retention aids, and nut...

  2. Dilemmas in sustainable agriculture

    Korthals, M.

    2001-01-01

    In this article, I argue that agriculture and food production processes are subject to what I refer to as 'dilemmatic situations'. These dilemmatic situations are rather new, and require a new orientation in ethics to account for them. Ethics has to give up long-cherished ideals, such as: (a) the

  3. Africa, Agriculture, Aid

    Kuyvenhoven, A.

    2008-01-01

    In a world that is developing fast, Africa¿s relative stagnation is a human tragedy that challenges the development profession. Although climate and geography, and their effect on local institutions, are not in Africa¿s favour, inappropriate policies (including neglect of agriculture) and weak

  4. Agricultural Markets Instability

    Garrido, A.; Brümmer, B.; M'Barek, R.; Gielen-Meuwissen, M.P.M.; Morales-Opazo, C.

    2016-01-01

    Since the financial and food price crises of 2007, market instability has been a topic of major concern to agricultural economists and policy professionals. This volume provides an overview of the key issues surrounding food prices volatility, focusing primarily on drivers, long-term implications of

  5. Transgenics in Agriculture

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 2. Transgenics in Agriculture. D Rex Arunraj B Gajendra Babu. Classroom Volume 6 Issue 2 February 2001 pp 83-92. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/006/02/0083-0092 ...

  6. Sustainability through precision agriculture

    As population and standard of living increase in many parts of the world, so will the need for food and other agriculturally-based products. To be sustainable, these increases in production must occur with minimum impact on the environment and with efficient use of production resources, including la...

  7. Agriculture Oral Presentations

    1997-01-01

    This publication contains 23 papers related to the use of nuclear techniques in plant breeding in Turkey, effect of gamma irradiations on growing various plants, mutations and soil chemistry, etc., presented at 4. International Congress of Nuclear Agriculture and Animal Science in Bursa, Turkey, 25-27 Sep 1996. A separate abstract was prepared for each paper

  8. Taming agricultural risks

    Oppedahl, David B.

    2014-01-01

    On November 19, 2013, the Federal Reserve Bank of Chicago held a conference to explore the key risks faced by agricultural producers and lenders, as well as the risk-management tools available to them, in today’s volatile environment.

  9. Agricultural Supply Chain Risk Identification- A Case Finding from Ghana

    Nyamah Edmond Yeboah; Yi Feng; Oppong-Sekyere Daniel; Nyamaah Boadi Joseph

    2014-01-01

    This paper investigates and identifies the probable supply chain related risks in Ghana agricultural supply chain and further seeks the severity of these risks based on engineering judgments and historical records. In addition, this paper probes into participants¡¯ ability level to manage/control the identified risk. The results indicate that, not all global supply chain related risks transpire in Ghana agricultural supply chain. While some risks such as market related risks are inevitable in...

  10. The Role of Agriculture on the Recent Brazilian Economic Growth

    Spolador, Humberto Francisco Silva; Roe, Terry L.

    2012-01-01

    This paper investigates the contribution of the Brazilian agriculture to economic growth of the Brazilian economy. It draws upon the Global Trade Analysis Project (GTAP) data base, and other time series data to construct a multi-sector Ramsey model that shows the transition growth of the Brazilian agricultural sector and its effects on growth of the Brazilian economy, with particular emphasis given to the years 1994–2010.

  11. Global Strategy

    Li, Peter Ping

    2013-01-01

    Global strategy differs from domestic strategy in terms of content and process as well as context and structure. The content of global strategy can contain five key elements, while the process of global strategy can have six major stages. These are expounded below. Global strategy is influenced...... by rich and complementary local contexts with diverse resource pools and game rules at the national level to form a broad ecosystem at the global level. Further, global strategy dictates the interaction or balance between different entry strategies at the levels of internal and external networks....

  12. Global distribution of GPS losses of phase lock and total electron content slips during the 2005 May 15 and the 2003 November 20 magnetic storms

    Yasyukevich, Yuriy; Astafeva, Elvira; Givetev, Ilya; Maksikov, Aleksey

    2015-12-01

    Using data of worldwide network of GPS receivers we investigated losses of GPS phase lock (LoL) during two strong magnetic storms. At fundamental L1 frequency, LoL density is found to increase up to 0.25 % and at L2 frequency the increase is up to 3 %. This is several times as much compared with the background level. During the 2003 November 20 magnetic storm, the number of total electron content (TEC) slips exceeded the background level ~50 times. During superstorms, the most number of GPS LoL is observed at low and high latitudes. At the same time, the area of numerous TEC slips correspond to auroral oval boundaries.

  13. Globalization determinants of raw materials markets development

    Olga Yatsenko

    2013-02-01

    Full Text Available The determinants of development of raw materials markets and the peculiarities of their formation in the terms of world economy globalization have been researched. The empirical base of research is the agricultural food market as one of the most important bases in the sphere of material production and provision of food security of the country. The important social and economic mission of the agricultural sector has been highlighted, along with the export competitiveness and import dependence of agricultural food products in the international trade. The imperative norms have been substantiated and conclusions have been drawn regarding the establishment of respective conditions for the operation of globally integrated markets in Ukraine.

  14. Researches on Agricultural Cooperative Economic Organization Promoting Agricultural Insurance Development

    2011-01-01

    The advantages of cooperative economic organization being the effective carrier of agricultural insurance development are analyzed. Firstly, cooperative economic organization promotes scale management and solves the problem of decentralized operation of small households. Secondly, cooperative economic organization can settle the problem of peasants’ low systematization. Thirdly, cooperative economic organization can largely reduce the costs of agricultural insurance operation. Fourthly, cooperative organization decreases moral risks as well as adverse selection to some extent. Lastly, cooperative organization, to a certain degree, reduces the risks of agricultural production and increases the insurability of agricultural risks. Meanwhile, limitations of agricultural cooperative economic organization being the carrier of agricultural insurance operation are pointed out. Firstly, cooperative economic organization has limited coverage and small size of organization, which is harmful to the diversification of agricultural risks. Secondly, cooperative economic organization lacks capital funds and its development is not standard, which is not perfect for the function exertion as a carrier. Lastly, members of professional cooperative organization have low cultural qualities, which restrict the implementation of agricultural insurance. The modes of farmers’ cooperative economic organization promoting agricultural insurance development are proposed, including mode of agricultural insurance cooperative ( mutual corporation), mode of "leading enterprises (companies) + professional cooperative organization (planting majors) + insurance" and mode of professional cooperatives serving as agricultural insurance agent. Last of all, the promoting role of agricultural insurance in agricultural cooperative economic organization is briefly illustrated.

  15. Regulations Concerning Agriculture and Air Pollution

    Chiara Bertora

    2010-03-01

    Full Text Available The main issues related to the atmospheric pollution are the stratospheric ozone depletion, the transboundary air pollution, the troposphere air quality and the climate change. The three last decades have seen the birth of several measures for the atmosphere safeguard. Agricultural activities play a key role in determining, preventing and mitigating atmospheric pollution. The emission to atmosphere of different ozone-depleting substances is regulated by the Montreal Protocol. The role of agriculture activity in ozone depletion is linked to the utilization of methyl bromide as soil sterilant and to the emission of nitrogen oxides and nitrous oxide, from agricultural soils. The Convention on long-range transboundary air pollution regulates the emission of several pollutants, i.e. sulphur dioxide, nitrogen oxides, ammonia, non methane volatile organic compounds, carbon monoxide, heavy metals, persistent organic pollutants, and tropospheric ozone. The agriculture sector is responsible for a large part of the emissions of ammonia and nitrogen oxides, mainly through manure management and nitrogen fertilization, and of most persistent organic pollutants, largely used in the past as insecticides and fungicides. The increase of the greenhouse gases (GHGs concentration in the atmosphere is under the control of the Kyoto Protocol. Agriculture accounts for 59-63% of global non-CO2 GHGs emissions but at the same time it contributes to the atmospheric CO2 concentration stabilisation through the substitution of fossil fuels by biofuels and the sequestration of C in soil and vegetal biomass. In this paper we provide an outline of the numerous scientific and legislative initiatives aimed at protecting the atmosphere, and we analyse in detail the agriculture sector in order to highlight both its contribution to atmospheric pollution and the actions aimed at preventing and mitigating it.

  16. Agriculture and greenhouse gas effect: status and perspectives

    2010-01-01

    In a first part, this report analyses the interactions between climate and agriculture: understanding of climate changes and their global impacts, understanding of carbon and nitrogen life cycles and their relationship with anthropic greenhouse gas emissions, emissions by agriculture and impacts of climate change on agriculture, N 2 O, CH 4 and CO 2 emissions by agriculture. The authors address how to reduce emissions and increase carbon storage by crop management and N 2 O emission reduction, by breeding management and CH 4 and CO 2 emission reduction, and by energy CO 2 emission reduction. They discuss emission reduction policies in agriculture within the international political, European and French frameworks. They also identify possible economic tools

  17. Perspectives of precision agriculture in a broader policy context

    Lind, Kim Martin Hjorth; Pedersen, Søren Marcus

    2017-01-01

    that in a precise and targeted approach reduce resource use and increase yield. Furthermore, the growing demand for higher value food products in terms of health and quality require traceability and information about production processes and resource use, which also correspond with the possibilities offered...... by precision agriculture technology. The general movement towards higher integration in food supply chains is a natural extension of the requirements for traceability and product information, which are integral parts of precision agriculture.......Agriculture is faced with contrasting requirements from the broader society. On the one hand, agriculture needs to expand production to be able to feed a growing global population. Furthermore, the developing bio-economy requires agriculture to produce for a range of non-food objectives such as bio...

  18. New Trends in Robotics for Agriculture: Integration and Assessment of a Real Fleet of Robots

    Gonzalez-de-Soto, Mariano; Pajares, Gonzalo

    2014-01-01

    Computer-based sensors and actuators such as global positioning systems, machine vision, and laser-based sensors have progressively been incorporated into mobile robots with the aim of configuring autonomous systems capable of shifting operator activities in agricultural tasks. However, the incorporation of many electronic systems into a robot impairs its reliability and increases its cost. Hardware minimization, as well as software minimization and ease of integration, is essential to obtain feasible robotic systems. A step forward in the application of automatic equipment in agriculture is the use of fleets of robots, in which a number of specialized robots collaborate to accomplish one or several agricultural tasks. This paper strives to develop a system architecture for both individual robots and robots working in fleets to improve reliability, decrease complexity and costs, and permit the integration of software from different developers. Several solutions are studied, from a fully distributed to a whole integrated architecture in which a central computer runs all processes. This work also studies diverse topologies for controlling fleets of robots and advances other prospective topologies. The architecture presented in this paper is being successfully applied in the RHEA fleet, which comprises three ground mobile units based on a commercial tractor chassis. PMID:25143976

  19. New Trends in Robotics for Agriculture: Integration and Assessment of a Real Fleet of Robots

    Luis Emmi

    2014-01-01

    Full Text Available Computer-based sensors and actuators such as global positioning systems, machine vision, and laser-based sensors have progressively been incorporated into mobile robots with the aim of configuring autonomous systems capable of shifting operator activities in agricultural tasks. However, the incorporation of many electronic systems into a robot impairs its reliability and increases its cost. Hardware minimization, as well as software minimization and ease of integration, is essential to obtain feasible robotic systems. A step forward in the application of automatic equipment in agriculture is the use of fleets of robots, in which a number of specialized robots collaborate to accomplish one or several agricultural tasks. This paper strives to develop a system architecture for both individual robots and robots working in fleets to improve reliability, decrease complexity and costs, and permit the integration of software from different developers. Several solutions are studied, from a fully distributed to a whole integrated architecture in which a central computer runs all processes. This work also studies diverse topologies for controlling fleets of robots and advances other prospective topologies. The architecture presented in this paper is being successfully applied in the RHEA fleet, which comprises three ground mobile units based on a commercial tractor chassis.

  20. New trends in robotics for agriculture: integration and assessment of a real fleet of robots.

    Emmi, Luis; Gonzalez-de-Soto, Mariano; Pajares, Gonzalo; Gonzalez-de-Santos, Pablo

    2014-01-01

    Computer-based sensors and actuators such as global positioning systems, machine vision, and laser-based sensors have progressively been incorporated into mobile robots with the aim of configuring autonomous systems capable of shifting operator activities in agricultural tasks. However, the incorporation of many electronic systems into a robot impairs its reliability and increases its cost. Hardware minimization, as well as software minimization and ease of integration, is essential to obtain feasible robotic systems. A step forward in the application of automatic equipment in agriculture is the use of fleets of robots, in which a number of specialized robots collaborate to accomplish one or several agricultural tasks. This paper strives to develop a system architecture for both individual robots and robots working in fleets to improve reliability, decrease complexity and costs, and permit the integration of software from different developers. Several solutions are studied, from a fully distributed to a whole integrated architecture in which a central computer runs all processes. This work also studies diverse topologies for controlling fleets of robots and advances other prospective topologies. The architecture presented in this paper is being successfully applied in the RHEA fleet, which comprises three ground mobile units based on a commercial tractor chassis.